


Daniel Kleppner 

Associate Professor of Physics 

Massachusetts Institute 

of Technology 

Robert J. Kolenkow 

Formerly Associate Professor 

of Physics, Massachusett s 

Institute of Technology 

AN 
INTRODUCTION 
TO 
MECHANICS 

Boston, Massachusetts Burr Ridge, Illinois 
Dubuque, Iowa Madison, Wisconsin New York, New York 
San Francisco, California St. Louis, Missouri 



AN 

INTRODUCTION 

TO 

MECHANICS 

McGraw-Hill 

A Division ofTheMcGraw·HiUCompanies 

Copyright © 1973 by McGraw-Hili, Inc. 
All rights reserved. PrInted in the United States of America. Except as permitted 

under the Copyright Act of 1976, no part of this publication may be reproduced or 

distributed in any form or by any means, or stored in a data base or retrieval 
system, without the prior written permission of the publisher. 

Printed and bound by Book-mart Press, Inc. 

30 31 32 33 34 35 36 37 38 39 BKM BKM 0 9 8 

This book was set in News Gothic by The Maple Press Company.' 
The editors were Jack L. Farnsworth and J. W. Maisel; 
the designer was Edward A. Butler; 
and the production supervisor was Sally Ellyson. 
The drawings were done by Felix Cooper. 

Library of Congress Cataloging in Publication Data 

Kleppner. Daniel. 
An introduction to mechanics. 

1. Mechanics. 
QA805.K62 

I. Kolenkow. Robert. joint author. 
531 72·11770 

ISBN·13: 978·0'()7·035048-9 

ISBN·IO: 0·07·035048·5 

II Title. 



To our parents 

Beatrice and Otto 

Katherine and John 





CONTENTS 

1 VECTORS 

AND 

KINEMATICS 

-A FEW 

MATHEMATICAL 

PREll MINARIES 

2 NEWTON'S 

LAWS-THE 

FOUNDATIONS 

OF 

NEWTONIAN 

MECHANICS 

LIST OF EXAMPLES xi 

PREFACE xv 

TO THE TEACHER xix 

1.1 INTRODUCTION 2 

1.2 VECTORS 2 

Definition of a Vector, The Algebra of Vectors, 3. 

1.3 COMPONENTS OF A VECTOR 8 

1.4 BASE VECTORS 10 

1.5 DISPLACEMENT AND THE POSITION VECTOR 11 

1.6 VELOCITY AND ACCELERATION 13 

Motion in One Dimension, 14; Motion in Several Dimensions, 14; A Word about 
Dimensions and Units, 18. 

1.7 FORMAL SOLUTION OF KINEMATICAL EQUATIONS 9 

1.8 MORE ABOUT THE DERIVATIVE OF A VECTOR 23 

1.9 MOTION IN PLANE POLAR COORDINATES 27 

Polar Coordinates, 27; Velocity in Polar Coordinates, 27; Evaluating d;jdt, 31; 

Acceleration in Polar Coordinates, 36. 

Note 1.1 MATHEMATICAL APPROXIMATION METHODS 39 

The Binomial Series, 41; Taylor's Series, 42; Differentials, 45. 

Some References to Calculus Texts, 47. 

PROBLEMS 47 

2.1 INTRODUCTION 52 

2.2 NEWTON'S LAWS 53 

Newton's First Law, 55; Newton's Second Law, 56; Newton's Third Law, 5!1. 

2.3 STANDARDS AND UNITS 64 

The Fundamental Standards, 64; Systems of Units, 67. 

2.4 SOME APPLICATIONS OF NEWTON'S LAWS 68 

2.5 THE EVERYDAY FORCES OF PHYSICS 79 

Gravity, Weight, and the Gravitational Field, 80; The Electrostatic Force, 86; 

Contact Forces, 87; Tension-The Force of a String, 87; Tension and Atomic 
Forces, 91; The Normal Force, 92; Friction, 92; Viscosity, 95; The Linear Restoring 
Force: Hooke's Law, the Spring, and Simple Harmonic Motion, 97. 

Note 2.1 THE GRAVITATIONAL ATTRACTION OF A SPHERICAL 

SHELL 101 

PROBLEMS 103 

3 MOMENTUM 3.1 INTRODUCTION 112 

3.2 DYNAM ICS OF A SYSTEM OF PARTICLES 113 

Center of Mass, 116. 

3.3 CONSERVATION OF MOMENTUM 122 

Center of Mass Coordinates, 127. 

3.4 IMPULSE AND A RESTATEMENT OF THE MOMENTI 

RELATION 130 

3.5 MOMENTUM AND THE FLOW OF MASS 133 



viii 

4 WORK 

AND 

ENERGY 

5 SOME 

MATHEMATICAL 

ASPECTS 

OF FORCE 

AND 

ENERGY 

6 ANGULAR 

MOMENTUM 

AND FIXED AXIS 

ROTATION 

CONTENTS 

3.6 MOMENTUM TRANSPORT 139 

Note 3.1 CENTER OF MASS 145 

PROBLEMS 147 

4.1 INTRODUCTION 152 

4.2 INTEGRATING THE EQUATION OF MOTION IN ONE 

DIMENSION 153 

4.3 THE WORK·ENERGY THEOREM IN ONE DIMENSION 156 

4.4 INTEGRATING THE EQUATION OF MOTION IN SEVERAL 

DIMENSIONS 158 

4.5 THE WORK·ENERGY THEOREM 160 

4.6 APPLYING THE WORK·ENERGY THEOREM 162 

4.7 POTENTIAL ENERGY 168 

/IIustrations of Potential Energy, 170. 

4.8 WHAT POTENTIAL ENERGY TI1...LS US ABOUT FORCE 173 

Stability, 174. 

4.9 ENERGY DIAGRAMS 176 

4.10 SMALL OSCILLATIONS IN A BOUND SYSTEM 178 

4.11 NONCONSERVATIVE FORCES 182 

4.12 THE GENERAL LAW OF CONSERVATION OF ENERGY 184 

4.13 POWER 186 

4.14 CONSERVATION LAWS AND PARTICLE COLLISIONS 187 

Collisions and Conservation Laws, 188; Elastic and Inelastic Collisions, 188; 

Collisions in One Dimension, 189; Collisions and Center of Mass Coordinates, 190. 

PROBLEMS 194 

5.1 INTRODUCTION 202 

5.2 PARTIAL DERIVATIVES 202 

5.3 HOW TO FIND THE FORCE IF YOU KNOW THE POTENTIAL 
ENERGY 206 

5.4 THE GRADIENT OPERATOR 207 

5.5 THE PHYSICAL MEANING OF THE GRADIENT 210 

Constant Energy Surfaces and Contour Lines, 211. 

5.6 HOW TO FIND OUT IF A FORCE IS CONSERVATIVE 215 

5.7 STOKES' THEOREM 225 

PROBLEMS 228 

6.1 INTRODUCTION 232 

6.2 ANGULAR MOMENTUM OF A PARTICLE 233 

6.3 TORQUE 238 

6.4 ANGULAR MOMENTUM AND FIXED AXIS ROTATION 248 

6.5 DYNAMICS OF PURE ROTATION ABOUT AN AXIS 253 

6.6 THE PHYSICAL PENDULUM 255 

The Simple Pendulum, 253; The Physical Pendulum, 257. 

6.7 MOTION INVOLVING BOTH TRANSLATION AND ROTATION 260 

The Work·energy Theorem, 267. 

6.8 THE BOHR ATOM 270 

Note 6.1 CHASLES' THEOREM 274 

Note 6.2 PENDULUM MOTION 276 

PROBLEMS 279 



7 RIGID BODY 

MOTION 

AND THE 

CONSERVATION 

OF 

ANGULAR 

MOMENTUM 

8 NONINERTIAL 

SYSTEMS 

AND 

FICTITIOUS 

FORCES 

9 CENTRAL 

FORCE 

MOTION 

10 THE 

HARMONIC 

OSCILLATOR 

CONTENTS 

7.1 INTRODUCTION 288 

7.2 THE VECTOR NATURE OF ANGULAR VELOCITY AND 

ANGULAR MOMENTUM 288 

7.3 THE GYROSCOPE 295 

7.4 SOME APPLICATIONS OF GYROSCOPE MOTION 300 

7.5 CONSERVATION OF ANGULAR MOMENTUM 305 

7.6 ANGULAR MOMENTUM OF A ROTATING RIGID BODY 308 

ix 

Angular Momentum and the Tensor of Inertia, 308; Principal Axes, 313; Rotational 

Kinetic Energy, 313; Rotation about a Fixed Point, 315. 

7.7 ADVANCED TOPICS IN THE DYNAMICS OF RIGID BODY 

ROTATION 316 

Introduction, 316; Torque-free Precession: Why the Earth Wobbles, 317; Euler's 

Equations, 320. 

Note 7.1 FINITE AND INFINITESIMAL ROTATIONS 326 

Note 7.2 MORE ABOUT GYROSCOPES 328 

Case 1 Uniform Precession, 331; Case 2 Torque-free Precession, 331; Case 3 

Nutation, 331. 

PROBLEMS 334 

8.1 INTRODUCTION 340 

8.2 THE GALILEAN TRANSFORMATIONS 340 

8.3 UNIFORMLY ACCELERATING SYSTEMS 343 

8.4 THE PRINCIPLE OF EQUIVALENCE 346 

8.5 PHYSICS IN A ROTATING COORDINATE SYSTEM 355 

Time Derivatives and Rotating Coordinates, 356; Acceleration Relative to Rotating 

Coordinates, 358; The Apparent Force in a Rotating Coordinate System, 359. 

Note 8.1 THE EQUIVALENCE PRINCIPLE AND THE 

GRAVITATIONAL RED SHIFT 369 

Note 8.2 ROTATING COORDINATE TRANSFORMATION 371 

PROBLEMS 372 

9.1 INTRODUCTION 378 

9.2 CENTRAL FORCE MOTION AS A ONE BODY PROBLEM 378 

9.3 GENERAL PROPERTIES OF CENTRAL FORCE MOTION 380 

The Motion Is Confined to a Plane, 380; The Energy and Angular Momentum Are 

Constants of the Motion, 380; The Law of Equal Areas, 382. 

9.4 FINDING THE MOTION IN REAL PROBLEMS 382 

9.5 THE ENERGY EQUATION AND ENERGY DIAGRAMS 383 

9.6 PLANETARY MOTION 390 

9.7 KEPLER'S LAWS 400 

Note 9.1 PROPERTIES OF THE ELLIPSE 403 

PROBLEMS 406 

10.1 INTRODUCTION AND REVIEW 410 

Standard Form of the Solution, 410; Nomenclature, 411; Energy Considerations, 

412; Time Average Values, 413; Average Energy, 413. 

10.2 THE DAMPED HARMONIC OSCILLATOR 414 

Energy, 416; The Q of an Oscillator, 418. 



x 

11 THE 

SPECIAL 

THEORY 

OF 

RELATIVITY 

1Z RELATIVISTIC 

KINEMATICS 

13 RELATIVISTIC 

MOMENTUM 

AND 

ENERGY 

14 FOUR· 

VECTORS 

AND 

RELATIVISTIC 

INVARIANCE 

CONTENTS 

10.3 THE FORCED HARMONIC OSCILLATOR 421 

The Undamped Forced Oscillator, 421; Resonance, 423; The Forced Damped 

Harmonic Oscillator, 424; Resonance in a Lightly Damped System: The Quality 

Factor Q, 426. 

10.4 RESPONSE IN TIME VERSUS RESPONSE IN FREQUENCY 432 

Note 10.1 SOLUTION OF THE EQUATION OF MOTION FOR THE 

UNDRIVEN DAMPED OSCILLATOR 433 

The Use of Complex Variables, 433; The Damped Oscillator, 435. 

Note 10.2 SOLUTION OF THE EQUATION OF MOTION FOR THE 
FORCED OSCILLATOR 437 

PROBLEMS 438 

11.1 THE NEED FOR A NEW MODE OF THOUGHT 442 

11.2 THE MICHELSON·MORLEY EXPERIMENT 445 

11.3 THE POSTULATES OF SPECIAL �ELATIVITY 450 

The Universal Velocity, 451; The Principle of Relativity, 451; The Postulates of 

Special Relativity, 452. 

11.4 THE GALILEAN TRANSFORMATIONS 453 

11.5 THE LORENTZ TRANSFORMATIONS 455 

PROBLEMS 459 

12.1 INTRODUCTION 462 

12.2 SIMULTANEITY AND THE ORDER OF EVENTS 463 

12.3 THE LORENTZ CONTRACTION AND TIME DILATION 466 

The Lorentz Contraction, 466; Time Dilation, 468. 

12.4 THE RELATIVISTIC TRANSFORMATION OF VELOCITY 472 

12.5 TH E DOPPLER EFFECT 475 

The Doppler Shift in Sound, 475; Relativistic Doppler Effect, 477; The Doppler 

Effect for an Observer off the Line of Motion, 478. 

12.6 THE TWIN PARADOX 480 

PROBLEMS 484 

13.1 MOMENTUM 490 

13.2 ENERGY 493 

13.3 MASSLESS PARTICLES 500 

13.4 DOES LIGHT TRAVEL AT THE VELOCITY OF LIGHT? 508 

PROBLEMS 512 

14.1 INTRODUCTION 516 

14.2 VECTORS AND TRANSFORMATIONS 516 

Rotation about the z Axis, 517; Invariants of a Transformation, 520; The Trans· 

formation Properties of Physical Laws, 520; Scalar Invariants, 521. 

14.3 MINIKOWSKI SPACE AND FOUR·VECTORS 521 

14.4 THE MOMENTUM·ENERGY FOUR·VECTOR 527 

14.5 CONCLUDING REMARKS 534 

PROBLEMS 536 

INDEX 539 



LIST OF 

EXAMPLES 

1 VECTORS 

AND 

KINEMATICS 

-A FEW 

MATHEMATICAL 

PRELl MINARIES 

2 NEWTON'S 

LAWS-THE 

FOUNDATIONS 

OF 

NEWTONIAN 

MECHANICS 

EXAMPLES, CHAPTER 1 

1.1 Law of Cosines, 5; 1.2 Work and the Dot Product, 5; 1.3 Examples of 

the Vector Product in Physics, 7; 1.4 Area as a Vector, 7. 

1.5 Vector Algebra, 9; 1.6 Construction of a Perpendicular Vector, 10. 

1.7 Finding v from r, 16; 1.8 Uniform Circular Motion, 17. 

1.9 Finding Velocity from Acceleration, 20; 1.10 Motion in a Uniform Gravi

tational Field, 21; 1.11 Nonuniform Acceleration-The Effect of a Radio 

Wave on an Ionospheric Electron, 22. 

1.12 Circular Motion and Rotating Vectors, 25. 

1.13 Circular Motion and Straight line Motion in Polar Coordinates, 34; 

1.14 Velocity of a Bead on a Spoke, 35; 1.15 Off-center Circle, 35; 1.16 Ac

celeration of a Bead on a Spoke, 37; 1.17 Radial Motion without Accelera

tion, 38. 

EXAMPLES, CHAPTER 2 

2.1 Astronauts in Space-Inertial Systems and Fictitious Force, 60. 

2.2 The Astronauts' Tug-of-war, 70; 2.3 Freight Train, 72; 2.4 Constraints, 

74; 2.5 Block on String I, 75; �.6 Block on String 2, 76; 2.7 The Whirling 

Block, 76; 2.8 The Conical Pendulum, 77. 

2.9 Turtle in an Elevator, 84; 2.10 Block and String 3, 87; 2.11 Dangling 

Rope, 88; 2.12 Whirling Rope, 89; 2.13 Pulleys, 90; 2.14 Block and Wedge 

with Friction, 93; 2.15 The Spinning Terror, 94; 2.16 Free Motion in a Viscous 

Medium, 96; 2.17 Spring and Block-The Equation for Simple Harmonic 

Motion, 98; 2.18 The Spring Gun-An Example Illustrating I nitial Conditions, 

99. 

3 MOMENTUM EXAMPLES, CHAPTER 3 

4 WORK 

AND 

ENERGY 

3.1 The Bola, 115; 3.2 Drum Major's Baton, 117; 3.3 Center of Mass of a 

Nonuniform Rod, 119; 3.4 Center of Mass of a Triangular Sheet, 120; 3.5 

Center of Mass Motion, 122. 

3.6 Spring Gun Recoil, 123; 3.7 Earth, Moon, and Sun-A Three Body 

System, 125; 3.8 The Push Me-Pull You, 128. 

3.9 Rubber Ball Rebound, 131; 3.10 How to Avoid Broken Ankles, 132. 

3.11 Mass Flow and Momentum, 134; 3.12 Freight Car and Hopper, 135; 

3.13 Leaky Freight Car, 136; 3.14 Rocket in Free Space, 138; 3.15 Rocket 

in a Gravitational Field, 139. 

3_16 Momentum Transport to a Surface, 141; 3.17 A Dike at the Bend of a 

River, 143; 3.18 Pressure of a Gas, 144. 

EXAMPLES, CHAPTER 4 

4.1 Mass Thrown Upward in a Uniform Gravitational Field, 154; 4.2 Solving 

the Equation of Simple Harmonic Motion, 154. 

4.3 Vertical Motion in an Inverse Square Field, 156. 

4.4 The Conical Pendulum, 161; 4.5 Escape Velocity-The General Case, 

162. 

4.6 The Inverted Pendulum, 164; 4.7 Work Done by a Uniform Force, 165; 

4.8 Work Done by a Central Force, 167; 4.9 A Path-dependent line Integral, 

167; 4.10 Parametric Evaluation of a line Integral, 168. 



xii 

5 SOME 

MATHEMATICAL 

ASPECTS 

OF FORCE 

AND 

ENERGY 

6 ANGULAR 

MOMENTUM 

AND FIXED AXIS 

ROTATION 

7 RIGID BODY 

MOTION 

AND THE 

CONSERVATION 

OF 

ANGULAR 

MOMENTUM 

LIST OF EXAMPLES 

4.11 Potential Energy of a Uniform Force Field, 170; 4.12 Potential Energy 
of an Inverse Square Force, 171; 4.13 Bead, Hoop, and Spring, 172. 

4.14 Energy and Stability-The Teeter Toy, 175. 

4.15 Molecular Vibrations, 179; 4.16 Small Oscillations, 181. 

4.17 Block Sliding down Inclined Plane, 183. 

4.18 Elastic Collision of Two Balls, 190; 4.19 Limitations on Laboratory 

Scattering Angle, 193. 

EXAMPLES, CHAPTER 5 

5.1 Partial Derivatives, 203; 5.2 Applications of the Partial Derivative, 205. 

5.3 Gravitational Attraction by a Particle, 208; 5.4 Uniform Gravitational 

Field, 209; 5.5 Gravitational Attraction by Two Point Masses, 209. 

5.6 Energy Contours for a Binary Star System, 212. 

5.7 The Curl of the Gravitational Force, 219; 5.8 A Nonconservative Force, 
220; 5.9 A Most Unusual Force Field, 221; 5.10 Construction of the Potential 

Energy Function, 222; 5.11 How the Curl Got Its Name, 224. 

5.12 Using Stokes' Theorem, 227. 

EXAMPLES, CHAPTER 6 

6.1 Angular Momentum of a Sliding Block, 236; 6.2 Angular Momentum 

of the Conical Pendulum, 237. 

6.3 Central Force Motion and the Law of Equal Areas, 240; 6.4 Capture 

Cross Section of a Planet, 241; 6.5 Torque on a Sliding Block, 244; 6.6 

Torque on the Conical Pendulum, 245; 6.7 Torque due to Gravity, 247. 
6.8 Moments of Inertia of Some Simple Objects, 250; 6.9 The Parallel Axis 

Theorem, 252. 

6.10 Atwood's Machine with a Massive Pulley, 254. 

6.11 Grandfather's Clock, 256; 6.12 Kater's Pendulum, 258; 6.13 The Door· 

step, 259. 

6.14 . Angular Momentum of a Rolling Wheel, 262; 6.15 Disk on Ice, 264; 

6.16 Drum Rolling down a Plane, 265; 6.17 Drum Rolling down a Plane: 

Energy Method, 268; 6.18 The Falling Stick, 269. 

EXAMPLES, CHAPTER 7 

7.1 Rotations through Finite Angles, 289; 7.2 Rotation in the xy Plane, 291; 

7.3 Vector Nature of Angular Velocity, 291; 7.4 Angular Momentum of a 

Rotating Skew Rod, 292; 7.5 Torque on the Rotating Skew Rod, 293; 7.6 

Torque on the Rotating Skew Rod (Geometric Method), 294. 

7.7 Gyroscope Precession, 298; 7.8 Why a Gyroscope Precesses, 299. 

7.9 Precession of the Equinoxes, 300; 7.10 The Gyrocompass Effect, 301; 

7.11 Gyrocompass Motion, 302; 7.12 The Stability of Rotating Objects, 304. 

7.13 Rotating Dumbbell, 310; 7.14 The Tensor of Inertia for a Rotating Skew 

Rod, 312; 7.15 Why Flying Saucers Make Better Spacecraft than Do Flying 

Cigars, 314. 

7.16 Stability of Rotational Motion, 322; 7.17 The Rotating Rod, 323; "".18 
Euler's Equations and Torque-free Precession, 324_ 

I 
I 
t 
i 
t 

I 

�
i 
, 

I 
t 
r 
, I 

, 
I 

1 
I 

I 
l 



8 NON INERTIAL 

SYSTEMS 

AND 

FICTITIOUS 

FORCES 

9 CENTRAL 

FORCE 

MOTION 

10 THE 

HARMONIC 

OSCILLATOR 

11 THE 

SPECIAL 

THEORY 

OF 

RELATIVITY 

12 RELATIVISTIC 

KINEMATICS 

13 RELATIVISTIC 

MOMENTUM 

AND 

ENERGY 

LIST OF EXAMPLES xiii 

EXAMPLES, CHAPTER 8 

8.1 The Apparent Force of Gravity, 346; 8.2 Cylinder on an Accelerating 
Plank, 347; 8.3 Pendulum in an Accelerating Car, 347. 

8.4 The Driving Force of the Tides, 350; 8.5 Equilibrium Height of the Tide, 
352. 

8.6 Surface of a Rotating Liquid, 362; 8.7 The Coriolis Force, 363; 8.8 De
flection of a Falling Mass, 364; 8.9 Motion on the Rotating Earth, 366; 8.10 

Weather Systems, 366; 8.11 The Foucault Pendulum, 369. 

EXAMPLES, CHAPTER 9 

9.1 Noninteracting Particles, 384; 9.2 The Capture of Comets, 387; 9.3 

Perturbed Circular Orbit, 388. 

9.4 Hyperbolic Orbits, 393; 9.5 Satellite Orbit, 396; 9.6 Satellite Maneuver, 
398. 

9.7 The Law of Periods, 403. 

EXAMPLES, CHAPTER 10 

10.1 Initial Conditions and the Frictionless Harmonic Oscillator, 411. 

10.2 The Q of Two Simple Oscillators, 419; 10.3 Graphical Analysis of a 
Damped Oscillator, 420. 

10.4 Forced Harmonic Oscillator Demonstration, 424; 10.5 Vibration Elimi
nator, 428. 

EXAM PLES, CHAPTER 11 

11.1 The Galilean Transformations, 453; 11.2 A Light Pulse as Described t;ly 
the Galilean Transformations, 455. 

EXAM PLES, CHAPTER 12 

12.1 Simultaneity, 463; 12.2 An Application of the Lorentz Transformations, 
464; 12.3 The Order of Events: Timelike and Spacelike Intervals, 465. 

12.4 The Orientation of a Moving Rod, 467; 12.5 Time Dilation and Meson 
Decay, 468; 12.6 The Role of Time Dilation in an Atomic Clock, 470_ 

12.7 The Speed of Light in a Moving Medium, 474. 

12.8 Doppler NaVigation, 479. 

EXAM PLES, CHAPTER 13 

13.1 Velocity Dependence of the Electron's Mass, 492. 

13.2 Relativistic Energy and Momentum in an Inelastic Collision, 496; 13.3 

The Equivalence of Mass and Energy, 498. 

13.4 The Photoelectric Effect, 502; 13.5 Radiation Pressure of Light, 502; 



xiv 

I 
! 

i ;� 
, 

II 
I 

{ 

i' 

Ii 

Ii 
. � 

1 1 
) 

Ii,; 
i: 

!ij; 
ii' 
Ii 
� 
�. 

I I 
[; 

Ii 
I' 

I" 'ti 

14 FOUR

VECTORS 

AND 

RELATIVISTIC 

INVARIANCE 

LIST OF EXAMPLES 

13.6 The Compton Effect, 503; 13.7 Pair Production, 505; 13.8 The Photon 

Picture of the Doppler Effect, 507. 

13.9 The Rest Mass of the Photon, 510; 13.10 Light from a Pulsar, 510. 

EXAMPLES, CHAPTER 14 

14.1 Transformation Properties of the Vector Product, 518; 14.2 A Non· 

vector, 519. 

14.3 Time Dilation, 524; 14.4 Construction of a Four·vector: The Four

velocity, 525; 14.5 The Relativistic Addition of Velocities, 526. 
14.6 The Doppler Effect, Once More, 530; 14.7 Relativistic Center of Mass 

Systems, 531; 14.8 Pair Production in Electron-electron Collisions, 533. 

f 

\ 

� 
�. 



PREFACE 
There is good reason for the tradition that students of science and 

engineering start college physics with the study of mechanics: 

mechanics is the cornerstone of pure and applied science. The 

concept of energy, for example, is essential for the study of the 

evolution of the universe, the properties of elementary particles, 

and the mechanisms of biochemical reactions. The concept of 

energy is also essential to the design of a cardiac pacemaker and 

to the analysis of the limits of growth of industrial society. How· 

ever, there are difficulties in presenting an introductory course in 

mechanics which is both exciting and intellectually rewarding. 

Mechanics is a mature science and a satisfying discussion of its 

principles is easily lost in a superficial treatment. At the other 

extreme, attempts to "enrich" the subject by emphasizing 

advanced topics can produce a false sophistication which empha· 

sizes technique rather than understanding. 

This text was developed from a first-year course which we taught 

for a number of years at the Massachusetts Institute of Technology 

and, earlier, at Harvard University. We have tried to present 

mechanics in an engaging form which offers a strong base for 

future work in pure and applied science. Our approach departs 

from tradition more in depth and style than in the choice of topics; 

nevertheless, it reflects a view of mechanics held by twentieth

century physicists. 

Our book is written primarily for students who come to the course 

knowing some calculus, enough to differentiate and integrate sim

ple functions.' It has also been used successfully in courses 

requiring only concurrent registration in calculus. (For a course 

of this nature, Chapter 1 should be treated as a resource chapter, 

deferring the detailed discussion of vector kinematics for a time. 

Other suggestions are listed in To The Teacher.) Our experi

ence has been that the principal source of difficulty for most stu

dents is in learning how to apply mathematics to physical problems, 

not with mathematical techniques as such. The elements of cal

culus can be mastered relatively easily, but the development of 

problem-solving ability requires careful guidance. We have pro

vided numerous worked examples throughout the text to help 

supply this guidance. Some of the examples, particularly in the 

early chapters, are essentially pedagogical. Many examples, how

ever, illustrate principles and techniques by application to prob

lems of real physical interest. 

The first chapter is a mathematical introduction, chiefly on vec

tors and kinematics. The concept of rate of change of a vector, 

1 The background provided in "Quick Calculus" by Daniel Kleppner and Norman 

Ramsey, John Wiley & Sons, New York, 1965, is adequate. 
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probably the most difficult mathematical concept in the text, 

plays an important role throughout mechanics. Consequently, 

this topic is developed with care, both analytically and geometrically. 

The geometrical approach, in particular, later proves to be invalu· 

able for visualizing the dynamics of angular momentum. 

Chapter 2 discusses inertial systems, Newton's laws, and some 

common forces. Much.of the discussion centers on applying New· 

ton's laws, since analyzing even simple problems according to 

general principles can be a challenging task at first. Visualizing 

a complex system in terms of its essentials, selecting suitable 

inertial coordinates, and distinguishing between forces and accel· 

erations are all acquired skills. The numerous illustrative exam· 

pies in the text have been carefully chosen to help develop these 

skills. 

Momentum and energy are developed in the following two chap· 

ters. Chapter 3, on momentum, applies Newton's laws to extended 

systems. Students frequently become confused when they try to 

apply momentum considerations to rockets and other systems 

involving flow of mass. Our approach is to apply a differential 

method to a system defined so that no mass crosses its boundary 

during the chosen time interval. This ensures that no contribution 

to the total momentum is overlooked. The chapter concludes with 

a discussion of momentum flux. Chapter 4, on energy, develops 

the work·energy theorem and its application to conservative and 

nonconservative forces. The conservation laws for momentum 

and energy are illustrated by a discussion of collision problems. 

Chapter 5 deals with some mathematical aspects of conservative 

forces and potential energy; this material is not needed elsewhe re 

in the text, but it will be of interest to stUdents who want a mathe· 

matically complete treatment of the subject. 

Students usually find it difficult to grasp the properties of angular 

momentum and rigid body motion, partly because rotational motion 

lies so far from their experience that they cannot rely on intuition. 

As a result, introductory texts �ften slight these topics, despite 

their importance. We have found that rotational motion can be 

made understandable by emphasizing physical reasoning rather 

than mathematical formalism, by appealing to geometric argu· 

ments, and by providing numerous worked examples. In Chapter 

6 angular momentum is introduced, and the dynamics of fixed 

axis rotation is treated. Chapter 7 develops the important features 

of rigid body motion by applying vector arguments to systems 

dominated by spin angular momentum. An elementary treatment 

of general rigid body motion is prp.sented in the last sections of 

Chapter 7 to show how Euler's equations can be developed from 
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simple physical arguments. This more advanced material is 

optional however; we do not usually treat it in our own course. 

Chapter 8, on noninertial coordinate systems, completes the 

development of the principles of newtonian mechanics. Up to 

this point in the text, inertial systems have been used exclusively 

in order to avoid confusion between forces and accelerations. 

Our discussion of noninertial systems emphasizes their value as 

computational tools and their implications for the foundations of 

mechanics. 

Chapters 9 and 10 treat central force motion and the harmonic 

oscillator, respectively. Although no new physical concepts are 

involved, these chapters illustrate the application of the principles 

of mechanics to topics of general interest and importance in phy

sics. Much of the algebraic complexity of the harmonic oscillator 

is avoided by focusing the discussion on energy, and by using sim

ple approximations. 

Chapters 11 through 14 present a discussion of the principles of 

special relativity and some of its applications. We attempt to 

emphasize the harmony between relativistic and classical thought, 

believing, for example, that it is more valuable to show how the 

classical conservation laws are unified in relativity than to dwell 

at length on the so-called "paradoxes." Our treatment is con

cise and minimizes algebraic complexities. Chapter 14 shows how 

ideas of symmetry play a fundamental role in the formulation of 

relativity. Although we have kept the beginning students in mind, 

the concepts here are more subtle than in the previous chapters. 

Chapter 14 can be omitted if desired; but by illustrating how sym

metry bears on the principles of mechanics, it offers an exciting 

mode of thought and a powerful new tool. 

Physics cannot be learned passively; there is absolutely no sub

stitute for tackling challenging problems. Here is where stUdents 

gain the sense of satisfaction and involvement produced by a 

genuine understanding of the principles of physics. The collec

tion of problems in this book was developed over many years of 

classroom use. A few problems are straightforward and intended 

for drill; most emphasize basic principles and require serious 

thought and effort. We have tried to choose problems which 

make this effort worthwhile in the spirit of Piet Hein's aphorism 

Problems worthy 

of attack 

prove their worth 

by hitting backl 

1 From Grooks I, by Piet Hein, copyrighted 1966, The M.I.T. Press. 
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TO 

THE 

EACHER 

The first eight chapters form a comprehensive introduction to 
classical mechanics and constitute the heart of a one-semester 
course. In a 12-week semester, we have generally covered the 
first 8 chapters and parts of Chapters 9 or 10. However, Chapter 
5 and some of the advanced topics in Chapters 7 and 8 are usually 
omitted, although some students pursue them independently. 

Chapters 11,12, and 13 present a complete introduction to special 
relativity. Chapter 14, on transformation theory and four-vectors, 
provides deeper insight into the subject for interested students. 
We have used the chapters on relativity in a three-week short 
course and also as part of the second·term course in electricity and 
magnetism. 

The problems at the end of each chapter are generally graded 
in difficulty. They are also cumulative; concepts and techniques 
from earlier chapters are repeatedly called upon in later sections 
of the book. The hope is that by the end of the course the student 
will have developed a good intuition for tackling new problems, 
that he will be able to make an intelligent estimate, for instance, 
about whether to start from the momentum approach or from the 
energy approach, and that he will know how to set off on a new 
tack if his first approach is unsuccessful. Many students report 
a deep sense of satisfaction from acquiring these skills. 

Many of the problems require a symbolic rather than a numerical 
solution. This is not meant to minimize the importance of numeri
cal work but to reinforce the habit of analyzing problems symboli
cally. Answers are given to some problems; in others, a numerica! 
"answer clue" is provided to allow the student to check his sym
bolic result. Some of the problems are challenging and require 
serious thought and discussion. Since too many such problems 
at once can result in frustration, each assignment should have a 
mix of easier and harder problems. 

Chapter 1 Although we would prefer to start a course in mechan
ics by discussing physics rather than mathematics, there are real 
advantages to devoting the first few lectures to the mathematics 
of motion. The concepts of kinematics are straightforward for 
the most part, and it is helpful to have them clearly in hand 
before tackling the much subtler problems presented by new
tonian dynamics in Chapter 2. A departure from tradition in this 
chapter is the discussion of kinematics using polar coordinates. 
Many students find this topic troublesome at first, requiring serious 
effort. However, we feel that the effort will be amply rewarded. 
In the first place, by being able to use polar coordinates freely, 
the kinematics of rotational motion are much easier to understand; 



xx TO THE TEACHER 

the mystery of radial acceleration disappears. More important, 

this topic gives valuable insights into the nature of a time-varying 

vector, insights which not only simplify the dynamics of particle 

motion in Chapter 2 but which are invaluable to the discussion of 

momentum flux in Chapter 3, angular momentum in Chapters 6 

and 7, and the use of noninertial coordinates in Chapter 8. Thus, 

the effort put into understanding the nature of time-varying vectors 

in Chapter 1 pays important dividends throughout the course. 

If the course is intended for students who are concurrently begin

ning their study of calculus, we recommend that parts of Chapter 1 

be deferred. Chapter 2 can be started after having covered only 

the first six sections of Chapter 1. Starting with Example 2.5, the 

kinematics of rotational motion are needed; at this pOint the ideas 

presented in Section 1.9 should be introduced. Section 1.7, on the 

integration of vectors, can be postponed until the class has become 

familiar with integrals. Occasional examples and problems involv

ing integration will have to be omitted until that time. Section 1.8, 

on the geometric interpretation of vector differentiation, is essen

tial preparation for Chapters 6 and 7 but need not be discussed 

earlier. 

Chapter 2 The material in Chapter 2 often represents the stu

dent's first serious attempt to apply abstract prinCiples to con

crete situations. Newton's laws of motion are not self-evident; 

most people unconsciously follow aristotelian thought. We find 

that after an initial period of uncertainty, stUdents become accus

tomed to unalyzing problems according to principles rather than 

vague intuition. A common source of difficulty at first is to con

fuse force and acceleration. We therefore emphasize the use of 

inertial systems and recommend strongly that noninertial coor

dinate systems be reserved until Chapter 8, where their correct 

use is discussed. In particular, the use of centrifugal force in 

the early chapters can lead to endless confusion between inertial 

and noninertial systems and, in any case, it is not adequate for the 

analysis of motion in rotating coordinate systems. 

Chapters 3 and 4 There are many different ways to derive the 

rocket equations. However, rocket problems are not the only 

ones in which there is a mass flow, so that it is important to adopt 

a method which is easily generalized. It is also desirable that the 

method be in harmony with the laws of conservation of momentum 

or, to put it more crudely, that there is no swindle involved. The 

differential approach used in Section 3.5 was developed to meet 

these requirements. The approach may not be elegant, but it is 

straightforward and quite general. 
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In Chapter 4, we attempt to emphasize the general nature of 

the work-energy theorem and the difference between conserva

tive and nonconservative forces. Although the line integral is 

introduced and explained, only simple line integrals need to be 

evaluated, and general computational techniques should not be 

given undue attention. 

Chapter 5 This chapter completes the discussion of energy and 

provides a useful introduction to potential theory and vector cal

culus. However, it is relatively advanced and will appeal only to 

students with an appetite for mathematics. The results are not 

needed elsewhere in the text, and we recommend leaving this 

chapter for optional use, or as a special topic. 

Chapters 6 and 7 Most students find that angular momentum is 

the most difficult physical concept in elementary mechanics. The 

major conceptual hurdle is visualizing the vector properties of 

angular momentum. We th.erefore emphasize the vector nature 

of angular momentum repeatedly throughout these chapters. In 

particular, many features of rigid body motion can be understood 

intuitively by relying on the understanding of time-varying vectors 

developed in earlier chapters. It is more profitable to emphasize 

the qualitative features of rigid body motion than formal aspects 

such as the tensor of inertia. If desired, these qualitative argu· 

ments can be pressed quite far, as in the analysis of gyroscopic 

nutation in Note 7.2. The elementary discussion of Euler's equa· 

tions in Section 7.7 is intended as optional reading only. Although 

Chapters 6 and 7 require hard work, many students develop a phy· 

sical insight into angular momentum and rigid body motion which 

is seldom gained at the introductory level and which is often 

obscured by mathematics in advanced courses. 

Chapter 8 The subject of noninertial systems offers a natural 

springboard to such speculative and interesting topics as trans· 

formation theory and the principle of equivalence. From a more 

practical point of view, the use of noninertial systems is an impor

tant technique for solving many physical problems. 

Chapters 9 and 10 In these chapters the principles developed 

earlier are applied to two important problems, central force motion 

and the harmonic oscillator. Although both topics are generally 

treated rather formally, we have tried to simplify the mathematical 

development. The discussion of central force motion relies heavily 

on the conservation laws and on energy diagrams. The treatment 

of the harmonic oscillator sidesteps much of the usual algebraic 

complexity by focusing on the lightly damped oscillator. Applica

tions and examples play an important role in both chapters. 
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Chapters 11 to 14 Special relativity offers an exciting change of 

pace to a course in mechanics. Our approach attempts to empha

size the connection of relativity with classical thought. We have 

used the Michelson-Morley experiment to motivate the discussion. 

Although the prominence of this experiment in Einstein's thought 

has been much exaggerated, this approach has the advantage of 

grounding the discussion on a real experiment. 

We have tried to focus on the ideas of events and their trans

formations without emphasizing computational aids such as dia

grammatic methods. This approach allows us to deemphasize 

many of the so-called paradoxes. 

For many students, the real mystery of relativity lies not in the 

postulates or transformation laws but in why transformation prin

ciples should suddenly become the fundamental concept for gen

erating new physical laws. This touches on the deepest and most 

provocative aspects of Einstein's thought. Chapter 14, on four

vectors, provides an introduction to transformation theory which 

unifies and summarizes the preceding development. The chapter 

is intended to be optional. 

Daniel Kleppner 

Robert J. Kolenkow 
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2 VECTORS AND KINEMATlCS-A FEW MATHEMATICAL PRELIMINARIES 

1.1 Introduction 

The goal of this book is to help you acquire a deep understanding 
of the principles of mechanics. The subject of mechanics is at 
the very heart of physics; its concepts are essential for under· 
standing the everyday physical world as well as phenomena on the 
atomic and cosmic scales. The concepts of mechanics, such as 
momentum, angular momentum, and energy, play a vital role in 
practically every area of physics. 

We shall use mathematics frequently in our discussion of 
physical principles, since mathematics lets us express complicated 
ideas quickly and transparently, and it often points the way to new 
insights. Furthermore, the interplay of theory and experiment in 
physics is based on quantitative prediction and measurement. 
For these reasons, we shall devote this chapter to developing some 
necessary mathematical tools and postpone our discussion of the 
principles of mechanics until Chap. 2. 

1.2 Vectors 

The study of vectors provides a good introduction to the role of 
mathematics in physics. By using vector notation, physical laws 
can often be written in compact and simple form. (As a matter 

1, 
of fact, modern vector notation was invented by a physicist, \ 

� 
Willard Gibbs of Yale University, primarily to simplify the appear· I: 
ance of equations.) For example, here is how Newton's second i 
law (which we shall discuss in the next chapter) appears in ; 
nineteenth century notation: f 

�, 

F", = ma", 

F1J = ma1J 

F. = ma •. 

In vector notation, one simply writes 

F = mao 

Our principal motivation for introducing vectors is to simplify the t 

� form of equations. However, as we shall see in the last chapter 0 

of the book, vectors have a much deeper significance. Vectors � 
are closely related to the fundamental ideas of symmetry and ! 
their use can lead to valuable insights into the possible forms of 1\ 
unknown laws. to 

1 

t 
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SEC. 1.2 VECTORS 3 

Definition of a Vector 

Vectors can be approached from three points of view-geometric, 

analytic, and axiomatic. Although all three points of view are use

ful, we shall need only the geometric and analytic approaches in 

our discussion of mechanics . 

From the geometric point of view, a vector is a directed line 

segment. In writing, we can represent a vector by an arrow and 

label it with a letter capped by a symbolic arrow. In print, bold

faced letters are traditionally used. 

In order to describe a vector we must specify both its length and 

its direction. Unless indicated otherwise, we shall assume that 

parallel translation does not change a vector. Thus the arrows 

at left all represent the same vector. 

If two vectors have the same length and the same direction 

they are equal. The vectors Band C are equal: 

B = C. 

The length of a vector is called its magnitude. The magnitude 

of a vector is indicated by vertical bars or, if no confusion will occur, 

by using italics. For example, the magnitude of A is written IAI, 
or simply A. If the length of A is V2, then IAI = A = V2. 

If the length of a vector is one unit, we call it a unit vector. A 

unit vector is labeled by a caret; the vector of unit length parallel 

to A is A. It follows that 

_ A 
A=-, 

IAI 

and conversely 

A = IAIA. 

The Algebra of Vectors 

Multiplication of a Vector by a Scalar If we multiply A by a positive 

scalar b, the result is a new vector C = bA. The vector C is 

parallel to A, and its length is b times greater. Thus e = A, and 

ICI = blAI· 
The result of multiplying a vector by -1 is a new vector opposite 

in direction (antiparallel) to the original vector. 

Multiplication of a vector by a negative scalar evidently can 

change both the magnitude and the direction sense. 
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Addition of Two Vectors Addition of vectors has the simple geo· 

metrical interpretation shown by the drawing. 

The rule is: To add B to A, place the tail of B at the head of A. 

The sum is a vector from the tail of A to the head of B. 

Subtraction of Two Vectors Since A - B = A + (-B), in order to 

sUbtrac

,

t B from A we can simply multiply it by -1 and then add. l .•..•. 
The sketches below show how. f 

r 
,B I 

, r , f 
��L'\l 

A+ (-B)=A-B A - B 

An equivalent way to construct A - B is to place the head of B 

at the head of A. Then A - B extends from the tail of A to the 

tail of B, as shown in the right hand drawing above. 

It is not difficult to prove the following laws. We give a geo· 

metrical proof of the commutative law; try to cook up your own 

proofs of the others. 

A+B=B+A 

A + (B + C) = (A + B) + C 
c(dA) = (cd)A 

(c + d)A = cA + dA 

c(A + B) = cA + cB 

Commutative law 

Associative law 

Distributive law 

Proof of the Commutative law of vector addition 

Although there is no great mystery to addition, subtraction, 1 

and multiplication of a vector by a scalar, the result of "multiply· t 
ing" one vector by another is somewhat less apparent. Does Ii .. ' .

. 

multiplication yield a vector, a scalar, or some other quantity? 

The choice.is up to us, and we shall define two types of products f 

which are useful in our applications to physics. 
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Scalar Product ("Dot" Product) The first type of product is called 

the scalar product, since it represents a way of combining two 

vectors to form a scalar. The scalar product of A and B is denoted 

by A . B and is often called the dot product. A· B is defined by 

A· B == IAIIBI cos e. 

Here f) is the angle between A and B when they are drawn tail to 

tail. 

Since IBI cos f) is the projection of B along the direction of A, 
A . B = IAI X (projection of B on A). 

Similarly, 

A· B = IBI X (projection of A on B). 

If A· B = 0, then IAI = 0 or IBI = 0, or A is perpendicular to 

B (that is, cos f) = 0). Scalar multiplication is unusual in that the 

dot product of two nonzero vectors can be O. 

Note that A· A = IAI2. 
By way of demonstrating the usefulness of the dot product, here 

is an almost trivial proof of the law of cosines. 

Example 1.1 Law of Cosines 

C=A+B 

C • C = (A + B) . (A + B) 

ICI2 = IAI2 + IBI2 + ZIAIIBI cos f) 

This result is generally expressed in terms of the angle </>: 

C2 = A 2 + B2 - 2AB cos </>. 

(We have used cos f) = cos (rr - fjJ) = -cos </>.) 

Example 1.2 Work and the Dot Product 

The dot product finds its most important application in the discussion of 

work and energy in Chap. 4. As you may already know, the work W done 

by a force F on an object is the displacement d of the object times the 

component of F along the direction of d. If the force is applied at an 

angle f) to the displacement, 

W = (F cos f) d. 

Granting for the time being that force and displacement are vectors. 

W = F· d. 
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Vector Product ("Cross" Product) The second type of product we 

need is the vector product. In this case, two vectors A and B are 

combined to form a third vector C. The symbol for vector product 

is a cross: 

C = A X B. 

An alternative name is the cross product. 

The vector product is more complicated than the scalar product 

because we have to specify both the magnitude and direction of 

A X B. The magnitude is defined as follows: if 

C = A X B, 

then 

ICI = IAIIBI sin 8, 

where 8 is the angle between A and B when they are drawn tail to 

tail. (To eliminate ambiguity, 8 is always taken as the angle 

smaller than '11".) Note that the vector product is zero when 8 = 0 

or'll", even if IAI and I B I are not zero. 

When we draw A and B tail to tail, they determine a plane. We 

define the direction of C to be perpendicular to the plane of A 

and B. A, B, and C form what is called a right hand triple. Imag· 

ine a right hand coordinate system with A and B in the xy plane as 

shown in the sketch. A lies on the x axis and B lies toward the 

y axis. If A, B, and C form a right hand triple, then C lies on the 

z axis. We shall always use right hand coordinate systems such as 

the one shown at left. Here is another way to determine the 

direction of the cross product. Think of a right hand screw with 

the axis perpendicular to A and B. Rotate it in the direction which 

swings A into B. C lies in the direction the screw advances. 

(Warning: Be sure not to use a left hand screw. Fortunately, 

they are rare. Hot water faucets are among the chief offenders; 

your honest everyday wood screw is right handed.) 

A result of our definition of the cross product is that 

B X A = -A X B. 

Here we have a case in which the order of multiplication is impor

tant. The vector product is not commutative. (In fact, since 

reversing the order reverses the sign, it is anticommutative.) 

We see that 

AXA=O 

for any vector A. 
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Examples of the Vector Product in Physics 

The vector product has a multitude of applications in physics. For 

instance, if you have learned about the interaction of a charged particle 

with a magnetic field, you know that the force is proportional to the charge 

g, the magnetic field B, and the velocity of the particle v. The force 

varies as the sine of the angle between v and B, and is perpendicular to 

the plane formed by v and B, in the direction indicated. A simpler way 

to give all these rules is 

F = gv X B. 

Another application is the definition of torque. We shall develop this 

F idea later. For now we simply mention in passing that the torque � is 

(J defined by 

� = r X F, 

where r is a vector from the axis about which the torque is evaluated to 

the point of application of the force F. This definition is consistent with 

the familiar idea that torque is a measure of the ability of an applied force 

to produce a twist. Note that a large force directed parallel to r produces 

no twist; it merely pulls. Only F sin e, the component of force perpen· 

dicular to r, produces a torque. The torque increases as the lever arm 

gets larger. As you will see in Chap. 6, it is extremely useful to associate 

a direction with torque. The natural direction is along the axis of rotation 

which the torque tends to produce. All these ideas are summarized in a 

nutshell by the simple equation � = r X F. 

Example 1.4 Area as a Vector 

----------7 

We can use the cross product to describe an area. Usually one thinks 

of area in terms of magnitude only. However, many applications in 

physics require that we also specify the orientation of the area. For 

example, if we wish to calculate the rate at which water in a stream flows 

through a wire loop of given area, it obviously makes a difference whether 

the plane of the loop is perpendicular or parallel to the flow. (In the latter 

case the flow through the loop is zero.) Here is how the vector product 

accomplishes this: 

/ 

c 

c 

/ 

/ 
/ 

/ 

Consider the area of a quadrilateral formed by two vectors, e and O. 

The area of the parallelogram A. is given by 

A base X height 

CD sin e 

lex 01· 

If we think of A. as a vector, we have 

A = ex O. 
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We have already shown that the magnitude of A is the area of the 

parallelogram, and the vector product defines the convention for assigning 

a direction to the area. The direction is defined to be perpendicular to 

the plane of the area; that is, the direction is parallel to a normal to the 

surface. The sign of the direction is to some extent arbitrary; we could 

just as well have defined the area by A = D X C. However, once the 

sign is chosen, it is unique. 

1.3 Components of a Vector 

The fact that we have discussed vectors without introducing a 

particular coordinate system shows why vectors are so useful; 

vector operations are defined without reference to coordinate 

systems. However, eventually we have to translate our results 

from the abstract to the concrete, and at this point we have to 

choose a coordinate system in which to work. 

For simplicity, let us restrict ourselves to a two·dimensional 

system, the familiar xy plane. The diagram shows a vector A in 

the xy plane. The projections of A along the two coordinate 

axes are called the components of A. The components of A along 

the x and y axes are, respectively, Ax and All' The magnitude of 

A is IAI = (Ax2 + AII2)1, and the direction of A is such that it 

makes an angle () = arctan (Alii Ax) with the x axis. 

Since the components of a vector define it, we can specify a 

vector entirely by its components. Thus 

A = (Ax,AlI) 

or, more generally, in three dimensions, 

A = (Ax,Al/,A.). 

Prove for yourself that IAI = (Ax2 + A1I2 + A.2)l. The vector A 

has a meaning independent of any coordinate system. However, 

the components of A depend on the coordinate system being used. 

To illustrate this, here is a vector A drawn in two different coordi· 

nate systems. In the first case, 

A = (A,O) (x,y system), 

while in the second 

A = (O,-A) (x';y' system). 

Unless noted otherwise, we shall restrict ourselves to a single 

coordinate system, so that if 

A = B, 

t 
; , 
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then 

A. = B •. 

The single vector equation A = B symbolically represents three 

scalar equations. 

All vector operations can be written as equations for com

ponents. For instance, multiplication by a scalar gives 

cA = (cA""cAlI). 

The law for vector addition is 

By writing A and B as the sums of vectors along each of the 

coordinate axes, you can verify that 

A • B = k.B", + AliBli + A.B •. 

We shall defer evaluating the cross product until the next section. 

Example 1.5 Vector Algebra 

Let 

A = (3,5,-7) 
B = (2,7,1). 

Find A + B. A-B. IAI. IBI. A· B. and the cosine of the angle between 

A and B. 

A + B = (3 + 2, 5 + 7. -7 + I) 

= (5.12, -6) 

A - B = (3 - 2, 5 - 7. -7 -I) 

= (1,-2, -8) 

IAI = (32 + 52 + 72}l 

= V83 
= 9.11 

IBI = (22 + 72 + 12)\ 

= V54 
= 7.35 

A·B=3X2+5X7-7X1 
= 34 

A·B 34 
cos (A,B) = 

IAI IBI 
= 

(9.11)(7.35) = 0.507 
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Construction of a Perpendicular Vector 
Find a unit vector in the xy plane which is perpendicular to A = (3,5,1). 

We denote the vector by B = (Bx,By,B.). Since B is in the xy plane, 

B. = O. For B to be perpendicular to A, we have A · B = O. 

A.B=3Bx+5By 

=0 

Hence By = -tBx. However, B is a unit vector, which means that ·1 
Bz:2 + By2 = 1. Combining these gives Bx2 + /"5B%2 = 1, or Bx = 

�-

vH = ±0.857 and By = -tBx = +0.514. � 
�. The ambiguity in sign of Bx and By indicates that B can point along a �. 

line perpendicular to A in either of two directions. � 
� 

1.4 Base Vectors 

Base vectors are a set of orthogonal (perpendicular) unit vectors, 

one for each dimension. For example, if we are dealing with the 

familiar cartesian coordinate system of three dimensions, the base 

vectors lie along the x, y, and z axes. The x unit vector is denoted 

by i, the y unit vector by j, and the z unit vector by 1<. . � 
The base vectors have the following properties, as you can � 

readily verify: 

i·i=j·j=I<·I<=l 
i·j=j.I<=I<·i=O 

i X j = I< 
j X I< = i 
I< xi = j. 

We can write any vector in terms of the base vectors. 

The sketch illustrates these two representations of a vector. 

To find the component of a vector in any direction, take the dot 
product with a unit vector in that direction. For instance, 

A. = A· 1<. i-
f 

It is easy to evaluate toe vector product A X B with the aid of f 

the base vectors. 
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Consider the first term: 

A",i X B = A"B,,(i X i) + A"By(i X j) + A"B.(i X k). 

(We have assumed the associative law here.) Since i X i = 0, 
i X j = k, and i X k = -j, we find 

The same argument applied to the y and z components gives 

Ayj X B = Ay(B.i - B",k) 

A.k X B = A.(B"j - Byi). 

A quick way to derive these relations is to work out the first and 

then to obtain the others by cyclically permuting x, y, z, and 

i, j, k (that is, x � y, y � Z, Z � x, and i � j, j � k, k � i.) A 

simple way to remember the result is to use the following device: 

write the base vectors and the components of A and B as three 

rows of a determinant,l like this 

j k 
A X B A", Ay A. 

B" By B. 

= i (A1IB. - A.By) - j(A",B. - A.B",) + k(A"B1I - A1IB,,). 

For instance, if A = i + 3j - k and B = 4i + j + 3k, then 

j k 
A X B = 1 3 -1 

4 1 3  

10i - 7j - 11k. 

1.5 Displacement and the Position Vector 

So far we have discussed only abstract vectors. However, the 

reason for introducing vectors here is concrete-they are just 

right for describing kinematical laws, the laws governing the 

geometrical properties of motion, which we need to begin our dis

cussion of mechanics. Our first application of vectors will be to 

the description of position and motion in familiar three dimen

sional space. Although our first application of vectors is to the 

motion of a point in space, don't conclude that this is the only 

I If you are unfamiliar with simple determinants, most of the books listed at the 

end of the chapter discuss determinants. 
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application, or even an unusually important one. Many physical 
quantities besides displacements are vectors. Among these are 
velocity, force, momentum, and gravitational and electric fields. 

To locate the position of a pOint in space, we start by setting up 
a coordinate system. For convenience we choose a three dimen· 
sional cartesian system with axes x, y, and z, as shown. 

In order to measure position, the axes must be marked off in 
some convenient unit of length-meters, for instance. 

The position of the point of interest is given by listing the values 
of its three coordinates, Xl, Yl, Zl. These numbers do not repre· 
sent the components of a vector according to our previous dis· 
cussion. (They specify a position, not a magnitude and direction.) 
However, if we move the point to some new position, X2, Y2, Z2, 

then the displacement defines a vector S with coordinates Sx = X2 

- Xl, S'V = Y2 - Yl, S. = Z2 - Zl. 
S is a vector from the initial position to the final position-it 

defines the displacement of a point of interest. Note, however, 
that S contains no information about the initial and final positions 
separately-only about the relative position of each. Thus, 
S. = Z2 - Zl depends on the difference between the final and 
initial values of the Z coordinates; it does not specify Z2 or Zl 

separately. S is a true vector; although the values of the coordi· 
.J--------y nates of the initial and final points depend on the coordinate sys· 

tem, S does not, as the sketches below indicate. 
z 

x 

y , 
y 

x' 

z' 

One way in which our displacement vector differs from a mathe· 
matician'si vector is that his vectors are usually pure quantities, 
with components given by absolute numbers, whereas S has the 
physical dimension of length associated with it. We will use 
the convention that the magnitude of a vector has dimensions 
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so that a unit vector is dimensionless. Thus, a displacement of 8 
m (8 meters) in the oX: direction is 5 = (8 m, 0, 0). 151 = 8 m, and 

S = 5/151 = i. 
P(x,y,Z) Although vectors define displacements rather than positions, it 

z' 

is in fact possible to describe the position of a pOint with respect 

to the origin of a given coordinate system by a special vector, 

known as the position vector, which extends from the origin to the 

pOint of interest. We shall use the symbol r to denote the 

position vector. The position of an arbitrary point P at (x,y,z) is 

written as 

r = (;r,y,z) = 1'j + yj + zk. 

Unlike ordinary vectors, r depends on the coordinate system. 

The sketch to the left shows position vectors rand r' indicating 
the position of the same point in space but drawn in different 

coordinate systems. If R is the vector from the origin of the 

y' unprimed coordinate system to the origin of the primed coordi· 
nate system, we have 

y' 

r' = r - R. 

I n contrast, a true vector, such as a displacement 5, is inde· 
pendent of coordinate system. As the bottom sketch indicates, 

5 = r2 - r1 

= (r; + R) - (r� + R) 

1.6 Velocity and Acceleration 

Motion in One Dimension 

Before applying vectors to velocity and acceleration in three 

dimensions, it may be helpful to review briefly the case of one 

dimension, motion along a straight line. 

Let x be the value of the coordinate of a particle moving along a 
line. x is measured in some convenient unit, such as meters, 

and we assume that we have a continuous record of position 
versus time. 

The average velocity fj of the point between two times, t1 and t2, 
is defi ned by 

x(t2) - x(t1) 
fj = -'--'-----'--

t2 - t1 

(We shall often use a bar to indicate an average of a quantity.) 
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The instantaneous velocity v is the limit of the average velocity as 

the time interval approaches zero. 

. X(t + �t) - X(t) 
v = 11m . 

6t--+O �t 

The limit we have introduced in defining v is precisely that 

involved in the definition of a derivative. In fact, we have1 

dx 
v =-. 

dt 

In a similar fashion, the instantaneous acceleration is 

. v(t + �t) - v(t) 
a = 11m 

�t--+O �t 

dv 
=-. 

dt 

The concept of speed is sometimes useful. Speed s is simply the 

magnitude of the velocity: s = Ivl. 

Motion in Several Dimensions 

Our task now is to extend the ideas of velocity and acceleration 

to several dimensions. Consider a particle moving in a plane. As 

time goes on, the particle traces out a path, and we suppose that 

we know the particle's coordinates as a function of time. The 

instantaneous position of the particle at some time t1 is 

or 

1 Physicists generally use the leibnitz notation dx/dt, since this is a handy form 

for using differentials (see Note 1.1). Starting in Sec. 1.9 we shall use Newton's 

notation :i;, but only to denote derivatives with respect to time. 

"Position at 
time II 
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where Xl is the value of X at t = tl• and so forth. At time t2 the 

position is 

r2 = (X2,Y2). 

The displacement of the particle between times tl and t2 is 

r2 - rl = (X2 - Xh Y2 - Yl). 

We can generalize our example by considering the position at 

some time t. and at some later time t + At. t The displacement 

of the particle between these times is 

Ar = ret + At) - ret). 

This vector equation is equivalent to the two scalar equations 

AX = x(t + At) - x(t) 

Ay = yet + At) - yet). 

The velocity v of the particle as it moves along the path is defined 

to be 

Ar 
v = lim 

at .... O At 

dr 
=-. 

dt 

which is equivalent to the two scalar equations 

Vx 

Vy = 

lim 
Ax 
-

at .... O At 

Ay 
lim-

at .... O At-

dx 
-

dt 

dy 

dt 

Extension of the argument to three dimensions is trivial. The 

third component of velocity is 

. z(t + At) - z(t) dz 
v. = lim = -. 

aHO At dt 

Our definition of velocity as a vector is a straightforward gen

eralization of the familiar concept of motion in a straight line. 

Vector notation allows us to describe motion in three dimensions 

with a single equation. a great economy compared with the three 

equations we would need otherwise. The equation v = dr/dt 

expresses the results we have just found. 

t We will often use the quantity tl. to denote a difference or change, as in the 
case here of tl.r and .<It. However, this implies nothing about the size of the 

quantity, which may be large or small, as we please. 
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Alternatively, since r 
differentiation 1 

as before. 

xi + yj + zk, we obtain by simple 

Let the particle undergo a displacement tlr in time tit. In the 

limit tit --> 0, 6r becomes tangent to the trajectory, as the sketch 

indicates. However, the relation 

dr 
tlr "'" - tit 

dt 

= v tit, 

which becomes exact in the limit tit --> 0, shows that v is parallel 

to tlr; the instantaneous velocity v of a particle is everywhere 

tangent to the trajectory. 

Example 1.7 Finding v from r 

The position of a particle is given by 

r = A(e'rti + e-a1j), 

where a is a constant. Find the velocity, and sketch the trajectory. 

dr 
v=-

dt 

or 

v, = Aaeal 

Vy = -Aae-al• 

The magnitude of v is 

v = (vx2 + vy2)1 

= A a(e2"1 + e-2al)!. 

In sketching the motion of a point, it is usually helpful to look at limiting 

cases. At t = 0, we have 

reO) = Jl(i + j) 

v(O) = a.1 (i - j). 

1 Caution; We can neglect the cartesian unit vectors when we differentiate, since 

their directions are fixed. Later we shall encounter unit vedors which can change 
direction, and then differentiation is more elaborate. 
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As t -+ 00, e"t -+ 00 and e-"t -+ O. In this limit r -+ Ae"ti, which is a 
vector along the x axis, and v -+ aAe"tj: the speed increases without 
limit. 

Similarly, the acceleration a is defined by 

a 
dv dvz • dVll • dv. _ 

dt=TtI+TtJ+dik 
d2r =-. 
dt2 

We could continue to form new vectors by taking higher deriva

tives of r, but we shall see in our study of dynamics that r, v, and a 

are of chief interest. 

Example 1.8 Uniform Circular Motion 

Circular motion plays an important role in physics. Here we look at the 
simplest and most important case-uniform circular motion, which is 
circular motion at constant speed. 

1\ 
:Xy=rsin wt 

Consider a particle moving in the xy plane according to r = r(cos wti + 
sin wtD, where r and ware constants. Find the trajectory, the velocity, 
and the acceleration. 

1 \ 
��--L-____ L-� _______ x Ir l = [r2 cos2 wt -+ r2 sin2 wt]l 

\ 
\ 
\ 

, 
"

'-

y 

./ 
/' 

I 
I 

/ 
, 

Using the familiar identity sin2 0 + cos2 0 = I, 

Ir l = [r2(cos2 wt + sin2 wt)]i 

= r = constant. 

The trajectory is a circle. 
x The particle moves counterclockwise around the circle, starting from 

(r,O) at t = O. It traverses the circle in a time T such that wT= 211". 
w is called the angular velocity of the motion and is measured in radians 
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per second. T, the time required to execute one complete cycle, is 

called the period, 

dr 
v =-

dt 

= rw( - si n wti + cos wti) 

We can show that v is tangent to the trajectory by calculating v • r: 

v· r = r2w(-sin wt cos wt + cos wt sin wt) 

= o. 

Since v is perpendicular to r, it is tangent to the circle as we expect. 

Incidentally, it is easy to show that Ivl = rw = constant. 

dv 
a = dt 

= rw2[ -cos wtt - sin wtj) 

= -w2r 

The acceleration is directed radially inward, and is known as the centripetal 
acceleration. We shall have more to say about it shortly, 

A Word about Dimension and Units 

Physicists call the fundamental physical units in which a quantity 

is measured the dimension of the quantity. For example, the 

dimension of velocity is distance/time and the dimension of 

acceleration is velocity/time or (distance/time)/time = distance/ 

time2• As we shall discuss in Chap. 2, mass, distance, and time 

are the fundamental physical units used in mechanics. 

To introduce a system of units, we specify the standards of 

measurement for mass, distance, and time. Ordinarily we mea· 

sure distance in meters and time in seconds. The units of velocity 

are then meters per second (m/s) and the units of acceleration 

are meters per second2 (m/s2). 

The natural unit for measuring angle is the radian (rad), The 

angle (J in radians is Sir, where S is the arc subtended by (J in a 

circle of radius r: 

S 
(J = -. 

r 

211" rad = 360°. We shall always use the radian as the unit of 

angle, unless otherwise stated, For example, in sin wt, wt is in 

radians. w therefore has the dimensions l/time and the units 
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radians per second. (The radian is dimensionless, since it is the 

ratio of two lengths.) 

To avoid gross errors, it is a good idea to check to see that both 

sides of an equation have the same dimensions or units. For 

example, the equation v = are",1 is dimensionally correct; since 

exponentials and their arguments are always dimensionless, a has 

the units l/s, and the right hand side has the correct units, meters 

per second. 

1.7 Formal Solution of Kinematical Equations 

Dynamics, which we shall take up in the next chapter, enables us 

to find the acceleration of a body directly. Once we know the 

acceleration, finding the velocity and position is a simple matter of 

integration. Here is the formal integration procedure. 

If the acceleration is known as a function of time, the velocity 

can be found from the defining equation 

dv(t) 
- = a(t) 

dt 

by integration with respect to time. Suppose we want to find v(tl) 

given the initial velocity v(to) and the acceleration a(t). Dividing 

�v(to + �t) the time interval tl - to into n parts t:.t = (tl - to)/n, 

v(tl) ""< v(to) + t:.v(to + t:.t) + t:.v(to + 2t:.t) + . . . + t:.v(tl) 

"'" v(to) + a(to + t:.t) t:.t + a(to + 2t:.t) t:.t + . . . + a(tl) t:.t, 

since t:.v(t) "'" a(t) t:.t. Taking the x component, 

vz(tl) ""< vz(to) + az(to + t:.t) t:.t + . . . + az(tl) t:.t. 

The approximation becomes exact in the limit n -t 00 (t:.t -t 0), 

and the sum becomes an integral: 

The y and z components can be treated similarly. Combining the 

results, 

or 

V(tl) = v(to) + a(t) dt. 
1:11 

to 
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This result is the same as the formal integration of dv = a dt. 

hI! hit 
dv = aCt) dt 

to to 

hit 
v(tl) - veto) = aCt) dt 

t
. 

Sometimes we need an expression for the velocity at an arbi· 

trary time t, in which case we have 

vet) = Vo + ( t 
aCt') dt'. It. 

The dummy variable of integration has been changed from t to t' 

to avoid confusion with the upper limit t. We have designated the 

initial velocity veto) by Vo to make the notation more compact. 

When t = to. vet) reduces to Vo. as we expect. 

Example 1.9 Finding Velocity from Acceleration 

A Ping'Pong ball is released near the surface of the moon with velocity 
Vo = (0,5, -3) m/s. It accelerates (downward) with acceleration 

a = (0.0, -2) m/s2. Find its velocity after 5 s. 

The equation 

vet) = Vo + ( t aCt') dt' It. 
is equivalent to the three component equations 

v%(t) = VOx + Jot ait') dt' 

vy(t) = Voy + lat ay(t') dt' 

v,(O = Vo, + lat a,(t') dt'. 

Taking these equations in turn with the given values of Vo and a, we 

obtain at t = 5 s: 

Vx = 0 m/s 

Vy = 5 m/s 

v, = -3 + J05 (-2) dt' = -13 m/s. 

Position is found by a second integration. Starting with 

dr(t) 
di = vet). 

we find. by an argument identical to the above. 

ret) = ro + Jot vet') dt'. 
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A particularly important case is that of uniform acceleration. If 

we take a = constant and to = 0, we have 

v(t) = Vo + at 

and 

r(t) ro + fo t (vo + at') dt' 

or 

Quite likely you are already familiClr with this in its one dimen

sional form. For instance, the x component of this equation is 

where VOx is the x component of Vo. This expression is so familiar 

that you may inadvertently apply it to the general case of varying 

acceleration. Don'tl It only holds for uniform acceleration. In 

general, the full procedure described above must be used. 

Example 1.10 Motion in a Uniform Gravitational Field 

\ 

Suppose that an object moves freely under the influence of gravity so 

that it has a constant downward acceleration g. Choosing the z axis 

vertically upward, we have 

a = -gk. 

If the object is released at t = 0 with initial velocity Vo, we have 

x = Xo + voxt 

Y = Yo + VOyt 

z = 20 + vozt - ht2. 

Without loss of generality, we can let ro = 0, and assume that VOy = O. 

(The latter assumption simply means that we choose the coordinate 

system so that the initial velocity is in the xz plane.) Then 

x = voxt 

z = vozt - tgt2. 

The path of the object is shown in the sketch. We can eliminate time 

L-______ ..L. ___ x from the two equations for x and z to obtain the trajectory. 
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This is the well-known parabola of free fall projectile motion. How· 

ever, as mentioned above, uniform acceleration is not the most general 

case. 

Example 1.11 Nonuniform Acceleration-The Effect of a Radio Wave 

on an Ionospheric Electron 

The ionosphere is a region of electrically neutral gas, composed of posi· 

tively charged ions and negatively charged electrons, which surrounds 

the earth at a height of approximately 200 km (120 mi). If a radio wave 

passes through the ionosphere, its electric field accelerates the charged 

particle. Because the electric field oscillates in time, the charged 

particles tend to jiggle back and forth. The problem is to find the motion 

of an electron of charge -e and mass m which is initially at rest, and 

which is suddenly subjected to an electric field E = Eo sin wt (w is the 

frequency of oscillation in radians per second). 

The law of force for the charge in the electric field is F = -eE, and by 

Newton's second law we have a = F /m = - eE/m. (If the reasoning 

behind this is a mystery to you, ignore it for now. It will be clear later. 

This example is meant to be a mathematical exercise-the physics is an 

added diVidend.) We have 

-eE 
a =-

m 

- eEo 
= -- sin wt. 

m 

Eo is a constant vector and we shall choose our coordinate system so 

that the x axis lies along it. Since there is no acceleration in the y or 

z directions, we need consider only the x motion. With this understand

ing, we can drop subscripts and write a for ax. 

-eEo . 
t . t a(t) = -- Sin W = ao Sin w 

m 

where 

- eEo 
ao = 

m 

Then 

v(t) = Vo + lot a(t') dt' 

= Vo + lot ao sin wt' dt' 

= Vo - - cos wt' = vo - - (cos wt - 1) 
ao It ao 
w o w 

I 
, 
I 

t 
�. 
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and 

x = Xo + lot v(t') dt' 

= Xo + lot [ Vo - � (cos wt' - 1)] dt' 

= Xo + Vo + - t - - sin wt. 
( ao) ao 

w w2 

We are given that Xo = Vo = 0, so we have 

x = � t - ao 
sin wt. 

w w2 

23 

The result is interesting: the second term oscillates and corresponds 

to the jiggling motion of the electron, which we predicted. The first 

term, however, corresponds to motion with uniform velocity, so in addi

tion to the jiggling motion the electron starts to drift away. Can you see 

why? 

1.8 More about the Derivative of a Vector 

In Sec. 1.6 we demonstrated how to describe velocity and accelera· 

tion by vectors. In particular, we showed how to differentiate the 

vector r to obtain a new vector v = dr/dt. We will want to dif

ferentiate other vectors with respect to time on occasion, and SO 

it is worthwhile generalizing our discussion. 

Consider some vector A(t) which is a function of time. The 

change in A during the interval from t to t + t::.t is 

t::.A = A(t + t::.t) - A(t). 

In complete analogy to the procedure we followed in differentiat

ing r in Sec. 1.6, we define the time derivative of A by 

dA . A(t + t::.t) - A(t) 
- = 11m . 
dt at-+O t::.t 

It is important to appreciate that dA/dt is a new vector which 

can be large or small, and can point in any direction, depending on 

the behavior of A. 
There is one important respect in which dA/dt differs from the 

derivative of a simple scalar function. A can change in both 

magnitude and direction-a scalar function can change only in 

magnitude. This difference is important. The figure illustrates 

the addition of a small increment t::.A to A. In the first case t::.A is 

parallel to A; this leaves the direction unaltered but changes the 

magnitude to IAI + It::.AI. In the second, t::.A is perpendicular 
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to A. This causes a change of direction but leaves the magni· 

tude practically unaltered. 

In general, A will change in both magnitude and direction. 

Even so, it is useful to visualize both types of change taking place 

simultaneously. In the sketch to the left we show a small incre

ment AA resolved into a component vector AAn parallel to A and a 

component vector AAJ. perpendicular to A. In the limit where we 

take the derivative, AAn changes the magnitude of A but not its 

direction, while AAJ. changes the direction of A but not its mag

nitude. 

Students who do not have a clear understanding of the two ways 

a vector can change sometimes make an error by neglecting one 

of them. For instance, if dAjdt is always perpendicular to A, A 
must rotate, since its magnitude cannot change; its time depend

ence arises solely from change in direction. The illustrations 

below show how rotation occurs when AA is always perpendicular 

to A. The rotational motion is made more apparent by drawing 

--A' -] 

._
---

-
- flA 

A 

the successive vectors at a common origin. 

" 
� 

/ 
" 

A'" / 
/ 

" 
" 

" 

Contrast this with the case where AA is always parallel to A. 

A' A" A'" 

• • • • . .. 
A .:1 A A' flA' A" 

Drawn from a common origin, the vectors look like this: 

--
-------.�A .. ' 

---------. A" 
------------•• A' 
------------.. A 
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The following example relates the idea of rotating vectors to cir

cular motion. 

Example 1.12 Circular Motion and Rotating Vectors 

In Example 1.8 we discussed the motion given by 

r = r(cos wti + sin wtj). 

The velocity is 

v = rw( -si n wti + cos wtj). 

Since 

r· v = r2w(-cos wt sin wt + sin wt cos wt) 

= 0, 

we see that dr/dt is perpendicular to r. We conclude that the magnitude 

of r is constant, so that the only possible change in r is due to rotation. 

Since the trajectory is a circle, this is precisely the case: r rotates about 

the origin . 

We showed earlier that a = -w2r. Since r· v = 0, it follows that 

a· v = -w2r· v = 0 and dv/dt is perpendicular to v. This means that 

the velocity vector has constant magnitude, so that it too must rotate if 

it is to change in time. 

That v indeed rotates is readily seen from the sketch, which shows v 
at various positions along the trajectory. In the second sketch the same 

c -� v 
a 

.,.-::>' 
/ b h v 

'-1 "I' 
e g 

l /' 
d f 

�- �; e 

velocity vectors are drawn from a common origin. It is apparent that 

each time the particle completes a traversal, the velocity vector has swung 

around through a full circle. 

Perhaps you can show that the acceleration vector also undergoes 

uniform rotation. 

Suppose a vector A(t) has constant magnitude A. The only 

way A(t) can change in time is by rotating, and we shall now 

develop a useful expression for the time derivative dA/dt of such a 
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dA rotating vector. The direction of dA/dt is always perpendicular 

dt to A. The magnitude of dA/dt can be found by the following 

geometrical argument. 

\ 
\ 
\ 

The change in A in the time interval t to t + Ilt is 

IlA = A(t + Ilt) - A(t). 

Using the angle MJ defined in the sketch, 

MJ 
IIlAI = 2A sin 2' 

For MJ « 1, sin 11012 � MJ12, as discussed in Note 1.1. We have 

MJ IIlAI � 2A-2 
=AMJ 

and 

1 IlA I = A MJ. 

Ilt Ilt 
Taking the limit Ilt � 0, 

I dA 1= A dO. dt dt 
dOldt is called the angular velocity of A. 

For a simple application of this result, let A be the rotating 

vector r discussed in Examples 1.8 and 1.12. Then 0 = wt and 

I 
d
r I 

d - = r - (wt) = rw dt dt or v = rw. 

Returning now to the general case, a change in A is the result 

of a rotation and a change in magnitude. 

IlA = IlAJ.. + IlAIi. 
For 110 sufficiently small, 

IIlAJ..1 = A MJ 

IIlAIiI = IlA 
and, dividing by Ilt and taking the limit, 

I
d
�J..1 

I
d
;"1 

= A dO 
dt 

dA 
dt 

I 
,. 

.< 

. 
' " 
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dAl./dt is zero if A does not rotate (dB/dt = 0), and dAIi/dt is zero 

if A is constant in magnitude. 

We conclude this section by stating some formal identities in 

vector differentiation. Their proofs are left as exercises. Let 

the scalar e and the vectors A and B be functions of time. Then 

d de dA 
dt 

(eA) = 
dt 

A + edt 
d dA dB 
ill (A • B) = dt . B + A • dt 

d dA dB 
dt (A X B) = dt X B + A X di· 

In the second relation, let A = B. Then 

d dA 
- (A 2) = 2A • - , dt dt 

and we see again that if dA/dt is perpendicular to A, the magnitude 

of A is constant. 

1.9 Motion in Plane Polar Coordinates 

Polar Coordinates 

Rectangular, or cartesian, coordinates are well suited to describing 

motion in a straight line. For instance, if we orient the coordinate 

system so that one axis lies in the direction of motion, then only a 

single coordinate changes as the point moves. However, rec· 

tangular coordinates are not so useful for describing circular 

motion, and since circular motion plays a prominent role in physics, 

it is worth introducing a coordinate system more natural to it. 

We should mention that although we can use any coordinate 

system we like, the proper choice of a coordinate system can 

vastly simplify a problem, so that the material in this section is 

very much in the spirit of more advanced physics. Quite likely 

some of this material will be entirely new to you. Be patient if it 

seems strange or even difficult at first. Once you have studied 

the examples and worked a few problems, it will seem much more 

natural. 

Our new coordinate system is based on the cylindrical coordi· 

nate system. The z axis of the cylindrical system is identical to 

that of the cartesian system. However, position in the xy plane is 
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described by distance r from the z axis and the angle (J that r 

makes with the x axis. These coordinates are shown in the 
sketch. We see that 

r = Vx2 + y2 

(J = arctan ll. 
x 

Since we shall be concerned primarily with motion in a plane, 
we neglect the z axis and restrict our discussion to two dimensions. 
The coordinates rand (J are called plane polar coordinates. In the 
following sections we shall learn to describe position, velocity, and 
acceleration in plane polar coordinates. 

The contrast between cartesian and plane polar coordinates is 
readily seen by comparing drawings of constant coordinate lines 
for the two systems. 

x = constant 

y = constant 
x varies 

Cartesian Plane polar 

e = constant 
, varies 

The lines of constant x and of constant yare straight and per· 
pendicular to each other. Lines of constant (J are also straight, 
directed radially outward from the origin. In contrast, lines of 
constant r are circles concentric to the origin. Note, however, 
that the lines of constant (J and constant r are perpendicular 
wherever they intersect. 

In Sec. 1.4 we introduced the base vectors i and j which point in 
the direction of increasing x and increasing y, respectively. In 
a similar fashion we now introduce two new unit vectors, rand 6, 
which point in the direction of increasing r and increasing (J. There 
is an important difference between these base vectors and the 



y 

y 

�--------------------x 

SEC. 1.9 MOTION IN PLANE POLAR COORDINATES 29 

cartesian base vectors: the directions of rand 6 vary with position, 
whereas i and j have fixed directions. The drawing shows this by 
illustrating both sets of base vectors at two points in space. 
Because rand 6 vary with position, kinematical formulas can look 
more complicated in polar coordinates than in the cartesian system. 
(It is not that polar coordinates are complicated, it is simply that 
cartesian coordinates are simpler than they have a right to be. 
Cartesian coordinates are the only coordinates whose base vectors 
have fixed directions.) 

Although rand 6 vary with position, note that they depend on 8 
only, not on r. We can think of r and 6 as being functionally 
dependent on 8. 

The drawing shows the unit vectors i, j and r, 6 at a point in the 
xy plane. We see that 

r = i cos 8 + j sin 8 

6 = -i sin 8 + j cos 8. 

Before proceeding, convince yourself that these expressions are 
reasonable by checking them at a few particularly simple points, 
such as 8 = 0, and 7r/2. Also verify that rand 6 are orthogonal 

�---'----------------x (i.e., perpendicular) by showing that r· 6 = O. 
It is easy to verify that we indeed have the same vector r no 

matter whether we describe it by cartesian or polar coordinates. 
In cartesian coordinates we have 

r = xi + yj, 

and in polar coordinates we have 

r = rr. 

If we insert the above expression for r, we obtain 

xi + 'l/j = r(i cos 8 + j sin 8). 

We can separately equate the coefficients of i and j to obtain 

x = r cos 8 y = r sin e, 

as we expect. 
The relation 

r = rr 

is sometimes confusing, because the equation as written seems to 
make no reference to the angle e. We know that two parameters 
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are needed to specify a position in two dimensional space (i� 
cartesian coordinates they are f and y), but the equation r = rr 
seems to contain only the quantity 1'. T:,e answer is that r is not 
a fixed vector and we need to know the value of 8 to tell how r is 
oriented as well as the value of I" to tell how far we are from the 
ongln. Although 8 does not occur explicitly in rr, its value must be 
known to fix the direction of r. This would be apparent if we 
wrote r = I"r(8) to emphasize the dependence of ron 8. How· 

ever, by common convention r is understood to stand for r(8). 
The orthogonality of rand 6 plus the fact that they are unit 

vectors, Irl = 1, 101 = I, means that we can continue to evaluate 
scalar products in the simple way we are accustomed to. If 

and B = Brr + B86, 

then 

A· B = ArBr + A8B8. 

Of course, the r's and the O's must refer to the same point in 
space for this simple rule to hold. 

Velocity in Polar Coordinates 

Now let us turn our attention to describing velocity with polar 
coordinates. Recall that in cartesian coordinates we have 

d 
v = ill (.ri + yj) 

= xi + Yj. 

(Remember that :i; stands for cl.r/dt.) 
The same vector, v, expressed in polar coordinates is given by 

d • 

v = - (rr) dt 
• dr = i'r + r-· elt 

The first term on the right is obviously the component of the 
velocity directed radially outward. We suspect that the second 
term is the component of velocity in the tangential (0) direction. 
This is indeed the case. However to prove it we must evaluate 
dr/elt. Since this step is slightly tricky, we shall do it three dif. 
ferent ways. Take your pick! 
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Evaluating dr / dt 

Method 1 We can invoke the ideas of the last section to find 

drjdt. Since r is a unit vector, its magnitude is constant and 
drjdt is perpendicular to r; as 0 increases, r rotates. 

ILlrl "'" Irl M = M, 

ILlrl LlO 
-�-, 

Llt Llt 

and, taking the limit, we obtain 

I�:I = �:. 
As the sketch shows, as 8 increases, r swings in the 6 direction, 

hence 

dr .4 

dt 
= OS. 

If this method is too casual for your taste, you may find methods 
2 or 3 more appealing. 

Method 2 

r = i cos 0 + j sin 0 

We note that i and j are fixed unit vectors, and thus cannot 
vary in time. 0, on the other hand, does vary as r changes. 
Using 

d ( d ) dO 
- (cos 0) = - cos 0 -
dt dO dt 

= -sin 80 

and 

� (sin 0) = (:
0 

sin 0) �: 
= cos 00, 

we obtain 

dr d d 
-
d 

= i 
d
- (cos 0) + j - (sin 0) 

t t dt 

= -i sin 00 + j cos 00 

= (-i sin 0 + j cos 0) O. 
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However, recall that -i sin 0 + i cos 0 = O. We obtain 

dr oA 

dt 
= 06. 

Method 3 

The drawing shows r at two different times, t and t + Ilt. The 

coordinates are, respectively, (r,O) and (r + Ilr, 0 + 1l0). Note 

that the angle between r1 and r2 is equal to the angle between 

01 and O2; this angle is O2 - 01 = 1l0. 
The change in r during the time Ilt is illustrated by the lower 

drawing. We see that 

llr = 01 sin llO - r1 (1 - cos llO). 

Hence 

0 0  "} 

where we have used the series expansions discussed in Note 1.1. 

We need to evaluate 

dr llr 
-= lim -0 

dt 6t-+O llt 

In the limit Ilt � 0, 110 also approaches zero, but 1l0/ Ilt approaches 

the limit dO/dt. Therefore 

n> O. 

The term in r entirely vanishes in the limit and we are left with 

dr oA 

- = 06 
dt 

' 

as before. We also need an expression for dO/dt. You can use 

any, or all, of the arguments above to prove for yourself that 

dO o. 

- = -Or. 
dt 
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Since you should be familiar with both results, let's summarize 
them together: 

dr 
= 96 

dt 

d6 '4 

- = -Or. 
dt 

And now, we can return to our problem. On page 30 we showed 
that 

d 4 4 dr 
v = - 1'r = fr + 1'-' 

dt dt 

Using the above results, we can write this as 

v = fr + 1'96. 

As we surmised, the second term is indeed in the tangential 
(that is, 6) direction. We can get more insight into the meaning 
of each term by considering special cases where only one com
ponent varies at a time. 

I 
I 

Case � 

1. 0 = constant, velocity is radial. If 0 is a constant, e = 0, and 
v = fro We have one dimensional motion in a fixed radial 
direction. 

2. l' = constant, velocity is tangential. In this case v = re6. 
Since l' is fixed, the motion lies on the arc of a circle. The 
speed of the point on the circle is 1'9, and it follows that v = re6. 

For motion in general, both l' and 0 change in time. 

'I 
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The next three examples illustrate the use of polar coordinates 

to describe velocity. 

Example 1.13 Circular Motion and Straight Line Motion in Polar Coordinates 

v = UI 

A particle moves in a circle of radius b with angular velocity e = at, where 

a is a constant. (a has the units radians per second2.) Describe 

the particle's velocity in polar coordinates. 

Since r = b = constant, Y is purely tangential and Y = bat6. The 

sketches show r, 6, and Y at a time t1 and at a later time t2. 

\ 
\ 
\ 

\ 
"-

"
'- --

v 

v 

The particle is located at the position 

r = b () = (}o + lot e dt = (}o + iat2• 

--t--.... 
/' "-

/ "-

/ '\ 
b \ 

\ 
, 

If the particle is on the x axis at t = 0, (}o = o. The particle's position 

vector is r = br, but as the sketches indicate, () must be given to specify 

the direction of r. 

Consider a particle moving with constant velocity Y = ui along the 

line y = 2. Describe Y in polar coordinates. 

From the sketch, 

------, �-
\. / 

\. / 
. "\ / 

U Sin /J U COS /J 

Vr = U cos () 

V8 = -u sin () 

Y = U cos (}r - u sin (}6. 

As the particle moves to the right, () decreases and rand 6 change direc

tion. Ordinarily, of course, we try to use coordinates that make the 
x problem as simple as possible; polar coordinates are not well suited here. 
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A bead moves along the spoke of a wheel at constant speed u meters per 
second. The wheel rotates with uniform angular velocity 8 = w radians 
per second about an axis fixed in space. At t = 0 the spoke is along the 
x axis, and the bead is at the origin. Find the velocity at time t 

a. In polar coordinates 

b. In cartesian coordinates. 

a. We have r = ut, i' = u, 8 = w. Hence 

v = i'r + r8ii = ur + utw6. 

To specify the velocity completely, we need to know the direction of 
rand ii. This is obtained from r = (r,O) = (ut,wt). 

b. In cartesian coordinates, we have 

Vz = Vr cos 0 - VB sin 0 

VII = VT sin 0 + VB cos O. 

Since VT = U, VB = rw = utw, 0 = wt, we obtain 

v = (u cos wt - utw sin wt)i + (u sin wt + utw cos wt)j. 

Note how much simpler the result is in plane polar coordinates. 

Example 1.15 Off-center Circle 

; 

x 

A particle moves with constant speed v around a circle of radius b. Find 
its velocity vector in polar coordinates using an origin lying on the circle. 

With this origin, v is no longer purely tangential, as the sketch indicates. 

v = -v sin {3r + v cos {36 

-v sin Or + V cos oii. 
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The last step follows si nce f3 and 8 a re the base a ngles of a n isosceles 

triangle and are therefore equal. To complete the calculation, we must 

find 8 as a function of time. By geometry, 28 = wt or 8 = wt/2, where 

w = v/b. 

Acceleration in Polar Coordinates 

Our final task is to find the acceleration. We differentiate v 

to obtain 

d 
a = -v 

dt 
d .  .A 

= at 
(rr + r86) 

• d • .A •• A • d A 

= 1'r + r - r + NJ6 + r86 + r8 - 6. 
dt dt 

If we substitute the results for d'r/dt and d6/dt from page 33, we 

obtain 

a = 1'r + r06 + r06 + 1'86 - r02r 
= (1' - r02)r + (1'8 + 2rO)6. 

The term 1'r is a linear acceleration in the radial direction due 

to change in radial speed. Similarly, r86 is a linear acceleration 

in the tangential direction due to change in the magnitude of the 

angUlar velocity. 

The term -r02r is the centripetal acceleration which we 

encountered in Example 1.8. Finally, 2r06 is the Corio/is accel· 

eration. Perhaps you have heard of the Coriolis force, a ficti· 

tious force which appears to act in a rotating coordinate system, 

and which we shall study in Chap. 8. The Coriolis acceleration 

that we are discussing here is a real acceleration which is present 

when rand 8 both change with time. 

The expression for acceleration in polar coordinates appears 

complicated. However, by looking at it from the geometric point 

of view, we can obtain a more intuitive picture. 

The instantaneous velocity is 

v = rr + r06 = Vrr + Ve6. 

Let us look at the velocity at two different times, treating the radial 

and tangential terms separately. 

The sketch at left shows the radial velocity rr = Vrr at two differ· 

ent instants. The change t1vr has both a radial and a tangential 

component. As we can see from the sketch (or from the dis· 
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cussion at the end of Sec. 1.8), the radial component of AVr is 

Avrr and the tangential component is Vr A86. ThE: radial com· 

ponent contributes 

lim - r = - r = fr 
(AVr.) dvr• • 

aHO At dt 

to the acceleration. The tangential component contributes 

( AL) d8. .• 

lim Vr - a = Vr - a = r8a, 
aHO At dt 

which is one· half the Coriolis acceleration. We see that half the 

Coriolis acceleration arises from the change of direction of the 

radial velocity. 

The tangential velocity 1'06 = ve6 can be treated similarly. The 

change in direction of 6 gives AVe an inward radial component 

-Ve A8r. This contributes 

lim 
(

-ve t:.8 r
) 

= -VeOr = -r02r, 
al-.O At 

which we recognize as the centripetal acceleration. Finally, the 

tangential component of AVe is Ave6. Since Ve = 1'0, there are 

two ways the tangential speed can change. If 0 increases by 

AO, Ve increases by l' AO. Second, if l' increases by Ar, Ve increases 

by MO. Hence AVe = r AO + Ar 0, and the contribution to the 

acceleration is 

lim - a = lim l' - + - 8 a 
(AVe .) ( AO Ar.) • 

aHO At aHO At At 

= (1'9 + rO)6. 

The second term is the remaining half of the Coriolis acceleration; 

we see that this part arises from the change in tangential speed 

due to the change in radial distance. 

Example 1.16 Acceleration of a Bead on a Spoke 

A bead moves outward with constant speed u along the spoke of a wheel. 

It starts from the center at t = O. The angular position of the spoke is 

given by 8 = wt, where w is a constant. Find the velocity and acceleration. 

v = rr + 1'06 

We are given that r = u and 0 = w. The radial position is given by 

l' = ut, and we have 

v = ur + 1ttw6. 

. , 
! 
' . 
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The acceleration is 

a = (1' - r02)r + (rO + 21'0)6 

= -utw2i + 2uw6. 

The velocity is shown in the sketch for several different positions of the 

wheel. Note that the radial velocity is constant. The tangential acceler· 

ation is also constant-can you visualize this? 

v 

Example 1.17 Radial Motion without Acceleration 

v 

7T 

"2 

v, 

/ 
/ 

! 

7T 

13 
/ 

A particle moves with 0 = w = constant and r = roefl', where ro and f3 
are constants. We shall show that for certain values of {3, the particle 

moves with ar = O. 

a = (1' - r02)r + (rO + 2fO)6 

= ({32roefl' - roefl'w2)r + 2{3rowefl'6. 

If (3 = ±w, the radial part of a vanishes. 

It is very surprising at first that when r = roefJ1 the particle moves with 

zero radial acceleration. The error is in thinking that l' makes the only 

contribution to ar; the term -r02 is also part of the radial acceleration, 

and cannot be neglected. 

The paradox is that even though aT = 0, the radial velocity Vr = f = 

rowefJ' is increasing rapidly with time. The answer is that we can be 

misled by the speCial case of cartesian coordinates; in polar coordinates, 

VT � J ar(t) dt, 

because fa,(t) dt does not take into account the fact that the unit vectors 

rand 6 are functions of time. 
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Note 1.1 Mathematical Approximation Methods 
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Occasionally in the course of solving a problem in physics you may find 

that you have become so involved with the mathematics that the physics 

is totally obscured. I n such cases, it is worth stepping back for a moment 

to see if you cannot sidestep the mathematics by using simple approxi· 

mate expressions instead of exact but complicated formulas. If you 

have not yet acquired the knack of using approximations, you may feel 

that there Is something essentially wrong with the procedure of substitut· 

ing inexact results for exact ones. However, this is not really the case, 

as the following example illustrates. 

Suppose that a physicist is studying the free fall of bodies in vacuum, 

using a tali vertical evacuated tube. The timing apparatus is tumed on 

when the falling body interrupts a thin horizontal ray of light located a 

distance L below the initial position. By measuring how long the body 

takes to pass through the light beam, the physicist hopes to determine 

the local value of g, the acceleration due to gravity. The falling body in 

the experiment has a height l. 

For a freely falling body starting from rest, the distance 8 traveled in 

time t is 

which gives 

The time interval t2 - tl required for the body to fall from 81 = L centi· 

meters to 82 = (L + l) centimeters is 

t2 - tl = �! CV� - vi;;) 

= �!(vlL + l- Vi). 

If t2 - tl is measured experimentally, g is given by 

This formula is exact under the stated conditions, but it may not be the 

most useful expression for our purposes. 

Consider the factor 

In practice, L will be large compared with l (typical values might be L = 

100 cm, l = 1 cm). Our factor is the small difference between two large 

numbers and is hard to evaluate accurately by using a slide rule or ordi· 

nary mathematical tables. Here is a simple approach, known as the 

method of power series expansion, which enables us to evaluate the factor 
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to any accuracy we please. As we shall discuss formally later in this Note, 

the quantity VI + x can be written in the series form 

VI + x = 1 + tx - iX2 + -fix3 + . . . 

for -1 < x < 1 . Furthermore, if we cut off the series at some point, the 
error we incur by this approximation is of the order of the first neglected 
term. We can put the factor in a form suitable for expansion by first 

extracting VL: 

VL + l-VL = VL (�1 + ± - 1). 

The dimensionless ratio IlL plays the part of x in our expansion. Expand· 

ing VI + llL in the series form gives 

VL ( �1 + ± - 1) = VL [ 1 + � (±) - � (±y 
+ 1� (± Y + 

. 
. . 

- 1] 

= VL n (±) - � (±y + 1� (±y + . ·1 
We see that if llL is much smaller than 1, the successive terms decrease 
rapidly. The first term in the bracket, t(ll L), is the largest term, and 
extracting it from the bracket yields 

VL+l-VL=VL�(±)[l-�(±)+�(±y + .. ] 

= 
2 � [ 1 - K±) + � (±y + 

... ) 
Our expansion is now in its final and most useful form. The first 

factor, ll(2VL), gives the dominant behavior and is a useful first approx· 
imation. Furthermore, writing the series as we have, with leading term 
1, shows clearly the contributions of the successive powers of liL. For 
example, if llL = 0.01, the term i(IIL)2 = 1.2 X 10-5 and we make a 
fractional error of about 1 part in 105 by retaining only the preceding 
terms. In many cases this accuracy is more than enough. For instance, 
if the time interval t2 - t1 in the falling body experiment can be measured 

to only 1 part in 1,000, we gain nothing by evaluating V L + l -VL to 
greater accuracy than this. On the other hand, if we require greater 
accuracy, we can easily tell how many terms of the series should be 
retained. 

Practicing physicists make mathematical approximations freely (when 
justified) and have no compunctions about discarding negligible terms. 
The ability to do this often makes the difference between being stymied 
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by impenetrable algebra and arithmetic and successfully solving a 

problem. 

Furthermore, series approximations often allow us to simplify compli· 

cated algebraic expressions to bring out the essential physical behavior. 

Here are some helpful methods for making mathematical approxi· 

mations. 

1 THE BINOMIAL SERIES 

(1 + x)" = 1 + nx + n(n - 1) X2 + n(n - 1)(n - 2) 
x

3 
2! 3! 

n(n - 1) . . . (n - k + 1) + ... + Xk + 
k! 

This series is valid for -1 < x < 1, and for any value of n. (If n is 

an integer, the series terminates, the last term being X".) The series 

is exact; the approximation enters when we truncate it. For n = t, as 

in our example, 

-1 < x < 1. 

If we need accuracy only to O(X2) (order of X2), we have 

(1 + x)! = 1 + h - .g.x2 + O(x3), 
where the term O(X3) indicates that terms of order x3 and higher are not 

being considered. As a rule of thumb, the error is approximately the 

size of the first term dropped. 

The series can also be applied if Ixl > 1 as follows: 

(1 + x)" = x" (1 + �y 
= x" [1 + n 2. + n(n - 1) (!)2 + x 2! x 

Examples: 

1 1. -- = (1 + X)-l 
1 + x 

.. -l 

= 1 - x + x2 - x3 + 
1 

-1 < x < 1 
2. -- = (1 - X)-l 

1 - x 
= 1 + x + X2 + x3 + -1 < x < 1 

3. (1,001)! = (1,000 + 1)1 = 1,000t(l + O.OOl)l 
= 1011 + O.OOl(j-> + . . . J 

"'" 10(1.0003) = 10.003 
1 1 

4. 2 - _ r.--:-- - : for small x, this expression is zero to first 
VI + x VI - x 

\ 
I 
I 
I 
\ 

i 
i 
) 

!: 
f 
r 
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approximation. However, this approximation may not be adequate. 

Using the binomial series, we have 

I I I 3 2 - - = 2 - (1 - "2X + lrX2 + ... ) 
"V"l+x � 

- (1 + h + {x2 + ... ) 
= -tx2• 

Notice that the terms linear in x also cancel. To obtain a nonvanishing 

result we had to go to a high enough order, in this case-to order x2• It 

is clear that for a correct result we have to expand all terms to the same 
order. 

2 TAYLOR'S SERIESl 

Analogous to the binomial series, we can try to represent an arbitrary 
function f(x) by a power series in x: 

For x = 0 we must have 

f(O) = ao. 

Assuming for the moment that it is permissible to differentiate, we have i 

df = 
f'(x) = al + 2a2x + . 

dx .', 
Eval uati ng at x = 0 we have i; 
al = f'(x) I . 

%-0 

Continuing this process, we find 

ak = � j<k)(X) I ' 
k! %=0 

where f(k)(x) is the kth derivative of f(x). For the sake of a less cum· 

bersome notation, we often write !(k)(O) to stand for J<k) (x) I ; but bear 
%-0 

in mind that j<k)(O) means that we should differentiate !(x) k times and 
then set x equal to O. 

The power series for !(x), known as a Tay/or series, can then be 
expressed formally as 

X2 x3 
!(x) = f(O) + !'(O)x + j"(0) - + j"'(O) - + 

2! 3! 

This series, if it converges, allows us to find good approximations to f(x) 
for small values of x (that is, for values of x near zero). Generalizing. 

X2 
f(a + x) = f(a) + f'(a)x + j"(a) - + ... 

2! 

I Taylor's series is discussed in most elementary calculus texts. See the list at 
the end of the chapter. 

T 
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gives us the behavior of the function In the neighborhood of the point a. 
An alternative form for this expression is 

/(t) = /(a) + f'(a)(t - a) + /,,(a) (t - a)2 + 
.

. .
. 

2! 

Our formal manipulations are valid only if the series converges. The 

range of convergence of a Taylor series may be - C() < x < C() for 

some functions (such as eX) but quite limited for other functions. (The 

binomial series converges only if -1 < x < 1.) The range of conver· 

gence is hard to find without considering functions of a complex vari· 

able, and we shall avoid these questions by simply assuming that we are 

dealing with simple functions for which the range of convergence is either 

infinite or is readily apparent. Here are some examples: 

a. The Trigonometric Functions 

Let /(x) = sin x, and expand about x = O. 

/(0) = sin (0) = 0 
/'(0) = cos (0) = 1 

/,,(0) = -sin (0) = 0 
/,,'(0) = -cos (0) = - I, etc. 

Hence 

1 1 1 
sin x = x - - x3 + - x5 - - x7 + 

Similarly 

3! 5! 7! 

1 1 
cos x = 1 - - X2 + - X4 - • 

2! 4! 

These expansions converge for all values of x but are particularly use· 

ful for small values of x. To O(x2), sin x = x, cos x = 1 - x2/2. 
The figure below compares the exact value for sin x with a Taylor 

series in which successively higher terms are included. Note how each 

-\ 

1 3 
Y =x- Tfx 
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term increases the range over which the series is accurate. If an infinite 

number of terms are included, the Taylor series represents the function 

accurately everywhere. 

b. The Binomial Series 

We can derive the binomial series introduced in the last section by letting 

f(x) = (1 + x)". 

Then 

f(O) = 1 

1'(0) = n(1 + o)n = n 

1"(0) = n(n - 1) 

f(k)(O) = n(n - 1)(n - 2) . . . (n - k + 1) 

1 
(1 + x)" = 1 + nx + - n(n - l)x2 + . . . 

2! 

+ . 
n(n - 1) ... (n - k + 1) 
----'-__ -=--_ _ ..c....... ___ � Xk + 

k! 

c. The Exponential Function 

If we let f(x) = eX, we have f'ex) = f(x), by the definition of the expo· 

nential function. Similarly j<k)(X) = f(x). Since f(O) = e
O 

= I, we have 

1 1 
eX = 1 + x + - X2 + - x3 + . . . . 

2! 3! 

This series converges for all values of x. 

A useful result from the theory of the Taylor series is that if the series 

converges at all, it represents the function so well that we are allowed to 

differentiate or integrate the series any number of times. For example, 

� (sin x) = !:... (x - � x3 + .!.. XS + ... ) 
dx dx 3! 5! 

1 1 
= 1 - - X2 + - X4 + 

2! 4! 

= cos x. 

Furthermore, the Taylor series for the product of two functions is the 

product of the individual series: 

sin x cos x = x - - x3 + XS + . " 1 - - X2 + - X4 + ( 1 1 )( 1 1 

3! 5! 2! 4! 

=-x - (.!.. + .!..) x3 + (� + � + .!..) XS + . . . 

3! 2! 4! 3!2! 5! 
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NOTE 1.1 MATHEMATICAL APPROXIMATION METHODS 

4x3 16x· 
=x--+-+ 

3! 5! 

= ! [ (2X) -
(2X)3 

+ 
(2x)· 

+ . . . J 2 3! 5! 

1 
= [sin (2x»). 

2 
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The Taylor series sometimes comes in handy in the evaluation of inte

grals. To estimate 

j; 1.1 e% 
-dz 

1 z ' 

let z = 1 + x. We then have 

j; 1.1 e% J 0.1 e(l+x) 
-dz = -- dx 

1 z ° l+x 

JO.1 eX 
= (e) --dx 

° 1 + X 

JO.1 (1 + x) 
� (e) -- dx 

° (1 + x) 

� O.le. 

The approximation should be better than 1 part in 100 or so, for x always 

lies in the interval 0 � x � 0.1. In this range, eX � 1 + x is a good 

approximation to two or three significant figures. 

3 DIFFERENTIALS 

Consider f(x), a function of the independent variable x. Often we need 

to have a simple approximation for the change in f(x) when x is changed 

to x + �x. Let us denote the change by �f = f(x + �x) - f(x). It 

is natural to turn to the Taylor series. Expanding the Taylor series for 

fex) about the point x gives 

1 
fex + �x) = f(x) + j'(x) �x + - j"(x) �X2 + 

2! 

where, for example, f' (x) stands for df /dx evaluated at the point x. 
Omitting terms of order (�X)2 and higher yields the simple linear approx· 

imation 

�f = f(x + �x) - f(x) � j'(x) �x. 

This approximation becomes increasingly accurate the smaller the 

size of �x. However, for finite values of �x, the expression 

�f � j'(x) �x 
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has to be considered to be an approximation. The graph at left shows 

a comparison of I1f == f(x + I1x) - f(x) with the linear extrapolation 

f'(x) I1x. It is apparent that I1f. the actual change in f(x) as x is 

changed, is generally not exactly equal to I1f for finite I1x. 
As a matter of notation. we use the symbol dx to stand for I1x. the 

increment in x. dx is known as the differential of x; it can be as large or 

small as we please. We define dJ. the differential of J. by 

df == J'(x) dx. 

This notation is illustrated in the lower drawing. Note that dx and 

I1x are used interchangeably. On the other hand. dJ and I1J are different 

quantities. df is a differential defined by dJ = l' (x) dx. whereas t::..j is 

the actual change J(x + dx) - J(x). Nevertheless. when the linear 

approximation is justified in a problem. we often use df to represent 

I1J. We can always do this when eventually a limit will be taken. Here 

are some examples. 

1. d(sin 0) = cos 0 dO. 

2. d(xeX') = (eX' + 2x2eX') dx. 

3. Let V be the volume of a sphere of radius r: 

V = tn-r3 

dV = 47rr2 dr. 

4. What is the fractional increase in the volume of the earth if its average 

radius. 6.4 X 106 m. increases by 1 m? 

dV 41rr2 dr 

V 
= 

tn-r3 

= 
3 

dr 

r 

3 
--- = 4.7 X 10-7• 
6.4 X 106 

One common use of differentials is in changing the variable of integra· 

tion. For instance. consider the integral 

fb 2 a xeX dx. 

A useful sUbstitution is t = x2• The procedure is first to solve for x in 

terms of t. 

and then to take differentials: 

1 1 
dx = -- dt. 

2yt 
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This result is exact, since we are effectively taking the limit. The original 

integral can now be written in terms of t: 

r b xex' dx = r t, Vt e' (� � dt) = t r 
12 e' 

dt 
}a itt 2 Vt itt 

= t(e" - e'l), 

Some References to Calculus Texts 

A very popular textbook is G. B. Thomas, Jr., "Calculus and Analytic 

Geometry," 4th ed., Addison·Wesley Publishing Company, Inc., Reading, 

Mass. 

The following introductory texts in calculus are also widely used: 

M. H. Protter and C. B. Morrey, "Calculus with Analytic Geometry," 

Addison·Wesley Publishing Company, Inc., Reading, Mass. 

A. E. Taylor, "Calculus with Analytic Geometry," Prentice·Hall, Inc., 

Englewood Cliffs, N.J. 

R. E. Johnson and E. L. Keokemeister, "Calculus With Analytic Geometry," 

Allyn and Bacon, Inc., Boston. 

A highly regarded advanced calculus text is R. Courant, "Differential and 

Integral Calculus," Interscience Publishing, Inc., New York. 

If you need to review calculus, you may find the following helpful: Daniel 

Kleppner and Norman Ramsey, "Quick Calculus," John Wiley & Sons, 

Inc., New York. 

Problems 1.1 Given two vectors, A = (2i - 3j + 7k) and B = (5i + j + 2k), find: 

(a) A + B; (b) A - B; (c) A· B; (d) A X B. 

1.2 Find the cosine of the angle between 

Ans. (a) 7i - 2j + 9k; (c) 21 

A = (3i + j + k) and B = ( -2i - 3j - k). 
Ans. -0.805 

1.3 The direction cosines of a vector are the cosines of the angles it 

makes with the coordinate axes. The cosine of the angles between the 

vector and the x, y, and z axes are usually called, in turn a, {3, and /'. 

Prove that a2 + {32 + /,2 = 1, using either geometry or vector algebra. 

1.4 Show that if IA - BI = IA + BI, then A is perpendicular to B. 

1.5 Prove that the diagonals of an equilateral parallelogram are per 

pendicular. 

1.6 Prove the law of sines using the cross product. It should only take 

a couple of lines. (Hint: Consider the area of a triangle formed by A, 
B, C, where A + B + C = 0.) 
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1.7 Let it and b be unit vectors in the xy plane making angles 0 and 

cf> with the x axis, respectively. Show that it = cos Oi + sin OJ, b = 

cos .pi + sin .pj, and using vector algebra prove that 

cos (0 - cf» = cos 0 cos cf> + sin 0 sin .p. 

I.S Find a unit vector perpendicular to 

A = (i + j - k) and 8 = (2i - j + 3k). 
Ans. ii = ± (2i - 5j - 3k)/V3s 

1.9 Show that the volume of a parallelepiped with edges A, B, and Cis 

given by A • (8 X C). 

1.10 Consider two points located at rJ and r2, separated by distance 

r = IrJ - r2 1 . Find a vector A from the origin to a point on the line 

between fl and f2 at distance xr from the point at fl' where x is some 

number. 

1.11 Let A be an arbitrary vector and let ii be a unit vector in some fix.ea 

direction. Show that A = (A· n)n + (n X A) X n. 

1.12 The acceleration of gravity can be measured by projecting a body 

upward and measuring the time that it takes to pass two given points 

in both directions. 

Show that if the time the body takes to pass a horizontal line .4 in both 

directions is TA, and the time to go by a second line B in both directions 

is TB, then, assuming that the acceleration is constant, its magnitude is 

Sh 
g= , 

TA2 - TB2 

where h is the height of line B above line A. 

1.13 An elevator ascends from the ground with uniform speed. At 

time Tl a boy drops a marble through the floor. The marble falls with 

uniform acceleration g = 9.S m/s2, and hits the ground Tz seconds 

later. Find the height of the elevator at time Tj• 

Ans. clue. If Tj = T2 = 4 s, h = 39.2 m 

1.14 A drum of radius R rolls down a slope without slipping. Its axis 

has acceleration a parallel to the slope. What is the drum's angular 

acceleration a? 

1.15 By relative velocity we mean velocity with respect to a specified 

coordinate system. (The term velocity, alone, is understood to be rela· 

tive to the observer's coordinate system.) 

a. A point is observed to have velocity VA relative to coordinate system 

A. What is its velocity relative to coordinate system B, which is displaced 

from system A by distance R? (R can change in time.) 

Ans. VB = VA - dR/dt 

b. Particles a and b move in opposite directions around a circle with 

angular speed w, as shown. At t = 0 they are both at the point r = lj, 
where I is the radius of the circle. 

Find the velocity of a relative to b. 
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1.16 A sportscar, Fiasco I, can accelerate uniformly to 120 mi/h in 30 s. 

Its maximum braking rate cannot exceed 0.7g. What is the minimum 

time required to go t mi, assuming it begins and ends at rest? (Hint: 
A graph of velocity vs. time can be helpful.) 

1.17 A particle moves in a plane with constant radial velocity f = 4 m/s. 

The angular velocity is constant and has magnitude (j = 2 rad/s. When 

the particle is 3 m from the origin, find the magnitude of (a) the velocity 

and (b) the acceleration. 

Ans. (a) v = V5z m/s 

1.18 The rate of change of acceleration is sometimes known as "jerk." 

Find the direction and magnitude of jerk for a particle moving in a circle 

of radius R at angular velocity w. Draw a vector diagram showing the 

inStantaneous position, velocity, acceleration, and jerk. 

1.19 A tire rolls in a straight line without slipping. Its center moves 

with constant speed V. A small pebble lodged in the tread of the tire 

touches the road at t = O. Find the pebble's position, velocity, and 

acceleration as functions of time. 

1.20 A particle moves outward along a spiral. Its trajectory is given 

by r = A8, where A is a constant. A = (l/7r) m/rad. 8 increases in 

time according to (J = ext2/2, where ex is a consta nt. 

a. Sketch the motion, and indicate the approximate velocity and accel· 

eration at a few points. 

b. Show that the radial acceleration is zero when (J = 1/V2 rad. 

c. At what angles do the radial and tangential accelerations have equal 

magnitude? 

1.21 A boy stands at the peak of a hill which slopes downward uniformly 

at angle rfJ. At what angle (J from the horizontal should he throw a rock 

so that it has the greatest ra nge? 

Ans. clue. If rfJ = 60°, (J = 15° 



, , , 

[I 
I I 
H 
i:! 

:;i 

I 

'� 



NEWTON'S 
LAWS-THE 

"--- FOUNDATIONS 
OF 

NEWTONIAN 
MECHANICS 



52 NEWTON'S LAWS-THE FOUNDATIONS OF NEWTONIAN MECHANICS 

2.1 Introduction 

Our aim in this chapter is to understand Newton's laws of motion. 

From one point of view this is a modest task: Newton's laws are 

simple to state and involve little mathematicSlI complexity. Their 

simplicity is deceptive, however. As we shaff see, they combine 

definitions, observations from nature, partly intuitive concepts, 

and some unexamined assumptions on the properties of space 

and time. Newton's statement of the laws of motion left many 

of these points unclear. It was not until two hundred years after 

Newton that the foundations of classical mechanics were care· 

fully examined, principally by Ernst Mach,l and our treatment is 

very much in the spirit of Mach. 

Newton's laws of motion are by no means self·evident. In 

Aristotle's system of mechanics, a force was thought to be needed 

to maintain a body in uniform motion. Aristotelian mechanics 

was accepted for thousands of years because, superficially, it 

seemed intuitively correct. Careful reasoning from observation 

and a real effort of thought was needed to break out of the 

aristotelian mold. Most of us are stiff not accustomed to think· 

ing in newtonian terms, and it takes both effort and practice to 

learn to analyze situations from the newtonian point of view. We 

shall spend a good deal of time in this chapter looking at applica· 

tions of Newton's laws, for only in this way can we really come to 

understand them. However, in addition to deepening our under· 

standing of dynamics, there is an immediate reward-we shall be 

able to analyze quantitatively physical phenomena which at first 

sight may seem incomprehensible. 

Although Newton's laws provide a direct introduction to classical 

mechanics, it should be pointed out that there are a number of 

other approaches. Among these are the formulations of Lagrange 

and Hamilton, which take energy rather than force as the funda· 

mental concept. However, these methods are physically equiva· 

lent to the newtonian approach, and even though we could use 

one of them as our point of departure, a deep understanding of 

Newton's laws is an invaluable asset to understanding any system· 

atic treatment of mechanics. 

A word about the validity of newtonian mechanics: possibly you 

already know something about modern physics-the development 

early in this century of relativity and quantum mechanics. If so, 

I Mach's text, "The Science of Mechanics" (1883), translated the arguments from 

Newton's "Principia" into a more logically satisfying form. His analysis of the 

assumptions of newtonian mechanics played a major role in the development 01 
Einstein'S special theory of relativity, as we shall see in Chap. 10. 
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you know that there are important areas of physics in which new· 

tonian mechanics fails, while relativity and quantum mechanics 

succeed, Briefly, newtonian mechanics breaks down for systems 

moving with a speed comparable to the speed of light, 3 X 108 mis, 

and it also fails for systems of atomic dimensions or smaller where 

quantum effects are significant. The failure arises because of 

inadequacies in classical concepts of space, time, and the nature 

of measurement. A natural impulse might be to throw out class· 

ical physics and proceed directly to modern physics. We do not 

accept this point of view for several reasons. In the first place, 

although the more advanced theories have shown us where class· 

ical physics breaks down, they also show us where the simpler 

methods of classical physics give accurate results. Rather than 

make a blanket statement that classical physics is right or wrong, 

we recognize that newtonian mechanics is exceptionally useful in 

many areas of physics but of limited applicability in other areas. 

For instance, newtonian physics enables us to predict eclipses cen· 

turies in advance, but is useless for predicting the motions of 

electrons in atoms. It should also be recognized that because 

classical physics explains so many everyday phenomena, it is an 

essential tool for all practicing scientists and engineers. Further· 

more, most of the important concepts of classical physics are pre· 

served in modern physics, albeit in altered form. 

2.2 Newton's Laws 

It is important to understand which parts of Newton's laws are 

based on experiment and which parts are matters of definition. 

In discussing the laws we must also learn how to apply them, not 

only because this is the bread and butter of physics but also 

because this is essential for a real understanding of the under· 

lying concepts. 

We start by appealing directly to experiment. Unfortunately, 

experiments in mechanics are among the hardest in physics 

because motion in our everyday surroundings is complicated by 

forces such as gravity and friction. To see the physical essen· 

tials, we would like to eliminate all disturbances and examine very 

simple systems. One way to accomplish this would be to enroll 

as astronauts, for in the environment of space most of the every· 

day disturbances are negligible. However, lacking the resources 

to put ourselves in orbit, we settle for second best, a device 

known as a linear air track, which approximates ideal conditions, 

but only in one dimension. (Although it is not clear that we can 
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learn anything about three dimensional motion from studying 

motion in one dimension, happily this turns out to be the case.) 

Linear air track 

The linear air track is a hollow triangular beam perhaps 2 m 

long, pierced by many small holes which emit gentle streams of 

air. A rider rests on the beam, and when the air is turned on, the 

rider floats on a thin cushion of air. Because of the air suspen· 

sion, the rider moves with negligible friction. (The reason for this 

is that the thin film of air has a viscosity typically 5,000 times less 

than a film of oiL) If the track is leveled carefully, and if we elim· 

inate stray air currents, the rider behaves as if it were isolated in 

its motion along the track. The rider moves along the track free 

of gravity, friction, or any other detectable influences. 

Now let's observe how the rider behaves. (Try these experi' 

ments yourself if possible.) Suppose that we place the rider on 
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the track and carefully release it from rest. As we might expect, 

the rider stays at rest, at least until a draft hits it or somebody 

bumps the apparatus. (This isn't too surprising, since we leveled 

the track until the rider stayed put when left at rest.) Next, we 

give the rider a slight shove and then let it move freely. The 

motion seems uncanny, for the rider continues to move along 

slowly and evenly, neither gaining nor losing speed. This is con· 

trary to our everyday experience that moving bodies stop moving 

unless we push them. The reason is that in everyday motion, 

friction usually plays an important role. For instance, the air 

track rider comes to a grinding halt if we turn off the air and let 

sliding friction act. Apparently the friction stops the motion. 

But we are getting ahead of ourselves; let us return to the 

properly functioning air track and try to generalize from our 

experience. 

It is possible to make a two dimensional air table analogous to 

the one dimensional air track. (A smooth sheet of glass with a 

flat piece of dry ice on it does pretty well. The evaporating dry 

ice provides the gas cushion.) We find again that the undisturbed 

rider moves with uniform velocity. Three dimensional isolated 

motion is hard to observe, short of going into space, but let us for 

the moment assume that our experience in one and two dimen' 

sions also holds in three dimensions. We therefore surmise that 

an object moves uniformly in space provided there are no external 

influences. 

Newton's First Law 

In our discussion of the air track experiments, we glossed over an 

important point. Motion has meaning only with respect to a par· 

ticular coordinate system, and in describing motion it is essential 

to specify the coordinate system we are using. For example, in 

describing motion along the air track, we implicitly used a coor· 

dinate system fixed to the track. However, we are free to choose 

any coordinate system we please, including systems which are 

moving with respect to the track. In a coordinate system moving 

uniformly with respect to the track, the undisturbed rider moves 

with constant velocity. Such a coordinate system is called an 

inertial system. Not all coordinate systems are inertial; in a coor· 

dinate system accelerating with respect to the track, the undis· 

turbed rider does not have constant velocity. However, it is 

always possible to find a coordinate system with respect to which 

\ 
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isolated bodies move uniformly. This is the essence of Newton's 

first law of motion. 

Newton's first law of motion is the assertion that inertial systems 

exist. 

Newton's first law is part definition and part experimental fact. 

Isolated bodies move uniformly in inertial systems by virtue of the 

definition of an inertial system. In constrast, that inertial systems 

exist is a statement about the physical world. 

Newton's first law raises a number of questions, such as what 

we mean by an "isolated body," but we will defer these temporarily 

and go on. 

Newton's Second Law 

__ We now turn to how the rider on the air track behaves when it is 

no longer isolated. Suppose that we pull the rider with a rubber 

band. Nothing happens while the rubber band is loose, but as 

soon as we pull hard enough to stretch the rubber band, the rider 

starts to move. If we move our hand ahead of the rider so that 

the rubber band is always stretched to the same standard length, 

we find that the rider moves in a wonderfully simple way; its 

velocity increases uniformly with time. The rider moves with con· 

stant acceleration. 

Now suppose that we try the same experiment with a different 

rider, perhaps one a good deal larger than the first. Again, the 

same rubber band stretched to the standard length produces a 

constant acceleration, but the acceleration is different from that 

in the first case. Apparently the acceleration depends not only 

on what we do to the object. since presumably we do the 

same thing in each case, but also on some property of the object, 

which we call mass. 

We can use our rubber band experiment to define what we mean 

by mass. We start by arbitrarily saying that the first body has a 

mass mi. (mi could be one unit of mass or x units of mass, where 

x is any number we choose.) We then define the mass of the 

second body to be 

where ai is the acceleration of the first body in our rubber band 

experiment and a2 is the acceleration of the second body. 
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Continuing this procedure, we can assign masses to other 

objects by measuring their accelerations with the standard 

stretched rubber band. Thus 

al 
ma = ml

aa 

al etc. 
m4 = ml-

a4 

Although this procedure is straightforward, there is no obvious 

reason why the quantity we define this way is particularly impor

tant. For instance, why not consider instead some other prop

erty, call it property Z, such that Zz = Zl(at/a2)2? The reason 

is that mass is useful, whereas property Z (or most other quan

tities you try) is not. By making further experiments with the 

air track, for instance by using springs or magnets instead of a 

rubber band, we find that the ratios of accelerations, hence the 

mass ratios, are the same no matter how we produce the uni

form accelerations, provided that we do the same thing to each 

body. Thus, mass so defined turns out to be independent of 

the source of acceleration and appears to be an inherent prop

erty of a body. Of course, the actual mass value of an individual 

body depends on our choice of mass unit. The important thing 

is that two bodies have a unique mass ratio. 

Our definition of mass is an example of an operational definition. 

By operational we mean that the definition is dominantly in terms 

of experiments we perform and not in terms of abstract concepts, 

such as "mass is a measure of the resistance of bodies to a change 

in motion." Of course, there can be many abstract concepts hid

den in apparently simple operations. For instance, when we mea

sure acceleration, we tacitly assume that we have a clear under

standing of distance and time. Although our intuitive ideas are 

adequate for our purposes here, we shall see when we discuss 

relativity that the behavior of measuring rods and clocks is itself 

a matter for experiment. 

A second troublesome aspect of operational definitions is that 

they are limited to situations in which the operations can actually 

be performed. In practice this is usually not a problem; physics 

proceeds by constructing a chain of theory and experiment which 

allows us to employ convenient methods of measurement ulti

mately based on the operational definitions. For instance, the 

most practical way to measure the mass of a mountain is to 

observe its gravitational pull on a test body, such as a hanging 
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plumb bob. According to the operational definition, we should 

apply a standard force and measure the mountain's acceleration. 

Nevertheless, the two methods are directly related conceptually. 

We defined mass by experiments on laboratory obiects; we can· 

not say a priori whether the results are consistent on a much 

larger or smaller scale. In fact, one of the major goals of physics 

is to find the limitations of such definitions, for the limitations 

normally reveal new physical laws. Nevertheless, if an opera

tional definition is to be at all useful, it must have very wide appli· 

cability. For instance, our definition of mass holds not only for 

everyday objects on the earth but also, to a very high degree, for 
planetary motion, motion on an enormously larger scale. It 

should not surprise us, however, if eventually we find situations 

in which the operations are no longer useful. 

Now that we have defined mass, let us turn our attention to 
force. 

We describe the operation of acting on the test mass with a 

stretched rubber band as "applying" a force. (Note that we have 

sidestepped the question of what a force is and have limited our

selves to describing how to produce it-namely, by stretching a 

rubber band by a given amount.) When we apply the force, the 

test mass accelerates at some rate, a. If we apply two standard 

stretched rubber bands, side by side, we find that the mass accel· 

erates at the rate 2a, and if we apply them in opposite directions, 

the acceleration is zero. The effects of the rubber bands add 

',': 

algebraically for the case of motion in a straight line. [ . 
We can establish a force scale by defining the unit force as the 

force which produces unit acceleration when applied to the unit 
mass. It follows from our experiments that F units of force 

accelerate the unit mass by F units of acceleration and, from our 

definition of mass, it will produce F X (11m) units of acceleration 

in mass m. Hence, the acceleration produced by force F acting 
on mass m is a = F 1m or, in a more familiar order, F = mao In 

the International System of units (SI), the unit of force is the new· 

ton (N), the unit of mass is the kilogram (kg), and acceleration is 

in meters per second2 (m/s2). Units are discussed further in i, 
Sec. 2.3. :.:i 

So far we have limited our experiments to one dimension. \f 
Since acceleration is a vector, and mass, as far as we know, is a !�: 
scalar, we expect that force is also a vector. It is natural to think tl 
of the force as pointing in the direction of the acceleration it pro· 

1-duces when acting alone. This assumption appears trivial, but 

:,:, it is not-its justification lies in experiment. We find that forces 
_ 

obey the principle of superposition: The acceleration produced bY rf: 

" 
.: \'" 
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several forces acting on a body is equal to the vector sum of the 

accelerations produced by each of the forces acting separately. 

Not only does this confirm the vector nature of force, but it also 

enables us to analyze problems by considering one force at a 

time. 

Combining all these observations, we conclude that the total 

force F on a body of mass m is F = �Fi' where Fi is the ith applied 

force. If a is the net acceleration, and ai the acceleration due to 

Fi alone, then we have 

F = �Fi 

or 

= �mai 

= m�ai 

= ma 

F = mao 

This is Newton's second law of motion. It will underlie much of 

our subsequent discussion. 

It is important to understand clearly that force is not merely 

a matter of definition. For instance, if the air track rider starts 

accelerating, it is not sufficient to claim that there is a force acting 

defined by F = mao Forces always arise from interactions between 

systems, and if we ever found an acceleration without an inter· 

action, we would be in a terrible mess. It is the interaction which 

is physically significant and which is responsible for the force. 

For this reason, when we isolate a body sufficiently from its sur

roundings, we expect the body to move uniformly in an inertial 

system. Isolation means eliminating interactions. You may 

question whether it is always possible to isolate a body. For

tunately, as far as we know, the answer is yes. All known inter

actions decrease with distance. (The forces which extend over 

the greatest distance are the familiar gravitational and Coulomb 

forces. They decrease as l/r2, where r is the distance. Most 

forces decrease much more rapidly. For example, the force 

between separated atoms decreases as 1/r7.) By moving the 

test body sufficiently far from everything else, the interactions 

can be reduced as much as desired. 

Newton's Third Law 

The fact that force is necessarily the result of an interaction 

between two systems is made explicit by Newton's third law. The 
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third law states that forces always appear in pairs: if body b exerts 

force Fa on body a, then there must be a force Fb acting on body 

b, due to body a, such that Fb = - Fa. There is no such thing as 

a lone force without a partner. As we shall see in the next chap· 

ter, the third law leads directly to the powerful law of conservation 

of momentum. 

We have argued that a body can be isolated by removing it 

sufficiently far from other bodies. However, the following prob· 

lem arises. Suppose that an isolated body starts to accelerate 

in defiance of Newton's second law. What prevents us from 

explaining away the difficulty by attributing the acceleration to 

carelessness in isolating the system? If this option is open to us, 

Newton's second law becomes meaningless. We need an inde· 

pendent way of telling whether or not there is a physical interac· 

tion on a system. Newton's third law provides such a test. If 

the acceleration of a body is the result of an outside force, then 

somewhere in the universe there must be an equal and opposite 

force acting on another body. If we find such a force, the 

dilemma is resolved; the body was not completely isolated. The 

interaction may be new and interesting, but as long as the forces 

are equal and opposite, Newton's laws are satisfied. 

If an isolated body accelerates and we cannot find some external 

object which suffers an equal and opposite force, then we are in 

trouble. As far as we know this has never occurred. Thus New· 

ton's third law is not only a vitally important dynamical tool, but 

it is also an important logical element in making sense of the first 

two laws. 

Newton's second law F = ma holds true only in inertial systems. 

The existence of inertial systems seems almost trivial to us, since 

the earth provides a reasonably good inertial reference frame for 

everyday observations. However, there is nothing trivial about 

the concept of an inertial system, as the following example shows. 

Example 2.1 Astronauts in Space-Inertial Systems and Fictitious Forces 

Two spaceships are moving in empty space chasing an unidentified 

flying object, possibly a flying saucer. The captains of the two ships, 

.il and B, must find out if the saucer is flying freely or if it is accelerating. 

A, B, and the saucer are all moving along a straight line. 

The captain of A sets to work and measures the distance to the saucer 

as a function of time. In principle, he sets up a coordinate system along 

the line of motion with his ship as origin and notes the position of the 

saucer, which he calls XA(t). (In practice he uses his radar set to mea· 

sure the distance to the saucer.) From XA(t) he calculates the velocity 

I 
! 
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VA = XA and the acceleration aA = XA. The results are shown in the 

sketches. The captain of ..I concludes that the saucer has a positive 

acceleration aA = 1,000 m/s2. He therefore assumes that its engines 

are on and that the force on the saucer is 

FA = a .• ]! 

= l,OOOJI newtons, 

where J[ is the saucer's mass in kilograms. 

The captain of B goes through the same procedure. He finds that the 

acceleration is aR = 950 m/s2 and concludes that the force on the saucer 

is 

FR = aRolf 

= 950.11 newtons. 

This presents a serious problem. There is nothing arbitrary about 

force; if different observers obtain different values for the force, at 

least one of them must be mistaken. The captains of ..I and B have 

confidence in the laws of mechanics, so they set about resolving the dis· 

crepancy. In particular, they recall that Newton's laws hold only in iner· 

tial systems. How can they decide whether or not their systems are 

inertial? 

.-t's captain sets out by checking to see if all his engines are off. Since 

they are, he suspects that he is not accelerating and that his spaceship 

defines an inertial system. To check that this is the case, he undertakes 

a simple but sensitive experiment. He observes that a pencil, carefully 

released at rest, floats without motion. He concludes that the pencil's 

acceleration is negligible a nd that he is in a n inertial system. The rea· 

soning is as follows: as long as he holds the pencil it must have the same 

instantaneous velocity and acceleration as the spaceship. However, 

there are no forces acting on the pencil after it is released, assuming 

that we can neglect gravitational or electrical interactions with the space· 

ship, air currents, etc. The pencil, then, can be presumed to represent 

an isolated body. If the spaceship is itself accelerating, it will catch up 

with the pencil-the pencil will appear to accelerate relative to the cabin. 

Otherwise, the spaceship must itself define an inertial system. 

The determination of the force on the saucer by the captain of A 

must be correct because ..l is in an inertial system. But what can we 

say about the observations made by the captain of B? To answer this 

problem, we look at the relation of XA and XB. From the sketch, 
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XA(t) = XB(t) + X(t), 

where X(t) is the position of B relative to A. Differentiating twice with 

respect to time, we have 

XA = XB + X. 

Since system 11 is inertial, Newton's second law for the saucer is 

where Ftrue is the true force on the saucer. 

What about the observations made by the captain of B? The apparent 

force observed by B is 

F B ,apparent = "�I X B. 

Using the results of (1) and (2), we have 

F B,apparent = .ilf XA - Jf X 
= Ftrue - llIX. 4 

B will not measure the true force unless X = O. However, X = 0 
only when B moves uniformly with respect to A. As we suspect, this is 

not the case here. The captain of B has accidently left on a rocket 

engine, and he is accelerating away from A at 50 m/s2• After shutting 

off the engine, he obtains the same value for the force on the saucer 

as does A. 

Although we considered only motion along a line in Example 

2.1, it is easy to generalize the result to three dimensions. If R is 

the vector from the origin of an inertial system to the origin of 

another coordinate system, we have 

Fapparent = Ftrue - MR. 

If R = 0, then Fapparent = Ftrue, which means that the second coor 

dinate system is also inertial. In fact, we have merely prove 

what we asserted earlier, namely, that any system moving uni 

formly with respect to an inertial system is also inertial. 

Sometimes we would like to carry out measurements in non 

inertial systems. What can we do to get the correct equations 0 
motion? The answer lies in the relation Fapparent = Ftrue - MR 
We can think of the last term as an additional force, which w 

call a fictitious force. (The term fictitious indicates that there i 
no real interaction involved.) We then write 

Fapparent = Ftrue + Ffictitious, 
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where Ffictitious = - MIt Her� �M is the mass of the particle and 

R is the acceleration of the noninertial system with respect to any 

inertial system. 

Fictitious forces are useful in solving certain problems, but they 

must be treated with care. They generally cause more confusion 

then they are worth at this stage of your studies, and for that rea· 

son we shall avoid them for the present and agree to use inertial 

systems only. Later on, in Chap. 8, we shall examine fictitious 

forces in detail and learn how to deal with them. 

Although Newton's laws can be stated in a reasonably clear 

and consistent fashion, it should be realized that there are 

fundamental difficulties which cannot be argued away. We shall 

return to these in later chapters after we have had a chance to 

become better acquainted with the concepts of newtonian physics. 

Some points, however, are well to bear in mind now. 

1. You have had to take our word that the experiments we used 

to define mass and to develop the second law of motion really give 

the results claimed. It should come as no surprise (although it 

was a considerable shock when it was first discovered) that this 

is not always so. For instance, the mass scale we have set up is 

no longer consistent when the particles are moving at high speeds. 

It turns out that instead of the mass we defined, called the rest 

mass mo, a more useful quantity is m = mo/Vl - v
2/c

2, where 

c is the speed of light and v is the speed of the particle. For the 

case v « c, m and mo differ negligibly. The reason that our table

top experiments did not lead us to the more general expression 

for mass is that even for the largest everyday velocities, say the 

velocity of a spacecraft going around the earth, vic"'" 3 X 10-5, 

and m and mo differ by only a few parts in 1010• 

2. Newton's laws describe the behavior of point masses. In the 

case where the size of the body is small compared with the inter

action distance, this offers no problem. For instance, the earth 

and sun are so small compared with the distance between them 

that for many purposes their motion can be adequately described 

by considering the motion of point masses located at the center of 

each. However, the approximation that we are dealing with point 

masses is fortunately not essential, and if we wish to describe the 

motion of large bodies, we can readily generalize Newton's laws, 

as we shall do in the next chapter. It turns out to be not much 

more difficult to discuss the motion of a rigid body composed of 

1024 atoms than the motion of a single point mass. 
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3. Newton's laws deal with particles and are poorly suited for 

describing a continuous system such as a fluid. We cannot 

directly apply F = ma to a fluid, for both the force and the mass 

are continuously distributed. However, newtonian mechanics can 

be extended to deal with fluids and provides the underlying prin

ciples of fluid mechanics. 

One system which is particularly troublesome for our present 

formulation of newtonian mechanics is the electromagnetic field. 

Paradoxes can arise when such a field is present. For instance, 

two charged bodies which interact electrically actually interact via 

the electric fields they create. The interaction is not instanta· 

neously transmitted from one particle to the other but propagates 

at the velocity of light. During the propagation time there is an 

apparent breakdown of Newton's third law; the forces on the 

particles are not equal and opposite. Similar problems arise in 

considering gravitational and other interactions. However, the 

problem lies not so much with newtonian mechanics as with its 

misapplication. Simply put, fields possess mechanical properties 

like momentum and energy which must not be overlooked. From 

this point of view there is no such thing as a simple two particle 

system. However, for many systems the fields can be taken 

into account and the paradoxes can be resolved within the new

tonian framework. 

2.3 Standards and Units 

Length, time, and mass play a fundamental role in every branch 

of physics. These quantities are defined in terms of certain fun· 

damental physical standards which are agreed to by the scientific 

community. Since a particular standard generally does not have 

a convenient size for every application, a number of systems of 

units have come into use. For example, the centimeter, the ang· 

strom, and the yard are all units of length, but each is defined in 

terms of the standard meter. There are a number of systems of 

units in widespread use, the choice being chiefly a matter of cus· 

tom and convenience. This section presents a brief description 

of the current standards and summarizes the units which we shall 

encounter. 

The Fundamental Standards 

The fundamental standards play two vital roles. In the first 

place, the precision with which these standards can be defined 
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and reproduced limits the ultimate accuracy of experiments. In 

some cases the precision is almost unbelievably high-time, for 

instance, can be measured to a few parts in 1012• In addition, 

agreeing to a standard for a physical quantity simultaneously pro

vides an operational definition for that quantity. For example, 

the modern view is that time is what is measured by clocks, and 

that the properties of time can be understood only by observing 

the properties of clocks. This is not a trivial point; the rates of 

all clocks are affected by motion and by gravity (as we shall discuss 

in Chaps. 8 and 12), and unless we are willing to accept the fact 

that time itself is altered by motion and gravity, we are led into 

contradictions. 

Once a physical quantity has been defined in terms of a mea

surement procedure, we must appeal to experiment, not to pre

conceived notions, to understand its properties. To contrast this 

viewpoint with a nonoperational approach, consider, for example, 

Newton's definition of time: "Absolute, true, and mathematical 

time, of itself, and from its own nature, flows equally without rela

tion to anything external." This may be intuitively and philo

sophically appealing, but it is hard to see how such a definition 

can be applied. The idea is metaphysical and not of much use in 

physics. 

Once we have agreed on the operation underlying a particular 

physical quantity, the problem is to construct the most precise 

practical standard. Until recently, physical standards were man

made, in the sense that they consisted of particular objects to 

which all other measurements had to be referred. Thus, the 

unit length, the meter, was defined to be the distance between two 

scratches on a platinum bar. Such man-made standards have a 

number of disadvantages. Since the standard must be carefully 

preserved, actual measurements are often done with secondary 

standards, which causes a loss of accuracy. Furthermore, the 

precision of a man-made standard is intrinsically limited. In the 

case of the standard meter, precision was found to be limited by 

fuzziness in the engraved lines which defined the meter interval. 

When more accurate optical techniques for locating position were 

developed in the latter part of the nineteenth century, it was rea

lized that the standard meter bar was no longer adequate. 

Length is now defined by a natural, rather than man-made, 

standard. The meter is defined to be a given multiple of the 

wavelength of a particular spectral line. The advantage of such 

a unit is that anyone who has the required optical equipment can 

reproduce it. Also, as the instrumentation improves, the accuracy 
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of the standard will correspondingly increase. Most of the stan· 
dards of physics are now natural. 

Here is a brief account of the current status of the standards of 
length, time, and mass. 

Length The meter was intended to be one ten-millionth of the dis
tance from the equator to the pole of the earth along the Dunkirk· 
Barcelona line. This cannot be measured accurately (in fact it 
changes due to distortions of the earth), and in 1889 it was agreed 
to define the meter as the separation between two scratches in a 
platinum-iridium bar which is preserved at the International 
Bureau of Weights and Measures, Sevres, France. In 1960 the 
meter was redefined to be 1,650,763.73 wavelengths of the orange
red line of krypton 86. The accuracy of this standard is a few 
parts in 108• 

Recent advances in laser techniques provide methods which 
should allow the velocity of light to be measured to better than 1 

part in 108• It is likely that the velocity of light will replace length 
as a fundamental quantity. In this case the unit of length would 
be derived from velocity and time. 

Time Time has traditionally been measured in terms of rotation of 
the earth. Until 1956 the basic unit, the second, was defined as 
1/86,400 of the mean solar day. Unfortunately, the period of 
rotation of the earth is not very uniform. Variations of up to 
one part in 107 per day occur due to atmospheric tides and changes 
in the earth's core. The motion of the earth around the sun is 
not influenced by these perturbations, and until recently the mean 
solar year was used to define the second. Here the accuracy was 
a few parts in 109• Fortunately, time can now be measured in 

terms of a natural atomic frequency. In 1967 the second was 
defined to be the time required to execute 9,192,631,770 cycles of 
a hyperfine transition in cesium 133. This transition frequency 
can be reliably measured to a few parts in 1012, which means 
that time is by far the most accurately determined fundamental 
quantity. 

Mass Of the 1 hree fundamental units, only mass is defined in 
terms of a m<..n-made standard. Originally, the kilogram was 
defined to be the mass of 1,000 cubic centimeters of water at a 
temperature of 4 degrees Centigrade. The definition is difficult to 
apply, and in 1889 the kilogram was defined to be the mass of a 
platinum-iridium cylinder which is maintained at the International 
Bureau of Weights and Measures. Secondary standards can be 
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compared with it to an accuracy of one part in 109• Perhaps some
day we will learn how to define the kilogram in terms of a natural 
unit, such as the mass of an atom. However, at present nobody 
knows how to count reliably the large number of atoms needed 
to constitute a useful sample. Perhaps you can discover a 
method. 

Systems of Units 

Although the standards for mass, length, and time are accepted 
by the entire scientific community, there are a variety of systems 
of units which differ in the scaling factors. The most widely 
used system of units is the International System, abbreviated SI 
(for Systeme International d'Unitt�s). It is the legal system in 
most countries. The SI units are meter, kilogram, and second; 

SI replaces the former mks system. The related cgs system, 
based on the centimeter, gram, and second, is also commonly 
used. A third system, the English system of units, is used for non
scientific measurements in Britain and North America, although 
Britain is in the process of switching to the metric system. It is 
essential to know how to work problems in any system of units. 
We shall work chiefly with SI units, with occasional use of the cgs 
system and one or two lapses into the English system. 

Here is a table listing the names of units in the SI, cgs, and 
English systems. 

SI CGS ENGLISH 

Length 1 meter (m) 1 centimeter (cm) 1 foot (ft) 

Mass 1 kilogram (kg) 1 gram (g) 1 slug 

Time 1 second (s) 1 second (s) 1 second (s) 

Acceleration 1 m/s2 1 cm/s2 1 ft/s2 

Force 1 newton (N) 1 dyne 1 pound (Ib) 

= 1 kg·m/s2 = 1 g·cm/s2 = 1 slug·ft/s2 

Some useful relations between these units systems are: 

1 m = 100 cm 
1 kg = 1000 g 
1 N = 105 dyne 

1 in = -h ft "'" 2.54 cm 
1 slug :::= 14.6 kg 
1 N "'" 0.224 Ib 

The word pound sometimes refers to a unit of mass. In this con
text it stands for the mass which experiences a gravitational force 
of one pound at the surface of the earth, approximately 0.454 kg. 
We shall avoid this confusing usage. 
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2.4 Some Applications of Newton's Laws 

Newton's laws are meaningless equations until we know how to 

apply them. A number of steps are involved which, once learned, 

are so natural that the procedure becomes intuitive. Our aim in 

this section is to outline a method of analyzing physical problems 

and to illustrate it by examples. A note of reassurance lest you 

feel that matters are presented too dogmatically: There are many 

ways of attacking most problems, and the procedure we suggest 

is certainly not the only one. In fact, no cut-and·dried procedure 

can ever substitute for intelligent analytical thinking. However, 

the systematic method suggested here will be helpful in getting 

started, and we urge you to master it even if you should later 

resort to shortcuts or a different approach, 

Here are the steps: 

1. Mentally divide the systeml into smaller systems, each of which 

can be treated as a point mass. 

2. Draw a force diagram for each mass as follows: 

a. Represent the body by a point or simple symbol, and label it. 

b. Draw a force vector on the mass for each force acting on it. 

Point 2b can be tricky. Draw only forces acting on the body, 

not forces exerted by the body. The body may be attached to 

strings, pushed by other bodies, etc. We replace all these physi

cal interactions with other bodies by a system of forces; according 

to Newton's laws, only forces acting on the body influence its 

motion. 

As an example, here are two blocks at rest on a table top. 

The force diagram for A is shown at left. FI is the force exerted 

on block A by block B, and W A is the force of gravity on A, called 

the weight. 
Similarly, we can draw the force diagram for block B. W B is 

the force of gravity on B, N is the normal (perpendicular) force 

exerted by the table top on B, and F2 is the force exerted by A 

on B. There are no other physical interactions that would pro

duce a force on B. 

It is important not to confuse a force with an acceleration; draw 

only real forces. Since we are using only inertial systems for the 

present, all the forces are associated with physical interactions. 

For every force you should be able to answer the question, "What 

1 We use "system" here to mean a collection of physical objects rather than a 

coordinate system. The meaning should be clear from the context. 

i: i 
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exerts this force on the body?" (We shall see how to use so·called 

fictitious forces in Chap. 8.1) 

3. Introduce a coordinate system. The coordinate system must 

be inertial-that is, it must be fixed to an inertial frame. With 

the force diagram as a guide, write separately the component 

equations of motion for each bocy. By equation of motion we 

mean an equation of the form FIx + F2x + . . . = Max, where 

the x component of each force on the body is represente.d by a 

term on the left hand side of the equation. The algebraic sign 

of each component must be consistent with the force diagram 

and with the choice of coordinate system. 

For instance, returning to the force diagram for block A, New

ton's second law gives 

FI + WA = mAaA. 

Since FI = Flj, WA 

o = mA(aA)x 

and 

FI - WA = mA(aA)I/. 

- W Aj, we have 

The x equation of motion is trivial and normally we omit it, writing 

simply 

The equation of motion for B is 

N - F2 - W H = mEaB. 

4. If two bodies in the same system interact, the forces between 

them must be equal and opposite by Newton's third law. These 

relations should be written explicitly. 

For example, in the case of the two blocks on the tabletop, 

FI = -F2• Hence 

FI = F2• 

Note that Newton's third law never relates two forces acting on 

the same body; forces on two different bodies must be involved. 

1 The most notorious fictitious force is the centrifugal force. Long experience has 

shown that using this force before one has a really solid grasp of Newton's laws 

invariably causes confusion. Besides, it is only one of several fictitious forces 

which play a role in rotating systems. For both these reasons, we shall strictly 

avoid centrifugal forces for the present. 

\ 
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5, In many problems, bodies are constrained to move along cer· 
tain paths. A pendulum bob, for instance, moves in a circle, and 
a block sliding on a tabletop is constrained to move in a plane. 
Each constraint can be described by a kinematic�1 equation known 
as a constraint equation. Write each constraint equation. 

Sometimes the constraints are implicit in the statement of the 
problem. For the two blocks on the tabletop, there is no vertical 
acceleration, and the constraint equations are 

6. Keep track of which variables are known and which are 
unknown. The force equations and the constraint equations 
should provide enough relations to allow every unknown to be 
found. If an equation is overlooked, there will be too few equa· 
tions for the unknowns. 

Completing the problem of the two blocks on the table, we have 

FI - WA = mAaA 
N -- F2 - WB = mBaB 

FI = F2 

aA = 0 

aB = 0 

} Equations of motion 

From Newton's third law 

} Constraint equations 

All that remains is the mathematical task of solving the equations. 
We find 

FI = F2 = WA 
N = WA + WB. 

Here are a few examples which illustrate the application of 
Newton's laws. 

The main point of the first example is to help us distinguish 
between the force we apply to an object and the force it exerts on 
us. Physiologically, these forces are often confused. If you 
push a book across a table, the force you feel is not the force 
that makes the book move; it is the force the book exerts on you. 
According to Newton's third law, these two forces are always 
equal and opposite. If one force is limited, so is the other. 

Example 2.2 The Astronauts' Tug-of-war 

Two astronauts, initially at rest in free space, pull on either end of a 

rope. Astronaut Alex played football in high school and is stronger than 

astronaut Bob, whose hobby was chess. The maximum force with which 
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Alex can pull, FA, is larger than the maximum force with which Bob can 

pull, F B. Their masses are J.,f A and M B, a nd the mass of the rope, :l[ .. 

is negligible. Find their motion if each pulls on the rope as hard as he can. 

Here are the force diagrams. For clarity, we show the rope as a line. 

.. 

F' A 

Mr MB 
....--220 iV ttl? ?1111?2 Ii lill? i 1 ---+ .... t----. 

FA FB F� 

-

ar 

Note that the forces FA and F B exerted by the astronauts act on the 

rope, not on the astronauts. The forces exerted by the rope on the 

astronauts are FA' and FB'. The diagram shows the directions of 

the forces and the coordinate system we have adopted; acceleration to 

the right is positive. 

By Newton's third law, 

F� = FA 

F� = FB• 

The equation of motion for the rope is 

FB - FA = M,a,. 

1 

2 

Only motion along the line of the rope is of interest, and we omit the 

equations of motion in the remaining two directions. There are no con· 

straints, and we proceed to the solution. 

Since the mass of the rope, M" is negligible, we take AfT = 0 in 

Eq. (2). This gives F B - FA = 0 or 

The total force on the rope is FB to the right and FA to the left. These 

forces are equal in magnitude, and the total force on the rope is zero. 

In general, the total force on any body of negligible mass must be effec· 

tively zero; a finite force acting on zero mass would produce an infinite 

acceleration. 

Since F B = FA, Eq. (1) gives F� = FA = FB = F�. Hence 

F� = F�. 

The astronauts each pull with the same force. Physically, there is a 

limit to how hard Bob can grip the rope; if Alex tries to pull too hard, 
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the rope slips through Bob's fingers. The force Alex can exert is limited 

by the strength of Bob's grip. If the rope were tied to Bob, Alex could 

exert his maximum pull. 

The accelerations of the two astronauts are 

The negative sign means that aB is to the left. In many problems the 

directions of some acceleration or force components are initially unknown. 

In writing the equations of motion, any choice is valid, provided we are 

consistent with the convention assumed in the force diagram. If the 

solution yields a negative sign, the acceleration or force is opposite to 

the direction assumed. 

The next example shows that in order for a compound system 
to accelerate, there must be a net force on each part of the 
system. 

Freight Train 

Three freight cars of mass M are pulled with force F by a locomotive. 

Friction is negligible. Find the forces on each car. 

Before drawing the force diagram, it is worth thinking about the system 

as a whole. Since the cars are joined, they are constrained to have the 

same acceleration. Since the total mass is 3M, the acceleration is 

F 
a=-· 

3M 

A force diagram for the last car is shown at the left. W is the 

weight and N is the upward force exerted by the track. The vertical 

acceleration is zero, so that N = W. F 1 is the force exerted by the 

next car. We have 

FI = Ma 

= M (
3
�) 

F 

3 
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Now let us consider the middle car. The vertical forces are as before, 

and we omit them. F� is the force exerted by the last car, and F2 is the 

force exerted by the first car. The equation of motion is 

F2 - F� = Ma. 

By Newton's third law, F� = Fl = F/3. Since a = F/3M, we have 

F2 = M (
3
�) +� 

2F 
3 

The horizontal forces on the first car are F, to the right, and 

to the left. Each car experiences a total force F/3 to the right. 

Here is a slightly more general way to look at the problem. Consider 

a string of N cars, each of mass M, pulled by a force F. The accelera-

I ill] I ill II ml ....... 1 ill 1\ ill I - F '_ Wi. ."w Wi 'M .i. .i 
1 2 3 (N -I) N 

tion is a = F/(N M). To find the force F n pulling the last n cars, note 

that F .. must give the mass nM an acceleration F /(N M). Hence 

F 
Fn = nM 

NM 

The force is proportional to the number of cars pulled. 

In systems composed of several bodies, the accelerations are 

often related by constraints. The equations of constraint can 

sometimes be found by simple inspection, but the most general 

approach is to start with the coordinate geometry, as shown in the 

next example. 
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Example 2.4 Constraints 

" a. WEDGE AND BLOCK 

A block moves on a wedge which in turns moves on a horizontal table, 

as shown in the sketch. The wedge angle is 8. How are the accelera· 
�--- x tions of the block and the wedge related? 

�---X--t---I 

2 

As long as the wedge is in contact with the table, we have the trivial 

constraint that the vertical acceleration of the wedge is zero. To find 

the less obvious constraint, let X be the horizontal coordinate of the end 

of the wedge and let x and y be the horizontal and vertical coordinates of 

the block, as shown. Let h be the height of the wedge. 

From the geometry, we see that 

(x - X) = (h - y) cot 8. 

Differentiating twice with respect to time. we obtain the equation of 

constraint 

x - X = -ii cot 8. 

A few comments are in order. Note that the coordinates are inertial. 

We would have trouble using Newton's second law if we measured the 

position of the block with respect to the wedge; the wedge is accelerating 

and cannot specify an inertial system. Second, unimportant parameters, 

like the height of the wedge, disappear when we take time derivatives, 

but they can be useful in setting up the geometry. Finally, constraint 

equations are independent of applied forces. For example, even if fric· 

tion between the block and wedge affects their accelerations, Eq. (1) is 

valid as long as the bodies are in contact. 

b. MASSES AND PULLEY 

Two masses are connected by a string which passes over a pulley accel· 

erating upward at rate A, as shown. Find how the accelerations of the 

bodies are related. Assume that there is no horizontal motion. 

We shall use the coordinates shown in the drawing. The length of 

the string, l, is constant. Hence, if yp is measured to the center of the 

pulley of radius R, 

Differentiating twice with respect to time, we find the constraint condition 

o = 2iip - ii1 - th· 

Using A = iip, we have 

A = t(iil + ii2)' 

c. PULLEY SYSTEM 

2 

The pulley system shown on the opposite page is used to hoist the block. 

m�:m�:m�����0 How does the acceleration of the end of the rope compare with the 
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acceleration of the block? Using the coordinates indicated, the length of 

the rope is given by 

l = X + 7T"R + (X - h) + 7T"R + (x - h), 

where R is the radius of the pulleys. Hence 

x = -tx. 

The block accelerates half as fast as the hand, and in the opposite 

direction. 

Our examples SO far have involved linear motion only. Let us 

look at the dynamics of rotational motion. 

A particle undergoing circular motion must have a radial accel

eration. This sometimes causes confusion, since our intuitive 

idea of acceleration usually relates to change in speed rather than 

to change in direction of motion. For this reason, we start with as 

simple an example as possible. 

Block on String 1 

Mass m whirls with constant speed v at the end of a string of length B. 
Find the force on m in the absence of gravity or friction. 

The only force on m is the string force T, which acts toward the center, 

as shown in the diagram. It is natural to use polar coordinates. Note 

that according to the derivation in Sec. 1.9, the radial acceleration is 

aT = i' - riP, where () is the angular velocity. aT is positive outward. 

Since T is directed toward the origin, T = - Ti and the radial equation 

of motion is 

-T = maT 

= m(i' - r(}2). 

i' = R = 0 and () = viR. Hence aT = -R(vIR)2 = -v21R and 

mv2 
T = -· 

R 

Note that T is directed toward the origin; there is no outward force 

on m. If you whirl a pebble at the end of a string, you feel an outward 

force. However, the force you feel does not act on the pebble, it acts 

on you. This force is equal in magnitude and opposite in direction to 

the force with which you pull the pebble, assuming the string's mass to 

be negligible. 

In the following example both radial and tangential acceleration 

play a role in circular motion. 
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Block on String 2 
Mass m is whirled on the end of a string length R. The motion is in a 

vertical plane in the gravitational field of the earth. The forces on m 

are the weight W down, and the string force T tOlfl(ard the center. The 

instantaneous speed is v, and the string makes angle (J with the hori· 

zontal. Find T and the tangential acceleration at this instant. 

The lower diagram shows the forces and unit vectors rand 6. The 

radial force is - T - W sin (J, so the radial equation of motion is 

-(T + Wsin (J) = mar 

= m(r - r(}2). 

The tangential force is - W cos (J. Hence 

- W cos (J = ma9 
= m(rO + 2f8). 

Since r = R = constant, aT = -R (82) = -v2/R, and Eq. (1) gives 

mv2 T = - - TV sin (J 
R 

. 

The string can pull but not push, so that T cannot be negative. This 

requires that mv2/R :2: W sin (J. The maximum value of W sin (J occurs 

when the mass is vertically up; in this case mv2/R > tv. If this condi· 

tion is not satisfied, the mass does not follow a circular path but starts to 
fall; r is no longer zero. 

The tangential acceleration is given by Eq. (2). Since f = 0 we have 

a8 = RO 
W cos (J 

m 

The mass does not move with constant speed; it accelerates tangentially. 

On the downswing the tangential speed increases, on the upswing it 
decreases. 

The next example involves rotational motion, translational 
motion, and constraints. 

The Whirling Block 
A horizontal frictionless table has a small hole in its center. Block.1 on 

the table is connected to block B hanging beneath by a string of negligible 

mass which passes through the hole. 

Initially, B is held stationary and A. rotates at constant radius ro with 

steady angular velocity woo If B is released at t = 0, what is its accel· 

eration immediately afterward? 

The forcl! diagrams for A and B after the moment of release are shown 

in the sketches. 

j 
q, 
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The vertical forces acting on A are in balance and we need not consider 

them. The only horizontal force acting on A is the string force T. The 

forces on B are the string force T and the weight WB. 
It is natural to use polar coordinates r, e for .'t, and a single linear 

coordinate z for B, as shown in the force diagrams. As usual, the unit 

vector r is radially outward. The equations of motion are 

-T = MA<T - rlh 

o = 11[ A (TO + 2fO) 

WB - T = MBz 

Radial 

Tangential 

Vertical. 

Since the length of the string, l, is constant, we have 

T + z = l. 

1 

2 

3 

4 

Differentiating Eq. (4) twice with respect to time gives us the constraint 

equation 

T = -z. 5 

The negative sign means that if A moves inward, B falls. Combining 

Eqs. (I), (3), and (5), we find 

WB - MAri)2 
z = -------'---

MA +MB 

It is important to realize that although acceleration can change instan

taneously, velocity and position cannot. Thus immediately after B is 

released, T = TO and 0 = WOo Hence 

z(O) can be positive, negative, or zero depending on the value of the 

numerator in Eq. (6); if Wo is large enough, block B will begin to rise after 

release. 

The apparently simple problem in the next example has some 

unexpected subtleties. 

Example 2.8 The Conical Pendulum 

Mass M hangs by a massless rod of length I which rotates at constant angular 

frequency w, as shown in the drawing on the next page. The mass moves 

with steady speed in a circular path of constant radius. Find a, the angle the 

string makes with the vertical. 

We start with the force diagram. T is the string force and TV is the 

weight of the bob. (Note that there are no other forces on the bob. If 

this is not clear, you are most likely confusing an acceleration with a 
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force-a serious error.) The vertical equation of motion is 

Tcos IX - W = 0 

because y is constant and y is therefore zero. 

To find the horizontal equation of motion note that the bob is accel· 

erating in the i' direction at rate aT = -w2r. Then 

- T sin IX = - ilfrw2• 

Since r = I sin IX we have 

T sin IX = Mlw2 sin IX 

or 

Combining Eqs. (1) and (3) gives 

A1lw2 cos IX = W. 

2 

3 

4 

As we shall discuss in Sec. 2.5, W = jJfg, where M. is the mass and g 
is known as the acceleration due to gravity. We obtain 

cos IX = JL. 
Iw2 

This appears to be the desired solution. For w -> 00, cos IX -> 0 and 

ex -> 7T'/2. At high speeds the bob flies out until it is almost horizontal. 

However, at low speeds the solution does not make sense. As w -> 0, 
our solution predicts cos IX -> 00, which is nonsense since cos ex S 1. 

Something has gone wrong. Here is the trouble. 

Our solution predicts cos ex > 1 for w < Vgjl. When w = Vgll, 
cos ex = 1 and sin ex = 0; the bob simply hangs vertically. In going from 

Eq. (2) to Eq. (3) we divided both sides of Eq. (2) by sin IX and, in this case 

L-------------�w we divided by 0, which is not permissible. However, we see that we have 

cos a 

\ 
\ cos a = g/(/w2) 

\/ \ 
" 

" cos a = 1 

w 

overlooked a second possible solution, namely. sin ex = 0, T = lr, which 

is true for all values of w. The solution corresponds to the pendulum 

hanging straight down. Here is a plot of the complete solution. 

Physically, for w S V(ijz the only acceptable solution is ex = 0, 
cos ex = 1. For w > V(ijz there are two acceptable solutions: 

1. cos IX = 1 

2. cos IX = JL. 
Iw2 

Solution 1 corresponds to the bob rotating rapidly but hanging verti· 

cally. Solution 2 corresponds to the bob flying around at an angle with 

the vertical. For w > V(ijz, solution 1 is unstable-if the system is in 

that state and is slightly perturbed, it will jump outward. Can you see 

why this is so? 
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The moral of this example is that you have to be sure that the mathe
matics makes good physical sense. 

2.5 The Everyday Forces of Physics 

When a physicist sets out to design an accelerator, he uses the 

laws of mechanics and his knowledge of electric and magnetic 

forces to determine the paths that the particles will follow. Pre

dicting motion from known forces is an impor:tant part of physics 

and underlies most of its applications. Equally important, how

ever, is the converse process of deducing the physical interaction 

by observing the motion; this is how new laws are discovered. A 

classic example is Newton's deduction of the law of gravitation 

from Kepler's laws of planetary motion. The current attempt to 

understand the interactions between elementary particles from 

high energy scattering experiments provides a more contemporary 

illustration. 

Unscrambling experimental observations to find the force can be 

difficult. In a facetious mood, Eddington once said that force is 

the mathematical expression we put into the left hand side of 

Newton's second law to obtain results that agree with observed 

moti.ons. Fortunately, force has a more concrete physical reality. 

Much of our effort in the following chapters will be to learn how 

systems behave under applied forces. If every pair of particles 

in the universe had its own special interaction, the task would be 

impossible. Fortunately, nature is kinder than this. As far as 

we know, there are only four fundamentally different types of 

interactions in the universe: gravity, electromagnetic interactions, 

the so-called weak interaction, and the strong interaction. 

Gravity and the electromagnetic interactions can act over a 

long range because they decrease only as the inverse square of 

the distance. However, the gravitational force always attracts, 

whereas electrical forces can either attract or repel. I n large 

systems, electrical attraction and repulsion cancel to a high 

degree, and gravity alone is left. For this reason, gravitational 

forces dominate the cosmic scale of our universe. In contrast, 

the world immediately around us is dominated by the electrical 

forces, since they are far stronger than gravity on the atomic 

scale. Electrical forces are responsible for the structure of atoms, 

molecules, and more complex forms of matter, as well as the 

existence of light. 

The weak and strong interactions have such short ranges that 

they are important only at nuclear distances, typically 10-16 m. 
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They are negligible even at atomic distances, 10-10 m. As its 

name implies, the strong interaction is very strong, much stronger 

than the electromagnetic force at nuclear distances. It is the 

"glue" that binds the atomic nucleus, but aside from this it has 

little effect in the everyday world. The weak interaction plays a 

less dramatic role; it mediates in the creation and destruction of 

neutrinos-particles of no mass and no charge which are essential 

to our understanding of matter but which can be detected only by 

the most arduous experiments. 

Our object in the remainder of the chapter is to become familiar 

with the forces which are important in everyday mechanics. Two 

of these, the forces of gravity and electricity, are fundamental and 

cannot be explained in simpler terms. The other forces we shall 

discuss, friction, the contact force, and the viscous force, can be 

understood as the macroscopic manifestation of interatomic 

forces. 

Gravity, Weight, and the Gravitational Field 

Gravity is the most familiar of the fundamental forces. It has 

close historical ties to the development of mechanics; Newton 

discovered the law of universal gravitation in 1666, the same year 

that he formulated his laws of motion. By calculating the motion 

of two gravitating particles, he was able to derive Kepler's empiri· 

cal laws of planetary motion, (By accomplishing all this by age 

26, Newton established a tradition which still maintains-that great 

advances are often made by young physicists.) 

According to Newton's law of gravitation, two particles attract 

each other with a force directed along their line of centers. The 

magnitude of the force is proportional to the product of the masses 

and decreases as the inverse square of the distance between the 

particles. 

In verbal form the law is bulky and hard to use. However. we 

can reduce it to a simple mathematical expression. 

Consider two particles, a and b, with masses Ma and Mb, respec· 

tively, separated by distance r. Let Fb be the force exerted on 

particle b by particle a. Our verbal description of the magnitude 

of the force is summarized by 

IFbl = 

GMaMb 
r2 

G is a constant of proportionality called the graVitational constant. 
Its value is found by measuring the force between masses in a 
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known geometry. The first measurements were performed by 

Henry Cavendish in 1771 using a torsion balance. The modern 

value of G is 6.67 X 10-11 N·m2/kg2. (G is the least accurately 

known of the fundamental constants. Perhaps you can devise a 

new way to measure it more precisely.) Experimentally, G is the 

same for all materials-aluminum, lead, neutrons, or what have 

you. For this reason, the law is called the universal law of 

gravitation. 

The gravitational force between two particles is central (along 

the line of centers) and attractive. The simplest way to describe 

these properties is to use vectors. By convention, we introduce 

a vector rab from the particle exerting the force, particle a in this 

case, to the particle experiencing the force, particle b. Note that 

Irabl = 1'. Using the unit vector rill> = rab/1', we have 

F 
GM"Mb. 

b = - 2 rab· 
l' 

The negative sign indicates that the force is attractive. The force 

on a due to b is 

since rba = -rab. The forces are equal and opposite, and New· 

ton's third law is automatically satisfied. 

The gravitational force has a unique and mysterious property. 

Consider the equation of motion of particle b under the gravita

tional attraction of particle a. 

or 

The acceleration of a particle under gravity is independent of its 

mass! There is a subtle point connected with our cancelation of 

Mb, however. The "mass" (gravitational mass) in the law of gravi

tation, which measures the strength of gravitational interaction, is 

operationally distinct from the "mass" (inertial mass) which char

acterizes inertia in Newton's second law. Why gravitational mass 

is proportional to inertial mass for all matter is one of the great 

mysteries of physics. However, the proportionality has been 
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experimentally verified to very high accuracy, approximately 1 

part in 1011; we shall have more to say about this in Chap. 8. 

The Gravitational Force of a Sphere The law of gravitation applies 

only to particles. How can we find the gravitational force on a 

particle due to an extended body like the earth? Fortunately, the 

gravitational force obeys the law of superposition: the force due 

to a collection of particles is the vector sum of the forces exerted 

by the particles individually. This allows us to mentally divide 

@R '--___ 
_4

the bOdy into a cOliection Of smalielements which can be treated 

----, 
as particles. Using integral calculus, we can sum the forces from 

__ ----I. 7m all the particles. This method is applied in Note 2.1 to calculate 

the force between a particle of mass m and a uniform thin spher· 

ical shell of mass M and radius R. The result is 

...... -- ......... 
/ "-

/ \ 
I M. I \ 
\ / 

" / 
......... _-/ 

F 
-

Mm_ 
F = -G - r 

r2 

F = 0 

r> R 

r < R, 

where r is the distance from the center of the shell to the particle . 

If the particle lies outside the shell, the force is the same as if all 

the mass of the shell were concentrated at its center. 

The reason the gravitational force vanishes inside the spherical 

shell can be seen by a simple argument due to Newton. Consider 

the two small mass elements marked out by a conical surface 

with its apex at m. The amount of mass in each element is pro· 

portional to its surface area. The area increases as (distance)2. 

However, the strength of the force varies as 1/(distance)2. Thus 

the forces of the two mass elements are equal and opposite, and 

cancel. The total force on m is zero, because we can pair up all 

the elements of the shell this way. 

A uniform solid sphere can be regarded as a succession of thin 

spherical shells, and it follows that for particles outside it, a sphere 

behaves gravitationally as if its mass were concentrated at its 

center. This result also holds if the density of the sphere varies 

with radius, provided the mass distribution is spherically sym· 

metric. For example, although the earth has a dense core, the 

mass distribution is nearly spherically symmetric, so that to good 

approximation the gravitational force of the earth on a mass m at 

distance r is 

r:::::: Re, 

where Me is the mass of the earth and Re is its radius. 
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At the surface of the earth, the gravitational force is 

GM.m4 
F = - -- r  

R.2 ' 

and the acceleration due to gravity is 

F 
a = -

m 

GM. 4 

= - -- r 

R.2 
. 

83 

As we expect, the acceleration is independent of m. GM./R.2 is 
usually called g. Sometimes g is written as a vector directed down. 
toward the center of the earth. 

Numerically, Iyl is approximately 9.8 m/s2 = 980 cm/s2 "'" 32 ftjs2. 
By convention, g usually stands for the downward acceleration 

of an object measured with respect to the earth's surface. This 
differs slightly from the true gravitational acceleration because of 
the rotation of the earth, a point we shall return to in Chap. 8. 

g increases by about five parts per thousand from the equator to 
the poles. About half this variation is due to the slight flattening 
of the earth about the poles, and the remainder arises from the 
earth's rotation. Local mass concentrations also affect g; a varia
tion in g of ten parts per million is typical. 

The acceleration due to gravity decreases with altitude. We 
can estimate this effect by taking differentials of the expression 

GMe 
g(r) =-. 

r2 

We have 

dg 2GM. 
�g(r) = - �r = - -- �r 

dr r3 

2g 
- - I1r. 

r 

The fractional change in g with altitude is 

�g 2 �r - = --_. 

g r 
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At the earth's surface, r = 6 X 106 m, and g decreases by one part 

per million for an increase in altitude of 3 m. 

Weight We define the weight of a body near the earth to be the 

gravitational force exerted on it by the earth. At the surface of 

the earth the weight of a mass m is 

W = _GM.mr 
R.2 

= mg. 
The unit of weight is the newton (SI), dyne (cgs), or pound 

(English). Since g = 9.8 m/s2, the weight of 1 kg mass is 9.8 N. 

An automobile which weighs 3,200 Ib has mass 

W 3,200lb m = - = = 100 slugs. 
g 32 ft/s 2 

Our definition of weight is unambiguous. According to our 

definition, the weight of a body is not affected by its motion, 

However, weight is often used in another sense. In this sense, 

the magnitude of the weight is the magnitude of the force which 

must be exerted on a body by its surroundings to keep it at rest; 

its direction is the direction of gravitational attraction. The next 

example illustrates the difference between these two definitions. 

Turtle in an Elevator 

An amiable turtle of mass /,,[ stands in an elevator accelerating at rate a 
Find N, the force exerted on him by the floor of the elevator. 

The forces acting on the turtle are N and the weight, the true gravita· 

tional force W = 11,[ g. Taking up to be the positive direction, we have 

N - W = Ma 
N = Mg + Ma 

= M(g + a). 
This result illustrates the two senses in which weight is used. In the 

sense that weight is the gravitational force, the weight of the turtle, M g, 
is independent of the motion of the elevator. I n contrast, the weight of 

the turtle has magnitude N = M(g + a), if the magnitude of the weight 

is taken to be the magnitude of the force exerted by the elevator on the 

turtle. If the turtle were standing on a scale, the scale would indicate a 

weight N. With this definition, the turtle's weight increases when the 

elevator accelerates up. 

If the elevator accelerates down, a is negative and N is less than Mg. 
If the downward acceleration equals g, N becomes zero, and the turtle 

" 
, 
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"floats" in the elevator. The turtle is then said to be in a state of 

weightlessness. 

Although the two definitions of weight are both commonly used 

and are both acceptable, we shall generally consider weight to 

mean the true gravitational force. This is consistent with our 

resolve to refer all motion to inertial systems and helps us to keep 

the real forces on a body distinct. If the. acceleration due to 

gravity is g, the real gravitational force on a body of mass m is 

W = mg. 

Our definition of weight has one minor drawback. As we saw 

in the last example, a scale does not read mg in an accelerating 

system. As we have already pointed out, systems at rest on the 

earth's surface have a small acceleration due to the earth's rotation, 

so that the reading of a scale is not the true gravitational force on 

a mass. However, the effect is small, and we shall treat the sur

face of the earth as an inertial system for the present. 

The Gravitational Field The gravitational force on particle b due to 

particle a is 

where rob is a unit vector which points from a toward b. The ratio 

Fb/ Mb, which is independent of Mb, is called the gravitational field 

due to Ma. Denoting the field by Go., we have 

Fb 
G

o. = Mb 

In general, if the gravitational field at a point in space is G, the 

gravitational force on mass M at that point is 

F = MG. 

The dimension of gravitation field is force/mass = acceleration. 

The acceleration of mass M by gravitational field G is given by 

F = Ma 

= MG 

or 

a = G. 
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We see that the gravitational field at a point is numerically equal 

to the gravitational acceleration experienced by a body located 

there. For example, the gravitational field of the earth is g. 

For the present we can regard the gravitational field as a mathe· 

matical convenience that allows us to focus on the source of the 

gravitational attraction. However, the concept of field has a 

broader significance in physics. Fields have important physical 

properties, such as the ability to store or transmit energy and 

momentum. Until recently, the dynamical properties of the 

gravitational field were chiefly of theoretical interest, since their 

effects were too small to be observed. However, there is now 

lively experimental activity in searching for such dynamical fea· 

tures as gravitational waves and "black holes." 

The Electrostatic Force 

We mention the electrostatic force only in passing since its full 

implications are better left to a more detailed study of electricity 

and magnetism. The salient feature of the electrostatic force 

between two particles is that the force, like gravity, is an inverse 

square central force. The force depends upon a fundamental 

property of the particle called its electric charge q. There are two 

different kinds of electric charge: like charges repel, unlike 

charges attract. 

For the sake of convenience, we distinguish the two different 

kinds of charges by associating an algebraic sign with q, and for 

this reason we talk about negative and positive charges. The 

electrostatic force Pb on charge qb due to charge qa is given by 

Coulomb's law: 

k is a constant of proportionality and rab is a unit vector which 

points from a to b. If qa and qb are both negative or both posi· 

tive, the force is repulsive, but if the charges are of different sign, 

Fb is attractive. 

In the SI system, the unit of charge is the coulomb, abbreviated 

C. (The coulomb is defined in terms of electric currents and 

magnetic forces.) In this system, k is found by experiment to be 
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In analogy with the gravitational field, we can define the elec

tric field E as the electric force on a body divided by its charge. 

The electric field at r due to a charge q at the origin is 

E = k2> 
2 r. l' 

Contact Forces 

By contact forces we mean the forces which are transmitted 

between bodies by short-range atomic or molecular interactions. 

Examples include the pull of a string, the surface force of sliding 

friction, and the force of viscosity between a moving body and a 

fluid. One of the achievements of twentieth century physics is 

that these forces can now be explained in terms of the funda

mental properties of matter. However, our approach will empha

size the empirical properties of these forces and the techniques 

for dealing with them in physical problems, with only brief men

tion of their microscopic origins. 

Tension-The Force of a String We have been taking the "string" 

force for granted, having some primitive idea of this kind of force. 

The following example is intended to help put these ideas into 

sharper focus. 

Example 2.10 Block and String 3 

01111 '!lllll�'lllllIl F 
• 

aM 
_ as 

� ... :..:.! --I!IZlIl�IZ:!lZ::ZI:ZZZ:IlZ:IZ:ZI:Z:' D' __ F •• 

Consider a block of mass J1 in free space pulled by a string of mass m. 
A force F is applied to the string, as shown. What is the force that the 
string "transmits" to the block? 

The sk.etch shows the force diagrams. FI is the force of the string 
on the block, F� is the force of the block on the string, aM is the accel
eration of the block, and as is the acceleration of the string. The equa· 
tions of motion are 

FI = 11:1aM 
P - P� = mas· 

Assuming that the string is inextensible, it accelerates at the same rate 
as the block, giving the constraint equation as = aM. Furthermore, 
PI = F� by Newton's third law. Solving for the acceleration, we find 
that 

P a = ---I 
M+m 
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as we expect, and 

Fi = F� 

= � F. 

M+m 

The force on the block is less than F; the string does not transmit the 

full applied force. However, if the mass of the string is negligible com· 

pared with the block, Fi = F to good approximation. 

We can think of a string as composed of short sections inter· 

acting by contact forces. Each section pulls the sections to either 

side of it, and by Newton's third law, it is pulled by the adjacent 

sections. The magnitude of the force acting between adjacent 

sections is called tension. There is no direction associated with 

tension. In the sketch, the tension at A is F and the tension at 

B isF'. 

Although a string may be under considerable tension (for exam· 

pie a strihg on a guitar), if the tension is uniform, the net string 

force on each small section is zero and the section remains at rest 

unless external forces act on it. If there are external forces on 

the section, or if the string is accelerating, the tension generally 

varies along the string, as Examples 2.11 and 2.12 show. 

Example 2.11 Dangling Rope 

T(x) 

-I 
x 

� 
w 

A uniform rope of mass 11{ and length L hangs from the limb of a tree. 

Find the tension a distance x from the bottom. 

The force diagram for the lower section of the rope is shown in the 

sketch. The section is pulled up by a force of magnitude T(x), where 

T(x) is the tension at x. The downward force on the rope is its weight 

W = Mg(xjL). The total force on the section is zero since it is at rest. 

Hence 

Mg 
T(x) = - x. 

1_ 

At the bottom of the rope the tension is zero, while at the top the tension 

eq uals the total weight of the rope !If g. 

The next example cannot be solved by direct application of 

Newton's second law. However, by treating each small section 

of the system as a particle, and taking the limit using calculus, we 
can obtain a differential equation which leads to the solution. 

I 
I f 
! 
• 

t 

f 
! 
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The technique is so useful that it is employed time and again in 
physics. 

Whirling Rope 

A uniform rope of mass 111 and length L is pivoted at one end and whirls 

with ur,iform angular velocity w. What is the tension in the rope at dis· 

tance r from the pivot? Neglect gravity. 

Consider the small section of rope between r and r + Llr, The length 

of the section is Llr and its mass is Llm = J[ Llr/L, Because of its cir· 

cular motion, the section has a radial acceleration, Therefore, the forces 

pulling either end of the section cannot be equal, and we conclude that 

the tension must vary with r. 

The inward force on the section is T(r), the tension at r, and the out· 

ward force is T(r + Llr). Treating the section as a particle, its inward 

radial acceleration is rw2• [This point can be confusing; it is just as rea· 

sonable to take the acceleration to be (r + Llr)w2, However, we shall 

shortly take the limit Llr -+ O. and in this limit the two expressions give 

the same result.) 

The equation of motion for the section is 

T(r + Llr) - T(r) = - (Llm)rw2 

Mrw2 Llr 

L 

The problem is to find T(r), but we are not yet ready to do this. How· 

ever. by dividing the last equation by Llr and taking the limit Llr -> 0, we 

can find an exact expression for dT/dr. 

dT , T(r + Llr) - T(r ) 
- = 11m 
dr Ar�O Llr 

Mrw2 

To find the tension, we integrate. 

J1[w2 
dT = - -- rdr 

L 
f T(r) 

dT = 
_ ( r M w2 

r dr 
To )0 L 

' 

where To is the tension at r = O. 

T(r) - To = 

L 2 
or 

Mw2 
T(r) = To - -- r2. 

2L 
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To evaluate To we need one additional piece of information. Since 

the end of the rope at r = L is free, the tension there must be zero. 

We have 

T(L) = 0 = To - iMw2L. 

Hence, To = tMw2L, and the final result can be written 

211w2 
T(r) = -- (£2 - r2). 

2L 

When a pulley is used to change the direction of a rope under 

tension, there is a reaction force on the pulley. As every sailor 

knows, the force on the pulley depends on the tension and the 

angle through which the rope is deflected. Working out this prob

lem in detail provides another illustration of how calculus can be 

applied to a physical problem. 

Example 2.13 Pulleys 

A string with constant tension T is deflected through angle 200 by a 

smooth fixed pulley. What is the force on the pulley? 

Intuitively, the magnitude of the force is 2T sin 00• To prove this 

result, we shall find the force due to each element of the string and then 

add them vectorially. 

Consider the section of string between 0 and 0 + flO. The force dia

gram is drawn below, center. flF is the outward force due to the pulley 

/ T 
""*1 

I1F I1F Ii 11 0 /2 

The tension in the string is constant, but the forces T at either end of 

the element are not parallel. Since we shall shortly take the limit flO --+ 0, 
we can treat the element like a particle. For equilibrium, the total force 

is zero. We have 

flF - 2T sin 
flO = o. 
2 

For small flO, sin (flO/2) ,:::: flO/2 and 

flF = 2T
flO 

= TM. 
2 



F 

O�-r��-----------------

.� 
'3 
0-
" 
IX: 

SEC. 2.5 THE EVERYDAY FORCES OF PHYSICS 91 

Thus the element exerts an inward radial force of magnitude T t::.O on the 

pulley. 

The element at angle 0 exerts a force in the x direction of (T t::.O) cos O. 
The total force in the x direction is 'l:.T cos 0 t::.O, where the sum is over 

all elements of the string which are touching the pulley. In the limit 

t::.O -> 0, the sum becomes an integral. The total force in the x direction 

is therefore 

J
8. 

-8. 
T cos 0 dO = 2T sin 00• 

Tension and Atomic Forces The force on each element of a string 
in equilibrium is zero. Nevertheless, the string will break if the 
tension is too large. We can understand this qualitatively by 
looking at strings from the atomic viewpoint. An idealized model 
of a string is a single long chain of molecules. Suppose that force 
F is applied to molecule 1 at the end of the string. The force 
diagrams for molecules 1 and 2 are shown in the sketch below. In 

F- F' 
-0--

1 

F' F" 
-0--

2 

Fit F'" 
-0--

3 

equilibrium, F = F' and F' = F", so that F" = F. We see that 
the string "transmits" the force F. To understand how this 
comes about, we need to look at the nature of intermolecular 
forces. 

Qualitatively, the force between two molecules depends on the 
distance T between them, as shown in the drawing. The inter
molecular force is repulsive at small distances, is zero at some 
separation To, and is attractive for T > To. For large values of T 

the force falls to zero. There are no scales on our sketch, but To 

is typically a few angstroms (1 A = 10-10 m). 
When there is no applied force, the molecules must be a dis

tance To apart; otherwise the intermolecular forces would make 
the string contract or expand. As we pull on the string, the mole
cules move apart slightly, say to T = T2, where the intermolecular 
attractive force just balances the applied force so that the total 
force on each molecule is zero. If the string were stiff like a 
metal rod, we could push as well as pull. A push makes the 
molecules move slightly together, say to T = TI, where the inter
molecular repulsive force balances the applied force. The change 
in the length depends on the slope of the interatomic forc� curve 
at To. The steeper the curve, the less the stretch for a given pull. 

The attractive intermolecular force has a maximum value F mm 

as shown in the sketch. If the applied pull is greater than F max. 
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the intermolec..ular force is too weak to restore balance-the mole

cules continue to separate and the string breaks. 

For a real string or rod, the intermolecular forces act in a three 

dimensional lattice work of atoms. The breaking strength of most 

materials is considerably less than the limit set by F max. Breaks 

occur at points of weakness, or "defects," in the lattice, where 
the molecular arrangement departs from regularity. Microscopic 

metal "whiskers" seem to be nearly free from defects, and they 

exhibit breaking strengths close to the theoretical maximum. 

The Normal Force The force exerted by a surface on a body in 

contact with it can be resolved into two components, one perpen

dicular to the surface and one tangential to the surface. The 

perpendicular component is called the normal force and the tan· 

gential component is called friction. 

The origin of the normal force is similar to the origin of tension 

in a string. When we put a book on a table, the molecules of the 

book exert downward forces on the molecules of the table. The 

molecules composing the upper layers of the tabletop move down

ward until the repulsion of the molecules below balances the force 
applied by the book. From the atomic point of view, no surface 

is perfectly rigid. Although compression always occurs, it is often 
too slight to notice, and we shall neglect it and treat surfaces as 

rigid. 

The normal force on a body, generally denoted by N, has the 

following simple property: for a body resting on a surface, N is 

equal and opposite to the resultant of all other forces which act 

on the body in a direction perpendicular to the surface. For 

instance, when you stand still, the normal force exerted by the 

ground is equal to your weight. However, when you walk, the 

normal force fluctuates as you accelerate up and down. 

Friction Friction cannot be described by a simple formula, but 

macroscopic mechanics is hard to understand without some idea 

of the properties of friction. 

Friction arises when the surface of one body moves, or tries to 

move, along the surface of a second body. The magnitude of the 

force of friction varies in a complicated way with the nature of the 

surfaces and their relative velocity. In fact, the only thing we 

can always say about friction is that it opposes the motion which 

would occur in its absence. For instance, suppose that we try 

to push a book across a table. If we push gently, the book 
remams at rest; the force of friction assumes a value equal and 

opposite to the tangential force we apply. In this case, the force of 
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friction assumes whatever value is needed to keep the book at rest. 

However, the friction force cannot increase indefinitely. If we 

push hard enough, the book starts to slide. For many surfaces 

the maximum value of the friction is found to be equal to /-LN, 
where N is the normal force and /-L is the coefficient of friction. 

When a body slides across a surface, the friction force is directed 

opposite to the instantaneous velocity and has magnitude /-LN. 
Experimentally, the force of sliding friction decreases slightly when 

bodies begin to slide, but for the most part we shall neglect this 

effect. For two given surfaces the force of sliding friction is 

essentially independent of the area of contact. 

It may seem strange that friction is independent of the area of 

contact. The reason is that the actual area of contact on an 

atomic scale is a minute fraction of the total surface area. Fric

tion occurs because of the interatomic forces at these minute 

regions of atomic contact. The fraction of the geometric area in 

atomic contact is proportional to the normal force divided by the 

geometric area. If the normal force is doubled, the area of 

atomic contact is doubled and the friction force is twice as large. 

However, if the geometric area is doubled while the normal force 

remains the same, the fraction of area in atomic contact is halved 

and the actual area in atomic contact-hence the friction force

remains constant. (Nonrigid bodies, like automobile tires, are 

more complicated. A wide tire is generally better than a narrow 

one for good acceleration and braking.) 

In summary, we take the force of friction f to behave as follows: 

1. For bodies not in relative motion, 

o � f � /-LN. 

f opposes the motion that would occur in its absence. 

2. For bodies in relative motion, 

f = /-LN. 

f is directed opposite to the relative velocity. 

Block and Wedge with Friction 

A block of mass m rests on a fixed wedge of angle (). The coefficient of 
friction is /-L. (For wooden blocks, /-L is of the order of 0.2 to 0.5.) Find 
the value of () at which the block starts to slide. 

In the absence of friction, the block would slide down the plane; hence 
the friction force f P?ints up the plane. With the coordinates shown, we 
have 

mx = W sin () - f 
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and 

my = N - W cos 0 

= o. 

When sliding starts, f has its maximum value /tN, and x = O. The 
equations then give 

W sin Omax = /tN 

W cos Omax = N. 

Hence, 

tan Omax = /to 

Notice that as the wedge angle is gradually increased from zero, the fric· 

tion force grows in magnitude from zero toward its maximum value /tN, 
since before the block begins to slide we have 

f = W sin 0 

The Spinning Terror 

The Spinning Terror is an amusement park ride-a large vertical drum 

which spins so fast that everyone inside stays pinned against the wall 

when the floor drops away. What is the minimum steady angular velocity 

w which allows the floor to be dropped away safely? 

Suppose that the radius of the drum is R and the mass of the body is 

M. let /t be the coefficient of friction between the drum and M. The 
forces on AI are the weight tv, the friction force f, and the normal force 

exerted by the wall, N, as shown below. 

The radial acceleration is Rw2 toward the axis, and the radial equation 

of motion is 

By the law of static friction, 

Since we require M to be in vertical equilibrium, 

f= Mg, 

and we have 

or 

w2> -.fL. 
- uR 

"\ " 

' .......... 
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The smallest value of w that will work is 

For cloth on wood iJ. is at least 0.3, and if the drum has radius 6 ft, then 

Wmin = [32/(0.3 X 6»)! 
= 4 rad/s. The drum must make at least w/27r = 

0.6 turns per second. 

Viscosity 

A body moving through a liquid or gas is retarded by the force of 

viscosity exerted on it by the fluid. Unlike the friction force 

between dry surfaces, the viscous force has a simple velocity 

dependence; it is proportional to the velocity. At high speeds 

other forces due to turbulence occur and the total drag force can 

have a complicated velocity dependence. (Sports car designers 

use a force proportional to the square of the speed to account 

for the drag forces.) However, in many practical cases viscosity 

is the only important drag force. 

Viscosity arises because a body moving through a medium 

exerts forces which set the nearby fluid into motion. By New

ton's third law the fluid exerts a reaction force on the body. 

We can write the viscous retarding force in the form 

F. = -Cv, 

where C is a constant which depends on the fluid and the geom

etry of the body. F. is always along the line of motion, because it 

is proportional to v. The negative sign assures that F. opposes 

the motion. For objects of simple shape moving through a gas 

at low pressure, C can be calculated from first principles. We 

shall treat it as an empirical constant. 

When the only force on a body is the viscous retarding force, 

the equation of motion is 

dv 
-Cv = m-' 

dt 

What we have here is a differential equation for v. Since the 

force is along the line of motion, only the magnitude of v changesl 

1 Formally, this is proved as follows. Since v = vv. dv/dt = dv/dt v + v dv/dt. 
The equation of motion is -Cvv = m dv/dt v + mv dv /dt. Because v is a unit 
vector, dv /dt is perpendicular to V. The other terms of the equation lie in the v 
direction, so that dv /dt must be zero. The same conclusion follows more directly 

from the simple physical argument that a force directed along the line of motion 

can change the speed but cannot change the direction of motion. 
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and the vector equation reduces to the scalar equation 

dv 
-Cv = m-

dt 
or 

dv 
m 

dt 
+ Cv = O. 

The task of solving such a differential equation occurs often in 

physics. A few differential equations are so simple and occur so 

frequently that it is helpful to be thoroughly familiar with them 

and their solutions. The equation of the form m dv/dt + Cv = 0 

is one of the most common, and the following example should 

make you feel at home with it. 

Example 2.16 Free Motion in a Viscous Medium 

A body of mass m released with velocity Vo in a viscous fluid is retarded 

by a force Cv. Find the motion, supposing that no other forces act. 

The equation of motion is 

dv 
m- + Cv = 0, 

dt 

which we can rewrite in the standard form 

dv C 
- + -v = o. 
dt m 

If you are familiar with the properties of the exponential function ea" 

then you know that (d/dx)e·x = ae·x, or (d/dx)eax - aeax = O. This sug· 

gests that we use a trial solution v = eat, where a is a constant to be 

determined. Then dv/dt = ae·', and substituting this in Eq. (1) gives us 

C 
aeat + - eat = o. 

m 

This holds true at all times if a = -C/m. Hence, a solution is 

However, this cannot be the correct solution; v has the dimension of 

velocity whereas the exponential function is dimensionless. Let us try 

v = Ae-Ct/m, 

where A is a constant. Substituting this in Eq. (1) gives 

C C 
- - Ae-C'/m + - Ae-Ct/m = 0, 

m m 

; , . 
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so that the solution is acceptable. But A can be any constant, whereas 

our solution must be quite specific. To evaluate _4 we make use of the 

given initial condition. An initial condition is a specific piece of informa· 

tion about the motion at some particular time. We were given that 

v = Vo at t = O. Hence 

v(t = 0) = Aeo = Vo. 

Since eO = 1, it follows that .t1 = Vo, and the full solution is 

We solved Eq. (1) by what might be called a common sense approach

we simply guessed the answer. This particular equation can also be 

solved by formal integration after appropriate "separation of the 

variables." 

dv C 
- + -v = 0 
dt m 

dv C 
- = - -dt 
v m 

( V dv 
= 

_ ( t Q 
dt lvo v 1 0 m 

v C 
In - = - - t 

vo m 

.!:. = e(-cl",)' 
vo 

v = voe-C'I"'. 

Note the correspondence between the limits: v is the 
velocity at time t and Vo is the velocity at time O. 

Before leaving this problem, let us look at the solution in a little more 

detail. The velocity decreases exponentially in time. If we let T = m/c, 
then we have v = poe-I". T is a characteristic time for the system; it is 

the time for the velocity to drop to e-1 "'" 0.37 of its original velocity. 

The Linear Restoring Force: Hooke's Law, the Spring, 

and Simple Harmonic Motion 

In the mid-seventeenth century Robert Hooke discovered that the 

extension of a spring is proportional to the applied force, both for 

positive and negative displacements. The force F s exerted by a 

stretched spring is given by Hooke's law 

Fs = -kx, 

where k is a constant called the spring constant and x is the dis

placement of the end of the spring from its equilibrium position. 

The magnitude of F s increases linearly with displacement. The 
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negative sign indicates that F s is a restoring force; the spring 

force is always in the direction that tends to restore the spring to 

its equilibrium length. A force obeying Hooke's law is called a 

linear restoring force. 
If the spring is stretched by an applied force Fa, then x > 0 and 

F s is negative, directed toward the origin. 

If the spring is compressed by Fa, then x < 0 and Fs is positive. 

Hooke's law is essentially empirical and breaks down for large 

displacements. Taking a jaundiced view of affairs, we could 

rephrase Hooke's law as "extension is proportional to force, as 

long as it is." However, this misses the important point. For 

sufficiently small displacements Hooke's law is remarkably accu· 

rate, not only for springs but also for practically every system near 

equilibrium. Consequently, the motion of a system under a 

linear restoring force occurs persistently throughout physics. 

By looking at the intermolecular force curve on page 91, we can 

see why the linear restoring force is so common. If the force 

curve is linear in the neighborhood of the equilibrium point, then 

the force is proportional to the displacement from equilibrium. 

This is almost always the case; a sufficiently short segment of a 
curve is generally linear to good approximation. Only in patho· 

logical cases does the force curve have no linear component. It 

is also apparent that the linear approximation necessarily breaks 

down for large displacements. We shall return to these consider· 

ations in Chap. 4. 
In the following example we investigate simple harmonic motion 

-the motion of a mass under a linear restoring force. We shall 

again encounter a differential equation. Like the equation for 

viscous drag, the differential equation for simple harmonic motion 

occurs frequently and is well worth learning to recognize early in 

the game. Fortunately, the solution has a simple form. 

Spring and Block-The Equation for Simple Harmonic Motion 

A block of mass M is attached to one end of a horizontal spring, the other 

end of which is fixed. The block rests on a horizontal frictionless surface. 

What motion is possible for the block? 

Since the spring force is the only horizontal force acting on the block, 

the equation of motion is 

Mi = -kx 
or 

k i + 
M

X = 0, 
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where x is measured from the equilibrium position. It is convenient to 

write 

The equation takes the standard form 

You should learn to recognize the mathematical form of this equation, 

since it arises in many different physical contexts. It is called the equa· 

tion of simple harmonic motion (SHM). Without going into the theory of 

differential eq uations, we simply write down the solution 

x = A sin wt + B cos wt. 

w is known as the angular frequency of the motion. By substitution it is 

easy to show that this solution satisfies the original equation for arbitrary 

values of r1 and B. The theory of differential equations tells us that 

there are no further nontrivial solutions. The main point here, however, 

is to become familiar with the mathematical form of the SHM differential 

equation and the form of its solution. We shall derive the solution in 

Example 4.2, but this purely mathematical process does not concern us 

now. 

As we show in the following example, the constants A and B 
are to be determined from the initial conditions. We shall show 

that A and B can be found by knowing the position and velocity 

at some particular time. 

Example 2.18 The Spring Gun-An Example Illustrating Initial Conditions 

-
x 

The piston of a spring gun has mass m and is attached to one end of a 

spring with spring constant k. The projectile is a marble of mass .�[. 

The piston and marble are pulled back a distance L from the equilibrium 

position and suddenly released. What is the speed of the marble as it 

loses contact with the piston? Neglect friction. 

Let the x axis be along the direction of motion with the origin at the 

unstretched position. The position of the piston is given by 

x(t) = A sin wt + B cos wt, 1 

where w = Vk/(m + M). This equation holds up to the time the 

marble and piston lose contact. The velocity is 

v(t) = ;t(t) 

= wA cos wt - wB sin wt. 2 
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There are two arbitrary constants in the solution, A and B, and to 

evaluate them we need two pieces of information. We know that at 

t = 0, when the spring is released, the position and velocity are given by 

x(O) = -L 

v(O) = O. 

Using these values in Eqs. (1) and (2), we find 

-L = x(O)' 

= A sin (0) + B cos (0) 

= B, 

and 

o = v(O) 

= wA cos (0) - wB sin (0) 

= wA. 

Hence 

B = -L 

A = O. 

Then, from the time of release until the time when the marble leaves the 

piston, the motion is described by the equations 

x(t) = -L cos wt 

v(t) = wL sin wt. 4 

When do the marble and piston lose contact? The piston can only 

push, not pull, on the marble, and when the piston begins to slow down, 

contact is lost and the marble moves on at a constant velocity. From 

Eq. (4), we see that the time tm at which the velocity reaches a maximum 

is given by 

71" 

wtm = -. 

2 

Substituting this in Eq. (3), we find 

71" 

x(tm) = -L cos-
2 

= O. 

The marble loses contact as the spring passes its equilibrium point, as 

we expect, since the spring force retards the piston for x > O. 



. ' 

.� \ 

Note 2.1 

m 

-I 

m 

\"...... r' 
\ \ .... 
\ \ .... 
\ � r .... , 

\\� 
I I \ 

_l�i..... m 

: IF ! 
1/ 
/ / / 
1/ // 

'/ / 
'1// 

NOTE 2.1 THE GRAVITATIONAL ATTRACTION OF A SPHERICAL SHELL 101 

From Eq. (4), the final speed of the marble is 

Vmalt = v(tm) 

= wL sin � 
2 

= 

�m:ML. 

For the highest speeds, k and L should be large and m + M should be 

small. 

The Gravitational Attraction of a Spherical Shell 

I n this note we calculate the gravitational force between a uniform thin 

spherical shell of mass M and a particle of mass m located a distance r 
from its center. We shall show that the magnitude of the force is 

GMm/r2 if the particle is outside the shell and zero if the particle is 

inside. 

To attack the problem, we divide the shell into narrow rings and add 

their forces by using integral calculus. Let R be the radius of the shell 

and t its thickness, t «R. The ring at angle 0, which subtends angle 

dO, has circumference 27rR sin 0, width R dO, and thickness t. Its 

volume is 

dV = 27rR2t sin 0 dO 

and its mass is 

p dV = 27rR2tp sin 0 dO 
M 

= - sin OdO 
2 ' 

where p = M /(47rR2t) is the density of the shell. 

Each part of the ring is the same distance r' from m. The force on 

m due to a small section of the ring points toward that section. By 

symmetry, the transverse force components for the whole ring add vec· 

torially to zero. Since the angle a between the force vector and the line 

of centers is the same for all sections of the ring, the force components 

along the line of centers add to give 

dF GmpdV 
= cos a 

r'2 

for the whole ring . 
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The force due to the entire shell is 

F = J dF 

J GmpdV ---'--- cos a. 

r'2 

The problem now is to express all the quantities in the integrand in 

terms of one variable, say the polar angle O. From the sketch, cos a = 

(r - R cos O)/r'. and r' = Vr2 + R2 - 2rR cos O. Since 

�::±==I=:::::;::::='==� m p dV = M sin OdO/2, 

we have 

F = 
(GMm) r" (r - R cos 0) sin 0 dO 

2 Jo (r2 + R2 - 2rR cos O)J 

A convenient substitution for evaluating this integral is u = r - R cos 0, 
du = R sin 0 dO. Hence 

F 
_ (GMm) f,T+R u du . -

� T-R (R2 - r2 + 2ru)1 

This integral is listed in standard tables. The result is 

F = --- VR2 - r2 + 2ru - �===== GMm 1 ( r2 - R2 ) !T+R 
2R 2r2 VR2 - r2 + 2ru r-R 

= 
G_" _ M_

m [ (r + R) _ (r _ R) _ (r2 _ R2) (_1 __ _ 1 _ )] 
4Rr2 r + R r - R 

GMm 
r > R. 

For r > R, the shell acts gravitationally as though all its mass were con· 

centrated at its center. 

There is one subtlety in our evaluation of the integral. The term 

Vr2 + R2 - 2rR is inherently positive, and we must take 

Vr2 + R2 - 2rR = r - R, 

since r > R. If the particle is inside the shell, the magnitude of the 

force is still given by Eq. (1). However, in this case r < R, and we must 

take Vr2 + R2 - 2rR = R - r in the evaluation. We find 

F = 
GMm [ (R + r) _ (R _ r) _ (r2 _ R2) (_1 

_ _ _ 1_)] 
4Rr2 R + r R - r 

= 0 r < R. 

A solid sphere can be thought of as a succession of spherical shells. 

It is not hard to extend our results to this case when the density of the 

sphere p(r') is a function only of radial distance r' from the center of 
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the sphere. The mass of a spherical shell of radius r' and thickness 

dr' is p(r')47rr'2 dr'. The force it exerts on m is 

GM 
m dF = -- p(r')47rr'2 dr'. 

L----+�_r-----e r2 

Since the force exerted by every shell is directed toward the center of the 

sphere, the total force is 

Gm h R 
F = - p(r')47rr'2 dr'. 

r2 0 

However, the integral is simply the total mass of the sphere, and we find 

that for r > R, the force between m and the sphere is identical to the 

force between two particles separated a distance r. 

Problems 2.1 A 5·kg mass moves under the influence of a force F = (4t2i - 3tj) N, 

where t is the time in seconds (1 N = 1 newton). It starts from the 

origin at t = O. Find: (a) its velocity; (b) its position; and (c) r X v, 

for any later time. 

Ans. clue. (c) If t = 1 s, r X v = 6.7 X 1O-3k m2/s 

2.2 The two blocks shown in the sketch are connected by a string of 

negligible mass. If the system is released from rest, find how far block 

M 1 slides in time t. Neglect friction. 

Ans. clue. If M1 = M2, X = gt2/4 

2.3 Two blocks are in contact on a horizontal table. A horizontal force 

is applied to one of the blocks, as shown in the drawing. If m1 = 2 kg, 

m2 = 1 kg, and F = 3 N, find the force of contact between the two blocks, 

2.4 Two particles of mass m and M undergo uniform circular motion 

about each other at a separation R under the influence of an attractive 

force F. The angular velocity is w radians per second. Show that 

R = (F /w2)(1/m + l/M). 

2.5 The Atwood's machine shown in the drawing has a pulley of negligible 

mass. Find the tension in the rope and the acceleration of M. 
Ans. clue. If ill = 2m, T = %Mg, A = -kg 

2.6 In a concrete mixer, cement, gravel, and water are mixed by tumbling 

action in a slowly rotating drum. If the drum spins too fast the ingre

dients stick to the drum wall instead of mixing. 

Assume that the drum of a mixer has radius R and that it is mounted 

with its axle horizontal. What is the fastest the drum can rotate without 

the ingredients sticking to the wall all the time? Assume g = 32 ft/s2• 

Ans. clue. If R = 2 ft, Wmax = 4 rad/s � 38 rotations per minute 
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2.7 A block of mass Ml rests on a block of mass M2 which lies on a 

frictionless table. The coefficient of friction between the blocks is IJ.. 
What is the maximum horizontal force which can be applied to the blocks 
for them to accelerate without slipping on one another if the force is 
applied to (a) block 1 and (b) block 2? 

� 5 kg 

0. 

2.8 A 4-kg block rests on top of a 5-kg block, which rests on a frictionless 
table. The coefficient of friction between the two blocks is such that the 
blocks start to slip when the horizontal force F applied to the lower block 
is 27 N. Suppose that a horizontal force is now applied only to the upper 
block. What is its maximum value for the blocks to slide without slipping 
relative to each other? 

m 

Ans. F = 21.6 N 

2.9 A particle of mass m slides without friction on the inside of a cone. 
The axis of the cone is vertical, and gravity is directed downward. The 
apex half-angle of the cone is e, as shown. 

The path of the particle happens to be a circle in a horizontal plane. 
The speed of the particle is Va. 

Draw a force diagram and find the radius of the circular path in terms 
of Va, g, and e. 

2.10 Find the radius of the orbit of a synchronous satellite which circles 
the earth. (A synchronous satellite goes around the earth once every 
24 h, so that its position appears stationary with respect to a ground sta
tion.) The simplest way to find the answer and give your results is by 
expressing all distances in terms of the earth's radius. 

Ans. 6.6R. 

2.11 A mass m is connected to a vertical revolving axle by two strings of 
length l, each making an angle of 45° with the axle, as shown_ Both the 
axle and mass are revolving with angular velocity w. Gravity is directed 
downward. 

a. Draw a clear force diagram for m. 

b. Find the tension in the upper string, Tup, and lower string, Tlow' 
Ans. clue. If lw2 = V2 g, Tup = V2 mg 

2.12 If you have courage and a tight grip, you can yank a tablecloth out 
from under the dishes on a table. What is the longest time in which 
the cloth can be pulled out so that a glass 6 in from the edge comes to 
rest before falling off the table? Assume that the coefficient of friction 
of the glass sliding on the tablecloth or sliding on the tabletop is 0.5. 
(For the trick to be effective the cloth should be pulled out so rapidly 
that the glass does not move appreciably.) 

2.13 Masses Ml and lt12 are connected to a system of strings and pulleys 
as shown. The strings are massless and inextensible, and the pulleys 
are massless and frictionless. Find the acceleration of MI' 

��!?'m.��!?'m.�!?'m.�?J0 Ans. clue. If M I = !If 2, XI = g/5 
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2.14 Two masses, A and B, lie on a frictionless table (see below left). 

They are attached to either end of a light rope of length I which passes 

around a pulley of negligible mass. The pulley is attached to a rope 

connected to a hanging mass, C. Find the acceleration of each mass. 

(You ca n check whether or not your answer is reasonable by considering 

special cases-for instance, the cases "'[ A = 0, or A[ A = lo![ B = M c.) 

2.15 The system on the right above uses massless pulleys and rope. 

The coefficient of friction between the masses and horizontal surfaces 

is J.I.. Assume that ;111 and Jl[ 2 are sliding. Gravity is directed downward 

a. Draw force diagrams, and show all relevant coordinates. 

b. How are the accelerations related? 

c. Find the tension in the rope, T. 
Ans. T = (J.I. + 1)0/[2/ 1I! 3 + 1/(2M 1) + 1/(2A12)] 

-.....>o.,::--_A 2.16 A 45° wedge is pushed along a table with constant acceleration "·t. 
A block of mass m slides without friction on the wedge. Find its acceler· 

w.:!i�:m:�:m:���������� ation. (Gravity is directed down.) 

a_ 
(J 

Ans. clue. If A = 3g, Y = 0 

2.17 A block rests on a wedge inclined at angle e. The coefficient of 

friction between the block and plane is J.I.. 

a. Find the maximum value of e for the block to remain motionless on 

the wedge when the wedge is fixed in position. 

Ans. tan e = }J. 

b. The wedge is given horizontal acceleration a, as shown. Assuming 

that tan e < p" find the minimum acceleration for the block to remain 

on the wedge without sliding. 

Ans. clue. If e = 11'/4, amin = g(l - J.I.)/(l + p,) 

����w'�w'??Jw'������ c. Repeat part b, but find the maximum value of the acceleration. 

Ans. clue. If e = 11'/4, ama" = g(l + p,)/(1 - }J.) 
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2.18 A painter of mass M stands on a platform of mass m and pulls 

himself up by two ropes which hang over pulleys, as shown. He pulls 

each rope with force F and accelerates upward with a uniform accelera· 

tion a. Find a-neglecting the fact that no one could do this for long. 

Ans. clue. If M = m and F = Mg, a = g 

F 

2.19 A "Pedagogical Machine" is illustrated in the sketch above. All 

surfaces are frictionless. What force F must be applied to M 1 to keep 

,1.£3 from rising or falling? 

Ans. clue. For equal masses, F = 3Mg 

2.20 Consider the "Pedagogical Machine" of the last problem in the 

case where F is zero. Find the acceleration of 111). 
Ans. a) = -M2M3g/(f11)M2 + M)11[3 + 2ilf2M3 + M32) 

2.21 A uniform rope of mass m and length I is attached to a block of 

mass M. The rope is pulled with force F. Find the tension at distance 

x from the end of the rope. Neglect gravity. 

2.22 A uniform rope of weight lV hangs between two trees. The ends 

of the rope are the same height, and they each make angle () with the 

trees. Find 

a. The tension at either end of the rope 

b. The tension in the middle of the rope 

Ans. clue. If () = 45°, Tend = Ir/V2, T middle = Tr/2 
2.23 A piece of string of length l and mass 11! is fastened into a circular 

loop and set spinning about the center of a circle with uniform angular 

velocity w. Find the tension in the string. Suggestion: Draw a force 

diagram for a small piece of the loop subtending a small angle, t1(}. 
Ans. T = M w21/(21l-)2 

2.24 A device called a capstan is used aboard ships in order to control 

a rope which is under great tension. The rope is wrapped around a 

fixed drum, usually for several turns (the drawing shows about three· 

fourths turn). The load on the rope pulls it with a force T A, a nd the 

sailor holds it with a much smaller force TH. Can you show that TH = 

TAe-1'9, where !J. is the coefficient of friction and () is the total a ngle sub· 

tended by the rope on the drum? 
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2.25 Find the shortest possible period of revolution of two identical grav· 

itating solid spheres which are in circular orbit in free space about a 

point midway between them. (You can imagine the spheres fabricated 

from any material obtainable by man.) 

2.26 The gravitational force on a body located at dista nce R from the 

center of a uniform spherical mass is due solely to the mass lying at 

distance r S R, measured from the center of the sphere. This mass 

exerts a force as if it were a point mass at the origin. 

Use the above result to show that if you drill a hole through the earth 

and then fall in, you will execute simple harmonic motion about the 

earth's center. Find the time it takes you to return to your point of 

departure and show that this is the time needed for a satellite to circle 

the earth in a low orbit with r""" Re. In deriving this result, you need 

to treat the earth as a uniformly dense sphere, and you must neglect all 

friction and any effects due to the earth's rotation. 

2.27 As a variation of the last problem, show that you will also execute 

simple harmonic motion with the same period even if the straight hole 

passes far from the earth's center. 

2.28 An automobile enters a turn whose radius is R. The road is banked 

at angle (J, and the coefficient of friction between wheels and road is J.L. 
Find the maximum and minimum speeds for the car to stay on the road 

without skidding sideways. 

Ans. clue. If J.L = 1 and (J = 71"/4, all speeds are possible 

2.29 A car is driven on a large revolving platform which rotates with con

stant angular speed w. At t = 0 a driver leaves-the origin and follows 

a line painted radially outward on the platform with constant speed Vo. 

The total weight of the car is W, and the coefficient of friction between 

the car and stage is J.L. 

a. Find the acceleration of the car as a function of time using polar 

coordinates. Draw a clear vector diagram showing the components of 

acceleration at some time t > O. 
b. Find the time at which the car just starts to skid. 

c. Find the direction of the friction force with respect to the instan· 

ta neous position vector r just before the car starts to skid. Show your 

result on a clear diagram. 

2.30 A disk rotates with constant angular velocity w, as shown. Two 

masses, mA and mB, slide without friction in a groove passing through 

the center of the disk. They are connected by a light string of length I, 
and are initially held in position by a catch, with mass mA at distance T A 

from the center. Neglect gravity. At t = 0 the catch is removed and 

the masses are free to slide. 

Find i' A immediately after the catch is removed in terms of mA, ma, I, 
TA, and w. 
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2.31 Find the frequency of oscillation of mass m suspended by two 

springs having constants k. and k2' in each of the configurations shown. 

Ans. clue. If k. = k2 = k, Wa = Vk/2m, Wb = V2k/m 

2.32 A wheel of radius R rolls along the ground with velocity V. A 

pebble is carefully released on top of the wheel so that it is instanta

neously at rest on the wheel. 

a. Show that the pebble will immediately fly off the wheel if V > 

VRg. 
b. Show that in the case where V < vag, and the coefficient of 

friction is p. = 1, the pebble starts to slide when it has rotated through 

an angle given by 8 = arccos [(I/V2)(V2/Rg)! - 7r/4. 

2.33 A particle of mass m is free to slide on a thin rod. The rod rotates 

in a plane about one end at constant angular velocity w. Show that the 

motion is given by r = Ae-'Yt + Be+'Yt, where 'Y is a constant which you 

must find and A and B are arbitrary constants. Neglect gravity. 

Show that for a particular choice of initial conditions [that is, r(t = 0) 

and v(t = 0)], it is possible to obtain a solution such that r decreases 

continually in time, but that for any other choice r will eventually increase. 

(Exclude cases where the bead hits the origin.) 

2.34. A mass m whirls around on a string which passes through a ring, 

as shown. Neglect gravity. Initially the mass is distance ro from the 

center and is revolving at angular velocity Woo The string is pulled with 

constant velocity V starting at t = 0 so that the radial distance to the 

mass decreases. Draw a force diagram and obtain a differential equa

tion for w. This equation is quite simple and can be solved either by 

inspection or by formal integration. Find 

a. w(t). 
Ans. clue. For Vt = ro/2, W = 4wo 

b. The force needed to pull the string. 

2.35 This problem involves solving a simple differential equation. 

A block of mass m slides on a frictionless table. It is constrained to 

move inside a ring of radius l which is fixed to the table. At t = 0, the 

block is moving along the inside of the ring (Le., in the tangential direction) 

with velocity Vo. The coefficient of friction between the block and the 

ring is p.. 

a. Find the velocity of the block at later times. 

Ans. vo/[I + (p.vot/l») 

b. Find the position of the block at later times. 

2.36 This problem involves a simple differential equation. You should 

be able to integrate it after a little "playing around." 

A particle of mass m moving along a straight line is acted on by a 

retarding force (one always directed against the motion) F = be"·, where 

i 
t 
, 
f 

i 
I' 

I 
f 
r; 

f 
�. 
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b and a are constants and v is the velocity. At t = 0 it is moving with 

velocity Vo. Find the velocity at later times. 

Ans. v(t) = (l/a) In [l/(abt/m + e-av,») 

2.37 The Eureka Hovercraft Corporation wanted to hold hovercraft races 

as an advertising stunt. The hovercraft supports itself by blowing air 

downward, and has a big fixed propeller on the top deck for forward 

propulsion. Unfortunately, it has no steering equipment, so that the 

pilots fou nd that ma king high speed turns was very' difficult. The compa ny 

decided to overcome this problem by designing a bowl shaped track in 

which the hovercraft, once up to speed, would coast along in a circular 

path with no need to steer. They hired an engineer to design and build 

the track, and when he finished, he hastily left the country. When the 

company held their first race, they found to their dismay that the craft 

took exactly the same time T to circle the track, no matter what its speed. 

Find the equation for the cross section of the bowl in terms of T. 
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3.1 Introduction 

In the last chapter we made a gross simplification by treating 

nature as if it were composed of point particles rather than real, 

extended bodies. Sometimes this simplification is justified-as in 

the study of planetary motion, where the size of the planets is of 

little consequence compared with the vast distances which char

acterize our solar system, or in the case of elementary particles 

moving through an accelerator, where the size of the particles, 

about 10-15 m, is minute compared with the size of the machine. 

However, these cases are unusual. Much of the time we deal 

with large bodies which may have elaborate structure. For 

instance, consider the landing of a spacecraft on the moon. 

Even if we could calculate the gravitational field of such an irreg

ular and inhomogeneous body as the moon, the spacecraft itself 

is certainly not a point particle--it has spiderlike legs, gawky 

antennas, and a lumpy body_ 

Furthermore, the methods of the last chapter fail us when we 

try to analyze systems such as rockets in which there is a flow of 

mass. Rockets accelerate forward by ejecting mass backward; it 

is hard to see how to apply F = Ma to such a system. 

In this chapter we shall generalize the laws of motion to over

come these difficulties. We begin by restating Newton's second 

law in a slightly modified form. In Chap. 2 we wrote the law in 

the familiar form 

F = Ma. 
:s.l 

This is not quite the way Newton wrote it. He chose to write 

d 
F = 

dt 
My. 3.2 

For a particle in newtonian mechanics, M is a constant and 

(d/dt)(My) = M(dy/dt) = Ma, as before. The quantity Mv, 

which plays a prominent role in mechanics, is called momentum. 

Momentum is the product of a vector y and a scalar M. Denoting 

momentum by p, Newton's second law becomes 

dp 
F =_. 

dt 
3.3 

This form is preferable to F = Ma because it is readily generalized 

to complex systems, as we shall soon see, and because momentum 

{ 
t 
1 
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turns out to be more fundamental than mass or velocity 
separately. 

3.2 Dynamics of a System of Particles 

Consider a system of interacting particles. One example of such 
a system is the sun and planets, which are so far apart compared 
with their diameters that they can be treated as simple particles 
to good approximation. All particles in the solar system interact 
via gravitational attraction; the chief interaction is with the sun, 
although the interaction of the planets with each other also influ
ences their motion. In addition, the entire solar system is 
attracted by far off matter. 

At the other extreme, the system could be a billiard ball resting 
on a table. Here the particles are atoms (disregarding for now 
the fact that atoms are not point particles but are themselves 
composed of smaller particles) and the interactions are primarily 
interatomic electric forces. The external forces on the billiard 
ball include the gravitational force of the earth and the contact 
force of the tabletop. 

We shall now prove some simple properties of physical systems. 
We are free to choose the boundaries of the system as we please, 
but once the choice is made, we must be consistent about which 
particles are included in the system and which are not. We 
suppose that the particles in the system interact with particles 
outside the system as well as with each other. To make the argu
ment general, consider a system of N interacting particles with 
masses mit m2, ma, . . .  ,mN. The position of the jth particle 
is rj, the force on it is fj, and its momentum is pj = m;i"i' The 
equation of motion for the jth particle is 

f = 
dpi. 

) 
dt 

The force on particle j can be split into two terms: 

3.4 

3.5 

Here f/nt, the internal force on particle j, is the force due to all 
other particles in the system, and fret, the external force on par
ticle j, is the force due to sources outside the system. The equa· 
tion of motion becomes 

. f 
dPi f.tnt + .ext = _. 

1 1 
dt 

3.6 
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Now let us focus on the system as a whole by the following t 
stratagem: add all the equations of motion of all the particles in 
the system. 

dpl 
=-

dt 

dp; 
=-

dt 

The result of adding these equations can be written 

° 

L 
dp; �f.mt + �f·.xt = -. 

1 1 dt 

The summations extend over all particles, j = 1, . . . , N. 

3.7 

3.8 

The second term, �frt, is the sum of all external forces acting 
on all the particles. It is the total external force acting on the 
system, F ext. 

The first term in Eq. (3.8), �f;nt, is the sum of all internal forces 
acting on all the particles. According to Newton's third law, the 
forces between any two particles are equal and opposite so that 
their sum is zero. It follows that the sum of all the forces between 
all the particles is also zero; the internal forces cancel in pairs. 
Hence 

Equation (3.8) then simplifies to 

\' dp; 
Fext = 

Lt dt° 
3.9 

The right hand side can be written �(dpj/dt) = (d/dt)�pj, since 
the derivative of a sum is the sum of the derivatives. �pj is the 
total momentum of the system, which we designate by P. 

P == �pj. 3.10 

i 
� 

. i 
< � 
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With this substitution, Eq. (3.9) becomes 

3.11 

In words, the total external force applied to a system equals 

the rate of change of the system's momentum. This is true irre

spective of the details of the interaction; F ext could be a single 

force acting on a single particle, or it could be the resultant of 

many tiny interactions involving each particle of the system. 

Example 3.1 The Bola 

The bola is a weapon used by gauchos for entangling animals. It con

sists of three balls of stone or iron connected by thongs. The gaucho 

whirls the bola in the air and hurls it at the animal. What can we say 

about its motion? 

, 
, 
" Co) 

...... _--"":::..- --- .. -

Consider a bola with masses mb m2, and ma. The balls are pulled by 

the binding thong and by gravity. (We neglect air resistance.) Since 

the constraining forces depend on the instantaneous positions of all 

three balis, it is a real problem even to write the equation of motion of 

one ball. However, the total momentum obeys the simple equation 

or 

dP - =Mg 
dt 

' 

where M is the total mass. This equation represents an important first 

step in finding the detailed motion. The equation is identical to that 

of a single particle of mass l'o1 with momentum P. This is a familiar fact 
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to the gaucho who forgets that he has a complicated system when he 

hurls the bola; he instinctively aims it like a single mass. 

Center of Mass 

According to Eq. (3.11), 

dP 
F = -, 

dt 
3.12 

where we have dropped the subscript ext with the understanding 

that F stands for the external force. This result is identical to 

the equation of motion of a single particle, although in fact it 

refers to a system of particles. It is tempting to push the analogy 

between Eq. (3.12) and single particle motion even further by 

writing 

F = Mit, 3.13 

where M is the total mass of the system and R is a vector yet to 

be defined. Since P = �mjrj, Eq. (3.12) and (3.13) give 

Mft = 

dP 
= �m.r. 

dt 1 l' 

which is true if 

1 
R = 

M 
�mjrj. 3.14 

R is a vector from the origin to the point called the center of 

mass. The system behaves as if all the mass is concentrated at 

the center of mass and all the external forces act at that point. 

We are often interested in the motion of comparatively rigid 

bodies like baseballs or automobiles. Such a body is merely a 

system of particles which are fixed relative to each other by strong 

internal forces; Eq. (3.13) shows that with respect to external 

forces, the body behaves as if it were a point particle. In Chap. 

2, we casually treated every body as if it were a particle; we see 

now that this is justified provided that we focus attention on the 

center of mass. 

You may wonder whether this description of center of mass 

motion isn't a gross oversimplification-experience tells us that 

an extended body like a plank behaves differently from a compact 

body like a rock, even if the masses are the same and we apply 

. �. 
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the same force. We are indeed oversimplifying. The relation 

F = Mit describes only the translation of the body (the motion 

of its center of mass); it does not describe the body's orientation 

in space. In Chaps. 6 and 7 we shall investigate the rotation of 

extended bodies, and it will turn out that the rotational motion 

of a body depends both on its shape and the point where the 

forces are applied. Nevertheless, as far as translation of the 

center of mass is concerned, F = MR tells the whole story. 

This result is true for any system of p(lrticles, not just for those 

fixed in rigid objects, as long as the forces between the particles 

obey Newton's third law. It is immatE1rial whether or not the 

particles move relative to each other and whether or not there 

happens to be any matter at the center of mass. 

Example 3.2 Drum Major's Baton 

A drum major's baton consists of two masses ml and m2 separated by a 

thin rod of length l. The baton is thrown into the air. The problem is 

to find the baton's center of mass and the equation of motion for the 

center of mass. 

Let the position vectors of ml and m2 be rl and r2. The position vector 

of the center of mass, measured from the same origin, is 

R 
= mlrl + m2r2, 

mJ +m2 
1 

where we have neglected the mass of the thin rod. The center of mass 

lies on the line joining ml and m2. To show this, suppose first that the 

tip of R does not lie on the line, and consider the vectors r�, r� from the 

tip of R to mJ and m2. From the sketch we see that 

r� = rl - R 

r; = r2 - R. 

Using Eq. (1) gives 

, mlfl m2f2 r1 = fJ - --=--'--
ml + m2 ml + m2 



118 MOMENTUM 

r� and r� are proportional to r. - r2, the vector from ml to m2. Hence 

r� and r� lie along the line joining ml and m2, as shown. Furthermore, 

I m2 
I I Tl = r. - r2 

ml +m2 
m2 

l 
ml + m2 

and 

=-�l. 
mJ +m2 

Assuming that friction is negligible, the external force on the baton is 

F = mIg + m2g. 

The eq uation of motion of the center of mass is 

(mJ + m2)R = (ml + m2)g 
or 

R = g. 
The center of mass follows the parabolic trajectory of a single mass in a 

uniform gravitational field. With the methods developed in Chap. 6, we 

shall be able to find the motion of ml and m2 about the center of mass, 

completing the solution to the problem. 

Although it is a simple matter to find the center of mass of a 

system of particles, the procedure for locating the center of mass 

of an extended body is not so apparent. However, it is a straight· 

forward task with the help of calculus. We proceed by dividing 

the body into N mass elements. If rj is the position of the jth 

element, and mj is its mass, then 

1 
N 

R = 

M 
l mjrj. 

j=1 

The result is not rigorous, since the mass elements are not true 

particles. However, in the limit where N approaches infinity, the 

size of each element approaches zero and the approximation 

becomes exact. 

1 
N 

R = lim 
M 

l mjrj. 
N�oO j=1 

This limiting process defines an integral. Formally 

lim f mjrj = J r dm, 
N�oO j=1 
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where dm is a differential mass element. Then 

R = -� J r dm 3 15 
AI 

. . 

To visualize this integral, think of dm as the mass in an element 

of volume dV located at position r. If the mass density at the 

elem ent 'is p, then dm = p dV and 

R = � J rp dV. 

This integral is called a volume integral. Although it is important 

to know how to find the center of mass of rigid bodies, we shall 

only be concerned with a few simple cases here, as illustrated by 

the following two examples. Further examples are given in Note 

3.1 at the end of the chapter. 

Example 3.3 Center of Mass of a Nonuniform Rod 

A rod of length L has a nonuniform density. A, the mass per unit length 

of the rod, varies as A = Ao(81 L), where ;\0 is a constant and 8 is the dis· 

tance from the end marked O. Find the center of mass. 

It is apparent that R lies on the rod. Let the origin of the coordinate 

system coincide with the end of the rod, 0, and let the x axis lie along the 

rod so that 8 = x. The mass in an element of length dx is dm = A dx = 

AoX dxlL. The rod extends from x = 0 to x = L and the total mass is 

M = J dm 

�==========�------x 
JoL A dx 

= 
(L AoX dx 

J o L 

= tAoL. �� 
o 

The center of mass is at 

R = � J rAdM 
M 

2 fL. . . AoX dx 
= - (XI + OJ + Ok) --

AoL 0 L 

= �2 � X31: 
= iLl. 
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y 

Example 3.4 Center of Mass of a Triangular Sheet 

h 

� ________ �� __ � __ -L __ x 

Consider the two dimensional case of a uniform right triangular sheet of 

mass M, base b, height h, and small thickness t. If we divide the sheet 

into small rectangular areas of side �x and �y, as shown, then the volume 

of each element is � V = t �x �y, and 

�m·r· 
R ",," --'-' 

M 

�Pit Llx �yri 

M 
, 

where j is the label of one of the volume elements and Pi is the density. 

Because the sheet is uniform, 

M M 
Pi = constant = - = -, 

V At 

where A is the area of the sheet. 

We can carry out the sum by summing first over the �x's and then 

over the �y's, instead of over the single index j. This gives a double 

sum which can be converted to a double integral by taking the limit, as 

follows: 

Let r = xi + yj be the position vector of an element dx dy. Then, 

writing R = Xi + Yj, we have 

R = Xi + Yj 

= � I I (xi + yj) dx dy 

Hence the coordinates of the center of mass are given by 

X = � II xdxdy 

Y = � II ydxdy. 
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The double integrals may look strange, but they are easily evaluated. 

Consider first the double integral 

x = � f f x dx dy. 

This integral instructs us to take each element, multiply its area by its 

x coordinate, and sum the results. We can do this in stages by first 

considering the elements in a strip parallel to the y axis. The strip runs 

from y = 0 to Y = xh/b. Each element in the strip has the same x 
coordinate, a nd the contribution of the strip to the double integral is 

1 
J
Xh/b h - x dx dy = - x2 dx. 

A 0 bA 

Finally, we sum the contributions of all such strips x = 0 to x = b to find 

x = .!!... r b X2 dx = ..!!... � 
bA }o bA 3 
hb2 

=-' 

3A 

Since A = tbh, 

x = tb. 

Similarly, 

y = � lob (Jo
Xh/b Y dy) dx 

= � r b X2 dx = 

h 2b 
2Ab2}o 6A 

= tho 

Hence 

R = tbf + thj. 

Although the coordinates of R depend on the particular coordinate sys· 

tem we choose, the position of the center of mass with respect to the 

triangular plate is, of course, independent of the coordinate system. 

Often physical arguments are more useful than mathematical 

analysis. For instance, to find the center of mass of an irregular 

plane object, let it hang from a pivot and draw a plumb line from 

the pivot. The center of mass will hang directly below the pivot 

(this may be intuitively be obvious, and it can easily be proved 
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with the methods of Chap. 6), and it is somewhere on the plumb 

line. Repeat the procedure with a different pivot point. The 

two lines intersect at the center of mass. 

Center of Mass Motion 

A rectangular box is held with one corner resting on a frictionless table 

and is gently released. It falls in a complex tumbling motion, which we 

are not yet prepared to solve because it involves rotatiofl. However, 

there is no difficulty in finding the trajectory of the center of mass. 

The external forces acting on the box are gravity and the normal force 

of the table. Neither of these has a horizontal component, and so the 

center of mass must accelerate vertically. For a uniform box, the center 

of mass is at the geometrical center. If the box is released from rest, 

then its center falls straight down. 

3.3 Conservation of Momentum 

2 
f 

: �. 
. " ; r: 
·z 

�. 

f In the last section we found that the total external force F acting . �. 
on a system is related to the total momentum P of the system by 

dP 
F = - . 

dt 

Consider the implications of this for an isolated system, that is, a 

system which does not interact with its surroundings. In this 

case F = 0, and dP/dt = O. The total momentum is constant; 

no matter how strong the interactions among an isolated system 

of particles, and no matter how complicated the motions, the total 

momentum of an isolated system is constant. This is the law of 

conservation of momentum. As we shall show, this apparently 

simple law can provide powerful insights into complicated systems. 

�; 
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Spring Gun Recoil 

A loaded spring gun, initially at rest on a horizontal frictionless surface, 

fires a marble at angle of elevation 8. The mass of the gun is M, the 

mass of the marble is m, and the muzzle velocity of the marble is Vo. 

What is the final motion of the gun? 

Take the physical system to be the gun and marble. Gravity and the 

normal force of the table act on the system. Both these forces a re ver

tical. Since there are no horizontal external forces, the x component 

of the vector equation F = 
dPjdt is 

0= dPz. 
dt 

According to Eq. (1), Pz is conserved: 

P x,initial = P zlfina.}' 

1 

2 

Let the initial time be prior to firing the gun. Then P z,initial = 0, since 

the system is initially at rest. After the marble has left the muzzle, the 

gun recoils with some speed V" and its final horizontal momentum 

is MVj, to the left. Finding the final velocity of the marble involves a 

subtle point, however. Physically, the marble's acceleration is due to 

the force of the gun, and the gun's recoil is due to the reaction force of 

the marble. The gun stops accelerating once the marble leaves the 

barrel, so that at the instant the marble and the gun part company, the 

gun has its final speed Vj. At that same instant the speed of the mar

ble relative to the gun is vo. Hence, the final horizont.al speed of the 

marble relative to the table is Vo cos 8 - VI' By conservation of hori

zontal momentum, we therefore have 

o = m(vo cos 8 - V,) - MV, 

or 

VI = 

mvo cos 8. 
M+m 

By using conservation of momentum we found the final motion of the 

system in a few steps. To show the advantage of this method, let us 

repeat the problem using Newton's laws directly. 

Let v(t) be the velocity of marble at time t and let V(t) be the velocity 

of the gun. While the marble is being fired, it is acted on by the spring, 

by gravity, .and by friction forces with the muzzle wall. Let the net 

force on the marble be f(t). The x equation of motion for the marble is 

dvz 
m -

= 
/z(t). 

dt 
3 
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Formal integration of Eq. (3) gives 

mvx(t) = mvx(O) + Jot j x  dt. 4 

\�, 

i ( 
! . l' 

. �. 

f ; 
t 

, -l The external forces are all vertical, and therefore the horizontal force j. � on the marble is due entirely to the gun. By Newton's third law, there is ' 

a reaction force -j x  on the gun due to the ma rble. No other horizontal I 
l forces act on the gun, and the horizontal equation of motion for the gun f 

is therefore � 

MdVx dt = -jx(t), 

which can be integrated to give 

MVx(t) = MVx(O) - Jot jx dt. 

We can eliminate the integral by combining Eqs. (4) and (5): 

J1V x(t) + mv.(t) = MV.(O) + mvx(O). 6 

We have rediscovered that the horizontal component of momentum is 

conserved. 

is 

What about the motion of the center of mass? Its horizontal velocity 

R· MVx(t) + mvx(t) .(t) = . 
M +m 

Using Eq. (6), the numerator can be rewritten to give 

R. MV.(O) + mv.(O) (t) = = 0 
• M +m 

' 

since the system is initially at rest. R. is constant, as we expect. 

We did not include the small force of air friction. Would the center of 

mass remain at rest if we had included it? 

The essential step in our derivation of the law of conservation of 

momentum was to use Newton's third law. Thus, conservation of 

momentum appears to be a natural consequence of newtonian 

mechanics. It has been found, however, that conservation of 

momentum holds true even in areas where newtonian mechanics 

proves inadequate, including the realms of quantum mechanics 

and relativity. In addition, conservation of momentum can be 

t j 
t , 
�. 
t 
1 
f 
�:. 
j . � i' 
} 

i 
l ' 

i l 
i 
f 
� 
t t 
� \. 
1 
�. 
I 
t 
I 
�f 
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generalized to apply to systems like the electromagnetic field, 

which possess momentum but not mass. For these reasons, 

conservation of momentum is generally regarded as being more 

fundamental than newtonian mechanics. from this point of view, 

Newton's third law is a simple consequence of conservation of 

momentum for interacting particles. For our present purposes 

it is purely a matter of taste whether we wish to regard Newton's 

third law or conservation of momentum as more fundamental. 

Example 3.7 Earth, Moon, and Sun-a Three Body System 

Newton was the first to calculate the motion of two gravitating bodies. 

As we shall discuss in Chap. 9, two bodies of mass 1111 and M2 bound by 

gravity move so that rl2 traces out an ellipse. The sketch shows the 

motion in a frame in which the center of mass is at rest. (Note that the 

center of mass of two particles lies on the line joining them.) 

There is no general analytical solution for the motion of three gravi· 

tating bodies, however. In spite of this, we can explain many of the 

important features of the motion with the help of the concept of center 

of mass. 

At first glance, the motion of the earth-moon-sun system appears 

to be quite complex. In the absence of the sun, the earth and moon 

would execute elliptical motion about their center of mass. As we shall 

now show, that center of mass orbits the sun like a single planet, to good 

approximation. The total motion is the simple result of two simultaneous 

elliptical orbits. 

0-__ 

-� _� J- g 
0--- / T / I 

/ I 

cf I 

6 

'\ Q... Moon Earth 
\ ',-.------0 \ " 

b '() 
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The center of mass of the earth-moon-sun system lies at 

R 
M,R, + M mRm + MeR, , 

Me + Mm + M, 

where M .. M m, and M, are the masses of the earth, moon, and sun, 

respectively_ The sun's mass is so large compared with the mass of 

the earth or the moon that Ro :::::: R .. and to good approximation the cen

ter of mass of the three body system lies at the center of the sun. Since 

external forces are negligible, the sun is effectively at rest in an inertial 

frame and it is natural to use a coordinate system with its origin at the 

center of the sun so that R = O. 

Let r. and rm be the positions of the earth and moon with respect to 

the sun, and let us focus for the moment on the system composed of 

the earth and moon. Their center of mass lies at 

The external force on the earth-moon system is the gravitational pull 

of the sun: 

GM 
(M.. Mm. ) 

F= - -r +-r · , 2 e 2 m 
re rm 

T he equation of �otion of the center of mass is 

The earth and moon are so close compared with their distance from 

the sun that we shall not make a large error if we assume Te :::::: rm :::::: Rem. 

With this approximation, 

" -GM. . • 

(M. + Mm)R.m:::::: w- (Mer. + Mmrm) 

-GM.(Me + M m)'tm 

R2 

The center of mass of the earth and moon moves like a planet of mass 

M. + Mm about the sun. The total motion is the combination ofr this 

elliptical motion and the elliptical motion of the earth and moon about 

their center of mass, as illustrated on the opposite page. (The drawing 

is not to scale: the center of mass of the earth-moon system lies within 

the earth, and the moon's orbit is always concave toward the sun. Also, 

the plane of the moon's orbit is inclined by 5° with respect to the earth's 

orbit around the sun.) 
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Often a problem can be simplified by the right choice of coordi

nates. The center of mass coordinate system, in which the origin 

lies at the center of mass, is particularly useful. The drawing 

illustrates the case of a two particle system with masses ml and 

m2. In the initial coordinate system, x, y, z, the particles are 

located at rl and r2 and their center of mass is at 

We now set up the center of mass coordinate system, x
'

, y', z', 

with its origin at the center of mass. The origins of the old and 

new system are displaced by R. The center of mass coordinates 

of the two particles are 

I 
r 1 

= rl - R 
I R. r2 

= r2 -

�-"-------------------y Center of mass coordinates are the natural coordinates for 

an isolated two body system. For such a system the motion of 

the center of mass is trivial-it moves uniformly. Furthermore, 
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mlr� + m2r� = 0 by the definition of center of mass, so that if 

the motion of one particle is known, the motion of the other par· 

ticle follows directly. Here is an example. 

Example 3.8 The Push Me-Pull You 

Two identical blocks a and b both of mass m slide without friction on a 

straight track. They are attached by a spring of length l and spring 

constant k. Initially they are at rest. At t = 0, block a is hit sharply, 

va(O) = Vo giving it an instantaneous velocity Vo to the right. Find the velocities for 
- subsequent times. (Try this yourself if there is a linear air track 

available-the motion is quite unexpected.) 

Since the system slides freely after the collision, the center of mass 

moves uniformly and therefore defines an inertial frame. 

Let us transform to center of mass coordinates. The center of mass 

lies at 

R = mra + mrb 

m+m 

1 
= - (ra + rb). 

2 

As expected, R is always halfway between a and b. The center of mass 

coordinates of a and b are 

r� = ro - R 
= 

t(ra - rb) 

r� 
= 

Tb - R 

, 
-ra' 

The sketch below shows these coordinates. 

I 0 
I 

I I 

Center of mass 
coordinates 
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The instantaneous length of the spring is ra - rb - 1 = < - r� - l, 
where 1 is the unstretched length of the spring. The magnitude of the 

spring force is k(r� - r� - l). The equations of motion in the center of 

mass system are 

mT� = -k(r� - r� - I) 

mr� = +k(r� -- r� - l), 

where I is the unstretched length of the spring. "[he form of these equa· 

tions suggests that we subtract them, obtaining 

m(f� - f�) = -2k(r� - r� - I). 

It is natural to introduce the departure of the spring from its equi· 

librium length as a variable. Letting u = r� - r� - I, we have 

mil + 2ku = o. 

This is the equation for simple harmonic motion which we discussed 

in Example 2.14. The solution Is 

u = A si n wt + B cos wt, 

where w = V2k/m. 
which requires B = O. 
we have at t = 0 

u(O) = Va(O) - Vb(O) 
= Aw cos (0) 

= VO, 

so that 

A = vo/w 

and 

u = (vo/w) sin wt. 

Since the spring is unstretched at t = 0, u(O) = 0 

Furthermore, since u = r� - r� - I = ra - rb - l, 

Since v� - v� = U, and v� = -v�, we have 

v� = -v� = iva cos wt. 

The laboratory velocities are 

Va = R + V� 
Vb = R + v�. 
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Since R is constant, it is always equal to its initial value 

R = t(va(O) + Vb(O») 

= tvo. 

Putting these together gives 

Vo 
Va = - (1 + cos wt) 

2 

Vo 
Vb = - (1 - COS wt). 

2 

The masses move to the right on the average, but they alternately 

come to rest in a push me-pull you fashion. 

3.4 Impulse and a Restatement of the Momentum Relation 

The relation between force and momentum is 

dP 
f =-. 

dt 
3.16 

As a general ru , any law of physics which can be expressed in 

terms of derivatives can also be written in an integral form. The 

integral form of the force·momentum relationship is 

Jot f dt = P(t) - P(O). 3.17 

The change in momentum of a system is given by the integral of 

force with respect to time. This form contains essentially the 

same physical information as Eq. (3.16), but it gives a new way of 

looking at the effect of a force: the change in momentum is the 

time integral of the force. To produce a given change in the 

momentum in time interval t requires only that Jot F dt have the 

appropriate value; we can use a small force acting for much of 

the time or a large force acting for only part of the interval. The 

integral lot f dt is called the impulse. The word impulse calls to 

mind a short, sharp shock, as in Example 3.8, where we talked of 

giving a blow to a mass at rest so that its final velocity was Vo. 

However, the physical definition of impulse can just as well be 

applied to a weak force acting for a long time. Change of momen· 

tum depends only on Jf dt, independent of the detailed time 

dependence of the force. 

Here are two examples involving impulse. 
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Example 3.9 Rubber Ball Rebound 

A rubber ball of mass 0.2 kg falls to the floor. The ball hits with a speed 

of 8 mls and rebounds with approximately the same speed. High 

speed photographs show that the ball is in contact with the floor for 10-3 s. 

What can we say about the force exerted on the ball by the floor? 

The momentum of the ball just before it hits the floor is Po = -1.6k 
kg'm/s and its momentum 10-3 s later is Pb = +1.6k kg·m/s. Since 
fIb fIb - - -

F dt = Pb - p., F dt = 1.6k - (-1.6k) = 3.2k kg·m/s. Although 
to ta 

the exact variation of F with time is not known, it is easy to find the average 

force exerted by the floor on the ball. If the collision time is Ile = tb - ta, 
the average force Fa> acting during the collision is 

Fay Ile = F de. fIO+<11 
10 

Since Ilt = 10-3 s, 

3.2k kg'm/s 
Fay = 

10-3 S 

= 3,200k N. 

The average force is directed upward, as we expect. In more familiar 

units, 3,200 N "'" 720 Ib-a sizable force. The instantaneous force on the 

ball is even larger at the peak, as the sketch shows. If the ball hits a 

resilient surface, the collision time is longer and the peak force is less. 

Actually, there is a weakness in our treatment of the rubber ball 

rebound. In calculating the impulse JF de, F is the total force. This 

includes the gravitational force, which we have neglected. Proceeding 

more carefully, we write 

F = FUoor + Fgrav 

= FlloDr - ill gk. 

The impulse equation then becomes 

( 10-' ( 10-' _ _ 

)0 
FUoor dt - )

0 
M gk dt = 3.2k kg·m/s. 

The impulse due to the gravitational force is 

( 10-' - - ( 10-' _ 

- )
0 

Mgk dt = -Mgk )O 
dt = -(0.2)(9.8)(1O-3)k 

= -1.96 X 1O-3k kg·m/s. 

This is less than one·thousandth of the total impulse, and we can neglect 

it with little error. Over a long period of time, gravity can produce a 

large change in the ball's momentum (the ball gains speed as it falls, for 

example). In the short time of contact, however, gravity contributes 

little momentum change compared with the tremendous force exerted 

by the floor. Contact forces during a short collision are generally so 
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huge that we can neglect the impulse due to other forces of moderate 

strength, such as gravity or friction. 

The last example reveals why a quick collision is more violent 

than a slow collision, even when the initial and final velocities are 

identical. This is the reason that a hammer can produce a force 

far greater than the carpenter could produce on his own; the hard 

hammerhead rebounds in a very short time compared with the 

time of the hammer swing, and the force driving the hammer is 

correspondingly amplified. Many devices to prevent bodily injury 

in accidents are based on the same considerations, but applied in 

reverse-they essentially prolong the time of the collision. This 

is the rationale for the hockey player's helmet, as well as the auto· 

mobile seat belt. The following example shows what can happen 

in even a relatively mild collision, as when you jump to the ground. 

How to Avoid Broken Ankles 

Animals, including humans, instinctively reduce the force of impact with 

the ground by flexing while running or jumping. Consider what happens 

to someone who hits the ground with his legs rigid. 

Suppose a man of mass M jumps to the ground from height h, and 

that his center of mass moves downward a distance 8 during the time of 

collision with the ground. The average force during the collision is 

F = Mvo, 
t 

where t is the time of the collision and Vo is the velocity with which he hits 

the ground. As a reasonable approximation, we can take his accelera

tion due to the force of impact to be constant, so that the man comes 

uniformly to rest. In this case the collision time is given by Vo = 28/t, or 

28 t = -' 

Vo 

I nserting this in Eq. (1) gives 

F = MV02. 
28 

For a body in free fall for distance h, 

vo2 = 2gh. 

Inserting this in Eq. (2) gives 

h F = Mg-· 
8 

2 

i 
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If the man hits the ground rigidly in a vertical position, his center of 

mass will not move far during the collision. Suppose that his center of 

mass moves 1 cm, which roughly means that his height momentarily 

decreases by approximately·2 cm. If he jumps from a height of 2 m, 

the force is 200 times his weight! 

Consider the force on a 90·kg (::::::200·lb) man jumping from a height of 

2 m. The force is 

F = 90 kg X 9.8 m/s2 X 200 

= 1.8 X 10· N. 

Where is a bone fracture most likely to occur? The force is a maxi

mum at the feet, since the mass above a horizontal plane through the 

man decreases with height. Thus his ankles will break, not his neck. 

If the area of contact of bone at each ankle is 5 cm2, then the force per 

unit area is 

F 1.8 X 1Q6 N 

A 10 cm2 

= 1.8 X 104 N/cm2• 

This is approximately the compressive strength of human bone, and 

so there is a good probability that his ankles will snap. 

Of course, no one would be so rash as to jump rigidly. We instinc

tively cushion the impact when jumping by flexing as we hit the ground, 

in the extreme case collapsing to the ground. If the man's center of 

mass drops 50 cm, instead of 1 cm, during the collision, the force is only 

one-fiftieth as much as we calculated, and there is no danger of com

pressive fracture. 

3.5 Momentum and the Flow of Mass 

Analyzing the forces on a system in which there is a flow of mass 

becomes terribly confusing if we try to apply Newton's laws blindly. 

A rocket provides the most dramatic example of such a system, 

although there are many other everyday problems where the same 

considerations apply-for instance, the problem of calculating the 

reaction force on a fire hose, or of calculating the acceleration of 

a snowball which grows larger as it rolls downhill. 

There is no fundamental difficulty in handling any of these 

problems provided that we keep clearly in mind exactly what is 

included in the system. Recall that F = dPjdt [Eq. (3.12)] was 

established for a system composed of a certain set of particles_ 

When we apply this equation in the integral form, 
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it is essential to deal with the same set of particles throughout 

the time interval ta to tb; we must keep track of all the particles 

that were originally in the system. Consequently, the mass of 

the system cannot change during the time of interest. 

Mass Flow and Momentum 

A spacecraft moves through space with constant velocity v. The space· 

craft encounters a stream of dust particles which embed themselves in 

it at rate dm/dt. The dust has velocity u just before it hits. At time t 

the total mass of the spacecraft is M (t). The problem is to find the 

external force F necessary to keep the spacecraft moving uniformly. 

(I n practice, F would most likely come from the spacecraft's own rocket 

engines. For simplicity, we can visualize the source F to be completely 

external-an invisible hand, so to speak.) 

Let us focus on the short time interval between t and t + £:i.t. The 

drawings below show the system at the beginning and end of the interval. 

11m to be 

Timet 

Time t + I1t 

Let £:i.m denote the mass added to the satellite during £:i.t. The sys· 

tem consists of 11,1(t) and £:i.m. The initial momentum is 

pet) = M(t)v + (£:i.m)u. 

The final momentum is 

pct + £:i.t) = M(t)v + C£:i.m)v. 

The change in momentum is 

£:i.P = pet + £:i.t) - pet) 

= (v - u) £:i.m. 
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The rate of change of momentum is approximately 

AP Am - = (v - u)-· 
At At 

I n the limit At ---+ 0, we have the exact result 

dP dm -=(v-u)-· 
dt dt 

Since F = dP/dt, the required external force is 

dm 
F = (v - u)-· 

dt 
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Note that F can be either positive or negative, depending on the direction 
of the stream of mass. If u = v, the momentum of the system is con· 
stant, and F = 0. 

The procedure of isolating the system, focusing on differentials, 

and taking the limit may appear a trifle formal. However, the 

procedure is helpful in avoiding errors in a subject where it is 

easy to become confused. For instance, a frequent error is to 

argue that F = (d/dt)(mv) = m(dv/dt) + v(dm/dt). In the last 

example v is constant, and the result would be F = v(dm/dt) 

rather than (v - u)(dm/dt). The difficulty arises from the fact 

that there are several contributions to the momentum, so that the 

expression for the momentum of a single particle, p = mv, is not 

appropriate. The limiting procedure illustrated in the last exam

ple avoids such ambiguities. 

Example 3.12 Freight Car and Hopper 

Sand falls from a stationary hopper onto a freight car which is moving 
with uniform velocity v. The sand falls at the rate dm/dt. How much 
force is needed to keep the freight car moving at the speed v? 

In this case, the initial speed of the sand is 0, and 

dP = (v _ u) (dm) = v dm. 
dl dt dt 

The required force is F = v dm/dt. We can understand why this force 
is needed by considering in detail just what happens to a sand grain as 
it lands on the surface of the freight car. What would happen if the 
surface of the freight car were slippery? 
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Leaky Freight Car 

Now consider a related case. The same freight car is leaking sand at 

the rate dm/dt; what force is needed to keep the freight car moving 

uniformly with speed v? 

Here the mass is decreasing. However, the velocity of the sand after 

leaving the freight car is identical to its initial velocity, and its momentum 

does not change. Since dP/dt = 0, no force is required. (The sand 

does change its momentum when it hits the ground, and there is a 

resulting force on the ground, but that does not affect the motion of the 

freight car.) 

The concept of momentum is invaluable in understanding the 

motion of a rocket. A rocket accelerates by expelling gas at a 

high velocity; the reaction force of the gas on the rocket accelerates 

the rocket in the opposite direction. The mechanism is illustrated 

by the drawings of the cubical chamber containing gas at high 

pressure. 

The gas presses outward on each wall with the force Fa. (We 

show only four walls for clarity.) The vector sum of the Fa's is 

zero, giving zero net force on the chamber. Similarly each wall 

of the chamber exerts a force on the gas Fb = - Fa; the net force 

on the gas is also zero. In the right hand drawings below, one wall 

Force on chamber 

Force on gas 

has been removed. The net force on the chamber is Fa, to the 

right. The net force on the gas is Fb, to the left. Hence the gas 

accelerates to the left, and the chamber accelerates to the right. 
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To analyze the motion of the rocket in detail, we must equate 

the external force on the system, F, with the rate of change of 

momentum, dP/dt. Consider the rocket at time t. Between t 
and t + t:.t a mass of fuel t:.m is burned and expelled as gas with 

velocity u relative ta, the rocket.. The exhaust velocity u is deter

mined by the natu� of the propellants, the throttling of the 

engine, etc., but it is independent of the velocity of the rocket. 

The sketches below show the system at time t and at time 

----
/,- -....... , /" "-

( \ 

i S M [P) \ -v / , / '-
0/ ' ..... ----

Timet Time t + At 

t + t:.t. The system consists of t:.m plus the remaining mass of 

the rocket M. Hence the total mass is M + t:.m. 

The velocity of the rocket at time t is vet), and at t + t:.t, it is 

v + t:.v. The initial momentum is 

pet) = (M + t:.m)v 

and the final momentum is 

pet + t:.t) = M(v + t:.v) + t:.m(v + t:.v + u). 

The change in momentum is 

t:.P = pet + t:.t) - pet) 

= M t:.v + (t:.m)u. 

Therefore, 

dP t:.P 
�= lim
dt AHO t:.t 

dv dm 
=M- + u-· 

dt dt 
3.18 

Note that we have defined u to be positive in the direction of v. 
In most rocket applications, u is negative, opposite to v. It is 

inconvenient to have both m and M in the equation. dm/dt is 
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the rate of increase of the exhaust mass. 

from the rocket, 

dm dM 
-= 
dt dt 

Since this mass comes 

Using this in Eq. (3.18), and equating the external force to dP/dt, 
we obtain the fundamental rocket equation 

dv dM 
F = M- - u - · 

dt dt 
3.19 

It may be useful to point out two minor subtleties in our develop· 

ment. The first is that the velocities have been expressed with 

respect to an inertial frame, not a frame attached to the rocket. 

The second is that we took the final velocity of the element of 

exhaust gas to be v + t1v + u rather than v + u. This is correct 

(consult Example 3.6 on spring gun recoil if you need help in seeing 

the reason), but actually it makes no difference here, since either 

expression yields the same final result when the limit is taken. 

Here are two examples on rockets. 

i 
� 

Example 3.14 Rocket in Free Space 
. l 

If there is no external force on a rocket, F = 0 and its motion is given by 'f 
f 

M
dv = 

u 
dM � 

or 

dt dt � 

dv u dM 
-=--' 

dt M dt 

Generally the exhaust velocity u is constant, in which case it is easy to 

integrate the equation of motion. 

hl' dv �I/ 1 dM 
-dt=u - -dt 

10 dt to M dt 

= u 
fMI dM 

Mo M 

or 

M, 
v,-vo=uln

Mo 

Mo 
-uln-' 

M, 
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If Vo = 0, then 

Mo 
vI = -u In-· MI 
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The final velocity is independent of how the mass is released-the fuel 

can be expended rapidly or slowly without affecting Vj' The only 

important quantities are the exhaust velocity and the ratio of initial to 

final mass. 

The situation is quite different if a gravitational field is present, as 

shown by the next example. 

Example 3.15 Rocket in a Gravitational Field 

If a rocket takes off in a constant gravitational field, Eq. (3.19) becomes 

dv dM 
Mg = M--u -, dt dt 

where u and g are directed down and are assumed to be constant. 

dv u dM 
dt 

= 
M de + g. 

I ntegrating with respect to time, we obtain 

VI - Vo = u In (MI) + g(tl - to). , 

Mo ' 

Let Vo = 0, to = 0, and take velocity positive upward. 

VI = U In (Z;) -gtl' 

Now there is a premium attached to burning the fuel rapidly. The 

shorter the burn time, the greater the velocity. This is why the takeoff 

of a large rocket is so spectacular-it is essential to burn the fuel as 

quickly as possible. 

3.6 Momentum Transport 

Nearly everyone has at one time or another been on the receiving 

end of a stream of water from a hose. You feel a push. If the 

stream is intense, as in the case of a fire hose, the push can be 

dramatic-a jet of high pressure water can be used to break 

through the wall of a burning building. 
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The push of a water stream arises from the momentum it 

transfers to you. Unless another external force gives you equal 

momentum in the opposite direction, off you go. How can a 

column of water flying through the air exert a force which is every 

bit as real as a force transmitted by a rigid steel rod? The reason 

is easy to see if we picture the stream of water as a series of small 

uniform droplets of mass m, traveling with velocity Vo. Let the 

droplets be distance l apart and suppose that the stream is 

directed against your hand. Assume that the drops collide with· 

out rebound and simply run down your arm. Consider the force 

exerted by your hand on the stream. As each drop hits there is 

a large force for a short time. Although we do not know the 

instantaneous force, we can find the impulse Idroplet on each drop 

due to your hand. 

I droplet = (1 11" 
F dt ) 1 co 1810n 

= J1p 

= m(v, - vo) 
= -mvo· 

The impulse on your hand is equal and opposite. 

Ihand = mvo· 

The positive sign means that the impulse on the hand is in the 

same direction as the velocity of the drop. The impulse equals 

the area under one of the peaks shown in the drawing. If there 

are many collisions per second, you do not feel the shock of each 

drop. Rather, you feel the average force F av indicated by the 

dashed line in the drawing. The area under Fav during one colli· 

sion period T (the time between c ollisions) is identical to the 

impulse due to one drop. 

F avT = ( II" 
F dt J 1 co 11510n 

Since T = Z/vo and JF dt = mvo, the average force is 

F _ mvo av - T 
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Here is another way to find the average force. Consider length 

L of the stream just about to hit the surface. The number of 

drops in L is L/Z, and since each drop has momentum mvo, the 

total momentum is 

L 
flp = l mvo· 

All these drops will strike the wall in time 

L 
flt = -. 

vo 

The average force is 

m - -v 2 -
l o· 

To apply this model to a fluid, consider a stream moving with 

speed v. If the mass per unit length is mil == X, the momentum 

per unit length is Xv and the rate at which the stream transports 

momentum to the surface is 

dp 

--
= Xv2• 

dt 
3.20 

If the stream comes to rest at the surface, the force on the sur· 

face is 

3.21 

Example 3.16 Momentum Transport to a Surface 

v 

• 

-

• 
-

• 

-
v' 

A stream of particles of mass m and separation 1 hits a perpenqicular 

surface with velocity v. The stream rebounds along the original line of 

motion with velocity v'. The mass per unit length of the incident ;stream 

is X = mil. What is the force on the surface? 
' 

The incident stream transfers momentum to the surface at the rate 

Xv2• However, the reflected stream does not carry it away at the rate 

XV'2, since the density of the stream must change at the surface. The 

number of particles incident on the surface in time At is v At/I and their 
total mass is Llm = mv Llt/l. Hence, the rate at which mass arrives at 

dm m -- = -v = Xv. 
dt 1 
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The rate at which mass is carried away from the surface is A'V'. Since 

mass does not accumulate on the surface, these rates must be equal. 

Hence A'v' = AV, and the force on the surface is 

F = 
dp' 

+ dp 
= A'V'2 + AV2 dt dt 

= AV(V' + v). 

If the stream collides without rebound, then v' = 0 and F = AV2, in 

agreement with our previous result. If the particles .undergo perfect 

reflection, then v' = v, and F = 2AV2• The actual force lies somewhere 

between these extremes. 

We can generalize the idea of momentum transport to three 

dimensions. Consider a stream of fluid which strikes an object 

and rebounds in some arbitrary direction. For simplicity we 
assume that the incident stream is uniform and that in time At 
it transports momentum t..Pi. The direction of t..Pi is parallel to 

the initial velocity Vi and t..Pi = AiVi2 t..t. During the same interval 

t..t the rebounding stream carries away momentum t..P" where 

t.PI = AIVI2 t.t; the direction of t..PI is parallel to the final velocity 

VI' The vectors are shown in the sketch. 

The net momentum change of the fluid in t..t is 

The rate of change of the fluid's momentum is 

By Newton's second law, CdP / dt)fluid eq uals the force on the fluid 

due to the object. By Newton's third law, the force on the object 

due to the fluid is 

F 
= 

- (:)f!Uid 

= 

(:} - (:)1 

= Pi - PI' 3.22 

The sketches illustrate this result. 

Unless there is some opposing force, the object will begin to 

accelerate. If PI = Pi, the stream transfers no momentum and 

F = O. 

. . , 
, t : .;..-....:,.� .. , 
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The force on a moving airplane or boat can be found by con

sidering the effect of a multitude of streams hitting the surface, 

each with its own velocity. Although the mathematical formalism 

for analyzing this would lead us too far afield, the physical principle 

is the same: momentum transport. 

Example 3.17 A Dike at the Bend of a River 

@�����"" 
The problem is to build a dike at the bend of a river to prevent flooding 

iJQ--�-�-iV� when the river rises. Obviously the dike has to be strong enough to 

�d 

flO 
Pc " 

IPI = P � ()  

I 
/ 

, 

II . 
Force on dike = - P 

withstand the static pressure of the river pgh, where p is the density of 

the water and h is the height from the base of the dike to the surface of 

the water. However, because of the bend there is an additional pres

sure, the dynamic pressure due to the rush of water. How does this 

compare with the static pressure? 

We approximate the bend by a circular curve with radius R, and focus 

our attention on a short length of the curve subtending angle !:lB. We 

need only concern ourselves with that section of the river above the base 

of the dike, and we consider the volume of the river bounded by the bank 

a, the dike b, and two imaginary surfaces c and d. Momentum is trans

ferred into the volume through surface c and out through surface d at 

rate P = AV2 = pAv2• Here A is the cross sectional area of the river 

lying above the base of the dike, A = hw. (Note that pA = A = mass 

per unit length of the river.) 

However, surfaces c and d are not parallel. The rate of change of 

the stream's momentum is 

As we can see from the vector drawing below, P is radially inward and has 

magnitude 

IPI = P AB. 

The dynamic force on the dike is radially outward, and has the same 

magnitude, P !:lB. The force is exerted over the area (R !:lB)h, and the 

dynamic pressure is therefore 

P !:lB 
pressure = --

R ABh 
pA.V2 
Rh 

= 

pwv2• 
R 
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The ratio of dynamic to static pressure is 

dynamic pressure 

static pressure 

pwv2 
_1_ = � � 

R pgh hRg 
width centripetal acceleration 

=-- x . 

depth g 

For a river in flood with a speed of 10 mi/h (approximately 14 ft/s), a 

radius of 2,000 ft, a flood height of 3 ft, and a width of 200 ft, the ratio is 

0.22, so that the dynamic pressure is by no means negligible. The ratio 

is even larger near the surface of the river where the static pressure is 

small. 

Example 3.18 Pressure of a Gas 

.... 1 
( I 
I t\ I 
I I 
I J 
l.-� 

y 

x 

As a further application of the idea of momentum tra nsport, let us find 

the pressure exerted by a gas. Although our argument will be somewhat 

simpleminded, it exhibits the essential ideas and gives the same result as 

more refined arguments. 

Assume that there are n atoms per unit volume of the gas, each having 

mass m, and that they move randomly. Let us find the force exerted on 

an area A in the yz plane due to motion of the atoms in the x direction. 

We make the plausible assumption that it is permissible to neglect motion 

in the y and z direction, and treat only motion parallel to the x axis. 

Suppose that all atoms have the same speed, Vz. The rate at which they 

hit the surface is tnAvz, where the factor of t is introduced because the 

atoms can move in either direction with equal probability. The momen· 

tum carried by each atom is mvz• It is unlikely that the atoms come to 

rest after the collision; this would correspond to the freezing of the gas 

:>n the walls. On the average, they must leave at the same rate as they 

arrive, which means that the average change in momentum is 2mv •. 

Hence, the rate at which momentum changes due to collisions with area 

A is 

dp (1 ) 
- = - nAvz (2mvz) 
dt 2 

The force is 

F 
dp 

dt 

and the pressure Pz on the x surface is 

F 
Pz =-

A 
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The assumption that v. has a fixed value is actually unnecessary. If 

the atoms have many different instantaneous speeds, then it can be 

shown that v.2 should be replaced by its average v.2, and p. = nmv.2. 

By an identical argument we have Py = mnv./ and p. = nmv.2• How· 

ever, since the pressure of a gas should not depend on direction, we 

have p. = P y = P., which implies that v.2 = vy2 = v.2. The mean 

squared velocity is ;;; = v.2 + vy2 + v.2, so that v.2 = tv2 and the pres· 

sure is 

P = tnm�. 

This is a famous result of the kinetic theory of gas, and it is a crucial 

point in the argument connecting heat and kinetic energy. 

Note 3.1 Center of Mass 

dm = (J dxdy 

� 
----1 dx 0 b 

�--------------�------x 

In this Note we shall find the center of mass of some nonsymmetrical 

objects. These examples are trivial if you have had experience eval

uating two or three dimensional integrals. Otherwise, read on. 

1. Find the center of mass of a thin rectangular plate with sides of length 

a and b, whose mass per unit area (T varies in the following fashion: 

(T = (To(xy / ab), where (To is a consta nt. 

R = ;1 ff (xi + yj)(T dx dy 

We find lIf, the mass of the plate, as follows: 

fcb f a x y  = (To - - dx dy. o 0 a b 

We first integrate over x, treating y as a constant. 

(Toay2 !Y=b 1 
= 2" 2b y=o 

= 4 (Toab. 
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The x component of R is 

x = � JJ x(fdxdy 
= � (b ( ( a X(fo xy dX)dY M}O}O ab 
= � ( b ((fOY � la) d M}O ab 3 0 Y 

= 
� (fo (b ya3 dy M ab}O 3 
1 (fo a3 b2 

(foab 6 

2 
"'"'----------'-----x 

= :3 a. 

Z 

----1 T7�<-" .' .. �<'-..'. .. =-., �0h \TdZ 

Z 

1 L------cc---------' 

Fr� , dz 
: , 

Similarly, Y = jb. 
2. Find the center of mass of a uniform solid hemisphere of radius R 
and mass M. 

From symmetry it is apparent that the center of mass lies on the z 

axis, as illustrated. Its height above the equatorial plane is 

Z = � JZdM. 

The integral is over three dimensions, but the symmetry of the situ· 

ation lets us treat it as a one dimensional integral. We mentally sub· 

divide the hemisphere into a pile of thin disks. Consider the circular 

disk of radius r and thickness dz. Its volume is dV = 7rr2 dz, and its 

mass is dM = p dV = (M /V)(dV), where V = j7rR3. Hence, 

1JM 
Z = 

M VzdV 

= � (R 7rr2z dz. V}.=o 
To evaluate the integral we need to find r in terms of z. Since 

r2 = R2 - Z2, we have 

Z = - Z(R2 - Z2 ) dz 
7r IcR V 0 

= � (�Z2R2 _ � <:4) jR V 2 4 0 
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3.1 The density of a thin rod of length l varies with the distance x from 

one end as p = pox2/l2. Find the position of the center of mass. 

Ans. X = 3l/4 

3.2 Find the center of mass of a thin uniform plate in the shape of an 

equilateral triangle with sides a. 

3.3 Suppose that a system consists of several bodies, and that the posi· 

tion of the center of mass of each body is known. Prove that the center 

of mass of the system can be found by treating each body as a particle 

concentrated at its center of mass. 

3.4 An instrument·carrying projectile accidentally explodes at the top of 

its trajectory. The horizontal distance between the launch point and the 

point of explosion is 1.,. The projectile breaks into two pieces which fly 

apart horizontally. The larger piece has three times the mass of the 

smaller piece. To the surprise of the scientist in charge, the smaller 

piece returns to earth at the launching station. How far away does the 

larger piece land? Neglect air resistance and effects due to the earth's 

curvature. 

3.5 A circus acrobat of mass M leaps straight up with initial velocity Vo 
from a trampoline. As he rises up, he takes a trained monkey of mass 

m off a perch at a height h above the trampoline. 

What is the maximum height attained by the pair? 

3.6 A light plane weighing 2,500 Ib makes an emergency landing on a 

short runway. With its engine off, it lands on the runway at 120 ft/s. 

A hook on the plane snags a cable attached to a 250-lb sandbag and drags 

the sandbag along. If the coefficient of friction between the sandbag 

and the runway is 0.4, and if the plane's brakes give an additional retard· 

ing force of 300 Ib, how far does the plane go before it comes to a stop? 

3.7 A system is composed of two blocks of mass ml and m2 connected 

by a massless spring with spring constant k. The blocks slide on a fric

tionless plane. The unstretched length of the spring is l. Initially m2 

is held so that the spring is compressed to l/2 and ml is forced against 

a stop, as shown. m2 is released at t = O. 
Find the motion of the center of mass of the system as a function of 

time. 
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3.8 A 50·kg woman jumps straight into the air, rising 0.8 m from the 

ground. What impulse does she receive from the ground to attain this 

height? 

3.9 A freight car of mass At contains a mass of sand m. At t = 0 a • 

constant horizontal force F is applied in the direction of rolling and at 

the same time a port in the bottom is opened to let the sa nd flow out at 

constant rate dm/dt. Find the speed of the freight car when all the sand 

is gone. Assume the freight car is at rest at t = O. 

3.10 An empty freight car of mass ]1,1 starts from rest under an applied. 

force F. At the same time, sand begins to run into the car at steady 

rate b from a hopper at rest along the track. 

Find the speed when a mass of sand, m, has been transferred. (Hint:' 
There is a way to do this problem in one or two lines.) 

Ans. clue. If M = 500 kg, b = 20 kg/s, F = 100 N, then v = 1.4 m/s at . 
t = 10 s 

3.11 Material is blown into cart A from cart B at a rate b kilograms per 

second. The material leaves the chute vertically downward, so that it 

has the same horizontal velocity as cart B, u. At the moment of interest, 

cart A has mass M and velocity v, as shown. Find dv/dt, the instan· 

taneous acceleration of A. 

3.12 A sand·spraying locomotive sprays sand horizontally into a freight 

car as shown in the sketch. The locomotive and freight car are not 

attached. The engineer in the locomotive maintains his speed so that 

the distance to the freight car is constant. The sand is transferred at 

a rate dm/dt = 10 kg/s with a velocity of 5 m/s relative to the locomotive. 

The car starts from rest with an initial mass of 2,000 kg. Find its speed 

after 100 s. 

3.13 A ski tow consists of a long belt of rope around two pulleys, one at 

the bottom of a slope and the other at the top. The pulleys are driven 

by a husky electric motor so that the rope moves at a steady speed of 

1.5 m/s. The pulleys are separated by a distance of 100 m, and the angle 

of the slope is 20°. 

Skiers take hold of the rope and are pulled up to the top, where they 

release the rope and glide off. If a skier of mass 70 kg takes the tow 

every 5 s on the average, what is the average force req uired to pull the 

rope? Neglect friction between the skis and the snow. 

3.14 N men, each with mass m, stand on a railway flatcar of mass M. 

They jump off one end of the flatcar with velocity u relative to the car. 

The car rolls in the opposite direction without friction. 

a. What is the final velocity of the flatcar if all the men jump at the 

same time? 

b. What is the final velocity of the flatcar if they jump off one at a 

time? (The answer can be left in the form of a sum of terms.) 
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c. Does case a or case b yield the largest final velocity of the flat car? 

Can you give a simple physical explanation for your answer? 

3.15 A rope of mass M and length I lies on a frictionless table, with a 

short portion, 10, hanging through a hole. Initially the rope is at rest. 

a. Find a general equation for x(t), the length of rope through the 

hole. 

Ans. x = Ae'Y' + Be-"'I', ')'2 = gil 

b. Evaluate the constants A and B so that the initial conditions are 

satisfied. 

3.16 Water shoots out of a fire hydrant having nozzle diameter D with 

nozzle speed Vo. What is the reaction force on the hydrant? 

3.17 An inverted garbage can of weight IV is suspended in air by water 

from a geyser. The water shoots up from the ground with a speed vo, 
at a constant rate dmldt. The problem is to find the maximum height 

at which the garbage can rides. What assumption must be fulfilled for 

the maximum height to be reached? 

Ans. clue. If Va = 20 mis, W = 10 kg, dm/dt = 0.5 kg/s, then hmax "" 17 m 

3.18 A raindrop of initial mass Afo starts falling from rest under the 

influence of gravity. Assume that the drop gains mass from the cloud 

at a rate proportional to the product of its instantaneous mass and its 

i nsta nta neous velocity: 

dM 
- = kMV, 
dt 

where k is a constant. 

Show that the speed of the drop eventually becomes effectively con

stant, and give an expression for the terminal speed. Neglect air 

resistance. 

3.19 A bowl full of water is sitting out in a pouring rainstorm. Its sur

face area is 500 cm2• The rain is coming straight down at 5 m/s at a rate 

of 10-3 g/cm2·s. If the excess water drips out of the bowl with negli

gible velocity, find the force on the bowl due to the falling rain. 

What is the force if the bowl is moving uniformly upward at 2 m/s? 

3.20 A rocket ascends from rest in a uniform gravitational field by eject

ing exhaust with constant speed u. Assume that the rate at which mass 

is expelled is given by dmldt = ,),m, where m is the instantaneous mass of 

the rocket and')' is a constant, and that the rocket is retarded by air 

resistance with a force mbv, where b is a constant. Find the velocity of the 

rocket as a function of time. 

Ans. clue. The terminal velocity is (')'u - g)lb. 
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4.1 Introduction 

In this chapter we make another attack on the fundamental prob· 

lem of classical mechanics-predicting the motion of a system 

under known interactions. We shall encounter two important 

new concepts, work and energy, which first appear to be mere 

computational aids, mathematical crutches so to speak, but which 

turn out to have very real physical significance. 

As first glance there seems to be no problem in finding the 

motion of a particle if we know the force; starting with Newton's 

second law, we obtain the acceleration, and by integrating we can 

find first the velocity and then the position. It sounds simple, 

but there is a problem; in order to carry out these calculations we 

must know the force as a function of time, whereas force is usually 
known as a function of position as, for example, the spring 

force or the gravitational force. The problem is serious because 

physicists are generally interested in interactions between systems, 

which means knowing how the force varies with position, not how 

it varies with time. 

The task, then, is to find v(t) from the equation 

dv 
m- = F(r), 

dt 
4.1 

where the notation emphasizes that F is a known function of 

position. A physicist with a penchant for mathematical forma· 

lism might stop at this point and say that what we are dealirig 

with is a problem in differential equations and that what we ought 

to do now is study the schemes available, including numerical 

methods, for solving such equations. From the strict calcula· 

tional pOint of view, he is right. However, such an approach 

is too narrow and affords too little physical understanding. 

Fortunately, the solution to Eq. (4.1) is simple for the import· 

ant case of one dimensional motion in a single variable. The 

general case is more complex, but we shall see that it is not 

too difficult to integrate Eq. (4.1) for three dimensional motion 

provided that we are content with less than a complete solution. 

By way of compensation we shall obtain a very helpful physical 

relation, the work·energy theorem; its generalization, the law of ' 

conservation of energy, is among the most useful conservation 

laws in physics. 

Let's consider the one dimensional problem before tackling the 

general case. 
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4.2 Integrating the Equation of Motion in One Dimension 

A large class of important problems involves only a single variable 

to describe the motion. The one dimensional harmonic oscillator 

provides a good example. For such problems the equation of 

motion reduces to 

or 

dv 
m 

dt 
= F(x). 4.2 

We can solve this equation for v by a mathematical trick. First, 

formally integrate m dv/dt = F(x) with respect to x: 

f,." dv f,." 
m -d dx = F(x) dx. 

ZI) ,t Xc 

The integral on the right can be evaluated by standard methods 

since F(x) is known. The integral on the left is intractable as it 

stands, but it can be integrated by changing the variable from x 
to t. The trick is to use 1 

dx = (�;) dt 

= v dt. 

Then 

fX' dv �t' dv 
m -dx = m -vdt 

x. dt t. dt 

= m - - v2 dt 
�t' d (1 ) 

t. dt 2 

where Xa == x(ta), Va == v(ta), etc. 

Putting these results together yields 

1 Change of variables using differentials is discussed in Note 1.1. 

4.3 
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Alternatively, we can use indefinite upper limits in Eq. (4.3): 

imv2 - imva2 = ( z F(x) dx, }z. 

where v is the speed of the particle when it is at position x. Equa·' 
tion (4.4) gives us v as a function of x. Since v = dx/dt, we could 
solve Eq. (4.4) for dx/dt and integrate again to find x(t). Rather
than write out the general formula, it is easier to see the method 
by studying a few examples. 

Mass Thrown Upward in a Uniform Gravitational Field 

A mass m is thrown vertically upward with initial speed Vo. How high: 
does it rise, assuming the gravitational force to be constant, and neglect·; 
ing air friction? 

Taking the z axis to be directed vertically upward, 

F = -mg. 

Equation (4.3) gives 

j,Zl 
-mg dz 

z. 

-mg(zi - zo). 

At the peak, VI = 0 and we obtain the answer 

Vo2 

ZI = Zo +-. 
2g 

t 
t�: 
t 
;) 

�. t It is interesting to note that the solution makes no reference to time; ;{ 
at all. We could have solved the problem by applying Newton's second, r 

law, but we would have had to eliminate t to obtain the result. � 
1-

Here is an example that is not easy to solve by direct application. t 
�. 

of Newton's second law. 

I 
Solving the Equation of Simple Harmonic Motion 

In Example 2.17 we discussed the equation of simple harmonic motion 
and pulled the solution out of a hat without proof. Now we shall derive 
the solution using Eq. (4.4). 

t 

�. 
�. 
�. 
t 

f 
t 
�' . 
. � 

'% 
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Consider a mass M attached to a spring. Using the coordinate x 
measured from the equilibrium point, the spring force is F = -kx. 

Then Eq. (4.4) becomes 

tMv2 - tMvo2 = -k (x x dx }x, 

The initial coordinates are labeled by the subscript o. 

In order to find x and v, we must know their values at some time to. 
Physically, this arises because the equation of motion by itself cannot 

completely specify the motion; we also need to know a set of initial 

conditions, in this case the initial position and velocity.' We are free to 

choose any initial conditions we wish. let us consider the case where at 

t = 0 the mass is released from rest, Vo = 0, at a distance Xo from the 

origin. Then 

and 

dx - = v dt 

Separating the variables gives 

(x dx /k ( t d }XO Yxo2_x2 = \JM}O t 

= / k t. \JM 
The integral on the left hand side is arcsin (xlxo). (The integral is listed 

in standard tables. Consulting a table of integrals is just as respectable 

for a physicist as consulting a dictionary is for a Writer. Of course, in 

both cases one hopes that experience gradually reduces dependence.) 

Denoting YklM by w, we obtain 

arcsin (:..) IX = wt 
Xo xo 

or 

arcsin (�) - arcsin 1 = wt. 

I In the language of differential equations, Newton's second law is a "second 

order" equation in the position; the highest order derivative it involves is the 

acceleration, which is the second derivative of the position with respect to time. 

The theory of differential equations shows that the complete solution of a dif

ferential equation of nth order must involve n initial conditions. 
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Si nce a rcsi n 1 = 7r /2. we obtai n 

x = Xo sin (wt + �) 
= Xo cos wt. 

Note that the solution indeed satisfies the given initial conditions: at 
t = O. x = Xo cos 0 = Xo. and i; = xow sin 0 = O. For these conditions 

our result agrees with the general solution given in Example 2.14. 

4.3 The Work-energy Theorem in One Dimension 

In Sec. 4.2 we demonstrated the formal procedure for integrating 

Newton's second law with respect to position. The result was 

which we now wish to interpret in physical terms. 

The quantity j-mv2 is called the kinetic energy K, and the left 

hand side can be written Kb - Ka. The integral F(x) ix is Ix. x
. 

called the work Wba done by the force F on the particle as the 

particle moves from a to b. Our relation now takes the form 

4.5 

This result is known as the work-energy theorem or, more pre

cisely, the work-energy theorem in one dimension. (We shall 

shortly see a more general statement.) The unit of work and 

energy in the SI system is the joule (J): 

1 J = 1 kg·m2/s2• 

The unit of work and energy in the cgs system is the erg: 

1 erg = 1 gm·cm2/s2 

= 10-7 J. 

The unit work in the English system is the foot-pound: 

1 ft'lb """ 1.336 J. 

Vertical Motion in an Inverse Square Field 

A mass m is shot vertically upward from the surface of the earth with 

initial speed Vo. Assuming that the only force is gravity, find its maxi· 

mum altitude and the minimum value of Vo for the mass to escape the 

earth completely. 
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The force on m is 

P = _ GM,m . 

r2 

157 

The problem is one dimensional in the variable T, and it is simple to find 

the kinetic energy at distance r by the work·energy theorem. 

Let the particle start at r = R. with initial velocity Vo. 

K(r) - K(r.) = ( r P(r) dr JR. fr dr 
= - GM,m -

R. r2 

or 

tmv(r)2 - imvo2 = GM,m (� - �) . 
r R. 

We can immediately find the maximum height of m. At the highest 

point, v(r) = 0 and we have 

Vo2 = 2Gl1f. (� _ _ 
1_). 

R. rmax 

It is a good idea to introduce known familiar constants whenever possible. 

For example, since y = GM./Re', we can write 

Vo2 = 2yRe' (� _ _ 1_) 
R. rmax 

= 2yR. (1 - �) 
rmax 

or 

R. 
Tmax = ---

vo2 1--
2yRe 

The escape velocity from the earth is the initial velocity needed to 

move r m .. to infinity. The escape velocity is therefore 

V.Acape = V 2yR. 
= V'-2-X-9.-S -X-S .-4- X-1O-S 

= 1.1 X 104 m/s. 

The energy needed to eject a 5O ·kg spacecraft from the surface of the 

earth is 

W = iMv;.cape 
= i(50)(1.1 X 104)2 = 3.0 X 109 J. 
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4.4 Integrating the Equation of Motion in Several Dimensions 

Returning to the central problem of this chapter, let us try to 

integrate the equation of motion of a particle acted on by a force 

which depends on position. 

dv 
F(r) = m 

dt
' 4.6 

In the case of one dimensional motion we integrated with respect 

to position. To generalize this, consider what happens when the 

particle moves a short distance .6.r. 
We assume that .6.r is so small that F is effectively constant over 

this displacement. If we take the scalar product of Eq. (4.6) 

with M, we obtain 

dv 
F ·.6.r = m 

dt • .6.r. 4.7 

The sketch shows the trajectory and the force at some point 

along the trajectory. At this point, 

F ·.6.r = F .6.r cos e. 

Perhaps you are wondering how we know .6.r, since this requires 

knowing the trajectory, which is what we are trying to find. Let 

us overlook this problem for a few moments and pretend we know I 
the trajectory. 

Now consider the right hand side of Eq. (4.7), m(dv/dt)· M. 
We can transform this by noting that v and .6.r are not independent; 

for a sufficiently short length of path, v is approximately constant. 

Hence .6.r = v.6.t, where .6.t is the time the particle requires to 

travel .6.r, and therefore 

dv dv 
m - ·.6.r = m - . v .6.t. 

dt dt 

We can transform Eq. (4.7) with the vector identity' 

dv 1 d 
v 

• dt = 2 dt (v2). 

, The identity A· (dA/ dt) = !(d/ dt) (A 2) is easily proved: 

1 d Id - - (A 2) = - - (A • A) 
2 dt 2 dt 

= ! (A . dA + dA . A
) 

2 dt dt 

= A·dA
. dt 

4.8 
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Equation (4.7) becomes 

md 
F . �r = 2" dt (v2) �t. 4.9 

The next step is to divide the entire trajectory from the initial 

position r" to the final position rb into N short segments of length 

Mjr where j is an index numbering the segments. (It makes no 

difference whether all the pieces have the same length.) For each 

segment we can write a relation similar to Eq. (4.9): 

md 
F(r·)· �r· = - - (v·2) �t 

J J 2 dt J ]' 
4.10 

where rj is the location of segment j, Vj is the velocity the particle 

has there, and �tj is the time it spends in traversing it. If we add 

together the eq uations of all the segments, we have 

N N d 
\' F(r·). �r· = \' 

m 
- (v·2) �t. .� I J .� 2 dt J ]. J=l )=1 

4.11 

Next we take the limiting process where the length of each seg

ment approaches zero, and the number of segments approaches 

infinity. We have 

J.r. J.t. m d 
F(r) • dr = - - (V2) dt, r. t. 2 dt 

4.12 

where ta and tb are the times corresponding to ra and rb. In con

verting the sum to an integral, we have dropped the numerical 

index j and have indicated the location of the first segment �rl 
by ra, and the location of the last section �rN by rb. 

The integral on the right in Eq. (4.12) is 

m J.t. d It. - - (v2) dt = tmv2 
2 t. dt t. 
This represents a simple generalization of the result we found for 

one dimension. Here, however, v2 = vx2 + vy2 + vz2, whereas· 

for the one dimensional case we had v2 = vx2_ 
Equation (4.12) becomes 

4.13 

The integral on the left is called a line integral. We shall see how 

to evaluate line integrals in the next two sections, and we shall 
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also see how to interpret Eq. (4.13) physically. However, before 

proceeding, let's pause for a moment to summarize. 

Our starting point was F(r) = m dv/dt. All we have done is to 

integrate this equation with respect to distance, but because we 

described each step carefully, it looks like many operations are 

involved. This is not really the case; the whole argument can be 

stated in a few lines as follows: 

dv F=m
dt 

r b F • dr = r b m dv . dr ia ia dt 

fb dv = m-' v dt a dt 

fbm d = - - (v2) dt a 2 dt 

4.5 The Work-energy Theorem 

We now want to interpret Eq. (4.13) in physical terms. The 

quantity !mv2 is called the kinetic energy K, and the right hand 

side of Eq. (4.13) can be written as Kb - Ka. The integral 

r'b F . dr is called the work Wba done by the force F on the particle i •. 

as the particle moves from a to b. Equation (4.13) now takes the 

form 

4.14 

This result is the general statement of the work-energy theorem 
which we met in restricted form in our discussion of one dimen

sional motion. 

The work t. W done by a force F in a small displacement t.r is 

t. W = F· t.r = F cos f) t.r = FII t.r, 

where FII = F cos f) is the component of F along the direction of 

t.r. The component of F perpendicular to t.r does no work. For 

a finite displacement from ra to rb, the work on the particle, 

Ja
b F . dr, is the sum of the contributions t. W = FII M from each 

segment of the path, in the limit where the size of each segment 

approaches zero. 
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In the work-energy theorem, WbQ = Kb - Ka., Wba is the work 

done on the particle by the total force F. If F is the sum of 

several forces F = �Fi' we can write 

where 

(Wi)ba = Fi• dr J.f> 
r. 

is the work done by the ith force Fi. 

Our discussion so far has been restricted to the case of a single 

particle. However, we showed in Chap. 3 that the center of mass 

of an extended system moves according to the equation of motion 

F = M� 
= MdV, 

dt 4.15 

where V = R is the velocity of the center of mass. Integrating 

Eq. (4.15) with respect to position gives 

J:" F . dR = -!MVb2 - -!MVa2, 4.16 

where dR = V dt is the displacement of the center of mass in 

time dt. Equation (4.16) is the work-energy theorem for the 

translational motion of an extended system; in Chaps. 6 and 7 we 

shall extend the ideas of work and kinetic energy to include rota

tional motion. Note, however, that Eq. (4.16) holds regardless of 

the rotational motion of the system. 

The Conical Pendulum 

We discussed the motion of the conical pendulum in Example 2.8. Since 

the mass moves with constant angular velocity w in a circle of constant 

radius R, the kinetic energy of the mass, !mRw2, is constant. The work· 

energy theorem then tells us that no net work is being done on the mass. 

Furthermore, in the conical pendulum the string force and the weight 

force separately do no work, since each of these forces is perpendicular 

to the path of the particle, making the integrand of the work integral 

zero. 

It is important to realize that in the work integral JF. dr, the vector 

dr is along the path of the particle. Since Y = dr/dt, dr = y dt and dr 
is always parallel to Y. 
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Escape Velocity-the General Case 

In Example 4.3 we discussed the one dimensional motion of a mass m 

projected vertically upward from the earth. We found that if the initial 

speed is greater than Vo = V2gR., the mass will escape from the earth. 

Suppose that we look at the problem once again, but now allow the mass 

to be projected at angle a from the vertical. 

The force on m, neglecting air resistance, is 

F = 
GM.m _ 

---r 

r2 
R.2 _ 

- mg-
2 

r, 
r 

where g = GM.IR.2 is the acceleration due to gravity at the earth's sur· 

face. We do not know the trajectory of the particle without solving the 

problem in detail. However, any element of the path dr can be written 

dr = dri + r dO 6. 

Hence 

R 2 _ 

F· dr = -mg _e r. (dr r + r dO 6) 
r2 

R2 
_mg_e dr. 

r2 

The work·energy theorem becomes 

The escape velocity is the value of Vo for which r = 00, v = O. We 
find 

Vo = V2gR. 
= 1.1 X 104 mis, 

as before. The escape velocity is independent of the launch direction. 

We have neglected the earth's rotation in our analysis. In the 

absence of air resistance the projectile should be fired horizontally to 

the east, since the rotational speed of the earth's surface is then added 

to the launch velocity. 

4.6 Applying the Work-energy Theorem 

In the last section we derived the work-energy theorem 

Wb" = Kb - K" 4.17 



': . 
I; 

) . 

't " 
. 
f j 
l' 
t; 

. .t : 

II 

j 1 

SEC. 4.6 APPLYING THE WORK·ENERGY THEOREM 163 

and applied it to a few simple cases. In this section we shall use 

it to tackle more complicated problems. However, a few com

ments on the properties of the theorem are in order first. 

To begin, we should emphasize that the work-energy theorem 

is a mathematical consequence of Newton's second law; we have 

introduced no new physical ideas. The work-energy theorem is 

merely the statement that the change in kinetic energy is equal 

to the net work done. This should not be confused with the 

general law of conservation of energy, an independent physical 

law which we shall discuss in Sec. 4.12. 

Possibly you are troubled by the following problem: to apply 

the work-energy theorem, we have to evaluate the line integral 

for workl 

Wba = !: F· dr 

and the evaluation of this integral depends on knowing what path 

the particle actually follows. We seem to need to know every

thing about the motion even before we use the work-energy 

theorem, and it is hard to see what use the theorem would be. 

In the most general case, the work integral depends on the path 

followed, and since we don't know the path without completely 

solving the problem, the work-energy theorem is useless. There 

are, fortunately, two special cases of considerable practical import

ance. For many forces of interest, the work integral does not 

depend on the particular path but only on the end points. Such 

forces, which include most of the important forces in physics, are 

called conservative forces. As we shall discuss later in this chapter, 

the work-energy theorem can be put in a very simple form when 

the forces are conservative . 

The work-energy theorem is also useful in cases where the 

path is known because the motion is constrained. By constrained 

motion, we mean motion in which external constraints act to keep 

the particle on a predetermined trajectory. The roller coaster is 

a perfect example. Except in cases of calamity, the roller coaster 

follows the track because it is held on by wheels both below and 

above the track. There are many other examples of constrained 

motion which come readily to mind-the conical pendulum is one 

(here the constraint is that the length of the string is fixed)-but 

all have one feature in common-the constraining force does no 

work. To see this, note that the effect of the constraint force is 

1 The C through the integral sign reminds us that the integral is to be evaluated 
along some specific curve. 
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to assure that the direction of the velocity is always tangential to 
the predetermined path. Hence, constraint forces change only 
the direction of v and do no work.! 

Example 4.6 The Inverted Pendulum 

A pendulum consists of a light rigid rod of length I, pivoted at one end! 
and with mass m attached at the other end. The pendulum is released i 
from rest at angle .po, as shown. What is the velocity of m when the: 
rod is at angle .p? 

The work-energy theorem gives 

Since Vo = 0, we have 

(2W )! 
v(.p) = �.4>' 

To evaluate W 4>.oP., the work done as the bob swings from .po to q" we 

examine the force diagram. dr lies along the circle of radius I. The 
forces acting are gravity, directed down, and the force of the rod, N. 
Since N lies along the radius, N . dr = 0, and N does no work. The work 
done by gravity is 

mg'dr = mOl cos (ip -�) dip 

= mol sin ip dip 

where we have used Idrl = I dl/!. 

WM• = f4>: mol sin I/! dl/! 

= '-mol cos I/! loP 
</>. 

= mol (cos I/!o - cos I/!)-

The speed at I/! is 

v(l/!) = [20l (cos I/!o - cos I/!)]t. 

The maximum velocity is obtained by letting the pendulum fall from the 

top, I/!o = 0, to the bottom, I/! = 7r: 

Vmax = 2(01)'. 

1 We can prove that constraint forces do no work as follows_ Suppose that the 
constraint force Feon,"aint changes the velocity by an amount Dove in time !1t. 
Dove is perpendicular to the instantaneous velocity v. The work done by Feon,traint 
is FeoD8traiDt' Dor = m(DoVe/ Dot)· (v /!;t) = m/!;ve • v = 0_ 
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This is the same speed attained by a mass falling through the same 

vertical distance 2l. However, the mass on the pendulum is not travel· 

ing vertically at the bottom of its path, it is traveling horizontally. 

If you doubt the utility of the work-energy theorem, try solving 

the last example by integrating the equation of motion. However, 

the example also illustrates one of the shortcomings of the method: 

we found a simple solution for the speed of the mass at any point 

on the circle-we have no information on when the mass gets 

there. For instance, if the pendulum is released at CPo = 0, in 

principle it balances there forever, never reaching the bottom. 

Fortunately, in many problems we are not interested in time, and 

even when time is important, the work-energy theorem provides 

a valuable first step toward obtaining a complete solution. 

Next we turn to the general problem of evaluating work done 

by a known force over a given path, the problem of evaluating 

line integrals. We start by looking at the case of a constant 

force. 

Example 4.7 Work Done by a Uniform Force 

The case of a uniform force is particularly simple. Here is how to find 

the work done by a force, F = Fon, where Fo is a constant and n is a 

unit vector in some direction, as the particle moves from ra to rb along 

some arbitrary path. All the steps are put in to make the procedure 

clear, but with any practice this problem can be solve.;! by inspection. 

fr. 
Wba = F· dr r. 

= Fon · dr 
f
r
. � 
r. = Fon· dr � fr. r. 

= F on . (i f X •. Y.,'. 
dx + j f X.,Y.,'. dy 

+ k f X.,Y.,'. 
dZ
) 

Xa,Ya,Za Xo.,Ya,Za Xcz,Yo.,Za 

= Fon· [i(Xb - Xa) + j(Yb - Ya) + k(Zb - Za») 

= Fon· (rb - ra) 

= Fo cos () Irb - ral 

For a constant force the work depends only on the net displacement, 

rb - ra, not on the path followed. This is not generally the case, but 

it holds true for an important group of forces, including central forces, 

as the next example shows. 
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Work Done by a Central Force 

A central force is a radial force which depends only on the distance from 

the origin. Let us find the work done by the central force F = j(r)r on 
a particle which moves from ra to rb. For simplicity we shall consider 

motion in a plane, for which dr = dr r + r d8 6. Then 

Wba = f ab F • dr 

f b 
A 

= 
a 

j(r)r· (dr r + r d8 6) 

= lab j(r) dr. 

The work is given by a simple one dimensional integral over the variable 

r. Since 8 has disappeared from the problem, it should be obvious that 

the work depends only on the initial and final radial distances [and, of 
course, on the particular form of j(r)), not on the particular path. 

For some forces, the work is different for different paths 

between the initial and f inal points. One familiar example is 
work done by the force of sliding friction. Here the force always 

opposes the motion, so that the work done by friction in moving 

through distance dS is dW = -f dS, where f is the magnitude 

of the friction force. If we assume that f is constant, then the 
work done by friction in going from ra to rb along some path is - J.fb 

f dS r. 

-fS, 

where S is the total length of the path. The work is negative 
because the force always retards the particle. Wbo is never 

smaller in magnitude than fSo, where So is the distance between 

the two points, but by choosing a sufficiently devious route, Scan 
be made arbitrarily large. 

A Path-dependent Line Integral 

Here is a second example of a path·dependent line integral. Let 

F = A (xyi + y2j), and consider the integral from (0,0) to (0,1), first 

along path 1 and then along path 2, as shown in the figure. The force 

F has no physical significance, but the example illustrates the properties 

of nonconservative forces. Since the segments of each pdh lie along a 
coordinate axis, it is particularly simple to evaluate the integrals. For 

path 1 we have 

f 1 F . dr 
= 

fa F . dr 
+ fb 

F . dr + Ic F . dr. 
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Along segment a, dr = dx i, F· dr = F. dx = ..Ixy dx. Since y = 0 
along the line of this integration, fa F· dr = O. Similarly, for path b, 

(F.dr = A (X= I ,Y=l y 2 dy 
h }x=l,y=O 

A = -, 
3 

while for path c, 

f F· dr = A (
x

= O,y = l xy dx 
c }x=I ,y=1 

Thus 

fo A 
= A 1 X dx = 2 

i F.dr=:!-� j 1 3 2 
A 
6 

Along path 2 we have 

1 !c0'l F· dr = A y2 dy 
2 0,0 

A 
3 

� 11 F· dr. 

The work done by the applied force is different for the two paths. 

Usually the path of a line integral does not lie conveniently 

along the coordinate axes but along some arbitrary curve. The 

following method of evaluating a line integral in such a case is 

quite general; use it if all else fails. 

For simplicity we again consider motion in a plane. Generaliza

tion to three dimensions is straightforward. 

The problem is to evaluate 1 ab F . dr along a specified path. 

The path can be characterized by an equation of the form 

g(x,y) = O. For example, if the path is a unit circle about the 

origin, then all points on the path obey x2 + y2 - 1 = O. 
We can characterize every point on the path by a parameter 

8 which in practical problems could be (for example) distance 

along the path, or angle-anything just as long as each point on 

L-.-----------x the path is associated with a value of 8 so that we can write 

\ 
g(x,y)=0 a 

ds 
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x = x(s), y = y(s). If we move along the path a short way, so � 
that s changes by the amount ds, then the change in x is ; 
dx = (dx/ds) ds, and the change in y is dy = (dy/ds) ds. Since; 
both x and yare determined by s, so are F x and Fy. Hence, we ; 
can write F = Fx(s)i + FII(s)l, and we have 

fabF.dr= lab(Fzdx+FlldY) 
= !.:b [Fz(s) �: + FII(s) ��] ds. 

We have reduced the problem to the more familiar problem of 
evaluating a one dimensional definite integral. The calculation is 
much simpler in practice than in theory. Here is an example. 

Parametric Evaluation of a Line Integral 

Evaluate the line integral of F = A (x3i + xy2j) from (x = 0, y = 0) to 

(x = 0, y = 2R) along the semicircle shown. 

The natural parameter to use here is 0, since as 0 varies from 0 to 11', 

the radius vector sweeps out the semicircle. We have 

x = R sin 0 dx = R cos 0 dO fi\ = AR3 sin3 0 

y = R(l - cos 0) dy = R sin 0 dO F. = AR3 sin 0(1 - cos 8)2 

f F· dr = A 10" [(R sin 0)3R cos 0 + R3 sin 0 (1 - cos 0)2R sin 0) dO 

= R4A 10" [sin3 0 cos 0 + sin2 0(1 - cos 0)2) dO. 

Evaluation of the integral is straightforward. 

carrying it through, try substituting u = cos O. 

4.7 Potential Energy 

If you are interested in 

. � 
, 1;:  

We introduced the idea of a conservative force in the last section. . 1> 

; � The work done by a conservative force on a particle as it moves 
from one point to another depends only on the end points, not 
on the path between them. Hence, for a conservative force, 

1. fb 
f. 

F . dr = function of (rb) - function of (r a) 

or 

4.18 

where U(r) is a function, defined by the above expression, known 
as the potential energy function. (The reason for the sign con-

\; 
. � 

t 
. f 

f 
.� 
�: 
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vention will be clear in a moment.) Note that we have not proven 

that U(r) exists. However, we have already seen several cases 

where the work is indeed path-independent, so that we can 

assume that U exists for at least a few forces. 

The work-energy theorem Wba = Kb - Ka now becomes 

Wba = -Ub + Ua 

= Kb - Ka 

or, rearranging, 

4.19 

The left hand side of this equation, Ka + Ua, depends on the 

speed of the particle and its potential energy at ra; it makes no 

reference to fb. Similarly, the right hand side depends on the 

speed and potential energy at rb; it makes no reference to ra. 
This can be true only if each side of the equation equals a con

stant, since ra and rb are arbitrary and not specially chosen points. 

Denoting this constant by E, we have 

4.20 

E is called the total mechanical energy of the particle, or, some

what less precisely, the total energy. We have shown that if the 

force is conservative, the total energy is independent of the posi

tion of the particle-it remains constant, or, in the language of 

physics, the energy is conserved. Although the conservation of 

mechanical energy is a derived law, which means that it has basi

cally no new physical content, it presents such a different way of 

looking at a physical process compared with applying Newton's 

laws that we have what amounts to a completely new tool. Fur

thermore, although the conservation of mechanical energy follows 

directly from Newton's laws, it is an important key to understanding 

the more general law of conservation of energy, which is indepen

dent of Newton's laws and which vastly increases our understand· 

ing of nature. Wh�n we discuss this in greater detail in Sec. 4.12, 
we shall see that the conservation law for mechanical energy turns 

out to be a special case of the more general law. 

A peculiar property of energy is that the value of E is to a cer

tain extent arbitrary; only changes in E have physical significance. 

This comes about because the equation 

Ub - Ua = - lab F· dr 
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defines only the difference in potential energy between a and b' 

and not the potential energy itself. We could add a constant to 

Ub and the same constant to Ua and still satisfy the defining 

equation. However, since E = K + U, adding a constant to 

U increases E by the same amount. 

Illustrations of Potential Energy 

We have already seen that for a uniform force or a central force 

the work is path·independent. There are many other conserva· . 

tive forces, but by way of illustrating potential energy, here are 

two examples involving these forces. 

Example 4.11 Potential Energy of a Uniform Force Field 

From Example 4.7, the work done by a uniform force is Wba = Fo ' (rb - r,) 
For instance, the force on a particle of mass m due to a uniform gravita 

tional field is -mgk, so that if the particle moves from ra to rh, the cha nge 

in potential energy is 

Ub - Ua = - (-mg)dz 
j,

'
h 

,. 

= mg(Zb - Za). 

If we adopt the convention U = 0 at ground level where z = 0, then , 

U(h) = mgh, where h is the height above the ground. However, a 

potential energy of the form mgh + C, where C is any constant. is just 
as suitable. 

I n Example 4.1 we considered the problem of a mass projected upward 

with a given initial velocity in a region of constant gravity. Here is how 

to solve the same problem by using conservation of energy. 

Suppose that a mass is projected upward with initial velocity Yo = 

voxi + voyj + vo.k. Find the speed at height h. 

Ko + Uo = K(h) + U(h) 
tmvo2 + 0 = tmv(h)2 + mgh 

or 

v(h) = Vvo2 - 2gh. 

Example 4.11 is trivial, since motion in a uniform force field is 

easily found from F = mao However, it does illustrate the ease 

with which the energy method handles the problem. For instance, 

motion in all three directions is handled at once, whereas Newton's 

law involves one equation for each component of motion. 
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Example 4.12 Potential Energy of an Inverse Square Force 

r 

--� 
� ',-

��\ . 
�� F =- k(r- rO)r 

� 

Frequently we encounter central forces F = f(r)r, where f(r) is some 

function of the distance to the origin. For instance, in the case of the 

Coulomb electrostatic force, F 0:: (qlqdr2)r, where ql and q2 are the 

charges of two interacting particles. The gravitational force between 

two particles provides another example. 

The potential energy of a particle in a central force F = j(r)r obeys 

Ub - Ua = - j. fb F 'dr 
r. 

- f, Tb j(r) dr. 
T. 

For an inverse square force, f(r) = A/r2, and we have 

f,Th A 
Ub - Ua = - -dr 

Ta r2 
A A 

To obtain the general potential energy function, we replace rb by the 

radial variable r. Then 

U(r) = � + (Ua - �) 
r ra 

A 
=-+ C. 

r 

The constant C has no physical meaning. since only changes in U are 

significant. We are free to give C any value we like. A convenient 

choice in this case is C = 0, which corresponds to taking U (00 ) = O. 
With this convention we have 

A 
U(r) = -' 

r 

One of the most important forces in physics is the linear restor

ing force, the spring force. To show that the spring force is con

servative, consider a spring of equilibrium length 1'0 with one end 

attached at the origin. If the spring is stretched to length r 
along direction r, it exerts a force 

F(r) = -k(r - 1'o)r. 

Since the force is central, it is conservative. The potential energy 

is given by 

U(r) - U(a) = - IaT (-k)(1' - 1'0) d1' 

= {-k(1' - rop l:. 
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Hence 

U(r) = !k(r - rO)2 + C. 

Conventionally, we choose the potential energy to be zero at equi· 

librium: U(ro) = O. This gives 

U(r) = !k(r - rop. 4.21 

When several conservative forces act on a particle, the potential 

energy is the sum of the potential energies for each force. In the 

next example, two conservative forces act. 

Example 4.13 Bead, Hoop, and Spring 

A bead of mass m slides without friction on a vertical hoop of radius R. 
The bead moves under the combined action of gravity and a spring 

attached to the bottom of the hoop. For simplicity, we assume that the 

equilibrium length of the spring is zero, so that the force due to the 

spring is -kr, where r is the instantaneous length of the spring, as 

shown. 

The bead is released at the top of the hoop with negligible speed. 

How fast is the bead moving at the bottom of the hoop? 

At the top of the hoop, the gravitational potential energy of the bead 

7$.:w9.�:w9.:w9.:w9.:w9.�WJi��� is mg(2R) and the potential energy due to the spring is tk(2R)2 = 2kRI. 
Hence the initial potential energy is 

The potential energy at the bottom of the hoop is 

Since all the forces are conservative, the mechanical energy is con· 

stant and we have 

The initial kinetic energy is zero and we obtain 

or 

Hence 
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4.8 What Potential Energy Tells Us about Force 

If we are given a conservative force, it is a straightforward matter 

to find the potential energy from the defining equation 

Ub - Ua = - Jab F • dr, 

where the integral is over any path from ra to rb. However, in 

many cases it is easier to characterize a force by giving its paten· 

tial energy function rather than by specifying each of its compo

nents. In such cases we would like to use our knowledge of the 

potential energy to determine what force is acting. The proce

dure for finding the force turns out to be simple. In this sec

tion we shall learn how to find the force from the potential energy 

in a one dimensional system. The general case of three dimen

sions can be treated by a straightforward extension of the method 

developed here, but since it involves some new notation which is 

more readily introduced in the next chapter, let us defer the three 

dimensional case until then. 

Suppose that we have a one dimensional system, such as a mass 

on a spring, in which the force is F(x) and the potential energy is 

Ub - Ua = - F(x) dx. f,Xb x. 
Consider the change in potential energy I::..U as the particle moves 

from some point x to x + I::..x. 

U(x + .:lx) - U(x) == AU 

= - !xXHX F(x) dx. 

For I::..x sufficiently small, F(x) can be considered constant over 

the range of integration and we have 

I::..U � -F(x)(x + Ax - x) 

= -F(x) Llx 

or 

LlU 
F(x) � -_. 

Llx 

In the limit I::..x � 0 .we have 

dU 
F(x) = -

dx
· 4.22 

The result is quite reasonable: potential energy is the negative 

integral of the force, and it follows that force is the negative deriv

ative of the potential energy. 
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Stability 

The result F = -dU /dx is useful not only for computing the 

force but also for visualizing the stability of a system from a dia· 

gram of the potential energy. For instance, in the case of a har· 

monic oscillator the potential energy U = kx2j2 is described by a 
parabola. 

At point a, dU /dx > 0 and so the force is negative. At point b, 

dU /dx < 0 and the force is positive. At c, dU /dx = 0 and the 

force is zero. The force is directed toward the origin no matter 

-----..::...�-----x which way the particle is displaced, and the force vanishes only 

u 

o 

c 

�'" 
\ 

\ 
\ 
I 

I ;' 1 
I (I ---1 

�/ m 1(1 - cos II) 

, 

when the particle is at the origin. The minimum of the potential 

energy curve coincides with the equilibrium position of the system. 

Evidently this is a stable equilibrium, since any displacement of 

the system produces a force which tends to push the particle 

toward its resting point. 

Whenever dU /dx = 0, a system is in equilibrium. However, 

if this occurs at a maximum of U, the equilibrium is not stable, 

since a positive displacement produces a positive force, which 

tends to increase the displacement, and a negative displacement 

produces a negative force, which again causes the displacement 

to become larger. A pendulum of length l supporting mass m 
offers a good illustration of this. If we take the potential energy 

to be zero at the bottom of its swing, we see that 

U(I) = mgz 

= mgl(l - cos 8). 

The pendulum is in equilibrium for I) = 0 and I) = 71". However, 

although the pendulum will quite happily hang downward for 

as long as you please, it will not hang vertically up for long. 

dU /dx = 0 at 8 = 71", but U has a maximum there and the equi· 

librium is not stable. 

The sketch of a potential energy function makes the idea of 
stability almost intuitively obvious. A minimum of a potential 

energy curve is a point of stable equilibrium, and a maximum is 

a point of unstable equilibrium. In more descriptive terms, the 

system is stable at the bottom of a potential energy "valley," and 

unstable at the top of a potential energy "hill." 

Alternatively, we can use a simple mathematical test to deter· 

mine whether or not an equilibrium point is stable. Let U(x) be 

the potential energy function for a particle. As we have shown, 

the force on the particle is F = -dUjdx, and the system is in 

equilibrium where dU /dx = O. Suppose that this occurs at some 
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point Xo. To test for stability we must determine whether U has 

a minimum or a maximum at Xo. To accomplish this we need to 

examine d2U /d:r.2 at Xo. If the second derivative is positive, the 

equilibrium is stable; if it is negative, the system is unstable. If 

d2U /dx2 = 0, we must look at higher derivatives. If all derivatives 

vanish so that U is constant in a region about xo, the system is 

said to be in a condition of neutral stability-no force results from 

a displacement; the particle is effectively free. 

I u I U I 

"-V 
I I 

� � I I I I 
x x xo xo xo 

d2U >0 d2U <0 d2U 
-- =0 

dx2 dx2 dx2 
<table unstable neutral 

Example 4.14 Energy and Stability-The Teeter Toy 

m 

1 cos(a -0) 

The teeter toy consists of two identical weights which hang from a peg on 

drooping arms, as shown. The arrangement is unexpectedly stable

the toy can be spun or rocked with little danger of toppling over. We 

can see why this is so by looking at its potential energy. For simplicity, 

we shall consider only rocking motion in the vertical plane. 

Let us evaluate the potential energy when the teeter toy is cocked at 

angle fJ, as shown in the sketch. If we take the zero of gravitational 

potential at the pivot, we have 

U(fJ) = mg[L cos fJ - l cos (a + fJ») + mg[L cos fJ - l cos (a - fJ»). 

Using the identity cos (a ± fJ) = cos a cos fJ + sin a sin fJ, we can rewrite 

U(fJ) as ----ij- U(fJ) = 2mg cos fJ(L - l cos a). 

m 

Equilibrium occurs when 

dU 

dfJ 
-2mg sin fJ(L - l cos a) 

= O. 

The solution is fJ = 0, as we expect from symmetry. (We reject the solu· 

tion fJ = 7r on the grounds that fJ must be limited to values less than 

x 
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71"/2.) To investigate the stability of the equilibrium position, we must 

examine the second derivative of the potential energy. We have 

d2U 
- = -2mg cos (J(L - l cos a). 
d(J2 

. 

At equilibrium, 

d2U I = -2mg(L - l cos a). 
df}2 8=0 

For the second derivative to be positive, we require L - l cos a < 0, or 

L < l cos a. 
1/ cos a 
I In order for the teeter toy to be stable, the weights must hang below the 

pivot. 
I 

4.9 Energy Diagrams 

We can often find the most interesting features of the motion of 

a one dimensional system by using an energy diagram, in which the 

total energy E and the potential energy U are plotted as functions 

of position. The kinetic energy K = E - U is easily found by 

inspection. Since kinetic energy can never be negative, the 

motion of the system is constrained to regions where U � E. 
Here is the energy diagram for a harmonic oscillator. The 

potential energy U = kx2/2 is a parabola centered at the origin. 

Since the total energy is constant for a conservative system, E is 

represented by a horizontal straight line. Motion is limited to the 

shaded region where E � U; the limits of the motion, Xl and X2 
in the sketch, are sometimes called the turning points. 

Here is what the diagram tells us. The kinetic energy, 

:......----'---x K = E - U, is greatest at the origin. As the particle flies past 

X2 the origin in either direction, it is slowed by the spring and comes 

to a complete rest at one of the turning points Xl, X2. The par· 

ticle then moves toward the origin with increasing kinetic energy, 

and the cycle is repeated. 

The harmonic oscillator provides a good example of bounded 

motion. As E increases, the turning points move farther and 

farther off, but the particle can never move away freely. If E is 

decreased, the amplitude of motion decreases, until finally for 

E = 0 the particle lies at rest at X = o. 

Quite a different behavior occurs if U does not increase indefi· 

nitely with distance. For instance, consider the case of a particle 

constrained to a radial line and acted on by a repulsive inverse 

; ' 
L 
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square law force Ai/r2. Here U = Air, where A is positive. 
There is a distance of closest approach, rmin' as shown in the dia· 
gram, but the motion is not bounded for large r since U decreases 
with distance. If the particle is shot toward the origin, it gradually 
loses kinetic energy until it comes momentarily to rest at l·min. 

The motion then reverses and the particle moves out toward 
infinity. The final and initial speeds at any point are identical; 
the collision merely reverses the velocity. 

With some potentials, either bounded or unbounded motion can 
occur depending upon the energy. For instance, consider the 
interaction between two atoms. At large separations, the atoms 
attract each other weakly with the van der Waals force, which 
varies as 1/r7. As the atoms approach, the electron clouds begin 
to overlap, producing strong forces. In this intermediate region 
the force is either attractive or repulsive depending on the details 
of the electron configuration. If the force is attractive, the poten
tial energy decreases with decreasing r. At very short distances 
the atoms always repel each other strongly, so that U increases 
rapidly as r becomes small. 

The energy diagram for a typical attractive two atom system is 
shown in the sketch. For positive energy, E > 0, the motion is 
unbounded, and the atoms are free to fly apart. As the diagram 
indicates, the distance of closest approach, rmin, does not change 
appreciably as E is increased. The steep slope of the potential 
energy curve at small r means that the atoms behave like hard 
spheres-rmin is not sensitive to the energy of collision. 

The situation is quite different if E is negative. Then the motion 
is bounded for both small and large separations; the atoms never 
approach closer than ra or move farther apart than rb. A bound 
system of two atoms is, of course, a molecule, and our sketch rep
resents a typical diatomic molecule energy diagram. If two atoms 
collide with positive energy, they cannot form a molecule unless 
some means is available for losing enough energy to make E nega
tive. In general, a third body is necessary to carry off the excess 
energy. Sometimes the third body is a surface, which is the rea
son surface catalysts are used to speed certain reactions. For 
instance, atomic hydrogen is quite stable in the gas phase even 
though the hydrogen molecule is tightly bound. However, if a 
piece of platinum is inserted in the hydrogen, the atoms imme
diately join to form molecules. What happens is that hydrogen 
atoms tightly adhere to the surface of the platinum, and if a colli
sion occurs between two atoms on the surface, the excess energy 
is released to the surface, and the molecule, which is not strongly 
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attracted to the surface, leaves. The energy delivered to the sur· 

face is so large that the platinum glows brightly. A third atom 

can also carry off the excess energy, but for this to happen the 

two atoms must collide when a third atom is nearby. This is a rare 

event at low pressures, but it becomes increasingly important at 

higher pressures. Another possibility is for the two atoms to lose 

energy by the emission of light. However, this occurs so rarely 

that it is usually not important. 

4.10 Small Oscillations in a Bound System 
;, 

l , p 
The interatomic potential we discussed in the last section illus· � 
trates an important feature of all bound systems; at equilibrium �, 
the potential energy has a minimum. As a result, nearly every �" 
bound system oscillates like a harmonic oscillator if it is slightly J 
perturbed from its equilibrium position. This is suggested by the . : 
appearance of the energy diagram near the minimum-U has �. 
the parabolic shape of a harmonic oscillator potential. If the total l 
energy is low enough so that the motion is restricted to the region 1 

{ where the curve is nearly parabolic, as illustrated in the sketch, i' 
the system must behave like a harmonic oscillator. It is not diffi· , � 
cult to prove this. l 

As we have discussed in Note 1.1, any "well behaved" function J. f(x) can be expanded in a Taylor's series about a point Xo· Thus t 
f(x) = f(xo) + (x - xo)f'(xo) + Hx - XO)2f"(XO) + . . . . 

Suppose that we expand U(r) about ro, the position of the poten· 

tial minimum. Then 

dU I 1 d2U I U(r) = U(ro) + (r - ro) -d + -2 (r - ro)2 -d 2 + r To r TO 

However, since U is a minimum at ro, (dU /dr) Iro = O. Further· 

more, for sufficiently small displacements, we can neglect the 

terms beyond the third in the power series. In this case, 

1 d2U \ 
U(r) = U(ro) + - (r - ro)2 -d 2 2 r ro 

This is the potential energy of a harmonic oscillator, 

kx2 
U(x) = constant + T

· 
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We can even identify the effective spring constant: 

k=-
d2U I dr2 ro 

Molecular Vibrations 

179 

4.23 

Suppose that two atoms of masses ml and m2 are bound together in a 

molecule with energy so low that their separaijon is always close to the 

equilibrium value roo With the parabola approximation, the effective 

spring constant is k = (d2U /dT2) Iro. How can we find the vibration 

frequency of the molecule? 

Consider the two atoms connected by a spring of equilibrium length 

To and spring constant k, as shown below. The equations of motion are 

mdl = k(T - To) 

m2r2 = - k(T - To), 

where T = T2 - TI is the instantaneous separation of the atoms. We 

can find the equation of motion for T by dividing the first equation by ml 
and the second by m2, and subtracting. The result is 

or 

k 
r = - - (T - To), 

!J. 

where!J. = mlmd(ml + m2). !J. has the dimension of mass and is called 

the reduced mass. 

By analogy with the harmonic oscillator equation x = - (k/m)(x - xo) 

for which the frequency of oscillation is w = �, the vibrational fre· 

quency of the molecule is 

w=� 
= ��T� Iro�· 

This vibrational motion, characteristic of all molecules, can be identified 

by the light the molecule radiates. The vibrational frequencies typically 

lie in the near infrared (3 X 1013 Hz), and by measuring the frequency 

we can find the value of d2U /dT2 at the potential energy minimum. For 

the HCI molecule, the effective spring constant turns out to be 5 X 10· 

dynes/cm = 500 N/m (roughly 3Ib/in). For large amplitudes the higher 

order terms in the Taylor's series start to play a role, and these lead to 

slight departures of the oscillator from its ideal behavior. The slight 
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"anharmonicities" introduced by this give further details on the shape 

of the potential energy curve. 

Since all bound systems have a potential energy minimum at 

equilibrium, we naturally expect that all bound systems behave 

like harmonic oscillators for small displacements (unless the mini· 

mum is so flat that the second derivative vanishes there also). 

The harmonic oscillator approximation therefore has a wide range 

of applicability, even down to internal motions in nuclei. 

Once we have identified the kinetic and potential energies of a 

bound system, we can find the frequency of small oscillations by 

inspection. For the elementary case of a mass on a spring we 

have 

u = ikx2 
K = imx2 

and 

w= � . 

In many problems, however, it is more natural to write the ener· 

gies in terms of a variable other than linear displacement. For 

instance, the energies of a pendulum are 

U = mgl(l - cos 8) "'" imgl82 
K = jml2(j2. 

More generally, the energies may have the form 

U = iAq2 + constant 
4.24 

K = iBq2, 

where q represents a variable appropriate to the problem. By 

analogy with the mass on a spring, we expect that the frequency 

of motion of the oscillator is 

w=� . 4.25 

To show explicitly that any system whose energy has the form 

of Eq. (4.24) oscillates harmonically with a frequency vi AlB, note 

that the total energy of the system is 

E= K +U 

= jBq2 + iAq2 + constant. 
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Since the system is conservative, E is constant. Differentiating 
the energy equation with respect to time gives 

dE 
- = Bqq + Aqq 
dt 

= 0 
or 

A q 
+ Ii q 

= O. 

Hence q undergoes harmonic motion with frequency V AlB. 

Small Oscillations 
In Example 4.14 we determined the stability criterion for a teeter toy. In 

this example we shall find the period of oscillation of the toy when it is 

rocking from side to side. 

From Example 4.14, the potential energy of the teeter toy is 

U((J) = -A cos 8, 

where A = 2mg(1 cos a - L). For stability, A > O. If we expand U (8) 
about 0 = 0, we have 

( 02 U(O) = -A 1 - 2" + 
-). 

since cos 8 = 1 - 82/2 + Thus, 

U(O) = -A + tA02. 

To find the kinetic energy, let s be the distance of each mass from the 

pivot, as shown in the sketch. If the toy rocks with angular speed (j, the 

speed of each mass is s(j, and the total kinetic energy is 

K = t(2m)s2(j2 
= tB(j2, 

where B = 2ms2. 
Hence the frequency of oscillation is 

= �g(l cos a - L). 

S2 
1 
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We found in Example 4.14 that for stability l cos a - L > O. Equation 

(1) shows that as I cos a - L approaches zero, w approaches zero, and 

the period of oscillation becomes infinite. I n the limit l cos a - L = 0, 

the system is in neutral equilibrium, and if l cos' a - L < 0, the system 

becomes unstable. Thus, a low frequency of oscillation is associated 

with the system operating near the threshold of stability. This is a 

general property of stable systems, because a low frequency of oscillation 

corresponds to a weak restoring force. For instance, a ship rolled by a 

wave oscillates about equilibrium. For comfort the period of the roll 
should be long. This can be accomplished by designing the hull so that 

its center of gravity is as high as possible consistent with stability. Low· 

ering the center of gravity makes the system "stiffer." The roll becomes 

quicker and less comfortable, but the ship becomes intrinsically more 

stable. 

4.11 Nonconservative Forces 

We have stressed conservative forces and potential energy in this 

chapter because they play an important role in physics. However, 

in many physical processes nonconservative forces like friction are 

present. Let's see how to extend the work-energy theorem to 

include nonconservative forces. 

Often both conservative and nonconservative forces act on the 

same system_ For instance, an object falling through the air 

experiences the conservative gravitational force and the noncon· 

servative force of air friction. We can write the total force F as 

F = Fe + Fnc 

where fa and Fnc are the conservative and the nonconservative 

forces respectively. Since the work-energy theorem is true 

whether or not the forces are conservative, the total work done 

by F as the particle moves from a to b is 

Wb"total la
b 

F· dr 

f Fe • dr + f Fnc • dr 

= -Ub + Ua + Wbanc• 

Here U is the potential energy associated with the conservative 

force and Wbanc is the work done by the nonconservative force. 

The work-energy theorem, Wbatotal = Kb - Ka, now has the form 
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or 

4.26 

If we define the total mechanical energy by E = K + U, as 

before, then E is no longer a constant but instead depends on 

the state of the system. We have 

4.27 

This result is a generalization of the statement of conservation of 

mechanical energy which we discussed in Sec. 4.7. If noncon

servative forces do no work, Eb = Ea, and mechanical energy is 

conserved. However, this is a special case, since nonconserva

tive forces are often present. Nevertheless, energy methods 

continue to be useful; we simply must be careful not to omit the 

work done by the nonconservative forces, Wbanc. Here is an 

example. 

Block Sliding down Inclined Plane 

A block of mass M slides down a plane of angle e. The problem is to 

find the speed of the block after it has descended through height h, 

assuming that it starts from rest and that the coefficient of friction f.J. is 

constant. 

I nitially the block is at rest at height h; finally the block is moving with 

speed v at height O. Hence 

Ua = Mgh 

Ka = 0 

Ea = Mgh 

Ub = 0 

Kb = tMv2 

Eb = tMV2. 

The nonconservative force is f = p.N = f.J.Mg cos e. Hence, the non

conservative work is 

WbaM = lab f • dr 

= -fs, 

where s is the distance the block slides. The negative sign arises because 

the direction of f is always opposite to the displacement, so that f . dr = 
-f dr. Using s = h/sin e, we have 

h 
Wbanc = -f.J.Mg cos e -

sin e 

-f.J. cot e Mgh. 
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The energy equation Eb - Ea = Wbanc becomes 

tMv2 - Myh = -J.I. cot 0 Myh, 

which gives 

v = [2(1 - J.I. cot O)yh)'. 

Since all the forces acting on the block are constant, the expression 

for v could easily be found by applying our results for motion under uni

form acceleration; the energy method does not represent much of a 

shortcut here. The power of the energy method lies in its generality. 

For instance, suppose that the coefficient of friction varies along the 

surface so that the friction force is f = J.I.(x)M y cos O. The work done 

by friction is 

Wbanc = -My cos o lab J.I.(x) dx, 

and the final speed is easily found. In contrast, there is no simple way 

to find the speed by integrating the acceleration with respect to time. 

4.12 The General law of Conservation of Energy 

As far as we know, the basic forces of nature, such as the force 

of gravity and the forces of electric and magnetic interactions, are 

conservative. This leads to a puzzle; if fundamental forces are 

conservative, how can nonconservative forces arise? The resolu· 

tion of this problem lies in the point of view we adopt in describing 

a physical system, and in our willingness to broaden the concept 

of energy. 

Consider friction, the most familiar nonconservative force. 

Mechanical energy is lost by friction when a block slides across a 

table, but something else occurs: the block and the table get 

warmer. However, there was no reference to temperature in 

our development of the concept of mechanical energy; a block of 

mass M moving with speed v has kinetic energy iMv2, whether 

the block is hot or cold. The fact that a block sliding across a 

table warms up does not affect our conclusion that mechanical 

energy is lost. Nevertheless, if we look carefully, we find that the 

heating of the system bears a definite relation to the energy dis· 

sipated. The British physicist James Prescott Joule was the 

first to appreciate that heat itself represents a form of energy. 
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By a series of meticulous experiments on the heating of water by 
a paddle wheel driven by a falling weight, he showed that the loss 

of mechanical energy by friction is accompanied by the appearance 

of an equivalent amount of heat. Joule concluded that heat must 

be a form of energy and that the sum of the mechanical energy 

and the heat energy of a system is conserved. 

We now have a more detailed picture of heat energy than was 
available to Joule. We know that solids are composed of atoms 

held together by strong interatomic forces. Each atom can oscil
late about its equilibrium position and has mechanical energy in 

the form of kinetic and potential energies. As the solid is heated, 

the amplitude of oscillation increases and the average energy of 

each atom grows larger. The heat energy of a solid is the mechan

ical energy of the random vibrations of the atoms. 

There is a fundamental difference between mechanical energy 

on the atomic level and that on the level of everyday events. The 

atomic vibrations in a solid are random; at any instant there are 

atoms moving in all possible directions, and the center of mass of 

the block has no tendency to move on the average. Kinetic energy 
of the block represents a collective motion; when the block moves 

with velocity v, each atom has, on the average, the same velocity v. 

Mechanical energy is turned into heat energy by friction, but 

the reverse process is never observed. No one has ever seen a 

hot block at rest on a table suddenly cool off and start moving, 

although this would not violate conservation of energy. The 

reason is that collective motion can easily become randomized. 

For instance, when a block hits an obstacle, the collective trans

lational motion ceases and, under the impact, the atoms start to 

jitter more violently. Kinetic energy has been transformed to 

heat energy. The reverse process where the random motion of 

the atoms suddenly turns to collective motion is so improbable 

that for all practical purposes it never occurs. It is for this reason 

that we can distinguish between the heat energy and the mechan

ical energy of a chunk of matter even though on the atomic scale 

the distinction vanishes. 

We now recognize that in addition to mechanical energy and 

heat there are many other forms of energy. These include the 

radiant energy of light, the energy of nuclear forces, and, as we 

shall discuss in Chap. 13, the energy associated with mass. It is 

apparent that the concept of energy is much wider than the simple 

idea of kinetic and potential energy of a mechanical system. We 

believe that the total energy of a system is conserved if all forms 

of energy are taken into account. 
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4.13 Power 

Power is the time rate of doing work. If a force F acts on a body 
which undergoes a displacement dr, the work is dW = F . dr and 
the power delivered by the force is 

p = dW = F. dr 
dt dt 

= F ,y. 

The unit of power in the SI system is the watt (W). 

1 W = 
1 J/s. 

In the cgs system, the unit of power is the ergls 
= 

10-7 W; it has: 
no special name. The unit of power in the English system is the ; 
horsepower (hp). The horsepower is most commonly defined as i 
550 fHb/s, but slightly different definitions are sometimes encoun· ] 
teredo The relation between the horsepower and the watt is 

1 hp "'" 746 W. 

This is a discouraging number for builders of electric cars; the 
average power obtainable from an ordinary automobile storage 
battery is only about 350 W. 

The power rating of an engine is a useful indicator of its per· . 
formance. For instance, a small motor with a system of reduction ! 
gears can raise a large mass M any given height, but the process 
will take a long time; the average power delivered is low. The 
power required is Mgv, where v is the weight's upward speed. 
To raise the mass rapidly the power must be large. 

A human being in good condition can develop between i to 1 hp 
for 30 s or so, for example while running upstairs. Over a period ; 
of 8 hours (h), however, a husky man can do work only at the rate � 
of about 0.2 hp = 150 W. The total work done in 8 h is then : 

(150)(8)(3,600) 
= 

4.3 X 108 J "'" 1,000 kcal. The kilocalorie, approx· 
imately equal to 4,200 J, is-often used to express the energy avail· 
able from food. A normally active person requires 2,000 to 3,000: 
kcal/d. (In dietetic work the kilocalorie is sometimes called the 
"large" calorie, but more often simply the calorie.) 

The power production of modern industrialized nations corre· 
sponds to several thousand watts per person (United States: 6,000 
W per person; India: 300 W per person). The energy comes pri· 
marily from the burning of fossil fuels, which are the chief source 
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of energy at present. In principle, we could use the sun's energy 

directly. When the sun is overhead, it supplies approximately 

1,000 W/m2 ( � 1 hp/yd2) to the earth's surface. Unfortunately, 

present solar cells are costly and inefficient, and there is no 

economical way of storing the energy for later use. 

4.14 Conservation Laws and Particle Collisions 

Much of our knowledge of atoms, nuclei, and elementary particles 

has come from scattering experiments. Perhaps the most dra· 

matic of these was the experiment performed in 1911 by Ernest 

Rutherford in which alpha particles (doubly ionized helium atoms) 

were scattered from atoms of gold in a thin foil. By studying how 

the number of scattered alpha particles varied with the deflection 

angle, Rutherford was led to the nuclear model of the atom. The 

techniques of experimental physics have advanced considerably 

since Rutherford's time. A high energy particle accelerator sev· 

eral miles long may appear to have little in common with Ruther· 

ford's tabletop apparatus, but its purpose is the same-to discover 

the interaction forces between particles by studying how they 

scatter. 

Finding the interaction force from a scattering experiment is a 

difficult task. Furthermore, the detailed description of collisions 

on the atomic scale generally requires the use of quantum 

mechanics. Nevertheless, there are constraints on the motion 

arising from the conservation laws of momentum and energy 

which are so strong that they are solely responsible for many of 

the features of scattering. Since the conservation laws can be 
applied without knowing the interactions, they play a vital part in 

the analysis of collision phanomena. 

In this section we shall see how to apply the conservation laws 

of momentum and energy to scattering experiments. No new 

physical principles are involved; the discussion is intended to 

illustrate ideas we have already introduced. 

Collisions and Conservation Laws 

The drawings below show three stages during the collision of two 

particles. In (a), long before the collision, each particle is effec· 

tively free, since the interaction forces are generally important 

only at very small separations. As the particles approach, (b), 
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the momentum and energy of each particle change due to the 
interaction forces. Finally, long after the collision, (c), the par· 

ticles are again free and move along straight lines with new direc· 

tions and velocities. Experimentally, we usually know the initial 

velocities VI and V2; often one particle is initially at rest in a target 

and is bombarded by particles of known energy. The experiment 

might consist of measuring the final velocities v� and v� with suit· 

able particle detectors. 

, 

vI/' 

�f-
\ m2 

(b) (c) 

Since external forces are usually negligible, the total momentum 
is conserved and we have 

P, = PI' 

For a two body collision, this becomes 

mlVI + m2V2 = mlv� + m2v�, 

4,28 

4.29 

Equation (4.29) is equivalent to three scalar equations. We have, 

however, six unknowns, the components of v� and v� . The energy 
equation provides an additional relation between the velocities, as  

we now show. 

Elastic and Inelastic Collisions 

Consider a collision on a linear air track between two riders of 

equal mass which interact via good coil springs. Suppose that 
initially rider 1 has speed vas shown and rider 2 is at rest. After 

the collision, 1 is at rest and 2 moves to'the right with speed v. 

It is clear that momentum has been conserved and that the total 
kinetic energy of the two bodies, Mv2j2, is the same before and 

after the collision. A collision in which the total kinetic energy is 

unchanged is called an elastic collision. A collision is elastic if the 

interaction forces are conservative, like the spring force in our 
example. 
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As a second experiment, take the same two riders and replace 

the springs by lumps of sticky putty. let 2 be initially at rest. 

After the collision, the riders stick together and move off with 

speed Vi. By conservation of momentum, Mv = 2Afv', so that 

Vi = v/2. The initial kinetic energy of the system is Mv2/2, but 

the final kinetic energy is (2M)v'2/2 = Mv2/4. Evidently in this 

collision the kinetic energy is only half as much after the collision 

as before. The kinetic energy has changed because the inter

action forces were nonconservative. Part of the energy of the 

collective motion was transformed to random heat energy in the 

putty during the collision. A collision in which the total kinetic 

energy is not conserved is called an inelastic collision. 

Although the total energy of the system is always conserved in 

collisions, part of the kinetic energy may be converted to some 

other form. To take this into account, we write the conservation 

of energy equation for collisions as 

4.30 

where Q = Ki - K/ is the amount of kinetic energy converted 

to another form. For a two body collision, Eq. (4.30) becomes 

4.31 

In most collisions on the everyday scale, kinetic energy is lost and 

Q is positive. However, Q can be negative if internal energy of 

the system is converted to kinetic energy in the collision. Such 

collisions are sometimes called superelastic, and they are important 

in atomic and nuclear physics. Superelastic collisions are rarely 

encountered in the everyday world, but one example would be the 

collision of two cocked mousetraps. 

Collisions in One Dimension 

If we have a two body collision in which the particles are con

strained to move along a straight line, the conservation laws, Eqs. 

(4.29) and (4.31), completely determine the final velocities, regard

less of the nature of the interaction forces. With the velocities 

shown in the sketch, the conservation laws give 

Momentum: 

4.32a 

Energy: 

4.32b 
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These equations can be solved for v� and v� in terms of ml, m2, 

VI, V2, and Q. The next example illustrates the process. 

Elastic Collision of Two Balls 

Consider the one dimensional elastic collision of two balls of masses m, 

and m2, with m2 = 3m,. Suppose that the balls have equal and opposite 

velocities y before the collision; the problem is to find the final velocities. 

The conservation laws yield 

m,v - 3m,v = mlv� + 3mlv� 

tm,v2 + j(3m,)v2 = tm\v? + t(3ml)V? 

We can eliminate v; using Eq. (1): 

v; = -2v - 3v�. 

I nserting this in Eq. (2) gives 

4v2 = (-2v - 3V�)2 + 3V�2 
= 4v2 + 12vv� + 12v�2 

or 

o = 12vv� + 12v�2. 

Equation (4) has two solutions: v� = -v and v� = o. 
values of v; can be found from Eq. (3). 

Solution 1: 
, 

VI = V 

, 
v2 = -v. 

Solution 2: 

v� = -2v 

v� = o. 

We recognize that solution 1 simply restates the initial conditions: we 

always obtain such a "solution" in this type of problem because the initial 

velocities evidently satisfy the conservation law equations. 

Solution 2 is the interesting one. It shows that after the collision, ml 

is moving to the left with twice its original speed and the heavier ball is 

at rest. 

Collisions and Center of Mass Coordinates 

It is almost always simpler to treat three dimensional collision 

problems in the center of mass (C) coordinate system than in the 

laboratory (L) system. 
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Consider two particles of masses mi and m2, and velocities VI 

and V2. The center of mass velocity is 

v 

As shown in the velocity diagram at left, V lies on the line joining 

VI and V2. 

The velocities in the C system are 

and 

V2c = V2 - V 

-mi 
---'-- (VI - V2). 
mi + m2 

VIc and V2c lie back to back along the relative velocity vector 

v = VI - V2. 

The momenta in the C system are 

mIm2 
= (VI - V2) 

mi + m2 

= J.LV 

P2c = m2V2c 

-mIm2 
--- (VI- V2) 
ml + m2 

= -J.LV. 

Here J.L = mlmd(ml + m2) is the reduced mass of the system. 

We encountered the reduced mass for the first time in Example 

4.15. As we shall see in Chap. 9, it is the natural unit of mass in 

a two particle system. The total momentum in the C system is 

zero, as we expect. 

The total momentum in the L system is 
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and since total momentum is conserved in any collision, V is con· 

stant. We can use this result to help visualize the velocity vectors 

before and after the collision. 

Sketch (a) shows the trajectories and velocities of two colliding 

particles. In sketch (b) we show the initial velocities in the Land 
C systems. All the vectors lie in the same plane. VIc and VI, 
must be back to back since the total momentum in the C system 

is zero. After the collision, sketch (c), the velocities in the C sys· 

tem are again back to back. This sketch also shows the final 

velocities in the lab system. Note that the plane of sketch c is 

not necessarily the plane of sketch a. Evidently the geometrical 

relation between initial and final velocities in the L system is quite 

complicated. Fortunately, the situation in the C system is much 

simpler. The initial and final velocities in the C system deter· 

mine a plane known as the plane of scattering. Each particle is 

deflected through the same scattering angle e in this plane. The 

interaction force must be known in order to calculate e, or con· 

versely, by measuring the deflection we can learn about the inter· 

action force. However, we shall defer these considerations and 
simply assume that the interaction has caused some deflection in 

the C system. 

An important simplification occurs if the collision is elastic. 

Conservation of energy applied to the C system gives, for elastic 

collisions, 

Since momentum is zero in the C system, we have 

mlVlc - m2V2c = 0 

mIv�c - m2v;c = O. 

Eliminating V2c and v;c from the energy equation gives 

or 

I 
VIc = VIc' 

Similarly, 

In an elastic collision, the speed of each particle in the C system is 

the same before and after the collision. Thus, the velocity vectors 

simply rotate in the scattering plane. 
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In many experiments, one of the particles, say "»1'2, is initially at 

rest in the laboratory. In this case 

and 

Vic = VI - V 

m2 
= VI 

ml + m2 

V2C = -V 

The sketches show VI and V2 before and after the collision in 

the C and L systems. 81 and 82 are the laboratory angles of the 

trajectories of the two particles after the collision. The velocity 

diagrams can be used to relate 81 and 82 to the scattering angle 

9. 

Example 4.19 Limitations on Laboratory Scattering Angle 

o vi Consider the elastic scattering of a particle of mass ml and velocity VI 
from a second particle of mass m2 at rest. The scattering angle El in 

the C system is unrestricted, but the conservation laws impose limitations 

on the laboratory angles, as we shall show. 

The center of mass velocity has magnitude 

and is parallel to VI. The initial velocities in the C system are 

ml 
V2c = - VI. 

ml +m2 

Suppose ml is scattered through angle El in the C system. 

2 

From the velocity diagram we see that the laboratory scattering angle 

of the Incident particle is given by 

, . r.:. 
8 

Vic Sin � 
ta n I = -�'--;-, ---

V + Vic cos E> 
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Since the scattering is elastic, v�c = Vic. Hence 

VI. sin e 
tan 8\ = 

V + VI. cos e 

sin e 

From Eqs. (1) and (2), V IVI. = mJ/m2. Therefore 

sin e 
tan 8\ = ------

(mJ/m2) + cos e 

The scattering angle e depends on the details of the interaction, but in 

general it can assume any value. If ml < m2, it follows from Eq. (3) or 

the geometric construction in sketch (a) that 81 is unrestricted. How· 

ever, the situation is quite different if ml > m2. I n this case 81 is never 

greater than a certain angle 81•max• As sketch (b) shows, the maximum 

value of 81 occurs when Y� and Y�c are both perpendicular. In this case 

sin 81•m•x = vl.IV = mdml. If ml » m2, 81•max :::< mdml and the maxi· 

mum scattering angle approaches zero. 

(a) 

Increasing e 
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Physically, a light particle at rest cannot appreciably deflect a massive 

particle. The incident particle tends to continue in its forward direction 

no matter how the light target particle recoils. 

Problems 4.1 A small block of mass m starts from rest and slides along a friction· 

less loop-the·loop as shown in the left·hand figure on the top of the next 

page. What should be the initial height z, so that m pushes against 
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the top of the track (at a) with a force equal to its weight? 

Ans. z = 3R 

�uuuuuuuuuuuo� 
�x 
o 

4.2 A block of mass M slides along a horizontal table with speed Vo. 

At x = 0 it hits a spring with spring constant k and begins to experience 

a friction force (see figure above right). The coefficient of friction is 

variable and is given by J.I. = bx, where b is a constant. Find the loss 

in mechanical energy when the block has first come momentarily to rest. 

4.3 A simple way to measure the speed of a bullet is with a ballistic 

pendulum. As illustrated, this consists of a wooden block of mass M 
into which the bullet is shot. The block is suspended from cables of 

length I, and the impact of the bullet causes it to swing through a maxi

mum angle 4>, as shown. The initial speed of the bullet is v, and its 

mass is m. 

a. How fast is the block moving immediately after the bullet comes to 

rest? (Assume that this happens quickly.) 

b. Show how to find the velocity of the bullet by measuring m, J[, l, 
and <p. 

Ans. (b) v = [(m + M)/m] V2gl(1 - cos <p) 

4.4 A small cube of mass m slides down a circular path of radius R cut 

into a large block of mass Jf, as shown at left. M rests on a table, and 

both blocks move without friction. The blocks are initially at rest, and 

m starts from the top of the path. 

Fi nd the velocity v of the cu be as it leaves the block. 

Ans. clue. If m = M, v = ViR 

4.5 Mass m whirls on a frictionless table, held to circular motion by a 

string which passes through a hole in the table. The string is slowly 

pulled through the hole so that the radius of the circle changes from 11 

to 12• Show that the work done in pulling the string equals the increase 

in kinetic energy of the mass. 
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4.6 A small block slides from rest from the top of a frictionless sphere 

of radius R (see above left). How far below the top x does it lose con· 

tact with the sphere? The sphere does not move. Ans. R/3 

4.7 A ring of mass 11-[ hangs from a thread, and two beads of mass 111 

slide on it without friction (see above right). The beads are released 

simultaneously from the top of the ring and slide down opposite sides. 

Show that the ring will start to rise if m > 3M /2, and find the angle at 

which this occurs. Ans. clue. If M = 0, (J = arccos t 

4.8 The block shown in the drawing is acted on by a spring with spring 

constant k and a weak friction force of constant magnitude f. The block 

is pulled distance Xo from equilibrium and released. It oscillates many 

times and eventually comes to rest. 

a. Show that the decrease of amplitude is the same for each cycle of 

oscillation. 

b. Find the number of cycles n the mass oscillates before coming to 

rest. Ans. n = t[(kxo/f) - 1] � kXo/4f 

4.9 A simple and very violent chemical reaction is H + H -> H2 + 5 eV. 

(1 eV = 1.6 X 10-19 J, a healthy amount of energy on the atomic scale.) 

However, when hydrogen atoms collide in free space they simply bounce 

apart! The reason is that it is impossible to satisfy the laws of conserva· 

tion of momentum and conservation of energy in a simple two body colli· 

sian which releases energy. Can you prove this? You might start by 

writing the statements of conservation of momentum and energy. (Be 

sure to include the energy of reaction in the energy equation, and get 

the sign right.) By eliminating the final momentum of the molecule 

from the pair of equations, you should be able to show that the initial 

momenta would have to satisfy an impossible condition. 

4.10 A block of mass M on a horizontal frictionless table is connElcted 

to a spring (spring constant k), as shown. 

The block is set in motion so that it oscillates about its equilibrium 

point with a certain amplitude Ao. The period of motion is To = 

27r Vii/k. 
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a. A lump of sticky putty of mass m is dropped onto the block. The 
putty sticks without bouncing. The putty hits M at the instant when the 
velocity of M is zero. Find 

(1) The new period 
(2) The new amplitude 
(3) The change in the mechanical energy of the system 

b. Repeat part a, but this time assume that the sticky putty hits M 
at the instant when M has its maximum velocity. 

4.11 A chain of mass M and length l is suspended vertically with its 
lowest end touching a scale. The chain is released and falls onto the 
scale. 

What is the reading of the scale when a length of chain, x, has fallen? 
(Neglect the size of individual links.) 

_ _ 

4.12 During the Second World War the Russians, lacking sufficient para· 
chutes for airborne operations, occasionally dropped soldiers inside bales 0� '/' I �_ 

Ans. clue. The maximum reading is 3.Mg 

I , ' 

��WJ3������?3! 
of hay onto snow. The human body can survive an average pressure on 

;t/. � impact of 30 Ib/in2• 

y 
I 
I OM 
, 
I 
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Suppose that the lead plane drops a dummy bale equal in weight to a 
loaded one from an altitude of 150 ft, and that the pilot observes that it 
sinks about 2 ft into the snow. If the weight of an average soldier is 
144 Ib and his effective area is 5 fF, is it safe to drop the me..Q.? 

4.13 A commonly used potential energy function to describe the inter· 
action between two atoms is the Lennard·Jones 6,12 potential [(ro)12 (ro)6] 
U=e -:;: -2 -:;: . 

a. Show that the radius at the potential minimum is ro, and that the 
depth of the potential well is e. 

b. Find the frequency of small oscillations about equilibrium for 2 
identical atoms of mass m bound to each other by the Lennard-Jones 
interaction. 

Ans. w = 12 --vi e/ro2rn 

4.14 A bead of mass m slides without friction on a smooth rod along the 
x axis. The rod is equi.distant between two spheres of mass M. The 
spheres are located at x = 0, y = ± a as shown, and attract the bead 
gravitationally. 

-0--..... 1---
I 

-- x a. Find the potential energy of the bead. 

la 
I ¢M 
I 

b. The bead is released at x = 3a with velocity Vo toward the origin. 
Find the speed as it passes the origin. 

c. Find the frequency of small oscillations of the bead about the 
origin. 
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4.15 A particle of mass m moves in one dimension along the positive x 

axis. It is acted on by a constant force directed toward the origin with 

magnitude B, and an inverse square law repulsive force with magnitude 
A/X2. 

a. Find the potential energy function U(x). 

b. Sketch the energy diagram for the system when the maximum 

kinetic energy is Ko = tmvo2. 

c. Find the equilibrium position, Xo. 

d. What is the frequency of small oscillations about xo? 

4.16 An 1,SOO·lb sportscar accelerates to 60 mi/h in 8 s. What is the 

average power that the engine delivers to the car's motion during this 

period? 

4.17 A snowmobile climbs a hill at 15 mi/hr. The hill has a grade of 1 

ft rise for every 40 ft. The resistive force due to the snow is 5 percent of 

the vehicle's weight. How fast will the snowmobile move downhill, assum· 

ing its engine delivers the same power? 

Ans. 45 mi/h 

4.18 A 160·lb man leaps into the air from a crouching position. His 
center of gravity rises 1.5 ft before he leaves the ground, and it then rises 

3 ft to the top of his leap. What power does he develop assuming that 

he pushes the ground with constant force? 

Ans. clue. More than 1 hp, less than 10 hp 

4.19 The mal"! in the preceding problem again leaps into the air, but this 

time the force he applies decreases from a maximum at the beginning 

of the leap to zero at the moment he leaves the ground. As a reason· 

able approximation, take the force to be F = Fo cos wt, where Fo is the 

peak force, and contact with the ground ends when wt = 7r/2. Find the 

peak power the man develops during the jump. 

4.20 Sand runs from a hopper at constant rate dm/dt onto a horizontal 

conveyor belt driven at constant speed V by a motor. 

a. Find the power needed to drive the belt. 

b. Compare the answer to a with the rate of change of kinetic energy 

of the sand. Can you account for the difference? 

4.21 A uniform rope of mass X per unit length is coiled on a smooth 
horizontal table. One end is pulled straight up with constant speed 

Vo· 

a. Find the force exerted on the end of the rope as a function of 
height y. 

b. Compare the power delivered to the rope with the rate of change 

of the rope's total mechanical energy. 

4.22 A ball drops to the floor and bounces, eventually coming to rest. 

Collisions between the ball and floor are inelastic; the speed after each 
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collision is e times the speed before the collision where e < 1, (e is 

called the coefficient of restitution.) If the speed just before the first 

bounce is vo, find the time to come to rest. 

Ans. clue. If Vo = 5 mis, e = 0.5, then T "" 1 s 

4.23 A small ball of mass m is placed on top of a "superball" of mass 

M, and the two balls are dropped to the floor from height h. How high 

does the small ball rise after the collision? Assume that collisions with 

the superball are elastic, and that m «M. To help visualize the prob· 

lem, assume that the balls are slightly separated when the superball hits 

the floor. (If you are surprised at the result, try demonstrating the 

problem with a marble and a superball.) 

4.24 Cars Band C are at rest with their brakes off. Car.4 plows into 

B at high speed, pushing B into C. If the collisions are completely 

inelastic, what fraction of the initial energy is dissipated in car C? Ini· 

tially the cars are identical. 

4.25 A proton makes a head·on collision with an unknown particle at 

rest. The proton rebounds straight back with � of its initial kinetic 

energy. 

Find the ratio of the mass of the unknown particle to the mass of the 

proton, assuming that the collision is elastic. 

4.26 A particle of mass m and initial velocity Vo collides elastically with 

a particle of unknown mass !If coming from the opposite direction as 

shown at left below. After the collision m has velocity vo/2 at right angles 

to the incident direction, and M moves off in the direction shown in the 

sketch. Find the ratio M 1m. 

4.27 Particle A. of mass m has initial velocity vo. After colliding with 

particle B of mass 2m initially at rest, the particles follow the paths shown 

in the sketch at right below. Find O. 

401---0M 

Before 

After 

4.28 A thin target of lithium is bombarded by helium nuclei of energy 

Eo. The lithium nuclei are initially at rest in the target but are essen· 

tially unbound. When a helium nucleus enters a lithium nucleus, a 

nuclear reaction can occur in which the compound nucleus splits apart 



200 

----;-0 

�o----- x -----I� 

WORK AND ENERGY 

into a boron nucleus and a neutron. The collision is inelastic, and the 

final kinetic energy is less than Eo by 2.8 MeV. (1 MeV = 106 eV .. 

1.6 X 10-13 J). The relative masses of the particles are: helium, mass 
4; lithium, mass 7; boron, mass 10; neutron, mass 1. The reaction can 
be symbolized 

7U + 4He ---+ lOB + In - 2.8 MeV. 

a. What is EO.threshold, the minimum value of Eo for which neutrons 
can be produced? What is the energy of the neutrons at this threshold? 

Ans. Neutron energy = 0.15 MeV 

b. Show that if the incident energy falls in the range EO.thruhold < 
Eo < EO.threshold + 0.27 MeV, the neutrons ejected in the forward direc· 
tion do not all have the same energy but must have either one or the 

other of two possible energies. (You can understand the origin of the 

two groups by looking at the reaction in the center of mass system.) 

4.29 A "superball" of mass m bounces back and forth between two sur· 
faces with speed vo. Gravity is neglected and the collisions are perfectly· 
elastic. 

a. Find the average force F on each wall. 
Ans. F = mVo2/1 

b. If one surface is slowly moved toward the other with speed V «v, 

the bounce rate will increase due to the shorter distance between colli· 
sions, and because the bali's speed increases when it bounces from the 

moving surface. Find F in terms of the separation of the surfaces, :to 

(Hint: Find the average rate at which the bali's speed increases as the 
surface moves.) 

Ans. F = (mvNI){l/:t)! 

C. Show that the work needed to push the surface from I to x equals 
the gain in kinetic energy of the ball. (This problem illustrates the 

mechanism which causes a gas to heat up as it is compressed.) 

4.30 A particle of mass m and velocity Vo collides elastically with a par· ' 
ticle of mass M initially at rest and is scattered through angle e in the 

center of mass system. 

a. Find the final velocity of m in the laboratory system. 
Ans. Vj = [vo/(m + M»)(m2 + M2 + 2mM cos El)! 

b. Find the fractional loss of kinetic energy of m. 
Ans. clue. If m = M, (Ko - Kj)/Ko = (1 - cos El)/2 
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5.1 Introduction 

The last chapter introduced quite a few new physical concepts- t 
work, potential energy, kinetic energy, the work·energy theorem, ; 
conservative and nonconservative forces, and the conservation of 1 

I 

C g.' 

!" �.-£ . � 
K ' 
l 
i' 
t \� 
11 �.: 

energy. 1- , 
In this chapter there are no new physical ideas; this chapter is \ �_ 

on mathematics. We are going to introduce several mathematical 
]," techniques which will help express the ideas of the last chapter 4 

in a more revealing manner. The rationale for this is partly that
; ��

mathematical elegance can be a source of pleasure, but chiefly ' { 
that the results developed here will be useful in other areas of -� . 
physics, particularly in the study of electricity and magnetism. � . 
We shall find how to tell whether or not a force is conservative and � 

$ 
how to relate the potential energy to the force. i 

A word of reassurance: Don't be alarmed if the mathematics l 
looks formidable at first. Once you have a little practice with the; i 
new techniques, they will seem quite straightforward. In any 

case, you will probably see the same techniques presented from 

a different point of view in your study of calculus. 

In this chapter we must deal with functions of several variables, 

such as a potential energy function which depends on x, y, and z. 
Our first task is to learn how to take derivatives and find differ· 
entials of such functions. If you are already familiar with partial 

differentiation the next section can be skipped. Otherwise, read 

on. 

5.2 Partial Derivatives 

We start by reviewing briefly the concept of the differential of a 

function f(x) which depends on the single variable x. (Differ· 

entials are discussed in greater detail in Note 1.1.) 
Consider the value of f(x) at any point x. Let dx be an incre· 

ment in x, known as the differential of x, which can be any size 

we please. The differential df of f is defined to be 

df == (:�) dx. 

Note that (df/dx) stands for the derivative 

df . I:lf 
-= lim-' 
dx .c.",-->o I:lx 
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The actual change in f is 60f = f(x + dx) - f(x). 60f differs 

from df, as the sketch indicates, but if the limit dx - 0 is to be 

taken, the difference can be neglected,l and we can use df and 

60f interchangeably. 

Now let us consider a function f(x,y) which depends on two 

variables x and y. For instance, f could be the area of a rec· 

tangle of length x and width y. If we keep the variable y fixed 

and let the variable x change by dx, the differential of f in this 

case is 

df = [ lim 
f(x + 6ox,Y) - f(X,Y) ] 

dx. 
Ax--+O 60x 

The quantity in the bracket looks like a derivative. However, f 

depends on two variables and since we are differentiating with 

respect to only one variable, the quantity in the bracket is called 

a partial derivative. The partial derivative is denoted by af/ax. 

(Calculus texts sometimes use f", but we shall avoid this notation 

to prevent confusion with vector components.) af/ax is read 

"the partial derivative of f with respect to x" or "the partial of f 

with respect to x." If we want to indicate that the partial deriva· 

tive is to be evaluated at some particular point xo, Yo, we can write 

af(xo,Yo) 

ax 
or 

The procedure for evaluating partial derivatives is straightfor· 

ward; in evaluating af/ax, for example, all variables but x are 

treated as constants. 

Example 5.1 Partial Derivatives 

Let 

j = X2 sin y. 

Then 

aj . 
- = 2x sin y 
ax 

' 

aj 
- = X2 cos y. 
ay 

1 Specifically, (/:.J - dJ) is of order (dx)2, so that lim [(/:.J - df)/t:..x] = o. 
Ax--+O 
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We can generalize the procedure to any number of variables. For 

instance, let 

f = y + e". 

Then 

af 
- = zezz 
ax ' 

af 
= 1 

ay , 
af 

- = xe%,c. 
az 

Let us consider what happens to f(x,y) if x and y both vary. 

Let x change by dx and y change by dy. The change in f is 

l>.f = f(x + dx, y + dy) - f(x,y). 

The right hand side can be written as follows: 

f(x + dx, y + dy) - f(x,y) = Lf(x + dx, y + dy) - f(x, y + dy») 
+ Lf(x, y + dy) - f(x,y»). 

The first term on the right is the change in f due to dx; this is given 

approximately by 

af(x, y + dy) 
(l>.f)due to x 

� 

ax l>.x. 

The second term on the right is 

af(x,y) 
(l>.f)due to II 

� 
-- l>.y. 

ay 

The total change is 

l>.f � af(x, y + dy) dx + af(x,y) dy. 
ax ay 

We define the differential of f to be 

df == af(x,y) dx + 
af(x,y) dy. 

ax ay 
5.1 

If we take the limit dx - 0, dy - 0, l>.f approaches df. In 

applications where we are going to take the limit, we can use t:.j 

and df interchangeably. Furthermore, even if we do not take 
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the limit, the differential gives a good approximation to the actual 
value of the change in f if dx and dy are small, as the following 

example illustrates. 

Example 5.2 Applications of the Partial Derivative 

I----X �  

(dx)(dy) 

y dx 

A. Suppose that f is the area of a rectangle of length x and width y. 
Then f = xy. The change in area if x increases by dx and y increases 

by dy is 

t:J.f = f(x + dx, y + dy) - f(x,y) 

= (x + dx)(y + dy) - xy 

= y dx + x dy + (dx)(dy). 

The differential of f is 

df - o(xy) d 
o(xy) 

d --- y+ -- y 
ax oy 

= y dx + x dy. 

We see that 

Af - df = (dx)(dy). 

(dx)(dy) is the area of the small rectangle in the figure. As dx -> 0 and 

dy -> 0, the area (dx)(dy) becomes negligible compared with the area 

of the strips x dy and y dx, and we can use the differential df as an 

accurate approximation to the actual change, Af. 
B. Consider the function 

f(x,y) = y3e-. 

At x = 0, y = 1 we have f(O,l) = 1. What is the value of f(0.03,1.01)? 
Approximating the change in f by df we have 

Af"'" df 

= of 
dx + 

of 
dy. 

ax oy 

The partial derivatives are easily evaluated. 

of I = y3e- 1 ax 0,1 0,1 

=1 

of \ = 3y2e- \ 
oy 0,1 0,1 

=3 
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Taking dx = 0.03, dy = 0.01, we find 

dj = (1)(0.03) + 3(0.01) 

= 0.06. 

The actual value, to four significant figures, is 

D.f = 0.0617. 

5.3 How To Find the Force if You Know the Potential Energy 

Our problem is this-suppose that we know the potential energy 

function U(r); how do we find F(r)? For one dimensional motion 

we already know the answer from Sec. 4.8: F" = -dU /dx. It 

isn't difficult to generalize this result to three dimensions. 

Our starting point is the definition of potential energy: 

frb 
Ub -Ua = - F· dr. 

r. 
5.2 

let us consider the change in potential energy when a particle 

acted on by F undergoes a displacement .6.r. 

fr+Ar 
U(r + .6.r) - U(r) = - r F(r')· dr', 5.3 

(We have labeled the dummy variable of integration by r' to avoid 

confusion with the end points of the line integral, rand r + �r.) 

The left hand side of Eq. (5.3) is the difference in U at the two 

ends of the path. let us call this .6.U. If.6.r is so small that F 

does not vary appreciably over the path, the integral on the right 

is approximately F· .6.r. Therefore 

.6.U � -F·.6.r 

-(F".6.x + Fy.6.y + F • .6.z). 5.4 

We can obtain an alternative expression for .6.U by using the 

results of the last section. If we approximate .6.U by the differ· 

ential of U, we have from Eq. (5.1) 

au au aU 
.6.U � -.6.x + -.6.y + -.6.z. 

ax ay az 

Combining Eq. (5.4) and (5.5) yields 

5.5 

au au au 
-.6.x+-.6.y+-.6.z� -F".6.x-Fy.6.y-F • .6.z. 5.6 
ax ay az 

When we take the limit (t.x,.6.y,t.z) - 0, the approximation becomes 

exact. Since .6.x, .6.y, and .6.z are independent, Eq. (5.6) remains 
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valid even if we choose Ily and Ilz to be zero. This requires that 

the coefficients of Ilx on either side of the equation be equal. 

We conclude that 

au 
-Fx 

ax 

aU 
-FlI ay 

5.7 

aU 
-Fz. 

az 

We have the answer to the problem set at the beginning of this 

section-how to find the force from the potential energy function. 

However, as we shall see in the next section, there is a much neater 

way of expressing Eq. (5.7). 

5.4 The Gradient Operator 

Equation (5.7) is really a vector equation. We can write it expli· 

citly in vector form: 

F = iF" + jF1I + kF • 

• aU • au _ aU 
= -1- -J--k-· 5.8 

ax ay az 

A shorthand way to symbolize this result is 

F = -vU, 

where 

au aU _ aU 
vU == i - + j - + k-· 

ax ay az 

5.9 

5.10 

Equation (5.10) is a definition, so if the notation looks strange, 

it is not because you have missed something. Let's see what 

vU means. 

V U is a vector called the gradient of U or grad U. The symbol 

V (called "del") can be written in vector form as follows: 

a a _ a 
V = i - + j - + k -. 

ax ay az 
5.11 

Obviously V is not really a vector; it is a vector operator. This 

means that when V operates on a scalar function (the potential 

energy function in our case), it forms a vector. 
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The relation F = -V U is a generalization of the one dimen· 

sional case. For example, suppose that U depends only on x. 

Then 

vU = 

oU(x) i 
ox 

and 

F" = 

oU 
ox 

However, for a function of a single variable the partial derivative 

is identical to the familiar total derivative. We have 

dU 
F" = 

-_. 

dx 
Here are a few more examples. 

Example 5.3 Gravitational Attraction by a Particle 

If a particle of mass M is at the origin, the potential energy of mass m 

a distance r from the origin is 

GMm U(x,y,z) = - -_. 

r 
Then 

F = -vU 
1 

= +GMmv-· 
r 

Consider the x component of V(l/r). Since r = V x2 + y2 + Z2, we 

have 

a 1 -x 

By symmetry the y and z terms are -y/r3 and -z/r3, respectively. 

Hence 

F = GMm i - + j - + k -(-x -y A -z) 
r3 r3 r3 

= GMm [�3
r] 

i 
-GMm-· 

r2 
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We have recovered the familiar expression for the force of gravity 

between two particles. 

Example 5.4 Uniform Gravitational Field 

From the last chapter we know that the potential energy of mass m in a 

uniform gravitational field directed downward is 

U(x,y,z) = myz, 

where z is the height above ground. The corresponding force is 

F = -vU 

( a a .a ) 
-my i - + j - + k - z 

ax ay az 

-myk. 

Example 5.5 Gravitational Attraction by Two Point Masses 

The previous examples were trivial, since the forces were obvious by 

inspection. Here is a more complicated case in which the energy method 

gives a helpful shortcut. 

Two particles, each of mass M, lie on the x axis at x = a and x = -a, 

respectively. Find the force on a particle of mass m located at r. 

�--------------y 

We start by considering the potential energy of m due to the particle at 

x = a. The distance is V (x - a)2 + y2 + Z2, and the potential energy 

is -GMm/V(x - a)2 + y2 + Z2 = -GMm/rl. Similarly, the potential 

energy due to the mass at x = -a is -GMm/V(x + a)2+ y2 + Z2 = 

- GMm/r2. The total potential energy is the sum of these terms. This 

illustrates a major advantage of working with energy rather than force. 

Energy is a scalar and is simply additive, whereas forces must be added 

vectoriaily. 

We have u = - GMm/rl - GMm/r2' or 

U = -GMm + . { I I 

} {(x - a)2 + y2 + z2)1 [(x + a)2 + y2 + z2)l 

The force components are easily found by differentiation. 

au 
ax 

-GMm 
{ (x - a) 

+ 
(x + a) 

} [(x - a)2 + y2 + z2)1 [(x + a)2 + y2 + Z2)t 

-GMm 
(x - a 

+ 
x + a) 

rl3 r23 



210 SOME MATHEMATICAL ASPECTS OF FORCE AND ENERGY 

Similarly, 

au 

ay 

-GMm (-!. + JL) 
rl3 r23 

F.(x,y,z) = 
au 

az 

If m is far from the other two masses so that Ixl »a, we have rl "" T, 

r2 ::::: r. In this case 

FII::::: _ 

2GMm � 
r2 r 

F.::::: 
2GMmz 

At large distances the force on m is like the force (-2GMm/r2)r that 

would be exerted by a single mass 2M located at the origin. 

Perhaps these examples suggest something of the convenience 

of the energy method. Potential energy is much simpler to 

manipulate than force. If force is needed, we can obtain it from 

F = -V U. However, only conservative forces have potential 

energy functions associated with them. Nonconservative forces 

cannot be expressed as the gradient of a scalar function. For· 

tunately, most of the important forces of physics are conservative. 

In Sec. 5.6 we shall develop a simple means for telling whether a 

force is conservative or not. 

We next turn to a discussion of the physical meaning of the 

gradient. 

5.5 The Physical Meaning of the Gradient 

Consider a particle moving under conservative forces with potential 

energy U(x,y,z). As the particle moves from the point (x,y,z) to 

� 
1-

�, 
�':;........,� 
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(x + dx, y + dy, z + dz), its potential energy changes by 

U(x + dx, y + dy, z + dz) - U(x,y,z). 

As explained in the last section, when we intend to take the limit 

dx � 0, dy � 0, dz � 0, we can represent the change in U by the 

differential 

au au au 
dU = -dx + -dy + -dz. 

ax ay az 

The displacement is dr = dx i + dy j + dz k and we can write 

dU = VU·dr 

where VU, the gradient of U, is 

au aU aU _ 
v U = -i + - j + - k. 

iJx iJy iJz 

5.12 

Equation (5.12) expresses the fundamental property of the gra

dient. The gradient allows us to find the change in a function 

induced by a change in its variables. In fact, Eq. (5.12) is actually 

the definition of gradient. Like a vector, the gradient operator 

is defined without reference to a particular coordinate system. 

To develop physical insight into the meaning of VU, it is helpful 

to adopt a pictorial representation of potential energy. So let us 

make a brief digression. 

Constant Energy Surfaces and Contour Lines 

The equation U(x,y,z) = constant = C defines for each value of 

C a surface known as a constant energy surface. A particle con

strained to move on such a surface has constant potential energy. 

For example, the gravitational potential energy of a particle m at 

distance r = V x2 + y2 + Z2 from particle M is U = -GMm/r. 
The surfaces of constant energy are given by 

_ GMm 
= C 

r 
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or 

GMm 
r = --_. 

C 

The constant energy surfaces are spheres centered on M, as 

shown in the drawing. (We have taken GMm = 1 N'm2 for 

convenience.) 

Constant energy surfaces are usually difficult to draw, and for 

this reason it is generally easier to visualize U by considering the 

lines of intersection of the constant energy surfaces with a plane. 

These lines are sometimes referred to as constant energy lines 

or, more simply, contour lines. For spherical energy surfaces the 

contour lines are circles. The next example discusses contour 

lines for a more complicated situation. 

@ 
Energy Contours for a Binary Star System 

Consider a satellite of mass m in the gravitational field of a binary star 

system. The stars have masses lola and Mb and are separated by dis· 

tance R. The potential energy of the satellite is 

U 
= _ GmMa _ GmMb

, 
Ta Tb 

where Ta and Tb are its distances from the two stars. Consider the con· 

tour lines in a plane through the axis of the stars. Near star a, where 

Ta «Tb. we have 

U 
<=:< _ GmMa

. 
Ta 

Here the contour lines are effectively circles. Near star b, where Tb «T., 
the contour lines are also effectively circles. 

In the intermediate region between the two stars the effects of both 
bodies are important. The contour lines in the drawing opposite were 

calculated numerically, with GmMb/R = 
1, and Mb/Ma 

= 
i. 
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To see the relation between V U and contoor lines, consider 

the change in U due to a displacement dr along a contour. In 

general 

dU = vU· dr. 

However, on a contour line, U is constant and dU = O. Hence 

vU· dr = 0 (dr along contour line). 

Since V U and dr are not zero, we see that the vector V U must 

be perpendicular to dr. More generally, V U is perpendicular to 

any displacement dr on a constant energy surface. Hence, at 

every point in space, V U is perpendicular to the constant energy 

surface passing through that point. 

I t is not ha rd to show that V U points from lower to higher 

potential energy. Consider a displacement dr pointing in the 

direction of increasing potential energy. For this displacement 

dU> 0, and since dU = vU· dr > 0, we see that vU points 

from lower to higher potential energy. Hence the direction of 

VU is the direction in which U is increasing most rapidly. 

Since VU = -F, we conclude that F is everywhere perpen

dicular to the constant energy surfaces and points from higher to 

lower potential energy. 
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Given the contour lines, it is easy to sketch the force. For the 

gravitational interaction of a particle with a mass located at the 

origin, the contour lines are circles. The force points radially 

inward from higher to lower potential energy, as we expect. 

The drawing below shows the force at various points along the 

contour lines of the binary star system of Example 5.6. We can 

extend thf arrows to form a curve everywhere parallel to F. These 

lines show the direction of the force everywhere in space and pro· 

vide a simple map of the force field. Note that the force lines are 

perpendicular to the energy contours everywhere. PointP, where 
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two energy contours intersect, presents a problem. How can the 

force pOint in two directions at once? The answer is that point 

P is the equilibrium point between the two stars where the force 

vanishes. 

u If two adjacent energy surfaces differ in energy by flU, then 

where the separation is flS, 

Hence, the closer the surfaces, the larger the gradient. More 

physically, the force is large where the potential energy is changing 

rapidly. 

5.6 How to Find Out if a Force Is Conservative 

Although we have seen numerous examples of conservative forces, 

we have no general test to tell us whether a given force F(r) is 

conservative. Let us now attack this problem . 
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Our starting point is the observation that if F(r) is conservative, 

the work done on a particle by force F as it moves from a to band 

back to a around a closed path is 

f: F· dr + f: F· dr = ( - Ub + Ua) + ( - Ua + Ub) = O. 
Path 1 Path 2 

Thus, the work done by a conservative force around a closed path 

must be zero. Symbolically, 

§F. dr = 0, 5.13 

where the integral is a line integral taken around any closed path. 

(The symbol § indicates that the path is closed.) Conversely, if 
a force F satisfies Eq. (5.13) for all paths (not just for a special 

path), the force must be conservative. Hence, Eq. (5.13) is a 

necessary and sufficient condition for a force to be conservative. 

Although you may think that the problem is now more com· 

plicated than when we began, the fact is that we have taken a 

big step forward. However, in order to proceed we must further 

transform the problem. 

Consider §F· dr, where the integral is around loop 1. If we 

break the integral into two integrals, via the "shortcut" cd, we 

have 

¢ F . dr = ¢ F • dr + ¢ F • dr. 
1 2 3  

This identity follows because the contribution to ¢ F· dr from the 
2 

line segment cd is exactly canceled by the contribution from the 

segment de to ¢ F· dr. Traversing the same line in two direc· 
3 

tions gives zero net contribution to the total work. 

We can proceed to chop up the line integral into many small 

integrals around tiny loops, as shown in the sketch. When the 

work around each tiny loop is added, all the contributions from 

the interior paths cancel, and the total work is identical to the 

work done in traversing the original perimeter. Hence, 

where ¢ F· dr is the work done in circling the ith tiny loop. 
i 

5.14 

If you are wondering where this is leading, the answer is that 

by focusing our attention on one of the tiny paths we can convert 
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the original problem, which involves an integral over a large area, 
into a problem involving quantities at a single pOint in space. To 
do this, we must evaluate the line integral around one of the tiny 

loops. Let us consider a rectangular loop lying in the xy plane 
(x. y + Ay) (x + Ax. y + Ay) with sides of length !lx and fly. The integral around the loop i� 

3 

4 2 

(x.y) (x + Ax. y) 

��----------�---x 
x x + Ax 

¢ F· dr = f F· dr + f F· dr + f F· dr + f F· dr. 
1 2 3 4 

Integrals 1 and 3 both involve paths in the x direction, so let us 
consider them together. Integral 1 is 

f j,x+c.x. y 

F· dr = Fx(x,y) dx. 
x.Y 

1 

If !lx is small, 

f F· dr ",. F",(x,y) !lx. 
1 

Similarly, the integral along path 3 is 

f F· dr ",. -F",(x, y + !ly) !lx. 
3 

5.15 

The integrals along paths 1 and 3 almost cancel. However, the 
small difference in y between the two paths is important. We 
have 

! F· dr + f F . dr ",. F",(x,y)!lx - Fx(x, y + fly)!lx 
1 3 

= -[F",(x, y + !ly) - F",(x,y») !lx. 5.16 

You may be puzzled by the fact that we are allowing for the fact 
that y is different between the two paths but are ignoring the vari
ation of x along each of the paths. The reason is simply that the 
variation in y has an effect in first order, whereas the variatio'l 
in x does not, as you can verify for yourself. 

We shall eventually take the limit !lx � 0, fly � 0, and from 
the discussion of differentials in Sec. 5.2, we have 

aF", 
F",(x, y + !ly) - F",(x,y) = - !ly. 

ay 

Hence Eq. (5.16) can be written 

J J aF", j F· dr + j F· dr = - -!lx !ly. 
1 3 

ay 
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Applying the same argument to paths 2 and 4 gives 

f f 
aF1I 

F· dr + F· dr = -.:lx .:ly. 
2 4 

ax 

The line integral around the tiny rectangular loop in the xy plane 

is therefore 

j" (aFlI aFx) 'f F • dr = a; - a 6x .:ly. 
X1/ plane 

y 
5.17a 

Although we shall not stop to prove it, this result holds for a small 

loop of any shape if .:lx.:ly is replaced by the actual area .:lA. 
The line integral around a tiny loop in the yz plane can be found 

by simply cycling the variables, x � y, y � z, z � x. We find 

j" (aF. aFlI) 'f F • dr = a - --;;; .:ly .:lz. 
y. plane 

y 

Similarly, for a loop in the xz plane, 

j" (aFz aFz) 'f F • dr = - - - .:lx 6z. 
x. plane 

az aX 

5.17b 

5.17c 

The line integral around a tiny loop in an arbitrary orientation 

can be decomposed into line integrals in the three coordinate 

planes, as the sketch suggests. 

Accordingly, the line integral around any tiny loop will vanish 

provided 

aFlI _ aF", = 
0 

ax ay 

aF. _ aFy = 0 
ay az 

aF", _ aF. = o. 
az ax 

5.18 

If Eq. (5.18) is satisfied everywhere, the line integral around any 

tiny loop vanishes and it follows that §F . dr = 0 for any closed 

path. Hence, a force satisfying Eq. (5.18) is conservative. 

We have achieved our goal of finding a mathematical test for 
whether or not a given force is conservative. However, Eq. (5.18) 

is rather cumbersome as it stands. Fortunately, we can sum· 

marize it in simple vector notation. If we use the familiar rules 
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of evaluating the cross product (Sec. 1.4) and treat the vector 
operator V as if it were a vector, then 

VXF 
a 

j 
a 

k 
a 

ax ay az 
F" FlI F. 

= i (aF. _ aFy) + j (aFx _ aF') + k (aFy _ aFx) . 
ay az az ax ax ay 

v X F is called the curl of F. 

Example 5.7 The Curl of the Gravitational Force 

5.19 

We know that the gravitational force is conservative since it possesses a 

potential energy function. However, for purposes of illustration, let us 

prove that the force of gravity is conservative by showing that its curl is 

zero. 

For the gravitational force between two particles we have 

F = � r r2 
= A � = A xi + yj + zk. 

r3 r3 

The first term on the right hand side is 

Similarly, 

Hence, 

-3A zy. 
rO 

(V X F). = -3A zy + 3A yz 
= o. 

r5 r& 

By cycling the coordinates, we see that the other components of 

V X F are also zero. Hence V X F = 0 and the gravitational force is 

conservative. 
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A Nonconservative Force 

Here is an example of a nonconservative force: consider a river with a 

current whose velocity V is maximum at the center and drops to zero 

at either bank. 

The width of the river is 2a, and the coordinates are shown in the sketch. 

Suppose that a barge in the stream is hauled around the path shown, 

by winches on the banks. The barge is pulled slowly and we shall assume 

that the force exerted on it by the current is 

Friver = bV, 

where b is a constant. The barge is effectively in equilibrium, so that 

the force exerted by the winches is 

F = -Friver = -bY 

= bVo (1 - ::)l 

Let us evaluate v X F to determine whether or not the force is con· 

servative. We have 

aF. aFy 
(v X F). = - - -

ay az 

= 0  

aF. aF. 
(VX F)y = - - -

az ax 
= 0 

aFy aF. 
(VX F). = - - -

ax ay 

= i.bVo (1 _ X2) 
ax a2 

2bVo = - --x. 
a2 

Since the curl does not vanish, the force is nonconservative and the 

winches must do work to pull the barge around the closed path. The 

work done going upstream is F(x = O)l, and the work done going down· 

stream is -F(x = a)l. (In this idealized problem no work is needed 

to move the barge cross stream.) Since F(x) = bVo(l - x2ja2), the 

total work done by the winches is 

W = bVol - bVol (1 - ::) 

= bVol. 
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Example 5.9 A Most Unusual Force Field 

y The field described in this example has some very surprising properties. 

/' 

I 
/ 

/ 
/ 

Consider a particle moving in the xy plane under the force 

A A 

F(r) = -6, 
r 

where A is a constant. The force decreases as 11r, and is directed tan

gentially about the origin, as shown. 

The work done as the particle travels through dr = dr r + r dO 6 is 

dW = F· dr 
A 

= -rdO 
r 

= AdO. 

Surprisingly, the work does not depend on r, but only on the angle 

subtended. 

Offhand, F may seem to be conservative, since the.work done in going 

from rl to r2 in the drawing below, left, appears to be independent of path: 

W = j" A dO j r. 

For instance, for the closed path shown above right, 

W = 
fro A dO + jr. A dO 

rl j r2 

= 0, 

as we expect for a conservative force. 

However, consider the work done along a closed path which encloses 

the origin as in the drawing at the left. Since 01 = 0 and O2 = 211", 

the work W = 211"A. Evidently, F is not conservative . 
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Every time the particle makes a complete trip around the origin, the 
force does work 27rA, but for a closed path that does not encircle the 

origin, W = O. The force appears conservative provided that the path 

does not enclose the origin. 

If you evaluate V X F, you will find that it is zero everywhere except 

at the origin, where it has a singularity. It is this singularity which gives 

the force such peculia r properties. For the line integral of a force to 

vanish around a closed path, the curl must be zero everywhere inside 

the path. I n this example, V X F is zero everywhere except at the 

origin. 

If a force is conservative, it is always possible to find a potential 

energy function U such that F = - V U. The following example 

shows how this is done. 

Example 5.10 Construction of the Potential Energy Function 

In this example we shall find the potential energy function associated 

with the force 

F = A(x2i + yD. 

The first thing is to ascertain that V X F = 0, for otherwise U does 

not exist. Since you can easily verify this for yourself, we proceed to 

determine U. U must obey 

au 
-- =Fz 

ax 

and 

au - -=Fy 
ay 

= Ay. 
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We can integrate Eq. (2) to obtain 

A 
U(x,y) = - - x3 + fey). 

3 

223 

4 

Equation (4) needs some explanation. If U depended only on x, then 

integrating Eq. (2) would yield U(x) = (-A/3)x3 + C, where C is a con· 

stant. However, U also depends on y. As far as partial differentiation 

with respect to x is concerned, fey) is a constant, since af(y)/ax = o. 

Equation (4) is the most general solution of Eq. (2), and we can proceed 

to find the solution to Eq. (3). By substituting Eq. (4) into Eq. (3), we 

obtain 

- i. [- :! x3 + fey)] = Ay 
ay 3 

or 

_ af(y) 
= df(y) 

ay dy 

= Ay. 

This can be integrated to give 

A 
f(y)=--y2+ C  

2 
' 

where C is a constant. [Since fey) is a function of the single variable y, 
the constant of integration cannot involve x.1 

The potential energy is 

A A 
U = - - x3 - - y2 + C. 

3 2 

Suppose that we try to apply this method to a nonconservative force. 

For instance, consider 

F = A(xyi + y2j). 

The curl of F is not zero. Nevertheless, we can attempt to solve the 

equations 

_ au = F 
ax 

• 

= Axy 
_ au = F 

ay 
II 

= Ay2. 

5 

6 
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The general solution of Eq. (5) is 

A 
U = - -x2y +f(y). 

2 

If we substitute this into Eq. (6), we have 

or 

iJf(y) 

iJy 

But f(y) cannot depend on x, so that this equation has no solution. 

Hence, it is impossible to construct a potential energy function for this 

force. 

In closing this section, let's take a brief look at the physical 
meaning of the curl. 

How the Curl Got Its Name 

The curl was invented to help describe the properties of moving fluids. 

To see how the curl is connected with "curliness" or rotation, consider an 

idealized whirlpool turning with constant angular velocity w about the z 

axis. The velocity of the fluid at r is 

v = Twil, 

where il is the unit vector in the tangential direction. In cartesian 

coordinates, 

v = TW( - sin wt 1 + cos wt j) 

= TW ( - � i + � j) 
-wyi + wxj. 

y 

--+-��-+��+-�-r-+---X 

y 

v 

e = WI 

�----�---------------X 
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The curl of v is 

VXv= 

j k 
a a a 

ax ay az 
-wy wx 0 

- [ a a ] 
= k - (wx) + - (wy) 

ax ay 

= 2wk. 
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If a paddle wheel is placed in the liquid, it will start to rotate. The 

rotation will be a maximum when the axis of the wheel points along the· 

z axis parallel to V X v. In Europe, curl is often called "rot" (for rota· 

tion). A vector field with zero curl gives no impression of rotation, as 

the sketches illustrate. 

• 

.. 

• 

curl = 0 curl = 0 

5.7 Stokes' Theorem 

curl *0 

• 

-

curl * 0 

.. 

In Sec. 5.6 we stopped short of proving a remarkable result, known 

as Stokes' theorem, which relates the line integral of a vector field 

around a closed path to an integral over an area bounded by the 

path. Although Stokes' theorem is indispensible to the study of 

electricity and magnetism, we shaff have little further use for it 

in our study of mechanics. Nevertheless, we have already devel· 

oped most of the ideas involved in its proof, and only a brief addi

tional discussion is needed. 

As we discussed earlier, the line integral of F around a closed 

path I can be written as the sum of the line integrals around each 

tiny loop. 

This result holds whether F is conservative or not; we shaff not 

assume that F is conservative in this proof. Stokes' theorem 

contains no physics-it is a purely mathematical result. 
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Our starting point is Eq. (5.17). For a tiny rectangular loop in 
the xy plane, 

� 
(aFII aF%) 

. F • dr = - - - (�x �Y)i. 
1 ax ay i 

�Ain As we have pointed out, the result is independent of the shape of 
the loop provided that we replace (�x �Y)i by the loop's area �Ai. 
We can write the area element as a vector �Ai = �A;ii, where n 
is normal to the plane of the loop. (Example 1.4 discusses the 
use of vectors to represent areas.) For a loop in the xy plane. 
�A = �A.k and we have 

� 
(aFlI aFx) 

. F • dr = - - - (�A.)i , aX ay i 

= [(V x F). �A.li' 5.20 

If the tiny loop is at an arbitrary orientation, it is plausible that 

�i F· dr = [(curl F)", �A", + (curl F)lI �Ay + (curl F). �A.li 

= [curl F • �Ali. 

The line integral of F around path I is therefore 

= L (curl F . �A)i. 
i 

5.21 

In words, the line integral is equal to the result of taking the scalar 
product of each vector area element with the curl of F at that ele· 
ment and summing over all elements bounded by the curve. In 
the limit �Ai � 0, the number of area elements approaches 
infinity and the sum in Eq. (5.21) becomes an integral. We then 
have Stokes' theorem 

�F.dr = fcurIF·dA. 5.22 

fF.drl= jeurIF'dA= feur! F·dA 

Two important remarks should be made about Stokes' theorem, 
Eq. (5.22). First, the area of integration on the right hand side 
can be any area bounded by the closed path. Second, there is 
an apparent ambiguity to the direction of dA, since the normal 
can be out from either side of the area element. However, Eq. 
(5.17) was deduced using a counterclockwise circulation about the 

area area 
1 II 
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loop, and in defining the vector associated with the area element, 

we automatically set up the convention that the direction of dA 

is given by the right hand rule. If the circulation is counterclock· 

wise as seen from above, the correct direction of dA is the one that 

tends to point "up." 

Example 5.12 Using Stokes' Theorem 

In Example 5.8 we discussed a barge being towed against the current. 

We found the work done in going around the path in the sketch byevalu-

ating the line integral ¢ F· dr = W. In this example we shall find the 

work by using Stokes' theorem 

W = f(v X F)· dA. 

y 

) ( 
I 

---------- � ---------

It is natural to integrate over the surface in the xy plane, as shown in 

the drawing above right. Since the direction of circulation is clockwise, 

dA = - dA k, and we have W = - J(V X F). dA. 

From Example 5.8, the force is 
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and 

aF� aFz 
(VX F). = - -

ax ay 

2bVox 

a2 

Since the integrand does not involve y, it is convenient to take dA = ldz.: 
Then 

' 

W 
- !ca 2bVoi 

d - -- x x 
o a2 

= 2bVoi (�) 
a2 2 

= bVol, 

as we found previously by evaluating the line integral. 

Problems 5.1 Find the forces for the following potential energies. 

a. U = AX2 + By2 + CZ2 

b. U = A In(x2 + y2 + Z2) (In = log,) 

c. U = A cos O/r2 (plane polar coordinates) 

5.2 A particle of mass m moves in a horizontal plane along the parabola 

y = x2• At t = 0 it is at the point (1,1) moving in the direction shown with 

speed vo. Aside from the force of constraint holding it to the path, it 

is acted upon by the following external forces: 

A radial force Fa = -Ar3r 

A force given by Fb = B(y2i - X2j) 

where A and B are constants. 

a. Are the forces conservative? 

b. What is the speed VI of the particle when it arrives at the origin? 

Ans. vI = (V02 + A/2m + 3B/5m)1 

5.3 Decide whether the following forces are conservative. 

a. F = Fo sin at, where Fo is a constant vector. 

b. F = AOr, A = constant and 0::5 (J < 27T. (F is limited to the xy 

plane.) 

c. A force which depends on the velocity of a particle but which is 
always perpendicular to the velocity. 
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5.4 Determine whether each of the following forces is conservative. 

Find the potential energy function if it exists. A, a, (3 are constants. 

a. F = A(31 + zj + yk) 
b. F = Axyz(l + j + k) 
c. F. = 3Ax2y5ea., Fv = 5Ax3y4ea., F. = aAx3y5e, .. 
d. F. = A sin (ay) cos «(3z), F v = - Axa cos (ay) cos «(3z), and F. = 

Ax sin (ay) sin «(3z) 
5.5 The potential energy function for a particular two dimensional force 

field is given by U = Cxe-Y, where C is a constant. 

a. Sketch the constant energy lines. 

b. Show that if a point is displaced by a short distance dx along a con

stant energy line, then its total displacement must be dr = dx(l + j/x). 
c. Using the result of b, show explicitly that V U is perpendicular to 

the constant energy line. 

5.6 If A(r) is a vector function of r which everywhere satisfies V X A = 0, 
show that A can be expressed by A(r) = v q,(r), where q,(r) is some scalar 

function. (Hint: ,The result follows directly from physical arguments.) 

5.7 When the flattening of the earth at the poles is taken into account, 

it is found that the gravitational potential energy of a mass m a distance 

r from the center of the earth is approximately 

GM.m [ (R.)2 
] U = - -r- 1 - 5.4 X 10-4 -;- (3 cos2 8 - 1) , 

where 8 is measured from the pole. 

Show that there is a small tangential gravitational force on m except 

above the poles or the equator. Find the ratio of this force to GMcm/r2 
for 8 = 45° and r = R •. 

5.8 How much work is done around the path that is shown by the force 

F = A(y2i + 2x2j), where A is a constant and x and yare in meters? 

Find the answer by evaluating the line integral, and also by using Stokes' 

theorem. 

Ans. W = Ad3 
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6.1 Introduction 

Our development of the principles of mechanics in the past five 
chapters is lacking in one important respect: we have not devel· 
oped techniques to handle the rotational motion of solid bodies. 
For example, consider the common Yo· Yo running up and down 
its stririg as the spool winds and unwinds. In principle we already 
know How to analyze the motion: each particle of the Yo-yo moves 
according to Newton's laws. Unfortunately, analyzing rotational 
problems on a particle-by-particle basis is an impossible task. 
What we need is a simple method for treating the rotational motion 
of an extended body as a whole. The goal of this chapter is to 

develop such a method. In attacking the problem of translational 
motion, we needed the concepts of force, linear momentum, and 
center of mass; in this chapter we shall develop for rotational 
motion the analogous concepts of torque, angular momentum, and 
moment of inertia. 

Our aim, of course, is more ambitious than merely to under· 
stand Yo·Yos; our aim is to find a way of analyzing the general 
motion of a rigid body under any combination of applied forces. 
Fortunately this problem can be divided into two simpler problems 
-finding the center of mass motion, a problem we have already 
solved, and finding the rotational motion about the center of 

mass, the task at hand. The justification for this is a theorem 
of rigid body motion which asserts that any displacement of a 

rigid body can be decomposed into two independent motions: a 
translation of the center of mass and a rotation about the center 

B 

To bring the body from position A to some new position B. first translate it so 
that the center of mass coincides with the new center of mass, and then rotate 
it around the appropriate axis through the center of mass until the body is in 
the desired position. 
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of mass. A few minutes spent playing with a rigid body such as 

a book or a chair should convince you that the theorem is plausible. 

Note that the theorem does not say that this is the only way to 

represent a general displacement-merely that it is one possible 

way of doing so. The general proof of this theoreml is presented 

in Note 6.1 at the end of the chapter. However, detailed attention 

to a formal proof is not necessary at this point. What is important 

is being able to visualize any displacement as the combination of 

a single translation and a single rotation. 

Leaving aside extended bodies for a time, we start in the best 

tradition of physics by considering the simplest possible system

a particle. Since a particle has no size, its orientation in space 

is of no consequence, and we need concern ourselves only with 

translational motion. In spite of this, particle motion is useful 

for introducing the concepts of angular momentum and torque. 

We shall then move to progressively more complex systems, cui· 

minating, in Chap. 7, with a treatment of the general motion of a 

rigid body. 

6.2 Angular Momentum of a Particle 

Here is the formal definition of the angular momentum L of a par· 

ticle which has momentum p and position vector r with respect 

to a given coordinate system. 

L=rxp 6.1 

The unit of angular momentum is kg'm2/s in the SI system or 

g'cm2js in cgs. There are no special names for these units. 

Angular momentum is our first physical quantity to involve the 

cross product. (See Secs. 1.2 and 1.4 if you need to review the 

cross product.) Because angular momentum is so different from 

anything we have yet encountered, we shall discuss it in great 

detail at first. 

Possibly the strangest aspect of angular momentum is its direc· 

tion. The vectors rand p determine a plane (sometimes known 

as the plane of motion), and by the properties of the cross product, 

L is perpendicular to this plane. There is nothing particularly 

"natural" about the definition of angular momentum. However, 

L obeys a very simple dynamical equation, as we shall see, and 

therein lies its usefulness. 

1 Euler proved that the general displacement of a rigid body with one point fixed 

is a rotation about some axis; the theorem quoted in the text, called Chasle's 
theorem, follows directly from this. 
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The diagram at left shows the trajectory and instantaneoui; 
position and momentum of a particle. L = r X p is perpendicula": 
to the plane of rand p, and points in the direction dictated by thtl 
right hand rule for vector multiplication... Although L has bee� 
drawn through the origin, this location has no significance. On�i 
the direction and magnitude of L are important. : 

If rand p lie in the xy plane, then L is in the z direction. Lis; 
in the positive z direction if the "sense of rotation" of the point� 
about the origin is counterclockwise, and in the negative z dirac.! 
tion if the sense of rotation is clockwise. Note that the sense of; 
rotation is well defined even if the trajectory is a straight line. { 
The only exception is when the trajectory aims at the origin, in1 
which case rand p are along the same line so that L is 0 anyway. ! 

y 

Sense of 
rotation ..-

, 

--------��----��x 

Li > 0 

y 

Sense of 
-, rotation 

'\ 

----�--�----------x 

I . � 

There are various methods for visualizing and calculating ang\j' 
lar momentum. Here are three ways to calculate the angular' 
momentum of a particle moving in the xy plane. 

Method 1 

L=rxp 

= rp sin </>k 

or 

L. = rp sin </>. 

For motion in the xy plane, L lies in the z direction. Its ma gni· 
.-............ tude has a simple geometrical interpretation: the line r J. has 

length r J. = r sin (11" - </» = r sin </>. Therefore, 

.:;...--------------------x L. = r .J.P' 
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where 1".1. is the perpendicular distance between the origin and the 

line of p. This result illustrates that angular momentum is pro· 

portional to the distance from the origin to the line of motion. 

As the sketches show, an alternative way of writing L. is 

L. = rpl.' 

where Pl. is the component of p perpendicular to r. 

y y 

�----------------x �----------------x 

Method 2 

Resolve r into two vectors r.l. and rll, 

such that rl. is perpendicular to p, and rll is parallel to p. Then 

L = r X p = (rl. + ru) X p 
= (rl. X p) + (rll X p) 
= r.l. X p, 

since rll X P = O. (Parallel vectors have zero cross product.) 

Evaluating the cross prod uct r.1. X p is trivial because the vectors 

are perpendicular by construction. We have 

L. = Irl.llpi 

as before. By a similar argument, 

Method 3 

Consider motion in the xy plane, first in the x direction and then 

in the y direction, as in drawings a and b on the next page. 
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y y y 

1 
Py 

! - --- ---·--.. Px 
I 

�L-_ '+-________________ I� L, ________ �i ________ ___ x \ I--x---l x 
£ Lz = - ypx 

(a) 
t· 
� 
1 

Example 6.1 

1: 
The most general case involves both these motions simultan·; l f eously, as drawings above show. f 
Hence L. = xPu - yp%, as you can verify by inspection or by £ 

evaluating the cross product as follows. Using r = (x,y,O) and t 
� P = (P%,PII'O), we have � 
t 

L=rxp 

j 
x y 

k 
o 

P% Pu 0 
(Xpy - YP%)k. 

We have limited our illustrations to motion in the xy plane where. 
the angular momentum lies entirely along the z axis. There is, : 
however, no difficulty applying any of these methods to the general 
case where L has components along all three axes. 

Angular Momentum of a Sliding Block 

Consider a block of mass m and negligible dimensions sliding freely in 

the x direction with velocity v = vi, as shown in the sketch. What is its 
angular momentum LA about origin A and its angular momentum LB 
about the origin B? 

! :/ 
t'. 

1 f l' 
�. (:: I' 
f. 
� t *' 
� 
�. !� 
f· 
(' 
< ! {; Ii' 
f 

! 
�.?-A ______ �J-.V ____ X 

As shown in the drawing on the top of page 237, the vector from origin 

A to the block is t £ 
� 

m 

Since rA is parallel to v, their cross product is zero and 
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B 

r 
I f1. 

_1 v v 
CJ--+--- x x 
m fll 

A;-___ ., 

z 

Taking origin B, we can resolve the position vector rB into a component 

rll parallel to v and a component r 1. perpendicular to v. Since rll X v = 0, 
only r l. gives a contribution to LB. We have Ir l. X vi = lv and 

LB = mrB X v 
= mlvk. 

LB lies in the positive z direction because the sense of rotation is counter· 

clockwise about the z axis. 

To calculate LB form
'
ally we can write fB = xi - lj and evaluate rB X v 

using our determinantal t.orm. 

LB = mrB X v 
j k 

= m x -l 0 

v 0 0 

= mlvk 

as before. 

The following example shows in a striking way how L depends 
on our choice of origin. 

Angulaf Momentum of tile Conical Pendulum 

Let us return to the conical pendulum, which we encountered in Example 

2.8, to illustrate some features of angular momentum. Assume that the 

pendulum is in steady circular motion with constant angular velocity w. 

We begin by evaluating LA, the angular momentum about origin A. 

From the sketch we see that LA lies in the positive z direction. It has 

magnitude Ir l.llpl = Irilpi = rp, where r is the radius of the circular 

motion. Since 

Ipi = Mv 
= Jlfrw, 

we have 

Note that LA is constant, both in magnitude and direction. 
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Now let us evaluate the angular momentum about the origin B located 

at the pivot. The magnitude of LB is 

ILBI = Ir' X pi 
= Ir'llpl = li pi 
= Mlrw, 

where Ir'l = l, the length of the string. It is apparent that the magnitude 

of L depends on the origin we choose. 

Unlike LA, the direction of La is not constant. La is perpendicular to 

both r' and p, and the sketches below show LB at different times. Two 

sketches are given to emphasize that only the magnitude and direction 

of L are important, not the position at which we choose to draw it. The 

magnitude of LB is constant, but its direction is obviously not constant; 

as the bob swings around, LB sweeps out the shaded cone shown in the 

sketch at the right. The z component of LB is constant, but the hori· 

zontal component travels around the circle with the bob. We shall see 

the dynamical consequences of this in Example 6.6. 

z 

� w  

B 

- �,,---- -----
"'''(� La .� 

...... _-----/ 

6.3 Torque 

To continue our development of rotational motion we must intro· 

duce a new quantity torque�. The torque due to force F which 

acts on a particle at position r is defined by 

� = r X F. 6.2 

In the last section we discussed several ways of evaluating angular 

momentum, r X p. The mathematical methods we developed for 

calculating the cross product can also be applied to torque r X F. 
For example, we have 

I�I = Ir.l.llFI 
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or 

I�I = IrllF.L1 

or, formally, 

j k 
� = x y z 

Fz F1I F. 

We can also associate a "sense of rotation" using rand F. Assume 

in the sketch that all the vectors are in the xy plane. The torque 

on ml due to Fl is along the positive z axis (out of the paper) and 

the torque on m2 due to F2 is along the negative z axis (into the 

paper). 

It is important to realize that torque and force are entirely 

different quantities. For one thing, torque depends on the origin 

we choose but force does not. For another, we see from the 

definition � = r X F that � and F are always mutually perpen

dicular. There can be a torque on a system with zero net force, 

and there can be force with zero net torque. In general, there 

will be both torque and force. These three cases are illustrated 

in the sketches below. (The torques are evaluated about the 

centers of the disks.) 

.. =2Rf 
F=O 

! 

1: = 0 
F=2! 

Torque is important because it is intimately related to the rate 

of change of angular momentum: 

dL d 

dt 
= 

dt 
(r X p) 

= (�; X p) + (r X d:)-
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For small values of !l(J, the area !l.1 is approximately equal to the area 

of a triangle with base r + !lr and altitude r !l(J, as shown. 

!lA � t(r + !lr)(r tlO) 

= tr2 !l(J + tr !lr tlO 

The rate at which area is swept out is 

dA !lA 
- = lim
dt At---+O!lt 

= 11m - r - +r --. 1 ( 2 !l(J !l(J !lr) 
At---+O 2 !lt !It 

1 d(J 
= -r2_. 

2 dt 

(The small triangle with sides r !l(J and t:..r makes no contribution in the 

limit.) 

In polar coordinates the velocity of the particle is v = fr + rea. Its 

angular momentum is 

L = (r X my) = rr X m(fr + rea) = mr2ek. 

(Note that r X a = k). Hence, 

dA 1 . 
- = -r2(J 
dt 2 

L, 

2m 

Since L, is constant for any central force, it follows that dA/dt is constant 

also. 

Here is another way to prove the law of equal areas. For a central 

force, Fs = 0, so that as = O. It follows that ras = 0, but raJ =t 

r(2fe + ril) = (d/dt)(r20) = 2(d/dt)(dA/dt). Hence, dA/dt = constant. 

Example 6.4 Capture Cross Section of a Planet 

This example concerns the problem of aiming an unpowered spacecraft 

to hit a far-off planet. If you have ever looked at a planet through a 

telescope, you know that it appea rs to have the shape of a disk. The 

area of the disk is 7rR2, where R is the planet's radius. If gravity played 

no role, we would have to aim the spacecraft to head for this area in 

order to assure a hit. However, the situation is more favorable than this 

because of the gravitational attraction of the spacecraft by the planet. 

Gravity tends to deflect the spacecraft toward the planet, so that some 

trajectories which are aimed outside the planetary disk nevertheless end 
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in a hit. Consequently, the effective area for a hit A, is greater than 

the geometrical area Ag = 7rR2. Our problem is to find A,. 

We shall neglect effects of the sun and other planets here, although 

they would obviously have to be taken into account for a real space 

mission. 

One approach to the problem would be to work out the full solution 

for the orbit of the spacecraft in the gravitational field of the planet. 

This involves a lengthy calculation which is not really necessary; by using 

conservation of energy and angular momentum, we can find the answer 

in a few short steps. 

The sketch shows several possible trajectories of the spacecraft. The 

distance between the launch point and the target planet is assumed to 

be extremely large compared with R, so that the different trajectories 

are effectively parallel before the gravitational force of the planet becomes 

important. The line aa is parallel to the initial trajectories and passes 

through the center of the planet. The distance b between the initial 

trajectory and line aa is called the impact parameter of the trajectory. 

The largest value of b for which the trajectory hits the planet is indica ted 

by b' in the sketch. The area through which the trajectory must pass 

to assure a hit is A. = 7r(b')2. (If there were no attraction, the trajec· 

tories would be straight lines. In this case, b' = R and A, = 7rR2 = Ag.) 
To find b', we note that both the energy and angular momentum of the 

spacecraft are conserved. (Linear momentum of the spacecraft is not 

conserved. Do you see why?) 

The kinetic energy is tmv2, and the potential energy is -mMG/r. The 

total energy E = K + V is 

1 1 
E = -mv2 - mMG-· 

2 r 

The angular momentum about the center of the planet is 

L = -mrv sin 1/>. 
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Initially, r --> 00, v = vo, and r sin cp = b'. Hence, 

L = -mb'vo, 

243 

The point of collision occurs at the distance of closest approach of the 

orbit, r = R; otherwise the trajectory would not "just graze" the planet. 

At the distance of closest approach, r and v are perpendicular. If v{R) 

is the speed at this point, 

L = -mRv{R) 1 mMG 
E = - mv{R)2 - --. 

2 R 

Since Land E are conserved, their values at r = R must be the same as 

their values at r = 00. Hence 

-mb'vo = -mRv{R) 1 1 mMG 
- mVo2 = - mv{R)2 - -- . 
2 2 R 

2 

Equation (I) gives v{R) = vob' /R, and by substituting this in Eq. (2) we 

obtain 

{b')2 = R2 (1 + mMG/R)
. 

mVo2/2 

The effective area is 

A. = 1r{b')2 

= 1rR2 (1 + mMG/R)
. 

mVo2/2 

As we expect, the effective area is greater than the geometrical area. 

Since mMG/R = - U(R), and mvo2/2 = E, we have 

A = A (1 _ U (R»)
. • •  E 
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If we "turn off" gravity, U(R) -+ 0 and A, -+ A., as we require. Fur· 
thermore, as E -+ 0, A, -+ 00, which means that it is impossible to miss 

the planet, provided that you start from rest. For E = 0, the space· 

craft inevitably falls into the planet. 

If there is a torque on a system the angular momentum must 

change according to 1:' = dL/dt, as the following examples illustrate. 

Torque on a Sliding Block 

For a simple illustration of the relation 1: = dL/dt, consider a small block 

of mass m sliding in the x direction with velocity v = vi. The angular 

momentum of the block about origin B is 

LB = mrB X v 

= mlvk, 

as we discussed in Example 6,1. If the block is sliding freely, v does not 

change, and LB is therefore constant, as we expect, since there is no 

torque acting on the block. 

Suppose now that the block slows down because of a friction force 

f = -it. The torque on the block about origin B is 

1:B = rB X f 

= -lfk. 

We see from Eq. (1) that as the block slows, Ln remains along the posi· 

tive z direction but its magnitude decreases. Therefore, the change 

dLB in LB points in the negative z direction, as shown in the lower sketch. 

The direction of dLB is the same as the direction of 1:8. Since 1: = dL/dt 
in general, the vectors 1: and dL are always parallel. 

From Eq. (1), 

dlB = ml dv k, 

where dv < O. Dividing Eq. (3) by dt and taking the limit t:..t -> 0, we 
have 

dlB 
= ml c!.!!. k. 

dt dt 

By Newton's second law, m dv/dt = -f and Eq. (4) becomes 

dlB 
= -lfk 

dt 

as we expect. 
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It is important to keep in mind that since", and L depend on the choice 

of origin, the same origin must be used for both when applying the rela· 

tion '" = dL/dt, as we were careful to do in this problem. 

The angular momentum of the block in this example changed only in 

magnitude and not in direction, since ", and L happened to be along the 

same line. In the next example we return to the conical pendulum to 

study a case in which the angular momentum is constant in magnitude 

but changes direction due to an applied torque. 

Torque on the Conical Pendulum 

In Example 6.2, we calculated the angular momentum of a conical pen

dulum about two different origins. Now we shall complete the analysis 

by showing that the relation ", = dL/dt is satisfied. 

The sketch illustrates the forces on the bob. T is the tension in the 

string. For uniform circular motion there is no vertical acceleration, and 

consequently 

T cos a - M g = O. 1 

The total force F on the bob is radially inward: F = - T sin ar. The 

torque on M about A is 

"'A = rA X F 

= 0, 

since rA and F are both in the r direction. Hence 

dLA 
= 0 

dt 

and we have the result 

LA = constant 

as we already know from Example 6.2. 
The problem looks entirely different if we take the origin at B. The 

torque "'B is 

"'B = rB X F. 

Hence 

j"'Bj = 1 cos aF = 1 cos a T sin a 

= Mgl sin a, 

where we have used Eq. (1), T cos a = Mg. The direction of "'B is tan

gential to the line of motion of M: 

"'B = Mgl sin a6, 2 

where 6 Is the unit tangential vector in the plane of motion. 
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Our problem is to show that the relation 

dLB 
"B = 

de 

is satisfied. From Example 6.2, we know that LB has constant magnitude 

Mlrw. As the diagram at left shows, LB has a vertical component 
L. = Mlrw sin a and a horizontal radial component Lr = Mlrw cos a. 
Writing LB = L. + L" we see that L. is constant, as we expect, since "8 
has no vertical component. Lr is not constant; it changes direction as the 

bob swings around. However, the magnitude of L, is constant. We 

encountered such a situation in Sec. 1.8, where we showed that the only 

way a vector A of constant magnitude can change in time is to rotate, and 

that if its instantaneous rate of rotation is dO/dt, then IdA/dtl = A dO/dt. 
We can employ this relation directly to obtain 

I d

d
�' I = Lrw. 

However, since we shall invoke this result frequently, let us take a moment 

to rederive it geometrically. 

The vector diagrams show Lr at some time t a nd at t + Ilt. During 
the interval Ilt, the bob swings through angle 110 = w Ill, and L, rotates 

through the same angle. The magnitude of the vector difference ilL, = 
L,(t + Ill) - L,(t) is given approximately by 

IIlL,I "" L, 1l0. 

In the limit Ilt -> 0, we have 

dL, = 
L, 

dO 

dt dt 

= L,w. 

Since L, = Mlrw cos a, we have 

dL, - = Mlrw2 cos a. 
dt 

.�frw2 is the radial force, T sin a, and since T cos a = JIg, we have 

dL, - = Mglsin a 
dt 

' 

which agrees with the magnitude of "B from Eq. (2). Furthermore, as 

the vector drawings indicate, dL,/dt lies in the tangential direction, parallel 

to "8, as we expect. 

. � ; 
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Another way to calculate dLs/dt is to write LB in vector form and then 

differentiate: 

LB = (Mlrw sin a)k + (Mlrw cos a)r. 

dLB dr 
- = Mlrw cos a -
dt dt 

= Mlrw2 cos aii, 

where we have used dr/dt = wO. 
It is important to be able to visualize angular momentum as a vector 

which can rotate in space. This type of reasoning occurs often in analyz· 

ing the motion of rigid bodies; we shall find it particularly helpful in 

understanding gyroscope motion in Chap. 7. 

Example 6.7 Torque due to Gravity 

We often encounter systems in which there is a torque exerted by gravity. 

Examples include a pendulum, a child's top, and a falling chimney. In 

the usual case of a uniform gravitational field, the torque on a body 

about any point is R X W, where R is a vector from the point to the 

center of mass and W is the weight. Here is the proof. 

The problem is to find the torque on a body of mass M about origin 

A when the applied force is due to a uniform gravitational field g. We 

can regard the body as a collection of particles. The torque 'OJ on the 

jth particle is 

"'i = rj X mig, 

where ri is the position vector of the jth particle from origin A, and mj 
is its mass. 

The total torque is 

'O = �"'j 

= �rj X mig 

= (�mjrj) X g. 

By definition of center of mass, 

�mirj = MR, 

where R is the position vector of the center of mass. Hence 

'" = MR X 9 
= RX Mg 

= RX W. 

A corollary to this result is that in order to balance an object, the 

pivot point must be at the center of mass. 
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6.4 Angular Momentum and Fixed Axis Rotation 

The most prominent application of angular momentum in classical 

mechanics is to the analysis of the motion of rigid bodies. The 

general case of rigid body motion involves free rotation about any 

axis-for instance, the motion of a baseball bat flung spinning and 

tumbling into the air. Analysis of the general case involves a 

number of mathematical complexities which we are going to post· 

pone for a chapter, and in this chapter we restrict ourselves to a 

special, but important, case-rotation about a fixed axis. By fixed 

axis we mean that the direction of the axis of rotation is always 

along the same line; the axis itself may translate. For example, 

a car wheel attached to an axle undergoes fixed axis rotation as 

long as the car drives straight ahead. If the car turns, the wheel 

must rotate about a vertical axis while simultaneously spinning on 

the axle; the motion is no longer fixed axis rotation. If the wheel 

flies off the axle and wobbles down the road, the motion is defi· 

nitely not rotation about a fixed axis. 

We can choose the axis of rotation to be in the z direction, with· 

out loss of generality. The rotating object can be a wheel or a 

baseball bat, or anything we choose, the only restriction being 

that it is rigid-which is to say that its shape does not change as it 

rotates. 

When a rigid body rotates about an axis, every particle in the 

body remains at a fixed distance from the axis. If we choose a 

coordinate system with its origin lying on the axis, then for e ach 

particle in the body, Irl = constant. The only way that r can 

change while Irl remains constant is for the velocity to be perpen· 

dicular to r. Hence, for a body rotating about the z axis, 

6.4 

= V:Pio 

where Pi is the perpendicular distance from the axis of rotation to 

particle mj of the rigid body and Pi is the corresponding vector. 

w is the rate of rotation, or angular velocity. Since the axis of 

rotation lies in the z direction, we have Pi = (Xi2 + yj2)!. (In this 

chapter and the next we shall use the symbol P to denote perpen· 

dicular distance to the axis of rotation. Note that r stands for 

the distance to the origin: r = (X2 + y2 + Z2)'
.) 

The angular momentum of the jth particle of the body, L(j), is. 

L(j) = rj X mjvj. 
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In this chapter we are concerned only with L .. the component of 

angular momentum along the axis of rotation. Since vi lies in 

the xy plane, 

L.(j) = mjvj X (distance to z axis) = mjvjpj. 

Using Eq. (6.4), Vj = WPi, we have 

L.(j) = mjp/w. 

The z component of the total angular momentum of the body L. 
is the sum of the individual z components: 

L. = r L.(j) 
j 

= T,mjp/w, 6.5 

where the sum is over all particles of the body. We have taken 

W to be constant throughout the body; can you see why this must 

be so? 

Equation (6.5) can be written as 

L. = [w, 6.6 

where 

6.7 

[is a geometrical quantity called the moment of inertia. [depends 

on both the distribution of mass in the body and the location of the 

axis of rotation. (We shall give a more general definition for [ 
in the next chapter when we talk about unrestricted rigid body 

motion.) For continuously distributed matter we can replace the 

sum over mass particles by an integral over differential mass ele

ments. In this case 

r mjp/ -- fp2 dm, 
j 

and 

[ = fp2 dm 

= f(x2 + y2) dm. 

To evaluate such an integral we generally replace the mass ele· 

ment dm by the product of the density (mass per unit volume) w 

at the position of dm and the volume dV occupied by dm: 

dm = wdV. 
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(Often p is used to denote density, but that would cause confusion 

here.) We can write 

I = fp2dm 
= f(x2 + y2)W dV. 

For simple shapes with a high degree of symmetry, calculation of 

the moment of inertia is straightforward, as the following examples 

show. 

Moments of Inertia of Some Simple Objects 

i 

{' 
� 
�, 
f 
t 

,� 
a, UNIFORM THIN HOOP OF MASS M AND RADIUS R, AXIS THROUGH 

�. ' THE CENTER AND PERPENDICULAR TO THE PLANE OF THE HOOP r 
The moment of inertia about the axis is given by 

I = fp2 dm. 

Since the hoop is thin, dm = Ads, where A = M /2'TrR is the mass per 

unit length of the hoop. All points on the hoop are distance R from the 

axis so that p = R, and we have 

b, UNIFORM DISK OF MASS M, RADIUS R, AXIS THROUGH THE CENTER 

AND PERPENDICULAR TO THE PLANE OF THE DISK 

We can subdivide the disk into a series of thin hoops with radius p 

width dp, and moment of inertia dl. Then I = f dI. 
The area of one of the thin hoops is dA = 27rp dp, and its mass is 

dm = M d.4 = M27rp dp 
A 7rR2 

= 
2MpdP. 

R2 

dI = p2 dm = 
2M p3 dp 

R2 

I = 
{ R 2Mp3 dp 
}o R2 

= !MR2. 2 

t 
�' � 
1-
t 
t 
� 
f 

J 'i!. �" . 
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Let us also solve this problem by double integration to illustrate the 

most general approach. 

I = fp2 dm 

= fp2cr dS, 

where cr is the mass per unit area. For the uniform disk, cr = l'rf /rrR2, 
Polar coordinates are the obvious choice. I n plane polar coordinates, 

dS = pdp dO. 

Then 

I = J p2 crdS 

= C�2) J p2dS 

= (�) (R ( 2". 
p2pdpd8 

7rR2 }o }o 
= e:) JoR p3 dp 

= tMR2, 

as before. 

c. UNIFORM THIN STICK OF MASS 11'£, LENGTH L, AXIS THROUGH 

THE MIDPOINT AND PERPENDICULAR TO THE STICK 

J +L/2 
I = X2 dm -L/2 

M J +L/2 = - X2 dx 
L -L/2 

=M�X3 1+L/2 
L 3 -L/2 

= J\MU 

d. UNIFORM THIN STICK, AXIS AT ONE END AND PERPENDICULAR TO 

THE STICK 

1= M (L X2 dx 
L }o 

= tMU. 

e. UNIFORM SPHERE OF MASS M, RADIUS R, AXIS THROUGH CENTER 

We quote this result without proof-perhaps you can derive it foryourself. 
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ANGULAR MOMENTUM AND FIXED AXIS ROTATION 

The Parallel Axis Theorem 

This handy theorem tells us I, the moment of inertia about any axis, 

provided that we know 10, the moment of inertia about a parallel axis 

through the center of mass. If the mass of the body is �M and the dis· 

tance between the axes is 1, the theorem states that 

To prove this, consider the moment of inertia of the body about an 

axis which we choose to have lie in the z direction. The vector from the 

z axis to particle j is 

pj = Xji + Yik, 
and 

I = �miPi2 . 
If the center of mass is at R = Xi + Yj + Zk, the vector perpen· 

dicular from the z axis to the center of mass is 

RJ. = Xi + Yj. 

If the vector from the axis through the center of mass to particle j is 

P;, then the moment of inertia about the center of mass is 

10 = �miP? 
From the diagram we see that 

Pi = P; + RJ.' 
so that 

I = �miPj2 
= �mi(pi + RJ.)2 
= �mi(p? + 2p;. RJ. + RJ.2). 
The middle term vanishes, since 

�mipi = �mi(Pi - RJ.) = M(RJ. - RJ.) 
= O. 

If we designate the magnitude of RJ. by l, then 

I = Io + M12. 

For example, in Example 6.8c we showed that the moment of inertia of a 

stick about its midpoint is M£2/12. The moment of inertia about its 

end, which is L/2 away from the center of mass, is therefore 

Ia = 
M£2 

+ M (1!.)2 
12 2 

M£2 
=--, 

3 

which is the result we found in Example 6.8d. 
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Similarly, the moment of inertia of a disk about an axis at the rim, per· 

pendicular to the plane of the disk, is 

fa = 
MR2 

+ MR2 
= 3MR2

. 
2 . 2 

6.5 Dynamics of Pure Rotation about an Axis 

In Chap. 3 we showed that the motion of a system of particles is 

simple to describe if we distinguish between external forces and 

internal forces acting on the particles. The internal forces cancel 

by Newton's third law, and the momentum changes only because 

of external forces. This leads to the law of conservation of 

momentum: the momentum of an isolated system is constant. 

In describing rotational motion we are tempted to follow the 

same procedure and to distinguish between external and internal 

torques. Unfortunately, there is no way to prove from Newton's 

laws that the internal torques add to zero. However, it is an 

experimental fact that they always do cancel, since the angular 

momentum of an isolated system has never been observed to 

change. We shall discuss this more fully in Sec. 7.5 and for the 

remainder of this chapter simply assume that only external tor

ques change the angular momentum of a rigid body. 

In this section we consider fixed axis rotation with no translation 

of the axis, as, for instance, the motion of a door on its hinges or 

the spinning of a fan blade. Motion like this, where there is an 

axis of rotation at rest, is called pure rotation. Pure rotation is 

important because it is simple and because it is frequently 

encountered. 

Consider a body rotating with angular velocity w about the z 

axis. From Eq. (6.6) the z component of angular momentum is 

L. = lw. 
Since � = dL/dt, where � is the external torque, we have 

d 
T. = dt (lw) 

= ldw 
dt 

= la, 
where a = dw/dt is called the angular acceleration. In this chap

ter we are concerned with rotation only about the z axis, so we 

drop the subscript z and write 

T = la. 6.8 
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Equation (6.8) is reminiscent of F = ma, and in fact there is a 

close analogy between linear and rotational motion. We can 

develop this further by evaluating the kinetic energy of a body 

undergoing pure rotation: 

K = �imjv/ 

= �imjpj2w2 

= Hw\ 

where we have used Vj = PjW and I = �mjP/. 
The method of handling problems involving rotation under 

applied torques is a straightforward extension of the familiar 

procedure for treating translational motion under applied forces, 

as the following example illustrates. 

Atwood's Machine with a Massive Pulley 

The problem is to find the acceleration a for the arrangement shown in 

the sketch. The effect of the pulley is to be included. 

Force diagrams for the three masses are shown below left. The 

points of application of the forces on the pulley are shown; this is neces· 

sary whenever we need to calculate torques. The pulley evidently under· 

goes pure rotation about its axle, so we take the axis of rotation to be 

the axle. 

The equations of motion are 

WI - TI = Mia 

T2 - W2 = M2a 
Masses 

T = TIR - T2R = la 

N - TI - T2 - Wp = 0 
Pulley 

Note that in the torque equation, a must be positive counterclockwise to 

correspond to our convention that torque out of the paper is positive. 

N is the force on the axle, and the last equation simply assures that 

the pulley does not fall. Since we don't need to know N, it does not 

contribute to the solution. 

There is a constraint relating a and a, assuming that the rope does 

not slip. The velocity of the rope is the velocity of a point on the surface 

of the wheel, v = wR, from which it follows that 

a = aR. 

We can now eliminate TI, T2, and a; 

WI - W2 - (TI - T2) = (MI + M2)a 
la la 

TI - T2 =-

R R2 
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If the pulley is a simple disk, we have 

1= MpR2 

2 

and it follows that 

(M1 - M2)g 

255 

The pulley increases the total inertial mass of the system, but in com· 

parison with the hanging weights, the effective mass of the pulley is only 

one-half its real mass. 

6.6 The Physical Pendulum 

A mass hanging from a string is a simple pendulum if we assume 

that the mass has negligible size and the mass of the string is 

zero_ We shall review its behavior as an introduction to the more 

realistic object, the physical pendulum, for which we do not need 

to make these assumptions_ 

The Simple Pendulum 

At the left is a sketch of a simple pendulum and the force dia

gram. The tangential force is - W sin cp, and we obtain 

mlCf> = - W sin cpo 

(Incidentally, we get the same result by considering pure rotation 

about the point of suspension: I = ml2, a = Cf>, and 'T = - Wl sin cp, 

so ml2Cf> = - Wl sin cp.) We can rewrite the equation of motion as 

lCf> + g sin cp = 0_ 

This equation cannot be solved in terms of familiar functions. 

However, if the pendulum never swings far from the vertical, then 

cp « 1, and we can use the approximation sin cp "'" cp_ Then 

lCf> + gcp = O. 

This is the equation for simple harmonic motion. (See Example 

2.14.) The solution is cp = A sin wt + B cos wt, where w = v(i7l 
and A and B are constants. If the pendulum starts from rest at 

angle CPo, the solution is 

cp = CPo cos wt. 
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The motion is periodic, which means it occurs identically over and 

over again. The period T, the time between successive repeti· 

tions of the motion, is given by wT = 271", or 

211" 
T= --

Viiz 
= 211" �� ' 

g 

The maximum angle CPo is called the amplitude of the motion. 

The period is independent of the amplitude, which is why the 

pendulum is so well suited to regulating the rate of a clock. How· 

ever, this feature of the motion is a consequence of the approxi· 

mation sin cp � cpo The exact solution, which is developed in 

Note 6.2 at the end of the chapter, shows that the period lengthens 

slightly with increasing amplitude. The following example illus· 

trates the con seq uence of this. 

Example 6.11 Grandfather's Clock 

As shown in Eq. (7) of Note 6.2, for small amplitudes the period of a pen· 

dulum is given by 

where 

rz To = 211" '\Jg' 
For cpo � 0 we have our previous result, T = 211" VI/g. The correction 

term, -fr,CP02 is surprisingly small: Consider a grandfather's clock with 

To = 2 s and I � 1 m. If the pendulum swings 4 cm to either side, then 

CPo = 4 X 10-2 rad and the correction term is cpo2/16 = 10-4• This by 

itself is of no consequence, since the length of the pendulum can be 

adjusted to make the clock run at any desired rate. However, the ampli· 

tude may vary slightly due to friction and other effects. Suppose that 

the amplitude changes by an amount dcp, Taking differentials of Eq. 

(1) gives 

The fractional change in T is 

dT 1 
- = - cpo dcp. 
To 8 
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If the amplitude changes by 10 percent, then drp = 0.1rpo = 4 X 10-1 rad, 

and dT/To = 2 X 10-5, giving an error of about 2 seconds per day. 

The Physical Pendulum 

Now let us turn to the physical pendulum such as the one in the 

sketch. The swinging object can have any shape. Its mass is 

M, and its center of mass is at distance 1 from the pivot. One 

other quantity we need is the moment of inertia about the pivot, 

la. The motion is pure rotation about the pivot. Choosing the 

axis of rotation through the pivot, we find that the only torque 

is that due to gravity, and we have 

-lW sin rp = laCjj. 

Making the small angle approximation, 

L .. Cjj + Mlgrp = O. 

This is again the equation of simple harmoni� motion with the 

solution 

rp = A cos wt + B s� wt, 

where w = V Mlg/la• 
We can write this result in a simpler form if we introduce the 

radius of gyration. If the moment of inertia of an object about its 

center of mass is 10, the radius of gyration k is defined as 

k= � or 

For instance, for a hoop of radius R, k = R; for a disk, k = vt R; 

and for a solid sphere, k = V! R. 

By the parallel axis theorem we have 

la = 10 + M[2 
= M(k2 + l2), 

so that 

rgz w = 'lNz2' 
The simple pendulum corresponds to k = 0, and in this case we 

obtain w = V(ijz, as before. 
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Kater's Pendulum 

Between the sixteenth and twentieth centuries, the most accurate mea· 
, 

surements of g were obtained from experiments with pendulums. The � 
method is attractive because the only quantities needed are the period! 
of the pendulum, which can be determined to great accuracy by counting 
many swings, and the pendulum's dimensions. For very precise mea. -1 
sUrements, the limiting feature turns out to be the precision with WhiCh ! 
the center of mass of the pendulum and its radius of gyration can be \ 
determined. A clever invention, named after the nineteenth century 1 
English physicist, surveyor, and inventor Henry Kater, overcomes this � 
difficulty. I Kater's pendulum has two knife edges; the pendulum can be sus· 1 
pended from either. If the knife edges are distances IA and IB from 
the center of mass, then the period for small oscillations from each of 
these is, respectively, 

lA or lB is adjusted until the periods are identical: TA 
can then eliminate T and solve for k2: 

lAlB2 - lBIA 2 k2 = ----

IB - lA 
= lAlB. 

Then 

or 

_ 4 2 (lA + lB) 
g- 7r ---

T2 

The beauty of Kater's invention is that the only geometrical quantity 
needed is lA + lB, the distance between the knife edges, which can be 
measured to great accuracy. The position of the center of mass need 
not be known. 
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The Doorstop 

The banging of a door against its stop can tear loose the hinges. How

ever, by the proper choice of l, the impact forces on the hinge can be 

made to vanish. 

The forces on the door during impact are F d, due to the stop, and F' 
and F" due to the hinge. F" is the small radial force which provides 

the centripetal acceleration of the swinging door. F' and F d are the 

large impact forces which bring the door to rest when it bangs against 

the stop. The force on the hinges is equal and opposite to F' and F" 

To minimize the stress on the hinges, we must make F' as small as 

possible. 

To derive an expression for F', we shall consider in turn the angular 

momentum of the door about the hinges and the linear momentum of 

the center of mass. 

Since dL = Tdt, we have 

LliD.! - LiDiti'! = T dt. 
�tl ti 

The initial angular momentum of the door is Iwo, where I is the moment 

of inertia about the hinges. Since the door comes to rest, Llin.! = O. 
The torque on the door during the collision is T = -IF d, and we obtain 

Iwo = 1 J Fd dt, 1 

where the integral is over the duration of the collision. 

The center of mass motion obeys 

Plio>! - Piniti.l = J F dt, 

where F is the total force. The momentum in the y direction immedi

ately before the collision is .lIfV� = Ml'wo, where I' is the distance from 

the hinge to the center of mass of the door. PliD.! = 0, and the y com

ponent of F is Fy = -(F' + Fd). Hence, 

Ml'wo = J (F' + Fd) dt. 2 

According to Eq. (1), f F ddt = I wo/l, and substituting this in Eq. (2) gives 

J F' dt = ( MI' - f) woo 

By choosing 

I 
l=-) 

MI' 

the impact force is made zero. 

then I = Mw2/3 and I' = w/2. 

3 

If the door is uniform, and of width w, 
I n this case 1 = tw. 
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Incidentally, the stop must be at the height of the center of mass 
rather tha n at floor level. Otherwise the impact forces will not be iden· 
tic I on the two hinges and the door will tend to rotate about a horizontal 

axis, an effect we have not taken into account. 

The distance l specified by Eq. (3) is called the center of percussion. 
In batting a baseball it is important to hit the ball at the bat's center of 
percussion to avoid a reaction on the batter's hands and a painful sting. 

6.7 Motion Involving Both Translation and Rotation 

Often translation and rotation occur simultaneously, as in the case 

of a rolling drum. There is no obvious axis as there was in Sec. 
6.5 when we analyzed pure rotation, and the problem seems 

confusing until we recall the theorem in Sec. 6.1-that one pos· 

sible way to describe a general motion is by a translation of the 

center of mass plus a rotation about the center of mass. By 

using center of mass coordinates we will find it a straightforward 

matter to obtain simple expressions for both the angular momen· 

tum and the torque and to find the dynamical equation connecting 

them. 

As before, we shall consider only motion for which the axis of 
rotation remains parallel to the z axis. We shall show that L" 
the z component of the angular momentum of the body, can be 

written as the sum of two terms. L. is the angular momentum 

low due to rotation of the body about its center of mass, plus the 

angular momentum (R X MV). due to motion of the center of 
mass with respect to the origin of the inertial coordinate system: 

L. = low + (R X MV) .. 

where R is the position vector of the center of mass and V = R. 
To find the angular momentum, we start by considering the 

body to be an aggregation of N particles with masses mJ{j = 1, 
. . . , N) and position vectors rj with respect to an inertial coor· 

dinate system. The angular momentum of the body can be 

written 

N 

L = L (rj X mij)· 
j=! 

The center of mass of the body has position vector R: 

2;m·r· 
R = __ J_J, 

M 

6.9 

6.10 
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where M is the total mass. The center of mass coordinates r; 
can be introduced as we did in Sec. 3.3: 

rj = R + r;. 

Eliminating rj from Eq. (6.9) gives 

L = �(rj X mij) 

= �(R + r;) X mJ{R + r�) 

= R X �mi� + �mir; X R + R X �mi� + �mir; X r;. 

This expression looks cumbersome, but we can show that the 

middle two terms are identically zero and that the first and last 

terms have simple physical interpretations. Starting with the 

second term, we have 

�mjr; = �mJ{rj - R) 
=� �mjrj - MR 

= O. 

by Eq. (6.10). The third term is also zero; since �mir; is identi

cally zero, its time derivative �mi; = 0 as well. 

The first term is 

R X �mjR = R X MR 

= R X MV, 

where V == R is the velocity of the center of mass with respect to 

the inertial system. The expression for L then becomes 

L = R X MV + �r; X mi;" 6.11 

The first term of Eq. (6.11) represents the angular momentum 

due to the center of mass motion. The second term represents 

angular momentum due to motion around the center of mass. 

The only way for the particles of a rigid body to move with respect 

to the center of mass is for the body as a whole to rotate. We 

shall evaluate the second term for an arbitrary axis of rotation in 

the next chapter. In this chapter, however, we are restricting 

ourselves to fixed axis rotation about the z axis. Taking the z 

component of Eq. (6.11) gives 

6.12 
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For rotation about the z axis, the second term (�r; X mi;). can 

be simplified by recognizing that we dealt with this kind of expres· 

sion before, in Sec. 6.4. The body has angular velocity wk about 

its center of mass, and since the origin of r; is the center of mass, 

the second term is identical in form to the case of pure rotation 

we treated in Sec. 6.4. 

(�mjr; X r;). = (�mJ'P; X p;). 

= �mjp?w = low, 
where p; is the vector to mj perpendicular from an axis in the z 

direction through the center of mass. 10 = �mJP? is the moment 

of inertia of the body about this axis. 

Collecting our results, we have 

L. = low + (R X MV) •. 6.13 

We have proven the result stated at the beginning of this sec· 

tion. The angular momentum of a rigid object is the sum of the 

angular momentum about its center of mass and the angular 

momentum of the center of mass about the origin. These two 

terms are often referred to as the spin and orbital terms, respec· 

tively. The earth illustrates them nicely. The daily rotation of 

the earth about its axis gives rise to the earth's spin angular 

momentum, and its annual revolution about the sun gives rise to 

the earth's orbital angular momentum about the sun. An impor· 

tant feature of the spin angular momentum is that it is indepen' 

dent of the coordinate system. In this sense it is intrinsic to the 

body; no change in coordinate system can eliminate spin, whereas 

orbital angular momentum disappears if the origin is along the 

line of motion. 

It should be kept in mind that Eq. (6.13) is valid even when the 

center of mass is accelerating, since L was calculated with respect 

to an inertial coordinate system. 

Angular Momentum of a Rolling Wheel 

In this example we apply Eq. (6.13) to the calculation of the angular 

momentum of a uniform wheel of mass M and radius b which rolls uni· 

formly and without slipping. The moment of inertia of the wheel about 

its center of mass is 10 = tMb2 and its angular momentum about the 

center of mass is 

��-----���--x 

Lo = -low 
-iMb2w. 
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Lo is parallel to the z axis. The minus sign indicates that 1.,0 is directed 

into the paper, in the negative z direction. 

If we calculate the angular momentum of the center of mass of the 

wheel with respect to the origin, we have 

(R X MV). = -MbV. 

The total angular momentum about the origin is then 

L. = -tMb2w - Mb V 

-!Mb2w - Mb2w 

-tMb2w, 

where we have used the result V = bw, which holds for a wheel that 

rolls without slipping. 

Torque also naturally divides itself into two components. The 

torque on a body is 

"C = �ri X fi 
= �(r� + R) X fi 

= �(r; X 'j) + R X F, 6.14 

where F = �Ii is the total applied force. The first term in Eq. 

(6.14) is the torque about the center of mass due to the various 

external forces, and the second term is the torque due to the 

total external force acting at the center of mass. For fixed axis 

rotation w = wk, and Eq. (6.14) can be written 

T. = TO + (R X F)., 6.15 

where TO is the z component of the torque about the center of 

mass. But from Eq. (6.13) for L. we have 

dL. dw d 
dt = IO

dt 
+ 

dt
(R X MV). 

= loa + (R X Ma) •. 

Using T% = dL./dt, Eq. (6.15) and (6.16) yield 

TO + (R X F). = loa + (R X Ma)% 

= loa + (R X F) .. 

since F = Ma. Hence, 

6.16 

TO = loa. 6.17 

According to Eq. (6.17), rotational motion about the center of mass 

depends only on the torque about the center of mass, independent 
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of the translational motion. In other words, Eq. (6.17) is correct 

even if the axis is accelerating. 

These relations will seem quite natural when we use them. 

Before dOing so, we complete the development by examining the 

kinetic energy. 

K = i�mjv/ 
= i�m,{p�, + V)2 
= i�mjp? + �m,.p�. V + i�mjV2 
= How2 + iMV2 6.18 

The first term corresponds to the kinetic energy of spin, while 

the last term arises from the orbital center of mass motion. 

Here is a summary of these results. 

TABLE 6.1 
Summary of Dynamical Formulas for Fixed Axis Motion 

a Pure rotation about an axis-no translation. 

L = lw 
l' = lOt 

K = Hw2 

b Rotation and translation (subscript 0 refers to center of mass) 

L. = low + (R X MY). 

T. = TO + (R X F). 

To = loOt 
K = tIow2 + -iMP 

Disk on Ice 

A disk of mass M and radius b is pulled with constant force F by a thin 

tape wound around its circumference. The disk slides on ice without 

friction. What is its motion? 

We shall solve the problem by two different methods. 

METHOD 1 
Analyzing the motion about the center of mass we have 

TO = bF 

= loOt 

\ l' 
1 I' 
t j' 
, \ 

, 
I. 

i 
" 
i 
,. 
, 

t 
,j. 
i 
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or 

bF 
a=-' 

10 

The acceleration of the center of mass is 

F 
a =--. 

M 

METHOD 2 

We choose a coordinate system whose origin A is along the line of F. 

The torque about A is, from Table 6.1b, 

T. = TO + (R X F). 

= bF - bP = o. 

The torque is zero, as we expect, and angular momentum about the origin 

is conserved. The angular momentum about A is, from Table 6.1b, 

L, = low + (R X MV), 

= low - bJ\fV. 

Since dL,jdt = 0, we have 

0= loa - bMa 

or 

bMa bF 
a = -- =-, 

10 10 

as before. 

Example 6.16 Drum Rolling down a Plane 

A uniform drum of radius b and mass M rolls without slipping down a 

plane inclined at angle (J. Find its acceleration along the plane. The 

moment of inertia of the drum about its axis is 10 = lIfb2j2. 

METHOD 1 

The forces acting on the drum are shown in the diagram. f is the force 

of friction. The translation of the center of mass along the plane is 

given by 

Wsin (J - f = Ma 

and the rotation about the center of mass by 

bf = loa. 

For rolling without slipping, we also have 

a = ba. 



266 

Y/ 
/ 

I 
I 

/ 
I 

I 

A I 

/ 
I 

YI 
I 

I 
/ x 

I 
/ 

A
I 

I 

x 

ANGULAR MOMENTUM AND FIXED AXIS ROTATION 

If we eliminate f, we obtain 

W sin (J - I 0 � = M a. 
b 

Using 10 = Mb2/2, and a = alb, we obtain 

M g sin (J - � a 
= M a, 

or 

a = tg sin (J. 

METHOD 2 
Choose a coordinate system whose origin A is on the plane. 

about A is 

T, = To + (R X F). 
-R.J.f + R.J.(f - W sin (J) + RII(N - W cos (J) 

= -bW sin (J, 

The torque 

since R.J. = band W cos (J = N. The angular momentum about A is 

Lz = -low + (R X MY). 
-tMb2w - Mb2w 
-!Mb2w, 

where (R X MY). = -Mb2w. as in Example 6.14. Since Tz = dLz/dt. we 

have 

. 3 
bW Sin (J = - Mb2a, 

2 
or 

2 W .  2 g sin (J 
a = - - Sin (J = - --' 

3 Mb 3 b 

For rolling without slipping. a = ba and 

a = tg sin (J. 

Note that the analysis would have been even more direct if we had 

chosen the origin at the point of contact. In this case we can calculate 

Tz directly from 

Tz = 2:(rj X f,) •. 

Since f and N act at the origin. the torque is due only to W, and 

Tz = -bWsin (J 

as we obtained above. With this origin. however. the unknown forces 

f and N do not appear. 

i . '""' .. 
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The Work-energy Theorem 

In Chap. 4 we derived the work-energy theorem for a particle 

where 

Wba = Ir. 
r. 

F· dr. 

We can generalize this for a rigid body and show that the work

energy theorem divides naturally into two parts, one dealing with 

translational energy and one dealing with rotational energy. 

To derive the translational part, we start with the equation of 

motion for the center of mass. 

d2R 
F=M

dt2 

dV 
=M-' 

dt 

The work done when the center of mass is displaced by 

dR = V dt is 

dV 
F • dR = M - . V dt 

dt 

= d(tMV2). 

Integrating, we obtain 

I:: F • dR = tMVb2 - tMVa2• 6.19 

Now let us evaluate the work associated with the rotational 

kinetic energy. The equation of motion for fixed axis rotation 

about the center of mass is 

TO = loOt. 

dw 
= 10-, 

dt 

Rotational kinetic energy has the form -H ow2, which suggests that 

we multiply the equation of motion by dO = w dt: 

dw 
TodO = lo-wdt 

dt 

= d(t/oW2). 
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Integrating, we find that 

6.20 

The integral on the left evidently represents the work done by the 

applied torque. 

The general work-energy theorem for a rigid body is therefore 

where K = iMP + ilow2 and Wba is the total work done on the 

body as it moves from position a to position b_ We see from Eqs. 

(6.19) and (6_20) that the work-energy theorem is composed of 

two independent theorems, one for translation and one for rota

tion. In many problems these theorems can be applied sepa

rately, as the following example shows_ 

Example 6_17 Drum Rolling down a Plane: Energy Method 

Consider once again a uniform drum of radius b. mass M. and moment 

of inertia 10 = Mb2/2 on a plane of angle {3. If the drum starts from 

rest and rolls without slipping. find the speed of its center of mass. V. 

after it has descended a height h. 

The forces on the drum are shown in the sketch. The energy equa· 

tion for the translational motion is 

or 

(W sin {3 - f)l = iMP. 

where l = hlsin f3 is the displacement of the center of mass as the drum 

descends height h. 

The energy equation for the rotational motion is 

or 

where (J is the rotation angle about the center of mass. For rolling 

without slipping. b(J = l. Hence. 

fl=H�. 2 

We also have w = V lb. so that 

fi = � loP. 
2 b2 
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Using this in Eq. (1) to eliminate f gives 

or 

v = �4�h. 
An interesting point in this example is that the friction force is not 

dissipative. From Eq. (I), friction decreases the translational energy by 

an amount fl. However, from Eq. (2), the torque exerted by friction 

increases the rotational energy by the same amount. In this motion, 

friction simply transforms mechanical energy from one mode to another. 

If slipping occurs, this is no longer the case and some of the mechanical 

energy is dissipated as heat. 

We conclude this section with an example involving constraints 
which is easily handled by energy methods. 

Example 6.18 The Failing Stick 

1/2 

A stick of length 1 and mass M, initially upright on a frictionless table, 

starts falling. The problem is to find the speed of the center of mass 

as a function of position. 

The key lies in realizing that since there are no horizontal forces, the 

center of mass must fall straight down. Since we must find velocity as 

a function of position, it is natural to apply energy methods. 

The sketch shows the stick after it has rotated through angle () and the 

center of mass has fallen distance y. The initial energy is 

E = Ko + Uo 

= 

MOl. 
2 

The kinetic energy at a later time is 

and the corresponding potential energy is 



270 ANGULAR MOMENTUM AND FIXED AXIS ROTATION 

Since there are no dissipative forces, mechanical energy is conserved 
and K + U = Ko + Uo = Mgl/2. Hence, 

iMy2 + tr092 + Mg G - Y) = Mg � . 

We can eliminate 9 by turning to the constraint equation. From the 
sketch we see that 

l 
Y = - (1 - cos ()). 

2 

Hence, 

l . 
y = - sin () () 

2 

and 

2 
e = -- yo 

l sin () 

Since 10 = M(l2/12), we obtain 

iMy2 + tAl - -. - y2 + Mg - - y = Mg-
l2 ( 2 )2 (l) l 
12 l Sl n () 2 2 

or 

y2 = 

2gy , 
[1 + 1/(3 sin2 ())] 

y = 

[ 6gy sin2 () 

J
}�' 

3 sin2 () + 1 

6.8 The Bohr Atom 

We conclude this chapter with an historical account of the Bohr 

theory of the hydrogen atom. Although this material represents ". 
an interesting application of the principles we have encountered, 

it is not essential to our development of classical mechanics. 

The Bohr theory of the hydrogen atom is the major link between 

classical physics and quantum mechanics. We present here a 

brief outline of the Bohr theory as an exciting example of the appli· 

cation of concepts we have studied, particularly energy and angu· 

lar momentum. Our description is similar, though not identical, 

to Bohr's original paper which he published in 1913 at the age of 

26. Although this brief account cannot deal adequately with the 

background to the Bohr theory, it may give some of the flavor of 

one of the great chapters in physics. 
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The development of optical spectroscopy in the nineteenth 

century made available a great deal of experimental data on the 

structure of atoms. The light from atoms excited by an electric 

discharge is radiated only at certain discrete wavelengths char· 

acteristic of the element involved, and the last half of the nine

teenth century saw tremendous effort in the measurement and 

interpretation of these line spectra. The wavelength measure

ments represented a notable experimental achievement; some 

were made to an accuracy of better than a part in a million_ 

Interpretation, on the other hand, was a dismal failure; aside 

from certain empirical rules which gave no insight into the under

lying physical laws, there was no progress. 

The most celebrated empirical formula was discovered in 1886 

by the Swiss high school art teacher Joseph Balmer. He found 

that the wavelengths of the optical spectrum of atomic hydrogen 

are given within experimental accuracy by the formula 

n = 3,4,5, . . .  , 

where X is the wavelength of a particular spectral line, and Ry is 

a constant, named the Rydberg constant after the Swedish spec

troscopist who modified Balmer's formula to apply to certain other 

spectra_ Numerically, Ry = 109,700 em-i. (In this section we 

shall follow the tradition of atomic physics by using cgs units.) 

Not only did Balmer's formula account for the known lines of 

hydrogen, n = 3 through n = 6, it predicted other lines, n = 7, 

8, ... , which were quickly found. Furthermore, Balmer sug

gested that there might be other lines given by 

m = 3,4,5, . . .  

n = m + 1 ,  m + 2, 6.21 

and these, too, were found. (Balmer overlooked the series with 

m = 1, lying in the ultraviolet, which was found in 1916.) 

Undoubtedly the Balmer formula contained the key to the struc

ture of hydrogen. Yet no one was able to create a model for an 

atom which could radiate such a spectrum. 

Bohr was familiar with the Balmer formula. He was also 

familiar with ideas of atomic structure current at the time, ideas 

based on the experimental researches of J. J. Thomson and 

Ernest Rutherford. Thomson, working in the Cavendish physi

cal laboratory at Cambridge University, surmised the existence of 
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electrons in 1897. This first indication of the divisibility of the 

atom stimulated further work, and in 1911 Ernest Rutherford'sl 

alpha scattering experiments at the University of Manchester 

showed that atoms have a charged core which contains most of 

the mass. Each atom has an integral number of electrons and 

an equal number of positive charges on the massive core. 

A further development in physics which played an essential 

role in Bohr's theory was Einstein's theory of the photoelectric 

effect. In 1905, the same year that he published the special 

theory of relativity, Einstein proposed that the energy transmitted 

by light consists of discrete "packages," or quanta. The quan· 

tum of light is called a photon, and Einstein asserted that the 

energy of a photon is E = hI', where I' is the frequency of the 

light and h = 6.62 X 10-27 erg' s is Planck's constant. 2 

Bohr made the following postulates: 

1. Atoms cannot possess arbitrary amounts of energy but must 

exist only in certain stationary states. While in a stationary state, 

an atom does not radiate. 

2. An atom can pass from one stationary state a to a lower state 

by emitting a photon with energy Ea - Eb• The frequency of 

the emitted photon is 

Ea - Eb 

h 
I' = 6.22 

3. While in a stationary state, the motion of the atom is given 

accurately by classical physics. 

4. The angular momentum of the atom is nhj27r, where n is an 

integer. 

Assumption 1, the most drastic, was absolutely necessary to 

account for the fact that atoms are stable. According to classical 

theory, an orbiting electron would continuously lose energy by 

radiation and spiral into the nucleus. 

In view of the fact that assumption 1 breaks completely with 

classical physics, assumption 3 hardly seems justified. Bohr 

recognized this difficulty and justified the assumption on the 

ground that the electrodynamical forces connected with the emis· 

sion of radiation would be very small in comparison with the 

1 Rutherford had earlier been a student of J. J. Thomson and in 1919 succeeded 

Thomson as director of the Cavendish laboratory. Bohr in turn studied with 

Rutherford while working out the Bohr theory. 

Z Max Planck had introduced h in 1901 in his theory of radiation from hot bodies. 
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electrostatic attraction of the charged particles. Possibly the 

real reason that Bohr continued to apply classical physics to this 

nonclassical situation was that he felt that at least some of the 

fundamental concepts of classical physics should carry over into 

the new physics, and that they should not be discarded until 

proven to be unworkable. 

Bohr did not utilize postulate 4, known as the quantization of 

angular momentum, in his original work, although he pointed out 

the possibility of doing so. It has become traditional to treat this 

postUlate as a fundamental assumption. 

Let us apply these four postulates to hydrogen. The hydrogen 

atom consists of a single electron of charge -e and mass mo, and 

a nucleus of charge +e and mass M. We assume that the mas· 

sive nucleus is essentially at rest and that the electron is in a cir· 

cular orbit of radius r with velocity v. The radial equation of 

motion is 

mov2 e2 
- -- = --, 

r r2 
6.23 

where -e2jr2 is the attractive Coulomb force between the charges 

The energy is 

1 2 
e2 

E = K + U = 2mOV -_. 

r 

Equations (6.23) and (6.24) yield 

E= 
1 e2 

2 r 

6.24 

6.25 

By postulate 4, the angular momentum is nhj21r, where n is an 

integer. Labeling the orbit parameters by n, we have 

nh 
6.26 

Eq uations (6.26) and (6.23) yield 

n2h2 1 
rn = -- --, 

moe2 (21r)2 
6.27 

and Eq. (6.25) gives 

6.28 
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If the electron makes a transition from state n to state m, the 

emitted photon has frequency 

The wavelength of the radiation is given by 

1 v 

A C 

211"2 moe' ( 1 1 ) = ______ 0 

C h3 m2 n2 

6.29 

6.30 

This is identical in form to the Balmer formula, Eq. 6.21. What 

is even more impressive is that the numerical coefficients agree 

extemely well; Bohr was able to calculate the Rydberg constant 

from the fundamental atomic constants. 

The Bohr theory, with its strong flavor of elementary classical 

mechanics, formed an important bridge between classical physics 

and present·day atomic theory. Although the Bohr theory was 

unsuccessful in explaining more complicated atoms, the impetus 

provided by Bohr's work led to the development of modern 

quantum mechanics in the 1920s. 

Chasles' Theorem 

Chasles' theorem asserts that is always possible to represent an arbi· 

trary displacement of a rigid body by a translation of its center of mass 

plus a rotation about its center of mass. This appendix is rather detailed 

and an understanding of it is not necessary for following the development 

of the text. However, the result is interesting and its proof provides a 

nice exercise in vector methods for those interested. 

To avoid algebraic complexities, we consider here a simple rigid body 

consisting of two masses m. and m2 joined by a rigid rod of length I. 

The position vectors of m. and m2 are r. and r2, respectively, as shown 

in the sketch. The position vector of the center of mass of the body is 

R, and r� and r� are the position vectors of m. and m2 with respect to the 

center of mass. The vectors r� and r� are back to back along the same 

line. 

In an arbitrary displacement of the body, m. is displaced by dr. and 

m2 is displaced by dr2' Because the body is rigid, dr. and dr2 are not 
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independent, and we begin our analysis by finding their relation. The 

distance between ml and m2 is fixed and of length l. Therefore, 

or 

(rl - r2) . (rl - r2) = l2. 

Taking differentials of Eq. (1),1 

(rl - r2) . (drl - dr2) = O. 

1 

2 

Equation (2) is the "rigid body condition" we seek. There are evidently 

two ways of satisfying Eq. (2): either drl = dr2, or (drl - dr2) is perpen· 

dicular to (rl - r2). 
We now turn to the translational motion of the center of mass. By 

definition, 

R = m)rl + m2r2. 
ml+m2 

Therefore, the displacement dR of the center of mass is 

dR = m1drl + m2drz
. 

ml +m2 
3 

If we subtract this translational displacement from drl and dr2, the resi· 

dual displacements drl - dR and dr2 - dR should give a pure rotation 

about the center of mass. Before investigating this point, we notice that 

since 

rl - R = r� 

r2 - R = r�. 

the residual displacements are 

drl - dR = dr� 
dr2 - dR = dr�. 

Using Eq. (3) in Eq. (4) we have 

dr� = drl - dR 

and 

= ( m2 ) (drl - dr2) 
ml +m2 

dr� = dr2 - dR 
= - ( ml ) (drl - dr2)' 

ml +m2 

4 

5 

6 

Note that if drl = dr2, the residual displacements dr� and dr� are zero 

and the rigid body translates without rotating. 

1 Remember that d(A' A) = 2A· dA. 
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We must show that the residual displacements represent a pure 

rotation about the center of mass to complete the theorem. The sketch 

shows what a pure rotation would look like. First we show that dr� and 

dr� are perpendicular to the line r� - r�. 

dr� • (r� - r�) = dr� • (r1 - r2) 

= ( m2 ) (dr1 - dr2) . (r) - r2) 
m) +m2 

= 0, 

where we have used Eq. (5) a nd the rigid body condition, Eq. (2). 

Similarly, 

dr� • (r� - r�) = O. 
Finally, we require that the residual displacements correspond to rotation 

through the same angle, !lO. With reference to our sketch, this condl· 

tion in vector form is 

dr� dr� 
,

= 
-

, ' Tl Tz 

Keeping In mind that 
I 

Tl m2 
, = 
T2 m) 

by definition of center of mass, and using Eq. (5) and (6), we have 

d�� = ( m2 ) (dr) � dr2) 
Tl m1 + m2 Tl 

= ( m) ) (dr1 � dr2) 
m1 + m2 T2 

dr� 
= - " 

T2 

completing the proof. 

Note 6.2 Pendulum Motion 

I 
1 

The motion of a body moving under conservative forces can always be 

solved formally by energy methods, and it is natural to use this approach 

to find the motion of a pendulum. 

The total energy of the pendulum is 

r: E = K+U 

: m = ·WcP2 + mgy, 
1 ' �y 
, - =-'---__ ---1._-'- where l is the length of the pendulum and y is the vertical distance from 

I the lowest point. From the sketch we have y = l(l - cos cp). 
, 
I 
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At the end of the swing, </l = </lo and 1> = O. The total energy is 

E = mgl(l - cos </lo). 

The energy equation is 

tml21>2 + mgl(l - cos </l) = mgl(l - cos </lo), 

d<P fzg 
dt = '\}T (cos </l - cos </lo), 

and 

J d</l - � J dt. 
Vcos </l - cos </lo 

-

'\}T 
1 

Before looking at the general solution, let us find the solution for the 

case of small amplitudes. With the approximation cos </l "'" 1 - t</l2, 
we have 

Let us integrate over one-fourth of the swing, from </l = 0 to </l = </lo. 
The time varies between t = 0 and t = T 14, where T is the period. We 

have 

r <1>0 d</l I2u r T/4 
}o vi </lo VI _ <</ll<Po)2 

= 

'\}T}o 
dt 

or 

. f 1<1>0 (g T 
arcsin </lo 0 

= Vl4 

� -
0 = �f 
T = Z7r �' 

as we found in the text. 

To obtain a more accurate solution to Eq. (1), it is helpful to use the 

identity cos </l = 1 - Z sin2 (</l12). Then 

cos </l - cos </lo = 2[sin2 (</lo/Z) - sin2 (</lIZ)]. 

Introducing Eq. (2) in Eq. (1) gives 

J d</l 
= [2g J dt. 

Vz v'sin2 (</lo/2) - sin2 (</l/2) '\}T 
Now let us change variables as follows: 

sin u = 
sin (</lIZ) 
sin (</loIZ) 

2 

3 

4 
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As the pendulum swings through a cycle, cP varies between -CPo and 
+ cpo. At the same time, u varies between -11' and +11'. If we let 

K 
. CPo 

= Sln-' 

then 

2 

sin 1!. = K sin u 
2 

! cos 1!. dcp = K cos u du 
2 2 

and 

dcp = 2K duo ( 1 - sin2 u )t 
1 - K2 sin2 u 

Substituting Eqs. (4) and (5) in Eq. (3) gives 

J du 
= � J dt. '\11 - K2 sin2 u '\Jl 

Let us take the integral over one period. The limits on u are 0 and 
211', while t ranges from 0 to T. We have 

(27( du 
= 

� 
T. io '\h - K2 sin2 u '\JZ 

The integral on the left is an elliptic integral: specifically, it is a com· 

plete elliptic integral of the first kind. Values for this function are avail· 

able from computed tables. However, for our purposes it is more con· 

venient to expa nd the integrand: 

and 

fl (2" T = '\J g io du(l + tK2 sin2 u + ... ) 

= �� (211' + 2; K 2 + . . -) 
= 211'�� (1 + � sin2 �o + .. )-

If CPo «1, then sin2 (CPo/2) "'" cpo2/4, and we have 

T = 211'�} (1 + 'fiCP02 + .. '). 
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Problems 6.1 a. Show that if the total linear momentum of a system of particles 

is zero, the angular momentum of the system is the same about all 

origins. 

b. Show that if the total force on a system of particles is zero, the 

torque on the system is the same about all origins. 

6.2 A drum of mass MA and radius a rotates freely with initial angular 

velocity WA(O). A second drum with mass M B and radius b > a is 

mounted on the same axis and is at rest, although it is free to rotate. 

A thin layer of sand with mass M s is distributed on the inner surface of 

the smaller drum. At t = 0, small perforations in the inner drum are 

opened. The sand starts to fly out at a constant rate X and sticks to 

the outer drum. Find the subsequent angular velocities of the two 

drums WA and WB. Ignore the transit time of the sand. 

Ans. clue. If Xt = Mb and b = 2a, then WB = wA(O)/8 

6.3 A ring of mass M and radius R lies on its side on a frictionless 

table. It is pivoted to the table at its rim. A bug of mass m walks 

around the ring with speed v, starting at the pivot. What is the rota· 

tional velocity of the ring when the bug is (a) halfway around and (b) 

back at the pivot. 

Ans. clue. (a) If m = M, W = v/3R 

6.4 A spaceship is sent to investigate a planet of mass M and radius R. 
While hanging motionless in space at a distance 5R from the center of 

the planet, the ship fires an instrument package with speed vo, as shown 

in the sketch. The package has mass m, which is much smaller than the 

mass of the spaceship. For what angle 0 will the package just graze the 

surface of the planet? 

6.5 A 3,OOO·lb car is parked on a 30° slope, facing uphill. The center 

of mass of the car is halfway between the front and rear wheels and is 

2 ft above the ground. The wheels are 8 ft apart. Find the normal 

force exerted by the road on the front wheels and on the rear wheels. 

6.6 A man of mass M stands on a railroad car which is rounding an 

unbanked turn of radius R at speed v. His center of mass is height L 

above the car, and his feet are distance d apart. The man is facing the 

direction of motion. How much weight is on each of his feet? 

6.7 Find the moment of inertia of a thin sheet of mass lo[ in the shape 

of an equilateral triangle about an axis through a vertex, perpendicular 

to the sheet. The length of each side is L. 

6.8 Find the moment of inertia of a uniform sphere of mass M and 

radius R about an axis through the center. 

Ans. [0 = iMR2 

6.9 A heavy uniform bar of mass M rests on top of two identical rollers 

which are continuously turned rapidly in opposite directions, as shown. 
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The centers of the roliers are a distance 2l apart. The coefficient of 
friction between the bar and the roller surfaces is J.I, a constant indepen· 
dent of the relative speed of the two surfaces. 

Initially the bar is held at rest with its center at distance Xo from the 
midpoint of the rollers. At time t = 0 it is released. Find the subse· 
quent motion of the bar. 

6.10 A cylinder of mass M and radius R is rotated in a uniform V groove 
with constant angular velocity w. The coefficient of friction between the 

cylinder and each surface is J.I. What torque must be applied to the 
cylinder to keep it rotating? 

Ans. clue. If J.I = 0.5, R = 0.1 m, W = 100 N, then 'T "'" 5.7 N·m 

6.11 A wheel is attached to a fixed shaft, and the system is free to rotate 
without friction. To measure the moment of inertia of the wheel·shaft 
system, a tape of negligible mass wrapped around the shaft is pulled 

with a known constant force F. When a length L of tape has unwound, 
the system is rotating with angular speed woo Find the moment of 

inertia of the system, 10• 

Ans. clue. If F = 10 N, L = 5 m, Wo = 0.5 rad/s, then 10 = 400 kg·ml 

6.12 A pivoted beam has a mass M1 suspended from one end and an 

Atwood's machine suspended from the other (see sketch at left below). 
The frictionless pulley has negligible mass and dimension. Gravity is 
directed downward, and M2 > jJ13• 

Find a relation between M1, M2, M3, l1' and l2 which will ensure that 
the beam has no tendency to rotate just after the masses are released. 

6.13 Mass m is attached to a post of radius R by a string (see right hand 
sketch below). I nitially it is distance r from the center of the post and is 

moving tangentially with speed Vo. In case (a) the string passes through 
a hole in the center of the post at the top. The string is gradually shortl 

ened by drawing it through the hole. In case (b) the string wraps around 
the outside of the post. 

What quantities are conserved in each case? Find the final speed of 

the mass when it hits the post for each case. 

- .... 
, 

• 
m 

(a) (b) 

. 
, 
:� 
�( 
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6.14 A uniform stick of mass M and length I is suspended horizontally 

with end B on the edge of a table, and the other end, A is held by hand. 

Point A is suddenly released. At the instant after release: 

a. What is the torque about B? 

b. What is the angular acceleration about B? 

c. What is the vertical acceleration of the center of mass? 

Ans. 3g/4 

d. From part c, find by inspection the vertical force at B. 

Ans. mg/4 

6.15 A pendulum is made of two disks each of mass M and radius R 

separated by a massless rod. One of the disks is pivoted through its 

center by a small pin. The disks hang in the same plane and their 

centers are a distance I apart. Find the period for small oscillations. 

6.16 A physical pendulum is made of a uniform disk of mass M and 

radius R suspended from a rod of negligible mass. The distance from 

the pivot to the center of the disk is l. What value of I makes the period 

a minimum? 

6.17 A rod of length I and mass m, pivoted at one end, is held by a 

spring at its midpoint and a spring at its far end, both pulling in opposite 

directions. The springs have spring constant k, and at equilibrium 

their pull is perpendicular to the rod. Find the frequency of small oscilla· 

tions about the eq uilibrium position. See figure below left 

r"urnrm 
1011111111"" 

6.18 Find the period of a pendulum consisting of a disk of mass M and 

radius R fixed to the end of a rod of length I and mass m. How does 

the period change if the disk is mounted to the rod by a frictionless bear· 

ing so that it is perfectly free to spin? See figure above right 

6.19 A solid disk of mass M and radius R is on a vertical shaft. The 

shaft is attached to a coil spring which exerts a linear restoring torque of 

magnitude CO, where 0 is the angle measured from the static equilibrium 

position and C is a constant. Neglect the mass of the shaft and the 

spring, and assume the bearings to be frictionless. 
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.'1 

a. Show that the disk can undergo simple harmonic motion, and find 'I , 
the frequency of the motion. 1 

b. Suppose that the disk is moving according to (J = (Jo sin (wt), where: 
w is the frequency found in part a. At time tJ = 7rjw, a ring of sticky OJ 
p

.
utty of mass }'1 and radius R is dropped concentrically on the disk. � 

Find: t 
! (1) The new frequency of the motion 

(2) The new amplitude of the motion 
; 
0' 

� 
6.20 A thin plank of mass M and length I is pivoted at one end (see 1 
figure below). The plank is released at 60° from the vertical. What ! 
is the magnitude and direction of the force on the pivot when the plank ; 
is horizontal? � 

t 

6.21 A cylinder of radius R and mass M rolls without slipping down a 
plane inclined at angle (J. The coefficient of friction is }J.. 

What is the maximum value of (J for the cylinder to roll without slipping? 
Ans. (J = arctan 311 

6.22 A bead of mass m slides without friction on a rod that is made to 
rotate at a constant angular velocity w. Neglect gravity. 

a. Show that r = roe"'t is a possible motion of the bead, where To is 
the initial distance of the bead from the pivot. 

b. For the motion described in part a, find the force exerted on the 
bead by the rod. 

c. For the motion described above, find the power exerted by the 
agency which is turning the rod and show by direct calculation that this 
power equals the rate of change of kinetic energy of the bead. 

6.23 A disk of mass M and radius R unwinds from a tape wrapped 
around it (see figure b elow at left). The tape passes over a frictionless 
pulley, and a mass m is suspended from the other end. Assume that 
the disk drops vertically. 

a. Relate the accelerations of m and the disk, a and A, respectively, 
to the angular acceleration of the disk. 

Ans. clue. If A = 2a, then ex = 3AIR 
b. Find a, A and ex. 

-;t 

t 
.t 
J 

i 

t 
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6.24 Drum A of mass M and radius R is suspended from a drum B 

also of mass Af and radius R. which is free to rotate about its axis (see 

sketch below right). The suspension is in the form of a massless metal 

tape wound around the outside of each drum. and free to unwind. as 

shown. Gravity is directed downward. Both drums are initially at rest. 

Find the initial acceleration of drum A. assuming that it moves straight 

down. 

6.25 A marble of mass fI[ and radius R is rolled up a plane of angle (J. 

If the initial velocity of the marble is Vo. what is the distance I it travels up 

the plane before it begins to roll back down? 

Ans. clue. If Vo = 3 m/s. (J = 30°. then I ::::: 1.3 m 

6.26 A uniform sphere of mass M and radius R and a uniform cylinder 

of mass !If and radius R are released simultaneously from rest at· the 

top of an inclined plane. Which body reaches the bottom first if they 

both roll without slipping? 

6.27 A Yo·Yo of mass M has an axle of radius b and a spool of radius 

R. Its moment of inertia can be taken to be MR2/2. The Yo·Yo is 

placed upright on a table and the string is pulled with a horizontal force 

F as shown. The coefficient of friction between the Yo·Yo and the table 

is 11.. 

What is the maximum value of F for which the Yo·Yo will roll without 

slipping? 

6.28 The Yo·Yo of the previous problem is pulled so that the string makes 

an angle (J with the horizontal. For what value of (J does the Yo·Yo have 

no tendency to rotate? 

6.29 A Yo·Yo of mass M has an axle of radius b and a spool of radius R. 

Its moment of inertia can be taken to be MR2/2 and the thickness of the 

string can be neglected. The Yo·Yo is released from rest. 

a. What is the tension in the cord as the Yo·Yo descends and as it 

ascends? 
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b. The center of the Yo·Yo descends distance h before the string is 

fully unwound. Assuming that it reverses direction with uniform spin 

velocity. find the average force on the string while the Yo·Yo turns 

around. 

6.30 A bowling ball is thrown down the alley with speed 

slides without rolling. but due to friction it begins to roll. 

speed when it rolls without sliding is tvo. 

Vo. I nitially it 

Show that its 

6.31 A cylinder of radius R spins with angular velocity Woo When the 

cylinder is gently laid on a plane. it skids for a short time and eventually 

rolls without slipping. What is the final angular velocity. WI? 

Ans. clue. If Wo = 3 rad/s. WI = 1 rad/s 

6.32 A solid rubber wheel of radius R and mass M rotates with angular 

velocity Wo about a frictionless pivot (see sketch at left). A second 

rubber wheel of radius T and mass m. also mounted on a frictionless 

pivot. i's brought into contact with it. What is the final angular velocity 

of the first wheel? 

6.33 A cone of height h and base radius R is free to rotate about a 

fixed vertical axis. It has a thin groove cut in the surface. The cone 

is set rotating freely with a ngula r speed Woo a nd a small block of mass m 

is released in the top of the frictionless groove and allowed to slide under 

gravity. Assume that the block stays in the groove. Take the moment 

of inertia of the cone about the vertical axis to be 10• 

a. What is the angular velocity of the cone when the block reaches 

the bottom? 

b. Find the speed of the block in inertial space when it reaches the 

bottom. 

6.34 A marble of radius b rolls back and forth in a shallow dish of radius 

R. Find the frequency of small oscillations. R» b. 

Ans. W = V5g/7R 
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6.35 A cubical block of side L rests on a fixed cylindrical drum of radius 

R. Find the largest value of L fo.r which the block is stable. See figure 

below left. 

6.36 Two masses mA and mB are connected by a string of length land 

lie on a frictionless table. The system is twirled and released with mA 

instantaneously at rest and mB moving with instantaneous velocity Vo at 

right a ngles to the line of centers, as shown below right. 

Find the subsequent motion of the system and the tension in the 
string. 

Ans. clue. If mA = mB = 2 kg, Vo = 3 mis, l = 0.5 m, then T = 18 N 

6.37 a. A plank of length 2l and mass M lies on a frictionless plane. 

A ball of mass m a nd speed Vo strikes its end as shown. Find the final 

velocity of the ball, vI, assuming that mechanical energy is conserved 

and that vI is along the original line of motion. 

b. Find vI assuming that the stick is pivoted at the lower end. 

Ans. clue. For m = M, (a) vI = 3vo/5; (b) vI = vo/2 

6.38 A rigid massless rod of length L joins two particles each of mass 

m. The rod lies on a frictionless table, and is struck by a particle of 

mass m and velocity vo, moving as shown. After the collision, the pro

jectile moves straight back. 

Find the angular velocity of the rod about its center of mass after the 

collision, assuming that mechanical energy is conserved. 

Ans. w = (4V2/7)(voIL) 

6.39 A boy of mass m runs on ice with velocity Vo a nd steps on the end 

of a plank of length l and mass AI which is perpendicular to his path. 

a. Describe quantitatively the motion of the system after the boy is 

on the plank. Neglect friction with the ice. 

b. One point on the plank is at rest immediately after the collision. 

Where is it? 

Ans. 2l/3 from the boy 

6.40 A wheel with fine teeth is attached to the end of a spring with con

stant k and unstretched length l. For x > l, the wheel slips freely on 
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the surface, but for x < l the teeth mesh with the teeth on the ground 

so that it cannot slip. Assume that all the mass of the wheel is in its 

rim. 

a. The wheel is pulled to x = l + b and released. How close wi11 it 

come to the wall on its first trip? 

b. How far out will it go as it leaves the wall? 

-1--\-- c. What happens when the wheel next hits the gear track? 

6.41 This problem utilizes most of the important laws introduced so far 

and it is worth a substantial effort. However, the problem is tricky 

(although not really complicated), so don't be alarmed if the solution 

eludes you. 

A plank of length 2L leans against a wall. It starts to slip downward 

without friction. Show that the top of the plank loses contact with the 

wall when it is at two·thirds of its initial height. 

Hint: Only a single variable is needed to describe the system. Note 

���W;������ the motion of the center of mass. 
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7.1 Introduction 

In the last chapter we analyzed the motion of rigid bodies under· 

going fixed axis rotation. In this chapter we shall attack the more 

general problem of analyzing the motion of rigid bodies which can 

rotate about any axis. Rather than emphasize the formal mathe· 

matical details, we will try to gain insight into the basic principles. 

We will discuss the important features of the motion of gyroscopes 

and other devices which have large spin angular momentum, and 

we will also look at a variety of other systems. Our analysis is 

based on a very simple idea-that angular momentum is a vector. 

Although this is obvious from the definition, somehow its signifi· 

cance is often lost when one first encounters rigid body motion. 

Understanding the vector nature of angular momentum leads to 

a very simple and natural explanation for such a mysterious effect 

as the precession of a gyroscope. 

A second topic which we shall treat in this chapter is the con· 

servation of angular momentum. We touched on this in the last 

chapter but postponed any incisive discussion. Here the problem 

is physical subtlety rather than mathematical complexity. 

7.2 The Vector Nature of Angular Velocity and 

Angular Momentum 

In order to describe the rotational motion of a body we would like 

to introduce suitable coordinates. Recall that in the case of trans

lational motion, our procedure was to choose some convenient 

coordinate system and to denote the position of the body by a 

vector r. The velocity and acceleration were then found by suc

cessively differentiating r with respect to time. 

Suppose that we try to introduce angular coordinates 8"" 811, and 

8. about the x, y, and z axes, respectively. Can we specif y  the 

angular orientation of the body by a vector? 

Unfortunately, this procedure can not be made to work; there is 

no way to construct a vector to represent an angular orientation. 

The reason that 8",i and 811j cannot be vectors is that the order 

in which we add them affects the final result: 8",i + (11) � (11) + 9.1, 

as we show explicitly in Example 7.1. For honest-to-goodness 

vectors like xi and y), xi + y) = y) + xi. Vector addition is 

commutative. 

�, ' 
t 
' " 

. : ;-
.;. ... ' �'-.... 
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Example 7.1 Rotations through Finite Angles 

Consider a can of maple syrup oriented as shown, and let us investigate 

what happens when we rotate it by an angle of 7r/2 around the x axis, and 

then by 7r/2 around the y axis, and compare the result with executing 

the same rotations but in reverse order. 

z 

°xi+Oyi 

The diagram speaks for itself: 

Ozi + O.j ;e O.i + Ozi. 

Fortunately, all is not lost; although angular position cannot be 

represented by a vector, it turns out that angular velocity, the 

rate of change of angular position, is a perfectly good vector. 

We can define angular velocity by 

dOz dOli dO • •  

w=dti+dtJ+Ttk 
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The important point is that although rotations through finite angles 
do not commute, infinitesimal rotations do. commute, so that 
w = lim (�9/ �t) represents a true vector. The reason for this 6t->0 
is discussed in Note 7.1 at the end of the chapter. Assuming 
that angular velocity is indeed a vector, let us find how the velocity 
of any particle in a rotating rigid body is related to the angular 
velocity of the body. 

Consider a rigid body rotating about some axis. We designate 
the instantaneous direction of the axis by n and choose a coor· 
dinate system with its origin on the axis. The coordinate system 
is fixed in space and is inertial. As the body rotates, each of its 
particles describes a circle about the axis of rotation. A vector 

r(t + at) r from the origin to any particle tends to sweep out a cone. The 
drawing shows the result of rotation through angle MJ about the 
axis along n. The angle <p between nand r is constant, and the 
tip of r moves on a circle of radius r sin <p. 

The magnitude of the displacement I�rl is 

I I 2 ·  . 
M �r = r Sin <p Sin -. 
2 

For �O very small, we have 

. M M 
Sln- ""'-

2 2 
and I�rl "'" r sin <p M. 

If M occurs in time �t, we have IMI/ �t "'" r sin <p (M/ �t). In the 
limit �t� 0, 1'" 

aO �,rSinq, 
2 / I '\ 

j dr j = r sin <p 
dO. 

dt dt / 
1 '\ ( � . � 

• A. • ao r SIO 'I' slOT In the limit, dr/dt is tangential to the circle, as shown below. 
. Recalling the definition of vector cross product (Sec. 1.2e), 

we see that the magnitude of dr/dt, Idr/dtl = r sin <p dO/dt, and 
its direction, perpendicular to the plane of rand n, are given cor· 
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rectly by dr/dt = ii X r d8/dt. Since dr/dt = v and ii d8/dt = w, 

we have 

dr 
dt 

= v = W X r. 7.1 

Example 7.2 Rotation in the xy Plane 

8 
�--�--------------x 

w 

" v=wrS 

\ 
\ 
\ 

�------------------x 

Example 7.3 

z 

To connect Eq. (7.1) with a more familiar case-rotation in the xy plane

suppose that we evaluate v for the rotation of a particle about the z axis. 

We have W = wk, and r = xi + yj. Hence, 

v = W X r 

= wk X (xi + yj) 
=w(xj - yi). 

In plane polar coordinates x = r cos 8, y = r sin e, and therefore 

v = wr(j cos 8 - i sin 8). 

But j cos 8 - i sin e is a unit vector in the tangential direction 6. There· 

fore, 

v = wr6. 

This is the velocity of a particle moving in a circle of radius r at angular 

velocity w. 

It is sometimes difficult to appreciate at first the vector nature 

of angular velocity since we are used to visualizing rotation about 

a fixed axis, which involves only one component of angular velocity. 

We are generally much less familiar with simultaneous rotation 

about several axes. 

We have seen that we can treat angular velocity as a vector in 

the relation v = W X r. It is important to assure ourselves that 

this relation remains valid if we resolve w into components like 

any other vector. In other words, if we write w = WI + W2, is it 

true that v = (WI X r) + (W2 X r)? As the following example shows, 

the answer is yes. 

Vector Nature of Angular Velocity 

Consider a particle rotating in a vertical plane as shown in the sketch. 

The angular velocity w lies in the xy plane and makes an angle of 45° 

with the xy axes. 

First we shall calculate v directly from the relation v = dr/dt. To find 

r, note from the sketch at left that z = r cos e, x = -r sin 8/V2 and 

y = r sin e/
V2

. Hence, ( -1 1 _) r = r V2 si n 9i + V2 si n ej + cos ek 
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and differentiating, we have, since r = constant, 

dr - = v 
dt 

= r -- cos 01 + -- cos OJ - sin Ok -
[-1 . 1 , , ] dO 

V2 
V2 

dt 

[-1 1 A ] 
= wr V2 cos (Ji + 

V
2 cos OJ - sin Ok , 

where we have used dOjdt = w. 
Next we shall find the velocity from v = w X r. 

be resolved into components, 

we have 

k 
w w V2 

V2 
0 

wXr= 
-r sin 0 r sin 0 

r cos 0 
V2 V2 
( -1 1 A) = wr V2 cos Oi + 

V
2 cos OJ - si n Ok 

in agreement with Eq. (1). 

Assuming that w can 

As we expect, there is no problem in treating w like any other vector. 

In the following example we shall see that a problem can be 

greatly simplified by resolving w into components along convenient 

axes. The example also demonstrates that angular momentum 

is not necessarily parallel to angular velocity. 

Angular Momentum of a Rotating Skew Rod 

Consider a simple rigid body consisting of two particles of mass m sepa· 

rated by a massless rod of length 2l. The midpoint of the rod is attached 

to a vertical axis which rotates at angular speed w. The rod is skewed 

at angle a, as shown in the sketch. The problem is to find the angular 

momentum of the system. 

The most direct method is to calculate the angular momentum from 

the definition L = �(ri X Pi)' Each mass moves in a circle of radius 

l cos a with angular speed w. The momentum of each mass is Ipi = 
mwl cos a, tangential to the circular path. Taking the midpoint of the 

skew rod as origin, Irl = l. r lies along the rod and is perpendicular to 

l 
t 
I' 
i' 

I 
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p. Hence ILl = 2mwl2 cos a. L is perpendicular to the skew rod and lies 

in the plane of the rod and the z axis, as shown in the left hand drawing, 

below. L turns with the rod, and its tip traces out a circle about the z axis. 

(r)( p). 

a 

paper) 

We now turn to a method for calculating L which emphasizes the 

vector nature of w. First we resolve w = wk into components W.1. and 

WII, perpendicular and parallel to the skew rod. From the right hand 

drawing, above, we see that W.1. = w cos a, and WII = w sin a. 

Since the masses are point particles, WII produces no angular momen

tum. Hence, the angular momentum is due entirely to w.1.' The angular 

momentum is readily evaluated: the moment of inertia about the direc

tion of w.1. is 2ml2, and the magnitude of the angular momentum is 

L = Iw.1. 

= 2ml2w.1. 

= 2ml2w cos a. 

L points along the direction of w.1.' Hence, L swings around with the rod; 

the tip of L traces out a circle about the z axis. (We encountered a 

similar situation in Example 6.2 with the conical pendulum.) Note that 

L is not parallel to w. This is generally true for nonsymmetric bodies. 

The dynamics of rigid body motion is governed by � = dL/dt. 

Before we attempt to apply this relation to complicated systems, 

let us gain some insight into its physical meaning by analyzing the 

torque on the rotating skew rod. 

Torque on the Rotating Skew Rod 

In Example 7.4 we showed that the angular momentum of a uniformly 

rotating skew rod is constant in magnitude but changes in direction. 

L is fixed with respect to the rod and rotates in space with the rod. 
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The torque on the rod is given by "I: = dL/dt. We can find dL/dt 
quite easily by decomposing L as shown in the sketch. (We followed a 

similar procedure in Example 6.6 for the conical pendulum.) The com· 

ponent L. parallel to the z axis, L cos a, is constant. Hence, there is 

no torque in the z direction. The horizontal component of L, Lh = 

L sin a, swings with the rod. If we choose xy axes so that Lh coincides 

with the x axis at t = 0, then at time t we have 

L:z; = Lh cos wt 

= L sin a cos wt 

L" = Lh sin wt 

= L sin a sin wt. 

Hence, 

L = L sin a(i cos wt + j sin wt) + L cos ai<. 

The torque is 

dL 
"1:=-

dt 

= Lw sin a( - wi sin wt + j cos wt). 

Using L = 2ml2w cos a, we obtain 

T:z; = -2m12w2 sin a cos a sin wt 

Ty = 2ml2w2 sin a cos a cos wt. 

Hence, 

T = VT%2 + T/ 

= 2ml2w2 sin a cos a 

= wL sin a. 

Note that T = 0 for a = 0 or a = 1r /2. Do you see why? Also, can 

you see why the torque should be proportional to w2? 
This analysis may seem roundabout, since the torque can be calculated 

directly by finding the force on each mass and using "I: = Lri X 'i' How· 

ever, the procedure used above is just as quick. Furthermore, it iIIus· 

trates that angular velocity and angular momentum are real vectors 

which can be resolved into components along any axes we choose. 

Torque on the Rotating Skew Rod (Geometric Method) 

In Example 7.5 we calculated the torque on the rotating skew rod by 

resolving L into components and using "I: = dL/dt. We repeat the cal· 

culation in this example using a geometric argument which emphasizes 
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the connection between torque and the rate of change of L. This method 

illustrates a point of view that will be helpful in analyzing gyroscopic 

motion. 

As in Example 7.5, we begin by resolving L into a vertical component 

L. = L cos a and a horizontal component I.h = L sin a as shown in the 

sketch. Since L. is constant, there is no torque about the z axis. Lh is 

constant in magnitude but is rotating with the rod. The time rate of 

change of L is due solely to this effect. 

Once again we are dealing with a rotating vector. From Sec. 1.8 or 

Example 6.6, we know that dLh/dt = wLh• However, since it is so impor· 

tant to be able to visualize this result, we derive it once more. From 

the vector diagram we have 

IALhl "" ILhlAl.l 

dLh 
= Lh 

de 

dt dt 

= Lhw. 

The torque is given by 

dLh 
T = -

dt 

= wI. sin a, 

which is identical to the result of the last example. The torque -; is 

parallel to AL in the limit. For the skew rod, -; is in the tangential direc· 

tion in the horizontal plane and rotates with the rod. 

You may have thought that torque on a rotating system always 

causes the speed of rotation to change. In this problem the speed of 

rotation is constant, and the torque causes the direction of L to change. 

The torque is produced by the forces on the rotating bearing of the skew 

rod. For a real rod this would have to be an extended structure, some· 

thing like a sleeve. The torque causes a time varying load on the sleeve 

which results in vibration and wear. Since there is no way for a uniform 

gravitational field to exert a torq ue on the skew rod, the rod is said to be 

statically balanced. However, there is a torque on the skew rod when it 

is rotating, which means that it is not dynamically balanced. Rotating 

machinery must be designed for dynamical balance if it is to run smoothly. 

7.3 The Gyroscope 

We now turn to some aspects of gyroscope motion which can be 

understood by using the basic concepts of angular momentum, 

torque, and the time derivative of a vector. We shall discuss each 

step carefully, since this is one area of physics where intuition may 
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not be much help. Our treatment of the gyroscope in this section 
is by no means complete. Instead of finding the general motion 
of the gyroscope directly from the dynamical \'lquations, we bypass 
this complicated mathematical problem and concentrate on uni· 
form precession, a particularly simple and familiar type of gyro· 
scope motion. Our aim is to show that uniform precession is con· 
sistent with � = dL/dt and Newton's laws. While this approach 
cannot be completely satisfying, it does illuminate the physical 
principles involved. 

The essentials of a gyroscope are a spinning flywheel and a sus· 
pension which allows the axle to assume any orientation. The 
familiar toy gyroscope shown in the drawing is quite adequate 
for our discussion. The end of the axle rests on a pylon, allowing 
the axis to take various orientations without constraint. 

The right hand drawing above is a schematic representation of' 
the gyroscope. The triangle represents the free pivot, and the 
flywheel spins in the direction shown. 

If the gyroscope is released horizontally with one end supported 
by the pivot, it wobbles off horizontally and then settles down to 
uniform precession, in which the axle slowly rotates about the ver· 
tical with constant angular velocity n. One's immediate impulse 
is to ask why the gyroscope does not fall. A possible answer is 
suggested by the force diagram. The total vertical force is 
N - W, where N is the vertical force exerted by the pivot and 
W is the weight. If N = W, the center of mass cannot fall. 

This explanation, which is quite correct, is not satisfactory. We 
have asked the wrong question. Instead of wondering why the 

gyroscope does not fall, we should ask why it does not swing about 
the pivot like a pendulum. 

As a matter of fact, if the gyroscope is released with its flywheel 
stationary, it behaves exactly like a pendulum; instead of preces· 
sing horizontally, it swings vertically. The gyroscope precesses 
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only if the flywheel is spinning rapidly. In this case, the large 

spin angular momentum of the flywheel dominates the dynamics 

of the system. 

Nearly all of the gyroscope's angular momentum lies in L .. the 

spin angular momentum. L. is directed along the axle and has 

magnitude L. = low., where lois the moment of inertia of the fly

wheel about its axle. When the gyroscope precesses about the 

z axis, it has a small orbital angular momentum in the z direction. 

However, for uniform precession the orbital angular momentum 

is constant in magnitude and direction and plays no dynamical 

role. Consequently, we shall ignore it here. 

L. always points along the axle. As the gyroscope precesses, L, 
rotates with it. (See figure a below.) We have encountered rotat

ing vectors many times, most recently in Example 7.6. If the angu

lar velocity of precession is n, the rate of change of L. is given by 

I 
dL,

! & = nL,. 

The direction of dL./dt is tangential to the horizontal circle swept 

out by L.. At the instant shown in figure b, L. is in the x direc

tion and dL./dt is in the y direction. 

(b) 

There must be a torque on the gyroscope to account for the 

change in LB' The source of the torque is apparent from the 

force diagram at left. If we take the pivot as the origin, the torque 

is due to the weight of the flywheel acting at the end of the axle. 

The magnitude of the torque is 

T = lW. 

� is in the y direction, parallel to dL./dt, as we expect. 
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We can find the rate of precession n from the relation 

Since IdL./dtl = nL. and T = IW, we have 

nL. = IW. 

or 

IW 
n = - · 

loW. 
7.2 

Alternatively, we could have analyzed the motion about the cen· 

ter of mass. In this case the torque is TO = Nl = WI as before, 

since N = W. 

Equation (7.2) indicates that n increases as the flywheel slows. 

This effect is easy to see with a toy gyroscope. Obviously n can· 

not increase indefinitely; eventually uniform precession gives way 

to a violent and erratic motion. This occurs when n becomes so 

large that we cannot neglect small changes in the angular momen· 

tum about the vertical axis due to frictional torque. However, as 

is shown in Note 7.2, uniform precession represents an exact solu· 

tion to the dynamical equations governing the gyroscope. 

Although we have assumed that the axle of the gyroscope is 

horizontal, the rate of uniform precession is independent of the 

angle of elevation, as the following example shows. 

Gyroscope Precession 

Consider a gyroscope in uniform precession with its axle at angle", with 

the vertical. The component of L, in the xy plane varies as the gyro· 

scope precesses, while the component parallel to the z axis remains 

constant. 

The horizontal component of L, is L. sin ",. Hence 

IdL,jdtl = nL. sin ",. 

The torque due to gravity is horizontal and has magnitude 

T = l sin", W. 

We have 

nL, sin", = l sin", W 

lW 
n= - · 

low, 

The precessional velocity is independent of ",. 
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Our treatment shows that gyroscope precession is completely 

consistent with the dynamical equation � = dL/dt. The following 

example gives a more physical explanation of why a gyroscope 

precesses. 

Example 7.8 Why a Gyroscope Precesses 

Gyroscope precession is hard to understand because angular momentum 

is much less familiar to us than particle motion. However, the rotational 

dynamics of a simple rigid body can be understood directly in terms of 
Z Newton's laws. Rather than address ourselves specifically to the gyro· 
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scope, let us consider a rigid body consisting of two particles of mass m 

at either end of a rigid massless rod of length 21. Suppose that the rod 

is rotating in free space with its angular momentum L, along the z direc· 

tion. The speed of each mass is Vo. We shall show that an applied 

torque � causes L, to precess with angular velocity n = T/L,. 

To simplify matters, suppose that the torque is applied only during a 

short time tlt while the rod is instantaneously oriented along the x axis. 

We assume that the torque is due to two equal and opposite forces F, 

as shown. (The total force is zero, and the center of mass remains at 

rest.) The momentum of each mass changes by 

tlp = m tlv = Ftlt. 

Since tlv is perpendicular to vo, the velocity of each mass cha nges 

direction, as shown at left below, and the rod rotates about a new 

direction. 

The axis of rotation tilts by the angle 

F tlt 

mvo 

The torque on the system is T = 2Fl, and the angular momentum is 

L, = 2mvol. Hence 

2lF tlt 

2lmvo 

T tlt 

L, 
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The rate of precession while the torq ue is acting is therefore 

T 
=-, 

L, 

which is identical to the result for gyroscope precession. Also, the 

change in the angular momentum, 6.L" is in the y direction parallel to 

the torque, as required. 

This modt?1 gives some insight into why a torque causes a tilt in the 

axis of rotation of a spinning body. Although the argument can be elab· 

orated to apply to an extended body like a gyroscope, the final result is 

equivalent to using � = dL/dt. 

The discussion in this section applies to uniform precession, a 

very special case of gyroscope motion. We assumed at the begin· 

ning of our analysis that the gyroscope was executing this motion, 

but there are many other ways a gyroscope can move. For 

instance, if the free end of the axle is held at rest and suddenly 

released, the precessional velocity is instantaneously zero and the 

center of mass starts to fall. It is fascinating to see how this fall· 

ing motion turns into uniform precession. We do this in Note 7.2 

at the end of the chapter by a straightforward application of 

� = dL/dt. However, the treatment requires the general rela· 

tion between Land w developed in Sec. 7.6. 

7.4 Some Applications of Gyroscope Motion 

In this section we present a few examples which show the appli· 

cation of angular momentum to rigid body motion. 

Precession of the Equinoxes 

To a first approximation there are no torques on the earth and its angu· 

lar momentum does not change in time. To this approximation, the 

earth's rotational speed is constant and its angular momentum always 

points in the same direction in space. 

If we analyze the earth·sun system with more care, we find that there 

is a small torque on the earth. This causes the spin axis to slowly alter 

its direction, resulting in the phenomenon known as precession of the 

equinoxes. 

The torque arises because of the interaction of the sun and moon 

with the nonspherical shape of the earth. The earth bulges slightly; its 
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mean equatorial radius is 21 km greater than the polar radius. The 

gravitational force of the sun gives rise to a torque because the earth's 

axis of rotation is inclined with respect to the plane of the ecliptic (the 

orbital plane). During the winter, the part of the bulge above the ecliptic, 

A in the top sketch, is nearer the sun than the lower part B. The mass 

at A is therefore attracted more strongly by the sun than is the mass 

at B, as shown in the sketch. This results in a counterclockwise torque 

on the earth, out of the plane of the sketch. Six months later, when the 

earth is on the other side of the sun, B is attracted more strongly than 

A. However, the torque has the same direction in space as before. 

Midway between these extremes, the torque is zero. The average torque 

is perpendicular to the spin angular momentum and lies in the plane 

of the ecliptic. In a similar fashion, the moon exerts an average torque 

on the earth; this torque is about twice as great as that due to the sun. 

The torque causes the spin axis to precess about a normal to the 

ecliptic. As the spin axis precesses, the torque remains perpendicular 

to it; the system acts like the gyroscope with tilted axis that we analyzed 

in Example 7.7. 
The period of the precession is 26,000 years. 13,000 years from now, 

the polar axis will not point toward Polaris, the present north star; it 

will point 2 X 23{-0 = 47° away. Orion and Sirius, those familiar winter 

guides, will then shine in the midsummer sky. 

The spring equinox occurs at the instant the sun is directly over the 

equator in its apparent passage from south to north. Due to the pre· 

Ecliptic cession of the earth's axis, the position of the sun at the equinox against 

the background of fixed stars shifts by 50 seconds of arc each year. 

This precession of the equinoxes was known to the ancients. It figures 

in the astrological scheme of cyclic history, which distinguishes twelve 

ages named by the constellation in which the sun lies at spring equinox. 

The present age is Pisces, and in 600 years it will be Aquarius. 

Example 7.10 The Gyrocompass Effect 

Try the following experiment with a toy gyroscope. Tie strings to the 

frame of the gyroscope at points A and B on opposite sides midway 

between the bearings of the spin axis. Hold the strings taut at arm's 

length with the spin axis horizontal. Now slowly pivot so that the spin· 

ning gyroscope moves in a circle with arm length radius. The gyroscope 

;, suddenly flips and comes to rest with its spin axis vertical, parallel to 

, your axis of rotation. Rotation in the opposite direction causes the gyro 

.... '" 

to flip by 180°, making its spin axis again parallel to the rotation axis. 

(The spin axis tends to oscillate about the vertical, but friction in the 

horizontal axle quickly damps this motion.) 

The gyrocompass is based on this effect. A flywheel free to rotate 

about two perpendicular axes tends to orient its spin axis parallel to the 

axis of rotation of the system. I n the case of a gyrocompass, the "sys-
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tem" is the earth; the compass comes to rest with its axis parallel to the 

polar axis. 

We can understand the motion qualitatively by simple vector argu· 

ments. Assume that the axle is horizontal with L. pointing along the 

x axis. Suppose that we attempt to turn the compass about the z 

axis. If we apply the forces shown, there is a torque along the z axis, 

1" .. and the angular momentum along the z axis, L., starts to increase. 

If L. were zero, L. would be due entirely to rotation of the gyrocompass 

about the z axis: L. = l.w .. where I. is the moment of inertia about the 

z axis. However, when the flywheel is spinning, another way for L. to 

change is for the gyrocompass to rotate around the AB axis, swinging 

L. toward the z direction. Our experiment shows that if L. is large, most 

of the torque goes into reorienting the spin angular momentum; only a 

small fraction goes toward rotating the gyrocompass about the z axis. 

We can see why the effect is so pronounced by considering angular 

momentum along the y axis. The pivots at A and B allow the system 

to swing freely about the y axis, so there can be no torque along the y 

axis. Since Ly is initially zero, it must remain zero. As the gyrocompass 

starts to rotate about the z axis, L. acquires a component in the y direc· 

tion. At the same time, the gyrocompass and its frame begin to flip 

rapidly about the y axis. The angular momentum arising from this 

motion cancels the y component of L.. When L. finally comes to rest 

parallel to the z axis, the motion of the frame no longer changes the 

direction of L .. and the spin axis remains stationary. 

The earth is a rotating system, and a gyrocompass on the surface of 

the earth will line up with the polar axis, indicating true north. A practical 

gyrocompass is somewhat more complicated, however, since it must con· 

tinue to indicate true north without responding to the motion of the ship 

or aircraft which it is guiding. In the next example we solve the dynamo 

ical equation for the gyrocompass and show how a gyrocompass fixed 

to the earth indicates true north. 

Example 7.11 Gyrocompass Motion 

Consider a gyrocompass consisting of a balanced spinning disk held in 

a light frame supported by a horizontal axle. The assembly is on a 

turntable rotating at steady angular velocity n. The gyro has spin angu· 

lar momentum L. = l.w. along the spin axis. In addition, it possesses 

angular momentum due to its bodily rotation about the vertical axis at 

rate n, and by virtue of rotation 'about the horizontal axle. 

There cannot be any torque along the horizontal AB axis because that 

axle is pivoted. Hence, the angular momentum Lh along the AB direc· 

tion is constant, and dLh/dt = O. 

There are two contributions to dLh/dt. If () is the angle from the ver· 

tical to the spin axis, and 11. is the moment of inertia about the AB axis, 

then Lh = 11.8, and there is a contribution to dLh/dt of [1.0. 
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In addition, Lh can change because of a change in direction of L" as 

we have learned from analyzing the precessing gyroscope. The hori

zontal component of L. is L. sin 8, and its rate of increase along the AB 
axis is ftL, sin 8. 

We have considered the two changes in Lh independently. It is plau

sible that the total change in Lh is the sum of the two changes; a rigorous 

justification can be given based on arguments presented in Sec. 7.7. 
Adding the two contributions to dLh/dt gives 

dLh •• 

- = I.J..8 + ftL. sin 8_ 
dt 

Since dLh/dt = 0, the equation of motion becomes 

.. (Loft) 
8 + I; sin 8 = O. 

This is identical to the equation for a pendulum discussed in Sec. 6.6. 
When the spin axis is near the vertical, sin 8 ",. 8 and the gyro executes 

simple harmonic motion in 8: 

8 = 80 sin /3t 

where 

If there is a small amount of friction in the bearings at A and B, the ampli

tude of oscillation 00 will eventually become zero, and the spin axis comes 

to rest pa rallel to ft. 

To use the gyro as a compass, fix it to the earth with the AB axle ver· 

tical, and the frame free to turn. As the drawing on the next page 

shows, if >.. is the latitude of the gyro, the component of the earth's 

angular velocity ft. perpendicular to the AB axle is the horizontal com-



304 

Example 7.IZ 

I -iF 
(.---F fL_-
�. ---) - ,) 

Center v 

of I11<.1SS 

" 

I 
I 

/ 

RIGID BODY MOTION 

ponent Q. cos A. The spin axis oscillates in the horizontal plane about 

the direction of the north pole, and eventually comes to rest pointing 

north. 

oN 

N 

--------------

The period of small oscillations is T = 27f-j{3 = 211" V I J./(l,w.Q. cos A). 
For a thin disk I J./I. = t. Q. = 211" rad/day. With a gyro rotating at 

20,000 rpm, the period at the equator is 11 s. Near the north pole the 

period becomes so long that the gyrocompass is not effective. 

The Stability of Rotating Objects 

Angular momentum can make a freely moving object remarkably stable. 

For instance, spin angular momentum keeps a childs' rolling hoop upright 

even when it hits a bump; instead of falling, the hoop changes direction 

slightiy and continues to roll. The effect of spin on a bullet provides 

another example. The spiral grooves, or rifling, in a gun's barrel give 

the bullet spin. which helps to stabilize it. 

To analyze the effect of spin, consider a cylinder moving parallel to 

its axis. Suppose that a small perturbing force F acts on the cylinder for 

time t::.t. F is perpendicular to the axis, and the point of application is a 

distance l from the center of mass. 

We consider first the case where the cylinder has zero spin. The 

torque along the axis All. through the center of mass is T = Fl, and the 

"angular impulse" is T t::..t = Fl t::..t. The angular momentum acquired 

around the AA axis is 

Since wo, the initial angular velocity, is 0, the final angular velocity is 

given by 

Fl t::.t 
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The effect of the blow is to give the cylinder angular velocity around the 

transverse axis; it starts to tumble. 

Now consider the same situation, except that the cylinder is rapidly 

spinning with angular momentum ls. The situation is similar to that of 

the gyroscope: torque along the AA axis causes precession around the 

BE axis. The rate of precession while F acts is dL./dt = ALs, or 

n = 
Fl. 
L. 

The angle through which the cylinder precesses is 

cp = nAt 

Fl At 

L. 

Instead of starting to tumble, the cylinder slightly cbanges its orientation 

while the force is applied, and then stops precessing. The larger the 

spin, the smaller the angle and the less the effect of perturbations on 

the flight. 

Note that spin has no effect on the center of mass motion. I n both 

cases, the center of mass acquires velocity Av = F At/M. 

7.5 Conservation of Angular Momentum 

Before tackling the general problem of rigid body motion, let us 

return to the question of whether or not the angular momentum 

of an isolated system is conserved. To start, we shall show that 

conservation of angular momentum does not follow from Newton's 

laws. 

Consider a system of N particles with masses ml, m2, . . .  , 
mj, . . .  , mN. We assume that the system is isolated, so that 

the forces are due entirely to interactions between the particles. 

Let the force on particle j be 

N 

fj = 2: fjk, 
k=l 

where fjk is the force on particle j due to particle k. (In evalu

ating the sum, we can neglect the term with k = j, since fjj = 0, 
by Newton's third law.) 

Let us choose an origin and calculate the torque -':j on particle j. 

-':j= r; X fj 

rj X 2: fjk• 
k 
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Let �jl be the torque on j due to the particle l: 

�jl = rj X tj/. 

Similarly, the torque on 1 due to j is 

The sum of these two torques is 

�jl + �/j = rl X f/j + rj X tjl. 

Since til = -tl;' we have 

�jl + �/j = (rl X tlj) - (rj X tl}) 

= (rl - rj) X flj 

= rjl X fli, 

where rjl is a vector from j to l. We would like to be able to prove 

that �jl + �/j = 0, since it would follow that the internal torques 

cancel in pairs, just as the internal forces do. The total internal 

torque would then be zero, proving that the angular momentum 

of an isolated system is conserved. 

Since neither rjl nor tl} is zero, in order for the torq ue to vanish, 

flj must be parallel to rjl, as shown in figure (a). With respect 

to the situation in figure (b), however, the torque is not zero, and 

angular momentum is not conserved. Nevertheless, the forces 

are equal and opposite, and linear momentum is conserved. 

The situation shown in figure (a) corresponds to the case of 

central forces, and we conclude that the conservation of angular 

momentum follows from Newton's laws in the case of central 

force motion. However, Newton's laws do not explicitly require 

forces to be central. We must conclude that Newton's laws have 

no direct bearing on whether or not the angular momentum of an 

isolated system is conserved, since these laws do not in themselves 

exclude the situation shown in figure (b). 

It is possible to take exception to the argument above on the 

following grounds: although Newton's laws do not explicitly require 

forces to be central, they implicitly make this requirement because 

in their simplest form Newton's laws deal with particles. Par· 

ticles are idealized masses which have no size and no structure. 

In this case, the force between isolated particles must be central, 

since the only vector defined in a two particle system is the vector 

rjl from one particle to the other. For instance, suppose that we 

try to invent a force which lies at angle (J with respect to the inter· 

particle axis, as shown in the diagram. There is no way to dis· 
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tinguish direction a from b, however; both are at angle () with 

respect to rjl. An angle-dependent force cannot be defined using 

only the single vector r11; the force between the two particles must 

be central. 

The difficulty in discussing angular momentum in the context 

of newtonian ideas is that our understanding of nature now encom

passes entities vastly different from simple particles. As an 

example, perhaps the electron comes closest to the newtonian 

idea of a particle. The electron has a well-defined mass and, as 

far as present knowledge goes, zero radius. In spite of this, the 

electron has something analogous to internal structure; it pos

sesses spin angular momentum. It is paradoxical that an object 

with zero size should have angular momentum, but we must 

accept this paradox as one of the facts of nature. 

Because the spin of an electron defines an additional direction 

in space, the force between two electrons need not be central. 

As an example, there might be a force 

Fl2 = Crl2 X (51 + 52) 

F21 = Cr2l X (51 + 52), 

where C is some constant and 5i is a vector parallel to the angular 

momentum of the ith electron. The forces are equal and oppo

site but not central, and they produce a torque. 

There are other possibilities for noncentral forces. Experi· 

mentally, the force between two charged particles moving with 

respect to each other is not central; the velocity provides a second 

axis on which the force depends. The angular momentum of the 

two particles actually changes. The apparent breakdown of con

servation of angular momentum is due to neglect of an important 

part of the system, the electromagnetic field. Although the con

cept of a field is alien to particle mechanics, it turns out that 

fields have mechanical properties. They can possess energy, 

momentum, and angular momentum. When the angular momen

tum of the field is taken into account, the angular momentum of 

the entire particle·field system is conserved. 

The situation, in brief, is that newtonian physics is incapable 

of predicting conservation of angular momentum, but no isolated 

system has yet been encountered experimentally for which angu

lar momentum is not conserved. We conclude that conservation 

of angular momentum is an independent physical law, and until 

a contradiction is observed, our physical understanding must be 

guided by it. 
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7.6 Angular Momentum of a Rotating Rigid Body 

Angular Momentum and the Tensor of Inertia ; 

The governing equation for rigid bodY,motion, � = dL/dt, bears } 
a formal resemblance to the translational equation of motion 

F = dP / dt. However, there is an essential difference between 

them. Linear momentum and center of mass motion are simply 

related by P = MY, but the connection between Land w is not 

so direct. For fixed axis rotation, L = [w, and it is tempting to 

suppose that the general relation is L = [w, where [ is a scalar, 

that is, a simple number. However, this cannot be correct, since 

we know from our study of the rotating skew rod, Example 7.4, that 

Land ware not necessarily parallel. 

In this section, we shall develop the general relation between 

angular momentum and angular velocity, and in the next section 

we shall attack the problem of solving the equations of motion. 

As we discussed in Chap. 6, an arbitrary displacement of a 

rigid body can be resolved into a displacement of the center of 

mass plus a rotation about some instantaneous axis through the 

center of mass. The translational motion is easily treated. We 

start from the general expressions for the angular momentum 

and torque of a rigid body, Eqs. (6.11) and (6.14): 

L = R x MY + �r; X mi� 
� = R X F + �r� X t;. 

7.3 

7.4 

where r� is the position vector of mj relative to the center of m ass. 

Since � = dL/dt, we have 

/ d d / ./ R X F + �rj X fj = "it (R X MY) + dt (�rj X mjrj) 

M 
d / 

.
/ 

= R X A + dt (�rj X mjrj). 

Since F = MA, the terms involving R cancel, and we are left with 

7.5 

The rotational motion can be found by taking torque and angular 

momentum about the center of mass, independent of the center 

of mass motion. The angular momentum Lo about the center 

of mass is 

L "" / ./ 
o 

= .,rj X mjrj. 7.6 
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Our task is to express Lo in terms of the instantaneous angular 
velocity w. Since r� is a rotating vector, 

Therefore, 

Lo = �r� X miw X r�). 

To simplify the notation, we shall write L for Lo and rj for r;. Our 
result becomes 

7.7 

This result looks complicated. As a matter of fact, it is com
plicated, but we can make it look simple. We will take the pedes
trian approach of patiently evaluating the cross products in Eq_ 
(7.7) using ca rtesian coordinates.1 

Since w = wxi + wyj + wzk, we have 

w X r = (zwy - ywz)i + (xwz - zwx)j + (ywx - xWy)k_ 7.8 

Let us compute one component of L, say Lx. Temporarily drop
ping the subscript j, we have 

[r X (w X r)]x = y(w X r)z - z(w X r)y. 7.9 

If we substitute the results of Eq. (7.8) into Eq. (7.9), the result is 

[r X (w X r)]x = y(ywx - xWy) - z(xwz - zWx) 

= (y2 + Z2)wx - xyWy - xZWz. 

Hence, 

Let us introduce the following symbols: 

I xx = �m}(yj2 + Zj2) 

I xy = -�mjxjyj 

I xz = - �mjxjzj. 

7.10 

7.11 

7.12 

Ixx is called a moment of inertia. It is identical to the moment of 
inertia introduced in the last chapter, I = �mjpj2, provided that 
we take the axis in the x direction so that p/ = y/ + z/. The 
quantities Ixv and In are called products of inertia. They are 
symmetrical; for example, Ixy = -�mjxjyj = -�mjyjxj = Ivx. 

To find Ly and L .. we could repeat the derivation. However, 
a simpler method is to relabel the coordinates by letting x � y, 

I Another way is to use the vector identity A X (B X C) = (A • C)B - (A • B)C. 
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y -+ z, z -+ x. If we make these substitutions in Eqs. (7.11) and 

(7.12), we obtain 

L", = I",,,,wz + Iz�wu + Iz.w. 

L� = I�zW'" + 11I�wll + I�.w. 

L. = Iazwz + I.�wll + I .. w •. 

7.13a 

7.13b 

7.13c 

This array of three equations is different from anything we have 

so far encountered. They include the results of the last chapter. 

For fixed axis rotation about the z direction, (,) = wk and Eq. 

(7.13c) reduces to 

L. = I .. w 

= �mJ<x? + y/)w. 

However, Eq. (7.13) also shows that angular velocity in the z direc· 

tion can produce angular momentum about any of the three coor· 

dinate axes. For example, if (,) = wk, then Lx = Iz.w and 

L� = 11Iaw. In fact, if we look at the set of equations for L"" L�, and 

L .. we see that in each case the angular momentum about one axis 

depends on the angular velocity about all three axes. Both Land 

(,) are ordinary vectors, and L is proportional to (,) in the sense 

that doubling the components of (,) doubles the components of L. 

However, as we have already seen from the behavior of the rota· 

ting skew rod, Example 7.4, L does not necessarily point in the 

same direction as (,). 

Example 7.13 Rotating Dumbbell 

w 

�-----y 

Consider a dumbbell made of two spheres of radius b and mass M 
separated by a thin rod. The distance between centers is 2l. The body 

is rotating about some axis through its center of mass. At a certain 

instant the rod coincides with the z axis, and (,) lies in the yz plane, (,) = 

wyj + w.k. What is L? 
To find L, we need the moments and products of inertia. Fortunately, 

the products of inertia vanish for a symmetrical body lined up with the 

coordinate axes. For example, I:ev = -�mixiyj = 0, since for mass 

m" located at (x",y,,) there is, in a symmetrical body, an equal mass 

located at (x"' -Yn); the contributions of these two masses to 1"'1/ cancel. 

In this case Eq. (7.13) simplifies to 

L. = I:e:ew:e 

Lv = IY1/wll 
L. = I .. w •. 

f 
, 
. 
�. 

�-
$ 
" 
i 
, 

� 
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I Lz = Izzwz 
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Ly = Iyyw y 
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The moment of inertia ltz is just the moment of inertia of two spheres 

about their diameters. 

In calculating I yy. we can use the parallel axis theorem to find the moment 

of inertia of each sphere about the yaxis. 

I yy = 2(tMb2 + Ml2) 

= !Mb2 + 2Ml2. 

We have assumed that the rod has negligible mass. 

Since w = wyj + w.k. 

Lx = 0 

Ly = lnwy 

L. = lzzw •. 

lyy and 1.. are not equal; therefore LyIL. r6 wylw. and L is not parallel 

to w. as the drawing shows. 

Equations (7.13) are cumbersome. so that it is more convenient 

to write them in the following shorthand notation. 

L = lw. 7.14 

This vector equation represents three equations, just as F = ma 
represents three equations. The difference is that m is a simple 

scalar while 1 is a more complicated mathematical entity called a 

tensor. 1 is the tensor of inertia. 
We are accustomed to displaying the components of some 

vector A in the form 

Similarly, the nine components of 1 can be tabulated in a 3 X 3 

array: 

7.15 

Of the nine components, only six at most are different, since 

lyx = lxv, I.x·= L .. and Iy• = I.y. The rule for multiplying w by 

1 to find L = lw is defined by Eq. (7.13). 

The following example illustrates the tensor of inertia. 



312 

Example 7.14 

m 

z 

2 

I--��--�--�-----x 

RIGID BODY MOTION 

The Tensor of Inertia for a Rotating Skew Rod 

We found the angular momentum of a rotating skew rod from first 

principles in Example 7.3. Let us now find L for the same device by 

using L = jw. 
A massless rod of length 2l separates two equal masses m. The rod 

is skewed at angle a with the vertical, and rotates around the z axis 

with angular velocity w. At t = 0 it lies in the xz plane. The coordinates 

of the particles at any other time are: 

Particle 1 

XI = P cos wt 

YI = p sin wt 

Zl = -h 

Particle 2 

X2 = -p cos wt 

Y2 = -p sin wt 

Z2 = h, 

when p = l cos a and h = l sin a. 

The components of i can now be calculated from their definitions. 

For instance, 

In = ml(Yl2 + Z12) + m2(y22 + Z22) 

= 2m(p2 sin2 wt + h2) 

I,y = I yz 

-mlYIZI - m2Y2Z2 

2mph sin wt. i 

The remaining terms are readily evaluated. We find: 

( p2 sin2 wt + h2 

I = 2m _p2 sin wt cos wt 

ph cos wt 

- p2 sin wt cos wt 

p2 cos2 wt + h2 

ph sin wt 

The common factor 2m multiplies each term. 

Since w = (O,O,w), we have, from Eq. (7.13), 

L. = 2mphw cos wt 

Lv = 2mphw sin wt 

L. = 2mp2w. 

ph cos wt) 
ph sin wt . 

p2 

We can differentiate L to find the applied torque: 

'T. = -2mphw2 sin wt 

'Ty = 2mphw2 cos wt 

'T, = O. 

The results are identical to those in Example 7.4, provided that we 

make the substitution ph = l2 cos a sin a. 

I. 

. . 
" 

� . 
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Principal Axes 

If the symmetry axes of a uniform symmetric body coincide with 

the coordinate axes, the products of inertia are zero, as we saw 

in Example 7.13. In this case the tensor of inertia takes a simple 

diagonal form: (In 0 0 ) 
i = 0 Iyy 0 . 

o 0 I •• 

7.16 

Remarkably enough, for a body of any shape and mass distribu

tion, it is always possible to find a set of three orthogonal axes 

such that the products of inertia vanish. (The proof uses matrix 

algebra and is given in most texts on advanced dynamics.) Such 

axes are called principal axes. The tensor of inertia with respect 

to principal axes has a diagonal form. 

For a uniform sphere, any perpendicular axes through the 

center are principal axes. For a body with cylindrical symmetry, 

the axis of revolution is a principal axis. The other two principal 

axes are mutually perpendicular and lie in a plane through the 

center of mass perpendicular to the axis of revolution. 

Consider a rotating rigid body, and suppose that we introduce 

a coordinate system 1, 2, 3 which coincides inst�ntaneously with 

the principal axes of the body. With respect to this coordinate 

system, the instantaneous angular velocity has components WI. 
W2, W3, and the components of L have the simple form 

Ll = IlWl 

L2 = I2w2 
L3 = Iawa, 

7.17 

where II, 12, Ia are the moments of inertia about the principal 

axes. In Sec. 7.7, we shall exploit Eq. (7.17) in our attack on the 

problem of rigid body dynamics. 

Rotational Kinetic Energy 

The kinetic energy of a rigid body is 

To separate the translational and rotational contributions, we 

introduce center of mass coordinates: 

rj = R + r; 
Vj = V + v; . 
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We have 

K = !�mJ{V + V�)2 
- lMV2 + l�m V'2 
-� � ii' 

since the cross term V . �miv; is zero. 

Using v; = w X r;, the kinetic energy of rotation becomes 

K 1� '2 rot = ��m i vi 
= !�mJ<w X r;) . (w X r;). 

The right hand side can be simplified with the vector identity 

(A X 8) . C = A . (8 X C). Let A = w, 8 = r;, and C = w X r;. 
We obtain 

Krot = i�miw . [r; X (w X r�)l 
= iw· �mir; X (w X r). 

The sum in the last term is the angular momentum L by Eq. (7.7). 

Therefore, 

Krot = !w· L. 7.1R 

Rotational kinetic energy has a simple form when Land ware 

referred to principal axes. Using Eqs. (7.17) and (7.18) we have 

Krot = !w· L 

= tI1W12 + !I2w22 + tI3w32. 7.19 

Alternatively, 

7.20 

Example 7.15 Why Flying Saucers Make Better Spacecraft than Do Flying Cigars 

/ 

One of the early space satellites was cylindrical in shape and was put 

into orbit spinning around its long axis. To the designer's surprise, even 

though the spacecraft was torque·free, it began to wobble more and 

more, until finally it was spinning around a transverse axis. 

~ 
The reason is that although L is strictly conserved for torque·free 

motion, kinetic energy of rotation can change if the body is not absolutely 

rigid. If the satellite is rotating slightly off the symmetry axis, each part 

of the body undergoes a time varying centripetal acceleration. The 

spacecraft warps and bends under the time varying force, and energy is 

dissipated by internal friction in the structure. The kinetic energy of 

rotation must therefore decrease. From Eq. (7.20), if the body is rotating 

about a single principal axis, Krot = V/21. Krot is a minimum for the / 

i 
\ .. 
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axis with greatest moment of inertia, and the motion is stable around that 

axis. For the cylindrical spacecraft. the initial axis of rotation had the 

minimum moment of inertia, and the motion was not stable. 

A thin disk spinning about its cylindrical axis is inherently stable 

because the other two moments of inertia are only half as large. A 
cigar-shaped craft is unstable about its long axis and only neutrally stable 

about the transverse axes; there is no single axis of maximum moment 

of inertia. 

Rotation about a Fixed Point 

We showed at the beginning of this section that in analyzing the 

motion of a rotating and translating rigid body it is always correct 

to calculate torque and angular momentum about the center of 

mass. In some applications, however, one point of a body is 

fixed in space, like the pivot point of a gyroscope on a pylon. It 

is often convenient to analyze the motion using the fixed point as 

origin, since the center of mass motion need not be considered 

explicitly, and the constraint force at the pivot produces no 

torque. 

Taking the origin at the fixed point, let rj be the position vector 

of particle mj and let R = Xi + Yj + Zk be the position vector 

of the center of mass. The torque about the origin is 

� = �rj X fir 

where fj is the force on mj. If the angular velocity of the body 

is w, the angular momentum about the origin is 

L = �rj X m;i", 

= 2;rj X m}{w X rj). 

This has the same form as Eq. (7.6), which we evaluated earlier 

in this section. Taking over the results wholesale, we have 

L = iw 

where 

I xx = 2;m,{yj2 + Zj2) 

I xu = - �mjxjyj 

etc. 

Although this result is identical in form to Eq. (7.13), the com

ponents of i are now calculated with respect to the pivot point 

rather than the center of mass. 
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Once the tensor of inertia about the center of mass, io, is 

known, I about any other origin can be found from a generaliza· 

tion of the parallel axis theorem of Example 6.9. Typical results, 

the proof of which we leave as a problem, are 

1zz = (lo)zz + M(P + Z2) 

IZll = (lO)ZlI - MXY 

etc. 7.21 

Consider, for example, a sphere of mass M and radius b cen· 

tered on the z axis a distance l from the origin. We have 

Lz = iMb2 + Ml2, 1YlI = iMb2 + Ml2, I .. = iMb2. 

7.7 Advanced Topics in the Dynamics of Rigid Body Rotation 

Introduction 

In this section we shall attack the general problem of rigid body 

rotation. However, none of the results will be needed in subse· 

quent chapters, and the section can be skipped without loss of 

continuity. 

The fundamental problem of rigid body dynamics is to find the 

orientation of a rotating body as a function of time, given the 

torque. The problem is difficult because of the complicated 

relation L = iw between angular momentum and angular velocity. 

We can make the problem look simpler by taking our coordinate 

system coincident with the principal axes of the body. With 

respect to principal axes, the tensor of inertia i is diagonal in 
form, and the components of L are 

Lz = 1zzW:r 

LI/ = IJ/J/wl/ 

L. = 1 .. w •. 

However, the crux of the problp.m is that the principal axes are 

fixed to the body, whereas we need the components of L with 

respect to axes having a fixed orientation in space. As the body 

rotates, its principal axes move out of coincidence with the space· 

fixed system. The products of inertia are no longer zero in the 

space·fixed system and, worse yet, the components of i vary with 

time. 

The situation appears hopelessly tangled, but if the principal 

axes do not stray far from the space·fixed system, we can find 

the motion using simple vector arguments. Leaving the general 
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case for later, we illustrate this approach by finding the torque

free motion of a rigid body. 

Torque-free Precession: Why the Earth Wobbles 

If you drop a spinning quarter with a slight flip, it will fall with a 

wobbling motion; the symmetry axis tends to rotate in space, as 

the sketch shows. Since there are no torques, the motion is 

known as torque-free precession. 

Torque-free precession is a characteristic mode of rigid body 

motion. For example, the spin axis of the earth moves around 

the polar axis because of this effect. The physical explanation 

of the wobbling motion is related to our observation that L need 

not be parallel to w. If there are no torques on the body, L is 

fixed in space, and w must move, as will be shown. 

To avoid mathematical complexity, consider the special case of 

a cylindrically symmetric rigid body like a coin or al'l air suspension 

gyroscope_ We shall assume that the precessional motion is 

small in amplitude, in order to apply small angle approximations. 

Suppose that the body has a large spin angular momentum 

L = I.ws along the main symmetry axis, where I. is the moment 

of inertia and w. is the angular velocity about the symmetry axis. 

Let the body have small angular velocities about the other trans

verse axes. 

L, 

�--/';---Y >--&-Y 

x 
x 

Suppose that L. is always close to the z axis and makes angles 

IJ,,« 1 and IJ1I « 1 with the x and y axes. Note 7.1 on infinitesimal 

rotations shows that to first order, rotations about each axis can 

be considered separately. The contribution to L" from rotation 

about the x axis is L" = d(l ",,8,,)/ dt = I X" d8'%/ dt. We have treated 

In as a constant. The justification is that moments of inertia 

about principal axes are constant to first order for small angular 
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displacements. (The proof is left as a problem.) Rotation about 

y also contributes to Lx by giving L. a component L. sin 0ll in the 

x direction. Adding the two contributions, we have 

dOx • 
Lx = Ixx iii + L. Sin 0ll· 

Similarly, 

By symmetry, I xx = IlIlI == I J.. For small angles, sin 0 = 0 and 

cos 0 = 1, to first order. Hence 

dOx 
Lx = I J. dt + L,Oll 

dOli 
LII = I J. dt - L.O". 

To the same order of approximation, 

L. = L. 

= I.w,. 

7.22a 

7.22b 

7.23 

Since the torque is zero, dL/dt = O. Equation (7.23) then gives 

L. = constant, w. = constant, and Eqs. (7.22) yield 

d20z dOli 
I 

J. dt2 
+ L. at = 0 

I 
d20ll _ 

L 
dO", 

= o. 
J. dt2 • dt 

If we let w'" = dO",/ dt, Wll = dOy/ dt, Eqs. (7.24) become 

dwz 
I J. dt + L.wll = 0 

dWll 
I J. dt - L.wx = o. 

7.24a 

7.24b 

7.25a 

7.25b 

If we differentiate Eq. (7.25a) and substitute the value for dwll/dt 

in Eq. (7.25b), we obtain 

I J. 2 d2wz 
--+Lw -0 
L. dt2 

• '" -
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or 

where 

L. 
'Y = -

11. 

7.26 

Equation (7.26) is the familiar equation for simple harmonic motion. 

The solution is 

W'" = A sin ('Yt + cf», 7.27 

where A and cf> are arbitrary constants. Substituting this in Eq. 

(7.25a) gives 

11. dw", 
w = ---11 

L. dt 

Ilo 
= -

1 
A'Y cos ('Yt + cf», 

.w. 

or 

wll = A cos ('Yt + cf». 

By integrating Eqs. (7.27) and (7.28) we obtain 

A 
8", = - cos ('Yt + cf» + 8",0 

'Y 

7.28 

7.29 

where 8",0 and 8110 are constants of integration. The first terms 

of Eq. (7.29) reveal that the axis rotates around a fixed direc· 

tion in space. If we take that direction along the z axis, then 

8"'0 = 8yo = O. Assuming that at t = 0 8% = 80, 8y = 0, we have 

8", = 80 cos 'Yt 

7.30 

>-----y where we have taken Ah = 80, cf> = O. 

Equation (7.30) describes torque·free precession. The fre· 

q uency of the precessional motion is 'Y = w.l./ 1 1.. For a body 

flattened along the axis of symmetry, such as the oblate spheroid 
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shown, Is > 1.1. and "( > w,. For a thin coin, Is = 21.1. and 

"( = 2ws• Thus, the falling quarter described earlier wobbles 

twice as fast as it spins. 

The earth is an oblate spheroid and exhibits torque·free pre· , 

cession. The amplitude of the motitm is small; the spin axis 

wanders about the polar axis by about 5 m at the North Pole. 

Since the earth itself is spinning, the apparent rate of precession 

to an earthbound observer is 

"(' = "( - Ws 

7.31 

For the earth, (I, - 1.1.)/1.1. = rio, and the precessional motion 

should have a period of 300 days. However, the motion is quite 

irregular with an apparent period of about 430 days. The fluctua· 

tions arise from the elastic nature of the earth, which is significant 

for motions this small. 

Note 7.2 on the nutating gyroscope illustrates another applica· 

tion of the small angle approximation that we have used. 

Euler's Equations 

We turn now to the task of deriving the exact equations of motion 

for a rigid body. In order to find dL/dt, we shall calculate the 

change in the components of L in the time interval from t to 

t + Ilt, using the small angle approximation. The results are 

correct only to first order, but they become exact when we take 

the limit Ilt --t O. 

Let us introduce an inertial coordinate system which coincides 

with the instantaneous position of the body's principal axes at 

time t. We label the axes of the inertial system 1, 2, 3. Let the 

components of the angular velocity w at time l relative to the 1, 2, 

3 system be Wh W2, W3. At the same instant, the components of 

L are L1 = I1w1, L2 = I2w2, L3 = I3wa, where 11, 12, 13 are the 

moments of inertia about the three principal axes. 

In the time interval Ilt, the principal axes rotate away from the 

I, 2, 3 axes. To first order, the rotation angle about the 1 axis is 

1181 = W1 Ilt; similarly, 1182 = W2 Ill, 1183 = W36t. The correspond· 

ing change IlL1 = L1(t + 6t) - L1(t) can be found to first order 

by treating the three rotations one by one, according to Note 7.1 

on infinitesimal rotations. There are two ways L1 can change. 

If W1 varies, I1w1 will change. I n addition, rota tions about the 
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other two axes cause L2 and La to change direction, and this can 

contribute to angular momentum along the first axis. 

The first contribution to llLI is from ll(lIWl). Since the moments 

of inertia are constant to the first order for small angular displace

ments about the principal axes, ll(IIWl) = II llWI. 

To find the remaining contributions to llL1, consider first rota

tion about the 2 axis through angle !If)2. This causes Ll and La 

to rotate as shown. The rotation of Ll causes no change along 

the 1 axis to first order. However, the rotation of La contributes 

La ll02 = I aWa ll02 along the 1 axis. Similarly, rotation about the 

3 axis contributes - L2 llOa = -I 2W2 llOa to llLI. 

Adding all the contributions gives 

Dividing by llt and taking the limit llt � 0 yields 

dLI dWI dt = II dt + (Ia - I2)waw2. 

The other components can be treated in a similar fashion, or we 

can simply relabel the subscripts by 1 � 2, 2 � 3, 3 � 1. We 

find 

Since't = dLjdt, 

dW2 
T2 = 12 di + (II - Ia)wlwa 7.32 

dwa 
Ta = Ia di + (12 - I1)W2Wl, 

where Tl, T2, Ta are the components of 't along the axes of the 

inertial system I, 2, 3. These equations were derived by Euler 

in the middle of the eighteenth century and are known as Euler's 

equations of rigid body motion. 

Euler's equations are tricky to apply; thus, it is important to 

understand what they mean. At some time t we set up the 1, 
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2, 3 inertial system to coincide with the instantaneous directions 

of the body's principal axes. Tl, T2, Ta are the components of 

torque along the 1, 2, 3 axes at time t. Similarly, WI. W2, Wa are 

the components of (,) along the 1, 2, 3 axes at time t, and dWl/dt, ' 

dW2/dt, dwa/dt are the instantaneous rates of change of these 

components. Euler's equations relate these quantities at time 

t. To apply Euler's equations at another time t', we have to 

resolve � and (,) along the axes of a new inertial system 1', 2',3' 

which coincides with the principal axes at t'. 

The difficulty is that Euler's equations do not show us how to 

find the orientation of these coordinate systems in space. Essen· 

tially, we have traded one problem for another; in the familiar 

x, y, z laboratory coordinate system, we know the disposition of 

the axes, but the components of the tensor of inertia vary in an 

unknown way. In the 1, 2, 3 system, the components of i are 

constant, but we do not know the orientation of the axes. Euler's 

equations cannot be integrated directly to give angles specifying 

the orientation of the body relative to the x, y, z laboratory sys· 

tem. Euler overcame this difficulty by expressing Wl, W2, Wa in 

terms of a set of angles relating the principal axes to the axes of 

the x, y, z laboratory system. 

In terms of these angles, Euler's equations are a set of coupled 

differential equations. The general equations are fairly compli· 

cated and are discussed in advanced texts. Fortunately, in many 

important applications we can find the motion from Euler's equa· 

tions by using straightforward geometrical arguments. Here are 

a few examples. 

Stability of Rotational Motion 

In principle, a pencil can be balanced on its point. In practice, the pencil 

falls almost immediately. Although a perfectly balanced pencil is in equi· 

librium, the equilibrium is not stable. If the pencil starts to tip because 

of some small perturbing force, the gravitational torque causes it to tip 

even further; the system continues to move away from equilibrium. A 
system is stable if displacement from equilibrium gives rise to forces 

which drive it back toward equilibrium. Similarly, a moving system is 

stable if it responds to a perturbing force by altering its motion only 

slightly. In contrast, an unstable system can have its motion drastically 

changed by a small perturbing force, possibly leading to catastrophic 

failure. 

A rotating rigid body can exhibit either stable or unstable motion 

depending on the axis of rotation. The motion is stable for rotation 

about the axes of maximum or minimum moment of inertia but unstable 

for rotation about the axis with intermediate moment of inertia. The 

effect is easy to show: wrap a book with a rubber band and let it fall spin· 

ning about each of its principal axes in turn. I is maximum about axis 
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a and minimum about axis c; the motion is stable if the book is spun 

about either of these axes. However, if the book is spun about axis b, 

it tends to flop over as it spins, generally landing on its broad side. 

To explain this behavior, we turn to Euler's equations. Suppose that 

the body is initially spinning with WI = constant and W2 = 0, Wa = 0, and 

that immediately after a short perturbation, W2 and W3 are different from 

zero but very small compared with WI. Once the perturbation ends, the 

motion is torque·free and Euler's equations a�e: 

dWI 
II - + (I3 - I2)w2w3 = 0 

dt 

dW2 
12 - + (II - I3)wlw3 = 0 

dt 

1 

2 

3 

Since W2 and Wa are very small at first, we can initially neglect the 

second term in Eq. (1). Therefore II dWI/dt = 0, and W, is constant. 

If we differentiate Eq. (2) and sUbstitute the value of dWa/dt from Eq. 

(3), we have 

or 

4 

where 

A = 

(II - I2)(I1 - Ia) W12. 
I2Ia 

If I I is the largest or the smallest moment of inertia, A > 0 and Eq. (4) 

is the equation for simple harmonic motion. W2 oscillates at frequency 

VA with bounded amplitude. It is easy to show that W3 also undergoes 

simple harmonic motion. Since W2 and Wa are bounded, the motion is 

stable. (It corresponds to the torque·free precession we calculated 

earlier.) 

If I I is the intermediate moment of inertia, A < O. In this case W2 and 

Wa tend to increase exponentially with time, and the motion is unstable. 

Example 7.17 The Rotating Rod 

Consider a uniform rod mounted on a horizontal frictionless axle through 

its center. The axle is carried on a turntable revolving with constant 

angular velocity n, with the center of the rod over the axis of the turn

table. Let () be the angle shown in the sketch. The problem is to find 

() as a function of time. 
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To apply Euler's eq uations, let principal axis 1 of the rod be along the 
axle, principal axis 2 be along the length of the rod, and principal axis 3 

be in the vertical plane perpendicular to the rod. WI = 8, and by resolv· 
ing 0 along the 2 and 3 directions we find W2 = 0 sin (J, Wa = 0 cos 8. 

3 

2 

Since there is no torque about the 1 axis, the first of Euler's equations 
gives 

[10 + (1a - [2)0
2 sin (J cos (J = 0 

or 

20 + e 
a � [2

) 02 sin 28 = O. 

(We have used sin (J cos (J = t sin 2(J.) 
Since [a > [2, this is the eq uation for pendulum motion in the variable 

2(J. For oscillations near the horizontal, sin 28 � 28 and Eq. (1) becomes 

0+ e
a � [2

) 0
2
8 = 0, 

The motion is simple harmonic with angular frequency V(1a - 12)/11 n. 

Example 7.18 Euler's Equations and Torque-free Precession 

3 

We discussed the torque-free motion of a cylindrically symmetric body 
earlier using the small angle approximation. In this example we shall 
obtain an exact solution by using Euler's equations, 

Let the axis of cylindrical symmetry be principal axis 1 with moment of 
inertia [I. The other two principal axes are perpendicular to the 1 axis, 
and 12 = 13 = 1.1.' From the first of Euler's equations 

'1'1 = II(dwl/dt) + (1a - 12)w2wa, 

we have 

which gives 

WI = constant = w •. 
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Principal axes 2 and 3 revolve at the constant angular velocity w, about 

the 1 axis. 

The remaining Euler's equations are 

dW2 
o = IJ. - + (II - IJ.)w.wa 

dt 

dwa . 0= IJ. - + (IJ. - I1)w,w2. 
dt 

1 

2 

Differentiating the first equation and using the second to eliminate dwa/dt 
gives 

d2w2 + (II - IJ.)2 
2 _ 

W, W2 - O. 
dt2 I J. 

The angular velocity component W2 executes simple harmonic motion with 

a ngula r freq uency 

Thus, W2 is given by W2 = wJ. cos rt where the amplitude wJ. is deter

mined by initial conditions. Then, if II > I J.' Eq. (1) gives 

1 dW2 
- --

r dt 
wa = 

= wJ. sin rt. 

As the drawing shows, W2 and Wa are the components of a vector wJ. which 

rotates in the 2·3 plane at rate r. Thus, an observer fixed to the 

body would see w rotate relative to the body about the 1 axis at angular 
3 frequency r. Since the 1, 2, 3 axes are fixed to the body and the body 

is rotating about the 1 axis at rate w" the rotational speed of w to an 

observer fixed in space is 

II 
r 

+ 
w, = -- w,. 

IJ. 

Euler's equations have told us how the angular velocity moves relative 

to the body, but we have yet to find the actual motion of the body in 

space. Here we must use our ingenuity. We know the motion of w 

relative to the body, and we also know that for torque-free motion, L is 

constant. As we shall show, this is enough to find the actual motion of 

the body. 

The diagram at the top of the next page shows wand L at some 

instant of time. Since L cos ex = I1w" and w, and L are constant, ex 

must be constant as well. Hence, the relative position of all the vectors 

in the diagram never changes. The only possible motion is for the 
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diagram to rotate about L with some "precessional" angular velocity !2p• 
(Bear in mind that the diagram is moving relative to the body; !2p is 

greater than ws.) 

The remaining problem is to find Qp• We have shown that w precesses 

about Ws in space at rate r + w,. To relate tbis to 0P' resolve Op into 

a vector A along w, and a vector B perpendicular to w,. The magnitudes 

are it = Qp cos a, B = Qp sin a. The rotation A turns w about w .. but 

the rotation B does not. Hence the rate at which w precesses about Cal, 
is Qp cos a. Equating this to r + ws, 

Qp cos a = r + w, 

I! 
= -Ws 

I.l 

or 

Q = � .  
P I.l cos a 

The precessional a ngular velocity Qp represents the rate at which the 

symmetry axis rotates about the fixed direction L. It is the frequency 

of wobble we observe when we flip a spinning coin. Earlier in this sec· 

tion we found that the rate at which the symmetry axis rotates about a 
space·fixed direction is llw./l in the small angle approximation. The 

result agrees with Qp in the limit a -> O. 

Note 7.1 Finite and Infinitesimal Rotations 

In this note we shall demonstrate that finite rotations do not commute, 

but that infinitesimal rotations do. By an infinitesimal rotation we mean 

one for which all powers of the rotation angle beyond the first can be 

neglected. 

Consider rotation of an object through angle a about an axis na followed 

by a rotation through !3 about axis nil' It is not possible to specify the 

orientation of the body by a vector because if the rotations are performed 

in opposite order, we do not obtain the same final orientation. To show 

this, we shall consider the effect of successive rotations on a vector r. 
Let ra be the result of rotating r through a about na, and rap be the result 

of rotating ra through !3 about n{3. We shall show that 

However, we shall find that for a «1, !3 «1, r a/l = r{3a to first order, and 

there is therefore no ambiguity in the orientation angle vector for infini· 

tesimal rotations. 

Consider the effect of successive rotation on a vector initially along the 

x axis, r = ri, first through angle a about the z axis and then through 

angle !3 about the 1/ axis. Although this is a special case, it illustrates the 
important features of a general proof. 

\ 
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NOTE 7.1 FINITE AND INFINITESIMAL ROTATIONS 

First rotation: through angle a about z axis. 

r = ri 

ra = r cos ai + r sin aj, 

since Iral = Irl = r. 

Second rotation: through angle (3 about y axis. 

The component r sin aj is unchanged by this rotation. 

rail = r cos a (cos (3i - sin (3k) + r sin aj 

= r cos a cos (3i + r sin aj - r cos a sin (3k 

327 

1 

To find rlla, we go through the same argument in reverse order. The 

result is 

rlla = r cos a cos (3i + r cos (3 sin aj - r sin (3k. 2 

From Eqs. (1) and (2), ra{3 and r{3a differ in the y and z components. Sup

pose that we represent the angles by �a and �(3, as in the lower two 

drawings, and take �a« I, �(3 « 1. If we neglect all terms of second 

order and higher, so that sin �O "'" �O, cos �O "'" I, Eq. (1) becomes 

rail = r i  + r �aj - r �(3k. 

Equation (3) becomes 

rlla = r i  + r �aj - r �(3k. 

Hence rail = r{3a to first order for small rotations, and the vector 

M = �(3j + �ak 

is well defined. In particular, the displacement of r is 

�r = rfinal - rinitial 
= rail - ri 

= r �aj - r �(3k = �6 X r. 

If the displacement occurs in time �t, the velocity is 

dr 
v =-

dt 

MXr 
= lim 

Llt-.O �t 

= (,) X r, 

where 

�6 
(,) = lim 

LlHO�t 

In our example, (,) = (d(3jdt)j + (dajdt)k. 

3 

4 
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Our results in Eq. (3) or (4) indicate that the effect of infinitesimal rota· 

tions can be found by considering the rotations independently one at a 

time. To first order, the effect of rotating r = ri through .1a about 2 

is to generate a y component r .1aj. The effect of rotating r through 

.1f3 about y is to generate a z component, -r .1f3k. The total change in 

r to first order is the sum of the two effects, 

.1r = r .1aj - r .1f3k, 

in agreement with Eq. (3) or (4). 

Note 7.2 More about Gyroscopes 

In Sec. 7.3 we used simple vector arguments to discuss the uniform 

precession of a gyroscope. However, uniform precession is not the 

most general form of gyroscope motion. For instance, a gyroscope 

released with its axle at rest horizontally does not instantaneously start 

to precess. Instead, the center of mass begins to fall. The falling 

motion is rapidly converted to an undulatory motion called nutation. If 
the undulations are damped out by friction in the bearings, the gyroscope 

eventually settles into uniform precession. The purpose of this note is 

to show how nutation occurs, using a small angle approximation. (The 

same method is used in Sec. 7.7 to explain torque·free precession.) 

Consider a gyroscope consisting of a flywheel on a shaft of length I 
whose other end is attached to a universal pivot. The flywheel is set 

spinning rapidly and the axle is released from the horizontal. What 

is the motion? 

Since it is natural to consider the motion in terms of rotation about 

the fixed pivot point, we introduce a coordinate system with its origin at 

the pivot. 

z 

x 

Assume for the moment that the gyroscope is not spinning but that 

the axle is rotating about the pivot. In order to calculate the angular 

momentum about the origin, we shall need a generalization of the parallel 

axis theorem of Example 6.9. Consider the angular momentum due to 

rotation of the axle about the z axis at rate w.. If the moment of inertia 

i ! 

i 

I 

, j 
1 
I 
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of the disk around a vertical axis through the center of mass is 1m then 

the moment of inertia about the z axis through the pivot is [.. + Ml2. 
The proof of this is straightforward, and we leave it as a problem. If 

we let I" + J1fl2 = I p, then L. = w.I p' By symmetry, the moment of 

inertia about the x axis is I %X + Ml2 = I P' so that L% = wxI p' 
The results above are exact when the gyroscope lies along the y axis, 

as in the drawing, and they are true to first order in angle for small 

angles of tilt around the y axis. 
z 

z 

cDwz 

y 

� __ LS 

Y � 

}7JWx 
x 

(a) x 
(b) 

Now suppose that the flywheel is set spinning at rate w.. If the 

moment of inertia along the axle is Iso then the spin angular momentum 

is L. = I.w •. 

There are two kinds of contributions to the angular momentum asso· 

ciated with small angular displacements from the y axis. From rotation 

of the system as a whole with angular velocity w, we have angular momen· 

tum contributions of the form I pW. In addition, as the gyroscope moves 

away from the y axis, components of L, can be generated in the x and z 

directions. For small angular displacements 8, such components will be 

of the form L,8. 

For small angular displacements, 8%« 1 about the x axis and 8.« 1 
about the z axis, the rotations can be considered independently and their 

effects added. 

a. Rotation about the x Axis (fig. a) 

Suppose that the axle has rotated about the x axis through angle 8%« 1, 
and has instantaneous angular velocity W%' Then 

L% = Ipw% 

L. = L, cos 8% � L, 

L. = L, sin 8% � L,8%. 

b. Rotation about the z Axis (fig. b) 

For a rotation by 8.« 1 about the z axis, a similar argument gives 

L% = -L, sin 8. � -L,8. 

Ly = L, cos O. � L. 

L. = Ipw •. 

1 

2 
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Equations (1) and (2) show that the rotations {}z and {}z leave I,y unchanged 

to first order. However, the rotations give rise to first order contributions 

to Lz and L,. From Eqs. (1) and (2) we find 

Lx = Jpwx - L,{}z 
Lu = L, 
L, = Jpw, + L,{}x' 

The instantaneous torque about the origin is 

Tx = -llV, 

where l is the length of the axle and 11' is the weight of the gyro. Since 

� = dL/dt, Eqs. (3) and (4) give 

Jpwx - L,wz = -lIV 
t, = 0 

Jpw, + L,wx = 0, 

where we have used Oz = Wz, Ox = W%' 

5a 
5b 
5c 

Equation (5b) assures us that the spin is constant, as we expect for a 

flywheel with good bearings. If we differentiate Eq. (5a), we obtain 

Substituting the result W, = -L,wx/Jp from Eq. (5c) gives 

.. 1.,,2 
Wx + -Wx = O. 

J 2 P 
If we let "I = L./ I p = w,J,/J 1" this becomes 

We have the familiar equation for simple harmonic motion. The solu· 

tion is 

w% = A cos ("It + cf», 
where A and cf> are arbitrary constants. 

We can use Eq. (5a) to find Wz: 

w, 
= 

lIV + IpWx. 
L, 1." 

Substituting the result wz = - .. l "I sin ("It + cf» from Eq. (6) gives 

nv II' . W, = - - - A. "I Sin ("It + cf» 
L, L. 

lW 
= - - 11 sin ("It + cf». 

L. 

6 

7 
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We can integrate Eqs. (6) and (7) to obtain 

Oz = B sin Cyt + cp) + C 

IW 
0. = -- t + B cos ("It + cp) + D, 

L. 

where B = AI'Y, and C, D are constants of integration. 

331 

8a 

8b 

The motion of the gyroscope depends on the constants B, cp, C, and 

D in Eq. (8), and these depend on the initial conditions. We consider 

three separate cases. 

CASE 1. UNIFORM PRECESSION 

If we take B = 0, and C = D = 0, Eq. (8) gives 

t 
0. = IW-, 

L, 
9 

This corresponds to the case of uniform precession we treated in Sec. 

7.3. The rate of precession is dO.ldt = IW I L .. as in Eq. (7.2). If the 
gyroscope is moving in uniform precession at t = 0, it will continue to 

do so. 

CASE 2. TORQUE·FREE PRECESSION 

If we "turn off" gravity so that W is zero, then Eq. (8) gives, with 

C = D = 0, 

Oz = B sin ("It + cp) 

0. = B cos ("It + CPl. 

10 

The tip of the axle moves in a circle about the y axis. The amplitude 

of the motion depends on the initial conditions. This is identical to the 

torque·free precession discussed in Sec. 7.7. 

CASE 3. NUTATION 

Suppose that the axle is released from rest along the y axis at t = o. 

The initial conditions at t = 0 on the x motion are (Oz)o = (dOzldt)o = O. 

From Eq. (8a) we obtain 

B sin cp + C = 0 

B'Y cos cp = O. 

Assuming for the moment that B is not zero, we have cp = 7r/2, C = -B. 

Equation (8b) then becomes 

IW 
0, = -- t - B sin "It + D. 

L • 



332 

��--�-----r----'-----r--ez 

�r------------------------ez 

Damped nutation 

RIGID BODY MOTION 

From the initial conditions on the z motion, (8.)0 = (d8.ldt)0 = 0, we 
obtain 

D = 0 

lTV 
-B'Y + - = 0 

L. 

or 

B = 

lTV. 

'YL. 

Inserting these results in Eq. (8) gives 

lTV 
8% = - (cos 'Yt - 1) 

'YL. 

lTV 
8. = - ('Yt - sin 'Yt). 

'YL. 

The motion described by Eq. (11) is illustrated in the sketch. As time 
increases, the tip of the axle traces out a cycloidal path. The dipping 
motion of the axle is called nutation. The motion is easy to see with a 

well-made gyroscope. Note that the initial motion of the axle is vertically 
down; the gyro starts to fall when it is released. Eventually the nutation 
dies out due to friction in the pivot, and the motion turns into uniform 
precession, as shown in the second sketch. The axle is left with a slight 
dip after the nutation is damped; this keeps the total angular momentum 
about the z axis zero. The rotational energy of precession comes from: 
the fall of the center of mass. Other nutational motions are also possible, ' 
depending on the initial conditions; the lower two sketches show two" 
possible cases. These can all be described by Eq. (8) by suitable choices; 

of the consta nts. 
We made the approximation that 8%« I, 8.« I, but because of pre.

" 

cession, 8. increases linearly with time, so that the approximation inevit· 
ably breaks down. This is not a problem if we examine the motion for 
one period of nutation. The nutational motion repeats itself whenever 

'Yt = 211". The period of the nutation is T = 211" I'Y. If 8. is small during 
one period, then we can mentally start the problem over at the end of 
the period with a new coordinate system having its y axis again along the 
direction of the al<le. The restriction on 8. is then that nT« I, or 

211"n 
- «1. 

'Y 

Our solution breaks down if the rate of precession becomes comparable 
to the rate of nutation. More vividly, we require the gyroscope to nutate 
many times as it precesses through a full turn. 

In a toy gyroscope, friction is so large that it is practically impossible 
to observe nutation. However, in the air suspension gyroscope, friction 
is so small that nutation is easy to observe. The rotor of this gyroscope 



j 
.;J \. 

NOTE 7.2 MORE ABOUT GYROSCOPES 333 

is a massive metal sphere which rests in a close fitting cup. The sphere 

is suspended on a film of air which flows from an orifice at the bottom of 

the cup. Torque is applied by the weight of a small mass on a rod pro

truding radially from the sphere. The pictures below are photographs 

of a stroboscopic light source reflected from a small bead on the end of 

the rod. The three modes of precession are apparent; by studying the 

distance between the dots you can discern the variation in speed of the 

rod through the precession cycle. 
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Problems 7.1 A thin hoop of mass M and radius R rolls without slipping about 

the z axis. It is supported by an axle of length R through its center, as 

shown. The hoop circles around the z axis with angular speed n. 

a. What is the instantaneous angular velocity (,) of the hoop? 

b. What is the angular momentum L of the hoop? Is L parallel to (,)? 

(Note: the moment of inertia of a hoop for a n axis along its diameter is 

iMR2.) 

R 

/....-----
---- ----

/ 
, 
\ 

"- ..... 
.......... 

7.2 A flywheel of moment of inertia 10 rotates with angular velocity Wo 

at the middle of an axle of length 21. Each end of the axle is attached to 

a support by a spring which is stretched to length I and provides ten· 

sion T. You may assume that T remains consta nt for small displace· 

ments of the axle. The supports are fixed to a table which rotates at 

constant angular velocity, n, where n« woo The center of mass of the 

flywheel is directly over the center of rotation of the table. Neglect 

gravity and assume that the motion is completely uniform so that nuta· 

tional effects are absent. The problem is to find the direction of the 

axle with respect to a straight line between the supports. 

21:tll 

rr�"·� rY\J)Jwo 
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7.3 A gyroscope wheel is at one end of an axle of length l. The other 

end of the axle is suspended from a string of length L. The wheel is 

set into motion so that it executes uniform precession in the horizontal 

plane. The wheel has mass M and moment of inertia about its center 

of mass 10, Its spin angular velocity is W$' Neglect the mass of the 

shaft and of the string. 

Find the angle {3 that the string makes with the vertical. Assume that 

{3 is so small that approximations like sin {3 � {3 are justified. 

7.4 In an old·fashioned rolling mill, grain is ground by a disk·shaped 

millstone which rolls in a circle on a flat surface driven by a vertical shaft. 

Because of the stone's angular momentum, the contact force with the 

surface can be considerably greater than the weight of the wheel. 

Assume that the millstone is a uniform disk of mass M, radius b, and 

width W, and that it rolls without slipping in a circle of radius R with angular 

velocity n. Find the contact force. Assume that the millstone is closely 

fitted to the axle so that it cannot tip, and that W «R. Neglect friction. 

Ans. clue. If n2b = 2 g, the force is twice the weight 

7.5 When an automobile rounds a curve at high speed, the loading 

(weight distribution) on the wheels is markedly changed. For sufficiently 

high speeds the loading on the inside wheels goes to zero, at which point 

the car starts to roll over. This tendency can be avoided by mounting a 

large spinning flywheel on the car. 

a. In what direction should the flywheel be mounted, and what should 

be the sense of rotation, to help equalize the loading? (Be sure that 

your method works for the car turning in either direction.) 

b. Show that for a disk·shaped flywheel of mass m and radius R, the 

requirement for equal loading is that the angular velocity of the flywheel, 

W, is related to the velocity of the car v by 

111L 
W = 2v --, 

mR2 

where M is the total mass of the car and flywheel, and L is the height of 

the center of mass of the car (including the flywheel) above the road. 

Assume that the road is unbanked. 

7.6 If you start a' coin rolling on a table with care, you can make it roll 

in a circle. As you can see from the drawing, the coin "leans" 

inward, with its axis tilted. The radius of the coin is b, the radius 

of the circle it follows on the table is R, and its velocity is v. Assume 

that there is no slipping. Find the angle cJ> that the axis makes with 

the horizontal. 

Ans. tan cJ> = 3v2j2gR 
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7.7 A thin hoop of mass M and radius R is suspended from a string 

through a pOint on the rim of the hoop. If the support is turned with 

high angular velocity w, the hoop will spin as shown, with its plane nearly 

horizontal and its center nearly on the axis of the support. The string 

makes angle a with the vertical. 

a. Find, approximately, the small angle {3 between the plane of the 

hoop and the horizontal. 

b. Find, approximately, the radius of the small circle traced out by 

the center of mass about the vertical axis. (With skill you can demon· 

strate this motion with a rope. It is a favorite cowboy lariat trick.) 

7.8 A child's hoop of mass M and radius b rolls in a straight line with 

veloCity v. Its top is given a light tap with a stick at right angles to the 

direction of motion. The impulse of the blow is I. 
a. Show that this results in a deflection of the line of rolling by angle 

cp = I jilfv, assuming that the gyroscope approximation holds and neg· 

lecting friction with the ground. 

b. Show that the gyroscope approximation is valid provided F« Mv2/b, 

where F is the peak applied force. 

7.9 This problem involves investigating the effect of the angular momen· 

tum of a bicycle's wheels on the stability of the bicycle a nd rider. Assume 

that the center of mass of the bike and rider is height 21 above the ground. 

Each wheel has mass m, radius I, and moment of inertia m12. The bicycle 

moves with velocity V in a circular path of radius R. Show that it leans 

through an angle given by 

tan cp = - 1 + - , 
V2 ( m) 
Rg M 

where M is the total mass. 

The last term in parentheses would be absent if angular momentum 

were neglected. Do you think that it is important? How important is 

it for a bike without a rider? 

7.10 Latitude can be measured with a gyro by mounting the gyro with 

its axle horizontal and lying along the east·west axis. 

a. Show that the gyro can remain stationary when its spin axis is 

parallel to the polar axis and is at the latitude angle A with the horizontal. 

b. If the gyro is released with the spin axis at a small angle to the 

polar axis show that the gyro spin axis will oscillate about the polar axis 

with a frequency Wose = VI\w.rl.jIJ.' where 1\ is the moment of inertia 

of the gyro about Its spin axis, I J. is its moment of inertia about the fixed 

horizontal axis, and O. is the earth's rotational angular velocity. 

What value of WORe is expected for a gyro rotating at 40,000 rpm, assum· 

ing that it is a thin disk and that the mounting frame makes no contribu· 

tion to the moment of inertia? 
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7.11 A particle of mass m is located at x = 2, Y = 0, Z = 3. 

a. Find its moments and products of inertia relative to the origin. 

337 

b. The particle undergoes pure rotation about the z axis through a 

small angle a. Show that its moments of inertia are unchanged to first order 

in a if a« 1. 
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NONINERTIAL SYSTEMS AND FICTITIOUS FORCES 

8.1 Introduction 

In discussing the principles of dynamics in Chap. 2, we stress!!d 
that Newton's second law F = ma holds true only in inertial coor· 
dinate systems. We have so far avoided noninertial systems in 
order not to obscure our goal of understanding the physical nature 
of forces and accelerations. Since that goal has largely been 
realized, in this chapter we turn to the use of noninertial systems. 
Our purpose is twofold. By introducing noninertial systems we 
can simplify many problems; from this point of view, the use 
of noninertial systems represents one more computational tool. 
However, consideration of noninertial systems enables us to 
explore some of the conceptual difficulties of classical mechanics, 
and the second goal of this chapter is to gain deeper insight into 
Newton's laws, the properties of space, and the meaning of 
inertia. 

We start by developing a formal procedure for relating observa· 
tions in different inertial systems. 

8.2 The Galilean Transformations 

In this section we shall show that any coordinate system moving 
uniformly with respect to an inertial system is also inertial. This 
result is so transparent that it hardly warrants formal proof. 
However, the argument will be helpful in the next section when 
we analyze noninertial systems. 

Suppose that two physicists, a and {3, set out to observe a series 
of events such as the position of a body of mass m as a function 
of time. Each has his own set of measuring instruments and each 
works in his own laboratory. a has confirmed by separate exper· 
iments that Newton's laws hold accurately in his laboratory. His 
reference frame is therefore inertial. How can he predict whether 
or not {3's system is also inertial? 

For simplicity, a and {3 agree to use cartesian coordinate systems 
with identical scale units. In general, their coordinate systems do 
not coincide. Leaving rotations for later, we suppose for the time 
being that the systems are in relative motion but that correspond· 
ing axes are parallel. Let the position of mass m be given by ra 

in a'S system, and rfj in {3's system. If the origins of the two sys· 
tems are displaced by S, as shown in the sketch, then 

r/l=r,,-S. 8.1 

If physicist a sees the mass accelerating at rate a" = r", he con
cludes from Newton's second law that there is a force on m given 
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by 

Physicist {3 observes m to be accelerating at rate afJ, as if it were 

acted on by a force 

FfJ = mafJ· 

What is the relation between FfJ and the true force Fa measured 

in an inertial system? 

It is a simple matter to relate the accelerations in the two sys

tems. Successive differentiation with respect to time of Eq. (8.1) 
yields 

VfJ = Va - V 

afJ = aa - A. 8.2 

If V = 5 is constant, the relative motion is uniform and A = O. 

In this case afJ = afJ, and 

FfJ = mafJ = maa 

= Fa. 

The force is the same in both systems. The equations of motion 

in a system moving uniformly with respect to an inertial system 

are identical to those in the inertial system. It follows that all 

systems translating uniformly relative to an inertial system are 

inertial. This simple result leads to something of an enigma. 

Although it would be appealing to single out a coordinate system 

absolutely at rest, there is no dynamical way to distinguish one 

inertial system from another. Nature provides no clue to abso

lute rest. 

We have tacitly made a number of plausible assumptions in 

the above argument. In the first place, we have assumed that 

both observers use the same scale for measuring distance. To 

assure this, ex and {3 must calibrate their scales with the same 

standard of length. If ex determines that the length of a certain 

rod at rest in his system is La, we expect that {3 will measure the 

same length. This is indeed the case if there is no motion between 

the two systems. However, it is not generally true. If (3 moves 

parallel to the rod with uniform velocity v, he will measure a length 

LfJ = La(l - V2/C2);, where c is the velocity of light. This result 

follows from the theory of special relativity. The contraction of 

the moving rod, known as the Lorentz contraction, is discussed 

in Sec. 12.3. 
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A second assumption we have made is that time is the same in 

both systems. That is, if a determines that the time between two 

events is Ta, then we assumed that {3 will observe the same inter· 

val. Here again the assumption breaks down at high velocities. 

As discussed in Sec. 13.3, {3 finds that the interval he measure s  is 

TfJ = Tal(l - V2/C2)t. Once again nature provides an unexpected 

result. 

1 
" 

1 

The reason these results are so unexpected is that our notions 

of space and time come chiefly from immediate contact with the 

world around us, and this never involves velocities remotely near 

the velocity of light. If we nprmally moved with speeds approach· 

ing the velocity of light, we would take these results for granted. 

As it is, even the highest "everyday" velocities are low compared 

with the velocity of light. For instance, the velocity of an arti· 

ficial satellite around the earth is about 8 km/s. In this case 

v21 c2 "'" 10-9, and length and time are altered by only one part 

in a billion. 

A third assumption is that the observers agree on the value 

of the mass. However, mass is defined by experiments which 

involve both time and distance, and so this assumption must 

also be examined. As mentioned in our discussion of momen· 

I 

i 
I 
I Ill. 
�i 
l 
! 
�' 

i 
w 

l 
tum, if an object at rest has mass mo, the most useful quantity , 

corresponding to mass for an observer moving with velocity v is 
i J",'.:: m = mole! - V2/C2)t. . 

"ft.'''!: 
Now that we are aware of some of the complexities, let us defer t 

consideration of special relativity until Chaps. 11 to 14 and for the 
: i 

time being limit our discussion to situations where v «c. In this 
I) 

case the classical ideas of space, time, and mass are valid to high t 
accuracy. The following eq uations then relate measurements f 

made by a and {3, provided that their coordinate systems move ' f 
with uniform relative velocity V. We choose the origins of the f 
coordinate systems to coincide at t = 0 so that 5 = Vt. Then I 

\ 
from Eq. (8.1) we have i 

I 
rfJ = ra - Vt 

tfJ = tao 

The time relation is generally assumed implicitly. 

8.3 

This set of relations, called transformations, gives the prescription 

for transforming coordinates of an event from one coordinate sys· 

tem to another. Equations (8.3) transform coordinates between 

inertial systems and are known as the Galilean transformations. 

Since force is unchanged by the Galilean transformations, observ· 
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ers in different inertial systems obtain the same dynamical equa

tions. It follows that the forms of the laws of physics are the 

same in all inertial systems. Otherwise, different observers would 

make different predictions; for instance, if one observer predicts 

the collision of two particles, another observer might not. The 

assertion that the forms of the laws of physics are the same in 

all inertial systems is known as the principle of relativity. Although 

the principle of relativity played only a minor role in the develop

ment of classical mechanics, its role in Einstein's theory of rela

tivity is crucial. This is discussed further in Chap. 11, where it is 

also shown that the Galilean transformations are not universally 

valid but must be replaced by a more general transformation law, 

the Lorentz transformation. However, the Galilean transforma

tions are accurate for v « c, and we shall take them to be exact 

in this chapter. 

8.3 Uniformly Accelerating Systems 

Next we turn our attention to the appearance of physical laws to 

an observer in a system accelerating at rate A with respect to an 

inertial system. To simplify notation we shall drop the subscripts 

a and {j and label quantities in noninertial systems by primes. 

Thus, Eq. (8.2), all = aa - A, becomes 

a' 
= a - A, 

where A is the acceleration of the primed system as measured in 

the inertial system. 

In the accelerating system the apparent force is 

F' = ma' 

= ma - mAo 

ma is the true force F due to physical interactions. Hence, 

F' = F - mAo 

We can write this as 

F' = F + Ffict, 

where 

Ffict == -mAo 
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Ffict is called a fictitious force.1 The fictitious force experienced 

in a uniformly accelerating system is uniform and proportional to 

the mass, like a gravitational force. However, fictitious forces 

originate in the acceleration of the coordinate system, not in inter· 

action between bodies. 

Here are two examples illustrating the use of fictitious forces. 

Example 8.1 The Apparent Force of Gravity 

A small weight of mass m hangs from a string in an automobile which 

accelerates at rate A. What is the static angle of the string from the 

vertical, and what is its tension? 

We shall analyze the problem both in an inertial frame and in a frame 

accelerating with the car. 

Inertial system riO T 
I 
I 

m A 

W 
--:::Ieration = A 

TcosO-W=O 
T sin 0 =MA 

MA A tan 0= -W=-g 

T= M (g2 +A2)1/2 

System accelerating with auto f:IO T 

Frle, I mw 
Acceleration = 0 

TcosO-W=O 
TsinO-Ffie,=O 

Ffie, = -M A 
A tan 0 =-g 

T= M(g2 +A2)1/2 

From the point of view of a passenger in the accelerating car, the ficti· 

tious force acts like a horizontal gravitational force. The effective gravi· 

tational force is' the vector sum of the real and fictitious forces. How 

would a helium·filled balloon held on a string in the accelerating car 

behave? 

I Sometimes Ffic' is called an inertial force. However, the term fictitious force 

more clearly emphasizes that Ffict does not arise from physical interactions. 



" 

:t 
.> 

SEC. 8.3 UNIFORMLY ACCELERATING SYSTEMS 345 

The fictitious force in a uniformly accelerating system behaves 

exactly like a constant gravitational force; the fictitious force is 

constant and is proportional to the mass. The fictitious force 

on an extended body therefore acts at the center of mass. 

Example 8.2 Cylinder on an Accelerating Plank 

A cylinder of mass M and radius R rolls without slipping on a plank 

which is accelerated at the rate A. Find the acceleration of the cylinder. 

�' 
�. _ a' 

Ff�ct � 
f 

The force diagram for the horizontal force on the cylinder as viewed 

in a system accelerating with the plank is shown in the sketch. a' is the 

acceleration of the cylinder as observed in a system fixed to the plank. 

f is the friction force, and Ffiet = M A with the direction shown. 

The equations of motion in the system fixed to the accelerating plank 

are 

f - Ffiet = kIa' 

Rf = -loa'. 

The cylinder rolls on the plank without slipping, so 

a'R = a'. 

These yield 

a' 
Ma' = -10- - Fr' t 

R2 
.e 

a' = 

Ffiet 

M + 10/R2 

Since 10 = ]l.fR2/2, and Frict = MA, we have 

a' = -fA. 

The acceleration of the cylinder in an inertial system is 

a = A + a' 

= tAo 

Example 8.1 and 8.2 can be worked with about the same ease 

in either an inertial or an accelerating system. Here is a problem 

which is rather complicated to solve in an inertial system (try it), 

but which is almost trivial in an accelerating system. 

Example 8.3 Pendulum in an Accelerating Car 

Consider again the car and weight on a string of Example 8.1, but now 

assume that the car is at rest with the weight hanging vertically. The 
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car suddenly accelerates at rate A. The problem is to find the maxi· 
mum angle ¢ through which the weight swings. ¢ is larger than the 

equilibrium position due to the sudden acceleration. 

Apparent 
vertical 

\ 
Gravity 

rnA 

In a system accelerating with the car, the bob behaves like a pendulum 

in a gravitational field in which "down" is at an angle ¢o from the true 

vertical. From Example 8.1, ¢o = arctan (A/g). The pendulum is ini· 

tially at rest, so that it swings back and forth with amplitude ¢o about the 

apparent vertical direction. Hence, ¢ = 2¢o = 2 arctan (A/g). 

8.4 The Principle of Equivalence 

The laws of physics in a uniformly accelerating system are identical 

to those in an inertial system provided that we introduce a fictitious 

force on each particle, Ffict = -mAo Ffict is indistinguishable 

from the force due to a uniform gravitational field g = -A; both 

the gravitational force and the fictitious force are constant forces 

proportional to the mass. In a local gravitational field g, a free 

particle of mass m experiences a force F = mg. Consider the 

same particle in a noninertial system uniformly accelerating at 

rate A = -g, with no gravitational field nor any other interac· 

tion. The apparent force is Ffict = -mA = mg, as before. Is 

there any way to distinguish physically between these different 

situations? 

The significance of this question was first pointed out by Ein· 

stein, who illustrated the problem with the following "gedanken" 

experiment. (A gedanken, or thought, experiment is meant to be 

thought about rather than carried out.) 

A man is holding an apple in an elevator at rest in a gravita· 

tional field g. He lets go of the apple, and it falls with a down· 

ward acceleration a = g. Now consider the same man in the 

same elevator, but let the elevator be in free space accelerating 

upward at rate a = g. The man again lets go of the apple, and 
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it again appears to him to accelerate down at rate g. From his 

point of view the two situations are identical. He cannot dis

tinguish between acceleration of the elevator and a gravitational 

field. 

The point becomes even more apparent in the case of the ele

vator freely falling in the gravitational field. The elevator and all 

its contents accelerate downward at rate g. If the man releases 

the apple, it will float as if the elevator were motionless in free 

space. Einstein pointed out that the downward acceleration of 

the elevator exactly cancels the local gravitational field. From the 

point of view of an observer in the elevator, there is no way to 

determine whether the elevator is in free space or whether it is 

falling in a gravitational field. 

This apparently simple idea, known as the principle of equiv

alence, underlies Einstein's general theory of relativity, and all 

other theories of gravitation. We summarize the principle of 

equivalence as follows: there is no way to distinguish locally 

between a uniform gravitational acceleration g and an accelera

tion of the coordinate system A = -g. By saying that there is 

no way to distinguish locally, we mean that there is no way to dis

tinguish from within a sufficiently confined system. The reason 

that Einstein put his observer in an elevator was to define such 

an enclosed system. For instance, if you are in an elevator and 

observe that free objects accelerate toward the floor at rate a, 

there are two possible explanations: 

1. There is a gravitational field down, 9 = a, and the elevator is 

at rest (or moving uniformly) in the field. 

2. There is no gravitational field, but the elevator is accelerating 

up at rate a. 

To distinguish between these alternatives, you must look out 

of the elevator. Suppose, for instance, that you see an apple 

suddenly drop from a nearby tree and fall down with acceleration 

a. The most likely explanation is that you and the tree are at 

rest in a downward gravitational field of magnitude 9 = a. How

ever, it is conceivable that your elevator and the tree are both at 

rest on a giant elevator which is accelerating up at rate a. 

To choose between these alternatives you must look farther off. 

If you see that you have an upward acceleration a relative to the 

fixed stars, that is, if the stars appear to accelerate down at rate 

a, the only possible explanation is that you are in a noninertial 

system; your elevator and the tree are actually accelerating up. 

The alternative is the impossible conclusion that you are at rest 
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in a gravitational field which extends uniformly through all of 

space. But such fields do not exist; real forces arise from inter· 

actions between real bodies, and for sufficiently large separations 

the forces always decrease. Hence it is most unphysical to invoke 

a uniform gravitational field extending throughout space. 

This, then, is the difference between a gravitational field and 

an accelerating coordinate system. Real fields are local; at large 

distances they decrease. An accelerating coordinate system is 

nonlocal; the acceleration extends uniformly throughout space. 

Only for small systems are the two indistinguishable. 

Although these ideas may sound somewhat abstract, the next 

two examples show that they have direct physical consequences. 

The Driving Force of the Tides 

The earth is in free fall toward the sun, and according to the principle 

of equivalence it should be impossible to observe the sun's gravitational 

force in an earthbound system. However, the equivalence principle 

applies only to local systems. The earth is so large that appreciable 

nonlocal effects like the tides can be observed. In this example we shall 

discuss the origin of the tides to see what is meant by a nonlocal effect. 

The tides arise because of variations in the apparent gravitational field 

of the sun and the moon at different points on the earth's surface. 

Although the moon's effect is larger than the sun's, we shall consider 

only the sun for purposes of illustration. 

The gravitational field of the sun at the center of the earth is 

where M. is the sun's mass, r. is the distance between the center of the 

sun and the center of the earth, and Ii is the unit vector from the earth 

toward the sun. The earth accelerates toward the sun at rate A = Go. 
If G(r) is the gravitational field of the sun at some point r on the earth, 

where the origin of r is the center of the earth, then the force on mass 

mat r is 

F = mG(r). 

The apparent force to an earthbound observer is 

F' = F - mA = m[G(r) - Gol. 

The apparent field is 

F' 
G'(r) = -

m 

= G(r) - Go. 
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The drawing above shows the true field G(r) at different points on the 

earth's surface. (The variations are exaggerated.) Go is larger than Go 
since a is closer to the sun than the center of the earth. Similarly, Gc is 

less than Go. The magnitudes of Gb and Gc are approximately the same 

as the magnitude of Go, but their directions are slightly different. 

The apparent field G' = G - Go is shown in the drawing at left. We 

now evaluate G' at each of the points indicated. 

1. G� AND G� 

The distance from a to the center of the sun is r, - R. where R. is the 

earth's radius. The magnitude of the sun's field at a is 

Go = 
GM, . 

(r, - R.)2 

Go is parallel to Go. The magnitude of the apparent field at a is 

G� = Go - Go 
GM, GM, 

(r, - R.)2 r,2 

GM,[ 1 ] 
= 

---;:;z [1 - (R./r.))2 
- 1 . 

Since R./r. = 6.4 X 103 km/1.5 X 108 km = 4.3 X 10-·« I, we have 

[ R. 
= Go 1 + 2 - + 

r. 

R. 
= 2Go-' 

r. 

where we have neglected terms of order (R./r,)2 and higher. 
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The analysis at c is similar, except that the distance to the sun Is 

r. + Re instead of r, - Re. We obtain 

I Re 
Gc = -2Go-' 

r. 

Note that G� and G� point radially out from the earth. 

2. G� AND G� 

Points band d are, to excellent approximation, the same distance from 

the sun as the center of the earth. However, Gb is not parallel to Go; the 

angle between them is a � Relr. = 4.3 X 10-'. To this approximation 

G� = Goa 

Re 
= Go-' 

r. 

By symmetry, G� is equal and opposite to G�. Both G� and G� point 

toward the center of the earth. 

The sketch shows G'(r) at various points on the earth's surface. This 

diagram is the starting point for analyzing the tides. The forces at a 

and c tend to lift the oceans, and the forces at band d tend to depres� 
them. If the earth were uniformly covered with water, the tangential 

force components would cause the two tidal bulges to sweep around the 

globe with the sun. This picture explains the twice daily ebb and flood 

of the tides, but the actual motions depend in a complicated way on the 

response of the oceans as the earth rotates, and on features of local 

topography. 

We can estimate the magnitude of tidal effects quite easily, as the next 

d example shows. 

Example 8.5 Equilibrium Height of the Tide 

b The following argument is based on a model devised by Newton. Pre· 

tend that two wells full of water run from the surface of the earth to the 

center, where they join. One is along the earth·sun axis and the other 

is perpendicular. For equilibrium, the pressures at the bottom of the 

wells must be identical. 

The pressure due to a short column of water of height dr is pg(r)dr, 

where p is the density and g(r) is the effective gravitational field at r. 

The condition for equilibrium is 

10 hi pgl(r) dr = Ioh, pg2(r) dr. 

hi and h2 are the distances from the center of the earth to the surface 

of the respective water columns. If we assume that the water is incom· 

pressible, so that p is constant, then the equilibrium condition becomes 

10 h
i 

gl(r) dr = 10h' g2(r) dr. 
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The problem is to calculate the difference hi - h2 = tlh., the height of 

the tide due to the sun. We shall assume that the earth is spherical 

and neglect effects due to its rotation. 

The effective field toward the center of the earth along column 1 is 

gl(r) = g(r) - G�(r), where g(r) is the gravitational field of the earth and 

G;(r) is the effective field of the sun along column 1. (The negative sign 

indicates that G�(r) is directed radially out.) In the last example we 

evaluated G�(R.) = G� = 2GM,R,/r,3. The effective field along column 

1 is obtained by substituting r for R,. Hence, 

G
' 2GM,r 
l(r) =--

r.3 

= 2Cr, 

where C = GAr,/r,3. 
Putting these together, we obtain 

gl(r) = G(r) - 2Cr. 

By the same reasoning we obtain 

g2(r) = g(r) + G�(r) 
= g(r) + Cr. 

The condition for equilibrium is 

{hi (h. 
}o [g(r) - 2Cr] dr = }o [g(r) + Cr] dr, 

or, rearranging, 

JOhl g(r) dr - JOh1 g(r) dr = JOhl 2Cr dr + Joh' Cr dr. 

We can combine the integrals on the left hand side to give (h
. g(r) dr. }hl 

Since hi and h2 are close to the earth's radius, g(r) can be taken as con· 

stant in the integral. g(r) = g(R.) = g, the acceleration due to gravity at 

the earth's surface. The integrals on the left become g(hl - h2) = g tlh,. 
The Integrals on the right can be combined by taking hi � h2 � R., and 

{R. 
they yield }

o 
3Cr dr = -!CR.2. The final result is 

g tlh. = tCR.2. 

By using g = GM./R.2, C = GM./r,3, we find 

tlh. = � 
M. (R

.)3 
R •. 

2 M. r, 

From the numerical values 

M. = 1.99 X 1033 g 

M. = 5.98 X 1027 g 

r. = 1.49 X 1013 cm 

R. = 6.37 X 108 cm, 
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we obtain 

11k. = 24.0 cm. 

The identical argument for the moon gives 

tl.hm = 

� M m (Re)3 
Re. 

2 M. Tm 

Inserting M m = 7.34 X 1025 g, Tm = 3.84 X 1010 cm, we obtain I1km = 

53.5 cm. We see that the moon's effect is about twice as large as the 

sun's, even though the sun's gravitational field at the earth is about 

200 times stronger tha n the moon's. The reason is that the tidal force 
depends on the gradient of the gravitational field. The moon is so close 

that its field varies considerably across the earth, whereas the field of 

the distant sun is more nearly constant. 

The strongest tides, called the spring tides, occur at the new and full 

moon when the moon and sun act together. Midway between, at the 

quarters of the moon, occur the weak neap tides. The ratio of the 

driving forces in these two cases is 

The tides offer convincing evidence that the earth is in free fall toward 

the sun. If the earth were attracted by the sun but not in free fall, 

there would be only a single tide, whereas free fali results in two tides 

a day, as the sketches illustrate. The fact that we can sense the sun's 

gravitational field from a body in free fall does not contradict the prin· 
ciple of equivalence. The height of the tide depends on the ratio of the 

earth's radius to the sun's distance, R.IT,. However, for a system to 

be local with respect to a gravitational field, the variation of the field must 

be negligible over the dimensions of the system. The earth would be 

a local system if R. were negligible compared with T" but then there would 

be no tides. Hence, the tides demonstrate that the earth is too large 

to constitute a local system in the sun's field. 

There have been a number of experimental investigations of the 

principle of equivalence, since in spite of its apparent simplicity, 

far·reaching conclusions follow from it. For example, the principle 

of equivalence demands that gravitational force be strictly pro· 

portional to inertial mass. An alternative statement is that the 

ratio of gravitational mass to inertial mass must be the same for 

all matter, where the gravitational mass is the mass which enters 

the gravitational force equation and the inertial mass is the mass 

which appears in Newton's second law. Hence, if an object with 

j. 
1-

· t 
· � 
· ) 
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gravitational mass Ml1.r and inertial mass Min interacts with an 

object of gravitational mass M 0, we have 

Since the acceleration is F / Min, 

8.4 

The equivalence principle requires Mgr/Min to be the same for 

all objects, since otherwise it would be possible to distinguish 

locally between a gravitational field and an acceleration. For 

instance, suppose that for object A, Mgr/Min is twice as large as 

for object B. If we release both objects in an Einstein elevator 
and they fall with the same acceleration, the only possible con

clusion is that the elevator is actually accelerating up. On the 

other hand, if A falls with twice the acceleration of B, we know 

that the acceleration must be due to a gravitational field. The 

upward acceleration of the elevator would be distinguishable from 

a downward gravitational field, in defiance of the principle of 
eq uivalence. 

The ratio Mgr/Min is taken to be 1 in Newton's law of gravita
tion. Any other choice for the ratio would be reflected in a dif

ferent value for G, since experimentally the only requirement is 

that G(Mar/Min) = 6.67 X 10-11 N·m2/kg2• 

Newton investigated the equivalence of inertial and gravitational 

mass by studying the period of a pendulum with interchangeable 

bobs. The equation of motion for the bob in the small angle 
approximation is 

The period of the pendulum is 

211" 
T=-

w 

Newton's experiment consisted of looking for a variation in T 

using bobs of different composition. He found no such change 

and, from an estimate of the sensitivity of the method, concluded 
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that Mgr/Min is constant to better than one part in a thousand 

for common materials. 

The most compelling evidence for the principle of equivalence 

comes from an experiment devised by the Hungarian physicist 

Sa ron Roland von Eotvos at the tu rn of the centu ry. (The experl· 

ments were completed in 1908 but the results were not published 

until 1922, three years after von Eotvos' death.) The method and 

technique of von Eotvos' experiment were refined by R. H. Dicke 

and his collaborators at Princeton University, and it is this work, 

completed in 1963, which we shall now outline.l 

Consider a torsion balance consisting of two masses A and B 

of different composition at each end of a bar which hangs from 

a thin fiber so that it can rotate only about the vertical axis. The 

masses are attracted by the earth and also by the sun. The 

gravitational force due to the earth is vertical and causes no rota· 

tion of the balance, but as we now show, the sun's attraction will 

cause a rotation if the principle of equivalence is violated. 

Assume that the sun is on the horizon, as shown in the sketch, 

and that the horizontal bar is perpendicular to the sun-earth 

axis. According to Eq. (8.4) the accelerations of the masses due 

to the sun are 

where M. is the gravitational mass of the sun, and r. is the dis· 

tance between sun and earth. The acceleration of the masses 

in a coordinate system fixed to the earth are 

I 
aA = aA - ao 

I 
aB = aB - ao, 

where ao is the acceleration of the earth toward the sun. (Accel· 

eration due to the rotation of the earth plays no role and we 

neglect it.) 

If the principle of equivalence is obeyed, a� = a� and the bar 

has no tendency to rotate about the fiber. However, if the two 

masses A and B have different ratios of gravitational to inertial 

mass, then one will accelerate more than the other. The balance 

1 An account of the experiment is given in an article by R. H. Dicke in Scientific 

American. vol. 205. no. 84, December, 1961. 
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will rotate until the restoring torque of the suspension fiber brings 

it to rest. As the earth rotates, the apparent direction of the 

sun changes; the equilibrium position of the balance moves with 

a 24·h period. 

Dicke's apparatus was capable of detecting the deflection 

caused by a variation of 1 part in 1011 in the ratio of gravitational 

to inertial mass, but no effect was found to this accuracy. 

The principle of equivalence is generally regarded as a funda

mental law of physics. We have used it to discuss the ratio of 

gravitational to inertial mass. Surprisingly enough, it can also be 

used to show that clocks run at different rates in different gravi

tational fields. A simple argument showing how the principle of 

equivalence forces us to give up the classical notion of time is 

presented in Note 8.1. 

8.5 Physics in a Rotating Coordinate System 

The transformation from an inertial coordinate system to a rota

ting system is fundamentally different from the transformation 

to a translating system. A coordinate system translating uni

formly relative to an inertial system is also inertial; the transforma

tion leaves the laws of motion unaffected. In contrast, a uni

formly rotating system is intrinsically noninertial. Rotational 

motion is accelerating motion, and the laws of physics always 

involve fictitious forces when referred to a rotating reference 

frame. The fictitious forces do not have the simple form of a 

uniform gravitational field, as in the case of a uniformly acceler

ating system, but involve several terms, including one which is 

velocity dependent. However, in spite of these complications, 

rotating coordinate systems can be very helpful. In certain cases 

the fictitious forces actually simplify the form of the equations of 

motion. In other cases it is more natural to introduce the ficti

tious forces than to describe the motion with inertial coordinates. 

A good example is the physics of airflow over the surface of the 

earth. It is easier to explain the rotational motion of weather 

systems in terms of fictitious forces than to use inertial coordinates 

which must then be related to coordinates on the rotating earth. 

If a particle of mass m is accelerating at rate a with respect to 

inertial coordinates and at rate arot with respect to a rotating coor

dinate system, then the equation of motion in the inertial system 

is 

F = mao 
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We would like to write the equation of motion in the rotating sys· 

tem as 

If the accelerations of m in the two systems are related by 

a = arot + A, 

where A is the relative acceleration, then 

Frot = mea - A) 

= F + Ffiet, 

where Ffiet = -mAo So far the argument is identical to that in 

Sec. 8.3. Our task now is to find A for a rotating system. 

One way of evaluating A is to find the transformation connect· 

ing the inertial and rotating coordinates and then to differentiate. 

However, there is a much simpler and more general method, which 

consists of finding a transformation rule relating the time deriva· 

tives of any vector in inertial and rotating coordinates. In order 

to motivate the derivation, we proceed by first finding the relation 

between the velocity of a particle measured in an inertial system, 

Yin, and the velocity measured in a rotating system, Vrot. 

Time Derivatives and Rotating Coordinates 

We are interested in pure rotation without translation, and so we 

consider a rotating system x', y', z' whose origin coincides with 

the origin of an inertial system x, y, z. Suppose, for the sake of 

the argument, that the x', y', z' system is rotating so that the z 
and z' axes always coincide. Thus, the angular velocity of the 

rotating system, 0, lies along the z axis. Furthermore, let the x 

and x' axes coincide instantaneously at time t. Imagine now that 

a particle has position vector ret) in the xz plane (and x'z' plane) 

at time t. 

z z' 

�:::----'---y y' 

y 

x 
x' x' 

. ,. 
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At time t + !::..t, the position vector is ret + !::..t), and, from the 

figure at left below the displacement of the particle in the inertial 

system is 

!::..r = ret + !::..t) - ret). 

�-----y 

/ 
/ 

x' 

I 
/ 

I 

The situation is different for an observer in the rotating coordinate 

system. He also notes the same final position vector ret + !::..t), 

but in calculating the displacement he remembers that the initial 

position vector in his coordinate system r/(t) was in the x'z' plane. 

The displacement he measures relative to his coordinates is 

!::..r' = ret + !::..t) - r'(t), as in the figure at right above however, the 

x
'
z

' plane is now rotated away from its earlier position and, as 

we see from the drawing at left, !::..r and !::..r' are not the same 

Llr = M' + r'(t) - ret). 

Consequently, the velocity is different in the two frames. 

Since r'(t) and ret) differ only by a pure rotation, we can use 

the result of Sec. 7.2 to write 

r'(t) - ret) = (0 X r) !::..t. 

Hence, 

!::..r Llr' 
- = - +0 X r. 
!::..t !::..t 

Taking the limit !::..t --> 0 yields 

Yin = Yrot + 0 X r. 8.5 

It is important to realize that Eq. (8.5) is a general vector relation; 

the proof did not employ the special arrangement of axes we used 

to illustrate the derivation. 

An alternative way to write Eq. (8.5) is 
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(dr) (dr) - = - + 0 X r. dt in dt rot 
8.6 

Since our proof used only the geometric properties of r, Eq. (8.6) 
can immediately be generalized for any vector B, as the sketch 
indicates. 

(dB) (dB) - = - +0 X B. 
dt in dt rot 

8.7 

When applying Eq. (8.7), keep in mind that B is instantaneously 
the same in both systems; it is only the time rates of change which 
differ. Note 8.2 presents an alternative derivation of Eq. (8.7). 

Acceleration Relative to Rotating Coordinates 

We can use Eq. (8.7) to relate the acceleration observed in a rota· 

ting system, arot = (dYrot! dt)rot, to the acceleration in an inertial 

system, ain = (dYin/dt)in. Applying Eq. (8.7) to Yin gives 

(dYin) (dYin) ain = - = - + 0 X Yin. dt in dt rot 

Using 

Yin = Yrot + 0 X r 

we have 

ain = [!:... (Yrot + 0 X r)] + 0 X Yrot + 0 X (0 X r). dt rot 

We shall assume that 0 is constant, since this is the case generally 
needed in practice. Hence 

ain = arot + 0 X (
d
d
r) + 0 X Yrot + 0 X (0 X r), 
t rot 

or 

ain = arot + 20 X Yrot + 0 X (0 X r). 8.8 

Let us examine the various contributions to ain in Eq. (8.8). 
The term arot is simply the acceleration measured in the rotating 
coordinate system; there is nothing mysterious here. For exam· 
pie, if we measure the acceleration of a car or plane in a coordinate 
system fixed to the rotating earth, we are measuring arot. 

To see the origin of the term 0 X (0 X r), note first that 0 X r 

is perpendicular to the plane of 0 and r and has magnitude Qp, 

n x r where p is the perpendicular distance from the axis of rotation 



,---nbtr L i' .!j 

\ 
\ 

,/ 
,/ 

,/ 

\ 
\ 

\ 
\ 

I 

I 
I 
I 

,/ 
,/ 

,/ 

8 

\ 
\ 

\ 

\ 
\ 

\ 

8 = 8' + fl.! 
6= o'+fI. 

SEC. 8.5 PHYSICS IN A ROTATING COORDINATE SYSTEM 359 

to the tip of r. Hence 0 X (0 X r) is directed radially inward 

toward the axis of rotation and has magnitude U2p. It is a cen· 

tripetal acceleration, arising because every point at rest in the 

rotating system is actually moving in a circular path in inertial 

space. 

The term 20 X Vrot is the general vector expression for the 

Coriolis acceleration in three dimensions. If Vrot is resolved into 

components Vrotll and Vrot.l' parallel and perpendicular to 0, res

pectively, only Vrot.l contributes to 20 X Vrot. Hence, the coriolis 

acceleration is perpendicular to O. Here is how it arises: 

The radial component p of Vrot.L contributes 2Up in the tangential 

direction to ain' This is simply the Coriolis term we found in Sec. 

1.9 for motion in inertial space with angular velocity U and radial 

velocity p. The tangential component pO' of Vrot.l contributes 2UpO' 

toward the rotation axis. To see the origin of this term, note that 

in inertial space the instantaneous angular velocity is 0 = 0' + U 
and the centripetal acceleration term in ain is 

p02 = p(O' + Up 

= pO'2 + 2Up8' + pU2. 

The three terms on the right correspond to the three terms on 

the right of Eq. (S.S). pO'2 is part of arot, 2Upli' follows from 

20 X Vrot as we have shown, and pU2 comes from 0 X (0 X r). 

The Apparent Force in a Rotating Coordinate System 

From Eq. (S.S) we have 

arot = ain - 20 X Vrot - 0 X (0 X r). 

The force observed in the rotating system is 

Frot = marot = main - m[20 X Vrot + 0 X (0 X r)1 

= F + Ffiet, 
where the fictitious force is 

Ffiet = - 2mO X Vrot - mO X (0 X r). 

The first term on the right is called the Coriolis force, and the 

second term, which points outward from the rotation axis, is called 

the centrifugal force. 

The Coriolis and centrifugal forces are nonphysical; they arise 

from kinematics and are not due to physical interactions. For 

instance, the centrifugal force actually increases with p, whereas 

real forces always decrease with distance. Nevertheless, the 
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I 
Coriolis and centrifugal forces seem quite real to an observer in : 
a rotating frame. When we drive a car too fast around a curve, i 
it skids outward as if pushed by the centrifugal force. From the j 

standpoint of an observer in an inertial frame, however, what has 

happened is that the sideward force exerted by the road on the 

tires is not adequate to keep the car turning with the road. 

There is a natural human tendency to describe rotational motion 

with a rotating system. For instance, if we whirl a rock on a 
string, we instinctively say that centrifugal force is pulling the rock 

outward. In a coordinate system rotating with the rock, this is 

correct; the rock is stationary and the centrifugal force is in 

balance with the tension in the string. In an inertial system 

there is no centrifugal force; the rock is accelerating radially due 

to the force exerted by the string. Either system is valid for 

analyzing the problem. However, it is essential not to confuse 

the systems by trying to use fictitious forces in inertial frames. 

Here are some examples to illustrate the use of rotating 

coordinates. 

Example 8.6 Surface of a Rotating Liquid 

A bucket of water spins with angular speed w. What shape does the 

water's surface assume? 

I n a coordinate system rotating with the bucket, the problem is purely 

static. Consider the force on a small volume of water of mass m at the 

surface of the liquid. For equilibrium, the total force on m must be 

zero. The forces are the contact force Fo, the weight W. and the ficti· 

tious force Fliet, which is radial. 

Fo cos t/> - lV = 0 

-Fo sin t/> + Fliet = 0, 

where Ffiet = mfl2r = mw2r, since fl = w for a coordinate system rotating 

with the bucket. 

Friel 
--

r 
� \ 

\ w 
mg 
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Solving these equations for", yields 

w2r 
'" = arctan -' 

g 
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Unlike solids. liquids cannot exert a static force tangential to the sur

face. Hence Fo. the force on m due to the neighboring liquid. must 

be perpendicular to the surface. The slope of the surface at any point 

is therefore 

dz 
- = tan '" 
dr 

g 

We can integrate this relation to find the equation of the surface z = fer). 
We have 

J dz = :2 J r dr 

1 w2 
z = - - r2 

2 g • 

where we have taken z = 0 on the axis at the surface of the liquid. The 

surface is a paraboloid of revolution. 

Example 8.7 The Coriolls Force 

A bead slides without friction on a rigid wire rotating at constant angular 

speed w. The problem is to find the force exerted by the wire on the 

bead. �FI � 'I 
t=-===9.0r==== In a coordinate system rotating with the wire the motion is purely 

radial. The sketch shows the force diagram in the rotating system. 

Feen\ is the centrifugal force and FOor is the Coriolis force. Since the 

wire is frictionless. the contact force N is normal to the wire. (We neglect 

gravity.) In the rotating system the equations of motion are 

Fe•nt = mr 

N - FCor = O. 

Using F .. n\ = mw2r. the first equation gives 

which has the solution 

where A and B are constants depending on the initial conditions. 
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The tangential equation of motion, which expresses the fact that there 

is no tangential acceleration in the rotating system, gives 

N = Feor = 2mrw 

= 2mw2(Ae"'t - Be-wt). 

To complete the problem, we must be given the initial conditions which 

specify A and B. 

Deflection of a Falling Mass 

Because of the Coriolis force, falling objects on the earth are deflected 

horizontally. For instance, a mass dropped from a tower lands to the 

east of a plumb line from the release point. In this example we shall 

calculate the deflection for a mass m dropped from a tower of height h 

at the equator. 

In the coordinate system r, (J fixed to the earth (with the tangen1ial 

direction toward the east) the apparent force on m is 

F = -mgr - 2mO X vrot - mO X (0 X r). 

F9 = -2mHt 

The gravitational and centrifugal forces are radial, and if m is dropped 

from rest, the Coriolis force is in the equatorial plane. Thus the motion 

of m is confined to the equatorial plane, and we have 

Vrot = rr + rOO. 

Using 0 X vrot = MO - rnOr, and 0 X (0 X r) = -n2rr, we obtain 

F, = -mg + 2mflOr + mfl2r, 

F9 = -2mrfl. 

The radial equation of motion is 

mr - mr02 = -my + 2mflOr + mQ2r. 

To an excellent approximation, m falls vertically and 0« n. We can 

therefore omit the terms mr02 and 2mQOr in comparison with mfl2r. 

Thus 

The tangential equation of motion is 

mrO + 2mrO = -2mrQ. 

To the same approximation 0« Q we have 

rO = -2Ht 
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During the fall, r changes only slightly, from Re + h to Reo where Re is 

the radius of the earth, and we can take rJ to be constant and r "'" Re• 
Equation (1) becomes 

i' = -g + Q2R, 
-g', 

where g' = g - Q2Re is the acceleration due to the gravitational force 

minus a centrifugal term. g' is the apparent acceleration due to gravity, 

and since this is customarily denoted by g, we shall henceforth drop the 

prime. The solution of the radial equation of motion r = -g is 

r = -gt 

r = ro - tqt2• 3 

If we insert r = -gt in the tangential equation of motion, Eq. (2), we 

have 

rlJ = 2gtQ 

or 

il 2gQ 
u =-t 

He ' 

where we have used r "'" Re. Hence 

and 

0= ! 
gQ 

t3• 
3 Re 

The horizontal deflection of m is y "'" ReO or 

y = tgQt3• 

The time T to fall distance h is given by 

r - ro = -h 

-tgT2 

so that 

and 

For a tower 50 m high, 

y "'" 0.77 cm. 

-0 is positive, and the deflection is toward the east. 

4 
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Example B.9 Motion on the Rotating Earth 
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Example B.10 
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A surprising effect o f  the Coriolis force i s  that i t  turns straight line motion 
on a rotating sphere into circular motion. As we shall show in this exam· 
pie, for a velocity v tangential to the sphere (like the velocity of a winq 
over the earth's surface) the horizontal component of the Coriolis force 
is perpendicular to v and its magnitude is independent of the direction 
of v. 

Consider a particle of mass m moving with velocity v at latitude A on 
the surface of a sphere. The sphere is rotating with angular velocity 
O. If we decompose 0 into a vertical part Oy and � horizontal p�rt 
OH, the Coriolis force is 

F = -2mO X v 

-2m(Oy X v + OH X v). 

OH and v are horizontal, so that OH X v is vertical. Thus the hQrizontal 
Coriolis force, F H, arises solely from the term Oy X v. Oy is perpen· 
dicular to v and Oy X v has magnitude vny, independent of the direction 
of v, as we wished to prove. 

We can write the result in a more explicit form. If i' is a unit vector 
perpendicular to the surface at latitude A, Oy = n sin Ai' and 

FH = -2mn sin A i' Xv. 

The magnitude of F H is 

F H = 2mvn sin A. 

FH is always perpendicular to v, and in the absence of other liorizo(ltal 
forces it would produce circular motion, clockwise in the northern hemi· 
sphere and countercloc kwise in the southern. Air flow on the earth is 
strongly influenced by the Coriolis force and without it stable circular 
weather patterns could not form. However, to understand the dynamics 
of weather systems we m

'
u�t alsp include other forces. as the next exam· 

pie discusses. 

Weather Systems 

Imagine that a region ?f low pressure occurs in the atmosphere. perh aps 
because of differential heating of the air. The closed curves in the sketch 
represent lines of constant pressure. or isobars. There is a force on 
each element of air due to the pressure gradient. and in the absence of 
other f orces Winds would blow inward. quickly equalizing the pressure 
difference. 

However. the wind pattern is markedly altered by the Coriolis force. 
As the air begins to flow inward. it is deflected sideways by the Coriolis 
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force, as shown in figure a. (The drawing is for the northern hemisphere.) 

The result is that the wind circulates counterclockwise about the low along 

the isobars, as in the sketch at left. Similarly, wind circulates clockwise 

about regions of high pressure in the northern hemisphere. Since the 

Coriolis force is essentially zero near the equator, circular weather systems 

cannot form there and the weather tends to be uniform. 

j ----S/ :: /------� ............... , 
" // ......... , '  

I --- , \ Fe 
\ \ (LO:-'\ \ �\4 \ \ ......... _ I I I ', '.... --� I I 

�-------.... ", / 
Fe ---- .... '4 .... /"'/ 

(a) (b) 

In order to analyze the motion, consider the forces on a parcel of air 

which is rotating about a low. The pressure force on the face along 

the isobar PI is PIS, where S is the area of the inner face, as shown in 

the sketch. The force on the outer face is (PI + !J.P)S, and the net 

pressure force is (!J.P)S inward. The Coriolis force is 2mvQ sin A, where 

m is the mass of the parcel and v its velocity. The air is rotating counter· 

clockwise about the low, so that the Coriolis force is outward. Hence, 

the radial equation of motion for steady circular flow is 

mv2 
-= (!J.P)S - 2mvQ sin A. 

r 

The volume of the parcel is !J.r S, where !J.r is the distance between the 

isobars, and the mass is w!J.r S, where w is the density of air, assumed 

constant. Inserting this in the equation of motion and taking the limit 

!J.r -> 0 yields 

v2 1 dP = - - - 2vQ sin A. 
r w dr 

1 

Air masses do not rotate as rigid bodies. Near the center of the low, 

where the pressure gradient dP/dr is large, wind velocities are highest. 

Far from the center, v2/r is small and can be neglected. Equation (1) 
predicts that far from the center the wind speed is 

1 1 dP v= --- --· 
2Q sin A w dr 

2 

The density of air at sea level is 1.3 kg/m3 and atmospheric pressure is 
Pat = 105 N/m2• dP /dr can be estimated by looking at a weather map. 
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Far from a high or low, a typical gradient is 3 millibars over 100 km "" 

3 X 10-3 N/m3, and at latitude 45° Eq. (2) gives 

v = 22 m/s 

= 50 mi/h. 

Near the ground this speed is reduced by friction with the land, but at 

higher altitudes Eq. (2) can be applied with good accuracy. 

A hurricane is an intense compact low in which the pressure gradient 

can be as high as 30 X 10-3 N/m3• Hurricane winds are so strong that 

the v2/r term in Eq. (1) cannot be neglected. Solving Eq. (1) for v we 

find 

� rdP v = (rn sin X)2 + - - - rn sin A. w dr 
At a distance 100 km from the eye of a hurricane at latitude 20°, Eq. (3) 
predicts a wind speed of 45 m/s "'" 100 mi/h for a pressure gradient of 

30 X 10-3 N/m3• This is in reasonable agreement with weather observa· 

tions. At larger radii, the wind speed drops because of a decrease in 

the pressure gradient. 

There is an interesting difference between lows and highs. In a low, 

the pressure force is inward and the Coriolis force is outward, whereas 

in a high, the directions of the forces are reversed. The radial equation 

of motion for air circulating around a high is 

� = 2vfl sin A _ 21 dP I· r w dr 
Solving Eq. (4) for v yields 

v = rfl sin X - �(rfl sin A)2 - ;. I �� I· 

4 

We see from Eq. (5) that if l/wldP /drl > r(fl sin X)2, the high cannot 

form; the Coriolis force is too weak to supply the needed centripetal 

acceleration against the large outward pressure force. For this reason, 

storms like hurricanes are always low pressure systems; the strong inward 

pressure force helps hold a low together. 

The Foucault pendulum provides one of the most dramatic 

demonstrations that the earth is a noninertial system. The pen· 

dulum is simply a heavy bob hanging from a long wire mounted 

to swing freely in any direction. As the pendulum swings back 

and forth, the plane of motion precesses slowly about the vertical, 

taking about a day and a half for a complete rotation in the mid· 

latitudes. The precession is a result of the earth's rotation, 
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The plane of motion tends to stay fixed in inertial space while the 

earth rotates beneath it. 

In the 1850s Foucault hung a pendulum 67 m long from the 

dome of the Pantheon in Paris. The bob precessed almost a 

centimeter on each swing, and it presented the first direct evi

dence that the earth is indeed rotating. The pendulum became 

the rage of Paris. 

The next example uses our analysis of the Coriolis force to 

calculate the motion of the Foucault pendulum in a simple way. 

The Foucault Pendulum 

Consider a pendulum of mass m which is swinging with frequency 'Y = 

Viii, where l is the length of the pendulum. If we describe the posi· 

tion of the pendulum's bob in the horizontal plane by coordinates T, 8, 

then 

T = To sin 'Yt, 

where To is the amplitude of the motion. In the absence of the Coriolis 

force, there are no tangential forces and 8 is constant. 

The horizontal Coriolis force FOR is 

FOR = -2mQ sin AiD. 

Hence, the tangential equation of motion, mae = FOB, becomes 

m(T6 + 2ie) = -2mQ sin Ai 

or 

TO + 2ie = -2Q sin At. 

The simplest solution to this equation is found by taking e = constant. 

In this case the term TO vanishes, and we have 

e= -QsinA. 

The pendulum precesses uniformly in a clockwise direction. The time 

for the plane of oscillation to rotate once is 

Q sin A 

24 h 

sin A 

Thus, at a latitude of 45°, the Foucault pendulum rotates once in 34 h. 
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At the North Pole the period of precession is 24 h; the pendulum rotates 

clockwise with respect to the earth at the same rate as the earth rotates 

counterclockwise. With respect to inertial space the plane of motion 

remains fixed. 

In addition to its dramatic display of the earth's rotation, the 
Foucault pendulum embodies a profound mystery. Consider, for 
instance, a Foucault pendulum at the North Pole. The precession 
is obviously an artifact; the plane of motion stays fixed while the 
earth rotates beneath it. The plane of the pendulum remains 
fixed relative to the fixed stars. Why should this be? How does 
the pendulum "know" that it must swing in a plane which is sta· 
tionary relative to the fixed stars instead of, say, in a plane which 
rotates at some uniform rate? 

This question puzzled Newton, who described it in terms of the 
following experiment: if a bucket contains water at rest, the sur· 
face of the water is flat. If the bucket is set spinning at a steady 
rate, the water at first lags behind, but gradually, as the water's 
rotational speed increases, the surface takes on the form of the 
parabola of revolution discussed in Example 8.6. If the bucket is 
suddenly stopped, the concavity of the water's surface persists 
for some time. It is evidently not motion relative to the bucket 
that is important in determining the shape of the liquid surface. 
So long as the water rotates, the surface is depressed. Newton 
concluded that rotational motion is absolute, since by observing 
the water's surface it is possible to detect rotation without refer· 
ence to outside objects. 

From one point of view there is really no paradox to the absolute 
nature of rotational motion. The principle of galilean invariance 
asserts that there is no way to detect locally the uniform transla· 
tional motion of a system. However, this does not limit our ability 
to detect the acceleration of a system. A rotating system accel· 
erates in a most nonuniform way. At every point the accelera· 
tion is directed toward the axis of rotation; the acceleration points 
out the axis. Our ability to detect &uch an acceleration in no way 
contradicts galilean invariance. 

Nevertheless, there is an engima. Both the rotating bucket 
and the Foucault pendulum maintain their motion relative to the 

fixed stars. How do the fixed stars determine an inertial system7 !, 

What prevents the plane of the pendulum from rotating withi 
respect to the fixed stars? Why is the surface of the water in \ 

\ 

the rotating bucket flat only when the bucket is at rest with respect 1 
, 
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to the fixed stars? Ernst Mach, who in 1883 wrote the first incisive 
critique of newtonian physics, put the matter this way. Suppose 
that we keep a bucket of water fixed and rotate all the stars. 
Physically there is no way to distinguish this from the original 
case where the bucket is rotated, and we expect the surface of 
the water to again assume a parabolic shape. Apparently the 
motion of the water in the bucket depenqs on the motion of matter 
far off in the universe. To put it more dramatically, suppose that 
we eliminate the stars, one by one, until only our bucket remains. 
What will happen now if we rotate the bucket? There is no way 
for us to predict the motion of the water in the bucket-the 
inertial properties of space might be totally different. We have 
a most peculiar situation. The local properties of space depend 
on far-off matter; yet when we rotate the water, the surface 
immediately starts to deflect. There is no time for signals to 
travel to the distant stars and return. How does the water in 
the bucket "know" what the rest of the universe is doing? 

The principle that the inertial properties of space depend on 
the existence of far-off matter is known as Mach's principle. 
The principle is accepted by many physicists, but it can lead to 
strange conclusions. For instance, there is no reason to believe 
that matter in the universe is uniformly distributed around the 
earth; the solar system is located well out in the limb of our galaxy, 
and matter in our galaxy is concentrated predominantly in a very 
thin plane. If inertia is due to far-off matter, then we might well 
expect it to be different in different directions so that the value 
of mass would depend on the direction of acceleration. No such 
effects have ever been observed. Inertia remains a mystery. 

The Equivalence Principle and the Gravitational Red Shift 
Radiating atoms emit light at only certain characteristic wavelengths. 

If light from atoms in the strong gravitational field of dense stars is 

analyzed spectroscopically, the characteristic wavelengths are observed 

to be slightly increased, shifted toward the red. We can visualize atoms 

as clocks which "tick" at characteristic frequencies. The shift toward 

longer wavelengths, known as the gravitational red shift, corresponds 

to a slowing of the clocks. The gravitational red shift implies that clocks 

in a gravitational field appear to run slow when viewed from outside the 

field. As we shall show, the origin of the effect lies in the nature of space, 

time, and gravity, not in the trivial effect of gravity on mechanical 

clocks. 
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NONINERTIAL SYSTEMS AND FICTITIOUS FORCES 

It is rather startling to see how the equivalence principle, which is so 

simple and nonmathematical, leads directly to a connection between 

space, time, and gravity. To show the connection we must use an ele· 

mentary result from the theory of relativity; it is impossible to transmit 

information faster than the velocity of light, e = 3 X 108 m/s. However, 
this is the only relativistic idea needed; aside from this, our argument is 

completely classical. 

Consider two scientists, A and B, separated by distance L as s hown 
in sketch (a). A has a clock and a light which he flashes at intervals 

separated by time T A. The signals are received by B, who notes the 

interval between pulses, T B, with his own clock. A plot of vertical dis· 

tance versus time is shown for two light pulses in (b). The pulses are 

delayed by the transit time, Lie, but the interval TB is the same as TA• 

Hence, if A transmits the pulses at, say, l·s intervals, so that TA = 1 s, 

then B's clock will read 1 s between the arrival of successive pulses. 

Now consider the situation if both observers move upward uniformly 

with speed v, as shown in sketch (e). Although both scientists move 

during the time interval, they move equally, and we still have TB = TA• 

The situation is entirely different if both observers are accelerating 

upward at uniform rate a as shown in sketch (d). A and B start from 

rest, and the graph of distance versus time is a parabola. Since A and 

B have the same acceleration, the curves are parallel, separated by dis· 

tance L at each instant. It is apparent from the sketch that TB > TA, 
since the second pulse travels farther than the first and has a longer 

transit time. The effect is purely kinematical. 

Now, by the principle of equivalence, A and B cannot distinguisb 

between their upward accelerating system a nd a system at rest in a 

downward gravitational field with magnitude g = a. Thus, if the experi· 

ment is repeated in a system at rest in a gravitational field, the equiva· 

lence principle requires that TB> TA, as before. If TA = 1 s, B will 

observe an interval greater. than 1 s between successive pulses. B will 

conclude that A's clock is running slow. This is the origin of the gravita· 
tional red shift. 

By applying the argument quantitatively, the following approximate 

result is readily obtained: 

AT 

T 

where it is assumed that AT IT« l. 

On earth the gravitational red shift is AT IT = 10-16 L, where L is in 

meters. In spite of its small size, the effect has been measured and 

confirmed to an accuracy of 1 percent. The experiment was done by 

Pound, Rebka, and Snyder at Harvard University. The "clock" was the 

frequency of a gamma ray, and by using a technique known as Mtissbauer 

absorption they were able to measure accurately the gravitational red 
shift due to a vertical displacement of 25 m. 
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NOTE 8,2 ROTATING COORDINATE TRANSFORMATION 

Note 8.2 Rotating Coordinate Transformation 
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In this note we present an analytical derivation of Eq. (8.7) relating the 

time derivative of a ny vector B as observed in a rotating coordinate sys· 

tem to the time derivative observed in an inertial system. If the system 

x', y', z
' rotates at rate D with respect to the inertial system x, y, z, we 

shall prove that the time derivatives in the two systems of any vector B 
are related by 

- = - +DX B. (dB) (dB) 
dt in dt '0' 

1 

Consider an inertial coordinate system x, y, z and a coordinate system 

x'
, y', z' which rotates with respect to the inertial system at angular 

velocity D. The origins coincide. We can describe an arbitrary vector 

B by components along base vectors of either coordinate system. Thus, 

we have 

�------y 

\ 
\ 
, 
x' 

2 

or, alternatively, 

B = B�i' + B�j' + B�k', 3 

where i, j, k are the base vectors along the inertial axes and ii, y, k' are 

the base vectors along the rotating axes. 

We now find an expression for the time derivative of B in each coor· 

dinate system. By differentiating Eq. (2) we have 

(dB) d _ 

- = - (B.I + Byj + B,k). dt dt 

The x, y, z system is inertial so that i, j, and k are fixed in space. We 

have 

4 

which is the familiar expression for the time derivative of a vector in 

cartesian coordinates. We designate this expression by (dB/dt)in' 
If we differentiate Eq. (3) we obtain 

(dB) 
= 
(dB� i' + dB� "I + dB; kl) + (B' di' + B' dj' + B' dkl) , 5 

dt dt dtJ dt %dt IIdt 'dt 

The first term is the time derivative of B with respect to the Xly'ZI 
axes; this is the rate of change of B which would be measured by an 

observer in the rotating system, (dB/dt),o.' To evaluate the second 

term, note that since i' is a unit vector, it can change only in direction, 

not in magnitude; thus i' undergoes pure rotation. In Sec. 7.2 we found 

that the time derivative of a vector r of constant magnitude rotating with 
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angular velocity II) is dr/dt = II) X r. We can lISe this result to evaluate � 
di' /dt. Let r lie along the x' axis and have unit magnitude: r = i'. Hence �; 

di' 
- = OX i'. dt 

Similarly, 

dj' 
n X-' - = .... J dt and 

dk' • 

- = Ox k'. dt 

The second term in Eq. (5) becomes 

B�(O Xi') + B�(O X j') + B�(O X k') = 0 X (B:i' + B�j' + B�k') 
= Ox B. 

Equation (5) becomes 

(dB) (dB) 
- = - +OX B, dt;o dt rol 

which is the desired result. 

l 
'j 
f 
! 
j 

Since B is an arbitrary vector, this result is quite general; it can be I 

applied to any vector we choose. It is important to be clear on the 

meaning of Eq. (6). The vector B itself is the same in both the inertial 

and the rotating coordinate systems. (For this reason there is no sub· 

script to B in the term 0 X B.) It is only the time derivative of B which 

depends on the coordinate system. For instance, a vector which is con· 

sta nt in one system will change with time in the other. 

Problems 8.1 A uniform thin rod of length L and mass M is pivoted at one end. 

The pivot is attached to the top of a car accelerating at rate A, as shown. 

a. What is the equilibrium value of the angle (j between the rod and 

the top of the car? 

b. Suppose that the rod is displaced a small angle", from equilibrium. 

What is its motion for small ",? 

8.2 A truck at rest has one door fully open, as shown. The truck accel· 

erates forward at constant rate A, and the door begins to swing shut. 
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The door is uniform and solid, has total mass 111, height h, and width w. 

Neglect air resistance. 

a. Find the instantaneous angular velocity of the door about its hinges 

when it has swung through 90°. 

b. Find the horizontal force on the door when it has swung through 

90°. 

8.3 A pendulum is at rest with its bob pointing toward the center of the earth. 

The support of the pendulum starts to move horizontally with uniform accel· 

eration a, and the pendulum starts to swing. Find the angular acceleration 

a' of the pendulum. Find the period of the pendulum for which the bob con· 

tinues to point toward the center of the earth. Neglect rotation of the earth. 

This is the principle of a device known as a Schuler pendulum which is 

used to suspend the gyroscope stage in inertial guidance systems.) 

.. 

A"a I , 
/ a 

__ -t-_� 
I 
I 
I 

Rei / 
I I 
1/ 

V 

Ans. clue. T "'" I! h 

8.4 The center of mass of a 3,200·lb car is midway between the wheels 

and 2 ft above the ground. The wheels are 8 ft apart. 

a. What is the minimum acceleration A of the ca r so that the front 

wheels just begin to lift off the ground? 

b. If the car decelerates at rate g, what is the normal force on the 

front wheels and on the rear wheels? 

8.5 Many applications for gyroscopes have been found in navigational 

systems. For instance, gyroscopes can be used to measure accelera· 

tion. Consider a gyroscope spinning at high speed w,. The gyroscope 
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is attached to a vehicle by a universal pivot P. If the vehicle accelerates, 

in the direction perpendicular to the spin axis at rate a, then the gyro
scope will precess about the acceleration axis, as shown in the sketch. 

The total angle of precession, e, is measured. Show that if the system 

starts from rest, the final velocity of the vehicle is given by 

v = I,w, e 
Ml ' 

where I,w, is the gyroscope's spin angular momentum, jI,[ is the tot.1 

mass of the pivoted portion of the gyroscope, and l is the distance from' 

the pivot to the center of mass. (Such a system is called an integratinll 

gyro, since it automatically integrates the acceleration to give the velocity.) 

I �I 

� : 
I 
Ip 

� 
Acceleration 

8.6 A top of mass M spins with angular speed Ws about its axis, as shown. 

The moment of inertia of the top about the spin axis is 10, and the center 

of mass of the top is a distance l from the point. The axis is inclined at 

angle q, with respect to the vertical, and the top is undergoing uniform 

precession. Gravity is directed downward. The top is in an elevator, 

with its tip held to the elevator floor by a frictionless pivot. Find the 
rate of precession, n, clearly indicating its direction, in each of the follow· 

ing cases: 

a. The elevator at rest 

b. The elevator accelerating down at rate 2(1 
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8.7 Find the difference in the apparent acceleration of gravity at the equator 

and the poles, assuming that the earth is spherical. 

8.8 Derive the familiar expression for velocity in plane polar coordinates, 

Y = rr + reS, by examining the motion of a particle in a rotating coor· 

dinate system in which the velocity is instantaneously radial. 

8.9 A 400·ton train runs south at a speed of 60 mi/h at a latitude of 600 

north. 

a. What is the horizontal force on the tracks? 

b. What is the direction of the force? 

Ans. (a) Approximately 300 Ib 

8.10 The acceleration due to gravity measured in an earthbound coor· 

dinate system is denoted by (J. However, because of the earth's rota· 

tion, (J differs from the true acceleration due to gravity, ,qo. Assuming 

that the earth is perfectly round, with radius R, and angular velocity n" 

find (J as a function of latitude A. (Assuming the earth to be round is 

actually not justified-the contributions to the variation of (J with latitude 

due to the polar flattening is comparable to the effect calculated here.) 

Ans. (J = (Jo[l - (2x - x2) cos2 Alt, where x = R,n,2 j(Jo 

8.11 A high speed hydrofoil races across the ocean at the equator at a 

speed of 200 mijh. Let the acceleration of gravity for an observer at 

rest on the earth be g. Find the fractional change in gravity, !:J.(Jjg, 
measured by a passenger on the hydrofoil when the hydrofoil heads in 

the following directions: 

a. East 

b. West 

c. South 

d. North 

8.12 A pendulum is rigidly fixed to an axle held by two supports so that 

it can swing only in a plane perpendicular to the axle. The pendulum 

consists of d mass "A[ attached to a massless rod of length l. The sup· 

ports are momted on a platform which rotates with constant angular 

velocity n. Find the pendulum's frequency assuming that the amplitude 

is small. 
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9.1 Introduction .� 
� 

It was Newton's fascination with planetary motion that led him � 
to formulate his laws of motion and the law of universal gravita. ·� 
tion. His success in explaining Kepler's empirical laws of plane· i 
tary motion was an overwhelming argument in favor of the new \ 
mechanics and marked the beginning of modern mathematical \ 
physics. Planetary motion and the more general proble m of I 
motion under a central force continue to play an important role i 
in most branches of physics and turn up in such topics as particle i 
scattering, atomic structure, and space navigation. 

In this chapter we apply newtonian physics to the general prob. \ 
lem of central force motion. We shall start by looking at some of; 
the general features of a system of two particles interacting with: 

a central force f(r)r, where f(r) is any function of the distance r : 
between the particles and r is a unit vector along the line of cen· 

ters. After making a simple change of coordinates, we shall show 
how to find a complete solution by using the conservation laws of 
angular momentum and energy. Finally, we shall apply these· 

results to the case of planetary motion, f(r) ex: 1/r2, and show how 
they predict Kepler's empirical laws. 

9.2 Central Force Motion as a One Body Problem 

Consider an isolated system consisting of two particles interacting 

under a central force f(r). The masses of the particles are ml 

and m2 and their position vectors are rl and r2. We have 

r = Ir l 
= Irl - r21. 

ml The equations of motion are 

mlrl = f(r)r 
m2r2 = -f(r)r. 

9.1 

9.2a 
9.2b 

The force is attractive for f(r) < 0 and repulsive for f(1') > O. 

Equations (9.2a and b) are coupled together by r; the behavior of 
rl and r2 depends on r = rl - r2. We shall show that the prob· 

lem is easier to handle if we replace rl and r2 by r = rl - r2 and 

the center of mass vector R = (mlrl + m2r2)/(ml + m2). The 

equation of motion for R is trivial since there are no external forces. 

The equation for r turns out to be like the equation of motion of a 
single particle and has a straightforward solution. 
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The equation of motion for R is 

it = 0, 

which has the simple solution 

R = Ro + Vt. 
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9.3 

The constant vectors Ro and V depend on the choice of coordinate 

system and the initial conditions. If we are clever enough to 

take the origin at the center of mass, Ro = 0 and V = O .. 

To find the equation of motion for r we divide Eq. (9.2a) by m1 

and Eq. (9.2b) by m2 and subtract. This gives 

.... (1 + l)f()-

r1 - r2 = -

- r r 
ml m2 

or 

Denoting mlmd(ml + m2) by p., the reduced mass, and using 

r1 - r2 = r, we have 

p.r = f(r)r. 9.4 

Equation (9.4) is identical to the equation of motion for a par

ticle of mass p. acted on by a force f(r)r; no trace of the two par-
j{r)r ticle problem remains. The two particle problem has been trans

formed to a one particle problem. (Unfortunately, the meth. od 

cannot be generalized. There is no way to reduce the equations 

of motion for three or more particles to equivalent one body equa

tions, and for this reason the exact solution of the three body 

problem is unknown.) 
The problem now is to find r as a function of time from Eq. 

(9.4). Once we know r, we can easily find rl and r2 by using the 

relations 

r = rl - r2 

R = 

mlrl + m2r2
. 

ml + m2 

Solving for rl and r2 gives 

rl = R + ( m2 ) 

r 
ml 

+ 
m2 

r2 = R - ( ml 
) r. 

ml + m2 

9.5a 

9.5b 

9.6a 

9_6b 

! 



380 

-(ml�lm2)r Center of mass 

\ / (m,':'m;), 

k 
r �I 

y 
f(r)r 

�---L ______________ x 

CENTRAL FORCE MOTION 

m2r/(ml + m2) and -mlr/(ml + m2) are the position vectors of 
ml and m2 relative to the center of mass, as the sketch shows. 

The complete solution of p.r = f(r) r depends on the particular 

form of f(r). However, a number of the properties of central 

force motion hold true in general regardless of the form of !(r), 
and we turn next to investigate these. 

9.3 General Properties of Central Force Motion 

The equation p.r = f(r) r is a vector equation, and although only 

a single particle is involved, there are three components to be 
f 

considered. In this section we shall see how to use the conserva· t 
: f tion laws to find some general properties of the solution and to ' { 

reduce the equation to an equation in a single scalar variable. £ 
r 
L 

The Motion Is Confined to a Plane 

The central force f(r) r is along r and can exert no torque on the 

reduced mass p.. Hence, the angular momentum L of p. is con· 

stant. It is easy to show that this implies that the motion of p. 

is confined to a plane. Since L = r X p.V, where v = r, r is always 

perpendicular to L by the properties of the cross product. How· 

ever, L is fixed in space, and it follows that r can only move in the 

plane perpendicular to L through the origin. 

Since the motion is confined to a plane, we can, without loss of 
generality, choose our coordinate system so that the motion is 

in the xy plane. Introducing polar coordinates, the equation of 
motion p.r = f(r) r becomes 

p.(1' - r(2) = f(r) 
p.(rO + 21'8) = o. 

The Energy and Angular Momentum Are Constants of the Motion 

9.7a 

9.7b 

We have reduced the problem to two dimensions by using the fact 

that the direction of L is constant. There are two other important 

constants of central force motion: the magnitude o f  the angular 

momentum III == l, and the total energy E. Using l and E, we 

can solve the problem of central force motion more easily and with 

greater physical insight than by working with Eqs. (9.7a and b). 
The angular momentum of p. has magnitude 

9.8a 

, t 
1; 

, t
: � 

t 
i: . * 
:£ 
'i; 
� 
'! ,. 
iy-

t 
r 
1 
f 
" 
7 
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The total energy of p. is 

ur=; E = tp.v2 + U(r) 
= tp.(r2 + r2{j2) + U(r), 

where the potential energy U(r) is given by 

U(r) - U(ra) = - f fer) dr. 
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9.8b 

The constant U(r,J is not physically significant and so we can 

leave ra unspecified; adding a constant to the energy has no effect 

on the motion. 

We can eliminate (j from Eq. (9.8b) by using Eq. (9.8a). The 

result is 

1 1 l2 
E = - p.r2+ - - + U(r). 9.9 

2 2 p.r2 
This looks like the equation of motion of a particle moving in one 

dimension; all reference to (J is gone. We can press the parallel 

further by introducing 

1 l2 
Ueff(r) 

= -2 -2 
+ U(r), 9.10 

p.r 
so that 

E = tp.r2 + U eff(r) . 9.11 

U eff is called the effective potential energy. Often it is referred 

to simply as the effective potential Velf differs from the true 

potential U(r) by the term l2/2p.r2, called the centrifugal potential. 
The formal solution of Eq. (9.11) is 

dr /2 
dt = '\j � (E - Ueff) 9. 12 

or 

r dr 
Jro V(2/p.)(E _ Ueff) 

= t - to' 9.13 

Equation (9.13) gives us r as a function of t, although the integral 

may have to be done numerically in some cases. To find 8 as a 

function of t, we can use the solution for r in Eq. (9.8a): 

d8 
dt p.r2 

9.14 

Since r is known as a function of t from Eq. (9.13), it is possible 

to integrate to find (J: 

it l 
8 - 80 = -

2 
dt. to p.r 

9.15 
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Often we are interested in the path of the particle, which means 

knowing r as a function of () rather than as a function of time. 

We call r«(}) the orbit of the particle. (The term is used even if 

the trajectory does not close on itself.) Dividing Eq. (9.14) by 

Eq. (9.12) gives 

d(} l 1 
- = - -r====== 
dr p.r2 V (2/ p.)(E - U elf) 

9.16 

This completes the formal solution of the central force problem. 

We can obtain r(t), (}(t), or r«(}) as we please; all we need to do is 

evaluate the appropriate integrals. 

You may have noticed that we found the solution without using 

the equations of motion, Eqs. (9.7a and b). Actually, we did 

use them, but in a disguised form. For instance, differentiating 

l = p.r2(j with respect to time gives 0 = p.r2i} + 2rr(j or 

p.(ri} + 2r(j) = 0, 

which is identical to the tangential equation of motion, Eq. (9.7b). 
Similarly, differentiation of the energy equation with respect to 

time gives the radial equation of motion, Eq. (9.7a). 

The Law of Equal Areas 

We have already shown in Example 6.3 that for any central force, 

r sweeps out equal areas in equal times. This general property 

of central force motion is a direct consequence of the fact that the 

angular momentum is constant. 

9.4 Finding the Motion in Real Problems 

In order to apply the solution for the motion which we found in 

the last section, we need to relate the position vectors of ml and 

m2 to r and evaluate land E. 
From Eqs. (9.6a and b) the position vectors of ml and m2 rela· 

tive to the center of mass are 

9.17a 

I ml 
r2 = - r. 9.17b 

ml + m2 

r� and r� lie along r. They remain back to back in the plane of 

motion. Hence, ml and m2 move about their center of mass in 

the fixed plane, separated by distance r. 
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In many problems, like the motion of a planet around the sun, 

the masses of the two particles are very different. If m2 » ml, 
Eqs. (9.17a and b) become 

, 
rl "'" r 

r� "'" O. 

The reduced mass J.I. is approximately mit and the center of mass 

lies at m2. In this case the more massive particle is essentially 

fixed at the origin, and there is no important difference between 

the actual two particle problem and the equivalent one particle 

problem. 

In the one particle problem the angular momentum is 

L = J.l.r Xv. 

It is easy to show that L is simply the angular momentum of ml 
and m2 about the center of mass, Le. 

Le = mlr� X v� + m2r; X v;, 

where v� = r� and v; = r;. Using Eqs. (9.17a and b) we have 

mlm2 , mlm2 , Le = r X vl - r X v2 
ml + m2 ml + m2 

= J.l.r X (v� - v;) 
= J.l.r X v 

= L. 

Similarly, the total energy E is the energy of ml and m2 relative 

to their center of mass, Ee. 

Ee = tml(v� . v�) + tm2(v� . v;) + U(r). 

From Eqs. (9.16a and b), we have mlv� = J.l.v and m2v; -J.l.v. 
Hence, 

Eo = tJ.l.V . (v� - v;) + U(r) 

= iAv . v) + U(r) 

= E. 

9.5 The Energy Equation and Energy Diagrams 

In Sec. 9.3 we found two equivalent ways of writing E, the total 

energy in the center of mass system. According to Eq. (9.8b), 

E = tJ.l.V2 + U(r), 

and according to Eq. (9.11), 

E = iJ.l.r2 + Uelf(r). 
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We generally need to use both these forms in analyzing central 

force motion. The first form, -hw2 + U(r), is handy for evaluating 

E; all we need to know is the relative speed and position at some 

instant. However, v2 = i"2 + (rOp, and this dependence on two 

coordinates, r and 0, makes it difficult to visualize the motion. 

In contrast, the second form, -!J.d2 + Ueff(r) depends on the single 

coordinate r. In fact, it is identical to the equation for the energy 

of a particle of mass p. constrained to move along a straight line 

with kinetic energy -ip.i"2 and potential energy U eff(r). The coor· 

dinate 0 is completely suppressed-the kinetic energy associated 

with the tangential motion, -ip.(rOp, is accounted for in the effective 

potential by the relations 

l2 
-ip.(rO)2 = -

2p.r2 

l2 
U eff(r) = 

-2 2 
+ U(r). 

p.r 

The equation 

E = -ip.i"2 + U eff(r) 

involves only the radial motion. Consequently, we can use the 

energy diagram technique developed in Chap. 4 to find the 

qualitative features of the radial motion. 

To see how the method works, let's start by looking at a very 

simple system, two noninteracting particles. 

Example 9.1 Noninteracting Particles 

Two noninteracting particles ml and m2 move toward each other with 

velocities VI and V2. Their paths are offset by distance b, as shown In 

the sketch. Let us investigate the equivalent one body description of 

this system. 

The relative velocity is 

Vo = r 

Vo is constant since VI and V2 are constant. The energy of the system 

relative to the center of mass is 

since U(r) = 0 for noninteracting particles. 
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In order to draw the energy diagram we need to find the eftective 

potential 

l2 l2 
U.ff = - + U(r) = -_. 

2/lr2 2/lr2 

We could evaluate l by direct computation, but it is simpler to use the 
relation 

l2 
E = 1-,1.1;2 + -

2/lr2 

= t/lV02. 

When ml and m2 pass each other, r = band; = o. Hence 

It 
- - �IIV 2 
2p.b2 - "2",.. 0 , 

l = p.bvo, 

and 

The energy diagram is shown in the sketch. The kinetic energy asso· 
ciated with radial motion is 

K = 1-,1.1;2 

= E - U.ff• 

K is never negative so that the motion is restricted to regions where 
E - U.ff � o. Initially r is very large. As the particles approach, the 

kinetic energy decreases, vanishing at the turning point rt, where the 

radial velocity is zero and the motion is purely tangential. At th-e turn

ing point E = U.ff(r,), which gives 

b2 
1-p.vo2 = 1-,uvo2-

r,2 

or 

r, = b 

as we expect, since r, is the distance of closest approach of the particles. 

Once the turning point is passed, r increases and the particles separate. 

In our one dimensional picture, the particle /l "bounces off" the barrier 
of the effective potential. 

Now let us apply energy diagrams to the meatier problem of 

planetary motion. For the attractive gravitational force, 

f(r) 
Gmlm2 

----

r2 

U(r) 
Gmlm2 

---_. 

r 
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(By the usual convention, we take U( (0 ) = 0.) The effective 

potential energy is 

Gm1m2 l2 
Ueff = - --- + -_. 

r 2p.r2 

\L 
\ 21l'2 

\ 
\ 

\ 
, 

, 
, 

" 
" 

" Case I: E>O 

Case 2: E = 0 
Or---------------�-------------------------------

Case3:E<O 

If l rf 0, the repulsive centrifugal potential l2 j(2p.r2) dominates at 

small r, whereas the attractive gravitational potential -Gmlmdr 
dominates at large r. The drawing shows the energy diagram with 

various values of the total energy. The kinetic energy of radial 

motion is K = E - U eff, and the motion is restricted to regions 

where K � O. The nature of the motion is determined by the 

total energy. Here are the various possibilities: 

1. E > 0: r is unbounded for large values but must exceed a 

certain minimum if l rf O. The particles are kept apart by the 

"centrifugal barrier." 

2. E = 0: This is qualitatively similar to case 1 but on the boundary 

between unbounded and bounded motion. 

3. E < 0: The motion is bounded for both large and small r. The 

two particles form a bound system. 
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4. E = Emin: r is restricted to one value. The particles stay a 

constant distance from one another. 

In the next section we shall find that case 1 corresponds to motion 

in a hyperbola; case 2, to a parabola; case 3, to an ellipse; and 

case 4, to a circle. 

There is one other possibility, l = O. In this case the particles 

move along a straight line on a collision course, since when l is 

zero there is no centrifugal barrier to hold them apart. 

Example 9.2 The Capture of Comets 

Suppose that a comet with E > 0 drifts into the solar system. From 

our discussion of the energy diagram for motion under a gravitational 

force, the comet will approach the sun a nd then swing away, never to 

return. In order for the comet to become a member of the solar sys· 

tem, Its energy would have to be reduced to a negative value. However, 

the graVitational force is conservative and the comet's total energy cannot 

change. 

The situation is quite different if more than two bodies are involved. 

o_v _ 

For instance, if the comet is deflected by a massive planet like Jupiter, 

it can transfer energy to the planet and so become trapped in the solar 

system. 

/1- Suppose that a comet is heading outward from the sun toward the Jupiter 
/ orbit of Jupiter, as shown in the sketch. Let the velocity of the comet 

! 
before it starts to interact appreciably with Jupiter be Vi, and let Jupiter's 

velocity be V. For simplicity we shall assume that the orbits are not 
'i 

appreciably deflected by the sun during the time of interaction. 

In the comet·Jupiter center of mass system Jupiter is essentially at 

rest, and the center of mass velocity of the comet is Vic = Vi - V, as Comet 

shown in figure a. 

(a) 

------1 

I 
/ 

I 

(b) 

I 
I 

/ 
I 

/ 

r-----
V \ 

�---4-
, \ \ VIc " \ 

, \ , \ 
',\ 

(c) 
In the center of mass system the path of the comet is deflected, but 

the final speed is equal to the initial speed "ic. Hence, the interaction 

merely rotates Vic through some angle €I to a 
'
new direction VIc, as shown 

in Fig. b. The final velocity in the space fixed system is 

VI = VIc + V. 
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Figure c shows vI and, for comparison, Vi. 

VI < Vi, and the comet's energy has decreased. 

For the deflection s hown, 

Conversely, if the deflec;· 

tion is in the opposite direction, interaction with Jupiter would increase 

the energy, possibly freeing a bound comet from the solar system. A 
large proportion of known comets have energies close to zero, so close 

that it is often difficult to determine from observations whether the orbit 

is elliptic (E < 0) or hyperbolic (E > 0). The interaction of a comet 

with Jupiter is therefore often sufficient to change the orbit from unbound 

to bound, or vice versa. 

This mechanism for picking up energy from a planet can be used to 

accelerate an interplanetary spacecraft. By picking the orbit cleverly, 

the spacecraft can "hop" from planet to planet with a great saving in 

fuel. 

The process we have described may seem to contradict the idea that 

the gravitational force is strictly conservative. Only gravity acts on the 

comet and yet its total energy can change. The reason is that the 

comet experiences a time·dependent gravitational force, and time· 

dependent forces are intrinsically nonconservative. Nevertheless, the 

total energy of the entire system is conserved, as we expect. 

Perturbed Circular Orbit 

A satellite of mass m orbits the earth in a circle of radius roo One of its 

engines is fired briefly toward the center of the earth, changing the 

energy of the satellite but not its angular momentum. The problem is 

to find the new orbit. 

The energy diagram shows the initial energy Ei and the final energy 

EI. Note that firing the engine radially does not change the effective 

potential because l is not altered. Since the earth's mass Me is much 

greater than m, the reduced mass is nearly m and the earth is effectively 

fixed. 

If EI is not much greater than Ei, the energy diagram shows that r 

never differs much from roo Rather tha n solve the pia neta ry motion 

problem exactly, as we shall do in the next section, we instead approxi· 

mate U.II(r) in the neighborhood of ro by a parabolic potential. As we 

know from our analysis of small oscillations of a particle about equilib· 

rium, Sec. 4.10, the resulting radial motion of the satellite will be simple 

harmonic motion about ro to good accuracy. 

The effective potential is, with C == GmM" 

C l2 
Uell(r) = - - + - ' 

r 2mr2 

The minimum of Uell is at r = roo Since the slope is zero there, we have 

dUell 1 = 
0 

dr TO 

C l2 
,..----J 

ro2 mro3 
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which gives 

l = v'mCro. 1 

(This result can also be found by applying Newton's second law to circular 

motion.) As we recall from Sec. 4.10, the frequency of oscillation of the 

system, which we shall denote by {j, is 

where 

k 
= 

d2Uefl 
I 
. 

dr2 TO 

2 

This is readily evaluated to yield 

3 

Hence, the radial position is given by 

r = ro + A sin {jt. 4 

We have omitted the term B cos (jt in order to satisfy the initial condi· 

tion reO) = ro. Although we could calculate the amplitude A in terms 

of E" we shall not bother with the algebra here except to note that 

A « ro for E, nearly equal to Ei• 
To find the new orbit, we must eliminate t and express r as a function 

of 8. For the circula r orbit, 

. l e = --, 

mro2 

8 = (_l ) t. 
mro2 

or 5 

6 

Equation (5) is accurate enough for our purposes, even though the radius 

oscillates slightly after the engine is fired; t occurs only in a small correc· 

tion term to r in Eq. (4), and we are neglecting terms of order A and 

higher. 

From Eqs. (1) and (5) we see that the frequency of rotation of the 

satellite around the earth is 

and 

l 
8 = - t = {jt. 

mro2 
7 
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Surprisingly, the frequency of rotation is identical to the frequency of 

radial oscillation. If we substitute Eq. (7) in Eq. (4), we obtain 

T = To + A sin fJ. 8 

The new orbit is shown as the sol!d line in the sketch. The orbit looks 

almost circular, but it is no longer centered on the earth. 

As we shall show in Sec. 9.6, the exact orbit for E = E/ is an ellipse 

with the eq uation 

TO 
T= 

1 - (A/To) sin fJ 

If A/To« 1, 

TO 
T = ---'----

1 - (A/To) sin fJ 

� rO(l + � sin fJ) 

= To + A sin fJ. 

To first order in A, Eq. (8) is the equation of an ellipse. However, the 

exact calculation is harder to derive (and to digest) than is the approxi· 

mate result we found by using the energy diagram. 

9.6 Planetary Motion 

Let us now solve the main problem of the chapter-finding the 

orbit for the gravitational interaction 

Mm C 
U(r) = - G - == - -, 

r r 

where M is the mass of the sun and m is the mass of a planet. 

Alternatively, M could be the mass of a planet and m the mass of 

a satellite. Before proceeding with the calculation, it might be 

useful to consider whether or not this is a realistic description of 

the interaction of the sun and a planet. If both bodies were 

homogeneous spheres, they would interact like point particles as 

we saw in Note 2.1, and our formula would be exact. However, 

most of the members of the solar system are neither perfectly 

homogeneous nor perfectly spherical. For example, satellites 

around the moon are perturbed by mass concentrations ("mas· 

cons") in the moon, and the planet Mercury may be slightly 

perturbed by an equatorial bulge of the sun. Furthermore, the 
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solar system is by no means a two body system. Each planet is 

attracted by all the other planets as well as by the sun. 

Fortunately, none of these effects is particularly large. Most 

of the mass of the solar system is in the sun, so that the attrac· 

tion of the planets for each other is quite feeble. The largest 

interaction is between Jupiter and Saturn. The effect of this 

perturbation is chiefly to change the speed of each planet, so that 

the law of equal areas no longer holds exactly. However, the 

perturbation never shifts Jupiter by more than a few minutes of 

arc from its expected position (one minute of arc is approximately 

equal to one·thirtieth the moon's diameter as seen from the earth). 

In practice, one first calculates planetary orbits neglecting the 

other planets and then calculates small corrections to the orbits 

due to their presence. Such a procedure is called a perturba· 

tion method. (The transuranic planets were actually discovered 

by their small perturbing effects on the orbits of the known outer 

planets.) Furthermore, if a body is not quite homogeneous or 

spherically symmetric, its gravitational field can be shown to have 

terms depending on lira, 1/r4, etc., in addition to the main 1/r2 
term. The coefficients depend on the size of the body com· 

pared with r; over the span of the solar system the higher order 

terms become negligible, although they may be important for a 

nearby satellite. 

Returning to our idealized planetary motion problem U(r) = 

- Clr, we find that the equation for the orbit Eq. (9.16) becomes, 

using indefinite integrals, 

where 80 is a constant of integration. The integral over r is listed 

in tables of integrals. The result is 

or 

Solving for r, 

(l2/}.LC) 
r = 

. 

1 - V1 + (2EZZI}.LC2) sin (8 - 80) 
9.18 
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The usual convention is to take 00 = -7r/2 and to introduce the 
parameters 

9.19 

9.20 

Physically, To is the radius of the circular orbit corresponding to 
the given values of l, 1'-, and C. The dimensionless parameter E, 

called the eccentricity, characterizes the shape of the orbit, as 

we shall see. With these replacements, Eq. (9.18) becomes 

TO 
r = -----

1 - E cos 0 
9.21 

Equation (9.21) looks more familiar in cartesian coordinates 

x = T cos 0, Y = T sin O. Rewriting it in the form T - ET cos 0 = To, 

we have 

V x2 + y2 - EX = To 
or 

(1 - E2)X - 2ToEX + y2 = T02. 

Here are the possibilities: 

9.22 

1. E > 1: The coefficients of x2 and y2 are unequal and opposite 

in sign; the equation has the form y2 - AX2 - Bx = constant, 
which is the equation of a hyperbola. From Eq . (9.20), E > 1 
whenever E > O. 

2. E = 1: Eq. (9.22) becomes 

y2 To 
X = -- - -. 

2To 2 

This is the equation of a parabola. E = 1 when E = O. 

3. 0 � E < 1: The coefficients of x2 and y2 are unequal but of the 
same sign; the equation has the form y2 + AX2 - Bx ="' constant, 

which is the equation of an ellipse. The term linear in x means 

that the geometric center of the ellipse is not at the origin of coor· 

dinates. As proved in Note 9.1, one focus of the ellipse is at the 

origin. For E < I, the allowed values of E are 

I'-C2 
- -- < E < O. 

212 -
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When E = -p.C2/2l2, E = 0 and the equation of the orbit becomes 

x2 + y2 = T02; the ellipse degenerates to a circle. 

Example 9.4 Hyperbolic Orbits 

In order to use the orbit equation we must be able to express the orbit 

in terms of experimentally accessible parameters. For example, if the 

orbit is unbound, we might know the energy and the initial trajectory. 

In this example we shall show how to relate some experimental para· 

meters to the trajectory for the case of a hyperbolic orbit. The results 

could apply to the motion of a comet about the sun, or to the trajectory 

of a charged particle scattering off an atomic nucleus. 

Let the speed of p. be Vo when p. is far from the origin, and let the initial 

path pass the origin at distance b, as shown. b is commonly called the 

impact parameter. The angular momentum l and energy E are 

l = p.vob 

E = tp.vo2. 

For an inverse square force, U(T) = -CIT and the equation of the 

orbit is 

TO T 
= I _ E cos 0' 

where 

l2 Ji.Vo2b2 
To = - =--

Ji.C C 

2Eb2 
=-_. 

C 

and 

When (J = 7r, T = TOlin, 

To T ·  =--mln I+E 

I + VI + (2EbIC)2 

For E -> 00, TOlin -> b. Hence 0 < Tmin < b. 
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l 
i. 

The angle of the asymptotes 8a can be found from the orbit equation ; t 
by letting r - 00. We find 

on the interaction, J.L is deflected through the angle if; = 71" - 20a• The 

deflection angle if; approaches 1800 if (2Eb/C)2 «1. 

Rutherford's classic experiment that established the nuclear model 

of the atom showed that fast alpha particles (doubly charged helium 

nuclei) interact with single atoms in thin gold foils according to the 

Coulomb potential U(r) = -C'/r. He found that the alpha particles 

followed hyperbolic orbits even when r min was much less than the radius 

of the atom, proving that the charge of an atom must be concentrated 

in a small volume, the nucleus. Surprisingly, Rutherford was unable 

to determine whether the gold nuclei attracted (C' > 0) or repelled 

(C' < 0) alpha particles. The eccentricity, hence the scattering angle, 

depends on (2Eb/C')2, making it impossible to determine the algebraic 

sign of the strength parameter C'. 

Elliptical orbits (E < 0, 0 � E < 1) are so important it is worth 

looking at their properties in more detail. From the orbit 

equation, Eq. (9.21), 

TO 
T ----- , 

1 - E cos 0 

The maximum value of T occurs at 0 0: 

TO 
rmax 

1 - E 

the minimum value of T occurs at 0 = 71": 

The length of the major axis is 

A = Tmin + Tmax 

= TO 
(_1 

+_
1 ) 

1+E l-E 

2ro 

1 - E2 

9.23 

9.24 

9.25 

{. 
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Expressing ro and E in terms of E, l, po, C by Eq. (9.19) and (9.20) 
gives 

2ro 
A =--

1 - E2 

1 - [1 + 2El2/(poC2)] 

C 
=-_. 

(-E) 
9.26 

The length of the major axis is independent of l; orbits with the 

same major axis have the same energy. For instance, all the 

orbits in the sketch correspond to the same value of E. 
The ratio rmax/rmin is 

rmal< ro/(1 - E) 

rmin ro/(1 + E) 

1 + E 

1 - E 

When E is near zero, rmax/rmin � 1 and the ellipse is nearly cir

cular_ When E is near 1, the ellipse is very elongated. The shape 

of the ellipse is determined entirely by E; ro only supplies the scale. 

Table 9.1 gives the eccentricities of the orbits of the planets and 

Halley's comet. The table reveals why the Ptolemaic theory of 

circles moving on circles was reasonably successful in dealing with 

early observations. All the planetary orbits, except those of Mer

cury and Pluto, have eccentricities near zero and are nearly cir

cular. Mercury is never far from the sun and is hard to observe, 

and Pluto was not discovered until 1930, so that neither of these 

PLANET ECCENTRICITY 

Mercury 0.206 

Venus 0.007 

Earth 0.017 

Mars 0.093 

Jupiter 0.048 

Saturn 0.055 

Uranus 0.051 

Neptune 0.007 

Pluto 0.252 

Halley's Comet 0.967 
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planets was an impediment to the Ptolemaists. Mars has the 

most eccentric orbit of the easily observable planets, and its 

motion was a stumbling block to the Ptolemaic theory. Kepler 

discovered his laws of planetary motion by trying to fit his calcula· 

tions to Brahe's accurate observations of Mars' orbit. 

Note 9.1 derives the geometric properties of elliptical orbits. 

We turn now to some examples. 

Example 9.5 Satellite Orbit 

A satellite of mass m = 2,000 kg is in elliptic orbit about the earth. At 

perigee (closest approach to the earth) it has an altitude of 1,100 km and 

at apogee (farthest distance from the earth) its altitude is 4,100 km. 

4,100 What are the satellite's energy E and angular momentum l? How fast 

km is it traveling at perigee and at apogee? 

Since m «lll" we can take I.l � m and assume that the earth is fixed. 

The radius of the earth is R. = 6,400 km, and the major axis of the orbit 

is therefore 

A = [1,100 + 4,100 + 2(6.400)jkm 

= 1.8 X 107 m. 

Knowing A, we can find E from Eq. (9.26): 

C 
A=-

(-E) 
or 

C 
E =-' 

A 

C = GmM. = mgR.2, since g = GM./R.2. Numerically, 

C = (2 X 103)(9.8)(6.4 X 106)2 = 8.0 X 1017 J·m. 

E= 
C 

A 

= -4.5 X 1010 J. 

The initial energy of the satellite before launch was 

Ei= 
GmM. 

R. 

C 

R. 

-12.5 X 1010 J. 

The energy needed to put the satellite into orbit, neglecting losses due 

to friction, is E - Ei = 8 X 1010 J. 

, 
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We can find the angular momentum from the eccentricity. Since 

ro 
r · =-mIn 

1 + E 

we have 

and 

rmax - Tmin E = 
Tmax + rmin 

rmax - Tmin 
.-1 

3 X 103 

1.8 X 104 

1 

6 

and 
ro 

rmax = --, 
1 - E 

From the definition of E, Eq. (9.20), 

which yields 

l = 1.2 X 1014 kg·m2/s. 

We can find the speed v of the satellite at any r from the energy 

equation 

1 C 
E = -mv2 --' 

2 r 

At perigee, r = (1,100 + 6,400) km = 7.5 X 106 m, and the speed at 

perigee is 

vp = 7,900 m/s. 

Va To find the speed at apogee, Va, most simply, note that at apogee and 

perigee the velocity of the satellite is purely tangential. Hence, by con· 

servation of angular momentum, 

and we find that 

= 5,600 m/s. 
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Suppose that a body is projected from the surface of the earth 

with initial velocity Vo. If Vo is less than the escape velocity, 

1.12 X 104 mis, the total energy of the body is negative, and it 
travels in an elliptic orbit with one focus at the center of earth. 

As the drawing on the left shows, the body inevitably returns to 

earth. 

/' 
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In order to put a spacecraft into orbit around the earth, the 

magnitude and direction of its velocity must be altered at a point 

where the old and new orbits intersect. Orbit transfer maneuvers 

are frequently needed in astronautics. For example, on an 

Apollo moon flight the vehicle is first put into near earth orbit 
and is then transferred to a trajectory toward the moon. The 

next example illustrates the physical principles of orbit transfer. 

Example 9.6 Satellite Maneuver 

One of the commonest orbit maneuvers is the transfer between an ellip· 

tical and a circular orbit. This maneuver is used to inject spacecrafts 

into high orbits around the earth, or to put a planetary exploration satel· 

lite into a low orbit for surface inspection. 

Suppose, for instance, that we want to transfer the satellite of Example 

9.5 into a circular orbit at perigee, as shown in the sketch. Let E and I 
be the initial energy and angular momentum of the satellite and let E', 
I' be the parameters for the new orbit. 

We start our analysis by finding E, i, E', i'. For simplicity, we shall 

assume that the amount of fuel burned by the satellite's rockets at 

transfer is negligible compared with the satellite's mass m = 2,000 kg. 

From Eq. (9.26), E = -CIA. Since A,fTp = 18 X 1Q6/(7.5 X 1Q6) = J�'1,., 
we have 

E = - ��. 
12 Tp 

Tp is the radius at perigee. hence the radius of the desired circular orbit. 

. t: 

, f 

" , , 
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An easy way to find l is to use the one dimensional energy equation, 

Eq. (9.9): 

1 l2 C 
E = - mr2 + -- - -' 

2 2mr2 r 

At perigee, f = 0 and r = rp, and we find 

l2 = imCrp• 

For the circular orbit, the major axis is 2rp and therefore 

E' = _.£. 
2Tp 

2 

3 

4 

f = 0 for the circular orbit, and from the one dimensional energy 

equation, 

l'2 C 
E' = -- - - ,  

2mrp2 T1' 

which yields 

l'2 = mCrp• 5 

How can we switch from E, l to E', l'? Since E' < E and l' < l, we 

want to apply a braking thrust in order to reduce both the energy and the 

angular momentum. Thrust in the radial direction at perigee changes 

the energy but not the angular momentum, whereas tangential thrust 

changes both parameters. The old and new orbits are tangential where 

they intersect, and we might suspect that tangential thrust alone would 

be sufficient. We now show that this is correct. 

At perigee, v is purely tangential, and tangential thrust changes the 

speed from v to v'. From the energy equation, 

1 C 
E = -mv2 - ._, 

2 T 

and at perigee 

v2 = � (E + 2.) 
m Tp 

7 C 
= --, 

6 mTp 

using Eq. (1). Similarly, 

V'2 = � (E' + 2.) 
m r1' 

C 
=-, 

using Eq. (4). 
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We now check to see if the angular momentum has its requited value, 

At perigee, v is perpendicular to rand 

l = mrpv 

= mrp I� C 
'\J6 mr" 

= �� mrpc, 

as we have already found, Eq. (3). Similarly, 

l' = mrpv' 

= mr" I C 
'\J mrp 

= Vmr"C, 

which is the required value according to Eq. (5). 

The maneuver can be executed by applying a braking thrust tangential 

to the orbit at perigee to reduce the speed of the satellite from v = 

V7C/(6mr,,) = 7,900 m/s to Vi = VC/(mrp) = 7,300 m/s. 
Practical orbit maneuvers are generally planned to economize on the 

fuel. According to our discussion of rockets in Sec. 3.5, if the mass of 

the spacecraft changes from Mi to M; - AM during the rocket burn, 

its velocity cha nges by 

Av = -u In ( M; ) . 
M;-AM 

Therefore, the smaller the change in speed required by a maneuver, the 

more economical of fuel it is. 
The maneuver described in this example reaches the maximum effi· 

ciency. At transfer, 

E - E' = imv2 -imv'2 
= imv2 -tm(v -Av)2 
"'" mv·Av. 

Ivl is greatest at perigee, and since Av is parallel to v, IAvl is least there 

to obtain the needed value of E - E'. 

9.7 Kepler's Laws 

Johannes Kepler was the assistant of the sixteenth century Danish 

astronomer Tycho Brahe. They had a remarkable combination of 

talents. Brahe made planetary measurements of unprecedented 

accuracy, and Kepler had the mathematical genius and fortitude to 
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show that Brahe's data could be fitted into three simple empirical 

laws. The task was formidable. It took Kepler 18 years of labor

ious calculation to obtain the following three laws: 

1. Each planet moves in an ellipse with the sun at one focus. 

2. The radius vector from the sun to a planet sweeps out equal 

areas in equal times. 

3. The period of revolution T of a planet about the sun is related 

to the major axis of the ellipse A by 

T2 = kA3, 

where k is the same for all the planets. 

Kepler's first law follows from the results of the last section; 

elliptic orbits are characteristic of the inverse square law force. 

The second law is a general feature of central force motion as we 

demonstrated in Example 6.3. 

Kepler's third law is easily proved by the following trick: We 

start with the definition of angular momentum, Eq. (9.8a), 

dO 
l = J.Ior2-, 

dt 

which can be written 

l 
- dt = tr2 dO. 
2J.1o 

9.27 

But tr2 dO is a differential element of area in polar coordinates. 

Over one complete period, the whole area of the ellipse is swept 

out, and integration of Eq. (9.27) yields 

I 
- T = area of ellipse = '/f"ab, 
2J.1o 

9.28 

where a = AI2 is the semi major axis and b is the semiminor axis. 

From Eq. (9.26), 

C 
a= -- , 

(-2E) 

and from Note 9.1, 

I 
b = , 

vi -2/LE 
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Equation (9.28) becomes 

4/0'2 
T2 = -1I"2a2b2 

l2 
1I"2/o'C2 

( -2E3) 
11"2/0' 

2C A3
, 9.29 

using A = C/( -E). Since C = GMm and /0' = Mm/(M + m), 

we obtain finally 

11"2 
T2 - A3 930 - 2(M + m)G 

. . 

This result shows that Kepler's third law is not exact; T2/ A a 

depends slightly on the planet's mass. However, even for Jupi· 

ter, the largest planet, m/ M is only 1/1,000, so that Kepler's third 

law holds to good accuracy in the solar system. 

Kepler's laws also apply to the motion of satellites around a 

planet. In Table 9.2 we show how his third law, the law of periods, 

holds for a number of artificial earth satellites. The ratio A 3/T! 
is constant to a fraction of a percent, although the periods vary 

by nearly a factor of 100. A more refined check would take into 

account the nonspherical shape of the earth and perturbations 

due to the moon. 

SATELLITE E A,km T, min A3/T2 

Cosmos 358 0.002 13,823 95.2 2.91 X 1Q8 

Explorer 17 0.047 13,928 96.39 2.91 X 1Q8 

Cosmos 374 0.104 15,446 112.3 2.92 X 1Q8 

Cosmos 382 0.260 18,117 143 2.91 X 1Q8 

ATS 2 0.455 24,123 219.7 2 91 X 1Q8 

15th Molniya I 0.738 52,537 706 2.91 X 1Q8 

Ers 13 0.887 117,390 2,352 2.92 X 1Q8 

Ogo 3 0.901 135,270 2,917 2.91 X 1Q8 

Explorer 34 0.940 224,150 6,225 2.91 X 1Q8 

Explorer 28 0.952 273,740 8,400 2.91 X 1Q8 

• Data taken from the data catalogs of the National Space Science Data Center 
and the World Data Center A. The catalogs give satellite altitudes relative to the 
surface of the earth; we assumed the diameter of the earth to be 12.757 km in 
calculating A. 
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Example 9.7 The Law of Periods 

403 

Here is a more general way of deriving the law of periods. Starting from 

Eq. (9.13) we have, with U(T) = -CIT, 

The integral is listed in standard tables. For the case of interest, E < 0, 
we find 

Fortunately this result can be greatly simplified. For a complete period, 

tb - ta = T, and Tb = Ta. The first term on the right hand side vanishes, 

and in the second term, the arcsine changes by 2'1T". The result is 

T 
= 'IT"!J.C 1 

(-E) vi -2!J.E 
or 

2 = 'IT"!J. A3 
2C ' 

as we found earlier, Eq. (9.29). 

Note 9.1 Properties of the Ellipse 

The equation of any conic section is, in polar coordinates, 

TO T= ----
I - f cos 8 

1 

Converting to cartesian coordinates T = vi x2 + y2, X = T cos 8, Eq. (1) 
becomes 

2 

The ellipse corresponds to the case 0 � f < 1. The ellipse described 

by Eqs. (1) and (2) is symmetrical about the x axis, but its center does not 

lie at the origin. 
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We can use Eq. (1) to determine the important dimensions of the 

ellipse. The maximum value of r, which occurs at 8 = 0, is 

ro 
rmu = 

1
---· 

-E 

The minimum value of r, which occurs at 8 = 71", is 

ro 
r - = --- -mID 

1 + E 

The major axis is 

A = rmax + rmin 

=ro (_
1 

+_
1 ) 

l-E I+E 

2ro 
=-_. 

1 - E2 

The semimajor axis is 

A 
a= 

2 

ro 
= -- -

The distance from the origin to the center of the ellipse is 

Xo = a - rmin 

roE 
=-_ . 

We see that the eccentricity is equal to the ratio xo/a. 

3 

4 

To find the length of the semiminor axis b = -y"r-2 ___ X_o2, note that 

the tip of the semiminor axis has angular coordinates given by cos 0 = 

xo/r. We have 

ro 
r = -------

I -E cos 8 

ro 

1 - Exo/r 
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or 

r = ro + exo = ro (1 + _
e
_
2 

-) 
1 - e2 

ro 
= -- ' 

Hence, 

ro 

405 

Finally, we shall prove that the ongln lies at a focus of the ellipse. 

According to the definition of an ellipse, the sum of the distances from 

the foci to a point on the ellipse is a constant. Hence, for the ellipse 

shown in the sketch we need to prove r + r' = constant. By the law of 

cosines, 

r'2 = r2 + 4X02 - 4rxo cos O. 

From Eq. (1) we find that 

r cos 0 = 
r - ro. 

e 

Equation (5) becomes 

4xo 4roxo 
r'2 = r2 - - r + 4X02 + -- ' 

e e 

Using the relation Xo = roe/(l - e2) from Eq. (4) gives 

'
2 2 ( 4ro ) + 

4ro2e2 
+ 

4ro2 
r = r -

1 _ e2 
r 

(1 _ e2)2 (1 _ e2) 

= r2 _ (�) r + 
4r02 • 

1 - e2 (1 - e2)2 

The right hand side is a perfect square. 

r' = ± (r - �) 
1 - e2 

= ±(r - A). 

5 

Since A > r, we must choose the negative sign to keep r' > O. 

Therefore, 

r'+r=A 

= constant. 
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To conclude, we list a few of our results in terms of E, l, JI., C for the 

inverse square force problem U(r) = -C Ir. When using these for· 

mulas, E must be taken to be a negative number. From Eqs. (9.19) and 

(9.20), 

l2 
ro = -

Jl.C 

and 

Hence, 

. . .  ro C 
semi maJor aXIs a = -- = --

1 - E2 -2E 

semiminor axis b = � 
1 - E2 

_ roE _ ( C ) �1 + 2El2
. Xo - 1 _ E2 - -2E Jl.C2 

Problems 9.1 Obtain Eqs. (9.7a and b) by differentiating Eqs. (9.8a and b) with 

respect to time. 

9.2 A particle of mass 50 g moves under an attractive central force of 

magnitude 4r3 dynes. The angular momentum is equal to 1,000 g·cm2/s. 

a. Find the effective potential energy. 

b. Indicate on a sketch of the effective potential the total energy for 

circular motion. 

c. The radius of the particle's orbit varies between ro and 2ro. Find To. 

Ans. (c) ro "" 2.8 em 

9.3 A particle moves in a circle under the influence of an inverse cube 

law force. Show that the particle can also move with uniform radial 

velocity, either in or out. (This is an example of unstable motion. Any 

slight perturbation to the circular orbit will start the particle moving 

radially, and it will continue to do so.) Find (J as a function of r for motion 

with uniform radial velocity. 

9.4 For what values of n are circular orbits stable with the potential 

energy U(r) = - A ir", where A > O? 

9.5 A 2·kg mass on a frictionless table is attached to one end of a mass· 

less spring. The other end of the spring is held by a frictionless pivot. 

The spring produces a force of magnitude 3r newtons on the mass, where 

i 
� 
·t 

t 

1 " , 
g 
A:' 
i 
g � , 
i! 

t �, 
} 
fl 
�. 

i: " 
t 
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� , 
� 
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I 
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l ; ' " 
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r is the distance in meters from the pivot to the mass. The mass moves 

in a circle and has a total energy of 12 J. 

a. Find the radius of the orbit and the velocity of the mass. 

b. The mass is struck by a sudden sharp blow, giving it instantaneous 

velocity of 1 m/s radially outward. Show the state of the system before 

a nd after the blow on a sketch of the energy diagram. 

c. For the new orbit, find the maximum and minimum values of r. 

9.6 A particle of mass m moves under an attractive central force Kr4 

with angular momentum l. For what energy will the motion be circular, 

and what is the radius of the circle? Find the frequency of radial oscil

lations if the particle is given a small radial impulse. 

9.7 A rocket is in elliptic orbit around the earth. To put it into an escape 

orbit, its engine is fired briefly, changing the rocket's velocity by t:..V. 

Where in the orbit, and in what direction, should the firing occur to attain 

escape with a minimum value of t:..V? 

9.8 A projectile of mass m is fired from the surface of th"e earth at an 

angle ex from the vertical. The initial speed Va is equal to V GM,/R,. 

How high does the projectile rise? Neglect air resistance and the earth's 

rotation. (Hint: It is probably easier to apply the conservation laws 

directly instead of using the orbit eq uations.) 

Ans. clue. If ex = 60°, then rmax = 3R./2 

9.9 Halley's comet is in an elliptic orbit about the sun. The eccentricity 

of the orbit is 0.967 and the period is 76 years. The mass of the sun is 

2 X 1030 kg, and G = 6.67 X 10-11 N·m2/kg2• 

a. Using these data, determine the distance of Halley's comet from 

the sun at perihelion and at aphelion. 

b. What is the speed of Halley's comet when it is closest to the sun? 

9.10 a. A satellite of mass m is in circular orbit about the earth. The 

radius of the orbit is ro a nd the mass of the ea rth is M ,. Fi nd the total 

mechanical energy of the satellite. 

b. Now suppose that the satellite moves in the extreme upper atmos

phere of the earth where it is retarded by a constant feeble friction force 

f. The satellite will slowly spiral toward the earth. Since the friction 

force is weak, the change in radius will be very slow. We can therefore 

assume that at any instant the satellite is effectively in a circular orbit 

of average radius r. Find the approximate change in radius per revolu
tion of the satellite, t:..r. 

c. Find the approximate change in kinetic energy of the satellite per 

revolution, t:..K. 

Ans. (c) t:..K = +27rrf (note the sign!) 

9.11 Before landing men on the moon, the Apollo 11 space vehicle was 

put into orbit about the moon. The mass of the vehicle was 9,979 kg 
and the period of the orbit was 119 min. The maximum and minimum 
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distances from the center of the moon were 1,861 km and 1,838 km. 

Assuming the moon to be a uniform spherical body, what is the mass 

of the moon according to these data? G = 6.67 X 10-ll N·m2/kg2• 

9.12 A space vehicle is in circular orbit about the earth. The mass of 

the vehicle is 3,000 kg and the radius of the orbit is 2R. = 12,800 km. It 

is desired to transfer the vehicle to a circular orbit of radius 4R •. 

a. What is the minimum energy expenditure required for the transfer? 

b. An efficient way to accomplish the transfer is to use a semielliptical 

orbit (known as a Hohmann transfer orbit), as shown. What velocity 

changes are required at the points of intersection, A and B? 

. ," 
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10.1 Introduction and Review 

The motion of a mass on a spring, better known as a harmonic 

oscillator, is familiar to us from Chaps. 2 and 4 and from numerous 

problems. However, so far we have considered only the idealized 
case in which friction is absent and there are no external forces. 

In this chapter we shall investigate the effect of friction on the 

oscillator, and then study the motion when the mass is subjected 
to a driving force which is a periodic function of time. Finally, we 

shall use the harmonic oscillator to illustrate a remarkable 

result-the possibility of predicting how a mechanical system 

will respond to an applied driving force of any given frequency 

merely by studying what the system does when it is put into motion 
and allowed to move freely. 

We begin by reviewing the properties of the frictionless har· 
monic oscillator which we discussed at the end of Chap. 2. The 

prototype oscillator is a mass m acted on by a spring force 
Fspring = -kx. where x is the displacement from equilibrium. 

The eq uation of motion is mx = - kx. or 

mx + kx = O. 

The solution is 

x = B sin wot + C cos wot, 

where 

Wo = ��. 

10.1 

10.2 

10.3 

We shall use Wo rather than w, as in previous chapters. to repre· 

sent the natural frequency of the oscillator. Band Care arbi· 
trary constants which can be evaluated from a set of given initial 

conditions, such as the position and the velocity at a particular 
time. 

Standard Form of the Solution 

We can rewrite Eq. (10.2) in the following more convenient form: 

x = A cos (wot + q,), 10.4 

where A and q, are constants. To show the correspondence 

between Eqs. (10.2) and (10.4) we make use of the trigonometric 
identity 

cos (a + fJ) = cos a cos fJ - sin a sin fJ. 
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By applying this to Eq. (10.4) and equating Eqs. (10.2) and (10.4), 

we obtain 

A cos wot cos q, - A sin wot sin q, = B sin wot + C cos wot. 

For this to be true at all times, the coefficients of the terms in 

sin wot and cos wot must be separately equal. Hence, we have 

A cos q, = C 

Asinq,= -B, 

which are readily solved to yield 

A = (B2 + C2)! 

B 
tan q, = - Zj" 

10.5a 

10.5b 

This result shows that the two expressions Eqs. (10.2) and (10.4) 

for the general motion of the harmonic oscillator are equivalent. 

We shall generally use Eq. (10.4) as the standard form for the 

motion of a frictionless harmonic oscillator. 

Nomenclature 

There are a number of definitions with which we should be 

familiar. Consider the expression 

x = A cos (wot + q,). 

x is the instantaneous displacement of the particle at time t. 

A is the amplitude of the motion, measured from zero displace

ment to a maximum. 

Wo is the frequency (or angular frequency) of motion. Wo = � 
rad/s. The circular frequency JI = wo/21r Hz (1 Hz = 1 cycle per 

second). 

q, is the phase factor or phase angle. 

T is the period of the motion, the time required to execute one 

complete cycle. T = 21r/wo. 

Example 10.1 Initial Conditions and the Frictionless Harmonic Oscillator 

Suppose that at time t = 0 the position of the mass is x(O) and its velocity 

v(O). If we express the motion in the form of Eq. (10.2) we have 

x = B sin wot + C cos wot 

v = x 

= woB cos wot - woC si n wot. 
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Evaluating thelia at t = 0 gives 

c = x(O) 

B = 
x(O)

. 
Wo 

If we begin with the standard form x = A cos (wot + </», the displace· 

ment and velocity are 

x = A cos (wot + </» 
v = -woA sin (wot + </». 

For t = 0, 

x(O) = A cos </> 

v(O) = -woA sin </>, 

from which we find 

A = �X(0)2 + [v�:) r 

-v(O) 
tan</> = --. 

wox(O) 

Energy Considerations 

If we take the potential energy to be 0 at x = 0, we have 

U = ikx2 
= ikA 2 COs2 (Wot + cf». 

The kinetic energy is 

K = imv2 
= imwo2A 2 sin2 (wot + cf», 

where we have used 

v = :i; = -woA sin (wot + cf». 

10.6a 

10.6b 

Since wo2 ,,= kim, �q. (1O.6b) becomes K = ikA 2 sin2 (wot + q,). 
The total �nergy is 

E = K + U = ikA 2 [cos2 (wot + cf» + sin2 (wot + cf»] 
E = ikA2. 10.7 

Hence, the total energy is constant, a familiar feature of motion 

when only conservative forces act. 

. f 
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Time Average Values 

In the following sections we need the concept of the time average 

value (f) of a function f(t). Consider f(t), some function of time, 

and an interval tJ ::; t ::; t2 as shown in the sketch. (f), the time 

average value of f(t), is defined so that the rectangular area shown 

in the sketch, (t2 - t1)(f), equals the actual area under the curve 

between t1 and t2: 

or 

To make this idea more concrete, suppose that f(t) represents the 

rate of flow of water into a bucket in liters per second. Then the 

volume of water passing into the bucket in a short interval dt is 
f(t) dt, and the total volume passing into the bucket in the interval 

t2 - t1 is rt, f(t) dt. If the flow were steady, the rate would have 
JIl 

to be (f) for the same volume of water to accumulate in the time 

interval t2 - h. 
For our work with the harmonic oscillator we shall need the time 

averages of sin (wt) and sin2 (wt) over one cycle of oscillation. Here 

is a graphical device for calculating these averages. The first 

sketch shows sin fJ for the interval 0 ::; fJ ::; 211", where fJ = wt. 
It is apparent that the area above the axis equals the area below 
the axis, so that (sin fJ) = O. In the second sketch, we show sin2 fJ. 

This varies between 0 and 1, and by symmetry we see that its 
average value is i. Thus (sin2 fJ) = i. By identical arguments 
(cos fJ) = 0, (cos2 fJ) = i, and you can also show graphically that 

these results hold as long as the average is taken over a whole 

period of oscillation, irrespective of the starting point. These 

results can also be proven analytically; we leave this task for a 
problem. 

Average Energy 

Returning to the frictionless harmonic oscillator, we can now eval

uate the time average values of the potential and kinetic energies 
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over one period of oscillation 0 � t � T. From Eq. (lO.6a), 

U = ikA 2 cos2 (Wot + 1/» 
(U) = tkA 2 (cos2 (Wot + 1/») 

= ikA2. 
(We have used (cos2 0) = i for an average over one period.) Simi· 
larly, from Eq. (lO.6b), 
(K) = imwo2A 2 (sin2 (wot + 1/») 

= imwo2A2. 

Since wo2 = kim, we have 

(K) = ikA2 
= (U). 

The time average kinetic and potential energies are equal. When 
friction is present, this is no longer exactly true. 

10.2 The Damped Harmonic Oscillator 

Our next step is to consider the effect of friction on the harmonic 
oscillator. We are gOing to restrict our discussion to a very special 

form of friction force, the viscous force. Such a force arises when 
an object moves through a fluid, either liquid or gas, at speeds 
which are not so large as to cause turbulence. In this case the 

friction force f is of the form 

f = -bv, 

where b is a constant of proportionality that depends on the shape 
of the mass and the medium through which it moves, and where 
v is the instantaneous velocity. Although this is a special friction 
force, we should emphasize that it is the type most often encoun· 
tered and that our analysis has wide applicability. Although 
the discussion here is devoted to a mechanical oscillator, equa· 

tions of identical form describe many other oscillating systems. 
For example, electric current can oscillate in certain electric cir
cuits; the electrical resistance of the circuit plays a role exactly 
analogous to a viscous retarding force. 

The total force acting on the mass m is 

F = Fspring + f 

= -kx - bv. 

> 0 •• 
, j 
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The eq uation of motion is 

mi = -kx - bx, 

which can be rewritten as 

415 

10.8 

Here l' stands for blm and, as before, wo2 = kim. The units of 
l' are second-I. 

Equation (10.8) is a more complicated differential equation than 

any we have yet encountered. We leave the details of the solu· 

tion for Note 10.1 and merely state the result here: 

x = Ae�(""(/2)t cos (WIt + cp). 10.9 

A and cp again stand for arbitrary constants and 

10.10 

This solution is valid when wo2 - 1'2/4 > 0, or, equivalently, l' < 2wo. 

(Other cases are discussed in Note 10.1). Substituting Eq. 10.9 

into Eq. (10.8) to verify the solution makes a good exercise. 

The motion described by Eq. (10.9) is known as damped harmonic 

motion. A typical case is shown in the top sketch. The motion 

is reminiscent of the undamped harmonic motion described in the 

last section. In fact, we can rewrite Eq. (10.9) as 

x = A(t) cos (WIt + cp), 

where 

A(t) = Ae-(""(/2)t. 10.11 

The motion is similar to the undamped case except that the ampli· 

tude decreases exponentially in time and the frequency of oscilla· 

tion Wl is less than the undamped frequency Woo Incidentally, 

although the concept of a definite frequency can be strictly applied 

only to a pure sine or cosine function, WI is commonly called the 

frequency of oscillation. The zero crossings of the function 

Ae-('I'/2)t cos (WIt + cp) are separated by equal time intervals 

T = 27rlwl, but the peaks do not lie halfway between them. 

Before we investigate damped harmonic motion quantitatively, 

it will be helpful to look at it qualitatively. The essential features 

of the motion depend on the ratio 'YIWI. If 'YIWI« 1, A (t) 

decreases very little during the time the cosine makes many 

zero crossings; in this regime, the motion is called lightly damped. 
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If 'Y/WI is comparatively large, A(t) tends rapidly to zero while 
the cosine makes only a few oscillations. This motion is called 

heavily damped. For light damping, WI "" Wo, but for heavy 
damping WI can be significantly smaller tl1.an woo 

Energy 

By considering the energy of the system we can see why the 

amplitude must decrease with time. From the work-energy 
theorem of Chap. 4, 

E(t) = E(O) + Wfrict, 

where 

E(t) = tmv2 + tkx2 = K(t) + U(t) 

and 

Wfrict = work done by friction from time 0 to time t. 

The dissipative friction force, f = -btl, opposes the motio n. 

Hence, 

r%(t) Wfrict = }%(o) f dx 

= lot fv dt 

= - Jot bv2 dt < O. 10.12 

Physically, E(t) decreases with time because the friction force 
continually dissipates energy. We can find how E(t) depends on 

time by calculating the kinetic and potential energies K(t) and 
U(t). 

To evaluate K(t) = tmv2 we need the velocity v. The time 

derivative of Eq. (10.9) gives 

v = - Ae-(oy/2)t [ WI sin (Wlt + q,) + } cos (WIt + q,)] 
= - wlAe-(oy I2) t [ sin (Wlt + q,) + � (:) cos (Wlt + q,) J 10.13 

If the motion is only lightly damped, 'Y / Wl « 1, and the coefficient 
of the second term in the bracket is small. Let us assume that 
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the damping is so small that we can neglect the second term 
entirely. In this case we have 

v = -wlAe-(1'dJt sin (Wlt + q,), 

and 

K(t) = tmv2 

= tmwl2A 2e-'Yt sin2 (Wlt + q,). 

The potential energy is 

U(t) = tkx2 

= ileA 2e-.y1 cos2 (Wlt + q,) 

and the total energy is 

E(t) = K(t) + V(t) 

= tA. 2e-.yi[mwl2 sin2 (Wlt + q,) + k cos2 (Wlt + q,)]. 

10.14a 

10.14b 

Since the damping is assumed to be small, we can simplify the 
term in brackets by replacing Wl2 by wo2t and using the relation 
wo2 = kim. 

E(t) = !A 2e-'Yt[k cos2 (Wlt + q,) + k sin2 (Wlt + q,)] 

= tkA2e-1't 

At t = 0 the energy of the system is 

Eo = tkA2 

and we can rewrite Eq. (10.15) as 

E(t) = Eoe-'Yt• 

10.15 

10.16 

This is a remarkably simple result. The energy decreases 
exponentially in time. 

The decay can be characterized by the time r required for the 
energy to drop to e-l = 0.368 of its initial value. 

E(r) = Eoe-'YT 

= e-iEo• 

t This approximation can be justified for ,,(/Wi «1 as follows: 
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Hence, -YT = 1. 

1 m 
T = - =-. 

-y b 
10.17 

T is often called the damping time (or, alternatively, the time 

constant or characteristic time) of the system. In the limit of 

light damping, -y -- 0 and T -- 00; E is effectively constant and 

the system behaves like an undamped oscillator. 

The Q of an Oscillator 

The degree of damping of an oscillator is often specified by a 

dimensionless parameter Q, the quality factor, defined by 

Q = 

energy stored in the oscillator
. 

energy dissipated per radian 
10.18 

By energy dissipated per radian we mean the energy lost during 

the time it takes the system to oscillate through one radian. In 

the period T = 27r/wlI the system oscillates through 27r radians. 

Thus the time to oscillate through one radian is T/27r = l/wl. 

Q is easily calculated for the lightly damped case. The rate of 

change of energy is, from Eq. (10.16), 

dE 

dt 

--yEo 

The energy dissipated in a short time I:!.t is the positive quantity 

AE � I �� I At 

= -yE At. 

One radian of oscillation requires time At = l/wlI and the energy 

dissipated is -yE/Wl' Hence, the quality factor is 

E Wl Wo 
Q 

= -yE/Wl 
= 

-:; � -:;- " 
10.19 

A lightly damped oscillator has Q» 1. A heavily damped system 

loses its energy rapidly and its Q is low. A tuning fork has a Q 

of a thousand or so, whereas a superconducting microwave cavity 

can have a Q in excess of 1011. An undamped oscillator has infi· 

nite Q. 
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Example 10.2 The Q of Two Simple Oscillators 

419 

A musician's tuning fork rings at A above middle C, 440 Hz. A sound 

level meter indicates that the sound intensity decreases by a factor of 

5 In 4 s. What is the Q of the tuning fork? 

The sound intensity from the tuning fork is proportional to the energy 

of oscillation. Since the energy of a damped oscillator decreases as 

e-OY', we can find 'Y by taking the ratio of the energy at t = 0 to that at 

t = 4 s. 

Hence 

4'Y = In 5 = 1.6 

'Y = 0.4 S-I, 

and 

Q 
= �� 

= 

27r(440) 

"y 0.4 

:::::: 700. 

The energy loss is due primarily to the heating of the metal as it bends. 

Air friction and energy loss to the mounting point also contribute. (The 

symmetrical design of a tuning fork minimizes loss to the mount.) 

Incidentally, if you try this experiment, bear in mind that the ear is a 

poor sound level meter because it does not respond linearly to sound 

intensity; its response is more nearly logarithmic. 

A rubber band exhibits a much lower Q than a tuning fork primarily 

because of the internal friction generated by the coiling of the long chain 

molecules. In one experiment, a paperweight suspended from a hefty 

rubber band had a period of 1.2 s and the amplitude of oscillation 

decreased by a factor of 2 after three periods. What is the estimated 

Q of this system? 

From Eq. (10.11) the amplitude is given by Ae(-oy/2)t. The ratio of the 

amplitude at t = 0 to that at t = 3(1.2) = 3.6 s is 

Ae(O) 

Hence 

1.8"Y = In 2 = 0.69 

or 

"y = 0.395-1• 
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Therefore 

Q "" WI 

'Y 
= 21T'jT 

0.39 

21T'j1.2 
=--

0.39 

= 13. 

You may wonder whether it is justifiable to use the light damping result, 

Q = wd'Y, when Q is so low. The approximations involved introduce 

errors of order ('Y jWI)2 = (ljQ)2. For Q > 10 the error is less than 1 

percent. 

It is interesting to note that the damping constants for the tuning 

fork and for the rubber band are very nearly the same. The tuning 

fork has a much higher Q, however, because it goes through many more 

cycles of oscillation in one damping time and loses correspondingly less 

of its energy per cycle. 

Example 10.3 Graphical Analysis of a Damped Oscillator 

The illustration is drawn from a photograph of an oscilloscope trace of 

the displacement of an oscillating system versus time. We immediately 

recognize that the system is a damped harmonic oscillator. The fre· 

quency WI and quality factor Q can be found from the photograph. 
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The time interval from ta to tb is 8 ms. There are 28.5 cycles (i.e., 

complete periods) in this interval. (Check this for yourself from the 

data.) The period of oscillation is T = 8 X 10-3 s/28.5 = 2.81 X 10-4 s. 

The angular frequency is WI = 27r/T = 22,400 rad/s. The corresponding 

circular frequency is IJ = wI/27r = 3,560 Hz. 

In order to obtain the quality factor Q = Wl/'Y, the damping constant 

must be known. From Eq. (10.11) the amplitude is Ae-C-y/2)t. This func· 

tion describes the envelope of the displacement curve. The envelope 

has been drawn with a dashed curve on the photograph. At time to the 

envelope has magnitude A-a = 2.75 units. When the envelope decays 

by a factor e-I = 0.368, its magnitude is 1.01 units. From the photograph 

this occurs at te = 5 .35 ms, measured from to. Hence, e-C-y/2)t, = e-1, 

or 'Y = 2/te = 374 S-I. The quality factor is Q = WIlY = 60. 

Now for a word about the system. This is not a mechanical oscillator, 

nor even an electrical oscillator. The signal is produced by radiating 

atomic electrons in a small volume of hydrogen gas. The signal was 

greatly amplified for oscilloscope display. Furthermore, the atoms were 

actually radiating at 9.2 X 109 Hz. Since this is much too high for the 

oscilloscope to follow, the frequency was translated to a lower value by 

electronic means. This did not affect the shape of the envelope, and 

our measured value of 'Y is correct. If we use the true value of  

the frequency of  the atomic system, we find that the actual Q is 

Q = 
27rIJ 

'Y 
27r X 9.2 X 109 

374 

= 1.6 X 108• 

Such a high Q is virtually unattainable for mechanical systems, although 

it is not unusual in an atomic system. 

10.3 The Forced Harmonic Oscillator 

The Undamped Forced Oscillator 

We next investigate the effect of an applied time varying force 
F(t) on a frictionless harmonic oscillator. In the case of a mass 
on a spring, the force can be applied by jiggling the end of the 
spring. To be concrete, suppose that the end of the spring 
moves according to y = Yo cos wt, as shown in the sketch. The 
change in length of the spring from its equilibrium length is 
x - y, where x is the position of the mass. The equation of 
motion, neglecting damping, is mi = -k(x - y), or, since 
y = Yo cos wt, 

mi + kx = F 0 cos wt 10.20 
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where F 0 = kyo. F 0 cos wt is called the driving force. F 0 is the 
amplitude of the driving force (note that Fo has the dimensions 
of force) and w is the driving frequency, a quantity we are free to 
vary. 

It is apparent that we have chosen a very special form for the 
driving force in Eq. (10.21). Nevertheless, the solution is of quite 
general interest. It turns out that any periodic function of time 
can be represented as a sum of sinusoidal terms (this is the basis 
of Fourier's theorem), so that understanding the response of the 
harmonic oscillator to the force F 0 cos wt lays the groundwork for 
finding the response to any periodic force. Furthermore, many 
important cases involve the simple sinusoidal force we assume 
here; two examples are the response of a bound electron to an 
electromagnetic field (a problem which arises in the classical , 
theory of the scattering of light) and the tidal response of a lake ' 
to the periodic force of the moon or sun. So, without further 
apology we turn to the solution of Eq. (10.20). 

A general procedure for solving Eq. (10.20) is given in Note 10.2, 
but in fact this equation is so simple that we can guess the correct 
solution by the following argument: the right hand side of the 
equation varies in time as cos wt. It seems plausible that the 
left hand side involves the same time dependence. We try the 
solution 

x = A cos wt. 

Substituting this in Eq. (10.20) yields 

(-mw2 + k)A cos wt = F 0 cos wt, 

which is valid provided that we choose 

A 
Fo 

where wo2 = kim, as in the last section. 

10.21 

Our solution becomes 

Fo 1 
x = - 2 cos wt. 10.2 2 i. 

m wo2 - w 

The solution we found in Eq. (10.22) is quite different in nature 
from the solution of Eq. (10.4) or (10.9). There are no arbitrary 
constants in Eq. (10.22); the motion is fully determined. Physi· 
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cally, this is surprising, since we should be able to specify the 

initial position and velocity of any particle obeying Newton's laws. 

The difficulty is that although the solution in Eq. (10.22) is correct, 

it is not complete. The complete solution isl 

Fo 1 
x = - 2 cos wt + B cos (wot + cp), 

m wo2 - w 
10.23 

where Band cp are arbitrary. As we have seen in Sec. 10.1, the 

term B cos (wot + cp) is the general solution for the motion of the 

free undamped oscillator, mx + kx = O. For a damped system, 

the amplitude B would decrease exponentially in time and even

tually we would be left with the steady-state solution 

Fo 1 
x = -

2 
cos wt. 

m wo2 - w 

The effects of the initial conditions die out given enough time. In 

the remainder of this chapter we shall concentrate on the steady

state solution. 

Resonance 

The amplitude of oscillation, Eq. (10.21), is shown in the sketch 

as a function of the driving frequency w. A approaches zero as 

w -- ao and has a finite value at w = 0, but it increases without 

limit at w = wo, when the oscillator is driven at its natural fre

quency. This great increase of the amplitude when a system is 

driven at a certain frequency is known as resonance. Wo is often 

called the resonance, nr natural, frequency of this system. Equa

tion (10.21) predicts that A -- ao as w -- wo, but since no physical 

system can have infinite amplitude, it is apparent that our solu

tion is inadequate at resonance. The difficulty is due to our 

neglect of friction; when we take friction into account, we shall 

see that although the amplitude may be large at resonance, it 

remains finite. 

Equation (10.21) asserts that A is positive for w < Wo and nega· 

tive for w > woo Negative amplitude means that if the force 

varies as cos wt, the displacement varies as -cos wt. Since 

-cos wt = cos (wt + 11"), the negative sign is equivalent to a phase 

shift of 11" radians (Le., 180°) between the driving force and the 

1 This solution can be verified by direct substitution. In the language of differ

ential equations, the first term on the right in Eq. (10.23) is a particular solution 

and the second term, B cos (wt + <1», is the general solution of the homogeneous 

equation mi + kx = O. These two terms represent the complete solution. 
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displacement. For w < wo, the displacement is in phase with 

the driving force. This phase change through resonance of 

180°, which is characteristic of all oscillating systems, is easily 

demonstrated. 

Forced Harmonic Oscillator Demonstration 

Break a long rubber band and suspend something like a heavy pocket 

knife from one end. holding the other end in your hand. The resonant 

frequency Wo is easily determined by observing the free motion. Now 

slowly jiggle your hand at a frequency w < Wo: the weight will move in 

phase with your hand. If you jiggle the system with w > woo you will 

find that the weight always moves in the opposite direction to your hand. 

For a given amplitude of motion of your hand. the weight moves with 

decreasing amplitude as w is increased above woo If you try to jiggle 

the system at resonance w = woo the amplitude increases so much that 

the weight either flies up in the air or hits your hand. In either case 

the system no longer behaves like a simple oscillator. 

The phenomenon of resonance has both positive and negative 

aspects in practice. By operating at the resonance frequency of 
a system we can obtain a response of large amplitude for a very 

small driving force. Organ pipes utilize this principle effectively, 

and resonant electric circuits enable us to tune our radios to the 

desired frequency. On the negative side, we do not want motions 

of large amplitude in the springs of an automobile or in the crank· 

shaft of its engine. To reduce response at resonance a dissipa' 

tive friction force is needed. We turn now to the analysis of the 

forced damped oscillator. 

The Forced Damped Harmonic Oscillator 

If the motion of the oscillating mass is opposed by a viscous 

retarding force -bv, the total force is 

F = F.pring + F viscous + F driving 

= - kx - bv + F 0 COS wt 

and the equation of motion can be written 

mi + bi; + kx = Fo cos wt. 

Dividing by m and using "y = blm, wo2 = kim, we have the stan· 

dard form 

F 
i + ,.x + wo2x = -.!! cos wt. 

m 
10.24 

; 1. 

: � 
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To find the steady-state solution we could again try the trick of 

taking x = A cos wt. However, the term 'Yx introduces a term 

in sin wt which does not appear on the right hand side, so that 

this trial solution is not adequate. This suggests that we try 

x = B cos wt + C sin wt = A cos (wt + cp). If this is substituted 

into Eq. (10.23), you will find that the solution indeed fits provided 

that A and cp have the values 

A = 
Fo 1 

, 
m [(wo2 - (2)2 + (W'Y)2]' 

cp = arctan (-�). 
w2 - wo2 

10.25 

A somewhat more formal method for obtaining this solution is 

presented in Note 10.2. 

The behavior of A and cp as functions of w depends markedly 

on the ratio 'Yjwo as the sketches show. For light damping, A 
is maximum for w = wo, and the amplitude at resonance is 

Fo 
A(wo) = -_ . 

mwo'Y 

As 'Y ---4 0, A(wo) ---4 00, as we expect for an undamped oscillator. 

Note also that as 'Y ---4 0, the phase change occurs more and more 

abruptly. In the limit 'Y = 0, the phase changes from 0 to -11" 

when w = woo 
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Resonance in a Lightly Damped System: The Quality Factor Q 

Energy considerations simplified our discussion of the undriven 
damped oscillator in Sec. 10.2, and, similarly, they will be useful 
to us in the driven case. For the steady-state motion, the ampli· 
tude is constant in time. Using 

x = A cos (wt + 1/» and v = -wA sin (wt + 1/», 

we have 

K(t) = tmv2 = tmw2A2sin2 (wt + 1/» 

U(t) = tkx2 = tkA 2 cos2 (wt + 1/» 

and 

F;(t) = K(t) + U(t) 

= tA 2[mw2 sin2 (wt + 1/» + k cos2 (wt + 1/»]. 

The energy is time-dependent and our analysis is simplified if we 
focus on time average values, as we did in Sec. 10.1. Since 
(cos2 (wt + 1/») = (sin2 (wt + 1/») = t, for an average over one 
period, we have 

(K) = i-mw2A2 

(U ) = i-kA2 10.26 

(E) = i-A 2(mw2 + k) 

= i-mA 2(W2 + wo2). 

Let us consider how (E) varies as a function of w. Using Eq. 
(10.25) for A, 

1:. 
1 
J 
J 
.� 
< 

'i 
\ 

This expression is exact but awkward. It can be written in a 

much simpler approximate form for the case of light damping, 
where 1'« woo To see this, consider the sketch of (E(w» for 
'Y/wo = 0.1 and 'Y/wo = 0.4. For l' sufficiently small, (E(w») is 
effectively zero except near resonance. Hence, there is not 
much error introduced by replacing w by Wo everywhere in Eq. 
(10.27) except in the term (wo2 - W2)2 in the denominator, since 
this term varies rapidly near resonance. Even this term can be 

1.5 � simplified as 
Wo 

� 
f 

1 
1 
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With this approximation, (E(w» takes the simple form 

(E ) 
1 F02 2wo2 

(w) = - - --------

4 m 4wo2(w - WO)2 + W02,,2 

1 F02 1 
= --

8 m (w - woF + (,,/2)2 

427 

10.28 

The plot of the function [(w - WO)2 + (,,/2)2]-1, which contains 

the entire frequency dependence of (E(w», is called a resonance 

curve, or /orentzian. Resonance curves for several values of " are 

plotted below. For concreteness, we have taken Wo = 8 rad/s. 

" is given in units of 1l-1. 

4 

3 

2 .., = 1.5 

°O�---2�---4�====�---�---1���-L-w 

Let us look more closely at the resonance curve. Its maximum 

height is 4;"2. It falls to one-half maximum when 

(w - wo)2 = (,,/2)2 

or when w - Wo = ±" /2. The full width of the cu rve at half 

maximum value is often called the resonance WIdth. If the 

resonance curve drops to half its maximum value at w+ on the 

high frequency side, and at w_ on the low frequency side, then 

the resonance width is w+- w_ = 2(')'/2) = ". The resonance 

width is denoted by dw in the sketch at left. In general, we have 

dw = ". , 10.29 
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As 'Y decreases the curve becomes higher and narrower, the range 

of frequency over which the system responds becomes smaller, 

and the oscillator becomes increasingly selective in frequency. 

The frequency·selective property of an oscillator can be char· 

acterized in a simple fashion by Q, the quality factor introduced 

in Sec. 10.2. Recall that Q is defined as the ratio of energy stored 

in the oscillator to energy lost per radian of oscillation. For a 
lightly damped system oscillating freely, Q has the value 

Wo 
Q =-, 

'Y' 

as we showed in Eq. (10.19). The same oscillator, when driven, 

has a resonance curve with frequency width 6.w = 'Y. Hence, 

the ratio of resonance frequency to the width of the resonance 

curve, wo/6.w, is woh = Q. In fact, Q is often defined by 

Q 
resonance frequency 

10.30 
frequency width of resonance curve 

Incidentally, if we had applied the definition of Q in terms of 

energy to the driven oscillator, the result would have been the 

same, Q = woh . The proof of this is left for a problem. 

Although Q is fundamentally defined in terms of energy, its 

chief use in practice is to characterize the frequency response of 

a system. The drawing shows two resonance curves with differ· 

ent Q's. The heights at resonance have been made equal to 

facilitate comparison of the widths. It is apparent that the sys· 

-.l----'---.I..w-o ----'---I-.2.1..w'-o-W tem with Q = 10 is considerably more selective than that with 

Q = 5. As pointed out in Example 10.3, certain atomic systems 

can have a Q greater than 108• The sharpness of the resonance 

curve means that the system will not respond unless driven very 

near its resonance frequency. Since the resonance frequency 

is determined by atomic constants, the frequency of oscillation is 

essentially independent of external influences. Frequencies from 

such "atomic clocks" are so accurate that they have superseded 

astronomical time standards. 

Example 10.5 Vibration Eliminator 

Occasionally one needs to reduce the effect of floor vibrations on a 

delicate apparatus such as a sensitive balance or a precision optical sys· 

tem. This can be accomplished by mounting the apparatus on an "air 

; I 

) . 
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table" whose legs are hollow tubes with pistons supported by air pressure. 

One such leg is shown schematically in the drawing. The area of the 

column is A, and the mass it supports is M. 

The static forces on M are related by the equilibrium condition 

where Po is the pressure of gas in the cylinder at equilibrium and Pat is 

the atmospheric pressure on the upper face of M. For some air tables, 

the weight !vfg is much greater than the atmospheric force, and we shall 

neglect the term PatA in the following. Hence, 

PaA = Mg. 

The equilibrium height of M is h. Let x be the displacement of M 

from equilibrium relative to an inertial frame. The smaller the value of 

x, the more nearly motionless the table top will be in inertial space. Floor 

vibrations cause the lower end of the table leg to move vertically a dis

tance y. When M moves relative to the floor, the volume and the pres

sure of the trapped gas change. If P is the instantaneous pressure in 

the cylinder, the equation of motion of M is 

Mi = PA - Mg. 

According to Boyle's law, the pressure in the cylinder varies inversely 

with volume for a gas at constant temperature_ Therefore 

PV = constant 

= PaVa 

= PaAh. 

The volume V is 

V = A(h + x - y). 

Therefore 

In the last step we have assumed that the displacements x and yare 

small compared with h, the height of the table leg. 

The equation of motion becomes 
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Since we are neglecting the atmospheric force. PoA = Mg. and the equa· 

tion of motion is simply 

M i = 
M g 

(- x + y) 
h 

.. + 
g g 

x - x = - y. 
h h 

If the floor vibration is y = Yo cos wt. M moves like an undamped driven 

oscillator. Using Eq. (10.22) we see that the solution of the equation is 

x = Xo cos wt. 

where 

Xo = yo ---

wo2 - w2 

and 

wo= � . 

The object of the air suspension is to make the ratio 

as small as possible. For w« woo Xo = Yo and the vibration is 

transmitted without reduction. For w» woo xo/Yo = -W02/W2• and 

the amplitude of vibration is reduced. Thus. for the vibration eliminator 

to be successful. the resonance frequency must be low compared with 

the driving frequency. Since Wo = -v'{iih. this requires as long a leg as 

possible. (Note that the resonance frequency is independent of the 

mass. a surprising aspect of this type of support.) 

The system suffers from one fatal flaw; if vibration occurs near the 

resonant frequency. the vibration eliminator becomes a vibration ampli· 

fier. To avoid this. some damping mechanism must be provided. Often 

this is accomplished with a device called a dashpot. which consists of a 

piston in a cylinder of oil. The dashpot provides a viscous retarding 

force -bv. where v is the relative velocity of its ends. 

v = x - y. 

The equation of motion is 

Mi = 
Mg 

(-x + y) - b(x - y) 
h 

i + 'Yx + wo2x = wo2y + 'YY. 
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where 

b 
"I =-

M 
and 

With Y = Yo cos wt, this is the equation of a driven damped oscillator. 

However, the motion of the floor has introduced an additional driving 

term "Iil = --ywYo sin wt. The steady·state amplitude Xo can be found 

by substituting x = Xo cos (wt + cf» in the equation. A simpler method 

is to use complex variables, as outlined in Notes 10.1 and 10.2. Let 

y = yoeiwt 
X = xoeiwt• 

Yo and Xo are now complex numbers. Substituting in the equation of 

motion gives 

(-w2 + iw-y + wo2)xoeiwt = (wo2 + iw-Y)Yoeiwt 

Xo = [(w/� �/:-y iw-y ] Yo. 

We are interested in the ratio of the magnitudes, Ixoi/lyol. 
Ixol = /xoXo* 
Iyol '\j yoyo * 

[ W04 + (W-y)2 ]i 
= (wo2 - W2)2 + (W-y)2 . 
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The graph shows IXol/IYol versus w/wo for various values of -y/wo. 

For w/wo less than about 1.5, Ixoi/iyol > 1. The vibration is actually 

enhanced, showing that even with damping it is essential to reduce the 
resonance frequency below the driving frequency. When w/wo is greater 

than 1.5, Ixoi/iyol < 1. For these higher frequencies, the vibration isola· 

tion is more effective the smaller the damping. However, small damp· 

ing increases the danger from vibrations near resonance. Practical air 

tables have resonance frequencies of 1 Hz or less. 

Many vibration elimination systems use springs instead of an air sus· 

pension. However, this does not change the form of the equation of 

motion. Often coil springs are used in automobiles to isolate the chassis 

from road vibrations. Damping is provided by shock absorbers, a type 

of dashpot. The resonance frequency is Wo = Vk/M, where k is the 

spring constant and JJI is the mass. If a smooth turnpike ride is the 

chief consideration, one wants a massive car with weak damping and 

soft springs. Such a car is difficult to control on a bumpy road where 

resonance can be excited. The best suspensions are heavily damped 

a nd feel rather stiff. The danger in driving with defective shock absorb· 

ers is that the car may be thrown out of control if it is excited at resonance 

by bumps in the road. 

10.4 Response in Time Versus Response in Frequency 

The smaller the damping of a free oscillator, the more slowly its 

energy is dissipated. The same oscillator, when driven, becomes 

increasingly more frequency selective as the damping is decreased. 

As we shall now show, the time dependence of the free oscillator 

and the frequency dependence of the driven oscillator are inti· 

mately related. 

Recall from Eq. (10.16) that the energy of a free oscillator is 

E(t) = EorYI. 

The damping time is T = Ih. 
Next, consider the response in frequency of the same oscillator 

when it is driven by a force F 0 cos wt. From Eq. (10.29) the width 

of the resonance curve is 

�w = "y. 

The damping time T and the resonance curve width �w obey 

T �w = 1. 10.31 

According to this result it is impossible to design an oscillator with 

arbitrary damping time and resonance width; if we choose one, 

the other is automatically fixed by Eq. (10.31). 
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Equation (10.31) has many implications for the design of mechan

ical and electrical systems. Any element which is highly frequency 

selective will oscillate for a long time if it is accidentally perturbed. 

Furthermore, such an element will take a long time to reach the 

steady state when a driving force is applied because the effects 

of the initial conditions die out only slowly. More generally, Eq. 

(10.31) plays a fundamental role in quantum mechanics; it is closely 

related to one form of the Heisenberg uncertainty principle. 

Note 10.1 Solution of the Equation of Motion for the Undriven Damped Oscillator 

THE USE OF COMPLEX VARIABLES 

All the equations of motion in this chapter can be solved simply by using 

complex variables'! Here is a summary of the algebra of complex 

numbers. 

1. Every complex number z can be written in the cartesian form x + iy. 

where i2 
= -1. x is the real part of z, and y is the imaginary part. The 

sum of two complex numbers Zl = Xl + iYI and Z2 = X2 + iY2 is the com

plex number Zl + Z2 = (Xl + X2) + i(YI + Y2). The product of Zl and 

Z2 is 

ZlZ2 = (Xl + iYl)(X2 + iY2) 

= XIX2 + iXlY2 + iYIX2 + i2YlY2 

= (XIX2 - YlY2) + i(XlY2 + YIX2)' 

If two complex numbers are equal, the real parts and the imaginary parts 

are respectively equal. 

implies that 

2. z* == X - iy is the complex conjugate of Z = X + iy. The quantity 

Izi = � is the magnitude of z. 

Izl=� 
= [(x + iy)(x - iy)]! 

= v'X2 + y2. 

1 A simple treatment of the algebra of complex numbers may be found in most 
of the calculus texts listed at the end of Chap. 1. 
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3. Every complex number z can be written in the polar form rei6• r is 

a real number, the modulus, and 8 is the argument. To go from car. 

tesian to polar form we use De Moivre's theorem 

ei6 = cos 8 + isin 8. 

Hence, 

rei9 = r cos 8 + ir sin 8 

= x + iy, 

from which it follows that 

x = r cos 8 

y = r sin 8 

and 

r = VX2 + y2 

8 = arctan !!'" 
x 

We see that r = Izl. 

Complex numbers can be represented graphically. Let the horizontal 

axis be the real (x) axis, and the vertical axis be the imaginary (y) axis. 

The complex number x + iy is represented by the point (x,y). As the 

sketch shows, introduction of the polar form is analogous to the use 

of plane polar coordinates, 

Here are some examples: 

1. Express z = (3 + 4i)/(2 + i) in cartesian form, The method is to 

multiply numerator and denominator by the complex conjugate of the 

denominator. 

3 + 4i 
z 

= 
2 + i 
3 + 4i 2 - i = -- '--
2+i 2-i 
6 + 8i - 3i - 4i2 
4 + 2i - 2i - i2 
10 + 5i = --� 

5 
=2+i 



y 

z = x + iy = 2 + 2i 
2 

�--�--�------ x 

• f 
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2. Express z = 2 + 2i in polar form. 

r = Iz l 

V22 + 22 

V8 
2 7T' 

8 = a rcta n - = -

2 4 

THE DAMPED OSCILLATOR 

We turn now to the equation for the damped oscillator. 

435 

1 

To cast this into complex form we introduce th'e companion equation 

2 

Multiplying Eq. (2) by i and adding it to Eq. (1) yields 

3 

Note that either the real or imaginary part of z is an acceptable solution 

for the equation of motion. 

Since the coefficients of the derivatives of z are all constants, a natural 

choice for the solution of Eq. (3) is 

where Zo and a are independent of t. With this trial solution Eq. (3) 

yields 

Dividing out the common factor zoeat, we have 

5 

which has the solution 

Let us call the two roots al and a2' We see that our solution can be 

written as 

where ZA and Zs are constants . 
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There are three possible forms of the solution, depending on whether 

a is real or complex. We consider these solutions in turn. 

Case 1 Lighf Damping: 'Y2 « 4wo2 

In this case V'Y2/4 - wo2 is imaginary and we can write 

where 

The solution is 

where ZI and Z2 are complex constants. In order to find the real part 

of z we write the complex numbers in cartesian form. 

x + iy = e-(')'/2)1[(Xl + iYI) (cos Wit + i sin Wit) 
+ (X2 + iY2)(COS Wit - i sin Wit)) 

The real part x is 

or 

where A and <I> are new arbitrary constants. This is the result quoted 

in Eq. (10.9). Incidentally, the imaginary part of z, which is also an 

acceptable solution, has exactly the same form. 

Case 2 Heavy Damping: 'Y2/4 > wo2 

in this case, V'Y2/4 - wo2 is real and Eq. (5) has the solution 

Both roots are negative, and we have 

The exponentials are real. The real part of Z is 

10 

! (. 

, �, 
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This solution has no oscillatory behavior; the motion is known as 

overdamped. 

Case 3 Critical Damping: 'Y2/4 = wo2 
If 'Y2/4 = wo2 we have only the single root 

'Y 
a = --' 

2 

The corresponding solution is 

x = Ae-Cy/2)1. 11 

However, this solution is incomplete. Mathematically, the solution of 

a second order linear differential equation always involves two arbitrary 

constants. Physically, the solution must have two constants to allow 

us to specify the initial position and initial velocity of the oscillator. As 

described in texts on differential equations, the second solution can be 

found by using a "variation of parameters" trial solution. 

x = u(t)e(-y/2)(t). 

Substituting in Eq. (1) and recalling that 'Y = 2wo for this case, we find 

that u(t) must satisfy the equation 

ii = O. 

Hence, 

u=a+bt 

and the general solution is 

x = Ae-(y/2)1 + Bte-(y/2)t. 12 

Note 10.2 Solution of the Equation of Motion for the Forced Oscillator 

We wish to solve 

F x + 'Yx + wo2x = � cos wt. 
m 

Consider the companion equation 

F 
fj + 'Yil + wo2y = � sin wt. 

m 

Multiplying Eq. (2) by i and adding to Eq. (1) yields 

.. + 
. + 2 Fo .  t Z 'Yz Wo z = - e'''' . 

m 

z must vary as ei"'t, so we try 

1 

2 

3 
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Inserting this in Eq. (3) gives 

( _ w2 + iw'Y + wo2)zoe''''1 = 
F 0 

e''''1 
m 

or 

Fo 1 
Zo = - . 

m wo2 - w2 + iw'Y 

We can put Zo into cartesian form by multiplying numerator and denom· 

inator by the complex conjugate of the denominator. 

Fo 1 (wo2 - w2) - iw'Y 
Zo = - ------- -------

m (wo2 - w2) + iw'Y (wo2 - w2) - iw'Y 

= 
Fo (wo2 - w2) - iw'Y 

m (wo2 - W2)2 + (W'Y)2 

In polar form, Zo = Re'<p , where 

and 

</> = arctan ( w'Y ) . 
w2 - wo2 

The complete solution is 

which has the real part 

x = R cos (wt + </». 

4 

The steady·state motion is completely specified by the amplitude Rand 

the phase angle </>. Both Rand </> are contained implicitly in the single 

complex number Zoo 

Problems 10.1 Show by direct calculation that (sin2 (wt» = t, where the time aver· 

age is taken over any complete period tl :::: t:::: t, + 27r/w. 

Show also that (sin (wt) cos (wt» = 0 when the average is over a com· 

plete period. 

10.2 A 0.3·kg mass is attached to a spring and oscillates at 2 Hz with a 

Q of 60. Find the spring constant and damping constant. 

10.3 In an undamped free harmonic oscillator the motion is given by 
L....--'---':----;:,J---"---WOI X = A sin wot. The displacement is maximum exactly midway between 

1r 
the zero crossings. 
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In a damped oscillator the motion is no longer sinusoidal, and the 

maximum is advanced before the midpoint of the zero crossings. Show 

that the maximum is advanced by a phase angle q, given approximately 

by 

1 
q,=-' 

2Q 

where we assume that Q is large. 

10.4 The logarithmic decrement 5 is defined to be the natural loga rithm 

of the ratio of successive maximum displacements (in the same direc

tion) of a free damped oscillator. Show that 5 = 7r /Q. 

Find the spring constant k and damping constant b of a damped osci.!

lator having a mass of 5 kg, frequency of oscillation 0.5 Hz, and logarithmic 

decrement 0.02. 

10.5 If the damping consta nt of a free oscillator is given by 'Y = 2wo, 
the system is said to be critically damped. Show by direct substitution 

that in this case the motion is given by 

x = (A + Bt)e-(-r/2)t, 

where A and B are constants. 

A critically damped oscillator is at rest at equilibrium. At t = 0 it is 

given a blow of total impulse I. Sketch the motion, and find the time at 

which the displacement starts to decrease. 

10.6 a. A mass of 10 kg falls 50 cm onto the platform of a spring scale, 

and sticks. The platform eventually comes to rest 10 cm below its initial 

position. The mass of the platform is 2 kg. Fihd the spring constant. 

b. It is desired to put in a damping system so that the scale comes to 

rest in minimum time without overshoot. This means that the scale 

must be critically damped (see Note 10.1). Find the necessary damping 

constant and the equation for the motion of the platform after the 

mass hits. 

10.7 Find the driving frequency for which the velocity of a forced damped 

oscillator is exactly in phase with the driving force. 

10.8 The pendulum of a grandfather's clock activates an escapement 

mechanism every time it passes through the vertical. The escapement 

is under tension (provided by a hanging weight) and gives the pendulum 

a small impulse a distance l from the pivot. The energy transferred 

by this impulse compensates for the energy dissipated by friction, so 

that the pendulum swings with a constant amplitude . 

a. What is the impulse needed to sustain the motion of a pendulum 

of length L and mass m, with an amplitude of swing 80 and quality fac· 

tor Q? 

b. Why is it desirable for the pendulum to engage the escapement 

as it passes vertical rather than at some other point of the cycle? 
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10.9 Show that for a lightly damped forced oscillator near resonance 

average energy stored in the oscillator "'" Wo = Q. 
average energy dissipated per radian 'Y 

10.10 A small cuckoo clock has a pendulum 25 cm long with a mass of 

10 g and a period of 1 s. The clock is powered by a 200'g weight which 

falls 2 m between the daily windings. The amplitude of the swing is 0.2 

rad. What is the Q of the clock? How long would the clock run if it 

were powered by a battery with 1 J capacity? 

10.11 Two particles, each of mass ill, are hung between three identical 

springs. Each spring is massless and has spring constant k. Neglect 

gravity. The masses are connected as shown to a dashpot of negligible 

mass. 

The dash pot exerts a force bv, where v is the r�lative velocity of its 

two ends. The force opposes the motion. Let Xl and X2 be the displace· 

ments of the two masses from equilibrium. 

a. Find the equation of motion for each mass. 

b. Show that the equations of motion can be solved in terms of the 

new dependent variables Yl = Xl + X2 and Y2 = Xl - X2. 
c. Show that if the masses are initially at rest and mass 1 is given an 

initial velocity Vo, the motion of the masses after a sufficiently long time is 

Xl = X2 

= � sin wt. 
2w 

Evaluate w. 
10.12 The motion of a damped oscillator driven by an applied force 

Fo cos wt is given by xa(t) = A cos (wt + </», where A and </> are given 

by Eq. (10.25). Consider an oscillator which is released from rest at 

t = O. Its motion must satisfy x(O) = 0, v(O) = 0, but after a very long 

time, we expect that x(t) = xa(t). To satisfy these conditions we can take 

as the solution 

X(t) = xa(t) + Xb(t), 

where Xb(t) is the solution to the equation motion of the free damped 

oscillator, Eq. (10.8). 

a. Show that if xa(t) satisfies the equation of motion for the forced 

damped oscillator, then so does x(t) = Xa(t) + Xb(t), where Xb(t) satisfies 

the equation of motion of the free damped oscillator, Eq. (10.25). 

b. Choose the arbitrary constants in Xb(t) so that x(t) satisfies the 

initial conditions. [Xb(t) is given by Eq. (10.9). Note that A and </> here 

are arbitrary.) 

c. Sketch the resulting motion for the case where the oscillator is 

driven at resonance. 
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11.1 The Need for a New Mode of Thought 

In some ways the structure of physics resembles a mansion whose 

outward form is apparent to the casual visitor but whose inner life 

-the customs and rituals which give a special outlook and kinship 

to its occupants-require time and effort to comprehend. Indeed, 

initiation into this special knowledge is the goal of our present 

endeavor. In the first ten chapters we introduced and applied 

the fundamental laws of classical mechanics; hopefully you now 

feel familiar with these laws and have come to appreciate their 

beauty, their essential simplicity, and their power. 

Unfortunately, in order to present dynamics in a concise and 

tidy form, we have generally sidestepped discussion of how physics 

actually grew. In Chaps. 11 through 14 we are going to discuss 

one of the great achievements of modern physics, the special 

theory of relativity. Rather than present the theory as a com· 

pleted structure-a simple set of postulates with the rules for 

their application-we shall depart from our previous style and 

look into the background of the theory and its rationale. 

If the structure of physics is a mansion, it is a mansion of ancient 

origin. It is founded on the remains of prehistoric hovels where 

man first kept track of the moon and tried to understand the sim· 

pie patterns of nature. Traces of antiquity lie hidden in the site: 

Phoenician and Egyptian, Babylonian, and, of course, Greek. 

Compass and straightedge lie scattered among lodestone and 

amber, artifacts of astrologer and alchemist. The mansion is 

built on the debris of false starts and painful struggles to under· 

stand nature honestly. None of this is visible, however, and we 

take the present structure much for granted. The outer shell 

was built in the seventeenth century by Kepler, Galileo, Newton, 

and others, such as Huygens, Hooke, leibniz, Bernoulli, and Boyle. 

The major architects have one characteristic in common: while 

extending the external dimensions of the mansion by applying 

physics to new areas, they also deepened its foundations by 
advancing our knowledge of the fundamental laws. The greatest 

of these figures is Newton, who revealed the laws of dynamics and 

of gravity, cornerstones of modern science. At the same time 

he vigorously applied physics to the natural world. Newton exe· 

cuted meticulous experiments in heat flow, optics, and the motion 

of bodies under viscous forces; he investigated the shape of the 

moon, the tides along the coast of England, and how to build 

bridges. 

The momentum generated by Newton's discoveries gave physics 

. i 
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an impetus which is still very much with us. The eighteenth and 

nineteenth centuries saw a flowering of science as physicists such 

as Euler, Lagrange, Laplace, Faraday, and Maxwell extended our 

knowledge of the physical world. However,. their efforts were 

directed at upward extension of the mansion; Newton's account 

of the fundamental laws of physics was so overwhelming, and so 

successful, that not until the last quarter of the nineteenth century 

was there a serious attempt to investigate the foundations. 

It was the German physicist Ernst Mach who first successfully 

challenged newtonian thought. Although Mach's work left new

tonian physics more or less intact, his thinking was crucial in the 

revolution shortly to come. In 1883 Mach published his text "The 

Science of Mechanics," which incorporated a critique of newtonian 

physics, the first incisive criticism of Newton's theory of dynamics. 

In addition to presenting a lucid account of newtonian mechanics, 

the text incorporates several significant contributions to the funda

mentals of mechanics. Mach clarified newtonian dynamics by 

carefully analyzing Newton's explanation of the dynamical laws, 

taking care to distinguish between definitions, derived results, and 

statements of physical law. Mach's approach is now widely 

accepted; our discussion of Newton's laws in Chap. 2 is very much 

in Mach's spirit. 

"The Science of Mechanics" raised the question of the distinc

tion between absolute and relative motion. Mach pointed out 

Newton's ambivalence on this subject, although he went on to 

show that the question was irrelevant to the application of new

tonian dynamics. In the process he dwelt on the problem of 

inertia and enunciated the principle that now bears his name: 

inertia is not an intrinsic property of matter or space but depends 

on the existence of all matter in the universe. We encountered 

Mach's principle in our discussion of fictitious forces in Chap. 8, 

but we shall not dwell on it here for it turns out that the problem 

of inertia was not the crucial difficulty with newtonian mechanics. 

The fundamental weakness in newtonian dynamics, as Mach 

pointed out, centers on Newton's conception of space and time. 

In a preface to his dynamical theory, Newton avowed that he 

would forgo abstract speculation and deal only with observable 

facts. Although such a point of view is now commonplace, at the 

time it represented a tremendous intellectual leap. Before New

ton, the business of natural philosophy was to explain the reasons 

for things, to find a rational account for the workings of nature, 

rather than to describe natural phenomena quantitatively. New

ton essentially reversed the priorities. Against the criticism that 
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his theory of universal gravitation merely described gravity with· 

out accounting for its origin, Newton replied "I do not make 

hypotheses. " 

Unfortunately, Newton was not completely faithful to his resolve 

to avoid abstract speculation and to deal only with demonstrable 

facts. In particular, consider the following description of time 

that appears in the "Principia." (The excerpt is condensed.) 

Absolute, true and mathematical time, of itself and by its own true nature, 

flows uniformly on, without regard to anything external. 

Relative, apparent and common time is some sensible and external 

measure of absolute time estimated by the motions of bodies, whether 

accurate or inequable, and is commonly employed in place of true 

time; as an hour, a day, a month, a year. 

Mach comments that "it would appear as though Newton in the 

remarks cited here still stood under the influence of medieval 

philosophy, as though he had grown unfaithful to his resolve to 

investigate only actual facts." Mach goes on to point out that 

since time is necessarily measured by the repetitive motion of 

some physical system, for instance the pendulum of a clock or 

the revolution of the earth about the sun, then the properties of 

time must be connected with the laws which describe the motions 

of physical systems. Simply put, Newton's idea of time without 

clocks is metaphysical; to understand the properties of time we 

must observe the properties of clocks. A simple idea? Yes, 

indeed, were it not for the fact that the idea of absolute time is 

so natural that the eventual consequences of Mach's position, 

the relativistic description of time, still come as something of a 

shock to the student of science. 

There are similar weaknesses in the newtonian view of space. 

Mach argued that since position in space is determined with mea· 

suring rods, the properties of space can be understood only by 

investigating the properties of meter sticks. We must look to 

nature to understand space, not to platonic ideals. 

Mach's special contribution was to examine the most elemental 

aspects of newtonian thought, to look critically at matters which 

seem too simple to discuss, and to insist that we turn to experience 

to understand the properties of nature rather than to rely on 

abstractions of the mind. From this point of view, Newton's 

assumptions about space and time must be regarded merely as 

postulates. Classical mechanics follows from these postulates, 

I 
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but other assumptions are possible and from them different laws 

of dynamics could follow. 

Mach's critique had little immediate effect, but its influence 

was eventually profound. In particular, the youthful Einstein, 

while a student at the Polytechnic Institute in Zurich in the period 

1897-1900, was much attracted by Mach's ideas on the founda· 

tions of newtonian physics and by Mach's insistence that physical 

concepts be defined in terms of observables. However, the 

immediate cause for the overthrow of newtonian physics was not 

Mach's criticisms of newtonian thought. The difficulties lay with 

Maxwell's electromagnetic theory, the crowning achievement of 

classical physics. Traditionally, the problem is presented in terms 

of a single crucial experiment that decisively condemned classical 

physics, the Michelson-Morley experiment, and most treatments 

of special relativity take this experiment as the point of departure. 

We shall follow this tradition, but we should point out that history 

is not that simple. In the first place, Albert A. Michelson, who 

conceived and executed the experiment, never regarded it as 

crucial. Michelson viewed the experiment as a flop for not giving 

the expected result, a view he maintained long after its full sig

nificance became known. Furthermore, it now appears that the 

Michelson-Morley experiment played little, if any, role in Einstein's 

thinking. In fact, there is good reason to believe that Einstein 

knew nothing of the experiment until after he had published his 

theory of relativity in 1906. Nevertheless, the Michelson·Morley 

experiment so clearly dramatizes the essential dilemma of electro

magnetic theory that we shall bow to tradition and take it as our 

starting point. 

11.2 The Michelson-Morley Experiment 

The problem to which Michelson devoted himself was that of 

determining the effect of the earth's motion on the velocity of 

light. Briefly, Maxwell's electromagnetic theory (1861) predicted 

that electromagnetic disturbances in empty space would propa· 

gate at 3 X 108 mis-the speed of light. The simplest distur

bance is a periodic wave, and the evidence was overwhelming that 

light consisted of electromagnetic waves. However, there were 

conceptual difficulties. 

The only waves previously known to physics were mechanical 

waves propagating in solids, liquids, and gases. A sound wave 

in air, for example, consists of alternate regions of higher and 

lower pressure propagating with a speed of 330 mis, somewhat 
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less than the speed of molecular motion. The speed of mechan· 

ical waves in metals is higher, typically 5,000 mis, and increases 

with the strength of the "spring forces" between neighboring 

atoms. 

Electromagnetic wave propagation seemed to be a very different 

sort of thing. The ether, the medium which supposedly supported 

the electromagnetic disturbance, had to be immensely rigid to give 

a speed of 3 X 108 m/s. At the same time it had to be insub· 

stantial enough not to interfere with the motion of the planets. 

Maxwell's theory itself made no essential reference to the ether, 

but Maxwell and his contemporaries were unable to accept the 

idea of waves propagating in empty space. 

The speed of a sound wave v. depends on the properties of the 

medium. If we observe a sound wave from a coordinate system 

moving relative to the medium, the speed of sound will appear to 

be greater or less than v .. depending on whether we move in the 

direction of propagation or against it. Similarly, Maxwell pointed 

out that the speed of the earth as it circled the sun, 3 X 10' m/s, 

should change the apparent speed of light. 

Suppose that light makes a round trip ABA between two 

points A and B'separated by distance l. The apparatus is moving 

through the ether to the right, as shown in the upper drawing. 

Relative to the apparatus, the ether is moving to the left, as shown 

in the second drawing. The velocity of light relative to the appa· 

ratus is c + v to the left, and c - v to the right. 

The transit time from A to B is tl = l/(c - v), and from B to 

A it is t2 = ll(c + v). If the apparatus were at rest, tl and t2 
would have the value to = lie. The effect of the earth's motion 

is to delay the return of the light signal by 

At = tl + t2 -2to 

l l l 
= -- +---2-

c-v c+v c 

=
!. ( 1 

+ 
1 

_ 

2) 
c 1 - vic 1 + vic 

For the earth in orbit vic = 10-" and if we take l to be typical of 

a laboratory apparatus, l = 1 m, then At = 2 X 1/(3 X 108) X 

'I 
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10-8 � 7 X 10-17 s, an interval much too small to be measured 

directly. Fortunately, Michelson was not discouraged. In 1881 

he came up with the following solution. 

Rather than measure the time of transit of one light beam, 

Michelson observed the difference between the transit times of 

two beams. His device is sketched at the left. The light from 

the source is split into two beams by a thinly silvered mirror, A. 

Half the light passes through mirror A to mirror M I, where it is 

reflected back to mirror A and then to the observer. The other 

half of the light from the source is diverted up the second arm and 

strikes mirror M2, which reflects it to the observer. If the two 

arms are identical, the light waves recombine at mirror A just as 

if they had never separated: the observer sees an illuminated 

field of view. The situation is drastically altered if either beam 

suffers a delay. Suppose, for instance, that beam 1 is delayed 

by exactly one-half cycle of oscillation. The waves arrive in oppo

site phase and exactly cancel each other: the observer's field is 

dark. 

Field strength 

In phase 

(a) 

Time 

Field strength 

Wave I 

Wave 2 

Resultant 

Out of phase 

(b) 

-

Time 

The two cases are shown in the sketches above. The vertical 

displacement corresponds to the strength of the electric field of 

light at the observer's eye. The fields of the two beams add 

vectorially. For visible light the period of the wave is typically 

10-15 s, too fast for our eyes to follow. Rather, our eyes respond 

to the average power of the wave which is proportional to the 

square of the resultant field. Thus, beams in phase, sketch (a), 

give steady bright illumination, and beams out of phase, sketch 

(b), give darkness. 
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Usually one of the mirrors is slightly tilted. This produces a 

gradual time delay across the returning wavefront, as shown in 

the first sketch, and the two interfering waves go in and out of 

phase across the field of view. The observer sees alternate light 

and dark bands, as in the second sketch. If the length of either 

arm is changed, the fringe pattern shifts; a change in path of one 

wavelength shifts the pattern by one fringe. Since the light 

traverses each arm twice, once in each direction, a change in the 

length of either arm by one· half wavelength produces a shift of 

one fringe. With care it is possible to measure a small fraction 

of a fringe shift; one can readily observe a path change of one· 

hundredth wavelength, approximately 10-8 m. (Michelson also 

used his interferometer to measure the length of the standard 

meter bar; he essentially created the field of high precision 

measurement.) 

-t 

- -,- ---1\ 
/ \ Initial position of M I 

" \ / 1 \ 
1 \ + I I 
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Suppose that the interferometer is oriented so that one axis 

lies along the direction of motion of the earth, as shown. The 

time for the wave to travel from mirror A to mirror M 1 and back 

is 

1 1 
Tl = -- +-c-v c+v 

1 ( 1 1 ) 
= � 1 - vic + 1 + vic 

_ � ( 1 ) � � (1 + �), 
- c 1 - v2/c2 � C c2 

where 1 is the length of the arm. There is also a time delay along 

arm 2, but this is a trifle more subtle to calculate. (Michelson 

overlooked it in the first report of his experiment in 1882.) For 
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the beam to return to its initial point on the thinly silvered mirror, 

it must traverse the angular path shown at left. Let r be the 

time it takes the wavefront to go from mirror A to mirror M 2. 
The distance actually traversed is l' = (l2 + 4h2)! and, since 

l' = er we have 

r = 
e 

or 

It follows that 

l 1 
r = - . 

e VI - v2/e2 

The time for the wave to travel from mirror A to mirror M 2 and 

back is 

T2 = 2r 
l 1 

= 2- ""/==== 
e VI - v2je2 

",,2- 1 +-- · 
l ( 1 V2) 
e 2 e2 

The difference between the travel times of the beams is 

The delay AT shifts the fringe pattern from where it would be 

if the earth were at rest. However, there is a major problem: 

the fringe scale has no "zero," since the arms cannot be made 

identical in length to the needed accuracy. Michelson hit upon 

the idea of watching the fringes as the apparatus is rotated by 

90°. The rotation effectively interchanges arms 1 and 2. The 

change in the delay between the two positions is 2AT, and the 

corresponding fringe shift is readily calculated. If A is the wave· 

length of the illuminating light, a time delay of Ale will shift the 
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pattern by one fringe. Thus, the time delay 2t:.T will shift the 

pattern N fringes, where 

N 
= 2t:.T 

(X/c) 

2l v2 

If the arms have unequal lengths, II and l2, this result still holds, 

provided that we replace 2l by It + l2. 
In Michelson's first apparatus, the arm length was 1.2 m, or, 

as he put it, 2 X 106 wavelengths of yellow (sodium) light. Since 

vic 
= 

10-4, we expect 

N 
= 

2(2 X 106)(10-4)2 

= 0.04. 

Although this is not a large shift, Michelson had adequate reso· 

lution to see it. To his disappointment, he found no measurable 

shift in the fringe pattern. A much more refined experiment, 

executed with E. W. Morley, in 1887, used multiple reflections to 

increase the expected shift to 0.4 fringe. Although a shift as 

small as 0.01 fringe could have been detected, no effect was seen. 

The experiment has been repeated many times since, but always 

with negative results. It appears that we are unable to detect 

our motion through the ether. 

11.3 The Postulates of Special Relativity 

The elusive nature of the ether presented physics with a trouble· 

some enigma. Maxwell attempted to devise a mechanical model 

of the ether, but as he continued to develop his theory of light, the 

ether played a less and less important role, until finally it was alto

gether absent. The ether vanished like the Cheshire Cat, leaving 

only a smile behind. After the Michelson-Morley experiment, even 

the smile had vanished. Numerous attempts to explain the null 

results of the Michelson-Morley experiment introduced such com

plexity as to threaten the foundations of electromagnetic theory. 

The most successful attempt was the hypothesis suggested inde

pendently by FitzGerald and by Lorentz that motion of the earth 

through the ether caused a shortening of one arm of the Michel

son interferometer by exactly the amount required to eliminate 

the fringe shift. However, their speculations were based on an 

. , 
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assumed model of atomic forces, and even though they arrived 

at some of the formulas shortly to be obtained by Einstein, their 

reasoning was far less general. Other theories which involved 

such artifacts as drag of the ether by the earth were even less 

prod uctive. 

The Universal Velocity 

It is an indication of Einstein's genius that the troublesome prob

lem of the ether pointed the way not to complexity and elaboration 

but to a simplification that unified the basic concepts of physics. 

Einstein viewed the difficulty with the ether not as stemming from 

a fault of electromagnetic theory but as arising from an error in 

basic dynamical principles. He argued that since the velocity of 

light predicted by electromagnetic theory, c, involves no reference 

to a medium, c must be a universal constant, the same for all 

observers. Thus, if we measure the speed of light from a source, 

the result will always be c, independent of our motion. This is in 

marked contrast to the case of sound waves, for example, where 

the observed speed depends on motion of the observer with 

respect to the medium. The ideas of a universal velocity was 

indeed a bold hypothesis, contrary to all previous experience and, 

for many of Einstein's contemporaries, defying common sense. 

But common sense is often a poor guide. Einstein once remarked 

that common sense consists of all the prejudices one learns before 

the age of eighteen. 

The Principle of Relativity 

The special theory of relativity involves one additional postulate

the assertion that the laws of physics have the same form with 

respect to all inertial systems. This principle, known as the prin

ciple of relativity, was not novel; Galileo is credited with first point· 

ing out that there is no way to determine whether one is moving 

uniformly or is at rest, and Newton, although troubled by this 

point, gave it a rigorous expression in his dynamical laws in which 

acceleration, not velocity, is paramount. The principle of relativity 

played only a minor role in the development of classical mechan

ics; Einstein elevated it to a keystone of dynamics. He extended 

the principle to include not only the laws of mechanics but also 

the laws of electromagnetic interaction and, by supposition, all the 

laws of physics. Furthermore, in his hands the principle of rela-
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tivity became an important working principle in discovering the 

correct form of physical laws. We can only surmise the sources 

of his inspiration, but they must have included the following con· 

sideration. If the velocity of light were not a universal constant, 

that is, if the ether could be detected, then the principle of rela· 

tivity would fail; a special inertial frame would be singled out, the 

one at rest in the ether. However, the form of Maxwell's equa· 

tions, as well as the failure of any experiment to detect motion 

through the ether, suggests that the speed of light is constant, 

independent of the motion of the source. Our inability to detect 

absolute motion, either with light or with newtonian forces, implies 

that absolute motion has no role in physics. 

Whereas most physicists regarded the absence of the ether as 

a paradox, Einstein saw that its absence preserved the simplicity 

of the principle of relativity. His view was essentially conserva· 

tive; he insisted on preserving the principle of relativity which the 

ether would destroy. Apparently the urge toward simplicity was 

fundamental to his personality.l The special theory of relativity 

was the simplest way to preserve the unity of classical physics. 

In fact, as we shall see in the closing chapter, special relativity 

actually simplifies newtonian thought by combining space and 

time in a natural fashion from which the various conservation law s 

follow as a single entity. 

The Postulates of Special Relativity 

To summarize, the postulates of special relativity are: 

The laws of physics have the same form in all inertial systems. 

The velocity of light in empty space is a universal constant, the same 

for all observers. 

The mathematical expression of the special theory of relativity 

is embodied in the Lorentz transformations-a simple prescrip· 

tion for relating events in different inertial systetns. Contrary to 

the mystique, the mathematics of relativity is quite simple: ele· 

mentary algebra will suffice. The reasoning is also simple, but 

it has a deceptive simplicity. We start by looking once more at 

the Galilean transformations. 

1 Einstein had much in common with Newton. In the second book of his "Prin· 

cipia," Newton states his rules of scientific reasoning. Rule 1 is: "We are to 

admit no more causes of natural things than such as are both true and suffi· 

cient to explain their appearances. . . •  Nature is pleased with simplicity ... " 

i ' 

, , 

; 
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11.4 The Galilean Transformations 

Let us review for a moment the newtonian way qf viewing an event 

in different coordinate systems. Consider an inertial system x, 

y, z, in which we are at rest, and a second inertial system x', y', 

z', which is translating uniformly in the +x direction with velocity 

v. For convenience, we take the origins to coincide at t = 0, and 

take the axes to be parallel. 

If a particular point in space has coordinates r = (x,y,z) in our 

"rest" system, the corresponding coordinates in the moving sys

tem are r' = (x',y',z'). These are related by 

r' = r - R, 

where 

R = vt. 

Since v is in the x direction, we have 

x' = x - vt 

y' = Y 

z' = z 

t' = t. 

11.1 

The last equation is listed merely for completeness. It follows 

from the newtonian idea of an "absolute" time, and it is so taken 

for granted that it is generally omitted in discussions of classical 

physics. 

Equations (11.1) are known. as the Galilean transformations. 

Since the laws of newtonian mechanics hold in all inertial systems, 

they are unaffected by these transformations. The classical prin

ciple of relativity asserts that the laws of mechanics are unchanged 

by the Galilean transformations. The following example illustrates 

the meaning of this statement. 

Example 11.1 The Galilean Transformations 

Consider how we might discover· the law of force between two isolated 

bodies from observations of their motion. For example, the problem 

might be to discover the law of gravitation from data on the elliptical 

orbit of one of Jupiter's moons. If ml and m2 are the masses of the 

moon and of Jupiter, respectively, and r, and r2 are their positions rela· 

tive to an astronomer on the earth, we have 

m,rl = F(r) 

m2r2 = -F(r), 
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where we assume that F, the force between the bodies, depends only 

on their separation r = Irl - r21. (Including the effect of the sun makes 

the analysis more cumbersome without changing the conclusions.) 

From our data on rl(t) we can evaluate r], which yields the value of 

F, (or F 1m!, to be more precise). In principle, this is the procedure 

Newton followed in discovering the law of universal gravitation. Suppose 

that the data show F(r) = -Gmlm2rjr2. 
Now let us consider the problem from the point of view of an astron· 

m2 omer in a spacecraft observatory which is flying by the earth. According 

to the principle of relativity he must obtain the same force law. The situ· 

ation is represented in the drawing. x, y is the earthbound system, 

x.x' x
'

, y' is the spacecraft system, and v is the relative velocity. 

I n the x
'

, y' system the astronomer concludes that the force on m] 

is 

However, 

rl = r� + vt 

fl = f� + v 
.. .., 
rl = rl. 

Hence, 

F' (r') = mlr� 

= mlrl 
= F(r). 

Since r' = r, F' (r') = F' (r). But we have just shown that F' (r') = F(r). 

Hence, 

F'(r) = F(r) 

Gmlm2. 
= - --- r. 

r2 

The law of force is identical to the one found on earth. This is what 

we mean when we say that the two inertial systems are equivalent. If 

the form of the law, or the value of G, were different in the two systems, 

we could make a judgment about the speed of a coordinate system by 

investigating the law of gravitation in that system. The systems would 

not be"equivalent. 

Example 11.1 is almost trivial, since the force depends on the 
separation of the tw() particles, a quantity which is. unchanged 
(invariant) under the Galilean transformations. In newtonian phys
ics, all forces are due to interactions between particles, interac
tions which depend on the relative coordinates of the particles. 
Consequently they are invariant under the Galilean transformations. 
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What happens to the equation for a light signal under the 

Galilean transformations? The following example shows the diffi

culty that arises. 

bample 11.2 A Light Pulse as Described by the Galilean Transformations 

I 
I 

" " "  

Y IY' 
I----v 

--J T--_ 
I \ 
I \, 

\ ,1 x.x' 

" I / 
"'- 1/",-'--. ----r Location of pulse 

Y 

Y
' 

I----v 
I 
I 
I 
L --x' 

x 

At t = 0 a pulse of light is emitted isotropically in the x, y system. It 

travels outward with velocity c. The equation for the wavefront along 

the x axis is 

x = ct. 

In the x', y' system, the equation for the wavefront along the x' axis is 

x' = X - vt 
= (c - V)t, 

where v is the relative velocity of the two systems. 

The x' velocity of the pulse in the x', y' system is 

dx' 
- = c - v. 
dt 

But this is contrary to the postulate that the speed of light is a universal 

constant c for all observers. Clearly, the Galilean transformations are 

i nadeq uate. 

11.5 The Lorentz Transformations 

Since the Galilean transformations do not satisfy the postulate 

that the speed of light is a universal constant, Einstein proposed 

an alternate prescription for describing the same event in different 

inertial systems. Let us refer once more to our standard systems, 

the rest system, x, y, z, t and the system x', y', Z', t' which moves 

with velocity v along the positive x axis. The origins coincide at 

t = t' = O. We take the most general transformation relating the 

coordinates of a given event in the two systems to be of the form 

X' = Ax + Bt 11.2a 
y' =y 1l.2b 

z' =Z 11.2c 
t' = ex + Dt. 1l.2d 

The transformations are linear, for otherwise there would not be 

a simple one-to-one relation between events in the different sys

tems. For instance, a nonlinear transformation would predict 

acceleration in one system even if the velocity were constant in 



TABLE 11.1 

EVENT 

Observer in (x,y) sees origin 

of (x',y') move along x axis 

with velocity v. 

Observer in (x',y') sees origin 

of (x,y) move along x' axis 

with velocity -v. 

A light pulse is sent out from 

origin along x axis at t = O. 

Its location is given by: 

A light pulse is emitted along 

the y axis in (x,y) at t = O. 
In (x',y') the pulse has com· 

ponents along the x' and y' 
axes. The velocity of the 

COOR· COOR· 

DINATES DINATES 

(x,y,t) (x',y',t') 

x = vt x' = 0 

x = 0 x' = -vt' 

x ct x' = ct' 

pulse is c in both systems. x = 0 X'2 + y'2 
= C2t'2 Its coordinates are given by: y = ct 

TRANSFORMATION LAW 

x' = Ax + Bt 1l.2a 

o = Avt + Bt 

x' = A(x - vt) 1l.2a 

t' = Cx + Dt 1l.2d 

A(O - vt) = -v(O + Dt) 

x' = A (x - vt) 1l.2a 

t' = Cx + At 11.2d 

A (ct - vt) = c(Cct + At) 

x' = A(x - vt) 
y' = y 
t' = A(-vx/c2 + t) 

A 2(0 - vt)2 + (ct)2 

1l.2a 

1l.2b 

11.2d 

= c2A.2[ -(v/c2)O + t)2 

RESULT 

B = -Av 

D=A 

C= 
Av 

c2 

1 
fA = 

v'l= V2/C2 

t In general, A = ±l/Vl - v"/CO. We choose the positive root; otherwise, in the limit v = 0 we would find x' -x rather 

than x' = x as we require. 
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the other, clearly an unacceptable property for a transformation 
between inertial systems. We have assumed that the y' and z

' 

axes are left unchanged by the transformation for reasons of 
symmetry, which we shall discuss later. 

Equations (11.2) contain four unknown constants. To evaluate 
these we consider four cases in which we know a priori how an 
event appears in the two systems. This is carried out in Table 
11.1. 

Inserting the results of Table 11.1 into Eq. (11.2) gives 

1 
x' = (x - vt) 

VI - V2/C2 

y' 
= Y 

z
' 

= z 

t = .. t --
, 1 ( VX) 

VI - vVc2 c2 

11.3 

It is a straightforward matter to solve these equations alge
braically for x. y, z, t in terms of x', y

', z
'

, t'. Alternatively, we 
can simply interchange the labels and reverse the sign of v, 
because the only difference between the systems is the direction 
of the relative velocity. The result is 

1 
x = (x' + vt') 

VI - V2/C2 

Y = y
' 

z = z
' 

11.4 

Equations (11.3) and (11.4) are the Lorentz transformations, the 
prescription for relating the coordinates of an event in different 
inertial systems so as to satisfy the postulates of special relativity. 
In the following chapters we shall explore their consequences. 
We conclude the present discussion by explaining the argument 
for assuming y = y', z = z

'
. 

Consider a section of the y and y' axes as shown in figure (a). 
The y' axis is moving to the right with velocity v. 

If we look at the systems from behind the paper, the situation 
appears as in sketch (b). 
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Problems 

(From American Journal of Science, 

November, 1887.) 
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Since only relative motion is important, Figure (b) is equivalent 

to (c). However, (c) is identical to (a) except that y' 
and yare 

interchanged. We conclude that the y and y' axes are indis· 
tinguishable ana y = y'. By a similar argument z = z

'
. 

11.1 The Michelson·Morley experiment was carried out at the Case 

School of Applied Science (now Case-Western Reserve University) in 

1887. The apparatus was a refined version of the interferometer used 

by Michelson in his initial search in Berlin during 1881. The inter· 

ferometer was mounted on a granite slab 5 ft square and 14 in thick 

resting on a float riding in a mercury-filled trough. The effective length 

of the interferometer arms was lengthened to 11 m by the use of mirrors. 

The light source was the yellow line of sodium, \ = 590 X 10-9 m. Michel· 

son and Morley found no systematic shift of fringe with direction, although 

they could have detected a shift as small as one-hundredth fringe. 

How does the upper limit to the earth's velocity through the ether 

set by this experiment compare with the earth's orbital velocity around 

the sun, 30 km/s? See drawing at left. 

11.2 If the two arms of a Michelson interferometer have lengths II and 

l2, show that the fringe shift when the interferometer is rotated by 90° 
with respect to the velocity v through the ether is 

where \ is the wavelength of the light. 

11.3 The Irish physicist G. F. FitzGerald and the Dutch physicist H. A. 
Lorentz independently tried to explain the null result of the Michelson· 

Morley experiment by the following hypothesis: motion of a body through 

the ether sets up a strain which causes the body to contract along the 

line of motion by the factor 1 - !V2/C2. Show that this hypothesis 

accounts for the absence of a fringe shift in the Michelson-Morley exper

iment. (The hypothesis was disproved in 1932 by R. J. Kennedy and 

E. M. Thorndike, who repeated the Michelson-Morley experiment with 

an interferometer having arms of different lengths.) 

11.4 The Michelson-Morley experiment is known as a second order 

experiment because the observed effect depends on (V/C)2. Consider 

the following first order experiment. 

At time t = 0, observer A sends a signal to observer B a distance l 
away. B records the arrival time. Assume that the system is moving 

through the ether with speed v in the direction shown. Suppose that 

the laboratory is then rotated 1800 with respect to the velocity, reversing 

the positions of A and B. At time t = T, A sends a second signal to B. 
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a. Show that the interval B observes between the arrival of the signals 

is T + !J.T, where 

!J.T = �� 
c c 

to order (vlc)3. 
b. Assume that the experiment is done between a clock on the ground 

and one in a satellite overhead. For an orbit with a 24·h period, l = 5.6R., 

where R. is the earth's radius. Present atomic clocks approach a sta· 

bility of 1 part in 1014• What is the smallest value of v that this experiment 

could detect using such clocks? 

11.5 In 1851 H. L. Fizeau investigated the velocity of light through a 

moving medium using the interferometer shown. light of wavelength 

X from a source S is split into two beams by the mirror M. The beams 

travel around the interferometer in opposite directions and are com

bined at the telescope of the observer, 0, who sees a fringe pattern. 

Two arms of the interferometer pass through water-filled tubes of length 

l with flat glass end plates. The water runs through the tubes, so that 

one of the light beams travels downstream while the other goes upstream. 

The velocity of light in water at rest is cln, where n is the refractive index 

of water. If we assume that the velocity of the water is added to the 

velocity of light in the downstream direction, and subtracted in the 

upstream direction, show that the fringe shift which occurs when the 

water flows with velocity v is 

l 
N = 4n2 - v. 

Xc 
(The actual fringe shift measured by Fizeau was 

N = 

4n2ljv 
Xc 

' 

where .f = 1 - 1/n2. J, known as the Fresnel drag coefficient, was 

postulated in 1818, but i� was not satisfactorily explained until the advent 

of relativity. It is derived in the next chapter.) 
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RELATIVISTIC KINEMATICS 

12.1 Introduction 

The special theory of relativity demands that we examine and 

modify the familiar results of newtonian physics. We must start 

by reconsidering kinematics, the most elementary aspect of 

mechanics, a topic apparently so simple that we gave little thought 

to its foundations in our earlier discussion. As we pointed out 

in the last chapter, classical kinematics obeys the Galilean trans· 

formations. We must now develop the kinematics appropriate 

to the Lorentz transformations. 

The Lorentz transformations are simplified by introducing 

1 
'Y= . 

VI - V2/C2 
Since (v/c)2 :-::; 1, 'Y is greater than or equal to one. The Lorentz 

transformations, Eqs. (11.3) and (11.4), then take the form 

x' = 'Y(x - vt) 
y' = Y 

z' = z 

t' = 'Y (t - �) 

x = 'Y(x' + vt') 
Y = y' 
z = z' 

( x'v) 
t = 'Y t' + -;z . 

12.1 

It is important to understand clearly the function of the Lorentz 

transformations, for the lore of relativity is filled with so-called 

paradoxes (generally simple mistakes) in which the Lorentz trans

formations are misapplied and lead to contradictory results. The 

Lorentz transformations relate the coordinates of a single event in 

one inertial system to the coordinates of the same eventin a second 

inertial system. Examples of single events are: 

A light pulse leaves the point x = 3 m, y = 7 m, z = -4 m at 

t = 5 s. 

The origin of the x
'

, y', z' system passes the origin of the x, y, z 

system at time t. 

One end of a stick lies at the point x', y', z', at time t'. 
A bearer of evil tidings bursts into the king's chamber at midnight. 

Single events are characterized by a set of definite values for the 

coordinates x, y, z, t. More complicated events can be described 

by a collection of single events. For example, consider a stick 

lying along the y axis. The location of the stick is defined by 

two single events-the coordinates of its end points at a particular 

time. 

Before setting out to apply the Lorentz transformations, we 

should consider carefully how to determine the coordinates of an 

,. 
;' 
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event. Often we speak of "an observer"; for instance, "an 

observer in the x
'
, y

' system sees a flash of light at x
' 

= 1, y
' 

= 3, 
t' 

= 
0." This is a handy way to describe observations, but there 

are conceptual difficulties with the idea of a single observer. 

Consider an observer who notes that a pulse of light leaves the 

origin at t 
= 

0, and finds that at time tA the pulse is at XA = etA. 

To make such an observation he would have to move to position 

XA before the light arrived there-he would have to move faster 

than light. As we shall see, this is impossible. However, it is 

nevertheless possible to record the coordinates of any series of 

events we please by assuming that we have many observers 

stationed throughout space. Each one has his own clock, and 

each is assigned to a specific location, x, y, z. Every time an 

event occurs at a particular location, the local observer notes the 

time. Later, all the observers send reports to a central office 

which prepares a complete record of the times and locations of 

all events in the system. When we talk of "an observer," we 

mean someone who has, at least in principle, a copy of this record. 

In order for the procedure to work it is essential that all the 

clocks run at the same rate and that they be synchronized. There 

is a subtle point here, for synchronized clocks will not appear to 

agree unless they are at the same location. For example, sup· 

pose that we use a powerful telescope to look at a clock on the 

moon. Since it takes light approximately 1 s to travel from the 

moon to the earth, a moon clock should indicate 1 s before noon 

when an earth clock indicates noon, provided that the two clocks 

are properly synchronized. Similarly, the earth clock should 

appear to be 1 s late to an observer on the moon. By extension, 

this procedure can be used to synchronize all the clocks in a par

ticular inertial system. 

12.2 Simultaneity and the Order of Events 

We have an intuitive idea of what is meant when we say that two 

events are simultaneous. With respect to a given coordinate 

system, two events are simultaneous if their time coordinates have 

the same value. However, as the following example shows, events 

which are simultaneous in one coordinate system are not neces

sarily simultaneous in a second coordinate system. 

Example 12.1 Simultaneity 

Consider a railwayman standing at the middle of a freight car of length 

2L. He flicks on his lantern and a light pulse travels out in all directions 
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with the velocity c. Light arrives at the two ends of the car after a time 

interval Lie. In this system, the freight car's rest system, the light 

arrives simultaneously at A and B. 

Now let us observe the same situation from a different frame, one 

moving to the right with velocity v. In this frame the freight car moves 

to the left with velocity v. As observed in this frame the light still has 

velocity e, according to the second postulate of special relativity. How· 

ever, during the transit time, A moves to A * and B moves to B*. It is 

apparent that the pulse arrives at B* before A *; the events are not 

simultaneous in this frame. 

Example 12.1 shows that once we accept the postulates of rela· 

tivity we are forced to abandon :the intuitive idea of simultaneity. 

The Lorentz transformations, which embody the postulates of 

relativity, allow us to calculate the times of events in two different 

systems. 

Example 12.2 An Application of the Lorentz Transformations 

How do we find the time of arrival of the light pulse at each end of the 

freight car in the last example? The problem is trivial in the rest frame. 

Take the origin of coordinates at the center of the car, and take t = 0 

at the instant the lantern flashes. The two events are 

Event 1: 

p",,, "rive> .t ' ". A { �: : �: 
T 

Event 2: 

p",,, .,,;'" .t '". B{ :: : � � 
T 

To find the time of the events in the moving system we apply the 

Lorentz transformations for the time coordinates. 

Event 1: 

t� = � (tl _ v;) 

= � (T + vc�) 

V 1 � v2 I e2 
(T + � T) 

T 
/1 + vic. 

"\J 1 - vic 
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Event 2: 

In the moving system, the pulse arrives at B (event 2) earlier than it 
arrives at A, as we anticipated. 

As we saw in the last two examples, simultaneity is not a par
ticularly fundamental property of events; it depends on the coor
dinate system. Is it possible to find a coordinate system in 
which any two events are simultaneous? As the following exam
ple shows, there are two classes of events. For two given events, 
we can either find a coordinate system in which the events are 
simultaneous or one in which the events occur at the same point 
in space. 

Exam�lit 12.3 The Order of Events: Tlmelike and Spacelike Intervals 

Two events A and B have the following coordinates in the x, y system. 

Event A: 

Event B: 

XB, tB. 

(For both events, y = 0.) 
The distance L and time T separating the events in the x, y system 

are 

L = XB - XA 

T = tB ...:.. tAo 

For concreteness, we take Land T to be positive. To find the coor
dinates in the x', y' system we use the Lorentz transformations, EQ. 
(12.1): 

x� = 'Y(XA - vtA) 

t� = 'Y (tA _ v;:) 

x� = 'Y(XB - vtB) 

, 
( 

VXB
) tB = 'Y tB - � . 
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The distance l' between the events in the x
'

, y' system is 

l' = x� - x� 

= 'Y[XB - XA - V(tB - tA)l 

l' = 1'(1 - vT). 

Similarly, 

T' = l' (T - :�)-

I 

i 1 

{ 
� 

I 
Assuming that v is always less than c, it follows that if 1 > cT, L' is I 

always positive, while T' can be positive, negative, or zero. Such an 

{. interval is called space/ike, since it is possible to choose a system in 

, 
which the events are simultaneous, namely, a system moving with v = 

c2T / 1. On the other hand, if 1 < cT, T' is always positive, whereas L' 
can be positive, negative, or zero. The interval is then known as time' 
like, since it is possible to find a coordinate system in which the events 

occur at the same point. 

� 1 

12.3 The Lorentz Contraction and Time Dilation 

Two dramatic results of the special theory of relativity are that a 

meter stick is shorter when moving than when it is at rest, and 

that a moving clock runs slow. These results are quite real: the 

experimental evidence for relativity is so overwhelming that physi· 

cists now regard such kinematic effects as commonplace. 

The Lorentz Contraction 

Consider a stick at rest in the x', y' system, lying along the x' axis 

with its ends at x� and x�. The length of the stick is lo = x� - x�. 

lo is called the "rest," or "proper," length of the stick: it is what 

we normally mean when we talk of length. The system x', y'is 

called the rest, or proper, system of the stick. 

Now let us determine the length of the stick l in the system in 

which the observer is at rest. This system, known as the "lab· 

oratory" system, has coordinates x, y. In the laboratory system 

the stick moves to the right with velocity v. 

The length of a stick is the distance between its ends at the 

same instant of time. The end points must be determined simul· 

taneously in the lab system; we must find the correspondence 

between x' and x at some value of t. This is readily accomplished 

by applying the Lorentz transformation x' = 'Y(x - vt). We have 

x� = 'Y(XB - vt) 

x� = 'Y(XA - vt). 

1 
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Subtracting, we obtain 10 = "Y1, or 

10 �--

V2 
1 = - = 10 1 - _. 

"Y c2 

467 

l is shorter than lo: the meter stick is contracted. As v � c, 

1 � O. This shortening, known as the Lorentz contraction, occurs 

only along the direction of motion: if the stick lay along the yaxis, 

we would use the transformation y' = y to find lo = l. 

A word of caution. The following argument is fallacious-but it is easy 

to get trapped by it. "In the rest system, the end of the stick has coor· 

dinates x� and x� at some time t' = O. To find the length in the lab 

system we use x = "Y(x' + vt'), and obtain l = "Ylo. Hence, the moving 

stick looks long." The error is that the end points must be measured 

simultaneously in the lab system. These measurements will not be 

simultaneous in the rest system, but this is of no consequence. 

Example 12.4 The Orientation of a Moving Rod 

/)B 
A rod of length lo lies in the x'y' plane of its rest system and makes an 

angle 80 with the x
' axis. What is the length and orientation of the rod 

in the lab system x, y in which the rod moves to the right with velocity v? 
Designate the ends of the rod A and B. In the rest system these 

points have coordinates 

A: x� = 0 y� = 0 

B: x� = lo cos 80 y� = lo sin 80• 

We require the coordinates of A and B in the lab system at a time t. 
We use x' = "Y(x - vt), y' = y to obtain: 

A: x� = 0 = "Y(XA - vt) 

B: x� = lo cos 80 = "Y(xo - vt) 

Hence, 

lo cos 80 
XB - XA = ---

"Y 

YB - YA = lo sin 80, 

The length is 

l = [(XB - XA)2 + (YB - YA)2]i 

= lo [ (1 - �) cos2 80 + sin2 80 r 
[ V2 ]! 

= lo 1 - � cos2 80 • 

y� = 0 = YA 

y� = lo sin 80 = YB. 
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The angle that the rod makes with the x axis is 

o = arctan YB - YA 

XB - XA ( sin 00) 
= arctan 1' --

cos 00 

= arctan (1' tan 00). 

The moving rod is both contracted and rotated. 

Time Dilation 

Next we investigate the effect of motion on time. Consider a 

clock at rest in the x', y' system and consider two events A and 

B, both occurring at the same point x�: 

A: 

B: 

, 
Xo 

, 
Xo 

t� 

t�. 

The interval T = t� - t� is the time interval between the events 

in the rest system. It is called the proper time interval. 

In order to find the corresponding time interval in the laboratory 

system we use t = 1'(t' + x'v/c2). 

Subtracting to obtain T = tB - tA, we find 

T = 1'(t� - t�) 

= 1'T 

T 

The time interval in the laboratory system is greater than that 

in the rest system; the moving clock runs slow. This effect, known 

as time dilation, has important practical consequences. 

Example 12.5 Time Dilation and Meson Decay 

The lifetime of cosmic ray JJ mesons (muons) has become a classic demon· 

stration of time dilation. The effect was first observed by B. Rossi and 
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D. B. HalP and is the subject of an excellent film by D. H. Frisch and 

J. H. Smith.2 

The experiment hinges on the fact that the muon is an unstable par

ticle which spontaneously decays into an electron and two neutrinos. 

The meson carries either a positive or negative charge and decays into 

either a positive electron (positron, e+) or ordinary electron (e-). 
Symbolically, we can write 

J.I.±� e± + 11 + P. 

JJ stands for neutrino and p for anti neutrino. The decay of the J.I. meson 

is typical of radioactive decay processes: if there are N(O) muons at t = 0, 
the number at time t is 

N(t) = N(O)e-t/T, 

where T, the mea n lifetime, is 2.15 X 10-6 s. Muons can be observed 

by stopping them in dense absorbers and detecting the decay electron, 

which comes off with an energy of about 40 MeV (1 MeV = 1 million elec

tronvolts = 1.6 X 10-13 J). 
J.I. mesons are formed in abundance when high energy cosmic ray pro· 

tons enter the earth's upper atmosphere. The protons lose energy 

rapidly, and at the altitude of a typical mountaintop, 2,000 m, there are 

few left. However, the muons penetrate far through the earth's atmos

phere and many reach the ground. 

The muons descend through the earth's atmosphere with a velocity 

close to c. The minimum time to descend 2,000 m is then 

T = 2 X 103 m
. 

3 X 108 m/s 

= 7 X 10-6 s. 

This is more than three times the lifetime; T /r "" 3. 
The experiment consists of comparing the flux of J.I. mesons at the top 

of a mountain with the flux at sea level. We can safely neglect the for

mation of new mesons in the lower atmosphere or the loss of mesons 

due to absorption in air. One might expect 

flux at sea level 
_________ = e-T/T 
flux at mountaintop 

= 0.045. 

1 B. Rossi and D. B. Hall, Physical ReView, vol. 59, p. 223, 1941. 
2 An account of the experiment demonstrated in the film is given by D. H. Frisch 
and J. H. Smith, American Journal of Physics, vol. 31, p. 342, 1963. 
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However, the experimental result disagrees sharply: the ratio is 0.7, 

corresponding to TIT = 0.3, which is smaller than the predicted ratio 

by a factor of 10. 

The resolution of the disagreement is that we have neglected time 

dilation. The lifetime T refers to the decay of a meson at rest. The p. 

mesons in the atmosphere are moving at high speed with respect to 

the laboratories on the mountaintop and at its base. When the muon 

moves rapidly, the lifetime r' we observe is increased by time dilation. 

The observed lifetime is 

To account for the observed muon decay rate, we require 'Y = 10. 

This was found to be the case: by measuring the energy of the mesons, 

'Y was determined, and within experimental error it agreed with the 

prediction from relativity. 

Example 12.6 The Role of Time Dilation in an Atomic Clock 

Possibly you have looked through a spectroscope at the light from 

an atomic discharge lamp. Each line of the spectrum is composed 

of the light emitted when an atom makes a transition between two of 

its internal energy states. The lines have different colors because the 

frequency II of the light is proportional to the energy change t::.E in 

the transition. (Atomic spectra are discussed in more detail in Sec. 

6.8.) If t::.E is of the order of electron volts, the emitted light is in the 

optical region (II � 1015 Hz). There are some transitions, however, for 

which the energy change is so small that the emitted radiation is in the 

microwave region (II � 1010 Hz). These microwave signals can be detected 

and amplified electronically. Since the oscillation frequency depends 

almost entirely on the internal structure of the atom, the signals can 

serve as a frequency reference to govern the rate of an atomic clock. 

Atomic clocks are highly stable and relatively immune to external 

influences. 

Each atom radiating at its natural frequency serves as a miniature 

clock. The atoms are frequently in a gas and move randomly with ther· 

mal velocities. Because of their thermal motion, the clocks are not at 

rest with respect to the laboratory and the observed frequency is shifted 

by time dilation. 

Consider an atom which is radiating its characteristic frequency Vo 

in the rest frame. We can think of the atom's internal harmonic motion 

as akin to the swinging motion of the pendulum of a grandfather's clock: 

each cycle corresponds to a complete swing of the pendulum. If the 

period of the swing Is 'To seconds in the rest frame, the period in the 
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laboratory is T = 'YTo. The observed frequency in the laboratory sys

tem is 

1 1 Vo 
v =-

T 'YTo 'Y 

�-V2 
= Vo 1 - -' 

c2 

The shift in the frequency is �v = v - Yo. If v2/c2« 1, 'Y """ 1 -
1-v2/c2, and the fractional change in frequency is 

ov v - 110 

Vo Vo 
1 

A handy way to evaluate the term on the right is to multiply numerator 

and denominator by M, the mass of the atom: 

tMv2 is the kinetic energy due to thermal motion of the atom_ This 

energy increases with the temperature of the gas, and according to an 

elementary result of statistical mechanics, 

tM;2 = !kT, 

where v2 is the average squared velocity, k = 1.38 X 10-23 J/deg is 

Boltzmann's constant, and T is the absolute temperature. 

In the atomic clock known as the hydrogen maser, the reference fre

quency arises from a transition in atomic hydrogen. M is close to the 

mass of a proton, 1.67 X 10-27 kg, and using c = 3 X 108 mis, we obtain 

from Eq. (1), 

�II 

II 

! X 1.38 X 10-23 
---------------- T 
1.67 X 10-27 X 9 X 1016 

= 1.4 X 10-13 T. 

At room temperature, T = 300 K (300 degrees on the absolute tempera

ture scale or 27°C), we have 

�v 
- = -4.2 X 10-11_ 
v 

This, believe it or not, is a sizable effect. In order to correct for time 

dilation to an accuracy of 1 part in 1013, it is necessary to know the tem-
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perature of the radiating atoms to an accuracy of one degree. However, 

if one wishes to compare frequencies to parts in 101>, the absolute tern· 

perature must be known to millidegrees, a much harder task. 

12.4 The Relativistic Transformation of Velocity 

The starship Enterprise silently glides to the east with speed D.9c. 
At the same time, the starship Fleagle glides to the west with 

speed D.ge. Classically, the relative speed of the ships is 1.8c, 

and the Fleagle's crew would see the Enterprise moving away with 

a speed faster than light. According to special relativity the pic· 

ture is quite different. To show this we need the relativistic law 

for the addition of velocities. 

Consider a particle with instantaneous velocity u = (ux,uy) in the 

x, y, Z, t system. Our task is to find the corresponding components 

u�, u� in the x', y', z', t' system, which moves with speed v along 

the positive x axis. 

From the definition of velocity, we have, in the unprimed system, 

tlx 
u% = lim -

dl--->O At 

Ay 
UII = lim-· 

dHO At 

The corresponding components in the primed system are 

, . Ax' 
U = IIm -x 

dt'--->O At' 

Ay' 
u

' 
= lim-· 

Y dl'--->O At' 

The problem is to relate displacements and time intervals in the 

primed system to those in the unprimed system. Using the pro· 

cedure of Example 12.2 (or simply writing the Lorentz transforma· 

tions for differentials), we find 

AX' = ,,(AX - v At) 

Ay' = Ay 

At' = " (At - � AX ) -

Hence, 

AX' ,,(AX - VAt) 

At' ,,[At - (v/e2)AxJ 

AX/At - v 

1 - (V/C2)(AX/At) 
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Next we take the limit t:.t � D. Since t:.x = Uz t:.t, t:.x � D when 

t:.t � D. The Lorentz transformations show that t:.x' and t:.t' also 

approach zero. Using u: = lim (t:.x' / t:.t'), we obtain 

, u'" - v 
u = . 

'" 1 - vu"je2 

Similarly, 

, Uy 
U = . 

y ")'[1 - vu"'/ e2] 

At'-> 0 

By symmetry, u: behaves like u�: 

, u. 
u = . 

• ")'[1 - vu,,/ e2] 

12.2a 

12.2b 

12.2e 

These transformations can be inverted by changing the sign 

of v: 

u� + v 
u" = , 1 + vU,,/e2 

, u. 
u. = , . 

")'[1 + vu,,/e2] 

In these formulas, ")' = l/V1 - v2/e2 as before. 

12.3a 

12.3b 

12.3e 

Eq uation (12.2a) or (12.3a) is the relativistic law for the addition 

of velocities. For v « e, we obtain the Galilean result u: = u" - v. 
Returning to the problem of the two starships, let u" = D.ge be 

the speed of the Enterprise relative to the ground, and v = -D.ge 
be the speed of the Fleagle relative to the ground. The velocity 

of the Enterprise relative to the Fleagle is, from Eq. (12.2a), 

, D.ge - (-D.ge) 
u = " 1 - [( -D.ge)(D.ge)] 

1.8e 
=-

1.81 
= D.9ge. 

The relative speed is less than e. The relativistic transforma

tion of velocities assures that we cannot exceed the velocity of 

light by changing reference frames. 
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The limiting case is u", = c. 
is then 

, c-(/ 
u = 

'" 1 - vc/c2 
= C, 

The velocity in the moving system 

independent of v. This agrees with the postulate we originally 
built into the Lorentz transformations: the velocity of light is the 
same for all observers. Furthermore, it suggests that the velocity 
of light plays the role of an ultimate speed in the theory of 
relativity. 

Example 12.7 The Speed of Light in a Moving Medium 

As an exercise in the relativistic addition of velocities, let us find how the 

motion of a medium, such as water, influences the speed of light. 

The velocity of light in matter is less than e. The index of refraction, 

n, is used to specify the speed in a medium: 

c n = -----------------

velocity of light in the medium 

n = 1 corresponds to empty space; in matter n > 1. The slowing can 

be appreciable: for water n = 1.3. 

,--- Light beam ---"""\ 

:S�;:::==::::::=.--==v ===:;�\ 
The problem is to find the speed of light through a moving liquid. For 

instance, consider a tube filled with water. If the water is at rest, the 

velocity of light in the water with respect to the laboratory is u = cln. 
What is the speed of light when the water is flowing with speed v? 

Consider the speed of light in water as observed in a coordinate system 

x', y' moving with the water. The speed is 

u' = .:. 
n 

The speed in the laboratory is, by Eq. (12.3a), 

u' + v e/n + v e (1 + nv/e) u = 
1 + u'v/e2 = 1 + v/ne 

=
;; 1 + v/ne . 

If we expand the last term and neglect terms of order (v/e)2 and smaller, 

we obtain 

c ( nv v ) u=- 1+---
n c ne 

= .: + v (1 - �). 
n n2 

1 :-
1 : : -, 

? . 

. i 
\ . 

, :-
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The light appears to be dragged by the fluid, but not completely. 

Only the fraction f = 1 - 1/n2 of the fluid velocity is added to the speed 

of light cln. This effect was observed experimentally in 1851 by Fizeau, 

although it was not explained satisfactorily until the advent of relativity. 

12.5 The Doppler Effect 

The roar of a car or motorcycle zooming past is characterized 

by a rapid drop in pitch as the vehicle goes by. The effect is 

quite noticeable if you listen for it at the side of a road. (It is 

the sound most people make when trying to mimic a near miss 

by a speeding car.) The decrease in frequency of all the sounds 

from the car as it goes by is due to the Doppler effect. In general, 

the Doppler effect is a shift in frequency due to the motion of a 

source or an observer. The Doppler shift occurs for light as well 

as sound. Our knowledge of the motion of distant receding 

galaxies comes from studies of the Doppler shift of their spectral 

lines. More prosaic applications of the Doppler effect include 

satellite tracking and radar speed traps. 

We shall start by examining the Doppler shift in sound-a situ

ation we can treat classically. 

The Doppler Shift In Sound 

Sound travels through a medium, such as air, with a speed w 
determined by the properties of the medium, independent of the 

motion of the source. 

Consider a source of sound which is moving with velocity v 

through the medium toward an observer at rest. To simplify the 

geometry we shall restrict ourselves for the present to the case 

where the observer is along the line of motion. We can regard 

the sound as a regular series of pulses separated by time TO = 1/ va, 

Where va is the number of pulses per second generated by the 

source. (va corresponds to the frequency of sound from the 

source.) The situation is shown in the sketch. 

In time T the sound travels a distance wT, and if the pulses 

are separated by distance L, the number reaching the observer 

is wT / L. The rate at which the pulses arrive is w/ L, and this is 

the frequency of sound VD heard by the observer: 

W 
VD = L· 
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To determine L. consider a pulse emitted at t = 0 and the next 

pulse emitted at t = TO. During the interval TO the first pulse 

travels distance WTo in the medium. and the source travels dis· 

tance VTo. The distance between the pulses is therefore 

L = WTo - VTo 

1 
= (w - v)-· 

Vo 

Hence, 

W 
VD = L 

or 

w 
vo -

W - v 

1 

; \ 

; i 

i " 

, ' 
. , 

VD = 110 
• 

1 - (vlw) 
(Moving source.) 12.4 ' ; 

For an approaching source, v is positive and liD > 110. For a 

receding source, v is negative and liD < 110. Qualitatively, this 
accounts for the drop in pitch of the sound of a car as it goes by. 

The situation is somewhat different if the source is at rest in 
the medium and the observer is moving with speed v toward the 

source. The situation is shown in the sketch. The speed of the 
pulses relative to the observer is w + v. The rate at which pulses 

arrive is 

w +v 
VD = --r;- .  

Since the source is at rest, L = WTo = willo, and 

w+v ( v) 
VD = Vo -

w
- = 110 1 + � . (Moving observer.) 12.5 

This differs from the result for a moving source, Eq. (12.4), 

although the results agree to order vlw. The situation is not 
symmetric; if Vo, v, and ware known, we can tell whether it is the 

observer or the source which is moving by measuring liD carefully. 

The reason is that in the case of sound there is a medium, the 

air, to which motion can be referred. 
If it were possible to apply these results to light waves in space, 

we would be able to distinguish which of two inertial systems was 

at rest. This would contradict the principle of special relativity 
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that only the relative motion of inertial systems is observable. 

To resolve this difficulty, we turn now to a relativistic derivation 

of the Doppler effect. 

Relativistic Doppler Effect 

A light source flashes with period TO = 1/110 in its rest frame. The 

source is moving toward an observer with velocity v. Due to 

time dilation, the period in the observer's rest frame is 

T = 'YTO. 

Since the speed of light is a universal constant, the pulses arrive 

at the observer with speed c. It is for this reason that the rela

tive velocity alone plays a role in the Doppler effect for light. In 

the classical case, the pulses arrive with a speed dependent on 

the state of motion of the observer relative to the medium. 

v :�; 
t 

�jl :::: 
:::; ill f 
:l;� 
l t :::: 

II �: 

The frequency of the pulses is liD = clL, where L is the separa

tion in the observer's frame. Since the source is moving toward 

the observer, 

L = CT - VT = (c - v}r 

and 

C 

liD = ---(c - V)T 

or 

1 1 

1- vlc'YTo 

This reduces to 

/1 + vic 
liD = 110 '\,j 1 _ vic

· 12.6 
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VD is the frequency in the observer's rest frame and v is the rela· 

tive speed of source and observer. As we expect, there is no 
mention of motion relative to a medium. The relativistic result 

plays no favorites with the classical results; it disagrees with both 

and, in fact, turns out to be their geometric mean. 

The Doppler Effect for an Observer off the Line of Motion 

So far we have restricted ourselves to the Doppler effect for a 

source and observer along the line of motion. However, consider 

a satellite broadcasting a radio beacon signal to a ground tracking 

station which monitors the Doppler shifted frequency. Although 

our earlier results do not apply to such a case, we can readily 

generalize the method to find the Doppler effect when the observer 

is at angle fJ from the line of motion. We shall again visualize 

the source as a flashing light. The period of the flashes in the 

observer's rest frame is 7" = 'Y7"0, as before. The frequency seen 

by the observer is c/ L. Since the source moves distance tIT 

between flashes, it is apparent from the lower sketch that 

L = C7" - V7" cos fJ 

= (c - v cos fJ)7". 

(We assume that the source and observer are so far apart that 

fJ is effectively constant between pulses.) Hence 

VD 

or 

VD 

C 

L 

c 

(c - v cos fJ}ro'Y 

VI - V2/C2 
= Vo 

. 
1 - (vic) cos fJ 

12.7 

In this result, fJ is the angle measured in the rest frame of the 

observer. Along the line of motion, fJ = 0 and we recover our 
previous result for that case, Eq. (12.6). At fJ = 7r/2 the relative 

velocity between source and observer is zero. However, even in 

this case there is a shift in frequency; VD differs from Vo by the 

factor VI - v2/c2• This "transverse" Doppler effect is due to 

time dilation. The flashing lamp is effectively a moving clock. 
The relativistic Doppler effect agrees with the classical result 

to order vic, so that any experiment to differentiate between 
them must be sensitive to effects of order (V/C)2, a difficult task. 
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The relativistic expression was confirmed by Ives and Stilwell in 

1938 by observations on the spectral light from fast moving atoms. 

One of the more interesting practical applications of the Doppler 

effect is in navigational systems, as the following example explains. 

Doppler Navigation 

The Doppler effect can be used to track a moving body, such as a satel· 

lite, from a reference point on the earth. The method is remarkably 

accurate; changes in the position of a satellite lOB m away can be deter· 

mined to a fraction of a centimeter. 

Consider a satellite moving with velocity v at some distance r from a 

ground station. An oscillator on the satellite broadcasts a signal with 

proper frequency Po. Since v« c for satellites, we can approximate 

Eq. (12.7) by retaining only terms of order vic. Then the frequency 

PD received by the ground station can be written 

Po PD= ------

1 -(vic) cos 0 

= Po (1 + � cos 0) -

There is an oscillator in the ground station identical to the one in the 

satellite, and by simple electronic methods the difference frequency 

("beat" frequency) PD -Po can be measured: 

PD - Po = Po � cos O. 
c 

The radial velocity of the satellite is 

dr _ 
- = r·v 
dt 

= -vcos 9. 
Hence 

dr c 
- = - - (PD - Po) 
dt Po 

- Ao(PD - po), 

where Ao = cl Po is the wavelength of the radiation. 

PD varies in time as the satellite's velocity and direction change. 

To find the total radial distance traveled between times Ta and Tb, we 

integrate the above ex.pression with respect to time: 

fT. (dr) dt = 

T. dt 
-Ao (PD-Po)dt fT. T. 
-Ao (PD - po) dt. fT. T. 

r. 

l J 
'I 
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The integral is the number of cycles Nba of the beat frequency which 

occur in the interval Ta to Tb• (One cycle occurs in a time T = 

l/(vD - vo), so that J dt/T is the total number of cycles.) Hence 

This result has a simple interpretation: whenever the radial distance 

increases by one wavelength, the phase of the beat signal decreases one 

cycle. Similarly, when the radial distance decreases one wavelength, the 

phase of the beat signal increases by one cycle. 

Satellite communication systems operate at a typical wavelength of 

10 cm, and since the beat signal can be measured to a fraction of a 

cycle, satellites can be tracked to about 1 cm. If the satellite and ground· 

based oscillators do not each stay tuned to the same frequency, Jlo, there 

will be an error in the beat frequency. To avoid this problem a two-way 

Doppler tracking system can be used in which a signal from the ground 

is broadcast to the satellite which then amplifies it and relays it back to 

the ground. This has the added advantage of doubling the Doppler 

shift, increasing the resolution by a factor of 2. 

We sketched the principles of Doppler navigation for the classical case 

v «c. For certain tracking applications the precision is so high that 

relativistic effects must be taken into account. 

As we have already shown, a Doppler tracking system also gives the 

instantaneous radial velocity of the satellite Vr = -C(JlD - vo)/vo. This 

is particularly handy, since both velocity and position are needed to check 

satellite trajectories. A more prosaic use of this result is in police radar 

speed monitors: a microwave signal is reflected from an oncoming car 

and the beat frequency of the reflected signal reveals the car's speed. 

12.6 The Twin Paradox 

The kinematical effects we have analyzed in this chapter depend 

on the relative velocity of two systems; such phenomena as Lorentz 

contraction, time dilation, and the Doppler shift give no clue as to 

which of two systems is at rest and which is moving, nor can they 

do so within the framework of relativity, which postulates that all 

inertial systems are equivalent. There is no such equivalence 

between noninertial systems_ Indeed, there is little difficulty in 

deciding whether or not an isolated system is accelerating. 

Failure to appreciate this point was responsible for a vociferous 

controversy over the so-called "twin paradox." The problem is 

of interest because it affords a good illustration of the physical 

difference between inertial and noninertial systems. 

The paradox is as follows: two identical twins, Castor and Pollux, 

A and B for short, have identical clocks. B sets out on a long 

space voyage while A remains home. A constantly observes B's 

� � 
< " 
, < 

i :-
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clock and sees that it is running slow due to time dilation. Even

tually B returns home. Since B's clock has run slow throughout 

the trip, A concludes that B is younger than A at the end of the 

journey. But suppose we look at the situation from B's point of 

view. Since time dilation depends only on relative motion, during 

the trip B sees A's clock running slow, and when the trip is finished 

B concludes that A is younger than B. Obviously both twins 

can't be right. Is either twin really younger? 

The explanation lies in the fact that the situation is not equiva

lent from the point of view of each twin. A's system is inertial 

throughout, but B must change his velocity at some time in order 

to return to the starting point. While the velocity is changing, 

B's system is not inertial. There is no doubt as to which twin is 

really accelerating. If each were carrying an accelerometer, such 

as a mass on a spring, A's would remain at zero while B's would 

show a large deflection at the turning point. It is apparent that 

the systems are not equivalent. 

We cannot apply special relativity to determine the coordinates 

of events in noninertial frames. Fortunately, it is possible to 

determine what B will observe during turnaround by introducing 

the idea of the Doppler shift. 

To make the argument quantitative, suppose that the relative 

velocity is v. A observes that B travels away a distance L in 

time T = L/v. B then rapidly reverses his motion and returns 

with the same velocity. The time for the return trip is also T. 
We shall neglect the time it takes B to reverse his motion since 

if T is sufficiently long, the turnaround time is negligible. 

(Nothing anomalous happens to B's clock during turnaround; A 

simply observes a varying dilation factor while the velocity is 

changing.) 

Neglecting this small turnaround corr.ection, A observes a total 

elapsed time T� on B's moving clock which is related to the time 

on A's own clock T A = 2T by 

T' _ TA 
B -

'Y 

�

-
V2 

= TA 1 --. 

c2 

A concludes that B is younger. 

aging of B 
= 

T� 
= 11 _ � 

aging of A T A '\J c2 

12.8 

(As viewed by A.) 12.9 
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Now let us look at the situation from B's point of view. Except 

for the turnaround time, B's observations are similar to A's. B 

sees A go away for distance L with velocity -v and return. This 

takes time TB = 2T on B's clock, and if B sees time T� elapse 

on A's clock, then 

T' _ TB 
A- 'Y 

B seems to conclude that A is younger. 

aging of B ? TB 1 
aging of A == T� 

= 
VI - v2jc2 

(As viewed by B.) 

12.10 

12.11 

This is the paradox: A thinks that B is younger and B thinks that 

A is younger. 

Now consider what happens to B during turnaround. He 

experiences an acceleration as if he were in a gravitational field. 

According to the discussion of the principle of equivalence in 

, ; 

Chap. 8, clocks run at different rates in a gravitational field- , 

this is the origin of the gravitational red shift. For this reason, 

B sees A's clock run fast during turnaround and, as we shall show, 

this puts A's clock ahead. However, instead of involving the 

gravitational red shift, we shall derive the result from simple 

kinematics. 

Consider a clock C which has period 1"0 in its rest frame and which emits 
signals at frequency va = 1/1"0' An observer D is at rest a distance L 
away and starts accelerating toward C at rate a when the signal of fre· 

quency va leaves C. The signal arrives at time to � L/e. (We assume 

that D has not moved appreciably in time to. and that his velocity is so 
low that relativistic effects are negligible.) When the signal arrives, D 
is moving toward C at velocity v = ato = aL/e and the observed fre· 

quency, v', is Doppler shifted. From Eq. (12.6) we have 

v' = va 
�1 + v/� 

1 - v/e 
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where we have neglected terms of order (V/C)2. Since II' > 110, C's 
clock appears to run faster than if there were no acceleration. If D's 

clock records a time interval 

then C's clock marks off an interval 

Tc = 1/110. 

Hence, 

II' 
Tc = TD-

110 

Applying this to the twins, suppose that B accelerates uniformly 

at rate a toward A during turnaround. B notes on his own clock 

that the turnaround time is Tt• He notes that A's clock marks 

off an interval 

I ( aL) 
Tt = Tt 1 + &" . 

Since the velocity changes by 2v during turnaround, Tt = 2v/a. 
Therefore, 

2vL 
= Tt + -· 

c2 

The total length of the trip is 2L = vTB• Hence, the total time 

that B observes on A's clock during turnaround is 

The total time that B observes on A's clock during the entire 

trip is 
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where we have used T� = TBh, Eq. (12.10). We shall again 

neglect the turnaround time. The Doppler shift correction during 

turnaround is valid to order V2/C2 and to this approximation, 

(T�)total = 

The result of this argument is that from B's point of view, 

aging of B 

aging of A 

TB 

We have already shown, Eq. (12.9), that from A's point of view 

aging of B T� 1--v-2 1 v2 

aging of A = T A 
= 

'\j 
1 - c2 "'" 1 - "2 c2' 

The formerly identical twins are in agreement; A has aged more 

than B. The paradox is resolved. 

Our analysis is valid only to order V2/C2• To this order, the 

special theory of relativity led to no contradictions as long as we 

treated the accelerated reference frame separately. An exact 

calculation appears to require the general theory of relativity. 

f i 
In these problems S refers to an inertial system x, y, Z, t and S' refers ; \ 
to an inertial system x

'
, y', z

'
, t', moving along the x axis with speed v : ; 

relative to S. The origins coincide at t = t' = O. Take e = 3 X 108 ' i 

m/s. 

12.1 Assume that v = 0.6e. Find the coordinates in S' of the following 

events. 

a. x = 4 m, t 
= 

0 s. 

b. x = 4 m, t = 1 s. 

c. x = 1.8 X 108 m, t = 1 s. 

d. x = 109 m, t = 2 s. 

12.2 An event occurs in S at x = 6 X 108 m, and in S' at x
' 

= 6 X 108 m, 

t' = 4 s. Find the relative velocity of the systems. 

12.3 The clock in the sketch on the opposite page can provide an i!1tuitive 

explanation of the time dilation formula. The clock consists of a flash 
tube, mirror, and phototube. The flash tube emits a pulse of light which \; 

f 
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travels distance L to the mirror and is reflected to the phototube. Every 

time a pulse hits the phototube it triggers the flash tube. Neglecting 

time delay in the triggering circuits, the period of the clock is TO = 2L/c. 
Now examine the clock in a coordinate system moving to the left with 

uniform velocity v. In this system the clock appears to move to the 

right with velocity 1'. Find the period of the clock in the moving system 

by direct calculation, using only the assumptions that c is a universal 

constant, and that distance perpendicular to the line of motion is unaf· 

fected by the motion. The result should be identical to that given by 

the Lorentz transformations: T = To/VI - V2/C2• 

12.4 A light beam is emitted at angle (Jo with respect to the x
' axis in 

S'. 

a. Find the angle (J the beam makes with respect to the x axis in S. 

Ans. cos (J = (cos (Jo + v/c)/( 1 + v/c cos (0) 

b. A source which radiates light uniformly in all directions in its rest 

frame radiates strongly in the forward direction in a frame in which it is 

moving with speed v close to c. This is called the headlight effect; it 

is very pronounced in synchrotrons in which electrons moving at rela· 

tivistic speeds emit light in a narrow cone in the forward direction. 

Using the result of part a, find the speed of a source for which half the 

radiation is emitted in a cone subtending 10-3 rad. 

Ans. v = c(1 - 5 X 10-7) 

12.5 An observer sees two spaceships flying apart with speed O.99c. 

What is the speed of one spaceship as viewed by the other? 

Ans. O.99995c 

12.6 A rod of proper length lo oriented parallel to the x axis moves with 

speed u along the x axis in S. What is the length measured by an 

observer in S'? 

Ans. I = lor (c2 - V2)(C2 - u2)]! /(c2 - uv) 

12.7 One of the most prominent spectral lines of hydrogen is the Ha 

line, a bright red line with a wavelength of 656.1 X 10-9 m. 

a. What is the expected wavelength of the H a line from a star reced· 

ing with a speed of 3,000 km/s? 

Ans. 662.7 X 10-9 m 

b. The H a line measured on earth from opposite ends of the sun's 

equator differ in wavelength by 9 X 10-12 m. Assuming that the effect 

is caused by rotation of the sun, find the period of rotation. The dia· 

meter of the sun is 1.4 X 106 km. 

Ans. 25 d 

12.8 The frequency of light reflected from a moving mirror undergoes 

a Doppler shift because of the motion of the image. Find the Doppler 

shift of light reflected directly back from a mirror which is approaching 

the observer with speed v, and show that it is the same as if the image 

were moving toward the observer at speed 2v/(1 + V2/C2). 



486 

A /P 
v 

B 
Xl!--- ; --�- -----x 

-IDI-

L 

RELATIVISTIC KINEMATICS 

12.9 A slab of glass moves to the right with speed v. A flash of light is 

emitted from A and passes through the glass to arrive at B, a distance 

L away. The glass has thickness D in its rest frame, and the speed of 

light in the glass is c/n. How long does it take the light to go from A 

to B? 

Ans. clue. If v = 0, T = [L + (n - I)DJlc; if v = c, T = Lie 
12.10 Here is the pole-vaulter paradox. A pole-vaulter and a farmer have 

the following bet: the pole-vaulter has a pole of length lo, and the farmer 

has a barn ilo long. The farmer bets that he can shut the door of the 

barn with the pole completely inside. The bet being made, the farmer 

asks the pole-vaulter to run into the barn with a speed of v = cV3/2. 
In this case the farmer observes the pOle to be Lorentz contracted to 

l = lo/2, and the pole fits into the barn with e,:se. He slams the door 
the instant the pole is inside, and claims the bet. The pole-vaulter dis

agrees: he sees the barn contracted by a factor of 2, and so the pole 

can't possibly fit inside. How would you settle the disagreement? Is 

the Lorentz contraction "real" in this problem? (Hint: Consider events 

at the ends of the pole from the point of view of each observer.) 

12.11 The relativistic transformation of acceleration from S' to Scan 

be found by extending the procedure of Sec. 12.4. The most useful 

transformation is for the case in which the particle is instantaneously 

at rest in S' but is accelerating at rate ao in S', parallel to the x' axis. 

Show that for this case the x acceleration in S is given by ax = ao/"{3. 
12.12 The relativistic transformation for acceleration derived in the last 

problem shows the impossibility of accelerating a system to a velocity 

greater than c. Consider a rocketship which accelerates at constant 

rate ao as measured by an accelerometer carried aboard, for instance a 

a mass stretching a spring. 

a. Find the speed after time t for an observer in the system in which 

the rocketship was originally at rest. 

Ans. v = aot/'Y, or v = aot/''l.h + (aot/c)2 
b. The speed predicted classically is Vo = aot. What is the actual 

speed for the following cases: Vo = 10-3c, C, 103c. 
Ans. v = vo(l - 5 X 10-7), c/'VZ, c(l - 5 X 10-7) 

, . 
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12.13 A young man voyages to the nearest star, a Centauri, 4.3 light

years away. He travels in a spaceship at a velocity of c/5. When he 

returns to earth, how much younger is he than his twin brother who 

stayed home? 

12.14 Any quantity which is left unchanged by the Lorentz transforma

tions is called a Lorentz invariant. Show that D.s is a Lorentz invariant, 

where 

D.s2 = (c D.t)2 - (D.x2 + D.y2 + D.z2). 

Here D.t is the interval between two events and (D.x2 + D.y2 + D.x2)i is 

the distance between them in the same inertial system. 
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RELATIVISTIC MOMENTUM AND ENERGY 

13.1 Momentum 

In the last chapter we saw how the postulates of special relativity 
lead in a natural way to kinematical relations which agree with 

newtonian relations at low velocity but depart markedly for veloc· 

ities approaching c. We turn now to the problem of investigating 

the implications of special relativity for dynamics. One approach 

would be to develop a formal procedure for writing the laws of 

physics in a form which satisfies the postulates of special relativity. 

Such a procedure is actually possible; it involves the concepts of 

four·vectors and relativistic invariance, and we shall pursue it in 

the next chapter. However, here we shall take another approach, 

one which is not as powerful or as economical as the method of 

four·vectors, but which has the advantage of using physical argu· 

ments to show the relation between the familiar concepts of 

classical mechanics and their relativistic counterparts. 

First we shall focus on conservation of momentum and find 

what modifications are needed to preserve this principle in rela· 

tivistic mechanics. This is a technique often used in extending 

the frontiers of physics: by reformulating conservation laws so 

that they are preserved in new situations, we are quite natu· 

rally led to generalizations of familiar concepts. I n particular, 

as the following argument shows, we must modify our idea of 

mass to preserve conservation of momentum under relativistic 

transformations . 

Consider a glancing elastic collision between two identical par· 

ticles, A and B. We are going to view the collision in two special 

frames: A's frame, the frame moving along the x axis with A, 
and B's frame, the frame moving along the x axis with B. We 

A's frame 

B's frame 

Before 

V 

--<fu'I'" 

�u' 

u'h ... l __ -
v 

After 
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take the collisions to be completely symmetrical. Each particle 

has the same y speed Uo in its own frame before the collision, as 

shown in the sketches. The effect of the collision is to alter the 

y velocities but leave the x velocities unchanged. 

The relative x velocity of the frames is V and by the law of 

transformation of velocities, Eq. (12.2), the y velocity of the oppo-

site particle in each frame is uoh = UO VI - P/c2• 

After the collisions the y velocities have reversed their direc

tions as shown in the sketches. The situation remains sym

metrical. If the y speed of A and B in their own frames is u', 

the y speed of the other particle is u' h. 

Our task is to find a conserved quantity analogous to classical 

momentum. We suppose that the momentum of a particle mov

ing with velocity w is 

p = m(w)w, 

where m(w) is a scalar quantity, yet to be determined, analogous 

to newtonian mass, but one which may depend on the speed w. 

The x momentum in A's frame is due entirely to particle B. 

Before the collision B's speed is w = (P + uo2h2)l, and after 

the collision it is w' = (V2 + u'2h2)l_ Imposing conservation of 

momentum in the x direction yields 

m(w)V = m(w')V. 

It follows that w = w', so that 

u' = Uo. 

Next we write the statement of the conservation of momentum 

in the y direction, as evaluated in A's frame. Equating the y 
momentum before and atter the collision gives 

Uo Uo 
-m(uo)uo + m(w) - = m(uo)uo - m(w)-

� � 

or 

m(w) = �m(uo). 

In the limit Uo � 0, m(uo) � m(O), which we take to be the new

tonian mass, or "rest mass" mo of the particle. In this limit, 

w = V. Hence 

mo 
m(V) = �m(O) = -� /r===== 

vI - P/c2 
13.1 



492 RELATIVISTIC MOMENTUM AND ENERGY 

We have found the dependence of m on speed. In general, 
therefore, 

mou 
p = = mu 

VI - u2jc2 

for a particle moving with arbitrary velocity u, where 

13.2 

Example 13.1 Velocity Dependence of the Electron's Mass 

p 

At the beginning of the twentieth century there were several speculative 
theories which predicted that the mass of an electron varies with its speed. 
These theories were based on various models of the structure of the elec· 
tron. The principal/theories were those of Abraham (1902), which pre· 
dicted m = moll + t(v'/c'») for v «c, t and of Lorentz (1904), which gave 

m = mo/Vl - v2/c' :::: mo[l + t(v'/c'»). The Abraham theory, which 
retained the idea of the ether drift and absolute motion, predicted no 
time dilation effect. Lorentz' result, while identical in form to that pub· 
lished by Einstein in 1905, was derived using the ad hoc Lorentz contraction 
and did not possess the generality of Einstein's theory. 

Experimental work on the effect of velocity on the electron's mass was 
initiated by Kaufmann in Gottingen in 1902. His data favored the theory 
of Abraham, and in a 1906 paper he rejected the Lorentz·Einstein results. 
However, further work by Bestelmeyer (1907) in GOttingen and Bucherer 
(1909) in Bonn revealed errors in Kaufmann's work and confirmed the 
Lorentz·Einstein formula. 

Physicists were in agreement that the force on a moving electron in 
an applied electric field E and magnetic field B is q(E + v X B) (the units 
are SI), where q is the electron's charge and v its velocity. Bucherer 
employed this force law in the apparatus shown at left. The apparatus 
is evacuated and immersed in an external magnetic field B perpendicular 
to the plane of the sketch. The source of the electrons A is a button of 
radioactive material, generally radium salts. The emitted electrons 
("beta rays") have a broad energy spectrum extending to 1 MeV or so. 
To select a single speed, the electrons are passed through a "velocity 
filter" composed of a transverse electric field E (produced between two 
parallel metal plates C by the battery V) together with the magnetic field 
B. E, S, and v are mutually perpendicular. The transverse force Is 

t Abraham's full result was 

m = rna � � [(1 + (32) In (�) - 1], 4 (32 2(3 1 - (3 
where (3 = vic. 
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zero when qE = qvB, so that electrons with v = E/ Bare undeflected 

and are able to pass through the slit S. 
Beyond S only the magnetic field acts. The electrons move with 

constant speed v and are bent into a circular path by the magnetic force 

qv X B. The radius of curvature R is given by mv2/ R = quB, or R = 

mv/qB = (m/q)( E/ B2). 

The electrons eventually strike the photographic plate P, leaving a 

trace. By reversing E and B, the sense of deflection is reversed. R 

is found from a measurement of the total deflection d and the known 

geometry of the apparatus. E and B are found by standard techniques. 

By finding R for different velocities, the velocity dependence of m/q can 

be studied. We believe that charge does not vary with velocity (other

wise an atom would not stay strictly neutral in spite of how the energy 

of its electrons varied ) , so that the variation of m/ q can be attributed to 

variation in malone. 

The graph shows Bucherer's data together with a dashed line corre-

sponding to the Einstein prediction m = ma/ VI - V2/ C2. The agree

ment is striking. 

The velocity filter with crossed E and B fields was used by Bestelmeyer 

and by Bucherer. (Bucherer attributes the design to J. J. Thomson, 

discoverer of the electron.) Kaufmann, on the other hand, used trans

verse E and B fields which were parallel to one another, and this probably 

caused his erroneous results. His configuration did not select velocities; 

Instead, all the electrons were spread into a two dimensional trace on 

the photographic plate. Electrons of different speeds followed different 

deflected paths between the plates C, and nonuniformity of the E field 

gave rise to substantial errors. 

In recent years the relativistic equations of motion have been 

used to design high energy electron and proton accelerators. For 

protons, accelerators have been operated with m/mo up to 200, 

while for electrons the ratio m/mo = 40,000 has been reached. 

The successful operation of these machines leaves no doubt that 

the relativistic results are accurate. 

13.2 Energy 

By generalizing the classical concept of energy, we can find a 

corresponding relativistic quantity which is also conserved. From 

the discussion in Chap. 4 we can write the kinetic energy of a par

ticle, 
K

, as 

fb dp K
b -

K
a = - . dr. 

a dt 
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For a classical particle moving with velocity u, p = mu, where m 

is constant. Then 

Kb - Ka = (b :!" (mu) • dr ia dt 

fb du = m -. u dt a dt 
= la

b 
mu· du. 

Using the identity u . du = td(u . u) = td(u2) = u du, we obtain 

It is natural to try the same procedure starting with the rela· 

tivistic expression for momentum p = mou/Vl - U2/C2. 

Kb - K = (b dp . dr a ia dt 

= (b � [ mou ] . u dt ia dt VI - U2/C2 

- (b U. d 
[ mou ] 

- ia VI - U2/C2 

The integrand is u . dp = d(u . p) - p . du. Therefore 

Kb - Ka = (u • p) I: - Ja
b 

p . du 

mou2 

I
b (b mOu du = 

VI - U2/C2 a - ia VI - u2/c/ 

where we have used the earlier identity U· du = u du. The 

integral is elementary, and we find 

mou2 

I
b I� 

I
b 

Kb - Ka = + moc2 '\J 1 - - . 

VI - U2/C2 a c2 a 
Take point b as arbitrary, and let the particle be at rest at point 

a, Ua = O. 

mou2 g2 K = + moc2 1 - - - moc2 
VI - U2/C2 c2 

mo[u2 + c2(1 - U2/C2)J = - moc2 
VI - U2/C2 

moc2 = - moc2 
VI - U2/C2 

i! 

t '  

: : 

, i 
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or 

13.3 

where m = molY1 - U2/C2• 

This expression for kinetic energy bears little resemblance to 

its classical counterpart. However, in the limit u «c, the rela· 

tivistic result should approach the classical expression K = !mu2• 

This is indeed the case, as we see by making the approximation 

ljV1 - U2/C2 "'" 1 + iu2/C2• Then 

The kinetic energy arises from the work done on the particle 

to bring it from rest to speed u. Suppose that we rewrite Eq. 

(13.3) as 

mc2 = K + moc2 

= work done on particle + moc2• 13.4 

Einstein proposed the following bold interpretation of this result: 

mc2 is the total energy E of the particle. The first term arises from 

external work; the second term, moc2, represents the "rest" energy 

the particle possesses by virtue of its mass. In summary 

13.5 

It is important to realize that Einstein's generalization goes far 

beyond the classical conservation law for mechanical energy. 

Thus, if energy t:.E is added to a body, its mass will change by 

t:.m = t:.E/c2, irrespective of the form of energy. t:.E could repre

sent mechanical work, heat energy, the absorption of light, or any 

other form of energy. I n relativity the classical distinction between 

mechanical energy and other forms of energy disappears. Rela

tivity treats all forms of energy on an equal footing, in contrast to 

classical physics where each form of energy must be treated as a 

special case. The conservation of total energy E = mc2 is a con

sequence of the very structure of relativity. In the next chapter 

we shall show that the conservation laws for energy and momen

tum are different aspects of a single, more general, conservation 

law. 
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Example 13.2 

RELATIVISTIC MOMENTUM AND ENERGY 

The following example illustrates the relativistic concept of 

energy and the validity of the conservation laws in different inertial 

frames. 

Relativistic Energy and Momentum in an Inelastic Collision 

Suppose that two identical particles collide with equal and opposite 

velocities and stick together. Classically, the initial kinetic energy is 

2(iMP) = MV2, where M is the newtonian mass. By conservation of 

momentum the mass 2111 is at rest and has zero kinetic energy. In the 

language of Chap. 4 we say that mechanical energy MV2 was lost as heat. 

As we shall see, this distinction between forms of energy does not occur 

in relativity. 

Now consider the same collision relativistically, as seen in the original 

frame x, y, and in a frame x', y' 
moving with one of the particles. By 

the relativistic tra nsformation of velocities, Eq. (12.2), 

in the direction shown. 

y y 

o 

� __________________ x �--________________ x 

, 
y 

, 
y 

U 
0 II 0 

x 
, � __________________ x' 

Before After 

Let the rest mass of each particle be Mo. before the collision and MOl 
after the collision. In the x, y frame, momentum is obviously conserved. 

The total energy before the collision is 2Moic2/Vl - P/c2, and after 

the collision the energy is 2Mo/C2• No external work was done on the 

particles, and the total energy is unchanged. Therefore, 

2MoiC2 _ 2M 2 -7==== - O/C 
VI - V2/<;2 

or 

2 

,. : 
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The final rest mass is greater than the initial rest mass because the 

particles are warmer. To see this, we take the low velocity approximation 

M 01 � M Oi 1 + - -
( 1 V2) 

2 c2 

The increase in rest energy for the two particles is 2(lrfol - MoJc2 � 

2(tM Oi V2), which corresponds to the loss of classical kinetic energy. 

Now, however, the kinetic energy is not "Iost"-it is present as a mass 

increase. 

By the postulate that all inertial frames are equivalent, the conserva· 

tion laws must hold in the x
'

, y' frame as well. If our assumed conserva· 

tion laws possess this necessary property, we have in the x
'
, y' frame 

MOiU 
3 

by conservation of momentum and 

4 

by the conservation of energy. 

The question now is whether Eqs. (3) and (4) are consistent with our 

earlier results, Eqs. (1) and (2). To check Eq. (3), we use Eq. (1) to write 

U2 4P/c2 
1 - - = 1 - -----::':--:-

c2 (1 + V2/C2)2 

(1 - V2/C2)2. 
(1 + V2/C2)2 

From Eqs. (1) and (5), 

U 
(1 + V2/C2) (1 - P/c2) 

2V 

and the left hand side of Eq. (3) becomes 

2MoiV 
1 - V2/C2 

From Eq. (2), MOi = MOl ,11 - P/c2, and Eq. (6) reduces to 

2MoIV 

5 

6 
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which is identical to Eq. (3). Similarly, it is not hard to show that Eq. 

(4) is also consistent. 

We see from Eq. (6) that if we had assumed that rest mass was 

unchanged in the collision, MOi = !vIof, the conservation law for momen· 

tum (or for energy) would not be correct in the second inertial frame. 

The relativistic description of energy plays an essential part in main· 

taining the validity of the conservation laws in all inertial frames. 

Example 13.3 The Equivalence of Mass and Energy 

� Proton beam 

I 
I 

\ I I 
" \ I I 

--"� -;37 Lithium target 

In 1932 Cockcroft and Walton, two young British physicists, successfully 

operated the first high energy proton accelerator and succeeded in 

causing a nuclear disintegration. Their experiment provided one of the 

earliest confirmations of the relativistic mass-energy relation. 

Briefly, their accelerator consisted of a power supply that could reach 

600 kV and a source of protons (hydrogen nuclei). The power supply 

used an ingenious arrangement of capacitors and rectifiers to quadruple 

the voltage of a 150-kV supply_ The protons were supplied by an electrical 

discharge in hydrogen and were accelerated in vacuum by the applied 

high voltage. 

Cockcroft a nd Walton studied the effect of the protons on a target of 

7Li (lithium, having atomic mass 7). A zinc sulfide fluorescent screen, 

located nearby, emitted occasional flashes, or scintillations. By various 

tests they determined that the scintillations were due to alpha partides, 

the nuclei of helium, 4He. Their interpretation was that the 7Li captures 

a proton and that the resulting nucleus of mass 8 immediately disinte' 

grates into two alpha particles. We can write the reaction as 

The mass energy equation for the reaction is 

where K(1H) is the kinetic energy of the incident proton, K(4He) is the 

kinetic energy of each of the emitted alpha particles, and lv/(1H) is the 

proton rest mass, etc. (The initial momentum of the proton is negli· 

gible, and the two alpha particles are emitted back to back with equal 

energy by conservation of momentum.) 

We can rewrite the mass-energy equation as 

where K = 2K(4He) - K(1H), and t:.M is the initial rest mass minus 

the final rest mass. 

The energy of the alpha particles was determined by measuring their 

range. Cockcroft and Walton obtained the value K = 17.2 MeV (1 

MeV = 106 eV = 1.6 X 10-13 J). 
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The relative masses of the nuclei were known from mass spectrometer 

measurements. In atomic mass units, amu, defined so that MeSO) = 

16, the values available to Cockcroft and Walton were 

MeH) = l.0072 

MCLi) = 7.0104 ± 0.0030 

M(4He) = 4.0011. 

These yield 

t>.M = (l.0072 + 7.0104) - 2(4.0011) 

= (0.0154 ± 0.0030) amu. 

The rest energy of 1 amu is 931 MeV and therefore 

t>.Mc2 = (14.3 ± 2.7) MeV. 

The difference between K and t>.Mc2 is (17.2 - 14.3) MeV = 2.9 MeV, 

slightly larger than the experimental uncertainty of 2.7 MeV. However, 

the experimental uncertainty always represents an estimate, not a pre· 

clse limit, and the result can be taken as consistent with the relation 

K = t>.Mc2• 

It is clear that the masses must be known to high accuracy for study· 

ing the energy balance in nuclear reactions. Modern techniques of mass 

spectrometry have achieved an accuracy of better than 10-5 amu, and 

the mass·energy equivalence has been amply confirmed. According to 

a modern table of masses, the decrease in rest mass in the reaction 

studied by Cockcroft and Walton is t>.M c2 = (17.3468 ± 0.0012) MeV. 

Often it is useful to express the total energy of a free particle 

in terms of its momentum. Classically the relation is 

p2 
E = jmv2 =-. 

2m 

To find the eq uivalent relativistic expression we mustcombine the 

relativistic momentum 

mou 
p = mu = = mou')' 

VI - U2/C2 

with the energy 

Squaring Eq. (13.6) gives 

13.6 

13.7 
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which we solve for "( as follows: 

1 

VI - U2/C2 

= 'l + L . '\j mo2c2 

Inserting this in Eq. (13.7), we have 

The square of this equation is algebraically somewhat simpler 

and is the form usually employed. 

13.8 

We have derived the relativistic expressions for momentum and 

energy by invoking conservation laws. However, we have not 

dealt with the role of force in relativity. It is possible to attack 

this problem by considering the form of the equations of motion 

in various coordinate systems. We shall develop a systematic 

way of doing this in the next chapter, and so we defer the problem 

of force for the present. 

For convenience, here is a summary of the important dynamical 

formulas we have developed so far. 

p = mu = mou')' 
K = mc2 - moc2 = moc2("( - 1) 

E = mc2 = moc2"( 
E2 = (pC)2 + (moc2)2 

13.3 Massless Particles 

13.9 

13.10 

13.11 

13.12 

A surprising conseq uence of the relativistic energy-momentu m 

relation is the possibility of "massless" particles-particles which 

possess momentum and energy but no rest mass. If we take 

mo = 0 in the relation 

! 
i ': 

. l  

: j 
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the result is 

E = pc. 

501 

13. 13 

We take the positive root on the plausible assumption that par

ticles whose energy decreases with increasing momentum would 

be unstable. 

In order to have nonzero momentum we must have a finite 

value for 

p = mou / � 1 - ;: . 

in the limit mo � O. This is only possible if u � c as mo � 0; 

massless particles must travel at the speed of light. 

The principal massless particle known to physics is the photon, 

the particle of light. Photons interact electromagnetically with 

electrons and other charged particles and are easy to detect with 

photographic films, phototubes, or the eye. The neutrino, which 

is associated with the weak forces of radioactive beta decay, is 

believed to be massless, but it interacts so weakly with matter 

that its direct detection is extremely difficult. (The sun is a 

copious source of neutrinos, but most of the solar neutrinos which 

reach the earth pass through it without interacting.) Experi

ments have shown that the neutrino rest mass is no larger than 

1/2,000 the rest mass of the electron, and it could well be zero. 

There are theoretical reasons for believing in the existence of the 

graviton, a massless particle associated with the gravitational 

force. The graviton's interaction with matter is so weak that it 

has not yet been detected. 

We owe the concept of the photon to Einstein, who introduced 

it in his pioneering paper on the photoelectric effect published a 

few months before his work on relativity.l Briefly, Einstein pro

posed that the energy of a light wave can only be transmitted to 

matter in discrete amounts, or quanta, of value hv, where h is 

Planck's constant 6.63 X 10-34 J/Hz, and II is the frequency of 

the light wave in hertz. The arguments for this proposal grew 

out of Einstein's concern with problems in classical electromag

netic theory and considerations of Planck's quantum hypothesis, 

1 Within a period of one year Einstein wrote four papers, each of which became 

a classic, on the photoelectric effect, relativity, brownian motion, and the quan· 

tum theory of the heat capacity of solids. It was for his work on the photoelectric 

effect, not relativity, that Einstein received the Nobel Prize for Physics in 1921. 
Relativity was so encumbered with philosophical and political implications that 

the Nobel committee refused to acknowledge it. This regrettable incident was 

unique in the history of the prize. 
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a theory constructed by Planck in 1900 to overcome difficulties in 

classical statistical mechanics. Although we cannot develop here 

the background necessary to justify Einstein's theory of the photon, 

perhaps the following experimental evidence will help make the 

photon seem plausible. 

Example 13.4 The Photoelectric Effect 

In 1887 Heinrich Hertz discovered that metals can give off electrons when 

illuminated by ultraviolet light. This process, the photoelectric effect, 

represents the direct conversion of light into mechanical energy (here, 

the kinetic energy of the electron). Einstein predicted that the energy 

an electron absorbs from a beam of light at frequency I' is exactly hI'. 

If the electron loses a certain amount of energy W in leaving the metal, 

then the kinetic energy of the emitted electron is 

K = hI' - W. 

W is known as the work function of the metal. The work function is 

typically a few electron volts, but unfortunately it depends on the chemical 

state of the metal surface, making the photoelectric effect a difficult 

matter to investigate. Millikan overcame this problem in 1916 by work· 

ing with metal surfaces prepared in a high vacuum system. The kinetic 

energy was determined by measuring the photocurrent collected on a 

plate near the metal and applying an electric potential between the plate 

and photosurface just adequate to stop the current. If the potential is 

- V, then the energy lost by the electrons as they travel to the plate is 

( - e)( - V). At cutoff we have V = Ve and 

eVe = hI' - W. 

Millikan observed the cutoff voltage as a function of frequency for 

several alkali metals. In accord with Einstein's formula, he found that 

Ve was a linear function of 1', with slope hie, and that Ve was independent 

of the intensity of the light. 

If the energy of light were absorbed by the electron according to the 

classical picture, the electrons would have a wide energy distribution 

depending on the intensity of the light, in sharp disagreement with 

Millikan's results. The fact that light can interfere with itself, as in the 

Michelson interferometer, is compelling evidence that light has wave 

properties. Nevertheless, the photoelectric effect illustrates that light 

also has particle properties. Einstein's energy relation, E = hI', pro· 

vides the link between these apparently conflicting descriptions of light 

by relating the energy of the particle to the frequency of t'1e wave. 

Example 13.5 Radiation Pressure of Light 

A conseq uence of Maxwell's electromagnetic theory is that a light wave 

carries momentum which it will transfer to a surface when it is reflected 
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or absorbed. The result, as we know from our study of momentum in 

Chap. 3, is a pressure on the surface. The calculation of radiation pres· 

sure is complicated using the wave theory of light, but with the photon 

picture it is simple. 

Consider a stream of photons striking a perfectly reflecting mirror at 

normal incidence. The initial momentum of each photon is p = Elc, 

and the total change in momentum in the reflection is 2p = 2Elc. If 

there are n photons incident per unit area per second, the total momen

tum change per second is 2nElc, and this is equal to the force per unit 

area exerted on the mirror by the light. Hence the radiation pressure 

Pis 

P = 
2nE =�, 

c c 

where I = nE is the intensity of the light, the power per unit area. Simi

larly, the radiation pressure on a perfect absorber is lie. 

The average intensity of sunlight falling on the earth's surface at normal 

incidence, known as the solar constant, is I "" 1,000 W 1m2. The radia

tion pressure on a mirror due to sunlight is therefore P = Zllc = 7 X 

10-6 N/m2, a very small pressure. (Atmospheric pressure is 105 N/m2.) 

On the cosmic scale, however, radiation pressure is large; it helps keep 

stars from collapsing under their own gravitational forces. 

Since the photon is a completely relativistic particle, newtonian 

physics provides little insight into its properties. For instance, 

unlike classical particles, photons can be created and destroyed; 

the absorption of light by matter corresponds to the destruction 

of photons, while the process of radiation corresponds to the crea

tion of photons. Nevertheless, the familiar laws of conservation 

of momentum and energy, as generalized in the theory of relativity, 

are sufficiently powerful to let us draw conclusions about processes 

involving photons without a detailed knowledge of the interaction, 

as the following examples illustrate. 

Example 13.6 The Compton Effect 

The special theory of relativity was not widely accepted by the 1920s 

partly because of the radical nature of its concepts, but also because 

there was little experimental evidence. In 1922 Arthur Compton per

formed a refined experiment on the scattering of x-rays from matter 

which left little doubt that relativistic dynamics was valid. 
A photon of visible light has energy in the range of 1 to 2 eV, but photons 

of much higher energy can be obtained from x-ray machines, radioactive 

sources, or particle accelerators. X-ray photons have energies typically 
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in the range 10 to 100 keY, and their wavelengths can be measured with 

high accuracy by the technique of crystal diffraction. 

When a photon collides with a free electron, the conservation laws 
require that the photon lose a portion of its energy. The outgoing photon 

therefore has a longer wavelength than the primary photon, and this 

shift in wavelength, first observed by Compton, is known as the Compton 

effect. 

/' 
/ 

/<0 

________ �-J�-�-----
" -<... u 

Let the photon have initial energy Eo and momentum Eo/c, and sup

pose that the electron is initially at rest. After the collision, the electron 

is scattered at angle q, with velocity u and the photon is scattered at 

angle (J with energy E. Let E. = moc2/V1 - U2/C2 be the final electron 

energy and p = mu the momentum. Then. by conservation of energy, 

Eo + moc2 = E + Ee. 

By conservation of momentum, 

Eo E 
- = - cos (J + p cos q, 

c c 

E 
o = - sin (J - p sin q,_ 

c 

1 

2 

3 

Our object is to eliminate reference to the electron and find B as a 

function of (J, since Compton detected only the outgoing photon in his 

experiments. Equations (2) and (3) can be written 

(Eo - E cos (J)2 = (pC)2 cos2 q, 

(E sin (J)2 = (pC)2 sin2 q,. 

Adding, 

E02 - 2EoE cos 6 + E2 = (pC)2 

= E.2 - (moc2)2, 

4 

where we have used the energy-momentum relation, Eq. (13.12). Using 

Eq. (1) to eliminate Ee, Eq. (4) becomes 
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which reduces to 

E= 
Eo 

5 
1 + (Eo/moc2)(1 - cos (j) 

Note that E is always greater than zero, which means that a free electron 

cannot absorb a photon. 
Compton measured wavelengths rather than energies in his experi· 

ment. From the Einstein frequency condition,.Eo = hvo = he/Ao and 
E = hC/A, where Ao and}.. are the wavelengths of the incoming and out· 
going photons, respectively. In terms of wavelength, Eq. (5) takes the 
simple form 

h 
A = Ao + --- (1 - cos (j). 

moc 

The quantity h/moc is known as the Compton wavelength of the el�ctron 

and has the value 

!::..- = 2.426 X 10-12 m 
moc 

= 0.02426 A, 

where 1 A = 10-10 m. 
The shift in wavelength at a given angle is independent of the initial 

photon energy: 

h 
A - AO = --- (1 - cos (j). 

moc 

The figure shows one of Compton's results for Ao = 0.711 A and 

(j = 90°, where peak P is due to primary photons and peak T to the 
Compton scattered photons from a block of graphite. The measured 
wavelength shift is approximately 0.0246 A and the calculated value is 
0.02426 A. The difference is less than the estimated uncertainty due 
to the limited resolution of the spectrometer and other experimental 

limitations. 
In our analysis we assumed that the electron was free and at rest. 

For sufficiently high proton energies, this is a good approximation for 
electrons in the outer shells of light atoms. If the motion of the elec· 
trons is taken into account, the Compton peak is broadened. (The 
broadening of peak T in the figure compared with P shows this effect.) 

If the binding energy of the electron is comparable to the photon 
energy, momentum and energy can be transferred to the atom as a 
whole, and the photon can be completely absorbed. 

Example 13.7 Pair Production 

We have already seen two ways by which a photon can lose energy in 
matter, photoelectric absorption and Compton scattering. 1f a photon's 
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energy is sufficiently high, it can also lose energy in matter by the 

mechanism of pair production. The rest mass of an electron is moc2 = 

0.511 MeV. Can a photon of this energy create an electron? The answer 

is no, since this would require the creation of a single electric charge. 

As far as we know, electric charge is conserved in all physical processes. 

However, if equal amounts of positive and negative charge are created, 

the total charge remains zero and charge is conserved. Hence, it is 

possible to create an electron·positron pair (e-·e+), two particles having 

the same mass but opposite charge. 

A single photon of energy 2moc2 or greater has enough energy to form 

an e-·e+ pair, but the process cannot occur in free space because it 

would not conserve momentum. If we imagine that the process occurs, 

conservation of energy givE.'s 

or 

while conservation of momentum gives 

These equations cannot be satisfied simultaneously because 

Pair production is possible if a third particle is available for carrying 

off the excess momentum. For instance, suppose that the photon hits 

a nucleus of rest mass At and creates an e-·e+ pair at rest. We have 

hI! + Mc2 = 2moc2 + A.fc2"(. 

Since nuclei are much more massive than electrons, let us assume that 

hv« Mc2• (For hydrogen, the lightest atom, this means that hv« 

940 MeV.) In this case the atom will not attain relativistic speeds and 

we can make the classical approximation 

hv = 2moc2 + Mc2("( - 1) 

"'" 2moc2 + tMV2. 

To the same approximation, conservation of momentum yields 

hv 
= MV. 

c 

Substituting this in the energy expression gives 
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since we have already assumed hll« M c2. The threshold for pair pro· 

duction in matter is therefore 2moc2 = 1.02 MeV. The nucleus plays an 

essentially passive role, but by providing for momentum conservation it 

allows a n otherwise forbidden process to occur. 

Example 13.8 The Photon Picture of the Doppler Effect 

E 

o-p 
Mo 

In Chap. 12 we discussed the Doppler effect from the standpoint of wave 

theory, but we can also treat it using the photon picture. Consider first 

an atom with rest mass M 0, held stationary. If the atom emits a photon 

of energy hllo, its new rest mass is given by llf�c2 = Jl.loc2 - hvo. 
Suppose now that the atom moves freely with velocity u before emit· 

ting the photon. The atom's energy is E = Moc2/V1 - U2/C2 and its 

momentum is p = Mou/V1 -U2/C2. After the emission of a photon 

of energy hll the atom has velocity u', rest mass M�, energy E', and 

momentum p'. For simplicity, we consider the photon to be emitted 

along the line of motion. By conservation of energy and momentum 

we have 

E' , 

()--! � hv 

E = E' + hll 
hll p = p' +_. 

1 

2 
M' o c 

Therefore, 

(E -hll)2 = E'2 
(pc -hll)2 = (p'C)2 

and 

3 

by the energy·momentum relation. Expanding the left hand side and 

using E2 -(pC)2 = (M oC2)2, we obtain 

(MOC2)2 -2Ehll + 2pchll = (M�2)2 

Simplifying, we find that 

(2M oc2 - h 110) 
II = 110 

• 

2(E -pc) 

However, 

= (Moc2 -hllo)2. 

Moc2 ( u) E-pc= 1--
V1 - U2/C2 C 

= Moe2 /1 -u/c. 
"J1+u/c 
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Hence, 

(1 hllo) I� 
II = 110 -

2Moc2 "VI _ U/C
· 

The term hllo/2kf oc2 represents a decrease in the photon energy due 

to the recoil energy of the atom. For a massive source, this term is 

negligible and 

II = 110 
�1 + u/c, 
1 - u/c 

in agreement with the result of the last chapter, Eq. (12.6). 
Although it is always satisfying to derive a result by different arguments, 

perhaps the chief interest in this exercise is to show how two completely 

different views of light, wave and particle, lead to exactly the same pre· 

diction for the shift in frequency of radiation from a moving source. 

13.4 Does Light Travel at the Velocity of Light? 
Although the title of this section may sound rhetorical, the ques· 

tion is not trivia\. It is apparent that the velocity of light plays a 

special role in relativity. In fact, Einstein created the special 

theory of relativity primarily from considerations of Maxwell's 

electromagnetic theory, the theory of light. However, it is impor· 

tant to realize that the real significance of the velocity of light is 

that it exemplifies a universal velocity, a velocity whose value is 

the same for an observer in any inertial system. There can be 

only one such universal velocity in the theory of relativity, as the 

following argument shows. 

Suppose that there is a second universal velocity c* represent· 

ing the velocity of some phenomenon other than light-perhaps 

the speed of gravitons or neutrinos. Let us call the phenomenon 

r. Consider a light pulse and a r pulse emitted along the x axis 

from the origin of the X, y system at t = O. The pulses travel 

according to: 

Light: 

l': 

Xl = ct 
Xr = c*t. 

The relative velocity of the two pulses is 

d 
u = - (Xr - Xl) 

dt 
= c

* 
- c. 
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Now consider the same pulses in the .x
'

, y' system which is 

moving along the x axis with velocity V. Since c* and care uni· 

versal velocities, the loci of the pulses must be given by 

x; = c t ' 
x� = c*t'. 

The relative velocities of the two pulses is 

, d [ , '] u = dt' Xr - Xl 

= c* -c, 

as before. But the relativistic transformation of velocities gives 

c - V c' = = c 
1 - c V  /c2 

*' _ 
c* - V 

(c ) -
1 _ c*V/c2 

Thus, the Lorentz transformations predict that 

u' = (c*)' -c 
c* - V =1-c*V/c2-c. 

This disagrees with the result above, u' = c* - c, unless c* = c, 
in which case U = 0 and u' = O. We conclude that there can be 

only one universal velocity. 

If this argument seems rather formal, perhaps the following 

explanation will help. The theory of relativity satisfies the post· 

ulate of relativity: all inertial coordinate systems are equivalent. 

It also satisfies the postulate that the velocity of light is a universal 

constant: all observers in inertial systems will obtain the same 

result for the velocity of a particular light signal. However, the 

theory of relativity cannot accommodate more than one such 

universal velocity; if we try to introduce a second universal 

velocity, the whole edifice of relativity collapses. In particular, we 

can no longer obtain a consistent recipe for relating coordinates of 

events in different systems. 

With this background, perhaps we can rephrase the title of this 

section more meaningfully as "does light travel with the universal 

velocity?" The question is actually quite interesting and a matter 

of current investigation. 
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Example 13.9 The Rest Mass of the Photon 

If the photon had a nonzero rest mass, the velocity of light would differ 

from c. If we let mp represent the rest mass of a photon, we would 

have 

If we assume that the photon energy·frequency relation E = hv 
remains valid, then squaring the equation above gives 

or, after rearranging, 

v2 lI02 
- = 1--' 
c2 lI2 

where hllO = mpc2• lIo plays the role of a characteristic frequency of the 

photon: hllo is the rest energy of the photon. If lIo = 0, we have v = c. 

Otherwise, the velocity of light depends on frequency. Behavior such as 

this is well known when light passes through a refractive medium such 

as glass or water; it is known as dispersion. The question for experi· 

ment to decide is whether or not empty space exhibits dispersion. 

There have been a number of recent attempts to set a limit on 

the rest mass of the photon (or, better still, to measure it, although 

at present there is no compelling reason to believe that the rest 

mass is not zero). 

Example 13.10 Light from a Pulsar 

Pulsars are stars that emit regular bursts of energy at repetition fre· 

quencies from 30 to 0.1 Hz. They were discovered in 1968 and their 

unexpected properties have been a source of much excitement among 

astronomers and astrophysicists. Perhaps the most interesting pulsar 

is the one in the Crab nebula. It has the highest frequency, 30 Hz, and 

is the only one so far observed which pulses in the optical and x·ray 

regions, as well as at radio frequencies. The pulses are quite sharp, 

and their arrival time can be measured to an accuracy of microseconds. 

It is known that light from the pulsar at different optical wavelengths 

arrives simultaneously within the experimental resolving time. We can 

use these facts to set a limit on the rest mass of the photon. 

It takes light 5,000 years to reach us from the Crab nebula. Suppose 

that signals at two different frequencies travel with a small difference in 

.
�, 

! 

, 
.. \ 
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velocity, Llv, and arrive at slightly different times, T and T + LlT. Since 

T = Llv, where L is the distance from the Crab nebula, we have 

L 
Llv = - -LlT 

T2 

or 

Llv LlT 

v T 

No such velocity difference has been observed, but by estimating the 

sensitivity of the experiment we can set an upper limit to Llv. LlT can 

be measured to an accuracy of about 2 X 10-3 s, and using T = 5 X 103 
years = 1.5 X 1011 s, we have 

I �v l = 1�1 2X 10-3 
< 1.5 X 1011 

where we have taken v � c. 
Now let us translate this limit on Llv into a limit on the possible rest 

mass of a photon. From the result of the last example, 

v2 v02 
- = 1--· 
e2 v2 

Consider signals at two different frequencies, VI and "2. We have 

The left hand side can be written 

where we have taken (VI - V2) = Llv, and VI + V2 � 2e. For observa· 

tions made in the optical region we can take VI = 8 X 1014 Hz (blue) and 

V2 = 5 X 1014 Hz (red). Then, using the limit Llvle < 2 X 10-16, we have 

2 X 2 X 10-16 > _0_ - - - = 2.4 X 1O-30V0 2 
V2 ( 1 1 ) 
1028 52 82 

or 

Vo < 107 Hz. 

This gives an upper limit to the photon rest mass of 

1np = kv o < 10-40 

kg. 
c2 
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An even lower limit to the photon rest mass can be found by observing 

the arrival time of radio pulses from the Crab nebula. The analysis is 

somewhat more complicated because of the effect of free electrons in 

interstellar space. The result is that the rest mass of the photon has 

a n upper limit of 10-47 kg. 

Problems 13.1 It is estimated that a cosmic ray primary proton can have energy 

up to 1013 MeV (almost 108 greater than the highest energy achieved with 

an accelerator). Our galaxy has a diameter of about 10· light·years. 

How long does it take the proton to traverse the galaxy, in its own rest 

frame? (1 eV = 1.6 X 10-19 J, M p = 1.67 X 10-27 kg.) 

13.2 When working with particles it is important to know when relativistic 

effects have to be considered. 

A particle of rest mass mo is moving with speed v. Its classical kinetic 

energy is Kcl = mov2/2. Let Krel be the relativistic expression for its 

kinetic energy. 

a. By expanding Kr.1/Kc\ in powers of v2jc2, estimate the value of 

v2jc2 for which Kre1 differs from Kcl by 10 percent. 

b. For this value of v2jc2, what is the kinetic energy in MeV of 

(1) An electron (moc2 = 0.51 MeV) 

(2) A proton (moc2 "" 930 MeV) 

13.3 In newtonian mechanics, the kinetic energy of a mass m moving 

with velocity v is K = mv2j2 = p2/(2m) where p = my. Hence, the 

change in kinetic energy due to a small change in momentum is dK = 

p . dp/m = v • dp. 
Show that the relation dK = v . dp also holds in relativistic mechanics. 

13.4 Two particles of rest mass mo approach each other with equal and 

opposite velocity v, in the laboratory frame. What is the total energy of 

one particle as measured in the 
'

rest frame of the other? 

Ans. clue. If V2/C2 = t, E = 3moe2 

13.5 A particle of rest mass m and speed v collides and sticks to a sta

tionary particle of mass M. What is the final speed of the composite 

particle? 

Ans. VI = 'Yvmj('Ym + M), where 'Y = (1 - v2jc2)-l 

13.6 A particle of rest mass mo and kinetic energy xmoc2, where x is some 

number, strikes and sticks to an identical particle at rest. What is the 

rest mass of the resultant particle? 

Ans. clue. If x = 6, m = 4mo 

13.7 In the laboratory frame a particle of rest mass mo and speed V is 

moving toward a particle of mass mo at rest. 



--omo 

Light beam 

PROBLEMS 513 

What is the speed of the inertial frame in which the total momentum 
of the system is zero? 

Ans. clue. If V2/C2 = i-. the speed is 2v/3 
13.8 A photon of energy Eo and wavelength Ao collides head on with 
a free electron of rest mass mo and speed v, as shown. The photon is 
scattered at goo. 

a. Find the energy E of the scattered photon. 

Ans. E = [Eo(1 + v/c)l/(l + Eo/E.), where Ei = moc2/V1 - V2/C2 
b. The outer electrons in a carbon atom move with speed vic "" 

6 X 10-3• Using the result of part a, estimate the broadening in wave· 
length of the Compton scattered peak from graphite for Ao = 0.711 X 

10-10 m and goo scattering. The rest mass of an electron is 0.51 MeV 
and h/(moc) = 2.426 X 10-12 m. Neglect the binding of the electrons. 
Compare your result with Compton's data shown in Example 13.6. 
13.9 The solar constant, the average energy per unit area falling on the 
earth, is 1.4 X 103 W /m2. How does the total force of sunlight compare 
with the sun's gravitational force on the earth? 

Sufficiently small particles can be ejected from the solar system by 
the radiation pressure of sunlight. Assuming a specific gravity of 5, what 
is the radius of the largest particle which can be ejected? 

13.10 A 1·kW light beam from a laser is used to levitate a solid aluminum 
sphere by focusing it on the sphere from below. What is the diameter 
of the sphere, assuming that it floats freely in the light beam? The 
density of aluminum is 2.7 g/cm3• 
13.11 A photon of energy Eo collides with a free particle of mass mo at 
rest. If the scattered photon flies off at angle B, what is the scattering 
angle of the particle, </>? 

Ans. cot </> = (1 + Eo/moc2) tan (B/2) 
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FOUR·VECTORS AND RELATIVISTIC INVARIANCE 

14.1 Introduction 

When a major advance in physics is made, old concepts inevitably 

lose importance and points of view which previously were of minor 

interest move to the center. Thus, with the advent of relativity 

the concept of the ether vanished, taking with it the problem of 

absolute motion. At the same time, the transformation proper· 

ties of physical laws, previously of little interest, took on central 

importance. As we shall see in this chapter, transformation 

theory provides a powerful tool for generalizing non relativistic con· 

cepts and for testing the relativistic correctness of physical laws. 

Furthermore, it is a useful guide in the search for new laws. By 

using transformation theory we shall derive in a natural way the 

important results of relativity that we found by ad hoc arguments 

in the preceding chapters. This approach emphasizes the mathe· 

matical structure of physics and the nature of symmetry; it illu· 

strates a characteristic mode of thought in contemporary physics. 

To introduce the methods of transformation theory, we defer 

relativity for the moment and turn first to the transformation 

properties of ordinary vectors in three dimensions. 

14.2 Vectors and Transformations 

In Chap. 1 we defined vectors as "directed line segments"; with 

the help of transformation theory we can develop a more funda· 

mental definition. 

To motivate the argument and to illustrate the ideas of trans

formation theory we shall rely at first on our intuitive concept of 

�_-----x vectors. Consider vector A, which represents some physical quan· 

tity such as force or velocity. To describe A in component form 

we introduce an orthogonal coordinate system x, y, z with unit 

base vectors i, j, k. A can then be written 

y' 

The coordinate system is not an essential part of the physics; it is 

a construct we introduce for convenience. We are perfectly free 

to use some other orthogonal coordinate system x', y', z' with base 

vectors i', j/, k'. Let the x', y', z' system have the same origin as 

the x, y, z system, in which case the two systems are related by a 

rotation. In the primed system, 

I 

I 1· 
I 



y
' 

y 

�----x
' 

�---------x 

r' = r - R 

Z,z
' 

x x' 
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For a general coordinate rotation, the components A�, A�, A: 
have a definite relation to the components Ax, Ay, A.. Equating 

the two expressions for A gives 

A�i' + A�j' + A�k' = Axi + Ayj + A.k. 

If we take the dot product of both sides with i' we obtain 

A: = Ax{i' . i) + Au{i' . j) + A.(i' . k) 

Similarly, 

A� = Ax(j' . i) + Au(j' . j) + A,(j' . k) 

A: = A:t(k' . i) + AII(k' • j) + A.(k' . k). 

14.1a 

14.1b 

14.1c 

The coefficients (I' . I), (I' . j), etc., are numbers which are deter· 

mined by the given rotation; they do not depend on A. 

We derived Eq. (14.1) from our concept of vectors as directed 

line segments, but now we shall reverse the order and use Eq. 

(14.1) to define vectors. A vector in three dimensions is a set of 

three numbers which transform under a rotation of the coordinate 

system according to Eq. (14.1). It is easy to show that the vector 

algebra developed in Chap. 1 is consistent with our new definition 

of a vector. For example, the sum of two vectors is a vector, and 

the time derivative of a vector is also a vector. 

We should point out that the general displacement of a coordi· 

nate system is composed of a translation as well as a rotation. 

The reason that we referred only to rotations in the definition of a 

vector is that translations have no effect on the components of a 

vector. The sole exception is the position vector r, which is defined 

with respect to a specific origin. The components of r transform 

under rotations according to Eq. (14.1), but r can be distinguished 

from true vectors such as F and v by its transformation properties 

under translation. We can distinguish between true vectors, posi· 

tion vectors, and other mathematical entities by investigating how 

they behave under all possible transformations. 

Rotation about the z axis 

Equation (14.1) is completely general, but usually it is convenient 

to work with a special case such as a rotation of coordinates through 

angle � around the z axis, as shown in the sketch. We have 

(I' . I) = cos � 

(I' . j) = sin � 

(I' . k) = 0 

(j' . I) = -sin � 

(j' . j) = cos � 

(j' . k) = 0 

(k' . i) = 0 

(k' . j) = 0 

(k' . k) = 1. 
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Hence the components of any vector A = (Ax,Ay,A.) must trans· 

form according to the relations 

A : = Ax cos <I> + Ay sin <I> 

A� -Axsin<I> + Aycos<I> 

A: A •. 

For example, let A = r = (x,y,z). 

x' x cos <I> + y sin <I> 

y' - x sin <I> + Y cos <I> 

z' = z. 

14.2 

Then 

x ' = a + b = x cos <I> + y sin <I> 

These relations can be independently verified from the geometry. 

The drawing shows how the x' coordinate of point P is related 

to the coordinates (x,y). 

Example 14.1 Transformation Properties of the Vector Product 

z.z' 
In Chap. 1 we gave an essentially geometrical definition of the vector 

��--�-------------y 

A B 

x ' 

product. To demonstrate our new definition of a vector we shall prove 

that the components of the vector product transform as the components 

of a vector. For simplicity, we consider two coordinate systems, x, y, z 

and x', y', Zl, which differ by a rotation through angle <I> around the z 

axis, and two vectors A and B in the x, y plane. From the definition of 

vector product we have 

c = A X B = A" 
B. 

jl 

A� 
B' x 

j' 
A' 

Y 
B' y 

it' 
o 
o 

In the x, y, z system the components of Care 

C. = 0 

Cy = 0 

C. = A"By - AyB" 

and in the x', y', z' system they are 

C� = 0 

C� = 0 

C� = A�B� - A�B�. 

la 

Ib 

Ie 

2a 

2b 

2c 

If C is a vector, its components must obey the transformation law, Eq. 
(14.2): 

C� = Cx cos <I> + Cu sin <I> 

C� = -C. sin <I> + Cy cos <I> 

C� = C •. 

3a 

3b 

3c 
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Equations (3a) and (3b) are identically satisfied by Eqs. (1) and (2). To 

prove Eq. (3c), we need to show that .·l �B� - .1 �B� = .lrB. - .lyB,. 

From Eq. (14.2) we have 

A� =A. cos<l>+A. sin<l> 

A� = -Ax sin <I> + Ay cos <I> 

B� = Bx cos <I> + By sin <I> 

B� = -B. sin<l> + By cos <1>. 

Hence, 

A�B� - .1�B� = (.L cos <I> + A. sin <1»( -B. sin <I> + By cos 4» 

- (-Ax sin <I> + .1. cos <I»(B. cos <I> + By sin <1» 

= A.B. - .1yB. 

= Cz, 

This proves that all three components of the vector product trans· 
form like the components of a vector so that the vector prod uct is, in 

fact, a vector. 

Example 14.2 A Nonvector 

To give a counterexample to the cross product, suppose that we try to 

introduce a new type of vector multiplication, the vector "double cross" 

product C = A X X B defined by 

C. = AyB. + A.B. 

C. = A.B. + A.B. 

C. = A.B. + A.Bx. 

Is C actually a vector? 

If we again take the case A = (,{",{y,O), B = (B"By,O), we have 

C. = 0 

C. = 0 

C. = A.B. + A.B •. 

In the x', y', z' system the components are 

C� = A�B� + A�B� = 0 

C� = A�B� + A�B� = 0 

C� = A�B� + A�B�. 

The first two equations obey the transformation rule, Eqs. (3a) and 

(3b) of Example 14.1. However, when we evaluate the last equation we 

find that 

C� = (A. cos <I> + A. sin <I»(-Bx sin <I> + B. cos <1» 
+ (-A. sin <I> + A. cos <I»(B. cos <I> + By sin <1» 

= (A.By + A.yB.)(cos2 <I> - sin2 <1» - 2(AxB. - AyB,,) cos <I> sin <1>. 
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It is apparent that C� � C .. so that Eq. (3c) of Example 14.1 is not satis· 

fied. The elements generated by the double cross product are not the 

components of a vector, and the double cross product is a useless 

operation. 

Invariants of a Transformation 

Any quantity which is unchanged by a general coordinate trans· 
formation is called an invariant of the transformation. Invariants 
play an important role in physics. They are the only entities suita· 
ble for the construction of physical laws, since the principle of 
relativity requires that the results of physical theories be inde· 
pendent of the choice of coordinate system (provided, of course, 
that the system is inertial). 

' 

We have so far encountered two classes of invariants-scalars 
and vectors. Scalars are single numbers and are unaffected by 
the choice of coordinates. Vectors are invariant under rotations 
of the coordinates by construction; we designed the transformation 
rule, Eq. (14.1), to assure this. 

Any mathematical entity which is invariant under a rotation of 
coordinates is called a tensor. A scalar is a tensor of zeroth rank, 
and a vector is a tensor of the first rank. Tensors of higher rank 
also exist; the moment of inertia introduced in Chap. 7 is a tensor 
of the second rank. 

The Transformation Properties of Physical Laws 

We have used vector notation wherever possible because of its 
simplicity; one vector equation is easier to handle than three scalar 
equations. However, from the point of transformation theory, 
vectors have a deeper significance. Since we must be able to use 
any coordinate system we choose for describing physical events, 
it is essential that we be able to write physical laws In a form inde· 
pendent of coordinate systems. Thus, if an equation represents 
a statement of a physical law, both sides of the equation must 
transform the same way under a change of coordinates. For 
example, consider the equation for motion along some axis j: 
Fj = maj. Assuming m is a scalar, maj must be a component of 
a vector, since acceleration is a vector. Thus, Fj is a component 
of a vector along the same axis, and the general form of the equa· 
tion must be F = mao Once the law is in vector form, we can 
easily find the motion along any set of axes we choose. From this 
point of view, the vector nature of force, including the rule for 
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superposition of forces, is a mathematical consequence of the 

requirement that the laws of motion be valid in all inertial systems. 

The question arises as to whether the law of superposition of 

forces is a physical law or simply a mathematical result. It is, in 

fact, both. Experimentally, we find that the translation of a body 

can be described by only three independent equations, one for 

each coordinate axis; this implies that force has three independent 

components. According to transformation theory, the only three 

component entity suitable for describing physical laws is a vector, 

and vectors obey the law of superposition. 

Scalar Invariants 

We can use the dot product to combine two vectors to form a 

scalar. Since scalars are independent of the coordinate system, 

the dot product of two vectors is called a scalar invariant. 

Let us show explicitly that the dot product A· B is a scalar 

invariant under rotations. Considering a rotation about the z axis 

for simplicity, we use Eq. (15.2) to obtain 

A'B' + A'B' + A'B' = 
:t :t  11 II % Z 

(Ax cos cI> + All sin cI»(Bx cos cI> + By sin cI» 

+ (-Ax sin cI> + Ay cos cI» 

(-Bx sin cI> + By cos cI» + (A.B.) 

= AxE", + AyBy + A.B •. 

In particular, the dot product of a vector with itself, called the 

norm of the vector, is a scalar invariant: 

The norm of the position vector r changes under a translation of 

coordinates but is invariant under pure rotations. We can use 

this to define a rotation of coordinates: it is any transformation 

which leaves r2 
= x2 + y2 + Z2 invariant. 

14.3 Minkowski Space and Four-vectors 

As we have discussed, it must be possible to express the laws of 

classical physics using entities like scalars and vectors, which are 

invariant under rotations of the coordinates x, y, z. From the 

mathematical point of view the Lorentz transformations have much 

in common with a spatial rotation: they are both linear transforma

tions from one set of coordinates to another. 
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CHANGE OF COORDINATES CHANGE OF COORDINATES 
UNDER A ROTATION UNDER LORENTZ TRANSFORMATION 

x' = x cos <P + Y si n <P 
y' 

= -x sin <P + y cos <P 
z

' 
= z 

(t' = t) 

x' 
= 'Yx - 'Yvt 

y' 
= Y 

z
' = z 

Our object in this section is to find a way to write physical laws so 

that they are invariant under the Lorentz transformations. This 

assures that the laws will have the same form for observers in all 

inertial frames as required by the first postulate of relativity. 

We shall start from the observation made in 1908 by the mathe· 

matician Minkowski that, with a slight change of notation, the 

Lorentz transformations represent a rotation in a four dimensional 

space. To introduce his line of reasoning, we return to the second 

postulate of relativity: the speed of light is the same for observers 

in all inertial frames. Consider two inertial systems x, y, z, t and 

x', y', z
'

, t' moving with relative speed v in the x direction. If 
their origins coincide at t = 0 and a short light pulse is sent out 

from the origin at that instant, the locus of the pulse in the x, y, 
z, t system is r = et, or 

x2 + y2 + Z2 = (etF, 

while in the x', y', z
'

, i' system it is 

X'2 + y'2 + Z'2 = (et'F. 

Comparing, we see that the quantity x2 + y2 + Z2 - (et)2 is equal 

to zero in each coordinate system; it appears to be a scalar invariant 

under the Lorentz transformations. We can show this directly by 

employing the Lorentz transformations, Eq. (11.3): 

X'2 + y'2 + Z'2 _ (et'F = 'Y2(X _ vtF + y2 + Z2 _ 'Y2e2 (t _ 

v

e
�) 2 

1 [X2 (1 _ 
V2) 

1 - v2/e2 e2 

_ e2t2 (1 - �) ] + y2 + Z2 

= x2 + y2 + Z2 - (Ct)2. 14.3 

In ordinary three dimensional space, the only transformation 

that leaves x2 + y2 + Z2 unchanged is a rotation. Minkowski con· 

sidered a four dimensional space with coordinates Xl. X2, Xa, X4. 
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where Xl = X, X2 = y, Xa = Z and X4 = ict (i2 = -1). With these 

coordinates, 

and Eq. (14.3) can be written 

It is apparent that Xl2 + X22 + Xa2 + X42 is invariant under Lorentz 

transformations; by analogy with the three dimensional case, the 

Lorentz transformations represent a rotation of coordinates. The 

analogy also suggests that Xl, X2, Xa, X4 are the components of a 

true four dimensional vector. 

The transformation rules for (Xl,Xz,Xa,X4) = (x,'!J,z,ict) are readily 

obtained from the Lorentz transformations. 

x� = 'Y(XI + i{3X4) 
I x2 = X2 
I Xa = Xa 

x� = 'Y(X4 - i{3Xl), 
where {3 = vic. (As usual, to simplify the algebra we restrict our

selves to systems whose relative motion is in the x direction.) It 

follows that any true four dimensional vector must transform in 

the same fashion. Such vectors are known as four-vectors. Thus 

the transformation rule for a four-vector � = (Al,A2,Aa,A4) is 

A� = 'Y(AI + i{3A4) 
A� = A2 
A� = A3 
A� = 'Y(A4 - i{3AI). 

As we expect, the norm of � is a Lorentz invariant. 

A�2 + A�2 + A�2 + A:2 = Al2 + A22 + Aa2 + A42. 

14.4 

The factor of c gives A4 the same dimensions as the other com

ponents. From Eq. (14.4), we see that if Al is a real number, A4 
must be imaginary, as in the four-vector � = (x,y,z,ict). The fact 

that the fourth component is imaginary arises from the essential 

difference between space and time. 

In Minkowski's formulation of relativity, an event specified by 

X, y, z, t is viewed as a point Xl, X2, X3, X4 in space-time. Minkowski 

called the four dimensional space-time manifold "world," although 
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it has come to be called Minkowski space. A point in Minkowski 

space is called a world point. As a particle moves in space and 

time its successive world points trace out a world line. 

The location of a world point is specified by its position four·vector 

The Lorentz transformations, which relate an event in different 

coordinate systems, represent a transformation of the components 

of � from one coordinate system to another. 

The displacement between two world points is 

�� = (�x, �y, �z, ic �t) 

or, in differential form, 

d� = (dx, dy, dz, ic dt). 

Since ds is a four-vector, its norm is a Lorentz invariant. The 

norm is 

ds2 = dx2 + dy2 + dz2 - c2 dt2. 

A related Lorentz invariant that will be useful to us is dT2 = -ds2jc2• 

dT has a simple interpretation. Consider a displacement d� 

between two world points of a moving particle. In the rest frame 

of the particle, the space coordinates are constant, and therefore 

dx = dy = dz = O. Thus dT = dt in the rest frame; the world 

points are separated only in time. dT is the time interval measured 

in the rest frame, and for this reason T is known as the proper 

time. 

Example 14.3 Time Dilation 

We rederive the Einstein time dilation formula to show the power of 

four-vectors. 

Consider an observer at rest in the x
'
, y', z

'
, t' system. In this sys· 

tem, the proper time interval between two world points is dT = dt'. In 

the x, y, z, t system moving with velocity � relative to the first frame, 

the interval between the same points is given by 
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Since dr2 is a Lorentz invariant, its value for the same world points is 

the same in all frames. Hence, we can equate its value in the rest 

frame to its value in the second frame. 

or 

Since (dx/dt)2 + (dy/dt)2 + (dz/dI)2 = v2, we have 

or 

In contrast to the derivation of Sec. 13.3, this treatment avoids hypo· 

thetical experiments and discussions of simultaneity. 

Example 14.4 Construction of a Four-vector: The Four-velocity 

In ordinary three dimensional space, dividing a vector by a scalar (a 

rotational invariant) yields another vector. Similarly, dividing a four· 

vector by a Lorentz invariant yields another four-vector. 

Consider the displacement four-vector 

d� = (dx, dy, dz, ic dt). 

Dividing by the Lorentz invariant dr, we obtain a new four-vector 

1 

By analogy with the three dimensional case, we call d�/dr the four

velocity �. 

In the rest frame of the particle, dx = dy = dz = 0, and dr = dt. 
For a particle at rest 

� = (0, 0, 0, ic). 2 

The norm of � is (�)2 = - c2 and it has the same value in all frames. 

Obviously the four-velocity � is very different physically from u, the 

familiar three dimensional velocity. 

We now wish to find an expression for the four-velocity of a moving 
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particle. Let the x, y, z, t system move with velocity -u relative to the 

rest frame of the particle. Using the time dilation formula of Example 

14.3, we can write 

dt = "I dr, 

where dt is now the time interval in the moving frame. Using this in 

EQ. (1), 

� = "I (�:, ��, �;, iC ) 
= 'Y(u, ic), 3 

where "I = 1/V1 - U2/C2• 

We shall use u in the next section to derive the momentum· 
-> 

energy four-vector. However, we shall first demonstrate how to 

transform a four-vector from one frame to another. 

Example 14.5 The Relativistic Addition of Velocities 

We can easily derive the formula for the relativistic addition of velocities 

y by transforming the four·velocity � = 'Y(u,ic) into successive frames with 

y' 

•• ----•• U 

L-__________________ x 

v 

• • u 

the aid of EQ. (14.4). 

Consider a particle moving along the x direction of the x, y, z, t system 

with speed U. In this frame, 

� = (U t,U 2,Ua,U4) = r(U,O,O,ic), 

where r = 1/V1 - U2/C2. Consider a second frame x
'

, y', z
'
, t' mov· 

ing along the x direction with speed v relatille to the first frame. In 

this frame, the four·velocity of the particle is 

, (' I , ') � = Ul,U2,U3,1�4 

= 'Y'(u ',ic), 

'------------------x' where "I' = 1/V1 - U'2/C2. U' is the speed of the particle in the x', 

y', z', t' frame. 

From the transformation rule, Eq. (14.4), and using Ut = ru, U2 = 0, 

Ua = 0, U4 = ire, 

U � = 'Y(U t + i {3u4) = 'Yrw - v) 
u� = U 2 = ° 

u� = U3 = ° 

I .
{3

. r ( VU) . 
r ( VU) U 4 = 'Y(U 4 - t Ut) = t'Y e - --; = tc 'Y 1 - � , 

, 
, 

. ; 

. ; 
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where,,( = l/Vl - V2/C2 and {3 = vic. Hence, 

� = "('(u',ic) 

= "( r [ U - v, 0, 0, ic (1 - v

c�) J 
Equating components, 

and 

Therefore, 

u' = ("(r h')(U - v) 

U - v 1 - vU/c2' 
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which is Einstein's velocity addition formula for the case we are consid· 

ering. The same procedure can be used to add nonparallel velocities. 

14.4 The Momentum-energy Four-vector 

In the last chapter we obtained expressions for the relativistic 

momentum and energy by rather labored arguments based on a 

hypothetical two body collision. In this section we shall obtain 

the same results in a much more direct manner by simply con· 

structing a momentum-energy four·vector. We shall also obtain 

the relativistic expression for force, a difficult quantity to derive 

by the methods of the last chapter. 

Our starting point is the observation that the classical momentum 

mou is not relativistically invariant since the classical velocity is not 

a four-vector. However, we found the form of the four·velocity !! 
in Example 14.4. Since the rest mass mo is a Lorentz invariant, 

the product mo!! is a four-vector. It is natural to identify this with 

the relativistic momentum, and we therefore define the four

momentum 

= "(mou, imoc) 

= (mu, imc) 
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or 

� = (p, ime)_ 14.5 

Does the four-momentum obey a conservation law? Classically, 
the rate of change of momentum is equal to the applied force, so 
that the momentum of an isolated system is conserved_ However, 
it is not obvious whether the four-momentum is similarly conserved 
since we have not developed a relativistic expressi,on for force. 
Recall that we obtained the four-velocity by dividing ds by the 

, � 

Lorentz invariant dr. Let us apply the same method to obtain 
the "time derivative" of �, and then define this equal to the 
four-force. 

F = 
d� 

= (dP, i .!:.. me) 
� dr dr dr 
� is known as the Minkowski force_ 

14,6 

If dt is the time interval in the observer's frame corresponding 
to the interval of proper time dr, then dt = "y dr and we have 

(dP . d ) F = "y -, � - me . 
� dt dt 
In the classical limit, dp/dt = F_ In order to conserve the momen
tum of an isolated system, we retain the identification of force 
with rate of change of momentum in all inertial systems. The 
Minkowski force becomes 

F = "y (F, i!!.. me). 14.7 
� dt 

We have constructed F so that four-momentum is conserved 
� 

when the four-force is zero. Like all four-vectors, � is relativisti
cally invariant; if it is zero in one frame, it is zero in every frame. 
This assures us that if four-momentum is conserved in one inertial 
frame, it must be conserved in all inertial frames. 

To interpret the fourth, or timelike component of � = (p, imc) , 

we recall that classically F • u represents the rate at which work is 
done on a particle. By the work-energy theorem, F· u = dEjdt, 
where E is the total energy. With this inspiration, let us examine 
� . � for a particle moving with velocity u. Since � = ')'(u, ic), 

F • u = ')'2 (F . u - !!.. me2). 
� � dt 
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Since the scalar product of two four-vectors is a Lorentz invariant, 

we are free to evaluate it in any frame we please. Let us evaluate 

F· u in the rest frame of the particle. In this frame, (dp/dt)· u = 0 

since u = O. We also have 

Hence F • u = O. 

d 
F· u - - mc2 = 0 

dt 
or 

d 
F· u = -mc2 

dt 
. 

This relativistic result bears a close resemblance to the classical 

relation F· u = dE/dt. We conclude that the relativistic equiva

lent of total energy is 

The four-momentum becomes 

£ = (p, imc) = (p, 
i:) - 14.8 

� is often called the momentum-energy four-vector. 

We can generate a Lorentz invariant by taking the norm of �. 

Hence, 

a familiar result. 

The Minkowski approach of generating four-vectors has led us 

in a natural way to relativistically correct expressions for momen

tum and energy. With this approach the conservation laws for 

energy and momentum appear as a single law: the conservation 
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of four·momentum. In relativity, momentum and energy are 

different aspects of a single entity; this represents a significant 

simplification over classical physics, where the concepts are essen· 

tially unrelated. 

We conclude this section with a few applications of the momen· 

tum·energy four·vector. 

The Doppler Effect, Once More 

We have derived the relativistic expression for the Doppler effect by two 

different approaches: from a geometrical argument in Section 12.5 and 

by a dynamical argument in Example 13.8. In this example we obtain 

the same result by a third,. much simpler, approach-four·vector 

invariance. 

Consider a photon with energy E = hv and momentum hvlc traveling 

in the xy plane at angle <I> with the x axis. The momentum in the x, y 
system is p = (hvlc)(cos <1>, sin <1>,0). The momentum·energy four·vector 

is 

( iE) 
!! = p, � 

hv . O .  = - (cos <1>, Sin <1>, ,t). 
C 

In the x', y' system shown in the sketch, the four·momentum can 

be written 

hv' , . , .  p = - (cos <I> , sin <I> , 0, t). ... c 

From Eq. (14.4) we have p� = 'Y[P4 - i(vlc)pll. 

.hv' (.hv .v hv ) t -- = 'Y t - - t - - cos <I> 
c c c c 

or 

v' = 'Y v (1 - � cos <1» 

v' 1 v = - -----,-----

'Y 1 - (vic) cos <I> 

VI - v21c2 
= v' ------,-----

I - (vic) cos <I> 

identical to our earlier result, Eq. (12.7), 

Hence, 
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Example 14.7 Relativistic Center of Mass Systems 

531 

The center of mass system we used in Chap. 4 to analyze collision prob· 

lems is the coordinate system in which the spatial momentum is zero. 

In this example, we shall find the relativistic transformation from the 

laboratory system to the zero momentum frame. 

Consider a collision between two particles with rest masses M I and 

1112• Let particle 1 be moving with velocity u in tht! laboratory system and 

particle 2 be at rest. The momentum·energy four·vector of each par· 

ticle is 

( 
iEI) !l PI, 0, 0, � 

( 
iE2) �2 = 0,0,0, -c- . 

The total momentum·energy is 

( 
. El + E2) 

P = PI + P2 = Ph 0, 0, � . 
--+ -+ � c 

In a frame moving along the x axis with speed V the spatial components 

of P are, by Eq. (14.4), 
-. 

P� = r (PI 
-

V 
El � E2) 

P� = 0 

P� = 0, 

where r = 1/Vl - V2jc2• 

2 

I n the center of mass system, P' = O. From Eq. (2) we see that the 

speed of this frame with respect to the laboratory frame is 

3 

The energy available for physical processes such as the production of 

new particles or other inelastic events is the total energy in the center 

of mass system E'. In the center of mass frame, the momentum·energy 

four·vector is 

( 
iE') o,O,O,� 

. 4 

We can find E' by using the invariance of the norm of P. From Eqs. 

(1) and (4), 
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or 

where we have used P12C2 = E,2 - 0111C2)2. For our problem, H, 
'Y111,c2 and E2 = M2c2, where 'Y = 1/V1 - u2/c2. Hence, 

E' = (M,2 + 11,[22 + 2'YM1M2)'C2. 

The total energy in the laboratory system is 

and the fraction of the initial energy available for physical processes is 

E' 
E 

(M,2 + ]lrf22 + 2'YM1M2)' 
'YMI + M2 

5 

6 

7 

An important practical case is that of equal masses M, = M2• Equa· 

tion (7) becomes 

H' Vz VI + 'Y 
H 1+'Y 

Vz 
8 

VI + 'Y 

I n the low velocity limit, 'Y = 1 and E' IE = 1. At low speeds, most of 

the energy is in rest mass energy and kinetic energy is relatively unim· 

portant. To discuss the high·speed limit, it is convenient to write Eq. 

(8) in terms of the projectile energy El = 'YMc2• 

H' Vz 

E VI + E1IMc2 

For HI» M c2, we have 

E' V2Mc2 
- "" ---==-

E Vii; 

The useful fraction of energy decreases as E1-i. For example, the pro· 

ton synchrotron at the National Accelerator Laboratory in Batavia, Illinois, 

can accelerate protons to an energy of 300 GeV (1 GeV = 109 eV). Since 

the rest mass of the proton is about 1 GeV, we see that for protons collid· 

ing with a hydrogen target, E'IE "" V3/V200 "" 0.1. Only 30 GeV is 

available for interesting experiments. 

By using identical beams colliding head on, the laboratory frame 

becomes the center of mass frame, and the total energy is available for 

inelastic events. This technique of colliding beams has been used 

extensively in electron accelerators and has proved feasible in proton 

machines as well. 
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Example 14.8 Pair Production in Electron-electron Collisions 

In Example 13.7 we analyzed pair production, the process by which a 

photon collides with an electron to create an electron·positron pair. 

The threshold energy for the process was found to be E = 2mocz = 1.02 
MeV, where moc2 = 0.51 MeV is the rest energy of the electron or positron. 

A related process is the production of an electron· positron pair by the 

collision of two electrons: 

The reaction evidently satisfies conservation of charge. The problem is 

to find the threshold energy for the process. 

To describe the dynamics of the problem we introduce the following 

four-momenta: 

electron 1 before the collision 

electron 2 before the collision 

P3: electron 1 after the collision 
-+ 

electron 2 after the collision 

electron created in e-'e+ pair 

positron created in e--e+ pair 

Then conservation of four-momentum gives 

Pi + P2 = P3 + P4 + Po + P6. 
� -+ -+ -+ -+ -+ 

Squaring, we have 

(PI + PZ)2 = (P3 + P4 + po + P6)2. 1 
-+ -+ -+ -+ -+ -+ 

Since each side of the equation is Lorentz invariant, we can compute the 

terms in whatever reference frame is most convenient. 

Let us compute the left hand side of Eq. (1) in the laboratory frame. 

Taking particle 2 to be initially at rest, we have 

!!2 = (O,imoc) 

and 

(e1 + ez)2 
= el2 + ez2 

+ 2el • ez 

= -2(moc)Z - 2moElo 2 

where we have used eZ = pZ - E2/CZ = -mozcz, valid for any particle. 
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The right hand side of Eq. (1) is most conveniently calculated in the 

center of mass frame. At threshold, all four particles are at rest. (This 

minimizes the energy and is consistent with the requirement that the 

total spatial momentum be zero in the center of mass frame.) Hence 

!!3, !!4, !!5, 
!!6 all have the form (O,O,O,imoc), and the right hand side of 

Eq. (1) becomes 

(0,0,0, 4imoC)2 = -16(moc)2. 3 

Substituting Eqs. (2) and (3) in Eq. (1) gives 

or 

E. includes the rest energy of the projectile, so that the kinetic energy 

of the projectile at threshold is 

K. = E. - moc2 

= 6moc2. 

The argument here can be applied to the production of other particles, 

for instance, to the production of a negative proton in the reaction 

Since the proton rest mass is 0.94 GeV, the threshold kinetic energy for 

the production of negative protons is 6(0.94) GeV = 5.64 GeV. The 

Bevatron at the Lawrence Radiation Laboratory, Berkeley, California, 

was designed to accelerate protons to 6 GeV to allow this process to be 

observed. Owen Chamberlain and Emilio Segre received the Nobel Prize 

in 1959 for producing negative protons, or antiprotons. 

14.5 Concluding Remarks 

The special theory of relativity, far from representing a complete 

break with classical physics, has a heavy flavor of newtonian 

mechanics in its insistence on the equivalence of inertial frames. 

Essentially, Einstein generalized the work of Newton by bringing 

classical mechanics into accord with the requirements of electro· 

magnetic theory. 

Fundamentally, however, the emphases of special relativity are 

not the same as those of newtonian physics. Einstein's rejection 

of unobservable concepts like absolute space and time and his 

insistence on operational definitions related to observation were 
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much more far-reaching than were Newton's efforts in this direc

tion. Einstein laid the groundwork for the analysis of observables 

which was essential in the development of modern quantum 

mechanics. In addition, he made significant contributions to our 

philosophical understanding of how man obtains knowledge of the 

world. 

As we have seen in this chapter, one of Einstein's great contri

butions was recognition of the power of transformation theory 

as an organizing principle in physics. Transformation theory uni

fies and simplifies the concepts of special relativity and has served 

as a knowledgeable guide in the search for new laws. 

However, in spite of its power and harmony, special relativity is 

not a complete dynamical theory since it is inadequate to deal with 

accelerating reference frames. To Einstein this was a fundamen

tal defect. According to Mach's principle of equivalence it is 

impossible to distinguish locally between an inertial system in a 

gravitational field and an accelerating coordinate system in free 

space. Therefore, by the principle of relativity, the frames must 

be equally valid for the description of physical phenomena. Since 

special relativity is incapable of dealing with accelerating reference 

frames, it is inherently incapable of dealing with gravitational fields. 

Einstein went far toward removing these difficulties with his 

general theory of relativity, published in 1916. The general theory 

deals with transformations between all coordinate systems, not 

just inertial systems. It is essentially a theory of gravitation, since 

it is possible to "produce" a gravitational field merely by changing 

coordinate systems. From this point of view the effect of gravity 

is regarded as a local distortion in the geometry of space. Even 

in the gravitational field of the sun, however, effects attributable 

to general relativity are small and difficult to detect. For example, 

the deflection of starlight by the sun, one of the most dramatic 

effects predicted, amounts to only 1.7 seconds of arc. 

General relativity's greatest impact has been on cosmology, since 

gravity is the only important force in the universe at large. Its 

role in terrestrial physics has been minor, however, partly because 

the effects are small and partly because so far it has not been 

extended to include electromagnetism. In contrast, special rela

tivity has a multitude of applications and is part of the working 

knowledge of every physicist. 

Einstein's impact on the twentieth century is difficult to assess in 

its entirety. He altered and enlarged our perceptions of the 

natural world, and in this respect he ranks among the great figures 

of Western thought. 
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Problems 
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14.1 A neutral pi meson, rest mass 135 MeV, decays symmetrically into 

two photons while moving at high speed. The energy of each photon in 

the laboratory system is 100 MeV. 

a. Find the meson's speed V. Express your answer as a ratio V Ie. 

b. Find the angle (J in the laboratory system between the momentum 

of each photon and the initial line of motion. 

Ans. (J � 42° 

14.2 A high energy photon ('Y ray) collides with a proton at rest. A 

neutral pi meson ('lr0) is produced according to the reaction 

What is the minimum energy the 'Y ray must have for this reaction to 

occur? The rest mass of a proton is 938 MeV, and the rest mass of a 

'lr0 is 135 MeV. 

Ans. Approximately 145 MeV 

14.3 A high energy photon ('Y ray) hits an electron and produces an 

electron· positron pair according to the reaction 

What is the minimum energy the 'Y ray must have for the reaction to 

occur? 

14.4 A particle of rest mass 111 spontaneously decays from rest into two 

particles with rest masses ml and mz. Show that the energies of the 

pa rticles are 

14.5 A nucleus of rest mass M I moving at high speed with kinetic energy 

KI collides with a nucleus of rest mass M2 at rest. A nuclear reaction 

occurs according to the scheme 

nucleus 1 + nucleus 2 � nucleus 3 + nucleus 4. 

The rest masses of nuclei 3 and 4 are Ma and M4• 

The rest masses are related by 

where Q > 0. Find the minimum value of KI required to make the reac· 

tion occur, in terms of M1, Mz, and Q. 

Ans. clue. If kfl = M2 = Qle2, then Kl = 5QI2 

14.6 A rocket of initial mass Mo starts from rest and propels itself for· 

ward along the x axis by emitting photons backward. 

a. Show that the four·momentum of the rocket's exhaust in the initial 

rest system can be written 

� = 'Y M ,v( -1,0,0, i), 
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where M, is the final mass of the rocket. (Note that this result is valid 

for the exhaust as a whole even though the photons are Doppler-shifted_) 

b_ Show that the final velocity of the rocket relative to the initial frame 

is 

x2 - 1 
V= --c 

x2 + 1 ' 

where x is the ratio of the rocket's initial mass to final mass, Mo/M,. 
14.7 Construct a four-vector representing acceleration. For simplicity, 

consider oniy straight line motion along the x axis. Let the instantaneous 

four-velocity be �. 
Ans. clue. norm = a2/(1 - U2/C2)3, where a = du/dt 

14.8 The function j(x,t) = A sin 271"[(x/�) - vt] represents a sine wave 

of frequency v and wavelength�. The wave propagates along the x 
axis with velocity = wavelength X frequency = �v. j(x,t) can repre

sent a light wave; A then corresponds to some component of the electro

magnetic field which constitutes the light signal, and the wavelength and 

frequency satisfy �v = c. 

Consider the same wave in the coordinate system x', y', z
'

, t' moving 

along the x axis at velocity v. I n this reference frame the wave has the 

form 

f'(x',t') = A' sin 271" G: - v't} 

a. Show that the velocity of light is correctly given provided that l/A' 
and v' are components of a four-vector k given in the x, y, z, t system by 

k = 271" -, 0 0 - . 
( 1 iV) 

--+ A '  
, 

c 

b. Using the result of part a, derive the result for the longitudinal 

Doppler shift by evaluating the frequency in a moving system_ 

c. Extend the analysis of part b to find the expression for the trans

verse Doppler shift by considering a wave propagating along the y axis. 
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period versus amplitude, 256 

Perigee, 396 

Period of motion, 411 

Perturbed orbit, 388 
Phase, 411 
Photoelectric effect, 502 
Photon, 501 

rest mass of, 512 
Physical pendulum, 257 
Planck, M., 272 
Planets: 

motion of, 390 
orbits of, table, 395 

perturbation of, 391 

Polar coordinates, 27 
acceleration in, 36 
velocity in, 30 

Pole vaulter paradox, 486 
Potential energy, 168 

effective, 385 
gradient of, 211 

relation to force, 173, 206, 214 
surface, 211 

Pound, R. V., 370 

Pound,67 

Power, 186 
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of equinoxes, 300 

of gyroscope, 296, 331 
torque·free, 317, 331 

Pressure of a gas, 144 
Principal axes, 313 
Principia, 440, 452n. 

Principle of equivalence, 346, 369 
Principle of relativity, 451 
Principle of superposition, 58 

Products of inertia, 309 

Proper time, 468, 524 

Pulleys, 90 
Pulsar, 510 

Q (quality factor), 418 

Radiation pressure, 502 
Radius of gyration, 257 

Reduced mass, 179, 191, 379 
Relative velocity, 48 

Relativity: 

general theory, 535 
special theory, 450 

Resonance, 423 
curve, 427 

Rest energy, 491 

Rest mass, 491 
Rigid body motion, 288, 308 

Rocket, 136 

relativistic, 536 
Rossi, B., 465 

Rotating bucket experiment, 368 
Rotating coordinate system, 355 
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Rotating coordinate transforma· 
tion, 371 

Rotating vectors, 25, 294, 297 

Rotations, noncommutativity of, 
285,322 

Rutherford, E., 271 

Satellite orbit, 396 

Scalar, 308, 520 

invariants, 521 

Scalar product, 5 

Schuler pendulum, 373 
Second, definition of, 66 

Segre, E., 534 

Series: 
binomial, 41 

Taylor's, 42 

SI (international system of units), 
67 

Simple harmonic motion, 97,154, 

410 

Simple pendulum, 255 

Simultaneity, 463 

Skew rod, 292-294, 312 

Slug (unit), 67 

Small oscillations, 178 

Smith, J. H., 469 

Spacelike interval, 466 

Special theory of relativity, 451 

Speed of light: 
in empty space, 445 

in a moving medium, 474 

Spin angular momentum, 262 

Stability, 174 

of rotating objects, 304, 322 

Standards and units, 64 

Stokes' theorem, 225 

Superposition of forces, 58, 82 

Synchronous satellite, 104 

System of units, 67 

Tangential acceleration, 36 

Taylor's series, 42 

Teeter toy, 175, 181 

Tension, 87 

and atomic forces, 91 

Tensor, 520 

Tensor of inertia, 311 

Thomson, J. J., 271 

Tide, 348 

Time, 44 

dilation, 468, 524 

unit of, 66 

Time constant, 418 

Timelike interval, 466 

Torque, 238 
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Torque·free precession, 317, 324 

Total mechanical energy, 169 

Trajectory, 21 

Transformation properties: 
of a four·vector, 523 

of physical laws, 520 

of a vector, 516 

Transformations: 
Galilean, 340, 453 

Lorentz, 455, 523 

Twin paradox, 480 

Uniform precession, 296 

Unit vectors, 3, 10 

Units, 18, 67 

Universal gravitation, 80 

constant of, 81 

Vector operator, 207 

Vectors, 2 

addition, 4 

and area, 7 

base vectors, 10, 28 

components, 8 

derivative of, 15,23 

displacement vector, 11 

four·dimensional, 523 

multiplication: of cross 
product, 6 

of scalar (dot) product, 5 

orthogonal, 10 

position vector, 11 

rotating, 25 
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Vectors: 
subtraction, 4 

transformation properties of, 
516 

unit, 3 
Velocity, 13 

angular, 289 
average, 13 
four-, 525 

in polar coordinates, 30 
radial,33 
relative, 48 
relativistic transformation of, 

472,526 
tangential, 33 

Vibration eliminator, 427 
Viscosity, 95 

Walton, E. T. S., 498 

Watt (unit), 186 
Weather systems, 364 
Weight, 68, 84 

Work, 156, 160 

Work-energy theorem, 160 
in one dimension, 156 
for rotation, 267 

Work function, 502 
World line, 524 
World point, 524 




