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List of Symbols 

Some symbols and abbreviations which are common throughout the book are given below. 
They have also been explained in the text, occasionally, but not every time they occur. 
In addition to these symbols, several other symbols have been used in the text, and 
they have been explained at the places they occur. The parameters occurring in the 
equations could be dimensionless quantities or may have dimensions. At those places 
where the equations are in the dimensionless form, the method of dimensionalization has 
been mentioned. 

For the notations used for the function spaces, the reader is referred to Appendices 
A—D. The same have been explained in the text, occasionally. 

Standard notations have been used for the numbering of equations, figures, definitions 
and propositions. For example, (7.2.7) refers to the seventh equation in the second section 
of chapter 7. 

c(x, t) Concentration, [kg/m^] 

C Specific heat, [Jtcg-'^K'^] 

Cy Specific heat at constant volume 

Cp Specific heat at constant pressure 

C Heat capacity, [JK~^/nr'] 

e Specific internal energy, [Jkg~^]\ also used for energy per unit volume 

(indicated in the text) 

H Enthalpy, [J]; also enthalpy per unit volume (indicated in the text) 

h Specific enthalpy, [Jkg''^] 

ht Heat transfer coefficient, \WK'^/m^] 

k Thermal diffusivity, [m^s~^] 

K Thermal conductivity in the isotropic case, [Jrn"^s~^K~^] 

Kij Thermal conductivity coefficients in an anisotropic case; z = 1, 2, 3 and 

J = 1,2,3 

Kc Mean curvature of the free boundary, [m~^] 

I Latent heat of fusion, [Jkg'^] 

Im Latent heat per unit mole, [J/A; rrwl] 
I I + {CL - Cs)T,,, 

7?" 11 > 1, r(uil n-dimensional space, R or R^ used for real line 

S{t) X ^ S[t) (:r = S[y,zj)), equation of the phas(^-change boundary in 
one-dimension (three-diuKnisions) 



s Specific entropy, [Jkg 'A' ^] 

S Entropy, [JK-^] 

t real time, [.s] 

T Temperatnre, [°K] 

Tm Ideal equilibrium melting/freezing temperature, also taken as 0 or 1 

T,̂ , Equilibrium phase change temperature in supercooling/superheating 

KTJ Molar volume, [m'^/kmol] 

ft unit normal vector 

Subscr ipts 

(L, S, M) Stand for liquid, solid and mushy regions, respectively 

2 = 1,2 quantities in the two phases 

Greek symbol s 

p Density, [kg/m'^] 

a Surface tension, [Nm~^] 

S o m e other symbol s 

/ 

v/ 
V2 

erf(x) 

erfc(x) 

Differentiation with respect to the argument 

Time derivative 

Gradiant of a scalar function 
Laplacian operator 

Error function 

l-erf(x) 

Abbrev ia t ions 

meas (A) measure of the set A 

CEF Classical enthalpy formulation 

CES Classical enthalpy solution 

CO DP Constrained oxygen-diffusion problem 

CSS Classical St,(^fan solution 



HSP Hele-Shaw problem 

ODP Oxygen-diffusion problem 

QSSP Quasi steady-state problem 

SPF Standard phase-field model 

SSP Supercooled Stefan problem 

UODP Unconstrained ODP 

WS Weak solution 
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Preface 

This volume emphasises studies related to classical Stefan problems. The term "Stefan 
problem" is generally used for heat transfer problems with phase-changes such as from 
the hquid to the solid. Stefan problems have some characteristics that are typical of them, 
but certain problems arising in fields such as mathematical physics and engineering also 
exhibit characteristics similar to them. The term "classical" distinguishes the formulation 
of these problems from their weak formulation, in which the solution need not possess 
classical derivatives. Under suitable assumptions, a weak solution could be as good as 
a classical solution. In hyperbolic Stefan problems, the characteristic features of Stefan 
problems are present but unlike in Stefan problems, discontinuous solutions are allowed 
because of the hyperbolic nature of the heat equation. The numerical solutions of inverse 
Stefan problems, and the analysis of direct Stefan problems are so integrated that it is 
difficult to discuss one without referring to the other. So no strict line of demarcation 
can be identified between a classical Stefan problem and other similar problems. On the 
other hand, including every related problem in the domain of classical Stefan problem 
would require several volumes for their description. A suitable compromise has to be 
made. 

The basic concepts, modehing, and analysis of the classical Stefan problems have 
been extensively investigated and there seems to be a need to report the results at one 
place. This book at tempts to answer that need. Within the framework of the classi-
cal Stefan problem with the emphasis on the basic concepts, modelling and analysis, I 
have tried to include some weak solutions and analytical and numerical solutions also. 
The main considerations behind this are the continuity and the clarity of exposition. 
For example, the description of some phase-field models in Chapter 4 arose out of this 
need for a smooth transition between topics. In the mathematical formulation of Stefan 
problems, the curvature eff"ects and the kinetic condition are incorporated with the help 
of the modified Gibbs-Thomson relation. On the basis of some thermodynamical and 
metallurgical considerations, the modified Gibbs-Thomson relation can be derived, as 
has been done in the text, but the rigorous mathematical justification comes from the 
fact that this relation can be obtained by taking appropriate limits of phase-field models. 
Because of the unacceptability of some phase-field models due their so-called thermody-
namical inconsistency, some consistent models have also been described. This completes 
the discussion of phase-field models in the present context. 

Making this volume self-contained would require reporting and deriving several results 
from tensor analysis, differential geometry, non-equilibrium thermodynamics, physics and 
functional analysis. I have chosen to enrich the text with appropriate references so as 
not to enlarge the scope of the book. The proofs of propositions and theorems are often 
lengthy and different from one another. Presenting them in a condensed way may not 
be of much help to the reader. Therefore only the main features of proofs and a few 
results have been presented to suggest the essential flavour of the theme of investigation. 



However at each place, appropriate references have been cited so that inquisitive readers 
can follow them on their own. 

Each chapter begins with basic concepts, objectives and the directions in which the 
subject matter has grown. This is followed by reviews-in some cases quite detailed—of 
published works. In a work of this type, the author has to make a suitable compromise 
between length restrictions and understandability. I have followed my best judgement in 
this regard. I hope the readers will appreciate my efforts. 

S.C. Gupta, Bangalore 

Email : sgupta@math.iisc.ernet.in 
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Chapter 1 

The Stefan Problem and its 
Classical Formulation 

1.1 Some Stefan and Stefan-like Problems 

The term Stefan problem can be best understood with the help of an example for which 
the reader is referred to § 1.3. Our concern in the present section is to understand the no-
tion of a free boundary which is a typical feature of the Stefan and Stefan-like problems. 
Therefore this chapter begins with some examples of Stefan and Stefan-like problems 
which demonstrate the existence of an unknown boundary, commonly known in the liter-
ature as a 'free boundary' or a moving boundary. In the context of solidification/melting 
problems, with which Stefan problems are commonly associated, the free boundary is 
also called a phase-change boundary or a melting front or a freezing front Some authors 
use the term free boundary when the unknown boundary is static and moving bound-
ary when it is time dependent. In this volume we do not make any distinction between 
'free' and 'moving' boundaries. The term boundary is used for a surface also. In many 
of the examples considered in this section, the identification of the free boundary and 
the mathematical formulation of the problem are rather easy but in some of them even 
the identification of the free boundary is difficult. The problems given here are from 
various fields of mathematics, physics and engineering and demonstrate the existence of 
free boundaries. Our interest in examples given in this section is more on demonstrat-
ing the existence of a free boundary and its typical characteristics than justifying the 
formulation. 

Problem 1.1.1. Steady-state heat conduction with a free boundary 

Find the steady-state temperature T(x, y) satisfying the equation 

d^T d''T 

in an open bounded region D C R^. The boundary dD of D consists of two disjoint 

1 



2 The Stefan Problem and its Classical Formulation 

parts Ri and R2, i.e., dD = RiU R2, where Ri is unknown and R2 is known. On R2, 
the temperature is prescribed as 

T{x,y)\R,=f(x,y). (1.1.2) 

If f{x, y) is known throughout the plane, then one boundary conditions on Ri will be 

T{x,y)\R,=f{x,y), (1.1.3) 

and another boundary condition can be imposed as [Ij, 

v ( r - / ) | „ , = 0 . (1.1.4) 

The problem is to determine the temperature T(x, y) in D, and the unknown bound-
ary Ri. Two boundary conditions are to be prescribed on Ri. One, because it is a 
boundary and one more boundary condition is required to determine an unknown bound-
ary. Note tha t Ri can be determined only by solving the system (1.1.1)—(1.1.4). Such 
an unknown boundary is called a free boundary or a moving boundary. In 'boundary 
value problems' of mathematical physics, the boundary of the region under consideration 
is completely known. Conditions (1.1.3) and (1.1.4) are called free boundary conditions 
and (1.1.2) is a fixed boundary condition. Although the equation (1.1.1) is linear, free 
boundary problems are nonlinear problems because of the nonlinearity of the boundary 
conditions at the free boundary. 

P r o b l e m 1.1.2. S t e a d y - S t a t e PVee Surface F low wi th Surface Tension 

Consider a two-dimensional steady, incompressible, irrotational flow in a long channel. 
X and y axes are taken along the length and depth of the channel, respectively, with the 
bot tom of the channel taken as ?/ = 0 and the upper surface of water, as a free surface 
or a free boundary denoted by y = '^(^), where ri{x) is unknown. If u{x,y) and v{x,y) 
are the velocity components in x and y directions, respectively, then 

du dv . r • • \ /i -. r\ 
- — h 77~ = 0 (equation oi contmuity) , (1.1.5) 
ox oy 

dv du 
— —— = 0 (irrotationality condition) . (1.1.6) 
ox oy 

The pressure p is given by the following Bernoulli equation [2] 

H = y + pl(pg) + \q\'l(2g), (1.1.7) 

where, H is the given total water head of water, p is the density, g the acceleration due 
to gravity and ^ i s the velocity vector. If the bottom of the channel is a rigid boundary, 
then 

v = Q, on ?/ = 0. (1.1.8) 
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At the free boundary y = r/(x), 

i / = 7/(x)+p/(p^) + |g|V(2p), p = p-a/R, (1.1.9) 

and 

q-n = 0. (1.1.10) 

Here, p is the atmospheric pressure (known), a is the surface tension (known) and Re is 
the radius of curvature of the free surface, taken as positive when the center of curvature 
is situated above the free surface and n is the unit outward normal to the free surface. 
Re can be expressed in terms of derivatives of r]{x). Free boundary has been taken as 
static in this problem. Equation (1.1.10) implies that the normal component of the fluid 
velocity at the free boundary is zero. 

Problem 1.1.3. Free Surface Flow^ with Time Dependent Free Surface 

Let the free surface in Problem 1.1.2. be time dependent and represented by y = r]{x,t) 
with ri\t=o being given. Surface tension effects will be neglected. If the velocity field ^is 
expressed as 

f=V(/>, (1.1.11) 

then from (1.1.5) and (1.1.6) it is easy to conclude that 0(x, t) satisfies the equation 

§ + 0 = 0' ''W<2'<'?(̂ '̂ )- (1-1-12) 

Here, y = b{x) is the equation of the bottom of the channel. The momentum equation 
can be written as (cf. [3]) 

^ + - gradl^p - qA cmlq = F - grad(p/p), (1.1.13) 

F represents body forces. On substituting g* from (1.1.11) in (1.1.13) and integrating 
with respect to x, we obtain 

^ + ^|V0|' + gy-vpip = m . (1-1-14) 

provided the density is taken as constant and the gravitational field is the only force field. 
The arbitrary function ip{t) can be absorbed in 0(t) and (1.1.14) becomes 

^ + ^|V<^P + fl2/ + p/p = 0. (1.1.15) 

If y = b{x) is taken as a rigid boundary, then 

-^ = 0 on y = b{x), (1.1.16) 
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where n denotes the unit outward normal to y = b(x). On the unknown free boundary 
y = rj{x,t)^ the two conditions are given by 

^ + ^ | V 0 p + 5r,(x,f)+p/p = O, (1.1.17) 

and 

where V is the velocity of the free boundary and n is the unit outward drawn normal on 
it. Equation (1.1.18) can be expressed in terms of quantities already defined. Let, 

F(x, y,t)=y- r](x, t) = 0. (1.1.19) 

Then 

dF OF dF 
DF = —dx + —dy + —dt = 0, (1.1.20) 

or 

From (1.1.18) and (1.1.21), we get 

f = | ^ | V F H ( V 0 - n ) | V F | 

V ( / ) - i | ^ j | V F H ( V 0 . V F ) (1.1.22) 

dri^_d^dri^d^ ^ ^ 23) 
dt dx dx dy 

Equation (1.1.12) is to be solved using the boundary conditions (1.1.17) and (1.1.23), 
the fixed boundary condition (1.1.16) and the prescribed ri{x, t) at t = 0. In this problem 
the velocity of the fluid is not time dependent but the free boundary is time dependent. 
Such problems are called quasi-steady state free boundary problems or degenerate free 
boundary problems. We shall see later that the term degenerate free boundary problem 
is used for other types of problems also. 

Linearization of the above problem 

Let y = i/o be the flat upper surface of water. When the deviation of the free boundary 
from the flat surface is small, i.e., if \dr]/dx\ << 1, then the above problem can be 
linearized as follows. Let 

y = ri{x,t) =yQ +ef{xA), (j) = eu,£«l. (1.1.24) 
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£f{x,t) can be considered as the disturbance at the flat surface y = y^. Substituting 
(1.1.24) in (1.1.12), (1.1.16), (1.1.17) and (1.1.23), and in the changed equations retaining 
only hnear terms in e and dropping higher order terms of e, we obtain 

(1.1.25) 

(1.1.26) 

(1.1.27) 

(1.1.28) 

In (1.1.27), we have taken p = ~ pgyo which comes from the contribution of the zeroth 
order terms in (1.1.17). 

On ehminating / from (1.1.27) and (1.1.28), we obtain 

d'^u du ^ . ^ ^^, 
_ _ + 3 _ = 0 on y = y,. (1.1.29) 

Since y = yo is not a free boundary, only one boundary condition is to be prescribed on 
it. For further information about the Problems 1.1.2. and 1.1.3., see ([3, 4, 5]). 

P r o b l e m 1.1.4. A P r o b l e m of R e p r o d u c t i v e Toxic M a s s Diffusion 

Let u{x, t) be the concentration of a toxic mass which is diflFusing in a region Q, where 

n = {xe R:0<x<l}. (1.1.30) 

If the concentration exceeds a certain value Uy in a portion of ^2, then it is called a toxic 
region. Let the reproduction rate of toxic mass in the toxic region be P and in the non-
toxic region aP, 0 < a < 1. The toxic and non-toxic regions are separated by a surface 
S, where 

S - {{x, t) enu\x = (pit) , u = Uy} (1.1.31) 

and 

fit. = {{x,t)\xe n, 0<t< t,}. (1.1.32) 

u{x, t) and the free boundary x = (f){t) are to be obtained by solving the following system 
of equations. For u > Uy 

ut - u^x + d^ + dyu = P, (x, 0 G 0^,, , 0 < X < 0(t) , 0 < ^ < t*. (1.1.33) 

For u < Uy 

Ut - u^,^-h do ^ diu = aP, (x,t)enu, (t){t) < x < 1, 0 < t < t^. (1.1.34) 
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The term <io + < î'̂  accounts for the mass loss due to the bot tom leakage, and other similar 
factors, do, di, a, and P are positive constants. Mass diffusion coefficient has been taken 
to be unity which is possible by suitably defining the time and/or length scales. 

At the free boundary 

Ux{(p{t)-,t) = Ux((l){t)-\',t), (continuity of mass flux) (1.1.35) 

and 

u[(t){t),t) =Uy. (1.1.36) 

It may be noted that the velocity of the free boundary is not exphcitly occurring in 
(1.1.35) which was so in Problems 1.1.2 and 1.1.3. The boundary conditions at the free 
boundary in which the velocity of the free boundary is not occurring explicitly are known 
as implicit free boundary conditions. Equations (1.1.33)—(1.1.36) are to be supplemented 
with a suitable initial condition at t = 0 and with boundary conditions at the fixed 
boundaries x = 0 and x = 1. Some results on the existence of solution of the above 
problem and the regularity of the free boundary can be found in [6]. 

P r o b l e m 1.1.5. Gas F low T h r o u g h Porous M e d i a 

The equation of state for an isentropic (constant entropy) flow of an ideal gas in a 
homogeneous porous media is given by [7] 

p(x, 2/) = POP" > 0, (1.1.37) 

where p(x, y) is the density and p(x, y) is the pressure, po G R^ and a G (0,1] are 
constant. The conservation of mass gives 

d iv(pV) = - 7 | ^ , (1.1.38) 

where 7 is the porosity of the medium. According to Darcy's law [8], the velocity V of 
the gas flow in a porous medium is given by 

V = ~{P/r])gT8idp, (1.1.39) 

P G R^ is the permeability of the medium and r] G R^ is the viscosity of the gas. V and 
p can be efiminated from (1.1.38) and (1.1.39) and we obtain 

| - Z , V ^ ) , p>0, (1.1.40) 

where m = I + l/a. The diffusion is called 'fast' if rn > 1, and 'slow' if ni < 1. 

By suitably choosing the time and/or length scales, the following equation can be 

obtained from (1.1.40). 

^ = V^(p'"), p > 0 . (1.1.41) 
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If a ^ (O^l]^ then m G [2,oo). Equation (1.1.41) is the porous media equation and it 
arises also in other contexts such as population dynamics and plasma physics [7j. In 
order to calculate the mass flux of the gas, the r.h.s. of (1.1.41) can be written as 

V^p"^) = div(m/?^-^ gradp), (1.1.42) 

jjip-m-i gj-ajp is the mass flux and mp^~^ can be taken as diffusivity. Diff'usivity vanishes 
as the density p tends to zero. Therefore (1.1.41) is a nonlinear degenerate equation in the 
neighbourhood of any point where p = 0 but is non-degenerate and uniformly parabolic 
(see [9] and (7.3.26)) in the neighbourhood of any point at which p is away from zero. Such 
problems are called degenerate parabolic-elliptic problems. An important consequence of 
nonlinear degeneracy is that there is a finite speed of propagation of a disturbance from 
rest which is in contrast to the parabolic heat equation in which the speed of heat 
propagation is infinite. The finite speed of propagation may give rise to waiting time 
solutions. Equation (1.1.41) is to be supplemented with an initial condition if the region 
is infinite and with both initial and boundary conditions if the region considered is finite. 
The existence of a free boundary in such problems can be illustrated with the help of the 
following example. Let 

- ^ = V^(p^) , - o o < X < oo, t > 0, (1.1.43) 

!

> 0 for x G i?/ = (ai, 02), —00 < ai < a2 < 00 
(1.1.44) 

- 0 for x G R\Ri. 

This problem, generally, does not have a classical solution. The classical solution 
of a problem can be roughly stated to be a solution in which the dependent variable 
possesses continuous derivatives of the order required in the problem formulation. The 
mathematical definition of a classical solution will be discussed later but at present it 
would suffice to state that the solution p[x,t) of (1.1.43) and (1.1.44) may not possess 
the required continuous derivatives. For t > 0, gas will be diff"using to the right of x = a2 
and to the left oix = ai and thus giving rise to two moving boundaries x = Si[t),i = 1,2. 
Let Si be moving towards +00 and 5*2 moving towards —00. Using a weak formulation 
of the above problem in (1.1.43) and (1.1.44), several interesting results on the behavior 
oi Si{t), z = 1, 2 have been obtained in [10] and [11]. The following proposition indicates 
that in some cases, the interface Si{t) starts moving only after an elapse of time V > 0. 

Propos i t i on 1.1.1. There exist numbers t* G [0, +00) for z = 1,2 such that Si{t) is 
strictly monotone for t G (t*, +cx)) and 

S^{t)=a,, z = 1,2 for t G [0,t*]. (1.1.45) 

If t* > 0, then Si{t), z = 1, 2 remain stationary for t* units of time [11]. 

In this case t* is called a waiting time. It has been proved in [11] that the interface 
is Holder continuous under certain conditions and if the interface is in motion, then one 
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expects it to move with the velocity V of the gas, and 

^ = - lim W ,̂(x, t), z = 1, 2; W = - ^ ^ p " ^ - ^ (1.1.46) 

The hmits in (1.1.46) are taken as x approaches the boundary of the region from within 
the region in which p{x,t) > 0. Equation (1.1.46) can also be obtained from the mass 
balance condition at the interface which states that the jump in the density at the 
interface multiplied by the velocity of the interface is equal to the jump in the mass flux 
across the interface. 

In a problem symmetrical with respect to x, it is sufficient to consider the region 
0 < X < oo with a single interface x = Si{t) and ai = a2 > 0. Si{t) should satisfy (1.1.46) 
for z = 1, and another condition to determine the unknown Si{t) may be prescribed as 

Slit) a, 

fp{x,t)dx= f p{x,0)dx. (1.1.47) 
0 0 

Conditions of the type (1.1.47) are called non-local boundary conditions at the free bound-
ary. X = 0 is now a fixed boundary and the boundary condition on it is given by 

dp 
dx 

= 0. (1.1.48) 
x=0 

Note that we have two conditions prescribed at the free boundary, viz., (1.1.46) and 
(1.1.47). 

Problem 1.1.6. Shock Propagation 

The solution of Burger's equation (1.1.49) with boundary condition (1.1.50) has been 
discussed in [12]. 

Uy + uu^ = Uy+ 2 a~^^^^ ^ ^' ^^' ^̂  ^ ^^' ^ - 0- (1.1.49) 

On ^ = 0, 

u{x,y)\y^, = f{x), xeR, (1.1.50) 

where 

fix) = 1, x < 0 , 

1 - X , 0 < X < 1, 

0, x > 1. 

(1.1.51) 

The characteristic equations of (1.1.49) in parametric form in terms of a parameter t 
are given by 

dx dy . du ^ _ ^ ^. 
— - 0, -^ = 1, and — = 0. (1.1.52) 
dt dt dt 
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Let x{s, 0) = s, y{s, 0) = 0 and ^(5, 0) = f{s). 

The solution of (1.1.52) is given by 

' 5 + t, s < 0, 

x{s,t) •• ( l - s ) t + s, 0 < 5 < 1, ; 

S, 5 > 1. 

y = t (1.1.53) 

u{s^ t) • 

1 , s < 0, 

( 1 - s ) , 0 < s < 1, (1.1.54) 

0, s> 1. 

The characteristic curves and u{x^y) are shown in Fig. 1.1.1. It is clear from the figure 
that the characteristic curves intersect in the region x > 1, y > 1 and therefore u{x,t) 
is not defined (is not single valued) in this region. u{x,y) defined by (1.1.54) ceases to 
be the classical solution of (1.1.49) in the region x > 1, y > I and (1.1.49) is satisfied 
in this region only in the weak sense. It may be noted tha t the solution u{x, y) could be 
discontinuous in some portion of the region even if / ( x ) is a continuous and differentiable 
function throughout the region. If (1.1.49) is written as 

dP_ aO 
dy dx 

0, (1.1.55) 

then it can be shown (cf. [12]) that the weak solution is discontinuous across a curve 
which is called a shock and whose equation is given by 

[P]dx - [Q]dy = 0. (1.1.56) 

The notation [/] denotes the difference between the limits of a function / as the 
shock or a surface of discontinuity of / is approached from both sides. Conditions of the 
type (1.1.56) are called Rankine-Hugoniot conditions. In the present problem [P] = 1 
and [Q] = 1/2, and therefore the shock is given by y = 2x + d. The constant d can be 
determined if we know the point from which the shock is emanating, for example, in the 
present problem this point is (1.1) (see Fig. 1.1.2.). Shock is the oldest form of the free 
boundary and its origin lies in the study of gas dynamics [13]. 

If (1.1.49) is multiplied by u'^.n > 1, then P and Q in (1.1.55) will change. This 
change will result in the non-uniqueness of the shock and infinitely many shocks can 
be obtained. For nonlinear hyperbolic equations of the type (1.1.49), further infor-
mation in the form of physical arguments involving stability, entropy, dissipation or 
continuous dependence on the initial data is needed to ensure uniqueness (cf. [14, 15]). 

There are some important differences between the present problem and the free bound-
ary Problems 1.1.1. to 1.1.5. In the previous five problems, the free boundaries can be 



10 The Stefan Problem and its Classical Formulation 

y4 

Fig. 1.1.1. Characteristic curves and u{x,y) 

0 X 

Fig. 1.1.2. Geometry of the shock 

identified without much difficulty and the boundary conditions on them can be imposed 
after some thought. It is a different matter that the classical solution may or may not 
exist. In the solution of equations (1.1.49)—(1.1.50), there is no indication of a free 
boundary. It is only through the construction of the solution that we come to know 
about the magnitudes of jumps in P and Q. The equation (1.1.56) can be obtained only 
through the weak solution and not through the classical approach, which was followed in 
other problems. 

Problem 1.1.7. Free Boundary Associated with a Frictional Oscillator 
Problem 

This interesting free boundary problem has been reported in [15]. As shown in Fig. 1.1.3., 
a block of mass m rests on a conveyer belt moving with a constant velocity V. The forces 
acting on the mass are: (1) spring force with a spring modulus 5^, (2) prescribed force 
F{t) assumed to be sufficiently smooth, and (3) Coulomb frictional force with coefficient 
of friction /i. The motion of the block with mass m is governed by the equation 

sgn 
dx 

-V \+S, m. (1.1.57) 

where 

sgn{z) 1 if 2 > 0, 

-1 if 2 < 0 , (1.1.58) 

and g is the acceleration due to gravity. 

At time t = 0, x and dx/dt are prescribed. Both analytical and numerical solutions of 
(1.1.57) are extremely difficult as at each instant of time information is required whether 
dx/dt > y, = y, or < V. The unknown instants of time t = t^, i = 1,2,... or the 
points x^ = x[ti), z = 1, 2, at which dx/dt = V can be regarded as free boundaries. 
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When dx/dt = V, d^x/dt'^ = 0. The second derivative becomes discontinuous dX t = t^. 
Once dx/dt becomes V at ^ = ^̂ , it will remain so in some interval t^ < t < t* until 
at t = t*, \F{t) — Smx\ > iim^g. Again at t = t^+i, dx/dt may be equal to V. If so, 
t = ti+i is a free boundary. If it is assumed that mass does not jump and there is no 
abrupt change in the velocity of the mass, then it can be assumed that x{t) and dx/dt are 
continuous functions of time and dx/dt — 1/ at the free boundary. These assumptions 
provide boundary conditions at each free boundary. 

There is a fundamental difference between this problem and the free boundary Prob-
lems 1.1.1. to 1.1.6. In the earlier problems, free boundaries arose due to the physical 
situations or the mathematical nature of the solution such as a weak solution, but in the 
present problem free boundaries arise due to discontinuities in the physical properties of 
the solution. 

A 

A 

A 

Mass Spring 

I—frnm B > F(t) 

Conveyer belt 

Fig. 1.1.3. Frictional oscillator 

P r o b l e m 1.1.8. Impact of a Vi sco-P las t i c Bar on a Rig id Wall 

A bar of length b made up of visco-plastic incompressible material moving with constant 
velocity —VQ hits a rigid wall at time ^ = 0. We consider a one-dimensional problem in 
which X-axis is taken opposite to the initial motion of the bar and the rigid wall is taken 
at x = 0. After the bar hits the wall, compressional stresses develop in the bar giving 
rise to visco-plastic flow of the material in the region. If V(x, t) is the velocity of the bar 
for ^ > 0, then the gradient of V{x, t) or the velocity of deformation can be expressed as 
follows (cf. [16]). 

dx 

^ , \r\> To, To > 0, r < 0, 

0 . , | r | < To. 
(1.1.59) 

Here, r represents compressional stress, which is negative as the x-axis is oriented oppo-
site to the direction of motion of the bar, TQ is the stress at the limit point and //, is the 
coefficient of viscosity of the material. 
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It will be assumed that any disturbance is propagated over the whole bar instanta-
neously. The equation of motion in the visco-plastic region can be easily obtained by 
using Newton's second law of motion. We have 

dV dr d^V 
^"dt^'dx^ '^^' 0 < X < So{t), 0 < ^ < t„ 5o(0) = 0, (1.1.60) 

where p is the density of the material and x = So{t) is the interface between elastic and 
visco-plastic regions. In the elastic region 

dV 
— = 0, \T\ <TO, So<x<b. (1.1.61) 

Integrating (1.1.61), we obtain 

V = -X{t), X(0) = yo- (1.1.62) 

In obtaining (1.1.62) it has been assumed that the elastic portion of the rod moves like 
a rigid body. 

Using again Newton's second law of motion at x = SQ, we obtain 

- M ^ = T\S„+FO, (1.1.63) 

where M is the mass of the elastic part and FQ is the area of cross section of the rod 
assumed to be uniform. Since M = Fop(b — So(t)), equation (1.1.63) becomes 

dt p(b-So{t)y ^ • • ^ 

In obtaining (1.1.64) it has been assumed that stress is continuous at the interface x = 
So{t). Using the condition that V{x,t) is also continuous at x = So{t), we get 

V(So,t) = -X{t). (1.1.65) 

Also 

^V{So.t) = 0. (1.1.66) 

The initial and boundary conditions for V(x, t) are 

V(x, 0) = -Vo, 0 < X < 6; ^(0, t) = 0, t > 0. (1.1.67) 

The functions V{x,t), So{t) and X{t) are to be determined. An approximate solution of 
the above problem has been discussed in [16]. 

The free boundary in this problem arises due to the change in the physical properties 
of the system. 



1.1. Some Stefan and Stefan-like Problems 13 

Problem 1.1.9. A Problem with Discontinuous Moving Boundary 

Discontinuity of the free boundary in multi-dimensional problems can be easily demon-
strated geometrically For example, a piece of ice floating in water breaks into two pieces 
after melting for some time. A discontinuous moving boundary in a one-dimensional 
problem does not commonly occur. In [17] an interesting problem of discontinuous mov-
ing boundary which is associated with the diffusion of moisture in a porous capillary tube 
of length unity is discussed. At time t = 0, the portion of the tube 0 < x < XQ, XQ < 1 
is filled with moisture and the remaining portion is dry. The temperature T(x, t) of the 
moisture is less than the boihng temperature T = 0, except at x = XQ where T = 0. 
The temperature of the dry air in some neighbourhood of x = XQ on the right is greater 
than zero and in the remaining portion, the temperature of the air is less than zero. 
There is a continuous flow of moisture into the tube at x = 0. At x = 1, the dry air is 
getting heated, causing evaporation to take place and making the moisture advance into 
the dry air. Let Ti(x, t) and T2(x, t) be the temperatures of the moisture and the dry air 
respectively, Wi{x,t) the concentration of the moisture, and x = S{t), the equation of 
the free boundary which is the interface between moisture and the dry air. 

Under certain initial conditions it may happen that at some instant of time, say 
t = m, m > 0, the temperature in some neighbourhood Sm of the moving boundary 
becomes less than or equal to zero. In this case the moisture will advance with a jump 
into the dry part, i.e., 

S(m+) - S{m-) ^6m>0. (1.1.68) 

The problem is concerned with finding Ti, T2, Wi and S{t). The formulation of this 
problem is as follows: 

Differential Equations 

dT d^T 
^ = « ? ^ . (a^,<)eA, z = l,2, (1.1.69) 

~^ = d - ^ , ( x . ^ ) e A , (1.1.70) 

L>i = {(x, t) : 0 < X < S{t), 0 < ^ < m} U {(x, )̂ : 0 < X < S{t), m<t< t*}, 

D2 = {(x, t) : S{t) <x<l, 0<t<m}U {(x, t) : S{t) < x < 1, m < t < t^}. 

Here â  is the thermal diffusivity and d is the mass diffusivity Equation (1.1.69) is the 
heat conduction equation and (1.1.70), the mass diffusion equation (Pick's law). 

Initial conditions 

Ti(x,0) - 01 (x) < 0, Wi{x,0) = '0i(x) > 0; 0 < X < xo, (1.1.71) 

T2(x, 0) = 02(a:), Xo < X < 1 ; (/)2(xo) > 0 and 02(1) > 0. (1.1.72) 
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Boundary conditions at x = 0 and x = I 

Ti(0,t) = /i(t) < 0, Wi(0,t) = gi{t) > 0; 0<t<t,, (1.1.73) 

T2(1,^) = / 2 W > 0 . (1.1.74) 

Boundary conditions at the moving boundary x = S{t), t ^ m 

{Ti{x,t), Wi(x,t)},^sw = 0,t>0, 5(0)=a;o, (1.1.75) 

dx 
= a{T2{S{t)+0,t)~Ti{S{t)~0,t)), t>0. (1.1.76) 

=S{t) 

Here, K is the thermal conductivity and a is the heat transfer coefficient. The convective 
boundary condition in (1.1.76) arises because of the discontinuity of temperatures at 
x = S{t), t ^ m. Heat balance at x = S{t) implies 

C2P2T2(S{t)+Q,t)'^+ K2^{S{t)+Q,t) - K,'^{S{t)-0,t) 

= -dq, — iS{t)-0,t). (1.1.77) 

Here, C is the specific heat, p the density and qi the latent heat of evaporation. Defini-
tions of different parameters have been given later in § 2.1.3. The derivation of (1.1.77) 
is based on the law of conservation of energy (see § 1.4.7) 

A sufficiently small real number e > 0 exists such that 

T2{x, t) > 0 for S{t) <x< S{t) + £, t^m. (1.1.78) 

For t = m, 

Ti(x,m+) =T2(x ,m-) , and Wi{x,m+) = 0;S{m-) <x < 5'(m+), 

m± = m ± 0, 
(1.1.79) 

T2(x,m) < 0, S{m-) <x< S(m-{-). (1.1.80) 

The existence and uniqueness of this problem under suitable assumptions have been 
discussed in [17] and sufficient conditions for the existence of a discontinuous moving 
boundary are given in [18]. Discontinuity in the temperature and in the free boundary 
is a typical feature of this problem. 

Problem 1.1.10. Penetration of Solvents in Polymers 

Consider a slab of a glassy polymer, such as methyl methacrylate in contact with a sol-
vent, n-alkyl alcohol [19]. If the solvent concentration exceeds a threshold value, say. 
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9 > 0, then the solvent moves into the polymer, creating a swollen layer in which the sol-
vent diffuses according to Pick's law for mass diffusion. If W(x, t) is the concentration of 
the solvent in the polymer and x = S{t) is the free boundary representing the penetration 
depth of the solvent in the polymer, then W and S satisfy the following equations. 

Wt - Ŵxx = 0, {x,t) G A . = {{x,t) :0<x< S(t), 0<t< t,}, (1.1.81) 

W{0,t) = l, 0<t<t,, (1.1.82) 

S{t) = f{W{S{t))}, 5(0) = 0, 0<t<U, (1.1.83) 

W^{S{t), t) - -S{t)[W{S{t), t) + q], 0<t<t,. (1.1.84) 

In these equations, normalized solvent concentration is represented by W + q. W rep-
resents the excess concentration, normahzed to 1 at x = 0. Equation (1.1.83) describes 
the prescribed penetration law and (1.1.84) arises from the mass conservation at the 
free boundary. The well-posedness, existence, uniqueness, etc., of the solution of the 
above problem have been shown in [19]. A numerical method for its solution has also 
been suggested in [19]. Some more mathematical models describing the crystallization 
of polymers and their mathematical analysis are presented in [20]. In (1.1.83), S{t) is a 
function of the concentration. 

Problem 1.1.11. Filtration of Water Through Oil in a Porous Medium 

Consider a one-dimensional problem in a semi-infinite porous medium x > 0 of porosity 
m. At time ^ = 0, the region 0 < x < b is filled with oil and the region 6 < x < oo is 
filled with water. Water percolates into oil, and so for i > 0 there will be three regions. 
Water-filled region, b < x < oo, will have hundred percent saturation of water; oil-
bearing region, 0 < x < S{t), will have hundred percent saturation of oil; in the region 
S{t) < X < 6, both water and oil mixture will be present. This region can be called an 
intermediate zone. S{t) is the free boundary. The oil content of this intermediate zone 
changes with time, and tends to reach a limiting state called the residual oil saturation 
state. This stage is characterized by the fact that if time is counted from the moment of 
passage of the oil-water contact boundary past a fixed element of volume, the degree of 
oil saturation of this volume will not depend on time and the flow in this region will be 
of one phase. It will be assumed that water filters through the intermediate zone while 
the oil in this zone remains stationary [21]. However the rate of penetration of water in 
the intermediate zone is lower than in the water-filled zone as the oil concentration in 
the intermediate zone is greater than zero. Under appropriate assumptions, the following 
one-dimensional model is obtained. 



16 The Stefan Problem and its Classical Formulation 

-. = - ^ 1 ^ ; a^f^ = % , 0<x<5(tM>0. (1.1.87) 
fi2 OX ox^ at 

The subscripts 0,1,2 stand for the water-fihed, intermediate and oil-rich zones, re-
spectively, u^ and PJ, i — 0,1,2, denote the filtration velocities and pressures in the 
three different zones. The constants A,,a^ and //,, i = 0,1,2, denote the coefficients of 
permeability, piezoconductivity and viscosity of the zth zone. The equation of velocity 
in terms of pressure gradient is the result of Darcy's law [8] and the pressure obeys the 
equation of piezoconductivity. 

Boundary conditions at x = 6 and x = S{t) follow from the continuity of velocities 
and pressures and are given by 

uo = ui, po = pi] at X = 5, (1.1.88) 

ui = U2, P\^P2\ d^tx = S(t). (1.1.89) 

At the free boundary, an additional condition is required which is obtained from the 
'mass balance' consideration 

m{\ - 6i - 82)—= ui. (1.1.90) 

Here, 61 and 82 are the contents of water and the residual oil saturation, respectively in 
the transition zone, and m is the porosity of the stratum. To complete the formulation of 
the problem, suitable initial and boundary conditions for pressure should be prescribed. 
For example in [21], the initial pressure in the entire stratum is assumed to be constant. 
Similarly it is assumed that pressure has a constant value at the boundary x = 0. The 
zero reference point for calculation of pressure is so chosen that p2[Q,t) = 0. With the 
above assumptions the initial and boundary conditions can be written as 

Pi\t=o = P = constant, z = 0,1, 2; p2\x=o = 0. (1.1.91) 

An approximate solution under the quasi-steady approximation, valid at the initial stages 
has been obtained in [21] with constant parameter values . The boundary conditions 
(1.1.89) do not contain the velocity of the free boundary. 

Problem 1.1.12. Obstacle Problem for a String 

This problem belongs to a class of problems which have a variational inequality formu-
lation. Three different types of formulations of this obstacle problem are possible and 
their equivalence is discussed in Chapter 7. A new notion of codimensionahty-two of 
the free boundary is associated with this problem and this wih be discussed briefly in 
§ 1.2. Consider a weightless elastic string which is held tight between two fixed points 
Pi = (0, 0) and P2 = (6, 0), 6 > 0 in P^-plane. This string is displaced upwards by a rigid 
body called an obstacle (cf. [22, 15]). A view of the cross section of this system of string 
and obstacle from above in P^-plane is shown in Fig. 1.1.4. Let y = ip(x) be the equation 
of the cross section of the obstacle in P^, i.e., the equation of the curve Q1ABQ2. '0(x) 
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is assumed to be sufficiently smooth. We shall relax this smoothness condition later (see 
§ 7.2.5). Let y = u{x) be the equation of the string in the equilibrium position or the 
equation of the curve P1ABP2. The problem is to find the function u{x) and the arc AB 
of the string which is in contact with the obstacle and on which u{x) = ip{x). The points 
A and B are free boundaries and in the present case we can call them 'free points'. Once 
A and B are determined, the arc AB is also determined because ip{x) is known. 

The formulation of the problem is as follows: 

u{0) = u{b) = 0, (fixed end conditions), (1.1.92) 

u{x) = ip{x) on AB; u{x) > ip{x) on P1ABP2, (1.1.93) 

u'{x) < 0, (1.1.94) 

u{x) > ip{x) =^ u"{x) = 0. (1.1.95) 

The second equation in (1.1.93) implies that the string does not penetrate the obstacle. 
The concavity of the string as viewed from the x axis imphes (1.1.94) and the tightness 
of the elastic string implies that the portions Pi A and BP2 are straight lines and so 
u"{x) = 0. The two boundary conditions at the free boundary can be obtained from the 
continuity of u and du/dx^ i.e.. 

[U]A = [U]B • 0, (1.1.96) 

where [/] stands for the jump in the quantity under consideration at the given point. 
Equation (1.1.95) is equivalent to the following condition 

[u{x)-^{x)]u"{x) = 0. (1.1.97) 

In view of (1.1.93)-(1.1.95), equation (1.1.97) is valid. When u{x) = ip{x), (1.1.97) is 
satisfied and when u{x) 7̂  ip{x) then the second equation in (1.1.93) implies u{x) > il){x) 
and from (1.1.95), u"{x) = 0 and therefore (1.1.97) is satisfied. If (1.1.97) holds and 
if u{x) > ipix), then u"{x) = 0, which is (1.1.95). The formulation (1.1.92)-(1.1.95) 
is equivalent to the formulation given by (1.1.92)—(1.1.94) and (1.1.97). Let us call the 
formulation (1.1.92)—(1.1.95) as Problem {Ri) and the formulation equivalent to Problem 
(Ri) as Problem (i?2)- Consider the following minimization problem which is concerned 
with the minimization of the energy of the above string. 

J 2 

min / 
u>^ J 

-^]dx , Vw(x) eV, (1.1.98) 
dx j 

Pi 

where V = {u : u{0) = u(b) — 0, u and dujdx are continuous, and u satisfies relations 
(1.1.94) and (1.1.95)}. 
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We shall call this formulation in (1.1.98) as Problem {Rz)- This is a fixed domain 
formulation as it does not consider separate formulations on different portions of P1ABP2. 
In view of the equivalence of Problems {R2) and {R3) which will be established in Chapter 
7, the formulation {R2) is also called 'variational formulation' of the obstacle problem. 
A variational inequality formulation of this problem has been given in Chapter 7. 

y=vKW 

A/7 / //N 

///////// 

/////////// 
/////////// 
'//////////// 
//////////// 

p,=(ao) 

Po=(b,0) 

Fig. 1.1.4. Obstacle and the stretching of the string. 

1.2 Free Boundary Problems with Free Boundaries 
of Codimension-two 

In Problem 1.1.12., the free boundary consists of just two points A and B. Therefore 
the dimension of the free boundary is zero, whereas the spacial dimension of the problem 
is two. Another example of a free boundary of codimensional-two (or free points) is the 
tip of a propagating line crack in an elastic medium. We shall see later in § 3.2.2 that 
in the problems concerning initiation of solidification/melting along a known surface, 
codimension-two free boundaries could be time dependent. If the spacial dimension of 
the problem is n (the problem could be transient) and the dimension of the free boundary 
is n — 2, then we say that the free boundary is of codimension-two. Several problems 
with free boundaries of codimension-two have been discussed in [23]. In Problems (1.1.1)-
(1.1.11), the dimension of the free boundary in only one less than the spacial dimension 
of the problem. The distinction between the free boundaries of codimension-two and the 
free boundaries of codimension-one is not superficial but it raises some serious questions 
[23], some of which are mentioned below. 

1. Can these problems with free boundaries of codimension-two, in some sense such as 
hnearization, be modelled as limits of free boundary problems of codimension-one? 

2. What can be said about the existence, uniqueness and regularity of solutions to 
models as stated ? In particular, is any of the information redundant ? 
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3. What methodology is available to solve these problems explicitly? No systematic 
methodology has yet been proposed for nonlinear problems of this type. 

4. If solutions exist, are they stable to perturbations in the direction parallel to the 
free curve? 

5. Is there a possibility of generating the models either to make their analysis or 
numerical solutions easier? 

1.3 The Classical Stefan Problem in One-dimension 
and the Neumann Solution 

Stefan problems are free boundary problems with some special features which can be 
easily explained with the help of the following one-dimensional solidification problem. 
At time t = 0, a pool of liquid at constant temperature To > T^, occupies a semi-infinite 
region x > 0. Tm is the temperature at constant pressure at which the liquid solidifies. 
It is called freezing temperature or phase-change temperature. In the case of pure metals 
such as copper, Tm is called melting temperature also because in the case of pure metals 
freezing and melting temperatures are the same. Tm is also called equilibrium phase-
change temperature as both sohd and liquid phases can stay together in thermodynamic 
equilibrium dX T = Tm (cf. § 2.1.4.). The fixed boundary a: = 0 is being cooled, for 
example, temperature T̂  < Tm is prescribed at a; = 0. In this case soHdification starts 
instantaneously at x = 0. For any ^ > 0, the region 0 < x < oo will consist of sohd 
and hquid phases with the solid phase occupying the region 0 < x < S(t) and the 
liquid phase the region S{t) < x < oo. S[t) is the free boundary or the phase-change 
boundary/interface. This solidification problem can be formulated mathematically as 
follows: 

In the solid region 

f)T fP'T 
CsPs^ = KS-QJ:, 0 < X < 5(<), t > 0, (1.3.1) 

Ts{x,t)\,^o = Tt<Tm, t > 0 . (1.3.2) 

In the liquid region 

CLPL^ + CiPLU,^ = K^-^, <S{t)<x<<x>, t>0, (1.3.3) 

TL{x,t)\t^o = To, ri.(x,0|.^oc = To. (1.3.4) 
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At x = S{t) 

TS = TL = Tm. (1.3.5) 

K s ^ - KL^ = {Ips + {PLCL - PsCs)Tm}^, (1.3.6) 

S{0) = 0. (1.3.7) 

Equations (1.3.1)—(1.3.6) are not dimensionless. Temperatures Tf,, To, Tm and thermo-
physical parameters p, C, K, and / are known quantities. The subscripts S and L stand 
for solid and liquid regions. 

The symbols used in (1.3.1)—(1.3.6) are explained in the 'List of Notations'. The 
definitions of thermophysical parameters C, K, /, etc., will be discussed later in § 2.1.3. 
At present, our interest is to highlight some basic features of Stefan problems. Equation 
(1.3.1) is the Fourier heat conduction equation derived on the basis of Fourier's law given 
in (1.3.8) for heat conduction in a homogeneous isotropic medium. 

q=-K grad T. (1.3.8) 

Here, qis called a heat flux vector and gives the heat flow at a spacial point at any instant 
of time t- q-n gives heat flow per unit area, per unit time in the direction of the outward 
drawn unit normal n to the surface of the region under consideration. The derivation 
of heat conduction equation is given in many books such as [24] and is obtained on the 
basis of principle of conservation of energy (cf. § 1.4.7). The heat equation (1.3.1) is 
based on a macroscopic model but it can also be derived on the basis of a microscopic 
model. The transport of heat energy takes place due to the random motion of molecules. 
The parabolic heat equation as well as hyperbolic heat equations can also be derived by 
considering discrete random walks of molecules [25]. 

If the densities of solid and liquid phases are not equal, then liquid may acquire motion 
whose velocity u^ in the one-dimensional case can be obtained from the mass balance 
condition at the interface given below. 

pLUa: = {pL-ps)-^- (1-3.9) 

If ps > PL, then there will be a shrinkage of total volume in solidification, and u^j, will 
be negative as dS/dt is positive in the above problem. If ps < PL-, then there will be an 
expansion of the volume and u^ will be positive as dS/dt is positive. Equation (1.3.3) 
is the Fourier's heat conduction equation for the liquid in motion. Boundary conditions 
at the fixed boundary x = 0 could differ from that in (1.3.2) (see § 1.4.4.) but in the 
'Neumann solution', a constant temperature is prescribed at x = 0. At t = 0 it was only 
the liquid phase therefore the initial condition has been prescribed only for the liquid. In 
the present problem To is a constant. If Tm is a constant, then the conditions in (1.3.5) 
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are called isotherm conditions. Equation (1.3.6) is the dynamic energy balance condition. 
Both (1.3.5) and (1.3.6) are based on the assumption of instantaneous achievement of 
local thermodynamic equilibrium at the phase-change interface. —KidTi/dx is the heat 
flux from the liquid outwards (the outward normal to liquid at S{t) points into the solid) 
and —KsdTs/dx is the heat flux from the solid outwards (the outward normal to solid 
at S{t) points into the liquid). 

Equation (1.3.6) can be derived by using the energy conservation law. It gives the 
energy balance at the phase-change boundary. In § 1.4.1, the derivation of the equation 
(1.3.6) has been obtained in a more general context. When the phase-change takes place 
from liquid to solid, the latent heat / released by the system is removed by conduction. 
Equation (1.3.6) is a dynamic compatibility condition and is commonly known as the 
Stefan condition. It is called a condition of Rankine-Hugoniot type. Equation (1.3.6) can 
also be stated in the form 

OX 
liquid 

liquid 

[H]^^. (1.3.10) 

Here, H is the enthalpy per unit volume, which is the sum of the latent heat plus the 
sensible heat, and Vn is the normal component of the velocity of the interface with the 
unit normal n pointing into the liquid. 

Melting Problem 

The problem discussed in (1.3.1)—(1.3.6) is a solidification problem as the phase changes 
from hquid to sohd. The melting problem in which the phase changes from sohd to 
liquid can be easily formulated by making appropriate changes in (1.3.1)—(1.3.6). For 
example, (1.3.3) is still valid for liquid but liquid region is now 0 < x < S{t). Similarly 
other equations can be modified. During solidification, the system releases latent heat 
but during melting the system 'absorbs' latent heat. Since we take / > 0, a minus sign 
should be put for heat absorbed. Equation (1.3.10) is stiU valid for the problem of melting 
provided the changed directions of normals to the two regions at the free boundary are 
taken into account. Since the formulation of both solidification and melting problems 
has the same mathematical structure, they are said to be mathematically analogous. If 
a solution to one of them is obtained, then the solution to the other problem can be 
obtained by making some minor changes in it. It is for this reason that it suffices to 
study either of them. 

Neumann Solution 

The method of analytical solution of (1.3.1)—(1.3.7) which is discussed below is based on 
some special type of solutions of heat equations (1.3.1) and (1.3.3), which can be written 
in terms of error and complementary error functions [26]. An exact analytical solution of 
the Stefan problem even in the one-dimensional case is possible only in few simple cases. 
If in (1.3.2), To is time dependent or if a constant flux is prescribed at x = 0 then the 
method discussed below fails to provide a solution. The solution of (1.3.1) can be written 



22 The Stefan Problem and its Classical Formulation 

'""^"'my^^'''- <""i 

A and B are constants to be determined. It is easy to see that Ts satisfies (1.3.1) and 
TL satisfies (1.3.3) with u^ given in (1.3.9) and the initial condition given by the first 
condition in (1.3.4). Let S{t) be given by 

S{t) = 26{ksty^, 6 an unknown constant. (1.3.13) 

On a: = S{t) (given in (1.3.13)), both Ts and Ti are constant, and S'(O) = 0. Now we 
have three unknowns, namely, A, B and 6, and three conditions, i.e., (1.3.6) and isotherm 
conditions for Ts and TL. After some algebraic manipulations, the unknown constants 
can be obtained thus. 

A^{T^-T,)lerm. (1-3-14) 

B = {To- Trn)/eTic{Spskf/{pLkf)), (1.3.15) 

e-'' (To - Tm)KL k'J'e-^''pl ^s/plk,) ^[^1/2 

erf(5 Trr^Ks kferic {{Sps kf/{PL ^ f ) ) ^sT^' 
(1.3.16) 

l = l + {CLPL/ps-Cs)Tm. (1-3.17) 

This completes the solution of (1.3.1)—(1.3.7). When ps = PL = P, this solution is called 
Neumann solution which was given by Pranz Neumann [27] in 1860. The first pubhshed 
discussion of such problems seems to be that by Stefan [28] in a study of the thickness 
of polar ice. 

The problem discussed above is called a two-phase Stefan problem as there are two 
distinct phases. If the liquid is initially at the equihbrium temperature T^, then heat 
conduction will take place only in the solid phase. In principle two phases will be present, 
but since there is no temperature gradient in the liquid, such problems are called one-
phase Stefan problems. If there are n (> 2) distinct phases separated by (n — 1) distinct 
phase-change boundaries, then we have an n-phase Stefan problem. It is not possible 
to give a precise definition of a Stefan problem but in the light of the above discussion 
some of the characteristic features of Stefan problems can be described as follows: (1) 
the transport phenomenon is that of heat transfer governed by parabolic equations, (2) 
any two distinct phases are separated by a sharp phase-change interface, (3) at the 
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phase-change boundary, temperature is prescribed which is known, (4) heat flux is dis-
continuous across the phase-change boundary and the latent heat is released or absorbed 
at the interface. Phase changes in which the heat flux is discontinuous are known as 
first-order phase transitions. We shall learn more and more about these characteristic 
features of Stefan problems as we proceed further. In many physical problems although 
a free boundary exists, there is some deviation of features in them from the character-
istic features of the Stefan problem. It has become almost customary to indicate such 
problems by a suitable nomenclature. For example, if a hyperbolic equation is considered 
instead of a parabolic equation, then it is called 'hyperbolic Stefan problem'. Similarly, 
we have a 'Stefan problem with kinetic condition' if a kinetic condition is introduced at 
the free boundary or 'Stefan problem with supercoohng' if the liquid is supercooled. 

The term 'classical' is generally used to distinguish the classical formulation from the 
weak formulation (§ 5.2 for the weak formulation of the classical Stefan problem). In a 
classical formulation it is assumed that there exists a suflfiiciently regular sharp interface, 
which separates two distinct phases. Two phases will be considered different if they 
differ in their composition, structure, or properties. At the phase-change interface, two 
boundary conditions are prescribed, one in the form of temperature and the other arising 
from the energy balance at the interface. 

1.4 Classical Formulation of Multi-dimensional Ste-
fan Problems 

1.4.1 Two-phase Stefan problem in multipledimensions 

We shall now extend the mathematical formulation given in (1.3.1)—(1.3.7) to multi-
dimensional problems. For simplicity we consider R^. Consider a heat-conducting open-
bounded region G C R^ whose boundary dG is smooth, for example dG G C^^^, for 
some T] > 0. Let G{t) = G x {t} and dG{t) = dG x {t}, 0 < t < t^ < oo ioi some 
suitable real number t*. G^* = Do<t<uG{t) is a cylinder over G (see Figs. 1.4.1.—1.4.4.). 
G consists of two phases, for example, solid and liquid which for the sake of convenience 
will be denoted by subscripts 1 (solid) and 2 (liquid). Let Gi{t), i — 1,2 be the region 
occupied by the zth phase at time t G [0, t*]. G(t) admits disjoint decomposition as 

G(t) = Gx(t) U S(t) U G^(t), V t E [0, t*], (1.4.1) 

where 

S{t) = {(x, t) e G'* I $(a:, ^ = 0, a: G G and ^ G [0, t,]}, (1.4.2) 

$ G C\G^*) and V:,^{x,t) ^̂  0 on S{t). ^{x,t) < 0 is the phase 1 and ^[x,t) > 0 is the 
phase 2. (5 is the closure of G. 

We assume that G^* also admits disjoint decomposition 

G'* - Gl* U r(t) U G*2% 
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where 
G'{ = Uo<t<uGi{t), G'^* = Uo<t<t.G2{t). r{t) = Uo<t<uS{t). 

Here, r{t) and S{t) are both called free boundaries, r(^) is the free boundary in G x [0, t] 
and S{t) is the free boundary in G. It may be noted that we are still dealing with the 
same solidification process discussed in (1.3.1)—(1.3.7). The only difference is that for the 
solid and the liquid regions and the phase-change boundary, some set theoretic notations 
have been introduced for rigorous mathematical analysis. In problem (1.3.1)—(1.3.7), 
^x,t) = x-S{t). 

Let Vn i = 1^2 he the elliptic operators [9] defined as 

^^= E ^'Jk{^:t) 
d' 

dxjdxi 

^ d 
^Y.b'j{x,t)^-+r\x,t), 2 = 1,2. dxj 

(1.4.3) 

Here, a'-j^, V^ftj/e, ^lo'^'jk^ ^j^ ^x^ j , and r̂  are continuous in G^* ;x e G and x = (xi, 2:2, Xs) 
Consider the following solidification problem in G{t). 

Conservation of energy m Gi(t) 

dT, 
Q A dt 

V^T^, {x,t) e G,{t), z = 1,2, 0 < ^ < t*. (1.4.4) 

Fig. 1.4.1. Solid and liquid regions at a 

fixed time in a 2-D problem. Geometry 

number 1. 

Fig. 1.4.2. Sohd and hquid regions at a 

fixed time in a 2-D problem. Geometry 

number 2. 

Boundary conditions on dGi{t) 

T,{x, t) = g^{x, t), X e ^G^(t), 2 = 1,2; 0 < t < t*, 

Qi < Tm and .92 > ^m-

(1.4.5) 
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Fig. 1.4.3. Cylinder over G(0) 

in Fig. 1.4.1. 
Fig. 1.4.4. Cylinder over G{0) 

in Fig. 1.4.2. 

Initial conditions 

T,(x,0) = /,(x), X e G^{0), 2 = 1, 2, (1.4.6) 

/ i < Tm and /2 > Tm. 

Isotherm conditions on < (̂x, t) = 0 

T^ = Tm, z = l,2. (1.4.7) 

Energy balance at ^{x,t) = 0 

[ -q]l • n = pjv • n, (1.4.8) 

where q = (Q'I, 92, ̂ s) is the heat flux vector for anisotropic bodies and is defined as 

3 QJ^ 

^ ^ - - E ^ ^ . ^ ^ z = 1,2,3. 
j = i dxj' 

(1.4.9) 

Here, Kij are called thermal conductivity coefficients, n is the unit outward normal to 
the solid phase at S{t), and V is the velocity of the free boundary. Equation (1.4.8) is a 
generalization of (1.3.10) to a multi-dimensional case. 

If the heat equation (1.4.3) is written for anisotropic bodies, then a'j,^{x,t) are known 
functions which can be identified with Kij{x,t) in (1.4.9). In a more general case K^j 
could be functions of temperature also and in that case the operator Vi will change (see 
(1.4.29)). The coefficients h]^[x,t) could be the space derivatives of K^j{x,t) and/or 
convective terms arising due to the motion of the zth phase. In the case of motion of 
phases, total derivative of T, with respect to time should be considered. If so, 

DT dT ^ BT 

Dt 
(1.4.10) 
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where li^, j = 1, 2, 3 are components of the velocity of the ith. phase. Motion in the hquid 
phase may arise due to natural convection and/or shrinkage or expansion of the volume, 
etc. In (1.4.4), b^ji^{x, t) could be taken to be either known or unknown quantities, r ' is the 
rate at which heat is generated/annihilated per unit volume. If ^^^(x, t) are unknown and 
arise due to the liquid motion, then (1.4.4)—(1.4.8) have to be supplemented with other 
equations to determine them. The motion of the solid phase is generally neglected but the 
motion of the melt plays an important role in solidification/melting problems. In the one-
dimensional case, Ux could be easily determined with the help of mass balance condition 
(1.3.9). In the multi-dimensional case, the velocity of the melt can be determined only by 
supplementing (1.4.4)—(1.4.8) with the equations of fluid dynamics such as Navier-Stokes 
equations discussed in § 1.4.7. 

Instead of temperature-prescribed boundary conditions on dGi{t), i = 1,2, other 
types of boundary conditions can also be prescribed provided solidification takes place 
in such a way that only one phase-change boundary separates the two phases. This 
restriction is inherent in the classical formulation. Solidification/melting problems could 
be much more complicated. For example, if ice pieces are put in a glass of water, then a 
free boundary exists at the boundary of each ice piece. Two free boundaries which may 
be disjoint at some instant of time may join at a later instant. A piece of ice on melting, 
may break into two. Such problems are extremely difficult to investigate. In (1.4.7) it has 
been assumed that there is thermodynamic equilibrium at the phase-change boundary. 

Equation (1.4.8) can be expressed as 

E '^^k^T^ - E « 7 f c 7 ^ ^ = -pi -^- (1-4.11) :^ "̂ '= dx, dxk -̂1̂ 1 "̂^ dx^ dx, " '' df 

Equation (1.4.11) can be obtained as follows. Let q' be the heat flux vector in the ith 
phase given by (1.4.9) with Kjk replaced by Uji^. Then 

r-n = q' • grad$/|grad$| = U— + q\— + (?^—j / |grad$|, i = 1,2, (1.4.12) 

we have 

d^, , d^ d^dx d^dy d^ dz ^ /. . . .x 
^ ( x , , , . , * ) = ^ + ^ ^ + ^ ^ + ^ ^ = 0 , (1.4.14) 

{V-n)\gmd^\ = - — . (1.4.15) 

Substitution of (1.4.13) and (1.4.15) into (1.4.8) results in equation (1.4.11). The negative 
sign on the r.h.s. of (1.4.11) will arise in (1.3.6) also if we take ^{x,t) = x — S{t) in (1.3.6). 
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The energy balance condition (1.4.8) has been obtained on the basis of the principle of 
conservation of energy stated in § 1.4.7. The detailed derivation of (1.4.8) using energy 
conservation principle is given below. 

Consider the three-dimensional problem of solidification of a melt in which we take 
densities of solid and liquid phases to be the same and consider an isotropic case for the 
sake of simplicity. Let P be a point on the interface S{t) at some given time t, and Q be 
a point on S{t + A^). Q hes along the vector normal to S{t) at P as shown in Fig. 1.4.5. 
Solidification progresses from P to Q. Take PQ to be the direction of the vector Hx normal 
to the surface S{t) at a fixed time where fix = (71̂ 1,723.2,72x3), n^^ — cos(n, x^), i = 1,2,3, n 
is the unit vector normal to the interface S{t) and n = (nx.^t)- ^t = cos(72,^), t is the 
unit vector in the direction of t and x ,̂ z — 1,2,3 are unit vectors in the xi, X2, X3 
directions, respectively. Here, xi, ^2, and 0:3 are Cartesian coordinates of a point in 
B?. Let Alt; be a small area on S{t) enclosing the point P. Construct a cylinder with 
base Alt;, height \PQ\ and axis PQ. The latent heat released during the solidification 
of this volume element is pl^w\PQ\. The rate at which latent heat is released during 
solidification of this volume element is 

PQ 
lim p/l——lAti; = plV • fix Aw. (1.4.16) 

S(t+At) 

nx 

Fig. 1.4.5. Geometry in the derivation of the Stefan condition 

Here, V is the velocity of the interface. On using the energy conservation principle in 
the cylinder of volume Aw\PQ\ which requires calculating the difference in the rates at 
which heat flows into the cylinder across the left face and leaves through the face on the 
right and adding to it the rate at which heat is released and cancelling Aa;, we obtain 

on I an 
(1.4.17) 

where fii = —n and ni is the outward normal to the base of the cylinder at P. 
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1.4.2 Alternative forms of the Stefan Condition 

The Stefan condition (1.4.11) in multipledimensions can be expressed alternatively 
in a form more suitable for analytical and numerical treatment. It will be assumed that 
$(x, y, z,t) = 0 can be written as 

^(x,y,z , t) = z- S{x,y,t) = 0. (1.4.18) 

Alternative expressions Hke x — f{y, z, t) or y—g{x, z, t) can also be used for <l>. Sometimes 
the physics of the problem requires the free boundary to be expressed in the form t = 
w{x,y,z) (see (3.3.46)). Differentiation of (1.4.7) with respect to x and y gives 

dT\__dT]d^ dT]__dT\d^ 

dx dz dx ' dy dz dy' 

Prom (1.4.18), we have 

d^ d^ dz _ d^ d^ dz d^ 
dx dz dx ' dy dz dy ' dz 

Equation (1.4.11) can be rewritten as 

On using (1.4.19) and (1.4.20) in equation (1.4.21) the latter can be written as 

Note that in (1.4.22), the derivative of temperature is with respect to z but not with 
respect to x and y. Equation (1.4.22) looks like the Stefan condition in a one-dimensional 
problem. 

In an isotropic cetse, 

a^jj^ = KiSjk, where Sjk is the'Kronecker delta function'. (1.4.23) 

Using (1.4.23) in (1.4.22), the Stefan condition can be expressed as 

fdsy [dsyli^dTi r. 9T2] ^os ,. . . . x 

On using (1.4.19) and (1.4.20), we have 

(1.4.25) 
iv$i ivT,r 

Also on the free boundary 

V-n = V-VT^\\/T^\ = -dT,dt/\VT^\, z = l,2. (1.4.26) 
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Isotherm conditions (1-4.7) can be differentiated with respect to t to obtain the second 
relation in (1.4.26). Substituting (1.4.26) in (1.4.8), we obtain 

\K,VT,\ - |î 2VT2| = -pi-^/\VT,\ = -pi^/lVnl (1.4.27) 

1.4.3 The Kirchhoff's transformation 

Consider the case in which the thermal conductivity varies with the temperature, but 
is independent of position and time. The heat equation for isotropic material in this case 
can be written as 

dT 
pC— = div{K(T)gmdT) + A{T,x,y,z,t), 

A is the rate at which heat is supplied per unit volume. 

Kirchhoff 's transformation is defined as [24], 

1 ^ 
0 = —- f K{a)da, (1.4.29) 

where î o is the value of K{T) when T = 0. It can be seen that 

dO _ K dT 86 _ K_dT_ d^ _ K dT_ 86 _ K dT 

dt KQ dt ' dx KQ dx ' dy KQ dy ' dz KQ dz ' 

and 

where K and C are now functions of 6. In many cases, for example, in metals near 
absolute zero temperature, both K and C are proportional to the temperature and pC/K 
can be taken to be a constant. 

If A is independent of the temperature, then there will be no difference between the 
structure of the Fourier's heat conduction equation and equation (1.4.31). However if 
we use Kirchhoff's transformation (1.4.29), the choice of boundary conditions will be 
hmited. When T is prescribed as T == f{x,y, z,t) on the boundary, the expression 

f{x,y,z,t) 

(9 = — /" K{a)da, (1.4.32) 
0 

gives the boundary condition for 6. Similarly, if the normal derivative of temperature T 
is prescribed, the normal derivative of 6 can also be prescribed. 

The extension of the formulation (1.4.4)—(1.4.8) to R^, n > 3 is simple. Many 
generalizations of this formulation are possible and some of them will be discussed later. 

(1.4.30) 
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1.4.4 Boundary conditions at the fixed boundary 

(A) Standard boundary conditions 

(AI) Type I boundary condition 

In the boundary condition of this type temperature is prescribed. Let dG be the 
boundary of the region G C R^. Type I boundary condition is of the form 

T\dG = / (x, y^z,t),t> 0, (x, y, z) e dG. (1.4.33) 

If / < Tm{> Tm) then sohdification (melting) starts instantaneously i.e., there is no 
waiting time for the phase-change to take place. Since energy can neither be produced 
nor disappear at infinity if G is unbounded, we have 

lim T ( x , t ) - T ( x , 0 ) , t > 0. (1.4.34) 
|x|—>oo 

In order to obtain a physically meaningful solution to the diffusive heat equation for 
unbounded domains, it is required that 

dT 
lim ^r-(x,t) - 0 , t>0. (1.4.35) 

Temperature-prescribed boundary conditions are known as Dirichlet type boundary con-
ditions. 

Sometimes, while constructing approximate solutions more than the prescribed num-
ber of boundary conditions are required to match the number of unknowns. In such a 
case additional boundary conditions are generated. Let us consider a radially symmetric 
one-dimensional heat conduction problem in which the temperature at r — a is prescribed 
as 

T{r,t)\r^a = f{t). (1.4.36) 

If (1.4.36) is differentiated with respect to time and the Fourier's heat equation is used, 
then 

dT 
'dt 

r=a 

= ^ ^ + - ^ 1 =/'W (1-4.37) 

Equation (1.4.37) provides one more boundary condition for the problem. 

(All) Boundary condition of radiative-convective type 

This boundary condition can be written as 

dn 
= 0E{T' - n)\aG + [CxT - C2To)|aG. (1.4.38) 
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Here, n stands for the unit outward normal, /3 is Stefan-Boltzmann constant, E is 
the emissivity of the surface which is defined as the ratio of the heat emitted by the 
body to the black body at the same temperature, To is the ambient temperature, and 
Ci and C2 are functions of time, p is positive and has dimensions [watt]/[meter]^x 
[Temperature]"^, 0 < E < 1. From this boundary condition, three types of well known 
boundary conditions can be obtained as particular cases. If ^ = 0 and Ci = C2 = ht then 
we have a convective type boundary condition. ht{> 0) is called 'heat transfer coefficient' 
and has dimensions [Power] / [Temperature] [length]^. If /3 = 0, Ci = 0 and C2T0 = g{t), 
then we have a flux-prescribed boundary condition. Flux prescribed boundary conditions 
are known as type II boundary condition. Convective type boundary conditions are called 
type III boundary conditions and radiative-convective boundary conditions are called type 
IV boundary conditions. 

More details about these boundary conditions can be found in [24]. These four types 
of boundary conditions are commonly prescribed in heat transfer problems. 

(B) Non-standard boundary conditions 

(BI) Non-local boundary condition 

To explain the nature of a non-local boundary condition, we consider a simple one-
dimensional problem of fluidized-bed coating. Our interest in this problem is more on 
pointing out the characteristic features of a non-local boundary condition than its rigorous 
formulation. A thin metallic plate of thickness 26, area Ap and the initial temperature 
To (To > Tm) is immersed vertically in a pool of plastic coating material [29] which is 
maintained at temperature Too which is also the temperature away from the boundary 
layer. The softening temperature of the coating material is Tm > Too- Because of the 
high thermal conductivity and finite heat capacity of the metallic plate, the plate can be 
treated as a lumped parameter system in which the temperature can be regarded as a 
function of time only. Let Tp{t) be the temperature of the plate. In the one-dimensional 
problem considered here, let the metallic plate be situated at a: = 0. The problem is 
that of finding the temperature T(x, t) of the softened plastic, temperature Tp[t) and the 
extent x = 6{t) upto which the plastic has softened. The unknown quantities can be 
obtained by solving the following system of equations. 

dT d'^T 
PfCf-^ = ^ Z - ^ ' 0 < X < 5{t), t > 0, (1.4.39) 

T(0,0) = To, T(0, t) = Tp{t), T{6,t) = Tm. (1.4.40) 

m 
A, 

-{To - Tp(0) = httiTr, - T^) + pfCf J{T- T^)dx, (1.4.41) 

< = /i,(T„ - Too) + P/CfiT^ - T^)^, (1.4.42) 
=6 
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The subscripts / and p stand for fluid plastic and plate, respectively, m stands for mass, 
p for the density and ht is the heat transfer coefficient. Equation (1.4.41) is the boundary 
condition at a: = 0 which because of the integration over 0 < x < 6 in the second term 
on the r.h.s. is a non-local boundary condition. The l.h.s. in (1.4.41) is the heat given 
out by the plate per unit area over the time interval [0, t] which is equal to the sum of 
the heat transported by convection into the coating material and the heat received by 
the fluid plastic. Equation (1.4.42) is the energy balance equation at x = S{t). 

(BII) Boundary condition of the fifth type 

Boundary condition of the fifth kind arises in the following context. Suppose the 
boundary of a region is in contact with a thermostat. The continuity of the temperature 
and of the flux at the surface of contact, say x = 1, in the case of a one-dimensional slab 
0 < x < 1 can be expressed as 

Ti\,t) = e(l,t) , C^ = -K^, a t x = l, (1.4.43) 
ot ox 

where T and 6 are temperatures of the slab and of the thermostat, respectively, and C is 
the 'heat capacity' of the thermostat. The thermostat maintains a uniform temperature. 
On combining the two equations of (1.4.43), we obtain a boundary condition of the fifth 
type 

at X = 1. (1.4.44) 

(C) Boundary conditions with multivalued functions 

In this boundary condition the prescribed quantities are multivalued functions. So 
it is not a classical boundary condition in which the prescribed functions are assumed 
to be suflQciently regular functions. Such boundary conditions are suitable for weak 
formulations and can be described with the help of 'subdifferentials' (see (4.3.44) for its 
definition). The boundary condition derived below is an extension of the fifth type of 
boundary condition (1.4.44) in the weak form. 

Let Q be a bounded open domain in R^ which is occupied by both solid and liquid 
regions. The boundary dQ of Q is smooth, and is surrounded by a high conducting 
material of negligible thickness so that the temperature of the surrounding material is 
taken to be a function of time alone. Let the time interval be given by 0 < t < t*, for some 
positive number t*, and Q = fix (0,i*), Yl = dflx (0,t*), Q = QS^QL where Qs and QL 
are the regions occupied by the solid and the liquid, respectively. Yl — Y.L U Y.s U ULS 
where Y.L ^"^^ Tls ^re the boundaries of solid and liquid regions and YLS is the portion 
of YJ which is neither solid nor hquid. We assume that the measure of the set YLS is 
zero. Because of the perfect thermal contact between dVt and the outside material, the 
temperature is taken to be continuous and so 

^dT 
C— = 

dt 

r.OT 
-K — 

dx 

T\^=e\Y^, (1.4.45) 



1.4 Classical Formulation of Multi-dimensional Stefan Problems 33 

where T{x, t) is the temperature of Q and 9{t) is the temperature of the outside material. 

The heat balance on JZL gives (see [30]) 

39 dT 
C— + Ki—+g[x,t,e)=Q, (1.4.46) 

where n is the outward normal to dVl, C is the heat capacity of the surrounding material 
and g{-) is the rate of heat flow from outside of Q to dVt. 

The heat balance on X]^ gives 

39 3T 
C— + Ks-^+g{x,t,e) = 0. (1.4.47) 

Define a multivalued function f as 

ar) = 

1 , r > 0 , 

( ^ , ^ ) , r = 0, (1.4.48) 

1 r <0. 

If Ks > KL^ then ^ is a monotone graph. Equations (1.4.46) and (1.4.47) can be combined 
into a single equation 

39 3T 
iC— + — + ig[x, t, 9) = 0, on OQ. (1.4.49) 

In (1.4.49) normal derivative of the temperature on 30. is prescribed in terms of a mul-
tivalued function. T < 0 is solid, T > 0 is hquid and T = 0 corresponds to the mushy 
region. Conditions of the type (1.4.49) are also called dynamical boundary conditions [31]. 
Weak formulation is a continuum model and in this formulation, solid, liquid and mushy 
regions (both solid and liquid phases are present in the mush) are modelled with the help 
of a single equation which is valid in the region Q in the distributional sense. Therefore 
the boundary conditions over different portions of the boundary should be combined into 
a single equation which results in (1.4.49). Stefan problems with dynamical boundary 
conditions have been investigated by several authors (cf. [31, 32]). 

1.4.5 Conditions at the free boundary 

In the Stefan problem two boundary conditions are prescribed at the free boundary. 
One specifies the temperature and another accounts for the energy balance. The isotherm 
condition in (1.4.7) is the simplest type of temperature-prescribed boundary condition 
and is justified only if the free boundary is planar and is in thermodynamic equilibrium. 
In this case, isotherm temperature is the equilibrium temperature T^. The equilibrium 
temperature is affected by the curvature and the surface tension in the free boundary. 
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This effect is known as Gibbs-Thomson effect Similarly equilibrium temperature may 
depend on the velocity of the free boundary and in this case the free boundary condition 
is known as a kinetic condition. An explanation of curvature effects and kinetic condi-
tion requires thermodynamical and metallurgical concepts and so these effects will be 
discussed a little later in § 2.3.2. 

One form of generalization of (1.4.8) is to consider the thermophysical parameters as 
general functions of space, time and temperature and include a heat flux acting at the 
free boundary. Such generahzations, at least in the one-dimensional problems, have been 
considered extensively and analyzed mathematically. Some of these extensions will be 
discussed later with respect to specific problems. Another type of generalization of free 
boundary condition is to consider the transport and accumulation of different forms of 
energies in the phase-change interface such as by heat conduction along the interface. 
This generalization of the Stefan condition, called generalized Stefan condition, will be 
discussed in § 2.4. 

The notion of Stefan condition is not restricted to conditions of the form (1.4.8) which 
arise due to heat balance during phase changes. Stefan condition can be considered in 
a functional form, for example, the velocity of the free boundary can be prescribed as a 
function of temperature, temperature derivatives, time, and S{t) (see (3.1.5)). 

Implicit free boundary condition 

In the Stefan condition (1.4.11), the velocity of the free boundary occurs explicitly. A 
boundary condition of this type is called an explicit free boundary condition. There are 
several problems in which the boundary conditions at the free boundary do not involve the 
normal velocity of the free boundary. For example the condition dT/dx\^^g(^^^ = 0 does 
not involve the term dS/dt. Such boundary conditions are called implicit free bound-
ary conditions. In some one-dimensional problems, by using suitable transformations, 
implicit boundary conditions can be easily converted to an equivalent explicit boundary 
condition. Implicit boundary conditions will be discussed further in § 3.3. 

1.4.6 The classical solution 

The definition of a classical solution of problem (1.4.4)—(1.4.8) is given below. Classical 
solutions of other problems to be discussed later can be defined on similar lines. 

Definition: The classical solution of (1.4.4)—(1.4.8) is a quadruple (Ti,T2,$,^*) 
such that T^, V̂ T̂̂  are continuous in Uo<t<t,Gi{t) and V^T^ and dTi/dt are continuous in 
^o<t<uGi{t)] $(x, y, z, t) has continuous first order partial derivatives in G^* and satisfies 
conditions imposed in (1.4.2) in § (1.4.2). The triple (Ti,T2, S'(t)) satisfies the equations 
(1.4.4)—(1.4.8) in which the coefficients satisfy the constraints in (1.4.3). 

Here, V^T, = {dTJdx, dTjdy, dTJdz), i = 1,2 and V^T, can be similarly defined. 



1.4 Classical Formulation of Multi-dimensional Stefan Problems 35 

It may be noted that the existence of a classical solution is not guaranteed merely by 
prescribing sufficiently regular initial and boundary data satisfying the sign constraints, 
such as in (1.4.5) and (1.4.6). Some additional compatibility conditions discussed in 
later sections should also be satisfied, t^ cannot be arbitrarily taken and is related to the 
existence of the solution. In R^,n > 2, existence and uniqueness of classical solutions 
have been mostly proved only locally-in-time, this too under suitable constraints. 

1.4.7 Conservation laws and the motion of the melt 

There is a clear and overwhelming experimental evidence [33] that except in very 
early times, convective heat transfer dominates over conductive heat transfer during 
solidification/melting. Motion of the liquid which may arise due to natural convection, 
forced convection, or shrinkage/ expansion of the volume becomes more significant when 
the phase-change is of relatively large volumes of material. Motion of the melt can be 
accounted for by solving Navier-Stokes equations [34] together with the energy equation. 

Most equations of mathematical physics are derived on the application of the following 
conservation laws: 

1. Conservation of mass: The time rate of increase of mass of a system is equal to 
the difference between the rate at which mass enters into the system, and the rate 
at which mass leaves the system (disregarding relativity effects). 

2. Conservation of momentum: The time rate of change of linear momentum of the 
mass of a system is equal to the sum of all the forces acting on the system. 

3. Conservation of energy: The time rate of change of energy (internal energy -h 
kinetic energy + potential energy) stored in the system is equal to the sum of the 
time rate of work of the external forces, the rate at which energy is transported 
into the system (heat energy, electrical energy etc.) or leaving the system across its 
boundaries and the, rate at which energy is produced or consumed in the system. 

The fourth conservation law which deals with the conservation of moment of momen-
tum is not required in the context of this volume. When a conservation law is valid in 
any arbitrarily small neighbourhood of each material point, we say that the conservation 
law holds locally. 

If the melt is in motion, then in order to determine the motion of the melt, energy 
equation should be solved in conjunction with Navier-Stokes equations. We derive below 
the complete system of equations briefly. 

Control volume and applications of conservation laws 

A 'control volume' refers to a fixed region in space which encloses a fixed volume VQ 
of the fluid in space. Its surface AQ is called control surface, which could be of any shape. 
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In the Eulerian coordinate system^ the fluid is imagined to pass through this arbitrary 
control volume. At the same position we observe different particles at different times. 
In the Lagrangian coordinate system, the coordinate system is attached to the moving 
particle. Therefore the control volume consists of the same particles all the time. Let 0 
be some 'scalar specific property' (per unit mass) such as mass, momentum, energy of 
the fluid. We shall consider the conservation of a scalar property 0 in the control volume. 
The time rate of change of the total property 0 contained in VQ is given by 

d_ 

dt 
Vo 

f pcpdVo. (1.4.50) 

The conservation equation for (f) is 

; f p(t)dVo =^ - f {pV(t>) • ndAo - f J-ndAo+ f fdVo, (1.4.51) 
dt 

where V is the velocity of the fluid, n is the unit outward drawn normal to Ao,J is 
the surface flux of (p by diffusion from inside to outside across the surface AQ, f is the 
production or annihilation of 0 per unit volume in the control volume, p is the density 
and dot denotes the time derivative. dAo is the elementary surface area and dVo is the 
elementary volume. Using Gauss's theorem, surface integrals can be converted to volume 
integrals and the local conservation of </) imphes 

-(p<^) + V-(pK^) = - V - J + / . (1.4.52) 

Conservation of mass : Equation of continuity 

Take 0 = 1 , / = 0 and J = 0 in (1.4.52). We obtain the equation of continuity as 

1^ + div {pV) = 0. (1.4.53) 

Equation of conservation of linear momentum 

In order to obtain the equation of conservation of hnear momentum in the x-direction, 
take (j) = Vi, J = —Px = —{Pxxi-^Pxyj-^Pxzk) and take Fi instead of / in (1.4.52) where 
Fi is the body force in the x-direction. Vi is the x-component of the fluid velocity V and 
Pij are stress components. 

p.^ = -pS^j + Tij, z = 1,2,3 and j = 1,2,3, (1.4.54) 

P = - 3 (Pxx + Pyy + Pzz). (1.4.55) 

Here, Tij represent viscous stress components, and p is the fluid pressure. The r.h.s. of 
(1.4.52) in this present conservation law should represent the sum of the forces acting on 
the control volume which are surface forces and body forces. If g^^ is the x-component of 
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the body force per unit mass, then the equation of conservation of hnear momentum in 
the x-direction for constant p is given by 

DVi/Dt is the material time derivative of Vi in (1.4.56). Two more equations in y 
and z directions can be similarly obtained by taking cf) = V2 and J — —Py = —{Pyx'i + 
Pyyj+Pyzk) ioT thc sccoud equation and 0 = V3 and J = —p^ for the third equation. We 
have 

where Qy and g^ are the y and z components of the body force per unit mass. 

For Newtonian fluids [34] 

Tij = 2peij + p}6^J[exx + ^yy + ê ,̂ ), z = 1,2,3; j = 1, 2,3, (1.4.59) 

where Cij are the strain components. From (1.4.54) it is clear that 

rxx + Tyy + T,, = 0, (1.4.60) 

which implies that p^ =~s^^ where p. is the 'coefficient of viscosity'. 

Equations (1.4.56)—(1.4.58) can be written as a single equation in the vector notation. 

p ^ - p F - gradp + / . v V + | g r a d d i v l 7 , F = ( p . , p „ ^ , ) , V = {V,,V,,Vs). 

(1.4.61) 

Equation (1.4.61) is called Navier-stokes equation for Newtonian fluids. This equation is 
independent of the temperature. 

The equation of conservation of energy 

A general expression of specific (per unit mass) energy E is given by 

E = e-\- mechanical energy + potential energy + chemical energy. (1.4.62) 

Here, e is the specific internal energy or specific internal heat energy. Mechanical energy, 
potential energy and chemical energy are generally omitted in the formulation of Stefan 
problems and e is taken as specific enthalpy which is the sum of the latent heat and the 
sensible heat (see § 2.1.3 for their definitions). Let E — e = h, where h is the specific 
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enthalpy. Taking (j) = h and J = —KVT in (1.4.52), where K is the thermal conductivity 
in the isotropic case, we obtain 

j^iph) + V • (pVh) = V . {KVT) + / . (1.4.63) 

Here, / is the heat generated or absorbed per unit volume. V is to be obtained by solving 
Navier-Stokes equation and substituted in (1.4.63). To take into account mechanical and 
potential energies in (1.4.63), we take body force F = —grad ip, J = —KVT — Py, where 
Pv is given by 

3 3 3 

Pv = if^PikVk, iZPikVk, Y.PzkVk). (1.4.64) 
fc=l fc=l fc=l 

Here, pij is the stress tensor defined in (1.4.54). We present below the final form of the 
energy equation for constant p case (cf. [34]). 

p -^ (e + i|V|2 + «/.) = V(KVT) - div(pV) + WT + f, (1.4.65) 

| ( ^ - ^ ) + | ( ^ - ^ . . . , , v ^T = T^{V • f x ) + -^[V • f , ) + —{V • T,) , (1.4.66) 

-?i = iTix + JTiy + kTiz, i = x,y, z. (1.4.67) 

Here, jplVI^ is the kinetic energy and for simplicity we take the body force to be 

F = — grad ij). 



Chapter 2 

Thermodynamical and Metallurgical 
Aspects of Stefan Problems 

2.1 Thermodynamical Aspects 

Several generalizations and extensions of the two-phase problem (1.4.4)—(1.4.8) are possi-
ble but before dealing with them, we give some definitions. Many terms like equilibrium 
temperature, thermal conductivity, latent heat, enthalpy, etc., have been used earlier 
without defining or explaining them for the reason that greater concern was shown for 
the mathematical formulation. Some thermodynamical aspects of Stefan problems will 
be discussed in this section. 

2.1.1 Microscopic and macroscopic models 

A system is called microscopic if it is of 'small dimensions', roughly of the size of an 
atom or a molecule, i.e., of the size of 10~^^ meters. In a microscopic model, thermal, 
mechanical or chemical phenomenon is studied at an atomic or molecular level. In a 
macroscopic model, the system is 'large enough' of the order of one micron, be visible 
with a microscope using ordinary light. A macroscopic system consists of large numbers 
of atoms or molecules. There is an important difference between a microscopic model and 
a macroscopic model. In the microscopic model, the description of an individual particle 
motion/action, even if available would not disclose the gross behaviour/properties of the 
system. For example, it is a striking fact, and one which is difficult to understand in 
microscopic detail that simple atoms forming a gas can condense abruptly to form a 
liquid with very different properties. 

It is well known that a transport phenomenon whether it is electrical, heat or mass 
transfer, occurs due to changes in the energy levels of atoms or molecules. Imagine 
applying Newtonian laws of motion to 10 °̂ molecules and obtaining information for each 
molecule in a transport phenomenon such as heat transfer. It is an awesome task. All the 

39 
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mathematical formulations discussed earlier are based on macroscopic modelling. Does 
it meant that microscopic modelling is not required? However complicated, microscopic 
models cannot be totally discarded. Kinetic theory of matter (cf. [35, 36]) applies the 
laws of mechanics to individual molecules of a system and enables one to calculate, for 
example, the numerical values of heat capacities, heats of transformation, viscosity. These 
parameters can be explicitly defined in a macroscopic model, but their numerical values 
can be obtained only on the basis of a molecular model. As stated earher some of the 
equations of mathematical physics, for example, the heat equation can be easily derived 
on the basis of a microscopic model. 

The advantage of the macroscopic model or a continuum hypothesis, and in which 
we are interested is that the gross behavior of the system can be studied and laws of 
Newtonian mechanics can be applied to the bulk matter. An approach more general 
than macroscopic modelhng is of statistical thermodynamics which, ignores the detailed 
consideration of molecules as individuals, and applies statistical methods to find the 
distribution of very large number of molecules that make up a macroscopic piece of matter 
over energy states of the matter. The equations of conservation of mass, momentum 
and energy arising in continuum mechanics can be obtained as particular cases of the 
Boltzmann equation [36]. 

Both kinetic theory and statistical thermodynamics were first developed on the as-
sumption that the laws of mechanics deduced from the behavior of matter in bulk, could 
be applied without change to particles like molecules and electrons. As science progressed, 
it became evident that at least in some respects this assumption was not correct, that the 
conclusions drawn from it by logical methods did not agree with experimental facts. For 
example, experiments suggest that the specific heat of many solids at constant volume 
approach the Dulong-Petit [35] value of 3R {R is universal gas constant) at high tem-
peratures, but decreases to zero at very low temperatures. This behavior of solids can 
be explained with the help of a quantum mechanics approach. The failure of small scale 
systems to obey the same laws as large scale systems led to the development of quantum 
theory and quantum mechanics. Statistical thermodynamics is best treated today from 
the view point of quantum mechanics. On a microscopic scale classical mechanics does 
not apply and must be replaced by quantum mechanics. For further details of quantum 
theory, the reader is referred to [35, 36, 37]. 

2.1.2 Laws of classical thermodynamics 

We shall be deahng here mostly with equilibrium thermodynamics. Thermodynam-
ics is the study of energy and its transformation. There are many different types of 
energy but most studies of thermodynamics are primarily concerned with two forms of 
energy: heat and work. Thermodynamics deals with the macroscopic properties of mat-
ter and is an empirical science. It is developed on a small number of principles which are 
generalizations made from experience. 
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Thermodynamic equilibrium: When a system is in thermal, mechanical and chemical 
equilibrium, it is said to be in thermodynamic equilibrium. In thermal equilibrium, the 
temperature will be the same at all points of the system. In mechanical equilibrium, all 
motions, expansions or contractions of the system are absent. Note that atoms are still in 
motion. When all the chemical reactions stop then the system is in chemical equilibrium. 

Reversible and quasi-static process: A process is called reversible if the initial state of 
the system can be restored with no observable effects in the system and its surroundings. 
If a process is not reversible, it is called irreversible. If a process is carried out in such a 
way that at any time the system departs only infinitesimally from the equilibrium state 
it is called a quasi-static process. 

First law of thermodynamics: 

Internal energy (internal heat energy) of a system is the sum of all the individual 
kinetic energies of motion and energies of interaction (potential energies) of the particles 
in the system. Internal energy can be transformed to do work and produce heat. One 
form of the first law of equihbrium thermodynamics is 

dU = d'Q-d'W. (2.1.1) 

Here, dU is the change in the internal energy of the system from equilibrium state a to 
another equihbrium state 6, d'Q is the heat flow into the system during the change of 
state and d'W is the work done by the system when the system changes its equilibrium 
state from a to b. The dash indicates that the quantities are not exact differentials. 
Internal energy is a state property, i.e., internal energy in state b does not depend on the 
process by which the system has been brought from state a to state b. dU is an exact 
differential but not d'Q and d'W. It can be easily shown that work is path-dependent and 
so is heat flow [35]. Equation (2.1.1) holds for both reversible and irreversible processes. 

Second law of thermodynamics: Entropy 

Some changes in a system can take place only in one direction. Consider an isolated 
system in which a body at temperature Ti is in contact with a heat reservoir at temper-
ature T2 > Ti. Heat will flow from the reservoir to the body and raise its temperature to 
T2. Is it possible for the body to cool down to temperature Ti by releasing heat to the 
reservoir? The change in this direction is not possible. It may be noted that the total 
energy of the system consisting of the body and the reservoir is conserved even if a reverse 
change takes place. Therefore if we are looking for some property of the system whose 
change can tell us the direction in which the reverse change is possible, then it cannot 
be energy. This property of the system is called entropy, denoted by S and defined as 

/ d'Q 
dS = S2 — Si = / -—, (reversible changes) . (2.1.2) 

1 

Here, 1 and 2 are the two equilibrium states, of a system. Entropy is defined only for 
reversible processes. The second law of thermodynamics, states that processes in which 
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the entropy of an isolated system (i.e., dQ — 0) would decrease do not exist. Specific 
entropy (entropy per unit mass) will be denoted by s. 

If hot water is mixed with cold water, then the entropy of the cold water will increase 
more than the decrease in the entropy of the hot water which can be checked from (2.1.2). 
So there will be an increase in the entropy of the system consisting of both cold and hot 
water. This tells us that heat cannot flow from cold water to hot water as decrease in the 
entropy of an isolated system is not possible. Unlike energy or momentum, entropy is not 
conserved. The first law of thermodynamics states that energy can neither be created 
nor destroyed and the second law states that entropy can not be destroyed but it can 
be created. The process is called isentropic if the entropy of the system does not change 
during the process. 

2.1.3 Some thermodynamic variables and thermal parameters 

Specific heat capacity or specific heat: If no phase-change takes place in a process, 
then the heat capacity C at any temperature is defined by the equation 

d'Q = CdT, (2.1.3) 

where d'Q is the quantity of heat added to the system which changes its temperature by 
dT. The process could be reversible or irreversible. If the volume of the system does not 
change in the process, then C is denoted by Cy and is called heat capacity at constant 
volume. At constant volume, dV = 0. Prom (2.1.1), we obtain 

'^'^"-^^^-{%)M{whr '•"-^w),"'- *"•"> 

where the only work done is by the pressure P in changing the volume. From (2.1.3), we 
get 

C,^{%l. (.1,5, 

It may be noted that Q is not a function of temperature. Therefore C is not the derivative 
of Q with respect to T but is only the ratio of d'Q and dT or the ratio of very small 
amount of heat supplied and the change in the temperature. 

A specific value of an extensive property (a property such as energy which depends 
on the mass) is its value per unit mass. Specific heat is defined as the heat capacity per 
unit mass and will be denoted by C. 

Enthalpy: If the pressure P does not change in the process, then from (2.1.1), we 
get 

dU = d'Q - PdV. (2.1.6) 
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Also 

dU + PdV = dU-{- PdV + VdP = dU-^ d{PV) = d{U + PV). (2.1.7) 

Let H = U -\- PV, where P is constant. H is called enthalpy and specific enthalpy will be 
denoted by h. H is a. function of state, or a thermodynamical property. In this volume, H 
has also been used for enthalpy per unit volume. If a thermodynamic quantity depends 
only on the state of the system and not on the process by which it has been brought to 
that state, then it is called a thermodynamical property. Temperature and pressure are 
examples of thermodynamical properties. From (2.1.6) and (2.1.7), we have 

dH = dQ = CpdT, (2.1.8) 

Here, Cp is the heat capacity at constant pressure. 

From the relation dH = dQ (at constant pressure), it is clear that enthalpy can be 
regarded as the heat content of the system. A positive AH (change in H) means that 
heat is absorbed while a negative AH means that heat is released. 

Gibbs free energy and Helmholtz free energy: We now ask 'Is it possible to describe 
the thermal equilibrium of a system in terms of some property of the system itself even 
if it is in contact with surroundings' ? A system and its surroundings together is called 
a 'universe'. Universe is considered to be isolated and closed. For an isolated system, 
d'Q = 0 and so dS = 0. Let dS and dS^ be the changes in the entropies of the system 
and its surroundings, respectively, then from the second law of thermodynamics 

(dS^dS,) >0. (2.1.10) 

Let the system absorb some heat d'Q from its surroundings so that the internal energy 
of the system changes from U to U -\- dU and the system does some work d'W = PdV in 
a ^PVT system'. If T is the temperature of the system and its surroundings, then 

dS, = -d'QIT and [dS - d'Q/T) > 0. (2.1.11) 

Substituting d'Q from (2.1.1) in (2.1.11), we get 

dU + PdV -TdS <0. (2.1.12) 

All the quantities in (2.1.12) belong to the system. In any reversible process between two 
equilibrium states, dS + dS^ = 0 and so 

dU + PdV -TdS = 0. (2.1.13) 
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If P and T are constant, then 

d{U + PV - TS) = dU + PdV - TdS = 0. (2.1.14) 

Therefore, the quantity U + PV — TS is a function of the state of the system. It is called 
Gibbs free energy denoted by G and 

G=U-{-PV~TS = H-TS, H = U + PV. (2.1.15) 

Note that G is the free energy of the system and not the free energy per unit volume. 
Interestingly in deriving (2.1.15) we had assumed that the process is reversible. But G is 
a function of the state as all the quantities on the r.h.s. of (2.1.15) are functions of state. 
It does not matter whether the state of the system is changed by a reversible process or 
by an irreversible process. 

Equation (2.1.15) is very general and apphes to a system of any nature. The process 
may be a change of state, or a change of phase, or a chemical reaction. Suppose the 
temperature of the system rises by an amount dT under constant pressure. When the 
system changes from one equilibrium state to another then from (2.1.15), we get 

dG = dH- TdS - SdT. (2.1.16) 

Prom (2.1.3), dQ = CpdT (under constant pressure d'Q = dQ) and therefore from (2.1.2) 

dS = CpdT/T. (2.1.17) 

Since dH = dQ = CpdT, we have 

dG=-SdT. (2.1.18) 

The free energy decreases with the rise in temperature at constant pressure. The 
Gibbs free energy is the most useful of all thermodynamical properties and provides a 
practical criterion for a system to be in thermodynamical equilibrium. If a system is in 
thermodynamical equilibrium, then dT = 0 and 

dG = 0. (2.1.19) 

Out of the infinitely many states in which a system can exist, the equilibrium state is the 
one whose free energy does not change in any process which is carried out under constant 
pressure and constant temperature. dG = 0 also implies that in an equilibrium state, 
free energy would be minimum. 

Let us now consider a system at constant temperature and constant volume. It is 
easy to see that 

d(U - TS) - dU - TdS = 0. (2.1.20) 
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The quantity F = U — TS is called Helmholtz free energy. F is also a function of state and 
plays the same role at constant temperature and constant volume as Gibbs free energy 
plays at constant temperature and pressure. dF can be expressed as 

dF = -SdT - PdV. (2.1.21) 

Latent heat: When a solid metal piece is heated, the temperature rises and reaches an 
equilibrium temperature Tm (see the next section). When more heat is supplied, the heat 
is first absorbed without raising the temperature of the piece. The heat so absorbed is 
called latent heat of melting. It is measured in terms of per unit mass and is the ratio of 
the heat absorbed and the mass m undergoing the change of phase. Why is heat absorbed 
? In solid metals, the free atoms are closely packed. Atomic arrangement is disordered 
in liquids in comparison to that in solids. So the latent heat of fusion (or melting) is 
the energy required to pull the atoms apart to the more openly packed structure of the 
liquid [38]. In general when a phase changes isothermally from solid to liquid or liquid 
to vapour or solid to vapour, the system absorbs heat. The heat absorbed in these three 
transformations is called latent heat of fusion, latent heat of vaporization and latent 
heat of sublimation, respectively. When a liquid solidifies latent heat is released. Latent 
heat released per unit mass is taken as positive, and is denoted by /. Latent heat of 
solidification is the negative of the latent heat of fusion. 

Thermal conductivity: Thermal conductivity is a transport property and is not a 
function of state. Transport of heat energy takes place by molecular mot ion/vibration 
and is called heat conduction. Heat conduction in equilibrium thermodynamics takes 
place according to an empirical law called the law of Fourier's heat conduction. For 
isotropic bodies this law is given by (1.3.8) and for anisotropic bodies by (1.4.9). 

2.1.4 Equilibrium temperature; Clapeyron's equation 

Melting or freezing temperature: The free energy curves vs temperature (pressure 
constant) for solid and liquid phases of a metal are given in Fig. 2.1.1. Since free 
energies of the two phases are the same at the temperature T^, the two phases can stay 
in equilibrium at Tm as no exchange of free energy can take place. Tm is called equilibrium 
temperature. Tm is also called melting or freezing temperature. It can be called an ideal 
equilibrium temperature as the phase-change takes place at Tm under ideal conditions 
which ensure that the phase-change boundary is planar. In alloys phase-change takes 
place over a temperature range. If the temperature of the liquid is less than Tm, the 
hquid is called supercooled. It is clear from Fig. 2.1.1. that for T < Tm, the free energy 
of the sohd is less than the free energy of the hquid. Therefore sohd phase is a stable 
phase for T < Tm and supercooled liquid is not a stable phase. 

For a solid, the specific enthalpy h is given by 

h = CsT, T<Tm. (2.1.22) 

For a liquid 

h = CLT^l / > 0 ; T>Tm. (2.1.23) 
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AtT = Trr., 

he[CsTm.CLTm + l] (2.1.24) 

Crystal 

0"K Tm Tempera tu re 

Fig. 2.1.1. Free energy vs temperature 

Prom (2.1.15), AH = TmAS as AG = 0 at T = T^, where AH and AG stand for 
the difference between their values in the two phases at T = T^. Therefore 

As : 
U{CL-Cs)Tm_ I 

(2.1.25) 

where As is the specific entropy of the hquid minus the specific entropy of the sohd at 
T = T 

Clapeyron's equation: When two phases have different specific volumes their temper-
ature of mutual equiUbrium depends on the pressure as the phase-change causes work 
PdV to be done. Let Gi(T, P) and G2{T, P) be the Gibbs free energies of the solid and 
liquid phases, respectively. Since the phases are in equilibrium 

Gi(T,P)-G'2(T,P) = 0, (2.1.26) 

dT dT r^ ^[ dP dP ' "̂  ^' 

On using the definitions of Gi and G2 and (2.1.25), we obtain 

dP 1 + {CL- Cs)Tm 
dT (KL - Vs)Tm 

(2.1.27) 

where V stands for the volume. 
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2.2 Some Metallurgical Aspects of Stefan Problems 

2.2.1 Nucleation and supercooling 

It is a common experience that when most hquids are cooled sufficiently, they become 
solid in course of time. A liquid metal normally solidifies by crystallization. In addition 
to the solid state, metals also exist in a glassy or an amorphous solid state, a state which 
is hard but not crystalline. The first step in the growth of a crystal is nucleation. A small 
nucleus appears in the liquid phase which then grows by the addition of more material 
from the liquid phase. The formation of a rain drop in a cloud is a familiar example. 

The theory of 'nucleation' is important not only in crystal growth but also in un-
derstanding supercooling/superheating and supersaturation effects. Some authors use 
the term undercooling in the place of supercooling. A nucleus may form at the surface 
of the mold or inside the melt. When the probability of forming a nucleus is the same 
anywhere in the melt, then the system is in a state suitable for homogeneous nucleation. 
If some sites are more suitable for nucleation than others, then the system is in a state 
suitable for heterogeneous nucleation. In nature most nucleations occur heterogeneously. 
For heterogeneous nucleation we refer the reader to [39]. 

How does nucleation occur ? A phase transformation involves rearrangement of atoms 
and requires some irreversible departure from equilibrium. Phase transitions are driven 
by thermal fluctuations and in liquid metals, random fluctuations may create minute 
crystalhne regions called 'clusters' or 'embryos' even at temperatures higher than T^. 
On this already existing new phase which has grown randomly some more material of 
the new phase should grow for a crystal formation. Some sites such as rough surfaces of 
the mold, foreign bodies in the melt, and seeds of the new phase added to the melt help the 
process of nucleation. Further details of heterogeneous nucleation or even homogeneous 
nucleation are too complicated to be presented here. 

For a nucleus to grow, some work has to be done by the system which results in a 
change in the free energy AC (per unit volume) which is the difference between the total 
free energy of the new phase (solid), and the total free energy of the old phase (liquid). 
Total free energy is the sum of the bulk energy and the surface energy, and is given by 

AG = r^AGv + ar^a, (2.2.1) 

where r is the linear dimension of the nucleus and r"^ its volume, AGy is the change in 
the bulk free energy of the volume, ar^ is the surface area of the nucleus and a is the 
surface energy per unit area, a is generally positive. AGy is negative as the enthalpy of 
the liquid is greater than that of the solid. When the radius of the nucleus is very small, 
the second term on the r.h.s. of (2.2.1) dominates the first (a is large when the nucleus 
is very small) term making AG positive. AG reaches its maximum when at r = TQ (see 
Fig. 2.2.1.) and 

dr 
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Using (2.2.1) in (2.2.2), we obtain 

r = ro = -2aa/{3AGv) and A = AG\r 
4aV^ 

(2.2.3) 
27{AGvy 

Since at equilibrium AGy = 0, AG becomes very large near r = TQ. The nucleus cannot 
grow beyond r = TQ until this large energy barrier is crossed, for example by artificial 
seeding with the fragments of the new phase. Once this barrier of energy is crossed, AC 
starts decreasing and nuclei are formed when AG is negative. The critical size r = ro of 
the nucleus corresponds to an unstable equilibrium between the nucleus and its parent 
phase; AC makes larger one grow and smaller one shrink. 

Fig. 2.2.1. AC, AGy and surface energy vs r 

Supercooled state: A state in which the temperature of a liquid is below the ideal 
equilibrium temperature Tm is called a supercooled state and the liquid is said to be 
supercooled. If the temperature of the solid is greater than T^, the solid is said to be 
superheated. It may be mentioned that the term supercooling defined here is different 
from the constitutional supercooling which arises in alloy solidification and in which the 
freezing temperature may decrease with the rise in concentration. 

Degree of supercooling 

For simplicity the formation of a single nucleus in homogeneous 
considered. Let T be the nucleation temperature. From (2.1.18) and 

d{AGv 
-AS=-

AH In 

dT T VmTm 

Here, Gy is the free energy per unit volume. It has been assumed in (2 
a small change in the entropy due to a temperature change can be ne; 
be used in the place of T. Im is the latent heat per mole and Vm is 
The 'mole' or the 'mole number' of a substance is defined as the ratio 
molecular weight and the 'molar volume' is the ratio of volume and 
Using Taylor's series expansion for AGy, we obtain 

.d{AGy' 

nucleation will be 
(2.1.25), we have 

(2.2.4) 

2.4) that C 5 = CL, 
fleeted and Tm can 
the molar volume, 
of its mass and the 
the mole number. 

(AGv (AGv + (T - r,„ clT \T„, + .. 
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= - ( T . - r ) ! ^ | . „ = - % ^ . (2.2.5) 

In deriving (2.2.5) we take {AGV)\T^ = 0 as at T = Tm the bulk free energies of solid 
and liquid phases are the same and higher order terms have been neglected. If T < T^ 
in (2.2.5), then {AGV)T is negative. For large radius of the nucleus, AG can be taken to 
be equal to AGy as the second term in (2.2.1) is very small. If the phase-change from 
liquid to solid takes place at a temperature lower than Tm, then the liquid is supercooled 
and {Tm — T) gives the degree of supercooling. Note that AG is negative, which it should 
be for a crystal growth. If a system exists in a state of its lowest fee energy, then the 
system is in a stable state and it can remain in this state for a long time. However, 
systems often exist for long times in states not of lowest free energy, for example, a 
mixture of oxygen and hydrogen gases can stay unchanged at room temperature even 
though the stable state is water. Such systems are said to be metastable. Supercooled 
liquid and superheated solids are in metastable states and if they get some extra energy 
to rearrange a group of atoms into a next and more stable phase, the phase-change to 
a stable phase will take place. The stable state for a supercooled liquid is solid and for 
a superheated solid, it is liquid. The extra energy can be provided to the supercooled 
liquid, for example, by artificial seeding. During solidification, latent heat is released by 
the liquid which warms up the growing crystal and the solid-Hquid interface attains the 
temperature Tm (see Fig. 2.3.7.). 

Supercooling is generally small but can be as large as 0.2 Tm. For typical metals 
Tm ~ lOOO/C to 2000X. It may be noted that Tm is actually an ideal freezing temperature 
as the phase-change from liquid to solid generally takes place at a temperature lower than 
Tm- This is because of the effect of interface curvature and the kinetic undercoohng which 
are discussed in the next section. 

2.2.2 The effect of interface curvature 

In the crystallization of a pure metal, at the interface between nucleated crystal and 
its melt, there is considerable activity amongst the atoms. This is because of the small 
amount of activation energy required to change the phase. In simple words, activation 
energy can be described as the least amount of energy required to change a metastable 
phase to a new and more stable phase. Some atoms break away from the crystal at 
the surface to join the liquid and some atoms in the liquid crystallize on the surface and 
become part of the crystal. If the rates of these two opposing processes are equal, then the 
surface is at the crystal-liquid equilibrium temperature. This equilibrium temperature 
need not be the ideal equilibrium temperature Tm- If the surface of the crystal is curved, 
and the center of curvature lies inside the crystal, then on an average the atoms at the 
surface are less surrounded by neighbouring atoms of the crystal than otherwise and their 
escape tendency into the liquid increases. Less energy is required for a phase-change and 
phase-change takes place at a lower temperature. The equilibrium temperature is lower 
than the ideal value Tm [40]. Conversely, if the center of curvature lies outside the crystal, 
then the equilibrium temperature will be higher than Tm- These effects are small unless 
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radius of curvature is small. The deviation AT from the ideal equihbrium temperature 
Tm (which is the temperature of a planar phase-change interface) is given by 

AT = T ^ - T „ = A'ero = ^ ^ ^ f y ^ , (2.2.6) 

where T^ is the new equilibrium temperature due to the curvature effect, Kc is the sum 
of the principal curvatures of the curved surface, a is the surface energy per unit area 
and Im is the latent heat per mole. Note that the curvature Kc and the constant FQ are 
defined in such a way that a positive undercooling, i.e., a decrease in the equilibrium 
temperature is associated with a portion of solid-liquid interface which is convex towards 
the liquid phase (see Figs. 2.4.2. and 2.4.3.). Kc is negative in this case. Equation (2.2.6) 
is called Gibbs-Thomson relation. The relation (2.2.6) can be obtained as follows. 

Consider a small solid particle (crystal) in the melt. The sum of the principle curva-
tures of the curved surface of this particle is denoted by Kc- Let AGr be the difference 
between the total free energies (per unit volume) of the new phase (very small crystal) 
and the old phase (liquid) when the curvature effects are included in the phase-change 
temperature T^. Note that the total free energy in any phase is the sum of the free 
energy of the bulk and the surface energy. 

If the volume of the liquid is much large than the volume of the crystal, and if \T^—Tm\ 
is not very large, then it can be reasonably assumed that in solidification the free energy 
of the liquid does not change due to the curvature effect. In this case as discussed below 
AGr can be regarded as the difference between the total free energies of a very small 
crystal (with curvature) forming at temperature T^ and a very small crystal forming at 
Tm without curvature. 

AGr = total free energy of crystal at T^ — total free energy of liquid at T^ (2.2.7) 

= total free energy of crystal at T^ — total free energy of liquid at Tm 

= total free energy of crystal at T^ — total free energy of crystal at T^. (2.2.8) 

Since free energies of solid and liquid at Tm with no curvature are equal, we get (2.2.8). 
I AGr I can also be calculated with the help of (2.1.15) and (2.2.8) and we get 

|AG,| = \AH - r ^ A 5 | = |A5||(T„ - T J | . (2.2.9) 

Here, modulus of different quantities has been taken for convenience. A5 is the difference 
between the entropies (per unit volume) of solid and hquid at the temprature T^. It can 
be shown [40] that if Cs = CL then 

{AH)T^T^ = {AH)T^Tm- (2.2.10) 

The change in the free energy of the crystal due to curvature or the change in the free 
enthalpy of the crystal (per unit volume) due to curvature is due to the change in the 
internal pressure [40] and so 

| A a | = |AP|. (2.2.11) 
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The internal pressure AP is given by the relation [40] 

\AP\ = a\K,\. (2.2.12) 

When Gibbs-Thomson law is written as 

r ; = r „ + ^ ^ f y ^ , (2.2.13) 

then by convention Kc is taken as negative if the phase-change interface is convex towards 
the liquid, i.e., T^ < Tm as a, Tm and Im are taken as positive. If T^ > T^, then from 
(2.2.4) (2.2.9), (2.2.11), and (2.2.12) (modulus sign can be removed as we are dealing 
with positive quantities on both sides), we get 

Tm-T'm = crKcTmVm/lm, K > 0, (2.2.14) 

which is the relation (2.2.6). 

2.2.3 Nucleation of melting, effect of interface kinetics, and 
glassy solids 

Nucleation of melting: Melting of solid can begin without significant superheating in 
the solid. When nucleation of melting occurs over a sohd surface, the nucleus consisting 
of the liquid phase will be enveloped basically by two different surfaces. On one side is a 
sohd-hquid interface (see Fig. 2.2.2.) and on the other side is a gas-hquid interface. The 
surface energy of the gas-solid interface is generally greater than the combined gas-liquid 
and solid-liquid surface energies. This implies that the formation of the liquid film on 
the solid surface will not be opposed by the solid surface and the liquid film spreads over 
the solid surface without significant superheating. The equilibrium of surface energies is 
attained at the equilibrium temperature. 

Effect of interface kinetics: It was suggested in [41], that the interface movement 
lowers the temperature of the solid-liquid interface below the equilibrium teriiperature Tm-
The form of the growing pheise adapts itself to satisfy the growth velocity-temperature 
requirement. The movement of the interface is dependent on a driving force which was 
called the viscous effect or the interface kinetic effect. The supercoohng as a function of 
interface velocity can be expressed as 

T(V) = Tr,-$-V, (2.2.15) 

where T{V) is the new melting temperature, V is the velocity of the interface and (p is 
the viscous correction term. For small departures of T{V) from T^ the rate at which 
solidification occurs is approximately proportional to the departure [42]. In high transi-
tion rates these effects appear on a macroscopic scale also. Kinetic undercooling is likely 
to be important only when V • n (normal velocity) is large, such as V - n ^ lOm/s. The 
applicability of kinetic effect to a moving interface has been opposed by some authors [43] 
as the concept devolves from the thermodynamics of equilibrium systems which has been 
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Fig. 2.2.2. Nucleation of melting 

applied in (2.2.15) to transforming systems. The interfacial free energy of the solid-liquid 
interface is a thermodynamic quantity only in the limited context of stationary interfaces 
which are at equilibrium. See [42] and [44] for further information. 

Glassy (amorphous) solids: At very high cooling rates, such as those encountered in 
rapid solidification of liquid metals, there may be insufficient time for the formation of 
nucleus and a glassy solid is formed. While still non-crystalline, it becomes a solid in 
its mechanical behaviour as its viscosity becomes very high. There is no phase-change 
boundary associated with glassy materials. 

2.3 Morphological Instability of the Solid-Liquid In-
terface 

A crucial assumption in the classical formulation of Stefan problems is that there exists a 
smooth surface which is the phase-change boundary such that on one side of this surface 
is a stable solid (liquid) region and the other side a stable liquid (solid) region. The solid 
region is identified only by its temperature which should be less than or equal to the 
equilibrium temperature T^. Similarly liquid is identified only by its temperature which 
should be greater than or equal to T^. The existence of such a planer solid-liquid interface 
is an ideal situation and is possible only in special cases such as columnar solidification 
of pure metals or directional solidification of alloys in 'Bridgman type furnace' [40] under 
a sufficiently high temperature gradient. 

In unidirectional solidification, in its classical formulation, it has been established 
mathematically in several references such as in [45] that under certain conditions, such 
as, in the absence of volumetric heat sources, or non-existence a mushy region initially, 
a planar interface remains planar (mushy region does not develop) till the solidification 
is complete. In multi-dimensional problems, the existence of a sharp interface has been 
proved rigorously only for a short-time under suitable assumptions (see Chapter 10). 
Invariably, a sharp interface separating a stable solid region from a stable liquid region 
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degenerates after a short time into a mushy region. The mushy region contains both sohd 
and hquid phases and separates the stable sohd region from the stable liquid region. The 
solid in the mushy region is present initially in the form of dendrites (Figs. 2.3.1. and 
2.3.2.). Further growth of dendrites leads to a poly crystalline structure with one crystal 
from each nucleus (Fig. 2.3.3.). The diameter of a grain could be as smah as 10"^m 
and as large as 10~^m. Mushy region may also develop during solidification if the hquid 
is supercooled or during melting if the sohd is superheated. This degeneration of sharp 
interface into a mushy region is attributed to the morphological instability of the solid-
liquid interface. 

Fig. 2.3.1. Formation of dendrites Fig. 2.3.2. Dendrite growth 

Classical thermodynamic definitions of stability are inapplicable to the determination 
of the morphology of a growing interface, and current extensions of equilibrium ther-
modynamics have not yet furnished a fully acceptable alternative [46]. On the basis of 
a heuristics-based stabihty criterion, the interface is said to be morphologically unsta-
ble/stable if a small perturbation given to the interface grows/dies with time (see Fig. 
2.3.4.). In Fig. 2.3.4. (a), the perturbations are growing, making the planar interface 

Fig. 2.3.3. Formation of polycrystalline structure. 
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Fig. 2.3.4. (a) Small perturbations at the interface are growing 

(b) Perturbations are dying. 

unstable. Mushy region will develop in front of the interface. In Fig. 2.3.4. (b), the 
perturbations are dying and the planar interface remains planar. Figs. 2.3.5—2.3.7. 
show solid-liquid interface morphology and the temperature distributions in the solid 
and hquid regions. In Fig. 2.3.5., freezing temperature is equilibrium temperature T^. 
The interface is planar and perpendicular to the direction of heat flow. The hottest part 
of the system is the hquid region. In Fig. 2.3.6. the growth of freezing front is columnar. 
The hottest part of the system is liquid. This growth is more common in alloys. In Fig. 
2.3.7., the grains are equiaxed and have similar dimensions along all axes. The hottest 
part of the system is the crystal as the liquid is supercooled. The interface is stable in 
Fig. 2.3.5 and unstable in Figs. 2.3.6. and 2.3.7. 
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Fig. 2.3.5. Solid-Liquid interface 
morphology and the temperature 
distribution. Planar growth. 

Fig. 2.3.6. Solid-Liquid interface 
morphology and the temperature 
distribution. Columnar growth. 
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Fig. 2.3.7. Equiaxed dendrite growth 

2.4 Non-material Singular Surface: Generalized Ste-
fan Condition 

A singular surface is a surface which does not have any inner structure so as to give 
rise to discontinuities in the bulk quantities. SoHd-hquid interface and shock waves are 
examples of singular surfaces. The motion of a singular surface could be independent of 
the motion of the bulk phases. 

A material surface is a surface which consists of the same material particles all the 
time. Fluid films and coatings are examples of a material surface. A surface which is not 
a material surface is called a 'non-material surface'. 

It is well known that surfaces of bodies, and interfaces between pairs of bodies, ex-
hibit properties quite different from those associated with their interiors. There have 
been several a t tempts (cf. [46, 47, 48, 49]) at formulating the equations of conservation 
of mass, motion and energy in a moving singular surface embedded in a three-dimensional 
continuum and dividing the continuum into two regions for which the singular surface is 
a common boundary. Some thermodynamic fields may have discontinuities across this 
singular surface. In the classical Stefan condition (1.4.8), the jump in the normal com-
ponent of the heat flux vector across the phase-change boundary is given in terms of the 
amount of latent heat released or absorbed at the phase-change boundary. It is assumed 
that no mechanical work is done. The modern theory of surface thermodynamics and 
mechanics takes into account other aspects also such as the surface stress, in particular 
surface tension, and conduction of heat tangential to the surface while balancing energy 
along the singular surface. The Stefan condition derived below takes into account the sur-
face tension and heat conduction while balancing energy in the phase-change boundary, 
and will be called generalized Stefan condition [51]. 

Consider a three-dimensional bounded region R which is occupied by solid and liquid 
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phases. There exists a time dependent smooth singular non-material surface F which 
divides R into two parts Rs and RL, R = Rs ^ RL ^ ^• Rs and RL are solid and liquid 
regions such that Rs H Ri is empty. The subscripts S and L stand for the solid and the 
liquid phases, respectively. The external surfaces of Rs and RL will be denoted by dRs 
and dRi, respectively (see Fig. 2.4.1.). Let (Rs)b = dRsUT and (RL)^ = dRiUT. The 
external surface of R is dRs U dRi U dT where the curve dV is the boundary of F. The 
surface F is orientable and the unit normal Â  to F points into the liquid phase. Let V 
be the velocity of F in the direction of TV, i.e., V = \V\N. \i may be noted that only the 
normal component of the velocity of the interface can be determined as in (L4.15). The 
tangential component of the interface motion for a massless interface cannot be derived 
a priori by recourse to principles of general vahdity [52]. 

We shah first balance the forces in R. These results will be used in balancing energy 
later. 

Conservation of forces in R 

fpBdv-\- f Tnda+ f fiydl = 0. (2.4.1) 
dRsUdRL dr 

Here, B is the body force per unit mass, n is the unit normal vector pointing outwards 
as the exterior boundary of a region is traversed in the anticlockwise direction, r is the 
bulk stress tensor and f is the surface stress tensor, and /7 is the outward unit vector 
normal to dT which is tangential to F. dv, da and dl are elementary volume, elementary 
area and elementary length, respectively. We take ps = pi = P for simplicity. 

/ 3 3 3 \ 

\ i= l i=l 1=1 / 
( m , 712,723), (2.4.2) 

Tij, z = 1, 2, 3, J = 1,2, 3 are components of bulk stress tensor r . 

If it is assumed that both solid and liquid regions are in equilibrium independently of 
each other, the balancing of forces in the solid region gives 

/ pBdv + / Tsfida + / TsNda = 0. (2.4.3) 
Rs dRs r 

Similarly balancing of forces in the liquid region gives 

/ pBdv + f Tinda - / TiNda = 0. (2.4.4) 
RL ORL r 

The minus sign in the last term of (2.4.4) arises because the outward normal to the 
liquid region at the boundary F points in the direction opposite to TV. Adding (2.4.3) 
and (2.4.4) and on subtracting the sum from (2.4.1), we obtain 

/ TLNda - / TsNda + / rudl = 0. (2.4.5) 
r r dr 
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Applying surface divergence theorem to the last term of (2.4.5) gives integration over 
r and then assuming local equilibrium, we obtain 

(TL - Ts)N + divrr = 0 in T. (2.4.6) 

Here, divpT is the surface divergence of r (cf. [47]). Surface stress tensor generahzes 
the usual notion of surface tension and is consistent with the atomistic calculations, 
indicating the presence of compressive surface stresses in certain crystals [47]. If f = crl, 
where a is a scalar valued function called surface tension and 1 is the inclusion mapping 
from the tangent space of F into the three-dimensional vector space [47], then 

(TL - Ts)N + K^aN -h Vpa = 0, in T. (2.4.7) 

Here, Kc is the sum of principal curvatures of the singular surface. 

The surface divergence of a smooth vector field u : T -^ G, where G is the translation 
space of a finite-dimensional Euclidean point space, is given by 

divrw = trDu, (2.4.8) 

where the r.h.s. in (2.4.8) is the trace of the tangential derivative Du of u [47]. Note 
that u admits a unique decomposition, u = us -\- u^N, where its is a vector in a smooth 
tangential field and Un is a scalar in a smooth scalar field. If r is a smooth tensor field, 
then for any scalar field (j) 

divr(0r) = (p divpr -h r V r 0 . (2.4.9) 

Taking (I) = a and r = / (/ is the identity tensor) in (2.4.9), we get 

divr(T) =divr(o-/) = crdivr/ + Vpcr. (2.4.10) 

Using the relation divpl = divp/ = KcN, we obtain the last two terms on the r.h.s. of 
(2.4.7). 

Conservation of energy in the singular surface F 

In order to obtain conservation of energy in F, we shall first derive the equation of 
conservation of energy in R followed by equations of conservation of energy in Rs and 
Ri- Subtracting the sum of energy equations for Rs and RL from the energy equation 
for R, we get the energy equation for F. 

The equation of conservation of energy in R is 

— / pedv -\- — eda = — q- nda - q • Vdl, 
RS^RL r dRsudRi^ dv 

+ / (TL - rs)N -Vda-^- j eUdl, (2.4.11) 

r dr 
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where e is the specific internal energy, G is the surface energy of F per unit area, q is the 

heat flux vector of the bulk, q is the tangential heat conduction vector in F, {TI — TS)N-V 

is the work done by the body forces in F and U = —\V\N • n \s the heat lost or gained 

due to geometry of Rs U RL djs N may have a non-zero component along n. Note that 

{TL — Ts)N appears as a body force in (2.4.7) and the tangential work done by this force 
is zero. The angle which N makes with n is called contact angle. It is still being debated 
on how to prescribe the boundary conditions at the contact point [54]. By calculating 

Fig. 2.4.1. Geometry in generalized Stefan condition. 

the t ime derivative of the first term on the l.h.s. of (2.4.11) by first principles, it can be 
proved tha t 

^ J pedv= I p^^+Jp{es-eL)V-Nda. (2.4.12) 

RS^RL RS^RL 

It may be noted that the region R is time independent but Rs and RL vary with time in 
R and this point should be taken care in calculating the time derivative to get the last 
term in (2.4.12). 

On balancing the energy separately in Rs and RL^ we get 

des 

Rs 

dcL 

/ P-Kfdv = - qs • nda - qs ' Nda, 

dRs r 

/ P-^dv = - I qi' nda + qi • Nda. 

(2.4.13) 

(2.4.14) 

RL ORL r 

Adding (2.4.13) and (2.4.14) and subtracting the sum from (2.4.11), we obtain 

j p[es - eL)\V\da^ - j eda = - jj^qi - qs) • Nda - j^q-udl 
r Jdv 

+ / ( T L - Ts)N • Vda - f e\V\N - ndl. (2.4.15) 

r ar 
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The second term and the last term on the r.h.s in (2.4.15) should be converted to a surface 
integral over F to obtain an equation for local energy balance in F. The conversion of 
the second term to the surface integral is straight forward. In [51], the contribution of 
the last term on the r.h.s. of (2.4.15) has been included as the third term in (2.4.16). 

Local balance of energy in F gives 

p{es - eiWl + ^' - ^ceV • N + d i v r | + {QL - Qs) • N - {TL-TS)N • V - 0, (2.4.16) 

e = ^ + V- grade. (2.4.17) 

With the help of (2.4.6), the last term in (2.4.16) can be rewritten as 

{TL - Ts)N • y = - ( divrf) • V. (2.4.18) 

Equation (2.4.16) is called a generalized Stefan condition. 

Let us now briefly describe surface tension and its relation to G. The effect of surface 
tension or capillarity can be explained on the basis of the assumption that on the outer 
surface of the liquid there exists a surface layer which could be a few molecules thick 
and whose properties differ from those of the bulk liquid. The surface film and the liquid 
can be considered as two phases of the liquid in equilibrium. The atoms in the free 
surface of a sohd or a liquid have higher free energy than those inside because they have 
no neighbours and hence no cohesive bonds, on one side. Therefore, in equilibrium, a 
tension develops on the surface of the liquid. This tension is related to pressure by a 
relation of the form (2.2.12). a is often assumed to be identical to the free energy of the 
surface. Prom the relation (2.1.15), we get 

a = e-TS, (2.4.19) 

where T is the phase-change temperature and S is the entropy. 

The Stefan condition (1.4.8) can be easily derived as a particular case of (2.4.16). For 
the derivation of Gibbs-Thomson effect from (2.4.16), see [51]. Some other observations 
made in [51] are as follows. A simple criterion for the instability of the interface can be 
derived using (2.4.16). Let G' = 0, G 7̂  0, ^ = 0 and f = al where the surface tension a 
is constant. Under these assumptions, the relation given below can be obtained. 

|y| . }''-f}'^^. (2.4.20) 

Here, / is the latent heat per unit mass (for simplicity take Cs = CL)- Consider a 
very small sohd growth protruding into the liquid (see Fig. 2.4.2.) at the solid-hquid 
interface. In this case Kc is negative and if (G — a) > 0, then \V\ is increasing. This is an 
ideal situation for the dendritic growth as any solid protrusion in the liquid will grow. If 
(G -a) < 0, then there is retardation. Ulp+Kc{e-a) -^ 0, then \V\ -> 00 and dendrites 
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will grow indicating instability of the solid-liquid interface. If lp-\- KC{E — a) -^ OO, then 
|17| - ^ 0 . This criterion may indicate branching or side protrusion in the dendrite. If the 
mean curvature is positive (see Fig. 2.4.3.) and G — a > 0, then the surface F is locally 
retarded and for G — cr < 0 it would be advanced. 

In the derivation of (2.4.6) and (2.4.16), both the sohd and liquid phases have been 
considered at rest. The motion of phases has been taken into account in [49] and a more 
general solidification theory has been presented which takes into account the coupling 
between thermal fields and kinematic fields. The liquid region is an ordinary Newtonian 
liquid and the solid phase an elastic material. The specific internal energy, specific 
entropy, stress tensor and the heat flux vector in the bulk are considered as functions 
of temperature, temperature gradient, deformation gradient and the rate of deformation 
gradient. 

In Clapeyron's equation (2.1.27), it is assumed that Gibbs free energies of hquid 
and solid phases (two different phases of the same substance) are the same and that 
the system is in thermodynamic equilibrium. This means that neither phase can grow 
or decrease. In [50], a new Clapeyron's equation has been derived, which holds in the 
presence of nonuniform fields of pressure, temperature, density and velocity, and which 
does not require the equality of Gibbs functions across the interface as long as their 
difference is a function of time only, or in particular a constant along the interface. It 
was shown that even in the presence of constant pressure along the interface, the interface 
temperature can be changed by increasing or decreasing the velocity at which the process 
of solidification is taking place. 
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Fig. 2.4.2. Mean curvature K^ is negative Fig. 2.4.3. Mean curvature Kc is positive. 



Chapter 3 

Extended Classical Formulations of 
n-phase Stefan Problems with n > 1 

3.1 One-phase Problems 

3.1.1 An extended formulation of one-dimensional one-phase 
problem 

One-phase Stefan problems are mainly of three types. In the first type, one of the 
phases is considered at the melting temperature so that there is temperature gradient 
present only in one of the phases. Such problems could arise either in melting or solid-
ification. Problems of the second kind are ablation problems in which a solid is melting 
and the liquid drains out instantaneously. In the third type, problems have to do with 
solidification of supercooled liquids, in which the temperature of the liquid is less than 
the equilibrium temperature leading to some changes in the energy balance equation at 
the interface. The melting problems in which the solid is superheated also belong to this 
class of problems. 

One-dimensional one-phase problems with different formulations have been studied 
from the perspectives of mathematical analysis and computation. Instead of giving com-
plete formulations of problems arising in different contexts, we give here a general for-
mulation of the one-phase problem so that in later sections other one-phase problems 
can be treated as particular cases of this general problem. This will avoid unnecessary 
repetitions of some details common in different formulations. 

A fairly general one-phase Stefan problem with nonlinear parabolic equation and 
nonlinear free boundary conditions has been discussed in [55] and is being presented 
here. Consider a time interval (0, £*). For each t G (0,t=,), consider the set J2(i) of 
functions p(r) which are continuously differentiable in [0,t), continuous in [0,t], and are 
such that P{T) G (bo, hi) for r G (0,^), p(0) = ^ 6i > 6 > 6o > 0. For S{T) G EiQ 
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and t G (0, t^) define the set Q(t) = {{X,T) :0< x < S{T), 0 < T < t} and let C^^^{n{t)) 
be the set of functions T(x, t) which are continuous in Q{t) together with their x-first 
derivatives. 

Assume that a(x, t,?/o,?/i,Po,Pi) is a positive function f o r O < j : < o o , 0 < ^ < 
t*, —cxD < ?/o, yi < oo, po > 0, —cxo < pi < oo. The function q(x,t,yo,yi,po,pi) is 
defined in the same domain as the function a, and h(x), f{t) are defined for 0 < x < 
6, 0 < t < i*, respectively, and ip{x,t) is defined for x > 0, 0 < t < t^. 

The problem is to find a triple {t^, S{t),T{x, t)) such that 

(i) 0<t,< I, 

(ii) S{T) e E(Q. 

(iii) T{x,t) G C '̂°(n(^=^)), Txx and Tt are continuous in ^(i*), 

(iv) the following equations are satisfied. 

Tt-a\x,t,T,T,,S,S)n, = q{x,t,T,T,,S,S), {x,t) G Q(^*), (3.1.1) 

T ( J : , 0 ) = /I(X), a; G [0,6], (3.1.2) 

T{0,t) = f{t), ^G(0,^*), (3.1.3) 

T{S{t),t) = ^{S{t),t), t G (0,^0, (3.1.4) 

S{t) = (l){S{t),t,T,{S{t),t)), ^ G (0,^*). (3.1.5) 

Here, (t){p,t,yi) is a function defined for p > 0, 0 < ^ < *̂, - co < ^i < oo, â  is the 
thermal difTusivity which has been considered as a function of independent and dependent 
variables, q is the heat source per unit time per unit volume. The temperature T{x,t) 
can be made dimensionless by dividing it by Tm so that at the free boundary T = 1. 
By redefining the temperature as T — 1, the temperature at the free boundary can be 
taken to be zero. In the literature, both 0 and 1 are used as dimensionless isotherm 
temperatures. If we make the transformation T = T — ip{x,t) in (3.1.1)—(3.1.5), then T 
becomes zero at the free boundary. 

A mere formulation of the problem as given in (3.1.1)—(3.1.5) does not guarantee 
that its solution exists. Even if the solution exists, T{x,t) and S{t) may not satisfy 
the regularity conditions mentioned above. The appropriate conditions to be satisfied 
for the existence, uniqueness, well posedness, etc., of the solution of (3.1.1)—(3.1.5) and 
solutions of some other Stefan problems will be discussed in Chapter 10. Presently we 
are concerned with the formulation. 

If the region 0 < x < S{t), S(0) — b is taken as solid (could be identified as ice) and 
the region x > S{t) {S{t) < x < bi) is taken as liquid at the equilibrium temperature 
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0 (or 1) (identified as water) and there is cooling at x = 0, then we have a one-phase 
solidification problem. The growth of the solid in the region x > b depends on some 
appropriate conditions which the prescribed data has to satisfy. In particular the data has 
to satisfy some compatibility conditions at x = b for S{t) to be positive. If 6 = ô = 0 then 
the data has to satisfy some compatibility conditions at x = 0. If the region 0 < x < S{t) 
is liquid (could be identified as warm water) and the region x > S{t) is sohd (identified 
as ice) at the equilibrium temperature and if there is heating at x — 0 then we have a 
one-phase melting problem. In the melting problem also some compatibility conditions 
are to be satisfied by the data for S{t) to be positive. These compatibility conditions 
have been discussed in Chapter 10 for several problems. Any of the boundary conditions 
(A) discussed in § 1.4.4 can be prescribed at x = 0 instead of (3.1.3). 

Often the mathematical formulations of physical problems are presented in the form 
of a set of differential equations and boundary and initial conditions without defining the 
relevant function spaces in which a solution is sought, the spaces to which the known 
functions belong, ranges of dependent variables, and domains of independent variables. 
In a rigorous mathematical formulation all such details should be mentioned as done for 
problem (3.1.1)—(3.1.5). However, due to length constraints it is not possible to do so for 
every problem discussed in this volume. These details may differ for different problems. 

A physical problem can be generalized to any extent but it may not be possible 
to throw any light on of its solution. We shall discuss only those generalizations of 
Stefan problems which have been rigorously explored. When dealing with the classical 
formulation of a Stefan problem, its solution should satisfy some regularity conditions 
given ear Her in § 1.4.6 and as above. 

In the place of (3.1.4) and (3.1.5) more general boundary conditions of the type 

T{S{t), t) = Z [dT/dx, S{t), S{t)) , (3.1.6) 

and 

W{T, dT/dx, S{t), S{t)) = 0, on X = S{t), (3.1.7) 

can be prescribed. Here, Z and W could be functionals and need not be pointwise 
functions of their arguments (cf. § (3.3.33)). 

3.1.2 Solidification of supercooled liquid 

Consider the following problem: 

Tt = Tix, in A , = {(x, t):0<x< S{t), 0 < t < t,, S{0) = 1}, (3.1.8) 

T(x, 0) = To(x) < 0 , 0 < X < 1, (3.1.9) 
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Tx{0,t)=g{t)>0, 0<t<t^, (3.1.10) 

T{S{t),t) = 0, 0<t<t,, (3.1.11) 

T^{S{t),t) = -S{t), 0<t<t^. (3.1.12) 

By appropriate scaling of time and/or length, the various parameters have been taken 
to be unity in (3.1.8)—(3.1.12). This problem is concerned with the sohdification of a 
supercooled Uquid which initially occupies the region 0 < x < 1 and ice at T = 0 occupies 
the region 1 < x < oo. It can be argued that the region 0 < x < 1 cannot be solid. For 
if it were so then the region x > 1 would have to be liquid at the temperature zero and 
solidification would begin in the liquid. This would further imply that Tj:{S{t)^t) and 
S{t) are positive, violating (3.1.12). This problem will be referred as supercooled Stefan 
problem or in short SSP. The analysis of such problems has been presented in § 4.4.1. 

3.1.3 Multi-dimensional one-phase problems 

The formulation given in (3.1.1)—(3.1.5) can be extended to multi-dimensional one-
phase problems if the free boundary is defined by the equation ^{x^t) = 0, x ^ R^ 
as in §1.4.1. Multi-dimensional problems have not been investigated as exhaustively as 
one-dimensional problems and often the problems studied are not as general as described 
in the formulation (3.1.1)—(3.1.5). A typical multi-dimensional problem is the ablation 
problem described below. 

A three-dimensional ablation problem 

During melting of a solid, if the melt is removed as soon as it is formed, heat flux has 
to be prescribed at the phase-change interface for further melting to take place. Melting 
of a piece of ice when water formed is removed instantaneously and the melting of the 
surface of a spacecraft during re-entry into earth's atmosphere are examples of one-phase 
ablation problems. 

Consider a half space z > 0 which, at time t = 0 is in a solid state. Heat input 
Q{x,y,z,t) > 0 is prescribed at the free boundary z = S{x,y,t) = S(t) and it will be 
assumed that melting starts instantaneously at ^ = 0 (this is a minor assumption, see 
§ (3.2.2)). The melt is drained out as soon as it is formed. The problem is to find the 
temperature T(x, y,z,t) and the phase-change boundary which we shall denote by a short 
notation as 2 = S(t). The following dimensionless equations are to be satisfied. 

^ = kV^T , z > S{t) , t > 0; S{0) = 0, (3.1.13) 

T(.T,2/,2,0U = /(x,?/,2); /(a:,i/,0) = l, (3.1.14) 
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T(x,y,z,t)l=s(t) = l, 5(0) = 0, (3.1.15) 

The melting temperature has been taken to be unity. The energy balance at 2; = S{t) is 
given by the equation 

dsV fdSV\ dT 
Qi.,y,z,t)U.s + K{l^{-j + ^ ^ j K j 

A Signorini-type boundary condition 

Ip'i- (3.1.16) 

Suppose in the above ablation problem melting starts at t = 0̂ > 0, (instead of ^ = 0) 
where 0̂ is unknown. Then we have two types of boundary conditions on 2: = S{t)^ i > 0. 

T ( x , t , 5 ( t ) , t ) < l , { Q + ' ^ ^ } = 0 , ^ = 0 ; t > 0 , (3.1.17) 

r(x,?/,5(i),t) = l, | g + / f ^ | = / p ^ , ^ > 0 , i>*o , (3.1.18) 

where n is the unit normal pointing into the solid. There is another way of expressing 
(3.1.17) and (3.1.18). 

T{x,y,z,t) <l, 

{Q + KdTldn}^^sit)>^^ 

{r(x, y, 2, t) - 1} {KdT/dn + Q} = 0. ^ 

riT ri^ 

> t>0, z = S{t) 

t>0; f >0 (3.1.20) 

The flux prescribed condition at the free boundary is now an inequality and not an equa-
tion. Such boundary conditions are called Signorini-type boundary conditions [56]. When 
melting or solidification does not start at ^ = 0, then upto time t = 0̂ > 0 or in other 
words till the time the temperature at the boundary z = 0 becomes the melting tem-
perature, a pure heat conduction problem without phase-change occurs. At t = to, the 
temperature of the half space is to be calculated, which serves as the initial temperature 
for the phase-change problem. In essence we are solving two heat conduction problems. 
If a Signorini-type boundary condition is prescribed, then we are solving one problem 
but the boundary condition is specified in terms of an inequality. This type of formula-
tion is more suitable for mathematical analysis of ablation problems and their numerical 
computations. It is possible to obtain variational inequality formulations for some prob-
lems with Signorini type boundary conditions (cf. [22]). In problem (3.1.13)—(3.1.16), 
the melting starts over the whole boundary z = 0. However, depending on the boundary 
conditions it is possible that the melting begins only over a portion of 2; = 0. Such 
problems will be discussed in § 3.3.2. 
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3.2 Extended Classical Formulations of Two-phase 
Stefan Problems 

3.2.1 An extended formulation of the one-dimensionaJ two-phase 
problem 

An extended formulation of problem (1.4.4)—(1.4.8) in the one-dimensional case and 
discussed in [57] is given below. Some results on the existence, uniqueness, and regularity 
of the solution to problem (3.2.1)—(3.2.10) will be presented in Chapter 10. 

V^'\T^'\x,t)) ^Til^ - S^'^T^'^ = q^'\x,t), in D^'\ (3.2.1) 

D^^^ = {{x, t):0<x< S{t), 0<t< t^}, 

T^'\x,0) = h^'\x), 0<x< S{0), 0 < S{0) = b < I, (3.2.2) 

T(^^(0,t) = (t)^^\t), 0<t<t,. (3.2.3) 

V^^\T^^\x,t)) = Tg^ - S^^^T}^^ = q^^\x,t), mD^'\ (3.2.4) 

D^^^ = {{x, t) : S{t) <x<l,0<t< t,}, 

T^'^\x,0) = h^^\x), 5(0) < X < 1, (3.2.5) 

T^^\l,t)=:(t)^^\t), 0<t<t,, (3.2.6) 

T^'\S{t),t) = T^'\S{t),t) = f{S{t),t), 0 < t < t*, (3.2.7) 

x^'\s{tu)n'\s{tu)-x^'\s{t\t)n'\s{tit) 

= S{t) + fi{S{t),t), 0<t<t,. (3.2.8) 

Here, S^^^ and Ĵ ^̂  are inverse of thermal diffusivities. 

The boundary conditions (3.2.3) and (3.2.6) can be replaced by other boundary con-
ditions such as 

T^'\0,t) = g^'\T^'\0,t),t), 0 < ^ < t „ (3.2.9) 

T^^Hlt) = g^^\T^^\l,t),t), 0<t<t,. (3.2.10) 

Boundary conditions of mixed type can also be prescribed. 
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The regularity conditions assumed in [57] for the analysis of the problem are: (1) 
0(i)(^), (/)(2)(̂ ) G Ci [0 ,q , (2) h'<^\x), h^^\x) belong to H\Q,l) where / /^O, 1) is the 
Sobolev space [58] endowed with the norm ||/i||//i = | |^ | |L2 + | |^1 |L2; h{x) = h^^\x) for 
0 < X < 6 and h{x) = h^'^\x), 6 < x < 1, (3) the compatibility conditions for the initial 
and boundary data are satisfied, i.e., (j)^^\^) = h'<^^{0) and (/)(2)(1) = /i(2)(l). ^(i) and S^^^ 
are constants, (4) The functions q^^^ and q^'^^ are Holder continuous in D^̂ ^ and D^'^\ 
respectively, with respect to x (or t) and \q^^^{x, t)\ < Q (constant), (x, t) G D^''\ z = 1, 2, 
(5) / (x, t) and f^ are continuous and bounded in D = D^^^UD^'^^ and /-̂ x — ft is bounded 
and locally Holder continuous in D with respect to x (or t). By redefining the temperature 
as {T — f{x, t)), (3.2.7) can be transformed to T̂ ^̂  = 0, z = 1,2. This transformation can 
be used without redefining the assumptions about the changed data and the coefficients 
in (3.2.1)—(3.2.8). This transformation is the physical motivation for the term iJ.{S{t),t) 
in (3.2.8). Some of these regularity conditions can be relaxed, see Chapters 10 and 11. 

The initial data and /(x, 0) should also satisfy some compatibility conditions given 
below. 

\h^^\x) - f{b, 0)1 < 71 (̂  - a:)", 0 < X < 6, (3.2.11) 

\h^^\x) - f{b, 0)1 < 7i(6 - x)^, 6 < X < 1, (3.2.12) 

where 71 and a satisfy conditions 

716^ > d, and 71(1 - 6)" > d. (3.2.13) 

Here, d is such that \(t)^'^{t)\ < d, t>0. x^'\xi'\ x i l xf\ i = 1,2 are continuous in D 

and 

\x^'Kx,t)\ < 0, (x,t)eD, (3.2.14) 

for some suitable /3 > 0. If the boundary conditions are of the type (3.2.9) and (3.2.10), 
then g^^\ z = 1, 2 have to satisfy some conditions (cf. [59]). 

For given q^''\ (j)^'-\ h^^\ x^^\ ^ = 1)2, and/(x, t ) and /i(x,^) satisfying the conditions 
imposed on each of them mentioned above; find t^, T^^ (̂x, t),T^'^\x, t) and S{t) such that 
equations (3.2.1)—(3.2.8) are satisfied. In principle, the boundary conditions (3.2.7) and 
(3.2.8) on X = S[t) can be replaced by conditions of the form 

T'^^\S{t), t) = T^^\S{t), t) = Zi [dT^'^/dx, dT^''^/dx, S{t), S{t),) , (3.2.15) 

Wi[T^^\T^''\dT^^^ldx,dT^^^ldx, S(i), S{t)) - 0, on X = S{t). (3.2.16) 

Here, Zi and Wi could be functionals and need not be pointwise functions of their 
arguments (cf. (3.3.33)). 
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3.2.2 Multi-dimensional Stefan problems of classes II and III 

According to the change of phase initiating along the fixed boundary of the region 
originally occupied by the melt, classical Stefan problems can be divided into three classes 
[60]. In class I problems solidification or melting starts simultaneously at all points of 
a fixed surface of the region under consideration. In class II problems solidification be-
gins at a 'portion' of the fixed surface. In class III problems it begins at a 'point' of 
the fixed surface. Class II and class III problems essentially differ from class I prob-
lems in that solidification (melting) in them both spreads along the surface and grows 
towards the interior. Under suitable assumptions, class I problems can be formulated 
as one-dimensional problems but class II and class III problems are necessarily multi-
dimensional. The position of the interface in Fig. 1.4.2. is shown after solidification 
for a long time. It could be due to solidification at a point or over a portion of dGi{t) 
or over whole of dGi{t). After sufficiently long time, when the spread of solidification 
over dGi{t) is complete, then solidification growth will be only towards the interior. In 
Fig. 1.4.1, even for longer times, a class II problem persists. At least in the analytical 
solutions and the analysis of Stefan problems, this distinction between different classes 
affects both procedures and solutions. 

A formulation of a multi-dimensional classical Stefan problem has already been given 
in § 1.4. Some more formulations will be discussed later. Because of their complexity, 
class II and III problems have not been studied widely. They can be formulated as 
one-phase or two-phase problems. A three-dimensional one-phase ablation problem in a 
semi-infinite region with melting due to a 'hot spot' was considered in [61] and a short-
time asymptotic solution was obtained. We present below a class III two-phase Stefan 
problem discussed in [62] in which solidification initiates at a point due to a 'cold spot'. 

Consider an axisymmetric cylindrical problem in which R and Z are cylindrical polar 
coordinates. A superheated melt at time i = 0 occupies the region Q < RQ < R < 
oo, \Z\ < GO. This melt is being cooled and a known flux Qs{Z,t) which is symmetric 
in Z is prescribed on the surface R = RQ of the cylinder. The temperature /L(-R, Z) of 
the melt at t = 0 is a known quantity which is taken to be a symmetric function in Z 
and is such that 

hiR, Z) = r „ , Z = 0,R=Ro 

> Tm , Z ^ 0, Ro < R < oo, (3.2.17) 

1 1 = 0 , Z = 0,il = /?o; ^ ^ 0 , Z = 0,R=Ro. (3.2.18) 

The solidification will start instantaneously at the point Z = 0, R = RQ and with time 
it will spread along the surface R = RQ and also towards the interior R > RQ oi the 
cylinder. The equation of the solidification front can be written as 

R = S{Z,t)] \Z\ <b{t), t>0. (3.2.19) 
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\Z\ = b{t) is the equation of the spread of sohdification along R = RQ^ and R = S{Z, t) > 
RQ is the growth of the sohdified layer towards the interior of the cylinder. 

The dimensionless formulation of the problem is as follows: 

In the liquid region 

2a 2 ^ 

dv = v 
d^n 1 OTL d^n 
Qj.2 dr dZ^ 

S(z, y) < r < oo, 1̂1 < oo, y > 0, (3.2.20) 

Tiir, z, V)\v=o = hir. z), 1 < r < oo, 1̂1 < oo, (3.2.21) 

dTL 
dr 

QL{Z,V). \Z\>B{V), y > o . (3.2.22) 

In the solid region 

dTs 
dr 

•-PQL{Z,V), \Z\<B{V), y > 0 . (3.2.24) 

At the solid-liquid interface 

TUr, z, V)\r=sizy) = 1, \z\ < B{V), V > 0, 

Ts{r, z, V)\r=sizy) = 1, \z\ < B{V), V > 0, 

(3.2.25) 

(3.2.26) 

1 + dz dr dr 
r=S{z,V) 

2A ^99 
yg^, \z\ < B{V), V>0, (3.2.27) 

S{2,V)\v=o = I, B{V)\v=o = 0, 5(^,V)||,|=B(V) = 1. 

The following dimensionless variables have been used in (3.2.20)—(3.2.28). 

z = Z/Ro, r = R/Ro, V = 2{kst/Riy''\ a^ = ks/h, 

A = l/CsT^, P = KLIKS, QL{Z, V) = QUz,t) • Ro/KgT^, 

(3.2.28) 

S{z, V) = S(Z, t)/Ro, Mr, z) = A(/f, Z ) / r „ , B{V) = b{t)/Ro. (3.2.29) 
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If the melt is superheated, i.e., if its temperature is greater than the melting temper-
ature then for solidification to begin it is necessary (not sufficient), that the prescribed 
flux be infinite at ^ = 0. If at t = 0, / L ( 1 , 0 ) > 1, then we shall have a heat conduction 
problem (without phase-change) up to time t = tm > 0 such that at ^ = i^, conditions 
(3.2.17) and (3.2.18) are satisfied. Time can be rescaled and this instant of time can be 
taken as ^ = 0 with the initial temperature changed to the temperature at t = tm- A 
short-time analytical solution of a class II problem has been obtained in [63] in which 
solidification/melting starts at a portion of an edge in a plate. The prescribed flux need 
not be symmetrical. It is interesting to note that the growth of the free boundary for a 
short-time along r = 1 in the above cold spot problem could be of unusual type such as 
0(t^/'') (similar results were obtained in [63]) but the growth the of free boundary along 
the interior is of well-known type such as of the order of t^^"^ or t or ^ /̂̂ . 

Although class II and III problems appear to be interesting and distinct from class I 
problems there are only some short-time analytical solutions to them in the literature. 
There is no report available on the existence, uniqueness and regularity of the solutions 
of these problems. 

3.2.3 Classical Stefan problems with n-phases, n > 2 

Some one-dimensional problems with more than two phases 

Classical Stefan problems with more than two phases are much more difficult to 
study than two-phase problems because of interactions among phases. Several types of 
generalizations of two-phase formulations to n-phase problems are possible. We shall 
report here some of the formulations studied in the literature. In principle, phase-change 
boundaries could be intersecting but such formulations have not be studied in detail. 
Some of these n-phase formulations are simple extensions of two-phase problems reported 
earlier in §§ 1.3 and 3.2.1. In an n-phase problem, it is difficult to prescribe the exact 
number of distinct phase-change boundaries without knowing the number of disjoint 
subregions and the physical situation. In several problems this has been taken to be 
(n — 1). In each phase a suitable parabolic heat equation is satisfied and at each phase-
change boundary, two boundary conditions are prescribed (cf. § 1.3) 

The formulation of an n-phase one-dimensional problem in which the boundary con-
ditions at the phase-change boundaries could be of type (1.3.5) and (1.3.6) has been 
considered in [64]. Odd and even numbered phases are identical so that there are only 
two different initial temperatures and two-different temperatures. The existence of a 
global solution to this problem which is nearly classical (the Stefan condition is satisfied 
in the integrated form) has been discussed in [64]. An analytical solution to a one-
dimensional n-phase solidification problem in the region 0 < x < oo has been discussed 
in [65]. At each free boundary, the temperature has a specified, constant, limiting value 
from each side. These limiting values may differ by a finite jump at different phase-change 
boundaries. Initially all the free boundaries coincide at x = 0 and the temperature takes 
the constant value Tm for x > 0 where Tm is the limiting value of the temperature as 
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x —> cxD. The Stefan condition is considered at the free boundaries. Densities of different 
phases could be different, giving rise to the movement of phases. Using local coordinates 
which are fixed in each phase, a similarity solution is presented. 

The formulation of the one-dimensional multi-phase problem reported in [21] is a 
little different. At time ^ = 0, an unbounded plate of thickness 2d and temperature 
To is dipped into a melt maintained at constant temperature Ti > TQ. It is assumed 
that a known constant heat flux q is maintained from within the melt to the plate and 
in the 'boundary layer' the temperature changes linearly in the direction normal to the 
surface of the plate. Let T^ be the freezing temperature of the melt and T„, the melting 
temperature of the plate. Depending on the magnitudes of different temperatures, the 
following three cases arise. 

Case I 

To < Tfc < Ti < Tn. (3.2.30) 

Since To < Tjt, crust forms on the plate till some time ô > 0 after which the crust 
begins to melt as the temperature at the surface of the plate rises to Tk and at the free 
boundary heat flux q is acting. Melting will continue till time î > to > 0 when the 
crust has completely melted. After that, heating of the plate without a phase-change 
continues. The plate cannot melt because the melting temperature T^ of the plate is 
greater than Ti. For 0 < t < ti, there exists a two-phase problem with only one free 
boundary and for t > ti the problem is that of heat conduction in the plate without 
phase-change. Because of the assumption of symmetry it is sufficient to consider the 
region 0 < a; < oo. 

Case II 

To < Tfc < T„ < Ti. (3.2.31) 

At any given time there will be only one phase-change boundary. The freezing tempera-
ture of the melt is lower than the melting temperature of the plate. First the crust forms 
and then the crust starts melting and when the plate attains temperature T„, the plate 
starts melting. 

Case III 

To<Tn<Tk<Ti. (3.2.32) 

There are three possibihties. 

(PI) The plate melts and the melt crystallizes instantaneously with the immersion of 
the plate in the melt. 

(P2) The melt crystallizes instantaneously but the melting of the plate starts late. 

(P3) The plate begins to melt instantaneously but the crystallization of the melt is 
delayed. 
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Problem (PI) corresponding to the possibility (PI) can be formulated as (not made 
dimensionless) follows. 

d^T dT 
a\x)--^ = —^, 1 = 1,2,3, x ^ 5 i ( t ) , x^d] x y^ 82(1), t > 0, (3.2.33) dx'^ dt 

a\x) kl, 0 < X < S'2(t), 

kl, 82(1) < x < d, 

kj, d<x < Si(t). (3.2.34) 

Here, x = Si{t) is the equation of the freezing front in the sohdification of the melt and 
x = S2{t) is the equation of the melting front in the melting of the plate. The subscripts 
1, 2, and 3 refer to the regions 0 < x < 5*2(^), S2(t) < x < d and d < x < Si{t), 
respectively. 

dx 
= 0; Ti\j,^s2it) =Tn = T2\x=s2{t)', t > 0, (3.2.35) 

=s,it) =n; t> 0; Ti|,=o - To, 0 < x < d, (3.2.36) 

T2U= '-3\x=d+0] Ko 
dT2 

dx 
K: m 

dx 
t > 0, 

=d+0 

(3.2.37) 

Ki 
dx 

K2^ = PiliS2(t), for X = S2(t), t > 0; ^2(0) = d, (3.2.38) 
ox 

-q -h K^-^ = pshSiit), for X = Si{t), t > 0; 5i(0) = d. (3.2.39) 

The motion of the hquid due to the difference in densities has been neglected. Problems 
(P2) and (P3) can be formulated on the same lines as Problem (PI ) , but the time interval 
t > 0 has to be divided into several ones and in each interval an appropriate problem is to 
be formulated. For example in Problem (P2), if the melting of the plate begins at t = to 
then for 0 < t < to, we have a problem of pure heat conduction in the plate and crust 
formation in the melt. For to < t < ti, where ti is the time at which the temperature 
at X = d becomes Ti^, there wiU be both melting of the plate and freezing of the melt. 
For t > ti, crust starts melting and melting of the plate continues or plate might have 
completely melted by that time. At each stage, temperature and the position of the free 
boundary / boundaries in the previous stage are to be ascertained. 

In [21] the main interest in the study of Case III is to examine the possibilities 
of occurrences of three cases (PI) , (P2) and (P3). This requires short-time {t -^ 0) 
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analytical solution of Problem (PI) which was obtained by using fundamental solutions 
of the heat equation for a double layer and taking the limit as t ^ 0. Both necessary 
and sufficient conditions for the occurrence of the case (PI) have been obtained in [21]. 
The solution to Problem (P3) will exist if Si{t) < d ioT t > 0 and therefore Problem (P3) 
does not have a solution. It has also been shown in [21] that the conditions under which 
both (PI) and (P2) are possible cannot coincide. 

A three-phase problem with two free boundaries has been discussed in [66] which is 
concerned with both melting and evaporation. Consider a solid occupying the region 
0 < a; < a (one-dimensional problem). The boundary x = 0 is insulated and the solid is 
heated at x = a. First the solid melts at x = a and for some time, solid and liquid regions 
separated by a free boundary occupy the region 0 < x < a. With further heating, when 
vaporization temperature is attained at x = a, the liquid starts evaporating. There will 
now be two phase-change boundaries, viz., liquid-vapour and solid-hquid. If the solid is 
enclosed in a container, then heat transfer in the vapour is to be considered and there 
will be three-phases and two free boundaries. If the vapour is allowed to escape, then 
there are two phases and two free boundaries. Using finite-difference and finite element 
methods, numerical solution of this problem has been obtained out by several workers 
(cf. [66]). 

3.2.4 Solidification with transition temperature range 

A very pure metal has a fixed melting temperature, which is also its freezing temper-
ature. In the case of alloys or metals with impurities, melting and freezing temperatures 
are not the same and phase-change takes place over a temperature range. Let freezing and 
melting temperatures be denoted by Ti and T2, respectively. For metals with impurities, 
both heat and mass transfer should be considered but if the concentration of impurity 
is small, then only heat transfer can be considered with phase-change taking place over 
a temperature range Ti < T < T2. The region whose temperature lies between Ti and 
T2 is called a mushy region. There are two phase-change boundaries. The solid-mush 
boundary separates the solid region from the mushy region and the liquid-mush bound-
ary separates the liquid region from the mushy region. In [67] an analytical solution of a 
one-dimensional solidification problem in cylindrical symmetry with an extended freezing 
temperature range has been obtained. The finite-difference numerical solution of a one-
dimensional solidification problem in a finite slab with an extended freezing temperature 
range has been presented in [68]. We present below a two-dimensional formulation of an 
extended freezing temperature range problem whose finite-difference numerical solution 
is reported in [69]. 

A two-dimensional region 0 < X < 1 , —a<Y<a{X and Y are dimensionless 
coordinates of a point in a plane) at time t = 0 is occupied by a superheated melt. 
Solidification takes place over a temperature range Ti < T < T2. For T < Ti, the 
material is in a stable solid phase and for T > T2, the material is in a stable liquid phase 
and for Ti < T < T2, a mushy region exists. Cooling is done at the boundary of the 
rectangular region in such a way that the mushy region is sandwiched between stable 
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solid and stable liquid regions. It will be assumed that the solid-mush boundary can be 
expressed in the form X — i?i(y, €) and the liquid-mush boundary can be expressed in the 
form X — R2{Y,t). Without loss of generality it can be assumed that the solidification 
starts at X = 0 at time t = 0. Even if there is some delay in the starting of solidification, 
for example, if the solidification starts at ^ = ô > 0, then during the time 0 < t < to, there 
exists only a heat conduction problem without phase change whose numerical solution 
is generally considered to be simple and so assumed to be known by using well known 
methods. By redefining the time scale it can be assumed that the solidification starts at 
t = 0. 

The mathematical formulation of this three-phase problem in the dimensionless form 
as considered in [69] is as follows: 

In the solid region 

^ " ""̂  ( S ^ ^ 5 ^ ) ' 0 < ^ < RiiY.t). -a < y < a; i > 0, (3.2.40) 

dx 
= Fp{Y,t)oT Ts\x^o = Tj,{Y,t); i > 0, (3.2.41) 

m 
dv 

: 0 , 0 < X < Ri{a,t), t>0, (3.2.42) 

dTs 
dY 

= 0, 0 < X < Ri{-a,t), t > 0 , (3.2.43) 

In the mushy region 

(3.2.44) 

dY 
0, Ri{a,t) <X <R2{a,t), t > 0, 

Y=a 

(3.2.45) 

dY 
0 , Hi(-a , t) <X < R2{-a, t), t > 0, (3.2.46) 

TM|t=o = g{X, Y) <TmU 0 < X < i?2(y, 0), ^(0, Y) = 1.0. (3.2.47) 
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In the liquid region 

t - . ( g + g|.W,.)<;^<M>0. 

TLU^O - 9{X, y)>Tmi. X> R2{Y, 0), 

dX 
0, ^ > 0, 

OTL 

dY 
0, R2{a,t) <X <l,t>0, 

Y=a 

STL 

dV 
= 0, R2{-a,t) < X < 1, ^> 0. 

At the solid-mush boundary X — i?i(y, ̂ ) 

TS = TM = 1.0, 

(dR,y[jdTs ^OTM) ,,dRi 

At the liquid-mush boundary X = R2{Y^t) 

1 + 
dR2 
dY 

g{R2{Y,0),Y) = Tmi 

= Xd' 
dR2 
' dt ' 

(3.2.48) 

(3.2.49) 

(3.2.50) 

(3.2.51) 

(3.2.52) 

(3.2.53) 

(3.2.54) 

(3.2.55) 

(3.2.56) 

(3.2.57) 

In the above formulation, di and d2 are solid fractions present at solid-mush and liquid-
mush boundaries, respectively; fs is the soHd fraction in the mushy region, g{X, Y) is 
the initial temperature/Ti, b is the length of the plate, a is the breadth of the plate/6, T 
is the temperature/Ti, Tmi is the temperature of the liquid-mush boundary/Ti. Other 
parameters are defined below. 

a = thermal diffusivity. ^^/6^ A = KM I Kg, P2 = KL/KSA = plb^ / {K stmTi), (3.2.58) 
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tm is the time taken for the hquid to attain the temperature Ti ai X = 0. Densities of 
all the three regions have been taken to be equal and are denoted by p. 

The constant di in (3.2.54) is generally taken as unity. But in the case of 'eutectics' 
it can be taken to be less than unity. At the liquid-mush boundary, c/2 — 0. If in (3.2.56), 
6/2 — 0 is taken then we have an implicit free boundary condition which is not convenient 
for the numerical solution. By taking d2 very small, an explicit free boundary condition 
can be generated. In § 3.3 some transformations to convert an implicit free boundary 
condition to an exphcit free boundary condition are given but this treatment may give 
rise to some other difficulties in the numerical schemes. Although it is not a rigorous 
mathematical convergence proof, a reasonably accurate solution can be obtained if the 
numerical results converge as ^2 is gradually decreased. The accuracy of the numerical 
solution can be further checked by some methods such as integral heat balance calculation 
(cf. [69]). 

The solid fraction in the mush depends on various physical parameters, such as the 
temperature of the mush, and the width of the mushy region. An exact mathematical 
expression for the solid fraction in the mush cannot be given and in its absence some 
approximate mathematical models are proposed. Two such models have been considered 
in [69] for the numerical solution of the problem. 

Model I 

fs{x,y, t) = {d,{Tmi - TM{X, y, t)) - d2[\ - TM{X, y, t))}/(Tw - i.o). (3.2.59) 

Model II 

fs{X,Y,t) = [d,{R2{Y,t) - X} - d2{Ri{Y,t) - X}]/{R2{Y,t) - Ri{Y,t)}. (3.2.60) 

In the first model, fs is a linear function of the temperature of the mush and in the second 
model fs is a linear function of the 'width' of the mushy region. Thermodynamically, 
the heat extracted from the system at the fixed boundaries should be equal to the heat 
given out by the system during sohdification. If this balancing of heat is done in an 
integrated way over the whole region and over a period of time, then it is called integral 
heat balance verification. Integral heat balance is satisfied for model I but not for model 
II. In the first model we can calculate fs from the temperature (calculated temperature) 
of the mush and this procedure is thermodynamically consistent but in the second model 
corresponding to the calculated fs, the temperature is calculated in the numerical scheme 
and therefore integral heat balance is not satisfied. 

3.3 Stefan Problems with Implicit Free Boundary 
Conditions 

If in the place of (3.1.12), we have the condition 

dT 
dx 

- 0 , (3.3.1) 
x-=S{t) 
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then velocity of the free boundary is not exphcitly prescribed. As stated earUer, free 
boundary conditions of the above type in which S{t) is not prescribed exphcitly are 
known as implicit free boundary conditions. Free boundary condition (3.1.12) is an 
explicit boundary condition as S{t) is prescribed in it. Our main aim in this section is 
to present some transformations which convert a Stefan problem with an implicit free 
boundary condition to a Stefan problem with an explicit free boundary condition. An 
extensively studied problem with an implicit free boundary condition known as oxygen-
diffusion problem will also be discussed later in detail. 

3.3.1 Schatz transformations and implicit free boundary condi-
tions 

Problem 3.3.1. Find t^, T{x,t) and S(t) satisfying the following system of dimen-
sionless equations 

T:,:,-Tt = F{x,t), a<x< S{t),0<t<t^, (3.3.2) 

aT:,{a,t)-\-/3T{a,t) = f{t), 0 < t < t,, (3.3.3) 

T{x,0) = (pix), -oo <a<x<b = 5(0), (3.3.4) 

T{S{t), t) = g{S{t), t),0<t<t,, (3.3.5) 

7(5(^), t)S{t) = -n{S{t), t) + h{S(t), 0; 7 7̂  0, 0 < t < t,. (3.3.6) 

All the thermophysical parameters in this one-phase problem have been taken to be 
unity. This is possible by suitably choosing time and/ or length scales. In those Stefan 
problems in which the effect of thermophysical parameters is not to be investigated, it 
is convenient to take parameters to be unity, a and p are constants. Depending on the 
nature of the data, the problem (3.3.2)—(3.3.6) could be either a melting problem or a 
solidification problem. We report here some of the assumptions and for complete details 
see [70]. 

(i) F(x, t), g{x, t), h{x, t) and F^ G C for a < a; < oo, 0 < ^ < t*. 

(ii) f{t) e C, 0 < ^ < t*. 

(iii) If a < 6, then (/> G C^ for a < x < 6 and 0(6) = .^(6,0), 0'(6) = h{b,0). These 
are compatibility conditions to be satisfied by the initial temperature and the functions 
g and h at the free boundary. 

(iv) In addition to the regularity conditions to be satisfied by S{t) and T(x, t) in 
the classical solution of a Stefan problem mentioned in § 1.4.6 it will be assumed that 
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Txxx, Txt ^ C ioT a < X < S{t), 0 < t < t^. The significance of this assumption wih be 
made clear later. 

Problem 3.3.2. Consider problem (3.3.2)-(3.3.6) with some changes. Let j{S{t), t) 

= 0 in (3.3.6), so that 

T,{S{t),t) = h{S{t),t). (3.3.7) 

Make some additional assumptions given below. 

gx{x,t) ^h[x,t), a < X < oo, 0 < t < t*, (3.3.8) 

and 

a = 1, /3 = 0. (3.3.9) 

Problem 3.3.3. Let ^{x,t) = g{x,t) = h{x,t) = 0 and a = 0, /3 = 1 in Problem 
3.3.1. In this case the free boundary conditions are given by 

T{S{t),t) = 0, 0<t<t^, (3.3.10) 

Tx{S{t),t) = 0, 0<t<t, (3.3.11) 

The equivalence of Problems 3.3.1.—3.3.3. is established by the following propositions. 

Proposition 3.3.1. If {S,T) is the solution of Problem 3.3.2., then (5, f) where 
V = Tx and S is the same as in (5, T), is the solution of the following Stefan problem. 

Vxx -vt = F^(x, t), 0 < X < S{t), 0 <t<t^, (3.3.12) 

v{a,t) = f{t), 0<t<t^, (3.3.13) 

v{x, 0) = (/)'(x), a<x<b = 5(0), (3.3.14) 

v{S{t),t) = h{S{t),t), 0<t<t,, (3.3.15) 

[h{S{t), t) - gx{S{t),t)]S{t) = -Vx{S{t),t)) + F{S{t),t) + gt{S{t),t), 0<t<t.. (3.3.16) 

Equation (3.3.12) can be easily derived if the partial derivative of (3.3.2) with respect 
to X is taken. If the material time derivative of (3.3.5) is taken, then we obtain 

n{S(t), t)S(t) + Tt = gx{S{t), t)S + gt. (3.3.17) 

On using (3.3.7) and (3.3.2) in (3.3.17), the equation (3.3.16) can be obtained. Equation 
(3.3.17) suggests that we impose the condition g e C^, b < x < oo. Other conditions in 
(3.3.13)—(3.3.15) can be easily derived. 
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Proposition 3.3.2. Conversely, if the pair (-S, v) is the solution of (3.3.12)—(3.3.16) 
then the pair {S, T) where S is the same as in [S, v) and T(x, t) is defined by 

S{t) 

T{x, t) = [v{p, t)dp + g{S{t), t), a<x< S{t), 0<t<t,, (3.3.18) 
X 

is the solution of Problem 3.3.2. 

On repeated differentiations of (3.3.18) with respect to x, we get 

T, = v{x,t) and T.̂ , - v^. (3.3.19) 

Differentiation of (3.3.18), with respect to time gives 

S{t) 

Tt = - J vt{p, t)dp - v{S{t), t)S{t) + g.{S{t),t)S + gt{S{t), t). (3.3.20) 
X 

Also 

S{t) S{t) 

j vt{p, t)dp = j (v,, - F:,)dp = V:,{S{t), t) - V:,{x, t) - F{S{t),t) + F{x, t). (3.3.21) 
X X 

In order to obtain (3.3.2) from the solution of (3.3.12)-(3.3.16), we use (3.3.21) in (3.3.20) 
and then substitute v^ from (3.3.16). Derivation of other conditions in Problem 3.3.1. 
is straightforward. Even if a = 0 and /3 = 1 in (3.3.3) the substitution f = T^ works. 
Differentiation of (3.3.3) {a = 0) with respect to t gives 

Tt{a, t) = T,,(a, t) - F(a, t) = f'{t) or ^;,(a, t) = f{t) + F(a, t). (3.3.22) 

In this case it has to be assumed that Tt and T^x are continuous at x = a and f{t) G C^. 
We conclude that Problem 3.3.1. and the problem defined by equations (3.3.12)—(3.3.16) 
are equivalent. Equation (3.3.16) is an explicit free boundary condition. 

Proposition 3.3.3. If (5,T) is the solution of Problem 3.3.3., then (S^v), where 
V — Tt, is the solution of the following problem. 

Vxx -vt = Ft{x, t), 0<x < S{t), 0<t<t^, (3.3.23) 

v{a,t) = f{t), 0<t<t^, (3.3.24) 

v{x, 0) = (t)"{x) - F{x, 0), a<x<b = 5(0), (3.3.25) 

v(S{t),t) = 0, 0<t<t,, (3.3.26) 

F{S{t), t)S = -Vx{S{t), t),0<t< t,. (3.3.27) 
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Equations (3.3.23)—(3.3.25) suggest that we impose the conditions that Ft and f'{t) G C 
and (t){x) e C^. 

The derivation of equations (3.3.23)—(3.3.26) is simple. To obtain (3.3.27), differen-
tiate (3.3.11) with respect to t and use (3.3.2). 

Proposition 3.3.4. Conversely, if {S,v) is the solution of (3.3.23)-(3.3.27), then 
(5, T) where S is the same as in {S, v), S is of one sign, and T(x, t) is given by 

S{t) S{t) 

T(x, t)=- f f {v{p, t) + F(p, t)]dpdi, a<x< S{t), 0 < t < t,, (3.3.28) 
X T] 

is a solution of Problem 3.3.3. 

To derive (3.3.2), differentiate (3.3.28) twice with respect to x so that 

S{t) 
dT r 
— = - y {v{p, t) + F(p, t)}dp (3.3.29) 

X 

and 

d'^T dT 
— = v{x, t) + F(x, t) = -^ + F[x, t). (3.3.30) 

On substituting x = S(t) in (3.3.28) and (3.3.29), we obtain (3.3.10) and (3.3.11). If it 
is assumed that /(O) = 0(a) and 0(6) = 0 then (3.3.3) and (3.3.4) can be obtained. 

Although our main concern in this section is to show how the transformations v = 
Tj. and v = Tt transform Stefan problems with implicit free boundary conditions to 
Stefan problems with explicit free boundary conditions, some remarks on the analysis 
of Problems 3.3.1.—3.3.3. will be in order (see also Chapter 10). If T^ is continuous in 
a <x < S{t), then the relation S{t) = —Tj:{S{t),t) (for simplicity take 7 = 1 and h = 0 
in (3.3.6)) implies that S{t) is continuous. This is true for the more general boundary 
condition (3.3.16) also if continuity assumptions are made for other functions involved. If 
the free boundary condition is of the form (3.3.7) or (3.3.11), then even if T̂ ; is continuous, 
it cannot be directly concluded that S{t) is continuous. 

Existence of unique solutions of Problems 3.3.2. and 3.3.3. has been discussed in [70] 
under suitable data assumptions. If a < 6 and the data satisfy appropriate assumptions, 
then it can be proved that 0 < S{t) < A, 0 < t < to < oo ior some constant A (see 
Proposition 10.1.20.). The method of proof is the same as in [71]. In the place of (3.3.2) 
a quasi-linear heat equation with some constraints can also be considered. 

Conversion of a Stefan-type problem to a Stefan problem 

We consider a one-dimensional Stefan-type problem with phases 1 and 2 in which 
phase 1 occupies the region 0 < x < S{t) and phase 2 occupies the region S{t) < x < 1. 
This problem differs from a Stefan problem only in the free boundary conditions. Let T̂ ^̂  
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and T̂ ^̂  be temperatures of phases 1 and 2, respectively. Tĵ ^ and TĴ ^ are prescribed on 
X — S{t) and another boundary condition on S{t) is given in the form of a relation 

S = f{T^'\S{t),t), T^^\S{t),t)). (3.3.31) 

If the transformations v^^^ — Tĵ ^ and f ^̂^ = T^'' are used in the Stefan-type problem 
(equation (3.3.31) is not a Stefan condition) mentioned above and the problem is formu-
lated in terms of v^^\x,t) and v^'^\x,t), then at the free boundary v^^^ and f̂^̂  will be 
prescribed. If the heat equations in the two phases are of the form (3.3.2), then 

t t 

T«(5( i ) , t) = J v^\S{r),r)dr - j F^'^iSir), r)dT, i = l,2. (3.3.32) 
0 0 

In view of (3.3.32), the equation (3.3.31) can be written as 

S = Pt{v^J\v^^\S{t)), (3.3.33) 

where for any t G [0,t^], Pt is a functional (a real valued function) acting on functions 
S{t), vi^^x.t), v^^\x,t), X e [0,S{t)] in vi^\x,t) and x G [S{t),l] in v^^\x,t) and 
0 < t < t^ < oo. As explained earher, the Stefan condition (3.3.33) has been considered 
in the functional form and not as a heat balance condition. 

3.3.2 Unconstrained and constrained oxygen-diffusion problem 
(ODP) 

We shall first discuss a one-dimensional oxygen-diffusion problem, and use a shorter 
notation ODP for it. This problem was first formulated in [72] and studied later by 
several authors from various view points such as the existence and uniqueness, analytical 
and numerical solutions. Oxygen is fed to a tissue at the boundary a: = 0 at which a 
constant concentration CQ of oxygen is maintained. It is assumed that oxygen diffuses 
through the tissue and is absorbed at a constant rate a per unit volume. After some time, 
a steady state is reached. Suppose that in the steady state oxygen has penetrated upto 
a distance XQ in the tissue. Then, at x = XQ, both the oxygen concentration and the flux 
are zero. Steady-state concentration and unknown XQ can be easily obtained. If suitable 
dimensionalization is carried out as in [72], then the steady-state concentration can be 
obtained as 0.5(1 — x)^, 0 < x < 1. Once the steady state is reached, the boundary 
X = 0 is sealed. Oxygen diffusion and absorption starts again and the penetration depth 
of oxygen starts receding giving rise to a free boundary problem whose dimensionless 
formulation is given below. 

dc d'^c 
dt dx 

2 1, m Du = {{x,t):0<x<S[t),^<t<t^<oo], (3.3.34) 

c(x, 0) = 0.5(1 - x)^ 0 < X < 1, (3.3.35) 
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= 0, (3.3.36) 
dc_ 

dx 

c{S{t),t) = 0, 0 < f <i*; 5(0) = 1, (3.3.37) 

dc 
— (^(t),t) = 0, 0<t<t,. (3.3.38) 

Here, c(x,t) is the concentration and x — S{t) is the free boundary. It may be noted 
that this problem is similar to Problem 3.3.3. and with the help of the transformation 
T = Q, it can be converted to a Stefan problem with an explicit free boundary condition. 
A typical feature of this problem is the non-compatibility of the initial and boundary 
data at a: = 0. Since concentration is a physical quantity, c{x,t) should be greater 
than or equal to zero. It can be proved rigorously that the classical solution (c, 5") of 
(3.3.34)-(3.3.38) exists with c{x,t) > 0, 0 < x < S{t), 0 < t < t^_ If the substitution 
T = Cx{x,t) is used in (3.3.34)—(3.3.38), then by using the maximum principle [9] it can 
be easily concluded that the maximum value of T(x, t) is zero and therefore Cx{x, t) < 0 
for 0 < X < S{t). This implies c > 0 for 0 < a: < S{t) or c > 0 for 0 < x < S{t). We 
shall discuss the existence of the solution of ODP a little later. It may be pointed out 
here that ODP is closely related to the supercooled Stefan problem (SSP) formulated in 
(3.1.8)-(3.1.12). 

It can be easily checked that if the transformation T = Q is used in ODP then SSP 
formulation (see § 3.1.2) is obtained. If the concentration is defined by the relation 

X C 

c{x,t)= I f {T{r},t) + l)dr}d^, (3.3.39) 
S{t) S{t) 

then ODP can also be obtained from SSP. Because of this connection between ODP and 
SSP, ODP can be regarded as a Stefan problem with an implicit free boundary condition 
even though ODP is concerned with the diffusion of mass and not with the heat transfer. 
The existence and uniqueness of ODP has been discussed in [73, 74, 75]. In [73], the 
existence and uniqueness of the solution of ODP was in essence proved by extending the 
domain of c(x, t) to the interval 0 < a: < 1 and taking c = 0 for S{t) < x < 1. The solution 
of this extended domain problem was obtained as the limit of a one-parameter family 
of problems. If a constraint c > 0 is added in the extended domain ODP formulation 
in 0 < X < 1, then it can be identified with an obstacle problem (see Chapter 7) whose 
variational inequality formulation exists. The existence and uniqueness of this obstacle 
problem has been proved in [74]. It has been proved that the obstacle problem never 
exhibits blow-up, in the sense that either (i) c(x, t) > 0, c(x, )̂ ^ 0 for alH > 0 or, (ii) 
c(x,t) = 0 for t greater than some finite time t (extinction time). In [75], the existence 
and uniqueness was proved using fixed point arguments. It may be noted that if the 
initial concentration is given by (3.3.35), then it is not necessary to add the constraint 
c > 0 to the problem formulation of ODP as in this case it has been proved that the 
unique solution exists and c > 0. 
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In the place of (3.3.35), let us take the initial concentration as 

c(x, 0) = g{x), 0 < X < 1, g^O. (3.3.40) 

We shall still call this changed problem as ODP. 

If it is assumed that g{x) is non-negative, non-increasing, sufficiently regular such 
as ^ G C^, g" is Holder-continuous at x = 1 and g{x) satisfies compatibility conditions 
g'{0) = 0, g{l) = g'{l) = 0, g"{l) = 1, then ODP with (3.3.40) in the place of (3.3.35) 
possesses a very smooth solution with c > 0 (cf. [75]). It is interesting to note that if 
g{x) = 0.5(1 — x)^ then g'{0) ^ 0 but still the existence and uniqueness of ODP can be 
established [75]. 

Constrained and unconstrained ODP 

We shall now consider ODP with initial concentration g{x) where g{x) can have any 
sign for x G [0,1]. Add the constraint c > 0 in the formulation. This problem will be 
called constrained oxygen diffusion problem or in short CODP. If the constraint c > 0 is 
not imposed in the formulation, then we have an unconstrained ODP or in short UODP. 
CODP is equivalent to solving the following equation with a suitable initial and boundary 
data. 

(3.3.41) 

Hy 

dc 
~di~ 

is the Heaviside function. 

H,{c) = 1, 

= 0, 

H,[c), 

o O 

c < 0 . 
(3.3.42) 

The solution of CODP and UODP coincide as long as c > 0. The solution of CODP 
generally exists, is unique, and remains well behaved even for a sufficiently long time. 
The global behaviour of UODP is a delicate matter as a blow-up may occur in which 
S becomes infinite in finite time. Blow-up will be dealt with further in § 4.4. The 
solution T(x, t) of SSP is equal to Ct where c(x, t) is the solution of UODP but in general 
T(x, t) is not equal to Ct where c{x, t) is the solution of CODP. The non-consideration of 
the negativity set of c{x, t) in CODP deprives its solution of many interesting features 
which the solutions of UODP have, for example, the approach of the free boundary to a 
negativity set [75]. 

ODP in a radially symmetric domain. 

The existence of the solution of ODP in a cylindrical domain TQ < r < ri was 
considered in [76]. ODP in cylindrical symmetry can be easily formulated and this 
formulation is not being given here. The steady-state concentration Co(r) in cylindrical 
symmetry can be obtained as 

2 2 2 

co(r) = ^ ^ ^ - ^ I n ^ , (3.3.43) 
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where Vi solves the equation 

i z i l i _ d i n l ^ = c , ci = co(ro). (3.3.44) 
4 ^ fi 

Here, Ci and ro are given, ro is the inner radius of the cylinder. A unique root ri > TQ 
of (3.3.44) can be obtained. The existence of a global solution has been proved by 
extending the existence of the local-in-time solution. The proof of the results in the 
cylindrical geometry are not on the same lines as proofs developed for ODP given in 
(3.3.34)—(3.3.38). It has been proved in [76] that under suitable assumptions there exists 
a t^ such that S{t^) = TQ. 

Quasi-static two-dimensional ODP and the Hele-Shaw problem 

A link between quasi-static two-dimensional ODP and the Hele-Shaw problem has 
been discussed in [77]. Let p(x, y, t), where t is a, parameter, be the pressure in the well-
posed Hele-Shaw problem in which the free boundary is blown outward. The pressure in 
the liquid satisfies the equation 

V ĵ9 = 0 in Q C i?^ (3.3.45) 

Let dQ, the boundary of the simply connected region Q, be a free boundary. 

On (90, we have 

dp 
p = 0, ^ = —Vn or Vp • Vw = —1, on ^ — w{x, y), (3.3.46) 

where t = w[x^y) is the equation of the free boundary and n is the unit outward normal 
to the free boundary. 

Equation (3.3.45) can be obtained by taking V = —gradp in the equation of continuity 
of an incompressible fluid whose flow is considered in a narrow channel [78, 79]. Free 
boundary is the surface of an expanding fluid blob. The continuity of pressure at the free 
boundary after appropriate scahng gives p = 0. The steady-state diffusion equation for 
concentration and the boundary conditions at the free boundary in a two-dimensional 
ODP can be written as follows. 

V^c - 1, in Q c i?^ (3.3.47) 

dc 
c= -— = 0 on t = w{x, y). (3.3.48) 

The Hele-Shaw problem (3.3.45)—(3.3.46) can be converted to a steady-state two-
dimensional COD described in (3.3.47)—(3.3.48) by using the transformation given in 
(6.2.25). 

The problem defined in (3.3.47)—(3.3.48) is generally well-posed and so is the Hele-
Shaw problem in which the boundary blows outward [77]. However the Hele-Shaw 'suc-
tion problem' is an ill-posed problem and the quasi-static ODP has recently been found 
to be a very eff"ective tool for revealing some unexpected regularity properties of the free 
boundary in the solution of unstable Hele-Shaw suction problem [77]. 



Chapter 4 

Stefan Problem with Supercooling: 
Classical Formulation and Analysis 

4.1 Introduction 

In §§ 2.2.2 and 2.2.3, supercooling in the melt was taken into account by redefining the 
equilibrium phase-change temperature with the help of Gibbs-Thomson relation and the 
kinetic condition. When both these effects are considered together, we shall call the 
resulting equilibrium temperature relation as modified Gibbs-Thorns on relation. In this 
case, the new equilibrium temperature denoted by Tg is given by 

Te(x, t) = Tm- {(JI[S]E)K, - aa\Vr,\l[S]E . (4.1.1) 

The symbols T^, a, 5*, Kc and V̂  have the same meaning as explained in the earlier sec-
tions; the parameter a is related to the microscopic relaxation time, [*§]£;= difference in 
the entropies per unit volume of the liquid and the solid at the equilibrium temperature. 
The last two terms in (4.1.1) are the correction terms arising due to the curvature and the 
velocity of the interface, respectively. Equation (4.2.11) deals with the units associated 
with (J, S and a. Has the solidification of a supercooled liquid been correctly and sat-
isfactorily modelled by the equilibrium temperature in equation (4.1.1)? To answer this 
question we have to go back to the formation of solid from a supercooled liquid in the so-
lidification process. It may be noted that (4.1.1) was discussed earlier also with the help 
of some thermodynamical and metallurgical considerations. A rigorous mathematical 
justification will be provided now. 

The origin of solidification of a supercooled liquid of a pure substance is not in the 
growth of a sharp interface separating solid and liquid phases but in the finite size effect 
of the interface lying between stable solid and stable liquid phases as shown in Fig. 
4.1.1. In other words, it can be said that the sohdification of a supercooled liquid cannot 
progress without the formation of a mushy region in front of the solidification front. The 
mushy region contains both solid and liquid phases and solid could be present in it in 
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the form of dendrites of different types. Therefore it is clear that any mathematical 
modelling of the sohdification of a supercooled liquid should take into account solid, 
liquid and mushy regions, i.e., the finite-size effect of the interface. Does it mean that the 
classical formulation of the Stefan problem with supercoohng accounted for by the Gibbs 
-Thomson law is not justified as there is no mushy region in the formulation? The rigorous 
mathematical justification of the sharp freezing front model (classical formulation) with 
equilibrium temperature given by (4.1.1) comes from the fact that the modified Gibbs-
Thomson relation can be obtained if appropriate hmits of the phase-field model which 
considers the finite width of the interface, are taken. Some phase-field models are being 
discussed here with this objective. 

What should be the starting point in the modelling of solidification of a supercooled 
liquid? Research workers have used different approaches giving rise to different models. 
The differences arose due to the incapability of some models to predict accurately some 
physical situations or non-accept ability of some models due to the so-called inconsisten-
cies. The existing literature on supercooling is vast. Some selected approaches in the 
modelling of solidification of a supercooled liquid are being presented here. It is not 
possible to describe here even these selected models completely. What is presented below 
is a suitable compromise between length restrictions and understability of these models. 

Fig. 4.1.1. Finite size of the interface 

4.2 A Phase-field Model for Solidification using Landau-
Ginzburg Free Energy Functional 

If the interface in the solidification of a supercooled liquid is assumed to be of finite-
width, then the modified Gibbs-Thomson relation would imply that there is a sharp 
interface which is continuously progressing through the finite-width interface. This in 
turn suggests exploring the enthalpy formulation given below in (4.2.1) in which a phase 
function 0(x, t) has been introduced which is continuously varying through the finite-
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width interface. Enthalpy H{T) (per unit volume) is defined by 

H{T) - PsCsTs + ps^-cl>. T < 0 , 0 = - 1 , 

= [-psl/2, PLI/21 T = 0, - ! < ( / ) < 1, 

= PLCLTL + PL^-(I>. T > 0 , 0 = 1 . (4.2.1) 

Here, (/> is called a phase function or an order parameter which in the classical formulation 
has the value — 1 in the liquid phase and 1 in the solid phase. Some authors take 0 = 1 
and 0 = 0 in liquid and solid phases, respectively, and take / in the place of 1/2. The 
phase function (j) defines the state of the system. The phase-change temperature has been 
taken to be zero. H{T) vs T has been plotted in Fig. 4.2.1. Enthalpy is a multi-valued 
function of temperature but the temperature is a continuous function of enthalpy. The 
equation for energy in terms of enthalpy is given by 

^ = V\KT), xencR',0<t<t,. (4.2.2) 

Equation (4.2.2) is valid only in the distributional sense as at T = 0 the derivative of 
H is not defined (see § 5.2). K can have different values in different phases. It is clear 
from (4.2.1) that a sharp interface cannot be identified by T = 0 as done in the classical 
formulation because at T = 0 there exists a region and not a sharp interface. However 
a sharp interface can be identified by 0 = 0 as 0 is a continuous variable and 0 = 0 
corresponds to the center of the mushy region. An equation for 0(x, t) is needed. If 0 
is considered to be a continuous function of x and t, then it will look as in Fig. 4.2.2. 
When 0 = 0, T is also zero. T = 0 does not imply a sharp interface in the enthalpy 
model but 0 = 0 does. 

The starting point of a phase-field continuum model to be discussed below for the 
solid-liquid phase-change process has been taken here as the so-called Landau-Ginzburg 
free energy functional F defined as [80] 

nHx)} = / { f (V./-)' + ^ / ( ^ ( ^ . * ) ) - ^-^{T - Tm)<^^ dQ. (4,2.3) 

Here, (J is a length scale associated with the 'microscopic interaction strength' (̂  is the 
length such that two particles at a distance ^ apart will have the probability 1/2 of being 
in the same phase or state). a~^ is the measure of the depth of the double-well and is 
the indication of the barrier which must be crossed in the transition between the phases, 
a /̂̂ ^ is the 'correlation length', [S]E is the entropy difference between the phases at the 
equilibrium temperature per unit volume. All the terms in the integrand of (4.2.3) are 
in the units of energy per unit volume. Q C i?'^, n > 1 is a fixed region in space in which 
the phase-change process is taking place. In the phase transition problems with two 
distinct phases such as solid and liquid, / is a symmetric double-well function of 0 with 
two distinct minima, one for each phase. The last two terms in the integrand in (4.2.3) 
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can be thought of as the 'local Helmholtz free energy density' and (V(/))^ is the 'basic 
interaction term' arising due to the interaction of atoms with a mean field created by 
other atoms [81]. The minimum of -F(0) is attained at that value of 0 which satisfies the 
following Euler-Lagrange equation derived under the condition that either 0 is prescribed 
or Vcp • n = 0 on the boundary of Q. 

0 Temperature 

.// 
/2 

1 0 

J Solid 
^ = -].0 

Liquid 

r , 
-1 0 

Fig. 4.2.1. Enthalpy vs temperature. Fig. 4.2.2. Continuity of the phase function. 

SF(^) 
••e"^' .-i;/W + lf(r- Tm) = 0, (4.2.4) 

Here, the dash denotes differentiation with respect to the argument. 6F/S(j) is the 'vari-
ational derivative' of 0 which can be easily calculated (cf. [82]). Equation (4.2.4) holds 
for an equilibrium state and 0 is a function only of x, x G fl. Note that F is a function 
of (f) and not of T{x,t) and so T in (4.2.3) is fixed. For a transient or a non-equilibrium 
process, the free energy will not be minimum but will satisfy the following relation 

^¥( '̂*)^-¥^^( '̂*»' (4.2.5) 

where (5 > 0 is the relaxation time [83]. Equation (4.2.5) is valid for the case when (p is 
not conserved, i.e., the volume integral of (t>{x,t) over Q is not prescribed. The basis of 
(4.2.5) is the standard idea of 'non-equilibrium thermodynamics' which assumes that cp 
returns to equilibrium with a 'force' proportional to the extent to which it was out of 
equilibrium. 

If (p is conserved, then 

dt 
{x,t) = div 

SF 
MgTcid{—-((t)(x,t)) (4.2.6) 

where M is a coefficient related to diffusion or an interdiffusion coefficient which may 
depend on (t){x,t) and on the temperature [83, 84]. The second law of thermodynamics 
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requires that along the solution paths, the free energy should necessarily decrease with 
time, failing which the model will be 'thermodynamically inconsistent'. If F in (4.2.3) is 
a function of (f) alone, then the second law of thermodynamics is satisfied but not when 
F is a function of the temperature and 0. The time derivative of F{(f){x,t)} gives 

FW.,t)} = / g { ^ ( x , * ) } f rfO = - | / ( ^ ) ^ O < 0. (4.2.7) 

In order to derive (4.2.7) take F as in (4.2.3) and proceed with the first principles to 
obtain the time derivative of F. In calculating dF/dt, at some stage of calculations 
Green's formula is to be apphed to the volume integral of V(t)-Vd^ldt and if it is assumed 
that on the boundary of Vl the normal derivative of 0 is zero then we get (4.2.7). The 
second law of thermodynamics is satisfied even if 0 is conserved, provided M grad dF/S^ 
is zero on the boundary of Vt. 

Sometimes, since the order parameter 0 alone is not sufficient to describe the local 
state of the system, additional fields are introduced. One such extra field is temperature. 
If the heat conduction is very 'fast' then it can be assumed that the material is at 
a uniform temperature but this assumption is not valid if heat conduction is 'slow'. 
A second equation for heat transport in the material should be considered along with 
equation (4.2.4) or (4.2.6). An example of this type of modelling is the phase-field model 
which consists of the following system of equations. 

„ , . * , , 2 V V + i ( * - *') + '-^{T-T,). (4.2.8) 

In equations (4.2.8) and (4.2.9), (j) and T are coupled but in deriving (4.2.8) no couphng 
between 0 and T was considered. The double-well symmetric function / with distinct 
minima at 0 = ibl is taken as / = (0^ — 1)^. The parameter e and a are defined as 

£:^^ai/2, a = 8ie- (4.2.10) 

£ is a measure of the interface thickness and is of the order of 10~^ cm, a is the surface 
tension, S is the entropy per unit volume, k is the thermal diffusivity. The units of a, 5, a 
are as follows: 

(J : = unit of Energy/(length)^"""^^ S :— unit of energy/{(length)'^-degree} 

a : = unit of time/(length) , n = spacial dimension of Q. (4.2.11) 

At a deeper level of physics there are significant differences between the Stefan prob-
lem and the phase-field model in that the phase-field model incorporates the microscopic 
physics in an average sense and also takes into account macroscopic parameters. Stefan 
problem deals only with macroscopic modelling. 
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Both the equations (4.2.8) and (4.2.9) hold good throughout Q and the sharp interface 
separating sohd and hquid phases has been replaced by a finite-width interface. Therefore 
there are no boundary conditions at the interface. The region corresponding to T = 0 is 
now given by — 1 < 0 < 1, and (f) = 0 is the center of the interface. Initial and boundary 
conditions for both 0 and T are to be prescribed. For example, on the boundary dQ of 
0, we may have 

dn 
= 0, (4.2.12) 

dT 

or any combination of these boundary conditions. 

= 0, (4.2.13) 
dn 

Note that for both T < 0 and T > 0, (4.2.9) is well defined and the region T = 0 is 
not defined by the enthalpy but is identified by the phase function 0, — 1 < 0 < 1. The 
phase-field equations were first formulated in [85] on the basis of the model discussed in 
[80]. The last term in the integral in (4.2.3) can be taken in the form of a more general 
expression such as —2u^G{(f)) (cf. [86]), where u is the dimensionless temperature and 

u={T-Tm)/{l/Cp). (4.2.14) 

Here, 7 is a microscopic parameter related to a macroscopic parameter and has the 
dimension of energy per unit volume, G{(t)) is an increasing function related to the entropy 
distribution across the interface and 

1 

[S]E = 2^ j G\(l))d(t>. (4.2.15) 
- 1 

If G{(j)) = (/> and the units of energy and temperature are suitably chosen, then 

[S]E = 4 units of energy per unit volume/degree, (4.2.16) 

and 

-2u-fG{(f)) = -2u(j). (4.2.17) 

In Fig. 4.2.3. the last term on the r.h.s. in the equation to determine 0 has been taken 
as 2u. By defining e and a through (4.2.10) and a in units of free energy, the last term 
on the r.h.s. in (4.2.8) can be obtained. 

The capillary length o?o is defined as (cf. [87]). 

d, = ol{[S]EllCp}, (4.2.18) 
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and it is easy to check that with the help of (4.2.18), (4.2.8) becomes 

ae'^ = s'V'<t>+l{<t>-<l>') + ^^n. (4.2.19) 

Equation (4.2.19) has two length scales, viz., e and do. Note that there is only one 
length scale in the modified Gibbs-Thomson relation (4.1.1). Using (4.2.18), (4.1.1) can 
be written in terms of w as 

u = -doKc - adolVnl (4.2.20) 

In (4.1.1), specific heats, thermal conductivity and densities have been taken to be 
equal in both solid and liquid phases. This is generally done for convenience as the 
mathematics does not change significantly even if different thermophysical properties are 
taken in different phases. There are several advantages of phase-field models. A variety of 
phenomena ranging from motion by mean curvature to stable anisotropic crystal growth 
and single-needle dendrites are obtained by simply varying the parameters. Phase-field 
equations are amenable to numerical computations [88]. Computations involving self-
interactions of the interface do not pose difficulties in the phase-field model. The phase-
field equations are guaranteed to have a smooth solution (0, T) if the initial and boundary 
data are sufficiently smooth (cf. [81, 89]). 

Rigorous mathematical analysis for obtaining Gibbs-Thomson relation by taking ap-
propriate limits of some parameters was first presented in [81]. The 'Inner' and 'outer' 
expansions of the order parameter 0(a:, t) were obtained as ^ -̂ > 0 and by matching these 
expansions, it was proved that under suitable assumptions 

u{x) = -aoKji -h 0 ( 0 , X e dQo. (4.2.21) 

where dQo is the center of the finite-width interface or where 0 = 0; Kc is the sum of the 
principal curvatures of the interface cp = 0 and CTQ is defined by the equation 

(To = ^ e (4.2.22) 

It was shown that 

(7 = aoH-0(^2). (4.2.23) 

Based on the mathematical procedure presented in [81], and by taking appropriate limits, 
modified Gibbs-Thomson relation was derived in [90] and the Gibbs-Thomson relation 
in [81]. 

In Figs. 4.2.3. and 4.2.4. (cf. [91, 90]), the appropriate hmits of the parameters to be 
taken, and the corresponding Stefan and Stefan-like problems obtained have been shown. 
Although the limiting cases obtained in Fig. 4.2.3. are covered in Fig. 4.2.4., the hmits 
are more explicitly defined in Fig. 4.2.3. 



92 Stefan Problem with Supercooling: Classical Formulation and Analysis 
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Fig. 4.2.3. Limits of phase-field equations I 
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Fig. 4.2.4. Limits of phase-field equations II 
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The role of microscopic anisotropy in the macroscopic behaviour of the phase bound-
ary was analysed in [92] using Landau-Ginzburg [80] free energy functional. The contin-
uum limit for a lattice spin system with 'anisotropic interactions' Ĵ  and spacing â  leads 
to the following equation for the phase function 0. 

^ f = |:4^g + ̂ (^-^V2«, (4.2.24) 

where d is the spacial dimension of the space, 6 is the relaxation time and u is defined 
by (4.2.14). The temperature and (p are coupled through an equation of the type (4.2.9) 
and ^i is related to Ji and â . A modified Gibbs-Thomson law in polar coordinates (r, 6) 
was derived for the equilibrium temperature which has the form 

[S],u{r, 6) = -[a{0) + a"{e)]K - 5^0(6)1^9) + 0(^^). (4.2.25) 

Here, ^A(^) is a measure of the thickness of the interface and a{6) is the angle dependent 
surface tension. In [93] the basic phase-field model was extended to physical problems 
in which fluid properties such as velocity, pressure and density variations were incorpo-
rated along with heat properties and a unified and consistent derivation of equations was 
obtained. 

Since many phase-field models for solidification have been proposed in the literature, 
the phase-field model consisting of (4.2.8) and (4.2.9) will be called Standard phase-field 
model or SPF model. 

4.3 Some Thermodynamically Consistent Phase-field 
and Phase Relaxation Models of Solidification 

It was assumed in (4.2.3) that the energy functional F is a function of 0 alone, and that 
T is a constant. If a more general energy functional of the form 

F{{T{x, t), 4>{x, t)} = | { / ( r , <f>) + ^B\V4>{x)\'}dn, (4.3.1) 
n 

is taken, in which B is either a positive constant or a function of T but not of 0, then 
F will not always decrease on the solution paths and the thermodynamical consistency 
condition (4.2.7) will not be satisfied. However either the SPF model can be obtained as 
a particular case of some thermodynamically consistent models or the modified Gibbs-
Thomson relation can be derived independently of the SPF model. Several thermody-
namically consistent models have been proposed in the literature (cf. [94, 95, 96, 97, 98]). 
Our interest here is only in briefly indicating the derivation of some thermodynamically 
consistent models from which the modifled Gibbs-Thomson relation can be obtained by 
a rigorous limiting process. 
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Entropy Functional 

The model proposed in [97] and described below is based on an entropy functional and 
is on the same hnes as the model proposed earlier in [94]. The starting point of the 
formulation in [97] is to define an entropy functional F{(f){x,t),e{x,t)} for a subregion 
Qg of a closed and bounded domain Q C R^ in which the phase-change is taking place. 

F=l[s-\e'mr}dQ„ (4.3.2) 

Here, S{e, 0) is the entropy per unit volume, (p is the phase function as defined in § 4.2, 
e{x,t) is the internal energy density and £ is a constant. e{x,t) satisfies the equation 

e H - V f = 0 in Qg, (4.3.3) 

where q is the heat flux vector. The time derivative of F can be calculated as follows: 

'^-/(i) e + + e^V' • £^V • {^V<p)} dQ^ (4.3.4) 

^JU r.v 
dS_ 
de 

as 
dcp 

+ e'V' dVL„ 

/{( — j q^e^Vct) • n dAg. (4.3.5) 

Here, Ag is the surface area of ^2 ,̂ dAg is the elementary surface area and n is the 
outward unit normal to Ag. The derivation of (4.3.5) from (4.3.4) requires a simple 
application of Gauss's theorem. The thermodynamical consistency of this entropy model 
requires that the local entropy production be non-negative. If the entropy flux through 
the surface of Q.g is subtracted from dF/dt^ then the entropy produced can be obtained. 
The consistency condition requires that 

dF 
+ / 

q -. 
T 

e^^V^-nj dAg > 0, (4.3.6) 

as the rate at which entropy is produced cannot be negative. q/T in the first term in 
the surface integral in (4.3.6) is the entropy flux due to heat flow (see (2.1.2)). T is the 
absolute temperature. The quantity e^cfNcj) is the entropy flux related to the changes in 
the phase function at the boundary of the subregion Vtg. Both solid and liquid phases 
have been taken at rest. If dF/dt from (4.3.5) is substituted in (4.3.6) and the relation 

1 
(4.3.7) 
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is used, then we get the following consistency condition 

Jhif) + ©.-•^•' ip}dng> 0. (4.3.8) 

The derivation of (4.3.7) deserves some discussion. In (2.1.15), the phase function 0 has 
not been considered. Therefore, as suggested in [94], it will be assumed that even when 
the free energy density G and the entropy density S depend on the order parameter 0 
and the temperature T, they are concave in T and e, respectively (though not necessarily 
in 0) and they still obey 'Legendre transform relation' and its inversion [99]. 

G{T, 0) = inf [e(^, 0) - TS{e, 0)], 

and 

S{e,(t)) = inf 
6(5", 0) G{T, 

T T 

The differentiations of (4.3.10) with respect to e and 0 give the following results 

(4.3.9) 

(4.3.10) 

dS_ 
de {e. 

1 
T{e,^ 

and 

dS^ 1 dG 

T{eA) dct> 
(T(e,0),0) 

(4.3.11) 

(4.3.12) 

where T(e, 0) is the value of T at which the infimum in (4.3.10) occurs. For those values 
of T where no phase-change occurs, G is differentiable, and 

d{G{T^ct>)/T} 
dT 

- -e/T^ (4.3.13) 

(4.3.14) 

(4.3.15) 

Here, 8 is the relaxation time and is a positive constant, and MT could be a positive 
constant or a function of temperature but not of 0. In both [94] and [97], the starting 
point for the derivation of phase-held equations is the same entropy functional (4.3.2) 
but the consistency condition dF/dt > 0 is satisfied in different ways. We describe very 

The consistency condition (4.3.8) gets satisfied if ^and 0 are chosen such that 

and 

^dS\ 2v̂ o 
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briefly the procedure adopted in [94]. The transient equations for (p{x,t) and e{x,t) 
have been obtained from (4.3.2) using the same arguments which lead to (4.2.5) and 
(4.2.6). While e{x^t) is conserved, (p may or not be conserved. The quantities SF/dcf) 
and 5F/6e, which are required in deriving transient equations for (p and e can be easily 
calculated, see [94]. Having obtained the transient equations, the consistency condition 
can be established as in (4.2.7). Note that the time derivative of the entropy functional 
contains both SF/S(f) and SF/Se and it should be nondecreasing. 

The quantity {dS/d(t))e in (4.3.15) is not convenient to handle. So it should be 
expressed in terms of {dG/d(t))T as in (4.3.12). Integration of (4.3.13) gives 

G{T,ct>) = Tl-J ^-^d( +/{<!>)], (4.3.16) 

where /(0) is an unknown function. A suitable definition of e(T, 0) agreeing with the 
classical definition of enthalpy can be developed if we take 

e{T,4>) = esiT)+p{4>)L{T), ] 
(4.3.17) 

= e^T) + [p(^) - 1]L(T), J 

where p(0) is an arbitrary function except that p(0) = 0 and p(l) = 1. In the present 
model, we take (j) = 0 is the solid phase and 0 = 1 is the liquid phase. L{T) = 6^(7') — 
es{T). When T = Tm^ L{Tm) = Im, where Im is the latent heat of fusion per unit 
volume. Any of the expressions for e given in (4.3.17) can be used in (4.3.16). If the 
second definition in (4.3.17) is used in (4.3.16), then we obtain 

G(r, 4>) = TI-I ^ d ^ - \pi4>) - 1]Q(T) + m j , (4.3.18) 

where 

Q{T) = / 
r„ « 

2 -«s- (4.3.19) 

By differentiating (4.3.18) w.r.t. 0, we obtain, 

dC\ 
— \ =-TQiT)p'{<t>)+Tf'{4>). (4.3.20) 

Note that ei and e^ are functions of T and not of 0. It is now a simple matter to derive 
the phase-field model. Substituting e and (f from (4.3.17) and (4.3.14) in the energy 
equation (4.3.3), we obtain 

eUT)+p{mT) + {p(4>) - 1 ] ^ ( T ) = - V • [MrV ( i ) ] . (4.3.21) 



98 Stefan Problem with Supercooling: Classical Formulation and Analysis 

If MT = KT^ and 0 = 0,1 in (4.3.21), then we get heat conduction equations in sohd 
and hquid phases, respectively. In order to obtain kinetic equation for 0, we substitute 
dS/d(l) from (4.3.12) in (4.3.15) and use (4.3.20). We obtain 

6^ = Q{T)p\ct>) - f{ct>) + EV'CP . (4.3.22) 

Here, f{(p) is a double-well symmetric function with two distinct minima a,t (f) = 0 and 
0 = 1 , and is taken as 

m = 4>\l - 4>)\ (4.3.23) 

It is not possible to determine p((/)) uniquely. The equations (4.3.21) and (4.3.22) can be 
presented in some more suitable dimensionalized forms (see [97]). 

The SPF model was obtained as a particular case of the phase-field model constructed 
in [95] subject to the conditions that the energy density vary linearly with the order 
parameter and the entropy be a non-concave function of the order parameter. Since SPF 
model can be obtained as a particular case of a thermodynamically consistent model, it 
can also be regarded as a consistent model. In [97], two phase-field models have been 
presented. One of them partially resembles the model in [85] and the other the model 
in [98]. Although SPF model cannot be obtained as a particular case of any of the 
models constructed in [97], it has been reported that by taking appropriate limits of the 
dimensionless equations derived in [97] and following the procedure discussed in [81], 
modified Gibbs-Thomson law can be derived. 

Some thermodynainically consistent phase relaxation models for super-
cooling 

The Stefan condition (1.4.11) imposed in the classical Stefan problem formulation 
does not arise in the phase-field models discussed above. Like an enthalpy formulation, 
phase-field model is also a continuum formulation, and (/> is defined as 

- 1 , T < 0 , 

(-1,1), T = 0, 

1 , T > 0. 

(4.3.24) 

The equations of the type (4.3.24) are valid throughout Q, which is the region under 
consideration. As mentioned earlier, in an enthalpy formulation, T = 0 does not give the 
middle of the mushy region but in the phase-field model, 0 = 0, gives the middle of the 
finite-size interface. In (4.3.24), the sharp interface separating solid and liquid regions 
is given by 0 = 0 and not by T = 0. It is well known that in the case of supercooling 
or superheating, a mushy region develops, and the free boundary progresses through the 
mushy region. Therefore to obtain an equiaxed or columnar growth of the interface or 
the amount of supercooling or superheating, the phase function 0, should be in some 
ways associated with the structure of the mushy region. It should be pointed out here 
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that T = Tm {or T = 0) is not the actual temperature of the mushy region. It is an 
average value of the temperature. The actual situation is shown in Fig. 4.3.1. 

Several mathematical models based on relaxation dynamics have been constructed in 
the literature in terms of 0 and T, with which modified Gibbs-Thomson relation, mushy 
region, dendritic growth, etc. (cf. [100, 101, 102, 103]) can be described. Most of these 
models are based on the weak formulation which is not the emphasis in this volume. 
We give below a classical formulation concerned with a family of thermodynamically 
consistent models of phase transitions. Phase diffusion is neglected in this formulation 
by assuming that no interfacial energy occurs [100]. This means that the term ^^(V(/))^/2 
occurring in (4.2.3) is taken to be zero. Therefore, only a rate-type constitutive law 
governing the evolution of 0 accounts for the phase relaxation. 

Enthalpy, H(T) 

Fig. 4.3.1. ab-metastable state for the solid 
cd-metastable state for the liquid. 

The internal energy density e(T, (p) can be taken as 

e(T,0) = /o(T) + /i(0), (4.3.25) 

where equation (4.3.25) is the generahzation of the energy equation considered in the 
earlier phase transition models. If Cs = CL, then the specific enthalpy (or internal 
energy) is given by 

e = Ci/T + /0, O < 0 < 1. (4.3.26) 

As Cv = {de/dT)v > 0, we should have /^(T) > 0 in (4.3.25). The dash denotes 
diff"erentiation with respect to the argument. If 0 = 0 represents the solid phase, and 
0 = 1 represents the liquid phase, which is a more energetic phase then we should have 
/i(0) > 0. For the sake of convenience, let 

e(T,,^)=T^F^(r)+T;^Fi(,^), (4.3.27) 
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where the functions FQ and Fi are assumed to be continuous with F((0) > 0 and T^ is 
the phase-change temperature which could be Tm or be different from T^. The energy 
balance equation has the standard form 

e(T, 0) H- div g^= r ; q = -k{T)VT, (4.3.28) 

where the dot denotes time derivative, r is the heat source density function and e is given 
by (4.3.27). To derive a constitutive equation for 0 it will be assumed that (j) is not an 
explicit function of the space variables which means that V0 = 0 or that no interfacial 
diffusion occurs which was present in (4.2.4). Therefore the constitutive relation for 0 
can be assumed to be of the form 

0 = /?(T,0), (4.3.29) 

where (5 is an unknown continuous function. The functions FQ, F I and [5 are unknown but 
not completely arbitrary. For example, if the system of equations (4.3.28) and (4.3.29) is 
thermodynamically consistent, then the Clausius-Duhem inequality should be satisfied, 
which implies that 

Q-VT 
G + ST-^ ^-—— < 0. (4.3.30) 

1 ^ 

Here, G is the free energy density which is related to entropy 5, e and T by the following 
relation. 

G(T, 4>) = inf{e(5,4>) - TS(e, 4>)}. (4.3.31) 

The time derivative of G gives 

6^§T.f^l ( « ,32 ) 

Using (4.3.32) in (4.3.30), we obtain 

The inequality (4.3.33) is satisfied if it is assumed that 

f)G dC 
^ + 5 - 0, —/?(T, 0) < 0, k>^. (4.3.34) 

Substituting S = -dG/dT in (4.3.31), and using (4.3.27), the following equation is 
obtained. 

G-T— = T'F;,{T) + T;^F,{>P]. (4.3.35) 

It is easy to check that G{T, 4>) given by 

G(T,,^) = -TFo{T) + TB(^) - [T - TJF,(4>), (4-3.36) 
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satisfies (4.3.35). 5(0) is an unknown arbitrary function. The second condition in 
(4.3.34) is satisfied if /3(T, 0) is taken as 

1 dC 

For the sake of simphcity g{T, 0) is taken as 

5(T,,^) = F^WiV(T). (4.3.38) 

If P is continuous, and ^ > 0 and continuous, then N{T) should be continuous and 
N{T) > 0 for V T. Also F2 should be a monotonically increasing C^ function, i.e., 
^2(0) > 0 for y (f). The constitutive equation for 0 can now be written as 

dC 
— {T,^) + N{T)F^{4>)4> = 0. (4.3.39) 

With constitutive equations (4.3.28) and (4.3.39), a thermodynamically consistent phase 
relaxation model is complete. By suitable choice of unknown functions FQ, F I , ̂ 2(0) and 
N{T), several well known relaxation models can be derived as particular cases of this 
model (cf. [100]). Our interest here is only in analysing supercooling and superheating 
effects. 

As discussed earlier, when a phase is in a stable equilibrium, its free energy is min-
imum. Therefore, for stable solid and stable liquid phases, i.e., for 0 = 0 and (p = 1 at 
any fixed temperature, we have 

dG_ 
> 0 and —- < 0, (4.3.40) 

as 0 = 0 and 0 = 1 are the end points of the interval [0,1]. If (j)e is any internal equilibrium 
point, i.e., 0e € (0,1), then 

dG 
: 0. (4.3.41) 

If the mushy region is at equilibrium temperature T^, i.e., T^ = Tm then for all possible 
values of 0 G [0,1] there is equilibrium. From (4.3.36), at T = T^ = T^, we get 

G(T, 0) = -TFo(T) + TB{(t)). (4.3.42) 

From (4.3.41), dB{(l))/d(l) = 0 for 0 G [0,1]. Therefore 5(0) has a constant value in the 
interval [0,1]. In this case 

B = 7(0) = 0, if 0 G [0,1] 

= 00, otherwise. (4.3.43) 
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I{(p) is called a indicator function which has no classical derivative in R, but since / is a 
proper lower semi-continuous function, its subdifferential dl exists. The subdifferential 
of the function 7(0) is defined as 

a e dl{(t)) if and only if a((/) - 0 > ^(0) - HO for V ^ G /?, a e R. (4.3.44) 

With the help of the above definition it is easy to check that dl = H~^ where H~^ is the 
inverse of the Heaviside graph Hg defined below 

Hg[x) 0, x < 0 

= (0,1),2; = 0, 

= l , a : > 0 . 

It is easy to obtain H~^ or dl by using (4.3.44), and we have 

dl{x) = 0, x ^ [ 0 , l ] , 

= {0}, x G ( 0 , l ) , 

= R+, x = 1, R- a x = 0. 

(4.3.45) 

(4.3.46) 

To avoid cp taking values outside the interval [0,1], but to preserve strict minima at 
the ends 0 = 0 and 0 = 1, a double well function should be added to the indicator 
function. Therefore 5(0) should be of the form 

5(0) = /(0) + Bi(0), (4.3.47) 

where Bi{(f)) is a smooth 'double-well function' forcing B to have only two strict minima 
at 0 = 0 and (p = 1. Depending on the physical situation, 7(0) or Bi{(f)) could be zero 
or non-zero. -Bi((/>) is generally taken in the form 

Bi{(t)) = iy(t)^{l-(t>)\ f />0. (4.3.48) 

Fi((/)) in (4.3.36) has been assumed to be nondecreasing and it should have strict minima 
at 0 = 0 and 0 = 1, as G possesses these two minima. Fi{(f)) satisfies these conditions if 
it is taken as [100] 

Fi(0) = -0^(3-2(/)), A > 0 . (4.3.49) 

Superheating and supercooling effects 

When a sohd is superheated, 0 = 0 even at those points of the region where T > Tm-
Note that superheating or supercooling is assessed with respect to Tm and not with 
respect to T^. Similarly, for a supercooled liquid, 0 = 1 even when T < T^. Therefore 
the free energy G must exhibit minima at 0 = 0 and 0 = 1 for all temperatures T such 
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that \T — Tm\/Tm < e where e is a sufficiently small positive number. In particular, 
minima exists at T = T^ also. 

We first consider the case T > T^. For T > T^, the last term in (4.3.36) is non-
positive if Fi((/)) is taken as in (4.3.49). li B = Bi in (4.3.36), then G has an absolute 
minimum at 0 = 1. Fig. 2.1.1. suggests that the solid is superheated. For T < T^, 
the last term in (4.3.36) is non-negative and G (with B — B\) has an absolute minimum 
at 0 = 0. Fig. 2.2.1. suggests that the liquid is supercooled. Let u{T) = X{T — 
T^)/{^T), X > ly > 0. If Bi from (4.3.48) and Fi from (4.3.49) are substituted in 
(4.3.36) and G is differentiated, then we get 

BC 
— = 4uT<P{<p - 1) [^ - (1 - u{T))2]. (4.3.50) 

If u{T) G (—1,1), then G takes two strict minima at 0 = 0 and 0 = 1 (check d^G/dcj)^ 
also) and superheating and supercooling can occur when T lies in the interval 

f i Z k < T < ^ \ . (4.3.51) 
\X + u X-u) ^ ^ 

In (4.3.51), T^ has been replaced by Tm as supercooling and superheating are assessed 
with respect to Tm- It is clear from (4.3.51) that if the mushy region exists at T = T^̂ , 
then supercooling and superheating effects do not occur. 

In essence, the mathematical model described above consists of the following coupled 
differential equations. 

^{T'F:,(T) + T^FM)) - div (K( r ) gradT) = r (4.3.52) 

and 

j^iF^m+dm) + ̂ f m ^ ^Jvi^^i w- (4-3-53) 
Equation (4.3.52) can be obtained from (4.3.27) and (4.3.28) while (4.3.53) can be ob-
tained from (4.3.36) and (4.3.39). Due to the presence of the term dl{(/)), the l.h.s. in 
(4.3.53) is a multivalued function and the relation (4.3.53) cannot be written as an equa-
tion. The system consisting of (4.3.52) and (4.3.53) should be supplemented with the 
boundary and initial conditions. For example the boundary condition could be 

dT 
q'n = ~K{T)— = 0 on E = 50 x (0,t,), (4.3.54) 

where dCl is the boundary of the region Q under consideration and the initial conditions 
could be 

{T'F;,{T) + r^Fi(0)},.o = eo, (i^2(0))|.=o = <Po. (4.3.55) 

where CQ and 00 are known quantities. In Fourier's heat conduction law, k{T) = 
K{T) > 0, where K is the thermal conductivity. In irreversible thermodynamics. 
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q = k{T)V (l/T). N{T) is a prescribed quantity. For example, in [95], N(T) has 
been taken to be T. If 7(0) = 0, then (4.3.53) is a classical equation. 

If K{T) = /T, a constant, and if suitable assumptions are made about various func-
tions then the existence and uniqueness of the system (4.3.52) and (4.3.53) has been 
proved in [100]. 

4.4 Solidification of Supercooled Liquid Without Cur-
vature Effect and Kinetic Undercooling : Anal-
ysis of the Solution 

In §§ 4.2 and 4.3 some phase-field models were considered. With their help supercool-
ing/superheating effects can be discussed if appropriate limits of parameters are taken. 
These models provided rigorous justification of the incorporation of the modified Gibbs-
Thomson relation in the classical formulation when curvature eff"ect and kinetic under-
cooling are included. Many physical situations can be modelled by suitable choices of 
arbitrary functions occurring in phase-field models and phase-relaxation models. In this 
section we want to discuss issues like: (i) existence, uniqueness and well-posedness of so-
lutions and (ii) blow-up and regularization of Stefan problems with supercooling. It may 
be made clear that by 'Stefan problem with supercooling' we mean classical formulations 
of either solidification of a supercooled liquid or one or two-phase solidification problems 
with modified Gibbs-Thomson relation. 

4.4.1 One-dimensional one-phase solidification of supercooled 
liquid (SSP) 

The mathematical model of this problem has already been discussed in (3.1.8)—(3.1.12). 
Because of its simplicity this problem has been extensively studied. It should be remem-
bered that neither the curvature effect nor the kinetic condition has been incorporated 
in this model. It was mentioned in § 3.1.2 that ODP (equations (3.3.34)—(3.3.38)) can 
be transformed to SSP and vice-versa and c(j;, t) and T{x, t) are related through the 
equation (3.3.39). We shall now consider a more general ODP and take 

C(J:,0) =CO(X) , 0 < 2 ; < 1, (4.4.1) 

where CQ{X) could be different from 0.5(1 — x)^. From (3.3.39), we have 

co(x) = fd^JiUv) + l)dv ; Co(x) = To{x) + 1, (4.4.2) 
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and C:r{0,t) is given by (cf. [104]) 

t 

c,{Q,t) = c',{0)-h jg{r)dr. (4.4.3) 
0 

Here, g{t) is the same as in (3.1.10). The second equation in (4.4.2) suggests that Co{x) 
should be sufficiently regular. For the existence and uniqueness of solutions some com-
patibility conditions should also be satisfied by the initial temperature and the boundary 
conditions. If the boundary condition (3.1.10) is replaced by the boundary condition 
T(0,t) = F{t), then we obtain [104] 

t 

c(0, t) = co(0) + I F{T)dT. (4.4.4) 
0 

The essential diflFerence between the classical Stefan problems concerning solidification 
of a hquid and the solidification of a supercooled liquid is in the sign requirements of the 
temperature difference {T — Tm)- The temperature of a supercooled liquid is less than 
Tm^ whereas in the classical Stefan problem without supercooling, the temperature of 
the liquid is greater than or equal to Tm- As mentioned earlier, whenever the classical 
solution of a Stefan problem is discussed here, it is implied that the solution satisfies 
some conditions of the form (i) - (iv) given in § 3.1.1. Depending on the problem under 
consideration appropriate changes have to be made in these conditions. A global-in-time 
classical solution is known to exist for the one-dimensional Stefan problem under suitable 
data assumptions (cf. [57, 75]). If the liquid is supercooled or if the solid is superheated, 
a solution may still exist for a short-time but a finite-time blow-up (explained below) 
may occur, which prevents continuation of the solution. 

Assuming that a solution of a Stefan problem with superheating/supercooling exists, 
some important questions to be investigated further are: 

(A) Can a classical solution of the problem exist for an arbitrarily long time ? 

(B) Does there exist a constant 6̂ > 0 such that hmt^i^_ S{t) = 0? Here S{t) is 
progressing towards x = 0. 

(C) Does there exist a constant tc > 0 such that S{t) > 0 for i G (0, tc] and 
lim,_,^ S{t) = -oo? 

Question (B) pertains to finite-time extinction and (C) pertains to the blow-up of a 
solution defined below. 

Fimte-time blow-up: If S{t) is the free boundary in a free boundary problem, and if 
at some time t = t* < oo, S{t^) > 0 and liminft._ f̂*_ S{t) = —oo, then it is said that a 
finite-time blow-up has occurred. 

Essential blow-up: If the solution of the free boundary problem cannot be continued 
beyond the blow-up time, then the blow-up is called essential. It may be pointed out 
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that blow-up is not a physically reahstic phenomenon and it indicates defects in the 
mathematical model of the problem. 

Non-essential blow-up: It may be possible to continue the solution of the free bound-
ary problem beyond the blow-up time t = t^ with S{t^) and hm^-^t*- T{x,t) = TQ{X) as 
the initial data. In this case we have a non-essential blow-up. 

Many studies are available on the analysis of SSP. Each study contains several results. 
Only a few of these can be presented here. In [59], [104] and [105] the boundary condition 
(3.1.10) in SSP, has been replaced with the following: 

T,(0,i) = 0, 0 < ^ < ^ , . (4.4.5) 

Let Q be a constant defined as 

1 

Q = J{TQ{X) + l)dx. (4.4.6) 
0 

The quantity {l-\-To{x)) in which the latent heat has been suitably scaled and taken as 
unity, represents the sum of the latent heat and the sensible heat. Q can be interpreted as 
the global energy of the supercooled liquid at ^ = 0 and should be greater than or equal 
to zero. Q plays an important role in analysing questions (A), (B) and (C) mentioned 
above. 

Let TQ{X) be non-positive and continuous in [0,1]. If To(l) = 0 and TQ{X) is Holder-
continuous dX X = 1, then the supercooled problem possesses one solution valid for 
sufficiently small time t <to. The uniqueness and well-posedness of the solution can also 
be proved. If To{x) is constant not exceeding —1, then SSP has no solution [75]. 

Some of the results reported in [75], [104] and [105] are summarized below in the form 
of propositions 4.4.1.—4.4.5. It should be remembered that in the discussion pertaining to 
these propositions, the term SSP means the mathematical formulation (3.1.8)—(3.1.12) 
in which (3.1.10) has been replaced by (4.4.5). Similarly ODP would mean the problem 
obtained by transforming the new SSP with the help of the transformation (3.3.39). 

Proposit ion 4.4.1. If the closure of the set {To{x) < —1} is either void, or if it is 
compact and contains the origin, then in the solution of SSP the conditions Q > 0, Q = 0 
and Q < 0 are necessary and sufficient for global existence, finite-time extinction and 
blow-up, respectively. Blow-up always occurs when Q < 0 while Q = 0 is necessary for 
a finite-time extinction. 

If the constraint c > 0 is not added in ODP with initial concentration given by (4.4.1), 
then the free boundary in both SSP and UODP (unconstrained ODP) coincides and both 
will have a finite-time blow-up at a time at which the negativity set of c(x, t) reaches 
x = S{t). Fort e (0,t*), define 

N{t) = {x:0<x < S{t), c{x, t) < 0}. (4.4.7) 
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In [104, 105], several results concerning blow-up in SSP and UODP have been reported. 
Some of them are given below. 

Proposition 4.4.2. If N{t) 7̂  0, then 

(i) for any 2̂ ^ (^i,^*), ^(^1) CC N{t2), i.e., the negativity set expands, 

(ii) if for some i > ti, the boundary dN{i) touches the free boundary then S{t) is 
singular as t ^^ i, 

(iii) the case above actually occurs. 

Proposition 4.4.3. A necessary and sufficient condition for an essential blow-up at 
the point {S{i),£) is that the point belongs to dN{i). 

Proposition 4.4.4. A necessary and sufficient condition for having S{t) singular at 
a point {S{i),i) is that the set {{x,t) : T{x,t) = —1} reaches the free boundary at such 
a point. 

Proposition 4.4.5. There are initial data such that ODP corresponding to SSP with 
(4.4.5) admits global solutions with limt_to *5'(̂ ) = —00 for some 0̂ > 0. 

The last proposition is a case of a non-essential blow-up and in [104] this case has 
been demonstrated with the help of an example. 

4.4.2 Regularization of a blow-up in SSP by looking at CODP 

The question which will be discussed now is, 'how to stop blow-up in SSP'? This is 
called regularization. Note that there are methods other than the one discussed below 
for regularization. Let us first examine which physical quantity is responsible for the 
blow-up. The integral 

S{t) 

E{x, t)= J (T(e, t) -h l)d^ = - c „ (4.4.8) 
X 

represents the thermal energy in the layer {x,S{t)) (cf. (3.3.39)). E{0,t) = E{0,0) = Q 
(cf. (4.4.6)). Here, c{x,t) is the concentration in ODP. 

If the mean energy E in the supercooled layer is defined as 

S{t) S{t) 

E{x, t) = {S(t) - x)-' I di I {T{r], t) H- l)dr], (4.4.9) 

= {S{t)-x)-'c(x,t), (4.4.10) 

then blow-up occurs if and only if E{x,t) is negative at some point {x,t). This implies 
that at the blow-up point c(x, t) < 0. Thus any regularization of SSP or UODP has 
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to prevent E{x,t) from taking negative values by shifting UODP to CODP. It seems 
reasonable to conjecture that this argument holds for multi-dimensional problems also 
(cf. [105]). The absolute minimum of E{x, t) is E{0, t) or Q. Blow-up occurs if and only 
if Q < 0. If (5 < 0, then it implies that the system does not have enough energy in the 
form of latent heat to cancel out the 'cold' of the supercooled liquid. Another way to 
look at the blow-up points is to look at the roots of the equation T(x, t) -hi = 0. Either 
the set of points {x, t) for which T{x, )̂ -1- 1 = 0 is empty, or it has a positive distance 
from the free boundary. In the latter case, if this set reaches the free boundary at t = to 
then \im.t-^to S{t) = — oo (cf. [75]). For t < to, S{t) is bounded. This imphes that there 
is too much 'cold' too near the free boundary, and blow-up occurs because the energy 
cannot reach the point of blow-up by diffusion. 

To stop finite-time blow-up in SSP some mathematical techniques have been suggested 
in [104] which consist of modifying UODP to CODP provided CODP is formulated 
classically, with a new free boundary appearing each time c{x, t) becomes zero. We can 
call it 'nucleation' of new free boundaries. In this case we have always a finite-time 
extinction. This 'nucleation' of new free boundaries can be achieved in SSP also. Let 
0 = 0, Co > 0. This implies that Ca;(0, t) = 0. There is no change in the energy of the 
system in this 'nucleation' but the creation of the new phase boundaries rearranges the 
energy fluxes in such a way that the blow-up that would occur due to the deficit of energy 
near x = S{t) is prevented by a counter-balancing surplus near x = 0. 

There are techniques such as incorporation of curvature effects and kinetic under-
cooling for the regularization of blow-up during solidification of a supercooled liquid. 
Curvature effects cannot be included in SSP as it is a one-dimensional slab problem. If 
the kinetic condition is also excluded in the formulation, then we have to resort to other 
techniques for regularization such as nucleation described above. 

Some of the results obtained in [105] have been extended to a two-phase problem 
considered in [106]. Let us assume that there is some sohd region (finite or infinite) to 
the right of x = S{t) in SSP whose temperature is Ti{x, t) < 0 for t > 0. The boundary 
and initial conditions are such that T{x,t) < 0, t > 0 is guaranteed till the solution 
exists. The following proposition, which is false for the one-phase SSP problem, is true 
for the two-phase problem. 

Proposition 4.4.6. If Q = 0, an essential blow-up will occur, while, for finite-time 
extinction Q > 0 is necessary. 

The above result has been proved by obtaining an integral equation for S{t). 
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4.4.3 Analysis of problems with some changes in the initial and 
boundary conditions in SSP 

Let us consider the formulation (3.1.8)—(3.1.12) with the boundary condition 

T(0,t) = / ( t ) , 0<t<t,. (4.4.11) 

By using the transformation (3.3.39) and using (4.4.4), a formulation in terms of c{x,t) 
can be obtained. Let us assume that in the transformed problem 

c(x,0) = co(x), 0 < x < 1. (4.4.12) 

The following results have been proved in [107]. 

Proposition 4.4.7. Assume that for some XQ > 0 the following condition is satisfied. 

co(x)<0, for X G ( l - x o , l ) . (4.4.13) 

Then the solution of SSP with (3.1.10) replaced by (4.4.11) does not exist. 

Proposition 4.4.8. Assume that there exists XQ > 0 such that the initial temper-
ature To{x) > - 1 , To(x),^ - 1 in (1 - XQ, 1). Then SSP with (4.4.11) has at most one 
solution in the local sense. 

Proposition 4.4.9. Assume that there exists XQ > 0 such that To{x) > - 1 for x 
in (1 — xo, 1). Then SSP with (4.4.11) possesses a unique local-in-time classical solution. 
Existence can also be proved in a special case in which lim^;^!- inf To(x) > — 1. 

The convexity of the free boundary in SSP has been proved in [108] with no flux 
boundary condition imposed at x = 0, i.e., in (3.1.10), g{t) = 0. In [109] also, the 
convexity of the free boundary has been established but under special assumptions on 
To(x). The initial data considered in [108] is of the form 

To(x) < 0, X G [0,1]; To(l) = 0; To(x) G C'[0,1]. (4.4.14) 

The main tool used in [109] in proving the results was the introduction of the function 

^(x,^) = T^JT^, (4.4.15) 

and the study of its level curves and this was done in [108] also. SSP can be formulated 
in terms of i;(x, t) which will not be discussed here. Let 

M = {x : X G [0,1], To'(x) 7̂  0.}. (4.4.16) 

If To(x) ^ 0, then M is not void. Set 

P(x) = To(x)/To'(x), X G M. (4.4.17) 

Out of the several results reported in [108], we present only one here. 
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Proposition 4.4.10. Assume that (4.4.14) is satisfied, and P{x) is non-negative 
and non-increasing in M. If P( l ) > To(l), then S{t) > 0 for any t G (0, t^) and SSP with 
^(^) = 0 in (3.1.10) is solvable for any arbitrary t^ > 0. 

Some results can be obtained for ODP also by following the approach adopted for SSP. 
In particular it can be proved that the free boundary in ODP with CQ{X) = 0.5(1 — x)^ is 
concave. See [108] for further details. 

In [110], SSP with (3.1.10) replaced by the prescribed temperature condition T(0, t) = 
f{t) has been considered. The questions (A), (B) and (C) raised earher in this section 
have been analysed. Several results have been obtained in terms of a quantity R{t) 
defined as 

1 ^ * 
R{t) ^ _ + fxTo{x)dx + ff{T)dT. (4.4.18) 

0 0 

The motivation for considering R{t) comes from the equation 

(s(t))'-i } \ T 
^-^-^ = / xT^{x)dx + / i(T)dT - / xT{x, t)dx. (4.4.19) 

0 0 0 

When S{t) = 0, we have R{t) — 0. Equation (4.4.19) and several other equations of this 
kind can be derived by using the following Green's identity (cf. [57]). 

y / ( i ; P ( T ) - TP%v))dxdT = J [{T^v - Tv,)dT + k-^Tvdx] , (4.4.20) 
Dt dDt 

where P is the heat operator k~^Txx — Tt and P* is its adjoint operator, Dt = {{x^t) : 
0 < X < S{t),0 < t < t^}. By choosing v and v^ suitably, several relations of the type 
(4.4.19) can be developed. 

Proposition 4.4.11. Assume that the solution of SSP (with temperature prescribed 
in the place of (3.1.10)) exists, and To{x) and f{t) satisfy the following hypotheses: 

(i) To{x) < 0 is an increasing function in [0,1], 

(ii) f{t) < 0 is a decreasing function of ,̂ ^ > 0. 

If case (C) (§ 4.4.1) occurs, then it implies R{tc) < 0 {tc is the same as defined in (C)). 

The following convective boundary condition at a: = 0 in SSP was considered in [111] 
in the place of (3.1.10). 

K^(0, t) = h(T(0, t) - g(t)), git) < 0, 0 < ^ < *̂. (4.4.21) 
ox 

The questions (A), (B) and (C) (§ 4.4.1) were investigated and in answering these ques-
tions, the key role is played by the quantity Qi{t) defined as 

Qi(0 - 1 + ^ + / ( I + l3x)To{x)dx + Jf3G{T)dT, (4.4.22) 
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where P = h/Kb is a dimensionless parameter, b has the dimension of length with 
which the space coordinate can be dimensionahzed to obtain the supercooled region as 
0 < a: < 1 and 

We present here one of the results reported in [111]. 

Proposition 4.4.12. If the solution of this changed SSP with (4.4.21) exists and 
the initial and boundary data satisfy the following conditions 

(i) To{x) > M{x - 1), and T(5(x) > 0 , 0 < x < l , 0 < M < 1 , " 

(ii) G{t) > - M , t > 0, \ (4.4.24) 

( i i i )n(0) = /?(T(0)-p(0)), 

and there exists a time tb such that Qi{tt) = 0, then t = tb is the time in the case (B). 

The solidification of a supercooled liquid has been studied in geometries other than a 
slab. In a one-dimensional radially symmetric spherical geometry or in a one dimensional 
radially symmetric cyUndrical geometry, in principle, curvature effects can be included. 
The curvature effect and the kinetic condition have in general a regularizing effect. If 
curvature effect is not included in cylindrical and spherical geometries, then the questions 
(A), (B) and (C) become more meaningful and should be investigated. This has been 
done in the next two problems. These problems can be easily formulated on the same 
lines as the formulation given in (3.1.8)—(3.1.12). 

One-dimensional radially symmetric solidification of a supercooled liquid in the spher-
ical region ro < r < 1, ro > 0 was considered in [112]. The quantity Q2{t) given below 
plays a key-role in the study of questions (A), (B) and (C). 

1 T 

Q2{t) = l + 2> j r^To{r)dr - Zrl j g{T)dT. (4.4.25) 
ro 0 

Here, To(r) is the initial temperature and g{t) is the prescribed flux at r = ro in the 
spherical geometry. A result concerning finite-time extinction is as follows. 

Proposition 4.4.13. If To(r) < 0, ro < r < 1, and continuous and To(r) > 
—hi(\ — r), /ii < 1, 0 < g{t) < hi for ^ > 0, then case (B) occurs and Q2{tb) = ̂ o-

Solidification of supercooled liquid in a one-dimensional radially symmetric cylindrical 
region ro < r < 6 was considered in [113] with temperature prescribed at r = ro- A flux 
prescribed case can also be discussed in a similar way. One existence and uniqueness 
result is given below. 

Proposition 4.4.14. Let the initial temperature To(r), ro < r < 6 be such that 

T o ( r ) > - l , b-do<r<b (4.4.26) 
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for some do G (0, b — vo]. Then the solution of the cyhndrical problem exists in the interval 
0 < t < t* for some t* > 0. The case To{b) = - 1 is allowed as long as conditions in 
(4.4.26) are fulfilled. Uniqueness of the solution can be proved as in [107]. 

The SSP considered in [114] is ODP transformed into SSP. The initial concentration 
in ODP is 0.5(1 — x)^ but at x = 0 non-zero flux is prescribed which is a monotonically 
increasing function of time with Cx{0,0) = —1. This ODP can be transformed to SSP with 
the initial temperature zero and the flux at x = 0 given by Tr(0, t) = g{t), 0 < t < t^. It 
is assumed that g{t) is a non-negative piecewise continuous function in (0, oo), bounded 
in every interval (0,t), t > 0. The questions (A), (B) and (C) have been analysed for the 
transformed SSP. By using an appropriate Green's identity, the relation given below can 
be obtained. 

t s{t) 

S{t) = l - [ g{T)dT- f T{x,t)dx, 0 < t < t,. (4.4.27) 
0 0 

A unique solution of the transformed SSP exists if and only if 

t 

[ g{T)dT < 1 for any t > 0. (4.4.28) 
0 

For other results see [114]. 

4.5 Analysis of Supercooled Stefan Problems with 
the Modified Gibbs-Thomson Relation 

4.5.1 Introduction 

A supercooled liquid is in a metastable state, and, if left to itself, will remain in 
that state for a long time. In the absence of curvature effect or kinetic undercooling in 
the equilibrium temperature, supercooled liquid has a destabilizing effect on the planar 
phase-change boundary. Imagine a small solid protrusion into the supercooled liquid at 
the planar interface. Suppose that the temperature of the supercooled liquid is decreasing 
as we move away from the planar front. Let the equilibrium temperature be Tm which is 
the ideal phase-change temperature. This solid protrusion will have a large temperature 
gradient. According to Stefan condition (1.4.22), its growth velocity wih be greater than 
that of its neighbours on the planar front, and so this protrusion wiU grow and not dye. 
This indicates instability. 

The effect of surface tension is to stabilize the phase-change boundary. Since the 
surface tension decreases the equilibrium temperature, any protrusion at the planar free 
boundary gets liquified. Without surface tension, supercooling could lead to a totally 
unstable system. In real physical systems when supercooling is present, and which is 
generally the case, local instabilities such as dendrites will be present. These are counter 
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balanced by the nonlinear stabilizing effects of surface tension. In some sense, these 
arguments also hold for kinetic undercooling as well [86] that kinetic undercooling has a 
stabilizing effect in the sense that in the perturbation of the planar boundary an unstable 
mode remains unstable but with smaller amplitude. Large surface tension is incompatible 
with large curvature as large surface tension in supercooling implies that the deviation 
of the new equilibrium temperature from T^ is negative and large. This means that 
protrusions will be dissolved. This also means that the interface is nearly planar and the 
curvature is small. Therefore if the initial and boundary conditions are suitably chosen, 
then supercooling can be restricted. Surface tension is an equilibrium phenomenon, as 
it arises in equilibrium thermodynamics, but kinetic undercooling is a non-equilibrium 
phenomenon. It may be noted that in the Stefan problem, phase-change boundary is 
moving but it is assumed that there is an instantaneous equilibrium so that laws of 
equilibrium thermodynamics can be applied. 

4.5.2 One-dimensional one-phase supercooled Stefan problems 
with the modified Gibbs-Thomson relation 

Consider the formulation given in (3.1.8)—(3.1.12) with g{t) = 0 in (3.1.10) and 
(3.1.11) taken as 

T{S{t),t) = £S{t), £ > 0, S{t) < 0. (4.5.1) 

Equations (3.1.8), (3.1.9), (3.1.10), (3.1.12) and (4.5.1) constitute our new SSP. In equa-
tion (4.5.1) kinetic undercooling has been incorporated. Note that since S{t) is moving 
towards x = 0, S{t) is negative. In the problem considered is [115], 5(0) = 0 and S{t) > 0 
which is different from our formulation. This change in essence does not affect the re-
sults of [115]. It hgis been established in [115] that if the initial temperature To{x) is such 
that TQ{X) is continuous in 0 < a: < 1 and TQ{0) = 0 then the kinetic undercooling will 
have a regularizing effect and blow-up will be prevented. In physical terms, the kinetic 
undercooling term allows more energy to enter the liquid at the moving boundary than 
would be the case if this energy is supphed by the latent heat alone (as in SSP without 
kinetic undercoohng). The rate of change of energy is given by (cf. equation (4.4.8) for 
E{x,t)) 

S{t) 
dE d -
dt 

- j {T{x, t) + l}dx = sS''. (4.5.2) 

As £ > 0, there is an additional energy eS'^ available which compensates any energy 
deficit in TQ[X). The kinetic undercooling term in (4.5.1) imposes a limit on the speed 
of the interface. For some results concerning a one-dimensional two-phase problem and 
a semi-infinite problem, see [115]. 

A one-dimensional supercooled problem in a semi-infinite region 0 < x < oo has 
been considered in [116]. The region under consideration is S[t) < x < oo, t > 0 and 
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S{0) = 0. Let To{x) < 0, 0 < x < co, To{x) e C^[0, oo) be the initial temperature of 
the supercooled liquid and 

To(x) ^ - 1 - ^ as X -^ 00, (4.5.3) 

where ^ is a constant. If kinetic undercooling is considered, then 

T{S{t),t) = -£S{t), £ > 0, S{t) > 0, t > 0. (4.5.4) 

No fixed boundary condition at x = 0 is required as the region x < 0 is ice at time t = 0. 
Several cases for ^ > 0, = 0, < 0 have been analysed when e > 0 and s = 0. When s = 0, 
and ^ > 0, a finite-time blow-up occurs. When e > 0 and ^ < 0, similarity solutions exist 
and S{t) = ^yft (for (5 see [116]). When s > 0, and ^ > 0, travelling wave solutions exist 
with S[t) = St/e. If £ > 0, and 6 = 0; S{t) ~ df^, | < a < 1, where d is a constant 
depending on several parameters including s. 

A radially symmetric spherical problem in the region S{0) < r < oo, S{0) y^ 0 was 
also considered in [116]. Both surface tension and kinetic condition have been considered 
so that 

T{S{t),t) - -eS - 2a/S, 5 > 0, t>0. (4.5.5) 

Note that in this case the curvature Kc = l/r and the free boundary is r = S{t). Initial 
temperature is of the same type as in (4.5.3). li e = 0 and ^ > 0, then even with surface 
tension a finite-time blow-up occurs. However if s > 0, and ^ > 0 , — O o r < 0 , finite-time 
blow-up does not occur. For other results see [116]. 

In [117], the effect of both kinetic undercoohng and latent heat on the solution has 
been analysed. Consider SSP described by (3.1.8)—(3.1.12) in which instead of (3.1.10), 
the boundary condition T(0, t) = f{t) is prescribed. The interface conditions are 

T{S{t),t) = £S, s>0, 5 < 0, and T,{S(t),t) = -IS, (4.5.6) 

To(x) and f{t) are continuous non-positive functions such that To(0) = /(O). When 
5 = 0, and / < 0, (/ is the latent heat) we have a one-phase Stefan problem concerning 
solidification. When e = 0 and / > 0 we have a supercooled Stefan problem. In the latter 
case, if £ > 0, then it will be a supercooled problem with a kinetic condition. Several 
cases have been considered for different signs of e and / but our interest at present is in 
the case ^ > 0 and / > 0 for which the following result has been proved in [117]. 

Proposition 4.5.1. If To(x) and f{t) satisfy the assumptions stated above, then 
the supercooled problem with (4.5.6) in which e > 0, and / > 0 admits a unique solution 
and the free boundary S(t) is a smooth function in (0, t^) where t^ is such that S{t^) = 0 
and S(t) > 0 for t<t^. 
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4.5.3 One-dimensional two-phase Stefan problems with the mod-
ified Gibbs-Thomson relation 

Although a two-phase Stefan problem with the modified Gibbs-Thomson relation can 
be easily formulated, for the sake of better understanding of the results, we present here 
the formulation of a two-phase Stefan problem with a kinetic condition. 

~dt' ^ ^'~dJ'' '"̂  ^' ^ ^̂ ""'̂ ^ : 0 < :r < S{t), 0< t < t,}, (4.5.7) 

^ " ^ ^ ^ ' '"̂  ^ ' " ^^''' ^̂  • ^^^^ < ^ < 1, 0 < ^ < ^*}, (4.5.8) 

Ts{S{t)- 0,t) = TL{S{t)+ 0,t) = T{S{t),t), 0<t<t,, (4.5.9) 

S{t)=g{T{S{t),t), (4.5.10) 

^(0) = So, 0<So< 1, (4.5.11) 

{Ks^ - KL^\ = lS(t), / > 0, 0 < S(t) < constant, (4.5.12) 

I ^^ ^^ L=sit) 

T{x, 0) = To(a;), 0 < x < 1, (4.5.13) 

TL(1 , t) = hL{t), Ts{0, t) = hs{t). (4.5.14) 

This solidification problem has been considered in [118]. The main interest in [118] is 
to establish the existence and uniqueness of the classical solution of the problem if g{T) 
is of the form 

g{T) € C\R) and g{T) = T'^,me N. (4.5.15) 

The condition (4.5.12) is satisfied at x == ^o also. hi{t) G C"^[0, t*], i = S,L,\ < 
ai < 1, To{x) e C^'[0,So]nC^'[SoM 2 < as < 3, To(0) - hs{0), To(l) = /IL(0) 
and So satisfies a constraint (cf. [118]) which involves the L°°-norms of the initial and 
boundary temperatures. No sign constraints have been prescribed on the initial and 
boundary data. It has been proved that there exists a t^ such that liuit^t^ S{t) = 1. 
Travelling wave solutions of the problem have also been obtained. A similar problem 
with g{T) e C^{R) and \g{T)\ < a(|T|"^ + 1), where a and m > 1 are positive constants, 
was considered in [119] and local existence of the classical solution was proved under 
some assumptions some of which are the same as in [118]. 
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A two-phase problem in —oo < a: < oo with kinetic undercoohng condition (4.5.10) 
has been considered in [120]. It was proved in [120] that if \g{T)\ < Me^'^' for some 
M > 0 and 7 E (0,1/4), then a global solution to the problem (4.5.7)—(4.5.14) exists 
under suitable assumptions. If g{T) > ae^ '̂-̂ ' for some constant a and large 71, then 
blow-up in finite time may occur. A critical value of the exponent 7 was obtained in 
[121] as 7 = \/27re such that for 7 G (0, V27re), a global-in-time solution exists and 
blow-up in finite time occurs if g{T) > aê '-̂ L 

In [122], the problem (4.5.7)—(4.5.14) was considered and a single function ip{x^t) 
represents both initial and boundary conditions. 

T(x,0-V^(x,^), {x,t)ed'Qt^, (4.5.16) 

where 

d'Qu = {{x,0):xe (0,1)} U {(0, t):te (0, t,)} U {(1, t):te (0, t,)}. 

It was proved that if g{T) G C^(i?), 0 < /? < 1, ip e W^^\Qt^), g > 3 and the following 
conditions are satisfied (any one out of (4.5.17) and (4.5.18)), 

g{T) < 0, T < mi, g{T) > 0, T > ms for some mi, ms G R, (4.5.17) 

1̂ (7")I < CLi\T\ + a2, ai and a2 are constants, (4.5.18) 

gW.^o) = 9W.=i) = 0, (4.5.19) 

then a global classical solution exists such that S{t) G C^+^/2[0, t*],_A G (0,1). VK^ '̂HOtJ, 
0' > 1 is the Sobolev space of functions u{x,t) in the domain Qt^{Qi UQ2 x (0,t*)) with 
bounded norm 

Mw^^\Qu) = ( / d^l' + l^-l' + l ^ - l ' + lutndxdty/^. (4.5.20) 

Replace the condition (4.5.10) in problem (4.5.7)—(4.5.14) by the following kinetic 
condition 

T'{S'{t),t) = -eS{t), e>0,0<t<t,, (4.5.21) 

where T^ and S^ are written in place of T and S to signify that both T and S now depend 
on 6. This problem has been considered in [123], and the results given in Proposition 
4.5.2. have been estabhshed. 

Proposition 4.5.2. Let To(x), hs and hi satisfy the following smoothness assump-
tions. 

To(x) G C^O, So] n C'[So^ 1] n C[0, l] and hiihs) G C'{R) 0 L^oiR). (4.5.22) 
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The consistency conditions at x = 0, and x = 1 for the initial temperature and boundary 
conditions are satisfied and the functions hs and hi do not change sign for ^ > 0. Under 
the above assumptions a unique classical solution (T^, S^) (in the sense of § 1.4.6)of the 
problem (4.5.7)—(4.5.14) with (4.5.21) taken in the place of of (4.5.10) exists for every 
£ > 0 and for some tl > 0. Either tl = +(X) or min{l - S'{tl), S'{tl)} = 0. 

Depending on the boundary conditions, S could be greater or less than zero. By 
considering a sequence of problems {T^"", 5"^"}, ^n > 0, ^ = 1, 2 . . . and taking the limit 
£n -^ 0, the existence of a weak solution has been established in [123] and it has been 
shown that T{S{t),t) -^ 0 for a.a. t G (0,t*). 

Suppose the initial da ta is such that for some Si G [6'o, 1] 

To{x){x -Si)>0, xe [0,1], X + Si, So. (4.5.23) 

If (4.5.23) is satisfied, then a supercooled liquid phase exists between stable solid and 
stable liquid phases. It has been proved in [123] that the simply connected supercooled 
liquid region disappears in finite time, after which the solution becomes a classical one. In 
(4.5.23), the degree of supercooling is not prescribed. It was pointed out earlier for a one-
phase supercooled problem (cf. Proposition 4.4.1.) tha t the negativity set {To{x) < — 1} 
is responsible for a blow-up (roughly speaking). The initial da ta given below gives rise 
to a discontinuity in the free boundary. 

Let 5j^ and S'f G (ASQ, 1) be such that 

To{x) < - / , xe (ST,*S+), (4.5.24) 

To(x) > - / , xe (5-0, 5 r ) U (5+, 1), (4.5.25) 

where / is the latent heat, and / > 0. Under suitable assumptions, it has been shown in 
[123] that the free boundary is smooth everywhere except at a point t = t < t^. At this 
point S{t) may have a jump. S{t -(- 0) — S{t — 0) > 0 will be exactly equal to the length 
of the interval in which T{x, i — 0) < —I. 

In the Neumann solution (1.3.11)—(1.3.16), the velocity of the interface (cf. (1.3.13)) 
is infinite at ^ = 0 which seems to be inconsistent with the assumption of local thermo-
dynamic equihbrium at a constant freezing temperature. If the kinetic condition (4.5.26) 
is incorporated in (1.3.5), ps — pi and in the place of / = {/ + {Ci — Cs)Tm}, I is taken, 
then we get a problem considered in [123]. Let 

Ts{S{t),t) = TL(S{t),t) - -£S{t), £>0, S>0. (4.5.26) 

Under suitable assumptions, the existence and uniqueness of the Neumann solution with 
the condition (4.5.26) and other changes have been proved. It has been shown that 
T(x, t) G C^iQi) n C°^(02) and S(t) G C°^(0, t,), where Qi{Q2) = {x>0,x- S{t) > 
0(< 0), 0 < t < ^=,}. S{t) > jt for t G (0,^*), where 7 is a positive constant. An 
analytic solution has been obtained which is validated by a numerical solution obtained 
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by a finite-difference scheme [123]. An equation for the phase-change temperature has 
been obtained in [124] by considering the entropy production in the interface, pressure-
induced undercoohng, and viscosity-induced variations in the freezing temperature. A 
fairly general expression for the latent heat depending on the thermal expansion coef-
ficient, temperature, pressure, etc., has also been obtained. In deriving phase-change 
temperature and latent heat expressions, non-equilibrium thermodynamical considera-
tions have been used. 

Dissolution of a spherical ice ball in supercooled water has been discussed in [125]. 
This one-dimensional radially-symmetric spherical problem is closely related to a Stefan 
problem with modified Gibbs-Thomson relation. In [125], a weak solution has also been 
discussed. We give below only the classical formulation of the problem of dissolution of 
a solid ice ball of radius S{t) in a supercooled liquid. Consider the following equations. 

r ( r ,0) = To(r) < 0, 0 < r < ro, %{0) = 0; Ti(ro,<) = Ti{t), t > 0, (4.5.28) 

TsiS(t), t) = n{S(t), i) = - J - ^ + / ? ^ , r = S(t), t > 0; 5(0) = 1, (4.5.29) 

^ - f ^ = - / f o n r = S ( t ) , t > 0 , (4.5.30) 

Here, /3 > 0 is the relaxation parameter arising in the kinetic condition, the surface 
tension in (4.5.29) is taken unity and 

Ql = {(r,t) : 0 < r < S{t); 0<t<t,, S{0) = 1}, 

Qt = {(^.0 • S{t) <r<ro;0<t<t,,ro> 1}. 

It will be assumed that equations (4.5.27)—(4.5.30) have been suitably dimensionaUzed. 
In (4.5.29) both curvature effect and kinetic undercooling have been incorporated. Except 
(3 and /, all other parameters have been taken to be unity. 

To discuss melting of ice in a supercooled liquid, the transformation 

f = rT(r , f)-hi , (4.5.31) 

is made which changes the problem (4.5.27)—(4.5.30) to the following problem. 

^ = ^ ' ^ ^ « . ' z = 5,L, ^ > 0 , (4.5.32) 

t ( r , 0 ) - t o ( r ) , reQiuQluS[t)- fs{Q,t) = l^ ^ > 0; fL{ro,t)=^fi{t), (4.5.33) 
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f^{S{t), t) = -pS{t)S{t), i = S,L, (4.5.34) 

,5(0-0 
dT 
dr 

= -lS{t)S{t). (4.5.35) 
S{t)+0 

If /3 = 0 in (4.5.29), then we have only curvature effect in T(S{t),t). Equation (4.5.35) 
suggests that we have a Stefan problem with latent heat —lS{t). Now consider the initial 
and boundary data such that we have a one-phase melting problem for T. We consider 
the following formulation. 

fs{0,t) = 1, t>0; fs{S{t),t) = 0, t>0] fs>0, re [0,1], t > 0, (4.5.36) 

fiiro. t) = 0, fL = Omre (1, ro), i > 0. (4.5.37) 

In terms of Tiir, t), the initial temperature of the liquid is 

Tiir.O) = -1 / r , 1 < r < ro. (4.5.38) 

Note that the surface tension which was taken as unity in (4.5.29), is still present. As the 
initial temperature of the solid is greater than or equal to Tiir, 0), the ice ball with center 
at r = 0 may dissolve partially in the supercooled water at least for a short time. To 
preserve the classical one-phase Stefan problem structure, we have T(S{t),t) = 0 which 
requires that /? ^ 0. The key idea in the existence proof for problem (4.5.36)—(4.5.38) 
in which /3 = 0 is to consider a sequence of problems for /3n > 0, n == 1, 2 . . . and take 
the limit as /?„ - ^ 0 . This method of proof is generally employed to develop the proof for 
the case /? —̂  0. Under suitable assumptions about the data, a unique classical solution 
(T5, S^) exists with the monotonically decreasing free boundary S^. Some interesting 
results of [125] are the following: 

1. The classical solution of the problem (4.5.27)—(4.5.30) exists and is unique for 
p > 0 and all time t > 0. 

2. If /3 = 0 in (4.5.29), then the classical solution exists and is unique only locally in 
time. 

3. There exists at least one weak solution for /3 = 0 with a monotone free boundary 
r = S{t) for all time t > 0. 

4. Non-existence of the classical solution for the problem with /? = 0 for all time 
^ > 0 for certain types of initial data is possible in this one-phase problem. There exists 
at least one point t = i oi the discontinuity of S{t) such that 

0 < 5 ' ( f - 0 ) <S{i + 0), 

or the continuous function S{t) on a small time interval (0, t*) cannot be absolutely 
continuous on (£, t*) and it maps some zero-measure set of (f, t^) onto some set of Qf̂  ^Qt 
with a strictly positive measure. 
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It turns out that the results for /̂  > 0 are not the same as for P = 0. The kinetic 
condition acts as a regularizing factor in the dissolution of ice ball in the supercooled 
water whereas surface tension alone does not have the same effect. 

The formulation given in (4.5.27)—(4.5.30) was considered in [126] also but with 
some minor changes in the region under consideration and some change in the boundary 
condition. We shah continue with the notations used in (4.5.27)—(4.5.35) with the change 
that S'(O) = So < I and TQ = 1. The boundary condition at r = 1 could be any of the 
type given below in (4.5.39) and (4.5.40) 

t ( l , t ) = Q(t), t > 0 , (4.5.39) 

df 
CT(1, t) = - ^ - ( 1 , t) + T(l, t)-l,t>0. (4.5.40) 

or 

Both (4.5.39) and (4.5.40) are in non-dimensional form. Equation (4.5.40) is a boundary 
condition of the fifth kind (cf. (1.4.44)) . B(^) is the temperature of the thermostat and 
C is the specific heat of the thermostat. We shall call this changed problem, Problem 
(GP). Equation (4.5.40) models the heat exchange between the thermostat and the body. 
Assume that 

to(r) e C'[0, S-o] n C'[So, 1] n C[0,1], (4.5.41) 

and the consistency conditions 

to(o) = 1, f{So) = 0, ro(i) = e(o), (4.5.42) 

are satisfied. The result stated in Proposition 4.5.2. can also be estabhshed for Problem 
(GP) (cf. [126]). 

Asymptotic stability of stationary solutions of Problem (GP) was also studied in [126] 
and it was shown that under suitable assumptions the problem has one or two or three 
stationary solutions. One of them corresponds to the case in which the solid phase has 
melted completely. This solution is always asymptotically stable as ^ —> +00. The other 
two stationary solutions have non-empty solid regions. The solution with the largest 
radius for the solid is stable, the other is unstable. 

A two-phase one-dimensional Stefan problem in the region 0 < x < 1 with a kinetic 
condition of the form 

T- = T+ = eS{t), at x = S{t), (4.5.43) 

was considered in [127]. In (4.5.43), 6 is a constant without sign restrictions. Similarly 
S{t) has no sign restrictions. T'^ is the temperature of the region to the right of .S'(^), 
and T~ is the temperature of the region on the left of S{t). There are no sign restrictions 
on T^ and T~ and so superheating or supercooling may exist. S{0) = SQ, 0 < 6*0 < 1. 
There are no sign restrictions on the initial and boundary data. The main result of this 
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study is that introducing a kinetic term at the interface can prevent finite-time blow-up 
even if supercoohng (superheating) exists. Under suitable assumptions on the initial 
and boundary data, the existence of a global-in time solution has been proved using 
Schauder's fixed point theorem. Here global-in-time solution means that either i* = oo 
and 0 < S{t) < 1, t < oo, 0 < t < t^ or t^ < -hoo and limt^t^_ S{t) = 0 or 1. Uniqueness 
of the solution has also been proved. The solution of the classical Stefan problem can be 
retrieved by taking the limit £ —> 0 if correct sign restrictions are imposed on the initial 
and boundary data and the free boundary is assumed to be nondecreasing. 

4.5.4 Multi-dimensional supercooled Stefan problems and prob-
lems with the modified Gibbs-Thomson relation 

The one-phase supercooled Stefan problem in two and three dimensions without 
regularization by the Gibbs-Thomson condition has been studied in [128] with particular 
interest in the mechanism of cusp formation for interfaces that are initially smooth. The 
problem considered is as follows: 

Tt = V^T, X e n{t) C R^,t> 0, (4.5.44) 

T(x,0) = To{x)<0, forx G ^(0), (4.5.45) 

T{x,t) = 0, forx G dn{t), t > 0, (4.5.46) 

V-n = - V T • n, J: G dn{t), t > 0. (4.5.47) 

Here, N = 2,3, dQ{t) is the boundary of Cl{t) which is a free boundary and ft is the 
outward unit normal on this boundary. As discussed earlier in the one-dimensional case, 
the equation 

ct = V'c - x^,,,, X G /?^, t > 0, (4.5.48) 

where c stands for the concentration, is more suitable to handle a supercooled problem. 
X is the characteristic function of 0(t) which for each t takes the value unity if 
X G 0(t) and zero elsewhere. With the help of Baiocchi transformation [129], c{x,t) 
can be defined as 

rS{x) 
c{x,t) = - T{x,^)d^, (4.5.49) 

where the free boundary has been written as t = S{x), t > 0, S{x) = 0 for t = 0 and 
T{x,t) satisfies (4.5.44)-(4.5.47). We have 

V-(Vc) = r V.{\/T)d^-V{S{x))VT{x,S{x)), 
JS{X) 

= / ^ - ( i^ + l = T(x , t ) -h l = Q + l. (4.5.50) 
Js(x) ut 
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In obtaining (4.5.50), the relation (4.5.51) has been used which can be derived as 
follows. Let ^x,t) =t-S{x) = 0. On using (1.4.15) and (1.4.25) in (4.5.47), we obtain 

V{S{x))VT{x, S{x)) = - 1 . (4.5.51) 

By differentiating (4.5.49), we get Q = T{x,t). In the one-dimensional Stefan problems, 
to prove the existence and uniqueness of solutions, fixed point arguments combined with 
classical 'parabohc regularity theory' can be used. In the multi-dimensional Stefan prob-
lems, there is lack of regularity in space at the free boundary which does not allow the 
fixed point arguments to be used. Suppose the free boundary dQ{t) G C"^'" for each 
t > 0, m (integer) > 0, 0 < a < 1 then T{x, t) would be at most C"̂ -̂  in space by the 
classical regularity theory and then 

^ G C"^-!'-, (4.5.52) 
on 

in space. Solving (4.5.47) by 'characteristics' one would obtain atmost dQ{t) G C^~^'^ in 
a hypothetical fixed point argument. One way to overcome this difficulty is to regularize 
the supercooled problem by introducing curvature effects at the free boundary and write 

T{x,t)= sV{dn{t)), (4.5.53) 

where P is a regular second order operator. By taking the limit £ -^ 0, the problem 
(4.5.44)—(4.5.47) can be obtained provided enough 'a priori' estimates can be proved. 

A constructive approach has been adopted in [128] and a method has been described 
to obtain a short-time solution of the problem transformed in terms of c{x,t). The 
manner in which cusps develop is described. By using perturbation analysis and matched 
asymptotic expansions, a mechanism of cusp formation is presented for interfaces that 
are initially smooth. Even small amount of undercooling can give rise to singularities. 

A one-phase two-dimensional Stefan problem with kinetic condition has been consid-
ered in [130] in the region Q̂  C i?^ x R^ where Qt = {{x,y) : 0 < y < g{x, t), x £ R,0 < 
t < t^}, y = g{x,t) is the equation of the free boundary, g{x,Q) = go{x) > 0, x e R. 
The free boundary conditions are 

VT • n = T ; and T = V-n = gt/{l + glY^^. (4.5.54) 

The remaining part of the problem formulation consists of the heat equation and initial 
and boundary conditions and is given below. 

Tt = \/^T, {x,y,t) G a , (4.5.55) 

T(x, 2/, 0) = To(x, y) ; T(x, 0, t) - b{x, t). (4.5.56) 

Under suitable assumptions on the compatibility of initial and boundary conditions at 
y = 0, and at the initial position of the free boundary and some regularity conditions, the 
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local-in-time existence and uniqueness of the classical solution have been proved using 
Schauder's fixed point theorem. It was observed that the introduction of curvature term 
in the temperature at the free boundary provides more regularity to the temperature 
than the kinetic condition alone. 

A classical two-phase Stefan problem with the modified Gibbs-Thomson relation has 
been studied in [131] in a region G C J^",n > 2. Let G{t) = G x {t} for \/t € 
[0,t^],G{t) = Gi{t) U G2{t) U S{t), where Gi{t) is the solid region, G2{t) is the liquid 
region and S{t) is the phase-change interface separating solid and liquid regions. Let 
G^* = Uo<t<t^ G{t), 2 = 1,2, and G-* = Uo<t<uG^{t) and G** = G\* U G2* U T where 
r = ^o<t<u ̂ {t)- Oî  r and the parabohc boundary, we have 

T = -aKc - /3y • n, a > 0, /3 > 0 on r , (4.5.57) 

T{x, t) = g{x, t) on {G x {t = 0}} U {dG x [0, t,]} , (4.5.58) 

5(0) = To. (4.5.59) 

Here, n is the unit normal vector pointing from Gi{t) to G2{t). Equations (4.5.57)—(4.5.59) 
together with heat equations in the solid and the liquid regions and the Stefan condition 
at the interface completes the formulation of the problem. Thermal conductivities of the 
solid and the liquid phase are taken unequal. The main result of [131] is given by the 
following proposition. 

Proposition 4.5.3. Let 

g e C^{GX [0, t,]) n C'+" ( G I ( 0 ) X [0, t,]) n C'+" ((52(0) X [0, t.]) , (4.5.60) 

for some fixed a > 0, G{0) = Gi{0) U G2{0) U FQ. Here, FQ is the boundary of an open 
set with 

dist(Fo,aG) > 0, and FQ G C^"^". (4.5.61) 

Assume that g and FQ satisfy the compatibility conditions 

gt{x, 0) - K^ V^g{x, 0) = 0, x G dG n ^G^{0), z = 1, 2, (4.5.62) 

and 

g{x,0) = -aKc{x)- (51 
on on 

(x,0), X G F O , (4.5.63) 

where g = gi in G,:(0), z = 1, 2, Kc{x) is the sum of the principal curvatures of FQ. If the 
above conditions are satisfied, then there exists a time 0̂ > 0 (depending on F, a and P) 
such that the Stefan problem with condition (4.5.57) admits a unique solution (T, F) for 
t G [0, 0̂] and 
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and 

r e c3+-'(3+-)/2. (4.5.65) 

The key idea in proving the existence and uniqueness of the solution is that when 
translated to local coordinates, (4.5.57) is a quasi-linear parabohc equation on a manifold 
without boundary. For a given T{x, t) solve (4.5.57) to obtain the velocity of the interface. 
This provides us with the interface F which can be used to solve the parabolic problem 
in the bulk with the Stefan condition on F. A new temperature function T = V(T) is 
obtained. Using the regularizing character of the operator P , it can be proved that V is 
a contraction on a small time interval. Neumann condition or mixed conditions can also 
be prescribed on the fixed boundary dG x [0,to]-

The local-in-time existence of the solution of a more general two-phase Stefan problem 
with the modified Gibbs-Thomson relation has been proved in [132]. The parabolic 
operator in the heat equation is of the form 

VjTj= J ^ - V , ( A j ( a : , i ) V j W . = /^ in Gj{t) for V^ G [0,io], J = 1,2,(4.5.66) 

and 0 < ^ < 0̂ is the time interval in which the solution exists. The domain Gi {t) £ G C 
R^,n>2 and dGi{t) = T{t) C G.'ite [0, to], is the free surface. G2{t) = G\Gi{t), 0 < 
t <to • Gi and G2 are solid and liquid regions, respectively. 

Tj = -a{x, t)Kc{x, t) - a{x, t) a{x, t)V • n, on F(^), J = 1, 2 , (4.5.67) 

where a > 0, and the unit normal n is pointing into the liquid. The problem formulation 
can be completed by adding Stefan condition and initial and boundary conditions to the 
equations (4.5.66) and (4.5.67). To prove the existence of the solution, the problem in 
time varying domains Gj{t), J = 1,2 is first converted into a problem in fixed domain 
r2j(0), J = 1, 2 by using 'Hanzawa transformation' [133]. Then a local coordinate system 
is introduced in a neighborhood of F(0). Under suitable consistency conditions (see [132]) 
and the regularity of parameters and coefficients, an initial approximation of the solution 
of an auxiliary problem makes it possible to construct a classical solution of the given 
Stefan problem on F(0). To apply Newton's method of successive approximations it is 
necessary to obtain conditions for the invertibility of the 'Frechet derivative' [22] on the 
initial approximation. Once a regularizer of the Frechet derivative is constructed, the 
existence of the solution in a very small time interval can be proved with the help of 
Newton's method. 

Multi-dimensional one-phase and two-phase Stefan problems with Gibbs-Thomson 
relation have been discussed in [134] under the assumption that the surface tension e is 
small. Although classical solutions have not been discussed, some of the observations 
made in [134] are interesting. Under the assumption that the classical Stefan problem 
with 5 = 0 has a smooth free boundary and that its classical temperature solution T 
exists, an approximate solution of the Stefan problem with £ 7̂  0 is taken as T -h £ii 
(one-phase problem). The existence and uniqueness of the weak solution of the problem 
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formulated for u has been proved. The free boundary of T + eu has also been anal-
ysed. In the two-phase problem the perturbations are of the form (Ti -h eui,T2 + £U2) 
where Ti -h eui is the temperature of water region and T2 + £U2 is the temperature of 
ice surrounding the water region. Assuming that Gibbs-Thomson relation lowers the 
equihbrium temperature, the following conclusions have been drawn. In the one-phase 
problem, small surface tension decreases the water region for all small times and the small 
surface tension increases the water region for all large times provided the da ta are radial 
or close to radial. The results have been extended to general shapes. This observation is 
radically different in the two-phase problem in which the small surface tension decreases 
the water region for all times provided the data are radial or close to radial. 

On the basis of physical arguments, it was mentioned earher in § 4.5.1 tha t surface 
tension has stabilizing effect on the growth of planar phase-change boundary. Investiga-
tion of stability or instability of perturbations of the planar phase-change boundaries is 
a vast subject (cf. [135, 136]) and requires rigorous mathematical t reatment . We present 
here some simple results obtained in [137] on the morphological instability of the simi-
larity solution of a one-dimensional Stefan problem in an infinite region. Consider the 
following two-dimensional one-phase problem of the solidification of a supercooled liquid. 

Tt = V^T, S{x,y,t) 7̂  0, ^ > to, (x,y) G R^. (4.5.68) 

On the free boundary S{x, ?/, t) = 0, we have 

T = -aKc; and {S/T.VS) = St, t > to, (4.5.69) 

Kc = dVS'l 'V^S' - ^ V{\VS\^).VS)/{2\VSf) (4.5.70) 

T(x, y, to) = To(x, y); S{x, y, to) = So{x, y), (4.5.71) 

To{x) ^ Too G ( - 1 , 0 ) as X -> 00; To{x) ^ 0 as x -^ - 0 0 . (4.5.72) 

Consider a one-dimensional one-phase problem in the region — 00 < x < 00 in which 
the region x < 0 is ice at the phase-change temperature T = 0 and the region x > 0 
is occupied by the supercooled water at T = Too- A similarity solution of this one-
dimensional problem can be easily obtained by following the procedure used to obtain 
the Neumann solution (cf. (1.3.11)—(1.3.13)). Let this solution for a = 0 be denoted by 
(Ti, 5 i ) , where 

Ti = Too + 2aexp{a^){l - eTi{x/{2y/t))), for x > 2aVt, ] 
(4.5.73) 

- 0, X < 2ay/i J 

Si{x,t) = (x-2aVt.) = 0, (4.5.74) 
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Here, a is the root of the transcendental equation 

roo 

2aexp{a^) exp{-y^)dy =-Too- (4.5.75) 

This similarity solution is perturbed so that 

T,(x, y, t) = Ti^ £u{x, y, t) + 0{s^), (4.5.76) 

Ss{x,y,t) = Si{x,t)-heR{x,y,t) + 0(5^). (4.5.77) 

As the phase-change boundary is no more planar after perturbation, we shall have a 
two-dimensional problem with the effect of surface tension included in the temperature 
at the free boundary as in (4.5.69). For hnear stability analysis, 71 and Se are substituted 
in (4.5.68)—(4.5.71) and the problem is reformulated in terms of u and R. The Fourier 
transform with respect to y of the equations yields one-dimensional time dependent 
initial-value problems for different values of the transform parameter whose solutions are 
analysed for the stability analysis (cf. [137]). The linear stability analysis showed that 
if the surface tension is non-zero, then each perturbation mode with a non-zero wave 
number will be stable. However, the solution is unstable with respect to perturbations 
with a zero wave number limit point in their Fourier spectrum. 

Concluding Remarks 

The discussion in §§ 4.1—4.5, is focussed on some modelling and analysis aspects of 
supercooling. The phenomena of nucleation, conditions at the contact line of manifolds 
belonging to the fixed boundary of the domain and the free boundary, and the modelling 
of surface tension and kinetic condition, are quite complicated. For further information 
references given in [54] are suggested. Surface tension can be taken into account by 
incorporating surface energy in the energy functional without introducing a sharp phase-
change interface [138]. In [139], ideas and methods of the theory of minimal surfaces have 
been introduced as well as new estimates for time derivatives of non-integer order. Ideas 
and methods of the geometry of manifolds have been used in [140]. Landau-Ginzburg 
theory, which is the basis of standard phase-field models, relies on general thermody-
namic considerations. In the hmit, Stefan problem with modified Gibbs-Thomson law 
is obtained. Assuming that the solution of phase-field equations exists, an asymptotic 
solution of the phase-field equations has been constructed in [141] and the existence of 
its smooth solution has been proved. 

4.5.5 Weak formulation with supercooling and superheating ef-
fects 

The enthalpy equation (4.2.2) can be written as 

Cp^ -h / ^ = V • {K{T)VT), in 17, = Q X (0, t,), Q C 7?^ (4.5.78) 
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xeH,{T-Tm). (4.5.79) 

Here, K{T) - KsT, T < Tm and K{T) - KLT, T > T^ and Hg is the Heaviside graph 
defined in (4.3.45). x is the hquid fraction present in any phase. In the classical Stefan 
problem x == 1 in the liquid phase and x = 0 in the solid phase. If the mushy region is 
present, then x ^ [0, !]• Equation (4.5.78) holds in the distributional sense. We shall now 
include supercoohng and superheating effects in the weak formulation given by (4.5.78) 
and (4.5.79). If the interface is not at the equilibrium temperature T^, then the condition 
T = T^ at the interface in the absence of curvature effects, is replaced by the kinetic 
condition 

S(t) =/3{T{S(t),t)), (4.5.80) 

where l3 : R -^ R is continuous and increasing and p{0) = 0. This represents supercooling 
or superheating effects due to the phase-change velocity (kinetic condition). The standard 
Stefan problem is then obtained in the hmit as l3'{0) —> +oo (expand (3 in powers of T). 
For small departures from the equilibrium temperature, the melting or solidification rate 
is proportional to the departure [42]. When a mushy region is present, i.e., when x ^ [0,1] 
and X is considered a function of x and t, (4.5.79) should be replaced by a relaxation law 
for X of the form [101] 

a^ + H;\X) B P(T - T„) in Q„ (4.5.81) 

where a is a positive constant, x = xi^^t)^ i^^t) ^ ^u ^nd the term on the r.h.s. of 
(4.5.81) is an approximation of the term on the r.h.s. of (4.5.80). In (4.5.81), there is 
no diffusion of x- It has been assumed that the phase transition is much faster than the 
heat diffusion. In the classical Stefan problem the phase-change is driven by the release 
or absorption of latent heat at the interface. In the relaxation model (4.5.81), the latent 
heat released or absorbed is diffused into the system. The relation (4.5.81) accounts for 
the movement of the interface through the mushy region in the weak sense. 

As mentioned earlier, in the metallurgical literature concerning solidification of a 
pure metal, there are two basic modes of solidification, viz., directional solidification and 
equiaxed solidification. In the directional solidification, which is also called columnar 
growth, the kinetic law (4.5.80) is considered at the phase-change boundary and the 
classical formulation is used. In the equiaxed solidification or phase relaxation model, 
a weak formulation is considered using (4.5.78) and (4.5.79). In casting, at first an 
equiaxed zone is formed in contact with the wall of the mold. Then a columnar region 
moves towards the interior, while in the remainder of the hquid, nucleation occurs and an 
equiaxed solid phase grows, until the two solid phases impinge on and eventually occupy 
the whole volume (see [142] and a large number of references reported there). 

In [101], the existence and uniqueness of weak solutions of several Stefan problems 
with supercooling/superheating effects have been discussed using the theory of non-linear 
semi-groups of contractions. These weak formulations correspond to: (i) problems of 
phase relaxation in homogeneous systems (generalized to heterogeneous systems) in which 
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energy equation is written using non-equilibrium thermodynamics, (ii) Stefan problems 
with phase relaxation, (iii) wave propagation for heat. In [101] and [102] only kinetic 
condition has been considered. 

Weak formulation of the Stefan problem with surface tension has been considered in 
[143]. By coupling the heat equation with the Euler's equation of a non-convex functional 
(which represents the Gibbs free energy), two weak formulations are given and existence 
of the solution is proved for each one. 



Chapter 5 

Superheating due to Volumetric 
Heat Sources: The Formulation and 
Analysis 

Some amount of superheating of the sohd occurs with the melting of pure metals. When 
superheating is present, a 'mushy region' may develop in front of the phase front, sep-
arating the stable solid phase from the stable hquid phase. Note that a superheated 
solid is in a solid state but with time degenerates into mush. The temperature of the 
mushy region is taken to be equal to Tm if the phase-change is taking place at Tm- The 
degree of superheating is small and it is generally neglected in the formulation but when 
melting takes place due to strong volumetric heat sources, there is clear evidence of the 
superheating of the solid. The theoretical analysis of a sharp melting front model in the 
presence of strong volumetric sources indicated 'superheated regions' in the solid just 
in front of the interface [144]. Superheating or supercooling indicates the instability of 
the sharp interface and requires corrective measures in the modelling of classical Ste-
fan problems. Some of the corrective measures are: (1) consider an enthalpy model in 
the place of the classical model, (2) introduce modified Gibbs-Thomson relation in the 
temperature relation at the phase-change interface in the classical formulation, and (3) 
consider a different type of formulation such as a 'classical enthalpy formulation' (CEF). 

5.1 The Classical Enthalpy Formulation of a One-
dimensional Problem 

We shall first discuss CEF in the context of one-dimensional melting due to volumetric 
heat sources in a slab ( — 1 < x < 1). This physical problem arises in the 'spot welding' of 
two large metal sheets of equal thickness of some heat and electric conducting material. 
Two circular electrodes are placed opposite to each other with the two sheets held tightly 
in between the electrodes [145]. A high electric current is passed through the system for 
a short time. The energy produced by the current raises the temperature of the sheets. It 
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will be assumed that the heating takes place due to Joule heating throughout the volume 
of the conducting material. If the conditions are symmetrical about x = 0 then it is 
sufficient to consider heat transfer in only one sheet with no flux condition at x = 0. 
Under certain assumptions, a one-dimensional problem can be formulated in the region 
0 < X < 1 (X isdimensionless). At X = 0, the two sheets are joined and at AT = 1, 
the electrodes are cooled. According to the maximum principle, the temperature will be 
maximum at X = 0. The temperature at X = 0 will rise only due to the heat received by 
it due to Joule heating and not by conduction as other parts are at a lower temperature 
and because dT/dX = 0 at X = 0 (because of symmetry). Liquid will form at X = 0 
when the specific enthalpy at X = 0 becomes CiTm + L It is assumed that ^ = 0 is the 
time when the temperature at X = 0 rises to the melting temperature T^. For ^ > 0 
the specific enthalpy at X = 0 will rise from CsTm to CiTm + / (we assume the specific 
heat of the mushy region also to be Cs)- During this time the enthalpy of the points in 
some neighbourhood of X = 0 will have risen. By the time melting starts at X = 0, i.e., 
the enthalpy at X = 0 rises to CiTm + /, a mushy region will have developed in some 
neighbourhood oi X = 0. This clearly suggests a three-region formulation, given first in 
[146], and then extended in [147]. The dimensionless formulation described in [147] is 
given below. 

In the solid region 

f)T f)^T 
-gf- = 4 ^ + As + BsTs; As > 0, As + BgTs > 0, 

5i(t) < X < 1, 0 < i < i e <oo, (5.1.1) 

TsiX, 0) = fPiX), 0 < X < 1, (5.1.2) 

aril) 
/^'(O) = 1, ^ 0, a 5 " 5 " 

.d^f's'' 
dX^ 

-hAs + Bs>0, (5.1.3) 
x=o 

dT< s 

dTs/dX = 0. 

^ ^ +diTs = d2{t), onX = h (5.1.4) 

onX = Si{t); 5i(0) = 0, ^ = S^\X), S^^{0) = 0. (5.1.5) 

In the dimensionless form T^ = 1 and ^4^, Bs and di are known constants. The equation 
of the solid-mush boundary is X = Si{t) ov t = Si^{x), t^ is the time at which the mushy 
region becomes extinct, and a is the dimensionless diffusivity. 

In the mushy region 

dt 
Q{HM)] S2{t) <X < Si{t), 0<t< te, (5.1.6) 
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HM = 1, a.tt = S{\X), (5.1.7) 

Q{HM) = As + Bs. HM = 1. 

= Di-h D2HM, 1<HM< CL/CS + A, 

= AL + BL. HM^CL/CS + X. 

(5.1.. 

Here, HM is the enthalpy per unit volume of the mushy region, A = l/{CsTm). Di and 
D2 are unknown constants. An exact form of Q cannot be guessed. A simple assumption 
that Q is a linear function of enthalpy in the mushy region has been made in (5.1.8). 

In the liquid region: 

0 < X < S2{t) < Si{t), t > t,, (5.1.9) 

TL \X-S2{t) (5.1.10) 

{CL/Cs)ai 
2dTL 

dx 
dS2 

" dt 
{{CL/CS) + X-HM}, onX = ^2(0, t > t., 

dTL 

dx 0. 

S2{U) = 0, 

(5.1.11) 

(5.1.12) 

Here, X = S2{t) is the equation of the liquid-mush boundary and t = t^ is the time at 
which S2{t) starts growing. »S'2(̂ *) = 0. 

The above formulation requires some elaboration. The conditions in (5.1.3) have 
interesting physical interpretations. For example /^ (0) = 1 implies that the temperature 
at X = 0 is the melting temperature. It is generally understood that if more volumetric 
heat is supplied, then the enthalpy ai X = 0 should rise. But this does not always 
happen. For example, if the last condition in (5.1.3) is not satisfied then the temperature 
at X = 0 for ^ > 0 first becomes less than unity. After some time dT/dt becomes greater 
than zero so that the temperature starts rising, and again the temperature at X = 0 
becomes unity and then the third condition in (5.1.3) is satisfied. ^ = 0 has been taken 
as the instant of time at which this happens. In view of the boundary condition (5.1.12), 
we should have the second condition in (5.1.3). As mentioned earlier, the melting does 
not start at ^ = 0 but at ^ = *̂. This is the time at which the dimensionless enthalpy at 
X = 0 becomes CL/CS + A. The instant t* can be calculated by obtaining the solution 
of (5.1.6) subject to (5.1.7) and (5.1.8) (cf. [147]). All the temperatures have been made 
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dimensionless by dividing them by the melting temperature Tm^^K). The dimensionless 
time t is obtained by dividing the real time by td, which is an appropriate time with 
dimensions and ^ = 0 is time at which all the conditions in (5.1.3) are satisfied for the 
first time. 

Till t = t^, there exists only sohd-mush boundary X = Si{t) but for t > t^, we have 
liquid-mush boundary X = S2{t) also. The assumption of the continuity of enthalpy at 
X = Si (t) implies CM = Cs which for the sake of simplicity has been assumed to be so 
in the whole of the mushy region. The condition dTs/dX = 0 at X = Si{t) in (5.1.5) 
can be derived independently of the assumption of continuity of the enthalpy. 

The energy balance at X = 'S'i(^) gives 

dx\ ' 
/ / M > 1 as X t S{t)- 0 and Hs = I diS X i S{t)+0. Since TM = 1 in the mushy region 
BTM/OX = 0 as X T S{t)-0. It can be easily concluded from (5.1.13) that dTs/dX > 0. 
In view of Ts{Si{t), t) = 1 and Ts{X, t) <lioTX> Si{t), dTs/dX <OasX -^ S{t)+0. 
Therefore dTs/dX = 0 at X = S'i(^). This also implies that enthalpy is continuous at 
X = Si{t) if Si is not zero in (5.1.13). 

The problem in the sohd region is independent of liquid and mushy regions and there-
fore the sohd region problem is a one-phase Stefan problem with an implicit boundary 
condition at X = Si{t). Under appropriate assumptions, the existence and uniqueness 
of the solution of this one-phase problem is known [108]. It can be proved that Si{t) is 
nondecreasing and sufficiently smooth and 5'i(^) exists till the time Si{t) = 1. If, instead 
of a heat source, a heat sink is considered, then the problem in the solid region will be 
similar to ODP. In [147], by considering series expansions of both initial temperature 
distribution fg (X) and Si{t), short-time asymptotic behaviour of Si{t) has been in-
vestigated in terms of coefficients in the series expansion of fg (X) and some physical 
parameters. Numerical results were also obtained for Ts{X,t), Si{t) and S2{t) in CES 
and ODP. It was not possible to carry out numerical computations till X = 1 in ODP. 
When Si{t) is almost nearing unity, Si{t) becomes large and the numerical scheme which 
uses moving grid points failed. We are not aware of better results. 

The problem for the liquid region is not the standard Stefan problem in which latent 
heat is non zero and maintains its sign. Because of the boundary condition (5.1.11), the 
quantity CL/CS + X — HM (call it latent heat), is zero at X = 0. Also when S2{t) crosses 
Si{t), the sign of 'latent heat' changes. Therefore the usual methods of proving existence 
results do not work here directly. However adopting a diff"erent procedure in the form of 
constructing approximating problems [146], existence of the solution of (5.1.9)—(5.1.12) 
has been proved and it has been shown that S2{t) < Si{t). If the heat source does not 
vanish in the liquid region, then the mushy region will become extinct in finite time. 
The mushy region may become extinct before Si{t) reaches X = 1. In this case S2(t) 
will meet Si{t) after some finite time, say, t = tg. For t > te, we shall have a two-phase 
classical Stefan problem. Initially Si(t) moves very slowly as Si(t) - 0(6-^/') (cf. [147]). 
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For a short-time, asymptotic behaviour of 6*2(i) which depends on Si{t) can also be 
calculated. When Si{t) ^ Eit^^'^ and S2{y) ~ ^2?/^^ ,̂ y = t — t^, V > 0 then E2 is given 
by 

E2 = {2£2 -al + ^{2Ej - air + 2AEW2 }/4, (5.1.14) 

where Ei is the root of the equation 

Q2M 
v^^iexp {Ellal)[l - eii{E,las)) - as ^ 4 aX2 

7 ( ^ 5 + 55). (5.1.15) 

By taking initial temperature of the sohd as constant, viz., —P several results concerning 
the solution of CEF were obtained in [148] which include the asymptotic behaviours of 
Si{t) and 5*2(t), finite-time extinction of the mushy region, and the result that S'i(^e) < 
S2{te). 

In CEF, superheating in the solid does not occur. CEF regularises the classical two-
phase sharp interface problem in the presence of heat sources in which superheating would 
otherwise occur. Weak formulation also provides regularization. Is there any connection 
amongst the solution of CEF, weak solution and the classical solution? This question has 
been analysed in [149] and [150] for a short time by considering a one-dimensional problem 
in the region — CXD < a; < 00 with the free boundary starting at x = 0. Since superheating, 
if present, will be restricted to a small neighborhood of a: — 0, it is sufficient to consider 
the behaviour of the initial temperature f{x). To understand the connection between 
the classical solution and the weak solution, we should first define a 'weak solution'. 

5.2 The Weak Solution 

5.2.1 The Weak Solution and its Relation to Classical Solution 

The definition of the weak solution of a Stefan problem is based on the classical 
formulation of the Stefan problem. For simplicity, first a weak formulation of a one-
dimensional two-phase Stefan problem will be defined in the region 0 < x < 1. For 
multi-dimensional Stefan problems, weak formulations can be defined similarly (see § 
11.2.1). In terms of the enthalpy H{T) (per unit volume), the two heat equations in the 
solid and liquid regions can be written as a single equation as follows: 

where K{T) and Q(T) are defined as 

K = A'i(T), in the solid, 0 < x < 5'(t), 
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= K2{T), in the liquid, S{t) < x < 1, (5.2.2) 

Q(T) = As-\- BsT, in the sohd, 

= AL + BLT, in the hquid. (5.2.3) 

More general expressions of thermal conductivities and heat generation terms can be 
considered. Let the phase-change temperature be denoted by T^. Enthalpy H{T) is 
defined by (4.2.1) (take 0 - 0 for T < T^ and 0 = 2 for T > T^). By inverting (4.2.1), 
we obtain 

where 

T = 13(H), 

PiH) = H/ipsCs), H < psCsTr^, 

= 0, psCsT,„ <H< PLCLT^ + PLI, 

(5.2.4) 

(5.2.5) 

= H/PLCL - 1/CL, H > PLCLT^ + pil. J 

Equation (5.2.1) should be supplemented with the initial and boundary conditions such 

T{x,0) = To(a;), 0 < x < 1; T(0, t) = gi{t) < 0, T(l, t) = g2{t) > 0, (5.2.6) 

Equation (5.2.1) is satisfied in the distributional sense as dH/dt does not exist at T = Tm 
in the classical sense. The classical formulation of the above two-phase Stefan problem is 
simple and will not be given here. Multiply (5.2.1) by a suitable test function ^(x, t) G 
C2'i([0,l] X [0,̂ *]) such that 

V^(0,i) = V^(1,0 -= 0, 0 < ^ < *̂, and V (̂x,̂ *) = 0 , in 0 < x < 1, 

and integrate over the (a:, t) region. We obtain 

JQ JO '̂ IHf)+̂ -̂̂ ^ dt 
dxdt = 0. 

(5.2.7) 

(5.2.8) 

On integrating by parts the first term in the integrand in (5.2.8), we obtain 

Jo 
IIJK 

dx 
dt K — ^ dxdt + ipQ 

Jo Jo dx dx 
dxdt If 

Jo Jo 

- f\ijH]i*dx+ [^ t* H^dxdt = 0 
Jo Jo Jo ot 

(5.2.9) 

The first term on the l.h.s. of (5.2.9) in zero in view of (5.2.7). Integrating the second 
term in (5.2.9) by parts, we obtain 

ox 
dt+ [ r T— (K-;^ I dxdt + f f* ijQdxdt 

Jo Jo ox \ ox J Jo Jo - J 
Jo 

+ [^ H(ToWx, 0)dx + f^ t H-^dxdt = 0 
Jo Jo Jo ot 

(5.2.10) 
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On using (5.2.6) in the first term in (5.2.10), we get 

- f^' gi{t)K{g,{t))^{0, t)dt - J^ H{To)^Pix, 0)dx. (5.2.11) 

If a pair of bounded measurable functions (T, H) exists such that (5.2.11) is satisfied 
for all test functions ip{x,t) satisfying (5.2.7), then the pair {T,H) is called a weak 
solution of the classical two-phase one-dimensional Stefan problem in the region 0 < x < 
1, 0 < t < t^:. Note that in the definition of a weak solution, the boundary conditions 
at the interface x = S{t) are not required. So they do not appear in (5.2.1)—(5.2.6). A 
weak solution for multi-dimensional two-phase classical Stefan problem can be defined 
similarly. In this case integration by parts is to be done with the help of Green's formula. 
Other types of boundary conditions can also be considered in (5.2.6) and in that case test 
functions have to satisfy appropriate boundary conditions. The boundary conditions for 
test functions are chosen in such a way that all those terms appearing in the integration 
by parts, which are to be evaluated at the boundary and which are not prescribed, 
are eliminated from the equation (5.2.11) through which the weak solution is defined. 
For example, in (5.2.9) the boundary conditions ip{0,t) = '0(1, t) = 0 eliminate the 
term [dT/dx]l as these boundary conditions are not prescribed in the present problem. 
Similarly weak formulations of more comphcated problems and their weak solutions can 
be defined. 

A classical solution is a weak solution. This proposition holds for a general Stefan 
problem but it will be discussed here for a simple one-dimensional problem given in 
(5.2.1)—(5.2.6). To avoid repetition, we give here only outlines (see (5.2.12)—(5.2.14) for 
details). If a classical solution exists, then we know that (5.2.1) holds separately in solid 
and liquid regions. T is continuous in 0 < a: < 1, and a bounded measurable function H 
defined in (5.2.1) also exists. We have to show that the pair (T, H) satisfies (5.2.11). To 
prove this, we start with (5.2.8) and write the double integral as the sum of two integrals, 
Ii + I2. In /i the hmits of integration for the x-variable are taken from 0 to S{t) — 0 
(solid region) and in I2 the limits for x are taken from 0 to S(t) -h 0 (liquid region) (the 
limits for t remain the same). The procedure given in (5.2.12)—(5.2.14) is to be followed 
for both the integrals. On adding the two integrals, we get (5.2.11) with an additional 
term which is the last term in (5.2.13). The fine integral along x = S{t) in (5.2.13) is 
zero because the classical solution exists and Stefan condition is satisfied, /i -h /2 = 0 as 
both 11 and I2 are zero, the remaining terms give (5.2.11). 

In the weak formulation, the phases are 'pointwise' characterized by enthalpy, whereas, 
in the classical formulation the phases are 'globally' determined by the interface. There-
fore a weak solution of the Stefan problem will be a classical solution provided: 

(i) initially no mushy region exists, 

(ii) distributed heat sources (sinks) are absent as in their presence mushy region may 
develop. 
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(iii) a smooth surface exists which divides the region under consideration into two 
disjoint regions, in each of them parabohc heat equation are satisfied in the sense of § 
1.4.6. Temperature is less than or equal to the melting temperature in one of the regions 
(solid region) and in another region temperature is greater than or equal to the melting 
temperature (liquid region) with continuity of temperature across the interface, 

(iv) the Stefan condition is satisfied at the interface. 

These assumptions are not rigorous, but they serve our present purpose, which is 
to show that the Stefan condition can be recovered from the weak solution. We shall 
continue with the formulation given in (5.2.1)—(5.2.7). Assume that a weak solution 
satisfying the initial and boundary conditions (5.2.6) and equation (5.2.11) exists. A 
smooth interface x = S{t) exists. Let the region Q{x,t) = {{x,t) : 0 < x < 1, 0 < t < t^} 
be divided by the curve x = S{t) into two disjoint parts Qi{x,t) and n2{x,t). Qi lies 
to the left oi X = S{t) and O2 fies to the right. T = 0 on a; = S{t) ( under suitable 
assumptions on the data this and some other assumptions can be proved also, see § 
11.1), ni{x,t) = {{x,t) : 0 < X < S{t)-0, 0<t< t*}, and ^2(2:, i) = {{x,t) : S{t)+0< 
X ^ 1,0 < ^ < t^}. If equation (5.2.1) with Q{T) = 0 is multiphed by a test function 
ip{x,t) and integrated over fli{t), then we obtain 

u rS{t)-o 

If 
Jo Jo 

d_ 
dx 

K{T) 
dT 
dx 

•V^-
dt 

dxdt = / i . (5.2.12) 

If integrations are performed in (5.2.12) using integration by parts and the Stake's The-
orem is applied, then we arrive at the following equation. 

+ ŷ  H{Tomx,0)dx + j ^ g,{t)K(g,)^{0,t) dt 

Jx=Sit)-0 [\ 

.dT_ 
dx 

dt + H^j dx (5.2.13) 

On using Stoke's theorem [82], the area integral is converted to the boundary integral 
and for this we use the relation ipdf/dx = d{ipf)/dx - f dip/dx in (5.2.12). 

On integrating (5.2.1) with Q{T) = 0 again over the region ^2(0 (call this integral 
I2) we obtain an equation similar to (5.2.13) (with appropriate changes) but the curve 
X = S{t) is traversed in a direction opposite to that in (5.2.13). Adding the two equations 
of the type (5.2.13), one each for Qi{t) and 1^2(0 ^^^ subtracting the sum from (5.2.11) 
{Q{T) = 0) and remembering that Ii -h h = 0 as (5.2.1) holds, we obtain 

L S{t) ^ dx 
dt [H]dx\ = 0 (5.2.14) 
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Here, [f] means the jump in the quantity / across x = S{t) as we move in the positive 
x-direction. Since (5.2.14) holds for any arbitrary test function ip and at an arbitrary 
time, we have 

dt ox 
/[H], x = S{t). (5.2.15) 

Equation (5.2.15) is the Stefan condition. A similar procedure can be followed for multi-
dimensional problems also. 

For a solution of the Stefan problem to be a classical solution, in addition to the 
regularity of the temperature and the phase-change boundary, the temperature of the 
solid region should be less than the melting temperature and the temperature of the 
liquid region should be greater than the melting temperature. 

5.2.2 Structure of the mushy region in the presence of heat 
sources 

In the presence of heat sources or if melting temperature is a function of x and t, or if 
mushy region exists initially, a weak solution (WS) will not be a classical solution (CSS). 
However, if the solution of CEF denoted by CES exists and WS is sufficiently regular, 
then WS = CES but WS ^ CSS. This is because in CEF, a mushy region is present 
initially. By considering different cases in terms of the sign of the initial temperature 
/(x) , and the derivatives of f{x) at x = 0, CES, WS and CSS have been compared in 
[149] and [150]. The phase-change starts at x = 0 in the region —oo < x < oo. The 
existence of solutions has also been discussed. We present only one result here which is 
valid only for a short time. 

If f{x) > 0 for X < 0 and f{x) < 0 for x > 0, h{0) = 0 and 

/ ( 0 + ) = 0, and Ksf"{0+) -h Q = 0, 

n O + ) - ^ < 0, then CSS = WS 

(5.2.16) 

n O + ) - ^ > 0, then CSS ^ WS 

where Q is the constant heat source in — oo < x < oo, and 

(3 ^ S{0) = -KLh'{0-)/l. (5.2.17) 

By considering a one-dimensional problem in 0 < x < 1, it has been shown in [151] 
that if the melting temperature is space-dependent, then a mushy region can appear spon-
taneously even in the absence of volumetric heat sources. The following weak formulation 
has been considered in [152]. 

Ht = (<t>{H)U + f{H), (x, t) e (0,1) X 7J+, (5.2.18) 
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(t>{H){0,t) = {(t>{H)Ul,t) = 0,te R+, (5.2.19) 

H{x, 0) - Ho{x), X e [0,1]. (5.2.20) 

Here, (p{H) can be identified with the temperature and H with the enthalpy per unit 
volume. / , 0 and HQ satisfy some assumptions (cf. [152]). The source term f{H) and 
the initial enthalpy Ho{x) are so chosen that enthalpy is increasing in x and t. Initially 
the region [0,1] is solid. At a; == 1 it passes to mush in time and then to hquid. Interfaces 
appear first between solid and mush and then between mush and liquid. These recede 
monotonically towards x = 0. Under suitable assumptions on (/), / , HQ it has been shown 
that solid-mush and liquid-mush interfaces are continuous, enthalpy is continuous across 
the solid-mush boundary but not across the mush-liquid interface and the mushy region 
disappears in finite time. 

In equation (5.1.13) it has been assumed that the mush is progressing on the sohd. If 
the solid is progressing on mush, then it cannot be proved that the enthalpy is continuous 
at the solid-mush boundary as the Stefan condition (5.1.13) with a positive sign on 
the r.h.s. is to be considered. If S changes sign at both sohd-mush and mush-liquid 
boundaries, then the regularity of the free boundary and of the velocity satisfying the 
Stefan condition has been examined in [153]. The enthalpy has been assumed to be an 
increasing function of x. An example has been constructed in [154] in which the velocity 
of the free boundary changes sign infinitely many times. 

Classical enthalpy formulation arises in thermal switching problems also (cf. [155, 
156]). Certain materials such as some types of glasses and vanadium dioxide, change 
phase at relatively low temperature, such as, at 70°C. In the hquid state the electrical 
conductivity of such materials increases by a factor of 10"̂ . For such materials, in Joule 
heating, the heat source is given by a{H)E'^, where a is the electrical conductivity, H is 
the enthalpy and E is the electrical field which depends on a and some other parameters. 
In essence, heat source may depend on the free boundary, and the latent heat / depends on 
the history of the free boundary [156]. The existence of the solution to a one-dimensional 
classical enthalpy formulation of the thermal switching problem have been proved in 
[156]. The emphasis is on the solution for the solid region and the solid-mush boundary. 
The non-homogeneous term in the heat equation contains the free boundary due to the 
dependence of the heat source on it. 

The behaviour of mushy regions in spacial dimension, n > 1, under the action of volu-
metric heat source depending on, x, t, and enthalpy, has been studied in [157]. Conditions 
on the heat source necessary for the appearance of a mushy region inside a purely liquid 
or a purely solid phase have been discussed. As far as regular solutions are concerned, 
the behaviour of the solution at the free boundary separating a mushy region from a 
pure phase is related to the behaviour of the source on the free boundary. Under some 
Lipschitz-continuity conditions on heat sources, a mushy region can expand into a pure 
phase only if the heat source is non-zero and is of a suitable sign at the interface. Hence, 
both energy and heat flux are continuous across the interface, unlike the case when a 
pure phase expands into a mushy region. An example has been given in which a mushy 
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region in a pure phase disappears and again reappears after some time. Both weak and 
classical solutions have been discussed. For some results pertaining to weak solutions of 
this problem, see § 11.2.1. 

By considering a one-dimensional two-phase classical Stefan melting problem in the 
region 0 < x < 1 with volumetric heat sources and writing its solution in terms of 
Green's functions, it was shown in [144] that there exists a region S{t) < x < S{t) + d, 
for some d > 0 in which the solid is superheated. This happens provided the heat source 
is large and the prescribed heat flux on the solid at x = 1 is small. Linear stability 
analysis of the classical solution of this one-dimensional two-phase Stefan problem was 
also carried out for two-dimensional perturbations (three-dimensional perturbations can 
also be considered). If the heat flux towards the free boundary from the superheated 
solid side is greater than from the liquid side, then this situation suggests instability. 

Superheating occurs generally for very pure metals. Its occurrence suggests that for 
such problems we should have a mathematical model different from the classical two-
phase formulation as in the classical two-phase model, the solid cannot be superheated. 
One of the ways to present the superheating of the solid is to introduce the mushy region 
in the formulation as done in CEF. Another way is to consider enthalpy formulation 
which is a weak formulation. A grain or dendrite model has been proposed in [158] to 
describe the microstructure of the mushy region and discuss its stabihty. The solid is 
considered in the form of a sequence of uniform one-dimensional grains of very small 
length which are part solid and part liquid in the mushy region. An explicit solution 
for the one-dimensional version of the model is obtained. It has different forms near the 
pure solid boundary, in the mush, and near the pure liquid boundary. An appropriate 
average of this solution for the microstructure formulation, reduces to the weak solution 
proposed in [145]. 

The simple microscopic model considered in [158] for the mushy region has been 
further extended in [159] by including modified Gibbs-Thomson relation that results 
from the curvature of the interface and the kinetic condition (the normal velocity of 
the interface is taken away from the liquid). The fine structure of the mush consists 
of regularly spaced nucleation sites (grains) in one-dimension and a lattice of squares 
in two-dimension. A method of multiple scales is employed and a classical formulation 
of the free boundary problem has been used to model the evolution of the two-phase 
microstructure. Then a microscopic model for the mush is obtained by an averaging 
procedure. Emphasis is not put on volumetric heating in [159]. 

5.3 Blow-up and Regularization 

As mentioned earlier, a blow-up may occur during the solidification of supercooled liquid 
if regularization is not done. In the superheating of the solid also, in.the absence of 
regularization, i.e., non-inclusion of surface tension effect and/or kinetic condition at the 
interface or absence of mushy region in the formulation, we can raise the three questions 
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(A), (B) and (C) (§ 4.4.1) that arose in the context of supercooUng. 

A heat source term of the form T^+^, a > 0, has been considered in [160] in the 
one-phase melting Stefan problem with the superheated solid occupying the region 0 < 
X < S{t), S{0) = So>0. The initial temperature of the solid is To{x) > 0, x e [0, ^o], 
0 is the phase-change temperature, and T{0,t) = 0, 0 < t < t^. The temperature To{x) 
satisfies some assumptions such as: (1) To(0) = To(5'o) = 0, (2) To,a: < 0 on (XQ^SQ) for 
some XQ G (0, So), (3) TQ^^^ + TQ'^^ > 0 for X G (0, So). The formulation of this problem 
can be easily written. Let {t^, T{x,t), S{t)) be the classical solution. The main result 
of [160] can be stated as follows. 

Proposition 5.3.1. If t^ < CXD, then one (and only one) of the following will always 
happen. 

(I) S{t) -^ Soo ^ (0, oo) ast ^ t^ and there exists only one blow-up point x* G (0, 6*00)• 

(II) S{t) -> -hoo as ^ T *̂ and the set {T{x, t)} is bounded on {(^, x) : 0 < ^ < *̂, 0 < 
X < min (a, S{t)) for each a > 0. 

It was pointed out earher that questions (A), (B) and (C) (see § 4.4.1) can be answered 
for the supercooled problem (3.1.8)—(3.1.12) with the help of the quantity Q defined by 
(4.4.6). A superheated one-dimensional problem can be formulated on the same lines as 
the formulation of the supercooled problem (3.1.8)—(3.1.12) and so complete formulation 
will not be given here (cf. [161]). But, for the sake of clarity, it may be mentioned here 
that the region 0 < x < S{t), S(0) = 1, is the superheated solid and x > S{t) is the 
liquid region with T^ = 0 • S{t) is progressing towards x = 0. For simplicity we take 
dT/dx = 0 at X = 0. The quantity PQ given by 

Po= / \ T O ( X ) - 1) ĉ x, (5.3.21) 

plays an important role in answering the questions concerning blow-up in superheating. 
To(x) > 0 is the initial temperature of the sohd, 0 < x < 1, and the latent heat of fusion 
has been taken as unity in (5.3.21) after scahng. In melting, latent heat is negative and 
Po is the energy required for the complete melting of the superheated solid 0 < x < 1. If 
Po > 0, then 

rS{t) 
/ {T{x,t)-l)dx (5.3.22) 

will remain positive. The statements (Al), (Bl) and (CI) given below hold. 

(Al) If the solution exists for all time, S{t) ^ Soo > 0 and T(x, t) ^ 0 as t ^ 00 
then - JQ°° dx is negative. (Bl) If there exists some finite time t = t^ such that the 
solution exists for 0 < ^ < /* and as t ^ t^, S(t) -^ 0 and dS/dt ^ -00, then Po = 0. 
(CI) If the solution exists only for 0 < ^ < *̂ but as ^ -^ t^, dS/dt -^ -00 and 
S -^ S^ > 0 then the solution blows-up. In the supercooled problem, roughly speaking, 
when the free boundary touches the negativity set {T(x,t) < —1} then blow-up occurs. 
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In the superheating problem, if the free boundary touches the positivity set {T(x, t) > 1} 
then blow-up occurs. The heat in the solid near the free boundary is too much and the 
advancing free boundary cannot remove the heat and bring down the temperature to the 
equilibrium level which is taken as zero. 

It is possible to give more general sufficient conditions for a blow-up. If there exists 
a function f{x) defined for 0 < x < S{0) such that: /(O) > 0, f (0) > 0, f'{x) > 0 for 
0 < X < 5(0) and 

1 

f{To{x) - l)fdx > 0, (5.3.23) 
0 

then blow-up occurs. 

The questions (A), (B) and (C) ( § 4.4.1) were discussed in [161] for a two-dimensional 
one-phase melting of a superheated solid also. If there exists some /(x) , x £ B? with 
/ > 0 and V V > 0 in n(0) = ^o C i?^ VL{t) = Qx {t}, Q C R'^, 0<t<U, such that 

i /(To -l)dx> 0, (5.3.24) 
no 

then case (C) must occur. If case (B) is to occur, then the integral in (5.3.24) should be 
zero for all the harmonic functions / . If / (To — l)c/x = 0, but there is some harmonic 

no 
function / such that / /(To — 1) dx ^ 0^ then blow-up occurs. 

dQo 



Chapter 6 

Steady-State and Degenerate 
Classical Stefan Problems 

6.1 Some Steady-State Stefan Problems 

Steady-state free boundary problems occur more frequently in Stefan-like problems such 
as seepage through dam and free surface flows (cf. (1.1.5)—(1.1.10)). Only a few studies 
on steady-state Stefan problems have been reported. These problems can be studied 
from the point of view of the conditions of their origin, and the existence, uniqueness, 
and regularity of their solutions. In [162] some conditions which lead to steady-state 
solutions have been discussed. 

Consider a bounded region Q C R^, n > 1, with a sufficiently regular boundary 
^Q = Fi U r2 U Fa, 0 = r^i U r̂ 2 U 5 where Qi is the solid region, ^2 is the liquid region 
and S is the sharp interface separating these regions. The portion Fi of the boundary 
dQ is kept at temperature T = 6 > 0, heat flux is prescribed on F2 and the boundary 
F3 is insulated. A volumetric heat sink g{x), x e Q, per unit volume is acting in O. A 
steady-state will be reached if the outflow of heat through F2 is large, and g is small. 
The temperature T{x) in Q is defined in the following way. 

T{x,t) = Ti{x) < 0 , if x G Qi, 

= 0, li X e S, (6.1.1) 

= T2{x) > 0, if :r G O2. 

The formulation of the steady-state problem consists of the following equations. 

V^T, - - ^ , in 0„ 2 = 1,2; 0 < c/< 00, (6.1.2) 

Ti = T2 = 0, Ki-^ = K2^] onx e S, (6.1.3) 
on on 

142 
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dT 
T2\r,=b>0; and — (6.1.4) 

rs 

-Kr 

-K, 

dn 

m 
dn 

= q if T2 > 0; ^ > 0, 

= 9 if Ti > 0, (6.1.5) 
r2 

where, n is the unit normal vector on S pointing into the Uquid. 

If 

e = K2T^ -KiT-, (6.1.6) 

where T^ is the positive part of T, and T" is the negative part of T, then we have the 
following problem to be solved. 

Bf) 
\/'0 = -g i n^ , ^Ir, -=^ , " ^ 

where B = K2b > 0. 
r2 

de_ 
dn 

0, (6.1.7) 
rs 

The main result in [162] is concerned with the existence of a critical flux q = qc{B,g) 
such that: 

(i) {q,g) with q < qc{B,g) implies T > 0 in Q. This means that only one-phase wih 
be present in the steady-state, 

(ii) {q, g) with q > qdB, g) implies T has both negative and positive values in Q. This 
in turn imphes that both solid and liquid phases will be present in the steady-state. 

First, (6.1.7) is formulated as a variational problem. Then with the help of the 
properties of the solution of the variational problem, qc has been obtained. Some steady-
state problems have been considered whose explicit solutions verify the theoretical results. 
The problem considered in [162] is a generalization of the problem in [163] in which g = 0. 
It has been proved in [163] that there exists a ĝ i > 0 such that for all q > qi, we have a 
steady-state two-phase problem in r̂ , and 

K2b 
qi 

tto 
• meas (r2), (6.1.8) 

where a^ is some constant having dimensions of (length)" 

6.2 Degenerate Stefan Problems 

The term degenerate Stefan problem is used for a Stefan problem in which the math-
ematical nature of the differential equation or the boundary condition changes if some 
parameter associated with the problem varies within its admissible range of values. Some 
of the commonly studied degenerate Stefan problems are: 
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(i) Quasi steady-state Stefan problems or quasi-static Stefan problems in which the 
heat equation is elhptic but the free boundary is time dependent. Such problems 
may arise if the the specific heat C = 0 or the temperature has attained a steady-
state. The Hele-Shaw problem described in (3.3.45)—(3.3.46) is a quasi steady-state 
degenerate Stefan problem. 

(ii) Parabolic-elliptic Stefan problems in which the specific heat C = C{T) is such that 

C{T) = > 0, if T > 0, 
(6.2.9) 

= 0, if T = 0. 

Quasi steady-state Stefan problems 

Using the theory of conformal mappings, a two-dimensional quasi-static moving bound-
ary problem can be described by a non-linear Lowner-Kufarev equation [164] and a 
functional relation T between the shape of the free boundary and its velocity can be 
established. Together with the initial data this leads to an initial-value problem. Assum-
ing that T satisfies certain conditions, the existence of a local-in-time solution of this 
initial value problem has been proved in [165]. This method is mainly applicable to those 
free boundary problems in which the domain is shrinking. Continuity conditions on !F 
are also not easy to satisfy. The proof is based on the convergence of Picard iterative 
method. 

In the Stefan problem considered in [166], the free boundary conditions are 

T = 0, and R{x)Vn = {ut, A{x,t)V:,T)] on r(^). (6.2.10) 

Here, r(^) is the free boundary, T{t) n ^Q = 0 and dVt{t) = r{t) UdQ^^t e [0, ^*], n is 
the unit normal outward to r(t), Q{t) = Q x {t}, 0<t<t^,QcR'',n>l. A{x,t) 
is a uniformly elliptic matrix associated with the parabolic operator V defined as 

VT= (~- V,{A{x,t)V:,)] T = F in n{t), 0 < t < t,. (6.2.11) 
^dt 

Suppose 

R(x) = 0, X e r(0), R{x) > 0 in Q(0), (6.2.12) 

and dR/dXn < 0 in some neighbourhood Âo of r(0) in Q. Let (An(x), uj{x)) be the 
local coordinates in Â o, with uj{x) the local coordinates of the projection P{x) of a point 
X e No on r(0) and Xn(x) the distance from x to P{x). For the conditions in (6.2.12), we 
have a degenerate Stefan problem. If R{x) = 0 then we have the oxygen-diffusion problem 
in R'\ Generally the existence, uniqueness and regularity of solution of degenerate Stefan 
problems are discussed in the context of their weak solutions [167, 168, 169, 170, 171, 172], 
but the weak solutions are not sufficiently regular to be called classical solutions. In 
some cases the existence of the classical solutions of deg(nierate Stefan problems has 
been investigated which are discussed below. 
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Using Hanzawa transformation [133] so as to consider a problem in a fixed do-
main and an analogue of Moser-Nash theorem [173] and assuming some compatibility 
and other conditions, the existence of the unique solution of the degenerate problem 
(6.2.10)—(6.2.12) and the solution of oxygen-diffusion problem for R{x) = 0 has been 
estabhshed in [166] on a suflB.ciently small time scale. 

Degenerate parabolic-elliptic problems 

The parabolic-elliptic Stefan problems have been analysed mostly for their weak so-
lutions. Only few studies have been reported on the analysis of the classical solutions of 
these problems. The regularity of the classical solution of the two-phase one-dimensional 
degenerate Stefan problem described in (6.2.13)—(6.2.17) has been discussed in [174]. Let 
the regions — 1 < x < S{t) and S{t) < x < 1 be denoted in the following equations by 
superscripts 1 and 2, respectively. 

p\T)Tl - Ti, = 0, -l<x< S{t), 0 < t < t „ (6.2.13) 

P\T)T,^ - Tl = 0, S{t) <x<l,0<t<t,, (6.2.14) 

T'^\x, 0) = T^^\x, 0), S{0) = 0, (6.2.15) 

T\-l,t) = g\t)<0, T\l,t) = g^{t) >0, 0<t<t,, (6.2.16) 

T'^^{S{t),t) = 0; S{t) = T^{S{t)-0,t)-T^{S{t)+0,t). (6.2.17) 

The basic assumptions are: 

(Pi) /?̂ '2 e C^iR^), P^^HT) > 0 and /?i'2(T) = 0 if and only if T = 0, 

{P2) ^xTo'̂ (O) > 0, =F^ '̂̂ (̂ ) > (5 > 0 and To'^(x) x>0 where the inequality holds if 
and only if x = 0. 

The main result of [174] is the following proposition. 

Proposition 6.2.1. Under the assumptions (Pi) and (P2), the following results 
hold good. 

(1) If the data To'^(x) G C ^ [ T 1 , 0 ] and g^^'^{t) 6 C^lO.t^] satisfy second order com-
patibihty conditions, then the unique weak solution has the following regularity 

S{t) e C^(0,^.]; T'^^x.t) e C^ii^l, S{t)] x [0,^*]). (6.2.18) 

(2) If the data To'^(x) G C ° ° [ T 1 , 0 ] and g^^'^{t) G C°°[0,^*] satisfy the C°° compati-
bility conditions, then the unique weak solution is also C°°-smooth up to the boundaries 
t — 0 and X = ±1. 
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Definition 6.2.1. : C°°-compatibility conditions 

are called m-order compatible at (x, t) = (0,0) and (=Fl, 0) 
ifTj'^(x) e C2^[q=l,0], g^^^{t) e C^[0,^*] and there exist functions S'W ^ ^^^[O,^*] 
and f i'2(a;,^) G C2^'^[5(^), ^1] x [0,̂ *] such that 

f i'2(^l, t) = g^^^(t), f'^\S{t), t) = 0, (6.2.19) 

/ > , t) = /?^'2(f i'2)f/'' - f^f - 0 ( r ) , (6.2.20) 

5(0) -0, g{t) = S'{t)-t^{S{t)-0,t) + t^{Sit)+0,t) = 0(r). (6.2.21) 

If To'^(x) € C ° ° [ T 1 , 0 ] , ^i'2(t) e C°°[0,t,] and (6.2.19)-(6.2.21) are satisfied for any m, 
then the data are called C°°-compatible. 

A weak variational formulation of the multi-dimensional degenerate parabolic-elliptic 
Stefan problem has been presented in [167]. By applying the parabolic regularization 
technique, the existence, uniqueness and stability of the solution with respect to the data, 
have been analysed. Boundary control aspects have also been discussed. By considering 
the weak formulation of a two-phase degenerate Stefan problem, the Lipschitz continuity 
of the free boundary (under suitable assumptions) has been proved in [169] in some 
small time interval. These results have been further extended in [170] and under suitable 
assumptions the free boundary is Lipschitz continuous and temperatures satisfy (6.2.13) 
and (6.2.14) classically 

6.2.1 A Quasi-static Stefan problem and its relation to the 
Hele-Shaw problem 

A one-phase quasi-static Stefan problem (QSSP) in the region Q{t) = Q x {t}, Q C 
jR", n > 2 can be formulated by taking the specific heat C = 0 in the heat equation 
in the one-phase Stefan problem. Temperature is static but the free boundary is time 
dependent. Let dQ{t) be the free boundary which is also the outer boundary of Q{t). Q{t) 
could be expanding or shrinking for ^ > 0. Shrinking region problems or suction problems, 
are generally ill-posed. The Hele-Shaw problem (HSP) in R'^ given in (3.3.45)-(3.3.46) 
can be identified with a Stefan problem if the pressure p of the fluid is regarded as the 
temperature of the hquid in QSSP. If p > 0, then p is the temperature of the warm 
liquid which is expanding on ice. If p < 0, then p is the temperature of the supercooled 
liquid, and ice is expanding on this supercooled hquid. The pressure of the liquid can be 
increased (decreased) by injecting (withdrawing) fluid though the inner fixed boundary 
of n(0) if Q{0) is considered to be a doubly-connected region. In this case the fluid is 
surrounding a region G C R^\ n > 2 and the inner static boundary of 0(0) is dG. The 
boundary conditions on dG could be 

dp 
-— = - Q , Q > 0 (pressure increases), (6.2.22) 
on 
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dp 
-— =̂  Q, Q > 0 (pressure decreases), (6.2.23) 
on 

where, n is the unit outward normal to dG. 

Fluid can also be injected (withdrawn) though point sources (sinks) or distributed 
sources (sinks) situated in 0(0). Q{t) could be a simply connected region with outer 
boundary as the free boundary. When sources or sinks are present, the governing differ-
ential equation will have singularities. If the two-dimensional Hele - Shaw cell has porous 
plates though which a uniform suction is applied, then the formulation for pressure can 
be written as 

V^p -h F{t) = 0, F > 0, X G n{t); p = 0 and dp/dn = V, on dn{t). (6.2.24) 

Here, V is the outward normal component of the velocity of the free boundary. 

By using the transformation 

p = p + F{t) [/, (6.2.25) 

where U is the solution of the problem 

V^U = 1 in Q{t); f/ = 0 and dU/dn = 0 on dn{t), (6.2.26) 

this uniform suction problem can be converted to a standard Hele-Shaw problem except 
at the singularities of F. 

For a two-dimensional HSP, complex variable methods can be used to find some exact 
analytical solutions. For example, it has been shown in [161] and [175] that due to suction 
from a point sink, a limacon can become a cardioid with a cusp. For Hele-Shaw problems 
with shrinking regions a variety of cusp may occur. 

For both expanding and contracting one-phase Stefan problems, the free boundary 
has been shown in [176] to depend continuously and monotonically on the specific heat C 
taken to be greater than or equal to zero. In some cases, temperature has also continuous 
dependence on C (specific heat). In particular, taking C —> 0, the free boundary in the 
Stefan problem approaches that of the Hele-Shaw problem and it follows that even well-
posed Stefan problems can have free boundaries which can get arbitrarily close to forming 
cusps. If the free boundary in an expanding Hele-Shaw problem has cusps as ^ -^ oo, 
then Stefan problem in the hmit t ^ oo, also develops cusps [177]. 

For n > 2, Hele-Shaw suction problem with boundary conditions (6.2.22) and (6.2.23) 
and one-phase supercooled water problem were discussed in [177]. Existence of weak 
solutions for both the problems can be proved if and only if the initial domain belongs 
to a certain class of domains. Uniqueness does not hold in general. In the ill-posed Hele-
shaw suction problem, fingering configuration can arise from a suitable initial domain 
whose boundary is smooth and nearly spherical. In the supercooled water problem the 
initial domain should belong to a certain class which depends on the initial temperature. 
Regularity of the free boundary has also been discussed. 



Chapter 7 

Elliptic and Parabolic Variational 
Inequalities 

7.1 Introduction 

Rigorous definitions of elliptic and parabolic variational inequalities will be given a little 
later. Before that we ask a question, What are the essential features of a variational 
inequality formulation? Let us consider a simple problem of finding the point XQ G (a, b) 
at which the unique minimum of a real valued function f{x) G C^[a, b] exists. If f{x) is a 
convex function, then XQ can be obtained by solving the equation f'{xo) = 0. In general 
for XQ G [a, 6], three cases arise: 

1. If minimum is attained at XQ = a, then f'{xo) > 0. 

2. If minimum is attained at XQ = b, then f'{xo) < 0. 

3. If xo is an interior point, then f'{xo) = 0. 

These three conditions can be expressed in terms of a single inequality 

f{xo){x - xo) > 0, V X G [a, b]. (7.1.1) 

Equation (7.1.1) is an example of a variational inequality whose characteristic features 
are that it is an inequality and it is satisfied for all x varying over the interval [a, b]. 

We shall now generalize this notion and consider a space of functions, say, H^{Q), Q C 
K^, n > 1 is an open bounded set and let / be a functional on //^(Q). Find a function 
u = UQ e H^{Q) or belonging to a subset of H^(Q) such that f{uo) is minimum as 
u varies over H^{Q) or over a subset of H^{Q). Immediately several questions arise 
such as: What sort of function spaces should be considered so that a solution can be 
found? What should be the form of the functional defined on these spaces? Are there 
equivalent formulations? Answers to these require sophisticated functional analysis tools 

148 
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whose detailed description is beyond the scope of this book. In the next few sections 
an attempt will be made to answer some of the above questions in simple mathematical 
terms. After discussing the theoretical background of ehiptic and parabolic variational 
inequalities, the formulations of some classical Stefan problems as variational inequalities 
have been given. It may be noted that for any given classical Stefan problem it may not be 
possible to formulate it as a variational inequality problem. Weak formulations of Stefan 
problems, which are continuum models, are easily amenable to variational inequality 
formulations as variational inequalities are themselves continuum models but this is not 
the case with classical formulations. To make this volume self-contained, some relevant 
definitions and theorems are given in the Appendices A—D. 

The elliptic variational inequalities will be discussed first. Whenever it is possible to 
formulate transient Stefan problems as variational inequalities, they are formulated as 
parabolic variational inequalities. Elliptic variational inequalities, which are concerned 
with elliptic or steady-state free boundary problems, serve as a good starting point for 
discussing parabolic variational inequalities. This is because many of the ideas involved 
and approaches used in proving results in the analysis of elliptic variational inequalities 
can be extended, with appropriate changes, to the analysis of parabolic variational in-
equalities. This does not mean that every elhptic problem can be extended to a time 
dependent parabolic problem. 

7.2 The Elliptic Variational Inequality 

7.2.1 Definition and the basic function spaces 

Let r̂  be a bounded open subset of R^ with smooth boundary dQ. An inequality of 
the form 

a{u,v -u) > {q,v-u), \/ v ^ M; u e M, (7.2.1) 

where a{u,v) is a quadratic bilinear form (cf. Appendix A), a{u,v) : H^(Q) xH^{Q) -^ i?, 
and 

(q,v) = [ qvdx, q G L^IQ), (7.2.2) 

M = {ve H\Q); v-de H^in); v>^, ^e C{(1)] , (7.2.3) 

is an example of an elliptic variational inequality, q, d and ip, are known functions. 
V — d on dVt is the trace sense. 0 is called an obstacle and the problem is called 
an obstacle problem or an elliptic variational inequality with obstacle. If there exists a 
function UQ E M which satisfies (7.2.1) for ah v G M, then WQ is called a solution of the 
elliptic variational inequality. It can be proved that A1 is a non-empty closed convex set 
(cf. § 7.2.4 for the proof). Problems with more than one obstacle can also be studied 
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(cf. [178]) but such problems will not be discussed here. It is well known in the calculus of 
variations that the problem formulated in a proposed class of functions may not possess a 
solution in that class. This difficulty can be overcome by broadening the class of functions 
in which the problem is formulated and therefore the admissible functions are considered 
in 'Sobolev spaces' or the 'space of distributions'. A 'Hilbert space' H^{Q) has been 
considered in (7.2.1) as we would like that at least the first order weak derivatives of 
functions belonging to M exist. The choice of an appropriate Sobolev space depends on 
the physical problem under consideration. For example, if in a given physical problem, 
a solution of the form y = \x\, x e R, makes sense then H^{R) is an appropriate space 
for the admissible functions. Several other questions concerning variational formulations 
arise which will be explained after an adequate mathematical exposition of the concepts 
and notions of variational inequalities. 

Let A : H^{Q) -^ H~^{Q) ( H~^ is the dual space of the Hilbert space i / \ i.e., the 
space of continuous hnear real valued functions on H^{Q)) be an operator such that for a 
fixed lA G H^{Q), Au{v) = a{u,v), v G H^{n). A^ defines the mapping!' -^ a(u^v). It can 
be easily proved that Au is linear and if a{u,v) is continuous, i.e., |a(w,i;)| < M||tx||||f || 
for some M e R then 

\\Au\\H-Hn)= sup \Au{v)\ < M\\u\\ (7.2.4) 
IHIH=I ^ ^ 

and hence 

Mll£(//i,//-i) ^ ^ 1 (constant). (7.2.5) 

Therefore, A is continuous and belongs to H~^{Q) as A is a linear continuous real valued 
function on H^{Q.). By Riesz representation theorem^ we have 

H-HnMu,v)HHn) = {u\v), V i; e H\n), (7.2.6) 

where u* is some fixed element of H^{Q,) and depends on Au-

Conversely, if A is hnear and satisfies (7.2.4), then a{u,v) is a continuous bilinear 
form. It is clear that 

a{u,v) = //-i(o)(^n,'?^)//i(Q)- (7.2.7) 

With each q € I/^(n), we can associate a continuous linear functional Bg G H~^{Q) which 
is defined as 

Bq:v^{q,v)= f qvdx, v G H\n). (7.2.8) 

For a rigorous proof of this statement see [22]. A sketchy proof can be given using the 
following arguments. With each q G L'^i^), an element of the dual space of L'^{Q) can 
be associated. If the dual space of L'^{Q) is denoted by L^*(Q) then L^*(Q) •—> H~^{i'}) . 

In view of these arguments, we can write 

LHn){q.v)H^in) = H-^{Q){Bg,v)H^^n) = J qvdx = {q,v), v G H\n). (7.2.9) 
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The pairing {q,v) is the value of the functional Bg at v in the sense of (7.2.9). We shall 
not justify at other places the use of {q^v) in the place of (q^v)). The above discussion 
suggests that a true variational inequality (or equality) in the context of (7.2.1) should 
be of the form 

a{u,v-u) = H-Hn){^u^^-u)H^^Q) > H-^n) {q^y~u)H^n)^ 

yveH\n), ueH\Q). (7.2.10) 

The space //^, k > I can also be considered and weaker or stronger conditions can also 
be imposed on the functions involved in the variational inequality formulation. 

The form of a(u, v) depends on the elliptic operator considered in a given physical 
problem. For example, if the elhptic operator A : H^{Q) -^ H~^{Q) is defined as 

then 
aiu.v) = , 

Jn 

If the elliptic operator A is defined as 

Au = V\ ueH\Q), (7.2.11) 

a{u,v) = f Vu- Vvdx. (7.2.12) 

^ ^ 2 ^ n ^ ^ 

Au=-Y,a^J{x)^ , + Yl ^^ (^ )^ - + e(x)w, X G 0, (7.2.13) 
~y OXiOXj ~l OXi 

then the bilinear form in (7.2.1) is defined by the relation 

^x^ dxj ^ \ ^ dxj / dxi 

The relationship between an elliptic operator and the bilinear form which occurs in 
the inequality will be discussed later (cf. (7.2.24) and (7.2.37)). The coefficients a^j, 6̂  
and e in the elliptic operator in (7.2.13) should belong to appropriate function spaces 
so that the variational inequality formulation makes sense. We shall see later that for 
the existence and uniqueness of solutions, it will be required that a{u,v) satisfies some 
conditions such as continuity, coercivity and these conditions also put some restrictions 
on the coefficients in the elliptic operator. The non-homogeneous Dirichlet problem 
corresponding to the elliptic operator A in (7.2.13) can be stated as the problem of 
finding a function u{x), x ^Q. such that 

Au = q, mQ] u = d, on dVi. (7.2.15) 

If continuous derivatives of u exist in Q and d is continuous, then (7.2.15) is satisfied 
in the classical sense or pointwise sense. If q is square integrable in H, then Au = q is 
satisfied in the sense of distributions. If only the weak derivatives of u exist, then Au = q 
is satisfied in the distributional sense and u = d is satisfied on d^ in the trace sense. 
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7.2.2 Minimization of a functional 

A minimization problem and its equivalent elliptic variational inequality 

The variational inequality (7.2.1) can be expressed in some other forms also. We shall 
first show that the variational inequality problem 

(z, v-z)-]- a{z, V- z)>{q,v- z), \/ v E M\ z E M\ q e L^{n), (7.2.16) 

where A^* is a convex set of an inner product space and Q is as in (7.2.1), is equivalent 
to the problem of minimization of a functional P{v), where 

P{v) = {v, v) + a{v, v) - 2{q, v), v G M*, q G L^Q). (7.2.17) 

Let a{u,v) be symmetric and 2: be a solution of (7.2.16). By definition a{u,v) is linear in 
both the arguments but it need not be symmetric. We shall show that P(z) < P{v), \/ v e 
M* so that z is the minimum of P{v). 

P(v) - P{z) = {v, v) - (z, z) + a{v, v) - a{z, z) - 2{q, v) + 2{q, z) 

= {z-v,z-v) + 2(z, V ~ z)^ a(v, v) - a{z, z) - 2{q, v - z). (7.2.18) 

Also 

a{u, u) = a{u — w,u — w) — a{uj, w) + 2a{u, w). (7.2.19) 

Take u = z and w = z — v in (7.2.19). It can be seen that 

a{v, v) - a{z, z) > 2a{z, v - z). (7.2.20) 

On using (7.2.20) in (7.2.18), we get 

P{v) - P{z) >{z-v,z-v) + 2(2, V- z)^ 2a{z, v - z) - 2(q, v - z). (7.2.21) 

If (7.2.16) holds, then from (7.2.21), P(v) > P(z), V t; G M*. 

To prove the converse, suppose that P{z) < P{v), V z; G A^*. Since A4* is a convex 
set, if V G M* and z G M* then (1 - a)z + av G M*, 0 < a < 1. Therefore, 

P{z + a{v - z)) - P(z) > 0 , 

or 

a(v ~z,v -z) + aa(v -z,v -z) +2{{z,v 'z)-^a{z/u -z)-{q,v -z)} >0. (7.2.22) 

For (7.2.22) to hold for an arbitrarily small a, (7.2.16) should hold. 



7.2. Elliptic Variational Inequality 153 

7.2.3 The complementarity problem 

By considering the minimization of the functional (a real valued function) 

f{v) = a{v,v)-{q,v), (7.2.23) 

we shall now obtain other forms of elliptic variational inequalities. Although a{u, v) given 
in (7.2.14) can also be considered, a simple bilinear form given by 

a{u, v)= fVu'Vv dx, (7.2.24) 
Q 

will be considered for illustration. It will be assumed that a minimizing function u{x) 
exists such that 

f{u) < f{v), \fveM, ueM, (7.2.25) 

where the set M is defined by (7.2.3). Since M is a, convex set, for 0 < a < 1, we have 

f{u 4- a{v - u)) - f{u) > 0, V ^ e X , (7.2.26) 

or 

/ {V(ti + a{v — u)) ' V{u + a{v — u)) — Vu • Vu}dx — 
n 

2p{u + a{v - u)) + 2p{u) > 0. (7.2.27) 

Here, p is a continuous linear functional on H^{n) and is defined by 

p{v) = I qvdx. (7.2.28) 

On using the hnearity of both p and the gradient operator, from (7.2.27) we obtain 

a^j V{v - u) • V[v - u)dx + aj {Vu • V{v - u) - q{v - u)}dx > 0. (7.2.29) 

For (7.2.29) to hold for an arbitrarily small a, we should have 

[{Vu • V{v -u)- q{v - u)}dx > 0. (7.2.30) 
n 

If it is assumed that u G H'^(Cl) Pi C{Q), the first term in (7.2.30) can be integrated 
by parts (application of Green's formula). Since v satisfies the same boundary conditions 
as u, we have v — u — 0 on dQ. On using this condition on d^ and doing the integration 
by parts, we obtain 

[{Vhi + q){v - u)dx <{), W veM, u^M. (7.2.31) 
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Let V = u + C, C > 0, C e C^{^)- liu>jp, then v > ip. Substituting ( = {v - u) in 
(7.2.31) and remembering that C > 0 and ( G C^(0) , we conclude that 

V'^u + ^ < 0, a.e. in Q, u> ip. (7.2.32) 

Next, consider a subset Qi of 0, where 

ni = {xe ft; u{x) > ^{x)} , Qi C Q. (7.2.33) 

If u{x) and ip{x) both are continuous in Q, then for every x G Qi there exists a neigh-
bourhood of X in which u{x) — ip{x) > 0. Therefore Qi cannot be a closed set. For any 
C G Co°(ni), V = u — Ĉ is in TM provided | ^ | is sufficiently small. On substituting 
V = u — e( m (7.2 31), we get 

-e f{V\ + q)C dx < 0. (7.2.34) 
Q 

If (7.2.34) holds for £ positive or negative and C is arbitrary, then it can be easily concluded 
that 

V\ + q = 0, a.e. in ^ i , u>2p. (7.2.35) 

The set Qi in which u{x) > ip{x) is called a non-coincidence set and the set ^2= 
{x £ ft : u{x) = ip{x)} is called a coincidence set. The boundary of the non-coincidence 
set is called a free boundary. If F is the free boundary, then 

r^dftiH n. (7.2.36) 

On combining the results obtained in (7.2.32) and (7.2.35), we get the following varia-
tional inequality problem. 

Find u e H'^{Q) H C(0) such that 

V^u + g < 0, 

{V^u + q){u - ![;) = 0, J 

u-de H^{ft). 

The boundary condition u = d is satisfied on dft in the trace sense. The free boundary 
problem to be studied in Qi is to find a pair (w, F) such that 

V \ + ^ - 0 , i n ^ i , (7.2.38) 

u =ir, 1 ^ = 1 ^ , l<i<n\ on F, (7.2.39) 
OX^ OXi J 

> a.e. in Q, (7.2.37) 
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u=^d on aoi n on. (7.2.40) 
The second condition on F in (7.2.39) arises due to the fact that u — ip takes its minimum 
on r (assuming u and ip to be smooth). The problem stated in (7.2.37) is called a 
complementarity problem and it is a standard problem in 'quadratic programming'. Its 
'finite-difference discretization' will have the following form. 

BU-\-D<0, 

(7.2.41) 

where B, [/, D and ^ are appropriate matrices obtained after discretization of (7.2.37). 
For example, B could be a n x n matrix and [/, D and ^ could be n x 1 matrices (n 
stands for the number of nodal points). On introducing the following substitutions 

[/ - ^ - ^ and y = -{BU -h D), (7.2.42) 

in (7.2.41), we have a problem of finding E such that 

BE = ~Y - {B^ -h D), E'^Y = 0; E > 0, Y>0. (7.2.43) 

Matrices B, D and ^ are known. The problem (7.2.43) is equivalent to the following 
programming problem provided B is symmetric and positive definite [179]. Minimize 

{B^ -h DfE + l^'^BE, for E>0. (7.2.44) 

If a more general form of a{u,v) is considered such as the one considered in (7.2.14), 
then by following the procedure indicated in (7.2.26)—(7.2.35), one can easily obtain the 
complementarity problem of the form (7.2.37) in which in the place of S/^u we shall have 
Au given in (7.2.13). 

The variational inequality (7.2.37) can be transformed into an inequality of the form 
(7.2.1). Let C G C^(n) , C > 0 and li be the solution of (7.2.37). Uv = u + C, then v > ip 
and V belongs to M. Multiplying the first equation in (7.2.37) by C and integrating over 
0, we get 

f{S/^u + q)C<0. (7.2.45) 
n 

Integrating (7.2.45) by parts and remembering that C^"^ — '̂  = 0on dQ, we get an 
inequality of the form (7.2.1). The arguments used in obtaining (7.2.45) hold good even 
if V'^u is replaced by Au given in (7.2.13). The inequality (7.2.1) also implies the problem 
in (7.2.37). To show this, we first consider the case u > ip. Take C ^ C'^(^), C > 0- If 
V = u-\- (, then we have v > ip and therefore v belongs to M. Substituting ( in place of 
{v — u) in (7.2.1) and integrating by parts it can be easily seen that V^n + g' < 0, a.e., in 
Vt provided u G H'^{Q) 0 C{^). Next consider the set ih = {xeVt: u{x) > ^(x)} C M. 
Follow the procedure which was used to arrive at (7.2.35). It is then easy to show that 
{V\ + q){u -ip) = 0 ior u>ip. 
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7.2.4 Some existence and uniqueness results concerning elliptic 
inequalities 

The minimization problem associated with the functional in (7.2.23) and the comple-
mentarity problem in (7.2.37) are also called variational inequality problems. We shall 
see later that variational inequalities can be expressed in some other forms as well. The 
equivalence of some different formulations of variational inequalities will be discussed in § 
7.2.5 in the context of Problem 1.1.12. Questions pertaining to the existence, uniqueness, 
and stability of the solutions of variational inequalities arise at this point. As mentioned 
earlier, sophisticated functional analytic tools are required to answer them (cf. [178], 
[180], [181]). To understand the basic concepts we shall first discuss some results on 
the existence and uniqueness of the solutions of elliptic variational inequalities. These 
results will be helpful in parabolic variational inequalities also. It may be noted that 
for the existence of the minimum of a function (functional) it is not necessary for the 
function to be continuous. For example if f{x) = \x\, x ^ 0 and /(O) = —2 then / has 
a minimum value —2. In this case f{x) is not continuous but is lower semi continuous 
(l.s.c). The conditions under which the unique minimum of some of the functionals exist 
are discussed below in the form of theorems which provide answers to some problems. 

Problem 7.2.1. Given a real vector space X, a function f : X -^ R and a set 
Y C X. Find the minimum of / in y, i.e., find yo ^Y such that f{yo) = infy^y /(?/)• 

The answer to this problem is contained in the following theorem. 

Theorem 7.2.1. If X is a reflexive Banach space, f : X -^ Ris a. convex and l.s.c. 
function, F 7̂  0 is a closed convex subset of X, and either, Y is bounded or / is coercive, 
then Problem 7.2.1. has a solution. This solution is unique if / is strictly convex. This 
theorem is called 'theorem of minimization of convex functionals'. 

Problem 7.2.2. Let H^ be a Hilbert space and V C W he a non-empty closed 
convex set, g € W {W is the dual space of W and the elements of W are linear, 
continuous real valued functions) and f : W ^^ R is defined by 

fiv)-\\\v\\lv-giv)- (7.2.46) 

Find UQ eV such that f{uo) = inf̂ -̂p f{v). 

Theorem 7.2.2. The solution to Problem 7.2.2. exists and is unique. 

Proof. We shall show that / is both strictly convex and coercive and so Theorem 
7.2.1. can be applied. Since VK is a Hilbert space, it is reflexive. Let A] and A2 be 
any two scalars such that Ai, A2 > 0, Ai + A2 = 1 and Vi and V2 {vi ^ V2) be any two 
vectors belonging to W. We have 
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Ai \\vi\f + (1 - A,) Wv^f - {A? \\vif + 2Ai(l - A0(vi,«2) + (1 - Ai)^ \\v2\f} 

= Ai(l - A,) {\\vif - 2(vuV2) + \\v2f} , (7.2.47) 

> A , ( l - A i ) { | K f - 2 | h | | | h | | + | | t , 2 f } , (7.2.48) 

> A i ( l - A i ) { | | t ) i | | - | | w 2 | | } ^ > 0 , if wi 7̂  W2 and Ai ^ 0. (7.2.49) 

Also 

/(Ai?;i + A2V2) = I IIAit̂ i + A 2 i ' 2 | | ^ - s ( A i f i + A2i'2) 

< 2 

[A? I b i f + A2 ||t)2f + 2X,\2(vuV2)] - Ai5(«i) - A2ff(t;2) 

\{\A\vi\? + ^2\\v2f] - \l9{vx) - \2g{v2) 

< )^lfivi)+\2f{v2)-

Therefore / is strictly convex. Prom the Riesz representation theorem, we have 

giy)<\\9\\JHw. (7.2.50) 

On using (7.2.50) in (7.2.46), we get 

fiv) > ^l l<-NL,IHk, 

> 7 ||z;|| , for some positive constant 7 as [It'll -^ 00, V v, (7.2.51) 

and so / is coercive. 

P r o b l e m 7.2 .3 . Given a Hilbert space W, g e W and P 7̂  0, a closed convex set 
of W, find UQ E V such that 

(wo, UQ — v)w < g{uo — v), ^ V eV. (7.2.52) 

T h e o r e m 7.2 .3 . ?io is the solution of Problem 7.2.2. if and only if UQ is a solution 
of Problem 7.2.3. or in other words Problems 7.2.2. and 7.2.3. are equivalent. 

Proof (in outhnes). First, we prove tha t Problem 7.2.2. implies Problem 7.2.3. If 
UQ e V and V E V, then UQ + a{v — UQ) e V for 0 < a < 1 diS V is a convex set. If the 
minimum is attained at UQ, then 

F(a) - f{uo + a{v - UQ)) > / ( ^o ) , and F ' ( 0 ) > 0. (7.2.53) 

Let G{a) = UQ -\- (y{v - UQ), then 
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The first term on the r.h.s. of (7.2.54) can be easily calculated from the first principles 
and we obtain 

^ f ^ i lG(a ) l l^ ) ={uo,v-uo)w (7.2.55) 

On using the hnearity of g 

i (̂«(-)) = -J- (giuo) + ag{v - uo)) = g{v - Uo) (7.2.56) 

On combining the results in (7.2.55) and (7.2.56), we obtain (7.2.52). To prove that 
Problem 7.2.3. implies Problem 7.2.2., it will be assumed that the solution of Problem 
7.2.3. exists. For the existence proof, see [22]. It can be easily shown that if the solution 
exists then it is unique. Let ui and U2 be two solutions of Problem 7.2.3.. We have 

(til, ui - U2)w < 9{ui - U2), U2 e V, (7.2.57) 

and 

{u2,U2-ui)w < 9{u2-ui), ui eV. (7.2.58) 

Adding (7.2.57) and (7.2.58) and using the definition of 'scalar product ' and the linearity 
of ^, we get 

{ui - U2, ui - U2) < 0, (7.2.59) 

which implies Ui = U2. In view of the fact that Problem 7.2.2. implies Problem 7.2.3. 
the unique solution of the Problem 7.2.3. is also the unique solution of Problem 7.2.2. 
The inequality (7.2.52) is also called a variational inequality and here the inequality is 
defined with the help of a scalar product, whereas, in (7.2.1) it has been defined with the 
help of a bilinear form. 

The functional (7.2.46) is a special case of the functional 

f{v) = ̂ a{v,v)-g(v), (7.2.60) 

where a : W x W -^ R is a, bihnear form. If with each pair {u, v) € W x W, a(u, v) 
associates the scalar product {u,v)w or in other words a{u,v) — (u,v)w then |a(ii, i;)| = 
|(ti, t')H/| < TII^IIWII'^IIW^ (7 = 1) and a is continuous. a{u,v) = {u,v)w = {v,u)w — 
a(v, u) and a is symmetric, a has also the coercivity property on W, i.e., a{u, u) > a | | n | | ^ 
for a = 1 as {u,v) = ||tx|p > ||ti|p. On the other hand if a is coercive, symmetric and 
continuous then a scalar product ((u, v)) can be defined with the help of a bilinear form 

{{u,v)) = a{u,v), V u, V e W. (7.2.61) 

Let III. Illv,/ be the norm associated with the inner product defined in (7.2.61). We shall 

show that \\.\\w and |||. |||v^ are equivalent and therefore the continuous linear functionals 
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defined on W for the two norms are the same. ce||u||^ < a(u,u) = {{u,u))w =|||'w|||u^= 
7 ll^lliy • Therefore the two norms are equivalent and a{u^v) is 

coercive and continuous with respect to the norm ||H||M/. Equivalence of norms implies 
that if a{u, v) in (7.2.60) is symmetric, coercive and continuous with the respect to ||.||v^, 
then the functional / in (7.2.46) is no more general then the functional in (7.2.60) as the 
functional in (7.2.60) can be written as 

f{v) = l\\H\w-9iv), (7.2.62) 

where |||I'|||VK = (('̂ 5'̂ )) = ^l'^^'^), v e W. Next we ask whether the minimum of the 
functional (7.2.60) can be obtained as the solution of a variational inequality. 

Problem 7.2.4. Let 14̂  be a Hilbert space, V C W, a. non-empty closed convex 
set and f : W —> R a, functional defined by (7.2.60) in which the bilinear form a{u, v) is 
continuous. Find UQ E V such that 

/ ( ^ o ) < / ( ^ ) , ^veV. (7.2.63) 

Problem 7.2.5. Let W, V, f and a{u,v) be the same as in Problem 7.2.4.. Find 
UQ eV such that 

a{uo, uo-v)< g{uo -v), ^ veV. (7.2.64) 

If UQ is the minimum of f{v) in (7.2.60), then 

-^/( i /o + (y{v - iio))|a=o > 0, V 1; G p . (7.2.65) 
da 

The derivative in (7.2.65) can be easily calculated by using the bilinearity of a and the 
linearity of ^ and it can be shown that (7.2.63) imphes (7.2.64) only if a(w, v) is symmetric. 
If a solution of Problem 7.2.5. exists, then it can be proved that it is unique [22]. If it 
can be proved that a unique solution of Problem 7.2.4. exists, then the equivalence of 
Problems 7.2.5. and 7.2.4. can be established. If a is coercive onV — V, i.e., 

3 Of, Of > 0, e.g., a{u — v,u — v) > a\\u — v\\l^ , \/ u,v eV, (7.2.66) 

then the solution of Problem 7.2.5. exists [22]. V - V = {x - y\ x e V, y e V}. It can 
be proved that if a is symmetric and, continuous on V and coercive oxiV — V then it is 
coercive on V. 

a{u, u) = a{u- (,u- ()- a(C, C) + 2a(ii, (), u^V, ( fixed in V 

> a\\u-(\\l -7||C|PvK -27lMII|Clk, O 0, 7 > 0 

>a\\u- Cfw -7llClk (3||Clk +2 11̂  - Clk). (7.2.67) 

It is now easy to prove that a (w, n) ^- +00 as ||i/||^- 00. 
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Lions - Stampacchia Theorem 

T h e o r e m 7.2.4. Let W he a Hilbert space. V C W he a non-empty closed convex 
set, g E W and a : W x W ^ R, a continuous bilinear form on W and coercive on 
V — V. There is one and only one UQ ̂  V such that 

a{uo, v-uo)> g{v - UQ), \/ veV, (7.2.68) 

and further the application which associates UQ to every g is continuous, i.e., the Problem 
7.2.5. is well-posed. 

Let V = M (for M see (7.2.3)) in Theorem 7.2.4. so that we can discuss stability 
of the solution of the variational inequality (7.2.1). A comparison of (7.2.68) and (7.2.1) 
suggests tha t the linear functional g is defined as 

g{v) = {q, v)= [ qvdx, ^ v e M. (7.2.69) 
n 

Note tha t a test function v satisfies the boundary condition. Therefore, to prove contin-
uous dependence of the solution on the data, it is to be proved that if ui and U2 are two 
different solutions of (7.2.68) corresponding to the data qi and q2, then 

a\\ui-U2\\^< \\qi - q2\\w'inr « > 0- C -̂̂ -̂ O) 

Let gi and p2 be associated with qi and q2 through (7.2.69). From (7.2.68), we have 

a(ui,U2 — ui) > gi{u2 — Ui), {take v = U2) (7.2.71) 

and 

a{u2,ui — U2) > g2{ui — U2), {tdkev = ui). (7.2.72) 

Adding (7.2.71) and (7.2.72) and changing the sign, we obtain 

a{ui -U2,ui -U2) < g\[ui - U2) - g2{ui ~ U2) 

< \\9i - 92\\w'\\ui - U2\\w- (7.2.73) 

Using the coercivity of a{u,v) on P , (7.2.73) can be written as 

tt|K - U2\\w{n)< Iki - q2\\w'in)^ ^ > 0- (7.2.74) 

This proves continuous dependence of the solution on the data . The Problem 7.2.5. is a 
generalization of Problem 7.2.3. as it imposes weaker conditions on the form of a{u/u). 
There is an interesting geometrical interpretation of the minimization of the functional 
(7.2.46). Using Riesz representation theorem, f(v) in (7.2.46) can be written as 

fiv) = IMIV - («*. " ) , V e P, u* e W. (7.2.75) 
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Define a functional F{v) as 

F{v) = f{v)-^l\y\\l 

= \\\yfw-{u\v)w + \\\u*\\l 

= \\\v-urw (7.2.76) 

If there is an element of V which minimizes F, then it also minimizes / and minimizing 
F amounts to finding 8i v E V whose distance from a fixed u* E W is minimum, i.e., 
||tiQ — tx*|| is minimum. U UQ eV is such that ||iio — î *|| is minimum then 

IK - u*\\<\\v - n*||, \fveV. (7.2.77) 

It can be proved that the inequality (7.2.77) is equivalent to the following inequality 

{uo-u*,v-uo)>0, yve V. (7.2.78) 

Hint: let UQ, U* and v be the vertices of a triangle. Use the proposition that the sum of 
the two sides of the triangle is greater than the third side. Problems 7.2.2. and 7.2.3. 
are both equivalent to the problem of finding UQ E V for a given u* (determined by 
g) satisfying (7.2.78) for \/v EV. UQ is called the projection of u* on V. The inequality 
(7.2.78) is yet another way of writing the variational inequality associated with functional 
(7.2.46). 

Some of the results discussed above can be proved under weaker conditions by consid-
ering a reflexive Banach space in the place of a Hilbert space but in a Hilbert space more 
interesting results can be obtained which in some cases have interesting interpretations. 

In (7.2.64) (we consider this inequahty as it is more general than (7.2.46)), g is hnear. 
Therefore, (7.2.64) can be written as 

a(no, uo-v)- g{uo) < -g{v), ^ veV. (7.2.79) 

This suggests that we can consider variational inequalities of the type 

a(u, v-u)+ p{u) < p{v), y veV, (7.2.80) 

where p : W -^ Ris not necessarily linear. In view of (7.2.80), we want to study now the 
minimization problem associated with the functional 

f{v) = m{v) + p(v)] f :W -^ RU {oo}, (7.2.81) 

where p is not hnear and m{v) could be a functional whose Gateaux derivative denoted 
by \/m{v) exists. The motivation for considering Gateaux derivative comes from the 
fact that in seeking the minimum of a function defined from R -^ R we look for those 
points at which the classical derivative of the function is zero. On using the linearity of 
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a{u, v) it was possible to calculate the derivative in (7.2.65) and therefore the Gateaux 
derivative of the bihnear form a{u, v) exists. If the continuity of a{u, v) is assumed, then 
it can be proved that the mapping v -^ a(u,v) is continuous (see (7.2.4)). What type 
of functional m{v) should be? Note that p{v) can be easily handled as it is enough if it 
is l.s.c. and a proper convex functional. A question similar to the one raised about the 
minimum of the functional in Problem 7.2.4 can be asked for the functional (7.2.81). 

Problem 7.2.6. Given a Hilbert space W, V CW, a, non-empty closed convex set 
and f : W -^ RU {-j-oo}, a functional of the form f{u) = m{u) -\-p{u)\ find UQ E V such 
that 

f{uo)<f{v)^ yveV. (7.2.82) 

The conditions under which UQ is the solution of (7.2.82) are given in the following 
theorem. 

Theorem 7.2.5. If m{u) is finite, convex and G-differentiable {Gateaux differen-
tiable) on V and p is convex and a proper functional on V, then UQ E V is the minimum 
of f{u) in Problem 7.2.6. if and only if UQ satisfies the inequality 

^ , (Vm(iio), ^̂0 - v)^ + p{uo) < p{v), VveV. (7.2.83) 

The inequality (7.2.83) presents yet another form of variational inequality. We shall 
not pursue further the generalizations of the functional whose minimum could be ob-
tained. 

Variational equation 

li V = W in Problem 7.2.4. and we seek the minimum of / for V t; G W, then in 
(7.2.65), a could be any real number and not restricted to 0 < a < 1. In this situation, 
in the place of (7.2.65), we shall have an equation f'{0) = 0 and we get a variational 
equation to determine the solution no and we have 

a{uo,z) =g{z), zeW. (7.2.84) 

However, this is not the case always. For example, if / is of the form (7.2.81) in which 
m{v) is G-differentiable but not p{v), then even ii V = W, we have an inequality of the 
form (7.2.83) (cf. [22]). 

The bilinear form a(ii, v) in (7.2.14) is not symmetric and therefore the scalar product 
which by definition is symmetric cannot be defined in terms of a(w, v). The bilinear form 
(7.2.24) is symmetric and let us examine what happens if a scalar product is formally 
defined in terms of a(u, v) by the equation 

(u,v) = a{u,v)= js/u-Vvdx, u,v e H\n). (7.2.85) 
n 

All other properties of the scalar product are satisfied by (u, v) if it is defined by (7.2.85), 
except the property {u,u) = 0 => u = 0. We have already seen that if a bilinear form 
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can be equated with a scalar product then the biUnear form is continuous and coercive 
and both these properties are very useful in analysing the solutions of the variational 
inequalities. It is possible to define a scalar product with the help of (7.2.85) after some 
modifications in the formulation of the variational inequality. Let Q C i?'̂  be an open 
bounded set with dQ of class C°, i.e., every point of dQ has a neighborhood U such that 
dQnU IS the graph of a continuous function (cf. [182]), u G //^(O), k e N and V^u 
(a-th order weak derivative, see Appendix D) G 1/̂ (̂ 2), |a| < k. H^ can be provided 
with the scalar product 

{U,V)HH^) = E ( ^ V ^ " ^ ) L ^ ( ^ ) , (7.2.86) 

and 

(^,^)//Mi^)= E f\D''u\'dn. (7.2.87) 
N<fcn 

The norm ||ti||//fc(m = (u.uY^'^. The scalar product in HQ{Q) {HQ{Q.) is the closure of 
the space C^{Q) in VK '̂̂ (Q), see Appendix D) can be defined as 

{^.y)H^in) = E {D''u,D-v)mn). (7.2.88) 
\a\=k 

In the space HQ{Q), the equivalence of the norms generated by the scalar products defined 
in (7.2.86) and (7.2.88) can be asserted with the help of the following theorem. 

Theorem 7.2.6. Let Q C /?" be an open bounded set and /c E TV (N is the set of 
positive integers). There exist two constants /Si and /32 such that for every u G HQ{D.) 
the following inequality holds. 

J2 f\D^u\^dx\ < ( E / P " ^ I ' ^ ^ ) 

< /^2( E [iD'^^l'dx] . (7.2.89) 

The inequality on the l.h.s. of (7.2.89) can be easily proved and we have /?i = 1. To 
prove the inequality on the r.h.s., the Poincare's inequality [22] can be invoked which 
states that if ^ G C^Q) then 

av^'' 
^X^ 

dx, (7.2.90) Jw'dx<pJ2j\ 

for some constant /? > 0. Since HQ{Q) is the closure of the space C^(l]), (7.2.90) holds 
even if t/; G HQ{Q). If the r.h.s. in (7.2.90) tends to zero, then the l.h.s. also tends to 
zero which implies ip = 0. The above discussion suggests that the scalar product can be 
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defined with the help of (7.2.88) provided the space HQ{Q) is considered in the place of 
H\n). 

Next we show that the existence and uniqueness results are not affected if the space 
HQ{Q) is considered in the place of H^{Q.). Let u be the solution to the variational 
inequality 

f Vu ' V{v - u)dx > f q{v- u)dx, \/ v e M, u e M, (7.2.91) 
n n 

where M is defined by (7.2.3). U w = u — d, then w = 0 on dQ and w e HQ{Q). U is the 
solution to (7.2.91) if and only \i w — u — d\s the solution to 

/ S/w ' V{v - u)dx >{q,v-u)-jvd- V{v - u)dx. (7.2.92) 

We have, v — u = v~d — w = C,—w, and both C and w belong to Hl{Q) C H^{Q). The 
inequahty (7.2.92) can be written as 

fVwV{C-w)dx> (FX-w), VCeMi, (7.2.93) 
n 

(F, C) = {q, C) - / Vd • VCdx, 4 , e L^(Q), 1 < z < n, (7.2.94) 

where 

and 

Mi = {Ce H^{n) :C>^IJ-d}. (7.2.95) 

It can be seen that if <i G H^{fl), and q G H~^{Q) then F is linear and continuous on 
H\n), i.e., FeH-\Q). 

It will now be shown that A^i is a non-empty closed convex set, a{wX) is continuous 
and coercive on Mi, so that Theorem 7.2.4. can be applied. If Cî  C2 ^ -A î, then 
aCi + (1 - tt)C2 > Oi{i^ - d) + {1 - a)(V^ - d) > ip - d, for 0 < a < 1. Therefore 
A^i is a convex set. The functions of HQ{Q) are absolutely continuous functions if 
fl is an open subset of R^. Let ip be continuous on Q = (0,6). Consider the function 
[ip—d]'^ = [ip—d+\ip~d\]/2. [tp—d]'^ is the positive part oiip—d, therefore [(l)-d\^ > ip—d. 
AsC = '̂  — t/ = Oon dQ, 'ip — d < Q on dQ and so [ip — d]'^ = 0 on dQ. Mi is non-empty 
as it contains [ip — d]"^. We shall now show that the space Mi is closed (complete in the 
norm defined through (7.2.88)). Let {vn} be a convergent sequence in Mi whose limit is 
V. It is to be proved that v e Mi- The sequence {vn} can be thought of as a subsequence 
of a sequence {vn} in HQ{Q) and {vn} converges to v G HQ{Q) in the a.e. sense. Since 
Vn G Ml, Vn'>^ for V n. {v^] is a subsequence of [vn] therefore v > ip and so 1) G M\. 
In the space HQ{Q), scalar product can be defined as 

{w, C) = a{w, 0= [ VwVC dx. (7.2.96) 
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l|2 We have a(w,w) = {w,w) >\\w\\ and therefore a{w,() is coercive and continuous on 
HQ{Q) or coercive on A^i — Al i - The conditions of Theorem 7.2.4. are satisfied and a 
unique solution WQ of (7.2.92) exists in Aii. The unique solution UQ of (7.2.91) is then 
given by UQ = WQ -{- d. 

Till now only Dirichlet problem has been considered for the elliptic operator of the 
form V^. We now consider a problem of the form 

- V \ + Xu = q, a.e. in Q, u e H^(n) n C(Q), q G L^{n), (7.2.97) 

u = d, a.e. on dQ, d e L^ {9) . (7.2.98) 

The differential equation (7.2.97) can be obtained as an Euler equation of an appropriate 
minimization problem, for example, in (7.2.60) take a[u^v) given by (7.2.100), g defined 
by (7.2.69) and v G H'^{Q) D C{Q). If an obstacle is introduced such a^s v > ip then the 
obstacle problem for (7.2.97) —(7.2.98) can be formulated as a variational inequality of 
the form (see the derivation of the complementarity problem in (7.2.37) obtained from 
the minimization problem) given below in (7.2.99). 

a{w, C-uj)> {qX-uj),\f Ce H^{Q), w G / / d ( ^ ) , (7.2.99) 

where 

a(wX)= fVw.VCdx + xfwCdx, \f w, C ^ ^ o ( ^ ) - (7.2.100) 
n n 

It can be proved that if A > —1//?, where P is the same as in the Poincare's inequality 

(7.2.90) then a{wX) is coercive on H^{Q.) (cf. [22]). 

If the boundary condition is of the Neumann type such as 

- ^ = r, a.e. on dQ, r G L^(Q), (7.2.101) 

where ft is the unit outward normal to dVt, then the obstacle problem results in a varia-
tional inequality of the form 

a{u,v-u) > f q{v-u)dx+ f r{v - u)dx, V i; G H\n), ue H\n). (7.2.102) 

In this case a{u, v) has the same form as in (7.2.100) but u,v e H\n) (boundary 
condition is different). By choosing A > 0 and z/ = min( l ,A) , it can be shown that (cf. 
[22]) 

a{v,v)>u\\v\\l,^,,^, (7.2.103) 

where the norm in //^(Q) is defined by (7.2.86). Note that the Neumann boundary 
condition (7.2.101) has already been incorporated in (7.2.102). The test function need 
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not satisfy the Neumann boundary condition as it occurs naturally in the inequality. 
When — V^w -^ Xu < q is multiplied by {v — u) and integrated over Q and integration 
by parts is done we get (7.2.102). The integration by parts will give an integral over dQ, 
and the Neumann boundary condition is incorporated. If A = 0, the form a{u, v) is not 
coercive, and in this case the problem with Neumann condition does not always have a 
solution; and when it does, it is not unique. 

The boundary conditions could be of mixed type, for example, let dQ = dQi U 
aOs, a^i 0^^2 = 0 and 

-V^u + A = ^, a.e. inQ, (7.2.104) 

u = d, a.e. on 5^1, (7.2.105) 
Ou 
— = r, a.e. on aOa. (7.2.106) 
on 

Then the variational inequality formulation is still given by (7.2.102) with dfl in the 
integral on the r.h.s. of (7.2.101) replaced by ^^2- Since a{u,v) remains unchanged, in 
this case also, (7.2.103) holds good and a{u,v) is coercive. The test functions have to 
satisfy the boundary condition (7.2.105). 

Operators such as the one considered in (7.2.13) or even more general operators can be 
considered and the existence and uniqueness of solutions of the variational inequalities so 
obtained can be discussed under suitable assumptions (cf. [22]). It is not always possible 
to formulate a given physical problem as a variational inequality problem or obtain a 
variational equation for the problem. 

Regularity of the solution is an important aspect of the study of variational inequali-
ties. Some results on the regularity of solutions will be given in the context of parabolic 
variational inequalities. With the help of the obstacle problem of the string discussed 
earlier in Problem 1.1.12., some other aspects of variational inequalities such as the choice 
of appropriate spaces in which the solutions are sought, and the restrictions on the ob-
stacle so that the set A^ in (7.2.3) is non-empty, will be discussed in the next section. In 
general the space of unknown functions should be large enough so that the existence of 
solutions can be discussed, but small enough so that a unique solution can be obtained. 
In physical problems, smoothness of solutions cannot be ignored. In principle, the data 
spaces should be general so as to accommodate various types of data but the continuous 
dependence of the solution on the data is required for well-posedness. 

7.2.5 Equivalence of different inequality formulations of an ob-
stacle problem of the string 

We restate briefly an obstacle problem of the string as a problem of finding a continuous 
function v(x) which minimizes the energy functional f{v), where 

f(v) = ^J^{v'fdx, v€M2, (7.2.107) 
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M2 = {ve H\0,b):v{0) = v{b) = 0, V{X)>IIJ{X),\/xe{0,b)} 

= {veH^{0,b): v{x)>i;{x),y xe{0,b)} (7.2.108) 

Since we are dealing with a physical problem, v and tp should be continuous functions. 
It is clear from Fig. 7.2.1. that the first order derivatives of v{x) and ip{x) need not be 
continuous but they should belong to L'^{ft) which is also suggested by the integral in 
(7.2.107). 

Fig. 7.2.1. Differentiability of i;(a:) 
is not required. 

Fig. 7.2.2. The set M2 is empty. 

In Fig. 7.2.2., although v{x) > il){x)^ v does not satisfy the boundary conditions and 
so the set AI2 is empty. For M2 to be non-empty, 1/; must satisfy one of the following 
two conditions. 

(V l̂) : 7/; G C^(n), t/;(0-|-) < 0 and i/;(6-) < 0. 

(V̂ 2) : il) e H\n), V (̂0) < 0 and t/;(6) < 0. 

(7.2.109) 

(7.2.110) 

Note that by increasing the smoothness of -0, the smoothness of the solution is not 
increased. For example, if tp is taken as a parabola then ip G C°°(Q), fl = (0,6), but 
still the second derivative of the solution u" ^ C^(0, 6) if the parabola does not pass 
through the points 0 and b. In showing the equivalence of different forms of variational 
inequality formulations given below for the obstacle problem, the treatment is not strictly 
rigorous. A rigorous treatment would require that the condition u" < 0 is considered in 
the sense of distributions in the formulation (I) given below. If w G i/^(0,6), then it is 
not necessary that u" belongs to L^(0,6). It will be assumed for the present discussion 
that u,v e //^(n)nC(Q) and u" belongs to L^(Q). The obstacle ip satisfies one of the two 
conditions (-01) or ('02). For clarity, the three different formulations are restated below. 

(I) Find ue M2 {M2 as in (7.2.108)) such that u{0) 
{u - 'ip)u" = 0. 

u{b) = 0, w'' < 0, 16 > 0 and 
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(II) Find u such that 

b 

I u\x){v'{x) - u'{x))dx > 0, ^ ve M2, u e M2. (7.2.111) 
0 

(III) Minimize 

j{dvldxfdx, \J v^M2. 

If u',v' e L^n), then u'^ and u'v' G L^Q). Further let u" G L\Q). It will be 
assumed in the following that all the equations hold good in the a.e. sense. 

Equivalence of formulations (I), (II) and (III) 

(III) ^ (II). Assume that there exists a w G M2 such that 

b b 

fu'^dx< fw''^dx, ^ w eM2. (7.2.112) 
0 0 

Since M2 is a convex set, ii u,v G M2 then w = u + X{v — u) e M2, 0 < A < 1. From 
(7.2.112), we get 

b b 

ju'^dx < l{u'^ + X\v - u'f + 2\u'{v' - u')}dx, (7.2.113) 

0 < 2A I u'{v' - u')dx + 0 (A2) . (7.2.114) 

0 

For (7.2.114) to be true for V A > 0, we should have 

6 

Iu'{v' -u)dx > 0. 
0 

(II) => (III). If a(w, v) is defined by (7.2.24), then a{u - v,u-v) >0 implies 

b b b 

J2u\u' -v')dx- ju'^dx+ fv'^dx>0, (7.2.115) 

fu^dx< fv'^dx-2fu\v'-u)dx< fv'^dx. (7.2.116) 
0 0 0 b 

As (7.2.111) holds, the relation ./Q ?/(i/ - u')dx > 0 can be used in (7.2.116). The 
inequality (7.2.116) implies that u gives the minimum in (III). 
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(I) ^ (11). 
b 0 

/ u{v' — u)dx = u{v — U)Q — / u"{v — u)dx, 
0 0 

6 

= - j u{v-u)dx. (7.2.117) 
0 

Let 0 = (0,6) = /i U /2, where 

Ii = {x eQ: u{x) = ^p{x)}; u" < 0 in A if formulation (I) holds, (7.2.118) 

l2 = {x en-. u{x) > ip{x)}; u" - 0 in /2 if formulation (I) holds. (7.2.119) 

Using (7.2.118) and (7.2.119) in (7.2.117), we get 
h 

fu{v' - u')dx = - j u"{v - ^{x))dx > 0. (7.2.120) 
0 h 

The integration by parts in (7.2.117) requires that u" should belong to L^{Q). Therefore 
(I) ^ (II) provided the solution u of (I) is such that u^' G L^{Q). FVom Fig. 7.2.1 it is 
clear that the solution may exist even if u" ^ L^{Q). It has been shown in [183] that 
if ip be such that ip" is a Radon measure and its positive part can be represented by a 
function belonging to L^(0, 6) then the condition u" ^ L^{Q) is not required. 

(II) => (I). Consider (7.2.117) and the case u>ip. Letv = u+C. C > 0, C ^ C'^(^), 
and V e M2- If (II) holds, then 

h 

- fu"(dx>0. (7.2.121) 
0 

The relation (7.2.21) implies u" < 0 in fl. 

Next consider the case u> if). Let v = u-\- eC,, ( E CQ^{I2)- Extend C to Q trivially, 
i.e., C = 0 in / i . If £ is sufficiently small, v will be greater then ijj and we have 

h h 

I u'{v' - u) dx = - j u"{v -u) dx= -£ j u"C dx > 0. (7.2.122) 
0 0 / 2 

Since (7.2.122) holds for all sufficiently small £ which could be positive or negative, it 
can be concluded that 

fu'Xdx = 0. (7.2.123) 
h 

As C is arbitrary, u" = 0 on /2. 

The equivalence of different variational inequality formulations of problems involving 
more general elliptic operators can also be discussed. For example, it can be proved 
that the variational inequality (7.2.1) with a{u,v) defined by (7.2.14) is equivalent to the 
variational inequality (7.2.37) in which the operator A is given by (7.2.13) provided ?i, 
the coefficients in the elliptic operator, and the obstacle ip satisfy some conditions [22]. 
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7.3 The Parabolic Variational Inequality 

7.3.1 Formulation in appropriate spaces 

Let Q be an open bounded domain in K^ and Qt^ = 0 x {0 < ^ < ^*}. One of the 
problems of mathematical physics is to solve the initial-boundary value problem stated 
below in (7.3.1)-(7.3.3). 

Tt + AT = / , i n ^ ^ (7.3.1) 

T = g, ondQt., (7.3.2) 

T = To, in n X {0} , (7.3.3) 

where 

A = -f: au{x. t ) ^ ? ^ + E H ^ ^ t)^^^^ + d{x,t)T{x,0, (7.3.4) 
iT^i oxidxj ^ dxi 

dQu =dnx {0,t,). (7.3.5) 

dQt^ U 17 X {0} is called a parabolic boundary. The weak form of problem (7.3.1)—(7.3.4) 
can be stated in terms of finding a function T{x,t) € H^(QtJ satisfying the equation 

( T „ v - T ) + a{t;T,v-T) = (f^v-T), (7.3.6) 

for a.a. t G (0, t^) and all v G 7/^(0^ J . v satisfies the given initial and boundary conditions, 

a(,T,.) = / ( E a . . £ | ; ; + E^.|;- + '̂ ^^k (7.3.7) 

^̂  = ^̂  + E?^^ (7-3.8) 
ox J 

= Ivwdx. (7.3.9) 

It has been assumed in (7.3.4) that the data, the temperature derivatives with respect 
to x and i, and coefficients a^j are suflBciently smooth functions (cf. [1] and proposition 
7.3.1.). There does not exist a minimization principle for parabolic problems. Often 
Biot's variational statement [184] is taken as a variational principle. Every elliptic prob-
lem cannot be generalized to a transient problem, for example, the obstacle problem for 
the string (Problem 1.1.12.) does not have a time dependent generalization. If an obsta-
cle is introduced in the formulation (7.3.1)—(7.3.4), then we may obtain an inequality. 
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Parabolic variational inequality for the problem in (7.3.1)—(7.3.4) can be defined in any 
of the following two equivalent forms. 

(I) For a.a. t e (0,^=,), let 

E{t) =^{ve H\n); V > i){x,t) a.e. in Q]. (7.3.10) 

E{t) is a closed convex subset of H^{Q). To make E{t) a non-empty set, we shall take 
ilj[x,t) < g{x,t) a.e. on dQ for t G (0,^*). A function T{x,t) G L^{0,t^] H\n)),T{t) e 
E{t), for a.a. t G (0,^*), i.e, for each fixed t, T{x,t) = T{x) G H^{Q) is called a solution 
of the parabolic variational inequality (7.3.11) if 

{Tt,v-T)-^a{t]T,v-T)>{f,v-T), for a.ate{0,t,), (7.3.11) 

is satisfied for V ̂ ; G L'^{0,t^;H^{n)) with v{t) G E{t) for a.a. t G (0,^*), v{x,0) = To 
and V satisfying (7.3.2). It is required that dT/dt G 1/̂ (0, i*; L'^{n)). ip{x,t) is called an 
obstacle, /(x,^), ip{x^t) and dQ should satisfy some smoothness conditions. Some of 
these conditions will be discussed for some specific problems to be discussed later. 

(II) The second variational inequality formulation is the integrated form of (7.3.11), 
i.e., in the place of (7.3.11), we have 

r^* dT 
Jo { ( ^ ' ^ - ^ ) + ^ ( ^ ' ^ ' ^ - ^ ) - ( / ' ^ - ^ ) } ^ ^ > 0 - C -̂3-12) 

Let 

E = {ve L'^{0,t^]H\n)); v>ip{x,t) a.e. in Q^., v{x,0)=To}. (7.3.13) 

v{x, t) satisfies the boundary condition (7.3.2). If there exists a function T(x, t) E E with 
dT/dt G 1/2(0, t^] L'^i^)) such that (7.3.12) is satisfied for all v e E, then T{x, t) is called 
a solution of the variational inequality (7.3.12). 

Any solution of (7.3.11) will satisfy (7.3.12) and so the formulation (I) implies for-
mulation (II). We assume that a solution T{x,t) of (7.3.12) exists. For some £ > 0 such 
that (̂ 0 ~ 5̂ 0̂ + ^) ^ (0, t^), consider the following function. 

V = T[x,t), t i {to-£,to-\-£ 

= V, t e {to - £,to-\-£) 

If V defined in (7.3.14) is used in (7.3.12), then 

to+e 

^ dt 

(7.3.14) 

'71 dT 
J U^.v-T) + a{t;T,v-T)~(f,v-T)\dt > 0. (7.3.15) 

to-e 

Since the interval (̂ o — £,to + £) G (0,^*) is arbitrary, we obtain (7.3.11). The comple-
mentarity problem corresponding to the parabolic variational inequality (7.3.11) in which 
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the operator A is given by (7.3.4) consists of finding T{x, t) satisfying the following system 
of equations. 

Tt + AT> / , 

T>ip{x,t), \ inQt^. (7.3.16) 

{Tt + AT-f){T-,l;{x,t)) = 0,. 

The relations in (7.3.16) are satisfied in the a.e. sense and T G L^ (0,^*;//^(O)). 
The equivalence of the variational inequahty (7.3.12) and the complementarity prob-
lem (7.3.16) can be estabhshed. The proof is similar to the one discussed in the elliptic 
case (see § 7.2.3). Consider first the case T > ip, where T is the solution of (7.3.12). If 
0 G C^(QtJ, 0 > 0 and 0 (x, 0) = 0 then v = T-{-(j) belongs to the set E. 

(Tt + AT -f)(t>dxdt = fli-^^y- T)+a{t] T, v - T)-{f,v- T)\dt > 0. (7.3.17) 
fit, 0 '̂  
/ ' 

Since 0 is arbitrary, we conclude that dT/dt -\- AT — f > 0 in Q^,. Next, we con-
sider the case T > ip and use the procedure followed in the elliptic case (equations 
(7.2.32)—(7.2.36)) with a difference that now v = T — scf), \£\ > 0, £ very small, 
0 € C^i^u) and (p{x,0) = 0. It can be seen that dT/dt + AT - f = 0. Combin-
ing the two cases T > ip and T > ip, (7.3.16) is obtained. To prove that (7.3.16) implies 
(7.3.12), consider the first integral on the l.h.s. of (7.3.17). On replacing 0 by (z; — T), 
writing v — T = v — ip— (T — tp) and using the third relation is (7.3.16) and the fact 
f > -0, we obtain 

/ • 

{Tt + AT-f){v- T) dxdt > 0, \f v e E. (7.3.18) 

fit» 

Since (7.3.18) holds for all v e E,T is the solution of (7.3.12). 

In the elliptic case, the coercivity of the bilinear form played an important role in 
proving well-posedness and uniqueness of the solution. If the transformation 

f= e-"*T, a > 0 , (7.3.19) 

is used then Tt + AT = f is transformed into 

f;-h (/I + a) t = e -"7 , (7.3.20) 

and a{t]T,v) is transformed into 

d{t] t , v) = a{t] f,v)-^a ( t , v). (7.3.21) 

If a is sufficiently large, then irrespective of the fact that a(t; T, v) is coercive or not 
a{t] T, v) is coercive. Without any loss of generality it can be assumed from the start 
that a(t]T,v) is coercive and if for a.a. t, T G H^{Q) then 

a(^;T,T) > A||T||^i > A / ( |VT|VT2)c /a : , A > 0 . (7.3.22) 
n 
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Uniqueness and stability of the solution of (7.3.12) can be proved if coercivity con-
dition is imposed on a{t]T,v) in (7.3.12). Let Ti and T2 be two different solutions of 
(7.3.12) satisfying the same initial and boundary conditions. Taking v = T2 in (7.3.12) 
and T = Ti, we obtain 

'm^ T2 - Ti + a{t; T,T2 -T,) - [f^T^-TM dt> 0. (7.3.23) 

Similarly by taking T = T2 and v = Ti, a. second relation is obtained. Adding the two 
relations so obtained, it is easy to obtain the relation 

/ U ^ (Ti - T2, Ti - T2) + a{t;T, - T2,T, - T^) \dt<0. (7.3.24) 

On integrating the first term under the integral in (7.3.24), remembering that 
Ti — T2 = 0 at t = 0 and using the coercivity condition (7.3.22), we obtain. 

t* 

\ \\Ti - T^ilL. + A / lITi - r2||^,(„) dt < 0. (7.3.25) 
0 

Since both the terms in (7.3.25) are positive, each should be zero and this implies Ti = T2. 
The stability of the solution can be proved by following the proof given earlier in the 
elliptic case (cf. § 7.2.3 equation (7.2.74)). For proving the existence of the solution 
penalty method is generally used. The conditions under which a unique solution of the 
variational inequality (7.3.11) exists for the parabolic operator given in (7.3.4) have been 
discussed in [1] and are briefly given below in Proposition 7.3.1. 

Proposition 7.3.1. Assume that the following conditions are satisfied. 

(1) The operator Tt + AT, where A is given by (7.3.4) with coefficients defined in Vtt, 
is of parabolic type at {x,t), i.e., 

n 

E «ij(^. *)^'0 > A lel' , V ̂  G i?", A > 0. (7.3.26) 

It is said to be uniformly parabolic in Vtt^ if (7.3.26) holds for all (x, t) in Q.t^ and A 
is independent of (x,t). 

(2) E li«.^lla + E ll'-.L + NIL < M(Constant), 0 < a < 1, (7.3.27) 

where 

\\T{x,t)\l = \\T{xM, + H.{T{x,t)), (7.3.28) 

||T||o= sup|T(x, i ) | , (7.3.29) 



174 Elliptic and Parabolic Variational Inequalities 

HM= sup f̂ --̂ )-̂ ^^^^^^^^^^^^ (7.3.30) 

Pdiix, 0, {x\ t')) = \x- x'\ + 1̂  - t'\"^. (7.3.31) 

Pd{{x,t), {x',t')) is called parabolic distance. 

(3) dVt is in C2+^ (cf. Appendix D). 

(4) d{x,t) > 0 and / , g, D^g, Dig, Dtg belong to CiClt^). C"(OtJ is the space of 
functions u{x,t) which are Holder continuous with exponent a, Ha{u) < oo. 

(5) \Dxaij\ < Ml (constant) so that a{t;u,v) can be defined. (7.3.32) 

If the above conditions are satisfied, then there exists a unique solution of the obstacle 
problem (7.3.11) ((7.3.12)) and 

D^T, DlT, DtT belongs to ^^(f^f J , Vp, 1 < p < oo. (7.3.33) 

7.4 Some Variational Inequality Formulations of Clas-
sical Stefan Problems 

7.4.1 One-phase Stefan problems 

The variational inequality formulation is a fixed domain formulation and therefore weak 
enthalpy formulations of the Stefan problems are more suitable for variational inequahty 
formulations than the classical formulations of Stefan problems. Even in the classical 
Stefan problems, variational inequality formulations of one-phase Stefan problems can 
be handled easily than the two-phase Stefan problems. This is because a one-phase 
Stefan problem can be formulated in terms of the 'freezing index' which together with its 
gradient is continuous throughout the region. Also the constraint that the temperature is 
greater than or equal to (less than or equal to) the melting temperature holds throughout 
the phase-change region. We describe below some variational inequality formulations 
of one-phase Stefan problems. Some results concerning analysis of solutions of these 
problems are also given. 

Consider an open bounded domain Q in R^. At time t = 0 , 0 is filled with ice cold 
water at temperature T = 0 where 0 is the dimensionless freezing temperature of water. 
Let dQ = dQf{t) U dQ,e{t) U drtr{t) and on these three disjoint portions of the boundary, 
three diff"erent types of boundary conditions are prescribed. On the portion dQj coohng 
is done so that ice formation takes place. For ^ > 0, ^̂  = ^o{t) UQi{t) U r(^). rto{t) is the 
ice region at time t, 0 < t < t^, ^i{t) contains water at temperature T = 0 and r(^) is the 
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ice-water phase-change boundary whose equation is taken as f = (p{x)^ x ^ Q. Qo{t) and 
^i{t) are disjoint regions. The mathematical formulation of this problem is as follows: 

^ = V. {kVT), in QQW, 0<t<t,, (7.4.1) 

T = 0, i n ^ i W , 0<t<t,, (7.4.2) 

T(x, t) = g{t) < 0, on ^Q/, 0 < t < t^, (7.4.3) 

T(x, t) = 0, on dQr, 0<t<t^, (7.4.4) 

dT 
aT = A:--, on dQe. 0<t<t^, (7.4.5) 

an 

k\/T'V(t) [x) = Ic ; and T (x, 0 (a:)) = 0, (7.4.6) 

T{x,0) = 0 i n ^ . (7.4.7) 

Here, n is the unit outward normal on dO^e^ Ic = l/C > 0, /c is the thermal diffusivity 
and a is the constant for heat radiation. It has been assumed that r{t) is monotone and 
ice is progressing on water. 

Although the constraint T < 0 holds throughout ^, the variational inequality formu-
lation of this problem presents two difficulties. The above formulation is not a continuum 
model (because of the free boundary conditions) and secondly VT is discontinuous across 
t = (t){x) and so integration by parts which is required to obtain the bilinear form cannot 
be done in Q unless we write the integral as the union of two integrals (see equation 
(7.3.7)). 

DuvaiVs transformation 

Using DuvaiVs transformation [185], temperature T(a:,t) is transformed into another 
dependent variable u(x,t), called freezing index [186], such that u and Vu are continuous 
throughout Q. u[x,t) is defined as 

t 

u(x,t) = I T{x,T)dT, in Qo(0; ^ (^ .0 = 0 in Oi. (7.4.8) 

Note that u{x,t) is continuous in Q x (0, t*) . 

From (7.4.8), we can easily obtain the equation 

t 

Vu{x, t)= f VT(x, T)dT - T(x, 0(x)).V0(2:), in QQ 
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Vu{x,t)= I VT{x,T)dT, inQo(^), 
<i>{x) 

Also 

Vu{x,t) = 0, mVLi{t). 

t 

V • (kVu) = / V • (kVT)dT - kV{T{x, (/)(x))).V0(2:) 
4>{x) 

} ^^, 1 

(7.4.9) 

(7.4.10) 

0(x) 

di 
[ Tdr - I,, 

Hx) 
du 
Jt 

/c, in Qo(0. 

du 
'di -V '{k\/u)-lc = 0, inQo(0-

If u - 0, then du/dt - V. (^V^; 

du 
~di 

: = -lc< 0. Therefore 

V • {k\/u) -lc<0, inn, 0<t < t*. 

(7.4.11) 

(7.4.12) 

(7.4.13) 

The initial and boundary conditions for u(x,t) can be obtained from those given for T(x,t) 
and the problem for the dependent variable u(x,t) can be stated as follows: 

du/dt - V • {kVu) - /c < 0, in Qt. = ^ x (0, ̂ *), ] 

u<0, inQt., \ (7.4.14) 

u(du/dt - V • (kVu) - /,) = 0, in Qt.. J 
t 

u{x,t) = [ g{T)dT = g{t) < 0, and ^(0) = 0; on dQfit), 0<t<t^, (7.4.15) 
0 

u{x, t) = 0, on d^rit), (}<t<t,, (7.4.16) 

auix,t) = k^, on dQeit), 0 <t <t,, (7.4.17) 

on 

u{x,0) = 0, inQ. (7.4.18) 

The above equations are to be understood in the a.e. sense. 
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A variational inequality of the form (7.3.12) will now be obtained for equations 
(7.4.14)-(7.4.18). Define a set D as 

where 

V < 0 a.e. in Qt., v{x,0) = 0 in Q, 

i; = 0, on dQr, 0 <t<t^, 

V = g{t), on d^f, 0<t<t^. (7.4.19) 

The test function v{x^ t) need not satisfy (7.4.17) as it will appear as a natural boundary 
condition in the formulation. 

It can be seen tha t 

{{ut, V -u) + {kVu, V{v - u)) - (/c, V - u)}^ 

= {ut-V - {kVu) -Ic, V- u)^ + {kVu -n, V- u)^^^, 0 < ^ < ^*. (7.4.20) 

The last term on the r.h.s. of (7.4.20) arises on doing the integration by parts of the 
term {kVu, V( f — u)). On dVtr and dVt, v — u = 0. In view of the third condition in 
(7.4.14), we have 

{ut - V. (kVu) -lc,v- u)^ = {ut - V. (/cVu) - /c, v)^ > 0. (7.4.21) 

It may be noted tha t in Qt., Ut — V • (kVu) — Ic < 0 and v < 0. On using (7.4.21) and 
(7.4.17) in (7.4.20), it can be written as 

{{ut, V — u) + {kVu, V{v — u)) — {Ic, V — U)}Q — {au, v — U)QQ^ > 0, 

for a.a. te (0,^*). (7.4.22) 

In (7.4.22), the boundary conditions (7.4.17) and (7.4.16) have been incorporated. 
Neumann boundary conditions are called natural boundary conditions because they are 
automatically taken care in the variational formulation and the test functions are not 
required to satisfy them. Dirichlet boundary conditions are to be satisfied by the test 
functions. On integrating (7.4.22) with respect to time, we get 

t* 

I [{{uu v-u)-\- {kVu, V {v - u)) - (/c, V - u)}^ - {an, v - U)Q^^ dt > 0. (7.4.23) 
0 

The inequality (7.4.23) is the parabolic variational inequality associated with the one -
phase Stefan problem (7.4.1)—(7.4.7). If there exists a function u £ D {D as above) 
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such that (7.4.23) is satisfied for all v £ D, then u is called a solution of the variational 
inequality (7.4.23). Hue L'^{0,t^;H\Q)) and the norm of u is defined as 

J Il"ll//i(f2) 
0 

^ -"^ (7.4.24) 

then L^(0, *̂; H^{Q)) is a Banach space. 

The formulation given in (7.4.14)—(7.4.18) is also a variational inequality formulation 
and in this case we are looking for u e L'^ (0, t^; H'^{Q)). It has been proved in [187, 188] 
that if the meas {dQf) > 0, then there exists a unique solution u(x,t) of the variational 
inequality (7.4.23) subject to the initial and boundary conditions (7.4.15)—(7.4.18) such 
that 

u e L\0, t,] H\n)) n L°°(0 , t,; L^{n))] SLudu-V' (kVu) G ̂ ^ ( a j . (7.4.25) 

The numerical solution of the variational inequality 

{u,v —u)Q-\-{kVu,V{v —u))Q-\-{au,v — u)dn^'> {lc,v — u)n, for a. a. ^G(0,^*) , (7.4.26) 

has been discussed in [188] by 'Galerkin approximation' in space and discretization by 
finite-diff"erence in time. A variational formulation of a two-phase Stefan problem has 
been given in [189] and its numerical solution has been obtained by finite-difference 
methods. 

The initial condition (7.4.18) imphes that at t = 0, 0 is occupied by ice cold water. 
We shall now consider the problem in which at t = 0 ice occupies a region Co with 
temperature g{x) < 0, Go C ft. ^ — GQ is filled with water at temperature T = 0. Let 
Qo{t) be the region occupied by ice at any time t and Qi{t) be the water region so that 
Q = Qo{t)UQi{t)[jr{t), where, QQ and ^ i are disjoint regions and r(^) is the ice-water 
interface whose equation is given by t = (p{x). li x e Go, then 0(a;) = 0. The initial and 
boundary conditions are given by (7.4.16)—(7.4.18). We assume that ice is progressing 
on water. The freezing index u(x,t) in this case is defined as 

u{x, t)= f T(x, T)dT, in no(t) -Go, 0<t< t,, (7.4.27) 
4>{x) 

t 

u{x,t) = fT{x,T)dT, in Go, 0<t< *̂, (7.4.28) 

0 

u{x,t) = 0, in Qi(0, 0 < ^ < *̂; and u{x,0) = 0, in Qi(0). (7.4.29) 

The above transformation was suggested in [190]. It is easy to check (see (7.4.11)) that 

V • {kVu) = ut- Ic, in ^o{t) -Go, 0<t< t,, k = IjG, (7.4.30) 
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V • {kVu) = ut- g[x), in Go; and 7i = 0, in Qi(t), ^<t<t^. (7.4.31) 

Define a function f{x) such that 

/ ( x ) -p ( a ; ) , ^ ( x ) < 0 , rrGGo(x), ] 
i (7.4.32) 

f{x) = lc>0, xen-Go. J 

In view of (7.4.30)-(7.4.32), we have 

ut - V.{kVu) - / = 0, w < 0, in Qoit), 0<t<t^, (7.4.33) 

and when ti = 0, we have 

u = 0; 'Wf - V. (/cVti) - f = -f = - / „ x € Q - r2o(0, 0 < ^ < ^,. (7.4.34) 

Combining (7.4.33) and (7.4.34), we get 

u {ut - V. (k\Iu) - / ) = 0, in Q, 0 < ^ < t^. (7.4.35) 

For (x,t) € r̂ f,, 

(ut - V. (/cViz) - / ) (t; - ti) - - ( ? i t - V . ( A ; V w ) - / ) ? i + ( 7 i t - V . ( W w ) - / ) ^ ; , 

> 0, a.e. in ^u, v< 0, in ^t.- (7.4.36) 

Therefore, the variational inequahty problem corresponding to (7.4.30)—(7.4.32) can be 
stated as the problem of finding u G 0 such that 

[uu v-u)^^r {kVu, V{v- u))^ -{f.v- u)^ - {au, v - u)^^^ > 0, 

for a.a. t G (0,t*) and \/ v e D. (7.4.37) 

Here, D is the same as defined in the context of problem (7.4.14)—(7.4.18). 

By taking Q = {a: : 0 < x < i?o < oo} , and Q = ^0(0 UQi(^) u r ( t ) , where Q.Q(t) and 
Q.\{t) are disjoint regions and r(^) is the phase-change boundary, a one-dimensional one-
phase problem has been considered in [178]. Oo(0) = {x : 0 < x < ^o, 0 < 5*0 < Ro) is 
the region initially occupied by hot water at the temperature h{x) > 0. r2i(0) = {x : So < 
X < RQ} is occupied by ice at the melting temperature zero. A variational inequality 
with u = g{t) > 0 (sufficiently smooth) prescribed at x = 0 has been studied in [178] 
when water is progressing on ice, i.e., w > 0 in Q{t^) = 0(0) x (0,^*). Using the 'penalty 
method' (cf. [1]), it has been shown that under suitable assumptions there exists a unique 
solution u to the variational inequality such that 

u, w ,̂ Ut, i/xx e L'^iQit,)), (7.4.38) 

and u > 0, Wf > 0 in Qo{t^). The region Qo{t) = {x : u{x, t) > 0} , 0 < ^ < *̂ is expand-
ing continuously with time. Further, the water-ice boundary F admits the representation 

F : x = a(t), 0<t<t^, 
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where cr is a continuously increasing function of t with ^o = a (0) < a (t) for ^ > 0. For 
each (xo, ̂ o) ^ T, there exists a neighbourhood Br of (XQ, ^O) such that 

Uxx: Uxt ^ C{QonBr). 

The one-phase Stefan problem has been studied by many authors with the help of the 
variational inequality formulation and references of several such studies can be found in 
[191]. In the water region, convection can be included in the formulation (cf. equation 
(7.4.43) given below). It is possible to obtain the complementarity problem in a constant-
velocity case by applying Baiocchi transformation [192] 

t 

u{x, t)= f T{x, T)dr, xeQx (0, t^), (7.4.39) 
0 

to equation (7.4.43). Even in this simple situation, it is not possible to convert the 
complementarity problem to a variational inequality formulation due to difficulties arising 
in the transformation of boundary conditions and the geometry of the domain (cf. [191]). 
Several problems connected with the one-phase Stefan problem, such as, the exterior 
problem, the continuous casting model, and the degenerate case pertaining to a quasi-
steady state model have been studied in [191]. In the interior problem, the melting of ice 
takes place due to a prescribed non-negative temperature on one part of the boundary of 
Q C R^ and the Neumann boundary condition prescribed on the remaining part of the 
boundary of Q. Some results of the regularity of the freezing index and its continuous 
dependence on the data in a strong sense can be found in [191]. The geometry of the 
exterior problem is similar to that of the expanding core model in the Hele-Shaw problem 
(cf. § 6.2.1). The variational inequality formulation of the exterior problem can be 
obtained in terms of the freezing index by using transformation (7.4.39). As discussed 
earlier, for large times, cusp-like singularities may develop on the free boundary. A strong 
geometric assumption about the data in the exterior problem leads to a star-shaped 
configuration without singular points [190]. 

A fundamental question which arises concerning the solution of a variational inequal-
ity is its relationship with the classical solution of the Stefan problem in which the 
temperature of the phase-change boundary is the melting temperature and the energy 
balance condition is satisfied pointwise on it. This question was essentially solved in 
[193, 194]. For the smoothness of the free boundary and the 'Caff"arelh's criterion' on 
the local existence of the classical solutions, see references [193] and [195]. Under some 
assumptions it has been proved that for each ^ > 0, the n-dimensional Lebesgue measure 
of the free boundary t = (t){x) is equal to zero; (j) [x) is a locally Lipschitz function and 
there exists a neighbourhood Go of the point (x,t) on the free boundary where the free 
boundary can be represented in suitable coordinates by the graph of a C^ function in the 
form 

Xn=^S{xuX2, Xn_i,^), SeC\ (7.4.40) 

and all the second derivatives of u are continuous upto the free boundary. 
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One-phase continuous casting model and its variational inequality formulation 

The formulation of the problem and the analysis presented below is not classical. This 
problem is being discussed here to introduce a continuous casting model and because 
of some novelty in the expressions of bilinear form and the inner product used in the 
formulation. 

The thermal energy conservation equation in a heat conducting body ft C R^ is given 
by 

de 
p-- + V-q = 0, mnt.=^x{0,t,), (7.4.41) 

at 

where e is the specific energy and ^is the heat flux vector. If the phase-change is taking 
place in Q at temperature T^ and the latent heat / is released, then e can be expressed 
as 

e = CT + lH,{T-Tm). (7.4.42) 

where Hy{T) is the Heavyside function {Hy{x) = 0, if x < 0 and Hy{x) = 1, hi x < 1). 
If the body is moving with a velocity v, then the total derivative with respect to time is 
to be taken and (7.4.41) can be written as 

^ + ^- V r - V.(VT) = -l(~ + ^- v V ( T ) , (7.4.43) 

For simplicity, it has been assumed in (7.4.43) that C = 1.0, p = 1.0, A; = 1.0, T^ = 0 
and / is a constant. The equation (7.4.43) holds in Qt^ in the distributional sense and 
for its derivation see [196]. We consider ice-water system in which the temperature of 
water is zero and ice is progressing on water. If 9 represents the difference between the 
solidification temperature and the actual temperature of ice, then (7.4.43) can be written 
as (cf. [196]) 

do f d \ 
~+v-Ve- V^e =-ll-+v.\/\ X(,>o), a.e. in Q,., (7.4.44) 

where x is the characteristic function of the set {̂  > 0}(x = 1 for {9 > 0}) which is 
now ice region and water region is the set {̂  < 0}(x = 0 for {̂  < 0}) . If the ice-water 
sharp boundary is written as t = (p{x), x e R^, x = (xi, X2, x^), then the classical Stefan 
condition and the isotherm condition can be written as 

{V^ • V(/) -h / (1 + ^ • V(/))} (T, 0 (x)) = 0; and 9 = 0. (7.4.45) 

To complete the formulation, the initial and boundary conditions should be added to 
(7.4.44) and (7.4.45). 

We shall now discuss variational inequality formulation of a problem arising in con-
nection with the formation of the continuous ingot by the process of continuous casting. 
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A simple diagram depicting solidification of the melt in continuous casting is shown in 
Fig. 7.3.1. As soon as a sufficiently stable core is formed, the platform B begins to drop 
down with the velocity v in the direction xi and thus it draws out a continuous cast of 
cooling liquid. For appropriate assumptions under which a simple mathematical model 
of continuous cast is formulated, see [21]. The portion of the ingot taken into account in 
the present formulation occupies a cylindrical open bounded domain Q = Qi x Q2 C R^, 
n = 2, 3 where ^1 = (0, 6), b is the height of the lateral mold and ^2 == (0, a) if n = 2 
because of the symmetry, or if n = 3, r̂ 2 C i?^ is a domain with Lipschitz boundary 8^2 
representing half the section of the ingot. Let FQ = {0} x 1̂ 2, Ti = (0, 6) x ^^2, and 
r2 == {i>} X ^2- A point X e Cl has the coordinates x = {xi,x') where x' = X2 if n = 2 and 
x' - (X2, X3) if n = 3. In the notation V = (^i, V ) , V = 82 ii n = 2 and V = (^2, ̂ 3) 
if n = 3. Here, ^i, 82 and ^3 denote the partial derivatives with respect to Xi, X2 and X3, 
respectively. The initial temperature of the melt is given by 

e{xux\o) = Oo{xux') <o, {xux') en. (7.4.46) 

Solid 

x,=s(x„t) 

_ Mold surface 
beingcooled 

J—Platform B 

Fig. 7.4.1. Formation of continuous ingot 

Boundary conditions which are prescribed on the lateral, bottom and upper surfaces 
of the cylinder are : 

6'(0, x\ t) = 0, on Fo, t > 0, (7.4.47) 

-Ve'n = a{e- Oi) on Fi, 6>i > 0, a > 0, (7.4.48) 

e{h,x',t) = e2{x\t), onF2, ^ > 0 . (7.4.49) 

The geometry considered in [191] is different from the geometry shown in Fig. 7.4.1. 
as only one branch of the free boundary has been considered in [191]. By symmetry 
consideration, one branch of the free boundary can be considered in Fig. 7.4.1. also but 
the boundary condition at 2:2 = 0 will be different from that at X2 == a and not as in 
(7.4.48). 
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The boundary Fi is being cooled, n is the unit outward normal on Fi. The energy 
equation in Qt* = O x (0, t*) is given by 

^^~d^~^^^^~\m^^^'d^)^^^''°^' ^'^' ^^ ^**• (7-4.50) 

Here, v = {VQ, 0,0) and VQ is the constant casting velocity in the direction of xi. Equation 
(7.4.50) holds in the sense of distributions. Let the free boundary be given by 

xi = S{x\t), x' G ̂ 2, t > 0, (7.4.51) 

where S{x', t) is a smooth function, S" : Q2 x (0, t^) —> [0, b). The conditions at the free 
boundary can be written as 

0 = 0] &nd-^-V0.VS = l(vo-^). (7.4.52) 
OXi Ot 

The second condition in (7.4.52) can be obtained by using relations of the type (1.4.19) 
and (1.4.21) and remembering that d[xi — S)/dt = VQ — dS/dt. The region Xi > S{x', t) 
is the solid region (see Fig. 7.4.1.) and the region Xi < S{x',t) is the melt region. 

Using the maximum principle, it can be proved that under the boundary conditions 
considered, for Xi > S{x',t), 6 > 0. Only dS/dt < VQ is physically admissible. In 
order to obtain variational inequality formulation of this casting problem, the following 
transformation has been used in [196] which regularizes the equation (7.4.50). 

t 

u{x,t) =Vo f 6{XI-\-VO{T-t),x',T)dT, x = {xi,x') eQ, t>Q, (7.4.53) 
0 

where ^ is a non-negative function and is extended to —00 < Xi < S {x',t) by taking it 
to be zero in this extension. If ^ G Lj^^(QtJ, then 6 can be obtained in terms of u by the 
relation (cf. [196]) 

du du 
—- +Vo^— = voO, a.e. in Qt.. (7.4.54) 
at oxi 

It can be shown that u{x,t) formally satisfies the following equations. 

(JU du 
-^ +^0^ V^u = fX{u>o)^ a.e. in Qt,, u>0, (7.4.55) 

u = 0, on Fo; and u = 0, at ^ = 0, (7.4.56) 

^ = a{g-u), onFi , (7.4.57) 

du du „ , , ^ „ , , 
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where f and g in (7.4.55) and (7.4.57) are given by (cf. [196]) 

/(x, t) = VQOO^XI - ht, x')Xj - Ivo [1 - X/], x ^ ^ . ^ > 0, (7.4.59) 

g{xux\t)= f Oii^.t-^- -,x)d^, 0<xi<b, t>0. (7.4.60) 
J Vo 

[xi-bt] + 

Here, [xi — bt] is the positive part of Xi — bt and Xi is the characteristic function of the 
set / related to the initial position of the free boundary $(0), and / is given by 

I = {{xi,x\t) e^ty, xi > S{x\0) + bt}, (7.4.61) 

/ c n+ = {{xux\t) e a.; xi > S{x',t)} = {e> 0}, 

$(0) -.xi = S{x',0). (7.4.62) 

The equations (7.4.54) and (7.4.55) hold in the sense of distributions and the reader is 
referred to [196] for their derivation which is not straightforward. 

For t > b/vo, X/ = 0 ^^^ X{u>o) > X/ ^^ ^ > 0 because dS/dt < VQ. TO write the 
variational inequality formulation, we introduce the following notations. 

a{u,v)= fVu'Vv + vofv-^-\-afuv, u{t), v{t) e Mi{t), (7.4.63) 

{u,v) = [uv + — [uv, u{t), v{t) e Mi{t), (7.4.64) 
J VQ J 
n r2 

{Git),v) = Jf{t)v + ajg{t)v-h Je2{t)v, v{t) e M,{t), (7.4.65) 

For a.a. t G (0.̂ *) 

M{t) = [v e H\n)- V = 0, on Fo} , Mi{t) = {v e M{t)- v > 0, on 0} . (7.4.66) 

The problem (7.4.55)—(7.4.58) has the following variational inequahty formulation. 

{du/dt,v-u) + a{u,v-u)> (G{t),v-u), a.a. t e {0,t,), 

\fv(t) G Ml, u{t) e Ml. (7.4.67) 

If there exists a ii{t) G Mi(^) such that (7.4.67) holds for all v{t) G M[(f), then u{t) is 
called a solution of the variational inequality (7.4.67). If may be noted that the boundary 
conditions (7.4.57) and (7.4.58) occur as natural boundary conditions in the fornnilation 
and so only the boundary condition on FQ has been imposed on v. 
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Under suitable assumptions, existence of the unique solution of the variational in-
equality (7.4.67) has been discussed in [191, 196]. If has been shown that the free bound-
ary has in fact the representation (7.4.51) such that dS/dt < VQ and {9, S) is the classical 
solution of the continuous casting problem. 

Oxygen - difTusion problem 

In the background of the previous formulations, variational inequality formulation of 
ODP discussed earher in § 3.3.2 does not present much difficulty. We consider equations 
(3.3.34)-(3.3.38) and take Q = [0,1], Vtt^ = Q x (0,^*), Qoit) = {x; 0<x < S{t)}, 0 < 
t < t^. In the region Oo(t), the concentration c > 0 and in Q\0o(^), c = 0. Therefore 
in 0, c > 0. Note that in ODP, the region under consideration is only Qo{t) and no 
constraint of the form c > 0 is imposed. The variational inequality problem is studied 
in the fixed domain Q, and the constraint c > 0 has been added to study an obstacle 
problem. It can be seen that 

n o \ ^ an 0 n ^ ' 0 0 

dc d 

0 0 

dc\ ' 
- / (^ - c) ^ dx+ I I - ^ — {v - c) dxdt + f [ {v-c) dxdt. (7.4.68) 

The test function v{x,t) satisfies the same initial and boundary conditions as the con-
centration c{x, t) and so the second term on the r.h.s. of (7.4.68) is zero. On rearranging 
equation (7.4.68), we obtain 

- iv - c) dxdt+ jj^--{v-c) dxdt 

+ / / ( . - c) dxdt = / / ( I - £ + l) vdxdt. (7AM) 
0 0 

We have ĉ  — ĉ x H- 1 = 0 if c > 0 and Q — ĉ x + 1 is equal to 1 if c = 0. Therefore, 
Q — Cxx + 1 > 0 for c > 0 and c {ct — Cxx + 1) = 0 in Q. As i; > 0, the last term on the 
r.h.s. of (7.4.69) is greater than or equal to zero and we get 

Jlicuv- c) + ( ^ , -^{v- c) J + (1,^; - c)\dt > 0. (7.4.70) 

This completes the variational inequality formulation of ODP. If there exists a function 
c{x,t) e E, where, E = {v e L^(0,t*; H\Q)) ; v > 0, a.e. in Q,^,t;(x,0) = c(x,0)}, 
and c(x,t) satisfies (7.4.70) for all v e E then c(x,t) is called a solution of the vari-
ational inequality (7.4.70). In the multi-dimensional case when 0 C -R", n > 1, the 
variational inequality formulation can be obtained following the procedure adopted in 
(7.4.68)—(7.4.70). The integration by parts will then require the use of Green's formula. 
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If oxygen-diffusion takes place in a subset of /?", n > 1 then the initial concentration 
has to be suitably prescribed as in this case it is difficult to obtain it from the solution of 
a steady-state problem which was possible in the one-dimensional case. The existence, 
uniqueness and regularity of the solution of (7.4.70) was studied in [74]. Some regularity 
results for the one-phase Stefan problems have been reported earlier in this section and 
for further information, see [197, 198, 199]. 

Is it possible to obtain a one-phase Stefan problem from its variational inequality 
formulation? Consider the problem of finding a function u{x,t) satisfying the following 
complementarity problem. 

Ut — Uxx > / , "̂  > i'i^^t), and {ut — u^x — f){u — tp) = 0, a.e. in Qt^, 

nt.=nx{o<t<t,), n = {x:0<x<i}, (7.4.71) 

u{x,0) = uo{x) > ip{x,0), X G n, 

u{0,t) = u{t)>^p(0,t), 0<t<t^. (7.4.72) 

One can study the above variational inequality problem by employing standard methods 
for parabolic equations involving well known a priori iZ-estimates [9]. The solution 
is generally smooth in the sense that the distributional derivatives Ut^ Ux, Uxx are in 
LP, p > 1. Ut and Uxx are not continuous in general. 

Now suppose that u{x, t) > 'ip(x, t) if and only if 0 < a: < S{t), 0 < t < t^, S{0) = 1. 
In this case, we have Ut - Uxx = f in 0 < x < S{t), u{S{t),t) = 'ip{S{t),t) (cf. § 7.2 
equations (7.2.38) —(7.2.39)). If a new function T{x,t) is defined as 

Tix,t) = j^iu-7P), (7.4.73) 

then T(x, t) satisfies the following equations. 

Tt - Txx = Ft = {f-i;t + V^xx),, 0 < X < S{t), t > 0, (7.4.74) 

r (x , 0) = To{x) = ^'(x) + (/ - iJt)t=o. 0 < x < 1, (7.4.75) 

T(0, t) = f{t) = ut~ ^PtUo^ t > 0, (7.4.76) 

T{S{t),t) = 0, t > 0, 5(0) = 1, (7.4.77) 

Tx {S{t),t) = X(S{t),t) S(t) = (/ + w.. ~ 'M \x^sit)S{t). t > 0 (7.4.78) 
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By choosing F, TQ{X), f{t) and X{S{t),t) suitably in (7.4.74)-(7.4.78), a one-phase 
Stefan problem or an ODP can be obtained. On inverting (7.4.73), we get 

t 

u (x, t)= j T{x, rj)dr] -f V (̂x, t), (7.4.79) 
4>{x) 

on the free boundary t - S~\x) = 0(x). From {7.4.79), u{S{t),t) = if; {S{t),t). In order 
to derive (7.4.78), calculate Ut — u^x from (7.4.79) at a: = S{t). 

The equivalence of the weak formulation of a one-phase Stefan problem and its vari-
ational inequality formulation has been discussed in § 11.2.2. 

7.4.2 A Stefan problem with a quasi-variational inequality for-
mulation 

Our interest in this section is only in introducing the quasi-variational inequality. 
For a rigorous discussion of the quasi-variational inequality, see [22] and the references 
mentioned there in this connection. 

One of the forms of quasi-variational elliptic inequality considered by Bensoussan-
Goursat-Lions (cf. [200]), and further discussed in [22], can be defined as follows: Let 
Hi and H2 be two Hilbert spaces and v = (iii, ̂ 2) be the generic element oi H = HiX H2. 
Define a : H x H -^ R and g : H -^ R as follows: 

a{w, z) = ai{wu zi) -h a2{w2, Z2) + bi{wuZ2) + 62(2̂ 2, ^^i), (7.4.80) 

g{w) = gi{wi) + g2{w2). (7.4.81) 

Here, ai : Hi x Hi —^ R and a2 : H2 x H2 —^ R are continuous bilinear forms, symmetric 
and non-negative along the diagonal, bi : Hi x H2 —^ R and b2 . H2 x Hi -^ R 
are continuous bihnear forms, gi : Hi -^ R and g2 • H2 —^ R are continuous linear 
functional. Let D C H = Hi x H2 he a non-empty closed convex set. li v e D, then 
define D{v) = Di{v) x D2{v) where 

Di{v) = {zi G Hi : {zuV2) 6 D} , and D2{v) = {22 e H2 : {vuZ2) G D} . (7.4.82) 

An inequality 

a{u,u- v) < g{u - v), \fv G D{u), ue D (7.4.83) 

is an example of a quasi-variational inequality. 

D{v) is a non-empty closed convex set of D^ = PH^{D) X PH2{D), where P//^ and P//2 
are 'projection operators'. \iu ^ Hi and VK C //i is a non-empty closed convex set, then 
Pw{y) is that element of W which is nearest to u. The inequality (7.4.83) is a variational 
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inequality when for V 2i G D, D{u) = Q = Qi x Q2 with Qi being a non-empty closed 
convex set of Hi and Q2 being a non-empty closed convex set oi H2. v E D{u) suggests 
that quasi-variational inequality entails a convex set of competing functions which may 
depend on the possible solution whereas in the variational inequality formulation convex 
set is fixed. 

A family of variational inequalities can be associated with the quasi-variational in-
equality (7.4.83). If u is fixed in D, then along u, we can consider a variational inequahty 
concerned with finding ai w E D(u) such that 

a{w, w -v) < g{w -v), \/ v € D{u). (7.4.84) 

A quasi-variational inequality formulation for the following one-phase Stefan problem 
has been studied in [201, 202]. Find a function T{x,t) and the curve T : x = S(t), 
0 < t < t^ such that 

«̂ - Txx = 0, 0<x< S{t), 0<t<t,, (7.4.85) 

T = X{x,t), X = S{t), 0<t<t,, (7.4.86) 

T, - 0, x = S{t), 0<t<t,, (7.4.87) 

T{x, 0) = To(x), 0 < X < ^0, S{0) = So, (7.4.88) 

T{0,t) = r{t), 0<t<t,. (7.4.89) 

If the transformation u = —T^ (see § 3.3) is used, then the boundary condition (7.4.87) 
becomes u = 0 and (7.4.86) becomes ŵ  = —KS — Xt- The coefficient —Â; can be 
identified with the latent heat and Â  with the displacement of the free boundary. If 
appropriate conditions are imposed on the initial and boundary data, then the problem 
(7.4.85)—(7.4.89) can be identified with a phase-change problem. Global existence of 
the classical solution of the transformed system has been discussed in [203] when Â  = 
1, Ai < 0, -T^ (x) > 0 and r'(^) > 0. It turns out that in this case S(t) > 0 and u(x, t) > 
0 if 0 < X < S{t). 

Let \{x,t), To(x) and r{t) be given smooth functions for 0 < x < RQ, 0 < t < t^ and 
So G (0, Ro). A quasi-variational inequality formulation of problem (7.4.85)—(7.4.89) will 
now be considered in the region D = {{x,t), 0 < x < RQ, 0 < ^ < f*} in terms of a new 
variable W{x,t) defined as 

W{x, t)= (T (<e, t)-X (e, t)) d^. {x, t) G D. (7.4.90) 
J X 

It is understood that if 0 < ^ < t*, then S{t) < RQ. We extend T{x,t) as X{x,t) in the 
region S{t) < x < RQ, 0 < t < t^ and thus W{x,t) = 0 if S{t) < x < RQ, 0 < t < t,_ 



7.4. Some Variational Inequality Formulations of the Classical Stefan Problems 189 

Let Q = {{x,t) : 0 < X < S (t), 0 < t < t^} . From (7.4.90), dW/dt can be calculated as 
follows: 

rRo 
Wt = 1^ {T,(tt)-Xt(^,t)}di, (x,t)eD, 

= £*"{%(ei)-A<(C,()}C 

= n (S(«), t) - nix, t) - r " A,(̂ , t)di, 
Jx 

= -T,{x,t)- r'\t(^,t)d^. (JAM) 
Jx 

For {x,t) G r̂ , we have 

W:, (x, t) = -{T (x, )̂ - A (x, t)) , (7.4.92) 

and 

W^^ (x, t) = - T , (x, t) + Â  (x, t). (7.4.93) 

W{x,t) satisfies the differential equation 

-VK^, (x, t) + ly, (x, t) = /(x, t), for (x, t) e D, (7.4.94) 

where 
rS{t) 

f{x,t) = - A . ( x , 0 - / A , ( e , t ) C (x,^)Gl), 

- -A^(x,i) if (x,t) e DV^. (7.4.95) 

f{x,t) depends on S(t), i.e., on the solution. It may be noted that f{x,t) has been 
suitably extended to the region D\fl as it is required afterwards in the formulation. It 
will be assumed that Â  > 0, Â  < 0 and 

To(x) > A(x, 0), 0 < X < ^o; and T{So, 0) = A(6'o, 0). (7.4.96) 

We define a function g(x) as follows: 

g{x) = r (r(^, 0) - A(C 0)) d^,iiO<x< So, 
Jx 

= 0, if So < X < R, (7.4.97) 

so that W(x,0) — g{x) and g'{x) < 0. Because of the assumption that To(x) > A(x,0) in 
(0,5*0), the free boundary F starts at So- The boundary condition for W{xJ,) at x = 0 
is given by 

W,{0,t) = ^(t), (7.4.98) 
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where 
^{t) = -r{t) + X{0,t), 0<t<t^. 

Assume that "^{t) < 0 for 0 < t < t^. It can be shown that W is greater than zero in Q. 
On differentiating (7.4.94) with respect to x, we obtain 

-W,.. + W:,t = /x = - A . . + A„ in a (7.4.99) 

It will be assumed that 

-Kx + Xt < 0 in i^. (7.4.100) 

Since W^, = X {x, t)-T (x, )̂ = 0 for (x, t) e T, and ^(^) < 0, we obtain 

-I^xxx + VP̂xt < 0, in n, (7.4.101) 

and 

W:, < 0, on dpQ, (7.4.102) 

where dpQ is the parabohc boundary of Q. Assuming W^ to be continuous in Q, the 
maximum principle (see Appendix C) implies that H4 < 0 in Q and on integrating Wx, 
it can be concluded that W{x,t) > W(S{t),t) = 0. 

The variational inequality formulation of the problem (7.4.85)—(7.4.89) can now be 
obtained in terms of W{x, t) as follows: 

Find W{x,t) e M = {v{x,t) € H\D), v > 0} such that 

(-M4x + Wt) {v-W)> f{v - W), a.e. in L> and V z; G M, W e M, (7.4.103) 

W{x,0) = g{x), 0<x< Ro, 

PI4(0,0 = ^(^), 0 < ^ < ^ * , 

W{Ro,t) = 0, 0<t<t,. 

For 14̂  > 0 and i; > 0, we have 

{-Wx.^Wt~f){v-W) = -{-W,. + Wt-f)W + {-W,, + Wt-f)v, 

= {-W,x + Wt-f)v. 

= 0, if Ĥ  > 0 and = -fv if I^ = 0, 

> 0, for V I) G M, W e M. (7.4.104) 

provided / is negative in D\^, which it is, under the assumption that Â^ > 0 (see 
(7.4.95)). It is clear from (7.4.95) that / is a function of {x,t] S{t)) and S{t) = 
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min {x, W{x, t) = 0} . Therefore / is a discontinuous function of W{x, t) and (7.4.104) is 
not a variational inequality in the usual sense. In [201], authors call it a quasi-variational 
inequality. The existence of the solution of (7.4.103) has been proved in [201] by consid-
ering a sequence of variational inequality problems in which the approximations of the 
free boundary are taken as known. Fixed point theorem for monotone mappings was 
used in [201] for the existence proof and in [202] existence of the solution of the above 
problem has been proved using finite-difference approximations and this resulted in a 
smoother solution. Under appropriate smoothness assumptions on A, g, ^ , etc. (cf. 
[202]) it has been shown that a solution of (7.4.103) exists and is such that: (1) Wt, Wxx 
belong to L°° (D), (ii) W^ is Hdlder continuous (exponent 1/2) in D (iii) W^ (x, )̂ < 0 
ioT 0 < X < S (t) ,0 < t < t^, (iv) S{t) is Holder continuous and monotone decreasing, 
and 5(0) = ^0, S{t) > 0. 

7.4.3 The Variational inequality formulation of a two-phase Ste-
fan problem 

In the one-phase Stefan problems, the freezing index u{x, t) proved to be very useful as 
the gradient of u is continuous in Q (the region under consideration). The temperature 
constraint T > 0 ( < 0) also holds throughout Q. In the two-phase problem although 
freezing index can be defined, the constraint T > 0 ( < 0 ) does not hold throughout the 
two-phase region. An approach different from the one adopted for the one-phase problems 
is required for the variational inequality formulation. If the weak enthalpy formulation is 
considered for the two-phase Stefan problem, then the enthalpy, which is a multi-valued 
function of temperature can be written as (for simphcity take specific heats and densities 
of the two phases to be unity) 

h{T) = ho{T) + I sgn+{T), (7.4.105) 

where ho{T) is the sensible heat and sgn^ represents Heaviside graph (cf. (4.3.45)). In 
terms of the freezing index u, 

u{x,t) = f T{x,t)dt, {x,t) ent. = nx (0,^*), n c i?^ (7.4.106) 
Jo 

the heat energy equation (4.2.2) can be written as (see [204] for the derivation of (7.4.107)) 
-ho{ut) + V\ -h hi{x) e I d'^iut), a.e. in Qt^ (7.4.107) 

Here, hi(x) is the initial enthalpy of the material, and d"^ is the subdifferential of a con-
vex function ^(2) = max (0, z) which coincides with the multivalued mapping sgn^{T). 
Using the definition of the subdifferential of a function (see (4.3.44), the parabolic varia-
tional inequality for the enthalpy formulation can be obtained (cf. [204] and the references 
mentioned there). Our interest here is in the classical formulation. 

A variational inequality formulation for a two-phase Stefan problem in the region 
Q C R^ has been studied in [205]. The phase-change boundary $(t) : t = S(x), x e R^, 
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divides Q into two disjoint regions Qi and ^2, representing the solid and the hquid region, 
respectively. The temperature in the interior 171 of Qi is negative and in the interior 1̂2 
of ^2 is positive. The cases of regions of zero temperature within Qi and ^2 can also be 
considered. Initially Q is occupied by ice. On the portion dQ^ of the boundary dQ of Q, 
temperature b{t) is prescribed and the remaining boundary of ^ is insulated. Let x be a 
point in Q which is initially at to = 0 in the solid phase, and ti{x) be the first time that 
X is in the hquid phase, and t2{x) > ti{x) be the next time at which x is again in the 
sohd phase. In this way a sequence {1^} can be defined such that to(= 0), ti, ^2, • • • , 
are such that in (^ ,̂̂ ^+1), x is in the liquid (solid) phase if i is odd (even). Since the 
normal derivative of VT is not continuous throughout Q we define another dependent 
variable V{x,t) by the equation 

V(x, t) = Ki r T(x, T)dr + K2 r T(x, T)dT + ... Kj [ T{x, T)dT, (7.4.108) 
JtQ Jtl JU 

where for t E (^ ,̂̂ ^+1), J = 1 (2) if z is even (odd). Ki and K2 are the thermal con-
ductivities of solid and liquid regions, respectively and are taken as constant. Densities 
of both phases are taken to be equal to unity. If T+ = sup (T, 0) and T~ = sup (—T, 0) 
where 0 is the phase-change temperature then V{x,t) can be written as 

V{x,t)= [' {-KIT'{X,T) + K2T+{x,r)]dr. (7.4.109) 

Since T is continuous throughout the interior of Q, 

dV 
— = KjT{x,t), (7.4.110) 

where J = 1(2) if z is even (odd) for t ^ {t^, t^^i). 

We are now interested in obtaining a diff"erential equation for V{x, t) which holds 
throughout Q. On differentiating (7.4.108), we obtain 

\/V(x, t) = KA r^"^ VTdr -h T(x, ti{x)) \ + 

K2\ T ' VTdr+T{x,t2{x))-T{x,ti{x))W...+ KjU' \/TdT-T (x,t,)\ . (7.4.111) 

At ti{x), ^2(0;),..., ti(x), phase-change takes place and, T{x,ti) = 0, z = 1, 2... Therefore 

VV[x,t) = Ky r VTdT + K2 [ ' VTdT + ... Kj [ VTdr. (7.4.112) 
JO Jti Jt, 

Note that V, dV/dt and W are continuous in Vt. VT is discontinuous only across 
t = t^{x) and not within the interval (^^,^,^1). When (7.4.112) is differentiated, we get 

VV(x-, t) = K\ r V^TdT + K2 I 
Jo Jt] 

V^Tdr 
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-}-{KiVT{x,ti).Vti{x) - K2VT{x,ti).mi{x)} + .... 

+Kj I V^Tdr - KjVT{x, ti).Vti{x). (7.4.113) 

If the Stefan condition (1.4.17) is used in (7.4.113), then we obtain (take pi = P2 = 1) 

V V ( x , 0 - C i / --dT + C2 —dr-hCj -—dr^l-l^ (7.4.114) 
Jo OT Jti OT Ju OT 

Performing the integration in (7.4.114) and remembering whether J is odd or even, we 
get 

V V ( x , t ) - -CiT(x,0) + / + ^ ^ , if T(x,^) > 0 , 
K2 ot 

= -CiTix,t) + ^^,iiT{x,t)<(i. (7.4.115) 

Since T(x,t) has the same sign as dV/dt (see (7.4.110)), (7.4.115) can be written as 

vV,M).-c,T(.,o) + ,* ,^ |+ | [ f ] ^ | [ f ] ; (7,4ne, 

where 

H{dV/dt) = 1, if dV/dt > 0, 

H{dV/dt) = 0, if dV/dt < 0. 

In (7.4.116), [x] are the positive and negative parts of x. 

What happens when dV/dt = 0 or T(x, t) = 0? If there exists a sharp boundary 
r separating solid and hquid phases at which T — 0, then the meas(r) == 0 in Q and 
(7.4.116) holds a.e. in Q. Two other cases may arise. For example there may exist regions 
of non-zero measures in Q.i{t) or 02(^) whose temperatures are zero. It has been argued 
in [205] that if such a region exists in the solid region then we define H{dV/dt) = 0 when 
dV/dt = 0 and if such a region exists in the liquid region then we define H{dV/dt) = 1 
if dV/dt = 0. In all the three cases (7.4.116) holds in Q. 

To obtain a variational inequahty for the above problem, the procedure adopted is 
similar to the one used for obtaining the weak enthalpy formulation in (7.4.107). We 
write 

^ dV dV 
/ / ( ^ ) e a . o ( ^ ) , (7.4.117) 

where go(x) = x+ defined as sup(0,x) and dgo is the subdifferential of ^o- Now our 
objective is to look for an appropriate convex function gi{x) : R ^ R so that we can 
write 

VV(a:,<) + C , r ( x , 0 ) e % , ( ^ ) . (7.4.118) 
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If gi{x) is defined as 

ffiW = I (Ci/Ki) {x'f + ^ {C2/K2) (x+)' + lx+, (7.4.119) 

then using the definition of the subgradient of a convex function, i.e., f{x) G dg{x) <=> 
giO ~ di^) ^ (C ~ ^)/(^) for 3-11 ^ G /?, a relation of the form (7.4.120) can be obtained. 
The relation (7.4.118) can be expressed as 

giiO - ffi(^) > ( W + C,T{x, 0))U-^Y^(e R. (7.4.120) 

The boundary condition to be satisfied by V{x, t) on dQb can be expressed as 

V{x,t) = Ki rb{T)dT-\-.. -^Kj f b{T)dT, on dftb. 
Jo Jti 

= J^i^K2{b{r)y-Ki{b{r)y'^dT, on dQb- (7.4.121) 

On the remaining boundary, we take 

dV 
—- = 0, ondn\dnb. (7.4.122) 
on 

Let the initial condition for V be given by 

l / ( x , 0 ) - 0 , xen. (7.4.123) 

On taking ^ = \E (̂x), x e ft in (7.4.120) and integrating over Q, we obtain 

GW -G(%)>J^ VV (* - f ) <i. + C. /^ T(., 0) (* - f )c .̂, (7.4.124) 

where 

C;(^) = [ gi{^lf{x))dx. (7.4.125) 
Jn 

If the spaces to which ^ , V and dV/dt belong are defined suitably such as in (7.4.128), 
then (7.4.124) can be identified with a variational inequality formulation of the above 
two-phase problem. On integrating by parts the first term on the r.h.s. of (7.4.124) and 
assuming that ^ and dV/dt satisfy the same boundary conditions, we obtain 

a [V, Z)= f VV. VZ dx. (7.4.127) 
Jn 

where 

Let 

M{t) = {Z eH\n),Z\Q^^ = b{t)], a.a. te (0,^.) (7.4.128) 

b{t) = K2{b{t)y -K,{b(t)y. (7.4.129) 
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If there exists a V and the following conditions hold: 

1. v,dv/dteL^o,t,;H\n)), 

2. dV/dt e M{t) (defined in (7.4.128), 

3. The inequality (7.4.126) is satisfied for all ^ G M{t) for a.a. t G (0,^=,), 

A. V = 0 when t = 0, 

then V is called a solution of the variational inequality (7.4.126). Under the assump-
tions that T(x,0) G Z/̂  (Q) and b{t) G L'^{0,t^), a unique solution of (7.4.126) exists (cf. 
[205]). The numerical solution of the above variational inequality can be obtained with 
the help of a finite-difference scheme. 



Chapter 8 

The HyperboHc Stefan Problem 

8.1 Introduction 

A hyperbolic Stefan problem is concerned with a phase-change problem in which the heat 
energy equation is hyperbohc. The change in the problem formulation introduced by 
the 'hyperbolic nature of the heat equation' is significant in many ways. The speed of 
heat propagation in the parabolic case is infinite which can be seen from the temperature 
solution given in (8.1.1) which is concerned with the problem of one-dimensional heat 
conduction in an unbounded medium with a constant initial temperature To [24]. 

For t > 0, howsoever small, and x howsoever large, T{x, t) is different from To which 
confirms the infinite speed of propagation of heat flow. In the parabolic case, heat flux 
is governed by the Fourier's law (cf. (1.3.8) and (1.4.9)). Thermal energy is transported 
by molecular motion which has flnite speed and therefore Fourier's law seems to be a low 
order approximation to a more general constitutive law. Cattaneo [206] observed that the 
infinite speed of heat propagation in Fourier's law is due to diffusion and proposed that 
heat pulses ought to be transmitted by waves at finite but perhaps high speeds. This does 
not mean that Fourier's law leading to the diffusion equation should be discarded. The 
relaxation time r in the hyperbohc model is generally very small in nearly all practical 
and exotic applications. As the heat fiux equation (8.1.3) given below suggests that even 
on the shortest time scales of our daily lives, we get Fourier's law [207]. The use of 
hyperbohc heat equation in a mathematical model at very low temperatures is generally 
accepted, but its use at high temperatures has been debated in the literature and we 
refer the reader to an exhaustive review article [208] on the 'problem of second sound' 
(finite speed of heat propagation). 

Our interest in the hyperbolic Stefan problems in this volume stems from the fact that 
models of these problems require many interesting physical concepts in addition to those 

196 
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associated with the Stefan problems. For example, in the hyperbolic Stefan problems, 
both temperature and flux can be taken to be discontinuous across the phase-change 
boundary. The delay in the release of latent heat and sensible heat can be considered. 
These, and several other variations in hyperbolic problems make these problems fairly 
interesting from the point of view of model and analysis. Many studies of hyperbolic 
Stefan problems have been conducted. There is still a need to collate the results of these 
studies in one source. 

8.1.1 Relaxation time and relaxation models 

In an idealized solid, for example, thermal energy is transported by two different 
mechanisms: (1) by quantized electronic excitations, which are called free electrons, 
and (2) by the quanta of lattice vibrations, which are called phonons. These quanta 
undergo collisions of a dissipative nature, giving rise to thermal resistance in the medium. 
A relaxation time r is associated with the average communication time between these 
collisions for the commencement of the resistive flow. In essence r is the relaxation 
parameter or the time which should elapse for the heat flow to take place after the 
temperature gradient is formed. There are different times of relaxation, so the mean 
relaxation time is generally not known. For such sohds, it would be more important to 
know which modes carry the most heat and so we want the dominant rather than the 
mean mode of relaxation. 

How does heat flux respond to the temperature gradient? This has been modelled in 
the literature in different ways. For example, the flux law in the hyperbolic model has 
been described as 

q{t + r ) = -V(KT), r > 0, (8.1.2) 

where, q is the heat flux vector and r is the relaxation time [209]. In this model, if the 
temperature gradient is formed at time t then heat is released instantaneously at time 
t -\- T. The first order approximation of (8.1.2) gives 

rqt + q= -V( /CT) , r > 0. (8.1.3) 

This model in (8.1.3) is commonly used in the place of Fourier's law if finite speed of heat 
propagation is considered. In the relaxation model (8.1.3) a delay of time r in the heat 
flow is there but the heat release is not instantaneous at time t + T and is distributed 
over a time interval. Equation (8.1.3) can be derived as a particular case of the following 
linearized constitutive equation for the heat flux vector q [210]. 

t CXD 

(7{x, t)= f K{t - r)VT{x, r)dr = - IK{p)VT{t - p)dp, (8.1.4) 
- o o 0 

where A' : (0, +oo) -^ i? is a given kernel called the 'heat flux relaxation function' and 
accounts for the memory of the material. It can be seen that if K{t) = {KQ/T) exp {-t/r) 
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in (8.1.4), then equation (8.1.3) is obtained. In (8.1.4), the temperature gradient induces 
heat flow after a delay of time r and heat is released during a period of time, whereas, 
in the model (8.1.2), heat is released instantaneously after a lapse of time r from the 
moment temperature gradient is formed. 

We shall be deahng mostly with the heat flux model given in (8.1.3) which is called 
a generalized Fourier's law or a non-Fourier's law. Fourier's law cannot be derived from 
(8.1.4) unless VT is constant for all time and the thermal conductivity is defined as 
J^K{p)dp. It is clear that the flux law given in (8.1.3) is a particular case of a more 
general law stated in (8.1.2). Why do we not accept (8.1.2) as the generalized Fourier's 
law? This question has been discussed in [211] with the help of a simple experiment. 
Consider a piece of ice of unit volume at temperature T < 0. It is heated by a heat 
source of constant intensity F > 0. Let Cs and CL be the specific heats of ice and water, 
respectively. The temperature of ice increases at the rate F/Cs until it reaches T = 0 
(melting temperature). The temperature remains at zero for time Csl/F which is also 
the time taken for I units of heat to be supplied to ice. In the parabolic Stefan problem, 
the specific energy e{t) (or specific enthalpy) at time t is given by 

e{t)=P{Tit)) + im- (8-1.5) 

Here, /3{T) = CsT for T < 0, /?(T) = dT for T > 0, .f is the water-fraction and 
^ G Hg{T), where Hg is the Heaviside graph (cf. (4.3.45)). To be consistent with the 
assumption made in the constitutive law (8.1.2), the response of energy to the latent heat 
should also be delayed and the equation (8.1.5) in the hyperbolic Stefan problem may be 
written as 

e{t)=P{T{t)) + li{t-T). (8.1.6) 

Let us assume that there is no delay in the release of sensible heat so that the energy 
conservation law pCTt = —V^ holds. In the classical Stefan problem if ice attains the 
temperature zero at time ^ = 0 and is receiving heat, then it starts storing latent heat 
for ^ > 0. The relation (8.1.6) suggests that storing of latent heat does not take place 
during the time internal {t, t + r). Therefore ice does not melt during time (t, t + r) and 
its temperature goes on rising. At time ^ + r, this 'superheated ice' which has sucked 
in enough energy suddenly changes to water. This is a very unstable and unrealistic 
situation. 

The constitutive equations for the heat flux vector have been considered in much more 
general form than the one considered in (8.1.4). For example in [210], a general theory 
of heat conduction with finite wave speeds has been built, in which the heat flux vector 
is taken as a functional of temperature, temperature gradient and temperature summed 
histories. Heat flux, like the entropy, is determined by the functional for the free energy. 
In [212], temperature, temperature gradient and the time rate of temperature are taken 
as independent variables. When the constitutive equations include rate of temperature, 
there arises local entropy production in addition to entropy production due to conduction. 
Within the framework of rate-dependent theory, thermal waves can occur in the finite 
theory but not in the corresponding linearized theory. 
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8.2 Model I : Hyperbolic Stefan Problem with Tem-
perature Continuity at the Interface 

8.2.1 The mathematical formulation 

Several physical and mathematical models have been proposed in the literature for the 
hyperbolic Stefan problem. In model I, the response of flux to the temperature gradient 
is delayed but the storage or release of energy as latent heat is not delayed. Temperature 
is assumed to be continuous and known across the phase-change boundary and heat flux 
is given by (8.1.3) which is taken as a 'local constitutive law'. The energy conservation 
equation is derived on the basis of energy conservation law (cf. § 1.4.7) and therefore the 
energy equation in a medium which is not undergoing phase-change is given by 

pC^ = -divq, (8.2,1) 

where q is given by (8.1.3). On using (8.1.3), f can be eliminated from (8.2.1) and we 
obtain 

rpCTtt + pCTt = KV'^T. (8.2.2) 

Equation (8.2.2) is a hyperbolic equation and is commonly known as telegrapher^s equa-
tion. In the one-dimensional case the wave speed of this telegrapher's equation is {k/rY^'^ 
because the characteristic curves are given by (cf. [12]) 

and the lines x ± {k/rY^'^t — constant, are the characteristics. 

A one-dimensional two-phase hyperbolic Stefan problem 

For simplicity, we first consider a one-dimensional problem in the region $1 = {x : 0 < 
X <\\. X = S{t), 0 < t < t^, is the phase-change boundary. Let the region 0 < x < S{t) 
be solid, and the region S{t) < x < 1, be liquid. It will be assumed that in both these 
regions equations of the type (8.2.2) hold good. The thermal properties and relaxation 
parameters of the two regions could be different but densities are taken to be equal. 

Differential equations 

rspCs{Ts)tt + pCs{Ts)t = KSVTS^ 0<X< S{t), 0<t<t,, (8.2.4) 

TLpCLiWu + pCLiTL)t = K L V ' T L , S{t) < x < 1, 0 < f < f*. (8.2.5) 

Initial conditions 

(i) T(x,0) = To(x), X G Q . (8.2.6) 
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(ii) ^ix,0) = go{x), x€Q. (8.2.7) 

On what physical basis can dT/dt at /; = 0 be prescribed? There is no clear answer to 
this. If q{x, 0) is continuously differentiable in the whole of the region 0, then (8.2.7) can 
be replaced by 

(iii) q{x,0) = qo{x), x e Q. (8.2.8) 

Boundary conditions at the fixed boundaries 

If the temperature is prescribed on the fixed boundary, then the same boundary 
condition continues in the same form in the present model but if the boundary condition is 
of the type (1.4.38), i.e., flux is prescribed then we have the following boundary condition 
on the boundary dQ of f]. 

q(x,t) = PE{T^-T^) + ( C i T - C2T0), on DQ. (8.2.9) 

Boundary conditions at the free boundary 

(i) Isotherm condition : T = Tm (constant) on x = S{t). Isotherm condition also 
imphes continuity of temperature. We shall see later that in some formulations temper-
ature could be discontinuous across the free boundary. This is not surprising because 
hyperbolic equation admits discontinuous solutions. 

(ii) Energy balance condition : If the phase-change is taking place from hquid to solid, 
then the energy balance at x = S{t) will have the form 

pl'^ = </L(5(i),0 - qs(S{t),t), l=l + {Ci- Cs)T^- (8.2.10) 

Equation (8.2.10) is not suitable for obtaining analytical and numerical solutions as 
it is in terms of fluxes. So it will be expressed in a different form. On diflferentiating 
(8.2.10) with respect to time and using (8.2.1) and (8.1.3), we get 

;d'^S , , . . dS . ^ , ^ dS 
P ' ^ = fe),+ ( ? L ) , ^ - ( ? . ) , - ( t o ) . ^ , 

jSs ,^dTs. ^ dn ds dn ,, I 

+ {Ks-^^q,)lTs 
OX I S{t) 

If isotherm conditions are differentiated with respect to time, we obtain 

(8.2.11) 

{TA = - ( T 4 ^ , and ( T ^ = - ( T 4 ^ . (8.2.12) 
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On substituting (8.2.12) in (8.2.11), we to obtain the following equation. 

£S / OTL ^ dTs\ [dSy .^^ , ,dTs ,,^ , .dT^ 

+ qjTs-qjTL.o^x = S(i). (8.2.13) 

If Ts = TL, then the last term in (8.2.13) can be written with the help of (8.2.10). 

For a one-phase problem, the condition (8.2.13) can be easily obtained, for example, 
take TL = 0, and TS = TL = r. In the above hyperbolic Stefan problem, there are three 
velocities, one that of the free boundary and two of the wave fronts in the two phases. 
Can the velocity of the free boundary exceed that of the wave front? This question has 
been studied in [213] with the help of an analytical solution of a one-phase problem. 
Consider a semi-infinite solid 0 < a: < oo which is initially in a solid state at the melting 
temperature Tm- This solid is heated at x = 0 so that we have a one-phase melting 
problem. It can be easily seen that the pair (5(i),TL), where 

S{t) = bt, b>0 and b^ ̂  k/r, (8.2.14) 

and 

TL{x,t) = Tm^- (I/CL) [exp {b{x - bt)/{Tb^ - k)} - l] , (8.2.15) 

is a solution of the hyperbolic Stefan problem (8.2.16)—(8.2.18). 

rpCLinh + pCL{TL)t = KLV^TL, 0<X< S{t), 0<t<t,, (8.2.16) 

TL = Tm, on x = S{t), (8.2.17) 

,„+{iA)^-(cj() (T.) f)'-'/̂  , on X = S{t). (8.2.18) 

The constant b in (8.2.14) can be determined, for example, from the temperature pre-
scribed condition at x = 0, i.e., 

TL(0,^) = Tm^ (I/CL) [exp{bH/{k - rb^)) - l] . (8.2.19) 

We shall now examine three cases: (i) 6̂  > k/r, (ii) 6̂  < k/r and (iii) 6̂  = k/r. 

Case 1. 6̂  < k/r. It can be seen from (8.2.15) that TL > T^ for 0 < x < S{t) and 
this is a physically realistic case. 

Case 2. 6̂  > k/r. From (8.2.15), Tiix.t) < Tn for 0 < x < S{t) and we have a 
supercooled water progressing on ice. If (T^)x is calculated from (8.2.15) and substituted 
in (8.1.3) and the differential equation so obtained is integrated, then we obtain 

q{x, t) = plb exp [b{x - bt)/(Tb'^ - A;)j , 0 < x < S{t). (8.2.20) 
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From (8.2.20), flux is positive and so the heat is flowing from the supercooled water to 
ice which is not possible as it violates laws of thermodynamics. Therefore the solution 
in which P > k/r occurs is not physically realistic. 

Case 3. 6̂  = k/r. In this case, equation (8.2.18) cannot be used at the free boundary 
but (8.2.10) can be used. We shaU try to obtain qj^{S{t),t) occurring in (8.2.10). Prom 
the first equation in (8.2.12), (TL)^ can be written in terms of (T^)t and from (8.2.1), 
{T^)t can be expressed in terms of (qi)^. When this (gj^ is substituted in (8.1.3), we get 
the following equation 

{QA + HQLI = -QL/T, on X - S{t), (8.2.21) 

-{QL) -h {l/r)qL = 0, on x = S{t). (8.2.22) 

The solution of (8.2.22) is given by 

qi = v4e~ /̂̂ , A = arbitrary constant. (8.2.23) 

qL in (8.2.23) does not satisfy the interface condition pldS/dt = qiit)-

The second law of thermodynamics requires that in any process there should be a 
positive entropy production. In the case of classical Stefan problem this implies that the 
condition 

-T:,{x,t)q{x,t) > 0 , (8.2.24) 

must hold at each point of solid and liquid regions. In the classical Stefan problem, the 
condition (8.2.24) gets satisfied as the flux is defined through the Fourier's law. In the 
hyperbolic Stefan problem the condition (8.2.24) may not always hold, and an additional 
condition may have to be imposed to have a physically acceptable solution. If 6̂  < r/k, 
then the condition (8.2.24) is satisfied but not if b^ > r/k. 

The model I has been used in [214] to obtain a short-time analytical solution of the 
problem of melting of a semi-infinite solid x > 0 (one-dimensional problem). dTi/dx is 
prescribed at x = 0 in terms of a 'Dirac delta function'. An analytical solution has been 
obtained using a suitable Green's function and after making some assumptions about the 
form of the free boundary, a short-time solution has been obtained. 

In a multi-dimensional hyperbolic Stefan problem, when the phase-change is taking 
place from liquid to solid, the energy balance condition at the interface is given by the 
equation 

[H]V-n, = {qs-qL)-n.. (8.2.25) 

Here, V is the velocity of the interface and n = {nt.n^) is the unit normal to the interface 
which points into the liquid (see (1.4.17)) and [^] is the jump in the enthalpy. 
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8.2.2 Some existence, uniqueness and well-posedness results 

A one-dimensional one-phase hyperbolic Stefan problem 

Consider the following problem: 

rqt + KT:, + g = 0, and CpTt + q^ = 0] XQ < x < S{t), S{0) = 0, i > 0, (8.2.26) 

T(x, t) = 0, and pldS/dt = q{x, t); on x = S{t), t > 0, (8.2.27) 

T{x, 0) - To(x), and q(x, 0) = ^0(2:). (8.2.28) 

The boundary condition could be any of the following type. 

(i) T{xo,t) = t ( t ) , ^ > 0 . (8.2.29) 

(ii) q{xo,t) = q{t), t > 0. (8.2.30) 

(iii) q{xo, t) = h [f{t) - T(xo, t)] , t > 0. (8.2.31) 

By considering the solution of a specific problem, it was shown in § 8.2.1 that the 
velocity of the free boundary cannot exceed the wave front velocity. It has been argued 
in [215] that if | S{0) \ > (/c/r)^/^ then x = S{t) would be a space-like curve for small 
t. Therefore to have a well-posed problem for {q,T), besides the condition (8.2.27) on 
X = S{t), one should impose two more conditions on x = S{t) if 5(0) > {k/ryf^ and no 
condition when S(fS) < {k/rY^'^. Otherwise one would lose either uniqueness or existence 
of the solution. 

Depending on the value of XQ, two cases arise. 

Case I: XQ < 0. The following result has been proved in [215] which is valid for a 
short time. 

Proposition 8.2.1. Let To, qo G C^(-oo,0). Suppose that at {x,t) = (0,0), the 
compatibility condition 

Cp^To(0)go(0) - pl^QoW (8.2.32) 

is satisfied and also 

\qom < pl{k/Ty/\ (8.2.33) 

Then there exists 0̂ > 0 such that in [0, ̂ 0], the problem (8.2.26)—(8.2.28)'with any of the 
boundary conditions in (8.2.29)-(8.2.31) has a unique solution (T, q, S) G C^xC^xC'^. If 
To.qoE C°° and C°° compatibihty conditions are satisfied, then the solution G C°° [0, to]. 
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The compatibility condition (8.2.32) can be obtained if the time derivative of the 
isotherm condition is obtained and the derivatives occurring in it are calculated in terms 
of the known quantities at x = 0. Condition (8.2.33) imphes that S{t) is less than the 
wave velocity at least initially. 

Case II: xo = 0. In this case no initial condition is required. If q{t) and T{t) G 
C^ [0, oo] and q{xo,t) is determined from (8.2.30) or (8.2.31) and satisfies the condition 

0<g(0 ,0) <pl{k/Ty^^ (8.2.34) 

then in [0, ̂ o] a unique solution (T, q, S) e C^ xC^ x C^ exists when the boundary condi-
tion is either (8.2.30) or (8.2.31). In this case the problem consisting of (8.2.26)-(8.2.28) 
and (8.2.29) is not well-posed. 

Global solution for the one-phase problem 

If the following substitutions are made in (8.2.26)—(8.2.28), then the resulting equa-
tions become dimensionless and the thermophysical parameters do not appear in the 
changed equations. Let, 

\ (8.2.35) 
S = {Cp/Krf'^S. J 

For further discussion, bar over the changed variables will be dropped. For the analysis 
of hyperbolic Stefan problems it is more convenient to formulate the problems in terms 
of Riemann invariants A and B which are defined as 

A = T-\-q, a.nd B = T-q. (8.2.36) 

In terms of Riemann invariants the system of equations (8.2.26)—(8.2.28) and (8.2.29) 
can be written as 

At + A,-i-^^{A-B) = 0 ] 
> , Xo < X < S{t), (8.2.37) 

Bt-B, + ^{B-A) = o j 

{A^B){x,t) = 0] 
\ on x = S{t), (8.2.38) 

S{t) = A{x,t) J 

Let 

{A 4- B)(xo, t) - 2f(t), t > 0. (8.2.39) 

^(x, 0) = Ao{x), B{x, 0) = Bo{x), S{0) = 0. (8.2.40) 

Proposition 8.2.2. Assume the following : (i) AQ, BQ G C°^[XO,0] , XQ < 0, and 
f(t) e C^[0,oo), (ii) r{t) > 0, A'Q < 0, B'Q < 0, 0 < A(0,0) < 1, and (iii) C°°-
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compatibility conditions are satisfied at (0,0) and at {XQ,0). Under these assumptions, 
the system (8.2.36)-(8.2.40) has a unique solution (A,B,S) e C^ x 0°^ x C°^ for all 
t > 0 and the solution satisfies 

A{S,t)>0, A^<0, B:,<0, 0<S{t)<l. (8.2.41) 

From Proposition 8.2.1., a unique solution exists in some interval [0,̂ o] and if the 
condition 0 < S{to) < 1 is again satisfied then the time interval in which the solution 
exists can be extended. It has been proved in [215] that 0 < S{t) < I — S, 6 = S(to) > 0 
for any fixed to and so the Proposition 8.2.2 holds. For the proof of Propositions 8.2.1. 
and 8.2.2., the technique of integration along characteristics and linear iteration has been 
adopted. 

A Two-phase problem 

The following one-dimensional two-phase formulation has been considered in [215] in 
the regions —oo < x < oo and —XQ < X < XQ. 

ri{qi)i^K,(T,)^ + q, = 0^ 

C,p{T,\ + {q,)^ = 0^ 

r2{q2)t + K2{T2)^ + q2 = 0 | 

C2p{T2\ + {q2)^ = 0 J 

Ti{x,t) = T2(x,t) = 0 ] 
\ , x = S{t), S{0) = 0, (8.2.44) 

plS{t) = {qi-q2){x,t)j 

X < S{t) (8.2.42) 

X > S{t), (8.2.43) 

Ti(x,0) = Tio(x), qi{x,0) = qio{x), x < 0, 

T2(x, 0) = T2o(x), q2{x, 0) = q2o{x), x > 0. 
;.2.45) 

For the boundary conditions at the fixed boundaries, see (8.2.47). For a local-in-time 
solution of the above problem, the following proposition holds. 

Proposition 8.2.3. If Tio, gio, T20, and 2̂0 ^ ^ ^ ^^e compatibility conditions are 
satisfied at (0,0) and 

k2o(0) - ^io(0)| < min {plih/nY^^ ^ / (V^s ) ' / ' } , (8.2.46) 

then a unique solution (Ti,T2, gi, 92) e C\ S e C^, of the problem (8.2.42)-(8.2.45) 
exists in some interval [0, ̂ 0], ô > 0. 

The compatibility conditions at (0,0) can be derived by calculating the total time 
derivatives of the isotherm conditions and replacing the partial derivatives so obtained 
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by the known quantities. The condition (8.2.46) imphes that the velocity of the phase-
change interface should be less than the minimum of the two wave velocities in the two 
phases, atleast initially. 

For the global-in-time solution, the case TI = T2 and ki = k2 was considered in 
[215]. The region [—XQ, XQ] , XQ > 0 has been considered. To complete the formulation in 
addition to (8.2.42) —(8.2.45), at the fixed boundaries, temperatures are prescribed as 

Ti(-xo,t) - ti(^), t > 0; T2(xo,0 = f2{t), t > 0. (8.2.47) 

Proposition 8.2.4. If Ajo, Bjo, tj, j = 1, 2, are all C°°- functions, C°°- compati-
bility conditions are satisfied at (0,0) and at (±xo,0), and 

(_l)-/+i fj > 0, {-iy+' t ; > 0, J= 1,2, (8.2.48) 

^Jo < 0, 5jo < 0, ^ = 1,2; and |5(0)| < (/c/r)'/^ (8.2.49) 

then the two-phase problem considered in [—XQ, XQ] has a unique C°°- solution in (0, 00). 
AJQ, BJQ are the values of Aj and Bj at t = 0. The Riemann invariants Aj and Bj are 
defined as 

Qj = yJ{kj/r){Aj - Bj), J - 1,2, (8.2.50) 

Tj = yJl/{Cjp){Aj -h Bj), J = 1, 2. (8.2.51) 

The existence and uniqueness of the solution of a one-phase problem similar to the 
one described in § 8.2.1 in the region 0 < 2; < S{t), have been discussed in [216]. Using 
Riemann functions and hyperbolic-equation theory (cf. [216]) the solution of the problem 
can be expressed in terms of an integral and it can be shown by taking appropriate limits 
that if at X = 0 any temperature other than the melting temperature is prescribed then 
the problem is ill-posed. Flux prescribed boundary condition has been considered. The 
main result of [216] is as follows. 

Proposition 8.2.5. If g = Lip{Lg, RQ), RQ > 0 and TQ G (0,1), then the one-phase 
hyperbolic problem with the initial condition /(O) = 0 and f\0) = ro has a unique 
solution on some interval of time [0, Ri], Ri > 0. The solution can be continued to a 
maximum interval [0,RQ] such that either RQ —> -fco or min(/'(r), 1 - f'{r)) = 0 as 
r^Ro-0. 

In the above proposition Lip{Lg,Ro) is the class of functions satisfying Lipschitz 
condition with constant Lq on [0,/?o], f(i/^) = S{t)/(kry^'^ and r is defined by the 
equation r — / ( r ) = t/r, ro is some value of r, and q is the prescribed flux at x = 0. In 
addition to other conditions, conditions f{0) = 0 and f'{0) = ro should also be satisfied. 
The correct choice of ro is dictated by extra physical laws [216]. 
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8.3 Model II: Formulation with Temperature Dis-
continuity at the Interface 

8.3.1 The mathematical formulation 

In this model also the response of flux to the temperature gradient is delayed and the 
response of energy to the latent heat is not delayed but unlike model I, temperature could 
be discontinuous across the phase-change interface [217]. Consider a one-dimensional 
problem in which a solid material at time ^ = 0 occupies the region x >0. The melting 
temperature is taken as T = 0. 

The constitutive or governing equations are 

The boundary condition is taken as 

f(0,i) =to>0, i>0, (8.3.2) 

and the initial conditions are taken as 

f{x, 0) = q{x, 0) = 0, x>0. (8.3.3) 

The first equation in (8.3.1) holds in the weak sense as e is discontinuous across the 
phase-change boundary and the second equation in (8.3.1) is now a constitutive equation 
and not a localized heat flow law which it was in the model I. e = e{T) is the spe-
cific energy (enthalpy) and is defined by the equations (2.1.22)—(2.1.24). The equations 
(8.3.1)—(8.3.3) can be normalized by making the following substitutions. 

i=Tt, X = {CVKTY''^I{IP^''^)X, e - /e, (8.3.4) 

q = {CyKplTY^\, f=^T. (8.3.5) 

On using (8.3.4) and (8.3.5), the two equations in (8.3.1) are transformed into 

de dq ^ Bq dT , , 

We have 

e = 1 + T, if T > 0, e = T, if T < 0, and e G (0,1), if T = 0. (8.3.7) 

The initial and boundary conditions become 

T(x, 0) = q{x, 0) = 0, X > 0; and T(0, t) = fol/Cy = TQ. (8.3.8) 
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The hyperbolic system of equations in (8.3.6) are known to have discontinuous solu-
tions (cf. Problem 1.1.6. and [12]) across shocks. If the shock is denoted by x = S{t), 
then across the shock, the following Rankine-Hugoniot conditions are satisfied. 

5(e_ - e+) =q-- q+; and 5(^_ - q+) = T_ - T+. (8.3.9) 

For notations used in (8.3.9), see (8.3.10) and (8.3.11). The first condition in (8.3.9) is 
the familiar Stefan condition which arises from the conservation of energy at x = S{t). 
If T_ = T+, then we do not have the second condition at a: = S(t) and we have to 
necessarily impose the isotherm condition T_ = T+ = T = 0 on x = S{t). 

(e_,T_,g_)= lim (e,T,^)(x,^) (8.3.10) 
xT5(i) 

and 
(e+, T+, q+) = lim (e, T, q){x, t). (8.3.11) 

xis{t) 

In a pure solid, e < 0 and in a pure liquid e > 1. It can be seen from (8.3.9) that the shocks 
propagate with speeds 5 = ±1. In the mushy region 0 < e < 1, S = ±0, T_ = T+ = 0 
and q- = q+. When phase changes from solid to liquid, i.e., when e_|. < 0 and e_ > 1 or 
from liquid to sohd {e+ > 1 and e_ < 0) , to pick up appropriate shocks, the admissibility 
conditions given below should be satisfied [218]. 

Admissibility conditions 

A forward shock, 5* > 0, with end states e_ j^ e+ is admissible if and only if 

T(e) - T{e+) - Ti^zlsili^i^e - e+) < 0, e+< e < e_, (8.3.12) 

T(e) - T(e_) - Zl£zl_Z(£±l(g - e_) > 0, e_ < e < e+. (8.3.13) 
e_ — e+ 

A backward shock, 5" < 0, with end states e_ ^ e+ is admissible if and only if 

T(e) - T(e+) - Zl^zl_zZ(£±l(e - e+) > 0, e+ < e < e_, (8.3.14) 

T(e) - T(e_) - ^^^"^ ^^''^\e - e_) < 0, e_ < e < e+. (8.3.15) 

The relevance of (8.3.12)—(8.3.15) in the present problem is that when e„ > 1 and 
5" > 0, then necessarily, e^ = T^ = 0 and we have the following one-phase melting 
problem. 

Tt + q.^ = 0, and ĝ  + ^ + T, = 0: 0<x < S{t), t > 0, (8.3.16) 
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q{S{tlt) ^ [T(l + T)]'/\S{tltl and ^ = (-L_y/2^s{tlt), (8.3.17) 

T(0,i) = To>0 , t > 0 , (8.3.18) 

(e,T,q){x, t) = (0,0,0), x > S{t), t > 0, (8.3.19) 

e(x, )̂ - 1 + T(x, ^), 0 < a: < ^(t), ^ > 0. (8.3.20) 

At this point the necessity of considering the present new model can be questioned. 
Model I seems to be a good model as it is based on the conservation law of energy and 
incorporates generalized Fourier's law. As r ^ 0 in the telegrapher's equation and in 
the Stefan condition (8.2.13) {TS = TL = T), we get back the classical Stefan problem 
formulation and for r —> 0 even the solution in (8.2.14)—(8.2.19) is the solution of the 
corresponding Stefan problem. The neessity of considering different models (we shall 
be considering some more models) for hyperbolic Stefan problems arose from the fact 
that we should be able to prove the existence and uniqueness of the solution and the 
well-posedness of the problem under general initial and boundary data and as r -^ 0, 
the solution of the hyperbolic Stefan problem should converge to the solution of the 
classical Stefan problem. The solution given in (8.2.14)—(8.2.19) is the solution of a 
very special type of problem. There does not exist a general result for the hyperbolic 
phase-change problems which may tell us that as r -^ 0, the solution of a problem 
formulated with the help of the model I, or for that matter any other model, will tend to 
the solution of the classical Stefan problem. Different authors have considered different 
mathematical models, showed the existence and uniqueness of solutions and tried to 
estabhsh the convergence as r -^ 0 by considering some specific problems. For model 
I, some results on the existence, uniqueness, and regularity of the solutions of some 
hyperbolic Stefan problems have been discussed in § 8.2.1 but no result has been reported 
in [213, 214, 215, 216] on the convergence of the solution as r -^ 0. 

8.3.2 The existence and uniqueness of the solution and its con-
vergence as r -^ 0. 

The existence of the weak solution of the problem (8.3.16)—(8.3.20) has been dis-
cussed in [217] and for this the functions T, q and e considered in 0 < x < S{t) and 
satisfying (8.3.16)—(8.3.20) are expressed in terms of Riemann invariants (cf. (8.2.36)). 
{T,q,e) = (0,0,0) for x > S{t). Temperature is prescribed at x = 0. A family of prob-
lems parameterized by a time lag r are considered and the desired solution is obtained 
as T -^ 0. It has been shown that T, q and e defined by Riemann invariants satisfy the 
boundary conditions and for every simple closed curve C in {0 < x < S{t), t > 0} 
surrounding a domain R(C), we have 

/ {e{x,t)dx-q{x,t)dt} = 0, (8.3.21) 
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f{q{x, t)dx - T{x, t)dt} + / jq{x, i)dxdt = 0. (8.3.22) 
R{C) 

The integration along C is taken in the clockwise sense. The Rankine-Hugoniot conditions 
are satisfied in the sense that for every 0 < î < 2̂ < oo 

j ' ' [e[S[t), t)S{t) - q{S{t), t)}dt = 0, (8.3.23) 

and 

f {q{S{t),t)S{t) - T{S{t),t)]dt = 0. (8.3.24) 
ti 

The short and long term asymptotics of the solution of (8.3.16)—(8.3.20) were also ob-
tained. 

The problem considered in [219] is also one-phase with temperature being discontin-
uous at the interface. The initial and boundary conditions considered are functions of 
space and time, respectively. In the problem formulation, to start with, energy e{x,t) is 
taken as 

e = eoiT) + Z{T)q\ (8.3.25) 

where, eo(T) is the classical internal energy as considered in (8.3.7) and Z{T) is defined 
as 

The function Z{T) is a consequence of the second law of thermodynamics combined with 
the generalized Fourier's law [220]. The coefficients T{T) and K{T) depend both on the 
temperature and the phase-change material under consideration and they can have jump 
discontinuities at the phase-change temperature. If it is assumed that r{T)/K{T) is 
differentiable at T = 0 (zero is the phase-change temperature) and e given in (8.3.25) is 
substituted in the first equation of (8.3.6), then we have 

deo d 1 d (r{T)\\ 
') 2dT\K{T))]' TK(T) '^ '^'^ T^(nn\ \ I ^ 

(8.3.27) 

The r.h.s. of (8.3.27) is too complicated and it is difficult to carry out further calcula-
tions on retaining it in the present form. If it is assumed that r{T)/K{T) = constant for 
all T, T{T) = constant and a small number, and 1/T is small, then the r.h.s. in (8.3.27) 
can be taken to be 0. We have now the same formulation as in (8.3.16) and (8.3.17). 
However, the initial and boundary conditions considered in [219] are more general. 
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Dirichlet Problem 

T{x, 0) = 0(x) > 0, and q{x, 0)=il;{x); 0<x < S'(O), ] 
[ (8.3.28) 

T{0,t) = /W>0, t>0. J 

Another type of boundary condition at a: = 0 could be the 'Neumann boundary condi-
tion'. 

Neumann Problem 

T(x, 0) = (t){x) > 0, and q{x, 0)=ip{x)] 0<x< S'(O), ] 
i (8.3.29) 

q{0.t) = fit), t>0. J 

As reported earher, it is convenient to work with the Riemann invariants A and B 
which in [219] are defined as 

A = T + yjrq; and B = T- y/rq. (8.3.30) 

Substituting (8.3.30) in (8.3.16) and (8.3.17), we get 

y/^At + v4, + (A - B)/{2y/T) = 0, 0<x< S{t), t > 0, (8.3.31) 

y/^Bt-B^ + {B-A)/{2y/f) = 0, 0<x<S{t), t>0, (8.3.32) 

B{S{tU) = -^^^{S{t),tl t > 0, (8.3.33) 

For the Dirichlet problem (8.3.28), we have 

A{x,0) = Ao{x), B{x,0) - Bo{x), 0<x< 5(0), (8.3.35) 

A(0, t) + 5(0, t) = 2f{t), t > 0. (8.3.36) 

For the Neumann problem (8.3.29), we have 

A(0, t) + 5(0, t) + 2v^/ ( t ) , t > 0, (8.3.37) 

and the equation (8.3.35). 

To discuss the existence, uniqueness, and regularity results, the following assumptions 
have been made [219]. 

/ G C^ [0, oo], 0 G C'^ [0, S{0)], ^eC^ [0, S{0)], (8.3.38) 
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(t){x) > -y/^i;{x), (f){x) > Vri^ix) - 1/4; if 0 < a; < 5(0). (8.3.39) 

If there exists a C^ solution of (8.3.31)—(8.3.35) and (8.3.37), then the following compat-
ibility conditions hold good. 

^ ( 0 ) = J5o(0) + 2v^/(0), (8.3.40) 

>lo,x(0) + Bo,x(0) = - 2 ( r / ( 0 ) + /(O)), (8.3.41) 

and 

5(0) = 5o, 5'(0) = 5i, 5''(0) = 52, (8.3.42) 

where 5o > 0 is given and 

<. 1 {20^(^/?Sl - l )A . (5o) - (yto(5o) - Bo(So))} 

R ,a. V7^. .(go)(l + 2Ao(5o)) - 4Ag(5o)(l + ^o(go))^ 

Some of the results obtained in [219] are given below. 

Proposition 8.3.1. If (8.3.38)-(8.3.41), (8.3.45) and (8.3.46) hold, then there exists 
a solution [A,B,S) of (8.3.31)-(8.3.35) and (8.3.37) with 5 G C '̂̂  and A, B in C '̂̂  up 
to the boundary. 

Proposition 8.3.2. For any ti > 0 there exists at most one C^ solution {A, B, 5) 
of (8.3.31)-(8.3.35) and (8.3.37) for 0 < ^ < ^i. 

The above two results are for the Neumann problem. For the Dirichlet problem, the 
existence theorem requires that the data satisfy the assumptions 

f'{t) > 0, 0 < t < 00, ] 
[ (8.3.47) 

-(t>'{x) > ^/TW{x)\, 0 < X < 5o, 0(5o) + V^^(So) > 0. J 

Proposition 8.3.3. If (8.3.38)-(8.3.41) and (8.3.45)-(8.3.47) hold and if one can 
establish an a priori estimate A(S{t), t) > -l/2-\-£r for some ê  > 0, 0 < ^ < ti < 00, Sr 
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depending on r, and ti, then there exists a solution {A,B,S) of the Dirichlet problem 
with S e C '̂̂  and A, B e C '̂̂  up to the boundary. 

A uniqueness result similar to that given in Proposition 8.3.2. holds good for the 
Dirichlet problem also. 

Asymptotic behaviour of the one-phase problem as r —> 0 was also investigated in 
[219] and the Proposition 8.3.4 given below was proved under some assumptions. 

Proposition 8.3.4. Consider the Dirichlet problem stated in (8.3.28). The solution 
Tr (T depending on r) of the Dirichlet problem with T^ = 0 in x > Sr{t), tends to u as 
r -^ 0 weakly in (L°° {0 < x < M, 0 < t < ti})* for any M > 0, ti > 0, where u is the 
solution of the one-phase Stefan problem stated in (8.3.48)—(8.3.50). 

tif - tixx = 0, 0 < X < S{t), t > 0, (8.3.48) 

^(0,t) = f{t), t > 0; n(x,0) = ^(x), 0 < x < ^(0), (8.3.49) 

w = 0, Wx = --j-] on X = S{t). (8.3.50) 

Here, /( t) and (t){x) are the same as in (8.3.28). 

A result similar to Proposition 8.3.4. could not be proved for the Neumann problem 
as the solution of Riemann invariants cannot be obtained by integration along character-
istics. 

A one-phase three-dimensional hyperbolic Stefan problem with discontinuous temper-
ature was studied in [221]. The constitutive equations which hold throughout the region 
consisting of solid and liquid phases are taken as 

^ - h V . ( f - 0 , a n d r | ^ - h g + V(i^r) = 0; f = (gi, ^2, ̂ a). (8.3.51) 

The first equation in (8.3.51) holds in the weak sense as the energy e = e[T) is discon-
tinuous across the phase-change boundary whose equation is given by (t)[x\,X2X^,t) = 
X'i — S{xi,X2,t) = X3 — S{t) = 0. Across the shock Xs = S{t), the following Rankine-
Hugoniot conditions hold. 

[rqi] S, + [KT] 5,, = 0, ^ 

[rqJi St + [KT] S,, = 0, \ (8.3.52) 

lrqs]St - [AT] = 0, 

[e]St + [gi] S,. + [92] S,, - [<j;,] = 0. (8.3.53) 



214 The Hyperbolic Stefan Problem 

Here, [/] denotes the jump in f across the interface (p = 0 and Cs = CL = C and 
Ps = PL- It is easy to derive conditions (8.3.52) and (8.3.53) from equations of the 
type (8.3.9). Since the energy function is non-convex, one cannot expect the two-
phase problem to be well-posed even in the one-dimensional case and therefore only 
one-phase problem has been considered in [221]. The hquid occupies the region 0 < X3 < 
S{t) in R^, S(xi,X2,0) = So{xi,X2) and the initial conditions for the liquid region are 
given by 

T(X, 0) = To{x) > 0, X = (Xi, X2,X3) ] 
> , 0<X3<So. (8.3.54) 

q{x,0) = qo{x) J 

T — 0 is the phase-change temperature. The initial conditions for the solid region are 
given by 

T(x, 0) = 0, q{x, 0) = 0] X3> So. (8.3.55) 

Let U = {qi,q2,Q3, T)^^, where T^ is the transpose of a matrix. The hyperbolic system 
consisting of equation (8.3.51) can be written in the form of the following matrix equation 

3 

CU = Ut + Yl ^J^^j +BU = 0, (8.3.56) 
j = i 

where Aj, J=l,2,3 and B are 4 x 4 matrices which can be easily written. As we saw 
earlier, for the existence and uniqueness of the solution, some compatibility conditions 
are to be satisfied at SQ. These are the conditions imposed on the traces of an initial data 
{To,qo) at X3 = S{0). The compatibility conditions can be obtained by comparing the 
two values of Ut{x, 0) at X3 = S{0), one computed from the interior equation (8.3.56) and 
another from the interface conditions (8.3.52) and (8.3.53). Higher order compatibility 
conditions can be obtained similarly (cf. [222]). 

The compatibility conditions can also be stated in an equivalent way as follows. The 
initial data in (8.3.52)—(8.3.56), are said to satisfy k-th order compatibility conditions if 
there exist a C^- approximate solution (f7, S) of (8.3.52)—(8.3.56) such that 

U{x,0) = Uo{x), S{xi,X2^0) = So{xu2:2), (8.3.57) 

CU = 0(^^), (8.3.58) 

D{U,S) = 0{t^), (8.3.59) 

where the system of equations (8.3.52) and (8.3.53) is briefly denoted as D{U, S) = 
0. Uo{x) is the value of f/ at i = 0 and the operator C is the same as in (8.3.56). 

The main result of [221] is the following proposition. 

Proposition 8.3.5. The hyperbolic Stefan problem (8.3.52)—(8.3.56) has a unique 
classical solution (f/, S) e H^({0, to) x R^) x //^+^((0, 0̂) x i?^) for some 0̂ > 0, provided 
the following conditions are satisfied. 
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1. Uo{x), So{xuX2)eC^. 

2. k-th order compatibility conditions (8.3.57)—(8.3.59) are satisfied for k > 4. 

3. St{xi,X2,0)<a = ^K/{TC). 

In the n-dimensional case, we take k > (n + l)/2 + 2. There are four main steps in 
the construction of the proof of Proposition 8.3.5. First, the free boundary is fixed by 
the transformation xs — S{t) = ys, xi = yi^ X2 = y2 so that in the new coordinates, 
equation (8.3.56) becomes 

Ci{S)U = 0, in 2/3 < 0 , (8.3.60) 

where 

The free boundary conditions remain of the same form as stated in (8.3.52) and (8.3.53). 
The second step is to formulate the given problem in terms of new variables (V, ^) which 
satisfy the homogeneous initial conditions. V and ^ are defined by the relations 

U = 0 + V; S = S + ^. (8.3.61) 

The existence and uniqueness of the solution of the original problem can be established if 
the same can be proved for the problem formulated in terms of the new variables (V, ̂ ) . 

The third step is to linearize about {U,S) the nonlinear problem formulated in terms 
of (y, ^ ) and to prove that the linearized problem is uniformly stable. The linear bound-
ary value problem for (V, ̂ ) will be uniformly stable if the solution (V, ̂ ) satisfies the 
estimate (of. [223]) 

V ml, + \y\l, + l^ lL ^P(l ll/llo,. + l^lo,,). for n > r?o, (8.3.62) 

where ||V Ĥ^̂  is the hyperbolic r]-weighted interior norm defined as 

W\\r,v=Yl J \d^^Ae''''y)\^dxidx2dx3dt, xeR\ (8.3.63) 

and IVI is the boundary norm defined as 

\n,,= E / \dr,i.,,.Je-''V)\'dx,dx2dt. (8.3.64) 

Here, (/, f̂) are smooth functions which have zero traces at t = 0 upto the order k and 
are defined as follows: 

/ = Ci(S + *)(f7 + V)- Cr{S){U), y, < 0, (8.3.65) 
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g = D{U + V, 5 + ^) - D{U, S). (8.3.66) 

It has been proved that under the assumptions about the initial data in Proposition 
8.3.5, the smooth solution of the linearized problem satisfies (8.3.62) near (y,t) = (0,0), 
y = (2 / i , ? /2 , ? /3 ) -

Proposition 8.3.6. If the linearized problem is uniformly stable, then for any A: > 0 
there is a unique solution (K, ^) G H^ x H^'^^ satisfying (8.3.62) near (0,0) with the 
subscript zero in (8.3.62) replaced by k and the subscript one replaced by A: + 1; the 
constant P (depending on k) in (8.3.62) depends on the local H^ norm of the coefficients 
with m = max (A;, 4). 

The fourth step is to use an iterative method to show the existence of a unique classical 
solution (]/, ^ ) in the neighborhood of (0, 0). Only linear iterations can be employed as 
for the linearized problem the estimate of the boundary function ^ is one order higher 
than the estimate of V. For the solution of the nonlinear problem formulated in terms of 
(y, ^ ) , the following result holds good. 

Proposition 8.3.7. Consider A: > 4 in the nonlinear problem formulated for (1/, ^ ) 
and assume that the following conditions hold good. 

1- ifi 9) ^ ^^ with zero traces at ^ = 0 up to the order (A: — 1). 

2. At {V, ̂ ) = (0, 0), the boundary value problem is uniformly stable, i.e, the estimate 
in (8.3.62) is satisfied. 

Under the above conditions there exists a 0̂ > 0 such that in (0, ^0), the nonlinear 
problem for (]/, ^) has a unique solution e H^ x H^^^. Moreover, 
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8.4 Model III : Delay in the Response of Energy to 
Latent and Sensible Heats 

8.4.1 The classical and the weak formulations 

In this model, it will be assumed that along the solid-liquid interface, the energy 
response to the latent heat release (storage) is delayed by the same amount of time as 
the delay in the response of flux to the temperature gradient. Independently, the specific 
heat may be delayed or advanced with respect to the total energy by an increment 
de|)ending on the phase. This seems appropriate in order to match the wave speeds of 
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the hyperbolic equations on either side of the phase-change interface. If it is assumed that 
the response of energy to the latent heat is instantaneous, following a delay of relaxation 
time T, and if the response of energy to the specific heat is not delayed, then the total 
energy during the phase-change is given by (8.1.6). As discussed earlier this leads to an 
unrealistic situation. 

To have a well-posed problem and render it consistent with the wave speeds in solid 
and liquid phases and also consistent with the delay in the energy response to the latent 
heat, the following constitutive relations have been considered in [211]. 

^nd -{q{t)+Tq\t)) = KVT, (8.4.1 

1 + r-)e{t) = (1 + g{r)-)C{T) + /^W, ? e H,{T). (8.4.2) 

Here, P(T) - r^ if T < 0 and p(r) = r̂ . if T > 0, C{T) = CgT if T < 0 and C[T) - CLT 
if T > 0. T5 and TL are relaxation times for the response of energy to the specific heats in 
the pure solid and the pure liquid phases, respectively. ^ is the fraction of liquid present 
in any region. ^ = 0 for the pure solid, (f = 1 for the pure liquid and 0 < ^ < 1 for 
the mushy region whose temperature is T = 0. Hg is the Heavyside graph (cf. (4.3.45)). 
{q(t)-VTq{t)) and {e{t)-^Te'{t)) are assumed to be piecewise smooth in the total region 
under consideration. The first term on the l.h.s. of (8.4.2) is the first order approximation 
of e(^ + r) and the first term on the r.h.s. of (8.4.2) is the first order approximation of 
C{T{t + Tj)), J = S,L. The essential assumptions in (8.4.2) are: (1) the latent heat affects 
the energy after a delay of time r, and (ii) the specific heat affects the energy after a 
delay of r — rj^ J = 5", L, in the corresponding phase. When rs = TL = r, equation 
(8.4.2) can be integrated and we get 

oo 

e{t) = C{T{t)) + H/T) J exp(-p/r)C(t - p)dp, ^ 6 H,{T). (8.4.3) 
0 

Derivation of energy conservation equation for the two-phase problem 

The energy conservation principle and the relation (8.4.2) will now be used to derive 
energy conservation equation in the phase-change region. We first obtain the classical 
formulation and consider the case in which only solid and liquid regions exist which are 
separated by a smooth interface r(t) . The densities of both the phases are taken to be the 
same . Let G C R^, be a fixed open bounded region and G = Gs{t) U Giit) U r(^), 0 < 
t < t^. The subscripts S and L stand for solid and liquid regions, respectively. Hyperbolic 
equations admit discontinuous solutions along shocks. Such shocks will be accommodated 
in the formulation. The time dependence of Gs, GL and F wiU not be indicated in the 
further discussion of this problem. The regions Gs and GL are disjoint. The external 
boundary of G is denoted by dG^ = dG^g U dG^^ where dG^g and dG^i^ are the external 
boundaries of solid and liquid regions. Let dGs be the boundary of the solid region when 
the liquid region is removed from G and let dGi be the boundary of the liquid region 
when the solid region is removed from C, i.e., dGs = d^Gs^ L and dGi — d^G^U T. It 
will be assumed that dG^ and F are sufficiently smooth and the outward drawn normal 
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can be defined uniquely on them. The energy conservation principle when applied to G 
gives 

[ e{t)dx - - / q{t). nda + f F{t)dx. (8.4.4) 

dC^ 

Here, n is the unit outward normal to dG^ and F[t) is the intensity of the heat source. 
By virtue of the constitutive relation (8.4.2), e(^) is difFerentiable in G and the time 
derivative on the l.h.s of (8.4.4) can be taken inside the integral. According to (8.4.1), 
q{t) is also differentiable, therefore, on differentiating (8.4.4) again with respect to time, 
we obtain 

J fe\t)dx =- f q\t). nda-\- f F\t)dx. (8.4.5) 
G dGb G 

It will be assumed that G, dG^ and, n on dG^ do not change with time. Multiplying 
(8.4.5) by r and adding (8.4.4) to it, we obtain 

J j{e(t) + Te'{t))dx = - f {q{t) + rq'{t)). nda + f{F{t) + TF'{t))dx. (8.4.6) 
G dG^ G 

In C, e(^) +Te'{t) is only piecewise smooth but in Gs and GL, e{t) -\-Te'{t) is smooth. 
Therefore in (8.4.6) we consider Gs ^ GL. The normal n should be defined in such a 
way that it is consistent with boundaries of both regions Gs and GL- Therefore n will 
have opposite directions on F when F is approached from liquid and from solid regions. 
On r , n is time dependent and it will be denoted by Â  which points into the liquid. 
The boundary of Gs includes F which is moving with a velocity V{t) and we have (see 
(2.4.12)) 

/ (e(^) -f Te'{t))dx = f ^{e{t) + Te'{t))dx + / [e + re'] (V-N) da (8.4.7) 
GSUGL GSUGL 

In (8.4.7), we calculate d/dt from the first principle and assume that F does not have 
any surface energy. 

Equation (8.4.6) when written for Gs U GL will have the following form 

d 

GSUGL r dG^^udGl 

j [q[t) + Tq'{t)\ -Nda^ j {F(t) + TF'(t))dx. 

I ^^^^^^ ^ re\t))dx + / [e + re'] {V • N)da = - J {q{t) + Tq'{t)).nda 

Here, [e + re'] and [q-^ rq'] denote jumps in e{t) + Te'{t) and q{t) + Tq'(t) across F. 
The surface integral in (8.4.8) can be converted to a volume integral. The direction of 
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the normal on F from the sohd side is opposite to its direction from the hquid side. Since 
(8.4.8) holds for any G and F and for any t > 0, the following equations should hold. 

j^{e{t) + Te'{t)) H- V. {q{t) + Tq\t)) = F{t) + rF^t) in G\r, 0 < t < t,. (8.4.9) 

-[e(^) -h Te'{t)]Nt = [q{t) + Tq'{t)]. iV ,̂ on F, 0 < ^ < t,. (8.4.10) 

Here, Â  = {Nt^Nx)) and Â ;̂ = (-^xi, ^X2 5 ^xs), x = (xi,X2,X3). If S denotes the union 
of F and some other surfaces of discontinuities (shocks) of e{t) + Te'{t) and q{t) + Tq\t) 
in G other than F, then in (8.4.9) and (8.4.10), F should be replaced by S. 

Next, we assume that G consists of solid, liquid and mushy regions and G — Gs{t) U 
GM{'^) U Giit) U Fi(t) U F2(t). Note that there could be surfaces of discontinuities other 
than Fi and F2 also. In Gs{t), we have T < 0, and in Giit) we have T > 0. GM{t) 
is the mushy region in which the temperature is T = 0. The hquid fraction ^ = ^{x, t) 
is equal to 1 and 0 in liquid and solid regions, respectively, and 0 < ^(x, i) < 1 in the 
mush and is assumed to be a smooth function of t in the mush. Fi(t) is the solid-mush 
boundary and F2(^) is the liquid-mush boundary. Gs{t), G^it) and Gi{t) are mutually 
disjoint regions. Fi(t) separates the solid region from the mush and F2(^) separates the 
mush from the liquid region. The external boundary of G will be denoted by dG^ and 
dG^ = dG^s U dG^M U dG\. Here, dG%, dG\^ and dG^ are the exterior boundaries of 
solid, mush and liquid regions respectively. Let dGs be the boundary of the solid region 
when liquid and mushy regions are removed from G, i.e., dGs — dG\ U Fi and similarly 
let dGu = dG\fUri{t)[jr2{t) and OGL = aG^UF2(i). The outward drawn normal n 
to dGs, 9GM and dGi is defined in such a way that it is continuous on the portions 
common to these boundaries. In order to obtain relations of the form (8.4.10) on Fi(^) 
and F2(t) and the energy equation (8.4.9) in G\FiUF2, we follow a procedure similar 
to that used above to obtain (8.4.8). Repeating arguments which lead to (8.4.9) and 
(8.4.10), we get the energy balance relations on Fi and F2 and the energy equation in 
G\ri u F2. 

Let 5"= F1UF2U (shocks other than Fi and F2). The classical formulation of the three 
region problem (take the densities of the three regions equal to one) is concerned with 
finding a pair (T, (J), satisfying the system of equations (8.4.11)—(8.4.16) for 0 < ^ < t^. 

^ArsCs^ + CsT) - KsV^T = F -h TF\ in Gs- S, (8.4.11) 
dV " ^ dt 

1^^=F + TF\ in GM-S, (8.4.12) 

J^(^LCL^ + CLT + 0 - KL^'T =F + TF\ in GL~ S , (8.4.13) 

/(I - 0 + ^LCL^] Nt = Kiyr. Nx, on F2, (8.4.14) 
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-^^"^^sCs^j Nt = KsVT. TV,, on Ti, (8.4.15) 

r^a 
dT_ 

Nt = K^[VT]. TV,, on S - (F i U Ta). (8.4.16) 

Here, i = S oi L depending on whether T < 0 or T > 0. T = 0 on Fi and r2 and 
N = {Nt, N:i:) is the normal on a surface of discontinuity and TV points into the hquid. 
[/] denotes the jump in / across a surface of discontinuity. Equations (8.4.11) and 
(8.4.13) are telegrapher's equations. Equation (8.4.12) regulates the water fraction in 
the mush. Equations (8.4.14) and (8.4.15) are energy balance conditions at the phase-
change boundaries (cf. (8.4.20) for their derivation). The propagation of wave fronts is 
described by (8.4.16). To complete the formulation, equations (8.4.11)—(8.4.16) should 
be supplemented with the initial and boundary conditions. For example, 

T{x, t) = 0, xe dG\ 0<t<U, (8.4.17) 

T{x,0) = To{x), xeG, (8.4.18) 

{T^CidTL/dt -h CLTL + / )b=o= vi{x), where To{x) > 0, ^ 

{r^CsdTs/dt + CsTs)\t=o= V2{x), where To{x) < 0, i (8.4.19) 

/^(x,0+) = V3{x), where To{x) = 0, x eG. J 

Let Uo{x) = vi{x) for To{x) > 0, = V2{x) for To{x) < 0, = V3{x) for To{x) = 0. 

To derive energy balance condition (8.4.14) on F2 and (8.4.15) on Fi we consider 
two one-phase hyperbolic Stefan problems with the assumptions about the delay in the 
response of flux to the temperature gradient and the delay in the energy response to the 
sensible heat. At the liquid-mush boundary F2, the energy balance condition without 
any approximation gives 

-q{t + T).N, + (/(I - e) + CLmt + T[^))V. N, = 0. (8.4.20) 

For simplicity we take densities of all the phases equal to unity. The first order ap-
proximations of q[t -h r) and Ti{t -h TI) when substituted in (8.4.20) give the equation 
(8.4.14). Similarly by considering the energy balance condition on Fi and considering its 
approximation, we obtain (8.4.15). 

The wave speeds in solid and liquid phases are given by {ks/rsY^'^ and (ki/riY^'^, 
respectively. To have a global wave speed (I/TQ)^/^ in C , TQ > 0, independent of the 
phase, we define 

Ts = Toks] and n = Toki. (8.4.21) 
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To obtain a weak formulation of the classical problem stated in (8.4.11)—(8.4.16), we 
consider the integral 

/{ d f^^^MTl ^ Q^j.^ ^ ^ ĵ _ v2(i^(T))^ 0 dxdt. (8.4.22) 
dt\" dt 

Here, G, = G x (0,^,), 0 < ^ < *̂ < oo, K{T) = KsT, if T < 0 and K{T) = KLT if 
T > 0, C{T) = CsT if T < 0, = CLT if T > 0, and 0 is the test function, 0 G C^(G'*). 
By adopting the procedure indicated in (5.2.12)—(5.2.14) it can be shown that 

7 VK{T).N, - {1(1 - 0 + roj^K{T))N, 4> dxdt. (8.4.23) 

On using (8.4.11)-(8.4.16) in (8.4.23), we get 

Wt {^"'^^w^+^^^^ ^ ^^)"" ^'(^(^)) = ''^+^^'' *-̂ - '"̂  ^ - (̂ •̂ •24) 

Equation (8.2.24) is satisfied in G^ in the distributional sense. A pair of functions 
(T ,0 such that T e W^^^{0,t,] L^G)) n L°^(0,t*; H^{G)), ^ e L'^iG,) is called a 
generalized solution of the problem (8.4.11)-(8.4.16) and (8.4.17)-(8.4.19) if (8.4.24) is 
satisfied for a.a. t G [0,^*]. T{t) G H^(G) and ^(t) G Hg{T{t)) for a.a. t G [0,^,]; T(0) = 
To and (ToaA'(T)/at + C'(T) + ê)̂ _^ = 2Xo(a:). If F G iy^'°"(0,t*; // 'HG')) (^"^ is the 
dual space of H^), then TodK{T)]dt + C'(T) + i^{t) G M/i'°^(0,t,; H~\G)) and the 
initial conditions are meaningful. Under suitable assumptions on F, To, ^{x,0) and Wo, 
existence of a unique generalized solution has been proved in [211]. 

A one-phase problem in which the melted ice first forms a mushy region with tem-
perature zero and then becomes water with temperature greater than zero has also been 
discussed in [211]. The classical, weak and variational inequality formulations have been 
obtained for this one-phase problem. In terms of the freezing index the existence of the 
unique weak solution of the variational formulation has been discussed. An example of 
the non-existence of the generalized solution of a one-phase problem formulated with the 
above delay assumptions has been constructed in [211]. 
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The one-phase multi-dimensional hyperbolic Stefan problem discussed in [224] consists 
of finding a hypersurface S{t) = {x e R^ : (pix.t) = 0}, 0 < ^ < oo, n > 1 and the 
temperature T(x,t) in G{t) = {x e R^ : (t){x,t) > 0}, 0 < t < oo, such that 

TCTU + CTt - KVT = 0, in G{t), (8.4.25) 

T(x,0 = 0, ] 
> on S{t) (8.4.26) 

{l-^TCTt)<j>t = KVT-V(t).\ 

T{x,0) = To{x), ^ 

Tt{x,0) = T,{x), \ (8.4.27) 

S{0) = So = {x : (Pix.O) = (Po = 0}. ) 

This model in (8.4.25)—(8.4.27) is based on the delay assumptions of model III. 

The existence and uniqueness of H^- weak solutions were proved in [211]. The exis-
tence of the unique classical solution of the problem (8.4.25)—(8.4.27) has been proved 
in [224]. A solution (T, 0) of (8.4.25)-(8.4.27) is called classical if (T, 0) e C^iBJ" x R\_). 
The above problem is called non-degenerate if 

VTo • V(/)o ^ 0, on S'o. (8.4.28) 

The condition (8.4.28) implies that the interface is really moving. We saw earlier that 
some compatibility conditions have to be satisfied at 5*0 for studying existence and unique-
ness of solutions. The zeroth-order compatibility conditions on 5*0 are given by 

To(x) = 0, ] 
\ on 50. (8.4.29) 

(/ + TCTi)Ti -A ' |Vro | ' = 0. J 

The first-order compatibility condition on SQ can be obtained by comparing the two 
expressions for Tu on 5*0, one obtained from (8.4.25) and another from (8.4.26), and it is 
given by 

(/ -h 2TCTi){Ttt + VTi . fj) - 2KVTo • VTi + KV \Tof • //, (8.4.30) 

where 
fj=-Ti\/To\VTo\-\ (8.4.31) 

The main result of [224] is the following proposition. 

Proposition 8.4.1. Assume that the following conditions are satisfied : 
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(i) The problem (8.4.25)-(8.4.27) is non-degenerate. 

(ii) To(x), Ti(x) and <po{x) are sufficiently smooth. 

(iii) The compatibility conditions are satisfied on So up to the order 7 : 7 > {n-\-l)/2. 

(iv) The stability condition 

is satisfied. 

Then there exists a 0̂ > 0, such that in (0, ̂ 0), there exists a unique classical solution 
(T,(/)) of (8.4.25)-(8.4.27) belonging to the space H''^' x H''^\0,to; Rl). The method 
of proof involves fixing the phase-change boundary by the hodograph transformation and 
then considering a linearized problem. By using the results of the linearized problem, the 
results for the nonlinear problem have been obtained. For / — 0, the stability condition 
(8.4.32) implies that the velocity of the interface should be less that the velocity of sound. 
For / 7̂  0, the condition (8.4.32) is stronger than the usual requirement that the phase 
interface moves slower that the sound speed. If the condition (8.4.32) is not imposed, then 
generally, one cannot expect the one-phase problem to be well-posed globally because of 
the hyperbolic wave property. It has been remarked in [224] that this condition is not 
satisfied at the time specified in the example considered in [211] to show the non-existence 
of the solution of the one-phase problem. 



Chapter 9 

Inverse Stefan Problems 

9.1 Introduction 

To understand the basic features of an inverse problem, which could be or not be a Stefan 
problem, we first consider a simple heat conduction problem of finding the temperature 
T(x, t) satisfying the following heat equation, and the initial and the boundary conditions. 

dT d^T 
— = -—, (x,t) e Qt. = ^ X {0 < t < U < 00} , n = [0,1], (9.1.1) 

T(x,0) = 0, x G ^ , (9.1.2) 

dT 
-—(0,^) = 0, 0<t<U, (9.1.3) 
ox 

T{l,t) = fit), 0<t<U. (9.1.4) 

For convenience, thermophysical parameters have been taken to be unity in the 
above formulation. Under fairly general smoothness conditions on f{t), the solution 
of (9.1.1)-(9.1.4) exists. From the solution T{x,t) of (9.1.1)-(9.1.4), T{0,t) can be 
obtained. Let 

T{0,t) = g{t), 0<t<t,. (9.1.5) 

Here, g{t) could be known exactly through an analytical solution or known only approx-
imately, for example, through an experiment or from a numerical solution. We shall 
call the problem (9.1.1)—(9.1.4), a direct prohlem. Consider another problem consisting 
of (9.1.1)—(9.1.3) and (9.1.5) and from the solution of this problem (if it exists) obtain 
T{\,t) — f{t). This is called an inverse problem corresponding to the direct problem 
(9.1.1)—(9.1.4). Several other inverse problems can be formulated corresponding to the 

224 
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direct problem (9.1.1)—(9.1.4). For example, an inverse problem may consist of (9.1.1), 
(9.1.3), (9.1.4), and the condition 

T{x, to) = To, X G 0, 0 < to < t*, (9.1.6) 

and we are required to find T(x, 0). 

It is clear from the above discussion that the 'input data' of an inverse problem 
contains some information about the input data of the direct problem. By interchanging 
the roles of some known and unknown quantities, a direct problem can be treated as an 
inverse problem and vice-versa. However, in practical problems, in most cases, there is a 
quite natural distinction between a direct and an inverse problem. For example, a direct 
Stefan problem is concerned with finding the temperature field and the free boundary 
for an exactly known data and an inverse Stefan problem is generally concerned with 
controlling the free boundary with the help of boundary or initial data. Input data in 
a direct Stefan problem can be identified with the causes and the temperature and the 
free boundary are effects. In inverse problems, the objective is to determine causes for a 
desired or an observed effect. In the context of inverse Stefan problems, a cause could be 
an unknown thermophysical parameter, an initial condition or a boundary condition and 
the desired effect could be a specified free boundary or a known temperature distribution 
at some future time in an evolutionary system. 

9.2 Well-posedness of the Solution 

The term 'solution' cannot be used loosely in the context of solutions of either direct or 
inverse problems. The function space to which we expect the solution to belong should 
be specified. If the thermal conductivity in the heat equation is a discontinuous function 
of temperature, then we cannot expect T{x,t) to belong to C^(QtJ (Q^̂  = Q x (0, t*)). 
Admissibility of the input data should be specified together with the topology to be 
used for measuring continuity. We should specify the properties which a solution should 
possess. For example, we may ask the following questions which are relevant to both 
direct and inverse problems. 

Does a solution exist for ah admissible data? (9.2.1) 

Is the solution unique for all admissible data? (9.2.2) 

Does the solution depend continuously on the data? (9.2.3) 

If the answers to the above equations are all positive, then irrespective of the prob-
lem being direct or inverse, we say, that the problem is ivell-posed or correctly-posed or 
properly-posed in the sense of Hadamard [225]. If any answer of (9.2.1)—(9.2.3) is neg-
ative, then the problem is said to be ill-posed or incorrectly-posed or improperly-posed. 
Direct problems may or may not be ill-posed but inverse problems are generally ill-posed. 



226 Inverse Stefan Problems 

In everyday life also, finding the cause which has given a desired effect may have a non-
unique answer. We shall now discuss (9.2.1)—(9.2.3) in the context of the solution of an 
ill-posed problem. 

Non-existence of the solution 

For an exact data, the existence of the solution is an important requirement and it 
can often be achieved by relaxing the requirement of the solution to belong to a desired 
function space. When the data is only approximately known, such as, through exper-
iments then the problem has to be 'regularized' (cf. § 9.3) and hence changed anyway. 
The regularized problem is well-posed (cf. § 9.3). 

Non-uniqueness of the solution 

The non-uniqueness of the solution is considered to be much more serious than non-
existence of the solution [226]. If a problem has several solutions, then the solution of 
interest can be picked up by requiring the solution to satisfy some additional conditions 
of quantitative or qualitative nature. For example, the solution should have the smallest 
norm. The qualitative information could be about the smoothness of the solution. 

Continuous dependence of the solution on the input data 

The rigorous definition of continuous dependence of the solution on the data will be 
given later after formulating the direct and inverse problems as operator equations. We 
first discuss the significance of the continuous dependence of the solution on the data. 

Continuous dependence of a solution on the data is also called 'stability' of the solution 
and non-stability may create serious numerical difficulties. Real life problems are highly 
nonlinear which are generally studied numerically. If one wants to study the solution of a 
problem by traditional numerical methods without 'regularization' and the solution does 
not depend continuously on the data, then the numerical method becomes unstable as a 
small error at any step in the numerical procedure goes on magnifying at subsequent steps. 
As a result of this, either the numerical solution cannot be obtained or the numerical 
solution obtained is erroneous. A partial remedy for this is the use of 'regularization 
methods', although one should keep in mind, and this is important, that no mathematical 
trick can make an inherently unstable problem stable. All that a regularization method 
can do is to recover partial information about the solution as stably as possible. 

Let us now consider the inverse problem of obtaining / ( I , )̂ in (9.1.4) from the solution 
of (9.1.1)—(9.1.3) and (9.1.5) and show that the inverse problem is unstable. UT{x,t) G 
L^(Q) for a. a. t, then the solution of (9.1.1) can be obtained by using 'exponential 
Fourier transform' which is defined as 

f{x,a) = - ^ I e-''''T(x,t)dt, a e R, i = V^. (9.2.4) 
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On taking the exponential Fourier transform of (9.1.1), we get 

—2" = ^OiT, X en, ae R. (9.2.5) 
ox 

In view of the boundary condition (9.1.3), the solution of (9.2.5) can be taken as 

t ( x , a ) = Acosh{xVia), (9.2.6) 

and on satisfying (9.1.5), we get 

T{x,a) = cosh{xy/ia)g{a). (9.2.7) 

Prom (9.1.4), it is easy to obtain the equation 

f{x,a) == cosh{x Via) g {a), (9.2.8) 

and the inverse transform of f{a) is given by 
+00 

/2n 

+00 

f{t) = -^= f e''''cosh(y/i^)g{a)da, 0 < t < t,. (9.2.9) 

The integral in (9.2.9) will exist only if g{a) decays very rapidly as \a\ -^ oo. This is 
because 

|cosh(\/ia)| = (sinh^W^ + Q,OS^J^\ ' , (9.2.10) 

goes to infinity exponentially as |a| -^ oo and the integral in (9.2.9) will exist only if 
g(t) is very smooth so that it decays very fast as \a\ -^ oo. Even then arbitrarily small 
errors in the data g{t) can lead to arbitrarily large errors in the calculation of / which is 
confirmed by the following example. 

If the data is obtained through experiments or numerical methods are employed for 
the solution, errors are bound to develop. Suppose the data is perturbed as follows [226]: 

g^{a) = g{a), a ^ [ao, ôo + 1], a e R is arbitrary, 1 
(9.2.11) 

= g{a)-\-5, a e [ao^ao+l]. J 

Then ||p'^(a) - ^(tt)|lL2(/?) = ll̂ '̂  ~ 9\\L^{R)— ^- "^^^ corresponding error in the solution of 
f{t) can be calculated using (9.2.9) and (9.2.11). 

ao + l 

QO + 1 

>S' J sinh^ J^da > Shmh'J^. (9.2.12) 
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If ao > 0, we have 

l l / - / ' l l > ^ e x p y ^ . (9.2.13) 

Since —oo<a<cxD, a o > 0 could be large and even if 6 is small the error in the output 
function / could be very large. It is interesting to note that some 'a-priori' information 
about / can stabilize this ill-posed inverse problem. It has been shown in [227] that under 
suitable assumptions, 'Holder stability' (cf. § 9.5) of the solution f{t) can be obtained. 
The inherent reason for the ill-posedness of the above inverse problem lies in the strong 
smoothing properties of the operator describing the direct problem, i.e., the operator 
mapping / onto g. 

The equation (9.2.9) suggests that in general we should consider an operator equation 
of the form 

Az = u] ueU, z e Z. (9.2.14) 

Here, A is a linear bounded operator, A.Z^^U and Z and U are suitable metric spaces 
or Hilbert spaces, u is called an 'input data' or an admissible data and z is called a 
'solution' for the input data u, if there exists a 2: E Z such that Az = u. z need not 
be unique. If N{A) = 0 (if only zero of Z is mapped onto the zero of U under the 
transformation A), then z is unique and A is invertible, i.e., A~^ exists. An equation 
similar to (9.2.9) can be obtained expressing g{t) in terms of f[t) if g{t) is unknown and 
f{t) is known. In this case also the operator equation will be of the same form as in 
(9.2.14). Therefore, in an abstract setting, whether we are deahng with a direct problem 
or an inverse problem, the operator equation can be taken to be of the form (9.2.14). 
In principle, A could be a nonlinear operator but unless mentioned otherwise, A will be 
taken as a linear operator. Z and U will be taken as Hilbert spaces. 

In some situations, we may like to identify an inverse problem distinctly from its 
direct problem. Suppose the direct problem can be formulated as an operator equation 
of the form (9.2.14). If A is invertible, then the inverse problem corresponding to the 
direct problem can be stated in the form 

Gu = A-\ = z] ueU, zeZ. (9.2.15) 

In (9.2.15), z in now an input data and u is the solution. When there is no confusion, 
for both direct and inverse problems, we shall consider the formulation in the form of an 
operator equation (9.2.14). 

Definition 9.2.1. Stability of the solution. 

Consider the operator equation (9.2.14). Suppose the concept of solution is defined 
and to every element u E U there is a corresponding unique element z E Z given by 
the relation z = A^^u. Let Ui and 1/2 be any two elements of U and zi = A'^ui and 
Z2 = A~^U2 with zi and Z2 in Z. If for every given positive real number e > 0, there 
exists a positive real number 6(e) such that 

\\ui-U2\\<5(s)^\\zi-Z2\\<e, (9.2.16) 
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then we say tha t the sohition of (9.2.14) depends continuously on the da ta or the prob-
lem formulated in (9.2.14) is stable on the spaces {Z,U). If A~^ is defined for all of U, 
then the well-posedness of the problem is equivalent to the continuity of A~^. For a 
long time, it was an accepted point of view in mathematical literature tha t every math-
ematical problem to be studied has to be well-posed [228]. With the development of 
regularization methods it is possible to obtain an approximate solution of an ill-posed 
problem by approximating an ill-posed problem by a well-posed problem. The most im-
portant of regularization methods is the ' Tikhonov regularization' (cf. [229, 230]) but 
before discussing this regularization method, let us explore the possibility of obtaining 
an approximate solution of the operator equation (9.2.14) by some other methods. 

We first consider the case when the input da ta is exactly known. The operator A is 
exactly known, is continuous, bounded and has an inverse A~^ which is not in general 
continuous. Let M be a compact subset of Z. Suppose that the input da ta in (9.2.14) 
is UQ E U and an exact solution ZQ ̂  Z exists but it is difficult to calculate it. Can ZQ be 
calculated approximately? Usually, we take for M a set of elements depending on finite 
number of parameters varying within finite limits in such a way tha t M is a closed set 
contained in a finite-dimensional space. Note that if Z is infinite-dimensional, then A~^ 
need not be defined on all of f/, i.e., AZ ^ [/, and secondly A~^ defined on AZ C U 
need not be continuous. If the input da ta belongs to N = AM C U, then there exists a 
ZQ e M and 

11^20 - ^ollf; = m^ \\Az - UoWu = 0- (9-2-17) 

9.2.1 Approximate solutions 

To construct an approximate solution ZQ e M for a given UQ (as discussed above), 
we construct a sequence {zn} of elements of M such that the sequence of numbers 
11742̂  — Uo\\u —> 0 as n ^ oo. If {^2^} -^ UQ as n —> 00 in the norm of U and if 
{zn} ^ ZQ in the norm of M, then some Zn for sufficiently large n can be taken as a good 
approximation to ZQ. If the conditions of Proposition 9.2.1. (given below) are satisfied, 
then the sequence {z^} converges and an approximate solution can be obtained. This 
method of finding an approximate solution is stable and the calculation of A~^ which is 
often difficult can be avoided. 

P r o p o s i t i o n 9 .2 .1 . Suppose that a compact (in itself) subset M of a Hilbert space 
Z is mapped onto a subset N = AM of a Hilbert space U. If the mapping M ^ N is 
continuous and one-to-one, the inverse mapping N —> M is also continuous. 

For the proof of the continuity of A~\ see [231]. It may be noted if the conditions 
of Proposition 9.2.1. are satisfied, then the problem stated in (9.2.14) is well-posed on 
the spaces {M,N). To have a well-posed problem on the spaces (Z,U), A~^ should be 
defined on all of U and should be continuous. 

Generally, the input data is available with some error. Suppose u^ is the approximate 
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input da ta which is available in the place of an exact data UQ and we know that 

\\uo-u^\\^<S, S>0] zo = A-\o, Sindz^ = A~\^. (9.2.18) 

Let UQ, US ^ N = AM C U and the conditions in Proposition 9.2.1. are satisfied. Then 
there exists a sequence {zf^} —> zs such that || Az^ — u^ ||-^ 0 and some 2;̂  for large n 
can be taken as an approximate solution corresponding to us . 2^ will also serve as an 
approximate solution of (9.2.14) even if UQ is not exactly known. As 6 -^ 0, z^ ^ ZQ. 

Defini t ion 9 .2 .2 . Quasi-solution. 

Most of the time, we do not have an effective criterion to determine whether the 
element us in (9.2.18) belongs to the set Â  = AM or not but we know that UQ e N. 
In such a case, we cannot write zs = A~^us and take zs as the solution of (9.2.14) for a 
given Us. However, if we know that M is a compact set and A is a completely continuous 
operator, then there does exist an element z E M such that 

\\Az-u\\u = ini\\Az-u\\^, u e U. (9.2.19) 

z is called a quasi-solution. The 'Euler equation' for determining the minimum in (9.2.19) 
or the equation to obtain a quasi-solution has the form 

A*Az = A*u, A* :U ^ Z, {Az, u) = (z, A*u), (9.2.20) 

where, A* is the conjugate operator oi A. Equation (9.2.20) is called the normal equation 
of the operator equation (9.2.14). If M is compact and u e N, then z is an exact solution. 
Quasi-solution may not be unique. It is possible to state the conditions under which a 
quasi-solution is unique and stable. 

Let Q be a subset of a Hilbert space U and u an element of U. An element q of the 
set Q is called a 'projection' of the element u on Q, if 

| | « - < ? | | y = i n f | | w - p | | y . (9.2.21) 
peQ 

P r o p o s i t i o n 9 .2 .2 . Let M be a compact set of Z and let A be completely continuous 
on M. A quasi-solution of Az = u exists on M for u G U. If the projection of each element 
u of U onto the set N = AM is unique, then the quasi-solution of the equation Az = u 
is unique and depends continuously on u € U. 

For some theoretical results and approximate determination of quasi-solutions, see 
[231]. Fundamental to the theory of approximate solutions of ill-posed problems is the 
notion of regularizing algorithms which are based on a regularizing family of operators 
which will be discussed now. 
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9.3 Regular izat ion 

9.3.1 The regularizing operator and generalized discrepancy 
principle 

In § 9.2.1 some stable methods were described to obtain approximate solutions of 
(9.2.14) for a given exact input data as well as for a given approximation of the input 
data. It was assumed that the class of possible solutions of (9.2.14) is a compact subset 
M of Z and A~^ is continuous on N = AM or A is completely continuous on Z. In a 
number of problems, the set M (the set Z can also be considered) is not compact and the 
approximation us of the input data UQ in (9.2.14) may take us {\\uo — us\\ < S) outside 
the set N (the set U can also be considered). Such problems are genuinely ill-posed and 
a new approach for the solutions of such problems was developed in [229, 230]. 

As mentioned earlier, there is no trick by which a genuinely ill-posed problem can be 
made well-posed. But we can approximate an ill-posed problem by a family of neigh-
bouring well-posed problems. This is done by constructing a family of regularization 
operators {Ra}^ where each Ra is a continuous operator, dependent on a parameter a, 
and Ra : U —^ Z. 

To motivate the definition of a regularizing operator, we make the following assump-
tions. 

(1) The operator A :Z ^^ U is only approximately known and its approximation 

Arj : Z -^ U is also a linear bounded operator just as A is. Further, 

\\Arj-A\\<r), Ao = A. (9.3.1) 

(2) A~^ is not continuous on the set AZ. 

(3) The set of all possible solutions M C Z is not compact. 

(4) The input data UQ e U is only approximately known and its approximation 

Us E U is such that 

Ik'^-^oll <S>0. (9.3.2) 

u^ is called noisy data, and S is the error, also called noise level 

(5) A solution ZQ G M of (9.2.14) for the exact data UQ E U exists such that 

ZQ = A'^UQ. 

The initial information consists of {us, A^, 6,77}. Note that even if a 2:5 G Z exists such 
that Azs = Us, zs may not be a stable solution as we have not assumed the continuity of 
A~^. From the initial information we are required to obtain an element z^ E Z, (5 = [8, rf), 
such that as /? -^ 0, 2:/3 —> zo = A~^UQ. This is possible provided a regularizing operator 
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for A~^ exists. In general terms, regularization is the approximation of an ill-posed 
problem by a family of neighbouring well-posed problems. The precise definition of a 
regularizing operator is given below, firstly, for the case when A is exactly known. 

Definition 9.3.1. Regularization operator. 

Let A : Z -^ U he a linear bounded operator between Hilbert spaces Z and U, and 
let ao G (0, +oo]. The initial information consists of {A, u^,S}, and for every a 6 (0, ao) 

Re, : U ^ Z, (9.3.3) 

is a continuous (not necessary linear) operator. The family {R^} is called a regularization 
or a regularization (regularizing) operator for A^^ or A~^ is said to be regularizable, if, 
for aU u £ D{A~^) (domain of A~^ ), there exists a 'parameter choice rule' a = a{S,u^) 
such that 

lim 
s-

holds. Here 

is such that 

[1 sup [\\ R^u^ -A-^u\\; u^eU, \\u - u^ \\< S] = 0, (9.3.4) 

a:R+ xU -^ (0,ao), (9.3.5) 

lim Q sup[a{S,u^); u^ e U, \\u - u^ \\< S] = 0. (9.3.6) 

For a specific u£ D{A~^), a pair (Ra^a) is called a (convergent) regularization method 
for solving (9.2.14) if (9.3.4) and (9.3.6) hold (cf. [226]). 

If the operator A is only approximately known with an approximation Arj satisfying 
(9.3.1), then in Definition 9.3.1., replace A by A^ and the mapping in (9.3.5) should be 
defined as 

a = {{p,u^)] f3= (̂ ,7y), (5>0 , r />0 , \\u^ - u\\< 6} ^ (0,ao). (9.3.7) 

In view of (9.3.7), we shall have /5 = (J, r?) -> 0 in (9.3.4) and (9.3.6). 

A regularization method consists of constructing a family of regularization operators 
{Ra} and a parameter-choice rule which is convergent in the sense that if the regulariza-
tion parameter a is chosen according to that rule, then the regularized solutions converge 
in the norm of Z as the error 6 in the input data tends to zero (when the operator is 
exactly known), or as /? = {S,r]) —> 0 when the operator is only approximately known. 
This convergence is assumed for any collection of noisy input data compatible with the 
noise level S and any u E U. 

If a regularization method exists for the problem defined by (9.2.14), then there exists 
zf^e Z, a= {5,u^) such that 

4 = Rau\ (9.3.8) 
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and as 5 -^ 0, we have zf^ —^ ZQ £ Z, AZQ = UQ. If instead of A only Ar^ is known and a 
regularization method exists, then there exists z^ ^ Z, a = a{/3,u^), such that 

zf = Rc^u^, (9.3.9) 

and as {S, rf) —> 0, we have z^ —^ ZQ £ Z, AZQ = UQ. 

If the operators {Ra} are hnear (hnearity was not imposed earher on R^), then the 
family {Ra} is called a family of linear regularization operators and the corresponding 
method of obtaining a regularized solution is called a linear regularization method. For 
nonlinear problems, the operator A could be nonlinear. The theory of linear ill-posed 
problems is very well developed and for both linear and nonlinear regularization methods, 
we refer the reader to [226]. 

The parameter-choice rule depends not only on u^ but also on the exact input data 
UQ. Since UQ is generally not known, to take into account the dependence of a on UQ, 
we should have some quahtative information about the input data such as smoothness 
properties. The parameter a depends on the operator A also. It may be noted that the 
regularizing operator {R^,a} is not unique. 

Is it possible to construct a stable approximate solution of an ill-posed problem if 6 
is unknown but us is known and it is known that ||w,5 — î oH —» 0 as ^ —> 0? The answer 
is 'negative' for an ill-posed problem but 'positive' for a well-posed problem. 

Definition 9.3.2. An a-priori parameter-choice rule. 

If the parameter a depends only on S and not on u^, then a is called an a-priori 
parameter-choice rule and we write a = a{S). If a is not an a-priori parameter-choice 
rule, then it is called an a-posteriori parameter-choice rule. 

An a-priori parameter-choice rule does not depend on the actual computation and 
can be devised before the actual computations start. 

Definition 9.3.3. Least-squares solution of Az = u. 

Let A : Z ^ U he di bounded linear operator and Z and U be Hilbert spaces. An 
element z E Z is called a least-squares solution of Az = u for a given li G f/, if 

\\A°z-u\\=mi{\\Az-u\\}. (9.3.10) 

If A is absolutely continuous, then the infimum exists which can be obtained by solving 
the normal equation (9.2.20). 

Definition 9.3.4. Best-approximate solution of Az = u. 

An element z £ Z is called a best-approximate solution of ^2; = w if i is a least-squares 
solution and 

| | i | |= infjllzll; z is least - squares solution of Az = u}. (9.3.11) 
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9.3.2 The generalized inverse 

In [226], the operator-theoretic approach for constructing regularizing operators is 
based on the notion of the Moore-Penrose generalized inverse (MP-generahzed inverse) 
which we shall denote by A. The MP-generalized inverse A of A G C{Z,U) (the set of 
linear bounded operators) is defined by restricting the domain and range of A in such a 
way that the resulting restricted operator is invertible; its inverse is then extended to its 
maximal domain. In Definition 9.3.1., the generalized inverse A can be used in the place 
o{A-\ 

In simple terms (for the rigorous definition, see [226]), an operator A is the MP-
generalized inverse oi A ^ C{Z,U) \i and only if it has the following properties. 

(z) AAA = A. 

(ii) AAA = A. 
(9.3.12) 

(m) AA = {AAy. 

(iv) AA = {AAy. 

The MP-generalized inverse always exists, is linear and unique. If A is non-singular, 
then A~^ and A are the same. We mention below some of the results associated with the 
MP-generalized inverse and the operator A (cf. [226]). 

Proposition 9.3.1. MP-generahzed inverse A has a closed graph ^r(^) = {{u,Au)] 
u G D{A)}. Furthermore, A is bounded (i.e., continuous) if and only if R{A) (range of 
A) is closed. 

Proposition 9.3.2. Let u G D{A). Then Az = u has a unique best-approximate 
solution i , which is given by 

z = Au. (9.3.13) 

Note that z is not a well-posed solution. The set of all least-squares solution is z-^N{A). 

Proposition 9.3.3. Let u G ^ ( ^ ) - Then, z G Z is the least-squares solution of 
Az = u if and only if the normal equation (9.2.20) holds. 

Let z = Au be a minimum norm solution (best-approximate solution) of Az = u then 
A*Az = A*u, (from Proposition 9.3.3.). So we have A = {A*AyA*. 

Proposition 9.3.4. For all a > 0, let Ra be a continuous (possibly nonlinear) 
operator. Then the family {Ra} is a regularization for A if, 

Ra -^ A, pointwise on D{A) as a ^ 0. (9.3.14) 

In this case, there exists, for every u G D{A), an 'a-priori' parameter-choice rule a such 
that (Ra, a) is a convergent regularization method for solving Az = u. 
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The converse of Proposition 9.3.4. holds in the following sense: if {Ra,a} is a con-
vergent regularization method, then 

lim Ra{s,u^)'^= ^'^ (9.3.15) 

holds for all ue D{A). 

The regularizations are pointwise approximations of MP-generalized inverse of A. 

9.3.3 Regularization methods 

The following questions can be asked about a regularization operator. 

(i) Under what conditions can an ill-posed problem be regularized? 

(ii) How can a regularization operator be constructed? 

(iii) How can one obtain an approximate solution with the help of a regularizing 
operator? 

(iv) How does one perform the steps in the regularizing algorithm in an optimal 
way? 

We shall discuss here briefly the questions (i) and (ii) raised above in the same order. 
For detailed discussion, see [226, 230, 231, 232]. The third question has been discussed in 
§§9.6 and 9.7 by constructing some approximate solutions. The fourth question is more 
relevant to the actual numerical computations. 

(i) Just as there is no unique regularizing operator, there is no unique method to 
construct it. Associated with {RQ} is also a parameter-choice rule. The conditions under 
which the regularization of an ill-posed problem is possible depend on the regularization 
method used and the properties of the operator A. However, a general statement can be 
made that if the operator A in (9.2.14) is hnear, continuous and bijective (one-one and 
onto), the resulting problem is regularizable. 

(ii) Depending on the problem under consideration, several regularization methods 
have been developed in the literature. We describe here some of them briefly. The 
applications of these methods will be discussed in connection with the regularization of 
some specific inverse Stefan problems considered in § 9.7. 

We describe below some regularization methods. 

(a) A variational method: Tikhonov-regularization 

We first introduce Tikhonov-regularization method and the motivation behind it will 
be discussed later. Let A : Z -^ U, where Z and U are Hilbert spaces, and let D C Z be 
a closed convex set of constraints of the problem {D = Z \{ there are no constraints), and 
0 G D. Consider the problem of minimization of a functional P^[z)^ called a smoothing 
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functional, defined as 

P^z)^\\A,z-n'\\l+a\\z\\l. (9.3.16) 

Here, a > 0 is a regularization parameter and Arj and u^ are defined as in (9.3.1) and 
(9.3.2), respectively. The variational problem is to find 

inf P^(2). (9.3.17) 
ZED 

Proposition 9.3.5. If A and Arj are finear bounded operators and a > 0, then 
Ml 
•0 

the variational problem given by (9.3.17) is solvable and has a unique solution ZQ^ G 
D, p= (J,r/), and 

IU|ll<ll^'ll/(%/^)- (9.3.18) 

Fora > 0, P"(^) is strictly convex as {{P''{z)y'z, z) = {2A*^A,^z+2az, z) > 2a \\zf 

foTzeZ and coercive as lim P^{z) = +oo. Therefore there exists a unique element 

z^ G Z which minimizes P^{z) (see Theorem 7.2.1.). If 2:̂  is an interior point of D, 
then 

[P^(z^ ) ] ' 2 -0 , \/ zeZ. (9.3.19) 

Here, dash denotes Prechet derivative (see Appendix D). It can be seen that 

[P''[z'^)]' z = 2{A;Ar,z'^ - A;U^ + az^, 2), V z G Z. (9.3.20) 

On using (9.3.20) in (9.3.19), we get 

A;A,Z^ + az^ = A;U'. (9.3.21) 

Note that z^ may not be a 'regularized solution' of Az = u unless some further conditions 
are imposed on A and Ar^. We have also not given any parameter-choice rule for a. Since 
0 G D, and z^ gives the infimum, we have 

P^(z^) < P " ( 0 ) , (9.3.22) 

and so (9.3.18) holds. The Proposition 9.3.6. (given after (9.3.33)) suggests that if the 
operators A and Aj^ satisfy certain conditions and a parameter-choice rule for a is defined, 
then a regularized solution can be obtained. 

We shall now discuss the motivation for considering the minimization of the functional 
given in (9.3.16) which comes from the notion of a 'stabihzing functional'. Let F{z) be 
a continuous, non-negative functional F : Z ^ U (take U = R) defined on a subset Zi 
of Z which is everywhere dense in Z. We assume that the following conditions hold. 
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1. ZQ belongs to the domain of Zi and AZQ = UQ, UQ e U where UQ is the exact data. 

2. For every positive real number d, the set of elements z of Zi for which F{z) < d 
is a compact subset of Zi. 

A functional F{z) satisfying the above conditions is called a stabilizing functional. 

Let 

Zi,s = Qsn Zi; Qs = {z: \\Az - u' \\< 5] . (9.3.23) 

Here, we want to consider only those elements of Qs on which F[z) is defined. It can be 

proved (cf. [231]) that there exists a 2;*̂  G Zi^s such that z^ = inf F{z) and z^ = 'Rs(u^), 

where, Rs is a regularizing operator and as (5 -^ 0, 2*̂  —> ZQ and AZQ = UQ. 

We shall now obtain the infimum oi F{z) over Zi. Let 

4 = inf F{z). (9.3.24) 
zeZi 

For simplicity, we take Zp to be the unique minimum but in general it be a set MQ. If 
Zp belongs to Zi^s, then we take Zp to be the stable solution on Zi^s and Zp = z^. If Zp 
does not belong to Zi^s, then \\Azp — u^ \\> S. In this case Zp can be obtained by solving 
a constrained minimization problem which is discussed below. 

The stabilizing functional F{z) (defined above), is called quasimonotonic if, for every 
element ZM G ZI that does not belong to the set MQ, every neighbourhood of it includes 
an element Zi of Zi such that ^(2:1) < F(ZM)- It can be proved (cf. [231]) that if F{z) 
is quasimonotonic on the set Zi^s and MQ ft Zi^s is empty then the infimum of F{z) is 
attained at an element z^ for which \\Azl^ — u^ \\= 6. We can use this result to find the 
minimum in (9.3.24) on the set Zi under the constraint that the minimizer z G Z which 
we are seeking satisfies the condition 

\\Az-u^\\=S. (9.3.25) 

The method of Lagrange multipliers (cf. [82]) can be used to study this minimization 
problem with a constraint and a functional of the form P^{z) as in (9.3.16) can be 
considered in which we take a F{z) instead of a \\z\\ and the parameter a is determined 
from the condition 

\\Azi-u'\\=5. (9.3.26) 

Here, z^ is the minimizer of P^{z) and A is exactly known. The Proposition 9.3.6. 
suggests there is no necessity of considering a constrained minimization problem and z^ 
can be regarded as the result of applying a regularization R^ such that z^ = R^u^. The 
parameter a is determined by a parameter-choice rule. 
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If instead of the operator A only its approximation A^ is known, then once again, we 
consider a constrained minimization problem for the functional P^{z, us, Arj), where 

P"(2, us^ Ar,) = WAr^z - usf + (^ - r]^)F(z). (9.3.27) 

The parameter a is to be determined from the condition 

^v 
^s 

\\A,zi-u'f=5' + r,'F{z), (9.3.28) 

where z^ minimizes the functional given in (9.3.27). 

The choice of a stabilizing functional F{z) is often prompted by the nature of the 
problem and in a number of cases, more than one choice is possible. The stabilizing 
functional considered in (9.3.16) is \\z\\^^. If the Hilbert space I^P '^(Q), Q = {X] a < X < 
b} is considered as the solution space, then we can consider the stabilizing functional 
F{z) as 

(̂̂ ) = / £ « » ( ^ ) '^^' ' = (̂̂ )' ' e W'^ (0). (9.3.29) 

Here, qo{x), qi{x),...., qp-i{x) are given non-negative continuous functions and qp{x) 
is a given positive continuous function. Stabilizers of the form where qr{x) > 0, for 
r = 0,1, ...,p — 1, and qp{x) > 0 are called stabilizers of p-th order. If all the functions 
qr{x) are constant, then we have a stabilizer of p-th order with constant coefficients or a 
Tikhonov stabilizer. 

To determine the parameter a in the Tikhonov regularization, a 'generahzed discrep-
ancy principle' was first suggested in [233, 234] and later on modified in [235]. We give 
below few definitions which are related to the definition of the generalized discrepancy 
principle. 

Definition 9.3.5. Incompatibility measure. 

Let the set Z), the operators A, Arj, and UQ, U^ be the same as defined in Proposition 
9.3.5. Then an incompatibility measure fip{Arj,u^) of (9.2.14) is defined as 

lif,{Ar,,u^) = inf l l V - ^ ^ l h P={V.^)- (9-3.30) 

If u^ G AjjD (bar stands for the closure in the space /7), then //^(A^,ii ) = 0. 

If ll̂ *̂  - uo \\< S, Azo = uo, ZQ e D, \\Ar^ - A\\ < rj, then /ifsiu^Ar^) -> 0 as /3 -^ 0. 
This can be proved by using the following result. 

/l^ ( lX^ Arj) = i n f WAr^Z -U^\\< WAr^Zo - U^ \\< \\ArjZo - AZQ + AZQ " U^ \\ 

<S + v\\zo\\- (9-3.31) 
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Definition 9.3.6. Discrepancy. 

The norm 

IIV^-^'II, (9.3.32) 

is called discrepancy. Here, z^ — Ra\u^\ , JR^ is a regularizing operator, a = {P,u^), 
and p = {r],S). 

Definition 9.3.7. Generalized discrepancy. 

The generalized discrepancy denoted here by p (a) is defined as 

p^ (a) =\\A,z-, - u'f -{d + n\\z$ \\f . (9.3.33) 

Here, z^ is the solution of (9.3.21). In earlier works [233, 234], the definition of generalized 
discrepancy included a term of incompatibility measure also (which can also be computed 
with an error) but later on in [235] it was pointed out that in the definition of generalized 
discrepancy the term of incompatibility measure can be taken to be zero even 

Definition 9.3.8. Generalized discrepancy principle. 

The generalized discrepancy principle consists of the following rules: 

(1) If the condition \\u^ \\> S is not fulfilled, i.e., \\u^ \\ < 6 then we take z^ = 0 {z'^ 

is the solution of (9.3.21)) as an approximate solution of Az = UQ. If z^ = 0, 

then the relation \\ArjZp — u^\\< S implies \\u^ \\< 6. 

(2) If the condition \\u^ \\> S is satisfied, then we proceed as follows: 

(a) If some a* > 0 exists such that p {a*) = 0, then we take z^* as the approxim 

-ate solution of Az = UQ. 

(b) If p {a) > 0 for all a > 0, then we take zp = lim ZQ as the approximate solut 

-ion of Az = UQ. 

Proposition 9.3.6. Let A be a bijective operator, (one-one and onto), A : Z -^ U, 
and Arj be a bounded hnear operator, Arj : Z -^ U, such that ||A — A^|| < 77. Further, 
II '̂ o — "̂"̂  II ^ ,̂ zo = AUQ, ZQ e D C Z, D is Si closed convex set and 0 G D, P = {r], 6) 
and a = {f3, S). Then hm zf* = ZQ, where z^** is the solution of (9.3.21) and it is cho-

sen according to the generalized discrepancy principle stated above. The solutions ob-
tained as above with the help of the generalized discrepancy principle are regularized 
solutions of the equation Az =^ UQ. 

If A is not bijective, then the approximate regularized solution zp (see Definition 
9.3.8.) converges to ZQ on D, where, ZQ is the solution of the normal equation (9.2.21). 
Tikhonov-regularization method is one of the many regularizing methods used for ill-
posed problems. For self-adjoint operators, a class of hnear regularization methods can 
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be constructed using spectral theory [236]. Tikhonov-regularization method is a particular 
case of the continuous regularization methods constructed with the help of the spectral 
theory approach (cf. [226]). 

In his original papers [229, 230], Tikhonov considered a regularization method by 
considering a more general functional of the form 

\\Az - uf +a \\Mzf , z e D{M). (9.3.34) 

Here, M is an operator which could be a differential operator such as a second derivative 
operator and D{M) is the domain of the operator. In this case, the least-squares solution 
ZM of Az = u minimizes a different (semi) norm, namely, 

II MZM 11= inf{||M2:||, z is the least-squares solution of Az = u}. (9.3.35) 

This leads to the notion of a weighted generalized inverse of A (cf. [226]). 

(b) Maximum entropy regularization 

Suppose the input data are defined by a random variable X which could be discrete 
or continuous and Xi, 2:2.., a:̂  be its values (in the discrete case) with probabilities given 
by 

P'i{xi})=PhEP* = '^- (9-3.36) 

P* is called a 'prior distribution'. Due to some additional information available, a new 
probability distribution is assigned to the random values which is given by 

Let I{p,p*) = I{pi,p2,....,Pn]Pi,P2---^Pn) dcuotc the information of P relative to P*. 
I{p,p*) must satisfy some conditions such as continuity, invariance under changes of 
labelling of the possible values (see [237] and [226] for further conditions). An appropriate 
form of I{p,p*) satisfying all the axioms can be taken as. 

n 

/(Pi,P2---,Pn;pI,P2.--,K) = 7l]Pzlog(Pz/p*). (9.3.38) 
1=1 

where 7 is a constant. The maximum entropy method consists of maximizing the entropy 

E{p,pl = -7EP. log(P . /P*) . (9-3-39) 

subject to the constraint that the sum of all the probabilities equals one. In the continuous 
case, instead of (9.3.37), we shall have 

6 

f x{t)dt = 1, (9.3.40) 
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where x{t) is the probabihty density function of X. The data y is given by an (possibly 
nonhnear) operator equation 

F{x) = y, (9.3.41) 

defined on a suitable function space, e.g., on L^[a, 6]. The entropy functional to be 
maximized in the continuous case is defined as 

6 

E{x,x*) = - 7 fx{t)log{x{t)/x*{t))dt, (9.3.42) 
a 

subject to the constraint (9.3.40). Using Lagrange multiphers, we are led to a problem 
of minimizing the functional 

b 

\\F{x) -yf + aj x(t)\og {x{t)/x*{t)) dt. (9.3.43) 
a 

(c) Regularizing methods for equations of convolution integral type 

The solutions of many physical problems are obtained by solving integral equations 
of the first kind and among them one often encounters an equation of the convolution 
type which is written as v{t) ^ z{t) = u{t) and which stands for 

CO 

/ v{t - T)z{r)dT = u{t). (9.3.44) 
— oo 

Regularizing operators for operator equations of convolution integral type can be con-
structed by using integral transforms such as Laplace, Fourier and Mellin. Some of these 
regularizing operators will be discussed in § 9.6 in the context of some inverse Stefan 
problems. 

(d) Regularization by projection 

The numerical solutions of ill-posed problems can be obtained by regularization 
methods using numerical schemes such as finite-difference or finite element, collocation, 
Galerkin or Ritz approximation. The numerical calculations can be realized only in finite-
dimensional spaces. One approach in this direction is the regularization by projection (cf. 
[238]) in which we try to find approximately the best-approximate solution z of Az = u, 
in a finite-dimensional subspace of the space Z. 

Let there be a sequence {Z^j^ i of finite-dimensional subspaces of Z such that 

Zi C Z2 C ^3 C ..., (9.3.45) 

whose union is dense in Z. If Zn is the least-squares minimum norm solution oi Az — u 
in Zn, then 

Zn = AnU, (9.3.46) 



242 Inverse Stefan Problems 

where, An = AOm On is the orthogonal projector onto Zn (A is a bounded hnear operator 
and the range of On is closed, so the range of An is closed). Since the range of An is 
closed. An, the generalized inverse of ^^i is bounded (see Proposition 9.3.1.). An is Hnear 
and bounded, hence, continuous. Therefore Zn is a stable approximation of z. However, 
as the following proposition suggests, Zn ̂  z only under certain conditions. 

Proposition 9.3.7. Let u G D{A) {A is the generalized inverse of A ) and let Zn be 
as above. Then 

(i) Zn -^ z if and only if {||2:̂ 11} is bounded. Here, i = Au, 

(h) Zn -^ z ii and only if lim sup ||2;„|| < p | | . 

Proposition 9.3.8. Let u £ D{A) and Zn be as above. If the condition 

Jim^sup ||(i„)*2:n||= ^lim^sup ||(i;)2:n||< oo, (9.3.47) 

holds, then Zn ^^ z. 

In the dual least-squares method described below, the convergence z^ —> i is always 
guaranteed. Consider a sequence { [ 4 ) ^ 1 of finite-dimensional subspaces of R{A) = 
N{A*)-^ C [/, whose union is dense in N{A*)^ (cf. [238]). Let Zn be the best-approximate 
solution of the equation 

AnZ = Un, An I = QnA, Un = QnU, (9 .3 .48) 

where Qn is the orthogonal projector onto Un-

Proposition 9.3.9. Let u E D{A) and Zn be as above. Then Zn = OnZ, where On 
is the orthogonal projector onto Zn '•= A*Un, AnU = OnZ. Moreover, 2;̂  ^^ i as n ^ oo . 

If can be shown that {̂ 4̂ } with An defined in (9.3.48) is a regularizing operator for 
A. 2;̂  is a stable approximation to z where z is the best-approximate solution of Az = u. 

In the noise free case, AnU is the best-approximation in the space Zn and AnU = OnZ 
and no further regularization is required. For the noisy data it can be shown (see [226]) 
that 

\\zi-z\\<\\z^-z\\ + 6/^l^, (9.3.49) 

where j^n is the smallest singular value of An- Since the singular value of An decreases 
rapidly as n increases, the projection method should be used in conjunction with some 
regularization method, e.g., Tikhonov regularization. In this way spaces with larger 
dimensions can be used. 

In obtaining the numerical solution of an ill-posed problem by Tikhonov regulariza-
tion, we have to work in a finite-dimensional space Zn as described in (9.3.46). The 
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minimization oi P'^{z) (see (9.3.16)) over the space Zn gives an approximation of z. This 
problem is equivalent to minimizing P^(z) over Z, where 

P^^{z)=\\Ar,z-u'f+a\\z\\\ (9.3.50) 

Here, An = AOn and On is the orthogonal projector onto the subspace Zn- If Z^^^ is the 
minimizer of Pn{z)j then 

< „ = {A:A„ + a / ) - U > ^ (9.3.51) 

It a is chosen according to the parameter-choice rule, then 2;̂ ^ is a regularized solution. 

9.3.4 Rate of convergence of a regularization method 

In obtaining numerical solutions by regularization methods, the rate at which a reg-
ularization method converges plays an important role or in other words, an optimal 
regularization method should be used for faster convergence. The rate of convergence 
of the regularization method {Ra,a) for which z^ = RaU holds is defined {u is exactly 
known) as the rate with which 

\\za-z\\^0 a s a ^ O , (9.3.52) 

or the rate (if u is approximately known) with which 

\\zi-z\\-^0 ajsS-^0. (9.3.53) 

Here, 

zi = Rau\ a = {S,u^), and z = Au. (9.3.54) 

In both the cases, for simplicity, it has been assumed that A is exactly known. 

Let M C Z, A:Z^U, Az = u, z e Z and u e U, \\u-u^\\< 6, S > 0, z = Au. 
A is the generahzed inverse of A. We make an a-priori assumption that 

zeM. (9.3.55) 

Under the assumption (9.3.55), the 'worst-case error' for a regularization method R for 
A under the information || ti — ti*̂  ||< S, is given by 

A[S,M,R) =sup{\\Ru^ -z\\]zeM, u^ eU, \\ Az - u^\\< 6] . (9.3.56) 

An 'optimal method' RQ in a class of methods IZ would be one for which 

A (S, M, Ro) = inf {A (^, M,R) :Ren]. (9.3.57) 

The optimality of a method is to be understood with respect to an a priori information 
(9.3.55) and the class of methods considered. 
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For some // > 0, let 

Z^,^ = {zeZ:z = {A*AfLU, \\LU\\ < p} , (9.3.58) 

and 

Z^= [j Z^^p = R ({A*AA , R stands for the range. (9.3.59) 
p>0 ^ ^ 

Definition 9.3.8. Let R{A) (range of A) be non-closed, and {Ra,a) be a regular-
ization operator for A. For /x, p > 0 and u G AZ/^^p, let a be a parameter-choice rule for 
solving Az = u. We call {R^, a) optimal in Z^̂ p, if 

A {8, Z^^p, R^) = ^ ^ p ^ , (9.3.60) 

holds for all 6 > Q. We call {Ra.o) of optimal order in Zu^p if there exists a constant 
p > 1 such that 

A (J, Z^^p, R^) < pS^^ p^^, (9.3.61) 

for all (5 > 0 

The Tikhonov regularization with an 'a-priori' parameter-choice rule given by 

a~ {S/p)'^ , (9.3.62) 

is of optimal order in Z^^p. 

The best possible convergence rate is obtained for p = 1 and 

114-i 11= 0(5^/^), (9.3.63) 

as soon as z e Zi^p. This is the maximum convergence rate possible in Tikhonov regular-
ization. For further results on convergence, see [226]. 

9.4 Determination of Unknown Parameters in In-
verse Stefan Problems 

If some of the thermophysical parameters are unknown in problems of heat conduction 
with phase-change or without phase-change, then some additional information is required 
for their determination. This additional information is generally in the form of some over 
specified boundary conditions and such problems are generally ill-posed. For example, in 
heat conduction problems without phase-change, if the data is over specified, then we shall 
be dealing with a non-characteristic Cauchy problem. The determination of unknown 
parameters in parabolic heat transfer problems by the method of over specified boundary 
conditions has been the subject matter of several studies and many such references can 
be found in [239, 240]. 
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9.4.1 Unknown parameters in the one-phase Stefan problems 

The following problem of determining thermal conductivity and some other parameters 
by prescribing an over specified boundary condition has been considered in [241]. 

pCTt = V-(K(T)VT), 0<x< S{t), S{0) - 0, t > 0, (9.4.1) 

T(0, t)=To< Tm, t > 0, and T{x, 0) = T^; 0<x < oo, (9.4.2) 

T{S{t),t) = Tm, t> 0, and K{Tm)T,{S{t),t) = plS{t); t > 0, (9.4.3) 

K{To)n{0,t) = qje/\ t>0, q^>0. (9.4.4) 

Here, K{T) = Ko{l + p{T - To)/ (T^ - To)}; /? > 0, To > 0 and T^ > 0 are constant. 
The over specified boundary condition is given by (9.4.4) in which ^ > 0 is known. Note 
that the flux in (9.4.4) is infinite at t = 0 which it should be if S{t) is proportional to 
^̂ /̂  (cf. [242]). We make 'a-priori' assumptions that T{x,t) and S{t) can be expressed 
in the form 

T{x,t)=To + {Tm-To)Mv)/M>^). r] = x/(2aVi), S >-1. (9.4.5) 

S{t) - 2aVi = 2XaVi, a = ^jKo/(pC). (9.4.6) 

Several combinations of unknown parameters have been considered in (9.4.1) —(9.4.4) 
but the coefficient (3 is taken unknown in all the cases and in addition to it two parameters 
from KQ, (7, /9, C, / have been taken as unknown. $5(x),0 < a: < oo, is the modified 
error function which is the unique solution of a boundary value problem consisting of 
(9.4.7) and (9.4.8). 

[(1 + Sy{x)) y'{x)]' + 2xy'{x) = 0, S > - 1 , (9.4.7) 

2/(0+) - 0, y{+oo) = 1. (9.4.8) 

Here, dash denotes differentiation with respect to x. If wih be assumed that (̂  > — 1 is a 
given real number and 5 y^ 0. For 5 = 0, ^o{x) = erf(2;). It can be seen that 

^s{0) = 0, ^s{oo) = 1, ^'s{x) > 0 and $^'(x) < 0, 0 < x < oo. (9.4.9) 

T{x,t) and S{t) given in (9.4.5)-(9.4.6) should satisfy (9.4.1) together with the first 
condition in both (9.4.2) and (9.4.3). The pair {T{x,t),S(t)) wih be a solution of the 
system (9.4.1)—(9.4.4) if the following conditions are satisfied. 

P = S^sW. (9.4.10) 
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(1 + 5$(A)) $^(A)/ (A$,(A)) = 2//(C(r„ - To)), (9.4.11) 

,/KOPC $i(0)/$,(A)) = 2qJ(T„ - To). (9.4.12) 

The unknown coefficients are to be determined from (9.4.10)—(9.4.12). The un-
knowns, for example, can be taken as: (1) /3, A, KQ, or (2) /?, A, /, or (3) /?, A, C. 
Ten such cases have been investigated in [241]. To illustrate the method used in [241], 
we consider the following two cases. 

Case I. The parameters q^> 0, 6 > -l{5 ^ 0), To > 0, T^ > To, p > 0, C > 0 
and / > 0 are taken to be known and parameters P > 0, A > 0 and KQ > 0 are taken as 
unknown. /3 > 0 and KQ > 0 can be determined from the following two equations 

I3 = 5$s{\), (9.4.13) 

and 

Ko = 4qys{\)/ {pC{T^ - Tof {t>'Mf] - (9-4.14) 

provided A can be obtained from the equation 

C(T^ - To)Ti(x) = 2/F2(a:), (9.4.15) 

Fi{x) = 1 + 5^5{x), and F2{x) = x ^s{x)/^'s{x). (9.4.16) 

The functions Fi{x) and ^2(0:) possess the following properties. 

Fi(0+) = 1, Fi(+oo) = 1 -h ^; T/ > 0 for J > 0; F/ < 0 for -l<6 < 0, (9.4.17) 

F2(0-h) = 1, T2(+oo) = +00; T2 > 0 for J > - 1 . (9.4.18) 

In view of (9.4.17) and (9.4.18), equation (9.4.15) has a unique solution A > 0. 

Case II. The parameters /? > 0, A > 0 and / > 0 are unknown and all other 
parameters are known. In this case (3 is given by (9.4.13) and A is the solution of the 
equation 

$,(x) = (T„ - To) y^OTo$i(0)/(2<7j . (9.4.19) 

In view of (9.4.9), if 

[T^ - To)^/pCKo^'s{0) < 2q^, (9.4.20) 

then (9.4.19) has a unique solution A > 0. The parameter / is given by the equation 

l = C{T^- To) $i(A) [1 + <5$,(A)] / (2A$,(A)). (9.4.21) 
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The condition (9.4.20) is a necessary and sufficient condition for the existence of 
the solution in case II. The main consideration in the success of the above method is 
an a-priori assumption that it is possible to obtain both T(x,t) and S{t) in the form of 
equations (9.4.5) and (9.4.6) which constitute a similarity solution. As mentioned earlier, 
Neumann-type exact analytical solutions (cf. § 2.3) for the phase-change problems are 
extremely few. If some other combinations of unknown parameters are considered in the 
above problem (ten such cases are possible), then for determining A, we get equations 
which will involve functions different from Fi and F2 given in (9.4.16). The necessary 
and sufficient conditions for the existence of the unique value of A > 0 in these cases can 
be derived from the equation obtained for determining A in any particular case. 

Another important criterion in the success of this method for the problem (9.4.1)— 
(9.4.4), and some other related problems discussed below, is that it yields equations of 
the type (9.4.19) or (9.4.24) (given below) which contain only one unknown {cr/a). Note 
that both a and a may be unknown but we consider a/a as a single unknown. For 
illustration, consider the derivation of (9.4.24). When (9.4.23) is substituted in (9.4.4), 
we get (9.4.24). The condition obtained on satisfying (9.4.3) (T^ = 0 in this case) with 
the help of (9.4.22) and (9.4.23) has been split into two equations as in (9.4.25) so as to 
get an equation of the form (9.4.24). 

Determination of two unknown parameters when S{t) is known 

In [239], the method described above has been used for the simultaneous determina-
tion of two unknown parameters (K is a constant now). Consider the formulation given 
in (9.4.1)-(9.4.4) with Tm = 0 and K{T) = K= constant, and S{t) known. If S{t) is 
known, then only one boundary condition is required at x = S{t) and thus we have two 
extra conditions, namely, (9.4.4) and one of the conditions in (9.4.3). There could be six 
pairs of unknowns: (i) (i^,p), (ii) (i^,C), (iii) {K,l), (iv) (/,C), (v) (/,p), or (vi) (C,p). 
We present here the solution for only one pair (/, p) but the method of solution for other 
pairs remains the same. Let 

S[t) = 2c^^ /̂̂  a > 0, and a is known, (9.4.22) 

nx. t) = To- -^j(x/2at'^') , a' = K/pC, f{y) = eii{y). (9.4.23) 

If ^ = a/a, then ^ is the solution of 

/ (O = iKTol {qocjn'/') , ^ > 0, (9.4.24) 

and 

p = Ke/{Ca^) , / = ^oCaexp ( - e ' ) /{Ke) • (9.4.25) 

A unique solution of (9.4.24) exists if KTo/{2qQa) < 1. It is not necessary to take qo to 
be known. If qo is unknown together with any one of the remaining parameters, even 
then a solution can be obtained. 
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9.4.2 Determination of unknown parameters in the two-phase 
Stefan problems 

We consider the two-phase Neumann problem formulated in (1.3.1)—(1.3.7) and take 
Ps — PL and T„, = 0 and to match this problem with the problem studied in [243], 
take the region 0 < x < 8(1) to be hquid and the region x > S{t) to be solid. The 
overspecified boundary condition is given by 

KL^ (0,0 = -^oA'^ ' ' 0̂ > 0- (9-4-26) 

An exact analytical solution of the problem (1.3.1)—(1.3.7) has been given in (1.3.11) 
—(1.3.17). Along with S{t) one more thermophysical parameter can be taken to be 
unknown as an extra condition (9.4.26) is available. The method of solution remains 
the same as explained in § 9.4.1 but now the necessary and sufficient conditions for the 
existence and uniqueness of the solution become fairly lengthy. We mention here only 
some observations about the nature of solutions. If S{t) is unknown and any one of the 
six parameters p, /, C5, CL, KS, or Ki is unknown, then the fohowing results have 
been proved in [243j. 

(i) If S{t) and p are unknown, then a unique solution of the Neumann-type exists 
for the two-phase problem. 

(ii) If S{t) is unknown and one of the remaining five parameters is unknown {p is 
excluded), then a unique solution of the Neumann-type is possible for the two-phase 
problem provided in each case a complementary condition (cf. [243]) is satisfied. 

If S{t) is known and g'o in the overspecified condition (9.4.26) is known, then any 
two of the six thermophysical parameters can be taken as unknown. There will be fifteen 
such pairs. If p and K^ are unknown, then a unique solution of the Neumann-type exists. 
If (/, Ks), or (/, Cs), or {Ks, Cs) are unknown, then the free boundary problem has 
infinitely many solutions whenever some complementary conditions are satisfied. In the 
remaining eleven cases, unique solutions of the Neumann-type can be obtained provided 
some complementary conditions are satisfied. For complementary conditions, see [243]. 

If it is not possible to obtain similarity solutions of the type (1.3.11)—(1.3.13), the 
above method of finding unknown parameters will not work. Short-time analytical so-
lutions based on series expansions of temperatures and the free boundary have been 
obtained when similarity solutions are not possible (cf. [244, 245]). It is difficult to 
prove the existence and uniqueness of short-time solutions of Stefan problems but these 
analytical solutions have been compared in some cases with the numerical solution [246]. 
Short-time analytical solutions can also be used to obtain approximate analytical solu-
tions of inverse Stefan problems. 
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9.5 Regularization of Inverse Heat conduction Prob-
lems by Imposing Suitable Restrictions on the 
Solution 

In many inverse problems of mathematical physics, an a-priori information about the 
smoothness of the solution stabilizes the problem. The inverse Stefan problems are 
generally studied as control problems in which for obtaining the regularized solutions, 
procedures different from those discussed in this section are adopted. These procedures 
will be discussed in §§ 9.6 and 9.7. To give some idea of the type of smoothness conditions 
to be imposed on the solution which may stabilize the problem, some heat conduction 
problems with and without phase-change are being discussed here. We first consider the 
following one-dimensional non-characteristic Cauchy problem in heat conduction which 
has been studied in [247]. 

Tt - a{x)T^:, - b{x)T^ - e{x)T = q{x, t), x G (0, c?), te I, (9.5.1) 

T(0,t) = (/)(t), tel, (9.5.2) 

T.(0,t)=V^(0, tel, (9.5.3) 

where, I = R or I = R^^ and in the latter case, an initial condition 

T(x,0) = g{x), xe [0,6/], (9.5.4) 

should be prescribed. It may be noted that a boundary condition is required at x = (i 
but instead of that an over specified boundary condition (9.5.3) is prescribed at x = 0. 
The inverse problem consists of obtaining T(d, t). Instead of (9.5.3) and (9.5.4), we can 
consider 

T,(0,^) = 0, and T{x,0) = 0, (9.5.5) 

and take q{x,t) = 0 in (9.5.1). This is possible by considering a suitable well-posed 
problem in the region 0 < x < oo with (9.5.3) and (9.5.4) and q{x,t) 7̂  0 in (9.5.1) 
and subtracting its solution from the solution of the problem (9.5.1)—(9.5.4) which is 
considered in 0 < x < d. 

For further discussion, we shall consider the problem (9.5.1)—(9.5.4) in which we take 

q{x, t) = 0, ij{t) = 0, and g{x) - 0. (9.5.6) 

The functions, a, 6, c and 0 are given and the continuous dependence of T(x, t) on (/)(t) is 
to be shown under suitable restrictions. The following smoothness conditions and other 
restrictions will be assumed. 

a{x) e W^^°^ [0, d], b{x) e W^^"^ [0, d], e{x) e L°" [0, d], (9.5.7) 
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e{x) < 0, A < a{x) < 7, 7 > 0; xe[0,d], (9.5.8) 

0 e L\R); f{t) = T{d, t) e L'iR). (9.5.9) 

In order to obtain stability estimates for T{x,t), the problem is first formulated in 
terms of the Fourier transform of T{x, t) with respect to time, denoted by T, and the 
stability estimate for T are obtained (cf. [247]). The stabihty estimate for T{x,t) which 
shows the exact Holder type dependence of ||T(x, ^)||̂ 2 on \\4>\\i2 can then be obtained 
which is given by 

||r(x,t)||<Mi|^ir^(^'/''(||<^rw/'' + l|r(d,i)r<^'^''), (9.5.10) 

X 

A{x) = j a{y)-"^dy, p = Aid). (9.5.11) 
0 

The L^(jR)-norm has been considered in (9.5.10) and M is a suitable constant depending 
on A, 7, d and the norms of other coefficients. 

In the problem considered in [248], 6 = e = ^ = 0in (9.5.1), 1 < a{x) < i/, v > 0, a e 
L~ [0,d], 0 < i < 1̂ < oo, 0 G C°[0,ti], ||0||x,cx,(o,ti) < £• Further, T{x,t) satisfies an 
a-priori bound 

r (^ .0 l lp( f l ) < \/dhE, e < E. (9.5.12) 

Under these assumptions, by considering a weak formulation of the problem, the stability 
estimates for T(x, t) have been obtained which are of Holder type in the interior and of 
logarithmic type at the boundary which are given below. The continuous dependence on 
the Cauchy data and the coefficient a{x) has also been considered. 

|T(x, ^)| + ^ |T,(x, ^)| < p{x, ^)^7(x,0^i-7(x,0^ 0<x<d, 0<t<ti, (9.5.13) 

7 ( ^ . * ) - x p ( ^ ^ ) , (9.5.14) 

Ptl/t \ 
l - x 

p{{t,/t)/{l-x/d)) 

^ ( ^ • * ) = l 7 r ^ • (9-5-15) 

Here, p is a computable constant that depends only on u and ti/d^. For the stability 
estimate at the boundary, we further require that 

max [djT^{x,t)dx\ < E'^. (9.5.16) 
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For^G (0,^i), 

\T{d^t)\ = E-^jo( (log ( l o g ^ ) ) ' \ as E/E - 0. (9.5.17) 

The following problem of determining an unknown source control q = q{t) has been 
considered in [249]. 

Tt = a (x, t, T, T,)^ + q{t)T + F{x, t, T, T„ q{t)), in Q^; 

Qu = {(^,^) : 0 < X < 1, 0<t<t^}, (9.5.18) 

T(x, 0) = 0 (x) > 0, 0 < X < 1, (9.5.19) 

T(0, t) = f{t) > 0, and T (1, t) - p(t) > 0; 0 < t < t^, (9.5.20) 

5(0 

/ ^{x,t)T{x,t)dx = G{t) > 0, 0 < t < i*, 0 < 5'(^) < 1. (9.5.21) 
0 

The functions a, F {> 0), 0, / , ^, 5, $ (> 0) and G are known. The functions a and 
F are smooth functions of their arguments. (T, q) is called a solution if there exists an 
a, 0 < a < 1, such that T e Ci+" (Qu) n 0^+" (Q^J, q{t) G C"/^ [0,^,] and the pair 
{T,q) satisfies (9.5.18)—(9.5.21). The existence, uniqueness, and continuous dependence 
of the solution on the data has been shown with the help of some a-priori estimates, 
compactness arguments, and the strong maximum principle. For the conditions which 
the data has to satisfy, see [249]. Some problems of recovering a source term or a nonlinear 
coefficient in the inverse problems of parabolic type have been discussed in [250]. 

One typical structural restriction for the one-phase melting Stefan Problems is the 
non-negativity of the solution [251] but the most commonly investigated a priori informa-
tion concerns norm bounds. In the latter case if the problem is linear, then the stability 
estimates can be derived by estimating the size of solutions for the data fulfilhng such 
norm bounds. There are two major techniques to obtain stability estimates: (1) complex 
variable methods [252], and (2) the Fourier transform technique with its own limitations 
such as in this technique the domain should be cylindrical and the time interval should 
be infinite. 

By using an extension of the complex variable technique, the stability analysis of a 
one-dimensional one-phase inverse Stefan problem has been done in [253]. The region 
considered is A . = {(x,t);0 < x < S{t), 0 < t < t^}. The free boundary x = S{t) 
is assumed to be known and is Lipschitz continuous. The non-characteristic Cauchy 
problem considered is as follows: 

T.. -Tt = q{x,t) in A . ; T(x,0) - g{x), ] 
\ (9.5.22) 

T{S{t),t) = /i(t); T.(5(t),t) = hit), S{0) = b. J 
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The inverse problem consists of determining Tr(0, t) which is assumed to be bounded. The 
interior estimates of non-uniform Holder type as well as uniform estimates of logarithmic 
type have been obtained for the temperature and its gradient under suitable assumptions 
on the data. 

9.6 Regularization of Inverse Stefan Problems For-
mulated as Equations in the form of Convolution 
Integrals 

The regularization of a one-dimensional one-phase inverse problem concerning melting 
of ice has been considered in [254]. The formulation of the Stefan problem is as follows: 

Tx:r -Tt = 0, in A . = {{x, t):0<x< S{t), 0 < t < U} , (9.6.1) 

T{S{t),t) = 0, and T^{S{t),t) = -/2S{t); 0<t<t,, (9.6.2) 

T(0, t) = v{t) > 0, 0<t<U] T{x, 0) - To{x) > 0, 0 < x < b, (9.6.3) 

5(0) = b, b>0. (9.6.4) 

The region 5'(^) < a: < oo is occupied by ice cold water at the melting temperature 
zero. For simplicity, some of the thermophysical parameters have been taken to be unity. 
In (9.6.1)—(9.6.4), S{t) is a given non-decreasing C^-function and To{x) is a given C^-
function with a bounded derivative. The problem is to obtain a regularized solution 
for v{t) satisfying (9.6.1)—(9.6.4). One of the conditions in (9.6.2) is an overspecified 
condition as S{t) is known. 

Using standard methods (see [9]), an integral equation can be obtained to determine 
v{t) (see (9.6.9)) which can be studied by Tikhonov regularization but it is difficult to 
obtain error estimates in this way. Therefore, an equation in the form of convolution 
integral is obtained as follows. Consider the identity 

^ (TG) = 0, (9.6.5) 
d 
di (̂ f-

where 

and 

G{x, t; <e, r) = Q{x, t; e, r) - Q{-x, t; C, r) , (9.6.6) 

Q(x, t; e, r) = J exp f - ^ ^ r A I " (^•^•^) 
2^7T{t-r) \ 4 ( t - r ) ; 



9.6 Regularization of Inverse Stefan Problems Formulated as Convolution Integrals 253 

On integrating (9.6.5) over the domain 0<£<T<t~s, 0 < ^ < S{T) and letting 
£ ^ 0, after some rearrangement, we get 

? r dC 
T(x, t) = J To{OG{x, t- e, 0)d$ + j V{T) — {X, t- 0, r)dT 

0 0 "̂  

+ / ^ {S{T),T) G[X, t- S[T), T)dr. (9.6.8) 
0 

From the condition T{S{t)^t) = 0, we get 

J _ / - ^ e x p (~j^^] v{r)dr = - f G{S{t),t;^,0)To{Od^ 
2V7rJ ( t - r ) 2 \ 4.{t-T)J J 

t 

+/X f G(S{t),t] S{T),T)S{T)dT. (9.6.9) 
0 

Equation (9.6.9) is a hnear Volterra integral equation of the first kind which can be 
transformed into a convolution integral. Using a lemma given in ([9], pp.217), (9.6.9) 
can be converted into an equivalent equation of the form 

771 f 3 / 771 \ C 

^ J (t- T)5exp i-^^^_A v{T)dT = J Q^(m, t; S{T),T)Uo{T)dT 

t 

- I Q{m, t- S{T), T) [UQ{T)S[T) + UI{T)] dr, (9.6.10) 

0 

where, m is some real number > S{t)^ V /; > 0, 

Uo{t)= lim ^(x,^), and f/i(t) - lim ga:{x,t), (9.6.11) 
x—^S{t)-0 x—^S{t)-0 

b t 

g[x, t) = - J G{x, t; ^, 0)To(O^e + M / G{x, t; S{T), T)S{t)dT + T(x, t), 
0 0 

0 <x < S{t), t> 0. (9.6.12) 

The equation (9.6.10) can be written as 

oo 

(z * v) (t) = (27r)~^/^ fz{t ~ T)v{T)dT = F{t), V t in i?, (9.6.13) 
— oo 

where 

f 0r r^ /2exp ( -mV4t) , t > 0, 
z(0 = (9.6.14) 

I 0 , ^ < 0, 
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and F{t) is the r.h.s. of (9.6.10) multiplied by (2/m) (27r)~^^^. A family of regularized 
solutions {ve} , 0 < e < 1, can be constructed in which v^ is stable with respect to 
variations in the function F{t). 

The following proposition describes the regularized solution and gives an estimate of 
the error involved in it. 

Proposition 9.6.1. Suppose the exact solution vo of (9.6.13) corresponding to FQ 
(given) is in H^(R) fl L^{R) and ||F — Fo|| < e. There exists a regularized solution v^ of 
(9.6.13) which is given by 

oo 

v,{t) = (27r)~'/' J ^{x)e''''dx, (9.6.15) 
—oo 

where 

^{x) = 1 7 ^ . F{x)/ [E + \\z{x)f) , (9-6T6) 

and, z{x) and F{x) stand for the Fourier transforms (cf. (9.6.15)) of z and F, respectively. 
The error in v is given by 

\\ve-vo\\<a{ln{l/£)y\ (9.6.17) 

where a is any constant > m 0 r (3 + 2m) .max f (||t)o||^ + l) , Ĥ ôll + ^ ) ^ with M = 

(8/m^)(2/7r)^/^e-2 Hgj.ĝ  ||.|| stands for the L2(i?)-norm. Furthermore, if x)o/|i| € L^{R) 

then we have 

\\ve-vo\\<l3y/^. (9.6.18) 

where P is any constant > 1 + ||t'o/i|| and z{t)vQ{t) = Fo{t), t e R. 

The proof of the Proposition 9.6.1. depends on obtaining suitable estimates of 

\\vs - Vo\\l2, \\ve - Vo\\l2 and £ \\t{vs - Vo)\\l2 + \\tz {ve - 1)0)11̂ 2 • (9.6.19) 

A numerical example has been considered in which F{t) = Fo{t) + ee'^^^ and S(i) and 
To(x) are known. Regularized numerical solutions using finite-difference discretization 
have been obtained for different values of e and the numerical results indicate convergence 
as £ ^ 0. 

A two-phase one-dimensional inverse Stefan problem has been considered in [255]. If 
some minor changes are incorporated in the Neumann problem (1.3.1)—(1.3.7), then the 
problem considered in [255] can be obtained. The changes are as follows: 

(i) The region 0 < x < 5(0) = 6 is initially occupied by warm liquid and the region 
h < X < d \^ initially occupied by ice and the Stefan problem is concerned with the 
melting of ice. (ii) TL(X,0) = Ti(x), 0 < x < 6, and Ts[x,^) = T2{x), h < x < d. (in) 
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TiiO.t) = v{t), and dTs/dx = 0, dit x = d. (iv) Tm = 0. (v) Initial and boundary 
temperatures satisfy compatibility conditions at x = b and d. For a given S{t), the 
problem is to determine v{t) satisfying all other equations of the problem. With the 
help of suitable Green's functions, the problem is first reduced to a system of integral 
equations by obtaining temperatures TL(X, t) and Ts{x^ t) in the form of equations similar 
to (9.6.8). The Green's functions G{x, t; (J, r) for the liquid and W{x, t; ̂ , r) for the solid 
are given below. 

G{x, t; C, r) = E{x - ^, kl{t - r)) - E{x + ^, kl{t - r)), (9.6.20) 

W{x^ t- e, r) = E{x - e, kl {t - r)) - E{x + ^ - 2a, kl {t - r)), (9.6.21) 

E = - ^ exp (-x^/At), ^ > 0, X G i?, 

= 0 , ^ < 0, x G i?. 
(9.6.22) 

The three boundary conditions at a: = S{t), give rise to three integral equations 
involving v{t), (dTi/dx) {S{t), t) and (dTs/dx) {S{t), t). A crucial step in the regularizing 
method for this problem is to convert the integral equation for (dTs/dx) (S(t),t) into a 
linear Volterra integral equation of the second kind, and the integral equation for v(t) 
into an equation in the form of a convolution integral. The integral equation for v(t) 
contains (dTi/dx) (S(t), t). If the solution of the Volterra integral equation of the second 
kind is known or in other words (dTs/dx) (S(t), t) is assumed to be known (note that S(t) 
is known so we shall be solving a heat conduction problem in the solid region without 
phase-change), then with the help of the Stefan condition, (dTL/dx) (S(t), t) can be 
determined which is then substituted in the integral equation for v(t). For the details of 
obtaining convolution integral, see [255]. In (9.6.10), S(t) was replaced by some constant 
m, m > S(t). In the present two-phase problem, since S(t) < d, V t > 0, we can replace 
S(t) in the convolution integral by the constant d in the convolution integral. A family 
of regularized solutions {fe}e>o ^^^ been obtained for the present two-phase problem 
and a proposition similar to Proposition 9.6.1., with some changes, has been proved by 
obtaining estimates of various expressions. A numerical example has been considered 
and the regularized numerical solutions have been obtained for different value of s by the 
finite-diff"erence discretization of integrals. 

A family of regularized solutions has been obtained in [256] for the following one-phase 
two-dimensional inverse Stefan problem. 

T:,:c + Tyy-Tt = 0, xeR, 0<y< S(x, t), t > 0, (9.6.23) 

T(x, S(x, t), t) = 0, xe R, t > 0, (9.6.24) 

T(x, 0, t) = v(x, t) > 0, xe R, t>0, (9.6.25) 
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^(x, S(x, t), t) = -^{x, S(x, t),t)S, + ^ ( x , Six, t), t) = ^ , (9.6.26) 
on ox oy ot 

S(x,0) = 6(x) > 0 , xe R, (9.6.27) 

T(x, y,0) = To{x,y)>0, x e R, 0<y<b {x). (9.6.28) 

Here, y = S(x,t), x £ R, is the equation of the phase-change boundary which is a 
known smooth function, and n stands for the unit outward normal on the interface. 
The region y > S{x,t) is at the melting temperature zero. To{x,y) is also a known 
smooth function. The problem is to determine v{x,t). The method of finding a family 
of regularized solutions depends in obtaining an equation in the form of a convolution 
integral. By integrating the identity 

div {TVG - GVT) = ~^ (TG), (9.6.29) 
or 

where 

G{x, y, t- e r?, r) = W{x, y, t; ̂  V. r) - W{x, -y, t; ̂ , r/, r) , (9.6.30) 

and 

over the domain —/3 < ^ < fi, 0 < rj < S{^, r) , 1/P < T < t — 1/(3 and taking the limit 
as /? —̂  oo, T{x, y, t) can be obtained in the form of an equation similar to (9.6.8). 

T{x, y,t) = J J j^^W{x, y, t; $, 0, T)v(i, T)d^dr 
0 - o o ^ ^ 

oo b{0 

+ J J To{i,r])G{x,y,t;^,v.O)drjdi 
- o o 0 

7 r dS 
+ / / G{x, y, t- e, S{i, r) , r)-— ( ,̂ r) drdi, x e R, t > 0 , 0<y< S{x, t). (9.6.32) 

- o o 0 

On taking the limit y -^ S{x, t)—0 in (9.6.32), we get an integral equation to determine 
v{x,t). For the details of obtaining an equation in the form of a convolution integral, 
the reader is referred to [256]. A proposition similar to Proposition 9.6.1. defining the 
regularized solutions and giving error estimate can be proved for the two-dimensional 
problem also provided some changes are made in the assumptions made in the Proposition 
9.6.1. For example, the norm to be considered is L^(i?^)-norm, and the Fourier transform 
in the place (9.6.15) will now be a two-dimensional Fourier transform defined as: 

oo oo 

v{x,t) = ^ f f ^{Lj^r])e'^'''+''ULudr], (9.6.33) 
— oo - o o 
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'i!{uj,7i) = W^) F{uj,r,)l [e + \\z{LU,r))f) , (9.6.34) 

I I JP- JL. 771,2 \ 

z{x,t) = -exp , m > S{x,t), me R^, t > 0. (9.6.35) 

For some other changes in Proposition 9.6.1. which are required for proving the results 
in the present problem, see [256]. 

A numerical example has been considered in which F(x, t) = Fo(x, t)4-£e~l^'~* {^i^^ t) 
isther.h.s. of the convolution integral in this problem), S{x,t) = arctan(x^+i-hl), b{x) = 
arctan(a:^ +1), To{x, y) — |cos2a:|.(6(a:) — y)'^ and m = 2. The numerical method consists 
of finite-difference discretization of integrals. Regularized solutions for different values 
of £ have been obtained. The numerical solutions for different £ indicate convergence as 

The regularization of a two-dimensional two-phase inverse Stefan problem in the re-
gion —oo<a:<oo, 0 < y < a has been considered in [257]. The region 0 <y < S{x, t), 
is occupied by warm water and the region S{t) < y < a consists of ice. The initial tem-
peratures in the two regions are functions of x and y. The phase-change interface is given 
by y = S{x,t) and S{x,0) = b{x), x e R. Initially the warm water occupies the region 
0 < y < b{x), X e R. The method of obtaining a family of regularized solutions is similar 
to that considered in [254, 255, 256]. A numerical example has also been considered and 
regularized solutions have been obtained for different values of e. The convergence is 
indicated as 5 ^- 0. 

9.7 Inverse Stefan Problems Formulated as Defect 
Minimization Problems 

A stable and regular propagation of the free boundary in the classical Stefan problem 
requires application of controls. An application of controls could be through thermo-
physical parameters, geometry of the mold, initial temperature or through boundary 
conditions. In the control of the free boundary, which is our interest in this section, there 
exist mainly two approaches. The first is only to search for a control which generates a 
solution to the corresponding direct Stefan problem with a free boundary that is close to 
the prescribed one. It is assumed in this approach that the solution of the direct problem 
exists. This approach may yield an approximation but it will not be a good solution as it 
is well known that the inverse Stefan problems are ill-posed. In the second approach the 
aim is to regularize the problem in some way and then obtain an approximate solution. 
If the direct Stefan problem is well-posed, then as a consequence of the stability of the 
regularized solution, this second approach includes the first one. Both the approaches 
will be discussed here briefly with reference to some specific Stefan problems. 

We consider the following one-dimensional one-phase melting problem which will be 
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studied with the help of the two approaches described above. 

T,,(x, t) - Tt{x, t) = q{x, t), in DtXS) = {{x, t) : 0 < x < S{t), 0 < t < t,} , (9.7.1) 

T{x, 0) = To(x), 0 < X < 6 - 5(0), (9.7.2) 

(9.7.3) 
{A^T){t) = (l){t), 0<t<U, z = l ,2 , 

{AiT){t) = T{0,t), and {A2T){t) = r]T{0,t)-n{0,t) 

T{S{t), t) = ri{S{t), t), 0<t< U, (9.7.4) 

T,(5(0, t) = r2(S{t), S{t),t), 0<t<t,. (9.7.5) 

If T{x. t) and S{t) are unknowns to be determined, then we have a direct Stefan problem 
to be solved and it is well known that problem (9.7.1)—(9.7.5) is well-posed under sign 
restrictions and smoothness of the data (cf. [59]). 

In the above inverse problem, q{x,t), To{x), 6, ri, r2 and S{t) are known and (f){t) is 
the control which is to be determined in such a way that for (j) = (j)*, the exact solution of 
(9.7.1)—(9.7.5) gives exactly prescribed »S'(̂ ) = S*{t). Let Q be a free boundary operator 
defined as 

Q:{(t)eC[^,U] : 0 > O } - > C [ O , q , 0 : ->*S; Q^f = S\ (9.7.6) 

For a given (j)(t), S{t) and T(x, t) can be obtained and the direct problem (9.7.1)—(9.7.5) 
is solved. Even if 0* exists, it is generally difficult to obtain it exactly. An approximation 
(f) of 0* can be possibly obtained such that Qcj) is 'close to' S*. This closeness to S* is 
generally expressed in terms of a norm which involves a function (j) belonging to some 
suitable space of functions and which minimizes ||Q0 — 5*11 or in words we choose a 
0 which minimizes the defect. The questions related to the existence, uniqueness and 
stability have to be addressed. This approach can be called a 'direct approach' which 
has been used in [258, 259, 260]. The operator Q is in general a nonhnear operator. 
The defect minimization problem corresponding to (9.7.1)—(9.7.5) with ri = 0 and r2 
as given in (9.7.8) has been studied in [261] with the help of a hnear auxiUary problem. 
This auxiUary problem can be stated in terms of a Hnear operator F (defined in (9.7.14)) 
such that 

*) = 5'*4:^F0* = r(5*), (9.7.7) 

r = r2 = -XS{t) + ^(t), f^>0. (9.7.8) 

To obtain the solidification problem studied in [258], we take q{x,t) = 0, ri = 0, 
7-2 = —S{t), Tx = (j){i) at X = 0 and 0 < 0, in (9.7.1)—(9.7.5). For this inverse problem, 
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existence of a 0 which gives S* has not been proved in the hterature. Therefore, in [258] 
the inverse problem has been formulated as a nonlinear approximation problem which 
does not require the existence of the solution to be known and which can be solved 
by a highly stable iterative Newton-like procedure developed in [262]. The nonlinear 
approximation problem can be described as follows: 

Find ^eW such that 

II (30-5* II =inf{||0(/>-5*||; (PeW, (f><0}. (9.7.9) 

Here, W represents the set of admissible controls and ||-|| is some norm in C[0,^:^]. The 
operator Q is the same as in (9.7.6). It is difficult to prove the existence of an optimal 
control if W is an infinite-dimensional space. Therefore, a finite-dimensional subspace V 
of C[0, t*] has been considered and let W == {(p G V : (f> < 0} . The set W is the maximal 
subset of V for which the existence of a solution of the present direct Stefan problem is 
known under the conditions that 

To{x) e C%bi To{x) > 0, To{b) = 0. (9.7.10) 

By virtue of the fact that a unique solution (T, S) of the direct Stefan problem exists under 
the above conditions, the solution operator Q : 14̂  ^ C [0, i*], 0 : -^ S{t) is Lipschitz 
continuous, and S{t) depends monotonically on (p and is a monotonically nondecreasing 
fu-
nction (cf. [258]). By considering the uniform norm ||S'|| = sup |5(^)| in W, the existe-

o<t<t* 

nee of an optimal solution (p eW has been proved. 

Let Vn be an ascending sequence of subspaces, i.e., Ki C Vn+i, ̂  = 1,2,.., and the 
union of 14 be dense in C [0, ^*]. Let Wn be the cone {(p E Vn '• (p < 0} and 

p„(5- )= inf | | W ) - 5 * | | . (9.7.11) 

Because of the continuity of Q, p„ converges to zero as n ^ oo but it is difficult to prove 
that the sequence \4^n} of optimal controls ((̂ „ G Wn) converges to the solution (p* of the 
inverse problem. 

If B is the Banach space C[0, t^] with the uniform norm 

\\(P\L: = sup{\^{t)\:0<t<t,}, (9.7.12) 

and A is the cone A : {0 E C[0,t*] : (/) < 0}, then it has been proved in [259] that the 
operator Q : A C B ^ B is Frechet differentiable. This property was found useful 
in obtaining the numerical solution of a one-dimensional inverse problem in [259] by 
the generalized Gauss-Newton method. Numerical solution of a two-dimensional inverse 
Stefan problem has been considered in [260]. 

The problem considered in [261] is the inverse problem (9.7.1)—(9.7.5) with ri = 0 
and r2 given in (9.7.8). A melting problem has been considered. S{t) is known and the 
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control (̂  > 0 is to be determined. For the defect minimization, instead of the operator 
Q, a hnear operator F (cf. (9.7.14)) has been considered. Let S* e C^[0,^*], 5* > 0, b = 
5'*(0), To > 0, To(6) = 0, q < 0, and /x > 0 (the last condition can be relaxed). For 
other regularity conditions on the data, see [261]. As mentioned earlier, for numerical 
computations, one has to deal with finite-dimensional spaces. Therefore the defect is 
minimized in the space Xn fl An where X^ is an n-dimensional subspace of C [0, t^] and 
An C {(/): 4) > 0} , 0 G C [0, ^*]. The minimization problem can be stated as follows: 

Minimize | |F0 - r\\^p , ioT (j) e XnC) An, 1 < p < oo, (9.7.13) 

F:C[0,U]-^C[0,Ul 0-.T,(S'*(^),O, (9.7.14) 

where 

lim T^(a:,t) , ^ > 0, ) 

T{x,t) solves the problem (9.7.1)—(9.7.5) in the following sense: 

T G C{DtXS*))\ T.., T, G C(A.(5*)), 

Tx(x,t) is continuous in {x,t) for t G [0,^*], x G {0,S*{t)) for z = 1 and x G [0, 5'*(t)) 
for z = 2 (see equation (9.7.3) for z = 1, 2) and (9.7.1)—(9.7.4) are satisfied pointwise. 
Note that the isotherm condition (9.7.4) (ri = 0) is satisfied exactly in this problem and 
(9.7.5) is to be satisfied in the sense of (9.7.13). 

Some of the results established in [261] are stated below. 

1. F in (9.7.14) is well-defined and continuous. 

2. li XnH An is closed in Xn and not void, then the minimization problem has a 

solution (pn which is unique if 1 < p < CXD. 

3. For t G [0, t^], we have 

t 

KQ0)W -S*{t)\ < P{t) / |(F0)(r) - r ( r ) | dr. (9.7.16) 
0 

In (9.7.16), P{t) depends on max q{x, t), max{(^ (t))^ , (^ (t) + (T0)(t) - r{t))^^ , A and 
b. This result justifies the choice of the linear auxihary problem. 

4. If (/>n > 0, then for t G [0, t*], we have 

|(Q0n)(t) - S*{t)\ < P{t)t'-'/'In, (9.7.17) 

where In is the minimum of \\F(j)n — ^IILP 5 <Pn^ XnCiAn, l<p<oo. It has been shown 
that /„ ^ 0 as n ^ oo. To obtain a regularized solution, a numerical method using 
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polynomial splines has been applied and its order of convergence has been discussed. A 
numerical example has been considered. 

The inverse Stefan problem considered in [263] can be obtained if the following changes 
are made in the Stefan problem (9.7.1)—(9.7.5). 

(1) The condition (9.7.3) is replaced by the condition 

T^{0,t) < 0 , 0 < t < t*, (9.7.18) 

andg(x,t) = 0, in (9.7.1). 

(2) S{t), To{x), ri and r2 are specified and T{x^t) is the control. (9.7.19) 

The above control problem with (9.7.18) and (9.7.19) can be formulated as an operator 
equation as follows: 

Let X be the space defined as: 

X = {T{x,t) e C^^\DtJ n C^'°(AJ \CT = T,,-Tt = 0 in A . = A . (^)}. (9.7.20) 

Let the space X be equipped with the norm 

||T||;, = m a x { | | r | b . ^ , | | T . | | j 5 j , (9.7.21) 

where, \\-\\-Q^ is the supremum norm on Dt^. It can be proved that X is complete in this 

norm and X is a Banach space. For T G X, we define an operator Q as: 

QT = {T{S{t), t), T,{S{t), t), T{x, 0)} , T G X. (9.7.22) 

The initial and boundary values are given by the trace operator 

Q:X~^C[0,t,]xC [0, t,] X C [0, b], (9.7.23) 

and C [0, t^] x C [0, t^] x C [0, b] is equipped with the product norm 

|i(pi,P2,ro)||=max{||pi|||o_,.|,||p2|||o,,_,,||To|||o,,,}. (9.7.24) 

Let A and P be defined as: 

A = {T{x, t)eX :T^<0, 0 < t < t j , (9.7.25) 

P={r,{S{t),t), r2{S{t),S{t),t), To{x)}. (9.7.26) 

It can be shown that the set A is closed, convex and nonempty. The inverse problem can 
be stated as: 

Find T{x, t) e A such that QT = P. (9.7.27) 
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As discussed earlier, one of the methods to obtain an approximate numerical solution 
of the problem stated in (9.7.27) is to minimize the defect over a finite-dimensional space, 
i.e., 

minimize \\QT - P\\ onX^nA, ne N. (9.7.28) 

Here, Xn C X and Xn = span {t^i, t'25 , '̂ n} ; {vn} C X is a complete family of funct-
ions in X, i.e., U Xn is dense in X. The problem (9.7.28) has always a solution as it 

n&N 

is a finite-dimensional linear approximation problem of Chebyshev-type [264]. The fol-
lowing proposition has been proved in [263]. 

Proposition 9.7.1. Let T* G A be a solution of QT = P. Then T* is unique and 

/ : < i n f { | | T - T * | | ; , : TeX^nA}, (9.7.29) 

where 

7 , * - i n f { | | Q T - P | | : TeXnHA], n e N. (9.7.30) 

I^ - ^ 0 , as n —> oo. 

The temperature giving the infimum is not a regularized solution. The problem stated 
in (9.7.28) has been regularized in [263] by forcing the finite-dimensional solution to he 
in a compact set. For achieving this, we make the following assumptions. 

(Al) There exists a unique solution T* e A oi QT = P such that X;(0, t) G C^[0, U]. 
Let M be a known constant such that ||T^* (05^)ll[otJ ^ ^• 

(A2) U ^n is dense in X, and F = {T G X : T,(0, t) G C^[0, U]} be a subset of X 
neN 

with the norm 

||T||y = max{||T||;,, ||T,,(0,i)||p_,.|}. (9.7.31) 

Let 

AM = {TeYnA:\\%i(0,t)\\io,t.]<M, | T , ( 0 , 0 ) - T > ) | < M } . (9.7.32) 

If b = 0, then no initial temperature is to be prescribed and the second condition in 
(9.7.32) will not be there. Under the above assumptions, AM is convex and closed and 
has a non-empty interior in Y. A family of regularized solutions can be obtained by 
considering the problem: 

Minimize \\QT - P\\ o n X ^ n ^ M , neN. (9.7.33) 

Let Tn be any solution of (9.7.33) which exists as (9.7.33) is a finite-dimensional hnear 
approximation problem of Chebyshev-type with linear constraints and let In be the mini-
mum in (9.7.33). It has been proved that under assumptions (Al) and (A2) given above, 
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/n -^ 0 as n —̂  oo and as the following proposition suggests, T„ converges to T* (cf. 
[263]). 

Proposition 9.7.2. Let S G C^[0, t^]] for b = 0, assume that there exist a constant 
A such that S{t) > At, A > 0, 0 <t < t^, and the assumptions (Al) and (A2) hold. Let 
Tn be any solution of (9.7.33). Then T^ converges to T* in C{Dt^) and Tnx{0, t) converges 
to T ; ( 0 , t) in C [0, t,] for n -^ oo. 

The heat polynomials 

[V2] 2;*-2n 4-n 

v,{x, t) = i\J2 r o M I ' (^' *) e i?^ z = 0,1,2..., (9.7.34) 

have been taken as the complete set of functions in the numerical example considered 
in [263]. The minimization problem (9.7.33) has been solved by transforming it into 
an equivalent semi-infinite linear programming problem similar to the usual Cheby-
shev approximation problem [264]. After finite-difference discretization, we get a finite-
dimensional linear programming problem (with constraints) and this problem can be 
solved by any hnear programming package. The controls Tnx{^^t) (or 7^(0, t)j are now 
taken as an input data for the corresponding direct Stefan problem. Numerical solutions 
of three inverse problems have been presented. 

A one-phase two-dimensional inverse Stefan problem in a bounded domain has been 
considered in [265] with the temperature on a portion of the fixed boundary serving as a 
control. The two boundary conditions at the free boundary which are prescribed in the 
form of temperature and its normal derivative are known, and the initial temperature 
is also known. By imposing some a priori constraints and suitably defining the term 
'solution', it has been established that the solution depends continuously on the data. 
The defect is defined in terms of the maximum of the three norms of the difference of the 
three prescribed quantities and the respective computed quantities and the maximum 
norm is to be minimized. In the numerical example considered, the two-dimensional 
heat polynomials have been taken as the complete set of functions. The basic approach 
in proving various results in [265] is similar to that used in [263] but for the numerical 
solution, instead of a semi-infinite linear programming problem considered in [263], a 
finite linear programming approach has been considered. If the numerical procedure 
adopted in [263] is followed for a two-dimensional problem it would require solving a 
problem with thousands of constraints. 

The problem considered in [266] is an extended formulation of the one-phase inverse 
Stefan problem considered in (9.7.1)—(9.7.5). It consists of finding an unknown flux 
prescribed at x = 0 for a given S{t). The formulation of the problem is as follows: 

d{x, t)Tt - (a(x, t)T,)^ -h b{x, t)T, + e(x, t)T + q{x, t), (x, t) G A , , 

Du = {{x,t) :0<x< S{t), 0 < t < t j , (9.7.35) 
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a(0, i)T^(0, t) = f{t) e C^[0, U], 0 < a < 1, (9.7.36) 

T(x, 0) = (t){x), 0 < X < 5(0), a(0, 0)0' (0) = /(O), (9.7.37) 

T{S{t),t) = /i (5(^), t ) , 0 < t < t*, (9.7.38) 

a (5(^), t) T,{S (t), t) = -A(5(t), t)^(t) + iy{S{t), t), 0 < t < t*. (9.7.39) 

Here, S{t) G C^ [0, t^] and is known and the inverse Stefan problem consists of determining 
f{t) and T{x,t). Under suitable assumptions on the data (cf. [266]), a solution of the 
inverse problem (9.7.35)—(9.7.39) exists and if it exists, then it is stable. The method 
described below determines the exact solution if it exists, otherwise, a quasi-solution 
can be obtained. Let the problem (9.7.35)—(9.7.39) be called Problem (P°) and let 
its temperature solution be denoted by T^{x,t). An auxiliary Problem (Pi) consists of 
equations (9.7.35)—(9.7.38), and let its temperature solution be denoted by Ti{x,t). An 
auxiliary Problem (P2) consists of (9.7.35)—(9.7.37) and (9.7.39) and its temperature 
solution will be denoted by T2{x^t). We introduce the following notations: 

J(f) = II (Ti - T^fdxdt = ||T, - T2\\l., L' = L\Du), (9.7.40) 
Dt. 

G = {f{t) G M î[0, U\ : a(0,0)0'(O) = /(O)} , (9.7.41) 

E = {/(i) e Wl[Q, U\ : 11/(̂ )11̂ .1 < P] , (9.7.42) 

Gp = GnE={m e W^[0,Q : a(O,O)0'(O) = /(O), ||/(i)||„,, < /?} , (9.7.43) 

AP) = inf J ( / ) . (9.7.44) 

Under some smoothness assumptions on the data, unique solutions of Problem (Pi) and 
Problem (P2) exist and these solutions are sufficiently smooth (cf. [266]). 

Proposition 9.7.3. The necessary and sufficient conditions for the existence of a 
solution of Problem (P°) is that there exists f*{t) G Gp such that J*{/3) = J{13*) = 
jirit)) = 0. 

It has been proved that for the minimization of J{f) on G(3, gradient methods can be 
used and the convergence is fast (see [267] for gradient methods). Let T^ and T2 be the 
solutions of Problems (Pi) and (P2), respectively, for some (3. As /3 —> /3*, the results in 
(9.7.45) hold. 

| | T i ^ - T ° | | ^ 2 a - 0 , and \\T/- T'\\^2,-^ 0. (9.7.45) 
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If the solution of Problem (P °) does not exist on G/3, then a quasi-solution can be 
obtained as follows: 

Let T / = aT/ + (1 - a) Ts^, 0 < a < 1. Then for any fixed a, 0 < a < 1, 

\\Tf-T'\\^2^-^0 e^sp^p*. (9.7.46) 

We call Tj a quasi-solution of Problem (P °) on G^ for /3 < /?* if Tj^ minimizes the 
residual ^ 13(a) in L2 [0, t*], with respect to the parameter a, where, 

^^ (a) = \\{1- a) { T / ( 5 W , t) - M^W, *)}| 
L2 

+ ^ { («(̂ ' ̂ )^)l-^w + (̂̂ W' )̂̂  - (̂̂ W' *)} (9.7.47) 
L2 

Proposition 9.7.4. As /? ^ /?*, TJ^ (3:,i) converges in the norm of W^^'^ to the 
solution T^{x,t) of Problem (P^) . 

The inverse Stefan problem considered in [268] is a particular case of the problem 
considered in (9.7.1)—(9.7.5) but the control is different from that considered in other 
problems. Let A* = {{x,t) : a < S{t) < x < d, 0 < t < t^} . We take q{x,t) = 0 in 
(9.7.1), n = 0 in (9.7.4), r2 = XS{t) in (9.7.5) and instead of (9.7.3), consider 

T,(c/, t) + aT{d, t) = -v{t). (9.7.48) 

Here, A and a are constants. The free boundary x = S{t) is a known monotonically 
decreasing C^-function with S{0) = b > a. The temperature ai x = d is manipulated 
by a heating (cooling) system according to (9.7.48). In (9.7.48), v{t) depends on an 
unknown function u{t) and this dependence can be expressed as 

v'{t) + -fv{t) = u{t), a.a. t e [0, t*], v{0) = 0, it G C/, 7 (constant), (9.7.49) 

U = {ue L°°{0,t^) : 0 < u{t) < M, a.a. t G [0,t*]} , M (constant). (9.7.50) 

The inverse problem is to find u e U such that 

Tu{S{t), t) = 0, for every t G [0, t,]. (9.7.51) 

It is understood here that for a given u, the temperature T^ satisfies all other equations 
exactly except (9.7.51). The optimal control problem is to find u which minimizes the 
integral 

u 
j {Tu[S[t),t)fdt- ueU. (9.7.52) 
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After obtaining necessary conditions for optimality, a descent algorithm for obtaining 
a solution for this control problem has been presented. Particular attention has been 
devoted in [268] to find a starting control by a local variations method described in [269]. 

Analysis and control of Stefan problems by considering weak enthalpy formulations 
have been studied in [167]. The report [270] also contains several references on control 
and identification of free boundary problems of parabolic, hyperbolic and elliptic types 
(see also the cross references in [167] and [270]). Our main concern here is the classical 
Stefan problem. 

In most of the references in [254]—[268], numerical methods employed to obtain numer-
ical solutions have also been justified and attempts have been made to obtain regularized 
solutions. In view of the ill-posedness of the inverse problems, justification of the numer-
ical methods becomes necessary so that it is certain that the solution we have obtained 
could be an approximate solution but is not a bad solution (unstable). For reasons of 
scope and emphasis in this volume, discussion of numerical solutions is limited. 

The Tikhonov regularization method can be used for inverse heat transfer problems 
with or without phase-change. A given problem is to be formulated first as a regularizing 
functional. In [254, 255, 256, 257], it is possible to obtain regularizing functionals for the 
operator equations to which the problems are reduced and then Tikhonov regularization 
could have been used but for the purpose of calculating error estimates, a different type 
of regularization was done. The determination of an optimal value of the Tikhonov reg-
ularization parameter a (see equation (9.3.16)) requires lot of computational effort. The 
numerical solution of a one-dimensional inverse heat transfer problem (without phase-
change) by Tikhonov regularization has been presented in [271]. The original problem is 
reformulated in terms of obtaining the solution of a Volterra integral equation of the first 
kind and a finite-difference discretization has been employed to obtain a stable solution 
with the help of a Tikhonov regularizing functional. In [272], a one-dimensional heat 
conduction problem without phase-change has been considered in which both the ends of 
a plate are considered as free boundaries. On using the transformation given in (9.7.53), 
a problem on the fixed domain 0 < ^ < 1 can be formulated where ^ is given by 

Here, Si and ^2 (5*2 < Si) are the free boundaries but no phase-change is taking place. 
The fixed domain formulation of the problem on discretization by finite-difference method 
gets reduced to a system of nonhnear equations with a tri-diagonal matrix. A regularizing 
functional in which a stabiUzing functional is of the form (9.3.29) has been considered. 
Terms upto second order temperature derivatives have been included in the stabilizing 
functional. The choice of the regularization parameter has also been discussed. 

A one-dimensional two-phase solidification problem similar to the Neumann prob-
lem (1.3.1)—(1.3.7) but formulated in the region 0 < x < b, has been considered 
in [273]. The initial temperature TQ of the melt, S{t), Tm, 6, {dTs/dx) {S(t), t) = 
q s{i): {dTL/dx){S{t),t) = q^X^) are given and the problem is to find {dTs/dx) (0,t) = 
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q^sit) and (dTi/dx) {b,t) = q^^ (t). The temperature gradients qys{t), qyi{t) and S{t) 
satisfy the Stefan condition 

Ksq.s - ^iqyi = plSit), x = S{t). (9.7.54) 

In essence, we have two independent inverse Stefan problems to solve. The aim in this 
problem is to calculate the boundary fluxes at the fixed boundaries that will give the 
desired freezing front velocity on which depends the liquid feeding to the mold and hence 
the desired cast structure. 

For the numerical computations, a boundary element method with constant elements 
has been used in conjunction with the sensitivity analysis discussed in [274]. By using 
transformations of the type (9.7.53) (after appropriate modifications), fixed domain for-
mulations can be obtained for both solid and liquid phases. The temperatures in the 
solid and liquid regions can be expressed in terms of integrals using appropriate Green's 
functions (see equation (9.6.6)). Note that since S{t) is known, we are solving only 
parabolic heat equations. These integral representations are required in the numerical 
method which uses boundary elements. It may be noted that the integral representa-
tions of temperatures in the present case are different from (9.6.8) as in the fixed domain 
formulations, the heat equations will get transformed. Temperatures at the fixed bound-
aries of the transformed regions can be obtained from their integral representations and 
on discretization of integrals the matrix equations which contain unknown nodal values 
of temperatures can be obtained. For the description of sensitivity analysis, we consider 
here only the solid phase. Let q^g be the unknown flux during the time interval (t^_i, tm), 
i.e., during the time step m and all q'!^g, for mi < m are known. To stabihze the solution 
of the inverse problem, it is assumed that qos is constant at the future (r — 1) time steps. 
This assumption is used temporarily until q^g is calculated. The sensitivity coefficients 
for this problem are defined as 

{ T , - + ^ - 1 ; g-} =. ^ ' / , z ^ 1 to r. (9.7.55) 

Here, the notation {Ts} stands for a matrix. The error in the prescribed temperature 
Tm 8it X = S{t) and its calculated value is to be minimized with respect to qos and this 
gives an equation to determine q^g, m > 1 at time steps other than the initial time step. 
Similarly q^ can be obtained. Starting solutions have been obtained with the help of 
some approximate analytical solutions developed in [273]. 

A problem of estimating unknown free boundary in a two-dimensional heat conduction 
problem with the help of some temperature measurements along a portion of the fixed 
boundary of the region has been considered in [275]. The formulation of the direct 
problem is as follows: 

fd'^T d'^T\ dT 
A : l — - f ^ l = — , 0 < x < 6 , 0<y< S{x, t), 0<t< t,, (9.7.56) 

dT 
— = 0, at X = 0, 0 < ^ < t*, (9.7.57) 
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dT 
—- = 0, sXx = h, 0<t<U, (9.7.58) 

dT 
— = qo/K, at y = 0, 0<t<U, (9.7.59) 

T = Ti, at 2/ = 5(x, ^), 0 < ^ < U, (9.7.60) 

T = To, at ^ = 0. (9.7.61) 

Here, y = S'(x, )̂ is the equation of the free boundary. In the direct problem considered 
in [275], S{x,t) is taken as known and the temperature T{x,y,t) is to be determined. 
In the inverse problem corresponding to this direct problem, S{x,t) is unknown, and in 
this case we should have two conditions at y = S{x,t). Instead of imposing one more 
condition at y = S{x,t), we take some temperature readings denoted by Tm{t) along 
^ = 0. Let 

T{xm, 0, t) = fm{t), m = 1 to M, 0 < ^ < *̂. (9.7.62) 

The inverse problem consists of determining T{x, t) and S{x, t) satisfying equations 
(9.7.56)—(9.7.62). For the solution of the inverse problem, conjugate gradient method has 
been used in conjunction with a boundary element method. For the boundary integral 
formulation of the present problem and the discretization of equations, see ([275, 276]). 
The method of solution by the conjugate gradient method for the present inverse problem 
requires the solution of three problems, namely, the direct, sensitivity and adjoint. The 
solution of the inverse problem has been obtained in such a way that the following 
functional is minimized. 

V ^ 2 
J{S{x,t)} = J E {^rnit) - fUt)} dt. (9.7.63) 

Here, Tm{t) are the temperatures at (x^,0,t) which are obtained by solving a direct 
problem in which an approximate S{x, t) is used in the place of exact S{x, t). Note that 
in the inverse problem we start with an approximate value of S{x,t). The data Tm{t) 
can have measurement errors. The numerical results indicate that the solution of the 
inverse problem obtained by the above method remains stable as measurement errors are 
increased and the number of observed temperature locations are decreased. 

A sequential algorithm for the identification of the position of the moving boundary 
in the one and two-dimensional Stefan problems from discrete measurements of temper-
atures and fluxes at the fixed boundaries has been presented in [277]. In most cases, 
the direct measurements of the position of the phase-change boundary is impracticable. 
Identification of the interface position is, therefore, to be incorporated in the feedback 
control algorithm. In a two-phase Stefan problem, the physical phenomenon occurring 
in the liquid phase is difficult to model accurately because of some factors such as sur-
face tension, thermal and solutal convection, and external forces. This drawback can be 
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eliminated by having all the measurements made in the solid phase and considering a 
one-phase problem consisting of only the solid phase. 

The two-dimensional one-phase problem considered in [277] is similar to the problem 
described in (9.7.56)—(9.7.61) except that in the condition (9.7.60), Ti is now the fusion 
(melting) temperature. In the direct Stefan problem described in [277], S{x, t) is known, 
and either temperature or flux is known at ?/ = 0. The temperature is to be determined 
everywhere. If the temperature is prescribed at y = 0, then after calculating the tem-
perature in the direct problem (since S{x, t) is known we are solving a heat conduction 
problem without phase-change), the flux can be determined at ?/ = 0 so that both T and 
dT/dy are known ai y = 0. In the inverse problem both S{x, t) and T(x, t) are to be 
determined. Therefore, an overspecified boundary condition is imposed at y = 0 in terms 
of either the calculated temperature (if the flux is prescribed) or the calculated flux (if 
the temperature is prescribed). As mentioned in the earlier problems, for the solution 
of an inverse problem, a direct problem with some known value of S{t) is first solved to 
determine the approximate temperature values everywhere. If at ?/ = 0, the temperature 
is taken as prescribed in the direct problem, then this temperature is a model input and 
the model output will be the flux at ?/ — 0. In this way we have a pair {T, dT/dy). 
The numerical solution of dT/dy should be compared for correctness with the prescribed 
dT/dy which is an overspecified boundary condition. Similarly we may have another 
pair [dT/dy,T). For the given input data, sensitivity coefficients for the output data 
with respect to S{t) have been calculated. It may be noted that if the flux is prescribed 
at ?/ = 0, then T(a;,0, t) is the output and dT/dy is the input. For a given S{t), out-
put/input sensitivity coefficients have also been calculated. In the one-dimensional case, 
it was found that the best approach consists of taking prescribed temperature as the 
model input [277]. 

Let the value of S{t) at time tm+i — {'m + 1) A^ (A^ is the time step), m = 0,1, 2.. be 
denoted by Sm+i- The value of 5*̂ +1 has been obtained in [277] through the minimization 
of a penalized least-squares criterion evaluated in the time interval [tm+i, tm+r]- The 
length of the observation horizon is r = rAt. The functional Ja{Sm+i) to be minimized 
is taken as 

1 ^ 
Ja{Sm+i) = - E em+^e^+z + aG{Sm+i), (9.7.64) 

where ^=i 

G{Sm+l) = [Sm+l — Sm] '̂  [^m+1 " Sm] , (9 .7.65) 

Gm+i — ^m+i ~~ ̂ m+i i^m+i] ^ m + b •i ^m+ij • (9 .7 .66) 

Here, T̂  stands for the transpose of a matrix, Z and U are the estimated quantities, a is 
the regularization coefficient, Z stands for the model output, and U stands for the model 
input. The matrices Z and U are defined below. 

Zm+z = [z{0, (m -h i)At} , z{Ax, (m + z) At} , , z{{N - 1) Ax, (m + i) At}f', 

(9.7.67) 
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Um+i -= ['̂ {0, (m + z) At} , u{Ax, (m + z) A^} ,..., u{{N - 1) Ax, (m + z) At}f'' 

(9.7.68) 

In (9.7.67) and (9.7.68), Â  stands for the number of nodal points in the x-direction in 
the one-dimensional case. These matrices in the two-dimensional case can be similarly 
written. Noisy data can also be considered. For optimization, Gauss-Newton algorithm 
has been considered. 

Till now we have discussed ill-posedness of the inverse problems and not of any direct 
problem. An example showing the ill-posedness of a one-dimensional one-phase oblation 
problem has been given in [278]. The formulation of this problem is similar to that 
given in (10.1.34)—(10.1.38) (see Chapter 10) except that / , A and JJ, in [278] are not 
constant but functions of time. The heat source, initial temperature, flux at x == 0, flux 
at X = S{t) and the latent heat are known functions of time and a parameter a, a > 0. 
The prescribed quantities (cf. [278]) are taken in such a way that it is possible to obtain 
an exact analytical solution of the problem in terms of a and variables x and t, and for 
any a > 0 the prescribed quantities and their derivatives of any order are less than unity. 
Furthermore, the difference in the derivatives of any order of these data are uniformly 
close. An exact analytical solution of the free boundary can be obtained in the form 
S{t;a) = at. The difference in the two values of S{t]a) increases with a and t and 
the solution becomes unstable. This example shows that the well-posedness of many 
problems is conditional and if the prescribed data take the solution beyond the limits of 
well-possedness, the solution becomes unstable. The regularization of this problem has 
been achieved by defining a suitable solution space. 



Chapter 10 

Analysis of the Classical Solutions of 
Stefan Problems 

Some results of the analysis (existence, uniqueness, stability and regularity results) of 
classical solutions of Stefan problems will be presented in this chapter. The analysis 
aspect of one-dimensional classical Stefan problems has been thoroughly investigated 
and it may not be possible to add any significant result to the existing literature in the 
future. This can also be felt from the results reported in §§ 10.1 and 10.2. For analysis, 
we shall mainly consider the formulation (1.4.3)—(1.4.9) for multi-dimensional problems 
and formulations such as those given in (3.1.1)—(3.1.5) and (3.2.1)—(3.2.10) for one-
dimensional problems. In essence, it will be assumed in the classical formulation that the 
solid and the liquid phases are separated by a smooth free boundary, the temperatures 
in the two regions satisfy heat equations and appropriate sign constraints (see § 1.4.6). 
The analysis of the problem of solidification of a supercooled liquid and some related 
problems has already been presented in Chapter 4. 

In the multi-dimensional Stefan problems, one can easily think of geometries in which 
the free boundary is initially regular but becomes discontinuous after some time. The 
results of analysis of classical solutions of multi-dimensional Stefan problems are avail-
able mostly for short-time (local-in-time) solutions. However, in principle, it may be 
possible to study these solutions till the time the free boundary becomes discontinuous. 
Weak (generalized) solutions of multi-dimensional Stefan problems have been extensively 
studied under fairly general assumptions about the input data and the coefficients oc-
curring in the formulation. Due to reasons of emphasis, weak solutions of only some 
selected Stefan problems in which the differentiability or the Lipschitz continuity of the 
free boundary has been established, will be discussed in Chapter 11. 

271 
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10.1 One-dimensional One-phase Stefan Problems 

The analysis of one-dimensional one-phase problems has a long history and a brief account 
of it can be found in [21]. There are several factors that affect the results of analysis 
of Stefan problems, such as, formulation of the problem, the definition of the solution, 
assumptions about the input data and coeflScients, and the mathematical tools used in 
proving the results. The proof of existence, uniqueness, etc. requires some estimates 
of temperature derivatives, which involve lengthy calculations. The main result can 
be proved only after proving several lemmas and propositions. It is not possible to give 
complete details of the analysis here. As a suitable compromise on length, only some basic 
approaches used in the proofs will be discussed together with some of the main results. 
Taking a contemporary perspective, we can consider many of the problems studied earlier 
as particular cases of the problems studied later. It does not seem necessary to discuss 
ah the particular cases. The reader is requested to look into cross references mentioned 
in the bibliography. 

10.1.1 Analysis using integral equation formulations 

We present some results since 1959. Several references of works prior to 1959 with 
comments on the methods used in proving the results are reported in ([21, 279, 280, 281]). 
The one-phase melting problem considered in [279] is to find the temperature T(x, t) and 
the free boundary S(t) satisfying the following system of equations. 

(p(x, t, T, T,)T,)x = /(x, t, T)Tt, in Dt^ = {(x,t) : 0 < x < S(t), 0 < ^ < t* < oo} , 

(10.1.1) 

Po(t)T,(0,t) = -g{t), 0<t<t,; po{t) = p|,^o, (10.1.2) 

T{S{t),t) = 0, 0<t<t,, (10.1.3) 

S{t) = b - {pT,)l^sit)^ 0<t<t,; S{0) = 0. (10.1.4) 

At time ^ = 0, the region x > 0 is occupied by ice at the melting temperature 
which is taken as zero. No initial condition is required as S{0) = 0. The coefficients in 
(10.1.1)—(10.1.4) satisfy the following conditions. 

(1) 6 is a non-negative constant. The functions g{t), f,p have continuous second 

order derivatives. 

(2) 0 < ao < g{t)/po{t) = b{t) < a^. 

(3) 0 < / o < / ( x , ^ , T ) . 

(4) 0 < pi < p{x, t, T, T:c) = Po{t) + terms which vanish at x = 0. 
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(5) p. > 0, p^ < 0, p, = p^^ < 0. 

(6) S{t) is monotonic and it is possible to express x = S{t) as ^ = S~^{x). 

The fifth assumption imphes that (10.1.1) can be written as a hnear differential equa-
tion with non-negative coefficients, i.e., 

(p + P.T.)T,. + (p, -hp^T,)T, = fTt . (10.1.5) 

It can be proved that T^ < 0. Introducing the notations 

T T 

F[x, t, T) = ff{x, t, q)dq, and G{x, t,T) = - f ft{x, t, q)dq, (10.1.6) 
0 0 

and integrating (10.1.1) over the region 0 < x < S[t'), 0 < t < t\ and writing t in the 
place of t', the following integral equation is obtained. 

t S{t) t S{q) 

S{t)= j{h + g{q))dq- f F{x,t,T)dx- f f G{x,q,T{x,q))dxdq. (10.1.7) 
0 0 0 0 

By using fixed point argument, the existence and uniqueness of the classical solution 
{T,S) of (10.1.1)-(10.1.4) has been proved in [279]. Let T{x,t;S{t)) be the solution of 
the following 'reduced problem'. 

{pTa:), = fTu in A . (10.1.8) 

Po{t)T,{0,t) = -g{t), 0<t<U, (10.1.9) 

T{S{t),t) = 0, 0<t<U. (10.1.10) 

Here, S{t) is a given continuous monotonic function which vanishes at t = 0. The 
dependence of the temperature on the solution of the reduced problem for a given S{t) 
will be expressed in the form T{x,t; S). It may be noted that the given S{t) may not 
be the solution of the original Stefan problem as (10.1.4) is not satisfied. The following 
propositions which help in applying fixed point argument have been proved in [279]. 

Proposition 10.1.1. If T{x, t] S) is the solution of the reduced problem, then there 
exist numbers ai > 0 and a2 > 0, independent of S{t), such that 

(a) T{x, t- S) < ai(S{t) - x), 0<x< S{t), 0 < t < t*, 

(6) -a2 <p{x,t,T,T,)T:, < 0. 
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Proposition 10.1.2. There exists a unique solution of the reduced problem. 

By integrating (10.1.4) also an integral equation for S{t) can be obtained but it will 
involve integral of T^ over a boundary and this is not suitable for using fixed point 
argument. UT{x,t) and S{t) represent the solution of (10.1.1)—(10.1.4), then (10.1.7) is 
satisfied exactly. For approximate values of T and S, it is appropriate to write (10.1.7) 
as 

t S{t) t S{q) 

z(t) = j{h + g{q)dq - f F{x, t, T)dx - f f G{x, q, T(x, q))dxdq. (10.1.11) 
0 0 0 0 

Equation (10.1.11) defines a mapping 

Z = W{S). (10.1.12) 

Here, W is defined on a set of real valued, differentiable boundary curves which vanish 
at t = 0. These conditions on S are enough because 

dz 
- = b- p{S{t), t, 0, n)US{t), t- 5(0), (10.1.13) 
at 

and 

b<^<b + a2. (10.1.14) 
dt 

The function z{t) is a differentiable and monotone function which vanishes at the origin, 
and it can therefore serve as a boundary curve for the reduced problem. 

Proposition 10.1.3. Let V he a set of continuously differentiable functions, defined 
on some finite time interval, which vanish at t = 0 and whose derivatives satisfy (10.1.14). 
If W is the transformation defined by (10.1.12), then W is defined on V and maps V 
into itself. 

Proposition 10.1.4. Under the uniform norm (see (9.7.12)), V̂  is a subset of a 
Banach space of continuous functions defined on [0, t^]. The set V is convex and equicon-
tinuous. The closure of V denoted by V is also convex. Every infinite subset of V has 
an accumulation point in V, i.e., V is compact. 

Proposition 10.1.5. W is continuous on the closure ^ of V. W maps V into itself. 

Since 1/ is a compact and convex subset of a Banach space, and VT is a continuous 
mapping of V into itself, by Schauder's fixed point theorem [282], there exists at least one 
element of F which is left invariant under W, i.e., S%t) = W{S^{t)). The function S^(t) 
is the solution of (10.1.11) and T{x,t]S^) is the solution of reduced problem (10.1.8) — 
(10.1.10). 

It can be proved that if S{t) is in V and S{t) = W{S{t)), then S{t) is differentiable, 
i.e., S{t) is in V. Further 

— = 6-(pT,)|^^5(,), 
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and therefore (S{t),T{x,t; S{t))) is a solution of the problem (10.1.1)-(10.1.4). Unique-
ness of the problem (10.1.1)—(10.1.4) has also been proved in [279] but it is not based on 
contraction mapping argument [282]. 

The problem considered in [280] can be obtained by making some changes in (10.1.1)— 
(10.1.4), such as, take p = 1, / = 1, 6 - 0, 5(0) - A and T(x,0) = a(x), where 
0 < a{x) < d{A — x), 0 < X < A, and d is some positive constant. The functions a{x) 
and g{t) are continuous, g{t) < d. An integral equation of the type (10.1.7) has been 
obtained in this case also and now a reduced problem of the type (10.1.8)—(10.1.10) will 
have a prescribed initial temperature also as S'(O) = A > 0. The existence of the solution 
on some finite time interval [0,̂ *] has been proved using fixed point theorem as in [279]. 
However, the uniqueness of the solution has been proved by showing that the iterations 
done in the numerical solution for calculating the free boundary are converging, i.e., if 
So = A and 5'̂ _|.i = F{Sn), then F is a contraction. 

For the numerical solution of the problem considered in [280], the time interval [0, t^] 
is divided into n small time intervals, each of length At and in each one of them iterations 
are done to get better values of S{t). For this purpose an integral equation of the form 
(10.1.11) is used. T{x,t;S{t)) is obtained from the solution of the 'reduced problem' 
formulated for this problem with appropriate changes. The first iterative process will 
converge to the solution if the time interval is small (existence holds and uniqueness is 
proved by contraction argument). Then another iterative process is carried out in the 
time interval (0,2At]. The solution of the previous time step is used to obtain S{t) 
and T{x,t]S{t)) in (0, 2At] by using a suitable iterative process (cf. [280]). The initial 
temperatures in the 'reduced problems' will go on changing. This procedure is repeated 
in other time intervals also till the solution is obtained in the time interval [0, t^]. It has 
been shown that lim 5^+1 = S{t) and S{t) is invariant under the transformation of the 
form (10.1.12) for the present problem also . The subscript n refers here to the n-th 
iterative process. 

The problem considered in [281] can be obtained from (10.1.1)—(10.1.4) if we take 
p - 1 and / = 1 in (10.1.1), 6 = 0 in (10.1.4), S{0) = d and replace (10.1.2) by a 
temperature prescribed boundary condition, e.g., 

T(0, t) = v{t) > 0, 0<t<t^<oo. (10.1.15) 

Since S{0) — d, initial temperature is to be prescribed and let 

T(x, 0) - To{x) > 0, 0<x<d. (10.1.16) 

We shall refer to this problem in [281] as Problem (F). The main result of [281] is the 
following proposition. 

Proposition 10.1.6. Assume that v{t) {0 < t < oo) and To{x) {0 < x < d) 
are continuously differentiable functions. Then there exists one and only one solution 
(T{x,t),S{t)) of Problem (F) for all t < oo. Furthermore, the function x = S{t) is 
monotone nondecreasing in t. 
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By solution we mean here the classical solution discussed in § 1.4.6. 

If S{t) exists in any time interval 0 < ^ < a, then on using maximum principles 
for parabolic operators [9], it can be proved that S{t) is nondecreasing in this interval. 
The Problem (F) can be reduced to a problem of solving a nonlinear integral equation. 
Following the procedure indicated in (9.6.5)—(9.6.8), the temperature can be expressed 
as in (9.6.8) for the present problem also (substitute d in place of b). We use the notations 
used in (9.6.8). If both sides of (9.6.8) are differentiated with respect to x and the limit 
X —> S{t)— 0 is taken, then we get the following integral equation. 

"r BT 
y{t) = 2 [To(0) - vm N{S{t),t; 0,0) + 2 ^ -^N{S{t),t;e,0)^^ 

0 *̂  
t t 

- 2 / v{r)N{S{t), t- 0, T)dr + 2 / y{T)G^{S{t), t; S{T), T)dT, (10.1.17) 
0 0 

y{r) = T^[S{T),T), (10.1.18) 

N[x,t]i,T) = Q[x,t]i,T) + Q[-x,t]e,,T). (10.1.19) 

and 

In (10.1.17), G is given by (9.6.6) and in (10.1.19), Q is given by (9.6.7). In obtaining 
(10.1.17), the following result has been used. 

P r o p o s i t i o n 10.1.7. Let p{t), 0 < ^ < cr, be a continuous function and let S{t), 0 < 
t < a^ satisfy a Lipschitz condition. Then for every 0 < t < a 

r, t t 

lim — / P{T)Q{X, t; S{T), T)dT = -pij) + / p{j 
^^S{i)-Q OX J^ Z J^ 

On integrating the Stefan condition, we get 

t 

S{t) = d- Jy{T)dT. 

dQ_ 

dx 
{X,t-S{T),T) dr. 

t=S{t) 

(10.1.20) 

(10.1.21) 

It can be proved that Problem (F) is equivalent to the problem of finding a continuous 
function y{t) which is the solution of (10.1.17) where S{t) is defined by (10.1.21) and S{t) 
is positive. For the set of continuous functions y{t) defined for 0 < t < cr, a sufficiently 
small, the equation (10.1.17) defines a mapping which can be expressed as 

w{t) = P{y{t)). (10.1.22) 

The function w{t) is the l.h.s. of (10.1.17) for some y(t) which need not be the value 
of Tj. at the exact solution x = S(t). By using fixed point argument, the existence of 
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y{t), i.e., the solution of (10.1.17) has been proved in [281] and by showing that F is a 
contraction, uniqueness of y{t) has been proved. 

The vahdity of the solution obtained above for a short time can be extended to longer 
times. It has been proved in [281] that there exists an £ > 0 such that if the continuous 
solution y{t) of the integral equation (10.1.17) exists and is unique for 0 < t < to, then 
it exists and is unique for 0 < t < ô + £• Note that the continuity of y{t) implies the 
continuity of S{t). The existence of the solution in the time interval [0, ô + ]̂ requires 
that Tx{x,t) is bounded by a constant which is independent of x and t in the interval 
0 < X < S{t), to - S < t < to for some S, 0 < S < to- The solution can then be started 
with some very small 77 > 0 and we get a classical solution for to — r] < t < to -\- s. This 
solution coincides with the classical solution for to — 77 < t < to as the solution is unique 
for 0 < t < to. 

The one-phase Stefan problem considered in ([21, 283]) has stronger nonlinearity than 
in [279] and no sign restrictions have been imposed on the boundary and initial data. 
The problem studied is to find a classical solution (see § 1.4.6 and [21]) {T{x,t), S{t)) of 
problem (10.1.23)-(10.1.27). 

a^^ - -^ + F{x,t,T,T,,S{t),S{t)) = 0, (x,t) G A . , 

A . = {{x, t) -.0 <x < S{T), 0 < r < t < t,} , a > 0, (10.1.23) 

dT 

— = f{t,T), x = 0; t > 0 , (10.1.24) 

T = 0(x), t = 0; 0<x< S{0) = d, (10.1.25) 

T = i){x), X = S{t)] t > 0, (10.1.26) 

S = Z{t, T, T,, x), X = S{t); t > 0. (10.1.27) 

Here, F, / , 0, ip and Z are known functions which are defined f o r O < x < l , 0 < t < l 
and 0 < S{t) < 1. The functions F, / , and Z are differentiable, 0 is thrice differentiable 
and tp is twice differentiable with respect to their arguments everywhere in the domain 
of definition. The known functions and some of their derivatives are bounded by suitable 
constants (see [21], pp. 95—140). The compatibility conditions are satisfied, i.e., 

/(O,(/)(O)) = 0.(O); (P{d) = ^{d). (10.1.28) 

We introduce the following notations. 

^L=o=^^; Tx = q. 0<x < S{t); T:,{S{t),t) = v; S{t) = p. (10.1.29) 
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On using a method similar to that used in obtaining the temperature in (9.6.8), the 
temperature given below which is the solution of problem (10.1.23)—(10.1.27) can also 
be obtained. 

t t 

T{x, t) - -a^ I f{T, x)Gi(x, 0, t - T)dT + / (t)[OGi{x, ^, t)di 

t s{t) 

+ JdTlF{tT^...^p)Gi{x^^,t-T)d^-a'Ji;{S{T))-G,{x,S{r),t-T)d 
0 0 

t 

+ 
0 

d^ 

t 

j {ah{r) + ^{S{T))P{T)}GI{X, S(T),t - T)dT. (10.1.30) 

Here, the Green's function Gi{x,^,t) = Q{x,t]^,T) -\- Q{-x,t;^,r) and Q is given by 
(9.6.7). Using (10.1.30), the functions w, q and v can be expressed in terms of appropriate 
integrals. On integrating S{t) = p, we get 

t 

S{t) = d-\- fp{T)dr. (10.1.31) 
0 

The results given below in Propositions 10.1.8. and 10.1.9. have been proved in [21] 
under suitable assumptions. 

Proposition 10.1.8. (Existence and uniqueness). The unique solution {T{x, t), S{t)) 
of the system (10.1.23)—(10.1.28) can be constructed by Picard iteration method which 
can be started with any set of functions {To,wo,qo,Vo,So,po} having bounded partial 
derivatives with respect to each of their arguments. If the starting solution satisfies the 
conditions 

0,(0) = /(O, wo{0)y. Md) = qo{d, 0) - ^o(O); So{t) = po, (10.1.32) 

then each of the functions T,w....,p obtained as solutions of Picard iteration satisfy a 
Lipschitz condition of the form 

l/W - /('^)l < ^ ( v ^ + V^)~V - ^h A constant, (10.1.33) 

with respect to each of their arguments. 

Here, To, WQ, QQ, VQ, SQ, po are some initial approximations of the functions T, w,.., p, 
respectively. 

Proposition 10.1.9. The solution [T,w,q,v,S,p) obtained by Picard iteration is 
stable relative to small variations of all the 'data' of the problem. 

The existence of a local-in-time solution has been proved by establishing the con-
vergence of iterations and uniqueness has been proved by showing that the sequences 
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{Tn}, {wn}--, {Pn} obtained by iterations are not only uniformly bounded and equicon-
tinuous but are also uniformly convergent. This will imply convergence of the entire 
iteration process to a solution of the system of integral equations of the problem. 

The local-in-time (short-time) solution cannot be extended to any arbitrarity preas-
signed time interval without assuming the monotonicity of the free boundary and impos-
ing additional conditions of boundedness on the data. The additional assumptions (cf. 
[21]) imply that if the solution is vaUd in the time interval [0, to], then it can be extended 
to [to,^i], where At = ti — to is dependent only on the magnitude of T(x, t) and its first 
three derivatives with respect to x at t = to and not on the time t, for which the solution 
has already been constructed. 

The approach to prove existence, uniqueness and stability of the solution of the free 
boundary problem considered in [59], consists of proving the convergence of a sequence of 
approximating solutions. The formulation of the problem considered in [59] is as follows: 

CT = T^:, -Tt = q{x,t), in A . = {{x,t) : 0 < x < S{t), 0 < t < t^} , (10.1.34) 

T(x,0) = (f){x), 0<x< S{0) = d>0, (10.1.35) 

T(0, t) = u{t), 0 < t < t*, (10.1.36) 

T{S{t),t) = f{S{t), t), 0 < t < t*, (10.1.37) 

mS{t), t) = X{S{t), t)S{t) -h /i(5(t), t), 0 < t > t*. (10.1.38) 

The problem (10.1.34)-(10.1.38) will be called Problem (PI). If instead of (10.1.36), 
we have 

Tx{0, t) = g{T{0, t), t), 0 < t < t*, (10.1.39) 

and all other equations remain the same as in Problem (PI), then we shall call it Problem 
(P2). The boundary condition (10.1.37) is of 'Cauchy-type'. Several particular cases of 
Problems (PI) and (P2) have been studied in the literature which have been briefly 
reviewed in [59]. Let Q be the quarter-plane {(x,t) : 0 < a : < o o , 0 < t < oo} . The 
input data and the coefficients in (10.1.34)—(10.1.39) satisfy the following assumptions. 

(A) q{x^t) is locally Holder continuous in H with respect to x (or t), and 

|^(x,t)|<0, {x,t)en. 

(B) /(x, t) is continuous and bounded in Q together with f^, and the difference fx^ 

-ft is bounded and locally Holder continuous in Q with respect to x (or t). 

(Ci) u{t) is (piecewise) continuous for t > 0 and 

\u(t)\ < $, t > 0 . 
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(C2) giVji) is Lipschitz continuous with respect to y, i.e., 

\9{yi,t)-g{y2,t)\ < mg\yi -?/2| , 

uniformly with respect to ^ > 0 and it satisfies one of the conditions (ai), (0̂ 2) 
and one of the conditions (Pi), {P2) hsted below. 

(ai) There exists a constant Yi > maxjMd, SUPQ/(X,^)} such that 

g{Yut) > 0 , t>0. 

For M, see (F) given below. 

(0̂ 2) There exist two constants Y' and G' such that 

g{y,t) > G\ for y>Y\ t > 0. 

{Pi) There exists a constant Y2 < min { — Md, inin / (x, t)} such that 

g(Y2,t) < 0 , ^ > 0. 

{P2) There exist two constants Y" and G" such that 

g{y,t) <G\ {oiy<Y\ t > 0. 

(D) \{x, t) is continuous in Vt together with its first derivatives and 

|A(x,^)| > Ao > 0, {x,t) en. 

(E) ii{x,t) is continuous in Q, uniformly Lipschitz continuous w.r.t. x in bounded 

sets, and there exists a constant P such that 

\li{x,t)\ < P , {x,t) G H . 

(F) (t){x) is (piecewise) continuous in [0,c?] and a positive constant M exists such 

that 
| ( /)(x)-/(^,0) | < M{d-x), xe [0,(/], 

with (for Problem (PI)) 

Mc/>$ +1/(^,0)1. 

By redefining the temperature as T[x,t) - f{x,t) in (10.1.34)-(10.1.39), (10.1.37) 
can be written as T{S{t),t) — 0. The new temperature will also be denoted by T(x,t). 
The assumptions on the various functions have been made in such a way that they still 
remain valid after this transformation. 

If A = 0, then we have an implicit free boundary condition and either this condition 
can be converted to an explicit condition (cf. § 3.3.1) which can then be studied by the 
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method suggested in [59] or A = 0 may yield non-existence, non-uniqueness, or instability 
of the solution on the input data. The main existence result of [59] is that either the 
solution exists globally in time, i.e., t^ — -hoo or one of the following cases must occur 
for some t < oo: 

(i) lim 5(t) - 0, (ii) lim |5(t)| - -hoo. (10.1.40) 
t—t-O t—1-0 

The free boundary condition (10.1.38) can be reformulated as 

T^{S(t), t) = (d/dt) {V{S{t),t) - W{t; S)} , (10.1.41) 

where 
X 

V{x,t) = f X{U)d^, ix,t)€Q, (10.1.42) 
0 

and for any S{t) € C^O, U) H C [0, U], 

t 

^ ( ^ ; S)= [ { K ( 5 ( T ) , T) - ^i{S{T), T)} dr, t G [0, U]. (10.1.43) 
0 

If in (4.4.20), we take P as the heat operator, P* = d'^/dx^ -h d/dr and v{x, t) = V{x, t), 
then on integrating (4.4.20), we get the following equation for Problem (PI). 

\v\S(t), t) - ]^V\d, 0) = jj{y{^. r)q{x, r ) - T(x, r) [A,(x, r) + K(x, r)]} dxdr 

S{t) d 

-h / V{x,t)T(x,t)dx- fv{x,0)(p{x)dx 
0 0 

t t 

+ I V{S{T),r) { K ( 5 ' ( T ) , r) -//(S'(r), r)} dr - / A(0, T)u{T)dT, t G [0, Q. (10.1.44) 
0 0 

For Problem (P2), take -i; = 1 in (4.4.20) and P and P* as above. On integrating, we 

S^^ Sit) d 

V{S{t),t) - V{d, 0) = / / q{x, r)dxdT -h / T(x, t)dx - f (t){x)dx 
Dt^ 0 0 

t t 

+ j g{T{0, T),T)dT + I {Vr{S{T), T) - ^{S(T),T)} dr, 0<t< U. (10.1.45) 

Each solution of Problem (PI) satisfies the integral equation (10.1.44). Similarly each 
solution of Problem (P2) satisfies the integral equation (10.1.45). If S(t) is Lipschitz 
continuous and T^{x,t) is continuous upto x = S{t) for t > 0, then (10.1.38) is also 
satisfied by the solution [T,S) of (10.1.34)-(10.1.37) and (10.1.44) ((10.1.45)). 
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Approximate solutions to Problem (PI) (and similarly for Problem (P2)) can be 
obtained by induction starting with Si{t) = d and the temperature determined by the 
solution of the following system of equations: 

CTk = q{x,t), in D̂ f̂̂ ) = {{x,t) : 0 < x < Sk{t), 0<t< t^^^] , (10.1.46) 

Tk{x,0) = 0(2;), 0<x< Sk{0) = d, (10.1.47) 

n{0,t) = u{t), 0<t< ti^\ (10.1.48) 

Tk{Sk{t), t) = 0, 0<t< ti''\ (10.1.49) 

\{Sk{t),t)Sk+i{t) = n,,{S,{t),t) - fi{Sk{t),t), 0<t< ti'+'^ < ti'\ (10.1.50) 

Sk+i{0) = d, k = 1,2, (10.1.51) 

The time ti is the supremum of the values of r for which Sk{T) > 0, Skir) G C^(0, r) . 
Note that, for any k such that ti > 0, the problem (10.1.46)—(10.1.51) has a unique 
solution (cf. [284]) and Tk^x is continuous upto the curve x = Sk{t). 

The next step in the existence proof is to show the convergence of the sequence of 
approximate solutions. It can be shown that there exist two constants, 0̂ and AQ such 
that 

1̂̂ ^ > ^0, (̂ 0 < d/Ao) and \Sk\ < AQ, 0 < t < to] k = 1,2, , (10.1.52) 

and the sequence {Sk{t)} converges uniformly in [0, ̂ 0] to a positive function S{t) with 
S{0) = d such that 

15(^1)-5(^2)1 < ^ o 1^1-^2!, ioTtut2e [0,to]. (10.1.53) 

Moreover, the sequence {Tk{x,t)} converges uniformly in Rt^ = [0,d-\- Aoto] x [0, tg] 
to a function T{x,t) satisfying (10.1.34)-(10.1.37) with the above S{t). If this pair 
{T{x,t),S{t)) satisfies (10.1.38) or (10.1.44), then the existence of the solution is estab-
lished for Problem (PI). This has been done in [59] by substituting (Tk.Sk) in (10.1.44) 
and taking the hmit as /c —> 00. For Problem (P2) also the same procedure can be 
followed. 

It can be shown that for 0 < t < ^0, we have 

\T(x,to)\<ai{S{to)-x), aiS{to)>^, S{to) > d - Aoto > 0. (10.1.54) 

Here, ai is a constant independent of the index k. In view of (10.1.55) (given below), the 
solution can be extended to a time interval to < t < ti. For this, we take S{to) = di > 0 
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and a new initial temperature in 0 < x < <ii. This process can be extended to other 
larger time intervals. 

Let FQ be the class of functions which are Lipschitz continuous to which S{t) also 
belongs. It has been shown that if T and S belong to the class FQ, then the solution 
depends continuously on the data and the coefficients. The uniqueness of the solution in 
the class FQ is an immediate consequence of the stability of the solution. 

The local-in-time solution {t^, S{t),T{x,t)) can be extended to larger time intervals 
provided some further assumptions are made such as: (1) S{t) is nondecreasing in (0,t*), 
and (2) the data satisfies some sign constraints such as A < 0, 0 > 0, u > 0, ii > 
0 and q <^ which hold in some time interval (0, to), to < H-cxo. If these assumptions to-
gether with the assumptions (A)—(F) mentioned above hold, then the solution of Problem 
(PI) exists for t > to and 

0 < S{t) < i o , 0 < t < to < oo. (10.1.55) 

Here, AQ can be determined in terms of the data. 

An ablation problem concerning melting of a solid in which the melt is instantaneously 
removed has been considered in ([285, 286]). In order to obtain the formulation of this 
ablation problem, we take q{x,t) = 0 in (10.1.34), g = g(t) in (10.1.39), f{S{t),t) = 0 in 
(10.1.37), retain (10.1.35) as it is, denote ii by q{t) and A(x,t) = A < 0 in (10.1.38). The 
existence, uniqueness and stability results have been proved in [285] and [286] using the 
approaches followed in [279, 280, 281]. Such results have been obtained for a more general 
problem in [59]. Some physical aspects of the ablation problem such as the time required 
for complete melting of the solid have been discussed in [286]. The conditions required for 
the uniqueness of the solution in a one-dimensional ablation problem with the heat input 
dependent on time and on melted depth have been studied in [287]. The formulation 
of this problem is similar to problem (3.1.13)—(3.1.16) except that the problem in [287] 
is one-dimensional. The heat flux Q = Q(x^t)^ and the thermal conductivity and the 
specific heat are functions of temperature. Some examples have been constructed in which 
the solution is non-unique. The one-phase problem considered in [288] is concerned with 
a solidification problem in which the region 0 < x < d is initially ice with temperature 
0(x) < 0 and a liquid at the melting temperature occupies the region x > d. The problem 
formulation is as follows: 

(10.1.56) 
T'xx = T ,̂ 0 < X < S'(t), t > 0; T(x, 0) = (p{x), 0 < x < d, 

-XS{t) -f T,{S{t), t) = 0, 0 < t < t*, A > 0; T(5(t), t) = 0, S'(O) = d. 

At x = 0, either 

T{0,t) = - / ( t ) , 0 < t < t*, f{t) > 0, (10.1.57) 

is prescribed, or we have 

T:,(0,t) = / ( t ) , 0 < t < t*. (10.1.58) 
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To indicate the dependence of the solution on A the solution will be written as (T(x, t; A), 
S{t;\))-

The main interest in [288] is to investigate the behaviour of the solution (T(x,t; A), 
S(t] A)) as A -^ 0 (latent heat tends to zero). By using appropriate Green's functions, the 
solution for the temperature derivative or the temperature can be written as in (10.1.17) 
or as in (10.1.30) depending on the boundary condition (10.1.57) or (10.1.58) (in this 
case we take (10.1.30)). S{t,X) can be obtained from the integral equation given below 
(cf. [71]). 

t d S{t,\) 

A(5'(A, t)^ -d^) = 2 f f{T)dT - 2 / x(t){x)dx + 2 / xT{x, t, \)dx. (10.1.59) 
0 0 0 

It has been shown that for a fixed ^ > 0, S{t,\) obtained as a solution of (10.1.56)— 
(10.1.57) or of (10.1.56) and (10.1.58), behaves as 

5(t, A) - [4tlog(l/A)]'/^, A ^ 0. (10.1.60) 

The above result has been proved using monotone dependence theorem and some other 
results obtained in [289]. For a fixed ^ > 0, estimates of S{\, t) have also been obtained. 

The problem considered in [290] can be described in terms of (10.1.34)—(10.1.38) 
(Problem (PI)) or (10.1.34)-(10.1.37) and (10.1.39) (Problem (P2)) provided we take 
c? = 0, i.e., 5'(0) = 0. The condition 5'(0) — (i > 0 and the hypothesis of Lipschitz 
continuity of (j){x) at x = b played a major role in [59] in proving the well-posedness of 
Problems (PI) and (P2). Both these assumptions essentially resulted in ensuring that 
S{t) is Lipschitz continuous in [0, t^]. If d = 0, then a different approach is needed. Some 
additional regularity conditions on g', / , A, /i and u oi g and sign constraints on the data 
and coefficients are needed so that the free boundary actually starts from rr = 0 at ^ = 0. 
For the proof of existence of the solution, in addition to the assumptions (A), (B), (Ci), 
(D), and (E) mentioned earher in this section, the following assumptions have been made. 

Suppose a real number 6 exists such that for t G [0, ̂ ] the following conditions are 
fulfilled: 

(i) - Â )̂ < A(x, t) < -Ao < 0, X > 0, 0<t<e, (10.1.61) 

for some positive constants Â ^̂  and Ao-

(ii) fi{x,t) > 0, and q(x,t) < 0, x > 0, 0<t<e. (10.1.62) 

(iii) u{t) > 0, u{t) + 0 in each neighbourhood of t = 0. (10.1.63) 

Conditions (10.1.61)—(10.1.63) are sufficient to ensure that T{x,t) > 0 m DQ = {{x,t) : 
0 < .r < S(t),0 < t < 6} and S{t) is monotonically increasing. 

Let (6*^ T^) be the solution of (10.1.34)-(10.1.38) in Problem (PI) or in Problem (P2) 
with (t)(x) = 0 in 0 < X < d, for each c? G (0,1). It has been shown in [290] that as o? ^ 0, 
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the solution (5"^,T'^) converges to a solution of the system consisting of (10.1.34) and 
(10.1.36)—(10.1.38) with d = 0. For the existence proof an approach similar to the one 
used in [59] has been used in [290] also. The case d > {) considered in (10.1.34)—(10.1.38) 
was reconsidered in [290] and it was observed that it is possible to relax the condition 
(F) (given earlier in this section) and replace it by the condition [F') given below. 

{F') (j){x) is piecewise continuous in (0, d) and two positive constants M and 

a {0 < a < 1) exist such that 

|0(x) - f{d, 0)1 < M{d - x)" , 0<x<d, (10.1.64) 

in Problem (PI) . The constant M is such that Md"" > $ -f \f(d, 0)| . 

The assumption {F') can be further relaxed and replaced by {F'^) which is more 
general. 

{F") 0(x) is piecewise continuous and bounded in [0,d]. 

Assume tha t in addition to (10.1.61)—(10.1.63), we have 

(f){x) > 0 , x G [0,d]. (10.1.65) 

These restrictions ensure the monotonicity of S{t). 

It was observed that for proving the stability of the solution when d = 0, Lipschitz 
continuity of S{t) (proved in the case d > 0) is not enough. When d = 0, another estimate 
for S{t) has been obtained as fohows. There exist two constants S and P {P < 1/2) such 
that 

\S{t)\<6t-^. (10.1.66) 

The one-phase problem (3.1.1)—(3.1.5) has been studied in [55] by reformulating it as 
two different problems. Let the problem discussed in (3.1.1)—(3.1.5) be called Problem 
(FM). If (3.1.1) is replaced by the equation 

Tt-a^{x,t,T)T^^=q{x,t,T,T:,), {x,t) G 0(t*) , (10.1.67) 

ip{x,t) = 0 in (3.1.4), and conditions (3.1.2), (3.1.3) and (3.1.5) are retained, then the 
problem so obtained wiU be called Problem (FMP). 

If only (3.1.5) is replaced by 

S{t) = Pt{S,T), (10.1.68) 

and (3.1.3)—(3.1.4) are retained, then we get a generahzation of Problem (FM) and 
this more general problem with (10.1.68) wiU be called Problem (GM) in which Pt is a 
functional. The equation (10.1.68) is more general than (3.1.5). Except the coefficient 
a, which has to be greater than zero, no other sign restriction has been imposed on the 
data for proving the existence, uniqueness and stabihty of the local-in-time solution. For 
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bounds on the various functions, compatibility conditions and spaces to which various 
functions belong, the reader is referred to [55] as they will occupy considerable space. 

The existence proof of the local-in-time solution of Problem (FMP) is based on a 
method of successive approximations whose convergence has been shown by an argu-
ment of contractive type. Under suitable assumptions (cf. [55]), there exists a solution 
(t*, S{t), T(x, t)) of Problem (FMP) in which S{t) G i/i+a/2(0, t,) for any a e (0,1). For 
i/G (0,1), the space if^[6, d] is the space of all functions which are Holder continuous with 
exponent u in [b,d]. If for ly 6 (0,1), G{x) G //^[6, c?], then for some constant A and ah 

| G ( 6 ) - ( ? f e ) l < ^ l 6 - 6 r - (10.1.69) 

The norm of G{x) in Hi,[b, d], i/ € (0,1) is defined as: 

||G(a:)||„_,= sup |G(a;)|+ sup \G{xi) - Gixi)\ / \xi - x^l^ (10.1.70) 
xe[b,d] x^,x2e[b,d] 

For the definition of a suitable norm in HN+^[b, d], N > 0, see Appendix B. 

The construction of approximating solutions in [55] is similar to that described in 
(10.1.46)—(10.1.51). The problem corresponding to an approximating solution for any 
index k, can be easily formulated as a fixed domain problem, for example, if we put 
y = xjS{t), then for 0 < x < S{t), we have 0 < ^ < 1. By obtaining estimates for 
S'fc, S'fc, Vk, Vk^y (the subscript k stands for the k-th approximating solution and Vk is 
the temperature in the new coordinate y), uniform interior Schauder estimates for Vk 
can be derived and it can be proved that the limit function v of Vk is the solution of 
the problem. Stability and uniqueness of the solution have also been established. Under 
suitable assumptions, the methods employed for proving results for Problem (FMP) can 
be extended to Problem (GM). By using the method discussed in [59] and obtaining 
uniform estimates, the local-in-time solution of Problem (FMP) can be extended to a 
solution valid in larger time intervals. 

10.1.2 Infinite differentiability and analyticity of the free bound-
ary 

The differentiabihty of the free boundary has been discussed in [281] under assumptions 
of continuous diff"erentiability of the initial and boundary data. Infinite differentiability 
of the free boundary in the one-dimensional Stefan problems has also been discussed in 
([291, 292, 293]). A simple proof of the infinite differentiability of S{t) which is widely 
referred has been given in [294] and we give here the main steps in this proof. 

The problem formulation is as follows. Let S(t) be a continuous function in 0 < ^ < t* 
with 5'(0) = d and let 

Tt = T,^ in Ds ; T(x, 0) = 0(x), 0 < x < d; T(0, t) = f{t), ] 
\ (10.1.71) 

T{S{t), t) = {)- T,{S{t), t) = -XS{t), A > 0, J 
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Ds = {(x, t): 0<x< S{t), 0<t< U} . (10.1.72) 

It is not necessary to impose any specific conditions on 0 and / as we are concerned with 
the solution in a neighbourhood oi x = S{t). The main result of [294] is the foUowing 
proposition. 

Proposition 10.1.10. If the pair {S,T) satisfies (10.1.71), then {S,T) G C°°(£,t*) 
for any £ > 0. 

By using the transformation 

^ = x/S{t), T = t, (10.1.73) 

a formulation of the Stefan problem (10.1.71) on the fixed domain Q = (0,1) x (0,^*) can 
be obtained in which x — S{t) becomes ^ = 1. This transformation is C°° with respect 
to X and C^ with respect to t. If v{^, t) = T(x, t), then 

Vr = {l/{afX^ + {c7/a){^v^), in Q, (10.1.74) 

where 

a = S, and a - S{t). (10.1.75) 

The initial and boundary conditions for v can be easily written. At x = S{t), we have 
v{l,t) = 0. The Stefan condition is transformed into the condition 

a{t) = -{l/a{t)){v^{l,t))l\ 0<t<U. (10.1.76) 

The following proposition has been proved in [295] and with its help, the proof of 
Proposition 10.1.10. has been completed in [294]. 

Proposition 10.1.11. If T(x, t) is a bounded solution of the equation Tt = aT^x + 
hTx + eT, (a > 0) in the region Q such that T(l , )̂ = 0 for 0 < t < i* and if the coefficients 
a, 6 and e belong to Ha{Q) {a > 0), then for any e > 0, we have T{x,t) G Ha+2{Qe)^ 
where Q^ = (e, 1) x ( ,̂ T). Here Ha stands for an anisotropic Holder space (cf. [295]). 

Anisotropic Holder spaces enter in the a priori estimates of Schauder type for the 
parabolic equations. If for some a > 0, cr G HaiQs)^ S > 0, then from (10.1.76) 
a G Ha+i{Qs) (<7 can be taken as a function on Qs although it is not a function of x). 
From Proposition 10.1.11., we conclude that v G Ha+2{Qs+e) as coefficients in (10.1.74) 
belong to H^iQs). Further, v^ G H^+iiQs+e)- From (10.1.76), a G H^+iiQs+e). If cr G 
Ha+iiQs+e), then from (10.1.74) and Proposition 10.1.11. v^ G Ha+2{Qs+e') and ii v^ G 
Ha+2{Q5+e')i then a G Ha+2{Qs+e') from (10.1.76). Proceeding inductively in this way 
it can be proved that a G C°°(e,t*), for any s < t^. To start the induction process one 
needs an initial estimate for the Holder continuity (see equation (10.1.69)) of v^ which 
has been obtained in [295]. The infinite differentiabihty of the temperature follows from 
the Stefan condition. It has been mentioned in [55] that if a, q and (j) in (3.1.1)—(3.1.5) 
are infinitely differentiable, then S{t) is infinitely differentiable. 
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One of the main results in [296] is that if f{t) in (10.1.71) is an analytic function 
in 0 < t < t^, then S{t) is also analytic in 0 < ^ < ^*. Assume that in (10.1.71), 
/ > 0, /(O) = 0(0), 0 > 0, 0(6) = 0, A - 1, and f(t) is analytic in 0 < t < t^. The 
sign constraints ensure that a unique solution exists in some time interval. If / and 0 are 
continuously differentiable, then it can be proved that S{t) is continuous. Some of the 
steps in the proof of analyticity in [296] are: (1) Converting the free boundary problem 
into a fixed domain problem in which S{t) is fixed at ^ == 1 (see (10.1.77)) and then 
an application of Proposition 10.1.11. This will ensure that the temperature v(y,r) is a 
C*°°-function i n O < i / < l , 0 < T < TQ and S{T) is C°^ [0, TQ] . (2) Obtaining appropriate 
estimates for the derivatives of v and S of all orders. 

We state below the transformations used in [296] which converts the Stefan problem 
into an appropriate parabolic problem on a fixed domain for which Proposition 10.1.11 
is applicable. Let 

. = . / m - / ^ , r o = / ^ , (10.1.77) 

v{y, T) = T{x, i) - (1 - x/Sit))f{t). (10.1.78) 

It can be seen that 

^ = S\t), and S{t)S{t) = f{t)-Vy{l,r), (10.1.79) 
dr 

S{t) = -T,{S{t), t) = [-Vy{l, T) + f{t)] /S{t), (10.1.80) 

Vyy -Vr-y [Vy{l. T) - f (t)] [Vy - / ( t ) ] + (1 - ?/)/ '(t)^2(t), 0 < ?/ < 1, 0 < T < TQ, 

(10.1.81) 

^ (0 , r ) = ^ ( l , r ) = 0 , 0 < r < r o . (10.1.82) 

All the coefficients in (10.1.81) are not known but we know their behaviour. By the 
application of Proposition 10.1.11., it can be concluded that v{y,T) and S{T) are C°°-
functions ioi 0 < y < 1, 0 < t < t^. The proof of analyticity of S{t) requires estimates 
of the derivatives of all orders of several quantities such as v{y, r ) , Vy(y^ r ) , Vyy{y^ r) and 
S'(t(r)). It has been proved that if f{t) is analytic in 0 < i < ^*, then S{t) is analytic in 
0 < t < t* (cf. [296]). Firstly, Schauder type interior-boundary estimates are obtained 
for the heat equation Tt — T^^ == 0 in the rectangle — l < x < l , 0 < ^ < t ^ . The way in 
which negative powers oft (as t —̂  0) enter into the estimates is crucial. These estimates 
are then used in proving further results concerning analyticity of S{t). The estimates for 
S(t{T)) imply that S(t{T)) is analytic in r and so is S'^{t). The first of (10.1.79) imphes 
that t = t ( r ) is analytic in r and r = r ( t ) is analytic in t. Writing S{t) = 6 '(t(r(t))) , we 
conclude that S{t) is analytic in t. 
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The analyticity of S{t) at ^ = 0 has been studied in [297]. At t == 0, the region x > 0 
is at the melting temperature zero and the region x < 0 is occupied by a warm hquid. 
We consider the following problem formulation. 

TLx -Tt = 0, -oo < X < S{t), t > 0; T{x,0) - / (x) , -oo < x < 0, ] 
> (10.1.83) 

T{S{t),t) = 0, ^ > 0; S{t) = n{S{t), t) - (t){t), t > 0; 5(0) - 0. J 

In [21], the problem formulated in (10.1.83) has been named as Cauchy-Stefan problem 
and the problem formulated in (10.1.71) has been named Dirichlet-Stefan problem. It 
has been proved in [297] that if (/)(̂ ) in (10.1.83) is analytic in (0, ̂ o), ô > 0, and if the 
solution of (10.1.83) exists in (0,^1), î > 0, then S'(̂ ) is analytic in (0,t), ^ = min(io,^i)-
For many practical purposes, we require polynomial approximations of S{t) in terms of 
the initial data. The following results about the analyticity of S{t) have been established 
in [297]. 

Proposition 10.1.12. Assume that 0(^) is analytic with respect to y/t in [0,̂ 0)5 for 
some to > 0 and / is an entire function of x such that 

/(O) = 0, and | / ( x ) | < Mexp{ax^), (10.1.84) 

for some positive constants M and a. Then there exists ti G (0, ̂ 0] such that (10.1.83) has 
a unique solution and the free boundary x = S{t) has the following series representation 

00 

s{t) = Yl ynf^^ym, t G [0,̂ 1). (10.1.85) 
n=2 

In (10.1.85), Yn is defined as follows: 

00 yr 

y = Vi, Y{y) = S{y'), and Y{y) = J2 "T?/"- (10.1.86) 
n = l ^• 

To prove Proposition 10.1.12., integral representations of i'(^) = Tx{S{t),t) and S{t) 
(see equations (10.1.17) and (10.1.21)) have been used in conjunction with complex 
variable techniques. The transformation y = pe'*̂  introduces a complex variable. Let 
CR = {y : \y\ < po} • The integral representations of v{y) and Y(y) define a mapping V 
on a set M(po, N) of functions w{y), \w{y)\ < N, y e CR which are analytic in CR and 
continuous in CR. It has been proved that V maps M{po,N) into itself. This mapping 
is a contraction with respect to the distance metric. If V is the unique fixed point of the 
mapping V, then the restriction of V to the real axis is an analytic function in [0, po]-
Recursive relations have been developed to determine Yn. It may be noted that for prov-
ing the analyticity, estimates of Yn are not required. The uniqueness of the one-phase 
Stefan problem is well-known. The domain of analyticity can be extended under certain 
assumptions. 

If /(O) 7̂  O5 then the following result holds good. 

Proposition 10.1.13. Assume that y/t.(j)[t) is analytic with respect to ^/t in [0, ^0], 
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that \(t){t) \/t < 00, and lim f{x) = /Q. Then, if the other assumptions of Proposition 
10.1.12. are satisfied, two positive constants 0^, /Q can be found such that for any 
00 < 005 l/ol < /o5 the problem described in (10.1.83) has a unique solution in the class 
of solutions whose free boundary is analytic in [0,ti), for some ti G (0,^o], with respect 
to y/t. If t^/20(t) -^ 0 as t ^ 0+ and if /o > 1, then there is no solution of (10.1.83) such 
that S{t)/t^/'^ has a bounded limit as ^ —» 0+. 

In [297], the problem (10.1.71) has been considered in the region —c? < x < 0 (A = — 1) 
also. For an unbounded region it was assumed earlier that /(O) = 0 but for the problem 
in a bounded domain this assumption has been relaxed and the analyticity of the free 
boundary has been proved in (0, fo) under the assumption that |/(0)| < /Q, / S > 0 and 
f{t) is analytic for t > 0. The proof of this result is on the same lines as the proof of 
Proposition 10.1.12. 

The analyticity of the free boundary in the one-phase Stefan problem, with strong 
nonlinearity formulated in (10.1.23)—(10.1.27), has been discussed in [298]. The main 
result of [298] is as follows: 

Proposition 10.1.14. The free boundary S(t) is a holomorphic function in some 
neighbourhood U(̂ *) C D{t\ of the interval 0 < t < t^, ^ t^ < i, where D(t^) = 

{t = pe'"^ e (p] 0 < p <t^, \a\ < 7r/32}, and i is the supremum of all *̂ > 0 such that 
there exists a solution to the problem on [0, i*]. 

The proof of this proposition is based on the application of Banach contraction map-
ping theorem to the system of integral equations obtained in the method of Picard it-
eration (see equations (10.1.29)—(10.1.31)) and extended into the complex plane. The 
possibility of applying this principle follows from a priori estimates of the heat potentials 
and their variations in the complex plane. These estimates which are crucial for the proofs 
developed in [298] also provide generalization of the results obtained in [299]. In order to 
prove the analyticity of the free boundary in the nonlinear problem (10.1.23)—(10.1.27), 
the analyticity of Poisson's integral and of the volume heat potentials as well as their 
variations is needed along the free boundary. If in the complex (x, t) plane, x and t are 
independent, then the analyticity of Poisson's integral and of other quantities, generally 
does not hold up to the free boundary. However, the substitution x = XS{t), X G [0,1], 
helps in proving that the integrals are holomorphic in the sector D{t^), (t* > 0 and small 
enough) when the integrals are considered as functions of t. 

By representing temperature in an infinite series of integrals of error functions, and 
the free boundary in an infinite series in positive integral powers of v^, series solutions 
of temperatures and the free boundary in a one-dimensional Stefan problem have been 
obtained in [300]. Proof of the convergence of series expansions considered have been 
developed in [300] and also in several other works of the same author mentioned in [300]. 
It has been remarked in ([297, 298]) that the analyticity proofs are unconvincing. A 
simple proof has been developed in [301] which shows that there are infinitely many 
temperature solutions satisfying all the equations of the problem considered in [300]. All 
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these temperatures give the same free boundary which has been obtained in [300]. In 
view of the non-uniqueness of the solution of the temperature in [300], any proof about 
the convergence of the series does not seem to be important. 

10.1.3 Unilateral boundary conditions on the fixed boundary: 
Analysis using finite-difference schemes 

The one-phase problem considered in [302] is concerned with the melting of a solid 
and its formulation can be obtained if some changes are made in the formulation given 
in (10.1.56). Take A = — 1 and prescribe the following unilateral boundary condition at 
x = 0. 

n{0,t) G7(T(0,0), ^ > 0 . (10.1.87) 

Here, 7 is a maximal monotone graph (see Appendix B) in R!^ with 7(a) 3 0 for some 
non-negative constant a. We give below an example of a unilateral boundary condition. 

Unilateral boundary condition at x=0 

Let T{0,t) > 2; T^{0,t) < - 3 , (T = 2); T^{0,t) = 
T - 6 , ( T > 3 ) . Define 7(T) as: 

7 ( r ) - 0, T < 2 , 

= ( -00 , -3] , T = 2, 

= - 3 , 2 < T < 3 , 

-3, (2 < T < 3); n{0,t) 

(10.1.88) 

T - 6 , T > 3 . 

Signorini-type boundary condition at x=0 

T(0, t) > 2, T,(0, t) < 0, and T,(0, t) (T(0, ̂ ) - 2) = 0. (10.1.89) 

The unilateral boundary conditions model several physical situations in controlling 
the temperature of a body during heating or cooling at the fixed boundary. The problem 
described in (10.1.56) with A = —1 together with the boundary condition (10.1.87) at 
X = 0 will be called Problem {¥). The existence and uniqueness of the global-in-time 
solution of Problem {¥) have been investigated in [302]. For the analysis it will be 
assumed that 

(t){x) > 0, is bounded and continuous a.e. for x G [0,d]. (10.1.90) 

We introduce the following notations: 

D = {(x, t):0<x< S{t), 0<t< t^} 'D = the closure of D 

D^ - {{x, t) :0<x < S(t), 0<t<t^}, } (10.1.91) 

Z = {x G [0,d] : X is a point of the discontinuity of 0} x {0} . 
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Definition 10.1.1. The pair {T,S) is a solution of Problem {¥) if the following 
conditions are satisfied. 

(1) S{0) = d, S{t) > 0 for t > 0, Se C[0, t,] H C°°(0, t,). 

(2) T is bounded on D, Te C°°(D^) H C{D - Z), 

u s{t) 

If 
r 0 

Txx{x,t)^dxdt < cxD, for each r € (0,^*) 

(3) The pair (T, S) satisfies the heat equation, initial condition and the free boundary 

conditions in (10.1.56) with appropriate changes as described above. 

(4) For a.a. t G [0,^*), (10.1.87) is satisfied. 

The term 'solution' has been used in the above sense in [302]. The main result 
of [302] is the following proposition. 

Proposition 10.1.15. If o? > 0, and (f) satisfies (10.1.90), then there exists a unique 
solution (5, T) of Problem {¥) satisfying 

U Sit) S{U) 

I / ^̂ xx d^dt + t, f T^dx < 4-00. (10.1.92) 
0 0 0 

Let d> Q. The existence proof in this case consist of the following steps. 

(1) First an 'implicit' finite-difference discretization of equations in Problem (Y) is 
done in which the mesh size is of uniform width Ax and time steps {A^„} , n — 1,2... are 
of variable size such that the free boundary after time t^ = U^^JA^A;, n = 1,2,..., is at 
Xn = nAx, n = 1,2..., i.e., S{tn) = Xn- Thus the position of the free boundary is always 
known. The variable time step can be obtained approximately from the Stefan condition 
S =-T,{S{t),t). 

(2) The unilateral boundary condition is handled as follows. The discretization of 
the unilateral boundary condition will have the form 

^ ' " ^ / ° " e 7(Tr). (10.1.93) 

Here, the superscript n stands for the temperature at time t„ and the subscript 0 and 
1, stand for temperatures at x = 0 and x = Ax, respectively. Since 7 is a maximal 
monotone graph, (/ + Ax7)~\ Ax > 0, is a contraction mapping from R to itself 
with D{{I -\- Ax^y^) = R (D stands for the domain and / for the identity map) and 
(/ + 7)(w) = {u + fj e -f{u)} (cf. [303]). It can be shown that (10.1.93) is equivalent 
to To" = (/ + Ax7)-^(Ti^). If instead of (10.1.93), we take 

T o ' ^ ^ G R, (10.1.94) 
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and study the discretized problem with (10.1.94), then this problem has a unique solution 
(cf. [304]). We define a mapping P as: 

P:R3^^(I + A x 7 ) - ^ ( T i " ( 0 ) G R. (10.1.95) 

It can be shown that P is a contraction. Therefore, for each J, 1 < J < m (m is the total 
number of mesh points in space), T / is the unique solution of the discretized Problem 
{¥) with condition (10.1.93). 

(3) The next step is to obtain suitable estimates of T / and Sn = S{tn). Further 
conditions are imposed on 0(x) , and (f){x) satisfies one of the two conditions given below. 

(Al) Let 0(x) satisfy the condition (10.1.90). Further, for some positive constant 

P, let (/)(x) < f3{d - x) , for x G [0, d], d>0. Note tha t (Al) =^ (10.1.90). 

(A2) Let (/)(x) satisfy the condition (Al) . Further, -fix -\- S^ < 

0(x) <Px^ S^,6\S^ e D{-r). {A2) => (Al) => (10.1.90) 

(4) Extend the discretization in space suitably to the region C, where G = (0, oo) x 
(0,^*]. By using Ascoli-Arzela theorem [58], it has been proved tha t Tj{x,t) (see [302] 
for the construction of Tj{x,t) on G) converges uniformly on compact subsets in G to 
a function T{x,t) G C{G). The numerical solution should converge to the solution of 
Problem (Y). The convergence of the numerical solution to T{S{t),t) and T(x, 0) (for 
those X at which (p(x) is continuous) has been proved by using estimates of the absolute 
values of T / and Sn and imposing a further condition on (p{x). In addition to (Al) , (j){x) 
is such tha t 

0 G C^ [d\ d] for some d\ 0 < d' < d. (10.1.96) 

Existence of the solution under the condition (10.1.90) has also been discussed. 
The proof of the convergence of the numerical solution to the solution of Problem 
(Y) satisfying the unilateral boundary condition and the Stefan condition requires L^-
estimates of the finite difference solution. It has been shown tha t S{t) G C^{0,t^) and 
S{t) = -T^{S{t),t). As discussed in [294], under these conditions S{t) G C ~ ( 0 , t j and 

To prove the uniqueness of Problem (Y), first the existence of the unique solution of 
temperature in an auxiliary problem which we call Problem (M) is proved. In Problem 
(M), S{t) is assumed to be known and S{t) is a non-decreasing function, positive for ^ > 0, 
and S(t) G C [0, t*] H C°'^(0,^*]. C°'^(0,t*] denotes the space of Lipschitz continuous 
functions on (0, t*]. In Problem (M), ah the equations of Problem (Y) are present except 
the Stefan condition {S{t) is known). By using an integral equation formulation as in 
(10.1.59), it can be proved that if T[x,t) is the solution of Problem (M), and S{t) G 
C [ 0 , q n C ° ' i ( 0 , ^ * ] , t h e n T , ( 5 ' ( ^ ) , t ) - -S[t), te ( 0 , ^ . 

The following comparison results have been proved. 

P r o p o s i t i o n 10.1 .16. If (pi < 02 and 0 < di < d2, then 5*1 < '̂2 where {S^, T,), i = 
1, 2 are the solutions of Problem (Y) corresponding to the da ta {d^.cp-i} . 
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The uniqueness of S{t) can be easily proved by using the argument that 01 = 02 ^ 
01 > 02 and it also implies 0i < 02 and applying the Proposition 10.1.16. 

Proposition 10.1.17. Let T and T be two solutions of Problem (M) corresponding, 
respectively, to the data {S{t), T(x,0)} and {S{t), T{x,0)}. Let d > 0 and 0 satisfies 
(10.1.90). Further, let S{t) < S{t), T(x,0) < t (x ,0) and f{S{t),t) > T{S{t),t) = 0. 
Then we have 0 < f - T < max {||t(-,0) - T(-,0) HL-, \\f{S{t),t)\\Loo^o^u^] in D = 
{(x,t) : 0 < X < S{t), 0 <t < t*}, where L°° = ^°°(0,c/), 5(0) = (i. When d = 0, we 
take | | t ( - ,0) -T(- ,0) |Uoc=0 

In the problem considered in [302] (in which d > 0) take d = 0 and this case has been 
considered in [305]. The existence of a unique solution has been proved. The asymptotic 
behaviour of the solution as i ^ CXD has also been investigated. The following results 
have been established. 

Proposition 10.1.18. Let d = 0 and 7 satisfies the assumptions (a) and (6) given 
below. 

(a) 7~^(0) n [0, 00) is not an empty set. 

(b) 7 ( 0 ) c ( - ^ , 0 ) . 

Then there exists a unique solution (5, T) of Problem {¥) with d = 0 and the following 
results hold. 

(i) S G C[0, 00) n C°°(0, 00), and S{t) is non-decreasing in t, 

(h) 0 < T(x, t) < a, in D, 

(iii) \T{x',t)-T{x,t)\ <Ca\x' -x\, on'Dn{t>a}. 

Here, a = Proj^-i(^)(0), i.e., a > 0 is an element of 7~HO) which has minimum 
absolute value. The assumption {b) implies that a > 0. 

Proposition 10.1.19. Let a > 0 and d > 0 and 0(x) satisfies assumptions in 
(10.1.90). Then we have 

(iv) Km T(x, t) = 0 uniformly on any compact subset of [0, 00), 
t—>oo 

(v) lim S{t)/Vi = f3. 

where P is the unique solution of 
00 

5](n!/2n!)/?2" = a. (10.1.97) 
n = l 

When a = 0 and d > 0, limT(2;,t) = 0 uniformly on (0,t*) and lim S{t) = S* exists 

such that d<S*<d-\-jQ (t){x)dx. 
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10.1.4 Cauchy-type free boundary problems 

In the Cauchy-type free boundary problems, the temperature and its normal derivative 
at the free boundary are prescribed as functions of t and S{t). Such problems have 
been discussed earher in § 3.3.1. We shall discuss now some more general Cauchy-type 
problems considered in [306]. 

Problem (C) Find a triple {t^,S,T), where {S,T) is a classical solution of the 
following problem. 

a{x, t, T, T,, S)T^:, -Tt = q(x, t, T, T,, 5'), in Dt^ = {{x,t) : 0< x < S{t), 0 < t < U} , 

(10.1.98) 

T{x, 0) - 0(x), 0 < a: < 6 - 5(0); T(0, t) = u{t), 0 < t < U, (10.1.99) 

T{S{t), t) = f{S{t), t), 0 < t < U, (10.1.100) 

T^{S(t), t) - g{S{t),t), 0<t<U. (10.1.101) 

Instead of the temperature, flux can also be prescribed at x = 0. Our concern here is to 
obtain a free boundary condition in which S{t) is explicitly appearing. 

Problem (CI) Let 

f:,{x,t)-g{x,t)^0. (10.1.102) 

On differentiating (10.1.100) with respect to time, we get 

^ = (Tj -h Tt) = gS + Tt = fj + ft, at X - S{t), (10.1.103) 
at 

or 

( ( / . - 9)S + Tt- ft):c=sit) = 0. (10.1.104) 

If (10.1.102) holds, then from (10.1.104), S can be expressed as 

S = {{an. - q - ft)/{g - /x)L.5(0 • (10.1.105) 

The Problem (CI) consists of (10.1.98), (10.1.99), (10.1.101) and (10.1.105). Prom 
(10.1.103) and (10.1.104), we get 

^ = Tt + Tj = Tt + gS = fj + / , = J , at X = 5(t), (10.1.106) 
at at 

which is the condition (10.1.100). 
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Problem (C2) Let 

f,(x,t)=g{x,t). (10.1.107) 

If (10.1.107) holds, then from (10.1.104), we have 

Tt = ft, 8itx = S{t). (10.1.108) 

From (10.1.100), (10.1.101) and (10.1.107), we have 

^ ( T ; ) = T,J + T^t = 9J + gt = f.J + / . , , at a: = S{t). (10.1.109) 

On using (10.1.98) and (10.1.108) in (10.1.109), we get 

a-\q + ft)S + T,t - f.J - Ut = 0, at X = S{t) (10.1.110) 

If 

afr.-ft-QT^O, (10.1.111) 

then from (10.1.110), we get 

S = a{aU, -ft- qy\T^t - f.t). at x = 3(1). (10.1.112) 

The r.h.s. of (10.1.112) involves T^^^,. The Problem (C2) consists of (10.1.98)-
(10.1.100) and (10.1.112). Several differentiation operations have been done in (10.1.102) 
—(10.1.112) which will be valid under the following assumptions. These assumptions are 
also required to prove some results concerning analysis of these problems. 

(Al) 0, u, a and q are continuous functions of their arguments, /(x, t) is continuous 

for X > 0, ^ > 0, and g{x, t) is continuous for x > 0, ^ > 0. Further, 

0(0) = ̂ (0), (/)(6) = /(6,0). (10.1.113) 

(A2) The function / is continuously differentiable for t > 0. 

(A3) g is continuously differentiable for ^ > 0 and 

^'{b) = g{b,0). (10.1.114) 

If assumptions (Al) and (A2) are satisfied and (10.1.102) holds, then any solution of 
Problem (CI) solves the Problem (C) (only (10.1.100) is to be satisfied which has been 
done in (10.1.106)). Under assumptions (Al), (A2), (A3), and the conditions (10.1.107) 
and (10.1.111), the solution of Problem (C2) will be the solution of Problem (C) if it can 
be proved that (10.1.101) is satisfied. It can be proved that the solution of Probkm (C2) 
satisfies 

TAS{t),t) = fAS{t)J). (10.1.115) 



10.1. One-dimensional one-phase Stefan Problems 297 

From (10.1.103), we have 

(T, - f.)S{t) + {Tt - ft) = 0, at X = S{t). (10.1.116) 

On differentiating (10.1.101), we get 

j^T.l=sit) = T..S^nf (10.1.117) 

On substituting T,t from (10.1.110) and T,:, from (10.1.98) in (10.1.117), we get 

j^US{t),t) = [a-'{Tt - ft)]^^^^^^ S{t) + j^US[t),t). (10.1.118) 

If X{t) = (T, - fa:)x=s{t). then from (10.1.116) and (10.1.118), we have 

X(t) = - \a-^] _ S^X{t), X{0) = 0, a > 0. (10.1.119) 

The solution of (10.1.119) is X{t) - 0 which imphes (10.1.115). The well-posedness of 
Problem (CI) has been proved in [306] under the assumption that Tx{S{t),t) = 0 and 
that of Problem (C2) under the assumption that Tt{S{t), t) = 0. Since these problems are 
strongly nonlinear, several assumptions are required to prove the results and the reader 
is referred to [306] for other assumptions. 

Under suitable assumptions about the data and some appropriate compatibility con-
ditions, Problem (CI) has a solution (t, T, S) which is unique in (0, f). Moreover, S{t) G 
i/i+j^[0,t], v G (0, a], a G (0,1), and T^ G Ci+^(D£) (see Appendix B for the definition of 
Ci+^). Continuous dependence of the solution on the data has also been proved. Under 
slightly difl[erent assumptions, similar results have been proved for Problem (C2). 

An implicit free boundary problem has been considered in [307] and to obtain this 
problem formulation we take a = 1 and g = 0 in (10.1.98), f{S{t),t) = f{t) in (10.1.100), 
and g{S{t),t) = g{t) in (10.1.101). Such problems are usually reduced to problems in 
which S{t) occurs explicitly and then for analysis either Schauder fixed point theorem or 
contraction mapping theorem is applied. In [307], the implicit free boundary condition 
is retained and the existence and uniqueness of the solution has been proved by showing 
the convergence of a numerical solution obtained by finite-difference discretization of 
the parabolic heat equation in time but not in space. The discretized equation at nAt, 
n = 1,2,...., can be written as a second order differential equation in space variable 
whose explicit solution has been constructed. This solution can be used to determine Sn-
In this way we obtain a sequence of interrelated free boundary problems. In each time 
interval, an appropriate free boundary problem is to be solved in the region 0 < a: < 5*̂ , 
n = 1, 2,...; Sn = S{nAt), where, At is the time step. In this way, we construct a two-
dimensional function T(x, t) and a polygonal path S{t) which approximate the solution 
(T, S) of the original Stefan problem. The convergence of the approximate solution as 
At ^ 0 {nAt remains finite) has been shown under appropriate assumptions. 

In the problem studied in [308], instead of an implicit condition at the free boundary, 
the Stefan condition is prescribed and the problem has been studied with the help of its 



298 Analysis of the Classical Solutions of Stefan Problems 

numerical solution. The numerical solution involves only finite-difference discretization 
in time as in [307]. In each time interval of length At, the free boundary is assumed to 
be known approximately and the temperature is determined by solving a parabolic heat 
conduction problem. The free boundary in the next time interval of length At is obtained 
with the help of its earlier value and the temperature derivative already calculated. By 
solving a sequence of time-independent free boundary problems we obtain a polygonal 
path S{t) which approximates S{t) and also a two-dimensional temperature function. 
The convergence of the numerical solution has been proved and error estimates have 
been obtained. 

The Problem 3.3.2. described in § 3.3.1 is a particular case of the problem (10.1.98)— 
(10.1.101). In this case because of the simphcity of the problem the following existence 
result can be proved (cf. [70]) under some simple assumptions about the data. 

Proposition 10.1.20. Suppose in Problem 3.3.2. we have: (i) 0 = a < b, t^ = oo, 
/3 = 0, and a = 1, (ii) F{x,t) = h{x,t) = 0, (iii) g{x,t) = g{x) G C^ and there exist 
constants g^ and g* such that 0 < *̂ < —g'{x) < g* ioi h < x < oo, (iv) 0 < f{t) € C 
for 0 < t < oo, (v) (/)(x) G C \ 0(6) = g{b), and there exists a constant A''! such that 
0 < (j)'{x) < Ni{b — x) for 0 < X < b. If the above data assumptions hold, then there 
exists a unique classical solution (T, 5) of Problem 3.3.2. Furthermore, for each fixed 
0 < 0̂ < oo there exists a positive constant A depending only on 6, ^*, g*, Ni and M 
such that 0 < S{t) <AioiQ<t<tQ. Here 

M — max < sup / ( i ) , sup (l){x) 

10.1.5 Existence of self-similar solutions of some Stefan Prob-
lems 

Some results about the existence and uniqueness of the classical solutions of one-
dimensional one-phase Stefan problems have been reported in [309]. These results follow 
from some theorems proved in the analysis of Stefan problems in R^,n > 1. In § 10.4, 
Meirmanov's [309] method of introducing local coordinates to prove the existence and 
uniqueness of solutions has been briefly described. Very general results about the anal-
ysis of one-dimensional one-phase problems have already been reported in this section. 
Therefore, instead of the existence and uniqueness results, we present here some results 
reported in [309] about the asymptotic behaviour of the solution of a Stefan problem 
whose formulation is as follows: 

— 4 - ^ = —^, 0 < X < S(t), S(0) = d, 0<t<t,. (10.1.120) 
ot ox^ 

Here, the thermal diffusivity k = {dt/d^). Other conditions are: 
7 Q irj-i 

T = 0, and — - -—-, on X = S{t)- T(x,0) = To(x), 0 < x < rf, (10.1.121) 
(JJL (J/X 
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T = f{t) or dT/dx + b{t)T = g{t) at x = 0, Q<t<U. (10.1.122) 

Proposition 10.1.21. Let $ e C^[0, oo), ^'{T) > ao > 0 and non-negative func-
tions f{t) and To(x) be such that for some constant M, we have 

f{t) < Md, and TQ{X) < M{d - x). (10.1.123) 

Then a unique global classical solution (5*, T) exists for all finite t > 0 with S{t) Holder 
continuous for t > 0 and T{x,t) G H^'''^'^{Gs,u), ^ > 2 in each bounded domain Gs,u = 
{{x,t) : X > S, t>S, 0 < X < S{t), 0 <t < U}. If $(T) is infinitely different iable, then 
S{t) is also infinitely different iable for t > 0. If lim f{t) = /̂ , 0 < /3 < oo and the 

above assumptions hold, then lim t~^/'^ S{t) — D^{P)^ /3 > 0, where D^{f5) is given by 
(10.1.125) (given below). 

Proposition 10.1.22. Let <̂  G C2[0,^], ^'{T) > 0 for T G [0,̂ 5], f(t) = P = 
constant > 0, d = 0, and for x G (0, oo), T = 0 and the specific energy U = — 1. Then 
problem (10.1.120)—(10.1.122) has a unique solution such that 

S{t) = L>*(/3)t̂ /̂  and T,{x, t) = T{xt-^'^, (5). (10.1.124) 

Here, D^{P) depends continuously on /?, and hm D^{p) = 0 as /5 ̂  0. D^{p) is given by 
the equation 

^Dlip) + J C^m.P))d^ = p. (10.1.125) 

10.1.6 The effect of density change 

If in the phase-change problems, the density changes sharply, then the effect of the 
change has to be included in the formulation, although this may make the analysis of 
such problems more difficult. In the one-phase problem considered in (310], the effect 
of change in the density on the change of phase has been considered. The formulation 
given in (10.1.56)—(10.1.57) can be used for the problem considered in [310] provided the 
Stefan condition is replaced by the following condition. 

dS (dS^ ^ 

dt \ dt 
J ={Ksl{p^l))%{S{tlt),e={\l2l){l-pJpJ. (10.1.126) 

Under suitable assumptions about the data (cf. [310]), global existence and stability 
of the classical solution has been proved using Schauder's fixed point theorem and it has 
been shown that 

T{x,t) G c'+''^+Hn,jnc°°(aj, S[t) G c^[o,t,]; 
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n^^ = {{x,t) :0<x< S{t),0 <t<t,}. (10.1.127) 

As £ -^ 0, the convergence of the solution of the present problem to the solution of the 
classical one-phase Stefan problem has been shown. 

10.2 One-dimensional Two-Phase Stefan Problems 

10.2.1 Existence, uniqueness and stability results 

The classical formulation considered in [57] (see § 3.2.1, equations (3.2.1)—(3.2.10)) 
is fairly general. In some problems discussed in this section, nonlinear heat equations 
have been considered but the initial and interface conditions are not as general as in 
[57]. The results obtained in [57] are generalizations of the results obtained in [311, 312]. 
If we take q^^^ = q^^^ = 0, f{x,t) = 0, Xî ^ = ^i and x^2^ == ^2 in (3.2.1)-(3.2.10), 
then the problem considered in [311] and [312] is obtained. General results about the 
existence of the classical solutions of a two-phase Stefan problem have been obtained 
in [311] under the main regularity assumptions : (i) (t>^^\t), (t)^'^\t) G C^[0, i*], (ii) 
h^^\x)^ h^'^\x) are Holder continuous with exponent G (0,1], and (iii) compatibility 
conditions are satisfied at 5'(0) and at x — 0,1. The proofs in [311] are based upon 
potential theoretic arguments coupled with Schauder's fixed point theorem. It has been 
proved that if the data for the Stefan problem belong to a certain class (cf. [311]), then 
there exists S{t) G C /̂'̂ IO, ̂ *] fl C^(0,t*) and T{x,t) is continuous on Qt* satisfying all 
the equations of the problem. If also 0 G C^[0,1], 1/2 < /3 < 1, then S{t) G C^[0, t^] and 
S G c f (0, t^l where /3 - (1 + p)/2 and s < p/2. Q ( I ) {s > 0) is the subspace of ^"(I) 
and CQ{1) is the subspace of C(I). For appropriate norms in these spaces see [311] (the 
norm of functions in C^(I) depends on e). By using a weak formulation, the existence of 
a classical solution has been established in [312] which will be discussed in § 11.2. 

In [57], the existence of a unique solution has been proved under weaker conditions 
and differentiabihty conditions are not imposed on 0̂ ^̂  and 0^^^ Only Holder continuity 
of /î ^̂  and /î ^̂  is required at x = 6 as stated in (3.2.11)—(3.2.13). Other assumptions re-
quired in [57] for proving well-posedness are (see assumptions (A)—(F) made for problem 
(10.1.34)-(10.1.38)) as follows: 

(i) q^''\x, t), i = 1,2 satisfy condition (A) in which Q will be an upper bound of 

|g(')(x,^)| in Qt. = {{x,t) : 0 < x < 1, 0 < ^ < *̂ < oo} . 

(ii) f{x,t) satisfies assumption (B) and i^{x,t) satisfies (E). 

(iii) The assumption (Ci) is satisfied by both (p^^^ and 0̂ ^̂  and [0 '̂̂ | < $, z = 1,2 

and t > 0 (note that notations in (3.2.11)—(3.2.13) are diff"erent from those in 

(10.1.34)-(10.1.38)) 
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(iv) x^^\ z = 1,2 and their derivatives satisfy conditions given in (3.2.14). 

(v) All the assumptions (A)—(F) hold. 

As mentioned in the context of equations (10.1.34)—(10.1.38), with no loss of gener-
ality we can set / = 0. To develop an existence proof, an integral equation of the form 
(10.1.7) is required for the present problem also (see (10.2.2) given below). As done in 
the context of (10.1.34)—(10.1.38), a sequence of approximating solutions can be defined 
for the present problem also. It has been shown that the limiting solution {S, T) of the 
sequence of approximating solutions exists (for approximating solutions see the discussion 
after (10.2.3)). S is Lipschitz continuous, and Tx is continuous upto x = S{t) and satisfies 
the integral equation for S(t) given in (10.2.2). Hence, the Stefan condition is satisfied. 
The derivation of an integral equation for S{t) of the form (10.1.7) for the boundary con-
ditions (3.2.3) and (3.2.6) is lengthy so we explain the derivation of this integral equation 
for the boundary conditions (3.2.9) and (3.2.10). In (4.4.20), a Green's identity has been 
given. In the present problem, we consider the following Green's identity. 

/ / {V{Txx - aTr) - T(Kx + aVr)}dxdr 
D 

= j {{VTx - TVx)dr -h aTVdx} , a constant. (10.2.1) 
dD 

This identity is valid for sufficiently smooth functions T and V and for sufficiently 
regular domains. We take T = T^^\ V = x^^\ Gi == ^^^\ and D = {(X,T) : S < X < 
S'(r), e' <T < t}. dD is the boundary of D. Next we use the identity (10.2.1) by taking 
T = T(2), V = x^^\ OL = (5(2) and D = {(x, r) : S{T) < X < 1 - S, S' <r <t}. Adding 
the two results and taking the limits as £ ^ 0 and s' -^ 0, we get 

t 1 1 1 

S{t) -b= f [{xq - x*T)dxdT - j 5x{x, 0)h{x)dx -f / Sx{x, t)T{x, t)dx 
0 0 0 0 

t 

+ J {x^'HO, r )s( i ' ( r ' " (0 , r ) , r) - T^'\0, r )x« (0 , r )} dr 
0 

t 

- j {x<''(l, r)s<^'(T(^Hl, r ) , r) - T^'\1,T)X^^\1, r )} dr 
0 

t 

- jljL{S{T),T)dT, 0<t<U. (10.2.2) 
0 

Here, X: Q^ ^ and h take appropriate values in the regions 0 < x < S{t) and S{t) < x < 1. 

\ (10.2.3) 

= x S ( a - > « ) + 5 < V ( x , 0 , 5 ( i ) < x < l . J 
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The triple {S{t),T^'^\T^'^^) satisfies all the equations (3.2.1)-(3.2.10) except (3.2.3) and 
(3.2.6) as the boundary conditions are taken as (3.2.9) and (3.2.10). 

A sequence of approximating solutions (ti , Sk, T^. , Tj^ j can be defined as in (10.1.46) 

—(10.1.51) provided the approximating problems for T^. are appropriately defined in 

Sk{t) <x<l, 0<t<ti^^ {S^{t) - 6) and 0 < ^ < ti^^^^ < ti^\ Sk+i{0) = 6, A; - 1, 2,... 

S,^,{t) = x^'\S,{t),t)Tt^l{S,{t),t)-x^'\S 

The following uniform estimate for ^ > 0 has been obtained for S{t) and 

I Sk{t) \< Mir^^-")/^ 0 < a < 1, Ml is some constant; /c - 1,2,... (10.2.5) 

Further, a constant M2 exists such that 

\Tl^\x,t)\< M2t-^^-''^^^ \ X - Sk{t)\; 2 = 1,2, A; = l,2. . . (10.2.6) 

and 

\T^'\x,t)\< M2t-^'-''^^^ \ X - S{t)l 1 = 1,2. (10.2.7) 

First, the existence of the solution (S^T) is estabhshed in a small time interval (0,to). 
Then using the estimates obtained in (10.2.5)—(10.2.7), the solution can be extended to 
larger time intervals. Thus we get a sequence to < 1̂ < ^2' • • < n̂- Since the sequence 
{tn} is monotonically increasing, we have either tn -^ 00 or limtn = t^ < 00. In the latter 
case if S{t) is finite, then by using the estimates given in (10.2.5)—(10.2.7), the solution 
can be extended beyond the time t* and we have a contradiction. 

Proposition 10.2.1. Under assumptions (i)—(v) mentioned above in this section, 
a solution of problem (3.2.1)—(3.2.8) exists in the time interval [0,̂ *] and estimates 
(10.2.5)-(10.2.7) hold in [0,^*]. lit, < 00, then 

lim_{S'(t), 1 - S{t)} = 0, and/or hm_sup S{t) = +cx). (10.2.8) 

The following simple two-phase Stefan has been studied by many authors with or 
without some changes in the initial and boundary conditions. 

a^Ti _ dTi 

dx^ ~ dt 
k i ^ = ^ , 0 < x < S{t), 5(0) = 6, t > 0, (10.2.9) 

dx" ~ dt 
k2-^ = - ^ , S{t) <x<d, t>0, (10.2.10) 

Ti{0,t) = fi{t) > 0 , t > 0 , (10.2.11) 

T2{d,t) = f2{t) < 0 , t > 0 , (10.2.12) 
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Ti(x, 0) - 0i(x) > 0, 0<x<b, (t)i{h) = 0, (10.2.13) 

T2(a:,0) = (t)2{x) < 0, b < x < d, 02(6) = 0, (10.2.14) 

Ti{S{t), t) = T2{S{t),t) = 0, t > 0, (10.2.15) 

XS{t) = -KidTi/dx + K2dT2/dx, at x = 5'(t). (10.2.16) 

The method proposed in [283] for the analysis of a one-phase problem described earlier 
in § 10.1, can be suitably extended to the above two-phase problem (10.2.9)—(10.2.16). 
The problems described below which can be obtained by making some changes in the 
above two-phase problem have been investigated in ([21], Part two. Chapter II). 

Problem (Al ) Temperature boundary conditions are prescribed at a; — 0 and at 
X = 1 {t8ked= 1), 5(0) = 0. T2{x,0) = (t>{x) > 0, 0 < x < 1, fi{t) < 0, f2{t) > 0 
and hm \fi{t)\ = ai > 0, z = 1,2. Note that there is only one initial temperature for the 
two phases. 

Problem (A2) Radiation type boundary condition is prescribed at x = 0 and 
temperature is prescribed at a: = 1 (see (10.2.18)). Other conditions are the same as in 
Problem (Al). 

Problem (Bl ) Consider the problem described in (10.2.9)-(10.2.16) with fi{t) 
and f2{t) as in Problem (Al), S{0) = b,0 < b < d. cpiix) < 0 in 0 < x < b Siud (f)2{x) > 0 
in b < X < d. 

Problem (B2) Radiation type boundary condition is prescribed at x = 0 and 
temperature is prescribed at x = 1 as in Problem (A2). Other conditions are the same 
as in Problem (Bl). 

Problem (C) (Cauchy-Stefan problem). Consider the region —oo < x < oo with 
Ti(x,0) = 0i(x), -cx) < X < 0 and T2(x,0) = ^2(2:), 0 < x < 00. Ti{x,t) and T2(x,^) 
satisfy heat equations, isotherm conditions and the Stefan condition. 

For the regularity and compatibility conditions to be satisfied by the data, the reader 
is referred to [21]. By using heat potentials, the temperatures Ti(x,i) and T2(x, ̂ ) and 
their first derivatives w.r.t. x can be expressed in the form of integrals similar to those 
obtained in (10.1.17) and (10.1.30). For Problem (Bl), which is easier to handle, the 
existence, uniqueness and stability of the local-in-time solution has been proved un-
der suitable assumptions using Picard iteration which was used earlier for the problem 
(10.1.23)—(10.1.27). By assuming suitable a-priori uniform estimates of the temperature 
derivatives and other quantities, it is possible to extend this solution to longer times. The 
constant b in Problem (Bl) cannot be taken to be zero as one of the phases degenerates 
to a point which destroys the convergence of Picard iteration which is the main step in 
the proof of the existence of the solution in [21]. By imposing additional conditions (see 
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[21]) on the initial and boundary conditions, the existence and uniqueness of sohitions 
of Problems (Al) and (A3) have been discussed. Since fairly general results related to 
the existence and uniqueness have already been reported, we discuss the asymptotic be-
haviour of the solution. For the asymptotic behaviour of the solution of Problem (Bl), 
the following result holds good. 

Proposition 10.2.2. If lim fi{t) = ai < 0, and lim /2(t) = 0̂2 > 0, then as 

^ —> 00, the solution of Problem (Bl) tends uniformly in x to the following limits. 

lim r,(x, t) = -ai + (ai -f ^2)2:, 2 = 1,2; lim S{t) = —^— . (10.2.17) 
t - ^ t^^ ai -\- 0L2 

The solution in (10.2.17) is also the solution of the corresponding stationary problem. 
In Problems (A2) and (B2), we take 

^ - P j Ti = - p j i ( t ) , at X = 0, and T^\^^^ = ^ ( t ) ; i > 0. (10.2.18) 

The existence, uniqueness and stability of the solution of Problem (B2) have been 
proved locally-in-time as well as globally-in-time using Picard iteration method (see [311] 
for a direct proof of the existence of the classical solution). Concerning asymptotic 
behaviour of the solution of Problem (B2), the following results have been proved. 

limTi(x,t) = - ^ ^ a i ( A - x ) / ( l - h A^J, g^ is constant, (10.2.19) 

lim T2(x, t) = a2{x - A)/(l - A), (10.2.20) 
t—•00 

hm S{t) = X= {g^a, - a2)/{g^{a, + ^2)). (10.2.21) 

The hmiting solution in (10.2.19)—(10.2.21) is also a stationary solution of Problem (B2). 

In Problem (C), if (/)i(0) = ^2(0) = 0; S{0) = 0, lim 0i(x) = - a i < 0, lim (p2{x) = 

a2 > 0, lim 0i(a:) = 0 as |x| ^ 00 and (pi{x) are thrice differentiable, then existence, 
uniqueness and stability of the solution have been estabhshed for large time. U a2 — aai> 
0, where a^ = k2 {ki — 1), then hm S(i) = —00. If 0̂2 — aa\ < 0, then hm S{t) = +00. 

The initial velocity of the free boundary in Problems (Bl), (B2) and (C) is known if 
the compatibility condition 

(|)^{b) = 0, z = 1,2, (10.2.22) 

holds. In this case 

5(0) = 01(6)-02(6). (10.2.23) 

If 6 = .9(0) 7̂  0, then 
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S{t) = b-\-(3t{l-^S*{t)); limS'*(^) = 0. (10.2.24) 
t —0+ 

But for /3 = 0, the order of contact of the curves x = b and x = S{t) a^i t = 0 
becomes unknown. In addition, it is unknown when the condition (10.2.22) is omitted, 
or in the case of Problems (Al) or (A2) when the domain of existence of one of the phases 
degenerates to a point. 

A detailed study of the interface initial velocity, has been done in [21]. We present 
here just one result. In Problem (Al), assume that as t —> 0, 

flit) = -Mi)t'"% rrio > - 1 ; (p{x) = M^)x''% Uo > - 1 . (10.2.25) 

Further, for any ^ > 0, let 

lim ipi{t)f = 0, and \im'^|J^{t)^' = oo, z = 1, 2. (10.2.26) 
t—»oo 

If /i(0) ^ 0 and y/tS{t) is continuous for i > 0, then 

S{t) = f3r^\l + SUt)); \imSm = 0, (10.2.27) 
t —0 

where /? is the root of a transcendental equation (cf. [21]). In most of the practical 
problems, S{t) ~ 0{t^^^) or O(^) or 0{t^/^) (cf. [60]). 

The existence and uniqueness of Problem (Al) or Problem (A2) cannot be investigated 
easily as the convergence of Picard iteration process is destroyed by the degeneracy of 
one of the phases. Some additional conditions are to be imposed on the data to prove 
the existence of the solution of Problem (Al) by Picard iteration ([cf. [21]). To construct 
the existence proof the solution of Problem (Bl), (Ti^„, T2,n, Sn) is obtained for t > tn by 
choosing an arbitrary monotonically decreasing sequence 

to>ti. . . . >tn> . . . ; lim „̂ = 0; 0̂ < t*. (10.2.28) 

The definition of t* is complicated as it depends on the time for which the solution of an 
auxiliary problem exists and simultaneously some other conditions are satisfied and for 
this information the reader is referred to [21]. We now consider a sequence of Problems of 
the type Bi in the regions, 0 < x < Sn{t), (5„, n = 1, 2,.. are known) and Sn{t) < x < d, 
t > tn, in which temperature at tn is substituted from the solution of an auxiliary problem 
in which S{tn) is used. It has been shown that the sequence of solutions {Tin, ^2,n,, Sn} 
of these problems converges to the unique solution of Problem (Al). Problem (A2) can 
be similarly studied. 

By using Picard iteration method, the existence and uniqueness of a one-dimensional 
two-phase problem in a region with cylindrical symmetry has also been studied in [21]. 
In this case the Green's function used to construct the solution of the heat equation is 
given by 
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E.ir,Uii - r)) ^ ^ ^ l l ; ^ ^ / o ( ^ ^ ) . (10.2.29) 

Here, r is the radial coordinate in a cylinder of radius a and IQ{X) is the modified Bessel's 
function of the first kind of zeroth order. 

A two-phase Stefan problem in an unbounded domain has been considered in [313]. 
rhe heat equations in the regions Di^, z = 1, 2, have been considered as follows: 

C^^^T\x,t) = q^^\x,t), m D\^^ = {{x,t) : -oo < x < 5(t), ^(0) = rf > 0, 0 < t < ^^ , 

(10.2.30) 

C^'^^T'^{x,t)=q^^\x,t), mUf} = {{x,t)-.Sit) <x<oo, 0 < i < ^4 , (10.2.31) 

C^'^T^\x, t) = a^'\x, t)T}i^ + 6(^)(x, 1)7^^"^ + e(̂ (̂x, t)T ^'^ - T / ^ \ z - 1,2.(10.2.32) 

The problem formulation consists of (10.2.30)-(10.2.32), (3.2.2), (3.2.5), (3.2.7) with 
f{x, t) = 0, and the equation 

a^'\S{t),t)X^'\S{t),t)T^^'\S{t),t) - a^^\S{t),t)X^^\S{t),t)T,^^\S{t) 

= S{t) + iJ,{S{t), t), 0<t< t,, 5(0) = d. (10.2.33) 

This problem wiU be called Problem (YA). It is assumed that: (i) q^^\x,t) and other 
coefficients in (10.2.31) and (10.2.32) are Holder continuous in î = {{x,t) : —oo < 
X < oo, 0 < i < oo} with q^^\x,t) > 0 and q^^\x,t) < 0 in Q, (ii) h^^\x) and 
/i(2)(x) are continuous and h'<^\x) > 0 and h^^^x) < 0, (in) X^'^x.t), X^'^ and xf^ are 
continuous and —Ni < X^^\x,t) < 0 and Â2 > X^'^\x,t) > 0, (iv) ii{x,t) is continuous 
and differentiable in {x,t), -^XQ < fi{x,t) < 0 (//o > 0), /i(d,0) = X^'^d^O) = 0 {i = 
1,2), (v) e^'^ < 0 , 2 = 1,2. 

For the complete set of assumptions, the reader is referred to [313]. It has been shown 
that a unique classical solution {i*,5(t),T(i),T(2)} exists, S{t) is differentiable and 0 < 

S{t) < /3, j3 constant. To prove this result, solutions of a sequence of auxiliary problems 
are constructed (by retarding the argument) as follows. For an arbitrary 6, 0 < 6 < d, 
let, 

(h^^^x) for x<d-e, 
h^'^^x) = I (10.2.34) 

[ 0 for x>d-e. 

Similarly h^'^^^{x) can be defined for x > (/ - 6* and a: < c/ - 6*. We take S%t) = d 
on the time interval [0,^] and solve Problem (YA) without the condition (10.2.33) (free 
boundary is now known). Let T̂ ^̂ ^ and T̂ ^̂ ^ be the temperature solutions in the two 
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regions — oo < x < S^{t) and S^(t) < x < oo for 0 < ^ < ^. To construct the solution for 
0 < ^ < 2^, S^{t) is determined in the time interval [9, 26] from (10.2.33) after integrating 
it w.r.t. to time and using the value of S^{t) in [0,^] in the temperature derivatives at 
X = S{t). Now this S^{t) for 6 < t < 20 is used to determine temperatures T̂ ^̂ ^ and 
7̂ (2)̂  for 0 < ^ < 20. It may be noted that temperatures are uniquely determined as 
they are solutions of parabolic heat equations with boundary conditions prescribed at 
the known boundaries and with known initial temperatures. By induction we obtain 
S^{t),nO < t < (n + 1)^ and continue till we get a solution in [0,̂ *] The conditions 
required for the existence of a unique solution are met by the assumptions already made 
about the data. Proceeding inductively in this way, we get a sequence of approximate 
solutions {S'^ T(i)^ T^^^^j m 0 < t < nO, n = 1,2,.... It can be proved that the 

approximate solutions S^ are such that 0 < S^{t) < a (constant) and the sequence 
{S^} is uniformly bounded and equicontinuous on a compact set. On using Ascoli-
Arzela theorem it can be concluded that a subsequence converges to S{t) (the conditions 
required for the application of Ascoli-Arzela theorem have been established in [313]). 
With this known S{t), we determine the temperatures T^^\x, t) and T^^^(x, t) by solving 
heat equations. To show that this hmiting solution is the solution of Problem (YA), it 
should be proved that the limiting solution satisfies an equation of the form (10.2.2). For 
the present problem, an integral equation for S{t) can be obtained by using the following 
Green's formula. 

t* 

/ f{vCT - TC*v) dxdt= f Tvdx-\- f la {x, t) {vT^, - Tv^ 
fit, dUt. . a \ ] 

lb{x,t)--^\Tv\dt. (10.2.35) 

Here, flt^ could be DlJ or DiJ and i; is a smooth function in Qt*. 

For the operator C in (10.2.32), the operator C* (conjugate) is given by 

C*v = -^{av) - -K-{bv) + e{x, t)v + Vt. (10.2.36) 

For the apphcation of Green's formula and deriving an integral equation for S{t) in 
Problem (YA), the reader is referred to [313]. 

In [314], instead of the Stefan condition in (10.2.9) —(10.2.16), the following condition 
is prescribed at the free boundary. 

dTi{x)/dx = Ft{S, T2, Ts,̂ :), on 2: - S{t). (10.2.37) 

Here, Ft is a functional acting on the triple {S{T), T2(X, r) , T2^x{x, r )} , x e [S{r), 1], r G 
[0,^]. Let ki = ki{Ti), and k2 = k2{T2). Introduce heat source or sink terms q^^^Ti) 
and q^^\T2) in (10.2.9) and (10.2.10), respectively. In the place of (10.2.16), prescribe 
(10.2.37) and let other conditions be the same as in (10.2.11)—(10.2.15) but without sign 
constraints. This problem will be called Problem (FAP). If instead of (10.2.37), we take 
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in which g{t) is known, then we have the formulation of a one-phase Stefan problem in 
0 < X < S{t), 0 < t < t^ with an implicit free boundary condition (see § 10.1.4, equation 
(10.1.101)). Under suitable assumptions, this one-phase problem is well-posed and the 
unique S{t) obtained as the solution of this problem can be used to solve a parabolic 
heat conduction problem to determine T2{x,t) in the region S{t) < x < 1, 0 < t < t^. 
The unique solution of T2{x,t) can also be obtained provided appropriate assumptions 
are made about the data in the region S{t) < x < 1. Here, S{t) is known for determining 
T2{x^t). Now the relationship between g{t) and the functional Ft in (10.2.37) should be 
explored. Note that we have taken g{t) to be some known function but it may not satisfy 
(10.2.37) exactly and in this situation it is appropriate to write 

G(0 = F,(^,T2,T2,,). (10.2.39) 

We express G{t) as G'(^) = Mg. (10.2.40) 

The operator M is acting on a suitable function space to which g belongs. It has been 
proved in [314] that a ô > 0 exists such that M has at least one fixed point on (0, ^o)-
If ^ G Hi/2+£, £ G (0,1/2), then a unique classical solution (5, Ti,T2) of Problem (FAP) 
exists in the interval (0,^o)- Moreover, S{t) G Hi^e[0,to] with e € (0,1/2). 

A two-phase Stefan problem in the region 0 < x < 1 with unilateral boundary 
conditions at x = 0 and x = 1 has been considered in [315, 316]. The formulation of the 
problem considered in these references can be obtained from equations (10.2.9)—(10.2.16) 
if instead of (10.2.11) and (10.2.12) (take d = 1), the following boundary conditions are 
considered. 

7;(0, t) G 7o(T(0, t)), 0 < ^ < *̂, (10.2.41) 

^^^ -nil.t) G 7i(T(l,^)), 0 < ^ < *̂, (10.2.42) 

and all the thermophysical parameters are taken to be unity. 70 and 71 are maximal 
monotone graphs in i?^ such that both 7^^(0) Pi [0, 00) and 7r^(0) fl (—oo,0] are non-
empty sets. This implies that there is a kind of heater at x = 0 and a kind of cooler at 
x = 1. The time t^, 0 < T < 00, is defined to be the first time that the free boundary 
X = S{t) touches X = 0 or x = 1. 

We shah call this Stefan problem with (10.2.41) and (10.2.42) and other conditions 
in (10.2.9)-(10.2.16) (except (10.2.11) and (10.2.12)), Problem (YU). The existence and 
uniqueness of the solution of Problem (YU) has been proved in [315] under the following 
assumptions. 

0i(x) > 0 (0 < X < 6), (/)2(x) < 0 (& < X < 1), ] 
I (10.2.43) 

01 and (p2 are bounded and continuous for a.e. x G [0,1]. j 

Several properties of S{t) and of temperatures in the two-phases have been discussed. 
For example, it has been proved that: 

(1) s G c° ' ' / ' [0, q n c°'2/3(o^ t,] n c-(o, t*), (10.2.44) 
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(2) 0 < T i < max {110111̂ 00(0,6), « i} on A?^ = {(^^^) • 0 < x < S{t), 0 < t < t,} , 

ai = min [a^ > 0; ai G To'^O)} . (10.2.45) 

(3) min {- ||02|ILOO(6,I) , ^̂ 2} < ^2 < 0 on D^f = {(x, t) : 5'(0 < x < 1, 0 < t < t,} , 

a2 = max { a 2 < 0 ; a s ^ T r ' W } . (10.2.46) 

The space C^'", a G (0,1) is the space of Holder continuous functions. 

The existence and uniqueness of Problem (YU) have been proved using the finite-
difference discretization of equations. Several assumptions about the data and, estimates 
of the nodal values in the finite-difference numerical solutions of 8(1) and temperatures, 
are required which cannot be given here and the reader is referred to [315] for them. 
The convergence of the numerical solution has been established. The free boundary in a 
two-phase problem cannot be attached to mesh points which could be easily done in the 
one-phase problem discussed in [302]. For the existence of local-in-time solution no sign 
constraints on ^{x) are required. 

The Problem (YU) has been considered in [316] also but the emphasis in [316] is on 
the asymptotic behaviour of its solution. The stationary solution of Problem (YU) is a 
solution of the following elliptic problem. 

'^xxip^) = 0) 0 < X < 1, 

^x(O) e 7o(i(;(0)), and - i/;^(l) G 7i(^(l)) , 

7i;(^) = 0 for some \i G [0,1]. 

(10.2.47) 

It has been shown that if a stationary solution does not exist, then *̂ < 00, and if 
(10.2.47) has a solution, then there exist a minimum solution w_{x) and a maximum 
solution wix). Let 

5; = 

and 

5: 

' 0, if w_[x) = 0 

the unique zero of w_{x)^ if 21l{x) ^ 0 . 

• 1, ifw(x) =0 

[ the unique zero of w{x), if w(x) ^ 0 

The following proposition describes some properties of the asymptotic solution. 

Proposition 10.2.3. Suppose that t^ = co. Then there exists a real number S* 
with S_< S* < S, and a solution w*{x) of (10.2.47) such that 
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(i) \im S{t) = S\ (ii) limT{x,t) = w*{x) in C[0,ll{m) w*{x) =^ w,{0){x - S*). 

In the multi-phase phase-change problems, the density change in the phases gives rise 
to mass transport. The formulation of problems with both heat and mass transfer is not 
our concern here. Our interest in the problem discussed in [317] which is described below 
in (10.2.48)—(10.2.54), arises from the fact that after suitable transformation, the formu-
lation becomes an extended formulation of the type (3.2.1)—(3.2.8). The local-in-time 
existence of the solution and well-posedness of the freezing problem (10.2.48)—(10.2.54) 
has been established in [317]. The following equations are to be satisfied. 

l3s{Ts){Ts,t + VsTs,.) - {Ks{Ts)Ts,:c). = 0, 0 < x < S{t), 0<t<t,, (10.2.48) 

Ts{x, 0) = (? î(x), 0 < X < S{0) = b] Ts{0, t) = fi{t), 0 < t < t,, (10.2.49) 

pL{TL){TL,t + VLTL,.) - {KL{TL)TL,,)a: = 0, S{t) <x<d, 0<t<t,, (10.2.50) 

TL{X,0) = 02(X), h<x<d] TL(0,t) = f2{t), 0 < t < t^, (10.2.51) 

Ts{S{t),t) = TL{S{t),t) = Tm[P). 0<t<t,, (10.2.52) 

[psl + [PLCL - PsCs)Tm{P)] S{t) = {PLCLVL - PsCsVs)Tm{P) 

+KsTs,x - KLTL,X, at X = S{t), 0<t<t^, S{t) > 0, (10.2.53) 

{ps - PL)S{t) = psVs - PLVL. at X = S{t), 0<t<t,. (10.2.54) 

Here, P = P{x,t) is the pressure and the phase-change temperature Tm{P) in 
(10.2.52) is a pressure dependent known quantity. Both solid and liquid phases are 
compressible and Vs and Vi are velocities of the two phases and are assumed to be 
known from the hydrodynamical and thermoelastic considerations. l3i{Ti) = Ci + ai'ji + 
{ — iyTi^i{piai)~^, i = S,L and equal to 1,2 in (—1)^ â  are some specified positive 
constants, â  is the compressibility of the zth phase and 7i is the volumetric thermal 
expansion coefficient. The equation (10.2.52) describes the local thermodynamic equi-
librium temperature of the two phases, (10.2.53) describes the condition of dynamical 
compatibility for heat transfer and (10.2.54) is the mass balance condition at the inter-
face. The coeflficient of S{t) in (10.2.53) is the jump in the enthalpy across S{t) and the 
first term on the right represents the difference in rates at which heat enters and leaves 
across S{t) by convection. The second term on the r.h.s is the difference in the fluxes. 
Flux prescribed boundary conditions can also be considered at the fixed boundaries. 

On using the transformation (1.4.29) in formulations of both phases, making use of 
some thermodynamical relations and adopting suitable notations, equations (10.2.48)— 
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(10.2.54) get reduced to equations similar to (3.2.1)—(3.2.8) (provided velocity terms 
are added in (3.2.1)—(3.2.8) and the coefficients are redefined suitably). The small-
time existence of the classical solution has been proved in [317] using the method of 
approximating solutions (see (10.2.46)—(10.2.51)) and making use of some results given 
in [295]. It has been proved that S(t) G H^+''/'^{0,U) for any a G (0,1). The continuous 
dependence of the solution on the data and coefficients has been established from which 
the uniqueness of the solution also follows. 

10.2.2 Differentiability and analyticity of the free boundary in 
the one-dimensional two-phase Stefan problems 

We assume that a classical solution of the two-phase problem (10.2.9)—(10.2.16) exists 
and the Stefan condition (10.2.16) holds for < ^ < t*. For the one-phase problem formu-
lated in (10.1.71), the proof of the infinite differentiability of S{t) ioi 0 < t < t^, depends 
mainly on the application of Proposition 10.1.11. which tells us about the function space 
to which the temperature belongs. We assert from (10.1.76) that S{t) E Ha{Qs), ^ ^ 
0,0 < a < 1. If appropriate assumptions on coefficients in the heat equations after trans-
formations (see (10.1.73)) in both the two-phases are made, then Proposition 10.1.11. 
can be used to conclude that the second order temperature derivatives in the two-phases 
are Holder continuous with exponent a, 0 < a < 1. Arguments similar to those used 
in §10.1.2 for proving the infinite differentiability of S{t) and of the temperature in the 
one-phase problem can be put forward for proving the infinite differentiability of S{t) 
and of temperatures in both phases in a two-phase problem. The infinite differentiability 
of the free boundary in a two-phase problem under unilateral boundary conditions has 
been discussed in [315, 316]. 

The analyticity of the free boundary in a two-phase ice-water system described by 
(10.2.9)—(10.2.16) (with all thermophysical parameters taken as unity) has been de-
scribed in [296]. Let fi{t) > 0, f2{t) < 0, 4)i{x) > 0, M^) < 0; f^ and (|)^, z = 1,2, 
be continuously differentiable functions. Further, /i(0) = 0i(O), /2(0) — 02(c^), 0i(^) = 
02(6) = 0. Making use of the transformation y = x/S{t) and using Schauder estimates 
for parabolic equations satisfied by Vi{y,t) = Ti{x,t) and V2{y,t) = T2{x,t), one can 
deduce ( as done in the one-phase problem (see § 10.1.2 and [296]) that if a classical 
solution of (10.2.9)—(10.2.16) exists, then S(t) is a C°°-function. Concerning analyticity 
of S{t), the following proposition has been proved in [296]. 

Proposition 10.2.1. If fi{t) and f2(t) are analytic functions for 0 < ^ < f*, in 
(10.2.9)-(10.2.16) then S(t) is analytic for 0 < t < t^. 

To prove the above proposition, in addition to quantities defined in (10.1.77)— 
(10.1.79), we define the following transformations. 

^ {d- x) ^ f dX , ^ 
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V(y,T) = T,{x,t) - (1 - x/S{t))Mt), (10.2.56) 

W(y^ a) = T2(x, t) - {x - S{t))/{d - S{t))f2{t). (10.2.57) 

With the help of the above transformations, the heat equation in each phase is reduced to 
a form suitable for the apphcation of Proposition 10.1.11. and various estimates for S{t) 
and derivatives of temperatures can also be obtained. The local-in-time unique classical 
solution can be extended to a global-in-time solution provided the a priori estimates as 
given below can be obtained. 

dx 
{x,t) <At, 0< X < S{t), and 

dx 
(x,t) At, S{t) <x <d, (10.2.58) 

where, At is a bounded function of t. It has been proved in [318] that At is bounded 
under suitable assumptions. 

The analyticity of the free boundary in a strongly nonhnear two-phase Stefan prob-
lem has been discussed in [298] by using the method of proof (expressing temperatures 
in terms of heat potentials and treating the problem in a complex plane by defining 
a suitable complex variable) discussed earlier in § 10.1.2 concerning the analyticity 
of a one-phase problem. The heat source terms have been taken in the form F^ = 
Fj ( t ,x ,T i , T2,Tia;, T2x, 5", 5*), i = S,L. The one-phase formulation (10.1.23)—(10.1.27) 
can be easily generalized to obtain the formulation of a two-phase problem defined in 
A . = {{x,t) : (0 < X < S[t)) U {S{t) < X < 1),0 < t < t j and is not being given here. 
Under suitable assumptions it has been proved that S{t) is an analytic function of t^^'^ in 
0 < t < t, and T-i{X*S{t),t) and T^^x{^*S{t),t) are analytic in t^^'^ in 0 < t < t, for each 
AG [0,1]. Here A* = Aifz = 1 {x < S (t)) and X* S (t) = l - fA(6 ' ( t ) -1 ) if z = 2 (x > S{t)). 

10.2.3 One-dimensional n-phase Stefan problems with n > 2 

In this subsection, an n-phase problem refers to a problem with n phases and 
(n — 1), n > 2 distinct free boundaries. Some n-phase problems have already been 
discussed in §§ 3.2.3 and 3.2.4. We present below a simple formulation of an n-phase 
Stefan problem. Find (n - 1) free boundaries Si{t), z = 1, 2.., (n - 1) and temperatures 
Tr{x, t), r = 1, 2.., n, such that 

0 < Si(t) < ... < Sn-i{t) < d- 5,(0) = k, 1 = 1, 2,. . , (n - 1), (10.2.59) 

krTra:, - T,,, = 0, if Sr^l{t) <X < Sr{t), 0 < t < t,; 1 < T < H, (10.2 .60) 

So{t) = 0, and Sn{t) = d, (10.2.61) 

r i ( 0 , / ) = fi{t), and Tn(d,t) - foil): 0<t<t,, (10.2.62) 
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Tr{x, 0) = M^)^ br-i <x<hr, T = 1, 2, ..,71; 6o = 0, 6n = d, (10.2.63) 

Tr{S^{t),t) = 0, 0 < t < ^,; r = 1,2, ..,n; z = l , 2 , . . , ( n - 1), 

(for z = m, r = m. and (m + 1)), (10.2.64) 

- i ^ . ^ ( ^ . ( f ) - 0) + i ^ , ^ i ^ ( 5 . ( t ) + 0) = ( - i r ^ ^ , 0 < t < *̂; 

r = 1, 2,.., (n - 1), z = 1, 2,.., (n - 1), (for z = m, r = m and (m + 1)). (10.2.65) 

The above formulation can be easily generalized to more complicated problems. When 
the number of phases is more than two, in addition to the study of those aspects of the 
analysis discussed earlier, the questions related to the disappearance of phases should 
also be addressed. A three-phase problem in which regions — oo < x < Si{t), Si{t) < 
X < S2{t) and S2{t) < x < oo are initially occupied by water, ice, and water, respectively, 
has been studied in [319]. Thermal properties of the two water regions are the same but 
their initial temperatures are taken be different. Depending on the initial temperatures, 
the piece of ice can melt away entirely at some finite time t^ or water can freeze at each 
ice-water interface. Let Ti(x,t), T2{x,t) and Ts{x^t) be temperatures of water, ice and 
water, respectively, with Ti(x,0) — (t>i{x) > 0, —oo < x < bi, T2(a:,0) = (l)2{x) < 
0, 1̂ < a: < ^2, and Ts{x,0) = 03(a;) > 0, 62 < a: < oo. Here the latent heat has been 
taken as unity. Suppose that after time t > t^, the ice phase disappears and T{x,t) be 
the temperature of water for t > t^ with T{x,t^) = Ti{x,t^) for — 00 < x < Si{t^) = 
S2{t^), and T{x,t^) ~ T3{x,t^) for S2{t^) < x < 00. The global existence and uniqueness 
of the solution (^i, ^2, Ti, r2. Is, T) has been proved. It has been shown that Si and S2 
depend continuously and monotonically on the data. The main tool used in the proofs 
is the maximum principle, both in its strong form [320] and in the form of the parabolic 
version of Hopf's lemma [321]. The constructive element in the approach in [319] is based 
on the idea of retarding the argument in the Stefan conditions at the free boundary ( see 
the discussion concerning equation (10.2.34)). 

It has been shown that under suitable assumptions, free boundaries are continuously 
differentiable and|5'^(t)| < a constant, for 0 < t < t*, z = 1, 2. Let E{t) = H{t) - (S'2(t) -
5*1 (^)), where H{t) is the sensible heat of the system at time t. It can be proved that 
E{t) — E{0). The following proposition holds. 

Proposition 10.2.2. Suppose that lim H{t) = 0. If ^(0) > 0, then U is 

finite. If ^(0) = 0, then t^ is plus infinity and hm (^2 - ^i) = 0. If E{0) < 0, then 

lim (5*2 — •S'l) = —^(0) < 0 and there does not exist a finite t^. If t^ = 00, and if the 

initial temperatures are bounded and have compact support in — 00 < x < 00, then 

lim H{t) = 0. 
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A three-phase problem similar to that considered in [319] has been considered in [322] 
in the bounded region —d<x<d.A piece of ice with temperature T2(x, t) occupies the 
region S2{t) < x < Si{t) and T2{x,0) = (t>2{^) < 0. The region -d < x < S2{t) is water 
having the temperature Ti{x,t) and Ti(x,0) = (pi{x) > 0. The region Si{t) < x < d 
is also water having the temperature Ts{x,t) and Ts{x,0) = 03(x) > 0. Ti{—d,t) = 
fi{t) > 0 and T-i[d,t) = /^{t) > 0. The classical formulation of this problem can be 
easily written. Let this problem be called Problem (AK). The main result of [322] is the 
following proposition. 

Proposition 10.2.3. Let {Ti,T2,Ts,Si,S2} be the classical solution of Problem 
(AK). There exist constants a G R^, (3 e /?+, Ai e R~, X2 G R^, i G R'^ and t^ G R^ 
such that 

1̂ 2(0;, t)\ < ae^l^'-'*^ for i G (0, i)\ S2{t) <x< Si{t), (10.2.66) 

dT 
lim —^ _ , , = 0, z = 1,2; Si{t,) = S2{t,), (10.2.67) 

and 

dx \x=s,it) 

J Q 

lim —^ = Ai, i = l, 2; -00 < Ai < 0, 0 < A2 < 00. (10.2.68) 

The temperature in the solid phase decreases to zero as t approaches t^. 

The existence and uniqueness of similarity solutions of a one-dimensional multi-phase 
Stefan problem has been discussed in [323]. The formulation of the problem is the same 
as in [65] (see § 3.2.3) except that phases are not in motion. The sufficient conditions 
for the existence of the similarity solution have been obtained in [323] but are not being 
discussed here as they can be described only after describing the complete solution of the 
problem. 

Analyticity of (n — l) non-intersecting phase-change boundaries in an n-phase problem 
has also been discussed in [296]. The formulation of the problem is similar to that given in 
(10.2.59)—(10.2.65) except that all the thermophysical parameters have been taken equal 
to unity. It has been assumed that (-l)'^~Vm(^) > 0, / i > 0, (-l) ' ' /2 < 0, (/)m(̂ m+0) = 
(t>m+i{bm-0) = 0; 1 < m < n, 0,+i = 0, 0i(O) = /i(0), 0 j d ) = /2(0); 0,(1 < r < n), / i 
and /2 are continuously differentiable, and 6̂  (1 < z < n — 1) are given constants. Under 
suitable assumptions, using the arguments given in the case of one-phase and two-phase 
problems the existence of the unique solution of this n-phase problem in a small time 
interval can be proved. If a suitable transformation is used in each phase, a fixed domain 
formulation in each phase can be obtained. On making suitable assumptions and using 
Proposition 10.1.11., it can be shown that free boundaries are (7°°-curves (cf. [296]). To 
prove the existence of a global classical solution it suffices to establish a priori bounds 
(10.2.58) for the temperature T{x,t) defined in 0 < x < (i, x^ S^{t). For the present 
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problem, At (see (10.2.58)) is given by 

At = max\ sup |T,(0,r) | , sup |T (̂c?, T) | , max sup |(/);.(x)| > , (10.2.69) 
l<r<Ti b^_-,<x<br 

for all t for which SI{T), 1 < Z < n — 1, T < t do not intersect each other. 

Proposition 10.2.4. If fi{t), f2{t) are analytic functions for 0 < t < f* in 
(10.2.59)-(10.2.65), then Si{t), ..,Sn-i{t) are analytic functions for 0 < ^ < a, where 
a is the first time such that 

lim min[S'^(0 - S^^l{t)] = 0. (10.2.70) 

To prove the above proposition, functions K have been introduced in [296] which are 
defined as follows: 

VriVr, T,) - T{x, t), 1 < r < n, (10.2.71) 

where T{x, t) is the temperature in the region 0 < x < d, and yi and r̂  are related to x, t 
in the zth phase by the relations 

} dX x-S^(t) 
- - = / lS,,.iX)-S,iXr ^ - ^ S;;r^' ^<r<n-l. (10.2.72) 

To prove the analyticity, the inductive estimates are then obtained for derivatives of 
Vr and S{t) with respect to r. 

10.3 Analysis of the Classical Solutions of Multi-
Dimensional Stefan Problems 

10.3.1 Existence and uniqueness results valid for a short time 

The earliest results of general nature available on the existence and uniqueness of 
the classical solutions of multi-dimensional Stefan problems seem to be those reported in 
[324]. A two-dimensional two-phase Stefan problem has been considered in a rectangular 
region fi, where 

VL = {(xi, X2) : 0 < xi < G?i, 0 < X2 < 0̂ 2} C R^; and Qt. = Q x (0, t^). (10.3.1) 

The classical formulation of this problem will not be presented here as it can be ob-
tained by making appropriate changes in the formulation given in § 3.2.4. In the present 
problem, it has been assumed that a single free boundary exists which has a parametric 
representation 

xi = xi(A, t), X2 = X2(A, t); xl^ + xl^ ^ 0 ; AQ < A < Ai. (10.3.2) 
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The functions Xi^u ^2,1, ̂ I,A, and X2^x are continuous and all the interior points of the 
surface obtained after ehminating A in (10.3.2) are the interior points of Qt*-

On eliminating A from the two equations in (10.3.2), we get an equation of the free 
boundary S as <l>(a;i,a:2, )̂ = 0. In view of the parametric representation in (10.3.2), 
instead of a Stefan condition of the type (1.4.8), the following equations have been con-
sidered at the free boundary. 

dxi ,^ dTi , , dT2 

We now consider a classical two-phase Stefan problem in ^t^ in which the Stefan condition 
is replaced by the conditions (10.3.3) and (10.3.4). Let the free boundary S be given by 
^{xi,X2,t) = 0 and temperatures Ti{xi,X2,t) and T2{xi,X2,t) in the two-phases satisfy 
all the conditions mentioned in the definition of the classical solution given in § 1.4.6. 
Then the solution (Ti, T'2, S) in which 5* has the parametric representation and the Stefan 
condition is replaced by (10.3.3)—(10.3.4) also forms a classical solution of the Stefan 
problem (substitute (10.3.3) and (10.3.4) in the Stefan condition). 

Homogeneous parabolic heat equations have been considered in [324] in the two phases 
and heat fluxes have been prescribed on the fixed boundaries. The fluxes and their 
derivatives, initial temperature and the function representing the initial position of the 
free boundary have been taken to be continuous functions. On using suitable Green's 
functions, temperatures at the free boundary together with the temperature derivatives, 
can be expressed in terms of nonlinear Volterra equations of the second kind (see equation 
(9.6.32)). It has been reported that under suitable assumptions a unique classical solution 
exists for a short time. However no details of the proof are available. The classical solution 
is stable in the norm C(Qf J with respect to perturbations of the data in C{Q^). It has 
been proposed that similar results about the existence, uniqueness and stability will hold 
good for problems considered in Q C R^^ n > 2. 

A problem more general than the one considered in [324] has been considered in [325]. 
There are m-phases in the region 0 < X2 < d, -00 < Xi < 5^^\ where S'^^\ S^^\ .., S"̂ "̂̂ ) 
are simple continuous, piecewise smooth, non-intersecting free boundaries and S^'^^ is a 
given surface. The parabolic equations considered in different phases are nonhomoge-
neous and temperatures at the free boundaries are unequal and are not constant. Each 
free boundary has a parametric representation of the form (10.3.2). At each free bound-
ary, instead of the Stefan condition, conditions given in (10.3.3) and (10.3.4) have been 
considered in which thermal conductivities are functions of (xi, X2, t). On obtaining solu-
tions of temperatures with the help of appropriate heat potentials and using contraction 
mapping argument, the existence, uniqueness and stability of the solution have been 
investigated for a short time. It has been reported that the method and the results 
obtained can be extended to problems in i?", n > 2. 
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The multi-dimensional multi-phase problem considered in [325] has been further gen-
eralized in [326]. A general linear parabolic equation of second order has been considered 
in a non-cylindrical region occupied by each phase. The boundary of the region could 
be piecewise smooth. Instead of a Stefan condition, conditions of the form (10.3.3) and 
(10.3.4) have been considered at the free boundaries. On using suitable heat potentials, 
at the free boundaries, temperatures and temperature derivatives can be obtained in 
terms of Volterra integral equations of the second kind. Under suitable assumptions (see 
[326]), contraction mapping theorem can be applied to the system of integral equations 
to which the problem is reduced and it has been proved that the existence, uniqueness 
and stability of the solution holds for a short time 

The existence and uniqueness proofs have been constructed in [309] using local co-
ordinates and parametrization of the free boundary. This requires 'regularization' of 
the Stefan condition as after transformation in the local coordinates the compatibility 
conditions at the free boundary are not satisfied. The classical solutions of both one-
phase and two-phase problems have been investigated and the existence of solutions has 
been studied for both short time and long times. We begin with the main steps in the 
proof of the existence of short-time solutions of one-phase Stefan problems. Let Qt^ = 
n X (0,t*) C Rl = R" X (0,t*), n > 1 and ^ ( t ) C i?^, t G (0 , t , ) , 1^(0) = G C R". Qu 
is a domain lying between two hypersurfaces Ft^ = F x (0,t*), F C BJ^, n > 1 and 
r^^ = {{x,t)]x G T{t) C R^,t G (0,t*)}. Ft^ is a known surface and Vt^ is the unknown 
free boundary. The classical solution of one-phase Stefan problem consists of finding the 
temperature T{x,t), x = (xi,X2, ...Xn) G R , n > 1, 0 < t < t* and the free boundary 
r ( t ) , 0 < i < t*, satisfying the fohowing system of equations. 

BT "^ B'^T 
« ( ^ ) ^ = E ^ T + / (^ '0 , i n ^ . , (10.3.5) 

dt fr{ dx? 

n Qrp 

T = Ti{x,t), or Y.Hx.t)—^g{x,t)T = T2; on F,^, (10.3.6) 

T ( x , t ) = 0, on Tt^, (10.3.7) 

BT "^ BT 
^ • ^ = - ^ / | V T | = ^ z . , — , o n r ( t ) , ^G(0 , t*) ; | V T | ^ 0, (x, t) G T,,, (10.3.8) 

r (0 ) = S; T(x, 0) = To(x), x G ^(0) - G. (10.3.9) 

Here, z7 = (i/^, 1^2,.., i^n) is the unit vector normal to r ( t ) , iy = V T / |VT | and V is the ve-
locity of the free boundary. The surface S {= r (0 ) ) is a C^- surface and does not intersect 
F. The compatibility conditions of a suitable order which follow from (10.3.5)--(10.3.9) are 
satisfied. The basic step in the proof of the existence of the solution of multi-dimensional 
Stefan problems consists of establishing some a priori estimates for the solution in a 
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neighbourhood of the free boundary r(^). Therefore, with the help of a scalar function 
R{xo,t), XQ G S, r(t) is defined by the equality 

x = xo + R{xo,t)u{xo), P(xo) = DTo{xo)/\DTo{xo)\, ly = {vi,V2, ..,Vn). (10.3.10) 

Here, D = {d/dxi,d/dx2, ....,d/dxn) and \R{xo,t)\ < 2B, B is a constant which is 
chosen small enough so that r{t) defined in (10.3.10) does not intersect F. In view of 
(10.3.10), the isotherm condition (10.3.7) becomes 

T{xo + R{xo, t)P(xo), t) = 0. (10.3.11) 

On differentiating (10.3.11) w.r.t. t and using (10.3.8), the Stefan condition becomes 

^i?(:ro, t) = - \DT{x, t)f /{DT{x, t) u{xo)). (10.3.12) 

The main result of [309] concerning the existence and uniqueness of the solution of 
problem (10.3.5)—(10.3.9) is the following proposition. 

Proposition 10.3.1. Assume the following hypotheses: 

(i) Closed surfaces F and S bound the sets Wp C i?" and Ws C JR" respectively such 
that WF C WS, F n 5 = 0, and F and S belong to the class H^'', [r] = m + 1 = n -h 5, 
[r] stands for the greatest integer in r (for m see the next assumption). 

(ii) a G C" '̂̂ [̂0, oo), and functions Ti, g, and 6̂  (z = 1,2, ..n) are in the space 
//2-'"(Foo) and 

n 

a > MQ^ = constant > 0, X]6,g, > MQ\ (10.3.13) 
i = l 

where q= {qi,q2, ..,qn) is the normal to the surface F at the point x. 

(iii) / G //2r,r(^n^)^ ^^^ j.^ ^ //2r(^) Qu the surfaccs F and S the compatibility 
conditions up to the order m + 1 which follow from (10.3.5)—(10.3.7) and (10.3.12) hold. 
Moreover, 

To(x) >0, xeG; |log| DTo{x) \\ < NQ, x e S. (10.3.14) 

(iv) Norms of the functions / , To, Ti, T2 defined in appropriate spaces are bounded 
by a common constant Â o, and norms of a, g and b^ {i = 1,2, ..n) and norms of functions 
defined in local coordinates of surfaces F and S are bounded by a constant MQ. 

Then there exists a sufficiently small t^ > 0, dependent only on Mo, NQ and B, such 
that problem (10.3.5)—(10.3.9) admits a unique solution {R{xo, t), T(x, t)) with R{xo, t) G 
C^^\S X (0,t*)) and T G C^^H^t.)-

It may be noted that if f{x,t) = 0, then it follows from the condition To(x) > 0 and 
the maximum principle that T(x, t) is strictly positive at least in a sufficiently small time 
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interval (0,^*). If f{x,t) ^ 0, then To{x) > 0 implies the positivity of the short-time 
solution outside a small neighborhood of the free boundary Ft^. The second inequality 
in (10.3.14) allows us to use local coordinates. In a simple problem setting in which the 
surface F is given by x„ = 1 and S is given by x^ = 0; / = 0, Ti(x) = 1, To{x) is 
1-periodic with respect to x' = (a:i,X2, ..,x^_i) and 

|log| DnTo{x)\\< No for xeG, D^ = djdx^, (10.3.15) 

the following local coordinates (von Mises variables) can be used. 

T = t, y = {yi,y2,..,yn-i) =x\ yn = T{x,t). (10.3.16) 

The surface Ff^ is invariant under the mapping (x, t) -^ {y, r) and the surface St^ = 
S X (0, t^) corresponds to the free boundary Ft^. The region Gt^ = Gx{0^t^) corresponds 
to Qt^. A new dependent variable u{y, r) = x^, 1-periodic with respect to x' is defined and 
the Stefan problem (10.3.5)—(10.3.9) can be formulated in terms oiu{y, r). Compatibility 
conditions satisfied earlier according to (10.3.5)—(10.3.7) and (10.3.12) are lost in the 
new formulation which can be restored by an appropriate 'regularization' of the Stefan 
condition transformed in terms of u{y, r). 

The regularization of the Stefan condition can be explained only with the help of the 
problem formulated in terms of von Mises variables and therefore the reader is referred 
to [309] for further details. Let u^ be the solution of the regularized problem. If has been 
proved in [309] that on a sufficiently small time interval (0,^^), a unique solution of the 
regularized problem exists and u G //^'^'^(C^i), [r] = m,-\-1 — n-\-5. 

For any arbitrary surface 5, a unique representation of the free boundary r{t) in the 
form Xn = S{x', t) is generally not available and the regularization of the compatibility 
conditions which was possible in a simple problem setting discussed above, is not possible 
in a general case. However, on a sufficiently small time interval, a regularized problem 
can be defined in a different way as follows. 

We look for a scalar function R^{xo,t) defined on the surface St^ which determines 
the surface Ff̂  by the equation 

X = xo + i?^(xo, t)i7{xo), for XQ G S. (10.3.17) 

Here, iy{xo) is the normal as defined in (10.3.10). The temperature T^(x, t) and R^ satisfy 
the following system of equations. 

^ ( n ^ = E - ^ + /^ for(x,t)G(]?^, (10.3.18) 

r = Tl or Y.b^^-+9r = T|, for {x,t) e f*., (10.3.19) 
1 = 1 ^-^^ 

T'{x,t) = 0, for (x,0 e F^ ,̂ (10.3.20) 
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T[x, t) = To'(x), for xeG- R'^^^ = 0, (10.3.21) 

dR' 
eVlR' = -\DT'f/(DT'iy{xo)), (xo,t) e St^. (10.3.22) 

Here, Of̂  is the region bounded by the surfaces F^^, Ff̂  and the planes t = 0 and t = t^. 
The derivative on the r.h.s. in (10.3.22) is calculated at (x,t) with x given by (10.3.17) 
V | is the Laplace-Beltrami operator on the surface S (cf. [309]). 

At £ = 0, the problem (10.3.18)—(10.3.22) coincides with the original Stefan problem 
and it is expected that for any £ > 0, the solution of (10.3.18)—(10.3.22) gives an ap-
proximate solution to the Stefan problem. The condition (10.3.22) is no more a Stefan 
condition and TQ[X) may not satisfy the compatibility conditions. Therefore, the initial 
temperature for Te should be changed to satisfy the compatibility conditions which fol-
low from (10^.18), (10.3.20) and (10.3.22). It has been proved in [327] that for each 
TQ[X) G H'^^{G) satisfying the compatibility conditions up to the order [r] = m -\- 1 tha t 
follow from (10.3.5), (10.3.7) and (10.3.8) on the surface S, a TJ(x) G H^'-iG) exists. For 
each £ > 0,TQ{X) coincides with To{x) outside a small neighbourhood of S and satisfies 
the compatibility conditions up to the order m 4-1 tha t follow from (10.3.18), (10.3.20) 
and (10.3.22). Further, lim ||To - TJ||^^'^ = 0, i^" G //^"'"(^^J and T' G /f2r,r(Q^^j 

Using a variational inequality formulation of the classical one-phase multi-dimensional 
problem, the regularity of the free boundary has been proved in [328]. If for a fixed time 
to, the point XQ is a density point for the coincidence set (ice) in a ice-water system, 
then in a neighbourhood in space and time of (xo,to), the free boundary is a surface of 
class C^ in space and in time and all the second derivatives (in space and in time) of the 
solution are continuous up to the free boundary. The solution is hence classical in that 
neighbourhood. 

All the results on the solvability of the one-phase Stefan problem (10.3.5)—(10.3.9) 
apply without any change to the problem in a two-phase setting (cf. [309]). The formu-
lation of the two-phase problem can be easily written and it will not be presented here. 
If the free boundary F(t) is expressed as in (10.3.10), then the Stefan condition on the 
surface F^^ becomes 

y i ? ( x o , t ) = X-{xo, DT) - X+(xo, DT), for [x^.t] G St^. (10.3.23) 

In (10.3.23), DT is to be calculated at (x, t) and 

X^ = lim \DT{xf,t)fl[DT[xf,t)V[xQ)), (10.3.24) 

xf = XQ^V{xo){R{xQ,t)±r) G Q^i, Q^ = ^t U Q " UF,^. (10.3.25) 

Here, O j and Q^ are regions occupied by the two phases. To{x) is strictly positive in 

G^ and strictly negative in G" and the second condition in (10.3.14) should be taken as 

lim |log| DTo{x ± riy{x))\\< oc, for x e S. (10.3.26) 
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10.3.2 Existence of the classical solution on an arbi trary time 
interval 

How can a short-time solution be extended in time? It has been remarked in [324] 
that following the arguments proposed in [9] (see also [281]), the solution of the problem 
considered in [324] can be extended till the time the free boundary reaches X2 = d2. It 
may be noted that to construct a regular solution even on a short time interval (0, i*), 
the initial temperature To{x) in problem (10.3.5)—(10.3.9) has to be in H^''(G), where 
[r] = m + 1 == n + 5. Therefore to extend the solution T{x^t) beyond t > t^, T{x,t^) 
should belong to H'^'^{Qt*). Such a regularity of the solution cannot be expected in 
general. However, the following statement can be made. The existence interval (0, t"^) 
of the classical solution of the one-phase Stefan problem is characterized by the relations 

Mt.) = |log|D.T||[,^U(X), 

Mt.) = |T(a:,t)|[,';^Uoo, *̂ < C, 

lirn^l Jo(^*) + -^i(^*)} = oo . 

(10.3.27) 

-^i? 

It turns out that under some restrictions on the data of the problem which ensure that 
the first equahty in (10.3.27) is satisfied on an infinite time interval, the classical solution 
of the reference Stefan problem exists for all positive times. 



Chapter 11 

Regularity of the Weak Solutions of 
Some Stefan Problems 

11.1 Regularity of the Weak Solutions of One-dimensional 
Stefan Problems 

A weak formulation (also called a weak enthalpy formulation) of the one-dimensional 
classical Stefan problem was first developed in [329] which was further explored in [330]. 
Since the publication of these two fundamental works, the theory of weak solutions 
(also called generalized solutions) of Stefan problems and Stefan-like problems had a 
phenomenonical growth. Since the emphasis in this volume is on the classical solu-
tions, our interest in this chapter in dealing with weak solutions is limited to the extent 
of exhibiting the regularity of some weak solutions under suitable assumptions. By con-
sidering a one-dimensional Stefan problem it has been shown earlier in § 5.2 that a clas-
sical solution is a weak solution. Some conditions under which a weak solution becomes 
a classical solution were also discussed. We shall state in this chapter some properties of 
the weak solutions and discuss under what conditions a weak solution becomes a classical 
solution. Some questions related to the behaviour of the mush will also be examined. 

The weak formulation of a classical problem was given in § 5.2. For the analysis of 
weak solutions, the following formulation is more convenient. We consider the two-phase 
melting problem (10.2.9) —(10.2.16) and for simplicity take densities and specific heats 
of the two phases equal to unity. Equations (10.2.9) —(10.2.16) will now be considered 
with these changes. Let enthalpy H{T) and functions (/)(x) and f{t) be defined as follows 
(cf. [331]). 

Set 

n = {x:0<x<d}, and Qt. = ^ X {0 < t < t*}, (11.1.1) 

and let T{x,t) be the temperature in Vtt,, where T = KiTi at points where Ti > 
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0 and T = K2T2 at points where T2 < 0. Let, 

H{T) = T/Ku if T > 0 , 

= T/K2-I, if T < 0 , 

= f3{x, t), if T = 0, - / < /?(x, 0 < 0, J 

where /3{x, t) is an arbitrary function, 

T(x, 0) = (t){x) = Kicpi , for 0 < x < 6, 1 

- K2(p2 , for b<x<dA 
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(11.1.2) 

(11.1.3) 

= ^2/2 (̂ ) , on X = d. 

(11.1.4) 

In (11.1.2), the enthalpy of the mushy region belongs to the interval [—/, 0], whereas 
in § 5.2, the enthalpy of the mushy region belongs to the interval [0, /]. This is possible 
by choosing the reference enthalpy differently in different problems but the jump in the 
enthalpy across the free boundary should remain /. 

Definition 11.1.1. A pair of bounded measurable functions {T{x,t), H{T{x^t)))^ 
on Q^t^ is called a weak solution (or a generalized solution) of (10.2.9) —(10.2.16) if the 
equality 

u 
j j [T^xx + H{T)^IJt] dxdt = j [HxYZUi - f H{(t){x))ilj{x, 0)dx, (11.1.5) 

holds for any ip{x,t) such that ipx, "̂ xx, i^t are continuous in Q̂ ^ and ip = 0 at x = 0, d 
and ai t = t^. 

It may be noted that if no sign restrictions are imposed on the initial temperature, 
then the uniqueness of the weak solution is guaranteed only if the initial enthalpy is 
known exactly. This implies that if in the classical formulation the initial temperature is 
equal to the melting temperature in any region, then it should be specified whether it is 
a solid region or a liquid region. 

The energy equation has the form 

dH{T) _ d^T 

dt dx 
J , (x,t) G Clu, (11.1.6) 

which is satisfied in the distributional sense as at T = 0, H{T) is not differentiable. It 
has been shown in § 5.2 that a classical solution is a weak solution. The converse that a 
weak solution is a classical solution was discussed in § 5.2 under the assumptions that a 
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smooth interface x = S{t) having the temperature T = 0 exists which separates the sohd 
region from the hquid region. Examining the conditions under which the mushy region 
in a weak solution in i?", n > 1 has measure zero, and it coincides with the phase-change 
interface and the Stefan condition holds on the interface, is the main consideration in 
this chapter. 

The definition of a weak solution in R^, n > 1 and some properties of the weak 
solution will be discussed in § 11.2. In [331], the existence and the continuity of the 
free boundary in the weak solution of (10.2.9) —(10.2.16) were established and several 
other results were also proved. On using some of the results established in [332], the 
continuous differentiability of the free boundary was proved in [333]. Some of the results 
which were used in [333] to prove the continuous differentiability of the free boundary 
are given below in Proposition 11.1.1. 

Proposition 11.1.1. Assume that (j)' belongs to L^(0, rf) and there exists a func-
tion ^(x, t ) in Qt. with ^^c, ^^j^^:, ^t continuous in Qt. and ^(0,i) = fi{t), ^(c/,i) = 
/2(t), ^(x,0) = (/)(x) ioi 0 < t < t^ and x close to 0 or 1. Then the following results 
hold. 

(1) There exists a unique weak solution T{x,t). 

(2) T(x, t) is continuous on Qt ,̂ smooth in Qf^\{T = 0}, and satisfies Tt = ki T^x 

(Tt = k^T^x) in a . n {T > 0}(resp. 0.^ H {T < 0}). 

(3) There exists a constant p>0 , which depends only on the data, such that T > 0 

(T < 0) for \x\ < p (resp. |1 - a;| < p). 

(4) There exist a constant q such that 
.1/2 

/ 1 y/^ 
f\T:,{x,t)fdx\ <q, 0<t<t^. 

(5) For each t G [0, t^] and Xi, X2 G [0, d], there exists a constant q' such that 

\T{x,,t)-T{x2^t)\<q'\x,-X2\'^\ 

(6) For each t G [0,t= ]̂, there exist a unique S{t) such that T{S{t),t) = 0. 

(7) S{t) is a continuous function oi t ior 0 < t < t^. 

(8) The energy balance condition at x = S{t) is satisfied for each t E [0, t*] in a 

weak form of (10.2.16) as follows. 

S{t) d b 

l[S{t)-S{{))) = -{l/ki) f Ti{x,t)dx-{l/k2) I T2{x,t)dx+{l/ki) f (Pi{x)dx 
0 5(0 0 
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^l/k2) J M^)dx + J -^{d,a)da- J -^{0,a)da. (11.1.7) 
6 0 0 

The above equation represents the energy balance in the region 0 < x < d (apply energy 
conservation law) if the parameters are defined suitably (take Ks = Ki = 1 as in [331]). 
Let Wa = {x G 0 : T(x, a) = 0} and W = Uo<cr<i* ̂ a- ^ is called a mushy region or a 
cloud. The main result of [333] is the following proposition. 

Proposition 11.1.2. Let T{x,t) and S{t) satisfy the conditions given above in 
(2) —(7). Assume (without loss of generality) that S{t) is continuous for 0 < ^ < *̂ for 
some t^. Then S{t) is continuously differentiable for 0 < t < t^, Tx{S{t) ± 0,^) are weU 
defined, bounded and continuous for 0 < t < t=̂  and 

lS{t) = -KiT,{S{t) - 0,0 + K2T,{S{t)-\-0, t), 0<t< U. (11.1.8) 

In particular, Propositions 11.1.1. and 11.1.2. guarantee the existence of a unique 
classical solution without size restrictions on the data which have been imposed in some 
other studies, see [292, 318]. As discussed earher, continuous differentiability of the 
free boundary in the classical solution of (10.2.9) —(10.2.16) implies that S(t) is a C°°-
function. The first step in the proof of Proposition 11.1.2., as discussed in [334], is to 
prove that if the results of Proposition 11.1.1. hold, then there exists a constant M such 
that (Holder continuity with exponent 3/4) 

\S{ti) - S{t2)\ <M\ti- t2 | ' / ' , 0 < ^1, t2 < t.. (11.1.9) 

On using the uniform continuity of S{t) on [0, t^] and the weak form of the energy 
equation (11.1.7), an estimate of the maximum oscillation of S{t) over a time interval 
of variable length can be obtained. The following proposition asserts the behaviour of 
the derivative of the temperature in the solution of the heat equation considered in the 
region 0 < x < S{t), 0 < t < *̂. Proposition 11.1.3. when used in (11.1.8) establishes 
that S{t) is continuous. 

Proposition 11.1.3. Let S(t) be such that S{t) > d > 0 {0 < t < t^), S{0) = b 
and 

\S{ti) - S{t2)\ <M\t,-t2\\ 0<^i ,^2<^*, (11.1.10) 

where 1/2 < A < 1. Let V{x,t) be the solution of the following problem: (i) Vt = 
14x, 0 < X < S{t), 0 < t < t^, S{t) is known, (h) V{x,0) = 0(x), 0 < x < b, (in) 
V{0,t) = f{t), 0 < t < t,, (iv) V{S{t),t) = 0, 0 < t < t,, (v) f{t) and (/)(x) are 
continuous with /(O) = 0(0) and |0(x)| < a{b — x), 0 < x < b, a constant Then K(2^, t) 
converges as a: -^ S{t)-0 to a hmit Vx{S{t)—0, t) which is a bounded continuous function 
of ^ for 0 < ^ < t*. Moveover, the convergence is uniform on [5, t^] for any (5 > 0. 

The proof of the above proposition has been developed in [334] by using the results 
which follow from Proposition 11.1.1., and the integrated (with respect to time over 
the interval [̂ 1,̂ 2] C (0,^*]) form of the Stefan condition. As the following proposition 
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suggests, the infinite differentiability of the free boundary can be proved under weaker 
conditions also (cf. [45]). 

Proposition 11.1.4. Assume that (/>i(x), fi{t) {i = 1,2) are bounded piecewise 
continuous functions. Then there exists a t* > 0 such that problem (10.2.9) —(10.2.16) 
possesses a unique solution in (0, t^) and t^ = sup [t] 0 < S{t) < d, —oo < S{t) < +(X)). 
Moreover S{t) G C°°(0, t*) and the solution exhibits continuous and monotone depen-
dence upon the data. 

To prove the above proposition firstly a smooth chain of data (e.g., C°°-functions) with 
appropriate compatibility conditions at (0, 0) and (1, 0) is considered. The existence of a 
classical solution in some small time interval is guaranteed. By showing the convergence 
of a suitable sequence of weak solutions with the assumed data, the Lipschitz coefficient 
of the classical temperature solution, its derivative and S{t) can be estimated. It has 
been shown that 

\T{x,t)\ < M\x-S{t)\, T <t<t^, re (0,^72), 0 < x < d, (11.1.11) 

and 

\S{t') - S{t")\ < uM \t' - t"\, T<t\ t" < t*, (11.1.12) 

for some constant M and u = {ki-\-k2)/l which depend only on the Loo norm of the data. 
Next, consider sequences {/̂  }, { l̂ } forming a smooth chain of data which approxi-
mate /i, (pi and preserve LQO norms and signs. In this way we can construct sequences of 
classical solutions {5(^)(t),T(^)(x,0} . It has been shown that these sequences converge 
to the classical solution of the Stefan problem in which the Stefan condition (11.1.8) is 
satisfied in the integrated (w.r.t. time) form. 

The regularity of the weak solutions in the degenerate Stefan problems has also been 
considered in some references. For the classical formulation of parabolic-elliptic degen-
erate Stefan problem, we make some changes in (10.2.9) and (10.2.10) and consider the 
following equations in their place. 

ai{T)Tt = T,, + q{T), 0 < x < S[t), 0<t<t,, (11.1.13) 

a2{T)Tt = T̂ x + q{T), S{t) < x < d, 0 < t < t,, (11.1.14) 

T - T i , if Ti >0] 
(11.1.15) 

= To, if To < 0. 

Here, ax(T) > 0 and the equality holds if and only if T = 0 (z = 1, 2). For the formulation 
of a parabohc-elliptic Stefan problem, we shah consider equations (11.1.13) —(11.1.15) 
and equations (10.2.11) —(10.2.16). To define a weak formulation of this degenerate 
problem, we introduce the following notations. 

H{T) e Q{T), for a.e. (x,t) G Qt. (see (11.1.1) for ^ J , (11.1.16) 
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T 

QiT) = Jai(Od^ = C^(T), T > 0, 
0 

= [-/,0], T = 0, 

1 
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(11.1.17) 

Let 

Vo{x) = C+{(l){x)), if x<S{0) = b/ 

= C_(0(x)), if x>b. 
(11.1.18) 

Here, (t){x) is the initial temperature (see (11.1.3)). Let ip{x,t) be a test function as 
defined in (11.1.5). A weak solution of the degenerate problem (11.1.13) —(11.1.15) and 
(10.2.11) —(10.2.16) is defined as a pair of bounded measurable functions (H,T) such that 
the following equation 

IJ{HiPt+T7P,,-{-iPq)dt = I {f^{t)ip,{l,t)-fi{t)ij,{0,t))^^ (11.1.19) 
17* 0 0 

is satisfied for all test functions ip{x, t). Note that in the degenerate case, the temperature 
is not a well-defined function of enthalpy as at T = 0, ai{T) = 0, z = 1, 2. 

The uniqueness of the weak solution of the above degenerate problem has been proved 
in [335]. The Lipschitz continuity of the free boundary in the degenerate problem has 
been proved in [336] under the following assumptions. 

(1) ai{T) e C°°{R), ai{T) > 0 and ai{T) = 0 if and only if T = 0 (i = 1,2). 

(2) hit), f2{t)ec'[0,t.i ct>{x)eC'[0M 

(3) fi{t) is strictly positive, while f2{t) is strictly negative. 

(4) (p{x){x — b) <0 and the equality holds only at x = 6. 

(5) The compatibility conditions hold at x = 0 and at x = d, i.e., /i(O)=0(O),/2(O) = 

(6) f (6) < 0. 

If in addition to assumptions (1) —(6), we have also 

(7) fi{t), f2{t) and (/>'(x) piecewise monotone, 

then using the lap number theory [337] it has been proved in [338] that for each t G [0, t^], 
the limits Tj:{S{t)±,t) exist and S{t) is differentiable. 
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A weak formulation of an n-phase (n > 2) classical Stefan problem (10.2.59)— (10.2.65) 
with (n—1) free boundaries can be easily obtained if enthalpy and temperature are suit-
ably defined (see (11.1.2) —(11.1.4)) in the union of regions occupied by different phases. 
It has been shown in [331] that under suitable assumptions, the free boundaries are 
C°°-functions. 

Using a weak formulation, the criterion for the disappearance of a mushy region in 
finite time or its existence for all times has been studied in many references. In § 5.2, 
this aspect has been discussed for some one-dimensional problems, and in § 11.2 this 
aspect will be further discussed for multi-dimensional problems. It may be noted that 
in the weak formulation, mushy region came into existence because of the formulation of 
the classical problem in terms of enthalpy defined in (11.1.2). We can say that mushy 
region in (11.1.2) is a mathematical novelty. But in CEF (classical enthalpy formulation) 
discussed in § 5.1, the physics tells us that the mush is formed before the liquid phase 
comes into existence. The mushy region in the weak formulation of the classical problem 
has been introduced artificially, in the sense that in the classical formulation there was no 
mushy region. No energy equation is written for the mushy region introduced in (11.1.2). 
In CEF discussed in § 5.1 (equations (5.1.1) —(5.1.12)), an energy equation is to be solved 
in the mushy region and energy balance is done at the boundaries of the mushy region, 
i.e., at the solid-mush and liquid-mush boundaries. 

We shall now briefly discuss the characterization of mushy regions which may arise 
in the weak formulation or in CEF. It may be noted that the solution of CEF (we call 
this solution CES) is not a solution of the classical problem in which a single phase-
change boundary exists but CES could be a weak solution. A weak solution will be CES 
provided smooth interfaces *S'i(̂ ) and 5*2 (t) exist in the weak solution and energy balance 
conditions are satisfied on them. The relationship amongst these three solutions was 
briefly discussed in (5.2.16). 

The non-existence of a classical solution, i.e., the existence of a mushy region in the 
two-phase formulation of the Joule heating problem (see § 5.1) has been discussed in 
[339]. If a constant heat source is present, then the inflnite differentiability of the solid-
mush boundary Si{t) and of the hquid-mush boundary 5*2(t) has been estabhshed in 
[146]. Several results on the structure of the weak solution have been presented in [309] 
and we present some of them here. When a volumetric heat source f{x,t) is present, 
the differentiability of Si{t) and 5*2(̂ ) has been proved in a small time interval (0, i*) in 
([309], Chapter VI) under the assumption that at ^ = 0, 5'i(0) = 5'2(0) = XQ G [-1,1] 
and /(xo,0) > 0. 

The existence of the weak solution of a phase-change problem considered in Q = 
{x : |x| < 1} in which an initial specific internal energy is arbitrarily prescribed has 
been proved in [309]. Let T{±l,t) = T^(t) for t G (0,^). Then for t > t^ (see [309] for 
the definition of t^ as it involves many quantities) there exists only one phase (solid or 
liquid) if T^T^ > 0. If T^T' < 0, then for t > t^ both solid and liquid phases are present 
and the weak solution coincides with the classical solution with only one free boundary. 
For some more results about the disappearance of the mushy region see [309] and § 5.1. 
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The evaluation of the Ufetime of a mush has been studied in [340]. If a suitable energy 
criterion holds, then the mushy zone disappears in finite time. Otherwise, it exists for 
all times. 

11.2 Regularity of the Weak Solutions of 
Multi-dimensional Stefan Problems 

As mentioned earlier, we are in principle interested only in those weak solutions which 
under suitable assumptions are as good as classical solutions, i.e., the phase-change 
boundary exists and is differentiable. This requirement is not met by the weak solutions 
of multi-phase multi-dimensional Stefan problems studied in the references. Therefore 
multi-dimensional problems are being discussed here for an expository reason. We first 
present a weak formulation of a simple two-phase Stefan problem. Weak formulation of a 
one-phase Stefan problem can be easily obtained as a particular case of the formulation 
discussed below. 

11.2.1 Weak solutions of some two-phase Stefan problems in 
R^, n > 1 

The weak solution of a two-phase Stefan problem is being discussed first. For the one-
phase problems stronger results are available than for two-phase problems. The geometry 
and notations of the two-phase Stefan problem formulated in § 1.4.1 will be retained . 
Let dGi lie in the interior of dG2- For any t^, 0 < t < t^ < oo, set Qt^ = G x (O^t^^,). For 
simplicity, the parabolic heat equations in the two-phases will be taken as 

a,-^=C,T, = V^T, + q^'\x,t)T,, {x,t) e Q^} := G^{Q) x {0,t,); z = l,2, (11.2.1) 

where â  is a positive constant. We introduce the following notations. 

H{T) = aiT, if T > 0 , ^ 

= [-/,0], if T = 0, i (11.2.2) 

- a2T - /, if T < 0. J 

T = Ti/ai , if T > 0 , 

= T2/a2, if T < 0 . 

(11.2.3) 

T = g = g.ja,, on ^.^(O) x (0, U), i = 1, 2. (11.2.4) 
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T = f = /z/a„ on G,(0), z = 1,2. (11.2.5) 

q = q^'\ ( X , ^ ) G Q 1 : \ Z = 1 , 2 . (11.2.6) 

With the help of (11.2.2) —(11.2.6), the two equations in (11.2.1) can be written as a 
single equation 

f)J-f 
—-^y'^T + qT, {x,t)eQ.u, (11.2.7) 

which holds in the distributional sense in Q^̂ . Following the procedure indicated in § 
5.2 to obtain a weak solution in the one-dimensional case, a weak formulation for the 
problem (11.2.2) —(11.2.6) can also be obtained. In the present case, integration by parts 
is to be done using Green's formulas [82]. A pair of bounded measurable functions (H,T) 
is called a weak or a generalized solution of the equation 

/ / \TC(t)-^H{T)^\dxdt= f f g-^ds:,dt- JT{f)(l)dx, (11.2, 
fit* -I 0 dG G(0) 

d(t) 
ISxCLl — 

G(0) 

if (11.2.8) is satisfied for all test functions (t>{x,t) with \/x(t>,^l(f>,Dt(l) continuous in Q̂ ^ 
and 0 = 0 on G{t^) and on dG x (0,^*). n is the unit outward normal on the lateral 
surface and dsx is the elementary surface area. C* = Ci at points where T > 0 and 
C* = £2 at points where T < 0. The set W defined as 

W = {{x,t)e Qt. : - / < H{T) < 0}, (11.2.9) 

is called a mushy region or a cloud. It has been proved in [332] that under suitable 
assumptions such as appropriate sign restrictions, continuity (in some cases smoothness 
is also required) of initial-boundary data, smoothness of dG, the condition q = q{x) < 0, 
and holding of compatibility conditions, there exists a unique weak solution of (11.2.8) 
which belongs to W^''^{fltJ (see [332] for the complete set of assumptions). 

Following the procedure indicated in § 5.2 for a one-dimensional Stefan problem, it 
can be proved that a classical solution of the present multi-dimensional problem is also 
its weak solution. If a smooth function ^{x, t) or a smooth surface r(^) exists (see § 
1.4.1) which satisfies the conditions mentioned in § 1.4.1, then it can be proved that a 
weak solution is also a classical solution. In § 5.2, it was assumed that the weak solution 
satisfies initial-boundary conditions and Tf = 0, z = 1,2, on r(^). These assumptions are 
not necessary. If $ and r{t) satisfy appropriate smoothness assumptions together with 
other assumptions mentioned in § 1.4.1, then by choosing test functions suitably, it can 
be proved that a weak solution satisfies initial-boundary conditions in addition to the 
Stefan condition. 

The following result plays an important role in the justification of numerical solutions 
of the classical Stefan problems obtained with the help of weak formulations. Since weak 
solutions are fixed domain formulations without phase-change boundaries, it is easier to 
obtain these solutions numerically. 
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Proposition 11.2.1. Assume that a unique weak solution of (11.2.8) exists in Qt^. 
In any open subset M of Qt, where T > 0 and H{T) > 0 (resp. T < 0 and H{T) < - / ) , 
T is a classical solution of aidTi/dt = CiTi = V^Ti (resp. a2dT/dt = £2^2 = V^Ts). 

In essence, the above proposition tells us that under certain assumptions, away from 
the mushy region, the weak solution is as good as a classical solution. More general 
parabolic operators can also be considered in the above proposition. The stability of the 
weak solution and some properties of the weak solution have also been discussed in [332]. 

In several references, more general parabolic equations have also been considered. For 
further discussion, we shall continue with the notations given in (11.2.2) —(11.2.6). In 
[341], parabolic equations of the following form have been considered in both solid and 
liquid phases. 

dT 
C{x,t,T)-— - V{K{x,t,T)VT) = q{x,t,T), {x,t) € Qu- (11.2.10) 

On using Kirchhoff's transformation given in (1.4.29) and notations used in (11.2.2) — 
(11.2.6), an equation of the form (11.2.7) can be obtained in terms of ^(see (1.4.29) for 
6). The existence and uniqueness of the weak solution and its continuous and monotone 
dependence on the initial-boundary data has been proved in [341] under weaker conditions 
and piece wise smoothness of dG is sufficient. It has been proved that 

eeH'{ntjnL^{o,t.; H\G)). 

See Appendix D for the definition of L°°(0, ̂ *; H^{G)). 

Instead of a classical formulation of the two-phase Stefan problem, the following 
singular nonlinear partial differential equation has been considered in [342]. 

dH[T) _^.^ ^^^^ ̂ ^ ^ ^^^ _^ ^^^^ ^^ ^^ ^^^ ^ ^ (11.2.11) 

The weak derivatives have to be considered in (11.2.11). By a weak solution of (11.2.11), 
we mean a function T(x, t) G T^2'̂  defined by T = H-\w), where w is a function defined 
in Qt^ such that w C H{T), the inclusion being intended in the sense of graphs and w 
and T satisfy the equation 

/ w{x, T)(I){X, T) dx+ j f{-w{x, r)-^-^d' V^(^ -h b{x, r, T, \/:,T)4)}dxdT = 0, 

^ '° to G '' (11.2.12) 

for all test functions 0 E W2'^{^tJ, whose trace is zero on dG x (0, t^) and on all intervals 
[̂ 0,̂ ] C (0,t*]. Under suitable assumptions (cf. [342]), the continuity of T{x,t) has been 
established which can be extended upto Qt*. By considering a singular partial differential 
equation of the form 

dt 
3V'T{x,t), (11.2.13) 
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which holds in Qt^ in the sense of distributions, continuity of the temperature in the 
weak solution of a two-phase problem has been proved in [343]. The method of proof 
in [343] relies strongly on the properties of the Laplacian operator and the absence of 
lower order terms in the energy equation. The approach in [342] is different from [343] 
and the method of proof consists of a suitable modification of the parabolic version of 
De Giorgi estimates reported in [295]. For further references on weak solutions, see the 
bibliography in [342]. 

The characterization of the mushy region in CEF in î "̂ , n > 1 and in the weak so-
lution of the classical Stefan problem will now be discussed briefly. The first attempt to 
investigate the behaviour of the mushy region in a multi-dimensional two-phase problem 
was made in [344]. The non-increase of the mushy region in the homogeneous Stefan 
problem (no heat sources) with constant Dirichlet data and almost uniformly continuous 
initial data was proved. The results of [344] have been generahzed in [345] by consider-
ing a nonhomogeneous Stefan problem with heat sources. Let (T, H{T)) be a bounded 
generalized solution of the following problem. 

^-V'T = f{H), in a . , 

(11.2.14) 

if 1,̂ 0 = ̂ o(:r), xeG. 

Let the mushy region W{x, t) be defined by (11.2.9) and let W{to) = Wn{t-=to). If the 
function f{H) in (11.2.14) is uniformly Lipschitz continuous, /(O) > 0 and /(—/) < 0, 
then for every T G Loo{dG x (0,t*)), HQ E LOO{G), the mushy region W{x,t) in the 
bounded generalized solution of problem (11.2.14) is nonincreasing in time. ^^(^2) C 
W(ti) for every 2̂ > î? in the sense that | W{t2}^{ti) \= 0. Furthermore, the mushy 
region can be described in the following way: There exists a non-negative function P : 
G ^ RU {+00} such that 

W = {{x,t) : X e W{0), 0<t< P{x)}. (11.2.15) 

For every x G W{0) on the interval t G [0, P{x)), the function H{T) is a solution of the 
Cauchy problem 

Ht = f{H), H\t=o = Ho{x). (11.2.16) 

Criteria for the disappearance of the mushy region after some finite time in the one-
phase and two-phase Stefan problems in the absence of heat sources in domains with C^ 
boundary have been discussed in [346]. The behaviour of the mushy region in the corner 
points of a domain from different angles has also been discussed. 

A CEF in R^, n> 1 has been considered in [157] and under the assumption that both 
regular and weak solutions exist, the behaviour of the solution has been investigated. A 
weak formulation in the form of the following singular equation has been considered. 

—- - divK(x,t,Ty:,T) = Q{x,t,H), in Q,̂ . (11.2.17) 
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Here, the function Q G C{^t, x R)- The main interest in the weak solution in [157] is in 
the behaviour of the solution near the free boundaries and in the growth of the mushy 
region. To investigate the behaviour of the solution near solid-mush and liquid-mush 
boundaries, it has been assumed that the classical enthalpy solution exists. It has been 
further assumed that the mush keeps expanding into the solid phase, until, eventually, 
it is invaded by a new liquid phase. To investigate the behaviour of the mush near the 
points where / / = 0, {H > 0 in the liquid region) it is assumed that a weak solution 
exists with T > 0 in Qt. (temperature of the solid is taken as zero). Let (T, H), where 
H = T + w with T e L^(ajnW^2'^(Q,J, we Hy{T) a.e. in Q,, and i/; G L ° ° ( a j be a 
local solution of (11.2.17) in Q̂ * (see [157] for the definition of a local solution). Here, Hy 
is Heavyside graph in which Hy{T) = 0, T > 0, Hy{T) = -l, T <0 and //,(T) e [0, - / J 
for T = 0. UK and Q satisfy some assumptions (cf. [157]), then 

t 

w{x,t) -w{x,r) > J Q{x,p,w{x,p))x^^^^^{x,p) dp, (11.2.18) 
T 

a.e. in Q^̂ , T < t. Also for 0 < r < t < *̂, we have 

meas{xG G\T{x,t) = 0} < meas{x G G\T{X,T) = 0} . (11.2.19) 

Similar results can be obtained near the points where H = —I (see [157] for other results). 
An example has been constructed in which the mushy region is enclosed by two solid 
phases. The mushy region disappears and reappears immediately after extinction. 

11.2.2 Regularity of the weak solutions of one-phase Stefan 
problems in R", n > 1 

In view of (11.2.2), we shall caU a Stefan problem one-phase, if either H < —I {H > 0) 
in one of the phases and in another phase H — 0 {H = —I). We consider the second case 
and let G'i(^) be the liquid phase at any time t G (0, t^) with temperature T{x, t) > 0 and 
H{T) > 0. In the sohd phase H(T) = - / . Gi(t) is the set of points (x, t) with x outside 
diG. Note that dGi hes inside dG2. Take 02 = 0, /2 = 0, 7/(02) = - / and i/(0i) > 0. 
The existence and uniqueness of the weak solution (under suitable assumptions) of the 
one-phase Stefan problem has been proved in [332]. The continuity of the temperature 
in Qt* in the weak solution can also be proved under suitable assumptions some of which 
are : (i) diG G C^^^, T? > 0, (h) / i and 0i are continuous functions on diG x [0, cxo) 
and (6*1(0)) respectively, coinciding on diG, (iii) 0i > 0 in ^1(0) (see [332] for some 
other assumptions). The non-occurrence of the mushy region in the one-phase problem 
has also been proved. 

Let W = {{x,t) G a^; - / < H{T) < 0} and W{a) = Wn{t = a}. Then W(a) C 
{Gi{a)) — Gi{a). W can be called a weak free boundary. It has been proved that: (i) a 
weak free boundary has no interior points in Qt^, and (ii) W is determined only upto a 
set of measure zero. 
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The measure of the mushy region in the weak solution of a one-phase multi-dimensional 
Stefan problem has been estimated in [347] with the help of a refined method of isoperi-
metric inequalities. There are two disjoint connected components of the boundary. On 
one part of the boundary, the temperature T = 0 is prescribed and on the other part of 
the boundary, a constant temperature T > 0 is prescribed. The results obtained in [347] 
hold till the liquid phase reaches the second component of the boundary. The weak solu-
tion of a spherically symmetric one-phase Stefan problem in R^ has been considered in 
[348]. The main goal is to obtain conditions on the prescribed boundary temperature and 
initial enthalpy for the disappearance of the mushy region after a finite time. A sketch of 
the proof has been given for a one-phase problem considered in a regular bounded open 
set of R"^. 

The behaviour of the mush in a one-phase Stefan problem has been discussed in [349]. 
A one-phase problem in a region Q C i?" with a piecewise-smooth boundary has been con-
sidered. It has been shown that the lifetime of the transient phase is uniformly bounded 
for every i and 7 > 0 on the Lebesgue set lGi{i, x) < —j\ for some specific function Gi 
(cf. [349]). If the boundary of 0 is C^-smooth and a suitable smooth boundary temper-
ature is prescribed, then the necessary and sufficient conditions for the disappearance of 
the mushy region in some finite time have been obtained. The behaviour of the mush 
near corner points of a two-dimensional domain has also been investigated. 

The equivalence of the weak enthalpy formulation of a one-phase Stefan problem in R^ 
and its weak variational inequality formulation has been established in [197]. It may be 
noted that a weak enthalpy formulation of a one-phase Stefan problem can be extended 
to a two-phase problem but the variational inequality formulation given in (7.4.36) has 
no natural extension to an inequality formulation of a two-phase problem. Let ft be 
a bounded domain in i?^, n > 1, whose boundary consists of two smooth connected 
hypersurfaces Fi and r2 with Fi lying inside F2 and bounding a simply connected domain 
G. Let B be a large ball with center 0 containing Q and set D = B — G. The one-phase 
Stefan problem consists of finding the free boundary t = S{x) and the temperature 
T(x, t), 0 <t <t^, X e D, such that 

Tt - V^T = 0, in {(x, t) : x e D, t> S{x)} ; S{x) = 0, if x 6 17, (11.2.20) 

T = 0, and VTVS= - / ; t = S{x), x e D - Q, (11.2.21) 

T = 4){x) > 0, X G Q, t = 0, and T - g{x, t) > 0, x G Fi, 0 < ^ < t*. (11.2.22) 

Here, / > 0 is a constant, and g{x,t) and (/)(x) are C^-functions in Fi x (0,^*] and Q, 
respectively. To define a weak formulation of the problem (11.2.20) —(11.2.22), we define 
enthalpy H{T) as: 

H(T)= T, T > O l f / / ( T ( x , 0 ) ) - / - 0(x), X G O , 
i , and I (11.2.23) 

= T-l, T <0} [ = -I, xeD-n. 
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The region D — Q is occupied by ice at temperature T = 0. The weak formulation of 
the problem (11.2.20) —(11.2.22) in D can be easily obtained and is given by 

u u 
I I (rVh + H{T)vt) dxdt = f f g-^ds^dt - f H{T{x, 0))v{x, 0)dx. (11.2.24) 
0 D 0 dD D 

Here, v{x,t) is a test function in D x (0, t*) with a definition similar to that given in 
(11.1.5) (make appropriate changes). The unique solution of (11.2.24) exists. On using 
the transformation 

t 

u{x,t) = fT{x,T)dT, T > 0, {x,t) e Du=Dx (0,^*), (11.2.25) 
0 

we have Ut = T(x,t). Writing the energy equation in terms of enthalpy and then inte-
grating (11.2.20) with respect to time, we get 

Ut - V\ = 7(uf) + / , a.e. in A.- (11.2.26) 

Here, we have set H{T) = T- 7(T), 7 is a monotone graph, and 7(T) > 0 (cf. [332]). 

For all test functions !> > 0, a.e. in Dt^ with appropriate initial-boundary values 
(make appropriate changes in (7.4.19) to define v{x,t)), we have 

{ut - V\){v - Ut) > f{v - Ut), a.e. in A . , Ut > 0. (11.2.27) 

Note that {ut - V^u - f)v = ^{T)v > 0 and {ut - V'^u - f)ut = 0, in A* • Conversely, 
li u satisfies (11.2.27) and T{x,t) is defined through (11.2.25) and satisfies the boundary 
and initial conditions {T{x, 0) = ^{x), x e Q and T{x, 0) = 0, x e D — Q), then enthalpy 
equation (11.2.7) with g' = 0 can be recovered from (11.2.27) and {T{x,t),H{T)) is a 
solution of (11.2.24). In other words, T{x,t) is a weak solution if and only if u{x,t) in 
(11.2.25) is a solution of the 'variational inequality' (11.2.27). Note that the variational 
inequality (7.4.36) is different from the 'variational inequality' (11.2.27) as we have (v—Ut) 
in (11.2.27) and not (v — u) as in (7.4.36) and u is also defined differently in (7.4.36). The 
variational inequahty corresponding to the problem described above is given by (7.4.36) 
whose unique solution exists (under suitable gissumptions). It can be proved that the 
unique solution of (7.4.36) satisfies (11.2.27). Therefore T{x,t) is a solution of (11.2.24) 
if and only if it is a solution of (7.4.36). Using the variational inequality formulation of 
the one-phase problem, it has been proved in [197] that the free boundary arises as a 
boundary of a set and so it has no interior points. It has also been shown that under 
suitable hypotheses, the domain occupied by water in a ice-water system is star shaped 
and the free boundary is star shaped with the representation p = p*{0, t), (p, 0) are polar 
coordinates; p* is a continuous function of 6 and t and uniformly Lipschitz continuous in 
the angles 6, and is monotonically increasing in t. 

A two-phase two-dimensional Stefan problem in a rectangular region Qt^ = 0 x 
(0,^*), Q = {(xi,X2) : 0 < Xi < 1,0 < X2 < b} has been considered in [350]. Linear 
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homogeneous parabolic equations are considered in the two phases occupying the regions 
fli and ^2, and Q = Qi ur^2 U6'(a;, 0); X2 = S{x\,t) is the equation of the free boundary. 
^1 = {(3^1,^2,^) : 0 < 0:2 < S{xi,t)} and Qt^ H dQi x (0,^*) is the free boundary. Let 
T{xi,X2,t) be the temperature in Qt^ defined as in (11.2.3) with appropriate changes (to 
formulate this problem see § 3.2.4 and make appropriate changes). Prescribe suitable 
boundary conditions on the edges so that the free boundary divides Qt^ into two disjoint 
regions, each consisting of a single phase. Let, 

T(a:i,X2,0) - 'ip{xuX2), in Q; and S{xi,0) = yo{xi), 0 < Xi < 1. (11.2.28) 

Here, ip and yo are given functions. It has been proved that if the classical Stefan prob-
lem described above is formulated in terms of the temperature T(xi,a:2,^) in Qt^, then 
T{xi,X2,t) e W2'\nt^)nH^^^^\nu), 0<S<l,the free boundary is a Lipschitz surface 
and the Stefan condition written in terms of the temperature T(a:i,a:2,0 ^̂  satisfied in 
almost everywhere sense. The Stefan condition has been considered in the form 

cos(n, Xi) + /cos(n, t) = 0, X2 = S{xut), i = 1,2, (11.2.29) 

n is the unit outward normal to the free boundary, a{T) = Ki in Qi and OL[T) = K2 in 
r̂ 2, the notation [v] stands for the jump in v across the free boundary. The next step is 
to obtain a weak formulation by multiplying the energy equation formulated in terms of 
T{xi,X2, t) by a suitable test function ri{x\,X2, t) and carry out the integration by parts. 
We obtain 

I {a{T)VT • V77 + TtT) + IxtV] dxdt + (5 f Trjds = 0. (11.2.30) 

Here, x{^i i) is the characteristic function of the region Hi, Tu^ = {(1, ^2)5 0 < X2 < b} x 
(0,t*) and KidT/dn-\-/3T = 0 on Tu^ ndQi. Other boundary conditions have been taken 
to be either temperature prescribed or no flux conditions. The second term in (11.2.30) 
arises during the integration by parts and using the boundary condition, 77 = 0 on the 
boundary on which temperature is prescribed. When equation (11.2.30) is discretized in 
time and not in space (cf. [307], [351]), a sequence of ehiptic free boundary problems is 
obtained. The solution of each free boundary problem has been obtained as the minimum 
of a suitable functional. To obtain existence, uniqueness and regularity results some 
conditions on the initial temperature IIJ{XI,X2) are imposed such V (̂xi,X2) G W2{^) H 
C"'(n), 0 < i/ < 1, V̂ :,, < 0, IIJ:C2 > 0 (cf- [350] for further details). 

A regularity theory for the weak free boundary which is defined as d{T > 0) for the 
parabolic two-phase free boundary problems (T > 0 in one of the phases and T < 0 in 
another phase) has been developed in [352]. The regularity theory has several approaches: 

(i) Lipschitz minimal surfaces are smooth. 

(ii) 'Flat' minimal surfaces (in some 'Lebesgue' differentiability sense) are smooth. 

(iii) Generalized minimal surfaces are smooth except on some small set. 
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The part (i) of the theory, that is, free boundaries, Lipschitz in space and time, are 
regular, has been developed in [352] (see [389] also). Viscosity solutions have been con-
sidered (weak solution is a viscosity solution but every viscosity solution is not a weak 
solution) whose free boundaries are given (locally) by a Lipschitz graph. In this case they 
enjoy further regularity and other properties such as the free boundary is a C^ graph in 
space and time and temperature is a classical solution. The regularity of the free bound-
ary is possible for those two-phase problems in which the two fluxes from both sides at 
the free boundary are not vanishing simultaneously. An example has been constructed 
which shows that a Lipschitz free boundary may remain Lipschitz for an interval of time 
and may not regularize instantaneously although both the phases may have non-zero 
temperatures. 
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Appendix A 

Preliminaries 

Some functional analytic material used in the chapters but not defined or explained there 
is being presented in Appendices A—D. This material is intended as an aide-memoire. 
For supplementary reading the reader is referred to references [9, 21, 58, 282, 309, 353, 
354, 355, 356] 

We start with the definition of a vector space as the concept of a vector space, also 
called a linear space, is fundamental to the functional analytic results which hold in 
vector spaces of some special type such as Hilbert spaces, Banach spaces and Sobolev 
spaces. 

1. Abstract space. An abstract space, also called simply a 'space' is a set of 
(unspecified) elements satisfying certain axioms. By choosing different sets of axioms, a 
variety of abstract spaces can be defined. 

2. Linear space. Let F be a field, generally taken to be R (real fine) or 0* (complex 
plane). The elements of F are called 'scalars'. Let VK be a nonempty set whose elements 
are called 'vectors'. If x,y belong to W, define a mapping from ly x 1^ into W as 
{x, y) ^ X -\- y, where x + ^ is a unique element of W. We call this mapping 'addition' 
of vectors which is a 'binary operation' on W. Let the addition of vectors satisfy the 
following axioms. 

(i) X -\- y = y -\- X, for all x,y E W. This axiom is called 'commutative law'. 

(ii) {x-\-y) -{- z = x-\-[y-\-z), for all x,y,z ^ W. This axiom is called 'associative law'. 

(iii) For each x ^W, there exists a unique element 0 in W such that x + O = O + x = x. 

This implies the existence of a 0 (zero) element in W. 

(iv) For each x ^W, there exists a unique element —x G W such that x -f (—x) = 0 

= {—x) + X. This imphes the existence of an additive 'inverse' for each x. 

Scalar multiplication axioms. To every scalar a E F and a vector x £ W, there 
corresponds a unique vector ax EW such that 

(v) a{l3x) = {a/3)x, for every /3 G F, 

(vi) Ix = X and Ox = 0, for all x ^ W, 

(vii) a{x + y) = ax -\- f3y, (distributive law), 

(viii) {a + I5)x = ax + (5x, (distributive law), 

The element ' 1 ' belonging to F is cahed the 'multiplicative identity'. 
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A set W with the operations of addition of vectors and the scalar multiphcation of a 
scalar and a vector defined on it and satisfying axioms (i)—(vii) is called a vector space 
or a linear space over the field F. 

The concept of a metric or 'distance' in the vector space W can be introduced through 
the notion of norm which is a real valued function defined on W. 

3. N o r m . A norm (a length function) on a vector space W is a real valued function 
defined for sdl x e W, denoted by ||a:|| . It is called norm of x if it satisfies the following 
axioms: 

(i) ||x|| > 0; ||x|| = 0, if and only if x = 0, 

(ii) ||x + 1̂1 < ||x|| -f \\y\\, for aU x,y eW, 

{in)\\ax\\ = \a\\\xh a e F. 

If the property, ||x|| = 0 implies x = 0 is not true, and all other properties described 
above hold, then we call the function |H| , a semi-norm on W. 

A vector space with a norm defined on it is called a normed space and is denoted 
as (VK, IHD- The notation | | - | |^ means the norm is defined on W. A vector space can 
be equipped with different norms. The distance d(x, y) between x,y ^ W or a distance 
metric on W may be defined as 

d(x,y) = \\x-y\\ . 

4. C o m p l e t e n e s s of a vector space . Let {xn} be a sequence of vectors in W. {xn} 
is said to be a Cauchy sequence if for every £ > 0 there exists a positive integer Â  = N{£) 
such that 

d{xn, Xm) < £ for every m,n > N. 

A hnear space W is said to be a complete linear space if every Cauchy sequence in W 
converges to a vector in W or in other words it has a limit which is an element oi W. A 
normed space which is complete in the distance metric defined by the norm is called a 
Banach space. 

The concept of the length of a vector has been generalized in the definition of the 
norm of a function but what is missing is the analogue of the definition of familiar 'dot 
product ' of two vectors in vector calculus. This is taken care by the definition of an inner 
product. 

5. Inner product or Scalar product . An inner product on VK is a mapping from 
VK X VK into the scalar field F of the linear space W which associates with any two 
elements x, ?/ G VK a scalar which we denote by (.x, y) such that 

(i) {x + y^z) = (x, z) + (?/, z), for ah x, y, z G W, 

(ii) {ax,y) = a{x,y), and (x.ciy) = a(x,?/) , a G F , 
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(iii) {x,y) = [y,x) (bar denotes the complex conjugate), 

(iv) (x, x) > 0; (x, x) = 0 if and only if a: = 0. 

An inner product defines a norm as well as a metric on W which are given by 

11x11 = yj{x,x); and d{x, y) = ^J{x-y,x-y) = \\x - y\ . 

An inner product space which is complete in the norm defined by the inner product 
is called a Hilbert space. All Hilbert spaces are Banach spaces. 

If can be easily proved that: (i) {x,y) < \\x\\\\y\\, (ii) |||x|| - ||y||| < | | ? / - x||. 
The following results hold good for normed spaces. 

(1) On a finite-dimensional vector space W, any norm ||-|| is equivalent to any other 
norm |||-|||. Two norms ||-|| and |||-||| are said to be equivalent if there exist positive numbers 
a and b such that for all x e W, we have 

a|NI|<||a;||<6M. 

(2) Every finite-dimensional normed space is complete. 

6. Compactness. A subset V in a normed space W is compact if every sequence in 
V has a convergent subsequence with a limit point in V. 

The same definition holds for the normed space W. In a finite-dimensional normed 
space W, any subset F of VK is compact if and only if V is closed and bounded. A 
compact subset V of W is closed and bounded but the converse of this statement is 
in general false for infinite-dimensional normed spaces. V is said to be weakly compact 
if every sequence of its elements contains a subsequence which converges weakly to an 
element of V (see 26. of this appendix for the definition of weak convergence). 

7. Compact support. A function f : W -^ F (field F) has a compact support in W 
if it is zero outside a compact subset of W. The closure of the set {x E W : F{x) ^ 0} is 
called the support of F. 

8. Denseness. A subspace V of a normed space W is dense or 'everywhere dense' 
in W if its closure with respect to the norm is equal to W or contains W as a subset. W 
is said to be separable if it has a countable subset which is dense in W. 

9. Linear operator. In the case of normed spaces, a mapping is called an 'operator'. 
A linear operator P : D{P) C Wi ^ W2 is an operator such that: (i) the domain D{P) 
of P is a normed vector space and the range R(P) lies in a normed vector space over 
the same field F over which D{P) is a vector space, (ii) for all x,y e D(P) and scalars 

P(x + y) = Px + Py] P{ax) = aPx. 

The null space or kernel of P is the set of all x G D(P) such that Px = 0. If P is 
one-to-one, then a mapping P ~ \ called an inverse mapping of P, can be defined as 
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P-^ : R{P) -^ D{P). If Pxo = yo, then P'^yo = XQ. If P'^ exists, then it is hnear. P'^ 
exists if and only if the kernel of P consists of only the zero element. 

10. Bounded linear operator. Let Wi and W2 be two normed spaces and P : 
D{P) C Wi —^ W2 he Si hnear operator. The operator P is said to be a bounded linear 
operator if there is a real number S > 0 such that for x e D{P), 

\\Px\\<5\\x\\. 

The norm on the left is on W2 and the norm on the right is onWi. A bounded linear op-
erator P maps bounded sets in Wi onto bounded sets in VK2. If VK is a finite-dimensional 
normed space, then a linear operator on W is bounded. 

11. Norm of a bounded linear operator. The norm ||P|| of a bounded linear 
operator is defined as 

| | P | |= sup \\Px\\ 
xeD(P) 

By taking 6 = \\P\\, we have ||P3:|| < | |P|| ||x||. 

The vector space C{X, Y) of all bounded Unear operators from a normed space X 
into a normed space Y is itself a normed space under the norm defined as 

| |Q| |= sup||Qa:||, QeL{X,Y). 

If Y is a Banach space, then C{X, Y) is a Banach space. 

12. Continuity of an operator. Let Wi and W2 be two normed spaces and 
P \ D{P) C W\ ^ VF2 be an operator not necessarily linear. The operator P is said 
to be continuous at a point XQ G D{P) if for every 5 > 0 there is a (̂  > 0 such that 
||Px — Pxoll < e for all x G D{P) satisfying ||a: —xo|| < 6. P is continuous if P is 
continuous at every x G D{P). 

The mapping x —> ||a:|| is continuous, i.e., the mapping {W, \\'\\w) ~^ ^ ^^ continuous. 
If P is linear, then it has some interesting properties. 

(i) P is continuous if and only if P is bounded. If P is bounded, then Xn -^ x implies 

(ii) If P is continuous at a single point, then it is continuous. 

13. Compact and completely continuous operators. Let Wi,W2 be normed 
spaces and P an operator from Wi into W2. The operator P is called compact if P{A) 
is precompact in W2 whenever the set A is bounded in Wi. The term relatively compact 
is also used for precompact. A is precompact in Wi if A is compact in Wi. 

If P is continuous and compact, then it is called a completely continuous operator. 
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Every compact operator is bounded. A linear operator P : Wi -^ W2 has the property 
that if Wi is finite-dimensional, P is compact. 

Every linear compact operator is continuous. 

Let P be a linear operator from Wi to W2. Then P is compact if and only if it maps 
every bounded sequence {x^} in Wi onto a sequence {Pxn} in W2 which has a convergent 
subsequence in W2. If a sequence {T„} of compact hnear operators from Wi —> W2 is 
uniformly operator convergent, i.e., ||T^ — T\\ —> 0, then the hmit operator T is compact 
provided W2 is a Banach space. 

14. Restriction (extension) of an operator. Let P : D{P) C X —^ Y and 
A C D(P). Let P\^ be a mapping from A ^Y defined by 

P\^:A^ y, P\^x = Px for ah x e A. 

The operator -P|^ is called the restriction of an operator P. Let M D D{P). An operator 
P is called an extension of P if P : M —> F is such that P|/)(p) = P, i.e., Px = Px for 
all X G D{P). 

15. Orthogonal complement. In an inner product space (a space with a inner 
product defined on it) Z, two vectors x and y are said to be orthogonal, written as xJ-y, 
if (x^y) = 0. The vector x is said to be orthogonal to a set F C Z, written as x±Y, if 
X is orthogonal to every y ^ Y. The subsets X and Y of Z are said to be orthogonal, 
written as X±Y, if {x,y) = 0 for all x e X and y eY. The set Y^ = {z e Z : z±Y} 
called the orthogonal complement of Y. 

is 

16. Direct sum and projection operator. A vector space W is said to be the 
direct sum of two subspaces X and F of VK, written as M̂  = X 0 F, if each w e W has 
a unique representation 

w = X -\- y, X e X, y £Y. 

If Y is any closed subspace of a Hilbert space H, then / / = y 0 Z, Z = y-"- and for every 
X e H there exist Oi y eY such that 

X = ^ + 2:, z e y ^ (direct sum). 

The above equation defines a mapping P : H ^ Y, Px = y. F is called orthogonal 
projection or projection operator of H onto Y. It can be proved that P is a bounded linear 
operator and P is idempotent, i.e., P^ = P. 

17. Functional. A functional is defined to be an operator whose range lies on the 
real line R or in the complex plane (p or in other words a functional is a real or complex 
valued function. Some authors use the term functional for a continuous linear real valued 
operator. In this volume, we have used the term functional as a real valued function and 
whenever the term functional is used as a continuous linear real valued function, it has 
been explicitly indicated. 
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18. Dual space. Let W he a normed space. Then the set of ah functionals / 
(bounded hnear real valued functions on W) on W constitute a normed space with the 
norm defined by 

11/11 = sup \f{x)\ 
xew 
l|x|| = i 

This space of functionals is called the dual space of W and is denoted by W. 

The dual space W^ of a normed space VF is a Banach space (whether or not W is). 
We can consider {W'Y, i.e., the dual space of the dual space W denoted by W". For each 
X G 14̂ , we define a mapping g^ which is such that if / G VK', then Qxif) = f{^)-> Ox ^ ^" 
and to each x G VK there exists a ^^ G W". Thus we have defined a mapping C : VK —» 
W", X y-^ Qx- G is called the canonical mapping or the canonical embedding of W into 
Wr G is linear. 

19. Isomorphism. Let Wi, W2 be two given vector spaces over the same field. We 
would like to know whether Wi and W2 are essentially identical, i.e., do they have the 
same structure in an abstract sense. 

An isomorphism of a Hilbert space Wi onto a Hilbert space W2 over the same field is 
a bijective (one-to-one and onto) linear operator P : Wi ^ W2 such that for x,y eWi, 

[Px.Py) = (x,y). 

Wi and W2 are called 'isomorphic Hilbert spaces'. Isomorphisms in normed spaces pre-
serve norms. If Wi and W2 are two vector spaces (not necessarily normed spaces), then 
P should preserve the two algebraic operations of a vector space. 

20. Reflexivity. It can be proved that the canonical mapping G : X —> X" ^ x ^^ g^ 
is linear and one-to-one. G need not be onto. A normed space X is said to be reflexive 
if the canonical mapping G is onto. The following results hold. 

(i) If a normed space X is reflexive, it is complete and hence a Banach space. 

(ii) Every finite-dimensional normed space is reflexive. 

(iii) Every Hilbert space is reflexive. 

21. Riesz representation theorem for functionals. For any bounded hnear 
functional / on a Hilbert space W there exists a unique vector y eW such that 

f{x) = (x, y) for all x e W. 

Here, y depends on / and is uniquely determined by / and has the norm 

i|y|| = 11/11-

22. Bilinear form. A mapping a(u,v) : U x V -^ R, where U and V are vector 
spaces over the field R of real numbers is called a bilinear form if the mapping a{u, v) is 
linear in both the arguments, i.e., 
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a{aiui + a2U2, /3i^i + 132V2) = Ezv=i Q;̂ /?Ja(̂ î , vj), a ,̂ PJ e R , Ui e U, vj 6 V; 

1 = 1,2, J = 1,2. 

We can also consider a bilinear form from U xU -^ R. If f/ and V are normed spaces 
and there exists a real number S such that 

|a(^,z;)|<(5||^||f;||i;||^, ii G f/, i; G V, 

then a(u,v) is said to be bounded. The norm ||a|| of a bounded bihnear form is defined 
as 

||a|| = sup \a{u, v)\. 

II 1 ^ 1 1 = 1 

It is easy to prove that 
\a{u,v)\<\\a\\\\uU\v\\y. 

A bilinear form is said to be continuous if it is bounded or if there exists a /? G i^, /? > 0 
such that |a(ti,z;)| < (5 \\u\\jj \\v\\y . 

23. Coercivity. Let a{u,v) : U x U -^ R, and U he a, normed space. a{u,v) is said 
to be coercive on U if there exists a,n a e R, a > 0 and a{u, u) > a \\u\\ , for all u £ U. 

Let a{u,v) : U x U -^ R, where f/ is a Hilbert space. Define a{u^v) = {u^v). Then 
a{u,v) is symmetric, i.e., a{u,v) = a{v,u), is continuous (take /3 = 1 in 22.) and has 
coercive property (take a = 1) as a{u,u) = {u,u) = \\u\f > \\u\f . Note that a bilinear 
form is not symmetric in general. 

24. Adjoint operator. Let Wi and W2 be two Hilbert spaces and P be a bounded 
hnear operator, P : Wi -^ W2. Then the Hilbert-adjoint operator P* of P is an operator 
from W2 -^ Wi such that for all x eWi, and y GW2, 

{Px,y) = {x,P*y). 

It can be proved that P* exists, is unique, is a bounded linear operator, and ||F*|| = | |P | | . 

25. Strong convergence of a sequence. A sequence {xn} in a normed space 
X is said to be strongly convergent or convergent in the norm if there exists an x G X 
such that lim ||xn —a:||=0. The strong convergence is indicated as i:„—>a: or lim Xn = x. 

26. Weak convergence of a sequence. A sequence {x„} in a normed space 
X is said to be weakly convergent if there exists an x G X such that for every f £ X' 
(dual space), we have lim /(x„) = f{x). Weak convergence is indicated as x^ -^ x or 

Xn ^ X. The element x is unique and is called the weak limit of {x„}. Note that in the 
weak convergence we are dealing with a sequence of numbers. 

The following results hold. 
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(i) If {xn} converges weakly to x, then every subsequence of {xn} converges weakly 
to X. 

(ii) If Xn -^ X, then the sequence {||x„||} is bounded. 

(iii) Strong convergence implies weak convergence with the same limit. The converse 
is generally not true. 

(iv) If X is a finite-dimensional normed space, then weak convergence implies strong 
convergence. 

A sequence of bounded linear operators {Fn}, Pn ̂  C{X,Y) {X and Y are normed 
spaces) can be considered for defining strong and weak operator hmits. If an operator 
P G C{X, Y) exists such that if, (i) \\Pn — P\\ -^ 0, then P is called the uniform operator 
limit of {Pn}, (h) \\Pn^ — Px\\-^ 0 for all x £ X, then P is called the strong operator 
limit of {Pn}, and (iii) \\f{Pnx) - f{Px)\\ -> 0 for all a: E X and / G Y\ then P is called 
the weak operator limit of {Pn}-

Appendix B 

Some function spaces and norms 

1. Convexity. A set V in a vector space W is said to be a convex set if the 
line segment joining any two points in V is contained in K. A real valued function 
f{x) defined on a convex set V is said to be a convex function if f{Xx + (1 — X)y) < 
Xf{x) + (1 — X)f{y), 0 < A < 1 for all a:,2/ G V. The function is said to be concave 
if the inequality is reversed. If the equality is excluded, then we have a strictly convex 
(concave) function. 

A Hilbert space X is strictly convex in the sense that if x,y G X and ||2;|| = \\y\\ = 
1, x^y.then \\x-^y\\ < 2. 

2. Holder continuity and Lipschitz continuity. A function f{x) defined on a 
bounded closed set Q of R^ is said to be Holder continuous in ft with exponent a, 0 < 
ce < 1, if there exists a constant S such that \f{x) — f{y)\ < S\x — y\^ for all x,?/ G Q. 
The smallest value SQ of S for which the inequahty holds is called a Holder coefficient. 

If Of = 1, then / is called a Lipschitz continuous function. 

3. Equicontinuity. Let P be a set of real or complex-valued functions such that 
f ^ F {f{x) = f{xi,X2,..,Xn)) is defined on a compact subset B of P". The functions 
in F are uniformly bounded on B if there exists a constant M with the property that 
|/(a:)| < M holds for all x G P and ah f e F. 

The collection of functions F is equicontinuous on B if for every e > 0 there exists a 
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6 > 0 which depends only on e, such that for x',x" G B, \\x' - x"\\ < S imphes 

| / ( : r ' ) - / ( ^ " ) l < £ for a l l / e F . 

Note that equicontinuity of F imphes uniform continuity of each member of F, but not vice 
versa {S may depend on / ) . If instead of F , a sequence {x^} of functions is considered, 
tlien {xn} is said to be equicontinuous on B if for every ^ > 0 there exists SL 6 > 0, 
depending only on £ such that for all Xn and 2/1,2/2 G B satisfying \\yi - 2/2II < (̂ , we have 

\xn{yi) - Xn{y2)\ < e-

4. Lower semicontinuity . Let W be a normed space and f : W ^ R and let N{xo) 
be the family of neighbourhoods of a point XQ eW. / i s said to be lower semicontinuous 
(l.s.c.) at xo G M̂  if for ah £ > 0, there exists a 14 G N{XQ) such that for ah y G 
Ve, f{y)^f{xo)-£.An upper semicontinuous function can be defined in an analogous 
manner. 

5. T h e space C"^(Q). The space C"^(l^), where m is a non-negative integer and 
0 C i?'^, is a vector space of all functions / ( x ) , x G 17 which together with all their partial 
derivatives D^f of orders 0 < \P\ < m, are continuous on Q. Here, /? = (/^i,/?2, • • • ̂  Pn) 
and \p\ is defined below. C%Q) = C(Q) and C°^(n) = n^=o<^"(^) - The subspaces 
Co{Q) and C^{Q) consist of ah those functions in C{Q) and C°°(Q), respectively, which 
have compact support in Q. 

If / G C{Q) is bounded and uniformly continuous on Q (Q is bounded), then it 
possesses a unique, bounded continuous extension to Q. The vector space C^(Q) consists 
of all those functions / G C'"(Q) for which D^f, 0 < \P\ < m, are bounded and uniformly 
continuous on ft. C^{Q) is a Banach space if the norm of / G C'^{Q) is defined as 

E s,up|î /̂(^ 

D^ = D^'DI\..D^-, \P\ = E%iPj and Dj = d/dxj, J = l ,2. . .n. Here, ah /3/s are 
non-negative integers. 

6. T h e space Ha{Ti) or C^'"(n) , 0 < a < L The set of aU Hdlder continuous 
functions on Q with exponent a, 0 < a < 1 is denoted by Ha{^) or C"(Q) or (7°'"(Q). 
If H is a bounded open set in R^, then f(x) is locally Hdlder continuous on Q if f{x) is 
Holder continuous in every bounded closed set B of Q. The constant S may depend on 
B. If the constant ^ (^ as in 2. of this Appendix) is independent of the set B, then / is 
said to be uniformly Hdlder continuous with exponent a. If / G i / a l ^ ) , then we define 
its norm as 

ii/ii,,„ = i i / i i„+sup| /(x)- /(y)i / |x- j / r . 

Here, | | / | | ̂  is the uniform norm of / defined as 

ll/ll„ = sup| /{x)! . 
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7. The space H^+^{n) or C"^'"(n), m > 0, 0 < a_< 1. For 0 < a < 1, the space 
Hm+am or C'^^^'iTl) or C^+'^iU) is a subspace of C^iU), m > 0 and consists of those 
functions / for which D^f\ 0 < \p\ < m, satisfies in Q a Holder condition of exponent a, 
i.e., there exists a constant 6 > 0 such that 

\D"f{x)-D''f{y)\<S\x-y\", x,y e il. 

Here, p = (Pi,02,-• • ,Pn), D" = Df'Z3^\.., Z)A., \(i\ = E'LiPj and Dj = djdxj, J = 
l ,2,. . ,n. 

If / e C'"'"(Q) and 11/11 is defined as 

|Z)l'^l/(x)-£>W/(2/)| 
ll/IL+a = ll/IL + f„"P ^ r—T, ^ = II/IL-, + \\D-f\\u^ , |/?| = m, 

is finite, then C"^'"(Q) is a Banach space in this norm. 

For norms in anisotropic Holder spaces the reader is referred to [295]. 

In the one-dimensional parabolic problems, we consider Q̂ ^ = Z) x (0, t*), D C R, 0 < 
t < t^. Let P = (x,t). Pi = (xi,ti) and P2 = (2:2,^2), where Po,Pi,-P2 ^ ^t*- Define the 
distance P1P2 as 

Let f{x,t) be a continuous function in Qt^. We say that / G CQ(r2iJ, 0 < a < 1, if the 
norm of / defined below is finite. 

Il/llc„(n. ) = ll/llo + sup | / (P0 - /(P2)| / (P iF^r . 

Here, ||/|L = sup | / (P) | . The spaces Ci+a ( ^ t j and C2+a ( ^ t j are Banach spaces 

of functions / provided the norms defined below are finite. 

WfWc^J^u) = ll/llc.(i7o + ll/xllc.(n,). (norm in C,U^,J). 

Il/Ilc2+J^**) = ll/llci+.(ntj + ll/^^llc.(fitj + WftWc^iUt^)' (norm in C2+a(n,J). 

8. Imbedding. A normed space X is said to be embedded in the normed space Y 
and written as X -̂̂  F, provided 

(i) X is a subspace of Y, 

(ii) the identity operator defined on X into Y by Ix = x for all x E -X is continuous. 

9. The space L^{Q). Let Q be a domain in P' ' and let p be a positive real number. 
We denote by 17(Q) the class of all measurable functions / defined on Q such that 

/i/(^)p ̂ dx < 00. 
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Here, the integration is taken in the Lebesgue sense. 

Two functions in If{Q) are equal if they are equal almost everywhere (a.e.) on Q, 
i.e., they are equal except on a set of measure zero. If 1 < p < oo, then the norm of a 
function / G Z/(0) can be defined as 

llLP(f2) ~ J\f(x)rdx\ 

The space I/^(^), 1 < p < oo is a Banach space in the above norm. L^(Q) is a Hilbert 
space with respect to the inner product defined as 

{fi9) = / f{^)9{x)dx, f,g ^ L'^i^), bar stands for the complex conjugate. 
n 

10. Essentially bounded function. A function / , measurable on Q is said to be 
essentially bounded on Q if there exists a constant S such that \f{x)\ < S a.e. on Q. The 
set of all essentially bounded functions on Q denoted by L°°{Q) is a vector space. The 
greatest lower bound of all such constants S is called the essential supremum of | / | on 2̂ 
and is denoted by ess sup | / (x) | . If / G L°°(Q) and 

l l / I L - e s s s u p |/(a;)| < oo, 

then L°°{fl) is a Banach space in the norm ||/||oo . 

11. A locally integrable function. A function / defined a.e. on Q is said to be 
locally integrable on ft written as / G Ljod^) provided / G L^{A) for every measurable 
compact subset A of f̂ . 

12. Locally compact space. A normed space is said to be locally compact if each 
point of the space has a compact neighbourhood. 

13. Graph of an operator. The graph of a linear operator P : Hi -^ H2, where 
Hi and H2 are normed spaces is the set of points GA such that 

GA = {{x,y) : X € Domain(A), y = Ax}. 

14. Maximal monotone graph. Let 4̂ be a multivalued operator, i.e., A:H-^2^ 
from H to itself. A will be viewed as a subset of H x H and A will not be distinguished 
from its graph. A subset A C H x H is called monotone if 

Vii, V e H, V^ G A{v), 7] G A{v), i^-T], u-v)>0. 

A monotone subset oi H x H is called maximal monotone if it is not properly contained 
in any other monotone subset oi H x H. 

15. The boundary dVt of Vt is {7"^+ .̂ If each point x of dVt has a neighbourhood B 
such that the graph of the intersection of B with dQ belongs to C"'+^, then dO. G C^+". 
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Appendix C 

Fixed Point Theorems and Maximum Principles 

Fixed point theorems play a key role in proving the existence and uniqueness theorems 
in the analysis. They also provide rigorous justification for the convergence of iterations 
in the numerical computations. In many situations, the behaviour of the temperature 
and/or its derivatives can be analysed by simple application of maximum principles. 

1. Banach fixed point theorem. A fixed point of a mapping P : X ^ X oi & set 
X into itself is an element x E X which is mapped onto itself, i.e., Px = x. A mapping 
P : X ^ X, where X is a normed space is called a contraction on X if there exists a 
positive real number a < 1 such that \\Px — Py\\ < a\\x — y\\ for all x,y ^ X. This 
definition imphes that the mapping P is uniformly continuous on X. 

Let X be a Banach space and P : X ^ X, a contraction. Banach fixed point theorem 
which is also called Banach contraction mapping theorem states that there exists a unique 
element x* e X such that P{x*) — x*. x* is called the fixed point of P. 

The following results hold for contraction mappings. 

(i) If X is a Banach space and P \ X ^^ X \s such that P^ = PP....r times is a 
contraction for some integer r > 1, then P has a unique fixed point. 

(ii) Let Z be a closed subset of a Banach space X and P : Z —> Z be such that 
\\Px — Py\\ < a\\x — y\\ ̂  0 < Of < 1, for all x,y E Z. Then there exists a unique vector 
X* e Z such that P{x*) = x* and x* may be obtained as the Umit of a sequence {xn} 
where Xn = P{xn-i), XQ G Z. 

2. Schauder's fixed point theorem. Let P be a continuous operator on a Banach 
space X which maps a closed convex set Z oi X into itself. Assuming that the image set 
PZ is relatively compact, P has at least one fixed point in Z. 

Several versions of fixed point theorem are available in the literature and for this the 
reader is referred to the functional analysis books mentioned in the bibliography. 

3. Ascoli-Arzela theorem. Let Z be a compact metric space, and W{Z) a Banach 
space of real or complex valued continuous functions f{x) normed by | |/ | | = 
sup \f{x)\. Then a sequence {/^(x)} C W{Z) is relatively compact (also called precom-
pact in W{Z)) if the following two conditions are satisfied: 

(i) fn{^) is equibounded (in n), i.e., sup sup |/n(2^)| < oo, 

n > l x£Z 

(ii) fn(x) is equicontinuous (in n), i.e., 

lim sup | / „ (x ' ) - / „ (x" ) | = 0. 
S-^0 n>l, dis(x',x")<(5 

Another way of stating Ascoli-Arzela theorem is as follows. Let Q be a bounded 
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domain in R"^. A subset F of C ( 0 ) is relatively compact in C{Q) provided the following 
two conditions hold: 

(i) There exists a constant a such that for every f ^ F and x e Q, \f{x)\ < a. 

(ii) For every £ > 0, there exists a ^ > 0 such that if f e F, x,y e Q, and \x — y\ < 6, 
then \f{x)~f{y)\<s. 

4. T h e s trong m a x i m u m principle. The strong maximum principle is associ-
ated with Nirenberg [320] and is concerned with the parabolic operators. Consider the 
parabolic operator L defined as 

in an (n+l)-dimensional parabolic domain Dt^ = Qx{0,t^), where Q (open and bounded) 
C K^ and t^ < oo. Dt, is bounded by the planes t = 0 and t = t^ < oo. Let DQ = Qx{t = 
0}. The lateral surface of this parabolic cylinder is given by Di = dQ x (0,^*). Di U Do 
is called the parabolic boundary of Dt, 

We make the following assumptions: 

(a) L is parabolic in Dt^ (see (7.3.26) for parabohcity). 

(b) The coefficients of L are continuous functions in Dt^. 

(c) T{x,t) G C 2 ' 1 ( A J and the coefficient d{x,t) < 0 in A . -

Let P ° = (x* ,̂ t^) be any point in Dt^ and let Z{P^) be the set of all points in A * 
which can be connected to P ° by a 'simple' continuous curve in A , along which the t— 
coordinate is nondecreasing as we move from any point in Z{P^) to P° . 

The strong maximum principle asserts the following: 

Let the assumptions (a)—(c) given above hold. If LT > 0 in Dt, or LT < 0 in Dt^ 
and the temperature T has a positive maximum (negative minimum) in Dt^ which is 
attained at a point P^{x^, f), then T{P) = T{P^) for all P G Z(P^). 

The strong maximum principle holds even if P*̂  G Q x {t^} provided T[x,t) is con-
tinuous in Dt^ U f] X {t^}. 

Let L = c?S^jdx^ — djdi, a > 0, then we say T is subparabolic if LT > 0 and 

superparabolic if LT < 0. 

5. T h e weak m a x i m u m principle . Let the assumptions (a)—(c) hold and T{x,t) 

be a continuous function in Dt^. Let LT > 0 {LT < 0) in Dt^. Then the weak maximum 

principle asserts that the maximum (minimum) of T(x, t) is attained on the parabolic 

boundary of Dt^. Note that the same maximum (minimum) of T{x,i) can be attained 

in Dt^ also. 

For further extensions of these principles see [9]. 
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Appendix D 

Sobolev Spaces 

One of the several reasons to enlarge the family of spaces discussed in the earlier appen-
dices is the incompleteness of some of the linear spaces in some norms. For example, the 
space of functions C[a, 6] is a normed space in the norm 

b x i / 2 

a / 

However, in this norm C[a, b] is not complete. If the norm on C[a, b] is defined as 
L'^[a,b] norm, then C[a, 6] becomes a Banach space. This is called 'completion' of an 
incomplete normed space. The sequence of functions {/^(a:)}, f^{x) = sin mx/^uT, x G 
R, converges uniformly to / = 0 in the 'distance norm' but {f^{x)} does not converge in 
the distance norm. If we want {fmi^)} to converge, then we cannot consider derivative as 
the classical derivative. The sequence does converge if a weak derivative (defined below), 
also called a distributional derivative or a generalized derivative, is considered. The space 
of those functions whose weak derivatives exist should also contain ah those functions 
whose classical derivatives exist. We shall first define a weak derivative and then define 
a suitable norm on the space of functions whose weak derivatives exist and discuss the 
completeness of this normed space. 

1. The weak derivative. Let Q be a bounded domain in i?"̂ . If / G L^{^), 
then the weak derivative D^f of order a = (ai, 0̂25 ••, < n̂), |<̂ | = ai + 0̂2 + •••Q̂ n and 
D"" = D^'D^'-.D^-, where A = d/dx,, z = 1, 2, ..n, is defined as follows. 

A function g G i/(Q) is said to be the a-th weak derivative of / G i / ( ^ ) , 1 < p < 00 
in the sense of L^(^), if 

f g{x)(j){x)dx = (-1)1^1 I f{x)D''4){x)dx, 

for aU 0 G Co (Q). CQ [Vt] is the subspace of Cl'̂ l(Q) and consists of functions which 
have compact support in Q. 

The weak derivative if it exists is unique. If for all |a| < m the weak derivatives D^f 
exist, then we say that / possesses weak derivatives of all orders \a\ < m. 

2. The strong derivative in L^(Q). A function / G L^{Q) is said to be the a-
th strong derivative of u ^ L^{^)i if there exists a sequence {um} hi C'^'(^) such that 
{um} -^ u in L^{Q), and D^{u,n} —> / in LP{Q). If the strong derivative exists, then the 
weak derivative also exists and is unique. 

3. The space V{Q) of testing functions. The space C^^i^l) is a subspace of 
C^"(r^) and C^^^{Q) is complete in the norm defined earlier in Appendix C. The space 
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C^(^) is a topological vector space in the induced topology but is not complete. We 
consider C^(^) , the space of all C°°-functions 0 such that: (i) 0 has a compact support 
in Q, and (ii) 0 has continuous derivatives of all orders. The convergence of a sequence 
{0̂ "̂ }̂ in C^(Q) to a function (/) in C^{Q) is defined by demanding that for every non-
negative integer r, D^cp^'^^ -^ D^cp uniformly. Let V{^) be the space of functions in C^{Q) 
with the above convergence criterion. V{fl) is a complete topological vector space but is 
not a normed space. V{0.) is reflexive. The elements of V{^) are called testing functions 
or test functions. 

4. Distributions and the space of distributions. The continuity of a linear real 
valued function v on V{fl) is defined by specifying that v is continuous if and only if 
v{(pn) —^ v{(l)) whenever 0^ -^ 0 in the sense of V{Q). A functional (continuous hnear 
real valued function) on V{Q) is a called a distribution. The space of distributions on 
V{Q) is the dual space denoted by V{Qy. U v e V{Qy, then for any 0 G V(Q), the 
value of i; at 0 is denoted by v{(t>). There is no natural norm in V^(^)' and this space can 
only be given a weak-star topology as dual of V{Q). V'{^) is a locally convex topological 
vector space (cf. [58]) with this topology. 

We shall not dwell on the space V(Q)', the space of distributions, as it is too big for 
our purpose. As mentioned earlier bigger spaces could be an advantage for the study of 
existence results, but they are disadvantageous for the study of uniqueness and stability 
results. We need some complete normed subspaces of the space of distributions. These 
subspaces are called Sobolev spaces. Sobolev spaces were introduced in the analysis earlier 
than the space V{0.y (also called the 'space of Schwartz distributions'). 

5. Sobolev space Vr^'P(Q). We shah consider only those spaces in which m is a 
non-negative integer, 1 < p < oo, and Q is a bounded domain in R^. The space ly^'P(Q) 
is the space of ah functions / in LP{Q) whose weak derivatives Z)"/ of order |a| < m 
belong to Z/(Q). VK"̂ '̂ (r2) is a Banach space in the norm 

ll/IL,p = ll/lfe' = ( E j\DJ\'dx] , \\f\l = ll/llo,^. 

For p = oo, we define the norm of / as 

l l /L,oo= E I P 7 I L ~ , „ ) = E e s s sup | i )7 | . 
|a|<m |a|<Tn 

W;f^{n) denotes the space of functions which belong to W'''^{Q), where Q C H is an 
arbitrary bounded domain. Note that C°°(n) n VF^'P(Q), is dense in iy"^'P(n). 

6. The spaces H'^{n) and H^{n). It is customary to use the notation iZ^'P(r2) 
for 1^" '̂P(0) and H^^i^) = W^^^^Q). The closure of C^{n) in W^^^PiQ) is denoted by 
WS^'f^in) and H^{n) - W^'\n). The dual space of H^^iQ) is denoted by / /-"^(^). 

7. Sobolev space Wp^''^{Qt,)' In the parabolic problems, functions are defined on 

V 
the set Qi, =i1x (0,t,) = {{x,t) : xeQc R"", 0<t< t,}. W^'^^'^{Qt.), where m is a 
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non-negative integer and p > 1, is the closed subspace of L^{Qt^) consisting of functions 
whose weak derivatives D^D^ with r and q satisfying 2r + q < 2m have finite norms. If 

2m 
II r l | 2m 2m _ V ^ | | r ) r r ) g | | 

2r+q=0 

If/GLP(aj, then 

.n.. = U\f\'dxdt\ 

i/p 

The space W2'^{Qt^) is a Hilbert space with the scalar product 

= l{f9^Vf.V9)dxdt, 

and the space W^'^^u) is the Hilbert space with the scalar product 

(f^9)w^^\nu) = jU9^DtfDtg + Vf.Vg)dxdt. 

8. The space 1^(0, t^] //""^'^(Q)). Functions dependent on x and t, where x e Q and 
t G (0, ̂ •) are often treated as functions of t with values in some Banach space for a.a. 
t G (0, t*). For example, the space i / (0, t^; H^'^{Q)) consists of functions u{t) (u is infact 
a function of x and t) with values in iif" '̂̂ (Q) for a.a. t G (0,/*) and is equipped with 
the norm 

IHI= ( / (HOl toT^M' l<P<oo, l<g<(X). 

The space L^(0, t^; W), where H^ is a Banach space, is a Banach space in the norm defined 
above. 

9. The space L^ (Q,J. We write L^ (0,^,; L^ (Q)) = L^ {Qt.). 

10. Gateaux derivative or G-derivative. Let / : / / — > i? be a linear continuous 
real valued function, and H a Hilbert space. If there exists an element f'{u) G H' (dual 
of H), u e H, such that for all v e H, we have 

f(u + Xv)-f(u) / w/ X \ 
— T — - ^ - ^ -^ if {u).v) when A -^ 0 

A H' H 

then f'{u) is called the Gateaux derivative oi f at u or G-derivative of / at u. 

11. Frechet derivative. The function / as defined in 10. is said to have a Frechet 
derivative or a F-derivative of / at t̂  G / / if there exists a 0 G / / ' such that 

f(u + v) = f{u) + <t>{v) + o{\\v\\)\\v\\. 
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If the F-derivative exists then the G-derivative also exists and both are equal. 

12. Sobolev imbedding theorem. The elements of ^^'^{Q) are strictly speaking 
not functions defined everywhere on Q. Equivalence classes of such functions are defined 
and the functions are equal upto a set of measure zero. When we say that VK"̂ '̂ (Q) ^^ 
C^{Q), it means that each / G ly^'^(Q) when considered as a function can be redefined 
on a set of measure zero in Q such that the modified function / , which equals / in 
ly^'P(Q), belongs to C-^{Ti) and satisfies || / ; C-^iQ) \\< M \\f\f^^ , with M independent 
of/. 

We give here just two results pertaining to Sobolev imbedding (also called embedding). 
For further details, see [22, 58]. Let m,n and r be non-negative integers. 

(1) If m > n/2 + r, Qc BJ", then H'^iO) C Ciji) with continuous injection. Hence, 
li Q. d B?^ then / G //^(Q) => f £ C{Q) and / is almost everywhere equal to a unique 
function in C{Q). 

(2) If mp > n, then VK^+^ 'P(^) -> C'^(^). In particular, if^ G W^^P, Q.CR', p>n, 
then / is almost everywhere equal to a unique function in C{Q). 

13. Trace operator. For an arbitrary function / G -/^(^), ^ C BJ^, 1 < p < oo, 
how to define the values of / on dVt. If / G i/(Q) is continuous up to the boundary 
dO. of n, then one can say that the value / takes on dO. is the restriction to dO. of the 
function / . In general, however, the elements of W^'P{Vt) are defined except on a set of 
measure zero and it is meaningless therefore to speak of their restrictions to dVt which 
has an n-dimensional measure zero. As mentioned earlier H^{Q) is the closure of C°°{Vl) 
with respect to the norm 

\\f\? = j{}f? + Wf?)dx. 
n 

If / G C°°{Cl), then it can be proved that there exists a unique continuous hnear operator 
7o from C°°{(}) to L'^{dQ) (provided dQ is Lipschitz continuous) such that 7o(/(a:)) = 
f{x) for X G dQ. If / G H^{Q), we call 70, a trace operator, denoted here by T̂ ., such that 

Tr : H\n) -^ L\dQ)] Trf(x) = f{x) for x e dQ, / G C^iU). 

In particular H^{n) = {f e H^{n)] / = 0 on dQ}. 
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Captions for Figures 

Fig. 1.1.1. Characteristic curves and u{x,y) 

Fig. 1.1.2. Geometry of the shock 

Fig. 1.1.3. Frictional oscillator 

Fig. 1.1.4. Obstacle and the stretching of the string 

Fig. 1.4.1. Solid and liquid regions at a fixed time in a 2-D problem. 

Geometry number 1. 

Fig. 1.4.2. Solid and liquid regions at a fixed time in a 2-D problem. 

Geometry number 2. 

Fig. 1.4.3. Cylinder over G(0) in Fig. 1.4.1. 

Fig. 1.4.4. Cylinder over G{0) in Fig. 1.4.2. 

Fig. 1.4.5. Geometry in the derivation of Stefan condition 

Fig. 2.1.1. Free energy vs temperature 
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