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Preface to the First Edition
(revised)

This is a textbook on classical mechanics at the intermediate level, but its
main purpose is to serve as an introduction to a new mathematical language
for physics called geometric algebra. Mechanics is most commonly formulated
today in terms of the vector algebra developed by the American physicist J.
Willard Gibbs, but for some applications of mechanics the algebra of complex
numbers is more efficient than vector algebra, while in other applications
matrix algebra works better. Geometric algebra integrates all these algebraic
systems into a coherent mathematical language which not only retains the
advantages of each special algebra but possesses powerful new capabilities.

This book covers the fairly standard material for a course on the mechanics
of particles and rigid bodies. However, it will be seen that geometric algebra
brings new insights into the treatment of nearly every topic and produces
simplifications that move the subject quickly to advanced levels. That has
made it possible in this book to carry the treatment of two major topics in
mechanics well beyond the level of other textbooks. A few words are in order
about the unique treatment of these two topics, namely, rotational dynamics
and celestial mechanics.

The spinor theory of rotations and rotational dynamics developed in this
book cannot be formulated without geometric algebra, so a comparable treat-
ment is not to be found in any other book at this time. The relation of the
spinor theory to the matrix theory of rotations developed in conventional
textbooks is completely worked out, so one can readily translate from one
to the other. However, the spinor theory is so superior that the matrix the-
ory is hardly needed except to translate from books that use it. In the first
place, calculations with spinors are demonstrably more efficient than calcula-
tions with matrices. This has practical as well as theoretical importance. For
example, the control of artificial satellites requires continual rotational com-
putations that soon number in the millions. In the second place, spinors are
essential in advanced quantum mechanics. So the utilization of spinors in the
classical theory narrows the gap between the mathematical formulations of
classical and quantum mechanics, making it possible for students to proceed
more rapidly to advanced topics.

Celestial mechanics, along with its modern relative astromechanics, is es-
sential for understanding space flight and the dynamics of the solar system.
Thus, it is essential knowledge for the informed physicist of the space age.
Yet celestial mechanics is scarcely mentioned in the typical undergraduate
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physics curriculum. One reason for this neglect is the belief that the subject
is too advanced, requiring a complex formulation in terms of Hamilton-Jacobi
theory. However, this book uses geometric algebra to develop a new formu-
lation of perturbation theory in celestial mechanics which is well within the
reach of undergraduates. The major gravitational perturbations in the solar
system are discussed to bring students up to date in space age mechanics. The
new mathematical techniques developed in this book should be of interest to
anyone concerned with the mechanics of space flight.

To provide an introduction to geometric algebra suitable for the entire
physics curriculum, the mathematics developed in this book exceeds what is
strictly necessary for a mechanics course, including a substantial treatment
of linear algebra and transformation groups with the techniques of geometric
algebra. Since linear algebra and group theory are standard tools in modern
physics, it is important for students to become familiar with them as soon as
possible. There are good reasons for integrating instruction in mathematics
and physics. It assures that the mathematical background will be sufficient
for the needs of physics, and the physics provides nontrivial applications of the
mathematics as it develops. But most important, it affords an opportunity
to teach students that the design and development of an efficient mathemat-
ical language for representing physical facts and concepts is the business of
theoretical physics. That is one of the objectives of this book.

There are plans to extend the geometric algebra developed here to a series of
books on electrodynamics, relativity and quantum theory, in short, to provide
a unified language for the whole of physics. This is a long term project, likely
to be drawn out, in part because there is so much current activity in the
research literature on geometric algebra.

I am happy to report that others have joined me in this enterprise. A
current list of books on geometric algebra and its applications is given in the
References section at the back of this book. That list can be expected to
grow substantially in coming years.

The making of this book turned out to be much more difficult than I had
anticipated, and could not have been completed without help from many
sources. I am indebted to my NASA colleagues for educating me on the
vicissitudes of celestial mechanics; in particular, Phil Roberts on orbital me-
chanics, Neal Hulkower on the three body problem, and, especially, Leon
Blitzer for permission to draw freely on his lectures. I am indebted to Patrick
Reany, Anthony Delugt and John Bergman for improving the accuracy of the
text, and to Carmen Mendez and Denise Jackson for their skill and patience
in typing a difficult manuscript. Most of all I am indebted to my wife Nancy
for her unflagging support and meticulous care in preparing every one of the
diagrams. Numerous corrections have been made in the several reprintings.

DAVID HESTENES



Preface xi

Preface to the Second Edition

The second edition has been expanded by nearly a hundred pages on rela-
tivistic mechanics. The treatment is unique in its exclusive use of geometric
algebra and its detailed treatment of spacetime maps, collisions, motion in
uniform fields and relativistic spin precession. It conforms with Einstein’s
view that Special Relativity is the culmination of developments in classical
mechanics.

The accuracy of the text has been improved by the accumulation of many
corrections over the last decade. I am grateful to the many students and
colleagues who have helped root out errors, as well as the invaluable assis-
tance of Patrick Reany in preparing the manuscript. The second edition, in
particular, has benefited from careful scrutiny by J. L. Jones and Prof. J. Vr-
bik. The most significant corrections are to the perturbation calculations in
Chapter 8. Prof. Vrbik located the error in my calculation of the precession
of the moon's orbit due to perturbation by the sun (p. 550), a calculation
which vexed Newton and many others since. I am indebted to David Drewer
for calling my attention to D.T. Whiteside’s fascinating account of Newton’s
failure to master the lunar perigee calculation (see Section 8-3). Vrbik has
kindly contributed a more accurate computation to this edition. He has also
extended the spinor perturbation theory of Section 8-4 in a series of published
applications to celestial mechanics (see References). Unfortunately, to make
room for the long relativity chapter, the chapter on Foundations of Mechanics
had to be dropped from the Second Edition. It will be worth expanding at
another time. Indeed, it has already been incorporated in a new appraoch
to physics instruction centered on making and using conceptual models. [For
an update on Modeling Theory, see D. Hestenes, “Modeling Games in the
Newtonian World,” Am. J. Phys. 60, 732–748 (1992).]

When using this book as a mechanics textbook, it is important to move
quickly through Chapters 1 and 2 to the applications in Chapter 3. A thor-
ough study of the topics and problems in Chapter 2 could easily take the
better part of a semester, so that chapter should be used mainly for reference
in a mechanics course. To facilitate identification of those elements of geomet-
ric algebra which are most essential to applications, a Synopsis of Geometric
Algebra has been included in the beginning of this edition.





Synopsis of Geometric Algebra

Generally useful relations and formulas for the geometric algebra of Euclidean
3-space are listed here. Detailed explanations and further results are given in
Chapter 2.

For vectors a, b, c, ..., and scalars the Euclidean geometric algebra for
any dimension has the following properties

associativity:

commutivity:

distributivity:

linearity:

contraction:

The geometric product ab is related to the inner product a • b and the outer product
by

For any multivectors A, B, C, ..., the scalar part of their geometric product satisfies

Selectors without a grade subscript select for the scalar part, so that

Reversion satisfies

The unit righthanded pseudoscalar i satisfies

The vector cross product is implicitly defined by

Inner and outer products are related by the duality relations



Every multivector A can be expressed uniquely in the expanded form

where the k-vector parts are

The even part is a quaternion of the form

The conjugate of A is defined by

Algebraic Identities:

For further identites, see Exercise (4.8) on page 71.

Exponential and Trigonometric Functions:

See pages 73, 282 and 661 for more.



Chapter 1

Origins of Geometric Algebra

There is a tendency among physicists to take mathematics for granted, to
regard the development of mathematics as the business of mathematicians.
However, history shows that most mathematics of use in physics has origins in
successful attacks on physical problems. The advance of physics has gone
hand in hand with the development of a mathematical language to express
and exploit the theory. Mathematics today is an immense and imposing
subject, but there is no reason to suppose that the evolution of a mathemat-
ical language for physics is complete. The task of improving the language of
physics requires intimate knowledge of how the language is to be used and
how it refers to the physical world, so it involves more than mathematics. It is
one of the fundamental tasks of theoretical physics.

This chapter sketches some historical high points in the evolution of
geometric algebra, the mathematical language developed and applied in this
book. It is not supposed to be a balanced historical account. Rather, the aim
is to identify explicit principles for constructing symbolic representations of
geometrical relations. Then we can see how to design a compact and efficient
geometrical language tailored to meet the needs of theoretical physics.

1-1. Geometry as Physics

Euclid’s systematic formulation of Greek geometry (in 300 BC) was the first
comprehensive theory of the physical world. Earlier attempts to describe the
physical world were hardly more than a jumble of facts and speculations. But
Euclid showed that from a mere handful of simple assumptions about the
nature of physical objects a great variety of remarkable relations can be
deduced. So incisive were the insights of Greek geometry that it provided a
foundation for all subsequent advances in physics. Over the years it has been
extended and reformulated but not changed in any fundamental way.

The next comparable advance in theoretical physics was not consummated
until the publication of Isaac Newton’s Principia in 1687. Newton was fully
aware that geometry is an indispensible component of physics; asserting,

1



2 Origins of Geometric Algebra

“. . . the description of right lines and circles, upon which geometry is founded, belongs to
mechanics. Geometry does not teach us to draw these lines, but requires them to be drawn . . .
To describe right lines and circles are problems, but not geometrical problems. The solution of
these problems is required from mechanics and by geometry the use of them, when so solved, is
shown; and it is the glory of geometry that from those few principles, brought from without, it is
able to produce so many things. Therefore geometry is founded in mechanical practice, and is
nothing but that part of universal mechanics which accurately proposes and demonstrates the art of
measuring . . .” (italics added)

As Newton avers, geometry is the theory on which the practice of measure-
ment is based. Geometrical figures can be regarded as idealizations of
physical bodies. The theory of congruent figures is the central theme of
geometry, and it provides a theoretical basis for measurement when it is
regarded as an idealized description of the physical operations involved in
classifying physical bodies according to size and shape (Figure 1.1). To put it
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another way, the theory of congruence specifies a set of rules to be used for
classifying bodies. Apart from such rules the notions of size and shape have
no meaning.

Greek geometry was certainly not developed with the problem of measure-
ment in mind. Indeed, even the idea of measurement could not be conceived
until geometry had been created. But already in Euclid’s day the Greeks had
carried out an impressive series of applications of geometry, especially to
optics and astronomy (Figure 1.2), and this established a pattern to be
followed in the subsequent development of trigonometry and the practical art
of measurement. With these efforts the notion of an experimental science
began to take shape.

Today, “to measure” means to assign a number. But it was not always so.
Euclid sharply distinguished “number” from “magnitude”. He associated the
notion of number strictly with the operation of counting, so he recognized
only integers as numbers; even the notion of fractions as numbers had not yet
been invented. For Euclid a magnitude was a line segment. He frequently
represented a whole number n by a line segment which is n times as long as
some other line segment chosen to represent the number 1. But he knew that
the opposite procedure is impossible, namely, that it is impossible to dis-
tinguish all line segments of different length by labeling them with numerals
representing the counting numbers. He was able to prove this by showing the
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side and the diagonal of a square cannot both be whole multiples of a single
unit (Figure 1.3).

The “one way” correspondence of counting numbers with magnitudes
shows that the latter concept is the more general of the two. With admirable
consistency, Euclid carefully distinguished between the two concepts. This is
born out by the fact that he proves many theorems twice, once for numbers
and once for magnitudes. This rigid distinction between number and magni-
tude proved to be an impetus to progress in some directions, but an impedi-
ment to progress in others.

As is well known, even quite elementary problems lead to quadratic
equations with solutions which are not integers or even rational numbers.
Such problems have no solutions at all if only integers are recognized as
numbers. The Hindus and the Arabs resolved this difficulty directly by
generalizing their notion of number, but Euclid sidestepped it cleverly by
reexpressing problems in arithmetic and algebra as problems in geometry.
Then he solved for line segments instead of for numbers. Thus, he rep-
resented the product as a square with a side of magnitude x. In fact, that is
why we use the name “x squared” today. The product xy was represented by
a rectangle and called the “rectangle” of the two sides. The term “x cubed”
used even today originates from the representation of by a cube with side of
magnitude x. But there are no corresponding representations of  and higher
powers of x in Greek geometry, so the Greek correspondence between
algebra and geometry broke down. This “breakdown” impeded mathematical
progress from antiquity until the seventeenth century, and its import is
seldom recognized even today.

Commentators sometimes smugly dismiss Euclid’s practice of turning every
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algebra problem into an equivalent geometry problem as an inferior alterna-
tive to modern algebraic methods. But we shall find good reasons to conclude
that, on the contrary, they have failed to grasp a subtlety of far-reaching
significance in Euclid’s work. The real limitations on Greek mathematics
were set by the failure of the Greeks to develop a simple symbolic language to
express their profound ideas.

1-2. Number and Magnitude

The brilliant flowering of science and mathematics in ancient Greece was
followed by a long period of scientific stagnation until an explosion of
scientific knowledge in the seventeenth century gave birth to the modern
world. To account for this explosion and its long delay after the impressive
beginnings of science in Greece is one of the great problems of history. The
“great man” theory implicit in so many textbooks would have us believe that
the explosion resulted from the accidental birth of a cluster of geniuses like
Kepler, Galileo and Newton. “Humanistic theories” attribute it to the social,
political and intellectual climate of the Renaissance, stimulated by a rediscov-
ery of the long lost culture of Greece. The invention and exploitation of the
experimental method is a favorite explanation among philosophers and
historians of science. No doubt all these factors are important, but the most
critical factor is often overlooked. The advances we know as modern science
were not possible until an adequate number system had been created to
express the results of measurement, and unt i l a simple algebraic language had
been invented to express relations among these results. While social and
political disorders undoubtedly contributed to the decline of Greek culture,
deficiencies in the mathematical formalism of the Greek science must have
been an increasingly powerful deterrent to every scientific advance and to the
transmission of what had already been learned. The long hiatus between
Greek and Renaissance science is better regarded as a period of incubation
instead of stagnation. For in this period the decimal system of arabic numerals
was invented and algebra slowly developed. It can hardly be an accident that
an explosion of scientific knowledge was ignited just as a comprehensive
algebraic system began to take shape in the sixteenth and seventeenth
centuries.

Though algebra was associated with geometry from its beginnings, René
Descartes was the first to develop it systematically into a geometrical lan-
guage. His first published work on the subject (in 1637) shows how clearly he
had this objective in mind:

“Any problem in geometry can easily be reduced to such terms that a knowledge of the lengths of
certain straight lines is sufficient for its construction. Just as arithmetic consists of only four or five
operations, namely, addition, subtraction, multiplication, division and the extraction of roots,
which may be considered a kind of division, so in geometry, to find required lines it is merely
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necessary to add or subtract lines; or else, taking one line which I shall call unity in order to relate
it as closely as possible to numbers, and which can in general be chosen arbitrarily, and having
given two other lines, to find a fourth line which shall be to one of the given lines as the other is to
unity (which is the same as multiplication); or, again, to find a fourth line which is to one of the
given lines as unity is to the other (which is equivalent to division); or, finally to find one, two, or
several mean proportionals between unity and some other line (which is the same as extracting
the square root, cube root, etc., of the given line). And I shall not hesitate to introduce these
arithmetical terms into geometry, for the sake of greater clearness . . .”

Descartes gave the Greek notion of magnitude a happy symbolic form by
assuming that every line segment can be uniquely represented by a number.
He was the first person to label line segments by letters representing their
numerical lengths. As he demonstrated, the aptness of this procedure resides
in the fact that the basic arithmetic operations such as addition and subtrac-
tion can be supplied with exact analogs in geometrical operations on line
segments (Figures 2.1a, 2.1b). One of his most significant innovations was to
discard the Greek idea of representing the “product” of two line segments by
a rectangle. In its stead he gave a rule for “multiplying” line segments which
yielded another line segment in exact correspondence with the rule for
multiplying numbers (Figure 2.2). This enabled him to avoid the apparent
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limitations of the Greek rule for “geometrical multiplication”. Descartes
could handle geometrical products of any order and he put this new ability to
good use by showing how to use algebraic equations to describe geometric
curves. This was the beginning of analytic geometry and a crucial step in the
development of the mathematical language that makes modern physics poss-
ible. Finally, Descartes made significant improvements in algebraic notations,
putting algebra in a form close to the one we use today.

It has been said that the things a man takes for granted is a measure of his
debt to his culture. The assumption of a complete correspondence between
numbers and line segments was the foundation of Descartes’ union of ge-
ometry and algebra. A careful Greek logician like Eudoxus, would have
demanded some justification for such a farreaching assumption. Yet, Descartes’
contemporaries accepted it without so much as a raised eyebrow. It did not
seem revolutionary to them, because they were accustomed to it. In fact,
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algebra and arithmetic had never been free of some admixture of geometry.
But a union could not be consummated until the notion of number and the
symbolism of algebra had been developed to a degree commensurate with
Greek geometry. That state of affairs had just been reached when Descartes
arrived on the historical scene.

Descartes stated explicitly what everyone had taken for granted. If Descartes
had not done it someone else would have. Indeed, Fermat independently
achieved quite similar results. But Descartes penetrated closer to the heart of
the matter. His explicit union of the notion of number with the Greek
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geometric notion of magnitude sparked an intellectual explosion unequalled
in all history.

Descartes was not in the habit of acknowledging his debt to others, but in a
letter to Mersenne in 1637 he writes,

“As to the suggestion that what I have written could easily have been gotten from Vieta, the very
fact that my treatise is hard to understand is due to my attempt to put nothing in it that I believed
to be known either by him or by any one else. . . . I begin the rules of my algebra with what Vieta
wrote at the very end of his book. . . . Thus, I begin where he left off.”

The contribution of Vieta has been too frequently undervalued. He is the one
who explicitly introduced the idea of using letters to represent constants as
well as unknowns in algebraic equations. This act lifted algebra out of its
infancy by separating the study of special properties of individual numbers
from the abstract study of the general properties of all numbers. It revealed the
dependence of the number concept on the nature of algebraic operations.
Vieta used letters to denote numbers, and Descartes followed him by using
letters to denote line segments. Vieta began the abstract study of rules for
manipulating numbers, and Descartes pointed out the existence of similar
rules for manipulating line segments. Descartes gives some improvements on
the symbolism and algebraic technique of Vieta, but it is hard to say how
much of this comes unacknowledged from the work of others. Before Vieta’s
innovations, the union of geometry and algebra could not have been effected.

The correspondence between numbers and line segments presumed by
Descartes can be most simply expressed as the idea that numbers can be put
into one to one correspondence with the points on a geometrical line (Figure
2.4). This idea seems to be nearly as old as the idea of a geometrical line itself.
The Greeks may have believed it at first, but they firmly rejected it when
incommensurables were discovered (Figure 1.3). Yet Descartes and his
contemporaries evidently regarded it as obvious. Such a significant change in
attitude must have an interesting history! Of course, such a change was
possible only because the notion of number underwent a profound evolution.

Diophantes (250 AD), the last of the great Greek mathematicians, was
probably the first to regard fractions as numbers. But the development most
pertinent to the present discussion was the invention of algebraic numbers.
This came about by presuming the existence of solutions to algebraic equa-
tions and devising symbols to represent them. Thus the symbol was
invented to designate a solution of the equation Once the symbol
had been invented, it was hard to deny the reality of the number it names, and
this number takes on a more concrete appearance when identified as the
diagonal length of a unit square. In this way the incommensurables of the
Greeks received number names at last, and with no reason to the contrary, it
must have seemed natural to assume that all points on a line can be named by
numbers. So it seemed to Descartes. Perhaps it is a good thing that there was
no latter-day Eudoxus to dampen Descartes’ ardor by proving that it is
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impossible to name every point on a line by an algebraic number. Descartes
did not even suspect that the circumference of a unit circle is not an algebraic
number, but then, that was not proved until 1882.

Deficiencies in the notion of number were not felt until the invention of
calculus called for a clear idea of the “infinitely small”. A clear notion of
“infinity” and with it a clear notion of the “continuum of real numbers” was
not achieved until the latter part of the nineteenth century, when the real
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number system was “arithmeticized” by Weierstrass, Cantor and Dedekind.
“Arithmeticize” means define the real numbers in terms of the natural
numbers and their arithmetic, without appeal to any geometric intuition of
“the continuum”. Some say that this development separated the notion of
number from geometry. Rather the opposite is true. It consumated the union
of number and geometry by establishing at last that the real numbers can be
put into one to one correspondence with the points on a geometrical line. The
arithmetical definition of the “real numbers” gave a precise symbolic ex-
pression to the intuitive notion of a continuous line (Figure 2.4).

Descartes began the explicit cultivation of algebra as a symbolic system for
representing geometric notions. The idea of number has accordingly been
generalized to make this possible. But the evolution of the number concept
does not end with the invention of the real number system, because there is
more to geometry than the linear continuum. In particular, the notions of
direction and dimension cry out for a proper symbolic expression. The cry has
been heard and answered.

1-3. Directed Numbers

After Descartes, the use of algebra as a geometric language expanded with
ever mounting speed. So rapidly did success follow success in mathematics
and in physics, so great was the algebraic skill that developed that for sometime
no one noticed the serious limitations of this mathematical language.

Descartes expressed the geometry of his day in the algebra of his day. It did
not occur to him that algebra could be modified to achieve a fuller symbolic
expression of geometry. The algebra of Descartes could be used to classify
line segments by length. But there is more to a line segment than length; it has
direction as well. Yet the fundamental geometric notion of direction finds no
expression in ordinary algebra. Descartes and his followers made up for this
deficiency by augmenting algebra with the ever ready natural language.
Expressions such as “the x-direction” and “the y-direction” are widely used
even today. They are not part of algebra, yet ordinary algebra cannot be
applied to geometry without them.

Mathematics has steadily progressed by fashioning special symbolic systems
to express ideas originally expressed in the natural language. The first math-
ematical system, Greek geometry, was formulated entirely in the natural
language. How else was mathematics to start? But, to use the words of
Descartes, algebra makes it possible to go “as far beyond the treatment of
ordinary geometry, as the rhetoric of Cicero is beyond the a, b, c, of
children”. How much more can be expected from further refinements of the
geometrical language?

The generalization of number to incorporate the geometrical notion of
direction as well as magnitude was not carried out until some two hundred
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years after Descartes. Though several people might be credited with con-
ceiving the idea of “directed number”, Hermann Grassmann, in his book of
1844, developed the idea with precision and completeness that far surpassed
the work of anyone else at the time. Grassmann discovered a rule for relating
line segments to numbers that differed slightly from the rule adopted by
Descartes, and this led to a more general notion of number.

Before formulating the notion of a directed number, it is advantageous to
substitute the short and suggestive word “scalar” for the more common but
clumsy expression “real number”, and to recall the key idea of Descartes’
approach. Descartes united algebra and geometry by corresponding the
arithmetic of scalars with a kind of arithmetic of line segments. More specifi-
cally, if two line segments are congruent, that is, if one segment can be
obtained from the other by a translation and rotation, then Descartes would
designate them both by the same positive scalar. Conversely, every positive
scalar designates a “line segment” which possesses neither a place nor a
direction, all congruent line segments being regarded as one and the same.
Or, to put it in modern mathematical terminology, every positive scalar
designates an equivalence class of congruent line segments. This is the rule
used by Descartes to relate numbers to line segments.

Alternatively, Grassmann chose to regard two line segments as “equiv-
alent” if and only if one can be obtained from the other by a translation; only
then would he designate them by the same symbol. If a rotation was required
to obtain one line segment from another, he regarded the line segments as
“possessing different directions” and so designated them by different sym-
bols. These conventions lead to the idea of a “directed line segment” or
vector as a line segment which can be moved freely from place to place
without changing either its magnitude or its direction. To achieve a simple
symbolic expression of this idea and yet distinguish vectors from scalars,
vectors will be represented by letters in bold face type. If two line segments,
designated by vectors a and b respectively, have the same magnitude and
direction, then the vectors are said to be equal, and, as in scalar algebra, one
writes

Of course the use of vectors to express the geometrical fact that line
segments may differ in direction does not obviate the value of classifying line
segments by length. But a simple formulation of the relation between scalars
and vectors is called for. It can be achieved by observing that to every vector a
there corresponds a unique positive scalar, here denoted by and called
the “magnitude” or the “length” of a. This follows from the correspondence
between scalars and line segments which has already been discussed. Sup-
pose, now, that a vector b has the same direction as a, but ,
where is a positive scalar. This can be expressed simply by writing



Directed Numbers 13

But this can be interpreted as an equation defining the multiplication of a
vector by a scalar. Thus, multiplication by a positive scalar changes the
magnitude of a vector but not its direction (Figure 3.2). This operation is
commonly called a dilation. If it is an expansion, since then
But if it is a contraction, since then . Descartes’ geometri-
cal construction for “multiplying” two line segments (Figure 2.2) is a dila-
tion of one line seg-
ment by the magni-
tude of the other.

Equation (3.2) al-
lows one to write

This expresses the vec-
tor a as the product
of its magnitude
with a “unit vector” â.
The “unit” a uniquely
specifies the direction



14 Origins of  Geometric Algebra

of a, so Equation (3.3) can be regarded as a decomposition of a into
magnitude and direction.

If Equation (3.2) is supposed to hold, then multiplication of a vector a by
zero results in a vector with zero magnitude. Express this by writing

Since the direction associated with a line segment of zero length seems to be
of no consequence, it is natural to assume that the zero vector on the right
side of (3.4) is a unique number no matter what the direction of a. Moreover,
it will be seen later that there is good reason to regard the zero vector as one
and the same number as the zero scalar. So the zero on the right side of (3.4)
is not written in bold face type.

Grassmann may have been the first person to clearly understand that the
significance of a number lies not in itself but solely in its relation to other
numbers. The notion of number resides in the rules for combining two
numbers to get a third. Grassmann looked for rules for combining vectors
which would fully describe the geometrical properties of directed line seg-
ments. He noticed that two directed line segments connected end to end
determine a third, which may be regarded as their sum. This “geometrical
sum” of directed line segments can be simply represented by an equation for
corresponding vectors a, b, s:
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This procedure is like the one used by Descartes to relate “geometrical
addition of line segments” to addition of scalars, except that the definition of
“geometrically equivalent” line segments is different.

The rules for adding vectors are determined by the assumed correspon-
dence with directed line segments. As shown in Figure 3.3, vector addition,
like scalar addition, must obey the commutative rule,

and the associative rule,

As in scalar algebra, the number zero plays a special role in vector addition.
Thus,

Moreover, to every vector there corresponds one and only one vector b which
satisfies the equation

This unique vector is called the negative of a and denoted by –a (Figure 3.4).

The existence of negatives makes it possible to define subtraction as
addition of a negative. Thus

Subtraction and addition are compared in Figure 3.5.
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The existence of negatives also makes it possible to define multiplication by
the scalar –1 by the equation

This equation justifies interpreting –1 as a representation of the operation of
reversing direction (i.e. orientation, as explained in Figure 2.1b). Then the
equation simply expresses the obvious geometrical fact that by
reversing direction twice one reproduces the original direction. In this way
the concept of directed numbers leads to an operational interpretation of
negative numbers.

Now that the geometrical meaning of multiplication by minus one is
understood, it is obvious that Equation (3.2) is meaningful even if  is a
negative scalar. Vectors which are scalar multiples of one another are said to
be codirectional or collinear.

1-4. The Inner Product

A great many significant geometrical theorems can be simply expressed and
proved with the algebraic rules for vector addition and scalar multiplication
which have just been set down. However, the algebraic system as it stands
cannot be regarded as a complete symbolic expression of the geometric
notions of magnitude and direction, because it fails to fully indicate the
difference between scalars and vectors. This difference is certainly not re-
flected in the rules for addition, which are the same for both scalars and
vectors. In fact, the distinction between scalars and vectors still resides only in
their geometric interpretations, that is, in the different rules used to corre-
spond them with line segments.

The opportunity to give the notion of direction a full algebraic expression
arises when the natural question of how to multiply vectors is entertained.
Descartes gave a rule for “multiplying” line segments, but his rule does not
depend on the direction of the line segments, and it already has an algebraic
expression as a dilation. Yet the general approach of Descartes can be
followed to a different end. One can look for a significant geometrical
construction based on two line segments that does depend on direction; then,
by correspondence, use this construction to define the product of two vectors.

One need not look far, for one of the most familiar constructions of
ordinary geometry is readily seen to meet the desired specifications, namely,
the perpendicular projection of one line segment on another (Figure 4.1). A
study of this construction reveals that, though it depends on the relative
directions of the line segments to be “multiplied”, the result depends on the
magnitude of only one of them. This result can be multiplied by the magni-
tude of the other to get a more symmetrical relation. In this way one is led to
the following rule for multiplying vectors:
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Define the “inner product” of two directed line segments, denoted by
vectors a and b respectively, to be the oriented line segment obtained by
dilating the projection of a on b by the magnitude of b. The magnitude and
the orientation of the resulting line segment is a scalar; denote this scalar by
a.b and call it the inner product of vectors a and b.

This definition of a.b implies the following relation to the angle between a
and b:

This expression is commonly taken as the definition of a.b, but that calls for
an independent definition of cos which would be out of place here.
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It should be noted that the geometrical construction on which the definition
of a.b is based actually gives a line segment directed along the same line as a
or b; the magnitude and relative orientation of this line segment were used in
the definition of a.b, but its direction was not. There is good reason for this. It
is necessary if the algebraic rule for multiplication is to depend only on the
relative directions of a and b. Thus, as defined, the numerical value of a.b is
unaffected by any change in the directions of a and b which leaves the angle
between a and b fixed. Moreover, a.b has the important symmetry property

This expresses the fact that the projection of a on b dilated by gives the
same result as the projection of b on a dilated by (Figure 4.2).

The inner product has, besides (4.2), several basic algebraic properties
which can easily be deduced from its definition by correspondence with
perpendicular projection. Its relation to scalar multiplication of vectors is
expressed by the rule

Here can be any scalar — positive, negative or zero. Its relation to vector
addition is expressed by the distributive rule

(Figure 4.3). The magnitude of a vector is related to the inner product by

Of course, a. a = 0 if and only if a = 0.
The inner product greatly increases the usefulness of vectors, for it can be

used to compute angles and the lengths of line segments. Important theorems
of geometry and trigonometry can be proved easily by the methods of “vector
algebra”, so easily, in fact, that it is hardly necessary to single them out by
calling them theorems. Results which men once went to great pains to prove
have been worked into the algebraic rules where they can be exploited
routinely. For example, everyone knows that a great many theorems about
triangles are proved in trigonometry and geometry. But, such theorems seem
superfluous when it is realized that a triangle can be completely characterized
by the simple vector equation

From this equation various properties of a triangle can be derived by simple
steps. For instance, by “squaring” and using the distributive rule (4.4) one
gets an equation relating sides and angles:
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Or, using (4.2) and (4.5),

This equation can be reexpressed in terms of scalar labels still commonly used
in trigonometry. Figure 4.4 indicates the relations

So (4.7) can be written
in the form

This formula is called the
“law of cosines” in trig-
onometry. If C is a right
angle, then cos  C = 0,
and Equation (4.8) re-
duces to the Pythagorean
Theorem.
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By rewriting (4.6) in the form and squaring one gets a formula
similar to (4.8) involving the angle A. Similarly, an equation involving angle B
can be obtained. In this way one gets three equations relating the scalars a, b, c,
A, B, C. These equations show that given the magnitude of three sides, or of two
sides and the angle between, the remaining three scalars can be computed. This
result may be recognized as encompassing several theorems of geometry. The
point to be made here is that these results of geometry and trigonometry need
not be remembered as theorems, since they can be obtained so easily by the
“algebra” of scalars and vectors.

Trigonometry is founded on the Greek theories of proportion and perpen-
dicular projection. But the principle ideas of trigonometry did not find their
simplest symbolic expression until the invention of vectors and the inner
product by Grassmann. Grassmann originally defined the inner product just
as we did by correspondence with a perpendicular projection. But he also
realized that once the basic algebraic properties have been determined by
correspondence, no further reference to the idea of projection is necessary.
Thus, the “inner product” can be fully defined abstractly as a rule relating
scalars to vectors which has the properties specified by Equations (4.2)
through (4.5).

With the abstract definition of a.b the intuitive notion of relative direction
at last receives a precise symbolic formulation. The notion of number is
thereby nearly developed to the point where the principles and theorems of
geometry can be completely expressed by algebraic equations without the
need to use natural language. For example, the statement “lines OA and OB
are perpendicular” can now be better expressed by the equation

Trigonometry can now be regarded as a system of algebraic equations and
relations without any mention of triangles and projections. However, it is
precisely the relation of vectors to triangles and of the inner product to projec-
tions that makes the algebra of scalars and vectors a useful language for
describing the real world. And that, after all, is what the whole scheme was
designed for.

1-5. The Outer Product

The algebra of scalars and vectors based on the rules just mentioned has been so
widely accepted as to be routinely employed by mathematicians and physicists
today. As it stands, however, this algebra is still incapable of providing a full
expression of geometrical ideas. Yet there is nothing close to a consensus on how
to overcome this limitation. Rather there is a great proliferation of different
mathematical systems designed to express geometrical ideas – tensor algebra,
matrix algebra, spinor algebra – to name just a few of the most common. It
might be thought that this profusion of systems reveals the richness of mathema-



The Outer Product 21

tics. On the contrary, it reveals a widespread confusion – confusion about the
aims and principles of  geometric algebra. The intent here is to clarify these aims
and principles by showing that the preceding arguments leading to the invention
of scalars and vectors can be continued in a natural way, culminating in a single
mathematical system which facilitates a simple expression of the full range of
geometrical ideas.

The principle that the product of two vectors ought to describe their relative
directions presided over the definition of the inner product. But the inner
product falls short of a complete fulfillment of that principle, because it fails to
express the fundamental geometrical fact that two non-parallel lines determine a
plane, or, better, that two non-collinear directed line segments determine a
parallelogram. The possibility of giving this important feature of geometry a
direct algebraic expression becomes apparent when the parallelogram is re-
garded as a kind of “geometrical product” of its sides. But to make this
possibility a reality, the notion of number must again be generalized.

A parallelogram can be regarded as a directed plane segment. Just as
vectors were invented to characterize the notion of a directed line segment, so
a new kind of directed number, called a bivector or 2-vector, can be intro-
duced to characterize the notion of directed plane segment (Figure 5.1). Like
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a vector, a bivector has magnitude, direction and orientation, and only these
properties. But here the word “direction” must be understood in a sense
more general than is usual. Just as the direction of a vector corresponds to an
(oriented straight) line, so the direction of a bivector corresponds to an
(oriented flat) plane. The distinction between these two kinds of direction
involves the geometrical notion of dimension or grade. Accordingly, the
direction of a bivector is said to be 2-dimensional to distinguish it from the
1-dimensional direction of a vector. And it is sometimes convenient to call a
vector a 1-vector to emphasize its dimension. Also, a scalar can be regarded as
a 0-vector to indicate that it is a 0-dimensional number. Since, as already
shown, the only directional property of a scalar is its orientation, orientation
can be regarded as a 0-dimensional direction. Thus the idea of numbers with
different geometrical dimension begins to take shape.

In ordinary geometry the concepts of line and plane play roles of compar-
able significance. Indeed, the one concept can hardly be said to have any
significance at all apart from the other, and the mathematical meanings of
“line” and “plane” are determined solely by specifying relations between
them. To give “planes” and “lines” equal algebraic representation, the notion
of directed number must be enlarged to include the notion of bivector as well
as vector, and the relations of lines to planes must be reflected in the relations
of vectors to bivectors. It may be a good idea to point out that both line and
plane, as commonly conceived, consist of a set of points in definite relation to
one another. It is the nature of this relation that distinguishes line from plane.
A single vector completely characterizes the directional relation of points in a
given line. A single bivector completely characterizes the directional relation
of points in a given plane. In other words, a bivector does not describe a set of
points in a plane, rather it describes the directional property of such a set,
which, so to speak, specifies the plane the points are “in”. Thus, the notion of
a plane as a relation can be separated from the notion of a plane as a point set.
After the directional properties of planes and lines have been fully incorpo-
rated into an algebra of directed numbers, the geometrical properties of point
sets can be more easily and completely described than ever before, as we shall
see.

Now return to the problem of giving algebraic expression to the relation of
line segments to plane segments. Note that a point moving a distance and
direction specified by a vector a sweeps out a directed line segment. And the
points on this line segment, each moving a distance and direction specified by
a vector b, sweep out a parallelogram, (Figure 5.2). Since the bivector B
corresponding to this parallelogram is clearly uniquely determined by this
geometrical construction, it may be regarded as a kind of “product” of the
vectors a and b. So write

A “wedge” is used to denote this new kind of multiplication to distinguish it
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from the “dot” denoting the inner product of vectors. The bivector is
said to be the outer product of vectors a and b.

Now note that the parallelogram obtained by “sweeping b along a” differs
only in orientation from the parallelogram obtained by “sweeping a along b”
(Figure 5.2). This can be simply expressed by writing

Thus, reversing the order of vectors in an outer product “reverses” the
orientation of the resulting bivector. This is expressed by saying that the outer
product is anticommutative.

The relation of vector orientation to bivector orientation is fixed by the rule

This rule, like the others, follows from the correspondence of vectors and
bivectors with oriented line segments and plane segments. It can be simply
“read off” from Figure 5.3.
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Since the magnitude of the bivector is just the area of the corre-
sponding parallelogram,

where is the angle between vectors a and b. This formula expresses the
relation between vector magnitudes and bivector magnitudes. The relation to

is given in (5.4) for comparison with trigonometry; it is not part of the
definition.

Scalar multiplication can be defined for bivectors in the same way as it was
for vectors. For bivectors C and B and scalar the equation

means that the magnitude of B is dilated by the magnitude of that is,

and the direction of C is the same as that of  B if is positive, or opposite to it
if is negative. This last stipulation can be expressed by equations for
multiplication by the unit scalars one and minus one:

Bivectors which are scalar multiples of one another are said to be codirectional.
Scalar multiplications of vectors and bivectors are related by the equation

For  this is equivalent to Equation (5.3). For positive Equation
(5.8) merely expresses the fact that dilation of one side of a parallelogram
dilatates its area by the same amount.

Note that, by (5.4), for nonzero a and b if and only if
which is a way of saying that a and b are collinear. Adopting the principle,
already applied to vectors, that a directed number is zero if and only if its
magnitude is zero, it follows that if and only if Hence,
the outer product of nonzero vectors is zero if and only if they are collinear,
that is,

if and only if Note that if  (5.9) together with (5.8) implies that

This is as it should be, for the anticommutation rule (5.2) implies that
and only zero is equal to its own negative. All of this is in

complete accord with the geometric interpretation of outer multiplication, for
if a and b are collinear, then “sweeping a along b” produces no parallelogram
at all.
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The relation of addition to outer multiplications is determined by the
distributive rule:

The corresponding geometrical construction is illustrated in Figure 5.4. Note
that (5.11) relates addition of vectors on the left to addition of bivectors on
the right. So the algebraic properties and the geometrical interpretation of
bivector addition are completely determined by the properties and interpre-
tation already accorded to vector addition. For example, the sum of two
bivectors is a unique bivector, and again, bivector addition is associative. For
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bivectors with the same direction, it is easily seen that the distributive rule
(5.11) reduces to the usual rule for adding areas.

Both the inner and outer products are measures of relative direction, but
they complement one another. Relations which are difficult or impossible to
obtain with one may be easy to obtain with the other. Whereas the equation

provides a simple expression of “perpendicular”, provides a
simple expression of “parallel”. To illustrate the point, reconsider the vector
equation for a triangle, which was analyzed above with the help of the inner
product. Take the outer product of successively with vectors a, b,
c, and use the rules (5.10) and (5.11) to obtain the three equations

Only two of these equations are independent; the third, for instance, is the
sum of the first two. It is convenient to write the first two equations on a single
line, like so:

Here are three different ways of expressing the same bivector as a product of
vectors. This gives three different ways of expressing its magnitude:

Using (5.4) and the scalar labels for a triangle indicated in Figure 4.4, one
gets, after dividing by abc,

This formula is called the “law of sines” in trigonometry. We shall see in
Chapter 2 that all the formulas of plane and spherical trigonometry can be
easily derived and compactly expressed by using inner and outer products.

The theory of the outer product as described so far calls for an obvious
generalization. Just as a plane segment is swept out by a moving line segment,
a “space segment” is swept out by a moving plane segment. Thus, the points
on an oriented parallelogram specified by the bivector moving a dis-
tance and direction specified by a vector c sweep out an oriented parallel-
epiped (Figure 5,5), which may be characterized by a new kind of directed
number T called a trivector or 3-vector. The properties of T are fixed by
regarding it as equal to the outer product of the bivector with the vector
c. So write

The study of trivectors leads to results quite analogous to those obtained
above for bivectors, so the analysis need not be carried out in detail. But one
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new result obtains, namely, the conclusion that outer multiplication should
obey the associative rule:

The geometric meaning of associativity can be ascertained with the help of the
following rule:

This is an instance of the general rule that the orientation of a product is
reversed by reversing the orientation of one of its factors. Repeated appli-
cations of (5.16) and (5.17) makes it possible to rearrange the vectors in a
product to get

This says the same oriented parallelepiped is obtained by sweeping “
along c”, “     along a” or “     along b”. So the associative rule is needed to
express the equivalence of different ways of “building up” a space segment
out of line segments.

Of course, if c “lies in the plane of ”, then “sweeping  along c” does
not produce a 3-dimensional object. Accordingly, write

This equation provides a simple algebraic way of saying that 3 lines (with
directions denoted by vectors a, b, c) lie in the same plane, just as Equation
(5.9) provides a simple way of saying that 2 lines are parallel.

Like any other directed number, a 3-vector has magnitude, direction and
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orientation, and only these properties. The dimensionality of a 3-vector is
expressed by the fact that it can be factored into an outer product of three
vectors, though this can be done in an unlimited number of ways. The
magnitude of is denoted by and is equal to the volume of the
parallelepiped determined by the vectors a, b and c.

The orientation of a trivector depends on the order of its factors. The
anticommutation rule together with the associative rule imply that exchange
of any pair of factors in a product reverses the orientation of the result. For
instance, Thus the idea of relative orientation is very
easily expressed with the help of the outer product. Without such algebraic
apparatus the geometrical idea of orientation is quite difficult to express, and,
not surprisingly, was only dimly understood before the invention of vectors
and the outer product.

The essential aspects of outer multiplication and the generalized notions of
number and direction it entails have now been set down. No fundamentally
new insights into the relations between algebra and geometry are achieved by
considering the outer product of four or more vectors. But it should be
mentioned that if vectors are used to describe the 3-dimensional space of
ordinary geometry, then displacement of the trivector in a direction
specified by d fails to sweep out a 4-dimensional space segment. So write

The parenthesis is unnecessary because of the associative rule (5.16). Equa-
tion (5.19) must hold for any four vectors a, b, c, d. This is a simple way of
saying that space is 3-dimensional. Note the similarity in form and meaning of
Equations (5.19), (5.18) and (5.9). It should be clear that (5.19) does not
follow from any ideas or rules previously considered. By supposing that the
outer product of four vectors is not zero, one is led to an algebraic description
of spaces and geometries of four or more dimensions, but we already have
what we need to describe the geometrical properties of physical space.

The outer product was invented by Hermann Grassmann, and, following a
line of thought similar to the one above, developed into a complete math-
ematical theory before the middle of the nineteenth century. His theory has
been accorded a prominent place in mathematics only in the last forty years,
and it is hardly known at all to physicists. Grassmann himself was the only one
to use it during the first two decades after it was published. There are several
reasons for this. The most important one arises from the fact that Grass-
mann’s understanding of the abstract nature of mathematics was far ahead of
his time. He was the first person to arrive at the modern conception of algebra
as a system of rules relating otherwise undefined entities. He realized that the
nature of the outer product could be defined by specifying the rules it obeys,
especially the distributive, associative, and anticommutive rules given above.
He rightly expounded this momentous insight in great detail. And he proved
its significance by showing, for the first time, how abstract algebra can take us
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beyond the 3-dimensional space of experience to a conception of space with
any number of dimensions. Unfortunately, in his enthusiasm for abstract
developments, Grassmann deemphasized the geometric origin and interpre-
tation of his rules. No doubt many potential readers would have appreciated
the geometrical applications of Grassmann’s system, but most were simply
confounded by the profusion of unfamiliar abstract ideas in Grassmann’s long
books.

The seeds of Hermann Grassmann’s great invention were sown by his
father, Günther, who in 1824, when Hermann was 15, published these words
in a book intended for elementary instruction:

“the rectangle itself is the true geometrical product, and the construction of it is really geometrical
multiplication. . . . A rectangle is the geometric product of its base and height, and this product
behaves in the same way as the arithmetic product.”  (italics added)

The elder Grassmann elaborated this idea at some length and must have
advocated it with considerable enthusiasm to his young son. As it stands,
however, Günther’s idea is hardly more than a novel way of expressing the
central idea of Book II of Euclid’s Elements. The Greeks made frequent use
of the correspondence between the product of numbers and the construction
of a parallelogram from its base and height. For example, Euclid represented
the distributive rule of algebra as addition of areas and proved it as a
geometrical theorem. This correspondence between arithmetic and geometry
was rejected by Descartes and duly ignored by the mathematicians that
followed him. However, as already explained, Descartes merely associated
arithmetic multiplication with a different geometric construction. The old
Greek idea lay dormant until it was reexpressed in strong arithmetic terms by
Günther Grassmann. But the truly significant advance, from the idea of a
geometrical product to its full algebraic expression by outer multiplication,
was made by his son.

Hermann Grassmann completed the algebraic formulation of basic ideas in
Greek geometry begun by Descartes. The Greek theory of ratio and pro-
portion is now incorporated in the properties of scalars and scalar multiplica-
tion. The Greek idea of projection is incorporated in the inner product. And
the Greek geometrical product is expressed by outer multiplication. The
invention of a system of directed numbers to express Greek geometrical
notions makes it possible, as Descartes had already said, to go far beyond the
geometry of the Greeks. It also leads to a deeper appreciation of the Greek
accomplishments. Only in the light of Grassmann’s outer product is it possible
to understand that the careful Greek distinction between number and magni-
tude has real geometrical significance. It corresponds roughly to the distinc-
tion between scalar and vector. Actually the Greek magnitudes added like
scalars but multiplied like vectors, so multiplication of Greek magnitudes
involves the notions of direction and dimension, and Euclid was quite right in
distinguishing it from multiplication of “Greek numbers” (our scalars). Only
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in the work of Grassmann are the notions of direction, dimension, orientation
and scalar magnitude finally disentangled. But his great accomplishment
would have been impossible without the earlier vague distinction of the
Greeks, and perhaps without its reformulation in quasi-arithmetic terms by
his father.

1-6. Synthesis and Simplification

Grassmann was the first person to define multiplication simply by specifying a
set of algebraic rules. By systematically surveying various possible rules, he
discovered several other kinds of multiplication besides his inner and outer
products. Nevertheless, he overlooked the most important possibility until
late in his life, when he was unable to follow up on its implications. There is
one fundamental kind of geometrical product from which all other significant
geometrical products can be obtained. All the geometrical facts needed to
discover such a product have been mentioned above.

It has already been noted that the inner and outer products seem to
complement one another by describing independent geometrical relations.
This circumstance deserves the most careful study. The simplest approach is
to entertain the possibility of introducing a new kind of product ab by the
equation

Here the scalar has been added to the bivector At first sight it may
seem absurd to add two directed numbers with different grades. That may
have delayed Grassmann from considering it. For centuries the notion that
you can only add “like things” has been relentlessly impressed on the mind of
every schoolboy. It is a kind of mathematical taboo – its real justification
unknown or forgotten. It is supposedly obvious that you cannot add apples
and oranges or feet and square feet. On the contrary, it is only obvious that
addition of apples and oranges is not usually a practical thing to do – unless
you are making a salad.

Absurdity disappears when it is realized that (6.1) can be justified in the
abstract “Grassmannian” fashion which has become standard mathematical
procedure today. All that mathematics really requires is that the indicated
relations and operations be well defined and consistently employed. The
mathematical meaning of adding scalars and bivectors is determined by
specifying that such addition satisfy the usual commutative and associative
rules. Use of the “equal sign” in (6.1) is justified by assuming that it obeys the
same rules as those governing equality in ordinary scalar algebra. With this
understood, it now can be shown that the properties of the new product are
almost completely determined by the obvious requirement that they be consis-
tent with the properties already accorded to the inner and outer products.
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The commutative rule together with the anticommutative rule
imply a relation between ab and ba. Thus,

Comparison of (6.1) with (6.2) shows that, in general, ab is not equal to ba
because, though their scalar parts are equal, their bivector parts are not.
However, if then

And if then

It should not escape notice that to get (6.3) and (6.4) from (6.1) the usual
“additive property of zero” is needed, and no distinction between a scalar
zero and a bivector zero is called for.

The product ab inherits a geometrical interpretation from the interpret-
ations already accorded to the inner and outer products. It is an algebraic
measure of the relative direction of vectors a and b. Thus, from (6.3) and
(6.4) it should be clear that vectors are collinear if and only if their product is
commutative, and they are orthogonal if and only if their product is anticom-
mutative. But more properties of the product are required to understand its
significance when the relative direction of two vectors is somewhere between
the extremes of collinearity and orthogonality.

To give due recognition to its geometric significance ab will henceforth be
called the geometric product of vectors a and b.

From the distributive rules (4.4) and (5.1-1) for inner and outer products, it
follows that the geometric product must obey the left and right distributive
rules

Equation (6.5) can be derived from (6.1) by the following steps

Note that the usual properties of equality and the commutative and associat-
ive rules of addition have been employed. Equation (6.6) can be derived from
(6.2) in the same way. The distributive rules (6.5) and (6.6) are independent
of one another, because multiplication is not commutative. To derive them,
the distributive rules for both the inner and outer products were needed.

The relation of scalar multiplication to the geometric product is described
by the equations
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This is easily derived from (4.3) and (5.8) with the help of the definition (6.1).
It says that scalar and vector multiplication are mutually commutative and
associative. If the commutative rule is separated from the associative rule, it
takes the simple form

Now observe that by taking the sum and difference of equations (6.1) and
(6.2), one gets

and

This points the way to a great simplification. Instead of regarding (6.1) as a
definition of ab, consider ab as fundamental and regard (6.9) and (6.10) as
definitions of and This reduces two kinds of vector multiplication to
one. It is curious, then, to note that by (6.9) the commutativity of the inner
product arises from the commutativity of addition, and by (6.10) the anticommu-
tativity of the outer product arises from the anticommutativity of subtraction.

The algebraic properties of the geometric product of two vectors have
already been ascertained. It should be evident that the corresponding proper-
ties of the inner and outer products can be derived from the definitions (6.9)
and (6.10) simply by reversing the arguments already given.

The next task is to examine the geometric product of three vectors a, b, c. It
is certainly desirable that this product satisfy the associative rule

for that greatly simplifies algebraic manipulations. But it must be shown that
this rule reproduces established properties of the inner and outer products.
This can be done by examining the product of a vector with a bivector.

The product aB of a vector a with a bivector B can be expressed as a sum of
“symmetric” and “antisymmetric” parts in the following way

Anticipating results to be obtained, introduce the notations

So
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As the notation indicates, is to be regarded as identical to the outer
product of vector and bivector which has already been introduced for geo-
metric reasons. The quantity is something new; as the notation suggests,
it is to be regarded as a generalization of the inner product of vectors.

Note that (6.13) differs from (6.10) by a sign, because (6.13) has a bivector
where (6.10) has a vector. The sign in (6.13) is justified by showing that (6.13)
yields the properties already ascribed to the outer product. To this end,
it is sufficient to show that (6.13) implies the associative rule

Of course the properties of the geometric product, including the
associative rule (6.11) must be freely used in the proof. Utilizing the definitions
(6.10) and (6.13) for the outer product,

Similarly,

On taking the difference of these expressions several terms cancel and the
remaining terms can be arranged to give

Note that the fact that the vector inner product is a scalar is needed in the last
step of the proof.

Now to understand the significance of  let  Use the definitions
as before to eliminate the dot and wedge:

To this, add

and collect terms to get

Thus

This shows that inner multiplication of a vector with a bivector results in a
vector. So Equation (6.14) expresses the fact that the geometric product aB of
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a vector with a bivector results in the sum of a vector and a trivector
The similarity between (6.1) and (6.14) should be noted. They illustrate the
general rule that outer multiplication by a vector “raises the dimension” of
any directed number by one, whereas inner multiplication “lowers” it by one.
Clearly, the generalized inner and outer products provide an algebraic vehicle
for expressing geometric notions about “increasing or decreasing the dimen-
sion of space”.

1-7. Axioms for Geometric Algebra

Let us examine now what we have learned about building a geometric
algebra. To begin with, the algebra should include the graded elements
0-vector, 1-vector, 2-vector and 3-vector to represent the directional proper-
ties of points, lines, planes and space. We introduced three kinds of multipli-
cation, the scalar, inner and outer products, to express relations among the
elements. But we saw that inner and outer products can be reduced to a single
geometric product if we allow elements of different grade (or dimension) to
be added. For this reason, we conclude that the algebra should include
elements of “mixed grade”, such as

Before continuing, a note about nomenclature is in order. The term
“dimension” has two distinct but closely related mathematical meanings. To
separate them we will henceforth use the term “grade” exclusively to mean
“dimension” in the sense that we have used the term up to this point. We
have preferred the term “dimension” in our introductory discussion, because
it is likely to have familiar and helpful connotations for the reader. However,
now we aim to improve the precision of our language with an axiomatic
formulation of the basic concepts. The alternative meaning for “dimension”
will be explained in Section 2.2, where for k = 0, 1, 2, 3, is an element of
grade k called k-vector part of A. Thus, (7.1) presents A as the sum of a scalar

a vector a bivector and a trivector We refer to A as a
multivector, a (directed) number or a quantity. Any element of the geometric
algebra can be called a multivector, because it can be represented in the form
(7.1). For example, a vector a can be expressed trivially in the form (7.1) by
writing and using the property a + 0 = a.
Note the k-vectors which are not scalars are denoted by symbols in boldface
type. Such k-vectors are sometimes called k-blades or, simply, blades to
emphasize the fact that, in contrast to 0-vectors (scalars), they have “direc-
tional properties”.

Now another simplification becomes possible. It will be noted that the
geometric product of vectors which we have just considered has, except for
commutivity, the same algebraic properties as scalar multiplication of vectors
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and bivectors. In particular, both products are associative and distributive
with respect to addition. Rather than regard them as two different kinds of
multiplication, we can regard them as instances of a single geometric product
among different kinds of multivector. Thus, scalar multiplication is the geo-
metric product of any multivector by a special kind of multivector called a
scalar. The special geometric nature of the scalars is expressed algebraically
by the fact that they commute with every other multivector.

Thus, we define addition and multiplication of multivectors by the following
familiar rules: For multivectors A, B, C, . . . , addition is commutative,

addition and multiplication are associative,

multiplication is distributive with respect to addition,

There exist unique multivectors 0 and 1 such that

Every multivector A has a unique additive inverse –A, that is,

Of course, the whole algebra is assumed to be algebraically closed, that is, the
sum or product of any two multivectors is itself a unique multivector.

It is hardly necessary to discuss the significance of the above axioms, since
they are familiar from the elementary algebra of scalars. They can be used to
manipulate multivectors in exactly the same way that numbers are manipu-
lated in arithmetic. For example, axiom (7.9) is used to define subtraction of
arbitrary multivectors in the same way that subtraction of vectors was defined
by Equation (3.10).

To complete our system of axioms for geometric algebra, we need some
axioms that characterize the various kinds of k-vectors. First of all, we assume
that the set of all scalars in the algebra can be identified with the real
numbers, and we express the commutivity of scalar multiplication by the
axiom

for every scalar and multivector A. Vectors are characterized by the
following axiom. The “square” of any nonzero vector a is a unique positive
scalar that is,
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We characterize k-vectors of higher grade by relating them to vectors. It will
be most convenient to do that after we introduce a couple of definitions.

For a vector and any k-blade we define the inner product by

and the outer product by

adding these equations, we get

Note that (7.12a) includes (6.9) and (6.12) as special cases, while (7.12b) includes
(6.10) and (6.13), and (7.12c) includes (6.1) and (6.14).

Using the definitions (7.12a) and (7.12b), we adopt the following prop-
ositions as axioms:

Thus, the inner product lowers the grade of a k-vector, while the outer
product raises the grade. According to (7.1), however, all k-vectors with
grade must vanish. To assure this, we need one more axiom: For every
vector a and 3-vector

By virtue of the definition (7.12b), this can alternatively be written

In other words, vectors always commute with trivectors.
Finally, to assure that the whole algebraic system is not vacuous, we must

assume that nonzero multivectors with all grades actually exist.
This completes our formulation of the axioms for geometric algebra. We

have neglected some logical fine points (e.g., Exercise 7.1), but our axioms
suffice to show exactly how geometric algebra generalizes the familiar algebra
of scalars. We have chosen a notation for geometric algebra that is as similar
as possible to the notation of scalar algebra. This is a point of great impor-
tance, for it facilitates the transfer of skills in manipulations with scalar
algebra to manipulations with geometric algebra. Let us note exactly how the
basic operations of scalar algebra transfer to geometric algebra.

Axioms (7.2) to (7.9) implicitly define the operations of addition, subtrac-
tion and multiplication. Except for the absence of a general commutative law
for multiplication, they are identical to the axioms of scalar algebra. There-
fore, multivectors can be equated, added, subtracted and multiplied in
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exactly the same way as scalar quantities, provided one does not reorder
multiplicative factors which do not commute. Division by multivectors can be
defined in terms of multiplication, just as in scalar algebra. But we need to
pay special attention to notation on account of noncommutivity, so let us
consider the matter explicitly.

In geometric algebra, as in elementary algebra, the solution of equations is
greatly facilitated by the possibility of division. We can divide by a multivec-
tor A if it has a multiplicative inverse. The inverse of A, if it exists, is denoted
by or 1 /A and defined by the equation

We can divide any multivector B by A in two ways, by multiplying it by on
the left,

or on the right,

Obviously, the “left division” is not equivalent to the “right division” unless
B commutes with in which case the division can be denoted unambig-
uously by

Every nonzero vector a has a multiplicative inverse. To determine the
inverse of a, we multiply the equation on the right by a and divide by
the scalar thus

With due regard for the order of factors, many tricks of elementary algebra,
such as “rationalizing the denominator”, are equally useful in geometric
algebra. It should be noted, however, that some multivectors do not have
multiplicative inverses (see Exercise 7.2), so it is impossible to divide by
them.

7-1. Exercises

Hints and solutions for selected exercises are given at the back of the book.
(7.1) The axioms given in this chapter do not suffice to prove the elementary

(a) Addition Property of Equality:

If B = C, then A + B = A + C.
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(b) Multiplication Property of Equality:

If B = C, then AB = AC.

Add these properties to our list of axioms and prove the converses
(c) Cancellation Principle of Addition:

If A + B = A + C, then B = C.

(d) Cancellation Principle of Multiplication:

If AB = AC and exists, then B = C.

Specify the justification for each step in the proof. The proofs in
geometric algebra are identical to those in elementary algebra.

(7.2) Let where is a scalar and a is a nonzero vector.
(a) Find as a function of and a. What conditions on and a

imply that does not exist?
(b) Show that if does not exist, then A can be normalized so

that

A quantity with this property is said to be idempotent.
(c) Show that if is idempotent, its product with any other

multivector is not invertible. It can be proved that every multi-
vector which does not have an inverse has an idempotent for a
factor.

(d) Find an idempotent which does have an inverse.
(7.3) Prove that every left inverse is also a right inverse and that this

inverse is unique.



Chapter 2

Developments in Geometric Algebra

In Chapter 1 we developed geometric algebra as a symbolic system for
representing the basic geometrical concepts of direction, magnitude, orien-
tation and dimension. In this chapter we continue the development of
geometric algebra into a full-blown mathematical language. The basic gram-
mar of this language is completely specified by the axioms set down at the end
of Chapter 1. But there is much more to a language than its grammar!

To develop geometric algebra to the point where we can express and
explore the ideas of mechanics with fluency, in this chapter we introduce
auxiliary concepts and definitions, derive useful algebraic relations, describe
simple curves and surfaces with algebraic equations, and formulate the
fundamentals of differentiation and integration with respect to scalar vari-
ables. Further mathematical developments are given in Chapter 5.

2-1. Basic Identities and Definitions

In Chapter 1 we were led to the geometric product for vectors by combining
inner and outer products according to the equation

Then we reversed the procedure, defining the inner and outer products in
terms of the geometric product by the equations

This did more than reduce two different kinds of multiplication to one. It
made possible the formulation of a simple axiom system from which an
unlimited number of geometrical relations can be deduced by algebraic
manipulation. In this section we aim to improve our skills at carrying out such
deductions and establish some widely useful results.

The inner and outer products appear frequently in applications, because
they have straightforward geometrical interpretations, as we saw in Chapter

39
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1. For this reason, it is often desirable to operate directly with inner and outer
products, even though we regard the geometric product as more fundamen-
tal. To make this possible, we need a system of algebraic identities relating
inner and outer products. We derive these identities, of course, by using the
geometric product and the axioms of geometric algebra set down in Section
1-7.

The different products are most easily related by the equation

which generalizes (1.1) to apply to any r-blade that is, any r-vector with
grade r > 0. Recall that the corresponding definitions of inner and outer
products are given by

We will make frequent use of the fact that  is an (r – 1)-vector (a scalar if
r = 1), while  is an (r + 1)-vector.

To illustrate the use of (1.4) and its special case (1.1), let us derive the
associative rule for the outer product. Beginning with the associative rule
for the geometric product,

we use (1.1) to get

Applying the distributive rule and (1.4), we get

Now we identify the terms a(b·c) and as vectors, and the term
as a trivector. Since vectors are distinct from trivectors, we can

separately equate vector and trivector parts on each side of the equation. By
equating trivector parts, we get the associative rule

And by equating the vector parts we find an algebraic identity which we have
not seen before,

For more about this identity, see Exercise 1.11.
This derivation of the associative rule (1.7) should be compared with our

previous derivation of the same rule in Section 1-6. That derivation was
considerably more complicated, because it employed a direct reduction of the
outer product to the geometric product. Moreover, the indirect method
employed here gives us the additional “vector identity” (1.8) at no extra cost.
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Note the general structure of the method: an identity involving geometric
products alone is expanded into inner and outer products by using (1.4) and
then parts of the same grade are separately equated. This will be our principal
method for establishing identities involving inner and outer products. As
another example, note that the method immediately gives the distributive
rules for inner and outer products. Thus, if a is a vector and  and are
r-blades, then by applying (1.4) to

and separating parts of different grade, we get

and

Here we have the distributive rules in a somewhat more general (hence more
useful) form than they were presented in Chapter 1.

These examples show the importance of separating a multivector or a
multivector equation into parts of different grade. So it will be useful to
introduce a special notation to express such a separation. Accordingly, we
write to denote the r-vector part of a multivector A. For example, if

this notation enables us to write

for the trivector part,

for the vector part, while the vanishing of scalar and bivector parts is
described by the equation

According to axiom (7.1) of Chapter 1, every multivector can be decom-
posed into a sum of its r-vector parts, as expressed by writing

If then A is said to be homogeneous of grade r, that is, A is an
r-vector. A multivector A is said to be even (odd) if when r is an
odd (even) integer. Obviously every multivector A can be expressed as a sum
of an even part and an odd part Thus

where
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We shall see later that the distinction between even and odd multivectors is
important, because the even multivectors form an algebra by themselves but
the odd multivectors do not.

According to (1.10), we have for all k > 3, that is, every blade
with grade k > 3 must vanish. We adopted this condition in Chapter 1 to
express the fact that physical space is three dimensional, so we will be
assuming it in our treatment of mechanics throughout this book. However,
such a condition is not essential for mathematical reasons, and there are other
applications of geometric algebra to physics where it is not appropriate. For
the sake of mathematical generality, therefore, all results and definitions in
this section are formulated without limitations on grade, with the exception,
of course, of (1.10) and (l.11b, c). This generality is achieved at very little
extra cost, and it has the advantage of revealing precisely what features of
geometric algebra are peculiar to three dimensions.

Before continuing, it will be worthwhile to discuss the use of parentheses in
algebraic expressions. Note that the expression a·bc is ambiguous. It could
mean (a·b)c, which is to say that the inner product a·b is performed first and
the resulting scalar multiplies the vector c. On the other hand, it could mean
a·(bc), which is to say that the geometric product bc is performed before the
inner product. The two interpretations give completely different algebraic
results. To remove such ambiguities without using parentheses, we introduce
the following precedence convention: If there is ambiguity, indicated inner and
outer products should be performed before an adjacent geometric product.
Thus

This convention eliminates an appreciable number of parentheses, especially
in complicated expressions. Other parentheses can be eliminated by the
convention that outer products have “preference” over inner products, so

but we use this convention much less often than the preceding one.
The most useful identity relating inner and outer products is, of course, its

simplest one:

We derived this in Section 1-6 before we had established our axiom system for
geometric algebra. Now we can derive it by a simpler method. First we use
(1.2) in the form to reorder multiplicative factors as follows:

Rearranging terms and using (1.1), we obtain



Basic Identities and Definitions 43

which, by (1.5), gives us (1.14) as desired.
By the same method we can derive the more general reduction formula

where a and b are vectors while is an r-blade. We use (1.2) and (1.5) to
reorder multiplicative factors as follows:

Rearranging terms and using (1.4) and (1.5), we obtain

The r-vector part of this equation gives us (1.15) as desired.
By iterating (1.15), we obtain the expanded reduction formula

The inverted circumflex in the product means that the kth
factor is to be omitted. Equation (1.16) determines the inner product of the
r-vector with a in terms of its vector factors and their
inner products It would be quite appropriate to refer to (1.15) as the
Laplace expansion of the inner product, because of its relation to the expan-
sion of a determinant (see Chapter 5).

Our definitions (1.5) and (1.6) for inner and outer products require that
one of the factors in the products be a vector. It will be useful to generalize
these definitions to apply to blades of any grade. For any r-blade and
s-blade the inner product is defined by

and the outer product is defined by

Thus, the inner product produces an –vector, while the outer product
produces an -vector. The symbol denotes a definition or identity.

The reduction of an inner product between two blades can be accomplished
by using the formula

which holds for 0 < r < s, with and
Note that the factor on the right side of (1.18) can be further reduced by
(1.15) or (1.16) if is expressed as a product of vectors. Equation (1.18) can
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be proved in the same way as (1.8). Use (1.4) to expand
and ascertain that the -vector part is equivalent to (1.18).

The student should beware that the geometric product of blades A and B is
not generally related to inner and outer products by the formula

unless one of the factors is a vector, as in (1.4). In particular, this formula
does not hold if both A and B are bivectors. To prove that, express A as a
product of orthogonal vectors by writing

Then

Hence

where

Note that we have 3 terms in (1.19) in contrast to the two terms in (1.4). To
learn more about the product between bivectors, we use the trick that any
geometric product can be decomposed into symmetric and antisymmetric
parts by writing

Comparing this with (1.19), it is not difficult to establish that, for bivectors A
and B,

The expression is sometimes called the commutator or commu-
tator product of A and B, because it vanishes if A and B commute. Equation
(1.20b) tells us that the commutator product of bivectors produces another
bivector. Equation (1.20a) tells us that the symmetric product of bivectors

produces a scalar A·B and a 4-vector Of course, we can
take when we employ our grade restriction axiom as in (1.10).

The procedure which gave us the expansion (1.19) for the product of
bivectors can be applied to the product of blades of any grade. Note, that for
the product if we reduce the initial grade of the
factor on the right by successive inner products with vectors, and the term

of lowest grade will be
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Thus, we conclude that is the term of lowest grade in the product
And as a useful corollary, we note that the product can have a nonzero
scalar part only if

Factorization

We know the great importance of factoring in scalar algebra. In geometric
algebra we have a new kind of factoring which is equally important, namely,
the factoring of a k-blade into a product of vectors. Consider, for example, a
unit vector a and a nonzero bivector B such that

By virtue of (1.4), this implies that

which defines a vector b. We can solve this equation for B by division, that is,
by multiplying it by Thus, we obtain

The last equality follows from (1.1), since (1.22) implies Equation
(1.23) is a factorization of the bivector B into a product of orthogonal vectors,
so (1.21) is a condition that a be a factor of B. Of course, b is also a factor of B
and Equation (1.22) shows that b is a unique factor of B orthogonal
to a. In Section 2-2 it will become obvious that B can be factored into
orthogonal vector pair in an infinite number of ways. Blades of higher grade
can be factored in a similar way.

Reversion

In algebraic computations, it is often desirable to reorder the factors in a
product. For this reason, it is convenient to introduce the operation of
reversion defined by the equations

We say that is the reverse of the multivector A. It follows easily from
(1.24a) and (1.24d) that the reverse of a product of vectors is

This justifies our choice of the name “reverse”.
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The reverse of a bivector is given by

where the anticommutivity of the outer product was used to reorder vector
factors. In a similar way we can reorder vector factors in a trivector one at a
time.

Hence,

Thus, reversion changes the signs of bivectors and trivectors, while, according
to (1.24c) and (1.24d), it does not affect scalars and vectors. All this is
summed up by applying reversion to a general multivector in the expanded
form (1.10), with the result

Magnitude

To every multivector A there corresponds a unique scalar | A | , called the
magnitude or modulus of A, defined by the equation

Existence of the square root is assured by the fact that

where if and only if To prove this, first observe that

If the vectors here are orthogonal, then they are factors of an r-blade
It follows that the squared modulus of any

non-zero r-blade is positive, that is,

Now, when we expand the product in terms of r-vector parts, the “cross
terms” multiplying blades of different grades have no scalar parts, so they can
be ignored when we take scalar parts. Thus from (1.10) we obtain the
expansion

None of the terms in this expansion can be negative according to (1.32), so
(1.30) is proved.



Basic Identities and Definitions 47

2-1. Exercises

(1.1) Establish the following “vector identities”:

(1.2) Vectors a, b, c are said to be linearly dependent if there exists scalars
(not all zero) such that Prove that

if and only if a, b, c are linearly dependent. Express the
coefficients for linearly dependent vectors in terms of the
inner products of the vectors.

(1.3) Solve the following vector equation for the vector x:

(1.4) In the following vector equation B is a 2-blade,

Solve for the vector x. A good plan of attack in this kind of problem
is to eliminate inner and/or outer products in favor of geometric
products, so one can “divide out” multiplicative factors.

(1.5) Solve the following simultaneous equations for the vector x under
the assumption that

(1.6) Prove the related vector identities

(1.7) Reduce and to inner products of vec-
tors.

(1.8) The identity can be used to reorder vectors in a
product. Use it to establish the expansion formula

(1.9) Prove that for vectors

if is an odd integer.

(1.10) Prove the identity (1.15).
(1.11) Establish the “Jacobi identity” for vectors.

(1.12) Prove that if is an r-blade, then
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(1.13) Prove
and

(1.14) Prove that
(1.15) Prove that the bivector can be factored into a product of

vectors if and only if
(1.16) Prove that

Use this to prove that the product of even (or odd) multivectors is
always even.

(1.17) Define A·B and  for arbitrary multivectors A and B so that the
distributive properties of inner and outer products are preserved.
Show that if Equation (1.4) were to be generalized to

for arbitrary A, then it would be necessary to
require that for scalar which is inconsistent with the
definition (1.17a).

2-2. The Algebra of a Euclidean Plane

Every vector a determines an oriented line, namely, the set of all vectors
which are scalar multiples of a. Thus, every vector x on the line is related to a
by the equation

This is said to be a parametric equation for the a-line. Each value of the scalar
parameter determines a unique point x on the line. A vector x is said to be

positively directed (relative to a) if x·a > 0, or negatively directed if x·a < 0.
This distinction between positive and negative vectors is called an orientation
(or sense) of the line. The unit vector is called the direction of the
oriented line. The opposite orientation (or sense) for the line is obtained by
reversing the assignments of positive and negative to vectors, that is, by
designating as the direction of the line. If a distinction between the two
possible orientations is not made, the line is said to be unoriented.

Outer multiplication of (2.1) by a gives the equation

This is a nonparametric equation for the a-line. The a-line is the solution set
{x} of this equation. Note that we use curly brackets { } to indicate a set.
To show that, indeed, every solution of (2.2) has the form (2.1), use (1.1)
to obtain from (2.2), the equation

Multiplying this equation on the right by and writing
one gets (2.1) as promised.
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Two Dimensional Vector Space

There is an algebraic description of a plane which is quite analogous to that of
a line. Given a (nonzero) bivector B, the set of all vectors x which satisfy the
equation

is said to be a 2-dimensional vector space and may be referred to as the
B-plane. An orientation for the B-plane is determined by designating a unit
bivector i proportional to B as the direction of the plane. Obviously, if the
relation

is substituted in (2.3), the scalar B can be divided out to get the equivalent
equation

So every bivector which is a non-zero scalar multiple of i determines the same
plane as i. Such a bivector is called a pseudoscalar of the plane.

A parametric equation for the i-plane can be derived from (2.5) by
factoring i into the product

where and are orthogonal unit vectors, that is, and
Using (1.4), we obtain from (2.5),

or, by (2.6) and (1.16),

Multiplying this on the right by we obtain

where and Equation (2.8) is a parametric equation for
the i-plane. Scalars and are called rectangular components of the vector x
with respect to the basis Equation (2.8) determines a distinct vector
x for each distinct pair of values of the components. A typical vector x is
represented by a directed line segment in Figure 2.1. Orthogonal vectors like

and are represented by perpendicular line segments in the figure, and the
unit pseudoscalar i is represented by a plane segment. To be precise, i is the
directed area of the plane segment, and the directed area of every plane
segment in the i-plane is proportional to i.

Geometric Interpretations of a Bivector

The unit bivector i has two distinct geometric interpretations corresponding
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to two basic properties
of the plane. First, as
already mentioned, it
is the unit of directed
area, or simply, the di-
rection of the plane.
Second, as we shall
see, it is the generator
of rotations in the
plane. The first inter-
pretation is exemp-
lified by Equation
(2.6), which expresses
the fact that the unit of
area i can be obtained
from the product of
two orthogonal units
of length and Fig. 2.1. Diagram of the i-plane of vectors, commonly known as
Equations exemplify- the “real plane”.
ing the second inter-
pretation can be obtained by multiplying (2.6) on the left by and to get

According to (2.9a), multiplication of on the right by i transforms  into
Since has the same magnitude as but is orthogonal to it, this

transformation is a rotation of through a right angle. Similarly, Equation
(2.9b) expresses the rotation of through a right angle into

Substitution of (2.9a) into (2.9b) gives

which expresses the fact two consecutive rotations through right angles reverses
the direction of a vector. This provides a geometric interpretation for the
equation

when i and -1 are both regarded as operators (by multiplication) on vectors.
Right multiplication by i of any vector x in the i-plane rotates x by a right

angle into a vector From (2.8) and (2.9) we can get the components
of x; from the components of x; thus,

The relation of x to x´ is represented in Figure 2.1. Notice that multiplication
by i rotates vectors counterclockwise by a right angle. It is conventional to
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correspond a positive
orientation (or sense)
of a plane (and its unit
pseudoscalar) with a
counterclockwise rota-
tion, as indicated in
Figure 2.1. A negative
orientation (or sense)
then corresponds to a
clockwise rotation.
Another common way
to distinguish between
the two orientations of
a plane is with the
terms “left turn” and
“right turn”.

Plane Spinors

Fig. 2.2. Diagram of the Spinor i-plane commonly known as an
“Argand diagram of the complex plane”. Each point in the spinor  By multiplying two vec-
plane represents a rotation-dilation. Points on the unit circle tors in the i-plane, we
represent pure rotations, while points on the positive scalar axis get a quantity called a
represent pure dilations. spinor of the i-plane.

For example, by (2.6)
and (2.8), from the product of vectors  and x, we get a spinor z in the form

Quantities of the form are commonly called complex numbers. It will
be convenient for us to adopt that terminology when we wish to emphasize
some relation to traditional concepts. However, it must be remembered that
besides the property ascribed to the traditional unit imaginary, our
i is a bivector, so it has geometric and algebraic properties beyond those tradi-
tionally accorded to “imaginary numbers”. The real and imaginary parts of a
complex number z are commonly denoted by and Separation of
a complex number into real and imaginary parts is equivalent to separating a
spinor into scalar and pseudoscalar (bivector) parts, that is,

Note that reversion of a spinor corresponds exactly to conventional complex
conjugation, that is,
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Also, our notation agrees with the conventional notation for the modulus
of a complex number, thus,

The set of, all spinors of the form (2.12) is a 2-dimensional space, which is
aptly called the spinor plane (or spinor i-plane, to emphasize the special role
of i). The elements of the spinor plane can be represented by directed line
segments or points in a diagram such as Figure 2.2. Comparison of Figures
2.1 and 2.2 shows that the points of the i-plane of vectors can be put into
one-to-one correspondence with points of the spinor plane. A correspon-
dence is determined by an arbitrary choice of some vector in the vector plane,
say ; then the product of with each vector x is a unique spinor z, as is
expressed by equation (2.12). Conversely, each spinor z determines a unique
vector x according to the equation

derived from (2.12). Note that distinguishes a line in the vector plane to be
associated with the scalar axis in the spinor plane.

In spite of the correspondence between the vector and spinor planes, each
plane has a different geometric significance, just as their elements have
different algebraic properties. The distinction between the two planes corre-
sponds to the two distinct interpretations of i. The interpretation of i as a
directed area is indicated in the Figure 2.1 for the vector plane. On the other
hand, the operator interpretation of i as a rotation (of vectors) through a right
angle is indicated in the Figure 2.2 by the right angle that the i-axis makes
with the scalar axis. This observation leads to an operator interpretation for
all the spinors, and justifies calling i the generator of rotations. Consider, in
particular, the interpretation of Equation (2.16) and its representation in
Figures 2.1 and 2.2. Operating on (by right multiplication), the spinor z
transforms into a vector x. As indicated in the figures, this transformation is
a rotation of through some angle combined with a dilation of by an
amount . Our choice of was arbitrary, so z evidently has the same
effect on every vector in the i-plane. Thus, each spinor can be regarded as an
algebraic representation of a rotation-dilation. This connection of spinors with
rotations provides some justification for the terminology “spinor”. Further
justification comes from the fact that our use of the term here and in a more
general sense later on is consistent with established use of the term “spinor”
in advanced quantum mechanics.

The Algebra of a Plane

Some of our language from this point on will be simpler and clearer if we take
a moment to introduce a few general concepts and definitions. Any expression
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of the form with scalar coefficients is called a
linear combination of the quantities . The  are linearly
dependent if some linear combination of the with at least one nonzero
coefficient is identically zero, Otherwise, they are linearly independent. If the

, are linearly independent, then the set of all linear combi-
nations of the is said to be an n-dimensional linear space, and the set
is said to be a basis for that space.

Returning to the particular case at hand, we recall that in connection with
Equation (2.8) the vectors and have already been identified as compris-
ing a basis for the i-plane. Now, when we multiply vectors and , we
generate the unit scalar  and the unit pseudoscalar but no

obtained from vectors of the i-plane by addition and multiplication can be
written as a linear combination

with scalar coefficients and . We call the set of all such multi-
vectors the (Geometric) Algebra of the i-plane or simply the i-algebra, and we
denote it by . We suppress the i and write  when we do not wish to
refer to a particular plane. The subscript 2 here refers both to the grade of the
pseudoscalar and the dimension of the plane.

It is clear from (2.17) that any multivector A in can be expressed as
the sum of a vector and a spinor that is

The vectors are odd, while the spinors are even multivectors. Accordingly, we
can express as the sum of two linear spaces,

where is the 2-dimensional space of vectors and  is the 2-dimensional
space of spinors. Being the sum of two 2-dimensional spaces, the algebra  is
itself a 4-dimensional linear space. The four unit multivectors  and

make up a basis for this space.

A Distinction between Linear Spaces and Vector Spaces

A comment on nomenclature is in order here. In most mathematical litera-
ture the term “vector space” is synonymous with “linear space”. This is
because any quantities that can be added and multiplied by scalars are
commonly called vectors. However, geometric algebra ascribes other proper-
ties to vectors, in particular, that they can be multiplied in a definite way. So
we restrict our use of the term “vector” to the precise sense we have given it
in geometric algebra. Accordingly, we restrict our use of the term vector space
to refer to a linear space of vectors. We continue to use the term “linear

other new quantities. It follows that every multivector A  which can be
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space” in its usual more general sense. Thus both and can be
called linear spaces of two dimensions, but of the two, only can be
called a vector space, and is a 4-dimensional linear space but not a
vector space.

The 2-dimensional vector space is, of course, the i-plane itself under
another name. To describe the fact that every nonzero vector a in this space
has a positive square , this vector space is said to be Euclid-
ean. For, as we have seen in Chapter 1, Euclidean geometry can be repre-
sented algebraically when the magnitude of a vector is interpreted as the
length of a line segment. Accordingly, we may write

to express the fact that the i-plane is a Euclidean plane, that is, a 2-dimension
Euclidean vector space . And we may refer to the i-algebra  as the algebra
of a Euclidean plane.

One other comment about nomenclature is in order here. In Chapter 1 it
was mentioned that a distinction between the concepts of dimension and
grade must be made. That distinction should be clear by now. The dimension
of a linear space is the number of linearly independent elements in the space.
This definition of dimension is well established in mathematics, so we have
adopted it. On the other hand, the concept of grade derives from a concept of
vector multiplication producing new entities distinguished by grade. For a
vector space and its algebra, the concepts of dimension and grade are closely
related. We have seen that a vector space of dimension 2 is determined by a
pseudoscalar of grade 2 and vice-versa. It is not difficult to show that a vector
space of any finite dimension n is similarly related to a pseudoscalar of grade n.

2-3. The Algebra of Euclidean 3-Space

The concept of a 3-dimensional Euclidean space is fundamental to physics,
because it provides the mathematical structure for the concept of physical
space. Moreover, the properties of physical space are presupposed in every
aspect of mechanics, not to mention the rest of physics. For this reason we
cultivate the geometric algebra of as the basic conceptual tool for rep-
resenting and analyzing geometrical relations in physics.

We can analyze the algebra of in the same way that we analyzed the
algebra of . Let i be a unit 3-blade. The set of all vectors x which satisfy the
equation

is the Euclidean 3-dimensional vector space . Scalar multiples of i are called
pseudoscalars of this vector space, and we refer to i as the unit-pseudoscalar.
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Note that the symbol “i” is an exception to our convention that k-blades be
represented in boldface type. We make this exception to emphasize the
singular importance of i and to distinguish it from unit 2-blades which we have
represented by i. The set of all multivectors generated from the vectors of
by addition and multiplication is the (geometric) algebra of , and it will be
denoted by or . One way to study the structure of  is by constructing
a basis for the algebra.

Because of (3.1), we can factor i into a product of three orthonormal
vectors: thus,

The term “orthonormal” means orthogonal and normalized to unity. The
normalization of vectors is expressed by

The orthogonality of the vectors is expressed by the equations

or equivalently, by

with i, j = 1, 2, 3 understood.
We further assume that make up a righthanded or dextral set of

vectors. The term “righthanded” actually concerns the interpretation of
rather than some intrinsic property of
the algebra. This interpretation
arises from the correspondence of
vectors with directions in physical
space as indicated in Figure 3.1. As
the figure shows, a righthanded screw
pointing in the direction will ad-
vance in that direction when given a
counterclockwise rotation in the

. Equation (3.2) speci-
fies a definite relation of the pseudo-
scalar i to the righthanded set of
vectors, which we express in words
by saying the i is the dextral or right-
handed unit pseudoscalar. By revers-
ing the directions of the , we get a
lefthanded set of vectors, and

the lefthanded unit pseudoscalar . The terms "right-
handed” and “lefthanded” distinguish the two possible orientations of a
3-dimensional vector space, just as the terms “counterclockwise” and “clock-

Fig. 3.1. Orthonormal basis for . Directed
line segments represent unit vectors. Directed
plane segments represent unit bivectors. The
oriented cube represents the unit pseudoscalar i.
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wise” distinguish the two possible orientations of a plane.
Every vector x in is related to the by an equation of the form

as represented in Figure
3.2. The scalars
are called rectangular
components of the vec-
tor x with respect to the
basis . Equa-
tion (3.5) can be derived
as follows; from (3.1),
we deduce

but by (3.2) and (1.16),

Multiplying this on the right by and using (3.3a) and (3.4) we get
(3.5) as expected.

Bivectors of

Inspection of (3.4) shows that by multiplication of the we obtain exactly
three linearly independent bivectors, namely

The last equalities in (3.6) were obtained by multiplying (3.2) successively by ,
and . Note that the three equations (3.6) differ only by a cyclic permu-

tation of the indices 1, 2, 3.
Since the ik are the only bivectors which can be obtained from the by

multiplication, any bivector B in  can be expressed as the linear combination

with scalar coefficients Bk. Thus, the set of all bivectors in is a 3-
dimensional linear space with a basis . Now, by substituting (3.6)
into (3.7), we find that every bivector B is uniquely related to a vector

by the equation

This relation is expressed in words by saying that the bivector B is the dual of
the vector b. In general, we define the dual of any multivector A in to be its

Fig. 3.2. Rectangular components of a vector.
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product iA With the dextral unit pseudoscalar.
From (3.2) and (3.5) it should be clear that every trivector in is

proportional to i. It follows, then, from (3.1) that contains no nonzero
k-vectors with Therefore, by axiom (1.11), every multivector A in
can be expressed in the expanded form

Introducing the notations and for the scalar and vector
parts of A, and expressing the bivector and pseudoscalar parts of A as duals
of a vector and a pseudoscalar by writing and we can
put (3.9) in the form

This multivector has one scalar component, 3 vector components, 3 bivector
components and one pseudoscalar component. Thus, is a linear space with
1 + 3 + 3 + 1 = 8 dimensions. As a basis for that space we may use the 8
unit multivectors with k = 1,2,3 understood. The subspace of
k-vectors in can be denoted by thus, is a 3-dimensional
space of vectors, is a 3-dimensional space of bivectors and is a
1-dimensional space of trivectors.

The Pseudoscalar of
Although we established some important properties of in the course of
determining a basis for the algebra, reference to a basis was not at all
necessary, and we shall avoid it in the future except when it is an essential part
of the problem at hand. In computations with the pseudoscalar i plays a
crucial role, so we list now its basic properties:

for any vectors a, b, c in the scalar is positive if and only if the vectors
make up a righthanded set in the order given. Properties (3.11a, b) follow
from the fact that i is a 3-blade normalized to unity, Property (3.1ld)
obviously generalizes (3.2). Properties (3.11a, c) are both consequences of
Equation (3.1), but, conversely, Equation (3.1) can easily be derived from
them.

Complex Numbers
The symbol i has been chosen for the unit pseudoscalar, because the proper-
ties (3.11a, b, c) are similar to those usually attributed to “the square root of
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minus one” in mathematics. We have seen, however, that there is not just one
root of minus one in geometric algebra, but many. By inspection of the
elements in a basis of the algebra, we see that in there are two distinct
kinds of solutions to the equation

x2 = -1;

either x is a pseudoscalar, whence or x is a bivector such as

Complex numbers are widely used in mathematical physics. To translate a
specific application of complex numbers into geometric algebra, it is neces-
sary to identify the geometrical role that the  tacitly plays in the applica-
tion. Usually, it will be found that the  can be associated with some
plane in physical space, so it should be interpreted as a bivector. Whenever
this is done, the physical significance of the mathematical apparatus becomes
more transparent, and the power of the theory is enhanced. This will be
demonstrated by many examples in the rest of the book. In some applications
of complex number to physics it is not so easy to attribute some physicogeo-
metrical significance to the . Our experience with geometric algebra then
suggests that there must be a better way to formulate a problem.

Quaternions are Spinors

We have seen that the algebra of complex numbers appears with a geometric
interpretation as the subalgebra of even multivectors in . Similarly, we
can express as the sum of an odd part  and even part that is,

According to (3.10) then, we can write a multivector A in the form

where

As is easily verified, is closed under multiplication, so it is a subalgebra of
though is not. For this reason is sometimes called the even

subalgebra of But it may be better to refer to as the spinor algebra or
subalgebra, to emphasize the geometric significance of its elements. Just as
every spinor in represents a rotation-dilation in 2-dimensions, so every
spinor in represents a rotation-dilation in 3-dimensions. The represen-
tation of rotations by spinors is discussed fully in Chapter 5.

Equation (3.12c) shows that each spinor can be expressed as the sum of a

To get a unique bivector solution of the equation we must have some 
information which determines the plane of the bivector, such as the directions
of two noncollinear vectors in the plane.
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scalar and a bivector. In view of (3.7), then, the four quantities 1, i1, i2, i3
make up a basis for Thus is a linear space of 4 dimensions. For this
reason, the elements of were called quaternions by William Rowan
Hamilton, who invented them in 1843 independently of the full geometric
algebra from which they arise here. Following Hamilton, we may also use the
name Quaternion Algebra for

Quaternions are well known to mathematicians today as the largest pos-
sible associative division algebra. But few are aware of how quaternions fit in
the more general system of geometric algebra. Some might say that the
quaternion algebra is actually distinct from the spinor algebra , that these
algebras are not identical but only isomorphic. But such a distinction only
serves to complicate mathematics unnecessarily. The identification of qua-
ternions with spinors is fully justified not only because they have equivalent
algebraic properties, but more important, because they have the same geo-
metric significance. Hamilton’s choice of the name quaternion is unfortunate,
for the name merely refers to the comparatively insignificant fact thai the
quaternions compose a linear space of four dimensions. The name quaternion
diverts attention from the key fact that Hamilton had invented a geometric
algebra. Hamilton’s work itself shows clearly the crucial role of geometry in
his invention. Hamilton was consciously looking for a system of numbers to
represent rotations in three dimensions. He was looking for a way to describe
geometry by algebra, so he found a geometric algebra.

Hamilton developed his quaternion algebra at about the same time that
Hermann Grassmann developed his “algebra of extension” based on the inner
and outer products. In spite of the fact that both Hamilton and Grassmann
eventually came to know and admire one another’s work, for several decades
neither of them could see how their respective geometric algebras were
related. It was only late in his life that Grassmann realized that Hamilton's
quaternions can be derived simply by adding his inner and outer products to
get the geometric product but it was too late for him to
pursue the implications of this insight very far. At about the same time, the
English mathematician W. K. Clifford independently realized that Hamilton
and Grassmann were approaching one and the same subject from different
points of view. By combining their algebraic ideas, he was led, in 1876, to the
geometric product. Unfortunately, death claimed him before he was able to
fully delineate the rich mixture of geometric and algebraic ideas he dis-
covered, and no successor appeared to continue his work with the same depth
of geometric insight. Consequently, the mathematical world continued to
regard Grassmann’s and Hamilton’s algebras as independent systems. Di-
vided, they fell into relative disuse.

Quaternions today reside in a kind of mathematical limbo, because their
place in a more general geometric algebra is not recognized. The prevailing
attitude toward quaternions is exhibited in a biographical sketch of Hamilton
by the late mathematician E. T. Bell. The sketch is titled “An Irish Tragedy”,
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because for the last twenty years of his life, Hamilton concentrated all his
enormous mathematical powers on the study of quaternions in, as Bell would
have it, the quixotic belief that quaternions would play a central role in the
mathematics of the future. Hamilton’s judgement was based on a new and
profound insight into the relation between algebra and geometry. Bell’s
evaluation was made by surveying the mathematical literature nearly a
century later. But union with Grassmann’s algebra puts quaternions in a
different perspective. It may yet prove true that Hamilton looking ahead saw
further than Bell looking back.

Clifford may have been the first person to find significance in the fact that
two different interpretations of number can be distinguished, the quantitative
and the operational. On the first interpretation, number is a measure of “how
much” or “how many” of something. On the second, number describes a
relation between different quantities. The distinction is nicely illustrated by
recalling the interpretations already given to a unit bivector i. Interpreted
quantitatively, i is a measure of directed area. Operationally interpreted, i
specifies a rotation in the i-plane. Clifford observed that Grassmann devel-
oped the idea of directed number from the quantitative point of view, while
Hamilton emphasized the operational interpretation. The two approaches are
brought together by the geometric product. Either a quantitative or an
operational interpretation can be given to any number, yet one or the other
may be more important in most applications. Thus, vectors are usually
interpreted quantitatively, while spinors are usually interpreted operation-
ally. Of course the algebraic properties of vectors and spinors can be studied
abstractly with no reference whatsoever to interpretation. But interpretation
is crucial when algebra functions as a language.

The Vector Cross Product

Vector algebra, as conceived by J. Willard Gibbs in 1884, is widely used as the
basic mathematical language in physics textbooks today, so it is important to
show that this system fits naturally into . The demonstration is easy. We
need only introduce the vector cross product a × b defined by the equation

or, equivalently,

Thus, a × b is the vector dual to the bivector  As shown in Figure 3.3,
the sign of the duality is chosen so that the vectors a, b, a × b, in that order,
form a righthanded set. This agrees with our convention for the handedness
of the pseudoscalar i, for by comparing (3.13) with (3.6), we see that

To remember the correct sign in the duality relation (3.13), it is helpful to
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note that the geometric product of vectors in can be written

and (3.13) can be obtained from this by separately equating bivector parts.
Finally, note that by squaring (3.13) we deduce

Hence, the magnitude is equal to the area of the parallelogram in
Figure 3.3, which was identified as in Section 1-5.

At this point, a caveat is in order.
Books on vector algebra commonly make
a distinction between polar vectors and
axial vectors, with identified as an
axial vector if a and b are polar vectors.
This confusing practice of admitting two
kinds of vectors is wholly unnecessary.
An “axial vector” is nothing more than a
bivector disguised as a vector. So with
bivectors at our disposal, we can do with-
out axial vectors. As we have defined it in

Fig. 3.3. Duality of the cross product (3.13), the quantity is a vector in
and the outer product. exactly the same sense that a and b are

vectors.
The ease with which conventional vector algebra fits into is no accident.

Gibbs constructed his system from the same ideas of Grassmann and Hamilton
that have gone into geometric algebra. By the end of the 19th century a lively
controversy had developed as to which system was more suitable for the work
of theoretical physics, the quaternions or vector algebra. A glance at modern
textbooks shows that the votaries of vectors were victorious. However,
quaternions have reappeared disguised as matrices and proved to be essential
in modern quantum mechanics. The ironic thing about the vector-quaternion
controversy is that there was nothing substantial to dispute. Far from being in
opposition, the two systems complement each other and, as we have seen, are
perfectly united in the geometric algebra The whole controversy was
founded on the failure of everyone involved to appreciate the distinction
between vectors and bivectors. Indeed, the word “vector” was originally
coined by Hamilton for what we now call a bivector. Gibbs changed the
meaning of the word to its present sense, but no one at the time understood
the real significance of the change he had made.

2-3. Exercises

In the following exercises and throughout the book, the symbols and i
always have the meanings assigned to them in this chapter. Also, unless
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otherwise indicated, we will assume that every multivector is an element of
The perceptive reader will be able to identify those instances where such

an assumption is unnecessary.
(3.1) (a) Prove that a vector x is in the B-plane if and only if xB = –Bx

(b) Prove then that x´ = xB is a vector with the properties | x´ | =

(3.2) If a and b are vectors in the plane of show that the ratio of
to i is equal to the determinant

(3.3) Prove the following important identities:

Note that the first identity expresses the inner product in terms of the outer
product and two duality operations. With the help of the remaining identities,
any result of conventional vector algebra can easily be derived from the more
powerful results for inner and outer products established in Section 2.1.
(3.4) Reexpress the identities of Exercise (1.1) in terms of the dot and

cross products alone.
(3.5) Use an identity in Exercise (1.1) to prove that

where
(3.6) From Equation (3.10), show that

(3.7) The quaternions can be defined as the set of quantities Q of the
form

where the are scalar coefficients and the ik satisfy
the equations

Show that the bivector basis given by Equations (3.6) has these
properties.

Hamilton used the symbols i, j, k instead of and wrote
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down the famous equations

Of  what geometrical  significance  is  the  difference  in  sign  between
this last equation and the corresponding equation above?

(3.8) The expansion of a vector b in terms of its components bk = b·σk is
commonly expressed by any of the notations

The most abbreviated form employs the so called summation
convention, which calls for summation over all allowed values of a
repeated pair of indicies in a single term. By this convention, the
expansion of a bivector B in terms of components

can be written

Show that the duality relation

can be expressed in terms of components by the equations

where is defined by

Note that if any pair of indicies have the same value, then

Also prove that

(3.9) Prove

(sum over k)
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(3.10) Solve the following vector equation for x:

2-4. Directions, Projections and Angles

In Chapter 1 we saw how first the inner and outer products and finally the
geometric product were invented to give algebraic expression to the geo-
metric concept of direction. We are now prepared to express the primitive
relations among directions in the simplest possible algebraic terms. Having
done so, we will be able to analyze complex relations among directions by
straightforward computation.

The geometric product provides us with an algebraic measure of relative
direction. Indeed, the geometric product ab was specifically designed to
contain all the information about the relative directions of vectors a and b.
Part of this information can be extracted by decomposing ab into symmetric
(scalar) and antisymmetric (bivector) parts according to the fundamental
formula

The fact that the product ab is indeed a direct measure of the relative
directions of vectors a and b follows from the interpretations associated with

and in chapter 1. Accordingly, vectors a and b are collinear if and
only if ab = ba, and they are orthogonal if and only if ab = –ba. In general,
ab has an intermediate “degree of commutativity” and, hence, describes a
relative direction somewhere between these two extremes.

Given a vector b, any vector a can be resolved into a vector  collinear
with b and a vector orthogonal to b. Explicit algebraic expressions for this
resolution are obtained from Equation (4.1) by dividing by the vector b; thus,

where

These relations are represented in slightly different ways in Figures (4. la) and
(4.1b). The collinearity and orthogonality properties are expressed by the
equations

Note that (4.3b) expresses the directed area as the product of the
“altitude” and “base” b of the (a, b)-parallelogram.
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Our considerations are easily generalized as follows. In preceding sections,
we have seen that a k-blade B determines a k-dimensional vector space called
B-space. The relative direction of B and some vector a is completely charac-
terized by the geometric product

The vector a is uniquely resolved into a vector in B-space and a vector
orthogonal to B-space by the equations

where

Besides the case k = 1 which we have already considered, we are most
interested in the case k = 2, when B is a bivector. The latter case is depicted
in Figure 4.2.

The vector determined by Equa-
tion (4.5b) is called the projection of a
into B-space, while determined by
(4.5c) is called the rejection of a from
B-space. The new term “rejection”
has been introduced here in the ab-
sence of a satisfactory standard name

Fig. 4.2. Projection and Rejection of a vec- for this important concept. Although
  tor a by a bivector B. we will not make much use of it, the

notation has been introduced in
(4.5b) to emphasize that the projection is a function (or operator)   depending
on the blade B with the value when operating on a. This function is explicitly
defined in terms of the geometric product by Equation (4.5b). Similarly, the
rejection  is a function determined by Equation (4.5c).

From Equations (1.5) we get the generalization of Equations (4.3a, b):
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For the important case k = 2, these equations imply that a vector is in the
B-plane if and only if it anticommutes with B, and it is orthogonal to the
B-plane if and only if it commutes with B.

The conventional notion of “a direction” is given a precise mathematical
representation by “a unit vector”, so it is often convenient to refer to the unit
vectors themselves as directions. An angle is a relation between two direc-
tions. To give this relation a precise mathematical expression, let be the
angle between directions a and b. The sine and cosine of the angle are
defined, respectively, as the components of the rejection and projection of
one direction by the other, as indicated in Figures (4.3a, b). These relations
can be expressed by the equations

or, more simply, by the equations

where i is the unit blade of the plane. Equations (4.8a, b) are just parts of
the single fundamental equation

where

For the time being, Equation (4.10) can be regarded as a definition of the
exponential function

So far, cos and sin are not definite functions of the angle because we
have not specified a definite measure for the angle. Two measures of angle are
in common use, “degree” and “radian”. We will employ the radian measure
almost exclusively, because, as will be seen, the degree measure is not
compatible with the fundamental definition of the exponential function.

In Equation (4.9), we interpret  as the radian measure of the angle from a
to b, that is, the numerical magnitude of   is equal to the length of arc on the
unit circle from a to b, as indicated in Figures (4.3a, b). The common
convention of representing angles by scalars like  fails to represent the fact
that angles refer to planes, in the present case, the plane containing vectors a
and b. This deficiency is remedied by representing angles by bivectors, so the
angle from a to b is represented by the bivector

Here, i specifies the plane of the angle, while specifies the magnitude of
the angle. Note that the sign of in (4.11) depends on the orientation
assigned to the unit blade i. In Figures (4.3a, b) the orientation was chosen so
that is positive.
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The fact that angles are best represented by bivectors suggests that the
magnitude of an angle would be better interpreted as an area than as an arc
length. As shown in Figure 4.4, the angle is just twice the directed area of
the circular sector between a and b. This can be ascertained from the simple
proportion

The radian (arc length) mea-
sure of angle is so well estab-
lished that it is hardly worth
changing, especially since it is
related to the area of a circular
sector by a mere factor of two.
But it will be seen that the
“areal measure” plays a more

  direct role in applications to
Fig. 4.4. Angle and area of a circular sector.

geometry and physics.
Quite apart from the interpretation of as the angle (in radian

measure) from a to b, Equation (4.9) should be regarded as a functional
relation of the bivector  to the vectors a and b. In Section 2.2 we called the
quantity

a spinor of the i-plane, and noted that each such spinor (with = 1)
determines a rotation in the plane. The spinor z rotates each vector a in the
i-plane into a vector b according to the equation

Thus, the exponential function represents a rotation in i-plane as a
function of the angle of rotation.

The operational interpretation of as a rotation enables us to write down
several important properties of the exponential function immediately, with-
out appeal to the algebraic definition to be given in the next section. To begin
with, we saw in Section 2-2 that a rotation through a right angle (with radian
measure ) is represented by the unit bivector i. Hence,
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Similarly, a rotation through two right angles (measure ) reverses direction,
hence we have the famous formula

which relates several remarkable constants of elementary mathematics. Ro-
tation through four right angles is equal to the identity transformation rep-
resented by the “multiplicative identity” 1. Hence,

The fact that a rotation through an angle followed or preceded by a
rotation through an angle is equivalent to a rotation through an angle

is expressed by the equation

Consequently, for n rotations through an angle  we get de Moivre’s theorem:

Clearly the exponential function is a great aid to the arithmetic of rotations.

Plane Trigonometry

Now that the basic relations of vectors to angles and rotations in a plane have
been established, all the standard results of plane trigonometry follow by
simple algebraic manipulations. Trigonometry can therefore be regarded as
an elementary part of geometric algebra.

A central problem of trigonometry is the determination of all numerical
relations among the sides and angles of an arbitrary triangle. Consider a
triangle with sides of length a, b, c and angles of measure  as shown in
Figure 4.5a. The relations among the sides and angles are completely deter-
mined by the algebraic representation of the triangle as a vector equation

with and (Figure 4.5b). According to (4.12), the
angles are related to the vectors by the equations
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Of course, each of these three equations supplies us with two separate
equations when separated into scalar and bivector parts; for example, from
(4.18a) we get

and

The minus sign appears in (4.18a) and (4.19a) because, as Figure 4.5b shows,
the angle is from b to –a, and not from b to a or a to b.

A word about the logical status of Equation (4.19a) is in order, because
many books on vector analysis use such an equation to define the inner
product of vectors in terms of the cosine of the angle between the vectors;
thus, they take trigonometry as an established subject whose content is
merely to be reexpressed in vector language. On the contrary, we have
defined inner and outer products with no reference whatever to trigonometric
functions, and most of our applications of geometric algebra, including some
to trigonometry, require no mention of angles. We regard (4.19a) and the
more general Equation (4.18a) as functional relations between angles and
vectors, rather than primary definitions of any sort. Using these relations the
basic trigonometric identities can be derived from the simpler and more
general identities of geometric algebra almost as easily as they can be written
down from memory. Of course, the main reason for regarding geometric
algebra as logically prior to trigonometry is the fact that its scope is so much
greater.

Now let us derive the trigonometric formulas for a triangle (4.17) by using
inner and outer products. We already did this in Chapter 1, but without
justifying the relation to angles established above. Solving (4.17) for c and
squaring we get

or

and, by using (4.19a) to express as a function of angle, we get

This is the law of cosines in trigonometry. The same name may be given to the
equivalent equation (4.20), though it does not explicitly refer to a cosine and
has many applications which require no such reference.

By taking the outer product of (4.17) first by a and then by b or c, we get
the equations
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From these equations we easily get relations among the angles of the triangle
by using (4.19b) and the corresponding relations from (4.18b) and (4.18c);
thus

This set of equations is the law of sines in trigonometry. It should be noted
that, although (4.23) is an immediate consequence of (4.22), the former is
somewhat more general than the latter because it includes the factor i
representing the direction of the plane. The full generality is helpful when
trigonometric relations in a plane are to be related to 3-dimensional space, as
in the laws of reflection and refraction.

Equation (4.22) can be regarded as giving three equivalent ways of deter-
mining the area of the triangle. We have discussed the interpretation of
as the directed area of a parallelogram; our triangle has only half that area.
Hence, the directed area A of the triangle is given by

Using (4.19b), we get the more conventional expression for the area of a
triangle,

or, one half the base a times the altitude b sin
The laws of sines and cosines refer to the scalar and bivector parts of

Equations (4.18a, b, c) separately. A property of the triangle which makes
more direct use of these equations is derived by multiplying the three
equations together and dividing by to get

This says that successive rotations through the three interior angles of a
triangle is equivalent to rotation through a straight angle. By virtue of (4.14b)
and (4.15), then, we can conclude that

This familiar result is traditionally regarded as a theorem of geometry rather
than of trigonometry. But we use exactly the same techniques of geometric
algebra to prove the theorems of both subjects.

Geometric algebra is just as effective for formulating and deriving the
results of spherical trigonometry, as shown in Appendix A.
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2-4. Exercises

(4.1) Deduce Equations (4.14b, c) from (4.14a) by (4.16).
(4.2)  Prove and interpret the identities

where n is an integer.
(4.3) From Equation (4.15) derive the trigonometric identities

(4.4) Prove that

(4.5) Prove that and imply

(4.6) Locate the following points on an Argand diagram (Figure 2.2):

(4.7) Solve the equation

by interpreting the terms as operators on a vector and identifying
the geometrical figure generated.

(4.8) Prove the following identities, and identify trigonometric identities
to which they reduce when

(4.9) For the triangle in Figure 4.5a, establish the results
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(b) Hero’s formula:

where s is half the perimeter of the triangle and r is the radius of the
inscribed circle.
(c) Half-angle formulas:

(d) The Law of tangents:

(4.10) Prove that the angle inscribed in a semicircle is a right angle, by
using the vectors indicated in Figure 4.6.

(4.11) Let a, b, c be the verticies of a triangle, as shown in Figure 4.7. Note
that vectors designating points in the figure are not represented by
arrows; this is because we are not interested in the relation of these
points to some arbitrarily designated origin. Prove the following
general theorems about triangles:
(a) The altitudes intersect at a point. This point p is called the

orthocenter of the triangle.
(b) The perpendicular bisectors of the sides intersect at a point.

Why do you think that this point q is called the circumcenter?
(c) The medians intersect at a point which lies

on the line segment joining the orthocenter to the circumcenter
and divides it in the ratio 2/1.

Fig. 4.6. Fig. 4.7.
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2-5. The Exponential Function

We have seen the great value of the exponential function for expressing the
relation of angles to directions. It first appeared as a combination of sines and
cosines. Our aim now is to define the exponential function and establish its
properties from first principles. This will simplify some of our calculations and
extend the range of applications for the function.

The exponential function of a multivector A is denoted by exp A or and
defined by

This series can be shown to be absolutely convergent for all values of A by
standard mathematical arguments. Standard texts give the proof assuming
that A is a real or complex number, but the proof actually requires only that A
have a definite magnitude so it is easily extended to general multi-
vectors, and we shall take it for granted.

Definition (5.1) is an algebraic definition of the exponential function. This is
to say that the function is completely defined in terms of the basic operations
of addition and multiplication, so all its properties can be determined by using
these operations. The most immediate and obvious property of the exponen-
tial function is that the value of is a definite multivector. This follows from
(5.1) by the closure of geometric algebra under the operations of addition and
multiplication. More particularly, it follows that if A is an element of any
subalgebra, such as then the value of is an element of the
same algebra.

The most important property of the exponential function is the “additivity
rule”

which holds if and only if AB = BA, although there are some trivial excep-
tions to the “only if” condition (Exercise (5.9)). Indeed, if A and B commute,
then

and, by the binomial expansion,
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hence,

Notice that the commutativity of A with B is needed to apply the binomial
expansion, so if it is lacking the result (5.2) cannot be obtained.

We will always be able to write

but when the problem of finding C from A and B does not have a
general solution, so different cases must be considered separately. In Chapter
5, when we study rotations we will solve the problem when A and B are
bivectors.

The hyperbolic cosine and sine functions are defined by the usual series
expansions

These are just the even and odd parts of the exponential series (5.1), thus,

The multivector A is called the argument of each of the functions in (5.3c).
The cosine and sine functions are defined by the usual series expansions

If I is a multivector with the properties and IA = AI, then it is easily
shown by substitution in the series (5.3a, b) that

and

It will be noticed that this last equation generalizes (4.10).
When A is a scalar, the definitions (5.4a, b) for the trigonometric functions

reduce to the well-known series expansions for sines and cosines established
in elementary calculus. Therefore, we are assured that they apply to the
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trigonometric functions employed in Section 2.4. So, considering (5.5c), we
have from (5.1) and (4.9) the following expansion of the product of two unit
vectors in terms of their relative angle:

As emphasized before, the exponential function and its series expansion
require that the angle be measured in radians, though of course it can be
expressed in degrees by inserting a conversion constant.

As indicated by (5.3c) and (5.5c) the hyperbolic and trigonometric func-
tions are best regarded as parts of the more fundamental exponential function.
We have considered only the basic algebraic properties of the exponential
function in this section. Differentiation of the exponential function will be
considered when the need arises, and we will learn more about this remark-
able function as we encounter it in physical applications.

Logarithms

The following discussion of the natural log function can be omitted by readers
just beginning the study of geometric algebra, as it involves some subtle
points which can be ignored in elementary applications. However, it will be
needed as background for our discussion of rotations in Chapter 5.

The exponential function associates a unique multivector B with every
multivector A according to the formula

We know that if A is any scalar, then B is a positive scalar, and further, that
for positive scalars the exponential function has an inverse called the logar-
ithmic function, for which we write

This brings up the question: Since we have extended the domain of the
exponential function to all multivectors, can we not do the same for the
logarithmic function? The answer is “not quite”, as long as the logarithm is
required to be the inverse of the exponential. Recall from Exercise 1-7.2
that geometric algebra contains idempotents other than the scalars zero and
one. It can be shown that, like zero, these idempotents do not have finite
logarithms.

Although we cannot define the logarithmic function on all multivectors,
evidently we can define it for any multivector B which can be expressed as an
exponential of some other multivector as in (5.7). But here we meet another
difficulty, for the exponential function is many-to-one, that is, there exist
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many different multivectors Ak (k=l, 2, . . .) such that

Therefore, the inverse function must be many-valued, and for any of the
we can write

We can make the logarithmic function single-valued by introducing a rule to
pick out just one of the as its value. It is most convenient to choose the one
with the smallest magnitude. If for k > 1, we write

and call the principal part of the logarithm. The restriction to the principal
part is indicated in (5.11) by the capital L. Ambiguity can still arise, however,
because for some B there is more than one with smallest magnitude; to
choose between them a new rule must be introduced, such as one considered
below.

To be more specific, let us consider the logarithmic function on spinors.
Any spinor z in can be written in the equivalent forms

where i is a unit bivector, is a scalar and  is the logarithm of the positive
scalar Evidently,

Thus, every spinor has a logarithm. The logarithm is not unique, however,
because of the multiplicity of possible values for the angle Let be the
smallest of these angles. Noting that  for any integer k, we verify that

Therefore, any of the angles

will satisfy (5.12), and evidently no other angles will. Since the possible angles
differ by any positive or negative multiple of the smallest of them, must
be confined to the interval Having determined the allowed
range of its bivector part, the principle part of the logarithm is well defined,
and we write

Ambiguity arises when for then both and might be allowed in
(5.16). Choice of one of them, say amounts to a choice of orientation for
the i–plane. Accordingly, we write
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Note also that where i is the unit pseudoscalar for So we
have

as well. This possibility is eliminated if we are interested only in spinor-valued
logarithms. In applications the appropriate value for a logarithm will be
determined by the problem at hand.

Finally, we note that, although vectors do not have logarithms, the product
of vectors a and b is a spinor, so we can write

where is the directed angle from a to b. The exponential being the inverse
of the logarithm, we have

2-5. Exercises

(5.1)

(5.2)

(5.3)

Establish the following general properties of the exponential func-
tion
(a) The “algebraic inverse” of is
(b) for scalar values of n.
(c)
(d) If AB =  BA, then
(e) If AB = –BA, then
The hyperbolic functions are strictly even or odd functions in the
following sense

Similarly,

Justify these relations.

Show that if then
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and if then

(5.4) Let a be a vector in and write a = an, where n is a unit vector,
and a = na = n·a is possibly negative. Prove that

(5.5) Prove that if and AJ = JA, then

(5.6) Prove that if and A, B, I mutually commute, then

(5.7) Evaluate and  when
(5.8) For vectors a and b, show that if then

(5.9) Let the angle between unit vectors a and b be Show c = a + b
is also a unit vector. Define and show that A and
B do not commute. Show that if is an integer multiple of then
Equation (5.2) is satisfied. However, Equation (5.2) is not satisfied
for any other value of Show that for

2-6. Analytic Geometry

This section can be skipped or lightly perused by readers who are in a hurry to
get on with mechanics. It is included here as a reference on elementary
concepts and results of Analytic Geometry expressed in terms of geometric
algebra.

Analytic Geometry is concerned with the description or, if you will, the
representation of geometric curves and surfaces by algebraic equations. The
traditional approach to Analytic Geometry is accurately called Coordinate
Geometry, because it represents each geometrical point by a set of scalars
called its coordinates. Curves and surfaces are then represented by algebraic
equations for the coordinates of their points. A major drawback of Coordi-
nate Geometry is the fact that coordinates carry superfluous information
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which often entails unnecessary complications. Thus, rectangular coordinates
(x, y, z) of a point specify the distances of the point from the three coordinate
planes, the coordinate z, for example, specifying the distance from the
(xy)–plane. Therefore, equations for a geometric figure in rectangular coordi-
nates describe the relation of that figure to three arbitrarily chosen planes.
Obviously, it would be more efficient to describe the figure in terms of its
intrinsic properties alone, without introducing extrinsic relations to lines or
planes which are frequently of no interest. Geometric algebra makes this
possible.

In the language of geometric algebra, each geometrical point is represented
or labelled by a vector. Indeed, for mathematical purposes it is often simplest
to regard the point and the vector that labels it as one and the same. Of
course, we can label a given point by any vector we please, and problems can
often be simplified by a judicious selection of the point to be labelled by the
zero vector. But, as a rule, once a labelling has been selected, it is unnecess-
ary to change it.

The distinction between a point and its vector label becomes important
when geometric algebra is used as a language, for then the point, which is
undefined as a mathematical entity, might be identified with a mark on a piece
of paper or a “place” among physical objects. However, the vector label
retains its status as a purely mathematical entity, and geometric algebra
precisely describes its geometric properties. It will be noticed also in the
following that, although some vectors designate (or are designated as) points,
other vectors describe relations between points or have some other geometri-
cal significance.

The simplest relation between two points a and b is the vector a – b, which,
for want of standard terminology, we propose to call the chord from b to a.
The magnitude of the chord is called the (Euclidean) distance
between b and a. The zero vector designates a point called the origin. Since
a – 0 = a, the vector a specifies both the point and the chord from the origin
to the point a, and is the distance between the point a and the
origin.

Geometric spaces and figures are sets of points. Euclidean Geometry is
concerned with distance relations of the form among pairs of points in
such spaces and figures. Non-Euclidean geometries are based on alternative
definitions of the distance between points, such as log However
interesting it is to explore the implications of alternative definitions of
distance, we want our definition to correspond to the relations among physi-
cal objects determined by the operational rules for measuring distance, and it
is a physical fact that, at least to a high order of approximation, such relations
conform to the Euclidean definition of distance. For this reason, we will be
concerned with the Euclidean concept of distance only, and the adjective
“Euclidean” will be unnecessary.
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A set with elements called points is said to be an n-dimensional Euclid-
ean Space if it has the following properties:
(1) The points in can be put in one-to-one correspondence with the

vectors in an n-dimensional vector space. (Each vector then is said to
designate or label the corresponding point.)

(2) There is a rule for assigning a positive number to every pair of points
called the distance between the points, and the points can be labelled in
such a way that the distance between any pair of points a and b is given
by

Obviously, any vector space can be regarded as a Euclidean space simply by
regarding each vector as identical with the point it labels. For most math-
ematical purposes it is quite sufficient to regard each Euclidean space as a
vector space. However, in physical applications it is essential to distinguish
between each point and the vector which labels it. This is apparent in the most
fundamental application of all, the application of geometry to measurement.

In Chapter 1 we saw that a complex system of operational rules is needed to
determine physical points (i.e. positions or places) and measure distances
between them. The set of all physical points determined by these rules is
called Physical Space. We saw that Euclidean geometry has certain physical
implications when interpreted as a physical theory. We can now completely
formulate the physical implications of geometry in the single proposition:
Physical Space is a 3-dimensional Euclidean Space. This proposition could be
called the Zeroth Law of physics, because it is presumed in the theory of
measurement and so in every branch of physics, although the Law must be
modified or reinterpreted somewhat to conform to Einstein’s theory of
relativity and gravitation. Chapter 9 gives a more complete formulation and
discussion of the Zeroth Law in relation to the other laws of mechanics.

We label the points of Physical Space by vectors in the geometric algebra
. These vectors compose a 3-dimensional Euclidean space

which can be regarded as a mathematical model of Physical Space. The
properties of points in , such as their relations to other points, to lines and
to planes, require the complete algebra for their description. Since
thereby provides us with the necessary language to describe relations among
points in Physical Space, it is appropriate to call the geometric algebra of
Physical Space.

The study of curves and surfaces in is a purely mathematical enterprise,
but its relevance to physics is assured by the correspondence of with
Physical Space. By appropriate semantic assumptions a curve in can be
variously interpreted as the path of a particle, a boundary on a surface or the
edge of a solid body. But in the rest of this section, all such interpretations are
deliberately ignored, as we learn to describe the form of curves and surfaces
with geometric algebra. Our results can then be used in a variety of physical
contexts when we introduce semantic assumptions later on.
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Straight Lines

The most basic equations in analytic geometry are those for lines and planes.
In Section 2-2 we saw that the equation

determines a line through the origin when u is a fixed nonzero vector. The
substitution in (6.1) has the effect of rigidly displacing each point

on the line by the same amount a. From this we conclude that the line
with direction passing through the point a is determined by the

equation

It should be noted that this equation determines the line without reference to
any space in which the line might be imbedded, although, of course, we are
most interested in lines in

Moment and Directance of a Line

Equation (6.2) is a necessary and sufficient condition for a point x to lie on the
line . All the properties of a line, such as its relations to specified points,
lines and planes can be derived from the defining equation (6.2) by geometric
algebra. To see how this can best be done, we derive and study various
alternative forms of the defining equation; each reveals a different property of
the line. On writing M for the bivector , Equation (6.2) takes the form

Since , multiplication of (6.3) by and use of (1.4) as well as
(1.14) yields

Hence, for fixed M and u,

is a parametric equation for the line each point being determined
by a value of the parameter .

Introducing the vector

Equation (6.4) takes the form

Note that d is orthogonal to u, since, by (6.5),
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So, by squaring (6.6), one obtains the following expression for the distance
between the origin and a point x on

This has its minimum value when
Thus, d is that point on the line which
is “closest” to the origin. We call d the
directance (= directed distance) from
the point 0 to the line . The magnitude

is called the distance from the point 0
to the line (Figure 6.1).

By substituting (6.3) into (6.5) we get Fig. 6.1. For a line with direction u and
the useful expression directance d from the origin. Note the two

different representations of the moment

where is the rejection operator defined in Section 2-4. This tells us how to
find the directance of a line from any point of the line.

The bivector M is called the moment of the line From (6.5) one finds that
, showing, in particular, that if , the magnitude of

the moment is equal the distance from the origin to . From Equation (6.3),
it is clear that any oriented line is uniquely determined by specifying its
direction u and its moment M, or equivalently, the single quantity

. We shall see that the last way of characterizing a line is useful in
rigid body mechanics.

Points on a Line

A line determines relations among pairs of points on the line. To analyze such
relations, we put the defining equation (6.2) in a different form. Equation
(6.2) is equivalent to the statement that the chord x – a is collinear with the
vector u. Since x and a are any pair of points on the line, it follows (by
transitivity) that all chords of the line are collinear. If x, a, b are any three
points on the line, the collinearity of chords x – a and b – a is expressed by
the equation

This differs from (6.2) only in the replacement of u by the chord b – a which is
proportional to it. So (6.8) is equivalent to (6.2) if b and a are distinct points.
Thus, we have shown that two distinct points determine the equation for a line.

Barycentric Coordinates

By expanding (6.8) with the distributive rule and introducing a factor of , we
get the equivalent equation
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Now is the directed area of a triangle with vertices a, 0, b and “sides”
(or chords) a, b, b – a. The other two terms in (6.9) can be interpreted
similarly, and it will be noted that any two of the three triangles have one side
in common. So (6.9) merely expresses the area of a triangle as the sum of areas
of two triangles into which it can be decomposed; this is depicted in Figure
6.2a when x is between a and b and in Figure 6.2b when it is not. From (6.9) it
follows that

so all three vectors and the three triangles they determine are in the same
plane. Denoting the unit bivector for this plane by i, we introduce the
notation for directed areas

This notation is used to denote areas in Figures (6.2a, b). Note that the
orientation of A and hence the sign of A is opposite in the two figures.

Let us regard a and b as fixed and let x be any point on the line they
determine, as indicated in Figures (6.2a, b). We now show that the bivectors

A and B or the determinants A and B can be used as coordinates for the point
x. Recall the Jacobi identity for vectors proved in Exercise (1.11).

Now, because of (6.10) the dots in the equation can be dropped, so, if we
introduce the notation (6.11) and use (6.9), we get
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If the origin is not on the line, then (6.11) implies A and B cannot both vanish,
so we can solve for

Since A and B are codirectional, we can express this in terms of the scalars A
and B defined by (6.11); thus,

In the mathematical literature, the scalars A and B in (6.13) are called
homogeneous (line) coordinates for the point x. They are also called bary-
centric coordinates, because of a similarity of (6.13) to the formula for center
of mass (defined in Chapter 6). But unlike masses, the scalars A and B can be
negative and, as we have seen, they can be interpreted geometrically as
oriented areas. They have another geometrical interpretation which we now
determine.

Division and Intersection of Lines

Since all chords of a line are collinear, we can write

where is a scalar. The outer product of this with x gives

Solving both these equations for , and using (6.11) we find

or

where the positive sign applies if x is between a and b and the negative sign
applies if it is not. The point x is sometimes called a point of division for the
oriented line segment [a, b], and because of (6.15), x is said to divide [a, b] in
ratio B/A. The division ratio can be used as a coordinate for points on the
line through a and b simply by solving (6.14) to get

which, of course, is equivalent to (6.13). Thus the midpoint of [a, b] is defined
by the condition and is given by
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It should be noted that the division ratio (6.15) is not only independent of
an orientation for the line or for the -plane, it is also, independent of

the location of the origin (Even the
ratio , which occurs when
the origin is on the line, is deter-
mined by (6.15)). This helps us de-
duce a large number of geometrical
facts, for by displacing the origin by
an arbitrary vector c, we get from
(6.15) the following general rela-
tions among the quantities indi-
cated by Figure 6.3:

or, in terms of determinants for the directed areas,

or, in terms of vectors,

These relations hold even if c is not in the
-plane.

For the special case when c is collinear with x,
we can have one of the three cases depicted by
Figures (6.4a, b, c). All three cases are governed
by (6.17). However, the point x also divides the
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line segment [c, 0] in some ratio given by

The point x is, in fact, the point of intersection of the line through point 0, c
with the line through points a, b. From any one of the figures we see that

and

So (6.18) gives us

and

These equations give us the point
of intersection in terms of the vec-
tors a, b, c. They also determine
the point x in Figure 6.5, and, by
interchanging a and c, they deter-
mine the point y in the same
figure. Thus, a small number of
algebraic formulas describe a wide
variety of geometric relations.

Planes

The algebraic description of a plane is similar to that for a line, so we consider
planes only briefly to make this fact clear. The plane with direction U passing
through a given point a is determined by the equation

where U is a non-zero 2-blade. Planes with equal or opposite directions are
said to be parallel to one another. Every plane with direction U is the
solution set of an equation with the form

This equation is analogous to (6.21) when The trivector T is
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called the moment of the plane. The directance d from the origin to is
given by the vector

The magnitude is the distance from the origin to the plane.
Finally, using (6.22) in (6.23) we get

Thus the directance can be obtained by “rejecting” any point of the plane.

Spheres and Circles

Besides lines and planes, the most elementary geometrical figures are circles
and spheres. A sphere with radius r and center c is defined as the set of all
points x in satisfying the equation

or, equivalently,

Besides (6.25), the points of the sphere satisfy the equation
which is an algebraic formulation of the condition that each point x belongs to

The intersection of the sphere with a plane through its center is a circle.
Thus, a circle with center c and radius r in the i-plane is determined by
supplementing (6.25) with the condition

Equation (6.25) can be regarded as the equation for a circle without explicitly
writing (6.26) if it is understood that the points are in

The general solution of the simultaneous Equations (6.25) and (6.26) has
the convenient parametric form

where is a fixed vector in the i-plane with magnitude
The fact that (6.27) solves (6.25) and (6.26) is readily verified by substitution.
With the bivector i normalized to unity, (6.27) associates exactly one value of

with each point x on the circle if the values of are restricted by the
condition The generalization of (6.27) to a parametric equation
for a sphere will be made later in the chapter on rotations. We concentrate
here on general properties of circles. Equation (6.27) is only one of many
useful parametric equations for a circle. Equation (6.27) is not very helpful
when one is concerned only with points on the circle and not with the center
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of the circle. A more useful parametric equation can be derived from the
constant angle theorem for a circle. This theorem states that a given arc of a
circle subtends the same angle  at every point x on the circle outside that arc.
We prove the theorem by showing that for the angles indicated in
Figure 6.6. According to the figure,

Our arguments will apply to all circles through the points a, b if we allow to
have any value in the interval The angle of interest is defined by the
equation

Writing for convenience, we observe that

and

Hence

Inserting this in (6.28), we get

We can eliminate by dividing this equation by its reverse, and we find that
disappears as well; thus,

To solve for , we must consider the two square roots

(6.29)

This gives us two different values for , which we denote by and
respectively.

The positive root from (6.29) gives as claimed earlier. Since this
result is independent of it holds for every point x on the circle outside the
arc. This completes the proof of the constant angle theorem, but we can
deduce more. The negative root from (6.29) gives if and

if This relation holds for every point on the given arc
of the circle, as indicated in Figure 6.6. Angles for the two cases are obviously
related by or equivalently by
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From this we can conclude that (6.28) applies with fixed  to all points on the
circle if the parameter is allowed to have negative values.

We have, in fact, proved that (6.28) can
be regarded as a parametric equation for a
circle in the i-plane passing through the
points a and b. Points on the circle are
distinguished by the signed ratio of their
distances from a and b,

The two signs of corresponding to the
two arcs into which the circle is cut by a
and b. Each finite value of determines a
distinct point of the circle, while the singu-
lar values determine the point

Equation (6.28) helps us answer many questions about circles. For exam-
ple, to find an equation for the circle passing through distinct points a, b, d,
we write

This determines the angle in (6.28). Taking the ratio of (6.28) to (6.32) we
have the desired parametric equation,

The parameter has the values 0,1 at the points respectively.
The quantity on the left of (6.33) is called the cross ratio of the points a, b,

x, d. It is well-defined for any four distinct points. From our derivation of
(6.33) we can conclude that four distinct points lie on a circle if and only if
their cross ratio is a scalar.

Returning to (6.28), we observe that each value of in the interval
determines a distinct circle, with the value determining a straight

line, which may be regarded as a circle passing through infinity. Thus, (6.28)
describes the 1-parameter family of circles in the i-plane which pass through
the points a and b, as shown in Figure 6.7. On the other hand, if is fixed and
positivewhile varies, then (6.28) describes the set of all points in the i-plane
whose distances from a and b have the fixed ratio  . This set is also a circle,
called the circle of Appolonius. By varying we get the 1-parameter family of
all such circles (Figure 6.8). As shown in Figure 6.9, the circle with constant
intersects the circle with constant in two points x and distinguished by the
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Fig. 6.7. The 1-parameter family of cir- Fig. 6.8. Circles of Appolonius.
cles through points a and b.

values and respectively.
Each point in the i-plane can be desig-
nated in this way, so (6.28) can be re-
garded as a parametric equation for the
i-plane. The parameters and are
then called bipolar coordinates for the
plane.

Conic Sections

Next to straight lines and circles, the
simplest curves are the conic sections,
so-called because each can be defined
as the intersection of a cone with a
plane. We shall prefer the following
alternative definition, because it leads
directly to a most valuable parametric
equation: A conic is the set of all points
in the Euclidean plane with the property that the distance of each point
from a fixed point (the focus) is in fixed ratio (the eccentricity) to the distance
of that point from a fixed line (the directrix). To express this as an equation,
we denote the eccentricity by the directance from the focus to the directrix
by with and the directance from the focus to any point on the
conic by r (see Figure 6.10). The defining condition for a conic can then be
written

Fig. 6.9.



Analytic Geometry 91

Solving this for and introduc-
ing the eccentricity vector along
with the so-called semi-latus rectum

we get the more convenient
equation

This expresses the distance r from the focus to a point on the conic as a
function of the direction to the point. Alternatively, the same condition can
be expressed as a parametric equation for r as a function of the angle
between and Thus, substituting  into (6.35), we get

This is a standard equation for conics, but we usually prefer (6.35), because it
shows the dependence of r on the directions and explicitly, while this
dependence in (6.36) is expressed only indirectly through the definition of

Equation (6.35) determines a curve when is restricted to directions in a
plane, but if is allowed to range over all directions in then (6.35)
describes a 2-dimensional surface called a conicoid. Our definition of a conic
can be used for a conicoid simply by interpreting the directrix as a plane
instead of a line. Both the conics and the conicoids are classified according to
the values of the eccentricity as shown in Table 6.1.

The 1-parameter family of conies with a common focus and pericenter is
illustrated in Figure 6.11. The pericenter is the point on the conic at which r
has a minimum value. In the hyperbolic case there are actually two peri-
centers, one on each branch of the hyperbola. Only one of these is shown in
Figure 6.11. If the conics in Figure 6.11 are rotated about the axis through the
focus and pericenter, they “sweep out” corresponding conicoids.

The conics and conicoids have quite a remarkable variety of properties,
which is related to the fact that they can be described by many different
equations besides (6.35). Rather than undertake a systematic study of those
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properties, we shall wait for them to arise in the context of physical problems,
and we will be better prepared for this when we have the tools of differential
calculus at our disposal.

Our study of analytic geometry has just begun.
The study of particle trajectories, which we under-
take in the next chapter, is largely analytic
geometry in For those who wish to study the
classical analytic geometry in in more detail, the
book of Zwikker (1963) is recommended. He for-
mulates analytic geometry in terms of complex
numbers and shows how much this improves on the
traditional methods of coordinate geometry. Of
course, everything he does is easily reexpressed in
the language of geometric algebra, which has all
the advantages of complex numbers and more.
Indeed, geometric algebra brings further improve-
ments to Zwikker’s treatment by enlarging the
algebraic system from to and so introducing
the fundamental distinction between vectors and
spinors and along with it the concepts of inner and
outer products. Most important, geometric algebra provides for the generali-
zation of the geometry in to The present book develops all the
principles and techniques needed for analytic geometry, but Zwikker’s book
is a valuable storehouse of particular facts about curves in Among other
things, it includes the remarkable proof that conic sections as defined by
(6.34) really are sections of a cone.

2-6. Exercises

(6.1) From Equation (6.2) derive the following equations for the line in
terms of rectangular coordinates in

where
(6.2) (a) Show that Equation (6.2) is equivalent to the parametric equation

(b) Describe the solution set {x = x(t)} of the parametric equation

for all scalar values of the parameter t.

Fig. 6.11. Conics with a com-
mon focus and pericenter.
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(6.3) (a) Compute the directance to the line through points a and b from
the origin.

(b) Compute the directance to this line from an arbitrary point c.
(6.4) Prove the theorem “Three points not on a line determine a plane”

by using geometric algebra to derive an equation for the plane from
three points a, b, c.

(6.5) Describe the solution set {x} of the simultaneous equations

if A and B are noncommuting blades of grade 2.
(6.6) Find the point of intersection of the line {x} determined by the

equation with the plane {y} determined by the
equation What are the conditions on a, b, u, B that
this point exists and is unique?

(6.7) The directance from one point set to another can be defined quite
generally as the chord of minimum length between points in the two
sets, provided there is only one such chord.

Determine the directance d from a line with direction u through a
point a to a line with direction v through a point b. Show that the
lines intersect only if

(6.8) Compute the directance from a point b to the plane {x: (x – a)

(6.9) Show that the equation

subject to the conditions

and

can be regarded as a parametric equation for a plane. Find a
nonparametric equation for this plane.

(6.10) Ceva’s Theorem: Suppose that con-
current lines from the verticies a, b,
c of a triangle divide the opposing
sides at (Figure 6.12).
Then the division ratios satisfy

Prove by showing that the areas
indicated in the figure satisfy

(6.11) In Figure 6.5 we have the division ratios

Fig. 6.12. Ceva’s Theorem.
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Prove the theorem of Menelaus: Note that the theorem
can be interpreted as expressing a relation among intersecting sides
of a quadrilateral with verticies 0, a, b, c or as a property of a
transversal cutting the triangle with verticies 0, a, x.

(6.12) Prove that three points a, b, c lie on a line iff there exist nonzero
scalars such that and

(6.13) Desargues’ Theorem. Given
two triangles a, b, c and

Then lines through
corresponding verticies are
concurrent (at a point s) iff
lines along corresponding
sides intersect at collinear
points (p, q, r). (Figure 6.13)
Note that the triangles need
not lie in the same plane.

(6.14) The equation (x – b)·u = 0
describes a plane in with
normal u. Derive this equa-
tion from Equation (6.21).

(6.15) Four points a, b, c, d determine a tetrahedron with directed volume

Use this to determine the equation for a plane through three distinct
points a, b, c.

(6.16) Let a, b, c be the directions of three coplanar lines. The relative
directions of the lines are then specified by

Prove that

(6.17) Determine the parametric values for which the line x = =
intersects the circle with equation and

show that for every line through a which intersects the
circle.

(6.18) Show that tangents to the circle of radius r and center at the origin in
which pass through a given point a intersect the circle at the

points.

Fig. 6.13. Desargue’s Theorem.
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where and i is the unit bivector.
(6.19) Find the radius r and center c of the circle determined by Equation

(6.28).
(6.20) Let x and y be rectangular coordinates of the point x. Show that the

defining equation (6.35) of a conic is equivalent to the equations

for an ellipse and a hyperbola respectively, where

The curves and related parameters are shown in Figures 6.14a, b.

Fig. 6.14a. Ellipse.

Fig. 6.14b. Hyperbola.

Use the above equations to show that an ellipse has a parametric
equation with the explicit form

while a hyperbola has the parametric equation

where and a·b = 0.
(6.21) Parametric curves of the second order are defined by

the equation

Note that this generalizes the Equation (6.16) for a line. By the
change of parameters this can be reduced to the
form
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We now aim to show that this equation describes an ellipse iff
a parabola iff and a hyperbola iff where iff means “if
and only if”. Thus, all conics are second order curves and con-
versely. Show that
(a) For the change of parameters enables us to

put the equation in the form

which we recognize as a general equation for an ellipse.
(b) For gives

(6.22) Solve Equation (6.28) for x and put it in the general form given in
exercise (6.21).

(6.23) Let describe a curve in Identify and draw
diagrams of the curves determined by the following specific forms
for the spinor z.

(6.24) Describe the solution set {x} in determined by the following
equations. Comment, especially, on the dependence of the solution
set on vector parameters a, b, c.

2-7. Functions of a Scalar Variable

In this section we review some basic concepts of differential and integral
calculus to show how they apply to multivector-valued functions.
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If to each value of a scalar variable t there corresponds a multivector F(t),
then F =  F(t) is said to be a (multivector-valued) function of t. It is important
to distinguish between the function F and the functional value the
particular multivector which corresponds to the particular scalar However,
it is often inconvenient to make that distinction explicit in the mathematical
notation, so the reader will be left to infer it from the context. Thus, F(t) will
denote a functional value if t is understood to be a specific real number, but
F(t) will denote a function if no specific value is attributed to t.* Similarly,
when the variable t is suppressed, F may indicate a value of the function
instead of the function itself. So F =  F(t) may refer either to a function or a
functional value. It should be understood, also, that the function F(t) is not
completely defined until the values of the variable t for which it is defined
have been specified. However, the reader will usually be left to infer the
allowed values of a variable from the context.

Continuity

The function F(t) is said to be continuous at if

We write

The definition of “limit” presumed in (7.1a) is the same as the one introduced
in elementary calculus. It applies to multivectors, because we have already
introduced an appropriate definition of the “absolute value” and, in
spite of the fact that the geometric product is not commutative, it can be
proved that for multivector-valued functions F(t) and G(t) we have the
elementary results

To this we can add the (almost trivial) result

It follows, then, that the function F is continuous if its k-vector parts
are continuous functions.

*It may be noted that a variable is itself a function. Given a set, the variable on that set is just the
identity function, namely that function which associates each element of the set with itself. So
F(t) can be interpreted as the composite of two functions F and t.
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Scalar differentiation

The derivative of the function F = F(t) at the point is denoted by
or and defined by

This will sometimes be referred to as a scalar derivative to emphasize that the
variable is a scalar and to distinguish it from the vector derivative to be
defined in a subsequent volume, NFII. Unless there is some reason to believe
otherwise, it will usually be convenient to make the tacit assumption that
functions we deal with have derivatives that “exist” in the mathematical
sense. Such functions are said to be differentiable.

The derivative of F = F(t) is itself a function so we can con-
template its derivative. This is called the second derivative and denoted by

Similarly, derivatives of higher order are defined as in elemen-
tary calculus.

We will be particularly interested in curves representing paths (trajectories)
of physical particles. Such a curve is described by a parametric equation
x = x(t), a vector-valued function of the time t. The derivative is
called the velocity of the particle; it is, of course, defined by (7.3), which we
can put in the abbreviated form

The curve and vectors involved in the derivative are shown in Figure 7.1. The
derivative of the velocity,

is called the acceleration of the particle.
From multivector-valued functions

F = F(t) and G = G(t) we can form
new functions by addition and multipli-
cation. Their derivatives are subject to
the rules
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These rules can be derived from (7.2a, b, c) by arguments of elementary
calculus. The proof of (7.6c) depends in addition on the axioms of geometric
algebra. It must be realized that (7.6b) differs from the result in elementary
calculus by requiring that the order of factors in the product, be retained. In
particular, (7.6b) implies

The right side of (7.7) is equal to the elementary result only if F
commutes with To understand the significance of this deviation from the
elementary result, consider the special case of a vector function v = v(t)
which might be, for example, the velocity of a particle. Now where

so from (7.7) we get

With a change in t, the vector can undergo changes in magnitude v
and in direction If v is constant (i.e. constant speed), then (7.8) implies

or equivalently,

Thus a vector which undergoes changes in direction only is orthogonal to its
derivative. On the other hand, if the direction is constant, then and
(7.8) reduces to

We see, then, that (7.7) need not reduce to the equation if F
changes in direction, but it will if F changes in magnitude only. Continuous
changes in direction are not considered in elementary calculus, which deals
with scalar-valued functions only; changes in direction of scalar-valued func-
tions are limited to changes in sign.

Constant Magnitude

It is now merely an algebraic exercise to show that the vector-valued function
v = v(t) has constant magnitude if and only if there exists a bivector-valued
function such that

Expressing as the dual of a vector by writing  we have



100 Developments in Geometric Algebra

hence (7.11) is equivalent to the equation

To show that (7.11) implies that is constant, we use the algebraic identity

to prove that so the result follows from our previous considerations.
To prove the converse, suppose that exists and we introduce a bivector B to
write 

If is constant, then which implies that and
Therefore, (7.13) satisfies (7.11) if  but this condition

implies that the dual of B is collinear with v, so there exists a scalar  such that
and

This shows not only that (7.11) has a bivector solution as required for our
proof, but that the solution is not unique without some condition to deter-
mine the scalar-valued function

Chain Rule

To complete our review of scalar differentiation, we consider the effect of
changing variables. When F = F(s) is a function of a scalar variable s, and
s = s(t) is in turn a function of a scalar variable t, then by substitution one has
F = F(s(t)) = F(t). Now F(s) is not generally the same function as F(t), but
the values of both functions are identical for corresponding values of s and t,
and this is emphasized by using the same symbol F for both functions as well
as functional values. The derivatives of F with respect to both variables are
related by the familiar chain rule of elementary calculus:

Scalar Integration

Like the rules for differentiation, the rules for integration of multivector-
valued functions of a scalar variable can be taken over directly from elemen-
tary calculus as long as the order of noncommuting factors is retained in any
products. Accordingly, we have the familiar formulas
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and for

If A is a constant multivector, then

These two formulas are not equivalent unless A commutes with all values of
F(t) over the interval [a, b]. Integrals can be separated into k-vector parts
according to the formula

This follows from (1.10), for, being the limit of a sum, the integral has the
algebraic properties of a sum.

Scalar differentiation and integration are related by two basic formulas;
first, the “fundamental formula of integral calculus”,

evaluating the integral of a derivative; second, the formula for the derivative
of an integral:

To simplify the notation, the latter formula is sometimes written in the
ambiguous form

wherein t has two different meanings.
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Taylor Expansion

With the fundamental formula (7.19), one can generate Taylor’s formula

This power series expansion applies to any function F possessing derivatives
of all orders in an interval of the independent variable containing t and t + s.
It is of great utility in mathematical physics, because it often enables one to
approximate a complicated function F by a tractable polynomial function of
the independent variable.

The derivation of Taylor’s formula is worth reviewing to recall how the
expansion is generated by the fundamental formula (7.19). To begin with the
fundamental formula allows us to write

With the change of variables the integral can be written

Next, the fundamental formula (7.19) and the product formula (7.6b) enable
us to “integrate by parts” to get

Again, integration of the second term by parts yields

Thus we have generated the first three terms in the series (7.21). Moreover, if
the series is terminated at this point, we have an exact integral expression for
the remainder, namely which is sometimes useful
for estimating the error incurred in the approximation.

2-7. Exercises

(7.1) Let be a vector-valued function, and write  Show
that
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(7.2) For a multivector-valued function  show that:
(a) For any integer k > 1,

(b) If for each t the value of F has an algebraic inverse  then

(c) then

(d) If is constant, then

and

(7.3) Prove that  for any constant multivectors A and B if and
only if

This relation between F and the simplest possible relation
between a multivector-valued function and its scalar derivative,
could be taken as the defining property of the exponential function,
since it can be used to generate the infinite series (5.1) representing
the exponential function. Note that

(7.4) For show that if

or

Show that the converse is true if F is a k-blade; find a counter-
example to prove that the converse is not true more generally.

(7.5) Use Equation (7.6b) to prove

where and  are vector-valued functions.
It should be clear that as long as the order of factors is retained,

the rule for differentiating all products is essentially the same,
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whether applied to inner or outer products as above or to the
geometric product as in (7.6b). Express the derivatives of

and in terms of and
(7.6) From Exercise (7.3) we have,

for any constant multivector A. Use this to prove

(7.7) Show that the derivative of any vector-valued function  can
be expressed in the form

The first term on the right describes the rate of direction change,
while the second term describes the rate of magnitude change.

2-8. Directional Derivatives and Line Integrals

The laws of physics are expressed as mathematical functions of position as
well as time. To deal with such functions, we must extend the differential and
integral calculus of functions with scalar variables to a calculus of functions
with vector variables. In a subsequent volume, NFII, the general concept of
differentiation with respect to a vector variable will be developed, but here we
restrict our considerations to a special case which is closely related to scalar
differentiation. The main results of this section will first be used in Sections
3-8 and 3-10, so study of this section can be deferred to that point.

Let be a multivector-valued function of a vector variable x
defined on some region of the Euclidean space  In physical applications the
symbol x will denote a place in Physical Space, in which case F is said to be a
“function of position”. Such a function is also called a field, a vector field if it
is vector-valued, a scalar field if it is scalar-valued, a spinor field if it is
spinor-valued, etc.
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Directional Derivatives

The directional derivative of the function is denoted by or
and can be defined in terms of the scalar derivative by

Many authors call a directional derivative only if a is a unit vector. In
NFII it will be seen that the dot in can actually be interpreted as an inner
product, but for the time being, it can be regarded as a special notation.
However, it is important to note that, just as the distributive property of the
inner product would require so, by an elementary
mathematical exercise with limits, it can be proved from (8:1) that

Moreover, for any scalar

Besides this, the directional derivative obviously has all the general properties
of the scalar derivative which were mentioned in the preceding section; thus,
for multivector-valued functions F = F(x) and G = G(x),  we have

Also, if where is a scalar-valued function, then we have
the chain rule

The most basic function of a vector variable is the “identity function”
To determine its directional derivative, we observe that

so according to the definition (8.1)

Obviously, the “constant function” has the trivial derivative

From these basic derivatives, the derivatives of more complicated functions
can be determined by using the general rules (8.3) and (8.4) without further
appeal to the definition (8.1). In particular, the derivative of any algebraic
function of x can be determined in this way. For example, to differentiate the
function we note that it is related to x by the algebraic equation
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or, more simply, by Using the product rule (8.3b),
we have

On the other hand, the chain rule gives

So, equating this with (8.7), we get the desired result

It is helpful to know the derivative of the “direction function” as well as the
“magnitude function” We can find it by using the product rule and the
chain rule as follows:

Hence,

Other important derivatives are evaluated in the exercises.

Taylor’s Formula

To approximate arbitrary functions of position by simpler functions, we need
Taylor’s formula expressed in terms of the directional derivative. To this end,
write

Then

From the Taylor expansion of taken about and evaluated at
we get
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Expressed in terms of F, this gives the desired Taylor expansion

Note that this leads to a natural definition of the exponential function of
the differential operator

The Differential

The Taylor expansion (8.10) reveals a property of the function of
such importance that it deserves a special notation and a name. We will use
the term differential as an alternative to the term directional derivative, and we
introduce the notation

This notation is intended to emphasize the fact that is a function
of two variables obtained from by differentiation. When the depen-
dence on a with x held fixed is of interest, it is convenient to write
which still reminds us that this function was obtained from a function F. It
must be noted that the differential is a linear function of its first variable,
which is to say that it has the properties

for scalar Here we have merely written Equations (8.2a, b) in a different
notation.

Now suppose that we are interested in the behavior of a function
in the neighborhood of a point a Taylor expansion about gives

For sufficiently small, the first two terms approximate F(x) to
any desired accuracy, and we can write

Thus, we see that the differential provides a linear approximation to any
differentiable function. Since linear functions are simple enough to be
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analyzed completely, this establishes the great importance of the differential.
Although we use the terms “differential” and “directional derivative”

interchangably, they have different historical roots and emphasize different
aspects of the same function. If a is a fixed vector, the term “directional
derivative” is most appropriate to emphasize that is the derivative in a
particular direction, the direction of a. On the other hand, the term “differen-
tial” serves to emphasize that is a linear function of a. Unfortunately,
the term “differential” is commonly taken to connote a “small quantity”,
especially in the older literature. It must be realized that the differential
is defined for all values of a, not just small ones. However, as we have seen in
obtaining (8.13), the differential may be a good approximation to

only if is sufficiently small.

Variation on a Curve

In mechanics we will often be interested in how some function of position
varies along the path of a particle Strictly speaking

is a parametric equation for the particle path and not the path itself,
which is a set of points, but we suppress such distinctions when they are not at
issue. To describe the variation of F along the path we must differentiate the
composite function The derivative can be reduced to derivatives
of F(x) and x(t) by proving that

It will be left to the interested reader to fill in the missing mathematical details
of the proof. The last term is seen to be the directional derivative, so we can
write

This is the chain rule for the composite function

Partial and Total Derivatives

More generally, let be a function of position x as well as time t.
For fixed x, the time derivative is denoted and defined by

This describes how F varies with time at each point x. The derivative F is
called the “partial derivative of F with respect to time.” If then F is
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said to be static or “constant in time” or “not an explicit function of time”,
and we write On the other hand, if for all directions
a and all points x, then F is said to be uniform or “uniform in space”, and we
can write Obviously if is both static and uniform,
then on any path In this case, F is said to be constant.

To describe how F varies along a particle path we must differen-
tiate Using (8.14) and (8.15), we get

Notice that we have two terms here, because we have used a generalization of
the product rule (7.6b) which allows us to separately differentiate the two
distinct functional dependencies on time. Our notation enables us to suppress
the variables in (8.16a) without confusion and write

The derivative dF/dt is given many different names in the literature; the term
total derivative is one of the most common, but the term convective derivative
is most appropriate, because it suggests change in a function with respect to
flow along a path

Line Integrals

Having seen how scalar derivatives are related to directional derivatives, we
now consider how integrals with respect to a scalar parameter are related to
integrals in space.

Let be a smooth curve in from point a to point b, and let be a
multivector-valued function defined at each point x on The line integral of
F on is defined by

The limit can be understood with reference to Figure 8.1. Points
are selected on the curve they determine chords

and the sum on the right side of (8.17). The larger the number of
points selected and the smaller the the more closely the sum in (8.17)
approximates the integral, if the k-vector parts do not vary too
rapidly along the curve. Although it involves vectors instead of scalars, the
limit process defining the line integral (8.17) is formally the same as the one
defining the scalar integral in elementary calculus. Indeed, if the curve is
represented parametrically by the equation  with and

then it is not difficult to prove that
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We could have used (8.18) as a definition of the line integral in terms of the
scalar integral already studied. However, definition (8.17) has the advantage
over (8.18) of being completely independent of any parametric representation
of the curve, giving it a certain conceptual and computational simplicity. For
example, when  F(x)  =  1, we can easily evaluate the sum in (8.17), and noting
that it is independent of n (see Figure 8.1), we get the result

Fig. 8.1. Approximation of a curve by line segments.

For any closed curve the end points are identical, and the result can be written

This should be interpreted a sum of vectors adding to zero.
Because of the relation (8.18), the general properties of the line integral are

so easily determined from those of the scalar integral that it is hardly
necessary to write them down. However, some comments on notation and
some words of caution are in order. When the relevant variables and the
domain of integration are clear from the context, they can be suppressed in
the notation for integrals. For instance, (8.18) can be written in the abbrevi-
ated form

To indicate the endpoints of the line integral we may write
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this notation is especially apt when the function F is such that the value of the
integral is independent of the path (curve) from a to b. This is obviously the
case for the integral (8.19), which accordingly may be written

It must be remembered, however, that in general the value of the line integral
depends on the entire curve and not on the endpoints alone. The caution
about ordering factors deserves repeating as well; it must be realized that the
integral is not necessarily equivalent to unless the product F dx
is commutative, as when F is scalar-valued.

Line Integrals of Vector Fields

For a more specific example of a line integral, let be vector-valued
function on the curve Since dx is also vector-valued we have

This integral has a scalar part

and a bivector part

Both parts are called line integrals and, because they are of different grade,
they can be considered separately. But there are times when they are best
considered together as in (8.21a).

Next to constant f, the simplest vector-valued function is  with the
line integral

Both the scalar and bivector parts of this integral are of independent interest,
so let us consider them separately. First, the scalar part. If we represent the
curve parametrically by then according to (7.8),

so
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But we are at liberty to choose the scalar as our parameter, because there is
no contribution to the integral from portions of the curve where  is constant.
Hence we get the specific result

Since its value depends only on the endpoints, this integral is path-
independent.

The Area Integral

Now consider the bivector part of (8.22) written in the form

The significance of this integral can be understood by approximating it by a
sum in accordance with the definition (8.17).

As illustrated in Figure 8.2, each term in this sum is the directed area of a
triangle with one vertex at the origin. The first term approximates the
directed area “swept out” by the line segment represented by vector variable
x as its tip “moves” continuously along the curve from to while its tail is

Fig. 8.2. Polygonal area approximation.
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anchored at the origin. Therefore, the sum in (8.25) approximates the
directed area swept out as the variable x moves from a to b. Accordingly, we
arrive at the exact interpretation of the integral (8.24) as the total directed
area “swept out” by the vector variable x as it moves continuously along the
curve from a to b. This interpretation makes it obvious that the value of the
integral is not path independent, because the area swept out depends on the
path from a to b.

If the curve is represented by the parametric equation x = x(t) with
x(0) = a, then the area swept out can also be expressed as a parametric
function A = A(t) by writing (8.24) in the form

Differentiating with respect to the upper limit of the integral, we get

expressing the rate at which area is swept out. This rate depends on the choice
of parameter t, although the total area swept out depends only on the curve.

Consider a closed curve in a plane enclosing the origin, as shown in
Figure 8.3a. The line integral

along gives us the directed area “enclosed” by the curve. Its magnitude
is the conventional scalar measure of area enclosed by the curve. This

should be evident from the fact that the vector x “sweeps through” each of
the points enclosed by the curve exactly once, or again by considering
approximation of the integral by the areas of triangles as expressed by (8.25),
which applies here with As in Section 2-3, we represent the unit of
directed area for the plane by a bivector i. Then A = Ai, where A = if
the curve  has a counterclockwise orientation (as it does in Figure 8.3a), or

if has a clockwise orientation. For the situation depicted by
Figure 8.3a, we have

for the kth “element of area”, whence from (8.28),

It must be emphasized that (8.29b) follows from (8.27) only when all coplanar
elements of area have the same orientation, as in (8.29a). This condition is
not met if the curve is self-intersecting or does not enclose the origin.

The area integral (8.27) is independent of the origin, in spite of the fact that
the values of the vector variable x in the integrand depend on the origin. To
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Area swept out by radius vector along a closed curve. Crosshatched region is swept
out twice in opposite directions, so its area is zero.

understand how this can be, displace the origin from inside the curve shown
in Figure 8.3a to a place outside the curve as shown in Figure 8.3b. Choosing
points a and b on as shown in Figure 8.3b, we separate into two pieces
and so the area integral can be written

Referring to Figure 8.3b, we see that the coordinate vector sweeps over the
region inside C once as it goes between a and b along but it sweeps over the
region to the left of twice, once as it traverses and again as it traverses

since the two sweeps over the latter region are in opposite directions the
directed area they sweep out have the same magnitude but opposite sign, so
their contributions to the integral (8.30) cancel, and we are left with the
directed area enclosed by as claimed.

For a general proof that the closed area integral (8.27) is independent of the
origin, we displace the origin by an “amount” c by making the change of
variables Then,

But the last term vanishes because so the independence of origin
is proved. Note that the vector c is entirely arbitrary, so our restriction of the
origin to the plane of the curve in Figure 8.3b is quite irrelevant to the value
of the area integral, though it helped us see how parts of the integral cancel
when the origin is not enclosed by the curve; such cancellation occurs even
when the origin is outside the plane, as our proof of origin independence
implies.

Our discussion shows that the integral (8.28) generalizes the ancient con-
cept of the area enclosed by a simple closed curve to a concept of directed
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area determined by an arbitrary closed
curve. Thus, the integral (8.28) defines an
“enclosed” area even for self-interesecting
plane curves such as the one shown in
Figure 8.4; the sign of the area integral for
subregions is indicated in the figure, with
zero for subregions which are “swept out”
twice with cancelling signs. The integral
(8.28) also applies to closed curves in space
which do not lie in a plane, but we will not
need to consider its significance further in
this book.

The General Line Integral

Our definition (8.17) of the line integral is
not the most general one possible, though it
will suffice for most purposes of this book. A
word about the general case may be helpful.

Fig. 8.4. Directed area of a self-
intersecting closed plane curve. Verti-
cal and horizontal lines denote areas
with opposite orientation, so cross-
hatched region has zero area.

Consider a multivector-valued function L(a, x) of two vector variables which
is linear in the first variable. The line integral of L(a, x) along some curve is
defined as in (8.17) by

The linearity of the first variable in L(a, x) is necessary for the limit in (8.31)
to be independent of the subdivision of the curve. Equation (8.18) is now
generalized to

We consider but one special case of such an integral. Suppose that, at every
point in some region containing the function is the differential of
some function F = F(x). Then we write

and using (8.14) in (8.32), we get

Since the value of the integral is completely determined by the value of F at
the endpoints, the integral is independent of the path in Thus we see that
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for path-independence of an integral it is sufficient that the integrand be a
differential of some function. The terms “perfect differential” or “exact
differential” are also used to indicate path-independence in the literature.

The Gradient

Path-independent integrals arise most commonly in connection with an im-
portant kind of vector field. If a vector field f = f(x) has the property that

is the differential of some scalar field then we write

and say that f is the gradient of We say that is a potential of f. The
gradient has a simple geometric interpretation which follows from the fact
that is a directional derivative. The directional derivative tells us the
rate at which the value of changes in the direction a. If a is a unit vector with
direction of our choosing, then has its maximum value when a and
are in the same direction, that is, when Thus, the gradient

tells us both the direction and magnitude of maximum change in
the value of at any point x where it is defined. Furthermore, the
change of in any given direction a is obtained by taking the inner product of
a with

As shown in Figure 8.5, the equa-
tion defines a one-parameter
family of surfaces, called equipotential
surfaces, one surface for each constant
value of k. At a given point x, the
gradient is normal (perpendicular)
to the surface through that point, and,
when not zero, it is directed towards
surfaces with larger values of k. Figure
8.5 shows only a 2-dimensional cros-
section. As is conventional, the change
in k is the same for each pair of neigh-
boring surfaces, so the separation pro-
vides a measure of the change in the
closer the surfaces, the larger the gra-
dient. The change in between any
two points a and b is given by

Fig. 8.5. The gradient vector is orthogonal to
the equipotential at every point.

As we have noted, the value of such an integral is independent of the path.
For a given scalar function the gradient is easily found from the

directional derivative by interpreting as the inner product of with an
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arbitrary vector a. Thus, for where g is a constant vector, we get
from Equation (8.5), hence

Similarly, from (8.7) and (8.8) we get

These formulas enable us to evaluate the gradient of certain functions without
referring to the directional derivative at all. Thus, if is a function
of the magnitude of x but not its direction, then, by using (8.39) in connection
with the chain rule (8.4), we get

In NFII, we shall see that the gradient operator can be regarded as the
derivative with respect to the vector x. Then we shall see that the directional
derivative can indeed be regarded as the inner product of a vector a with
a vector operator just as our notation suggests.

2-8. Exercises

(8.1) Evaluate the derivatives

where b and A are independent of x.
(8.2) Let and where is a vector

independent of x. Verify the following derivatives:
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In the last two cases, k is any nonzero integer and if k < 0.
(8.3) Show that the Taylor expansion of about x is term by term

equivalent to the series

The series is convergent if
(8.4) The Legendre Polynomials can be defined as the coefficients

in the power series expansion

The series converges for
Use a Taylor expansion to evaluate the polynomials of lowest order:

The are polynomials of vectors. Show that they are homo-
geneous functions of degree n, that is.
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(8.5) Verify the value given for the following line integral:

taken along any continuous curve in the which does not
pass through the origin. Write separate integrals for the k-vector
parts. Note that the integral is multivalued, and specify conditions
on the curve which give the principal value of the logarithm. (Recall
the discussion of the logarithmic function in Section 2-5.)

Introduce the spinor-valued function and a para-
metric equation x = x(t) for the curve and show that the integral
can be written in the equivalent forms

The last form of the integral is discussed extensively in textbooks on
“Functions of a Complex Variable”.



Chapter 3

Mechanics of a Single Particle

In this chapter we learn how to use geometric algebra to describe and analyze
the motion of a single particle. From a physical point of view, we will be
concerned with constructing the simplest models for a physical system and
discussing their applications and limitations. From a mathematical point of
view we will be concerned with solving the simplest second order vector
differential equations and analyzing the geometrical properties of the solutions.

Most of the results of Chapter 2 will be used in this chapter in one way or
another. Of course, the main mathematical tool will be the geometric algebra
of physical space. Since the reader is presumed to have some familiarity with
mechanics already, a number of basic terms and concepts will be used with no
more than the briefest introduction. A critical and systematic analysis of the
foundations of mechanics will be undertaken in Chapter 9. General methods
for solving differential equations will be developed as they are needed.

Although only the simplest models and differential equations are con-
sidered in this chapter, the results should not be regarded as trivial, for the
simple models provide the starting point for analyzing and solving complex
problems. Consequently, the time required for developing an elegant formu-
lation and thorough analysis of simple models is time well spent.

3-1. Newton’s Program

Isaac Newton (1642–1727) is rightly regarded as the founder of the science
called mechanics. Of course, he was neither the first nor the last to make
important contributions to the subject. He deserves the title of “founder”,
because he integrated the insights of his predecessors into a comprehensive
theory. Furthermore, he inaugurated a program to refine and extend that
theory by systematically investigating and classifying the properties of all
physical objects. Newtonian mechanics is, therefore, more than a particular
scientific theory; it is a well-defined program of research into the structure of
the physical world.

120
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This section reviews the major features of Newtonian mechanics as it stands
today. Naturally, a modern formulation of mechanics differs somewhat from
Newton’s, but this is not the place to trace the intricacies of its evolution.
Also, for the time being we take the fundamental concepts of space and time
for granted, just as Newton did in his Principia. It will not be profitable to
wrestle with subtleties in the foundations of mechanics until some proficiency
with the mathematical formalism has been developed, so we delay the
attempt until Chapter 9.

The grand goal of Newton’s program is to describe and explain all proper-
ties of all physical objects. The approach of the program is determined by two
general assumptions: first, that every physical object can be represented as a
composite of particles; second, that the behavior of a particle is governed by
interactions with other particles. The properties of a physical object, then, are
determined by the properties of its parts. For example, structural properties
of an object, such as rigidity or plasticity, are determined by the interactions
among its parts. The program of mechanics is to explain the diverse proper-
ties of objects in our experience in terms of a few kinds of interactions among
a few kinds of particles.

The great power of Newtonian mechanics is achieved by formulating the
generalities of the last paragraph in specific mathematical terms. It depends
on a clear formulation of the key concepts: particle and interaction. A particle
is understood to be an object with a definite orbit in space and time. The
orbit is represented by a function which specifies the particle’s
position x at each time t. To express the continuous existence of the particle in
some interval of time, the function x(t) must be a continuous function of the
variable t in that interval. When specified for all times in an interval, the
function x(t) describes a motion of the particle.

The central hypothesis of Newtonian mechanics is that variations in the
motion of a particle are completely determined by its interactions with other
particles. More specifically, the motion is determined by an equation of the
general form

where is the acceleration of the particle, the scalar m is a constant called the
mass of the particle, and the force f expresses the influence of other particles.
This hypothesis is commonly referred to as “Newton’s second law of motion”,
though it was Euler who finally cast it in the form we use today.

Newton’s Law (1.1) becomes a definite differential equation determining
the motion of a particle only when the force f is expressed as a specific
function of x(t) and its derivatives. With this much understood, the thrust of
Newton’s program can be summarized by the dictum: focus on the forces. This
should be interpreted as an admonition to study the motions of physical
objects and find forces of interaction sufficient to determine those motions.
The aim is to classify the kinds of forces and so develop a classification of
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particles according to the kinds of interactions in which they participate. The
classification is not complete today, but it has been carried a long way.

Newton’s program has been so successful largely because it has proved
possible to account for the motions of physical objects with forces of simple
mathematical form. The “forces of nature” appear to have two properties of
such universality that they could be regarded as laws, though they were not
identified as such by Newton. We shall refer to them as the principles of
additivity and analyticity.

According to the principle of additivity (or superposition) of forces, the
force f on a given particle can be expressed as the vector sum of forces
independently exerted by each particle with which it interacts, that is,

This principle enables us to isolate and study different kinds of forces
independently as well as reduce complex forces to a superposition of simple
forces. Newton’s program could hardly have progressed without it.

According to the principle of analyticity (or continuity), the force of one
particle on another is an exclusive, analytic function of the positions and
velocities of both particles. The adjective “exclusive” means that no other
variables are involved. The adjective “analytic” means that the function is
smoothly varying in the sense that derivatives (with respect to time) of all
orders have finite values. The principle of analyticity implies that the force f
on a particle with position and velocity is always an analytic
function

where the explicit time dependence arises from motions of the particles
determining the force. Notice that (1.3) assumes that the force is not a
function of and higher order derivatives. An exception to this rule is the
so-called “radiative reaction force” which requires special treatment that we
cannot go into here. Mathematical idealizations or approximations that
violate the analyticity principle are often useful, as long as their ranges of
validity are understood.

A specific functional form for the force on a particle is commonly called a
force law. For example, a force of the form is called “Hooke’s Law”.
It should be understood, however, that there is more to a force law than a
mathematical formula; it is essential to know the law’s domain of validity, that
is, the circumstances in which it applies and the fidelity with which it rep-
resents the phenomena. Much of physics is concerned with determining the
domains of validity for specific force laws, so it shall be our concern as well
throughout this book. Therefore, we can only sketch a classification of forces
here. The major distinction to be made is between fundamental and approxi-
mate force laws.

Physicists have discovered four kinds of fundamental forces, the gravi-
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tational, the electromagnetic, the strong and the weak forces. They are called
“fundamental”, because every known force can be understood as a superpo-
sition and approximation of these forces. The strong and the weak forces
were discovered only fairly recently, because their effects on ordinary human
experience are quite indirect. The strong forces bind the atomic nuclei; so
they determine the naturally occurring elements, but they do not otherwise
come into play in everyday experience. The weak forces govern radioactive
decay. The strong and weak forces are not as well understood as the electro-
magnetic and gravitational forces, so they are major objects of basic research
today. Furthermore, they are mathematically formulated in terms of “quan-
tum mechanics” which goes beyond the “classical mechanics” developed
here. For these reasons, they will not be discussed further in this book.

The gravitational force of a particle at a point on a particle at
is given by

where m and m' are masses of the particles and G is an empirically known
constant. This is Newton’s gravitational force law. Its domain of validity is
immense. It applies to all particles with masses, and only minute deviations
from it can be detected in the most sensitive astronomical experiments. For
practical reasons, we often work with approximations to Newton’s law, but
the law’s great validity enables us to estimate the accuracy of our approxi-
mations with great confidence whenever necessary.

The electromagnetic force on a particle with charge q has the form

where is an electric field, is a magnetic field, and c is a
constant with value equal to the speed of light. This is commonly called the
Lorentz force law in honor of the man who first used it extensively to analyze
the electromagnetic properties of material media. The charge q in (1.5) is a
scalar constant characteristic of the particle; it can be positive, negative or
zero; consequently, electromagnetic interactions determine a three-fold
classification of particles into positively, negatively or neutrally charged
groups. The electric and magnetic fields in (1.5) can in principle be expressed
as functions of the positions and velocities of the particles that produce them,
but this is totally impractical in most applications, because the number of
particles is very large, and often the information would be irrelevant because
only a simple approximation to the functional dependence on x and t is
required.

The known consequences and applications of electromagnetic interactions
are vastly richer and more numerous than those of the other interactions.
Research during the last hundred years or so has established the astounding
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fact that, aside from simple gravitational attraction, all the manifold proper-
ties of familiar physical objects can be explained as consequences of electro-
magnetic interactions. This includes explanations of solid, liquid and gaseous
phases of matter, thermal and electrical conduction and resistance, the
varieties of chemical binding and reaction, even the colors of objects are
explained as electromagnetic interactions of particles with light. The full
explanation requires “quantum mechanics”, but the “classical mechanics” of
concern in this book is indispensible, and its resources are far from exhausted.
In all this the Lorentz force law (1.5) plays a crucial role, so it must be
regarded as one of the most important mathematical expressions in physics.

The abstract mathematical framework of Newtonian mechanics does not
specify any force laws. Newton began the search for “force laws of nature”
with the stunning proposal of his gravitational force law, which has served as a
paradigm for force laws ever since. The fundamental force laws were dis-
covered by a combination of empirical study and mathematical analysis. The
importance of mathematical analysis in this endeavor should not be underesti-
mated, even in Newton’s initial discovery. Textbooks proceed rapidly to
Newton’s law, but Newton spent years preparing himself mathematically. His
preparatory studies in analytic geometry led him to a complete classification
of third order algebraic plane curves, which is far beyond what students
encounter today. The extent of Newton’s mathematical preparation is evident
in The Mathematical Papers of Isaac Newton, recently published under the
careful editorship of D. T. Whiteside. Every serious student of physics should
become acquainted with these splendid volumes.

In this chapter we will be engaged in specific and general studies of a variety
of force laws. As will be seen, mathematical analysis leads to a classification
of force laws according to their mathematical properties. This is of great
importance for many reasons: (1) It helps us identify common properties of
many force laws and systematically zero in on the specific law appropriate in a
given situation. (2) To understand why one force law is fundamental rather
than another, we must examine a range of possibilities and learn to dis-
tinguish the crucial from the unimportant properties of fundamental laws. (3)
If we hope to refine or improve present laws, we must know what reasonable
possibilities are available. (4) If we hope to develop a unified theory of the
fundamental laws, we must know how they differ and what they have in
common. (5) Finally, mathematical analysis is essential for practical approxi-
mations and applications of the fundamental laws.

We have mentioned the important distinction between fundamental and
approximate laws. In the macroscopic domain of familiar physical objects, we
deal mostly with approximate laws, because a reduction to fundamental laws
is impractical. We call them “approximate laws” for the obvious reason that
they approximate fundamental laws. They are also called “empirical” or
“phenomenological” laws, because their relation to empirical evidence is
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fairly direct, though there is usually reason to believe that the relation is
incomplete or approximate in some respect.

It is useful to distinguish between long range and short range forces. Short
range approximate forces are also called contact forces, because they are
exerted by the surface of one body or medium on the surface of another body
in contact with it. The forces exerted by molecules on the two surfaces have a
macroscopically short range. The resultant force supposed to act on either
body is necessarily approximate, because so many molecules are involved. As
examples of contact forces, we list friction, viscosity and bouyant forces. Long
range approximate forces are also called body forces, because they are
exerted on particles throughout a macroscopic body. The gravitational force
exerted by the Earth is the most familiar force of this kind.

Once the force law has been determined, the problem of determining the
motion of a particle is a strictly mathematical one. According to (1.1) and
(1.3), the equation of motion necessarily has the form

This is called a second order differential equation, because it contains no
derivatives of the dependent variable x with respect to the independent
variable t of order greater than the second. Books on the theory of differential
equations prove that if f is an analytic function, then (1.6) has a unique
general solution depending only on two arbitrary vector constants (“vector”,
because the dependent variable is a vector.) Designating these constants by a
and b, the general solution of (1.6) can be written as a function of the form

If desired, the constants can be determined from initial conditions, that is, the
position   and the velocity of the particle at time  thus from (1.7) we
get the equations

Being two simultaneous vector equations in two vector variables, these
equations determine a, b from and or vice-versa.

We shall have many occasions to use this important general theorem, in
particular, when solving the equations of motion. There are many ways to
solve differential equations, but, whichever way we use, we will know that we
have found all possible solutions if we have found one solution depending on
two arbitrary independent vector constants. By assigning these constants
appropriate values we determine a unique particular solution, for example,
the one with given initial values It follows from the general theorem
that if the position and velocity of a particle subject to a known force are
specified at any time, then the position and velocity at any subsequent time
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are uniquely determined. For this reason, the position and velocity are
commonly called state variables and are said to designate the state of a
particle.

3-2. Constant Force

In this section we study the motion of a particle subject to a constant gravi-
tational force Of course, our results describe the motion of a particle
with charge q in a constant electric field E just as well; it is only necessary to
write for the electrical force per unit mass.

According to the fundamental law of mechanics, a particle subject to a
constant force undergoes a constant acceleration. For a force per unit mass g,
the particle trajectory is determined by the differential equation

subject to the initial conditions

Using (2–7.19) and (2–7.17), Equation (2.1) can be integrated directly to get
the velocity at any time t; thus,

A second integration gives

This is a parametric equation for the displacement of the particle as a function
of time. The trajectory is a segment of a parabola, as shown in Figure 2.1. The
solution (2.4) presents the parabolic motion of the particle as the superpo-
sition of two linear motions. The term can be interpreted as the displace-
ment of a point at rest in a reference system moving with velocity while the
term is interpreted as the displacement of the particle initially at rest in
the moving system. Accordingly, the constants in (2.4) determine a “natural”
coordinate system for locating the particle at any time; the origin is deter-
mined by while coordinate directions and scales are given by the vectors
and g. This is a skew coordinate system, but the particle’s natural position
coordinates t and are obviously quadratically related, just as they are in
the familiar representation by rectangular coordinates. Mathematically speak-
ing the quantity is a particular solution of the equation of motion (2.1),
while is the general solution of the homogeneous differential equa-
tion

The description of motion can be simplified by representing it in velocity
space instead of position space. A curve traced by the velocity is
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Fig. 2.1 The trajectory in position space.

called a hodograph. According to (2.3), the hodograph of a particle subject to
a constant force is a straight line. In velocity space the location of the particle
can be represented by the average velocity  The parametric equation
for is obtained by writing (2.4) in the form

As illustrated in Figure 2.2, the trajectory
is simply a vertical straight line begin-

ning at Figure 2.2 also shows the simple
relation of the average velocity (2.5) to the
actual velocity (2.3), a relation which is
disguised if the equation for displacement
(2.4) is used directly. Figure 2.2 contains
all the information about the projectile
motion, so all questions about the motion
can be answered by solving the triangles in
the figure, graphically or algebraically, for
the relevant variables. Let us see how to do
this efficiently.

Fig. 2.2. The trajectory in velocity space.

Projectile Range

Although the displacement  is represented only indirectly in velocity
space, it is nonetheless easy to compute. Consider, for example, the problem
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of determining the range r of a target sighted in a direction which has been
hit by a projectile launched with velocity This problem can easily be solved
by the graphical method illustrated in Figure 2.2, assuming, of course, that
the flight of the projectile is
adequately represented as that
of a particle with constant
acceleration g. The method
simply exploits properties of
Figure 2.2. Having “laid out”

on graph paper, as indicated
in Figure 2.3, one extends a
line from the base of in the
direction to its intersection
with a vertical line extending
from the tip of The lengths
of the two sides of the triangle
thus constructed are then mea-
sured to get the values of
and from which one can
compute r and t as well, if de-

Fig. 2.3. Graphical determination of the displace-
ment r, time of flight t and the final velocity v.

sired. Figure 2.2 also shows how the construction can be extended to deter-
mine the final velocity v of the projectile. Angles with the horizontal are
indicated in Figure 2.3, since they are commonly used to specify relative
direction in practical problems.

The same problem can be solved by algebraic means. Outer multiplication
of (2.5) by r produces

Hence

This completely determines t from the target direction and the initial
velocity We can get one other relation from (2.5) by “wedging” it with gt,
namely

We can solve this for r and use (2.6) to eliminate t, thus

Thus, the range r has been expressed as an explicit function of the given
vectors and g.
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Maximum Range

The algebraic expression (2.8) for the range supplies more information than
the corresponding graphical construction. For example, for a fixed “muzzle

 velocity”       and target direction Equation (2.8) gives the range r as a
function of the firing direction The variation of r with changes in is
unclear from the form of (2.8), because an increase of will be ac-
companied by a decrease of so their product might either increase or
decrease. The functional dependence is made more obvious by using the
identity

established in Exercise (2–4.8d). The first term on the right side of (2.9) is
constant, while the second term is a function of the vector (the reader is
invited to construct a diagram showing the relation of this vector to  and
The direction of which gives maximum range is obtained by maximizing the
value of (2.9). It is readily verified that is a unit vector, so (2.9) has its
maximum value when

From this we can conclude that

or equivalently.

This equation tells us that the angle between and must be equal to the
angle between and Thus, the vector bisects the angle between  and
(Figure 2.4), so we can express as a function of and by

Substituting (2.11) in (2.8), one immediately
finds the following expression for the maximum
range:

Fig. 2.4. For maximum range,
shoot in a direction bisecting the
vertical and the line of sight We saw in section 2-6 that this is an equation for

a paraboloid of revolution; here, it expresses
as a function of the target direction As illustrated in Figure 2.5, the
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Fig. 2.5. The envelope of all trajectories with the same initial speed is a paraboloid of
revolution [Figure redrawn from W. D. MacMillan, Theoretical Mechanics, reprinted by Dover,
N. Y. (1958)].

paraboloid (2.12) is the envelope of all trajectories emanating from the origin
with the same initial speed Thus, only points under the paraboloid can be
reached by a projectile.

The relation between t and r in (2.7) can be expressed differently by
eliminating between (2.6) and (2.7) to get

For maximum range, one sees from either (2.10) or (2.11) that
in which case (2.12) and (2.13) give

So far all results have been obtained by analyzing the upper triangle in
Figure 2.2. The lower triangle contains additional information. The infor-
mation in both triangles can be represented in a symmetrical form by extend-
ing Figure 2.2 to a parallelogram, as shown in Figure 2.6a. The parallelogram
can be characterized algebraically by the equations for its diagonals;

These are, of course, equivalent to the basic equations (2.3) and (2.4).
Multiplying equations (2.15) and (2.16) to eliminate t, one obtains

Therefore,
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Equation (2.18) will be recognized as expressing conservation of energy. It
determines the final speed of the particle in terms of initial data. On
the other hand, Equation (2.19) determines the relative direction of initial
and final velocities.

A glance at Figure 2.5 suggests that there are two distinct trajectories with
initial speed passing through any given point r within the maximum range.
The trajectories can be ascertained from equations of the last paragraph. Let

and be their initial velocities. By assumption the initial speeds are the
same;

By (2.18), the final speeds are the same;

And by (2.19), the area of the parallelogram determined by and is equal
to the area of the parallelogram determined by v and

Hence the two parallelograms are similar. They are illustrated in Figures 2.6a
and 2.6b. Since corresponding diagonals have equal length, it follows at once
that

This relation can be used to determine one of the two trajectories from the
other. The problem is to find the direction from the directions  and
This can be done by using (2.7) to get the relation
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Eliminating and t' with (2.20a) and (2.21), we get

Finally, by substitution from (2.4) we get the simple relation

 This says that the angle      makes with the vertical is equal to the angle
between and Equation (2.22) generalizes the relation (2.10) which we
found for trajectories of maximum range.

For the case of maximum range, Equation (2.21) must agree with (2.14);
hence and the two parallelograms in Figure 2.6 reduce to a single
rectangle. Then and (2.19) can be solved for the final velocity:

All the significant properties of a trajectory with maximum range have now
been determined.

Rectangular and Polar Coordinates

For some purposes it may be convenient to express the above results in terms
of rectangular or polar coordinates. The positive vertical direction is rep-
resented by the unit vector The vertical coordinate y of the particle
is then defined by

while its horizontal coordinate x is defined by

or

These relations are more useful when combined into the single set of equations

Similarly, for the initial velocity one writes

As illustrated in Figure 2.7 the angles and measure inclinations of and
from the horizontal direction specified by the vector
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Equations (2.26) and (2.27) compactly
describe how rectangular and polar
coordinates are related to the vectors g,

and r. From them one can read off,
for example, the relations

Moreover,

Fig. 2.7.

This makes it easy to put the range
equation (2.8) in the more conventional form

Similarly, (2.7) can be put in the form

This formula can be used to find the firing angle when the location of the
target is given. The time of flight t can be evaluated by using the result of
Exercise (2.1) below. In a similar way, other multivectors equations in this
section can be put in conventional trigonometric form. But it should be
evident by now that the multivector equations are usually easier to manipu-
late than their trigonometric counterparts.

3-2. Exercises

(2.1) Derive the following expression for time of flight as a function of
target location:

(2.2) From Equation (2.4) one can get a quadratic equation for t,

Discuss the significance of the roots and how they are related to the
result of Exercise 1.

(2.3) The vertex of a parabolic trajectory is defined by the equation
Show that the time of flight to the vertex is given by

Use this to determine the location of the vertex.
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(2.4) Use equations (2.18) and (2.19) to determine the maximum hori-
zontal range x for a projectile with initial speed fired at targets on
a plateau with (vertical) elevation y above the firing pad.

(2.5) Find the minimum initial speed needed for a projectile to reach a
target with horizontal range x and elevation y. Determine also the
firing angle the time of flight t and the final velocity υ of the
projectile. Specifically, show that

(2.6) From Equations (2.15) and (2.16) obtain

Solve these equations to get

(2.7) Determine the area swept out in time t by the displacement vector
of a particle with constant acceleration g and initial velocity

3-3. Constant Force with Linear Drag

We have seen that the trajectory of a particle subject only to a constant force
mg is a parabola. We now consider deviations from parabolic motion due to a
linear resistive force, that is, a resistive force directly proportional to the
velocity. Expressing the resistive force in the form where is a positive
constant, the equation of motion can be written

This differential equation is most easily solved by noticing that is an
integrating factor*. Thus,

This integrates directly to

Solving for we have

*For a general method of determining integrating factors without guessing, see Exercise (3.3).
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The constant is called a relaxation time; it provides a measure of the time it
takes for the retarding force to make the particle “forget” its initial con-
ditions. If then so no matter what the value of  the first
term on the right side of (3.2) eventually dominates all others; then we have

This value of the velocity is called the terminal velocity. As the particle
approaches the terminal velocity its acceleration becomes negligible. Indeed,
(3.1) gives the terminal velocity directly when the term is regarded as
negligible.

The displacement of the particle from its initial position is found
by integrating (3.2) directly. The result is

From the two Equations (3.4) and (3.2), properties of the trajectory can be
determined by algebraic means. With the initial conditions  specified,
the general shape of the trajectory can be determined by locating the vertical
maximum and asymptote. The location of a vertical maximum is determined
by the condition (Exercise (3.1)). To locate the asymptote, we
deduce from (3.4) that the horizontal displacement of the particle is

with a maximum

Figure 3.1 compares trajectories of
particles with the same initial velocities
subject to resistive forces of different
strengths. Asymptotes are not shown
because they do not fit on the figure.
(See Exercise (3.2) for analysis.)

Time of Flight

The time of flight to a target specified
by and can be determined by the
same general method used in the para-
bolic case. The range is eliminated

Fig. 3.1. Comparison of trajectories with dif-
fering resistance. The parameter T here is the
time of flight to vertical maximum for the para-
bolic trajectory.

from (3.4) to produce an equation for t. To this end, take the outer product of
(3.4) with to get
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Divide this by and introduce the notation

to get

Comparison with (2.6) shows that the scalar T defined by (3.6) is precisely the
time of flight in the parabolic case. It should be noted that T is completely
determined by the target direction and the initial velocity

Equation (3.7) is a transcendental equation for t in terms of T. For
we can get an approximate solution of the equation by expanding the
exponential; thus

Dividing by and rearranging terms, we get

As it should, this equation reduces to when The first order
approximation of this result is obtained by replacing t by T on the right of
(3.8) and using the binomial expansion of the first term to first order; thus,

or,

The time of flight computed here is less than in the parabolic case, because
the range is less, though the target direction is the same.

Range

We can estimate the range by expressing it as a function of t, just as we did in
the parabolic case. Taking the outer product of (3.4) with g and solving for

we get

Using (3.9) to estimate the time-dependence to first order in we find
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So

Comparison with (2.8) shows that

is identical to our previous expression for range in the parabolic case.
Consequently, it is convenient to write our range formula in the form

showing the first-order correction to the range in the parabolic case.

Ohm’s Law

The equations we have been discussing are useful in the analysis of micro-
scopic as well as macroscopic motions. For example, consider an electron
(with mass m and charge e) moving in a conductor under the influence of a
constant electric field E. The electron’s motion will be retarded by collisions
with atoms in the conductor. We may attempt to represent the retardation by
a resistive force proportional to the velocity. If the resistance is independent
of the direction in which the electron moves, we say that the conductor is an
isotropic medium, and we can write the resistive force in the form where

is a constant. We are thus led to consider the equation of motion

For times large compared with the relaxation time

the electron will reach the terminal velocity

and there will be a steady electric current in the conductor. The electric
current density J is given by

where N is the density of electrons. Substituting (3.13) into (3.14), we get
Ohm’s Law
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where the conductor’s d-c conductivity is given by

Ohm’s law holds remarkably well for many conductors over a wide range of
currents. The conductivity σ and the electron density N can be measured, so
can be calculated from (3.16). Then the relaxation time can be calculated
from (3.12) and compared with measured values. The results are in general
agreement with the extremely short relaxation times found for metals. Thus,
our selection of Equation (3.11) is vindicated to some degree, and we have
come to understand Ohm’s law as something more than a mere empirical
relation. But we can hardly claim to have a satisfactory explanation or
derivation of Ohm’s law, because our understanding of (3.11) and its domain
of validity is too rudimentary at this point. For one thing, the velocity v can
certainly not be seriously regarded as the velocity of an individual electron. It
must be interpreted as some kind of average electron velocity. The trajectory
of an individual electron must be very irregular as it collides repeatedly with
the much more massive atoms in the conductor. Our equations describe only
average motion in the microscopic domain. Derivation and explanation of
these equations requires statistical mechanics and equations governing the
submicroscopic motion of electrons, specifically, the basic equations of quan-
tum mechanics. This much is certain: Ohm’s law is not a fundamental law of
physics, it is a macroscopic approximation to complex processes taking place
at the atomic level.

3-3. Exercises

(3.1) Show that if then a particle subject to Equation (3.1)
reaches a maximum height in time

where is the terminal velocity. Show that the displace-
ment to maximum is given by

Show also that
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where is the horizontal coordinate of the maximum, and is
the distance from the initial position to the vertical asymptote. Note
that this relation implies that the greater or ,  the more blunted
the trajectory.

(3.2) A natural unit of time for a parabolic trajectory is the time of flight
to its vertical maximum. The ratio of T to the relax-

ation time for resisted motion is a dimensionless parameter
which completely determines the relative shapes of trajectories for
resisted and non-resisted motion. A convenient parameter deter-
mining the size of the trajectories is the horizontal distance X to the
vertical maximum in the parabolic case. To make the comparison
quantitative, derive the exact relations

where and are as defined in the preceding exercise. Let
denote the coordinate of the point where the trajectory crosses the
horizontal. For derive the approximate relation

For the accurate curves in Figure 3.1, check the given values for
locate the asymptotes and compare horizontal crossing points with
computed values of

(3.3) An equation with general form

where and scalar are specified functions of t, is said
to be a linear first order differential equation with scalar coefficient.
A function is an integrating factor of this equation if, when
multiplied by the equation can be put in the form

Show that the integrating factor is determined by

and the solution is given by
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3-4. Constant Force with Quadratic Drag

As a rule, resistance of the atmosphere to motion of a projectile is more
accurately described by a quadratic function of the velocity than by the linear
function considered in the last section. In this case, the resistive force has the
form where and is a positive constant. For a particle
subject to a constant force and quadratic drag, the equation of motion can be
written.

To solve this equation, we must resort to approximation methods. By such
methods we can solve any differential equation to the degree of accuracy
required by a given problem. However, one approximation method may be
easier to apply than another, or it may yield results in a more useful form.

Before getting involved in details of a calculation, we should find out what
we can about general features of the motion. Our analysis of motion with
linear drag provides a valuable qualitative guide to the quadratic case.
Indeed, if the coefficient in (4.1) is replaced by some estimate of its
average value on the trajectory, the exact solution with linear drag provides a
good quantitative approximation to the motion in limited time intervals.
About the motion over unlimited time intervals, we can draw the following
general conclusions:

(1) The particle eventually “forgets” its initial velocity and reaches a
terminal velocity

This is obtained from (4.1) by neglecting
(2) As in Figure 3.1, trajectories with different initial velocities have

different shapes. The greater the initial speed, the more blunted the trajec-
tory and the less symmetrical its shape.

(3) There will be a maximum horizontal displacement which, by (3.5),
cannot exceed

(4) The maximum horizontal range for given initial speed occurs for a
firing angle and decreases as increases.

Horizontal and Vertical Components

The constant vector g in (4.1) determines a preferred direction which will
naturally be reflected in the solution. For this reason, it is of some interest to
decompose the motion into horizontal and vertical components. We write

where is the vertical component of velocity and is the horizontal
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component. The orientation of the unit bivector i in (4.3) is fixed by choosing
positive at some time. The horizontal and vertical coordinates of position

are similarly defined by

Equation (4.1) can be decomposed into components by separating scalar and
bivector parts after multiplying by The scalar part gives the equation

or

The bivector part yields

Since implies that we conclude that

and

In view of (4.3) and (4.4), we see that (4.5c) means that the entire trajectory
lies in a vertical plane.

The differential equations (4.5a, b) are not as simple as they look, because
they are coupled by the condition However, along a fairly
horizontal trajectory, the condition is satisfied, and the equations
can be approximated by

These equations can be solved exactly (Exercise 4.2).

Perturbation Theory

We turn now to a different method for getting approximate solutions to the
equation of motion. To estimate the deviation from a parabolic trajectory due
to drag, we write the displacement vector in the form
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and we impose the initial condition

so describes the deviation as a function of time. Differentiating, we
have

subject to the initial condition

Substituting (4.8a) into (4.1), we get an exact equation for the deviation

Over a time interval in which Equation (4.9) is well
approximated by

This equation can be integrated directly and exactly, but the result is un-
wieldy, so we will be satisfied with solutions which meet the condition

In fact, this relation is exact if and it is an excellent approximation
as long as Assuming (4.11), we integrate (4.10) to get

Integrating once more, we get

Substituting this result in (4.7a), we get

A graph of the trajectory can be constructed from a parabola by evaluating s
at a few points, as indicated in Figure 4.1. It should be noted that it is the
second term in solid brackets on the right side of (4.11) that distinguishes
quadratic drag from linear drag, for, if it is neglected, our approximation
amounts to assuming a linear drag force
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Our calculation of (4.14) illustrates a general method of approximation
called perturbation theory. The idea is to estimate the deviation (i.e. pertur-
bation) from a known (i.e. unperturbed) trajectory caused by a (usually small)
perturbing force. We have estimated the perturbation s(t) caused by quad-

ratic drag. Our re-
sult (4.14) is a first
order perturbative
approximation to
the exact trajectory.
We can get a (more
accurate) second
order approxima-
tion by regarding
(4.14) as the unper-
turbed trajectory
and calculating first
order deviations
from it. A more ef-
ficient way to get

the same result is to substitute the expression (4.12) for into the exact
Equation (4.9) to get an explicit expression for the time dependence of
which can be integrated directly.

Polygonal Approximation

Another general method commonly used in numerical computation of trajec-
tories is the method of polygonal approximation. The idea is that any curve
can be approximated with arbitrary accuracy by a sequence of joined line
segments (sides of a polygon if the curve is in a plane). We proceed as follows:
Choose a small interval of time and consider a succession of times
where k = 0, 1, 2, . . . . The velocities at successive times are determined by
the equation

where and This equation is obtained by regard-
ing the acceleration as constant in the small time interval The acceleration
is determined by the equation of motion (4.1), which gives

Because this equation happens to be independent of we can use it
at once to find each from the initial velocity by iterating (4.15). To find
points on the trajectory, we use the mean value theorem from differential
calculus, which implies that the chord of a small segment on a smooth curve is
parallel to the tangent at the segment’s midpoint, or, in our case,

Fig. 4.1.   Drag deviation from a parabolic trajectory. The deviation
vector s relates “simultaneous” positions on the two trajectories.
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We use this in the form

which, by iteration, enables us to find for even k from and the
Drawing a smooth curve through these points, we get the desired approxi-
mate trajectory, as illustrated in Figure 4.2.

Fig 4.2. Polygonal approximation.

Clearly, the perturbation method is superior to the polygonal method for
the present problem. It requires only one iteration to achieve a useful result
whereas, the polygonal method requires many iterations, because it must
reproduce the curvature of the parabola as well as the effect of the pertur-
bation. Also, the results of the perturbation method are easier to use and
interpret, because they are in analytical instead of graphical or tabular form,
and they provide explicit relations between perturbed and unperturbed
solutions.

3-4. Exercises

(4.1) Integrate the equation to get the exact solution

How long will it take for the drag to reduce the velocity to half the
initial velocity? How far will the particle travel in this time interval?

(4.2) Solve Equation (4.6a, b). (It is helpful to notice that  is
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an integrating factor.) Show that the horizontal displacement and
the vertical displacement are given by

Compare this result with Equation (4.14), and point out any advan-
tages of one result over the other.

(4.3) Check Figure 4.1 by evaluating the vertical “shortfall” at dis-
tinguished points on the figure. Give a qualitative argument for
believing that there is a time at which two particles would cross the
same horizontal plane if they could be launched along the two
trajectories simultaneously. Why can’t you determine this time from
the approximate expression (4.13) for s?

(4.4) Show that if then air resistance will have the effect of
hastening the return of a projectile to the horizontal plane from
which it is launched by a time interval

(Hint: First determine the time of flight without air resistance).

(4.5) Use the perturbation method to derive a general estimate for the
time of flight to a specified target.

(4.6) Use the perturbation method to find the maximum height of a
projectile trajectory. Compare with the exact result from Exercise
4.7.

(4.7) Equation (4.1) can be integrated by separation of variables when
First show that for an initial downward velocity the

equation can be put in the form

Integrate this to get

where

Integrate again to get the displacement
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To express the displacement as a function of velocity, substitute

into the equation of motion and integrate to get

Repeat the calculation for an initial upward velocity.
Determine the maximum height of the trajectory.

3-5. Fluid Resistance

In the two preceding sections, we integrated the equations of motion for a
particle subject to resistive forces linear and quadratic in the velocity. The
solutions are of little practical value unless we know the physical circum-
stances in which they apply and have some estimate of the numerical factors
involved. This section is devoted to such “physical considerations”, but we
deal with only one among many kinds of resistive forces.

An object moving through a fluid such as water or air is subject to a force
exerted by the fluid. This force can be resolved into a resistive force, some-
times called drag, directly opposing the motion and a component called lift,
orthogonal to the velocity of the object. The lift vanishes for objects which
are sufficiently small or symmetrical, so there are many problems in which the
drag component alone is significant.

The analysis of drag, not to mention lift, is a complex problem in fluid
dynamics which is even today under intensive study. Our aim in this section is
only to summarize some general results pertinent to particle mechanics. In
particular, we are interested in specific expressions for the drag along with a
rough idea of their physical basis and range of applicability.

Since the drag D always opposes motion through a fluid, it can be written in
the general form

where V is the ambient velocity. The ambient velocity of an object is its
velocity relative to the undisturbed fluid. If v is the velocity of the object and
u is the velocity of the fluid relative to some fixed object or frame, then the
ambient velocity is
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For example, v might be the velocity of a projectile relative to the earth while
u is the velocity of the wind.

The magnitude of the drag is commonly written in the standard
form

where is the mass density of the fluid, A is the cross-sectional area of the
object across the line of motion, is the ambient speed, and the drag
coefficient is a dimensionless quantity measuring the relative strength of
the drag. The value of depends on the size, shape and speed of the object
in relation to properties of the fluid. It is advantageous to express the ambient
speed as a dimensionless variable  called the Reynolds number, because the
functional dependence of on is the same for all fluids, notably, for the
two most common fluids on earth, water and air.

For a sphere with diameter 2a the Reynolds number is defined by the
expression

where is the viscosity and, as before, is the mass density of the fluid. The
viscosity, like the mass density, is determined empirically; it would take us
too far afield to explain how. For small the drag coefficient can easily be
determined from hydrodynamic theory, with the result

When this is substituted in (5.3) and (5.4) is used, the drag assumes the form

Fig. 5.1. Drag coefficient for a sphere at small Reynolds
number [Redrawn from Batchelor (1967)].

This famous result is known
as Stokes’ Law in honor of
the man who first derived it.
Figure 5.1 shows that
Stokes’ Law agrees well with
experiment for
Another condition for its
validity is that the sphere’s
radius a be large compared
with the mean free path of
molecules in the fluid, which
for air under standard condi-
tions is of order The
mean free path is the aver-
age distance a molecule
travels between collisions.
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Note that Stokes’ Law (5.6) is the linear drag law assumed in Section 3-3,
not the quadratic drag assumed in Section 3-4. From the data in Table 5.1 we
can estimate the range of size and speed for which Stokes’ Law applies. For a
sphere moving through air, the condition implies

For motion through water this number is reduced by a factor of 15. Thus,
Stokes’ Law applies only to quite small objects at low velocities, such as one
encounters in the sedimentation of silt in steams or pollutants in the atmos-
phere. This gives us some idea of the domain in which the linear resistive
force studied in Section 3-3 can be expected to lead to quantitatively accurate
results.

To see how velocities compare in magnitude to Reynolds numbers for
projectiles, consider a sphere of radius a = 1 cm moving through air. From
Table 5.1, we find

According to Figure 5.2, for velocities in this range the drag coefficient is
nearly constant with the value

The upper limit of is the speed of sound in air. It follows that for
spherical projectiles with speeds less than sound, the drag is fairly well
represented by
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Figure 5.2 shows that there is a pronounced decrease in the value of the drag
coefficient in the vicinity of the speed of sound. A well-struck golf ball takes
advantage of this. The dimples on a golf ball also reduce drag by disrupting
the boundary layer of air that tends to form on the balls surface. Besides this,
the trajectory of a golf ball will be affected by its spin which is usually large
enough to produce a significant lift.

Fig. 5.2. Experimental values for the drag coefficient of a sphere for
[Data from Batchelor (1967)].

For very high velocities the Mach number is more significant than the
Reynolds number. The Mach number is the ratio of the ambient speed to the
speed of sound. Figure 5.3 shows that, for velocities well above the speed of
sound, we have

so in this regime the drag (5.3) is again a quadratic function of the ambient
velocity.

A crude qualitative understanding of fluid drag can be achieved by regard-
ing it as a composite of two effects, viscous drag and pressure drag. Pure
viscous drag is described by Stokes’ Law (5.6). It is due to fluid friction as the
fluid flows smoothly over the surface of the object, so, as (5.6) shows, viscous
drag is proportional to the circumference of the sphere.

As the ambient velocity of the sphere increases, the pressure differential
between front and back increases as well, giving rise to pressure drag. Pure
pressure drag is characterized by (5.3) when is constant. The form of the
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Fig. 5.3. Ballistic range measurements of drag on spheres and cone-
cylinders as a function of Mach number (Charters and Thomas (1945),
Hodges (1957), Stevens (1950)). [from R. N. Cox and L. F. Crabtree,
Elements of Hypersonic Aerodynamics, Academic Press, N. Y. (1965), p.
42, with permission].

equation can be interpreted by noting that the rate of collision with molecules
in the fluid is proportional to while the average momentum transfer per
collision introduces another factor of V. Deviations from pressure drag arise
from viscous effects in the fluid that piles up in front of the moving object.

The data introduced above apply only to objects which are large compared
to the mean free path of molecules in the fluid. In Chapter 8 we will be
concerned with the effect of atmospheric drag on artificial satellites. The
dimensions of such a satellite are small compared with the mean free path of
molecules in the outer atmosphere, (which at 300 km above the surface of the
earth is about 10 km.) In this case fluid mechanics does not apply, and the
collisions of individual molecules with the satellite can be regarded as inde-
pendent of one another. The result is pure pressure drag with

For nonspherical artificial satellites the average of the lift force over changing
orientations will tend to be zero, and an average drag can be employed, but
the result will be subject to statistical uncertainties that render a refined
dynamical analysis futile. The average drag will differ from that given by (5.3)
only in the interpretation of A as the average cross-sectional area. The
cross-sectional area of any convex body averaged over all orientations can be
shown to be equal to one-fourth its surface area. A “convex” body is one
whose surface intersects a straight line no more than twice.
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Section 3-5.

(5.1) Find the terminal velocity of a man m = 73 kg falling through the
atmosphere for two extreme cases:
(a) He spread-eagles, producing a cross-sectional area of  in

the direction of motion.
(b) He tucks to produce a cross-sectional area of only
What terminal velocity do you get for the first case using Stokes’
Law?

(5.2) What parachute diameter is required to reduce the terminal velocity
of a parachutist (m = 73 kg) to

(5.3) What is the terminal velocity of a raindrop with (typical) radius of
What result would you get from Stokes’ Law?

(5.4) A mortar has a maximum range of 2000 m at sea level. What would
be the maximum range in the absence of air resistance?

(5.5) Two iron balls of weights 1 kg and 100 kg are dropped simul-
taneously and fall through a distance 100 m at sea level. Which ball
hits the ground first and how far behind does the other lag? What is
the difference between arrival times of the two balls?

3-6. Constant Magnetic Field

The classical equation of motion for a particle with charge q in a magnetic
field B is

Let us lump the constants together by writing

so Equation (6.1) takes the form

It is convenient to introduce the bivector dual to by writing

Then, since

Equation (6.3) can be written in the alternative form
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Without solving this equation, we can conclude from it that is a constant
of the motion by an argument already made in Section 2-7. Since the
magnitude of v is constant, the solution of (6.5) is a rotating velocity vector.
The solution will show that  can be regarded as the angular velocity of this
rotation.

Equation (6.5) can be solved by generalizing the method of integrating
factors used in Section 3-3. This is made evident by writing (6.5) in the form

Suppose we can find a function with the property that

Since the reverse of (6.7a) is the equation

Now multiplying (6.6) on the left by R and on the right by R† and using (6.7a,
b) we put it in the form

Thus we see that R and R† are integrating factors for (6.6). Two integrating
factors instead of one are needed, because does not commute with v. We
say that R is a left integrating factor while R† is a right integrating factor for the
equation.

Our method of integrating factors has replaced the problem of solving the
equation for v by the problem of solving the differential equation (6.7a) for
the integrating factor. This is a significant simplification when  is constant,
for then (6.7a) will be recognized as the derivative of the exponential function

It follows that

Moreover,

and

With the initial conditions (6.10) for the integrating factors, Equation (6.8)
integrates immediately to

and, using (6.11) to solve for v, we get
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By squaring both sides of this equation, it is readily checked that the solution
has the property so the magnitude of v is constant, as we had
anticipated.

We can combine the two exponential factors in (6.12) into a single term by
decomposing into components that commute or anticommute with Let

be the component of parallel to the magnetic field while is the
component perpendicular to the magnetic field, as indicated in Figure 6.1.

Algebraically, the decomposition of v at
any time t is expressed by the equations

where

or, alternatively

Fig. 6.1.

Using (6.14a, b) and the series definition of the exponential function, it is
readily established that

Now, with (6.15a, b) and (6.11), we can put (6.12) in the form

Here we see that is fixed while  rotates through an angle
in time t; so the resultant velocity vector v sweeps out a portion of a cone,

as indicated in Figure 6.1.
We find the particle trajectory by substituting into (6.16) and in-

tegrating directly, with the result

The form of the solution can be simplified by an appropriate choice of origin.
Introducing the variable

the solution can be cast in the equivalent forms
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This is a parametric equation for a helix with radius

and pitch

Adopting the angle of rotation

as parameter, and writing Equation (6.18) can be put in the “stan-
dard form” for a helix

with it understood that The helix is said to be right-handed if b > 0
and left-handed if b < 0. (See Figure 6.2a. b).

Fig. 6.2a. Righthanded Helix. Fig. 62b. Lefthanded Helix.

The trajectory (6.18) reduces to a circle when The radius vector r
rotates with an angular speed called the cyclotron fre-
quency. According to (6.2), has the same direction as the magnetic field B
when the charge q is negative and the
opposite direction when the charge is
positive. As shown in Figure 6.3. the
circular motion of a negative charge is
right-handed relative to B while that of
a positive charge is left-handed.

The Effect of Linear Drag

Now let us see how the motion just
considered is modified by a linear resistive force. We seek solutions of the
equation

Fig. 6.3.



Uniform Electric and Magnetic Fields                                              155

where is a positive constant. With all quantities defined as before, by
introducing appropriate integrating factors, we put (6.21) in the form

Integrating and solving for we get

Writing and integrating once more, we find that the equation for the
trajectory has the same form as (6.22), specifically,

where

Equation (6.23) describes a particle spiraling to rest at r = 0. The displace-
ment in time is given by

The trajectory lies in a plane if In this case, (6.22) and (6.23) imply
the following simple relation between velocity and radius vector:

The angle between v and r is therefore given by

Since this angle is the same at all points of the trajectory, the curve is
commonly called an equiangular spiral.

The spiral tracks of electrons in a bubble chamber shown in Figure 6.4 are
not accurately described as equiangular, because the retarding force is not
linear in the velocity and velocities of interest are high enough for relativistic
effects to be significant.

3-7. Uniform Electric and Magnetic Fields

In this section we develop a general method for solving the equation of
motion of a charged particle in uniform electric and magnetic fields. The
equation of motion is
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Fig. 6.4. An electron loses kinetic energy by emitting a photon (light quantum), as shown by
the sudden increase in the curvature of its trajectory (track) in a propane bubble chamber. The
emitted photon creates an electron-position pair. The curvature of an electron trajectory in a
magnetic field perpendicular to the photograph increases as the electron loses energy by
collisions. Since electrons and positrons have the same mass but opposite charges, their trajec-
tories in a magnetic field curve in opposite directions. The smaller curvature of the positron was
created with more kinetic energy than the electron.

As before, we suppress the constants by writing
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so the equation of motion takes the form

For uniform fields, and are functions of time but not of
position.

We aim to solve Equation (7.3) by the method of integrating factors. As in
the preceding section, we introduce an integrating factor  defined by
the equation

and the initial condition

This enables us to put Equation (7.3) in the form

Integrating and solving for v, we get the general solution

or, with the arguments made explicit

After this has been used to evaluate v as an explicit function of t, the
trajectory is found directly by integrating

Now let us examine some specific solutions. For constant we know that
(7.4) has the solution

In this case, we can simplify the integral in (7.5) with a procedure we have
used before. We decompose g into components parallel and perpendicular to

which have the algebraic properties

whence,
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So the integral can be put in the form

ready to be integrated when the functional form of g is specified.
When g is constant, the integral (7.8) has the specific value

Inserting this into (7.5) and using (7.7), we get the velocity in the form

where the coefficients are given by

Since a lies in the   – plane and b is orthogonal to that plane, Equation (7.9)
is a parametric equation for a helix with radius

By integrating (7.9) we find the trajectory

where an appropriate choice of origin has been made by writing

Equation (7.11) is best inter-
preted by regarding it as a
composite of two motions.
First, a parabolic motion of
the guiding center described
by the equation

Second a uniform circular
motion about the guiding
center described by

Fig. 7.1. Trajectory of a charged particle in uniform
electric and magnetic fields.

The composite motion can be visualized as the motion of a point
on a spinning disk traversing a parabola with its axis aligned along the
vertical, as illustrated in Figure 7.1. Corresponding directions of electric and
magnetic fields are shown in Figure 7.2.
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Motion about the guiding center av-
erages to zero over a time period of

so motion of
the guiding center can be regarded as
an average motion of the particle. Ac-
cordingly, the velocity of the guiding
center is called the drift velocity of the
particle.

Motion in Orthogonal Electric and
Magnetic Fields

Fig. 7.2.
The special case of motion in orthog-

onal electric and magnetic
fields is of particular inter-
est. From (7.10b) we see
that if then b = 0,
so according to (7.11) or
(7.12), the parabolic path of
the guiding center reduces to
a straight line. If, in addi-
tion, the initial velocity is
orthogonal to the magnetic
field, then, by (7.10c) and
(7.12a), the drift velocity is

Surprisingly, the drift vel-
ocity in this case is  orthog-
onal to the electric as well as
the magnetic field. The par-
ticle trajectory can be vis-
ualized as the path of a point
on a disk spinning with an-
gular speed

as it moves in the plane
of the disk with constant
speed

The Greeks long
ago gave the name trochoid
(trochas = wheel) to curves

Fig. 7.3. Trajectories of a charged particle in orthogonal       of this kind. The trochoids
electric and magnetic fields.  fall into three classes charac-
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terized by the conditions
with respective curves illustrated by Figures 7.3a, b, c. As the figures suggest,
the three curves can also be interpreted as the paths of particles rigidly
attached to a wheel which is rolling without slipping, the three conditions
being that the particle is attached on the rim, inside the rim or outside the
rim, respectively.

According to (7.11) or (7.12), the particle motion coincides with the
guiding center motion when a = 0, which, according to (7.10a), occurs when

The trajectory is a straight line if This suggests a practical way to
construct a velocity filter for charged particles. Only a particle which satisfies
the condition (7.14) will continue undeflected along its initial line of motion.
The E and B fields can be adjusted to select any velocity in a wide range. The
selection is independent of the sign of the charge or the mass of the particle.

The Hall Effect

The above results can be used to analyze the effect of an external magnetic
field on an electric current in a conductor. Suppose we have a conductor with
a current I immersed in a uniform magnetic field B. As Figure 7.4 shows,
whether the current is due to a flow of positive charges or negative charges,
the charge carriers in both cases will be deflected to the right by the magnetic
force Consequently, carriers will accumulate on the right
wall of the conductor until they produce an electric field sufficient to cancel
the magnetic force exactly. The condition (7.14) for a velocity filter has then
been met and charges flow undeflected in the conductor with speed

The electric field is manifested by a readily
measured potential difference

between the right and left sides of the conductor.
The appearance of such a transverse potential
difference induced in a conductor by a magnetic
field is known as the Hall Effect.

The sign of the Hall potential indicates the
sign of the charge on the carriers. The magnitude
of permits an estimate of the density N of
charge carriers. The current density is given by

Fig. 7.4. The Hall effect.
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where A is the cross-sectional area of the conductor and q is the unit of
charge. Hence,

The quantities on the right are known or readily measured. The Hall effect
has been a valuable aid in the study of semiconductors, such as silicon and
germanium, in which N is small compared with its value in metals, for which
the Hall potential is correspondingly large and easily measured.

We can estimate the magnitude of the Hall potential by taking resistance
into account. Suppose, as expected from Ohm’s law, that the resistive force
exerted by the medium on the charge carriers is linear. The equation of
motion (7.3) is then generalized to

The condition implies that so for terminal velocity
Equation (7.15) gives

or

From this we can read off immediately that the direction of v differs from that
of g by the angle In the case of the Hall effect, the electric
field E has a component collinear with v and component  orthogonal to
it, so

The condition that components orthogonal to v cancel in (7.16) entails

whence

By substituting this back into (7.16), it can be verified that  in
accordance with Ohm’s law. Equation (7.17) can be used for experimental
determination of the resistive coefficient ,  and for some metals (eg. Bismuth)
the resistance is found to depend strongly on the magnetic field and its
orientation of crystal axes in the conductor, revealing another valuable
application of the Hall effect.
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Cyclotron Resonance

As another application of our general method, let us study the motion of a
charged particle in a constant magnetic field subject to a periodic electric field

as well. To find the velocity of the particle, we substitute

into (7.8) and evaluate the integrals

where we have written the “cyclotron frequency” of the magnetic field in the
form for the convenience of operating with the unit bivector i.
With the integral evaluated, Equation (7.5) gives us

which simplifies to

This can be integrated to get the trajectory, but the feature of greatest interest
is apparent right here, namely the fact that the first term on the right side of
(7.19) is infinite when This implies the existence of a resonance when
the “driving frequency” is in the neighborhood of the cyclotron frequency

As we shall see later, dissipative effects must be taken into account near
resonance, with the consequence that the infinity in (7.19) is averted, but the
velocity v has a maximum magnitude at resonance. At the same time the
terms depending on in (7.19) are “damped out”. The chief significance of
all this is that at resonance the particle extracts energy from the driving
electric field at a maximum rate, energy which is lost in collisions or by
reradiation.
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These considerations help explain attenuation of radio waves in the iono-
sphere. The driving field (7.18) can be attributed to a plane polarized
electromagnetic wave with frequency For free electrons in the iono-
sphere the earth’s magnetic field strength of gauss yields a cyclotron
frequency of magnitude So we expect resonant
absorption of electromagnetic waves with frequency near
The ionosphere does indeed exhibit a marked absorption of radio waves in
that frequency range.

The same considerations are important for describing the propagation of
electromagnetic waves in the vicinity of stars and through plasmas generated
in the laboratory.

We have not considered problems with time-varying magnetic fields, but it
should be pointed out that, for uniform magnetic fields with fixed direction
but time-dependent magnitude, the solution of (7.4) has the general form

which can be evaluated by straightforward integration. Solutions of (7.4)
when the direction of is time-dependent will be obtained later.

3-7. Exercises

(7..1) Solve Equation (7.3) for constant fields by the method of undeter-
mined coefficients. Since the equation is linear, we expect the
solution to be expressible as a sum of solutions for the special cases
g = 0 and which we found earlier. Therefore we expect a
solution of the form

Verify this and evaluate the coefficients by substitution in (7.3) and
imposition of initial conditions.

(7.2) A charged particle in constant, orthogonal electric and magnetic
fields is at rest at the origin at time t = 0. Determine the time and
place of its next “rest stop”.

(7.3) Show that the parametric equation (7.11) for the trajectory in
constant fields can be put in the form
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showing the deviation from the parabolic trajectory obtained when
Evaluate the deviation to fourth order in

(7.4) Use the method of integrating factors to solve the equation of
motion

for a charged particle in constant electric and magnetic fields subject
to a linear resistive force. Verify that the trajectory is given by

where the parallel and perpendicular components of the
vectors are defined as in Equation (7.7), and r is related to the
position x by

Draw a rough sketch and describe the solution, taking the last three
terms to describe the guiding center.

3-8. Linear Binding Force

The binding of an electron to an atom or of an atom to a molecule, these are
examples of the ubiquitous and general phenomenon of binding. To under-
stand this phenomenon, we need an equally general mathematical theory of
binding forces and the motion of bound particles.

A binding force is understood to be a force which tends to confine a particle
to some finite region of space. The force function of a bound particle must be
a function of position, and we can develop a theory of binding without
considering velocity-dependent forces. Let us determine some general proper-
ties of binding forces. A point is said to be an equilibrium point of a force

if

The equilibrium point is said to be isolated if there is some neighborhood of
which does not contain any other equilibrium points. Let us focus attention

on such a point and such a neighborhood.
Near an equilibrium point x0 a simple approximation to any force function

is obtained by using the Taylor expansion (as explained in Section 2-8)

The equation of motion for a bound particle is then given in terms of
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the displacement from equilibrium by

where and The force function L(r) is
linear, that is, it has the property

where and are constant scalars. The force function Q(r) is a quadratic
vector function of r. Whatever the exact form of f(x), if there is a
(sufficiently small) neighborhood of defined roughly by the condition

in which the equation

provides an accurate description of particle motion. The particle will remain
in a neighborhood of the equilibrium point if which is to say that the
particle’s acceleration must be directed toward the interior of the neighbor-
hood. This can be expressed as a binding property of the force by using (8.5);
thus,

with equality only if r = 0. This relation is also called a stability condition,
because it is a necessary condition for the particle to remain bound.

A particle subject to a linear binding force L(r) is called a harmonic
oscillator, because its motion is similar to vibrations in musical instruments.
Indeed, if a plucked violin string is represented as a system of particles, the
harmonic oscillator provides a good description of each particle. The quad-
ratic force Q(r) and higher order terms in the Taylor expansion of the force
are called anharmonic perturbations, and when they are included in its
description, the particle is said to be an anharmonic oscillator. The most
significant difference between harmonic and anharmonic oscillations is that
the former obey a linear superposition principle; specifically, if and

are solutions of the equation of motion (8.5), then, as a conse-
quence of (8.4), so is the “linear superposition” This
superposition principle makes the analysis of harmonic motions easy, and the
lack of any such general principle makes the analysis of anharmonic motions
difficult. Anharmonic motions are most easily analyzed by perturbation
theory as small deviations from harmonic motion.

The Isotropic Oscillator

A particle subject to an isotropic binding force is called an isotropic oscillator.
In this case L(r) has the simple form
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where k is a constant positive scalar called the force constant. Equation (8.7)
will be recognized as Hooke’s Law, but the term “Hooke’s Law” is commonly
used to refer to any linear binding force. Obviously, Hooke’s Law is so
ubiquitous in physics, because any binding force can be approximated by a
linear force under some conditions. By the same token, it is evident that
Hooke’s Law is not a fundamental force law, but only a useful approximation.

Let us now examine the motion of an isotropic oscillator. Its equation of
motion can be put in the form

Our experience with exponential functions suggests that this equation might
have a solution of the form

Inserting this trial solution into (8.8) and carrying out the differentiation, we
find that the equation of motion is satisfied if and only if

This algebraic equation is called the characteristic equation of (8.8); it has the
roots

where and

To each of these roots there corresponds a distinct solution of (8.8), namely

and

The reader will recognize that we are freely using properties of the exponen-
tial function determined in Section 2-5. Notice that these equations imply that
i is a bivector satisfying

because  and must all be vectors. This tells us the significance of the
“imaginary roots” of the characteristic equation. The “imaginary” i is the unit
bivector for a plane in which the solution vectors lie at all times.

According to the superposition principle, we can add solutions and to
get a solution.
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Alternatively, this solution can be written in the form

where

The two constant vectors a0 and b0 can have any values, so we know that
(8.12) is the general solution of (8.8); thus, the orbit of any harmonic
oscillator can be described by an equation of the form (8.13) or (8.12). Note
that if either or then and the bivector i in (8.12) is
not uniquely determined by the condition (8.11); however, any unit bivector i
satisfying (8.10) will do.

Equation (8.13) has the advantage of being directly related to initial
conditions, for the vector coefficients are related to the initial position and
velocity by

Equation (8.13) represents the motion as a superposition of independent
simple harmonic motions along the lines determined by and The resultant
motion is elliptical, and of course, it reduces to one dimensional simple har-
monic motion if or or, more generally, if
This may be more obvious if (8.13) is recast in the standard form (see
Exercise 8.1):

where and

The scalar constant in (8.16b) can be elim-
inated, if desired, by writing and
shift the zero of time by It will be recog-
nized that (8.16a) is a parametric equation for
an ellipse with semi-major axis a and semi-
minor axis b (Figure 8.1).

The elliptical motion of an isotropic oscil-
lator is periodic in time. A particle motion is
said to be periodic if its state variables r and
have exactly the same values at any two times

Fig. 8.1. Orbit of an isotropic har-
monic oscillator.

separated by a definite time interval T called the period of the motion. For the
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elliptical motion (8.16), the period T is related to the natural frequency by

The motion during a single period or cycle is called an oscillation or, if it is
one dimensional, a vibration. The constant in (8.16b) is referred to as the
phase of an oscillation beginning at t = 0. The maximum displacement from
equilibrium during an oscillation is called the amplitude of the oscillator. For
the elliptical motion (8.16), the amplitude is

Equation (8.12) represents the ellip-
tical motion as a superposition of two
uniform circular motions (8.10a, b)
with opposite senses. This is illustrated
in Figure 8.2 for As the figure
suggests, this relation provides a prac-
tical means for constructing an ellipse
from two circles.

Elliptical motion can also be repre-
sented as a superposition of two circu-
lar motions with the same amplitude,
frequency and phase. As shown in Fig-
ure 8.3, the circular motions are in two
distinct planes intersecting along the
major axis of the resultant ellipse. This relation is described by the equation

where and are unit bivectors for the two planes. It can be shown (Exercise
8.3) that Equations (8.18) and (8.16a) are equivalent if

We will encounter
other significant forms
for the equation of an
ellipse later on.

The Anisotropic
Oscillator

Let us turn now to a
brief consideration of
the anisotropic oscil-
lator. An anisotropic
linear binding force

Fig. 8.2. Elliptical motion as a superpo-
sition of coplanar circular motions.

Fig. 8.3. Elliptical motion as a superposition of noncoplanar
circular motions with equal amplitudes.
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L(r) is characterized by the existence of three orthogonal principal vectors
with the properties

where and are positive force constants describing the strength of the
binding force along the three principal directions. Linear functions with the
property (8.20) will be studied systematically in Chapter 5. Our problem,
now, is to solve the equation of motion (8.5) subject to (8.20). The superpo-
sition principle enables us to decompose the general motion into independent
one dimensional motions along the three principal directions; for if is the
component of displacement proportional to then (8.5), (8.20) and (8.4)
imply

but the are orthogonal, so each component must independently satisfy the
equation

The solutions to this equation must have the same general form as those for
the isotropic oscillator restricted to one dimensional motion. Hence, the
general solution for the anisotropic oscillator is given by

with the three natural frequencies given by

The motion described by (8.21a) will not be periodic and along a closed curve
unless the ratios and are rational numbers. In general, the orbit
will not lie in a plane, but it will lie within an ellipsoid centered at the
equilibrium point with principal axes If then the orbit will
lie in the and it is commonly known as a Lissajous figure.

An atom in a crystalline solid is typically subject to an anisotropic binding
force determined by the structure of the solid. The modeling of such an atom
as an anisotropic oscillator is one of the basic theoretical techniques of solid
state physics. The amplitude of such an oscillator is of the order of atomic
dimensions while the vibrational frequencies in solids range from
to It has been said that quantum mechanics
is needed to describe interactions at the atomic level. Quantum mechanics is,
indeed, required to calculate force constants and vibrational frequencies.
However, given force constants determined either experimentally or theor-
etically, much can be inferred from the model of an atom as a classical
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oscillator. The oscillator model is so useful because, as we have seen, it does
not commit us to definite assumptions about the “true nature” of the binding
force.

Energy Conservation

When an oscillator is used as an atomic or molecular model, the actual orbit
of the oscillator is only of peripheral interest. Considering the small ampli-
tudes and high frequencies of atomic vibrations, there is evidently no hope of
directly observing the orbits. Only general features of the motion are suscep-
tible to measurement, namely, the frequencies and amplitudes of oscillation.
Of course, the amplitude cannot be measured directly, but measurements of a
closely related quantity, the energy, are possible. To determine the energy of
an isotropic oscillator, we multiply (8.8) by and observe that

Hence, the quantity

is a constant of the motion, that is, a function of the state variables r and
which is independent of time. The quantity E is called the (total) energy of the
oscillator, and Equation (8.22) expresses it as a sum of kinetic and potential
energies respectively. The energy is related to the amplitude by substituting
the solution (8.16) into (8.22), with the result

Of course, energy is an important state variable even for a macroscopic
oscillator, but for an atomic oscillator it is indispensible.

The Damped Isotropic Oscillator

A physical system which can be modeled as an oscillator is never isolated
from other interactions besides the binding force. Invariably there are inter-
actions which resist the motion of the oscillator. Such interactions can be
accounted for, at least qualitatively, by introducing a linear resistive force –

so that the equation for the motion of an isotropic oscillator becomes

where as before. The resistive force is also called a damping force,
because it reduces the amplitude of oscillation, or a dissipative force, because
it dissipates the energy of the oscillator.

To solve Equation (8.24), we substitute into it the trial solution



Linear Binding Force 171

which worked before. After carrying out the differentiations, we find that the
solution works if is a root of the characteristic equation

Thus,

It is readily verified that a linear superposition of solutions to (8.24) is again a
solution. Hence, we get the general solution by adding solutions correspond-
ing to the two roots of (8.25), namely.

Actually, we have three types of solutions corresponding to positive, negative
and zero values of the quantity Let us consider each type separately.

(a) Light damping is defined by the condition In this case we
write

for we know that the unit imaginary must be a bivector i specifying the plane
of motion. The solution, therefore, has the form

This can be interpreted as an ellipse with decaying amplitude. The exponen-
tial factor shows that in time the amplitude will be damped by the
significant factor . If then so the amplitude of
the ellipse will be nearly constant during single period, and many periods will
pass before its amplitude has been damped significantly.

We have noted that, in general, the energy of an oscillator is a more
significant state variable than the amplitude. Using the solution (8.28b) in the
form  we find that the energy E defined by (8.22) can be written in
the form

The factor in parenthesis is bounded and oscillatory, with a constant value
when averaged over a period of the oscillator. Therefore, the average de-
crease in energy with time is determined by the exponential factor
where

is referred to as the lifetime of the oscillator’s initial state of motion.
(b) Heavy damping is defined by the condition In this case,
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is a positive scalar and the solution (8.26) assumes the form

The first term decays more rapidly than the second one, and the orbit does
not encircle the equilibrium point as it does in the case of light damping.

(c) Critical damping is defined by the condition For this case, the
characteristic equation corresponding to our trial solution has only one
distinct root, so we get the solution which cannot be the most
general solution, because it contains only one of the two required constant
vectors. However, we can find the general solution by allowing the coefficient
to be a function of time. (This is called the method of variable coefficients.)
After substituting into the equation of motion (8.24) with

we find that our trial solution works if so  where
and b are constants.
Thus we arrive at the general solution

The condition for critical damping is unlikely to be met in naturally occurring
systems, but it is built into certain detection devices such as the galvanometer.
A detection device may consist of a damped oscillator which is displaced from
its equilibrium position by an impulsive force (signal). One wants it to have
sufficient damping to return to the equilibrium position without oscillation so
it will be ready to respond to another signal as soon as possible. On the other
hand, for the sake of sensitivity, one wants it to respond significantly to weak
impulses, which requires that the damping be as light as possible. The
maximal compromise between these two conflicting criteria is the condition
for critical damping.

3-8. Exercises

(8.1) For an oscillator with orbit

determine the semi-major axis a and the semi-minor axis b from the
initial conditions
Specifically, show that, for
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while is determined by

(8.2) Ancient properties of the ellipse: On the ellipse
the point is said to be conjugate to the

point Prove that the following holds for any pair of conjugate
points.
(a) The tangent to the ellipse at r is parallel to the conjugate radius

s (Figure 8.1).
(b) The first theorem of Appolonius:

(c) The second theorem of Appolonius:

that is, the parallelograms determined by conjugate radii all
have the same area.

Interpret these theorems of Appolonius as conservation laws for an
oscillator (see Section 3.10).

(8.3) Establish the equivalence of Equations (8.18) and (8.16a).Show that
planes of circular motion are determined from a given ellipse by the
equations

where the eccentricity is determined by the equation
Show that the dihedral angle α  between the planes is determined by

(8.4) Show that the effect of a constant force on a harmonic oscillator is
equivalent to the displacement of equilibrium point of the oscillator.
Use this to find a parametric equation for the orbit of an isotropic
oscillator in a constant gravitational field.

(8.5) Find a parametric equation for the orbit of a charged isotropic
oscillator in a uniform magnetic field, as characterized by the
equation

(Suggestion: Write where and separate differ-
ential equations for x and z.)

(8.6) Show that the general solution to the equation

for both positive and negative values of k, can be put in the form
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where and i is a unit bivector. Determine the time
dependence of scalars and for the two cases.

Note that is a parametric equation for
an ellipse if is held constant or a hyperbola if is held constant.
Express the major axis a and the minor axis b of the ellipse in terms
of c and For given a and determine the directance from the
origin to each asymptote of the hyperbola.

Every point in the i-plane is designated by unique
values of and in the ranges The
parameters are called elliptical coordinates for the plane.

(8.7) Evaluate constants and in Equation (8.30b) in terms of initial
conditions and sketch a representative trajectory.

3-9. Forced Oscillations

In this section we study the response of a bound particle to a periodic force.
We concentrate on the very important case of a bound charge driven by an
electromagnetic plane wave. But our results are quite characteristic of driven
oscillatory systems in general. The properties of electromagnetic waves which
we use in this section will be established in the references.

For a charged isotropic oscillator in an “external” electromagnetic field, we
have the equation of motion

If the external field is an electromagnetic plane wave, then so

Hence, for velocities small compared to the speed of light, the magnetic force
is negligible compared to the electric force. At any point r in space, the
electric field E of a circularly polarized plane wave is a rotating vector of the
form

Here, is a constant vector and is the amplitude of the wave; the
(circular) frequency of the wave is the wavelength is

the plane of the rotating vector E is perpendicular to the direction of
the propagating wave, and it is specified by the unit bivector For

Equation (9.2) describes a left circularly polarized plane wave; (for
it describes a right circularly polarized wave). We are most interested

in applying (9.2) to a region of atomic or molecular dimensions; such a region
is small compared to the wavelength of visible light, in which case
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Furthermore, we shall see that the motion of a driven oscillator
tends to lie in the plane For these reasons, it is an acceptible
approximation, besides being a considerable mathematical simplification, to
neglect any effect of the factor in (9.2) on oscillator motion. Thus, our
equation of motion (9.1) assumes the specific form

where
To solve (9.3), we try a solution of the form  and, after carrying out

the differentiation, find that

This equation will hold for all values of t if and only if The equation
also determines A uniquely, whence

is a particular solution of (9.3). We get the general solution with two arbitrary
constants by adding to the particular solution the solution of the homo-
geneous equation thus,

The last term in this equation describes the displacement of the oscillator due
to the driving force exerted by the electromagnetic wave. It is a rotating
vector in the plane. Its amplitude is infinite when the driving frequency

of the wave matches the natural frequency of the oscillator, a condition
called resonance. As usual, an “unphysical” infinity such as this points to a
deficiency in our model of the interacting systems. At resonance it becomes
essential to take into account the omnipresent resistive forces which other-
wise might be negligible.

Forced Oscillator with Linear Resistance

We can improve our model of an electromagnetic wave interacting with a
bound charge by adding a linear resistive force. Thus, we consider the
equation of motion

This equation can be solved in the same way as (9.3). The solution can be
written as a sum of “transient” and “forced” displacements. The
transient displacement is a solution of the homogeneous equation
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determined by the initial conditions of the oscillator. We have seen that the
amplitude of this solution decreases with a relaxation time so eventually
it will be negligible compared to the steady state displacement supported by
the continually applied driving force.

The forced displacement is the particular solution of (9.4) determined
entirely by the driving force. Ignoring the transient solution, we write
and we insert the trial solution into (9.4), with the result

Solving for r, we put the solution in the form

with vector amplitude

and phase angle

where accounts for the full range of the parameter
The solution (9.5) shows that r is a rotating vector lagging behind the

driving force qE by the phase angle (Figure 9.1). Let us examine the
limiting cases in the range of driving frequencies.

(a) Low frequencies (A scale distinguish-
ing large from small is determined by the ratio
Equation (9.5c) gives tan and the solution
reduces to

This shows that resistance is not important in slowly
driven motion. A gradually varying force gives the
oscillator time to respond and follow exactly in phase

(b) High frequencies Then tan and

Thus, the response to a rapidly varying force lags behind the force by the
maximum phase angle and it is weaker in amplitude than the response
to a slowly varying force.

(c) Resonance Then tan and

Fig. 9.1. Phase angle
between the driving field
E and the position re-
sponse r.
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Thus, the response at resonance is orthogonal to the driving force, and it is
stronger than the low frequency response if and only if

The squared amplitude
and the phase angle are graphed
in Figure 9.2. As the graph shows,
maximum amplitude is not attained
at the resonant frequency , but
rather at a resonant amplitude fre-
quency defined by the condition

Carrying out the differentiation on
(9.5b), we find that

To get a measure of the width of the
Fig. 9.2a. Squared amplitude near resonance. resonance, we locate the points   at

which has half its maximum value.
After some algebra, we find that

The resonance width is defined by

(9.8)

For light damping Equation (9.6) gives and (9.7) yields

Therefore, the resonance width is given by the simple expression

where, as was established in the last section, is the lifetime of the oscillator
state if the driving force is suddenly removed.

The inverse relation (9.9) between resonance width and lifetime is a very
general and important property of unstable bound states of motion. Equation
(9.5b) shows that the narrower the width, the higher the resonance peak
(which would be infinite if ). Thus long-lived bound states are character-
ized by narrow resonances with relatively high peaks.
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Energy storage and dissipation

The potential energy of the oscillator has the value , so
the graph of in Figure 9.2 is equivalent to a graph of potential energy. The
graph, therefore, describes the relative amount of energy stored in the
oscillator for the various driving frequencies, and is the frequency for
which the stored
energy is a maxi-
mum. However, as
we have noted be-
fore, the stored
energy of an atomic
system is not directly
observable. Rather,
it is the energy ab-
sorption as a func-
tion of frequency
that can be directly

Fig. 9.2b. Phase angle near resonance.
measured. We must
determine this function before our results can be fully interpreted.

An isotropic oscillator subject to an arbitrary external force f obeys the
equation of motion

Multiplying this by we get the equation

(9.10)

for the rate of energy change (Power) induced by external forces. For the case
we have been considering,

so

The first term on right describes the power loss due to dissipative forces. The
second term describes the power delivered by the electromagnetic field. For a
steady state of motion the energy is constant so the power lost must equal
power supplied, and from (9.11) we conclude that the power supply P is
determined by

Obviously, this relation applies to any driving force producing a steady state
of motion.
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Our analysis shows that a damped oscillator in a steady state of motion
dissipates energy continuously, but the motion persists because an equal
amount of energy is continuously supplied by the driving force. According to
(9.12), the rate at which energy is absorbed and dissipated is proportional to
the kinetic energy of the oscillator. For the motion described in (9.5), the
power absorbed as a function of driving frequency is specifically given by

This function has a maximum at the resonance frequency , as the reader
may verify. Thus, the maximum of the kinetic energy is at the frequency
for which the energy dissipated is a maximum, whereas, as we have seen, the
maximum of the potential energy is at the frequency for which the energy
stored is a maximum. The general shape of the graph for  is similar to
that for the potential energy, so it would be repetitious to discuss it.

Resonance occurs in every oscillatory system, so it is a phenomenon of
great practical importance. If the damping is weak, a small periodic force can
set up large oscillations. Consequently, it is undesirable to build a boat with a
natural pitching frequency which might be close to a likely frequency of
waves. The same basic principle was overlooked in the design of the Tacoma
Narrows Bridge, which was destroyed when it resonated with periodic wind
gusts. Undesirable resonances in machinery of all kinds can be avoided by
damping devices such as shock absorbers in cars.

The Faraday Effect

Undoubtedly the most common and important example of resonance occurs
in the interaction of light with matter. The mathematical theory of optical
properties of matter was pioneered by H. A. Lorentz. He supposed that the
atoms in a given material can be regarded as charged harmonic oscillators
when considering their interactions with light. He was then able to derive
mathematical expressions for the index of refraction of gases, dielectrics, and
metals as well as explain a number of other optical properties. Our model of a
damped oscillator is used in his theory of dielectrics. From the model it is.
clear that incident light with frequencies close to the natural frequencies of
the atoms will be strongly absorbed, while a dielectric will be transparent to
light with frequencies outside the range of its natural frequencies. A modern
introduction to the Lorentz electron theory is given by Feynman (1963, Vol.
II, Chap. 32).

As an application of the Lorentz electron theory, let us see how it explains
the Faraday effect. In 1845 Faraday showed that the polarization plane of light
passing through a glass rod will be rotated by an external magnetic field
directed along the line of propagation. This was the first experimental
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demonstration of a connection between magnetism and light. Today the
Faraday effect has important technological applications. And in astronomy, it
explains the polarization of light passing through the strong magnetic fields of
pulsars.

To understand the Faraday effect, we consider the effect of a constant
magnetic field B on an oscillator driven by a linearly polarized plane wave.
The equation of motion is

where for a plane wave propagating along the line of the magnetic
field. We know that it is unnecessary to include damping terms in order to
locate resonances, and we know that steady state solutions will be orthogonal
to the direction of wave propagation. Consequently, we can assume that

and rewrite (9.14) in the form

where is defined as before, the bivector i is defined by , and the
so-called Larmor frequency is defined by

Note that for an electron with charge q. The linearly polarized
plane wave can be expressed as a superposition of left and right circularly
polarized waves:

where is positive. Consequently, the steady state solution must have the
form

To determine the amplitudes , we substitute (9.18) into (9.15) and equate
coefficients with the same time dependence, with the result

This shows that there will be resonance when

For atomic systems in feasible laboratory fields it can be shown that
Consequently, for propagation in the direction of B, the left circularly

polarized component of the wave has a resonance at
the right circularly polarized component has a resonan
The locations of the resonances are interchanged if B is opposite to the
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direction of propagation. In summary, the effect of a magnetic field is to shift
the resonance frequencies of circularly polarized waves by opposite amounts

According to the Lorentz theory, the index of refraction for a material
depends on the locations of its resonances. For more details see Feynman
(1963). In the present case, the left and right circularly polarized waves
resonate at different frequencies, so they have different indices of refraction
and different phase velocities in the medium. The net effect is a rotation of
the polarization plane of the propagating wave.

3-9. Exercises

(9.1) Derive Equations (9.6) and (9.7). Show that the maximum kinetic
energy and power dissipation is attained at a driving frequency
equal to the natural frequency of an oscillator.

(9.2) Solve the damped isotropic oscillator with a sinusoidal driving force
Determine the phase angle and the average potential

energy (where the average is taken over a period of the driving
force). Compare with the solution (9.5a, b, c).

(9.3) Determine the velocity of a charged particle in a constant
magnetic field B and a plane electromagnetic wave with circular
frequency Use your result to explain the fact that electromag-
netic waves with linear frequencies in the neighborhood of the
“cyclotron frequency” are sharply attenuated
when passing through the ionosphere. (The charge to mass ratio of
an electron, The strength of the
Earth’s magnetic field in the ionosphere is given by

, where c is the speed of light.)

3-10. Conservative Forces and Constraints

So far we have studied only specific force laws of the simplest mathematical
form. To survey the broad range of force laws with physical significance, we
must procede systematically, classifying forces according to general prin-
ciples. The general approach which has proved to be most powerful is to
distinguish forces by identifying conservation laws or constants of motion
which they admit or disallow. In this section we examine conditions under
which energy conservation holds and some of its implications for single
particle motion.

We have already analyzed energy conservation and dissipation for an
isotropic oscillator. For a more general analysis of energy conservation, we
multiply the equation of motion by to get



182 Mechanics of a Single Particle

This is an equation for the change of the so-called kinetic energy due to
the action of the force f. If the kinetic energy is a constant of motion.
The magnetic force (q/c) v × B has this property, irrespective of how the
magnetic field B = B(x,t) depends on position and time. Since it never alters
the energy of a particle, the magnetic force is said to be a conservative force.

A more general concept of conservative force can be developed by con-
sidering a force f with the property

where According to the identity (2–8.16),

so, substitution of (10.2) into (10.1) yields

Hence, the quantity

is conserved if and only if We refer the quantity V as the potential
energy and to E as the (total) energy of the particle.

The force f is said to be conservative if the associated energy given by (10.4)
is conserved. There is no commonly accepted term to refer to the more
general case when for the good reason that (10.3) then gives little
useful information. However, it should be noted that the explicit time
dependence of the potential arises from the motion of “its source,”
namely, the particles “producing” the force We shall see later
on that the explicit time dependence often disappears when the potential is
expressed as a function of relative positions of interacting particles so the
conservative case is more general that it might appear at first. Now, from
(10.2) we can conclude that a conservative force f has the general form

but can otherwise have any functional dependence on v, x and
t. Let us refer to N as the normal component of the conservative force,
because the condition implies that it is always normal (or perpen-
dicular) to the particle path. The normal force changes the direction of
particle motion without affecting the speed (or kinetic energy). We have seen
that the magnetic force has this property. So do forces of constraint, as we
shall see below.
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It is customary to define a conservative force as one which can be put in the
form The more general definition (10.5) has been adopted here
to emphasize the most general conditions under which energy conservation
obtains. Of course, by the superposition principle both and N can be
regarded as distinct forces, and in specific applications they have independent
sources, so it is perfectly reasonable to consider them separately.

Work

It is instructive to put the energy conservation law in integral form, as distinct
from its differential form (10.3). Integrating from an initial state

to a final state we put (10.1) in the form

The integral here is referred to as the work done by force f on the particle in
the time interval t. Work can be regarded as a transfer of energy from one
physical system to another – in the present case, from the system producing
the force f to the particle. The work is positive if the particle gains energy and
negative if the particle loses energy.

Now, substituting (10.2) into (10.6) and using (2–8.34), we find that, for a
conservative force,

Thus, though kinetic and potential energies may differ, the total energy

has the same value for the initial and final states, as well as for all intermedi-
ate states. From (10.7a) it is evident that energy conservation depends only
on the potential difference and not on the absolute value of the
potential function V(x). Therefore, we are free to assign any convenient value
to the potential at one point, say , and the value at any other point x will
then be determined by an integral as in Equation (10.7a).

We have seen in Section 2-8 that an integral like the one in (10.7a) is
independent of the path between initial and final states. We can conclude,
therefore, that the work done by a conservative force is path-independent.
The notion of path independence involves the concept of a force field, which
is a more general concept of force than we started out with, so a few words
about force fields are in order.
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Conservative Fields of Force

The concept of a force field arises naturally from an examination of the
possible mathematical forms for the force function in the
equation of motion A velocity independent force function f(x, t) is a
time dependent vector field, and it can be characterized mathematically
without reference to any particle on which the force acts. We imagine, then,
that at each point x there is a time varying vector f(x, t), which is the force that
would be exerted on a particle if there were one at that point. This conception
of a  force field, obtained by separating the concept of force from the concept
of particle, has proved to be one of the most profound and fruitful ideas in
physics. Later on we shall discuss implications of attributing an independent
physical existence to force fields. For the time being, however, the concept of
force field can be regarded merely as a convenient mathematical abstraction.
It should be evident, now, that a conservative force is
actually a conservative force field, because its properties, such as path-
independence, relate values of the function at more than one point.

The path-independence of the energy conservation law is a major reason
for its importance. Thus, from (10.7a) we can deduce the change in speed of a
particle passing from x to without bothering to solve the equations of
motion to determine its path. On the other hand, since kinetic energy is
necessarily positive, the energy conservation law in the form (10.4) implies

from which we can conclude that a particle with energy E will
be confined to a region bounded by the surface  whatever its
trajectory. This shows that the path-independence is limited when the energy
is assigned a specific value. We will make good use of this fact in the next
chapter.

Though the energy is path-independent, the conservative force allows
only a limited selection of paths connecting given points. However, any path
consistent with energy conservation can be achieved in principle simply by
specifying an appropriate normal force N. Let us see how the problem of
finding such a force can be formulated mathematically.

Surface  Constraints

Suppose the particle is constrained to move on a surface determined by the
scalar equation

In a physical application, the equation of constraint (10.8) might describe the
surface of a solid body. The explicit time dependence of the equation then
allows for the possibility that the solid body may be moving. The body will
exert a force on a particle in contact with its surface. If the surface is
frictionless, the contact force N will be exerted along the direction of the
surface normal so we can write
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where the proportionality factor is a scalar function which can
be determined only by using the equation of motion.

If is the particle path on the surface, then differentiation of (10.8)
gives

or by virtue of (10.9),

The quantity is the rate at which the constraining force N does work on
the particle, and, according to (10.10) it vanishes if and only if
Therefore, the constraining force is conservative if and only if the surface of
constraint remains at rest. For this reason, it is appropriate to say that an
equation of the form determines a conservative constraint. The more
general time dependent equation (10.8) is said to determine a holonomic
constraint. A conservative constraint is therefore a time-independent holo-
nomic constraint.

Before completing our general discussion of constrained motion, let us put
some flesh on these abstractions by considering some examples.

EXAMPLE 1: Particle in a Constant Gravitation Field
As we shall verify below, the potential energy for a particle in constant
gravitational (force) field can be written

where

is the height of the particle above some arbitrarily chosen “ground level”.
Note that Equation (10.12) can be interpreted in two ways: either as an
equation for the height h as a function of position x, or as an equation for a
1-parameter family of horizontal planes, which are the “equipotential sur-
 faces” of the gravitational field. The gravitational force is obtained by
differentiating (10.11) with the help of (2–8.37); thus,

The energy conservation law (10.7a) now takes the specific form

This is equivalent to (2.18), which we found before only after determining the
general solution to the equation of motion.

In Section 3-2 we saw that a particle in a constant gravitational field follows
a parabolic trajectory, and if it is launched with a specific initial speed there
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are at most two such trajectories connecting a pair of given points. Let us
consider some alternative trajectories that result from adding holonomic
constraints.

EXAMPLE 2: Particle on a Stationary Plane Surface
A block placed on a fixed frictionless plane will be subject to the equation of
constraint

which is the equation for a plane with unit normal passing through a
given point y. If the block is regarded as a particle, its equation of motion is,
in accordance with (10.9),

Before we can solve this equation, we must determine the magnitude of the
force exerted by the plane. Since the plane is at rest, the normal n is constant,
and, according to (10.10), So, multiplying (10.15) by n, we find that

is given by

Using this to eliminate from (10.15), we get

Thus, the net force is merely the component of the gravitational force in the
plane. The general solution of (10.16) is a parabola in the plane, provided of
course, the initial velocity satisfies the condition of constraint
Since the constraint is conservative, the energy conservation law (10.13) still
applies.

EXAMPLE 3: Particle on a Moving Plane Surface
The equation of constraint (10.14) can be generalized to describe a rigidly
moving plane simply by allowing to be a given function describing
the motion. It can be further generalized to describe a plane rotating about an
axis through the point y by allowing the unit normal to be a function of time

Let us consider implications of the first generalization. The equa-
tion of constraint is

Differentiation implies

and
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Using this to solve the equation of motion (10.15) for we get

The equation of motion can therefore be written

This is the generalization of (10.16) for a moving plane. Integration of (10.17)
is trivial since is supposed to be a given function. Note that the orbit
is again a parabola if the acceleration ÿ is constant. However, (10.17) will fail
to apply if the plane moves in such a way as to “break contact” with the
particle.

EXAMPLE 4: Particle on a Stationary Spherical Surface
Now consider a particle constrained to move on the surface of a sphere of
radius a. If the sphere’s center is chosen as the origin, the equation of
constraint can be written in the form

or, in the form

The second form is a little more convenient because by (2–8.39) its gradient is
equal to the unit exterior normal to the sphere

The equation of motion is

Whence,

According to (10.10), Equation (10.18b) implies that Differentiating
we get or

This enables us to express  in the form

This can be reduced to a function of position alone by using energy conser-
vation. The result is obtained in terms of initial conditions by using (10.13) to
eliminate from (10.21); thus,
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Either (10.21) or (10.22) can be substituted into (10.19) to get a well-defined
equation of motion; however, the result looks complicated, and we shall find
more convenient ways to express it later on. In the meantime, we can draw
some significant conclusions directly from (10.22).

Equation (10.22) allows both positive and negative values for However,
if the particle is a small object on the surface of solid ball, only positive values
of are significant, because the force exerted by the ball must be outward. At
a point where the constraining force vanishes, so the particle is no
longer in contact with the surface. Therefore, from (10.22) we can conclude
that the particle will break contact with the surface at a height h above the
“equitorial plane” of the ball given by

In particular, if the particle starts from rest at the top of the ball, then

If the particle is constrained by the inside instead of the outside of the
spherical surface, then the constraining force must point inward so
A common example of this kind of constraint is a pendulum consisting of a
bob supported by a massless flexible string. On the other hand, for a pendu-
lum consisting of a bob supported by a massless rigid rod, the constraining
force may be either inward or outward, so can be either positive or negative.
Constraints of this kind, which do not allow the particle to leave the surface of
constraint, are called bilateral. Constraints which confine a particle to one
side of a surface are called unilateral. The same general equations can be
applied to both kinds of constraint, but, as we have seen, they must be
interpreted differently in each case.

Our analysis of spherical constraints, in particular the derivation and
application of (10.22), is readily generalized to handle constraints exerted by
any smooth surface. However, a complete generalization involves the differ-
ential geometry of surfaces, which is beyond the scope of this text.

Lagrange’s Equations for Constrained Motion

We are still faced with the problem of developing a systematic method for
solving the equations of motion subject to holonomic constraints. This prob-
lem was solved by Lagrange. His method employs constraints expressed in
parametric form rather than the nonparametric form (10.8).

The parametric equation for a surface has the form  where
and are independent scalar parameters (or coordinates), and the explicit
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t dependence allows for the possibility that the surface is moving. For fixed
and variable , the parametric equation describes a “coordinate curve” on
the surface with a tangent vector at each point defined by

where denotes the derivative with respect to . Similarly, the variable
determines a tangent vector at each point on the surface, as shown in Figure
10.1. Both cases are covered by the “free index notation”

N is normal to the surface of constraint, we have

Therefore, multiplication of (10.24) by the gives us independent compo-
nents of the equation of motion on the surface.

These equations can be expressed as a set of differential equations for the
coordinates alone. This is merely an exercise using the chain rule of

differentiation.
The trajectory of the particle on the surface of constraint is described by the

parametric equation

Therefore, its velocity is given by the parametric equation

where the sum is over all values of Hence

and

because for all values of and We can use these facts to rewrite
the left side of (10.26); thus,

Fig. 10.1 Coordinate curves and tangent vectors on a sur-
face of constraint.

where
The equation of motion

has the form

where N is the force of
constraint and F is some
given external force. Since



190 Mechanics of a Single Particle

But,

and

Hence

where is the kinetic energy of the particle.

Now introducing the notation

for the component of force in the direction, we can write (10.26) in the
form

This is called Lagrange’s equation. There is one such equation for each of the
coordinates . To use Lagrange’s equation, it is necessary to express K and

as functions of and by using the parametric equations of constraint
where, for brevity, the symbol q is used to denote the whole set of

coordinates . Thus, using (10.27), we find

where the coefficients are functions of the coordinates given by

If the external force then the equation
of constraint gives us

In this case, Lagrange’s equation (10.29) can be written in the form
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where the so-called Lagrangian is defined by

Once Lagrange’s equations have been solved for the functions
the result can be substituted in the equation of constraint to get an explicit
equation for the orbit Lagrange’s method has the advantage
of totally eliminating the need to consider forces of constraint, which are
often of no interest in themselves. However, once the orbit has been found by
Lagrange’s method, the force of constraint can be computed directly from

Just the same, our previous method using a nonparametric
constraint is often a more efficient way to find N.

It will be noted that our derivation of Lagrange’s equation is actually
independent of the number of coordinates in the equation of constraint. It is
only necessary to sum over the appropriate number of coordinates in (10.27)
and (10.30). If the particle is constrained to a curve rather than a surface, then
the parametric equation involves only one coordinate and only one Lagrange
equation is needed to determine the motion. On the other hand, if there are
no constraints, then three coordinates are needed and Lagrange’s method is
simply a way of writing the equivalent of Newton’s equation in terms of
coordinates.

EXAMPLE 5: The Plane Pendulum
Now let us consider an application of Lagrange’s method. The best way of
writing a parametric equation for a sphere will not be evident until we have
discussed rotations in chapter 5. So let us limit our considerations here to the
special case of a particle constrained to a vertical circle. This is the so-called
simple pendulum. The equation of constraint can be written in the parametric
form

where, as shown in Figure 10.2, the constant a
is the vertical radius vector, and i is the unit
bivector for the plane of the circle. The exter-
nal force is the conservative gravitational
force, so we can get Lagrange’s equation from
a Lagrangian. Our first task is to express the
Lagrangian as an explicit function of and
The equation of constraint gives

Hence,

Fig. 10.2. Vector diagram for
the simple pendulum.

where . Also,
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Hence

Now

So Lagrange’s equation

takes the explicit form

The general solution of this equation involves elliptic functions. However, for
small oscillations the approximation is often satisfactory, in which
case Lagrange’s equation reduces to

This is the familiar equation for harmonic motion, so we can write down the
solution at once. If at time t = 0, the solution is

where Therefore, the parametric equation for the orbit is

We shall study the pendulum from other points of view later on.

Frictional Forces

Let us conclude this section with a suggestion on how to account for friction.
An object sliding on the surface of a solid body is subject to a frictional force
F described by the empirical formula

where v is the velocity relative to the surface, is a constant called “the
coefficient of sliding friction”, and is the force of constraint normal
to the surface. The method of Lagrange by itself cannot handle such a
frictional force, because N is not a known function. However, we can
evaluate N from Newton’s Law, just as we have done before. Indeed, for a
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particle on a spherical surface, we can use (10.21) to get the frictional force in
the form

This can be used in the Lagrange equations to determine the orbit on the
sphere. However, approximation methods must be used to solve the resulting
equations for even the simplest problems.

3-10. Exercises

(10.1) The bob on a pendulum with flexible support of length a moves with
speed  at the bottom of a vertical circle. What is the minimum
value of   needed for the bob to reach the top of the circle? Why
can’t this result be obtained by energy conservation assuming speed

at the top?
(10.2) For a particle subject to a force f;

(a) Show that if a is a constant vector, then implies that
is a constant of motion. What does this imply about the trajec-
tory?

(b) Find a constant of motion when
(c) Show that if then the particle moves in a straight line.

Though   is a constant of motion here, this would not be called
a conservation law, because it holds only for particular values of
the initial velocity

(10.3) A bead is constrained to move on a frictionless right circular helical
wire described by the parametric equation

The wire is placed upright in a constant gravitational field (Figure
10.3). Evaluate and solve Lagrange’s equation for Determine
how the height of the bead varies with time, and compare it with the
motion of a particle on an inclined plane.

(10.4) A bead moves on a frictionless hoop rotating in a horizontal plane
with a constant angular speed about a fixed point on the hoop.
Show that the bead oscillates about a diameter of the hoop like a
simple pendulum of length Begin by establishing the equation
of constraint

as suggested by Figure 10.4.

.
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Fig. 10.3. Bead on Fig. 10.4. Bead on a rotating
a helical wire. hoop.

(10.5)    The equation of constraint for a particle in a plane can be written

The variables r and are polar coordinates. Express the kinetic
energy in terms of these variables, and determine the form of the
Lagrange equations if the particle is subject to an arbitrary external
force F. Derive the same equations directly from Newton’s law.

(10.6)  For a conservative force, expand the potential V(x) in a Taylor
series about an equilibrium point and show that, in the first
approximation, it is equivalent to the anisotropic oscillator potential

where and

is the linear binding force characterized by Equation (8.20). The
general shape of an equipotential V(r) = constant is an ellipsoid.
Use Equation (8.20) to show the energy of the oscillator has the
constant value



Chapter 4

Central Forces and Two-Particle Systems

The simple laws of force studied in Chapter 3 are said to be phenomenological
laws, which is to say that they are only ad hoc or approximate descriptions of
real forces in nature. As a rule, they describe resultants of forces exerted by a
very large number of particles. A fundamental force law describes the force
exerted by a single particle. The simplest candidates for such a law are central
forces with the particle at the center of force. This is reason enough for the
systematic study of central forces in this chapter. And it should be no surprise
that the results are of great practical value.

The investigation of fundamental forces is actually a two-particle problem,
for, as Newton’s third law avers, a particle cannot act without being acted
upon. Fortunately, the two-particle central force problem can be reduced to a
mathematically equivalent one-particle problem, greatly simplifying the so-
lution. However, a complete description of central force motion must include
an account of the “two-body effects” involved in this reduction.

4-1. Angular Momentum

We have seen that motion of a particle in any conservative force field is
characterized by a conserved quantity called energy. Now we shall show that
general motion in a central force field is characterized by another conserved
quantity called angular momentum. Then we shall derive the basic properties
of angular momentum which will be helpful in a detailed analysis of central
force motion.

A force field is said to be central if it is everywhere directed along a
line through a fixed point x' called the center of force. This property can be
expressed by the equation

where is introduced as the convenient position variable with the
center of force as origin. The angular momentum L about the center of force
for a particle with mass m is defined by

195



196 Central Forces and Two-particle Systems

It is customary to define the angular momentum as a vector quantity

However, the bivector L is more fundamental than the vector l and will be
somewhat more convenient in our study of central forces. In any case, it is
easy to switch from one quantity to the other, because they are related by
duality; specifically,

We shall use the term angular momentum for either L or l and add the term
“bivector” or “vector” if it is necessary to specify one or the other.

Now, from the equation of motion we have

because Hence,

if and only if (1.5)

that is, the angular momentum is conserved if and only if the force is central. It
should be noted that this conclusion holds even if the force is velocity
dependent, though central forces of this type are not common enough to
merit special attention here.

Angular momentum has a simple geometrical interpretation. According to
Equation (2–8.26), the directed area  swept out by the radius vector
r in time t is given by

Therefore, the rate at which area is swept out is determined by the angular
momentum according to

For constant angular momentum this can be integrated immediately, with the
result

Thus, we conclude that the radius vector of a particle in a central force field
sweeps out area at a constant rate. This is a generalization of Kepler’s Second
Law of planetary motion.

The orbit of a particle in a central field lies in a plane through the center of
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force with direction given by the angular momentum; for, from (1.2) we
deduce that every point r on the orbit satisfies

which, as we have seen in Section 2-6, is a necessary and sufficient condition
for a point r to lie in the L-plane.

If the orbit in a central field is closed, then the particle will return to its
starting point in a definite time T called the period of the motion. From (1.6)
and (1.8), we conclude that the period is given by

As we shall see, this formula leads to Kepler’s third law of planetary motion.
A major reason for the importance of angular momentum is the fact that it

determines the rate at which the radius vector changes direction. To show
this, we differentiate to get

Whence,

or

When L is constant, this gives  as an explicit function of r. Substituting (1.13)
into (1.11), we get the velocity in the form

For any central force motion, this can be used to determine the velocity as a
function of direction whenever the orbit is expressed as an equation
of the form specifying the radial distance as a function of direction.

For planar motion, we can express the radial direction in the parametric
form

where is a fixed unit vector, is the unit bivector for the orbital plane,
and is the scalar measure for the angle of rotation. Differentiating
(1.15) and equating to (1.13), we get
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So,

Whence

The derivation of this result assumes only that is constant. If | L | is a
constant also, then (1.17) implies that  always, so increases
monotonically with time if  Therefore, the orbit of a particle in a
central field never changes the direction of its circulation about the center of
force. We could also have reached this conclusion directly from (1.13).

4-1. Exercises

(1.1) Prove that  implies that the magnitude | L | and the direction
of the angular momentum L are separately constants of motion.

4-2. Dynamics from Kinematics

The science of motion can be subdivided into kinematics and dynamics.
Kinematics is concerned with the description of motion without considering
conditions or interactions required to bring particular motions about. Dy-
namics is concerned with the explanation of motion by specifying forces or
other laws of interaction to describe the influence of one physical system on
another.

If the dynamics is known, the kinematics of particle motion can be deter-
mined by solving the equation of motion. However, the converse problem of
determining dynamics from kinematics is far more difficult, and it is rarely
solved without considerable prior knowledge about force laws likely to be
operative. Historically one of the first and still the most significant solution to
such a problem was Newton’s deduction of the law of gravitation from Kepler’s
laws. Let us see how the problem can be formulated and solved in modern
language.

Kepler’s Laws of Planetary Motion can be formulated as follows:
(1) The planets move in ellipses with the sun at one focus.
(2) The radius vector sweeps out equal areas in equal times.
(3) The square of the period of revolution is proportional to the cube of the

semi-major axis.
The first and second laws are illustrated in Figure 2.1; the elliptical orbit is

divided into six segments of equal area, showing how a planet’s speed
decreases with increasing distance from the sun.
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After the discussion in the last
section, we recognize Kepler’s
second law immediately as a
statement of angular momen-
tum conservation, and we con-
clude that the planets move in a
central field with the sun at the
center of force. For constant
angular momentum, we can
compute the acceleration of a
particle by using (1.13) to dif-
ferentiate the expression (1.14)

Fig. 2.1. Kepler’s first and second laws. for its velocity; thus,

from which we obtain

The right side of this equation has the form of a central force as required, and
we can determine the magnitude of the force by evaluating the coefficient.

Recalling the equation for an ellipse discussed in Section 2.6, we can
express Kepler’s first law as an equation of the form

where is a positive constant and is a fixed vector in the orbital plane. As an
aid to differentiating (2.2), we multiply (1.13) by and note that, since

the scalar part of the result can be written

while the bivector part has the form

Now, by differentiating (2.2) we obtain
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Differentiating again, we obtain

which, since gives

where

Comparison of (2.4) with (2.1) leads to the attractive central force law

Thus, we have arrived at Newton’s inverse square law for gravitational force.
The problem remains to evaluate the constant k in terms of measurable
quantities. Kepler’s third law can be used for this purpose.

According to (1.10) the period T of a planet’s motion depends on the area
enclosed by its orbit. The area integral in (1.10) is most easily evaluated by
taking advantage of the fact, proved in Section 2-8, that it is independent of
the choice of origin. As we have seen before, with the origin at the center
instead of at a focus, an ellipse can be described by the parametric equation

where is the semi-major axis referred to in Kepler’s Third Laws.
Using this to carry out the integration, we get

According to (1.10), therefore, the period is given by

Squaring this, using (2.5) and the fact that  (Exercise (2.2)), we obtain

Kepler’s third law says that this ratio has the same numerical value for all
planets. Therefore, the constant k must be proportional to the mass m. Also,
note the surprising fact that (2.10) implies that the period T does not depend
on the eccentricity.
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Universality of Newton’s Law

We have learned all that Kepler’s laws can tell us about dynamics. Having
recognized as much, Newton set about investigating the possibility that the
inverse square law (2.6) is a universal law of attraction between all massive
particles. He hypothesized that each planet exerts a force on the Sun equal
and opposite to the force exerted by the Sun on the planet. From Kepler’s
third law, then, he could conclude that the constant k is proportional to the
mass M of the Sun as well as the mass m of the planet, that is,

where G is a universal constant describing the strength of gravitational
attraction between all bodies. Substitution of (2.11) into (2.10) gives

The constant G can be determined by measuring the gravitational force
between objects on Earth, so (2.12) gives the mass of the Sun from astro-
nomical measurements of a and T.

Kepler presented his three laws as independent empirical propositions
about regularities he had observed in planetary motions. He did not possess
the conceptual tools needed to recognize that the laws are related to one
another, or indeed, to recognize that they are more significant than many
other propositions he proposed to describe planetary motion. Though we
have seen how to infer Newton’s universal law of gravitation from Kepler’s
laws, and conversely, we can derive all three of Kepler’s laws from Newton’s
law, it would be a mistake to think that Newton’s law is merely a summary of
information in Kepler’s laws. Actually, Kepler’s laws are only approximately
true, and they can be derived only by neglecting the forces exerted by the
planets on one another and the Sun. But we shall see that the appropriate
corrections can be derived from Newton’s law of gravitation, which is so close
to being an exact law of nature that only the most minute deviations from it
have been detected. These deviations have been explained only in this
century by Einstein’s theory of gravitation.

Epicycles of Ptolemy

Long before Kepler proposed elliptical orbits about the Sun, Ptolemy de-
scribed the orbits of the planets as epitrochoids centered near the Earth. It is
of some interest, therefore, to deduce the force required to produce such a
motion. An epitrochoid is a curve described by the parametric equation

where
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and If, instead,  the curve is called a hypotrochoid or
retrograde epitrochoid. Equation (2.13) is a superposition of two vectors
rotating with constant angular velocities in the same plane.

In astronomical literature, the circle generated by one of these vectors is
called the epicycle while the circle generated by the other is called the
deferent, and the orbit is traced out by a particle moving uniformly on the
epicycle while the center of the epicycle moves uniformly along the deferent.
A constant vector could be added to (2.13) to express the fact that Ptolemy
displaced the center of the planetary orbits slightly from the earth to account
for observed variations in speed along the orbits.

Now to deduce the force, we differentiate (2.13) twice; thus,

We must eliminate and from this last expression to get a force law as a
function of r and To do this, note that

But the last two terms vanish when we apply the condition that  and be
orthogonal to a common axis of rotation along  and Consequently we
write (2.15) in the form

where the vector

and the scalar

can be specified independently.
The force law expressed by (2.16) does indeed arise in physical appli-

cations, though not from gravitational forces. For k < 0, (2.16) will be
recognized as the equation for an isotropic oscillator in a magnetic field,
encountered before in Exercise (3–8.5). Equation (2.16) with k > 0 describes
the motion of electrons in the magnetron, a device for generating microwave
radiation.

4-2. Exercises

(2.1) Carry out the integration in Equation (2.8) to determine the area of
an ellipse
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(2.2) To relate the constants in the two different Equations (2.2) and
(2.7) for an ellipse (See Figure 2–6.14a),
(a) evaluate r at the points  to show that

(b) and that is the distance from the center of the
ellipse to the foci;

(c) evaluate r at to show that
(2.3) Show that for a circular orbit  and that for circular motion

under a force f,

Show further, that if Kepler’s third law is satisfied, then f must be a
central attractive force varying inversely with the square of the
distance. An argument like this led Robert Hooke and others to
suspect an inverse square gravitational force before Newton; how-
ever, they were unable to generalize the argument to elliptical
motion and account for Kepler’s first two laws.

(2.4) To establish the universality of his law of gravitation, Newton had to
relate the laws of falling objects on the surface of the Earth to the
laws of planetary motion. He was able to accomplish this after
establishing the theorem that the gravitational force exerted by a
spherically symmetric planet is equivalent to the force that would be
exerted if all its mass were concentrated at its center. It follows,
then, that the readily measured gravitational acceleration at the
surface of the Earth is related to the mass M and radius R of the
Earth by

Even without taking into account the oblateness and rotation of the
earth, this value for g is accurate to better than one percent. Newton
also knew that the radius of the Moon’s orbit is about 60 times the
radius of the Earth, as the Greek’s had established by a geometrical
analysis of the lunar eclipse. And he possessed a fairly good value
for the radius of the Earth:

Use these facts to calculate the period of the Moon’s orbit and
compare the result with the observed value of 27.32 days.

(2.5) Find the period and velocity of an object in a circular orbit just
skimming the surface of the Earth.

(2.6) Find the height above the earth of a “synchronous orbit”, circling
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the Earth in 24 hours. Such orbits are useful for “communications
satellites.” How many such satellites would be needed so that every
point on the equator is in view of at least one of them?

(2.7) Estimate the Sun-Earth mass ratio from the length of the year and
the lunar month (27.3 days), and the mean radii of the Earth’s orbit

and the moon’s orbit
(2.8) Solve Equations (2.17a, b) subject to (2.14) for  and     in terms

of and k. Show thereby that every epitrochoid and every hyper-
trochoid can be regarded as an ellipse precessing (i.e. rotating) with
angular velocity and determine those values of  and k for
which such motions are impossible.

(2.9) What central force will admit circular orbits passing through the
center of force? What is the value of L at
Hint: Show that is an appropriate equation for such an
orbit.

(2.10) Show that the central force under which a particle describes the
cardioid

is

(2.11) Show that the central force under which a particle describes the
lemniscate

is

4-3. The Kepler Problem

The problem of describing the motion of a particle subject to a central force
varying inversely with the square of the distance from the center of force is
commonly referred to as the Kepler Problem. It is the beginning for investi-
gations in atomic theory as well as celestial mechanics, so it deserves to be
studied in great detail. Basically, the problem is to solve the equation of
motion
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The “coupling constant” k depends on the kind of force and describes the
strength of interaction. As we saw in the last section, in celestial mechanics
the force in (3.1) is Newton’s law of gravitation and In atomic
theory, Equation (3.1) is used to describe the motion of a particle with charge
q in the electric field of a particle with charge q'; then and the force
is known as Coulomb’s Law. The Newtonian force is always attractive
(k > 0), whereas the Coulomb force may be either attractive or repulsive
(k < 0).

There are a number of ways to solve Equation (3.1), but the most powerful
and insightful method is to determine its constants of motion. We have
already seen that angular momentum is conserved by any central force, so we
can immediately write down the constant of motion

When we can use this to eliminate  from (3.1) as follows:

Since L is constant, this can be written

Therefore, we can write

where is a dimensionless constant vector. It should be evident that this new
vector constant of motion is peculiar to the inverse square law, distinguish-
ing it from all other central forces. This constant of motion is called the
Laplace vector by astronomers, since Laplace was the first of many to discover
it. It is sometimes referred to as the “Runge-Lenz vector” in the physics
literature. We shall prefer the descriptive name eccentricity vector suggested
by Hamilton.

Since Equation (3.3) can be expressed in terms of the angular
momentum vector l, with the result

along with the condition However, Equation (3.3) is much easier to
manipulate, because the geometric product Lv is associative while the cross
product is not.

Energy and Eccentricity

Besides L and Equation (3.1) conserves energy, for
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so the force is conservative with potential It follows, then, from our
general considerations in Section 3-10, that the energy

is a constant of the motion. However, if this is not a new constant,
because E is determined by L and Thus, from (3.3) we have

But, by (3.2)

Hence,

The last factor in this equation must be constant, because the other factors are
constant. Indeed, using (3.4) to express this factor in terms of energy, we get
the relation

When this relation tells us nothing about energy, and our derivation of
the energy equation (3.4) from (3.2) and (3.3) fails. But we know from our
previous derivation that energy conservation holds nevertheless. Indeed, for

Equation (3.2) implies that the orbit lies on a straight line through the
origin, and the energy equation (3.4) must be used instead of (3.3) to describe
motion along that line.

The Orbit

For  the algebraic equations (3.2) and (3.3) for the constants L and
determine the orbit and all its geometrical properties without further inte-
grations. This is to be expected, because we know that the general solution of
(3.1) is determined by two independent vector constants. Now, to find an
equation for the orbit, we use (3.2) to eliminate v from (3.3). Thus,

The scalar part of this equation is
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For this yields,

where,

so the sign in (3.6a) distinguishes between attractive and repulsive forces. As
we have noted in Section 2-6, Equation (3.6a) describes a conic with eccen-
tricity and an axis of symmetry with direction  The relation (3.5)
enables us to classify the various orbits according to values either of the
geometrical parameter or the physical parameter E, as shown in Table 3.1.

The Hodograph

Since the orbit equation (3.6) is a consequence of the equation for eccentricity
conservation (3.3), we should be able to describe the motion directly with
(3.3) itself. Indeed, we can interpret (3.3) as a parametric equation
for the velocity as a function of direction by writing it in the form

This equation describes a circle of radius k/L centered at the point

In standard non-parametric form, the equation for this circle is
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Since the center of the circle is determined by the eccentricity vector in (3.8),
the distance  of the center from the origin can be used to classify the
orbits, as shown in Table 3.1. Thus, the orbit is an ellipse if the origin is inside
the circle or a hyperbola if the origin is outside the circle. For an elliptical
orbit the hodograph described by (3.7) is a complete circle, as shown in
Figure 3.1. The hodograph and the orbit are drawn with common directions
in the figure, so for any velocity v on the hodograph, the position r on the
orbit can be determined, or vice-versa. Of course, the relations between v,
and shown on the figure are expressed algebraically by (3.7).

Fig. 3.1. Elliptical orbit and hodograph.

The hodograph for hyperbolic motion is shown in Figure 3.3a, and should
be compared with the corresponding orbit in Figure 3.3b. The figure shows
that, in this case, the hodograph is only a portion of a circle. This fact cannot
be expressed by (3.9), but (3.7) implies that v is restricted to a circular arc if
is so restricted. Details of the hyperbolic motion will be worked out below.

The Initial Value Problem

We have seen how the orbit and its hodograph are determined by the
equations for angular momentum and eccentricity conservation. The same
equations can be used to calculate the constants L and  for objects of known
mass when the velocity v is known at one point  This solves the initial value
problem, a basic problem in celestial mechanics. The main part of the
problem is to determine the eccentricity and orientation of the orbit, that is,
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to determine the eccentricity vector From (3.3) we immediately get

This determines from v and but comparison with observation will be
facilitated if this result is expressed in terms of angles. The angle between
the velocity and the radial direction can be introduced by

Since the bivector i specifies a specific orientation for the orbital plane, this
equation will describe orbits with both orientations if the angle has the range

Now we can write the first term on the right side of (3.10) in the
form

where

with K the kinetic energy and V the potential energy.
Consequently, Equation (3.10) can be written in the form

The determination of by this equation is illus-
trated in Figure 3.2*. According to (3.12), the
parameter is determined by the speed and
radial distance, or, if you will, the ratio K/V of
kinetic to potential energies. If desired, the right
side of (3.13) can be expressed in terms of or-
thogonal components by using (3.11) to elimin-
ate with the result

This can be used to compute the angle between
Fig. 3.2. Determination of the the radial direction and the direction to the
eccentricity vector.

then, from (3.14) we obtain

*Graphical methods for constructing orbits based on Equation (3.13) are discussed by W. G.
Harter, Am. J. Phys. 44, 348 (1976).

pericenter of the orbit. We write
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Scattering

Our solution of the initial value problem works for both bounded and
unbounded orbits. However, for unbounded motion we are often interested
instead in the scattering problem, which can be formulated as follows: Given
the angular momentum L and the initial velocity of a particle approaching
the center of force from a great distance, find the final velocity of the
particle receding from the center of force at a great distance. A particle that
has thus traversed an unbounded orbit is said to be scattered.

The scattering problem for hyperbolic motion can be solved by applying the
conservation laws in the asymptotic region (defined by the condition that the
distance from the center of force be very large). From energy and angular
momentum conservation, we have

and

The first condition implies that initial and final speeds are equal, that is,

The second condition implies that

The Equation (3.3) for eccentricity conservation can be cast in the equiv-
alent form

where and are any two points on the orbit. Using the asymptotic relations
(3.17) and (3.18) in this equation, we deduce

Hence,

This solves the scattering problem, because it gives in terms of the initial
velocity and angular momentum. However, for comparison with experiment,
it is desirable to express this relation in terms of different parameters.

The angle between the initial and final velocity is called the scattering
angle; it is defined by the equation



The Kepler Problem 211

where The bivector i here is related to the direction of angular
momentum by

where the positive sign refers to the attractive case  and the negative
sign refers to the repulsive case We have assumed that the angular

The magnitude of the angular momentum can be written in the form

where the so-called impact parameter b is the distance of the center of force
from the asymptotes of the hyperbola, as shown in Figure 3.3b.

Now, substituting (3.21) and (3.22) into (3.20), we get an expression for the
scattering angle as a function of energy and impact parameter. Thus,

This equation can be solved for the impact parameter, with the result

We will use this relation in Section 4-8.
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Fig. 3.3b. The physical branch of the hyperbola depends on sign of the “coupling constant k”.

4-3. Exercises

(3.1) Equation (3.6) shows that the orbital distance has either
minimum or maximum values when
The semi-major axis a is defined as half the distance between the
points and The semi-latus rectum is defined as the orbital
distance when in the attractive case or  in the
repulsive case. Verify the following relations:
For an ellipse
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where

These relations are of interest in astronomy, where the point of
closest approach is called the pericenter, or

the perihelion (for an orbit about the Sun),
the perigee (for an orbit about the Earth),
the periastron (for an orbit about a star).

The point of greatest distance is called the apocenter, or aphelion
(Sun), apogee (Earth), apastron (star).
For a hyperbola,

is the distance between the two branches of a hyperbola. For
hyperbolic orbits, formulas involving both and are of no
physical interest, because motions along the two branches are not
related.

For both elliptical and hyperbolic orbits, the geometrical and
physical parameters are related by

(3.2) The turning points of an orbit are defined by the condition
Show that, for a turning point, Equation (3.3) gives the relation

Verify that, for both elliptic and hyperbolic orbits, this relation
gives the points and specified in Exercise (3.1)

(3.3) Show that the eccentricity vectors for the attractive and repulsive
hyperbolic branches are given in terms of asymptotic initial con-
ditions by
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

whence because initial velocities are opposite on the two
branches.
Show that orbital distance can be expressed as a function of velocity
by

For elliptical motion, compare with the orbit Equation (3.6) at
points where and
Escape velocity. Estimate the minimum initial velocity required for
an object to escape from the surface of the Earth.
Orbital Transfer. It is desired to transfer a spaceship from an orbit
about Earth to an orbit about Mars. Estimate the minimum launch
velocity required to make passage on an elliptical orbit in the sun’s
gravitational field. Neglect the gravitational fields of the planets,
and assume that their orbits are circular. The orbit should be
designed to take advantage of the motion of both planets. Estimate
the time of passage, and so determine the relative position of the
planets at launching.
Data:

Halley’s comet moves in an orbit with an eccentricity of 0.97 and a
period of about 76 years. Determine the distance of its perihelion
and aphelion from the Sun in units of the Earth’s radius.
Impulsive change in orbit. An impulsive force, such as the firing of a
rocket, will produce a change in the velocity of a satellite
without a significant change in position during a short time inter-
val. Show that, to first order, the resulting change in the eccentricity
vector of the satellite’s orbit is given by

where Use this to determine qualitatively the
effect of a radial impulse on a circular orbit (See Figure 3.4). Draw
figures to show the effect of a tangential impulse. What is the effect
of an impulse perpendicular to the orbital plane?
A satellite circles the Earth in an orbit of radius equal to twice the
radius of the Earth. The direction of motion is changed impulsively
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Fig. 3.4. Will the radial impulse on orbit (a) produce (b) or (c)?

through an angle towards the Earth.
Determine so the orbit just skims
the Earth’s surface.

(3.10) Ballistic Trajectory. Neglecting air
drag and the like, the trajectory of
a ballistic missile is a segment of an
ellipse beginning and terminating on
the surface of the Earth, as in Fi-
gure 3.5. Show that the missile’s range

is determined by the formula

where  is the firing angle measured

Fig. 3.5. Ballistic trajectory.
termine the maximum height of the
missile above the Earth on a given
orbit. Determine the firing angle

that gives maximum
range for
and given initial speed

Atmospheric drag tends
to reduce the orbit of a
satellite to a circle, as
shown in (Figure 3.6).
For a rough estimate
of this effect, suppose
that the net effect of
the atmosphere is a

Fig. 3.6.     Atmospheric drag on a satellite circularizes
its orbit.

from the vertical, as in the figure. De-

small impulse at perigee
which reduces the satellite
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velocity by a factor α . Show that the resulting change in eccentricity is

For  and estimate the number of orbits required to
reduce the orbit to a circle. Show that the speed at apogee actually
increases with each orbit.

4-4. The Orbit in Time

Although we have learned how to determine elliptic and hyperbolic orbits
from arbitrary initial conditions, the Kepler Problem will not be completely
solved until we can describe how a particle moves along the orbit in time. In
astronomy it is not enough to determine the size and shape of a planetary
orbit; it is necessary to be able to locate the planet on the orbit at any
specified time. Kepler himself solved this problem in an ingenious way, and
we cannot do better than simplify his argument a little using the modern
algebraic apparatus at our disposal.

Kepler’s Equation

In our study of the harmonic oscillator we saw that elliptical orbits can be
described by the parametric equation

This is related to the radius vector r from a focus of the ellipse by

Hence,

is a parametric equation
for the orbit. Kepler introduced the
angle into his description of an
ellipse by a geometrical construc-
tion involving an auxilliary circle, as
shown in Figure 4.1.

If, now, we can determine the
parameter  as a function of time

then (4.3) gives us the
desired function at once.
From (4.2), we obtain

problem.
Fig. 4.1.     Relations among variables in Kepler’s
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This can be integrated with respect to time using (4.1) to get a relation
between t and Associating the zero of time with the position at pericenter,
we obtain

But in Section 4-2 we saw that

where T is the orbital period. Hence,

This is known as Kepler’s equation for planetary motion.

Solutions of Kepler’s Equation

Kepler’s equation gives time t as a function of so it must be solved for
as a function of t. Unfortunately, the solution cannot be expressed in terms of
standard functions, so we must solve the equation by some approximation
method. Newton devised a mechanical method which is easy to visualize. He
noticed that Kepler’s equation can be solved by projection from a trochoid,
the curve traced out by a point on a rolling wheel (See Figure 3–7.3b). As
shown in Figure 4.2, one simply marks a point a distance below the center of
a wheel of unit radius. Then the solution is generated by rolling the wheel
until that point has moved a horizontal distance the value of at
the time t is then the measured distance that the wheel has moved.

Although Newton’s mechanical method enables us to visualize the solution
to Kepler’s equation, a numerical solution to any desired accuracy is easily
obtained with a computer. There are many ways to do this, but the simplest
when is small is to treat the last term in (4.4) as a perturbation. Thus, the
zeroth order approximation to (4.4) is

Substituting this into the “perturbing term” in (4.4), we get the first order
approximation
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Fig. 4.2. Mechanical solution of Kepler’s equation.

The second order approximation is, then,

or, since is small,

This approximate solution would have been quite sufficient for Kepler’s
observations of planetary motion.

The angle defined by

has a more direct observational significance than the angle so we can make
best use of our solution to Kepler’s equation by expressing in terms of

and so get To do this, we first square (4.3) and, using the
relation derived in Exercise (2.2), we find that

Using this after substituting (4.6) into (4.3) we find

A more convenient relation between and can be found as follows: The
scalar part of (4.8) is
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whence

or, using the half angle formula for the tangent,

This given uniquely in terms of because both half angles always
lie in the same quadrant.

4-4. Exercises

(4.1) Show that Kepler’s equation can be put in the form

Derive the corresponding equation for hyperbolic motion (with

Use the parametric equation for a hyperbola

x = a cosh + b sinh .

4-5. Conservative Central Forces

The method used in Section 4-3 to analyze the motion of a particle subject to
an inverse square law of force will not work for arbitrary central forces owing
to the absence of a simple constant of motion like the eccentricity vector. We
turn, therefore, to a more general method which exploits the constants of
motion that are available.

We have already determined in Section 4-1 that the angular momentum

is a constant of motion in a central field of force. And we know from Section
3-10 that for a conservative force the energy

is a constant of motion. When the potential V is specified, the orbit can be
found from the Equations (5.1) and (5.2) without referring to the equation of
motion
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from whence the constants of motion are derived.
The potential of a central conservative force is called a central potential.

The potential in (5.3) has been written in the special form
instead of the general form to indicate that it must be
independent of the directional variable . This follows from the requirement
that variations in V expressed by be in the radial direction
whereas can vary only in directions orthogonal to itself. Thus a central
potential is necessarily spherically symmetric.

To determine characteristics of the motion common to all central poten-
tials, we endeavor to carry the solution of the equation of motion as far as
possible without assuming a specific functional form for the potential V.
Equation (5.1) suggests that we should separate the radial variable
from the directional variable  As we have already observed in Section 4-1,
from (5.1) it follows that

whence

where . Substituting (5.4) into the energy function (5.2),
we obtain the radial energy equation

This is identical to the energy equation for motion of a particle along a line in
an effective potential

with the restriction Thus, the 3-dimensional central force problem has
been reduced to an equivalent 1-dimensional problem.

Putting (5.5) in the form

we see that the variables r and t are separable after taking the square root, so
we can integrate immediately to get
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This integral is not well defined until we have specified the range of values for
r. The range can be determined by noting that since , Equation (5.7)
implies that the allowed values of r are restricted by the inequality

When = 0, the inequality reduces to an equation U(r) = E whose roots are
maximum and minimum values of r specifying turning points (or apses) of the
motion. A minimum allowed value always exists, since r must be positive.
If there is no maximum allowed value, the motion is unbounded. If there is a
maximum value the motion is bounded, and at the distance , the
particle will change from retreat to approach towards the center of force.
Accordingly, the integral (5.8) can be taken over increasing values of r only to
the point , from which point it must be taken over decreasing values of r.
Of course, the integral can be taken repeatedly over the range from to

corresponding to repeated oscillations of the particle. The period of a
single complete oscillation in the value of r is therefore given by

This defines a period for all bounded central force motion. By considering
diagrams for the orbits it can be seen that this definition of period must agree
with the usual one for a particle in a Coulomb potential, but it gives only half
the usual one for a harmonic oscillator, because it is a period of the radial
motion rather than a period of angular motion.

To determine the particle’s orbit, we must use (5.1) to relate changes in the
direction to changes in the radial distance r. If we parametrize as a
function of angle by writing

then, as we have seen in Section 4-1, Equation (5.1) reduces to

We can use this to make the change of variables

which, on substitution into (5.7) gives

Separating variables and integrating, we get an equation for the orbit in the
form
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The integral can be evaluated in terms of known functions only for special
potentials, such as those of the form

where k is a constant and n is a nonzero integer. For n = –2, 1, 2 the integral
can be evaluated in terms of inverse trigonometric functions, corresponding
to the linear, the inverse square and the inverse cube force laws. For
n = –6, – 4, – 1, 3, 4, 6 the integral can be evaluated in terms of elliptic
functions (Appendix B). For other values of n the integral cannot be ex-
pressed in terms of tabulated functions.

We can ascertain the general features of the orbit without actually evalu-
ating the integral (5.12). When integrated over a period of bounded motion,
(5.12) gives

where is the deviation from an angular period of . As shown in Figure
5.1, can be regarded as the angular displacement of the apse in one
period. For Kepler's elliptical or-
bits , so the other central
force orbits can be regarded as
ellipses precessing (not necessarily
at a constant rate) through a total
angle in one period.

According to (5.14), the angu-
lar precession is determined by
integrating over any half period
of the motion beginning at an
apse. Indeed, from the symmetry
of the integral we can infer that
the orbit must be symmetric with
respect to reflection about each
apsidal line. So if we have a seg-
ment of the orbit from one apse

Fig. 5.1. Orbital symmetry of bounded motion in
a central potential.
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to the next, say from apse 1 to apse 2 in Figure 5.1, then we can get the next
segment from apse 2 to apse 3 by reflecting the first segment through apsidal
line 2. The segment after that is obtained by reflection through apsidal line 3,
and so on. In this way, the entire orbit can be generated from a single
segment.

An orbit that eventually repeats itself exactly is said to be closed. In the
present case, the condition for a closed orbit is

where n and m are integers. This is the condition that the functions
and have commensurable periods. Examples of closed orbits are
shown in Figure 5.2.

Fig. 5.2. Central force motions with three symmetry axes.

Energy Diagrams

As we have noted before, in atomic physics individual orbits cannot be
observed, so it is necessary to characterize the state of motion in terms of
conserved quantities. In particular, it is important to know how the general
states of bounded and unbounded motion allowed by a particular potential
depend on energy and angular momentum. This would also provide a useful
classification of allowed orbits. The desired information is contained in the
radial energy equation (5.5), which describes the state of motion explicitly in
terms of L and E. The information can be put in an easily surveyable form by
constructing energy diagrams. We learn best how to do this by considering a
specific example.
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Let us classify the allowed motions in the potential

where k and a are positive constants. This is called the screened Coulomb
potential in atomic physics, where the exponential factor describes a

graphically, we need a graph of the effective potential

The term is called the centrifugal potential because of its relation to
the centrifugal force discussed in Section 5-6. To graph the function, U(r), we
first examine its asymptotic values. For small we have

so

or for large we have

so

Thus, when the centrifugal potential dominates the Yukawa
potential in the asymptotic regions (where r is very large or very small).

Next we determine the inflection points of the effective potential. To
simplify the notation let us write

and

so that

At an extremum we have

partial screening (or cancellation) of the nuclear Coulomb potential by a
cloud of electrons surrounding the nucleus. A potential of the same form
(5.16) arises also in nuclear physics, where it is called the Yukawa potential in
honor of the Japanese Nobel Laureate who was the first to use it to describe
nuclear interactions.

To interpret the radial energy equation
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Fig. 5.3. Graphical solutions of a transcendental equation.

or

This is a transcendental equation for s as a function of Its solutions are
points of intersection of the exponential curve with the parabola

As graphs of the functions in Figure 5.3 show, there are
three distinct possibilities. (a) For a particular constant the parabola
intersects the exponential curve at exactly one point a point of
tangency. In this case, then, U(r) has a single inflection point, (b) For
the curves do not intersect for positive 5, in which case U(r) has no inflection
points. (c) For the curves intersect and they must intersect exactly
twice for s > 0, because increases with s faster than any power of s.
Therefore, U(s) has two inflection points in this case.

The constants and are determined by the requirement that the
exponential curve be tangent to the parabola, so by differentiating (5.20) we
obtain
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Equating this to (5.20) we obtain

which has the single positive solution

Furthermore,

Note that the values of these constants are independent of the values for the
physical constants in the problem. It is amusing to note also that the number

is the famous golden ratio, to which the ancient Greeks attrib-
uted a mystical significance. The golden ratio has many remarkable math-
ematical properties (among which might be numbered its appearance in this
problem), and it appears repeatedly in art and science in a variety of peculiar
ways. The Greeks, for example, believed that a perfect rectangle is one whose
sides are in proportion to the golden ratio, and this ratio runs throughout
their art and architecture, including the Parthenon.

Graphs of the effective potential for the three possible cases are shown in
Figure 5.4. The case with two inflection points is most interesting, so let us
examine it in detail. A typical graph is shown in Figure 5.5. Allowed orbits
are represented in the figure as lines of constant energy in regions where they
pass above the effective potential. Characteristics of the various allowed
states of motion can be read off the figure. Thus

Fig. 5.4. The effective potential as a function of angular momentum L.
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Fig. 5.5. Energy diagram for motion in a screened Coulomb potential.

(a) A particle with energy will oscillate between the turning points
and in Figure 5.5. According to the radial energy equation (5.14), the
radial kinetic energy at any point is given by with a maximum
value at
(b) A particle with energy is allowed only at the radius where it has
zero radial kinetic energy, so this state corresponds to a circular orbit. If the
particle is given a small impetus raising its radial kinetic energy and its total
energy from to , say, then the radius of its orbit will oscillate without
deviating far from For this reason we say that the circular orbit is stable.
(c) A particle with energy will be bound if its initial radius is less than
and free (in an unbounded orbit) if its initial radius is greater than Note
that two possibilities like this can occur only for positive energies. They
cannot occur in a Coulomb potential for which, as we have shown in
Section 4-3, all bound states have negative energies. Bound states with
positive energy have a special significance in quantum theory. In quantum
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theory the energy of a particle is subject to fluctuations of short duration, so
a particle with energy has a finite probability of temporarily increasing
its energy to more than enabling it to “jump” the potential barrier from

to and so pass from a bound to a free state with no net change in its
energy. Thus, in quantum theory, bound states with positive energy have a
finite lifetime.
(d) No particle with energy greater than in Figure 5.5 has bound states
of motion. If a particle with energy for instance, has an initial negative
radial speed, it will approach the origin until it “collides with the potential
wall” at after which it will retreat to infinity.
To summarize, Figure 5.5 shows an effective potential with a potential well

of depth The bound states are composed of particles “trapped in the well”
with energy less than All other states are unbound.

Returning now to Figure 5.4 and recalling (5.19b), we see that there is a
critical value of the angular momentum

For the effective potential has a dip, allowing bound states. For
the effective potential has no dip so there can be no bound states.

For there is a single bound state, a circular orbit of radius
however, this orbit is unstable, because a small increase in energy will free the
particle completely.

Stability of Circular Orbits

Every attractive central potential admits circular orbits for certain values of the
energy and angular momentum. We have seen, however, that stability of a circular
orbit against small disturbances depends on the curvature of the effective
potential. This insight enables us to ascertain the stability of circular orbits in
any given central potential with ease. The question of stability is more than
academic, for the only circular orbits we can hope to observe in nature are
stable ones, and only motions along stable orbits can be controlled in the
laboratory.

Let us investigate the stability of circular orbits in the important class of
attractive potentials with the form The effective potential is

Now, for a circular orbit the radius r must be constant so and it must
stay that way so Differentiating the radial energy equation (5.17), we
find

or
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Hence, the radii of the possible circular orbits are the extrema of the
effective potential, determined by the condition In Figure 5.5, for
example, the inflection point is the radius of a circular orbit with energy
although the orbit is obviously unstable. Applying the condition for circular
orbits to (5.23) we obtain

Hence,

The orbit will be stable if this inflection point is a minimum and unstable if it is
a maximum. Differentiating the effective potential once more, we obtain

and using (5.25) we find that

at the inflection point. From (5.26) we can conclude that the attractive
potential admits stable circular orbits if n < 2 but not if n > 2. The case

requires further examination (See Exercise 5.3).

4-5. Exercises

Central force problems are also found in Section 4-2.
(5.1) Show that a particle with nonzero angular momentum in a central

potential can fall to the origin only if

(5.2) For the cases integrate (5.12) with the potential (5.13)
and invert the result to get an equation for the orbit in the form

Compare with previously obtained orbits for these cases.
Determine the precession angle for each case.

(5.3) Use energy diagrams to classify orbits in the attractive central
potential Can circular orbits be stable in this potential?

(5.4) Determine the necessary conditions for stable circular orbits in the
potential
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4-6. Two-Particle Systems

Consider a system of two particles with masses and positions
respectively. The equations of motion for the particles can be written in the
form

where is the force exerted on particle 1 by particle 2, and is the force
exerted on particle 1 by agents external to the system, with a similar descrip-
tion of the forces on particle 2. To write (6.1a, b) we have appealed to the
superposition principle to separate the internal  forces exerted by the particles
on one another from the external forces and

Our aim now is to describe the system by distinguishing the external motion
of the system as a whole from the internal motions of its parts. This aim is
greatly facilitated by Newton’s third law, which holds that the mutual forces
of two particles on one another are equal and opposite, that is,

We shall see later that Newton’s third law is not universally true in this form.
Nevertheless, it is usually an excellent approximation, and we can easily tell if
it is violated when the form of the force is specified, so we sacrifice little by
adopting it.

Notice now that, because of (6.2), the internal forces cancel when we add
the two Equations (6. 1a, b). The result can be written in the form

where

is said to be the mass of the system, and

is called its center of mass.
Equation (6.3) can be regarded as an equation of motion for the system as a

whole. It is like the equation of motion for a single particle with mass M and
position X, except that the total external force generally depends
on the structure of the system (i.e. the positions and velocities of its parts).
Among the few structurally independent external forces we have the follow-

.
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ing: If the system is immersed in a uniform force field, then the total external
force is obviously constant. Thus, for a constant gravitational field, we have

Or, if the system is subject to a linear resistive force proportional to the mass,
then the external force is

Finally, for particles with a constant charge to mass ratio
in a uniform magnetic field, the external force is

where is the total charge of the system. In general, the total
force on a system is independent of structure only when it can be expressed as
a function of the form as in the examples just mentioned.

The internal structure can be described in terms of the particle positions
and with respect to the center of mass; they are given by

where

is the relative position of the particles with respect
to one another (see Figure 6.1). Differentiating
(6.9a, b), we have

and

Fig. 6.1. Variables for a
two-particle system.
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and using (6.3) to eliminate we obtain

where the quantity

is called the reduced mass.
Equation (6.12) describes the internal motion of the two particle system.

The effect of external forces on the internal motion is determined by the term
Note that this term vanishes for the external gravitational

force (6.6) and it is a function of only for the forces (6.7) and (6.8). For such
external forces, therefore, if the internal force depends only on the relative
motions of the particles, then (6.12) is an equation of the form

But this is the equation of motion for a single particle of mass subject to the
force In this way, the problem of solving the coupled equations of
motion for a two-particle system can often be reduced to an equivalent pair of
one-particle problems with equations of motion (6.3) and (6.14).

External forces often have a relatively small effect on the internal motion,
even when the force function cannot be put in the functional form of (6.14).
In such cases, the external forces can be handled by perturbation theory, as
will be demonstrated in detail in Chapter 8. Before taking external forces into
account, we should analyze the effect of internal forces acting alone.

Isolated Systems

A system of particles subject to a negligible external force is said to be
isolated. From (6.3) it follows that the center of mass of an isolated two-
particle system moves with constant velocity The only problem then is to
solve the equations of motion for the internal motion. Evidently for an
isolated pair of particles, the relative position and the relative
velocity are the only relevant kinematical variables if the particles are
structureless objects themselves. So we expect that an internal equation of
motion of the general form (6.14) will be valid quite generally. Certainly the
force law will be of the form if each particle is the center of force for the
force it exerts on the other particle. Our previous analysis of central force

Using these equations to eliminate and after we subtract (6.1b) from
(6.la), we get
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motion for a single particle can therefore be applied immediately to the more
realistic case of two interacting particles. The only mathematical difference in
the two cases is that, as (6.14) shows, the reduced mass must be used in the
equation of motion instead of the mass of a single particle. If the mass of one
particle, say is negligible compared to then according to (6.13),

and (6.14) reduces to a single particle equation.

Two-Body Effects on the Kepler Problem

Let us see now how our previous analysis of motion under a gravitational or
Coulomb force must be modified to take into account the “two-body effects”
arising from the finite mass of both particles. As before, the force law is

so (6.14) takes the specific form

(6.16)

Obviously, Kepler’s first two laws still follow from (6.16), but his third law
must be modified, because it depends on value of the mass

From (2.10) and (2.11), we see that Kepler’s third law should be modified
to read

For planetary motion, the mass of a planet is too small compared to the mass
of the Sun to produce an observable deviation from Kepler’s third law, except
in the case of Jupiter, where For binary stars, Equation
(6.17) is used to deduce the masses from observations of periods.

Newton was the first to derive (6.17) and he used it to estimate the
Moon-Earth mass ratio. In terms of quantities readily measured in Newton’s
day, Equation (6.17) gives the mass ratio

where is the Earth’s radius and g is the gravitational acceleration at the
surface of the Earth. Even with the best data available today Equation (6.18)
gives a Moon–Earth mass ratio with no better than 30% accuracy. The main
reason for this is neglect of the effect of the Sun. The force of the Sun on the
Moon is in fact more than twice as great as the force of the Earth on the
Moon. Even so, we have seen that if the Sun’s gravitational field were uniform
over the dimensions of the Earth–Moon system, it would have no effect on
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the internal motion of the system, and (6.17) would be valid. The variations
of the Sun’s force on the moon are responsible for deviations from (6.17).
They have a maximum value of about one hundredth the force of the Earth
on the Moon. Newton realized all this, so he embarked on a long program of
analyzing the dynamics of the Earth–Moon system in ever increasing detail, a
program that has continued into this century. However, we shall see below
that a fairly good estimate of the Moon–Earth mass ratio can be achieved
without calculating the effect of the Sun.

Returning now to the interpretation of solutions to Equation (6.16), we
know that for a bound system the vector r, representing the relative separ-
ation of the particles, traverses an ellipse. However, this is not a complete
description of the system’s internal motion, for both particles move relative to
the center of mass. The complete internal motion is easily ascertained from
(6.9a, b), which gives the internal particle positions and directly from r.
From these equations we can conclude immediately that both particles move
on ellipses with focus at the center of mass and eccentricity vectors

where is eccentricity vector for the r-orbit; the orbits differ in
scale, and both particles move so as to remain in opposition relative to the
center of mass, more specifically, from (6.9a, b) we have

for all particle positions on the orbits. These relations are shown in Figure
6.2.

Fig. 6.2. Two-particle Kepler motion for

Internal motion relative to the center of mass is observable only by
reference to some external object. For example, internal motion of the
Earth-Moon gives rise to a small oscillation in the apparent direction of the
sun, as indicated in Figure 6.3. This gives us another method of determining
the Earth–Moon mass ratio. Observations give a value of 6.5" for the angle
in Figure 6.3, and  km for the distance to the Sun. From this we
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Fig. 6.3. Internal motion of the Earth–Moon system (not to scale).

obtain km for the distance of the Earth’s center from
the center of mass X. It will be noted that X lies well within the Earth’s
surface. Now, using the value km for the average Earth–Moon
distance, from (6.19) we obtain the Earth–Moon mass ratio

close to the accepted value of 81.25 obtained by more refined methods. The
result obtained by this method is evidently so much better than the result
obtained from (6.18), because it involves only a lateral cross-section of the
Earth–Moon orbits along which the Sun’s field is nearly uniform, whereas the
period T in (6.18) depends on variations of the Sun’s gravitational field over
the entire orbit. The discrepancy between these two results indicates that the
Sun has a measurable effect on the Moon’s period and challenges us to account
for it. A method for solving this problem will be developed in chapter 8.

4-6. Exercises

(6.1) For internal motion governed by Equation (6.16) show that the
energies and angular momenta of the two particles are related by

while the total internal energy and angular momen-
tum can be attributed to an equivalent single particle
of mass



236 Central Forces and Two-particle Systems

(6.2) Show that two particle elliptical orbits intersect, as in Figure 6.2,
when

4-7. Elastic Collisions

In Section 4-2 we saw how the gravitational force law could be ascertained
from experimental information about planetary orbits. For atomic particles,
however, it is quite impossible to observe the orbits directly, so we must
resort to more indirect methods to ascertain the atomic force laws. Exper-
imental information about atomic (and nuclear) forces is gained by scattering
experiments in which binary (two particle) collisions are arranged. Measure-
ments on the particles can be made only in the asymptotic regions before and
after collision, where the interparticle interaction is negligible. The problem
is to determine the forces which will produce the observed relations between
the initial and final states. To approach this problem systematically, we first
determine the consequences of the most general conservation laws for un-
bounded motion of two-particle systems. Then (in Section 4-8) we investigate
the consequence of specific laws, like the Coulomb force, which are believed
to describe atomic forces.

Conserved Quantities

We are concerned here with unbounded motion of an isolated two-particle
system. The general equations we need were developed in the last section.
For an isolated system, Equation (6.3) tells us that the center of mass velocity

is constant, so according to (6.3),

is a constant of the motion for a 2-particle system. The product of a particle
mass with its velocity is called its momentum. Thus, the vector is the
momentum of particle 1. Let and denote initial and  final momenta  of
particle 1, that is, the asymptotic value of before and after collision.
With a similar notation for the momentum of particle 2, we obtain from (7.1)
the law of momentum conservation

The additivity of momenta in this conservation law shows that momentum is
an important physical concept.

Momentum conservation is the most general principle governing collisions,
because it is independent of the forces involved. Next in generality we have
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energy conservation, which holds if the interaction force is conservative. To
determine its consequences, we introduce the internal or center of mass (CM)
momentum which, according to (6.11a, b) and (6.13), is related to the
external variables by

If p and are the initial and final values of the CM momentum then

Now, if the internal force is conservative, then the internal energy is a
constant of the motion and equal to the value of the internal kinetic energy

in the asymptotic region. Thus, energy conservation is expressed by

or simply

This can be related to external variables by using the relation

which follows from (7.3) and holds whether energy is conserved or not.
Evaluating (7.6) in the asymptotic regions and using (7.5), we obtain energy
conservation in the form

Of course, it is easier to apply (7.5) than (7.7).
A collision is said to be elastic if it conserves energy and the masses of the

particles involved. The above equations apply to any binary elastic collision.
It follows from (7.5) that an elastic collision has the effect of simply rotating
the initial CM momentum p through some angle into its final value as
described by the equation

where the unit bivector i specifies the scattering plane. The angle is called
the CM scattering angle. The internal (CM) velocities of the colliding particles
are and which are always oppositely directed accord-
ing (7.3), so the relation between initial and final states can be represented as
in Figure 7.1.

If the interparticle force is central as well as conservative, then angular
momentum L is conserved. This, in turn, implies that the direction and
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magnitude are sep-
arately conserved. Conser-
vation of implies that the
orbits of both particles as
well as the center of mass
lie in a single plane, so
can be identified with the i
in (7.8). This condition is
usually taken for granted in
scattering experiments.
Conservation of does
not supply helpful relations
between initial and final
states, because it pertains
to details of the orbits
which are not observed in
scattering. However, the in-
itial value of must be
given to determine the scat- Fig. 7.1. Center of mass variables.
tering angle from a given
interparticle force law.

Momentum and Energy Transfer

Note that all the above equations for elastic collisions hold for any value
given to the center of mass velocity From (7.4a, b) we see that the
momentum transfer defined by

is independent of However, the energy transfer defined by

depends on the value of for, with the help of (7.4a, b), we can express it in
the form

According to (7.10), is positive if particle 1 loses energy in the collision
and negative if particle 1 gains energy.

Equation (7.11) has important applications in astromechanics as well as
atomic physics. A spacecraft travelling from Earth to the outer planets
Uranus, Neptune and Pluto can be given a large boost in velocity by scatter-
ing it off Jupiter. According to (7.11), the boost can be maximized by
maximizing For the Jupiter-spacecraft system, we can
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In a typical scattering experiment with atomic particles, one particle with
initial “LAB momentum” p1 is fired at a target particle at rest in the

laboratory with initial momen-
tum Scattering vari-
ables which can be measured
fairly directly in the laboratory
are indicated in Figure 7.3. The
angle is called the LAB scat-
tering angle, and is called the
recoil angle. With the "LAB
condition" Equation
(7.4a) gives the relation be-
tween LAB and CM momenta
before collision

Fig. 7.3. LAB variables.
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identify with the vel-
ocity of Jupiter relative to
the Sun. The initial
spacecraft momentum

is deter-
mined by the launch of
the spacecraft from
Earth. With p fixed,
therefore, the maximum
boost is achieved by ad-
justing the impact para-
meter for the collision so
that is parallel to
This can be arranged by
appropriate timing of the
launch and manuevering
of the spacecraft. A
“gravity-assist” trajectory
from Earth to Uranus is
shown in Figure 7.2. The
transit time from Earth to

Using this to eliminate from (7.4b), we can solve for the final LAB
momenta in terms of CM momenta, with the result

Fig. 7.2. Trajectory from Earth to Uranus with “gravity-
assist” by Jupiter.

Uranus is about 5 years on the assisted orbit as compared with 16 years on an
unassisted orbit with the same initial conditions. (Exercise (7.6)).
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These three equations (7.12a, b, c) describe all the relations between LAB
and CM variables. These relations along with the conservation laws (7.2) and
(7.5) are represented in Figure 7.4.

The laboratory energy
transfer and the angle of
deflection are of direct in-
terest in scattering, so let us
express them in terms of CM
variables and see what that
tells us. The total energy
of the 2-particle system is,
by (7.7), equal to the initial
kinetic energy of the projec-
tile, which, by (7.12a), can
be expressed in terms of the
CM momentum; thus,

Fig. 7.4. Elastic scattering variables

In the collision this energy will be redistributed among the particles. Since the
target particle is at rest initially, according to (7.10) the energy transfer  is
equal to its kinetic energy after collision; by (7.12c), then,

The fractional energy transfer is therefore

where we have used (7.5) and (7.8) to get

Note that (7.15) would be unaffected by a change in the center of mass
velocity for the two-particle system, so it must be applicable to moving targets
as well as the stationary targets we are considering.

Some important conclusions can be drawn from (7.15). The energy transfer
has its maximum value when so



This tells us that all of the energy can be transferred to the target only if
For this reason, since the mass of hydrogen is nearly the same as

the mass of the neutron, hydrogen-rich materials are more effective for slowing
down neutrons than heavy materials like lead. Also, when electrons pass
through a material they lose most of their energy to other electrons rather than
atomic nuclei. To see how little energy electrons lose to nuclei, we need only
know that the proton-electron mass ratio is 1836, so
4/1836 = 0.2%. A nucleus hardly budges when an electron bounces off it,
just as bowling ball will hardly be budged by collision with a ping-pong ball.

To relate the LAB scattering angle  to the CM scattering angle we note
that can be defined algebraically by

According to (7.12a), so if we multiply (7.12b) by and introduce the
scattering angles by (7.8) and (7.18), we obtain,

We can eliminate p and from this relation by observing that it implies

which, on substitution back into (7.19), gives

A somewhat simpler relation between scattering angles can be obtained by
taking the ratio of bivector to scalar parts of (7.19) or (7.20) to get

To interpret this formula for refer to Figure 7.4. For fixed initial
CM momentum p, the final momentum must lie on a sphere of radius
It is clear from Figure 7.4 that there is a unique value of  for every value of
in the range which covers all possibilities. Indeed, for the limiting
case of a stationary target  Equation (7.21) reduces to
whence However, in the equal mass sace , the origin 0 in
Figure 7.4 lies on the circle, and (7.21) reduces to whence

For a light target the origin 0 lies outside the circle, as shown in

Elastic Collisions                                                                                      241
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Figure 7.5. In this case, there are two values say and of the CM
scattering angle for each value of the LAB scattering angle. The two values

and can be distinguished in the lab by measuring the kinetic energy of
the scattered particle.
The LAB scattering
angle has a maximum
value given by

which can be read di-
rectly off Figure 7.5.
From this we can de-
duce, for example, that
a proton cannot be scat-
tered by more than
0.03° by an electron. Fig. 7.5. Range of scattering angles for
Therefore, any signifi-
cant deflection of protons or heavier atomic nuclei passing through matter is due
to collisions with nuclei rather than electrons.

4-7. Exercises

(7.1) Establish Equations (7.6) and (7.11)
(7.2) Prove that for elastic scattering of equal mass particles the sum of

the scattering angle and recoil angle is always 90°.
(7.3) Alpha particles (i.e. Helium nuclei are scattered elastically

from protons at rest. Show that for a scattered particle the maxi-
mum angle of deflection is 14.5°, and the maximum fractional
energy loss is 64%.

(7.4) A particle of mass collides elastically with a particle of mass  at
rest. Determine the mass ratio from the scattering angle
and the recoil angle

(7.5) An unstable particle of mass decays into particles
with masses and releasing energy Q to products.
(a) Determine the CM kinetic energies of the two particles produced.
(b) If the unstable particle has an initial kinetic energy K, deter-

mine the maximum and minimum kinetic energies of the prod-
ucts.

(7.6) Evaluate the advantage of gravitational assist by Jupiter for a
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mission from Earth to Uranus (Figure 7.2) as follows:
(a) Calculate the time of passage from Earth to Uranus on an

orbit of minimum energy. Determine the speed v of the space-
craft as it crosses Jupiter’s orbit, and the angle of intersection
between the two orbits. (Data on the planetary orbits are given
in Appendix C).

(b) Suppose that the launch is arranged so the spacecraft encoun-
ters Jupiter on the orbit specified by (a). Calculate the maxi-
mum speed that the satellite can gain from scattering off
Jupiter, and the corresponding scattering angle in the rest
system of Jupiter.

(c) Determine the distance d of closest approach to the surface of
Jupiter for maximum speed gain. (The radius of Jupiter is

culate the transit time from Jupiter to Uranus on this orbit
by evaluating the integral

The upper limit can be determined from the orbit Equation
(3.6a). Similarly, calculate the transit time from Earth to
Jupiter to get the total transit time for the mission to Uranus.
Of course, these estimates are only approximate, since the
influences of Jupiter and the Sun were evaluated separately.

4-8. Scattering Cross Sections

In a typical scattering experiment an incident beam of monoenergetic par-
ticles is directed at a small sample containing the target particles, and the
scattered particles are collected in detectors, as shown in Figure 8.1. Even
solid material is mostly “empty space” at the atomic level, so it is not difficult
to prepare a sample thin enough so that multiple collisions with incident
particles are negligibly rare compared to single collisions. Consequently, we
can restrict our attention to the scattering of the beam by a single target in the
sample.

All the particles in the incident beam have the same energy and direction
of motion. The beam has a uniform cross section with an intensity  defined
as the number of particles per unit area per unit time incident on the sample.
Let N be the number of incident particles scattered by a single target particle
in a unit time. The total cross section  is defined by

(d) Determine the eccentricity of the spacecraft’s orbit in the
heliocentric system after escape from Jupiter’s influence. Cal-
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Fig. 8.1. Arrangement for a scattering experiment.

It has the dimensions of area. It can be interpreted as the area of an imaginary
disk in the asymptotic region transverse to the beam and centered on a line
through the center of the target, so that only the incident particles which pass
through the disk are scattered. Now, consider an annulus on this disk of
radius b and width db. All incident particles intercepting this annulus have the
same impact parameter b, so, for a central force, they will all be scattered by
the same angle as shown in Figure 8.2. Particles intercepting a segment of
the annulus with area will be scattered into a segment on a
unit sphere centered at the target with the called the solid
angle. The quantity

is called the (differential) scattering cross section. Since all scattered particles
must pass through the sphere somewhere, the total cross section will be
obtained by integrating the cross section over the unit sphere, that is,

The rate at which particles are “scattered into is
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Fig. 8.2. Central force scattering for a given impact parameter or scattering angle.

which gives (8.1) when substituted into (8.3). Thus, the differential cross
section can be measured quite directly simply by counting particles scattered
through each angle, as indicated in Figure 8.1.

Given the force law which determines the scattering, we can deduce the
deflection function for the impact parameter as a function of
initial energy and scattering angle. Then we compute  and obtain
from (8.2). (Note that is negative, because, as Figure 8.2 shows, an
increase in scattering angle corresponds to a decrease in impact parameter;
for this reason the absolute value has been used in Equation (8.2).)
It is much easier to predict from a given force law than it is to
determine a force law from the observed values of So, when the force
law is unknown, the usual approach is to guess at the form of the force law,
compare the predicted with experimental data, and then look for
simple modifications of the force law which will account for the discrepancies.
Of course some discrepancies are not due to the force law at all, but to other
effects such as multiple scattering. The theory of atomic scattering has
reached a high level of sophistication, and physicists are able to distinguish a
wide variety of subtle effects. Although the classical theory of interactions
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which we have been studying must be modified to account for quantum effects
at the atomic level, we must first know the consequences of the classical
theory before we can understand the modifications of quantum theory.
Moreover, the consequences of classical and quantum theories are practically
equivalent in many situations. Therefore, it is well worthwhile to continue
applying classical concepts to the analysis of atomic phenomena.

We have reduced the problem of analyzing a scattering experiment to the
determination of the deflection function for the impact par-
ameter as a function of angle. Let us carry out the calculation of the deflection
function and scattering cross section for some important force laws.

Hard Sphere Scattering

Let us first calculate the deflection function and cross section for the simplest
kind of scattering, the scattering of particles by a stationary hard-sphere.
Later we shall see that the general problem of hard-sphere scattering can be
solved by reducing it to this one. As shown in Figure 8.3, an incident particle
is scattered impulsively on contact with the surface of the sphere. Let p and
respectively be the initial and final momentum of the scattered particle.
Energy conservation implies that

Now, the force of interac-
tion is central, though dis-
continuous at the surface of
the sphere. Consequently,
angular momentum is con-
served in the collision, and

where R is the radius vector
to the point where the par-
ticle makes contact with the
sphere. The left side of (8.6)
is the angular momentum
immediately before colli-
sion, while the right side is
the angular momentum im-
mediately after. From (8.5) Fig 8.3. Scattering by a stationary hard sphere.
and (8.6) we conclude that

and

that is, the angle of incidence equals the angle of reflection
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As Figure 8.3 shows, the scattering angle is given by
and the deflection function is given by

Therefore, and (8.2) gives

Thus, the differential cross section is isotropic, which is to say that particles
are scattered at the same rate in all directions.

Substituting (8.9) into (8.3), we get

Thus, the total cross-section is exactly equal to the cross-sectional area of the
sphere, as we expect from geometrical considerations.

Coulomb Scattering

We derived the deflection function for scattering by a Coulomb force in
Section 4-3. According to (3.24) the Coulomb deflection function is

where

for interacting particles with charges and  Now, the derivative of (8.11)
is

So, according to (8.2),

But, sin Hence,

This formula is the justly famous Rutherford Scattering Cross-section. Ernest
Rutherford derived it in 1911 and showed that it accurately described the

experiments by Geiger and Marsden. The dependence was verified
angular distribution of     particles scattered from heavy nuclei in
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over a range of angles on which varied by a factor of 250 000. The
energy dependent factor a was varied by a factor of 10. In particular, the
value agreed well with the experimental counts for backscatter-
ing (when ). Backscattering can occur only for a head on collision, and
the parameter a is the distance of closest approach. The experiments attained
sufficient energy to give values of cm for which the Rutherford
formula (8.13) held good. From this Rutherford was able to conclude that the
positive charge in an atom is concentrated in a nucleus of radius no more than

cm, about one ten thousandth of the known diameter of an atom.
The Rutherford cross-section (8.13) is infinite at As (8.11) shows,

the Coulomb force gives some scattering no matter how large the impact
parameter. In atomic scattering, however, the concentrated charge of a
nucleus is screened by the cloud of atomic electrons surrounding it. Con-
sequently, the atom will appear neutral and the scattering of particles
will be negligible for impact parameters greater than the radius of an atom
(about cm.). Coulomb’s law provides a good description of the atomic
force only for particles that penetrate the electron cloud. We have seen that
the electrons themselves cannot significantly scatter an particle, because
they are so much lighter.

Lab and CM Cross Sections

So far we have evaluated scattering cross sections only under the assumption
that the target is stationary. Target recoil is most easily taken into account by
evaluating the cross section in terms of the center of mass (CM) variables and
then transforming the result to LAB variables. We have seen the 2-particle
scattering problem is reduced to an equivalent 1-particle problem by using
CM variables.

The relation between the LAB scattering angle and the CM scattering
angle     was determined in Section 4–7. In particular, the scalar part of
Equation (7.20) gives the relation

LAB scattering through an angle  corresponds to CM
scattering through an angle into  According to (8.2),
therefore, the lab scattering cross section is related to the CM scatter-
ing cross section by

From (8.14) we obtain, after some algebra,
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For this reduces to

Recall from Section 8–7 that for there are two distinct CM deflec-
tions for each lab angle but the experimenter can distinguish between them
by an energy analysis of the scattered particles. Of course, for a heavy target

the expression (8.16) reduces to so the lab and CM
cross-sections are nearly equal.

The expression (8.16) for the factor in (8.15) shows that even
when the CM cross section is simple, the angular dependence of the lab cross
section can be quite complex. Consider for example, the CM scattering of
smooth hard spheres illustrated in Figure 8.4. The adjectives “hard” and

Fig. 8.4. CM collision of hard spheres.
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“smooth” express the assumption that the collision does not excite any
significant internal vibration or rotation of the spheres. It should be evident
from Figure 8.4 that the CM scattering of spheres with radii and is
equivalent to the scattering of a particle from a stationary sphere of radius

According to (8.9), therefore, the CM cross section has the
constant value and, by (8.15) and (8.17), the LAB cross section
for the equal mass case is

where because  when Thus, all the scattering
is in the forward direction.

4-8. Exercises

(8.1) For a particle with mass scattered by a hard-sphere with mass
show that the angle of incidence is related to the angle of

reflection by

tan

(8.2) In proton-proton scattering, the incident particles scattered cannot
be distinguished from recoiling targets. Show, therefore, that for
classical Coulomb scattering the angular distribution of protons
detected in the LAB should be given by

(8.3) The CM energy distribution of scattered particles with final LAB
energy E is given by

Show that for hard-sphere scattering

and for Coulomb scattering

if
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(8.4) The screening of nuclear charge by atomic electrons can be taken
into account in a rough way by using the Cutoff Coulomb force
defined by

For a stationary target, use the eccentricity conservation law of
Section 4-3 to derive the following expression for momentum trans-
fer to the scattered particle

where b is the impact parameter and is the energy.

where Derive the differential scattering cross sec-
tion

Note that this reduces to the Rutherford cross section for a
and to the hard-sphere cross section for What is the total
cross section?

Express this result in terms of the scattering angle and derive the
deflection function



Chapter 5

Operators and Transformations

This chapter develops a system of mathematical concepts of great utility in all
branches of physics. Linear operators and transformations are represented in
terms of geometric algebra to facilitate computation. The group theory of
rotations, reflections and translations is discussed in detail. The most import-
ant result is a compact spinor representation of finite rotations, which is
shown to be a powerful computational device. This representation is used to
develop the kinematics of rigid motions, which, in turn, is applied to the
description of reference frames and motion with respect to moving frames.

5-1. Linear Functions and Matrices

Linear functions arise so frequently in physics that it is worthwhile to study
their mathematical properties systematically.

A function is said to be linear if

where and are scalars. The condition (1.1) is equivalent to the two
independent conditions

We have been using a variety of linear functions all along, of course. For
example, the function is linear function of a vector variable. The
linearity of this function comes from the distributive property of the inner
product; thus,

252
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Similarly, a linear bivector-valued function of a vector variable is defined by
And a spinor-valued function of a vector variable is defined by

In general, the sum of linear functions with the
same domain is also a linear function.

We shall be concerned primarily with vector-valued linear functions of a
vector variable, more specifically, with linear functions which transform (or
map) vectors in Euclidean 3-space into vectors in  Such functions are
commonly called linear transformations, linear operators or tensors. Strictly
speaking, the tensors we deal with here are tensors of rank 2, but we can
ignore that, since we will not need a more general concept of tensor. We
have, of course, encountered specific tensors before; for example, the projec-
tion

and its generalizations introduced in Section 2-4.
Although the terms “linear transformation” and “tensor” refer to math-

ematical functions of the same kind, they are not completely synonymous,
because they have different connotations in applications. The term “tensor”
is used when describing certain properties of physical systems. For example,
the inertia tensor is a property of a rigid body to be discussed in Chapter 6. It
is never called the “inertia linear transformation”. On the other hand, the
term “transformation” generally suggests some change of state in a physical
system or an equivalence of one system with another. The term “linear
operator” is fairly free of such connotations, so it may be preferred when the
emphasis is on mathematical structure.

To handle linear transformations efficiently, we need a suitable notation
and formulation of general properties. For a linear transformation it is a
common practice to write allowing the parenthesis to be dropped in
writing f as a function of x. Accordingly, the composite function. g(f(x))  of
linear functions f and g can be written in any one of the forms

The composite gf of linear operators is often called the product of g and f.
There is some danger of confusing this kind of product with the geometric
product AB of multivectors A and B, because we will have occasion to use
both kinds of product in the same equation. However, to help keep the
distinction between multivectors and linear operators clear, we shall usually
use script type to denote linear operators. An important exception to this
convention is the most elementary kind of linear transformation

obtained by multiplying vectors by a scalar Here the same symbol is used
to denote both a scalar and the associated linear operator.

Both the product gf and the sum of linear operators are themselves
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linear operators. The product is associative, that is, for linear operators f, g
and h we have the rule of composition

From (1.2a) it follows that the operator product is also distributive with
respect to addition;

The product of linear operators is not generally commutative. However, from
(1.2b) it follows that

that is, all linear operators commute with the operation of scalar multiplica-
tion.

Note that in Equations (1.6, 7, 8) the linear operators can be regarded as
combining with other operators rather than operating directly on vectors. The
general rules for adding and multiplying operators are the same as rules of
elementary scalar algebra, except for the restrictions on the commutative law.
For this reason, the study and application of linear operators is called linear
algebra or operator algebra.

The reader cannot have failed to notice that the abstract algebraic rules
governing linear algebra are identical to rules governing geometric algebra.
This identity is no accident. Every specific linear operator can be constructed
from multivectors using the geometric sum and product alone. Equation
(1.3), for example, gives the construction or, if you will, the definition of
projection operators in terms of geometric algebra. We will find similar
constructions for all the important linear operators. It will be apparent then
that the associativity (1.6) and distributivity (1.7) of linear operators can be
regarded as consequences of the associativity and distributivity of the geo-
metric product. Thus, linear algebra can be regarded as an important applica-
tion of geometric algebra rather than an independent mathematical system.

Let us now turn to the development of some general concepts useful for
characterizing and classifying linear operators.

Adjoint Operators

To every linear operator f on there corresponds another linear operator
on uniquely defined by the condition that

for all vectors x and y in To emphasize tha f operates before the inner
product, we may write (1.9) in the form



The operator is called the adjoint or transpose of f. Its significance will
become clear after we have seen how it can be used.

Outermorphisms

Recall from Section 2–3 that a vector space  generates a geometric algebra
with We shall now show how every linear transformation f on
induces a natural linear transformation on We define the induced

transformation of a bivector by

Thus, transforms bivectors into bivectors. The fact that it is a linear
transformation of bivectors follows from the linearity of the outer product. In
particular, the distributive rule for the outer product gives

Naturally, the induced transformation of a trivector into a trivector is
defined by

Since every trivector is proportional to the dextral unit pseudoscalar i, we can
write

where det f, called the determinant of f, is a scalar depending on f. Since
is the oriented volume of a parallelepiped with “edges” x, y, z, we can

interpret (1.14) as an induced change in scale of the volume by the factor det
f. If det f is negative, then the orientation as well as the magnitude of the
volume is changed.

Supposing that is not zero, we can solve to get several
equivalent expressions for the determinant:

The first equality can be regarded as a definition of the determinant. This is
consistent with the more general definition of a determinant given in Exercise
(1.8).

The induced transformation of a trivector is simpler than that of a bivector,
because it involves a change of scale only. However, since is a directed
area, the linear transformation can be interpreted as a change of scale
together with a change in direction of the directed area.

We can extend the induced transformation of the entire geometric algebra

Linear Operators and Matrices 255
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by adopting the notation for vectors and defining the induced trans-
formation of a scalar by

Then is defined uniquely on all multivectors X, Y, . . . in To sum up, the
operator has the following properties: It is linear.

It is grade-preserving,

and it preserves (i.e. commutes with) outer products.

It does not preserve the inner product, that is, is not generally equal
to

The transformation induced by f is called an outermorphism of The
root “morphism” is widely used in mathematics with reference to functions
which preserve some sort of mathematical structure. Thus, the name “outer-
morphism” expresses the fact that preserves the outer product.

Since the adjoint of f is also a linear transformation, it too induces an
outermorphism, which we designate by the same symbol and define by
writing

Obviously, the general properties of the outermorphism are the same as
those written down for in (1.17a, b, c).

Nonsingular Linear Operators

A linear operator f on is said to be nonsingular if and only if det or,
equivalently,

If f is a nonsingular linear operator, there exists a linear operator called
the inverse of f, such that

where 1 is the identity operator defined, in accordance with (1.5), by

Thus, for any vector x in we have

The inverse operator can be computed from by using the equation



Linear Operators and Matrices 257

which is obviously valid only if f is nonsingular. Note the role of the adjoint
outermorphism and the double dual in (1.22). The right side of (1.22) shows
that is obtained from the induced transformation of the bivector yi dual
to y.

To prove (1.22), we employ the factorization of the pseudo-
scalar and proceed as follows:

Dividing this by and using the defining identity (1.21), we get (1.22) as
required. The student should carefully consider the justification for each step
in this proof.

Matrix Representations of Linear Operators

For some kinds of computation it is convenient to employ a standard basis
for defined by the orthonormality condition

and the relation

of the base vectors to the dextral unit pseudoscalar.
Any vector x in can be expanded in a standard basis; thus,

The scalar components in the expansion (1.25a) are given by

for
A linear operator f transforms each vector in the standard basis into a

vector which can be expanded in the standard basis, as expressed by the
equation

Each of the scalar coefficients is called a matrix element of the operator f,
and the set of all such matrix elements denoted by is called the
matrix of f in the standard basis. The matrix is called a matrix to
indicate the range of the indices The matrix elements of f are
given by
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The complete matrix can be written as an array of the matrix elements in the
following way:

A linear operator is completely determined by its matrix in a given basis,
for the matrix determines the transformation of the basis by (1.26a), which, in
turn, determines the transformation of any given vector.

Consequently, the equation

is equivalent to the matrix equation

which is actually a set of 3 simultaneous equations obtained by dotting (1.28a)
with each of the vectors and using (1.27). This can be expressed by writing
the matrix equation (1.28b) as an array of the form

The set of matrices can be made into a matrix algebra which is
equivalent to the linear algebra of operators on Thus, the operator sum

corresponds to the matrix sum

The operator product gf corresponds to the matrix product

since

Thus, the product of matrices is equal to the matrix of the operator product:

According to (1.20) and (1.23), the identity matrix corresponding to the
identity operator is determined by
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Consequently, the operator equation corresponds to the matrix equa-
tion

And the equation corresponds to

Any other operator equation can be converted into a matrix equation in a
similar way, and vice-versa.

For any matrix [f] we define the determinant as equal to the determinant
of the corresponding operator f. Thus, using (1.26b) and (1.15) we can write

The value of the determinant is a scalar which can be computed from the
matrix elements by the Laplace expansion (Exercise (1.9)).

Matrix algebra is widely used in mathematics and physics to carry out
calculations with linear operators. Since the matrix elements are scalars,
matrix algebra has the advantage of reducing all such calculations to addition
and multiplication of real numbers. It has the disadvantage, however, of
requiring that a basis be introduced which may be quite irrelevant to the
problem at hand, and this often obscures the geometrical meaning of the
transformations involved.

Geometric algebra is a more general and efficient computational tool than
matrix algebra. In the next two sections we shall see how the most important
linear transformations can be expressed in terms of geometric algebra so that
computations can be carried out without introducing an arbitrary basis. This
is not to say that we shall dispense with matrix algebra. Rather we shall regard
it as subsidiary to geometric algebra. In some problems a basis is natural or
information is given in matrix form, so matrices should be used. In other
problems, which we shall formulate and solve without matrices, the results
will be put in matrix form for comparison with standard treatments using
matrix algebra. Matrix algebra itself is simplified and clarified when used in
conjunction with the operations of geometric algebra, because geometric
algebra enables us to operate directly with vectors without decomposing them
into components.

5-1. Exercises

(1.1) Prove that for if and only if for some
nonzero vector z in the plane.

(1.2) Prove that when X is a k-blade.
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(1.3) Prove that Generalize the proof to
show that det f = det f.

(1.4) Prove that the following propositions about a linear transformation
f on are equivalent:

(a) f is nonsingular.
(b) if and only if
(c) To every vector y there corresponds a unique vector x such

that
(1.5) Prove the following identities:

(a)
(b)

(1.6) To find the inverse of a linear transformation. Equation (1.22) can
always be used, but a more direct approach is often better. Find the
inverse of

by solving the algebraic equation  for x as a function of y.
(1.7) Find the inverse of the linear transformation

where is, of course, a bivector.
(1.8) The entire treatment of linear operators and matrices in this section

is easily generalized to vector spaces of any finite dimension. Details
are given in the book Geometric Calculus (1984), but let us look at
some of the basic ideas.

A set of linearly independent vectors  is a frame (or
basis) for n-dimensional vector space. By generalizing the argument
in Exercise (2-1.2), it can be proved that is a
necessary and sufficient condition for the vectors to be linearly
independent.

Any matrix of scalars with can be expressed
in the form where the and are vectors. The determin-
ant of the matrix is defined by

The determinant is commonly represented as an array; thus,
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The number of rows and columns in a determinant is called its rank.
All the properties of determinants are consequences of general

properties of inner and outer products established in Section 2.1.
Establish the following properties: A determinant

(a) changes sign if any two rows are interchanged;
(b) is unchanged by an interchange of rows and columns;
(c) vanishes if two rows are equal;
(d) vanishes if the rows are linearly dependent.

A determinant of rank n can be reduced to determinants of lower
rank by using the Laplace expansion:

Derive the result.
(1.9) Use the Laplace expansion to evaluate the determinant of a linear

operator in terms of its matrix elements. Specifically, from Equation
(1.34), derive the result

(1.10) The equation

can be solved for the scalars in terms of the vectors and c if the
are linearly independent, that is, if

Derive the solution

where indicates that c has been substituted for in the product
Suppose that is proportional

to Derive Cramer’s rule, expressing the as a ratio of deter-
minants:

(1.11) Frames and Reciprocal Frames

A frame of vectors in determines a pseudo-
scalar which is necessarily a non-vanishing scalar multiple
of the righthanded unit pseudoscalar i; thus, The
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determinant of the frame is positive (negative) if the
frame is right (left) handed. The reciprocal frame is
determined by the set of equations

for j, k = 1, 2, 3, where if and if Show
that the unique solution of these equations is given by

Note that the orthonormal frame is reciprocal to itself.
Any vector a in (i) can be expressed as the linear combination

where the summation convention has been used to abbreviate the
sum on the right. The scalar coefficients are commonly called
contravariant components of the vector a (with respect to the frame

). The reciprocal frame simplifies the problem of determining
these coefficients from a and Show that

and that this solution is merely an application of Cramer’s rule
(Exercise (1.10)). Similarly show that the covariant components
of a, which are defined by the equation are determined by
the equations

(1.12) Let be an n-dimensional vector space with an orthonormal basis
and pseudoscalar For a linear

operator f on the matrix elements of the adjoint operator  are
given by

Thus, the matrix element is obtained simply by transposing the
indices on The transformation of the basis by is therefore given
by

Show that the matrix elements of the inverse operator are given
by the ratio of determinants
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where indicates that has been replaced by

5-2. Symmetric and Skewsymmetric Operators

In this section we study the properties of symmetric and Skewsymmetric linear
operators. Although the mathematical results have many physical appli-
cations, they will be needed in this book only to determine the forms of
inertia tensors for rigid bodies. So the student can skip this section until that
information is required.

A linear operator is said to be symmetric (or self-adjoint) if that

skewsymmetric (or antisymmetric) if Indeed, any linear operator f
can be uniquely expressed as the sum of a symmetric operator and a
Skewsymmetric part One simply forms the operator identity

Hence,

where

Skewsymmetric Operators

We consider Skewsymmetric operators first, because they are so easy to
characterize completely. Indeed, any skewsymmetric transformation  can
be put in the canonical (or standard) form

where A is a unique bivector. All the properties of are therefore deter-
mined by the algebraic properties of the bivector A; the skewsymmetry, for
example, follows from

We can prove (2.2) by using the fact that is completely determined by the
transformation of a standard basis. In terms of the
standard basis, the bivector A is given by

is, if it is equivalent to its adjoint. Similarly, a linear operator is said to be
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This is proved by

This establishes (2.2) for a standard basis, whence, by linearity, the result is
generally true.

By way of example, note that the magnetic force on a charged particle is a
skewsymmetric linear function of the particle velocity. Thus,

Another important skewsymmetric operator will be seen to arise from dif-
ferentiating a rotation.

Eigenvectors and Eigenvalues

If a nonzero vector e is transformed into a scalar multiple of itself by a linear
operator f, we have the equation

where is a scalar. We say that e is an eigenvector of f corresponding to the
eigenvalue Obviously, any nonzero scalar multiple of e is also an eigenvec-
tor of f. The problem of finding the eigenvalues and/or the eigenvectors for a
given operator is called the eigenvalue or eigenvector problem.

The simplicity of the “eigenvalue equation” (2.4) shows that very basic
properties of a linear transformation are described by its eigenvectors and
eigenvalues. Therefore, it is often important to determine these properties if
they are not evident from the form in which the transformation is given. For
example, if we are given the matrix of an operator f, then we have the
vectors

To develop a general method for solving the eigenvalue problem from this
information, note that (2.4) can be written in the form

showing that the operator is singular. But every singular operator has
a vanishing determinant, hence
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This is commonly called the secular equation for f. The left side of (2.6) is a
third degree polynomial in with coefficients composed of the The reader
is invited to expand the numerator and show that (2.6) can be put in the form

where the scalar coefficients are given by

Since the secular equation is an algebraic equation of the third degree, the
fundamental theorem of algebra tells us that it has at most three distinct
roots, some of which may be complex numbers. The real roots are the desired
eigenvalues. Complex roots are also regarded as eigenvalues in conventional
treatments of linear algebra, but geometric algebra makes this unnecessary,
as explained below and at the end of Section 5–3.

After the eigenvalues have been determined, the corresponding eigenvec-
tors can be found from (2.5). To do this, it is convenient to write (2.5) in the
form

where the vectors

are known for each eigenvalue and the scalar components of the
eigenvector are to be determined. Equation (2.8a) can be solved for ratios of
the (Cramer’s rule). Thus, we can “wedge” (2.8a) with g3 to get

Whence

Similarly,

Since the length and sense (or orientation) of the eigenvector e is not
determined by the eigenvector equation (2.5), we are free to fix them by
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assigning any convenient value to the component then and are
uniquely determined by (2.9a, b).

If is a single root of the secular equation, then 2 of the 3 vectors
are necessarily linearly independent, and only one component

of the eigenvector e can be specified arbitrarily, as we have seen. However, if
is a double root of the secular equation, the are not linearly independent

and two components of e can be specified arbitrarily. In this case, Equations
(2.9a, b) cannot be used to obtain  and However, we are free to set

so going back to (2.8a) we get

from which can be obtained trivially. Alternatively, we can set and
so (2.8a) reduces to

The eigenvector we get from (2.10b) is linearly independent of the eigenvec-
tor we get from (2.10a). Any other eigenvector obtained by a different choice
of components will be a linear combination of these two eigenvectors. Thus,
the eigenvectors corrresponding to a double root of the secular equation form
a plane, so the eigenvector problem is solved when two independent vectors
in that plane have been found.

A secular equation with a multiple root is said to be degenerate; more
specifically, it is said to be k-fold degenerate if the root has multiplicity k. To
an eigenvalue with multiplicity k there corresponds exactly k linearly inde-
pendent eigenvectors, which can be found in the manner described for

Example

Let us see how the general method works on a specific example. Let us solve
the eigenvalue problem for the linear transformation specified by the matrix

Operating on a standard basis, this matrix gives

From these vectors we calculate
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which after expansion and collection of like terms takes the form

Similarly, we find

as well as

We use these multivectors in (2.7b, c, d) to evaluate the coefficients in the
secular equation; thus,

Hence the secular equation (2.7a) takes the specific form

This polynomial has the factored form

Hence the eigenvalues are 2 and 5 with double degeneracy.
To determine the eigenvector corresponding to the eigenvalue we

use (2.11) in (2.8b) to get

From this we obtain

Using this in (2.9a, b) with we get Hence,

is the desired eigenvector.
To find an eigenvector corresponding to we evaluate

and find that



268 Operators and Transformations

Using this in (2.l0a), we find when hence,

is an eigenvector. On the other hand, from (2.10b), we find that when
and hence,

is another eigenvector. Therefore, every vector in the plane determined by
the bivector.

is an eigenvector with eigenvalue
The method we have developed for finding eigenvectors and eigenvalues is

sufficiently general to apply to any problem. However, the generality of the
method can be a drawback, because it may require more work than necessary
for special problems. For example, it often happens that an eigenvector is
known at the beginning. In this case it would be foolish to use the secular
equation to find the eigenvalue. Rather the eigenvalue should be obtained
directly from

Often it is easy to identify an eigenvector from symmetries in the given
information. Thus, perusing (2.11), we see that if we add the three equations
we get

This tells us immediately that 2 is the eigenvalue corresponding to the
eigenvector   in agreement with what we found by the
general method after much labor. It may be a little more difficult to identify
the eigenvectors (2.13a) and (2.13b) by examining (2.11). But remember, any
other vectors in the plane will serve as well. Actually, as will be proved
below, all we need to do is to find a vector orthogonal to Thus, we can
write and choose so that

Clearly so in agreement with (2.13a). From
(2.11) then, we find so the eigenvalue is 5. The vector

is orthogonal to both the eigenvectors and and is, in fact, proportional to
the eigenvector (2.13b).

In the example just considered, all the roots of the secular equation are
real. To understand the significance of complex roots, consider the skewsym-
metric transformation
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where is a unit bivector. Operating on a standard basis we get

It is readily shown that the secular equation for this transformation is

The root corresponds to the eigenvector in (2.15c). The point of
interest, however, is that the roots of are “imaginary”, and it is
natural to identify them as bivectors since they must be related to
(2.15a, b) and have the form of the eigenvalue equation (2.4), with and as
eigenvectors and the bivector i as eigenvalue. The effect of the “imaginary
eigenvalue” i is to rotate the eigenvectors and by 90°, so we conclude
that, in general, complex roots in the secular determinant indicate that
rotations are involved.

Although “complex roots” of the secular equation can be interpreted in the
manner just described, we shall continue to regard only real roots as eigen-
values, because an analysis of eigenvalues is not the best way to approach
problems in which eigenvalues are complex. Already we have developed a
general method for finding the canonical form of a skewsymmetric transform-
ation which is clearly superior to the “method of eigenvalues”. In Section 5-3
we shall come to a similar conclusion about the best method for handling
rotations. By then it should be evident that the “method of eigenvalues” is
best reserved for symmetric operators, to which we now turn.

Symmetric Operators

The terms principal vectors and principal values are sometimes used for the
eigenvectors and eigenvalues of a symmetric operator. The scalar multiples of
a principal vector compose a line called principal axis of the operator. A
principal axis is thus a set of equivalent principal vectors.

The chief structural property of symmetric operators is described by the
following fundamental theorem: Every symmetric operator on has three
orthogonal principal axes. This implies, of course, that all three roots of the
secular equation for a symmetric operator must be real. Let us accept this
much without proof and see what it implies about the principal vectors. If
and are principal vectors of a symmetric operator then we have

Dotting these equations by and respectively, we obtain
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This implies that if Thus the principal vectors of a sym-
metric operator which correspond to distinct principal values are necessarily
orthogonal. If then (2.17) tells us nothing, but (2.16) tells us that any
linear combination of and is also a principal vector of  so we are free to
choose any combination that gives us a pair of orthogonal principal vectors.
The third principal axis is given immediately by Furthermore, the
principal axes are unique if all the principal values are distinct.

In mathematical terms, the theorem that a symmetric operator has 3
orthogonal principal axes is expressed by the equations

and

The operator is uniquely determined by the “spectrum” of its eigenvalues
and eigenvectors. Indeed, the operator  can be written in the canonical form

or, more abstractly,

where

is the projection of x onto the kth principal axis. The canonical form (2.19) or
(2.20a) is sometimes called the spectral decomposition or spectral form of a
symmetric operator, by analogy with the decomposition of light into a
spectrum of colors. Note that the eigenvalue equations (2.17) follow trivially
from the spectral form (2.19), so (2.19) can be regarded as the result of
solving (2.17) for the operator in terms of the and the

From the spectral form (2.20a) for a nonsingular symmetric operator the
inverse operator is given immediately by

To verify this by showing that one needs the following basic
properties of projection operators:
(a) orthogonality

(b) idempotence
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(c) completeness

If the principal values are positive, then has a unique square root

This is a square root operator in the sense that as is
readily verified. An operator f is said to be positive if for every
nonzero vector x. This implies that any eigenvalues of f are positive. So with
this nomenclature, we can assert that every positive symmetric operator has a
unique square root which is also a positive symmetric operator.

A positive symmetric operator  can be given a geometric interpretation by
considering its effect on vectors in a principal plane (i.e. a plane determined
by two principal vectors). As Figure 2.1 shows, transforms (i.e. stretches)

the points on a square
into points on a paral-
lelogram. Similarly,
transforms circles into
ellipses. In particular,
stretches the unit circle
into an ellipse for which
the lengths of the semi-
axes are the principal
values of A positive
symmetric operator
on transforms the
unit sphere into an ellip-
soid, as specified by

Fig. 2.1. Symmetric transformation with principal  values

where u is any unit vector. This is a parametric equation for the ellipsoid with
parameter vector u. We obtain a nonparametric equation for the ellipsoid by
elliminating u as follows:

Since is a symmetric operator, this equation can be put in the form

where Using the spectral decomposition of (see Equation
(2.21)), we can write (2.25) in the form
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where Equation (2.26) will be recognized as the standard “coordi-
nate form” for an ellipsoid with “semi-axes” (Figure 2.2).

We have now found a canonical form for arbitrary symmetric operators and
supplied it with a geometrical inter-
pretation. In some problems the
eigenvectors and eigenvalues are
given in the intial information so an
appropriate operator can be con-
structed directly from its spectral
form. We shall encounter variants of
the canonical form which are more
convenient in certain applications,
but all variants must, of course, be
constructed from the eigenvectors
and eigenvalues. Fig. 2.2. An ellipsoid with semi-axes

The Eigenvector Problem in 2 Dimensions

We have seen that the “secular method” for solving the eigenvector problem
can be quite laborious. For operators acting on a 2-dimensional vector space
there is an easier method, which we now derive.

For a positive symmetric operator on a plane the eigenvector equa-
tions can be written

where and are the principal vectors corresponding to the principal
values and respectively.

We assume that is known, so its action on any specified unit vector u
in the plane can be determined. Now write and decompose u into a
component  collinear with e and a component orthogonal with e. Then
we can write

Therefore,

The angle between the unit vectors e and u is given by the equation

where i is the unit bivector for the plane. Therefore, Equation (2.28) involves
three unknowns and so we need another equation before we can



which is orthogonal to u. Thus, from (2.28) we obtain

Combining (2.28) and (2.30), we get

Without loss of generality we may assume so (2.31a, b) shows that
the principal values are determined by the magnitudes of the
known vectors and In addition, we obtain the unit vector equation

from (2.31b). When reexpressed in the form this
tells us that the direction e is half way between the directions and
Therefore

is an eigenvector of for any nonzero scalar If then
is the other eigenvector we want since

Our results are summarized by Mohr’s algorithm: To solve the eigenvector
problem for a positive symmetric operator on a plane with direction i,
choose any convenient unit vector u in the plane and compute the two vectors

Then, for the vectors

are principal vectors of with corresponding principal values

(See Figure 2.3) If u happens to be collinear with one of the principal vectors,
then and (2.33b) yields that vector only. Of course, the other

vector is orthogonal to it.
The principal vectors can be

found in an alternative manner.
Multiplying (2.31a) with (2.31b)
and using (2.29), we obtain

Whence the angle is deter-
mined by

Fig. 2.3. Parameters in Mohr’s Algorithm.
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solve for them. This is most easily obtained by operating on the vector
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Then is deter-
mined by (2.29).

The name for Mohr’s
algorithm is taken from
Mohr’s circle (Figure
2.4), which is used in
engineering textbooks
to solve the eigenvalue
problem by graphical
means. A parametric
equation     for Fig. 2.4. Mohr’s Circle.
Mohr’s circle can be ob-
tained directly from (2.28) and (2.29); thus

To solve for the unknowns, Z must be known for two values of The choice
corresponding to (2.30) is

The solution of these two equations is of course equivalent to Mohr’s
algorithm. But the formulation of Mohr’s algorithm by (2.33a, b, c) has the
advantage of involving vectors only.

Example

To demonstrate the effectiveness of Mohr’s algorithm, let us solve the
eigenvalue problem for the tensor

As will be seen in Chapter 7, this is a general form for the inertia tensor of a
plane lamina. Now

and, for

Hence, for in (2.33a),

and
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Therefore, by (2.33c) the principal values are

By (2.33b) the corresponding principal vectors are

(2.40)

It will be noted in this example how the free choice of u in Mohr’s algorithm
enabled us to simplify computations by taking the special structure of  into
account.

Unfortunately, there is no known generalization of Mohr’s algorithm to
solve the eigenvector problem in 3-dimensions. However, whenever one
eigenvector is already known, Mohr’s algorithm can be applied to the plane
orthogonal to it. For example, any tensor constructed from two vectors a and
b necessarily has as an eigenvector. Thus, for (2.38) we find

5-2. Exercises

(2.1) Find the adjoint as well as the symmetric and skewsymmetric parts
of the linear transformation

(2.2) Derive Equations (2.7a, b, c, d) from Equation (2.6).
(2.3) Find the eigenvectors and eigenvalues for operators with the fol-

lowing matrices

(2.4) We write for the n-fold product of an operator with itself.
Prove that if is symmetric with eigenvalues then is sym-
metric with eigenvalues and the same eigenvectors as

(2.5) A linear operator is given by

Determine its eigenvalues and eigenvectors.



(2.6) Describe the eigenvalue spectrum of a symmetric operator  so that
the equation

is equivalent to the standard coordinate forms for each of the
following quadratic surfaces:

(a) Ellipsoid:

(b) Hyperboloid of one sheet:

(c) Hyperboloid of two sheets:

(2.7) Describe the solution set {x} of the equation

where f is any linear operator.
(2.8) If a, b, c are mutually perpendicular and  is a symmetric tensor,

prove that the three vectors  are coplanar.
(2.9) Prove the basic properties of projection operators formulated by

Equations (2.22a, b, c), and verify that the inverse of a nonsingular
symmetric operator is given by (2.21).

(2.10)  Find the eigenvalues and eigenvectors of the tensors
(a)
(b)

(2.11) For an operator f specified by the symmetric matrix

with respect to an orthonormal basis show that

are eigenvalues, and the angle from to the eigenvector is
given by
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(2.12) Solve the eigenvector problem for the tensor

where

5-3. The Arithmetic of Reflections and Rotations

A linear transformation can be classified according to specific relations among
vectors which it leaves unchanged. Such relations are said to be invariants of
the transformation. Transformations for which the inner product is an inva-
riant are called orthogonal transformations. Thus, an orthogonal transform-
ation f on has the property

for all vectors x and y in On the other hand, the property (1.9) of the
adjoint implies that

This is equivalent to (3.1) if and only if

Therefore, an orthogonal operator is a nonsingular operator for which the
inverse is equal to the adjoint.

From (3.1) it follows that

Thus, the magnitude of every vector in is invariant under an orthogonal
transformation.  The orthogonality of vectors in a standard basis is another
invariant. Specifically for (3.1) implies

This can be used to prove that the magnitude of the unit pseudoscalar is
invariant under orthogonal transformations. Since

we have

But Hence,

and
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This condition distinguishes two kinds of orthogonal transformations. An
orthogonal transformation f is said to be proper if and improper if

Proper orthogonal transformations are usually called rotations.
Our problem now is to find the canonical form for orthogonal transform-

ations, that is, the simplest expression for an arbitrary orthogonal transform-
ation in terms of geometric algebra. The general solution can be constructed
from the simplest examples.

Reflections

The simplest nonsingular linear transformation that can be built out of a
single nonzero vector u is

The magnitude of u does not actually play a role in any of these equivalent
expressions, so we might as well suppose that u is a unit vector and write

The effect of this transformation is made clear by decomposing x into a
component collinear with u plus a component orthogonal to u:

where

and

Now, u commutes with and anticommutes with Hence,

and (3.7) yields

Thus transforms each vector x into a vector x' by reversing the sign of the
component of x along u. In the vector x' is the “mirror image” of x in the
plane (through the origin) with normal u, as shown in Figure 3.1. Accord-
ingly, the transformation (3.8) is called the reflection along u.

Equation (3.8) obviously describes a linear transformation; in fact, a
reflection is an improper orthogonal transformation as we shall now show.
Consider the product of two transformed vectors:
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The scalar part of this equation
gives us

which proves that is orthogonal.
The bivector part of the equation
gives us the outermorphism

Fig. 3.1. Reflection of x along u.

Now, for transformations on
the determinant is obtained from the outermorphism of trivectors, which are
the pseudoscalars. Thus, from the product of three transformed vectors

we take the trivector part to get

The last step in (3.10) follows from the fact that all pseudoscalars commute
with the vectors in From (3.10) it follows that

Hence, the transformation is improper as claimed.

Example

Reflections occur frequently in physics. For example, for a particle rebound-
ing elastically from a fixed plane with normal u, the final momentum p' is
related to the initial momentum p by

This, of course, has the same form as (3.8), but the Figure 3.2 which we
associate with it is a little different than the Figure 3.1 associated with (3.8).
Now, Equation (3.12) implies that | P´ | = | P |, as required by kinetic energy
conservation. Consequently, we can put (3.12) in the form

We know from Section 2-4 that the product of unit vectors can be expressed
as the exponential of the angle between them. So (3.13) can be written

where i is the unit bivector for the plane of reflection and the angles and
are as indicated in Figure 3.2.
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From (3.14) it follows
that the angle of reflec-
tion equals the angle
of incidence This is
the elementary state-
ment of the “law of re-
flection”. But a full
description of a reflec-
tion must specify the
plane of reflection as
well as the angles. All
this is expressed by
(3.12), which can be re- Fig. 3.2. Elastic reflection from a plane.

garded as a complete
statement of the law of reflection. Equation (3.12) provides an approximate
description of the rebound of a ball from a wall and quite an accurate description
for the change in direction of light reflected from a plane surface. It provides an
especially efficient means of computing the net effect of several successive
reflections, as will be obvious after we have examined the composition of
reflections.

Rotations

Now let us consider the product of the reflection (3.7) with another reflection

where v is a unit vector. We have

This determines a new linear transformation of the form

where R can be written in the form

The reason for writing for the bivector angle between vectors u and v will
be made clear below. According to Section 2-3, R is a spinor, or quaternion.
Since

it has unit magnitude and it is said to be a unitary or unimodular
spinor. Note from (3.16) that the bivector of R can be written
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so it has the direction

We are using here important properties of exponential and trigonometric
functions established in Section 2-5.  We shall now show that this bivector
specifies a plane of rotation.

To determine the effect of  on a vector x, we decompose x into a
component in the A-plane and a component orthogonal to the A-plane

where, for

and

It follows that A anticommutes with  and commutes with that is,

and

Using these relations, we find from (3.16) and (3.17) that

and

Therefore,

Hence, from (3.15) we obtain

We have already seen in Section 2-3 that an expression of the form
describes a rotation of in the A-plane through an angle of magnitude
Therefore, the transformation (3.20) can be depicted as in Figure 3.3.

It is easy to prove that in the same way that we proved
Therefore is a rotation. More specifically, we say that (3.20) de-

scribes a rotation by (or through) an angle A. In we can write
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expressing A as the dual of a vector a. Then the direction of a specifies the axis
of rotation, as shown in Figure 3.3, and the magnitude gives the
scalar angle of rotation. It is important to note that the vector a has been
defined so that the following
right hand rule for rotation
applies: If the thumb of the
right hand points along the
direction of a, then the ro-
tation in the plane “follows”
the fingers, as indicated in
Figure 3.3.

The equation
where R is a unitary spinor is,
in fact, the desired canonical
form for any rotation on We can always express R in the form (3.16), as is
proved below. For a rotation it is usually most convenient to
express the spinor R in one of the two parametric forms,

rather than in the form (3.16). These forms exploit the fact that in every
bivector can be expressed as the dual of a vector. Since

the parameters and a in (3.22a, b) are therefore related by

The parameter is, of course, not independent of because

This will be recognized as a familiar trigonometric identity if expressed in
terms of the angle by (3.23a, b). Since the form (3.22b) expresses the spinor R
and therefore the rotation R as a function of the angle and axis of rotation
represented by a vector a, it is appropriate to refer to it as the angular form or
the angular parametrization of the rotation. The four parameters
for are called Euler parameters in the literature, so let us refer to
and respectively as the Euler scalar and Euler vector of the rotation. Other
parametrizations which are useful for various special purposes are given in the
exercises.

In the canonical form for a rotation it is obvious that the same
rotation will result if we change the spinor R to its negative –R. To understand
the significance of this ambiguity, use (3.22b) to write

Fig. 3.3. Rotation by an angle
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We may interpret R as specifying a rotation in the righthanded sense about
the ‘axis’ a through an angle in the range So (3.24)
shows that –R specifies the rotation with opposite sense through the com-
plimentary angle Thus R and –R represent equivalent rotations
with opposite senses as shown in Figure 3.4. The representation of a rotation
as a linear transformation in the form or as an orthogonal matrix does
not distinguish between these two possibilities. Therefore, spinors provide a
more general representation of rotations than orthogonal matrices. Specifi-
cally, each unimodular spinor represents a unique oriented rotation, whereas
each orthogonal matrix represents an unoriented rotation. Note that the

vector in (3.22a) specifies the oriented
axis of the rotation directly. Also, from
(3.23a) we see that is always
positive for rotations through angles less
than and always negative for their
complementary rotations. So the “short-
est” of two complementary rotations is
represented by the spinor with positive
scalar part.

Composition of Rotations

The product (or composite) of a rotation
Fig. 3.4. Equivalent Rotations.

with a rotation

is a linear transformation

where

and

In Section 2-3 we proved that the product of two spinors produces a spinor.
Furthermore,

since we have assumed Therefore is a unitary spinor
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and is a rotation. This will provide us with a proof that the product of two
rotations is always a rotation, once we have established that every rotation
can be written in the canonical form we have used.

Equations (3.25a, b, c) show that the problem of determining the rotation
which is equivalent to the product of rotations can be reduced to a

straightforward computation of the geometric product of spinors.  If the
spinor equation (3.25c) is expressed in terms of rotation angles, it becomes

This equation determines the rotation angle in terms of angles and
The same equation is basic to spherical trigonometry (Appendix A). Indeed,
the problem of determining the product of two rotations is mathematically
equivalent to the problem of solving a spherical triangle.

For computational purposes, it is more convenient to express (3.25c) in the
Eulerian form

rather than the angular form (3.26). Expanding the product in (3.27) and
equating scalar and bivector parts separately, we obtain the following ex-
pressions for the Euler parameters of

These equations can be expressed as relations among rotation angles by using
(3.23a, b), but the results are so complicated that it is clearly much easier to
avoid angles and work directly with Euler parameters whenever possible.
Note that (3.28b) gives us the rotation axis without requiring that we
use angles.

Example
To illustrate the composition of rotations, let us compute the product of
rotations by 90° about orthogonal axes, as described by the spinors

We can compute the product directly without using (3.28a, b). Thus, using
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Thus, the composite rotation is by about the “diagonal axis”

rotations on some solid object, as shown in Figure 3.5.
It is worth emphasizing that the product of two rotations is generally not

commutative, that is, This fact is perfectly expressed by the
noncommutativity of the corresponding spinors, The result of
performing the rotations specified by (3.29a, b) in both orders are illustrated
in Figure 3.5.

Fig. 3.5. Composition of Rotations.

 The reader can check this result by performing the
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The theory of rotations presented here was developed in the mid-
nineteenth century by the mathematical physicist William Rowen Hamilton,
who called it the quaternion theory of rotations.

Our formulation differs from Hamilton's in utilizing the entire geometric
algebra Hamilton employed only the quaternions, which we identify with
the even subalgebra of Geometric algebra integrates quaternions with the
rest of vector and matrix algebra and thus makes Hamilton’s powerful theory
of rotations available without translation to a different mathematical lan-
guage. Hamilton’s theory has been little used in this century just because its
relation to conventional vector algebra was obscure.

In this century Hamilton’s theory has been independently rediscovered in
an equivalent matrix form called the spinor theory of rotations. The spinor
theory is widely used by physicists in advanced quantum mechanics. We have
preferred the term “spinor” to “quaternion” to call attention to the fact that
our concept of spinor is equivalent to the concept of spinor in quantum
mechanics.

Matrix Elements of a Rotation

A rotation transforms a standard frame into a new set of orthonor-
mal vectors

The matrix elements of the rotation are therefore given by

This enables us to compute the matrix elements directly from the spinor R
and express them in terms of any parameters used to parametrize R. For
example, to express the matrix elements in terms of Euler parameters, we
substitute (3.22a) into (3.32) to get

Evaluating the scalar parts in terms of inner products, we obtain the desired
result

where

Equation (3.32) enables us to translate from spinor to matrix representa-
tions for rotations. To translate the other way from given matrix elements to a
spinor, we need to solve (3.31) for R in terms of the and This can be
done most easily by constructing the quaternion
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which is uniquely determined by the and According to (3.31), then,

So our problem is to solve this equation for R as a function of T. To that end,
notice that

and

Therefore, for we have

Thus,

We can solve this equation for by taking the scalar part or by
computing the norm of both sides. Doing both, we obtain

So, if we can solve (3.35) for R in the form

This enables us to compute R from the matrix elements or any other
specification of the and the with the help of the definition of T in (3.34).
Unfortunately (3.37) is undefined for any rotation through an angle of 180°, in
which case and To handle this case, we need an
alternative parametrization of R in terms of the matrix elements.

Let us see how much we can find out about R given the transformation of a
single vector, say to From (3.31) we obtain

so

Since we already have a general expression for in (3.36), we seek to solve
this equation for Using the trick to reorder the
geometric product, we obtain
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We solve this for by using

and

Thus, we obtain

This gives us  from and provided we know      and From (3.34) and
(3.36) we have

Using this in (3.33) we obtain

Unfortunately, (3.39) and (3.40) do not determine the correct sign of
relative to However, this can be taken care of by using (3.33) again to get

Equation (3.38) supplemented by (3.40) and (3.41) provides a practical
means of computing  from the matrix elements though it is not so
neat as (3.37).

Equation (3.38) is singular only when that is, when  is rotated by
180°. Of course, we get two similar equations by changing the subscripts from
3 to 2 or 1 in (3.38). At least one of these three equations will be nonsingular
for any rotation.  For numerical purposes, the optimal choice among the three
possibilities corresponds to the most positive among and This
amounts to selecting from and the vector which is closest to the
rotation axis.

By deriving explicit formulas for calculating the spinor of a rotation from
any given rotation matrix, we have proved, as a byproduct, the earlier
assertion that every rotation R can be written in the canonical form
For we know that every rotation is determined by its matrix or the transform-
ation of a standard basis.

With geometric algebra at our disposal, it should be obvious that the spinor
representation of rotations is superior to the matrix representation for both
theoretical and computational purposes. Rotations are characterized so much
more simply and directly by spinors than by matrices! Even in problems
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where a rotation matrix is given as part of the initial data, the most efficient
way to use it is usually to convert it to an equivalent spinor using (3.37) or
(3.38). This, for example, is the most efficient general method for finding the
rotation axis and angle from the matrix elements; for, according to (3.22), the
angle and axis can be read off directly from the spinor. In many problems an
appropriate spinor can be written down directly or calculated from the given
data without introducing matrices. It is best to avoid the matrix representa-
tion of a rotation whenever possible, but we have developed the apparatus to
handle it if necessary.

Euler Angles

We have considered several different parametrizations for spinors and ro-
tations. Another parametrization which has been widely used by physicists
and astronomers is specified by the equation

Introducing the notation

we can write the parametrized spinor R in the form

The scalar parameters introduced in this way are called Euler angles.
The advantage of using Euler angles is that every rotation is reduced to a
product of rotations about fixed axes of a standard basis. It is especially easy,
then to calculate the matrix elements of a rotation in terms of Euler angles.
The rotation of a standard basis is given by

Consider the rotation of for example. From (3.43a) we have

and, since

Therefore,

From this the matrix elements can be read off directly (Exercise
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3.8). Figure 3.6 shows the effect on a standard basis of the successive rotations
by Euler angles as specified by (3.42).

From the final diagram in Figure 3.6, we can see a different way to describe
rotations with Euler angles. We can read off the following spinor for the
rotation directly from the diagram:

Fig. 3.6. Rotations determined by the Euler angles.

This expression tells us that the net rotation can be achieved by a rotation of
angle about the -axis, followed by a rotation of angle about the
so-called line of nodes, which has direction
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followed finally by a rotation of angle about
Note that the order of Euler angles in (3.46) is opposite that in (3.42).

Nevertheless, both expressions describe the same rotation; they show that the
parametrization by Euler angles can be given two different geometrical
interpretations. As we shall see in Chapter 8, the form (3.46) is preferred by
astronomers, because and can be associated with easily measured
directions. On the other hand, (3.42) has the advantage of fixed rotation axes
even for Euler angles changing with time.

To prove algebraically that (3.46) is indeed equivalent to (3.42), note that

and

Substituting this into (3.46) and using the unitarity condition for the
various spinors, we get (3.42) as desired. The student should carry this step
out to see how it works.

Canonical Forms for Linear Operators

We have found canonical forms for rotations and simple reflections in this
section and for symmetric operators in the preceding section. These results
determine canonical forms for all nonsingular linear operators, as we can now
easily show.

To complete our characterization of orthogonal operators, we need canoni-
cal forms for both proper and improper operators. The canonical form for a
proper operator (i.e. rotation) is given by (3.15). The canonical form for an
arbitrary improper orthogonal operator is determined by the following
theorem: Let be a simple reflection along any direction u, as expressed by
the canonical form (3.6). Then, there is a unique rotation such that

A canonical form for is therefore determined by the canonical forms for
and The proof of (3.48) is easy. One simply uses the fact that to
write  and so define by The fact that is a rotation
is proved by

Canonical forms for an arbitrary nonsingular operators are determined by
the Polar Decomposition Theorem: Every nonsingular tensor f has a unique
decomposition of the form

where is a rotation and and are positive symmetric tensors given by
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A canonical form for f is therefore determined by the canonical forms for
and

To prove (3.49), first note that

and

if

Therefore, the operator is symmetric, so its square root specified by
(3.50) is well defined and unique. Since  is nonsingular, we can solve (3.49)
for the rotation

It is easily verified that is indeed a rotation, and the properties of the
operator   can be determined in much the same way as the properties of

The eigenvalues and eigenvectors of describe basic structural features of
f. They are sometimes called principal vectors and principal values of f to
distinguish them from eigenvectors and eigenvalues of f. There is, of course,
no distinction if f itself is symmetric. The principal values of  are always real
numbers and, in general, they are not related in a simple way to the
eigenvalues of f, some of which may be “complex numbers”. The polar
decomposition theorem (3.49) tells us that the complex eigenvalues arise
from rotations with the imaginary numbers corresponding to bivectors for
planes of rotations, as we noted earlier in the special case of (2.15a, b). But
we have seen that geometric algebra enables us to characterize rotations
completely and effectively without reference to secular equations and com-
plex eigenvalues. Thus, the polar decomposition enables us to characterize
any linear transformation completely without introducing complex eigen-
values and eigenvectors.

The polar decomposition (3.49) provides us with a simple geometrical
interpretation for any linear operator f. Consider the action of f on the points
x of a 3-dimensional body of geometrical figure. According to (3.49). then,
the body is first stretched and/or reflected along the principal directions of f.
Then the distorted body is rotated through some angle specified by In
contrast to the clear geometrical interpretation of principal directions and
principal values, in conventional treatments of linear algebra complex eigen-
vectors and eigenvalues do not have an evident interpretation.

We shall not have the occasion to apply the polar decomposition theorem
to physics problems in this book. The theorem has been discussed only to
provide the student with a general perspective on the structure of linear
operators.
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5-3. Exercises

(3.1) Show that the transformation determined by a nonzero
vector u is a rotation. Find the axis, the angle and the spinor for this
rotation.

(3.2) Find the inverse of a reflection.
(3.3) Prove that the product of three successive elementary reflections in

orthogonal planes is an inversion, the linear transformation that
reverses the direction of every vector.
Explain how this fact made it easy to place mirrors on the moon
which reflect laser signals from Earth back to their source. What
precision measurements can be made with such signals?

(3.4) A unitary spinor R can be given the following parametrizations

where the parameters a, and b are all vectors. Establish the
following relations among the parameters:

In the following problems

where R has the parametrizations just described.
(3.5) Derive “Rodrigues formula”

(3.6) Establish the following “vector forms” for a rotation:

(3.7) Derive the following expression for the matrix elements of a rota-
tion by an arbitrary vector angle a:

where and the are “direction cosines”
of the rotation axis.
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Evaluate matrix elements for

(a)

(b)

(3.8) Evaluate the matrix elements of a rotation in terms of Euler angles
to get the matrix

(3.9) Show that any unimodular spinor R can be written in the form

where u and v are unit vectors. Derive therefrom the trigonometric
formulas

(3.10) Given that a rotation has the properties

show that

(3.11) For the composition of rotations described by the spinor equation

where

derive the “law of tangents”
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(3.12) The sum of the diagonal matrix elements of a linear transform-
ation f is called the trace of f and denoted by Tr f. Show that the
trace of a rotation is given by

where a is the vector angle of rotation.

(3.13) (a) Prove that every reflection is a symmetric transformation.
(b) Under what condition will the product of two reflections be a

symmetric transformation?
(c) Prove that every symmetric transformation can be expressed as

the product of a symmetric orthogonal transformation and a
positive symmetric transformation.

(3.14) Explain how results developed in the text can be used to prove
Hamilton’s theorem: Every rotation can be expressed as a product
of two elementary reflections.

(3.15) Find the polar decompositon of the skewsymmetric transformation

(3.16) The linear transformation

is called a shear. Draw a diagram (similar to Figure 2.1) showing the
effect of f on a rectangle in the - plane. Find the eigenvectors,
eigenvalues, principal vectors and principal values of f in this plane.
Determine also the angle of rotation in the polar decomposition of f.

5-4. Transformation Groups

So far in this chapter we have concentrated our attention on properties of
individual linear transformations. However, in physical applications trans-
formations often arise in families. For example, the change of a physical system
from one state to another may be described by a transformation, so the
set of all changes in physical state is a family of transformations. If the
changes are reversible, then this family has the general structure of a math-
ematical group. Transformation groups are so common and significant in
physics that they deserve to be studied systematically in their own right.

As there is a great variety of different groups, it will be conceptually
efficient to begin with the abstract definition of a mathematical group de-
scribing the common properties of all groups. Then we shall examine the
structure of specific groups of particular importance in physics.
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An abstract group is a set of elements interrelated by a binary
function called the group product with the following properties:

(1) Closure: To every ordered pair of group elements  the group
product associates a unique group element denoted by

(2) Associativity: For any three group elements
(3) Identity: There is a unique identity element in the group with the

property  for every element
(4) Inverse: To every element there corresponds a unique element

such that

The Rotation Group (3)

From the properties of rotations discussed in Section 5-3, one can easily show
that the set of all rotations on Euclidian 3-space forms a group for which
the group product is the composition of two rotations. This group is called the
rotation group on and denoted by (3). The rotation group deserves
detailed study, first, because it is the most common and generally useful
group in physics, and, second, because it exhibits most of the interesting
properties of groups in general. After one has become familiar with specific
properties of the rotation group, other groups can be efficiently analyzed by
comparing them with the rotation group.

As we have noted before, by selecting a standard basis we can

These matrices form a group for which the matrix product is the group
product. This group is called a matrix representation of the rotation group.
These two groups are isomorphic. Two groups are said to be isomorphic if
their elements and group products are in one-to-one correspondence. The
isomorphism between the rotation group and its matrix representation deter-
mined by Equation (4.1) is shown in Table 4.1.

Besides the matrix representation there is another important represen-
tation of the rotation group. As shown in Section 5-3, the equation

determines a correspondence between each rotation  on with matrix
and a pair of unitary spinors The unitary spinors form a group which we
dub the dirotation group and denote by 2 (3), though this nomenclature is
not standard. For this group the geometric product is the group product. The
dirotation group is commonly referred to as the spin- representation of the
rotation group. The two-to-one correspondence of elements in 2 (3) with
elements in     (3) is called a homomorphism. Table 4.1 shows the correspon-

associate with each rotation a unique matrix with matrix elements
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dence between elements and operations of these groups. In general, a
homomorphism is a many-to-one correspondence between groups, and the
special case of a one-to-one correspondence is called an isomorphism.

Homomorphic groups can be regarded as different ways of representing the
same system of mathematical relations. Mathematical groups derive physical
significance from correspondences with actual (or imagined) groups of oper-
ations on physical systems. The displacement of a solid body with one point
fixed is a physical rotation, and the set of all such displacements is the physical
rotation group. This group can be represented mathematically by any one of
the three groups in Table 4.1, a group of linear transformations (the math-
ematical rotation group (3)), a group of matrices, or the group of unitary
spinors (3). From our experience in Section 5-3, we know that for
computational purposes the spinor group is the most convenient represen-
tation of the physical rotation group, so we shall make great use of it.

Table 4.1 gives three different mathematical representations of the group
product for the rotation group. There are many others. For example, equa-
tion (3.28b) gives a representation of the group product in the form

where and are vectors with magnitude less than one which determine the
axis and angle of rotation. The group product has been written in the
functional from so as not to confuse it with the geometric product
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of vectors. With this notation the properties of the group product take
the form:
Closure:

Associativity:

Identity:

Inverse:

The set of all vectors in the unit ball is a group under the product
(4.3). According to (4.4c), the identity element in this group is the zero
vector, and, according to (4.4d), the negative of a vector in the group is its
“group inverse”. The reader can verify by substitution that the product

defined by (4.3) has the group properties (4.4a, b, c, d). However, from
the derivation of (4.3) in Section 5-3 we know without calculation that the
group properties must be satisfied, because the equation

determines homomorphisms of (3) and (3) with the group of vectors.
Each vector in the unit ball determines a clockwise rotation
through an angle about an axis with direction Note that  and
determine equivalent rotations when

Properties of the rotation group can be established by establishing corre-
sponding properties for any of the groups homomorphic to it. As a rule it will
be most convenient to work with the spinor group and its various parametri-
zations such as (4.5) or the parametrization by angle

According to (4.6), every spinor R is a continuous function of the “angle
vector” a. Since a can vary continuously to the value 0, every spinor is
continuously connected to the identity element

Because of this property, (3) is said to be a continuous group. It follows
that the homomorphic rotation group (3) is also a continuous group. The
continuity property makes it possible to differentiate the elements of a
continuous group. In Section 5-6 we shall see how to differentiate a rotation
by reducing it to the derivative of the corresponding spinor.

If we keep the direction fixed and allow the magnitude  of the
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angle vector in (4.6) to range over the values  then we get a group
of spinors with the parametric form

showing that they have a common axis n in This is the spinor group
the dirotation group in the Euclidean plane According to (4.7) all

group elements are determined by the values of a single scalar parameter a, so
and are said to be 1-parameter groups.  and are

3-parameter groups because every element can be specified by the values of
three scalar parameters, for example, the three components of the vector a in
(4.6) relative to a standard basis, or the values of the three Euler angles in
Equation (3.43).

is a 1-parameter subgroup of  while  is a subgroup of
A subgroup of a group is a subset of group elements which is closed

under the group product, so it is itself a group. Obviously, contains
infinitely many l-parameter subgroups of the type one such subgroup
for each distinct axis of rotation.

The Orthogonal Group

In Section 5-3 we saw that there are two kinds of orthogonal transformations,
proper and improper. We have seen that the proper transformations (ro-
tations) form a group The improper transformations do not form a
group, because the product of two improper transformations is a proper one.
However, this shows that the set of orthogonal transformations on is closed
under composition, so it is a group. This group is called the orthogonal group

The rotation group is obviously a subgroup of
According to Section 5-3, every rotation has the canonical form

where R is a spinor, that is, an even multivector. On the other hand, every
improper orthogonal transformation has the form

where R is an odd multivector. In both cases

Equations (4.8) and (4.9) can be combined into a single equation

where
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Thus, (4.11) subject to (4.10) is the canonical form for any element of the
orthogonal group.

In order to refer to the multivector R in (4.11) as a spinor, we must
enlarge our concept of spinor. We can then distinguish two distinct kinds of
spinor, a proper (or even) spinor satisfying (4.12a) or an improper (or odd)
spinor satisfying (4.12b). These spinors form the diorthogonal group
which, by (4.11), is two-to-one homomorphic to the orthogonal group
Obviously, the even spinors form the subgroup (3) homomorphic to the
rotation group Notice also that odd spinors cannot be continuously
connected to the identity element 1, because 1 is even; hence, is not a
continuous group. It does, however, contain two connected subsets, namely,
the even and the odd spinors. Likewise, is not a continuous group,
though it consist of two connected subsets, the proper and the improper
orthogonal transformations. Only one of these two subsets is a subgroup.

The complete orthogonal group does not play so important a role in
dynamics as the subgroup of rotations because any physical transform-
ation of a rigid body must be continuously connected to the identity trans-
formation. However, improper orthogonal transformations are needed for a
full description of the symmetries of a physical system, as we shall see in
Section. 5-5.

The Translation Group

A translation on is a transformation of each point x in to another
point

This equation is mathematically defined for all points in but in physical
applications we shall usually be concerned only with applying it to points
which designate positions of physical particles. Thus, we can regard (4.13) as
describing a shift a in the position of each particle in
a physical object, as shown in Figure 4.1. We have
already made similar interpretations of equations
describing rotations without saying so explicitly. It
should be clear from the context when such an
interpretation is made in the future.

Although translations are point transformations
and they transform straight lines into straight lines,
in contrast to rotations, they are not linear trans-
formations. However, the translations do form a
group, so it is convenient to use the operator no-
tation we have adopted for groups as well as linear transformations, dropping
parentheses to write x in (4.13) instead of (x). The main reason for this
convention is the simplicity it gives to the associative rule

Fig. 4.1. Translation by a of a
physical object.
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This rule and the other group properties follow directly from the definition of
a translation by (4.13). In addition, from (4.13) it follows that

Thus, all translations commute with one another. For this reason, the trans-
lation group is said to be a commutative group. The commutivity of trans-
lations is clearly a consequence of the commutativity of vector addition.
Indeed, it is readily verified that the function has the
properties (4.4a, b, c, d) of a group product. Hence, the vectors of  form a
group under addition which is isomorphic to the translation group on

The Euclidean Group

An isometry of Euclidean space is a point transformation of onto
which leaves the distance between every pair of points invariant. Thus, if f is
an isometry taking each point x into a point

then for every pair of points x and y we have

The condition (4.16) tells us that there is a transformation  of each vector
x – y to a vector

with the same length as x – y. What kind of a function is

Since (4.17) must apply to every pair of vectors, we have

which, when added to (4.17), gives

Setting y = 0 in this expression, we find that  has the distributive property

If we can prove also that

for any scalar then we will know that  is necessarily a linear transform-
ation. Moreover, must be an orthogonal transformation, because it leaves
the length of vectors unchanged.

Equation (4.19) can be proved in the following way. Setting –z = x in
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(4.18), we get Then setting –z = 2x in (4.18), we get
Continuing in this way we establish

where m is any integer. If x = ny where n is a nonzero integer, then

which proves that (4.19) holds when  is a rational number. Since any real
number can be approximated to arbitrary accuracy by a rational number, it
follows from the continuity of  that (4.19) must hold for any real number.
Since is a continuous function of x, the function  must be
continuous. This completes the proof that is a linear transformation.

Now, setting y = 0 in (4.17) and writing f(0) = a, we have

Thus, we have proved that every isometry of Euclidean space is the product
of an orthogonal transformation and a translation. Using (4.11), we can write
(4.20) in the form

The new notation has been introduced to indicate that each isometry
is uniquely determined by a spinor R and a vector a. In this notation

denotes an orthogonal transformation, and

denotes a translation. Note that

because of the 2-to-l homomorphism between spinors and orthogonal trans-
formations. The right side of (4.21) reduces an isometry to multiplication and
addition in geometric algebra.

The isometrics of Euclidean space form a group. The student can verify the
following group properties. The group product is given by

The identity element is

The inverse of an isometry is given by
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The most significant result here is that computations of composite isometrics
can be carried out explicitly with (4.25), without referring to (4.21).

Isometries describing displacements of a rigid body are especially import-
ant. A rigid body is a system of particles with fixed distances from one
another, so every displacement of a rigid body must be an isometry. But a
finite rigid body displacement must unfold continuously, so it must be con-
tinuously connected to the identity. From our discussion of the orthogonal
group, it should be evident that only isometrics composed of a rotation and a
translation have this property. An isometry of this kind is called a rigid
displacement. Of course a body need not be rigid to undergo a rigid displace-
ment (see Figure 4.2).

The set of all rigid displace-
ments is a continuous group
called the Euclidean Group.
This group underlies the
geometrical concept of congru-
ence. Two figures are said to be
congruent if one can be super-
imposed on the other by a rigid
displacement. Thus the Eucli-
dean Group describes all poss-
ible relations of congruency.
These relations underlie all
physical measurements. A
ruler is a rigid body, and any

Fig. 4.2. A rigid displacement is the composite of a
rotation and a translation. (The translation vector a need
not be in the plane of rotation).

being measured.
Insight into the structure of the Euclidean group can be developed by

examining specific properties of the rigid displacements. We have proved that
any rigid displacement can be put in the canonical form

Note that the rotation here is about an axis through the origin, so the origin is
a distinguished point in this representation of a rigid displacement. But the
choice of origin was completely arbitrary in our derivation of (4.28), so
different choices of origin give different decompositions of a rigid displace-
ment into a rotation and a translation. Let us see how they are related.

Let denote a rotation about a point b. This rotation can be expressed in
the notation of (4.28) by using to shift the point b to the origin,
performing the rotation about the origin and finally using to shift the
origin back to the point b. With the help of (4.21) we obtain

measurement   of   length   in-
volves rigid displacements to
compare a ruler with the object
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The rotation axis of is the set of all points invariant under that is, the
points x satisfying the equation

or equivalently,

If is not the identity transformation, Equation (4.30a or b) determines a
straight line passing through the point b. The rotations and rotate
points through equal angles about parallel axes passing through the points b
and 0 respectively. The vector b can be decomposed into a component
parallel to the rotation axis and a component perpendicular to it, as
described by the equation

Substitution of (4.31) into (4.29) gives

If then and (4.32) reduces to

Thus, rotations differing only by a shift of origin along the axis of rotation are
equivalent.

The vector is perpendicular to the axis of rotation determined
by R. We can conclude from (4.30b), therefore, that a rigid displacement
is a rotation if and only if that is, if and only if the translation
vector is perpendicular to the axis of rotation. Moreover, a fixed point

of a rotation is determined by the equation

Whence,

(4.33)

For rotation by an angle  about an axis with direction n, the spinor has the
form

When this is substituted into (4.33) a little calculation gives

Since is perpendicular to the axis of rotation, the transformation
leaves every plane perpendicular to the rotation axis invariant, and it consists
of a rotation-translation in each plane. Therefore, we have proved that every
rotation-translation in a plane is equivalent to rotation centered at
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the point specified by (4.34), as shown in Figure 4.3. Our proof fails in the
case for then (4.33) is not defined. In this case we have a pure

translation Hence, we have
proved that every rigid displacement in
a plane is either a rotation or a trans-
lation. This, of course, is just a bypro-
duct of our general results on rotations
in three dimensions.

Having determined how rotations
about different points are related, we
are equipped to choose a center of
rotation yielding the simplest possible
decomposition of a rigid displacement
into a rotation and a translation.
Given a general rigid displacement

we decompose a into compo-
nents and parallel and perpen-
dicular to the “axis” of the spinor R, so
that

Fig. 4.3. Equivalence of a rotation-trans-
lation in a plane to a pure rotation.

By comparison with (4.32), the last factor in (4.35) can be identified as a
rotation

where the center of rotation is given by (4.33) or (4.34). Therefore,
Equation (4.35) can be written

where  is a translation parallel to the rotation axis of This
result proves the theorem of Chasles (1830): Any rigid displacement can be
expressed as a screw displacement. A screw displacement consists of the
product of a rotation with a translation parallel to or, if you will, along the
axis of rotation (the screw axis). We have done more than prove Chasles’
theorem; we have shown how to find the screw axis for a given rigid
displacement. Our result shows that the screw axis is a unique line in
except when the rotation is the identity transformation so the screw displace-
ment reduces to a pure translation.

In spite of the uniqueness and simplicity of the representation of a rigid
displacement as a screw displacement, no one has shown that it has any great
practical advantages, so it is seldom used. The representation is
usually more useful, because the center of rotation (the origin) can be
specified at will to simplify the problem at hand.
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5.4. Exercises

(4.1) Prove that the translations satisfy each of the four group properties.
(4.2) Derive Equation (4.25) and prove that the isometrics of Euclidean

space form a group.
(4.3) Prove that any rigid displacement with a fixed point is a rotation.
(4.4) Prove that rotations with parallel axes do not generally commute

unless the axes coincide.
(4.5) Derive Equation (4.34) from Equation (4.33).
(4.6) A rigid displacement can be expressed as the product of a

translation  and a rotation centered at a specified point b, i.e.

Determine the translation vector c.
(4.7) A subgroup of a group is said to be an invariant subgroup

if   is in        for each in and every in
Prove that the translations comprise an invariant subgroup of the
Euclidean isometry group.

(4.8) Let denote the reflection along a (non-zero) vector a. if     is the
translation by a, then is the reflection shifted to the
point a. Show that

Thus, a translation by a can be expressed as a product of reflections
in parallel planes separated by a directance

5-5. Rigid Motions and Frames of Reference

Having determined a general mathematical form for rigid displacements in
Section. 5-4, we are prepared to develop a mathematical description of rigid
motions.

Let x = x(t) designate the position of a particle in a rigid body at time t.
According to (4.21), a rigid displacement of the body from an initial
position at time t = 0 to a position at time t is described by the equation

This gives the displacement of each particle in the body as x(0) ranges over
the initial positions of particles in the body. The displacement operator is
the same for all particles. Regarded as a function of time, is a 1-parameter
family of displacement operators, one operator for each time. A rigid motion
is a 1-parameter family of rigid displacements, described by a time-dependent
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displacement operator Since the path of a material particle is a
differentiable function of time, the displacement operator must also be a
differentiable function of time. Our next task is to compute the derivative of a
displacement operator.

Kinematics of Rigid Motions

It will usually be convenient to suppress the time variable and write (5.1) in
the form

If x and y designate the positions of two particles in the body, then

So time-dependence of the relative position r = x – y of two particles in the
body is

Since the rotation op-
erator is indepen-
dent of the choice of
particles, it follows
that the motion of a
rigid body relative to
any of its particles is a
rotation. (Euler’s The-
orem). This is illus-
trated in Figure 5.1.

Equation (5.4) ex-
presses the rotation

operator in terms of a spinor R. This enables us to compute the derivative
of a rotation from the derivative of a spinor. To carry this out we need to
prove that the derivative of a unitary spinor R has the form

where is the bivector dual of the vector The bivector property of
implies that

By appealing to the definition of reversion and the derivative, one can easily
prove that

Fig. 5.1.    Rigid motion
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which says that the operations of reversion and differentiation commute.
Consequently, we can get the derivative of R† from (5.5) by reversion, with
the result

The unitarity of R is expressed by the equation

Using this property, we can solve (5.5) for

This can be taken as the definition of  so all we need to prove is that  is
necessarily a bivector. Differentiation of (5.9) gives

Because of (5.7), then,

which proves (5.6). The property  implies that cannot have
scalar or vector parts, leaving the possibility that has nonvanishing
bivector and pseudoscalar parts. On the other hand, the requirement that the
spinor R must be an even multivector implies that  and R† are even, so, by
(5.7), must be even, and it cannot have a nonvanishing pseudoscalar part.
This completes our proof that is a bivector.

Now we can evaluate the derivative of   Differentiating (5.4) and using
(5.5) and (5.8), we have

Hence,

or, in terms of the rotation operator  and its  derivative

Equation (5.12) shows that   is a linear operator, for it is the composite of 
and the skewsymmetric linear function

We will refer to the time dependent vector or the equivalent
bivector as the rotational velocity of the time-dependent spinor

and the family of rotations it determines. The alternative term
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“angular velocity” is common, but it is misleading, because it suggests that 
is the derivative of the rotation angle, and this is true only if the direction of
the rotation axis is time-independent (Exercise (5.1)). So let us use the term
angular velocity only when the rotation axis is fixed. When the rotational
velocity is a known function of time, the spinor equation (5.5) is a well-
defined differential equation, which can be integrated to find the time-
dependence of the spinor describing the rotational motion. We have, in fact,
encountered this equation already in Section 3-6, and we know that when

it has the elementary solution

Equation (5.5) is a kinematical equation describing the rotational motion of a
rigid body. In Chapter 7 we will study the dynamical equation describing the
influence of forces on a rigid body and use (5.5) to determine the resulting
rotational motion.

With the Equation (5.12) for the derivative of a rotation at our disposal, we
can ascertain the functional form of the derivative of a general rigid motion
(5.2). Differentiating (5.2), we have

Therefore, in terms of or we have

This is an equation of the form

where v(x, t) is a time-dependent vector field giving the velocity at time t of a
particle in the rigid body located at any point x. The vector desig-
nates the center of rotation for the rigid motion, so it is natural to refer to  as
the translational velocity. If we are given the translational velocity  and the
rotational velocity as functions of time, then the rigid motion can be
determined by direct integration.

Reference Frames

We have been using the concept of position without defining it fully. For
applications it is essential that we make its meaning more explicit.

The position of a particle is a relation of the particle to some rigid body
called a reference body or reference frame. The position of a particle with
respect to a given reference frame at a specified time is represented by a
position vector x in a reference system attached to (associated with) the
frame. The set of all possible position vectors {x} is called the position space
of the reference system or reference frame.

Often the reference body presumed in a physical application is not men-
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tioned explicitly. For example, in Figure 5.1 illustrating the displacement of a
rigid body, the paper on which the figure is drawn is the tacitly assumed
reference body. The rigid body illustrated is displaced relative to the paper. A
rigid body cannot be displaced in relation to itself. A displacement is a change
in the relation to a reference body — a change of position.

The position space of a reference frame is a 3-dimensional Euclidean space.
The points (vectors) of a position space are “rigidly related” to one another
like the particles of a rigid body. Furthermore, at any given time the points in
one reference system can be put in coincidence with the points in any other
reference system by a rigid displacement. This is a consequence of our
theorem that the most general transformation leaving the distance between
points invariant is a rigid displacement. Thus, the points (position vectors)
{x} in one reference system called the unprimed system are related to the
points in another reference system called the primed system by a
transformation of the form

If x designates the position of a particle in the unprimed system, then (5.14)
determines the position  of the particle in the primed system. Thus, the
vectors x and in (5.14) designate the same physical place in relation to two
different reference bodies. The vector a locates the origin of the primed
system in the unprimed system.

The reference bodies may be moving relative to one another so in general
the transformation (5.14) is time-dependent. The rotational velocity

of the unprimed frame (or reference body) relative to the primed frame (or
reference body) is defined by

From this the derivative of the rotation is found to be

Note that equation (5.15) is actually superfluous, because it is a consequence
of (5.16). It has been written down to emphasize that there are two equivalent
ways to represent the rotational velocity, either as a vector    in the unprimed
system or as a vector in the primed system. Only one of these vectors is
needed, and the choice is a matter of convenience. We will use   rather than

in order to express the rotational kinematics in the unprimed system.
Now suppose that  is the trajectory of a particle in the unprimed

system. Substitution of   into (5.14) gives the corresponding trajectory
in the primed system. The relation between velocities in the two

frames is then determined by differentiating (5.14); thus,
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By (5.17), therefore,

If the bivector  is preferred, this takes the form

If, as “initial conditions” on the rotation operator and the translation
vector  it is required that

then (5.14) implies that  at time t, and (5.18) becomes

This equation is commonly found in physics books without mention of the fact
that it can hold only at a single time. It is not a differential equation which can
be integrated, nor can it be differentiated to find the relation between
accelerations.

To relate accelerations in the two frames we differentiate (5.18); thus

So, using (5.17), we get the desired result

Equivalently, in terms of  we have

This is the general relation between the accelerations of a particle with
respect to two reference frames with arbitrary relative motion.

Inertial Systems

Among the possible reference systems, inertial systems are especially signifi-
cant. An inertial system is distinguished by the property that within the system
the equation of motion of a free particle is

The frame to which an inertial system is “attached’ is called an inertial frame.
Thus, with respect to an inertial frame every free particle moves in a straight
line with constant speed. The transformation from one inertial system to
another is determined by (5.22). We simply require that  when
for any position x or velocity   of a free particle. This condition can be met in
(5.22) only if             and   that is, only if the two frames are moving with
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a constant relative velocity and without a time-dependent relative rotation.
If the primed system is inertial, then Newton’s law of motion for a particle

of mass m has the usual form

where is the applied force. Although we have not mentioned it before,
Newton’s law has the form (5.24) only in an inertial system. By substituting
(5.22) in (5.24) we get the modified form of Newton’s law in an arbitrary
system namely

where

The additional terms in (5.25) arise from the motion of the reference body for
the unprimed system. The term  is called the centripetal (center-
seeking) acceleration; as Figure 5.2 shows, it is always directed toward the
axis of rotation. The term  is called the Coriolis acceleration. The other
terms do not have generally accepted names.

Of course, the terms in (5.25) can be rearranged to get an equation of
motion formally in the Newtonian form

where the effective force is given by

The “fictitious force”  –                is called the centrifugal (center-
fleeing) force, and  is called the Coriolis force.

Equation (5.27a) for motion in a noninertial system is as well-defined and
solvable as Newton’s equation for motion in an inertial system. However, the
“fictitious forces” in (5.27b) can in prin-
ciple be distinguished from the “real
force” f by virtue of their particular
functional dependence on m, x  and In
practice,  can be measured directly by
observing rotation of the frame relative
to the “fixed stars”. Ideally, fictitious
forces can be measured by observing
accelerations of free particles with re-
spect to a noninertial frame, though this
is seldom practical. Considerations of
practicality aside, the point is that a real
force (field) is distinguished from a ficti-
tious force by the fact that it depends on Fig. 5.2. Illustrating centripetal acceleration.



of Newton’s law unless and in (5.27b).
Einstein observed that a uniform gravitational force field can be

cancelled by transforming to a frame with constant acceleration so that
(5.27b) becomes

This observation played an important heuristic role in the development of
Einstein’s theory of gravitation. It does indeed show that a uniform gravi-
tational force cannot be distinguished from a fictitious force due to constant
acceleration. However, the nature of gravitation is such that there is actually
no such thing as completely uniform gravitational field, and the deviations
from uniformity are sufficient to uphold the distinction between real and
fictitious forces.

Returning to Equation (5.25), we note that if the unprimed frame is
inertial, then and , so it reduces to

This proves that a transformation between inertial systems is the most general
transformation preserving the form of Newton’s law. The general form of such
a transformation can be deduced from (5.18), which, for vanishing rotational
velocity and constant translational velocity , reduces to

where is a time-independent rotation. Integrating (5.30), we obtain

Since this applies to particles at rest as well as in motion, it gives us the
general relation between points in two inertial systems.

The group of transformations that leave the form of Newton’s law invariant
is called the Galilean Group. This is the group of transformations relating
inertial systems. Every element of the group can be put in the form (5.31)
which shows that it can be expressed as a composite of a rotation

a space translation

and a so-called Galilean transformation,

Note also that the form of (5.30) is unchanged by a time translation
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the presence of material bodies to produce it, and it cannot be “transformed
away” in a finite region of space by a change of frame. On the basis of this
distinction, then, it can be said that Equation (5.27a) does not have the form
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so this transformation belongs to the group. Clearly the Galilean Group
consists of Euclidean Group of rigid displacements extended to include
Galilean transformations and time translations. The Galilean Group is a
10-parameter continuous group with 3 parameters to determine the rotations,
3 parameters for space translations, 3 parameters for Galilean transform-
ations, and one parameter for time translations.

We have interpreted (5.31) as describing the location of a single particle
relative to two different reference bodies. It can be interpreted alternatively
as a displacement of one or more particles relative to a single reference body.
Newton’s law is form invariant in either case. The important thing is that
(5.31) describes a change in the relation of particles relative to some inertial
frame.

The form invariance of Newton’s law under the Euclidean Group means
that it provides a description of particle motions and interactions that is
independent of the relative position and orientation of the reference body,
which implies further that the reference body does not interact with the
particles described by Newton’s law. Invariance under translations means that
all places in position space are equivalent, that is, position space is homogen-
eous. Invariance under rotations means that all directions in physical space
are equivalent, that is, position space is isotropic. Similarly, invariance under
time translations means that time is homogeneous. Thus, the laws of physics
are the same at all times and all places. This crucial property of physical laws
enables us to compare and integrate experimental results from laboratories all
over the world without worrying about when and where the experiments were
done. The astronomer uses it to infer what is happening on stars many
light-years away, and the geologist uses it to ascertain how the Earth’s surface
was formed. Scientific laws are valuable precisely because they describe
features common to all experience.

Note that for inertial frames related by a Galilean transformation

each particle of the unprimed frame is moving with constant velocity v with
respect to the primed frame. Therefore each particle in the reference body of
an inertial system is a free particle. Thus, the physical requirements of no net
force on particles of the reference body distinguishes inertial frames from
other reference frames. Of course, this is an idealization that can never be
perfectly met in practice.

The derivative of the Galilean transformation (5.31) yields the velocity
addition formula

relating the velocities of a particle with respect to two inertial frames moving



that, according to (5.26), the force on the particles is the same in both
reference systems. This enables us to do such things as analyze the motion of
an object in the atmosphere or a river without considering motion relative to
the Earth until the analysis is complete. Motion relative to the Earth can then
be accounted for trivially with (5.33) or (5.34).

5-5. Exercises

(5.1) For a unitary spinor with the parametrizations

show that the rotational velocity  has the following para-
metric expressions:

where and

where and

Note that if and only if
(5.2) Four time-dependent unitary spinors satisfying are

related by the equation

Show that their rotational velocities are related by the equation

(This will be useful in Exercises (5.3) and (5.7)).

(5.3) For a unitary spinor with the Eulerian parametrization

show the rotational velocity has the parametric form

where
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with relative velocity v. The important thing about this formula is the fact



316 Operators and Transformations

and

(5.4) The derivative of a time-dependent linear operator is de-
fined by

Show from this that  is a linear operator. Show that the usual rule
for differentiating a product holds for the composite of time-

This rule does not hold for the composite of arbitrary functions.
Show this explicitly for the composite of rigid displacements.

(5.5) Fill in the steps in the derivation of Equation (5.17).
(5.6) Derive Equations (5.19) and (5.23) directly using

(5.7) A wheel of radius b is rolling upright with constant speed v on a
circular track of radius a (Figure 5.3). The motion of a point x on
the wheel can be described by the equation

which can be interpreted as follows: a
fixed point on the wheel is rotated
about the axis with constant angular
velocity by a spinor ; then the
wheel is translated by along its axis
from the center to the edge of the
circular track where it is rotated with
constant angular velocity by a
spinor . Consequently,

Fig. 5.3. Wheel rolling on a circu-

tational velocity of the wheel about its moving
center.

(b) Calculate the velocity and acceleration of an arbitrary point x
on the wheel.

(c) Evaluate the velocity and acceleration at the top and bottom of
the wheel.

dependent linear operators  and , that is, show that

(a) Determine  and the ro- lar  t rack .
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5-6. Motion in Rotating Systems

A choice of reference frame will be dictated by the problem under consider-
ation. The frames which we have most occasion to use are distinguished by
their choice of origin. A reference system (and its associated frame) is said to
be heliocentric if its origin is at the center of the Sun, geocentric if its origin is
at the center of the Earth, or topocentric if its origin is fixed on the surface of
the Earth. None of these frames is inertial, since a topocentric frame rotates
with the Earth, the Earth revolves about the Sun, and the Sun orbits in a
galaxy. Let us evaluate the effect of these relative motions on the observed
motion of objects on the Earth.

The relative directions of the distant stars observed on the “celestial
sphere” vary so little in “human time intervals” that they can be used as an
absolute standard of rotationless motion. With respect to an inertial frame,
then, the directions of the distant stars must be fixed in time.

Let be the position space of an inertial system in which the Earth is
initially at rest with its center at the origin. Let {x} be the position space of a
geocentric system with the Earth as a body of reference. If we neglect, for the
time being, the earth’s acceleration due to motion about the Sun, the two
frames are related by

where the operator or the spinor R describes the rotation of the Earth
relative to the fixed stars. The consequences of this relation were derived in
Section 5-5, so we need only to summarize the relevant relations here. The
Earth’s rotational velocity     (in the rotating Earth system) is defined by the
spinor equation

or the corresponding operator equation

The equation of motion

in the inertial frame corresponds to the equation of motion

in the Earth frame, with

Let us examine, now, the effect of the real and fictitious forces in (6.5) on a
particle near the Earth’s surface. The term is entirely negligible
compared to the other forces, because variation in the Earth’s rotation period



is of the order of milliseconds per year and variation in the
direction of is comparably small. We shall see how to calculate later on
when we examine the rotational motion of the Earth itself in more detail.

According to Newton’s law of gravitation, in the aproximation of a spheri-
cal Earth, the gravitational force on a particle outside the surface of the Earth
is

where M is the mass of the Earth. Observe that, by (6.1)

showing that (6.1) is consistent with (6.6).

True and Apparent Weight

This is the resultant of the gravitational and centrifugal forces (Figure 6.1),
which are difficult to separate near the surface of the Earth, because they are
slowly varying functions of position. To estimate the contribution of the
centrifugal force, we use

From this we see that has the value

at the Earth’s pole and the value

at the Equator. Hence

where we have used

for the angular speed and

. The discrepancy between this value and the calculated value is due to the
oblateness of the Earth. Indeed, it can be used to estimate the oblateness of

The gravitational force  exerted by the earth on an object is called the
true weight of the object. The object’s apparent weight W is

for the mean radius of the Earth. The measured value of is 5.2 cm
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the Earth. The value
of g at sea level is
about , so
the relative contribu-
tion of the centrifugal
force varies by only
half a percent from
pole to Equator.

Coriolis Force

The transformation
from the geocentric
system {x} to a to-
pocentric system {r},
as shown in Figure
6.2, is a simple trans-
lation

Fig. 6.1. Relation between true and apparent weights (not to
scale).

where a is a fixed point on the Earth’s surface. Substituting (6.13) into (6.5),
we get, for constant , the equation of motion

where the centrifugal force has been incorporated into the “gravitational
force” mg and non-gravitation forces have been omitted for the time being.

From (6.14) we can calculate the
effect of the Coriolis force on projec-
tile motion in the approximation
where g is constant. Actually, in Sec-
tion 3-7 we found the exact solution
to (6.14) for constant g and . In the
present case, however, for typical
velocities we have
because of the relatively small value
(6.11) for the angular velocity of the
Earth. Consequently, a perturbative
solution to (6.14) is more useful than
the exact solution. We could, of
course, get the appropriate approxi-
mation by expanding the exact sol-
ution, but it is at least as easy to get it
directly from (6.14) in the following
way.

Fig. 6.2. A topocentric frame with latitude   .
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Let us write so (6.14) takes the form

Regarding the last term in (6.15) as a small perturbing force, the equation can
be solved by the method of successive approximations. We write the velocity
as an expansion of successive orders in ,

The zeroth order term is required to satisfy the unperturbed equation
, which integrates to

where is the initial velocity. Inserting v to first order in Equation (6.15) we
get

Neglecting the second order term this equation reduces to an
equation for when (6.17a) is used;

This integrates to

(6.17b)

In a similar way, we can determine the second order correction  and higher
order terms if desired.

Substituting (6.17a, b) into (6.16), we have the velocity to first order in

Integrating this, we get a parametric equation for the displacement

where the deviation from a parabolic trajectory is given to first order by

To estimate the magnitude of the correction we observe from (6.19)
and (6.20) that

For the correction to be as much as one percent, then, we must have
, and from the value (6.11) for we find that the time of flight  t

must be at least two min. As the time of flight in a typical projectile problem is
less than 2 min., we need not consider corrections of higher order than the
first. Indeed, before higher order corrections are considered, the assumption
that g is constant should be examined.
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to eliminate in (6.20), with the result

This shows the directional dependence of on r. If needed, the dependence
of t on r can be obtained from (6.22); thus

Notice that

showing that the two terms in (6.23) are of the same order of magnitude.
From (6.23) we find that the change in range due to the Coriolis force is

Similarly, the vertical deflection is found to be

The vector is directed West
(Figure 6.3), except at the poles, so
both (6.25) and (6.26) vanish for tra-
jectories to the North or South. They
have maximum values for trajectories
to the West. This is due to rotation of
the Earth in the opposite direction
while the projectile is in flight, as can
be seen by examining the trajectory in
an inertial frame.

In most circumstances, resistive
forces will have a greater effect on the
range and vertical deflection than the
Coriolis force. The lateral Coriolis de-
flection is more significant, because it
will not be masked by resistive forces.
So let us examine it. For a target on
the horizontal plane g·r = 0 and
is a unit rightward vector. From

Fig. 6.3. Coriolis effects are largest for west-
ward motion in both Northern and Southern
hemispheres.

As it stands, the expression (6.20) for Coriolis deflection is not in the
most convenient form, because it is not given as a function of target location r.
This can be remedied by using the zeroth order approximation



Using (6.24) we have

For nearly horizontal trajectories which is
positive in the Northern hemisphere and negative in the Southern hemisphere
(Figure 6.3). As a general rule, therefore, the Coriolis force tends to deflect
particles to the right in the Northern hemisphere and to the left in the Southern
hemisphere. This rule is violated, however, by highly arched trajectories, and
from (6.27) one can determine the trajectory without deflection to a given
target.

Explicit dependence of the lateral Coriolis deflection on latitude mag-
netic azimuth and firing angle can be ascertained by reading off the
necessary relations from Figure 6.4 to put (6.27) in the form

The condition for vanishing deflection is
therefore

and in the Northern hemisphere deflection
will be to the left for and to the right
for

The Coriolis force plays a significant role
in a variety of natural processes, most
prominently the weather. It is, for example,
responsible for the circular motion of cy-
clones. To see how this comes about, con-
sider the following equation of motion for a
small parcel of air:

Fig. 6.4. Topocentric directional par-
ameters.
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(6.23), therefore, the rightward deflection  is given by
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Here is the mass density of the air and P = P(x) is the air pressure, so
describes the local direction and magnitude of the change in air pressure. A
cyclone is a system of concentric isobars (lines of constant pressure), as shown

in Figure 6.5. As the figure suggests, a
parcel of air at rest will be accelerated in
the direction of lower pressure.
The Coriolis force increases with vel-
ocity deflecting the air from the direc-
tion until the condition of
equilibrium is reached

Fig. 6.5. Circulation of air in a cyclone.

where the air is circulating with constant speed along the isobars. This motion
tends to preserve the pressure gradient. The circulation is counterclockwise in
the Northern hemisphere and clockwise in the Southern hemisphere. Nat-
urally, cyclones arise most frequently in regions of the Earth’s surface where
the Coriolis force is greatest. Of course, our description here is highly
idealized, and as a result of effects we have neglected the air flow in a cyclone
is not precisely along the isobars.

Cyclones do not occur on the Earth’s Equator. However, heating at the
Equator causes air to rise, and the air rushing in to replace it is affected by the
Coriolis force. Consequently, the “trade winds” come from the North-East
just North of the Equator and from the South-East just South of the Equator.

Foucault Pendulum

The Coriolis force produces a small precession, or rotation with time, of a
pendulum’s plane of oscillation. To exhibit this effect for the first time and
thereby demonstrate that the Earth is rotating, Leon Foucault constructed a
heavy pendulum of great length in 1851. Accurate measurements of the
precession were not made until 1879 by Kamerlingh Onnes in his doctoral
thesis.

The equation of motion for the bob of such a pendulum is

where is the length of the pendulum and T is the tension in the
suspension, as shown in Figure 6.6.

We are interested only in the horizontal component of motion. To separate
horizontal and vertical components in the equation of motion, we write
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where x·g = 0 (Figure 6.6). Simi-
larly, we decompose     into hori-
zontal and vertical components,

with

where is the latitude, as indi-
cated in Figure 6.3. The com-
ponents of the Coriolis acceleration are given by

Thus, when (6.31) and (6.32) are substituted into (6.30), the equation of
motion can be separated into the following pair of coupled differential equa-
tions for the vertical and horizontal motions:

For the small amplitude oscillations of a Foucault pendulum, these equations
can be decoupled to a good approximation.

We can simplify (6.35) before trying to solve it by using information about
the unperturbed periodic motion of a pendulum. The term in (6.35)

as constant. Thus (6.35) can be put in the approximate form

Fig. 6.6. Parameters for a pendulum.

is periodic as well as small, for            has a fixed direction and    is positive on
the upswing and negative on the downswing. Its average value over half of
any period of the pendulum is obviously zero. Therefore we can drop that
term from the equation of motion (6.35), because we are interested not in
details of the pendulum motion during a single swing but in the cumulative
effect of the Coriolis force over many swings. Now consider the “driving force
term” – xT/mr on the right side of (6.35). This term is already an explicit
function of x, so we get the first order effect of this term on small amplitude
oscillations by regarding the coefficient



This is an equation we have encountered and solved before. It is identical to
the equation for a charged harmonic oscillator in a uniform magnetic field.

The solution of (6.37) for the initial conditions x(0) = a and is,
to a good approximation

where

is the period of the pendulum. The
solution (6.38) describes an oscillator
precessing with constant angular vel-
ocity

In the Northern hemisphere
sin so the precession is clock-
wise about Thus, the bob is conti-
nually deflected to its right as it
swings, with an angular displacement

in a single period, and cusps in the orbit at  as shown in
Figure 6.7.

Rotation and Orbital Motion

As the Earth rotates about its axis, it also revolves about the Sun. Let us see
how these motions contribute to the resultant rotational motion of the Earth.
Let {x"} be a heliocentric inertial system and let {x}, as above, be a geocentric
system fixed with respect to the Earth. These two reference systems are
related by the equation,

where

and

Fig. 6.7. Projection of the path of a pendu-
lum bob on a horizontal plane showing the
(exaggerated) Coriolis precession.
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The various quantities involved require some explanation.

Fig. 6.8 Contribution of orbital motion to the Earth’s rotation.

The translation vector a designates the location of the Earth’s center. The
spinor determines the rotation of a and so the rotation of the Earth about
the Sun, as expressed by (6.42). The vector  is constant if the Earth’s orbit is
regarded as circular, but its length varies slightly with time for an elliptical
orbit. The rotational velocity of the Earth about the Sun in the heliocentric
inertial system {x"} is given by

The period of this rotation is, of course,

Forces of the various planets on the Earth cause small time variations of
but, for present purposes, can be regarded as constant.

The spinor describes the rotation of the Earth about its axis with respect
to a frame orbiting the Sun with the Earth. The corresponding rotational
velocity in the Earth system {x} is given by

The corresponding period of rotation is

This period is directly observed on Earth as the time it takes for the Sun to



The corresponding period of rotation is

This period is directly observed on Earth as the time it takes for the fixed stars
to repeat their positions relative to the Earth during one rotation of the
Earth.

The relation among the various rotational velocities is determined by
differentiating (6.43). Thus, using (6.44) and (6.46) as well as the unitarity
property of the spinors, we obtain

Hence, by (6.48),

This is the desired relation among the various angular velocities referred to

angular velocity in the Earth frame. Since is essentially constant,
equation (6.48) has the solution

Equation (6.50) implies that must also precess about as illustrated in
Figure 6.8. By measuring to the ecliptic (the apparent path of the Sun) it is
found that so from (6.50),

This implies that orbital motion about the Sun is responsible for about
of the Earth’s rotational velocity. It is equivalent to saying

that the solar day is 3.6 minutes longer than the sidereal day.
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repeat its apparent position relative to the Earth during one revolution of the
Earth.

The spinor R describes the rotation of the Earth in any inertial system
regardless of how the origin has been chosen. The corresponding angular
velocity in the Earth frame is given by

the Earth’s frame. The spinor R appears explicitly in (6.50), because was
defined in an inertial system, so it must be transformed to the corresponding

Therefore, the vector precesses about with a period of one day.
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Larmor’s Theorem

The Coriolis force is important in atomic physics as well as terrestial mech-
anics. For example, the vibrational and rotational motions of polyatomic
molecules are coupled by the Coriolis force. Here we employ it in the proof of
a general result of great utility, Larmor’s Theorem: The effect of a weak
uniform magnetic field B on the motion of a charged particle bound by a central
force is to cause a precession of the unperturbed orbit with rotational velocity

where q is the charge and m is the mass of the particle, the
constant c is the speed of light and  is called the Larmor frequency.

The proof of Larmor’s theorem is based on the formal similarity of the
Coriolis force to the magnetic force. We are concerned with a particle subject
to the equation of motion

Here the system with origin at the center of force, typically the center of
an atomic nucleus, is regarded as an inertial system. In an attempt to simplify
the equation of motion by a change of variables, we introduce a rotating
system {r} defined by the equations

and

or

The motion of the particle in the rotating frame is described by r = r(t), while
the operator describes the motion of the frame itself and de-
scribes the composite of these two motions. In the rotating frame, the
equation of motion (6.52) becomes

where
Evidently, the Coriolis force can be made to cancel the magnetic force in

(6.55) by selecting the rotating frame so that
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Whereupon (6:55) becomes

If the magnetic field is weak and slowly varying in time, the last two terms in
(6.57) are small compared to the binding force and we have, approximately,

Thus, we have succeeded in transforming away the perturbing force from the
equation of motion (6.52). So we have proved Larmor’s theorem.

Larmor’s theorem has the great advantage of decoupling the effect of an
external magnetic field from that of the binding force so they can be studied
separately. According to (6.58), the motion in the rotating frame is the same
as motion in an inertial frame without a perturbing magnetic force, so we call
this the unperturbed motion.

Fig. 6.9(a) Unperturbed elliptical orbit = orbit in rotating frame. (b) Perturbed orbit in
inertial frame for the Case

Let us compare the perturbed and unperturbed motions. The condition
that (6.58) be a good approximation of (6.57) can be expressed in the form

Here the average value of f(r)/mr is evaluated over a period of the unper-

Equation (6.58) can be put in the form  confirming consistency with
the interpretation we have previously given to for the harmonic oscillator.
Thus, the condition (6.59) for the validity of Larmor’s theorem requires that
the frequency of the unperturbed motion be much larger than the Larmor
frequency. From our study of central forces in Section 4-5, we know that the
unperturbed orbit is elliptical or nearly so. So the perturbed orbit can be
visualized as a slowly precessing ellipse, as illustrated in Figure 6.9b.

What are typical values for and in actuality? The rate of orbital
precession can easily be estimated from known values of the constants q/mc;
thus

turbed motion. The resulting constant  can be interpreted as the frequency
of the unperturbed motion. Indeed, it will be noted that for circular orbits
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The largest magnetic fields attained in the laboratory (with superconducting
magnets) are of order gauss, in which case

so the orbit makes a complete precession in about sec. To estimate
we need some results from the quantum theory of atoms. According to
quantum theory, the orbital angular momentum of an atomic electron is an
integral multiple of Planck’s constant  so

For a circular orbit we have and so with an order of
magnitude estimate of the atomic radius, we find

We can conclude, then, that only high precision experiments will reveal
deviations from Larmor’s theorem.

The orbits of electrons in atoms cannot be observed. But angular momen-
tum and energy are constants of motion in a central field, and changes in their
values for atoms can be measured. So let us see how these constants of motion
are affected by a magnetic perturbation. The velocities of perturbed and
unperturbed motions are related by

So the angular momenta and are related by

The term is called the induced angular momentum. It is of
prime importance when However, according to our above estimates of

and when the induced angular momentum is usually smaller

Differentiating, we have

For central binding forces so

Notice that this equation of motion for angular momentum is completely
independent of any details as to how electrons are bound to atoms.

in magnitude than  by a factor of or more, so



Motion in Rotating Systems 331

We have become very familiar with the solution of an equation with the
form (6.67) for constant Thus, from the spinor equation (6.54a) we get

with

and the initial condition at t = 0. In this case, (6.65) becomes the
explicit equation

This describes a uniform precession of about as shown in Figure 6.10. In
Chapter 7, we will investigate solutions of (6.67) for time varying magnetic

fields leading to the phenomenon of magnetic re-
sonance, a phenomenon of great importance for
investigating the atomic and molecular structure of
matter.

Let us turn now to energy considerations. We
know that a conservative central force is derivable
from a potential, so writing

we get the familiar expression

for the energy of the unperturbed system. We have
observed before that the magnetic field does not
contribute to the potential energy, so from (6.52)

Fig. 6.10. Precession of angu- we get
lar momentum in a constant
magnetic field.

for the energy of the perturbed motion. A magnetic field affects the energy
only by altering the kinetic energy, so to make the influence of the magnetic
energy explicit we must compare the energies of perturbed and unperturbed
motions. From (6.63) we have

Hence,

The last term in (6.69) is neglected in the Larmor approximation, so we can
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conclude that a magnetic field induces a shift in the energy of a bound charged
particle by the amount

This energy shift in atoms is easily observed by modern methods, and it is
known as the Zeeman effect. From (6.70) it follows that the energy  is
constant for a constant magnetic field. For large magnetic fields the shift in
energy due to the last term in (6.69) can also be observed. This is known as
the Quadratic Zeeman (or Paschen-Bach) effect, since it varies quadratically
with the magnetic field strength. Like its relative, magnetic resonance (dis-
cussed in Section 7-3), the Zeeman effect is of great value for probing the
structure of matter.

5-6. Exercises

(6.1) On the surface of the Earth, the true vertical is directed along a line
through the center of the Earth, and the apparent vertical is di-
rected along a plumb line. Determine how the angle between true

the maximum value for and the latitude at which it occurs.
(6.2) At about sea level and a latitude of 45° a 16 pound (7.27 kg) steel

ball is dropped from a height of 45 m.
(a) Calculate the displacement of its point of impact to first order in

the angular velocity of the earth.
(b) It is argued that while the ball is falling, the Earth will rotate

under it to the East, so the displacement will be to the West.
Show what is wrong with this argument by describing what
happens in an inertial frame.

(c) Estimate the effect of the Corio-
lis force to order

(6.3) A free particle is constrained to move
in a horizontal plane of a topocentric
frame, but it is confined to a region
with circular walls from which it re-
bounds elastically (Figure 6.11).
Show that the direction of the par-
ticle motion processes at exactly
twice the rate of a Foucault pendu-
lum. How can this difference in pre-
cession rates be accounted for?  Fig. 6.11. A free particle reflected

(6.4) At a point on the Earth’s Equator, by circular walls, processes at twice
determine the relative magnitude the Foucault rate.

and apparent verticals varies with latitude (Figure 6.1). Estimate
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of centrifugal forces due to orbital motion about the Sun and rotation
of the Earth. (The mean radius of the Earth’s orbit is  km;
see Appendix C for the radius of the Earth.)

(6.5) List all the forces and effects you can think of (at least 10) which are
neglected when a projectile launched from the surface of the Earth
is described as moving with constant acceleration. Estimate their
magnitudes and describe the conditions under which they will be
significant.



Chapter 6

Many-Particle Systems

This chapter develops general concepts, theorems and techniques for model-
ing complex, mechanical systems. The three main theorems on system en-
ergy, momentum, and angular momentum are proved in Section 6-1. These
theorems provide the starting point for rigid body mechanics in Chapter 7, as
well as for other kinds of mechanical system discussed in this chapter. The
method of Lagrange formulated in Section 6-2 provides a systematic means
for expressing the equations of motion for any mechanical system in terms of
any convenient set of variables. The method proves to be of great value in the
theory of small oscillations as well as applications to molecular vibrations
treated in Section 6-4. The general theory of small oscillations in Section 6-4
raises the level of sophistication required of the student, so some examples of
small oscillations are treated in Section 6-3 by more elementary means.

The final section of this chapter discusses the most venerable unsolved
problem in celestial mechanics, the Newtonian 3-body problem. It comple-
ments the development of celestial mechanics in Chapter 8.

6-1. General Properties of Many-Particle Systems

Classical mechanics provides us with general principles for modeling any
material body, be it a solid, liquid or gas, as a system of interacting particles.
To analyze the behavior of a system, we must separate it from its environ-
ment. This is done by distinguishing external and internal variables. The
external variables describe the system as whole and its interaction with other
(external) systems. The internal variables describe the (internal) structure of
the system and the interactions among its parts. The analysis of internal and
external variables for a two-particle system was carried out in Section 4-6.
Here we analyze the general case of an N-particle system. The results include
three major theorems: (1) the center-of-mass theorem, (2) the angular mo-
mentum theorem, and (3) the work-energy theorem. These theorems pro-
vide a starting point for the modeling of any complex mechanical system.

334



General Properties of Many-Particle Systems 335

The superposition principle allows us to separate external and internal
forces; so the equation of motion for ith particle in an N-particle system has
the form

where the external force is the resultant force exerted by objects external to
the system, and the interparticle force is the force exerted on the ith particle
by the jth particle. Also, we assume that that is, that a particle does
not exert a force on itself.

According to the weak form of Newton’s 3rd law, mutual forces of any two
particles on one another are equal and opposite so the interparticle forces are
related by

The strong form of Newton’s 3rd law holds also that all two-particle forces are
central forces, that is, directed along a straight line connecting the particles.
The condition that interparticle forces be central is expressed by

We adopt the strong form of Newton’s 3rd law, because it holds for a large
class of systems, and it greatly simplifies the analysis. Deviations from the 3rd
law arise principally in systems composed of particles which are not accurately
described as structureless point particles but have some internal structure
which significantly affects their interactions with other particles. However, a
deeper analysis may show that the structure of such a particle can be
described by assuming that the particle is itself composed of structureless
point particles. The general results derived below provide the foundation for
such analysis.

Translational Motion

Now, to develop an equation describing the translational motion of the
system as a whole, we add the equations of motion (1.1) for each particle;
thus,

The weak form of Newton’s third law (1.2) implies that the internal forces in
the sum cancel; formally,



336                     Many-Particle Systems

To put this in the standard form for a particle equation of motion, we define
the following set of external variables for the system:

Total mass,

Center of mass (CM) ,

Total momentum,

Total external force,

In terms of these variables, Equation (1.5) has the form

This equation, along with its interpretation, is the Center of Mass (CM)
Theorem.

The system is said to be isolated if that is if the external force on
each particle vanishes. For an isolated system, then so the momentum
of the system is a constant of the motion, in other words, the momentum of an
isolated system is conserved.

According to (1.7), the CM X is a kind of average position of the particles
in a system. The CM theorem (1.10) tells us that the motion of the CM is
determined by the total external force alone, irrespective of the internal
forces. This independence of internal force is a consequence of the weak form
of the 3rd law (1.2), so empirical verification of the CM theorem supports the
3rd law.

The CM theorem describes the average motion of a system as equivalent to
that of a single particle of mass M located at the CM X. Thus, it separates
external and internal motions, allowing us to study them independently. And
when we are not interested in internal structure, the CM theorem justifies
treating the entire system as a single particle.

Internal and external properties of the system can be separated by intro-
ducing the internal variables

describing the position of each particle relative to the CM. The internal
velocities are therefore
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This leads us to the following decomposition of the total kinetic energy K for
the system:

But

Hence,

where

is the internal kinetic energy, and

is the CM kinetic energy, also known as the translational kinetic energy of the
system. Thus, the total kinetic energy is the sum of internal and external (CM)
kinetic energies.

Similarly, the total angular momentum J for the system submits to the
decomposition

Hence,

where

is the internal angular momentum, and is known as the
orbital angular momentum of the system. Thus the total angular momentum is
simply the sum of internal and external (orbital) angular momenta. To
conform to standard usage, we have defined the angular momentum with
cross products instead of outer products, so it is a vector instead of a bivector.
However, as explained in Section 4-1, the bivector form is more fundamental
and we shall switch to it later when it is advantageous.



338 Many-Particle Systems

Rotational Motion

To describe rotational motion of the system as a whole, we derive an equation
of motion for the total angular momentum. Differentiating (1.14) and using
(1.1) and (1.2), we have

For central forces the last term vanishes, and we have the rotational equation
of motion

form. Note, however, that the torque in (1.16) depends on the values of the
whose time variations depend on the internal forces. Therefore, the torque is
indirectly dependent on the internal forces. Of course, for an isolated system
the torque vanishes for arbitrary internal forces. Hence the angular momen-
tum of an isolated system is conserved.

It is usually desirable to separate the total angular momentum into its
external and internal parts, for the parts satisfy independent equations of
motion. Time variation of the external (orbital) angular momentum is deter-
mined by the CM equation (1.10); thus,

On the other hand,

Substituting this into (1.16), we get the equation of motion for the internal
angular momentum:

In contrast to (1.16), this equation is independent of the origin, or rather, it
differs from (1.16) by a shift of the arbitrary fixed origin to an origin intrinsic
to the system, the center of mass.

where  is known as the torque (about the origin). It is readily verified that a
displacement of the origin changes the value of J and without altering the
form of (1.16).

The most notable property of the rotational equation of motion (1.16) is
the fact that internal forces do not contribute directly to the torque. Our
derivation shows that this is a consequence of Newton’s 3rd law in its strong
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The angular momentum equation of motion (1.18) is the second major
result of general many-particle systems theory. Let us call it the angular
momentum theorem. To make use of this theorem, however, we need further
results relating the angular momentum to kinematical variables of the system.

Often we wish to separate the rotational motion of the system as a whole
from the relative motions of its parts. This can be accomplished by introduc-

body frame is related to the internal position variable  by a rotation

As we saw in Section 5–5, the time dependence of the rotation is determined
by the differential equation

so that

The vector is called the rotational velocity of the system or body, if you will.
Substituting (1.21) into the expression (1.15) for the internal angular

momentum, we obtain

The first set of terms on the right side of (1.22) defines a linear function.

so (1.22) can be put in the form

we can write the inertia tensor in the alternative forms

For most purposes, (1.25) is more convenient than (1.23).
We have not yet explained how the body frame is to be determined. For a

rigid body, it is determined by the condition that all particles of the body be at
rest in the body frame. Thus so the distances between particles

are constants of the motion. Consequently, from (1.24) it follows that, for a
rigid body.

ing a body frame rotating with the system. The position  of a particle in the

The linear operator is called the inertia tensor of the body. Using the
identities
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This reduces the complex “dynamical variable” l to the simple “kinematical

The time derivative of the inertia tensor can be computed from the definition
(1.25) using Thus, for an arbitrary vector argument a we have

Whence, the general result

Using this in (1.27), we obtain

All the internal motion of a rigid body is rotational, and it is completely
determined by the equation of motion (1.29), with appropriate initial con-
ditions, of course. This will be the starting point for the study of rigid body
motion in Chapter 7.

For an arbitrary system of particles, such as a gas, the body frame may be
difficult to determine. Actually, we have defined the body frame only for a
rigid body, and we are free to define the body frame in any convenient way
for other systems. For example, for a system consisting of a gas in a rigid box,
we could choose the body frame of the box as body frame for the entire
system. Then, Equation (1.24) would be interpreted as a separation of the
angular momentum into a part for “the system as a whole” and a residual
angular momentum  of the gas in the box. As a rule, however, it
is more natural to define the body frame by imposing the condition

on motions in the body frame so describes the resultant angular
momentum of the entire system. This agrees with our definition for rigid
bodies. Of course, for an arbitrary system the derivative of the inertia tensor
will not be given by the expression (1.28) for a rigid body; it will include terms
describing change in the structure of the system as well as the terms in (1.28)
which are due solely to rotation.

variable” because the inertia tensor depends only on the fixed internal
structure of the body. Since is a linear operator, when (1.26) is substituted
into the equation of motion (1.18), one obtains
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Separation of rotational motion from vibrational motion is of great import-
ance in the theory of polyatomic molecules. A molecule can be modeled as a

This can be integrated directly, and the integration constant can be chosen so
that

This is the appropriate condition on the relative atomic displacements deter-
mining the body frame. It must be used along with the center of mass
condition

Because of its simplicity, the condition (1.31) or (1.32) is preferable to (1.30),
to which it is equivalent only in the first approximation.

To separate the rotational energy from the rest of the internal energy in a
system, it is convenient to use (1.21) in the form

where

is the angular velocity in the body frame. Then the internal kinetic energy
can be written

Using the identity

we can write

where

is the inertia tensor in the body frame. Then the internal kinetic energy
assumes the form

system of atoms (point particles) vibrating about equilibrium points in the
body frame. For small vibrations, then, the condition (1.30) can be approxi-
mated by
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For a polyatomic molecule or, more generally, for a solid body, we can write

The first term in (1.39) is the rotational energy and the last term is the
vibrational energy. The middle term is the Coriolis energy, coupling the
rotational and vibrational motions. In many circumstances it is small, so
rotational and vibrational energies can be considered separately. Of course,
the internal energy of an ideal rigid body is all rotational, but a more realistic
model of a solid body is obtained by including the other terms in (1.39). The
vibrational energy of a solid is manifested in thermodynamic as well as elastic
properties of the solid.

Internal Energy and Work

To determine how the kinetic energy K evolves with time, we differentiate it
and use the equation of motion (1.1); thus,

By virtue of the 3rd law (1.2),

where

Hence, changes in the total kinetic energy are determined by the equation

Equation (1.41) can be formally integrated to get

The limits on the integrals have been abbreviated; for example,

where is the displacement from the equilibrium position Then, because
of the condition (1.31), the kinetic energy (1.38) reduces to
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This integral quantity is called work, specifically, the work done by external
forces on the ith particle during a displacement from the position to the
position The right side of (1.42) is the total work on the system,
consisting of the sum of the works done on each particle by external and
internal forces. Thus, the mathematical equation (1.42) can be expressed in
the following words: For any system of particles, in a specified time interval
the change in total kinetic energy is equal to the total work done on the system
by external and internal forces. This is the general work-energy theorem. A
special case of the theorem is more useful in practice, so we turn to that next.

If the internal forces are conservative, then they are derivable from a
potential energy function V, that is,

We have already assumed that the internal forces are central, and we know
from Section 4-5 that a conservative central potential can be a function only
of the distance between particles. Hence,

where In most applications the potential is
a sum of 2-particle potentials  like so,

However, this stronger hypothesis is unnecessary for present purposes. Now,
by the chain rule,

Hence,

and

Using this in (1.41) and separating the kinetic energy into external and
internal parts, we obtain
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where

is the total internal energy of the system. Thus, (1.46) describes the rate at
which the internal energy is altered by external forces. In integral form,

it describes the change in energy resulting from work on the system by
external forces. Equation (1.48) is the most useful version of the work-energy
theorem.

We can, however separate the changes in external and internal energies.
From the CM equation of motion (1.10) we get a separate equation for the
external kinetic energy:

Substituting this into (1.46), we obtain

Or, in integral form,

This looks simpler than (1.48); however, the integral here is not usually as
convenient as the total work integral in (1.48).

The theorem that the energy of an isolated system is conserved follows
trivially from (1.48). But it has nontrivial consequences. For one thing it helps
us formulate the concept of work correctly. From (1.48) alone, one might
interpret the work integral on the right as a measure of energy production.
However, the correct interpretation is that work is a measure of energy
transfer. To establish this, we separate the entire universe into two parts, the
system of interest and its environment, the rest of the universe. The universe
is isolated, so its energy is conserved. The energy of the universe can only be
redistributed among the parts of the universe. Therefore, the right side of (1.48)
must describe an exchange of energy between the system and its environment.

The First Law of Thermodynamics

Thermodynamics is concerned with the transfer and storage of energy among
objects. Statistical Mechanics is the branch of physics concerned with deriving
the laws and equations of thermodynamics from the properites of atoms and
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other particles composing macroscopic objects. In a word, statistical mechan-
ics aims to reduce thermodynamics to mechanics. Let us consider, in a
qualitative way, the mechanical basis for some fundamental thermodynamic
concepts.

The number of atoms in a macroscopic object is immense, about in a
golf ball, for example. It is not only impossible to keep track of individual
atoms, it is undesirable, because the glut of information would be unwieldy.
The best that can be done is to express the internal energy and the work done
on a macroscopic object as functions of a few macroscopic variables, such as
the volume of the system, while microscopic variables are controlled only
partially and indirectly. It is the job of statistical mechanics and thermodyn-
amics to specify precisely how this is done. However, the result is a separation
of the work done on a system into two parts, the work –W done by altering
macroscopic variables and the remainder of the work Q due to changes in
microscopic variables. Thus,

So the work-energy theorem (1.48) is given the form

This is the famous first law of thermodynamics. The term is often
carelessly neglected in the statements of this law. But it is essential in some of
the most elementary problems, for example, in determining the rise in
temperature of a sliding block as frictional forces reduce its translational
kinetic energy.

The negative sign appears in (1.52) because, as is customary in thermody-
namics, W denotes the macroscopic work done by the system rather than the
work done “on” the system. The term Q is commonly referred to as the heat
transferred to the system, thereby perpetuating in language the old miscon-
ception that “heat” is a physical entity of some kind. Rather, heat transfer is a
particular mode of energy transfer. It would be better to refer to Q as
microscopic work to indicate what that mode is.

There are two distinct ways that microscopic work is performed. The first is
by “thermal contact”; when two macroscopic objects are in contact, energy is
transferred from one to the other by interactions among atoms at the surface
of contact. The second is by “radiation”. Electromagnetic radiation (light)
may be emitted when atoms in the system collide or, according to quantum
mechanics, by a spontaneous process within a single atom. Emission and
absorption of light involves energy transfer between the system and the
radiation field, that is, a mode of work.

In thermodynamics, when macroscopic parameters are held fixed, the
internal energy of an object is expressed as a function of a single variable, the
thermodynamics temperature. The temperature variable can be identified



346 Many-Particle Systems

with the internal energy per particle in a perfect gas. A perfect gas is a system
of noninteracting identical particles. Hence, all of its internal energy is
kinetic, and the temperature T of the gas can be defined by

where k is known as Boltzmann’s constant. The specific value of Boltzmann’s
constant is of no concern to us here. Boltzmann’s constant is merely a
conversion, factor changing the temperature unit into the energy unit; it is a
relic of times before it was realized that temperature is a measure of energy.

The internal energy of a perfect gas provides a standard to which the
internal energy E of any other macroscopic object can be compared. This
leads to an expression E = E(T) for the object’s internal energy as a function
of temperature. The function E = E(T) compares the energy of the object to
the energy of a perfect gas under “equivalent conditions”. To be sure, the
perfect gas is an imperfect model of a real gas, just as the rigid body is an
imperfect model of a solid body. Nevertheless, the perfect gas provides a
theoretical standard for measurements of internal energy, just as the rigid
body provides a standard for measurements of length.

Open Systems

So far we have considered systems composed of a definite set of particles.
Such systems are said to be closed. An open system is one which is free
to exchange particles with its surroundings. It can be defined as a set of
particles within some specified spatial region, usually a region enclosed by the
boundaries of some macroscopic object. All macroscopic objects are open
systems, but often the rate at which they exchange particles with their
surroundings is so small that they can be regarded as closed systems. To
handle systems for which particle exchange is significant, our theorems for
closed systems must be generalized. The full generalization is best carried out
within the domain of continuum mechanics, so only a special case will be
considered here.

where is the change in velocity of the larger body, which we regard as an

Suppose that in a short time a body with small mass  and velocity U
coalesces with a larger body of mass M and velocity V, as shown in Figure 1.1.
This is an inelastic collision, so energy of the macroscopic motion is not
conserved; most of it is converted to internal energy of the body. Let us
suppose also that the collision imparts no significant angular momentum to
the body. Now, mass is conserved in the collision, and, in the absence of
external forces, so is momentum. Hence,
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Fig. 1.1. Inelastic collision.

open system. We can pass to the case of a system accreting mass continuously

Evidently this equation generalizes to

if the system is subject to an external force F.
Equation (1.56) describes the rate of momentum change in an open system

(on the left side) as a result of momentum transfer from its surroundings (on
the right side). The momentum transfer is accomplished in two ways, by the
action of an external force and by momentum flux. The term is called the
momentum flux, because it describes the rate that momentum is carried into
the system by particles crossing the boundary of the system.

Example 1.1

As an example of an open system, consider a raindrop falling through a
stationary cloud. It will accrete mass at a rate proportional to its velocity V
and cross-sectional area For spherical raindrops, the mass M is propor-
tional to hence, the rate of accretion is described by

where c is a constant. If x is the displacement of the drop in time t, then
and

The variables are separable, so we can integrate to get the mass as a function
of displacement:

Fig. 1.1. Inelastic collision.

by dividing (1.54) by and passing to the limit  Thus, we find
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where is the initial mass.
In accordance with (1.56), if resistive forces are neglected, the equation of

motion of a vertically falling raindrop is

Since M is given as a function of x by (1.58), a change of the independent
variable from t to x is indicated. Multiplying (1.59) by M, we obtain

Hence,

This is readily integrated after inserting (1.58), but the result is much cleaner
if we neglect in relation to M, whence

so

Differentiating with respect to time, we get

from which we can easily find the time dependence of the motion.

Example 1.2

Rocket propulsion affords another example of open system dynamics. In this
case mass is expelled from the system instead of accreted, so (1.56) applies
with negative instead of positive. For a rocket in a uniform gravitational
field, the equation of motion (1.56) can be put in the form

Here the vector is the exhaust velocity, the average velocity of
exhaust gases relative to the rocket. For constant e, (1.63) integrates to
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where is the initial rocket mass. Of course the time dependence of
the mass is determined by the burning rate M programmed in the
rocket. Once this is specified, the time dependence of the velocity is deter-
mined by (1.64), and the displacement of the rocket can be found by direct
integration.

The reader should be cautioned against the mistaken assumption that the
velocity V in our general equation of motion (1.56) is necessarily equal to the
center of mass velocity To understand the difference between V  and 
consider the momentum of the system.

If internal motion is negligible then the system can be regarded as a rigid body
and every particle has the same velocity However, from an open
system like a rocket, particles are suddenly expelled, with consequent shifts in
the rocket’s center of mass. Thus, the difference between and V is due to
motion of within the body as a result of mass flux through the boundary.
Therefore, the error made by computing displacement under the assumption
that cannot exceed the dimensions of the body. Usually we are more
interested in the motion of particles in a body than in the motion of its center of
mass, so V may be of more interest than X. However, for a system with
significant internal motion, such as a spinning body, we cannot identify V with
the velocity of the individual particles, so the relation of V to  is important.

6-1. Exercises

(1.1) Justify the interpretation of force as the rate of momentum transfer
from one system to another and of torque as the rate of angular
momentum transfer.

(1.2) For a closed system of particles with internal energy E in a conserva-
tive external field of force show that the total
energy

is a constant of the motion, reducing to

in a uniform gravitational field.
(1.3) A uniform flexible chain of mass m and length a is in i t ia l ly at rest on

a smooth table with one end just hanging over the side. How long
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will it take the chain to slide off the table and how much energy has
been dissipated in this time? What will its velocity be when it loses
contact with the table?

(1.4) A rocket launched from rest is programmed to maintain a constant
exhaust velocity e and burning rate until its fuel is ex-
hausted. The mass of the fuel is a fraction f of the initial rocket mass

Neglecting air resistance and assuming a constant gravitational
acceleration g, show that the maximum height h attained is

(1.5) For an open system with momentum MV, continuously accreting
mass with momentum flux and ejecting mass with momentum
flux show that momentum conservation leads to the equa-
tion of motion

while mass conservation gives

(1.6) An open-topped freight car of mass M is initially coasting on smooth
rails with speed Rain is falling vertically.
(a) Determine the speed v of the car after a mass m of rain water

has accumulated in the car.
(b) If the water leaks out as fast as it enters, determine the speed of

the car after a mass m of rain water has passed through it.

6-2. The Method of Lagrange

The bookkeeping required to describe and analyze the motion of an N-
particle system can often be simplified by a judicious choice of variables.
Lagrange developed a systematic method for describing a system in terms of
an arbitrary set of variables. In Section 3-10 the method was explained in
detail for a 1-particle system, and its generalization to an N-particle system is
straightforward, so we can treat it concisely.

In the Newtonian approach, an N-particle system is described by specifying
the position of each particle as a function of time. To describe the
system, instead, in terms of some set of scalar variables

we must express the positions as functions of the new variables,

where The scalar variables qα are called generalized coordi-
nates.
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The set of particle positions is called a configuration of the
system. Since each of the N position vectors   is a vector in a 3-dimensional
space, it takes generalized coordinates to specify all possible

point in a 3N-dimensional space. This space is called configuration
space. The motion of an entire system is thus described by a single trajectory

in the 3N-dimensional configuration space instead of a set of N
trajectories in the 3-dimensional position space. This helps us apply
our intuition and knowledge of the dynamics of a single particle to the
dynamics of a many-particle system. It is an important conceptual advantage
of Lagrange’s method.

where We saw in Section 3–10 that a holonomic constraint
on a single particle confines the particle trajectory to a 2-dimensional surface
in position space. Similarly, for an N-particle system each equation of con-
straint (2.2) determines a -dimensional surface in configuration space
and confines the trajectory of the system to that surface. The set of K
constraints confines the system to a -dimensional surface. Conse-
quently, we can use the equations of constraint to eliminate K variables and
specify the system by independent generalized coordinates

Such independent coordinates are sometimes called degrees of
freedom, so is the number of degrees of freedom of the system.

Our problem now is to convert the Newtonian equations of motion in
position space to an equation of motion for the system in configuration space.
Newton’s equation for the i-th particle can be put in the form

where is the potential for conservative forces,
is the force function for nonconservative

forces, and is the resultant force of constraint.
The J-th equation of constraint (2.2) determines a constraining force

which can be interpreted as the force required to keep the i-th
particle on the J-th surface of constraint. The resultant constraining force is
therefore

The equations of constraint are among the

It may happen that the position variables are related by holonomic
constraints specified by K scalar equations

configurations of an N-particle system. Therefore, the  are coordinates of a

givens of the problem, however the scalars are among the unknowns and
must be obtained from the solution if the constraining force is to be found.

Since the       are taken to be variables independent of the constraint
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equations, we must have which by application of the chain rule,
gives us K equations

These equations can be used to eliminate the constraining forces from the
equations of motion; for

hence, from (2.3) we get ;

for
The n equations (2.6) can be re-expressed as equations of motion for the

by employing the chain rule for differentiation.
Thus, from (2.1) we obtain

Differentiating this, we establish

Hence, the first term in (2.6) can be brought into the form

where

is the total kinetic energy of the system.
By substitution, the potential can be expressed as a function of the general-

ized coordinates
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Hence, the second term in (2.6) becomes

This can be combined with the first term (2.8), giving

where we have introduced a new function

called the Lagrangian of the system.
For the third term in (2.6) we introduce the notation

The quantity is called the -component of the generalized force. The right
side of (2.14) shows that can be interpreted as the component of force on
the system in the “direction” of a change in this “direction” is a direction
in configuration space rather than position space.

Using (2.12) and (2.14), we get (2.6) finally in the form

where These are called Lagrange’s equations for the system.
These are the desired equations of motion for the system in terms of general-
ized coordinates.

Before Lagrange’s equations can be used, the Lagrangian and the general-
ized force must be expressed in terms of the generalized coordinates. For the
potential this is done by simple substitution, as in (2.10). To do it for the
kinetic energy, we must use the chain rule; thus, from

we get the kinetic energy in the form

where
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The explicit time-dependence of  results only from time
dependent constraints. Consequently, for time independent constraints (or
no constraints at all) the kinetic energy assumes the form

where the are to be obtained from (2.17a).
By deriving Lagrange’s equations, we have carried out once and for all the

steps required to introduce any set of coordinates into Newton’s equations
and eliminate the holonomic forces of constraint. From now on we can avoid
those steps by constructing Lagrange’s equations straightaway. This is Lag-
range’s method.

Lagrange’s Method can be summarized as a series of steps for attacking a
given dynamical problem:

Step I

Express any holonomic constraints in parametric form by determining the
particle positions xi as explicit functions of an appropriate set
of independent generalized coordinates. Diagrams are often a valuable guide
to the selection of coordinates. Sometimes it is best to begin with dependent
coordinates and then eliminate some of them by applying constraints in the
nonparametric form (2.3). The best set of coordinates is usually determined
by symmetry properties of the potential energy function, but it may be
difficult to find.

Step II

Express the Lagrangian and, if needed, the generalized force as explicit
functions of the generalized coordinates and their velocities

Step III

Solve Lagrange’s equations. The equations may be quite complicated even
for fairly simple problems. No single mathematical method suffices to handle
all problems.

Example 2.1

Atwood’s Machine consists of a pair of  “weights” connected by an inextensi-
ble string passing over a pulley as shown in Figure 2.1. In this case the
parametric equations for the positions of the weights are so simple that it is
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Fig. 2.1. Atwood’s Machine Fig. 2.2. The double pendulum.

unnecessary to write them down. We choose the vertical displacements and
for generalized coordinates. So, neglecting friction and the masses of the

string and pulley, the kinetic energy of the system is

while the potential energy is

Since the string is inextensible, the coordinates are related by

where C is a constant. Using this to eliminate one of the coordinates, we
obtain the Lagrangian

Inserting this in Lagrange’s equation

we obtain the equation of motion

Note that the direction of the acceleration depends on the relative magnitudes
of the masses.

Example 2.2

The double pendulum consists of one simple pendulum attached to the end of
another. This is a two particle system subject to rigid constraints. Let the
parameters of the system be specified by Figure 2.2. The plane of oscillation is
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specified algebraically by a unit bivector i. With angles and as general-
ized coordinates, the parametric equations for the positions of the particles
are

Whence, the kinetic energy is put in the form

The potential energy is given the form

Forming the Lagrangian and substituting this into Lagrange’s
equation

we obtain

In a similar way we obtain

For small oscillations, these equations reduce to

These are equations of motion for a pair of coupled harmonic oscillators.
They can be solved by a change of variables that decouples the two equations.
A systematic method for doing this will be developed in Section 6-4.

Now suppose we wish to account for the effect of air resistance on the
motion of a double pendulum. The resistive force on each particle is propor-
tional to its velocity, that is,
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where and are positive constants. Therefore, the components of the
generalized force (2.14) take the form

Including these in the equations of motion, we get, in the small angle
approximation,

The solution of these equations is also discussed in Section 6-4.

Example 2.3

Consider a system of two particles connected by an inextensible, massless
string of length a passing through a small hole in a table, as shown in Figure
2.3. Adopting polar coordinates r, in the plane of the table, the parametric
equation for the position of the particle on the table is

Utilizing the constraint, the position
of the suspended particle is specified
by

Consequently, the kinetic energy of
the system is given the form

Fig. 2.3. A particle subject to a central force of
constant magnitude.

and the potential energy is

so,
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Therefore, if friction is negligible, the equations of motion for the system are

The last of these equations tells us that the angular momentum is a
constant of the motion. Using this to eliminate from the first equation, we
obtain the radial equation of motion

It can be verified that is an integrating factor for this equation by carrying
out the differentiation in

Thus we obtain another constant of motion, the energy of the system, and
we see that the orbit of the particle on the table is that of a particle subject to
a conservative central force.

Ignorable Coordinates

The last example illustrates a valuable general principle. Lagrange’s equation
for the angle produced a constant of motion, the angular momentum, because
the Lagrangian was independent of the angle. In general, for a conservative
system, if

for some coordinate , then if follows trivially from Lagrange’s equation
(2.15) that

is a constant of the motion. The coordinate is then said to be ignorable or
cyclic, because it has the following properties exhibited by the angle variable
in the last example:

(1) The constant of motion  can be used to eliminate the from the
remaining equations of motion and so effectively reduce the number
of variables in the problem.

(2) The coordinate must be a periodic (i.e. cyclic) function of time.
(3) The condition results from some symmetry property of the

potential energy (such as its independence of angle in the example).
This suggests the possibility of a general method for choosing coordinates
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to simplify the equations of motion, but we shall not pursue it. In Section 6-4
we consider ways to use symmetry properties to help solve equations of
motion. The systematic study of symmetries in equations of motion is a
major topic in modern theoretical physics.

Fig. 2.4. Block sliding down a
 moveable inclined plane. Fig. 2.5. A compound Atwood machine.

6-2. Exercises

(2.1) A block slides down the inclined plane surface of another block
resting on horizontal plane, as in Figure 2.4. Assuming negligible
friction, find the accelerations and of the coordinates indicated
in the figure.

(2.2) Find the accelerations of the masses m1, m2, m3 in the compound
Atwood machine of Figure 2.5. Neglect friction and the masses of
the pulleys.

Fig. 2.6. A sliding pendulum. Fig 2.7.

(2.3) A simple pendulum is suspended from a bead on a frictionless
horizontal wire, as shown in Figure 2.6. Determine the equations of
motion in terms of the coordinates x and
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(2.4)

(2.5)

(2.6)

Two masses on smooth inclined planes are connected by string to a
massless pulley consisting of two rigidly attached spools with diame-
ters in ratio 2 to 1, as in Figure 2.7. Determine the motion of the
system.
Two simple pendulums are connected by a massless spring with
stiffness constant k attached at a distance a from the supports as in
Figure 2.8. The spring is unstretched when the pendulums are
vertical. Determine Lagrange’s equations of motion for the system.
Two equal masses are suspended from identical massless pulleys as
shown in Figure 2.9. Find their accelerations.

Fig. 2.8. Coupled pendulums. Fig. 2.9.

6-3. Coupled Oscillations and Waves

A rigid body model of a solid object consists of a system of particles with
interparticle forces keeping the particles at fixed separations. A more realistic
model accounts for deformations of a solid with internal forces allowing
changes in interparticle separations. In an elastic solid the internal forces
oppose small deformations from a stable equilibrium configuration. There-
fore, by the general argument developed in Section 3-8, the interparticle
restoring forces can be described by Hooke’s law even without more specific
knowledge about interparticle interactions. Thus, we arrive at a model of an
elastic solid as a system of particles attached to their neighbors by (massless)
springs, in other words, a system of coupled harmonic oscillators. The
mathematical formulation of the model consists of a system of coupled linear
second order differential equations. The theory of small oscillations is con-
cerned with the analysis of such models. Before undertaking a systematic
development of the theory, in this section we study the simplest examples to
gain familiarity with the basic ideas.



other and the endpointsFig. 3.1. A pair of coupled isotropic harmonic oscillators.
by (massless) springs.

When the particles are at rest at the equilibrium points, the string has a uniform
tension

where  are the force constants and a, are the equilibrium lengths of
the springs.

The forces on the particles are described by Hooke’s law, so displacements
and are governed by the equations of motion

We can decouple these equations by re-expressing them as equations for the
“mean displacement” and the “relative displacement”

Thus, by adding the Equations (3.2a, b) we obtain

where The difference of Equations (3.2a, b) gives us

where

We recognize (3.3a) and (3.3b) as equations for isotropic harmonic oscillators
studied in Section 3-8, so we know that their solutions describe elliptical
orbits and have the general mathematical form
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Two Coupled Harmonic Oscillators

The main ideas in the theory of small oscillations appear in the simplest
model, consisting of two identical harmonic oscillators with a linear coupling.
Therefore, it will be profitable to study the ramifications of that model in
detail. To have a specific physical realization of the abstract mathematical

model in mind, consider
an elastic string of two
particles with fixed end-
points, as illustrated in
Figure 3.1. The particles
are connected to each
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where and are constant vectors. Therefore, the displacements of the
particles are superpositions

of two harmonic oscillations with frequencies and
The particular combination of harmonic oscillations depends on the initial

conditions. For example, initial conditions of the form and
imply that  for all t, so Thus, the

two particles oscillate in phase with a single frequency  On the other hand,
initial conditions of the form and imply that

so Then, the two particles oscillate out of
phase with frequency

Such collective oscillations with a single frequency of all particles in a
system are called normal modes of the system. The frequencies and of
the normal modes are called normal (natural or characteristic) frequencies.
The variables and for the normal modes may be called normal
coordinates, though the term is usually reserved for scalar variables as done
below. For a two particle system of coupled oscillators the normal modes are
of two types, the symmetrical mode with coordinate and the antisymmetri-
cal mode with coordinate

According to (3.4), the frequency of the symmetrical mode is necessar-
ily lower than the frequency of the antisymmetrical mode. This is the
simplest case of a general result: In a system with any number of linearly
coupled oscillators, the mode with highest symmetry has the lowest frequency.
In a mode of lower symmetry, the springs work against each other, increasing
the effective restoring force and thus producing a higher frequency.

The symmetrical and antisymmetrical modes are illustrated in Figure 3.2
for longitudinal oscillations and in Figure 3.3 for transverse oscillations. The
symmetrical longitudinal and transverse modes may be regarded as different
normal modes since they are linearly independent. However, in the present
model, their normal frequencies are equal. Linearly independent modes with
the same frequency are said to be degenerate. In the present case, the
symmetrical normal mode is said to have a 3-fold degeneracy, since the
coordinate can be expressed as a linear combination of a longitudinal
mode and two independent transverse modes. Similarly, the antisymmetric
normal mode is triply degenerate.

Fig. 3.2. (a) Symmetrical (in phase) and (b) Antisymmetrical (out of phase) longitudinal
normal modes.
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Fig. 3.3. (a) Symmetrical (in phase) and (b) Antisymmetrical (out of phase) transverse normal
modes.

Equation (3.5a) admits as a special case of circular solution of the form

where is a transverse vector in a plane with unit bivector i. If the plane is
transverse, then the mode is illustrated by Figure 3.3a, where the two
particles circulate in phase about their equilibrium points. This normal mode
can be expressed as a linear combination of two orthogonal transverse modes.
On the other hand, if the plane contains the equilibrium points of the
particles, then the mode can be expressed as a combination of a longitudinal
and a transverse mode. Conversely, the linear longitudinal and transverse
modes can be expressed as linear combinations of such circular modes. Of
course, there are similar results for the antisymmetrical modes. Longitudinal
circular normal modes are illustrated in Figure 3.4.

Fig. 3.4. (a) Symmetrical and (b) Antisymmetrical circular normal modes in a longitudinal
plane.

Taken together, the coupled equations (3.2a, b) are linear in the pair of
variables and ; therefore, the superposition principle applies. This means
that if we have two distinct solutions of the equations, then any linear
combination of these solutions is also a solution. In particular, (3.6) tells us
that any solution can be expressed as a linear combination of symmetrical and
antisymmetrical normal modes which are themselves particular solutions.
And each of these degenerate normal modes can be expressed as a combina-
tion of three linearly independent longitudinal, transverse and/or circular
modes. Thus, we may select a set of six linearly independent normal modes
and normalize them to unit amplitude (or energy). Let (for n = 1, 2, and
r = 1, 2, . . ., 6) be the normalized vectorial amplitude for the displacement
of the nth particle in the rth normal mode. The pairs of vectors
compose a basis for the six dimensional linear space of solutions to Equations
(3.2a, b). Therefore, any solution of the equations can be written as the linear
superposition
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where the coefficients are scalar normal coordinates; they are harmonic

The last term is the “coupling energy”, which may be regarded as residing in
the connecting “spring”, that is, in the “mutual bond” between the particles.
In the absence of external interactions, the energy E remains stored in the
system. The coupling between oscillators allows for a transfer of energy from
one to the other, but the energy in each normal mode is separately conserved,
as Equations (3.3a, b) imply. Thus, we can write

where

Thus, energy can be stored independently in each normal mode.
In Section 3-9 we studied the motion of a harmonic oscillator driven by a

periodic force without considering the possibility of a feedback effect of the
oscillator on the driver. We saw that an oscillator can absorb and store energy
supplied by the driver, so a feedback of energy should result from the action
of the oscillator on the driver. The simplest example of such an effect is found
in the present case of coupled oscillators. We can observe it by imparting all
the energy initially to one of the oscillators. Thus, we strike the theoretical
string by imposing the initial conditions

Then, from (3.5a, b) and (3.6) we get

functions which can be given the form The expres-
sion (3.8) is called a normal mode expansion. It has the advantage of reducing
apparently complex motions of the individual particles to the simple collective
motions of the normal modes. A complete expansion into normal modes is
not always appropriate. Often a partial expansion into degenerate modes with
different frequencies is preferable. Thus, in the present case we prefer the
partial expansion (3.6).

Energy Storage and Transfer by Coupled Oscillators

Since Hooke’s Law is a conservative force, the total energy E of our coupled
two particle system is conserved. In terms of particle coordinates
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and

To picture the motion described by these equations, we look at the limiting
cases of weak and strong coupling.

For weak coupling we can write the relation (3.4) in the
approximate form

where In (3.12a, b), then, it is a good approximation to set
in the denominators, but the small difference between and

cannot be neglected in the phases. Thus, we write

and similarly,

The displacements are graphed in Figure 3.5 for  showing the familiar
phenomenon of beats, as the initial energy  is passed back and forth
between the oscillators. Each particle oscillates with frequency  while its
amplitude is modulated with the lower frequency The energy is
transferred from one oscillator to the other in time Complete
transfer takes place even for very weak coupling.

For strong coupling Equations (3.12a, b) are well approxi-
mated by

Thus, a blow delivered to either particle causes the two particles to move
together as a single rigid body. Most of the energy delivered by the blow is
stored as center of mass energy of the two particle system. Only a small
fraction of it is stored in the antisymmetrical mode as “internal vibrational
energy” of the system.
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Fig. 3.5. Beats in coupled oscillations.

Note that the second oscillator can be treated as an “external agent” acting
on the first oscillator by inserting the explicit expression (3.11) for

into (3.2a) to get

where a is a constant vector. This is the equation for an undamped, driven
oscillator studied in Section 3-9, where we say that through the driving force
on the right the external agent feeds energy into the oscillator. However, if
the agent is another oscillator, we have seen that when its energy is depleted
the direction of energy flow is reversed. Moreover, in this case resonance
cannot occur since the “driving frequency” is necessarily greater than the
oscillator frequency

One-dimensional Lattice Vibrations

The simplest model of an elastic solid is a one-dimensional lattice (or string)
of identical particles interacting linearly with nearest neighbors. This is a
straightforward generalization of the two particle string we have just studied.
Of course, the same model may be used to represent other physical systems,
such as a string of macroscopic masses connected by springs or loaded on an
elastic string. But it is of greatest interest in the theory of solids where, in
spite of its simplicity, it has important physical implications.

We consider an N particle string with fixed end points (Figure 3.6). The
equilibrium positions of the particles are equally spaced with separation a
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Fig. 3.6. Equilibrium positions for a 1-dimensional lattice of N identical particles.

called the lattice constant. The string has length and
for If we limit our considerations to transverse or longitudi-
nal vibrations, the particle displacements from equilibrium can be repre-
sented by scalar variables where either the particle
name n or the particle position can be used to label the variables.

For particles of mass m, the equations of motion for small displacements
are

If this is to describe a solid, then the force constant is a property of the
material. If it is to describe a string under tension T, then is given by

In any case, it is convenient to write the equations of motion in the
form

where and Boundary conditions at the ends of
the string are imposed by writing

In a normal mode all particles vibrate with the same frequency, so to find
the normal modes we look for solutions of (3.18) with the form

where is constant. For the sake of algebraic convenience we
follow the common practice of considering complex solutions and attributing
physical significance only to their real parts. In that case, the unit imaginary i
has no specified physical interpretation, and we are free to suppose that it is
the unit pseudoscalar. When the complex solution has been determined, we
get the physical solution by taking its real (= scalar) part, written

This trick of “complexifying” the solution works because the equations of
motion are linear, so the superposition principle applies. It is well to remem-
ber, however, that there are situations where the entire complex solution has
physical significance, as in the case of Equation (3.7), where the unit
imaginary is a bivector for a plane in physical space. We will take advantage of
this again later on.
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Now, substituting the candidate solution (3.20) into the equations of
motion (3.18), we get

This system of N equations is most easily solved by allowing to be complex

where A and k are scalars to be determined. Inserting this trial solution into
(3.22), we obtain

Subject to this condition relating and k, the real and imaginary parts of
satisfy (3.22) separately. However from (3.23) we see that only the imaginary
part satisfies the boundary condition (3.19) at So we introduce a
notation for the imaginary part by writing

Consequently,

The constant k is now determined by imposing the boundary condition at the
other end point:

For integer r, this has solutions  of the form

Equation (3.24) gives different values of for different  so we rewrite it in
the form

Similarly, Equation (3.26) gives different values of for different so we
write

and considering a trial solution of the form

or, indexed by position,
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Equation (3.20) describes a different normal mode for each different normal

The scalar part is the displacement of the n-th particle in r-th
normal mode. The real  coefficient is the amplitude for the displacement of
the n-th particle. We show below that there are exactly N distinct normal
modes indexed by r in the range  It will be left as an exercise
to show that the constant A in (3.30) has the value

if the normal modes are normalized by the condition

Since the energy of a particle in harmonic motion is proportional to the
square of its amplitude, this amounts to a normalization of the total energy in
a mode. The normalization condition (3.33a) is a special case of the “ortho-
normality relations”

where is the identity matrix. The right side of this expression
vanishes when thus describing a kind of orthogonality of normal
modes; this result follows easily from a general argument given in Section 6-4.

The above results from (3.28) to (3.31) completely characterize the normal
modes of an N-particle string. For each normal mode, a wave  form with
values for every x in the interval is defined by

where

is the wavelength and is called the wave number of the mode. At the lattice
points the wave form gives the particle amplitudes
Normal modes for the case are illustrated in Figure 3.7.

To prove that an N particle string has exactly N distinct normal modes, we
examine the Equation (3.30) determining the particle amplitudes First

frequency so we write



370  Many-Particle Systems

Fig. 3.7. Normal modes of a three particle string. The wave forms are shown in dotted lines.
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Fig. 3.8. Some unphysical wave forms for normal modes.

note that all the amplitudes vanish identically when  or so
these values for r describe a string at rest. Then note that for

the values of the  are the same as for
except for a trivial reversal of order and sign. This is illus-

trated in Figure 3.8 for Note that the wave forms in Figure 3.8 have
twice as many oscillations as the corresponding forms in Figure 3.7, but these
additional oscillations are physically meaningless, because they do not cor-
respond to any difference in particle displacements. Thus, there is a small-
est “physical wavelength” determined by the lattice constant, namely,

or more simply for large N. By virture of
(3.29), this smallest wavelength corresponds to a highest normal mode

ient to introduce complex normal coordinates defined by

frequency called the cutoff  frequency of the system. Finally, to complete our
proof we simply note that similar conclusions obtain for other integer values
of r, positive or negative.

We have identified and characterized a complete set of normal modes for
the equation of motion (3.18). These are special solutions of the equation of
motion subject to the boundary conditions (3.19). The general solution is a
superposition of the normal modes. To represent it compactly, it is conven-
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where and are scalar constants. As before, we attribute physical
significance only to the real (i.e. scalar) part

Now the complex general solution can be written in the form

where the amplitudes are given by (3.30) with A given by (3.32) or
as preferred.

There are exactly N normal coordinates, and, according to (3.36), each of
these depends on two constants, so the general solution (3.38) depends on 2N
constants, as we know it should from general theory. These constants can be
determined from the initial conditions by inverting (3.38) to express the
normal coordinates in the particle displacements. The orthogonality relations
(3.33b) make this easy. Thus,

proving that

The constants are consequently determined by the 2N equations

Traveling Waves

Each normal mode is a standing wave in the sense that its wave form (3.34) is
time independent. It is also called a harmonic wave, because every particle in
the mode oscillates harmonically with a single frequency. There are, how-
ever, other harmonic solutions of the equations of motion (3.18) which do not
satisfy the boundary conditions (3.19) for standing waves. With minor changes
in our analysis for normal modes, it is readily verified that, for arbitrary
constants A and

is a harmonic solution of (3.18) provided k is related to by (3.29). As
before, we attribute physical signficance only to the scalar part
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This describes particle displacements at the positions
The function specified by (3.41) represents a traveling harmonic

wave with velocity

As a function of this is a fixed wave form. Therefore, we may regard it as a
fixed wave form moving with velocity υ along the string. Thus,
describes a similar wave traveling in the opposite direction. Now note that for

(3.41) gives us

which is identical to the expression for a complex standing wave. Therefore,
every standing wave can be regarded as a superposition of two traveling
waves moving in opposite directions.

When N is very large (as in the model of an elastic solid as a string of
atoms), Equation (3.28) tells us that k is effectively a continuous variable. So
we write the relation (3.29) between and k as a continuous function

where the sign is chosen to make positive depending on the value of k. This
equation is called a dispersion relation for the following reason. Using it to
eliminate k from (3.43), we see that it implies that the velocity of a traveling
harmonic wave depends on frequency, specifically

Therefore, a “wave packet’ composed of harmonic traveling waves with
different frequencies will collapse, because the component waves traveling at
different velocities will gradually separate, that is, disperse.

Dispersion relations are of the utmost importance in solid state physics,
where they are used to describe many different characteristics of materials.
The dispersion relation (3.46) is graphed in Figure 3.9. The two allowed signs
for k correspond to wave propagation in opposite directions. The range of k is
limited by the maximum value corresponding to the minimum wave-
length and the maximum (cut off ) frequency As we

To establish that, we write  where is the position coordinate of
a reference system moving with velocity υ  in the positive x-direction. Substi-
tuting this into (3.42) with (3.43) we obtain
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Fig. 3.9. Dispersion relation for a monatomic lattice.

determined earlier, waves of shorter wavelength (higher frequency) cannot
be supported in a lattice. The limited allowed range for the wave number k is
called the first Brillouin zone in solid state physics. The small slope of the
dispersion curve near the boundary of the Brillouin zone implies that wave
velocities vary rapidly with frequency thus producing large dispersion.

On the other hand, at low frequencies (the long-wavelength limit), the
dispersion relation (3.46) reduces to

Therefore, in this region harmonic waves with different frequencies have
nearly the same velocity

The dotted line in Figure 3.9 is the dispersion curve that would obtain if all
harmonic waves had this velocity. The expression (3.49) enables us to calcu-
late the velocity of waves in a medium from measured elastic properties.
Recall that and for a string under tension. Whence (3.49)
yields

where is the linear mass density of the string. Similarly, for an elastic
solid the elastic modulus Y, defined as the ratio of applied force to elongation
per unit length, is a measurable quantity. Whence, and the velocity
of a low frequency transverse wave is given by
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It should be realized that we are talking about the velocity of waves with
wavelengths much greater than the lattice constant. In this domain the waves
are insensitive to the granular microstructure of the material, which may
therefore be regarded as a continuous medium.

We can model a continuous string as the limit of a string of discrete
particles as mass and particle separation  but remains
finite. To get an equation of motion for the continuous string, we index
particles by their positions and write (3.18) in the form

Inserting in this the Taylor expansion

in the limit we obtain

where in agreement with the long-wavelength result (3.49).
Equation (3.52) is called the one-dimensional wave equation. The harmonic
wave (3.41) is a solution of this equation, and its general solution is a
superposition of such waves, all with the same constant velocity

As a final matter in our study of waves in strings, we note that all our results
are easily generalized to the case where the particle coordinates are vectors
representing displacement in three dimensions instead of scalars representing
one-dimensional displacements, as we have already done for the two particle
case. In particular, the expression (3.41) for a traveling harmonic wave
generalizes to

where now the unit imaginary i is a bivector and the constant vector ampli-
tude lies in the i-plane. We can construct normal modes from this by
superposition as in (3.45), yielding the expression (3.7) found previously in
the two particle case.

In contrast to the scalar form (3.41), the imaginary part of (3.53) has a
physical interpretation. This is easiest to picture when i is the bivector for a
transverse plane. Then, (3.53) represents a circularly polarized transverse
harmonic wave. To see that, note that for each fixed value of the particle
coordinate x, (3.53) describes a displacement rotating with angular velocity
about the equilibrium point. Alternatively, for fixed t and variable x, (3.53)
represents a helical wave form as pictured in Figure 3.10. As time varies, the
helical wave form can be pictured as rigidly rotating about the axis of
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Fig. 3.10. A left-circularly polarized traveling wave has positive helicity.

equilibrium points, or moving rigidly without rotation along the axis with
velocity If the wave form is a right-handed helix and the wave is said
to have positive helicity. Unfortunately, in optics such a wave is said to be
left-circularly polarized. Similarly, the function

describes a harmonic wave with negative helicity (right-circularly polarized)
moving in the positive x direction provided both  and k are positive.

It is important to note that both cases (3.53) and (3.54) can be lumped into
one described by (3.53) if we allow the frequency to have negative as well as
positive values. Thus, we can assign a physical interpretation to the sign of the

we have noted, it is in the positive (negative) x-direction if  is positive
(negative). All these considerations apply equally well to electromagnetic
waves with replaced by the electric field vector

In solid state physics the one-dimensional lattice model studied here is
generalized to three-dimensional lattices of various types composed of atoms
of various kinds. To analyse more complicated models such as these ef-
ficiently, we need a systematic general theory of small oscillations, so we turn
to that in the next section.

6-3. Exercises

(3.1) For a string of two identical particles coupled linearly, as in Figure
3.1, suppose the string is plucked with the initial conditions

Show that the displace-
ments in time are given by

frequency for a harmonic wave: it is the helicity of circular polarization. The
direction of wave motion is then determined by the sign of k relative to As
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where and Describe qualitative
features of this solution in the weak and strong coupling limits. Why
does the strong coupling result differ from the result in Equation
(3.15)?

(3.2) For a string of three identical particles coupled linearly as in Figure
3.6, suppose the string is plucked by displacing the center particle
longitudinally with initial condition while

and Determine the natural
frequencies and the displacements  as explicit functions of time.

(3.3) For a string of five identical particles coupled linearly as in Figure
3.6, draw diagrams for the transverse normal modes from symmetry
considerations alone and arrange them in order of increasing fre-
quency. Then check your qualitative understanding by calculation.

(3.4) Derive the normalization factor (3.32) for normal modes by eval-
uating the sum

The following hints should be helpful. Write

where z is a complex number obeying The geometric
series

can be iterated to get

where k is any positive integer (consider first). Then the finite
sum

can be evaluated by expressing it as a difference of two infinite
sums.
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6-4. Theory of Small Oscillations

The study of specific examples in the preceding section has provided us with a
nucleus of ideas from which the general theory of small oscillations can be
developed. A systematic formulation of the general theory has several bene-
fits. First, it clarifies the range of physical problems to which the theory
applies. Second, it organizes techniques for efficient problem solving. Third,
it provides a conceptual framework for thinking about many particle systems
as a whole. With the examples and concepts from the preceding section in
mind, we can procede rapidly to a concise formulation of the theory. We
develop the theory in a form suitable for a wider range of applications than we
can consider here. Unfortunately, we do not have space for applications of
the mathematical theory of groups to the general theory, a major topic in
modern theoretical physics. But that can be found in the specialist literature.

One should distinguish between mathematical and physical aspects of the
theory of small oscillations. Mathematically, it belongs to the general linear
systems theory, which is concerned with modeling the behavior of any system
by systems of linear differential equations. Small oscillation theory deals with
the case of deviations from a state of stable equilibrium. The analysis of any
linear system can be carried out completely using techniques and results from
the mathematical theory of linear differential equations. The well developed
mathematical theory makes the analysis of any linear system a straightfor-
ward task; it may be computationally complex when many variables are
involved, but this difficulty has been largely overcome by the development of
modern computers and computer software.

The physical aspect of the theory of small oscillations concerns the physical
interpretation of mathematical models. The same set of equations might be
interpreted as a mathematical model for systems as diverse as an electrical
network, a macroscopic system of springs and pendulums, or a microscopic
system of atoms in a molecule or elastic solid. Our concern here will be with
mechanical interpretations, specifically, with the mechanics of small displace-
ments in a system of particles from a stable equilibrium configuration. Note
that the term “small” refers to physical rather than mathematical aspects of
the theory. It means that we are dealing with a linear approximations to
nonlinear force laws, so the results have validity only for a range of states
close to equilibrium. The equilibrium configuration is generally determined
by nonlinear features of the force laws, so it must be taken for granted in a
linear theory.

For “large” displacements from equilibrium, the restoring forces are non-
linear. The important subject of nonlinear oscillations has not yet been
reduced to a theory with general results of wide applicability. It is currently an
active field for research. Unfortunately, we don’t have the space here for a
suitable introduction to the exciting recent developments in this field.

Even the range of applications for the theory of small oscillations is too
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broad to survey here. Our objective will be to develop the main ideas and
general results of the theory along with examples to show how they are
applied. We consider only discrete systems of particles. The generalization to
continuous systems is a major topic in continuum mechanics which we
touched only briefly in the preceding section.

Harmonic Systems

We will employ the Lagrange formulation of mechanics developed in Section
6-2. We consider a conservative N-particle system with n degrees of freedom,
so, with a suitable set of generalized coordinates  the interac-
tions can be described by a potential energy function  As
explained in Section 6-2, this includes the possibility that the system is subject
to time independent external constraints. We assume also that the system has
a state of stable static equilibrium at This requires
some explanation.

A system of particles is said to be in static equilibrium (in a given reference
system) if all the particles remain at rest. This is possible only if the net force
on each particle vanishes. In the Lagrange formulation, this equilibrium
condition is expressed as a vanishing of the generalized force:

where If the function is known, then this is a
system of n equations which can be solved for the equilibrium values
However, we shall see that in some physical problems the equilibrium values
are known while the function V is not. In either case the equilibrium
condition (4.1) is satisfied, and we are free to adjust our coordinate system so
that Then the variables directly describe departures
from the static equilibrium state.

The effects of small departures from equilibrium can be described by
approximating the potential with a Taylor expansion. Writing

we have

We are free to choose and the equilibrium condition (4.1) implies
that the second set of terms on the right vanish. So, to a first approximation
the potential is given by the quadratic function

where
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This is called the harmonic approximation and higher order terms in the
Taylor expansion are said to be anharmonic. A departure from equilibrium is
said to be “small” if the anharmonic contribution to the potential energy is
negligible to the accuracy desired.

In the harmonic approximation, the potential (4.3) corresponds to a gener-
alized force

The coefficients are called force constants; they are measures of the
coupling strength between different degrees of freedom.

The equilibrium point is said to be stable if the quadratic potential
energy (4.3) is positive definite, that is, if

for all values of the By setting all but one to zero, we see that (4.6)
implies so the corresponding generalized force draws the
system back to equilibrium. Actually, (4.6) is merely a sufficient condition for
stability; in Section 6.5 we shall see that stability is possible under more
general conditions.

According to (2.18), in terms of the generalized coordinates the system
kinetic energy K is a positive definite quadratic function of the

In general, the mass coefficients are functions of the coordi-
nates as well as the masses of the particles. But we can expand them in a
Taylor series,

and, consistent with our approximation to the potential energy, we keep only
the terms of lowest order. So we regard the mass coefficients as constants

From the fact that every particle has a mass it follows that for all
Now we form the Lagrangian for the system from (4.6) and

(4.7), and from Lagrange’s equation (2.15) we determine the n equations of
motion for the system:

where the are components of the generalized force due to external agents.
To facilitate analysis, we write the system of Equations (4.9) as a single

matrix equation
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The mass matrix [m] is defined by

and the matrix [k] is defined similarly. The notation indicates the column
of generalized coordinates defined by

Of course,

It is convenient to introduce the notation

for the row matrix corresponding to the column matrix The conjugation
symbol is appropriate if we want to employ complex coordinates as defined by
(3.20) and (3.21). Then

where and if is real. Now the expressions (4.7) and
(4.3) for kinetic and potential energies can be written

Any physical system modeled by a matrix equation of motion of the form
(4.10), where the matrices [m] and [k] are positive definite and [m] is
nonsingular is called a harmonic system, because it generalizes the single
particle harmonic oscillator model treated in Sections 3.8 and 3.9. Our
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experience with the harmonic oscillator will serve as a valuable guide for the
analysis of harmonic systems.

The matrix notation has conceptual as well as computational advantages.
Just as we represent the position of a single particle by a vector in position
space, so we can represent the configuration of a system of particles as a
vector in the n-dimension configuration space. The notation provides us
with a symbol for the configuration vector and so helps us think of the system
as a whole rather than the collection of its parts. However, the symbol
does not represent the configuration vector itself; it represents the matrix of
components (or coordinates) of the configuration vector with respect to a
particular basis in configuration space. The same configuration vector may be
represented by a different matrix of coordinates with respect to a differ-
ent basis. Thus, in the matrix formulation we deal with multiple rep-
resentations of the same physical configuration. The advantage of this is that
different matrix representations etc., of the configuration have
different physical interpretations, and the notation helps keep track of this. It
has the disadvantage of allowing ambiguities which can lead to confusion; for
example, two different column matrices might be different sets of coordinates
for the same configuration or coordinates for two different configurations.

If the matrix equation (4.10) is to amount to more than a mere abbreviation
for the set of equations (4.9), we need a system of theorems from matrix
algebra to facilitate computations. The theorems we need are all straightfor-
ward generalizations of results proved in Sections 5-1 and 5-2 for the
3-dimensional case, so we take them for granted here without further proof.
Actually, for the purpose of illustration, we shall not consider calculations
with matrices of dimension greater than 3 × 3, because algebraic labor
becomes so great that it is best performed by computers.

Free Oscillations

In the absence of external forces, the matrix equation of motion (4.10)
reduces to

Our first task is to find the general solution of this linear matrix equation. The
most straightforward approach is to consider a trial solution of the form

where and the matrix element of are real numbers. Inserting this into
(4.17) we obtain the matrix equation

which represents the system of scalar equations
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for the constants The equations have a definite solution if and only if the
characteristic equation

is satisfied. The determinant is a polynomial of degree n in the variable  Its
n roots are real and positive, because the matrices [k] and [m] are real,

For each root inserted into the matrix equation (4.19a), there is a
solution of the equation, which is unique up to a scale factor if the root is
nondegenerate. We have already discussed the matter of degeneracy in
Section 6-3, so it will be sufficient to confine our attention here to the
nondegenerate case. It is convenient to fix the scale of the solution by
normalizing it with the condition

Each represents a normal mode with normal frequency
The general solution of the matrix equation (4.17) can now

be expressed as a superposition of normal modes with normal coordi-
nates thus,

Note that this can be put in the equivalent form

where is a matrix with the as columns, and
is the column matrix of normal coordinates. The normal coordinates can

be given the explicit functional form

where and are constants. Or if complex coordinates are preferred,

Note that Equation (4.22b) can be regarded as a relation between two
different sets of coordinates and for the same system.

symmetric and positive definite, so a real, positive value for each is
thereby determined. (This assertion can easily be proved as a byproduct of
the alternative approach we take below.) Using the terminology introduced in
the preceding section, we say that the roots are the normal or natural
frequencies of the harmonic system. And if two distinct roots have the same
value they are said to be degenerate. Each unique root is said to be nondegen-
erate.
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The method we have just outlined for solving the equation of motion (4.17)
may be called the brute force method, since it does not take advantage of any
special information that might be known about the matrices [m] and [k].
There are alternative methods of solution which are simpler when certain
kinds of information are available. For example, if the normal modes
can be determined first, then the normal frequencies can be most easily
obtained from (4.19a), which yields

Indeed, we used a variant of this approach in Section 6-3 to determine the
normal frequencies of a one-dimensional lattice. As an example, it may be
noted that the solution (3.38) for that system conforms to the general form for
a solution given by (4.22a) and (4.23).

Whatever method we use to find the normal modes we still have the
problem of evaluating the constants in our expression (4.23) for the normal
coordinates. That is most easily solved by using the relation

which combines the normalization condition (4.21) with the orthogonality
relation

This relation can be proved by multiplying (4.19a) in the form

by to get

Subtracting from this a similar equation with and interchanged and using
the symmetry of [m] and [k], we obtain

Since when this implies (4.27).
Now from (4.22a), (4.23) and (4.26) we obtain

which determines the constants in terms of initial data.
Although the computational complexities of the brute force method have

been largely overcome by computers, it is still worthwhile to consider alterna-
tive methods for the insight they provide. Let us first consider how the
equation of motion (4.17) might be simplified.
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Since [m] is nonsingular it has an inverse so we might consider
simplifying (4.17) by multiplication by to get

where [K] is a new matrix given by the matrix product The
trouble with this procedure is that the product [K]of symmetric matrices
and [k] is not necessarily symmetric, and we need to exploit the symmetry to
solve the equation. Fortunately, the desired simplification can be achieved in
a slightly different way.

Since [m] is positive definite and symmetric, we know that it has a well-
defined positive square root Indeed, if [m] is diagonal with matrix
elements then

In any case, let us multiply (4.17) with the inverse  of  to get it in
the form

Thus, the equation of motion can be put in the simple form

if we write

and introduce a new set of coordinates for the system defined by

The are sometimes called mass-weighted coordinates.
It follows from (4.19) that the matrix is real, symmetric and positive

definite, since [m] and.[k] have those properties. Therefore, it has n distinct
eigenvectors with corresponding eigenvalues which, of course, will

prove to be the normal frequencies. Thus, we have

Defining a matrix these n equations can be
written as a single matrix equation

where is the diagonal matrix
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Since [b] is nonsingular, we can put (4.33) in the form

and we say that [b] diagonalized [k]. We can use this to further simplify the

Substituting this into (4.29) and using (4.34), we obtain

Since is diagonal, this is equivalent to n uncoupled equations

which have the general solution found before.
These will be identical with the normal coordinates defined before

provided we related to by

which imposes on the the normalization

To establish the relation to our previous result explicitly, we simply invert
(4.31) and substitute (4.36) to get with

Now we can identify [a] as the matrix which transforms our original equation
of motion (4.17) into the diagonal form (4.36) for which the solution is
elementary.

Example 4.1

To illustrate the general method, let us apply it to the double pendulum. In
Example 2.2 of Section 6-2 we determined the linearized equations of motions
for the double pendulum, which can be put in the matrix form

equation of motion (4.29) by introducing new coordinates defined by
writing
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where

Since [k] is already diagonal in this case, it is algebraically simpler to
introduce

to put the equation of motion in the form

where

and, by a result in Section 5-1.

where det This reduces the problem to sol-
ving the eigenvalue equation (4.32).

Vibrations of Triatomic Molecules

The frequencies at which molecules absorb electromagnetic radiation depend
on their normal modes. So the determination of molecular normal modes is of
great importance for molecular spectroscopy. Here we analyze the normal
vibrations of bent triatomic molecules such as and Our
classical analysis is a necessary prelude to the more precise treatment with
quantum mechanics.
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The equilibrium configuration of
a bent symmetric triatomic mole-
cule is shown in Figure 4.1. For

the O-H bond length r and the

Let represent displace-
ments of the atoms from their
equilibrium position as indicated in
Figure 4.2. In terms of these variables the kinetic energy K has the simple form

However, we are interested here only in vibrations and not rotations and
translations of the molecule as a whole. So the 3 × 3 = 9 degrees of freedom
of the three displacement vectors must be restricted. First, an internal vibra-
tion cannot shift the center of mass, so we must require

Second, the vibrations must lie
in the plane of the molecule.
And third, the molecule must
not rotate in the plane. Thus,
after subtracting the three ro-
tational degrees of freedom, we
have 9 – 2 × 3 = 3 independent
vibrational degrees of freedom
remaining. This leaves us with
the problem of choosing an appropriate set of internal coordinates. We can’t use
normal coordinates until we have determined the normal modes.

For direct physical description of the molecule, variations in the bond
lengths, say and variations in the valence angle, say are natural
internal coordinates. Indeed, they provide the simplest expressions for the
potential energy. The internal potential energy function is very difficult to
calculate from first principles, and has been found for only a few simple
molecules. So we must be content with estimating it from auxiliary assump-
tions. The first assumption which recommends itself is that when the system is
in a near-equilibrium state, the forces of attraction and repulsion between
atoms are central. In that case, the potential energy will depend only on the
bond lengths, with the specific functional form

Fig. 4.1. Equilibrum configuration of a bent
symmetric triatomic molecule.

Fig. 4.2. Atomic displacements from equilibrium.

valence angle have the values
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The constants and are unknown but they can be evaluated from
spectroscopic data after the normal frequencies have been calculated. Since
there are only two unknown constants, one of the three normal frequencies
can be computed from data for the other two, thus providing a specific
prediction of the model. It turns out that the predictions for various molecules
are accurate to about 25%. Therefore, the central force assumption is only a
moderately accurate description of internal molecular forces.

Much better results have been obtained with a potential of the form

the constant describes resistance of the main bonds to stretching while
describes resistance to bending. The potential function (4.44) is also more
reasonable than (4.43) because bending and stretching variations are orthog-
onal to one another, as we expect of uncoupled variables in the potential
energy function. It has the additional advantage of applying to “straight” as
well as “bent” molecules.

To use the potential energy function (4.44) along with the kinetic energy
function (4.41), we need to relate the stretching and bending variables

to the displacement vectors To that end, it is convenient to
represent the relative equilibrium position of the atoms by vectors as
in Figure 4.2. A variation in the bond length  is related to the
relative atomic displacements by differentiating the constraint

Thus, so

where Similarly,

To relate a variation in the bond angle to the atomic displacement
we differentiate

where is the unit bivector for the plane of the molecules. Thus,

Taking the scalar part of this expression and using (4.45a, b) we find

This expression holds for the bond angle between any three atoms. For the
symmetrical triatomic molecule we have and it will be convenient
to employ the half angle so we write (4.46) in the form
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we could invert (4.45a), (4.45b), and (4.47) to express the as functions of
and and but there is a better approach.

Experience has shown that internal vibrations are best described in terms of
variables reflecting symmetries of the molecular structure. The water mol-
ecule is symmetrical about an axis through the equilibrium position of the
oxygen atom, as shown in Figure 4.1. Accordingly, we introduce symmetry
coordinates for three independent sets of atomic displacements, as
indicated in Figure 4.3. In terms of these variables, the atomic displacements
are given by

Fig. 4.3. Atomic displacements corresponding to symmetry coordinates (not normalized).

These expressions were constructed by assigning unit displacements to par-
ticles 1 and 2 (for each variable) and then obtaining from (4.42).

We express the kinetic energy in terms of symmetry coordinates by insert-
ing (4.48) into (4.41);

where

with
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The stretching and bending variables are expressed in terms of the symmetry
coordinates by inserting (4.48) into (4.45a,b) and (4.47), with the results

Inserting this into (4.44), we get the following expression for the potential
energy in terms of symmetry coordinates:

where

The introduction of symmetry coordinates has simplified the kinetic and
potential energy functions so the normal frequencies can easily be calculated
by the brute force method. In this case, the characteristic determinant (4.20)
has the form

This factors immediately into the two equations

The latter equation can be put in the factored form  if
and are its roots; so, by comparison of coefficients, we can express the

roots of (4.56) by the equations
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Using (4.49b), (4.50) and (4.53) to evaluate the right sides of these equations
in terms of molecular parameters, we obtain

From (4.55) we get an independent expression for the other normal frequency

Experimentally determined values for the normal frequencies of the water
molecule are

where c is the speed of light. Substitution of these values into (4.59) and
(4.60), yields the following values for the force constants:

Comparison with the remaining equation (4.58) shows a two percent discrep-
ancy, which is attributed to anharmonic forces. Note that the effective bending
constant is only about ten percent as large as the stretching constant
indicating that bonds are easier to bend than stretch.

To complete the determination of normal modes, we need to find the
matrix [a] relating symmetry coordinates to normal coordinates
by From (4.54) it is evident that [a] has the form

This shows that is already a normal coordinate differing from only by a
normalization factor, which we can read off directly from the expression
(4.49) for kinetic energy;

The brute force method gives us the ratios
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for For the water molecule the ratios have the values

This information is sufficient for us to construct a diagrammatic represen-
tation of the displacements in the normal modes from Figure 4.3. The result is
shown in Figure 4.4. The displacement vector for the oxygen atom in the
figure should actually be reduced by a factor to satisfy the
center of mass constraint (4.42), and, of course, the displacements are
exaggerated compared to the scale of interatomic distances.

Fig. 4.4. Normal modes of the water molecule.

Damped Oscillations

For a harmonic system with linear damping, the equation of motion has the
form

This is the matrix version of the system of coupled linear differential equa-
tions

The matrix is symmetric and can be derived from the assumption of linear
damping for each of the particles, as shown in Example 2.2 of Section 6-2. In
general, the matrix elements depend on the configuration, but in
the linear approximation we use the constant values   just as we
have done with the mass matrix elements



394 Many-Particle Systems

Equation (4.64) can be solved by the brute force method. One substitutes a
trial solution of the form

into the equation to get

This has nontrivial solution only if

This determinant is a polynomial of degree 2n in with 2n (complex) roots
If the roots are all distinct, then (4.66) yields 2n corresponding

solutions and the general solution of (4.64) is a superposition of the 2n
orthogonal solutions

If the characteristic determinant (4.67) is m-fold degenerate in a root then
a trial solution of the form

will work. This generalizes the case of the critically damped harmonic oscil-
lator discussed in Section 3-8.

The brute force method always works, but there are simpler methods
exploiting special symmetries of the coefficient matricies. In some cases there
is a change of variables which simultaneously diagonalizes all three matrices
[m], and [k]. Thus, if

then the change of variables which we found in the undamped
case, puts the equation motion in the form

where is the diagonal matrix (4.34). So each coordinate separately
satisfies the equation for a damped harmonic oscillator:

This has the complex solution

where

For light damping the “physical part” of the solution can there-
fore be written
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This shows that all the normal modes are equally damped despite the
differences in frequency.

Example 4.2

For the damped double pendulum discussed in Example 2.2, the results of
Example 2.2 enable us to write the linearized equation of motion

where

and all the other matrices are as given in Example 4.1. Comparison of with
[m] in Example 4.1 shows that if and

Then the method just discussed can be applied (Exercise 4.10).

Forced Oscillations

When the ith particle in a harmonic system is subject to an external sinusoidal
force according to (2.14), the system is subject to a generalized force
with components

Accordingly, Lagrange’s equation yields the equations of motion

where the generalized force is taken to be complex for convenience, and the
are constant in the first order approximation. In matrix form,

This generalizes the Equation (3–9.4) for a forced harmonic oscillator.
As in the harmonic oscillator case, the general solution of (4.76) consists of

a particular solution plus a solution of the homogeneous equation (4.70)
determined by the initial conditions. Since the homogeneous solution has
been discussed, and it can be ignored in the presence of a steady driving force
because it decays exponentially to zero, we can concentrate on the particular
solution.

If the matrices [m], [k] can be diagonalized simultaneously by the
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change of variables we may choose in the form (4.40), to put
the equation of motion (4.76) in the form

where

The components of (4.77) obey the independent equations of motion

This is the equation for the harmonic oscillator solved in Section 3-9. In the
present case, the particular solution can be written

where

Thus, the normal modes are excited independently of one another, and the

Molecules and crystals driven by electromagnetic waves absorb energy at such
resonant frequencies.

The general case when the equation of motion (4.76) cannot be decom-
posed into independently excited normal modes will not be discussed here.
But it should be mentioned that the general case is also characterized by
multiple resonant frequencies.

6-4. Exercises

(4.1) Complete the solution of Example 4.1 to determine the normal
modes and normal frequencies when

Determine the normal coordinates and as
functions of the angles and Specificy initial conditions which
will excite each of the normal modes.

(4.2) Show that in terms of normal coordinates the energy of a harmonic
system is given by

excitation of each normal mode depends on the amplitude of the general-
ized force as well as the driving frequency Excitation is a maximum when
the driving frequency is equal to one of the resonant frequencies
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(4.3) Three identical plane pendulums are suspended from a slightly
yielding support, so their motions are coupled. (Figure 4.5). To
simplify the mathematical description, adopt a system of units in
which the masses, lengths, and weights of the pendulums are equal
to unity. The linearized potential energy for the system has the form

Fig. 4.5. Coupled pendulums.

Determine the normal frequencies and modes of oscillation. The
system has degenerate modes, but show that an orthogonal set of
normal coordinates can be chosen so that where

Illustrate the normal modes with diagrams. Find an alternative set
of normal modes, and explain how they differ physically from the
first set.

(4.4) Show that and derive general expressions for the normal
frequencies of a bent triatomic molecule assuming a potential
energy of the form (4.44). Evaluate the consistency of the results
with empirical data for the water molecule, and compare with the
results in the text.

(4.5) Apply the results of the text to linear triatomic molecules by taking
Sketch the normal modes. One of the modes is doubly

degenerate, allowing circular displacements of the atoms without a
net angular momentum of the atom as a whole. Sketch the circular
modes.

(4.6) The experimentally determined normal frequencies of the
molecule are
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Use the results of the preceding exercise to evaluate the force
constants and Then check for self-consistency.

(4.7) Compute the normal frequencies for the two one-dimensional nor-
mal modes of symmetric linear triatomic molecules such as  and

by assuming a potential energy of form

Compare with the results of the preceding exercise for
(4.8) Suppose the two particles in Figure 3.1 have different masses.

Determine the normal modes and frequencies of the system as
explicit functions of the physical parameters.

(4.9) For the two identical particles in Figure 3.1, determine the general
solution to their equations of motion if they are subject to linear
damping forces.

(4.10) Complete Example 4.2 by finding the general solution when
(4.11) Determine the natural frequencies of the coupled pendulums in

Exercise (2.5) in Section 6-2.

6-5. The Newtonian Many Body Problem

The many body problem in classical mechanics is this: For a system of N
particles with known interactions, determine the evolution of the system from
any given initial state. In the preceding section we studied one kind of many
body problem appropriate for modeling elastic solids. In the Newtonian many
body problem, the interactions are described by Newton’s “Universal Law of
Gravitation”. Then the equations of motion for particles in the system have
the specific form

for i, j = 1, 2, . . ., N. The problem is to characterize all solutions of this
system of coupled nonlinear differential equations. This is a mathematical
problem of such importance and difficulty that it has engaged the best efforts
of some of the greatest mathematicians. To this day, a general solution has
not been found even for the case of three bodies, and much of the progress
has been in understanding what actually constitutes a solution when the
solution cannot be expressed in terms of known functions.

Up to the twentieth century, Newton’s Law of Gravitation was the best
candidate for an exact force law, so the most important reason for studying
the many body problem was to work out detailed implications of the law
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which could be subjected to empirical test. Since the advent of Einstein’s
General Theory of Relativity it has been clear that Newton’s law is not an
exact description of the gravitational interaction in nature. The exact impli-
cations of Newton’s law still provide baseline predictions from which to
measure the small deviations predicted by Einstein’s theory and possible
alternatives. However, the most sensitive tests for distinguishing alternative
theories are in situations free of many body complications.

Although the many body problem may no longer be so important as a test
of fundamental gravitational theory, it is crucial to many applications in
astronomy and spacecraft mechanics. Thus, an understanding of the many
body problem is needed to trace the evolution of the solar system and answer
such questions as, will any of the planets collide in the future? Have any
collided in the past? Of course, the evolution of the solar system is greatly
influenced by other factors such as the energy flux from the Sun and the
dissipation of energy by tidal friction. But the many body dynamics is no less
significant for that.

In Chapter 4 the gravitational two body problem was solved completely by
finding four first integrals (or constants) of motion: the center of mass
velocity and initial position, the angular momentum and the eccentricity
vector. It is natural, therefore, to attack the general N body problem by
looking for new first integrals. Unfortunately, that has turned out to be futile.

The system of equations (5.1) is of order 6N, since it consists of N vector
equations of order two. According to the theory of differential equations,
then, its general solution depends on 6N scalar parameters or, equivalently
2N vector parameters, which amounts to specifying the initial position and
velocity for each of the N particles. From the general many particle theory of
Section 6-1, we know that, for an isolated system, the angular momentum and
the center of mass momentum are constants of motion; from which it follows
that the center of mass position is determined by its initial value. This gives us
nine scalar (three vector) integrals of motion. In addition we know that the
total energy is an integral of the motion, because the gravitational force is
conservative. Generalizing work by Bruns and Poincaré, Painlevé (1897)
proved that, besides these 10 integrals, the general Newtonian N body
problem admits no other constants of motion which are algebraic functions of
the positions and velocities of the particles or even integrals of such functions.
There might be constants of motion expressible in terms of other variables,
but none have been found. This leaves 6N – 10 variables to be determined by
other means. For that no general method is known. That is where the many
body problem gets difficult.

For given initial conditions the N body problem can be solved by direct
numerical integration of the equations of motion (5-1). More practical in most
situations is the perturbation method, which generates N body solutions by
calculating deviations from two body solutions. It will be developed in
Chapter 8. Though these methods generate specific solutions, they give us
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little insight into qualitative features of solutions in general. They cannot tell
us, for example, what specific initial conditions produce periodic or nearly
periodic orbits, or when small changes in the initial conditions produce wildly
different orbits, or what initial conditions allow one of the bodies to escape to
infinity. To answer such qualitative questions about orbits, the great French
mathematician Henri Poincaré developed new mathematical methods in the
last quarter of the nineteenth century which proved to be seeds for whole new
branches of mathematics blossoming in the twentieth century; including
algebraic topology, global analysis and dynamical systems theory. Although
here we cannot go deeply into the qualitative theory of differential equations
incorporating such methods, we will survey what has been learned about the 3
body problem and add some observations about the generalization to N
bodies.

The General Three Body Problem

The case of three bodies is not only the simplest unsolved many body
problem, it is also the problem of greatest practical importance. Conse-
quently, it is the most thoroughly studied and understood.

The three body problem has been attacked most successfully by analyzing
the possibilities for reducing it to the two body problem. Absorbing the
gravitational constant G into the definition of mass, for 3 bodies the Equa-
tions (5.1) can be written

With the center of mass as origin, the position vectors are related by

This reduces the Equations (5.2) to a system of order 18 – 6 = 12. By using
the angular momentum and energy integrals, the order can be reduced to
12 – 4 = 8. The order can be further reduced to 7 by eliminating time as a
variable and then to 6 by a procedure called “the elimination of nodes”.
However, the actual reduction is messy and not conducive to insight, so we
shall not carry it out. For the special case of orbits lying in a fixed plane, the
order is reduced to 6 – 2 = 4, but the problem is still formidable.

The three body equations of motion have their most symmetrical form
when expressed in terms of the relative position vectors   defined by
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These variables are related by

(Figure 5.1). Solving (5.3) and (5.4) for the we get

where

We need (5.6) to relate a
solution in terms of the
symmetrical variables to
the fixed center of mass.

By substitution of (5.4)
into (5.2), we get equations of motion in the symmetrical form

where and

The noteworthy simplicity of this formulation was first pointed out by Broucke
and Lass in 1973. Evidently it had been overlooked in two centuries of
research on the three body problem. We see below that it provides a direct
route to the known exact solutions of the three body problem. It has yet to be
exploited in the analysis of more difficult questions.

Fig. 5.1. Position vectors for the three body problem.
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The Triangular Solutions

Note that system of equations (5.8) decouples into a set of three similar two
body equations if G = 0. Comparing (5.5) and (5.9), we see that this will
occur if

that is, if the particles are located at the vertices of an equilateral triangle.
Then we can express two “sides” of the triangle in terms of the third by

where i is the unit bivector for the plane of the triangle. The triangular,
relation will be maintained if i is constant, so and are determined by at
all times. This is consistent with G = 0 in (5.8). Thus, we have found a family
of solutions which reduce to solutions of the two body Kepler problem. As
expressed by (5.11), the three particles remain at the vertices of an equilateral
triangle, but the triangle may change its size and orientation in the plane as
they move. The equilateral triangle solution was discovered by Lagrange.
Note that it is completely independent of the particle masses.

To describe the particle orbits with respect to the center of mass, we
substitute (5.11) into (5.6) and find

This shows that the particles follow similar two body orbits differing only in
size and orientation determined by the masses. It should be noted that the
acceleration vector of each particle points towards the center of mass (Exer-
cise 5.1). Orbits for elliptical motion are shown in Figure 5.2. Similar orbits
for hyperbolic and parabolic motions (Section 4-3) are easily constructed.

The Collinear Solutions

Euler found another exact solution of the three body equations where all
particles lie on a line separated by distances in fixed ratio. To ascertain the
general conditions for such a solution, suppose that particle 2 lies between the
other two particles. Then the condition (5.5) is satisfied by writing

where is a positive scalar to be determined. Now, we can eliminate  G in the
equations (5.8) to get
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Fig. 5.2. Lagrange’s equilateral triangle solution for masses in the ratio

Inserting (5.13) in these equations to eliminate and we obtain

Consequently,

Putting this in standard form, we see that it is a fifth degree polynomial:

The left side is negative when and positive as therefore the
polynomial has a positive real root. By Descartes’ rule of signs, it has no more
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than one positive real root. Therefore is a unique function of the masses,
and the two body solutions of (5.15) determine a family of collinear three
body solutions. Two other solutions are obtained by putting different particles
between the others. Thus, there are three distinct families of collinear three
body solutions. A solution for the elliptic case is shown in Figure 5.3.

Fig. 5.3. Euler’s collinear solution for masses in the ratio

Generalizations of the Lagrange and Euler solutions for systems with more
than three particles have been found. As in the three particle case, in all these
solutions the particles remain in a permanent configuration with accelerations
directed towards the center of mass. The solutions are mainly of mathemati-
cal interest, since they require extremely special initial conditions to be
realized physically.

The Euler and Lagrange solutions are the only known exact solutions of the
three body problem. To get an understanding of the great range of other
solutions, we turn to a qualitative analysis.

Classification of Solutions

A systematic classification and analysis of three body solutions based on
energy and asymptotic behavior was initiated by Chazy in 1922 and refined by
others since. Table 5.1 gives a current form of the classification using termi-
nology suggested by Szebehely.

The three body system can be described as a pair of two body systems, one
consisting of two particles, the second consisting of the third particle and the
center of mass of the other two. The motion of each two body system can be
described as elliptic, parabolic or hyperbolic, depending on the system’s
energy, and this description becomes exact asymptotically (that is, in the limit

if the separation of the third body from the others increases with time
t when t is sufficiently large. The permissible asymptotic states of the two
body system depend on the sign of the total energy of the three body system.

When the total energy E is positive the classification is easy, because the
energy of at least one two body subsystem must be positive, so its asymptotic
motion must be hyperbolic and the two body systems separate. There are
three possibilities, as shown in Table 5.1. In hyperbolic explosion all three
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particles depart along hyperbolas. In hyperbolic-parabolic explosion two
particles depart along parabolas while the third departs along a hyperbola. In
the hyperbolic-elliptic case, one particle escapes along a hyperbola while the
others form a binary, that is, a two particle system bound in elliptic motion.

The classification for zero total energy is similar to the positive energy case.
Of course, in all cases the parabolic motions are unlikely to be realized
physically, because they require a specific value for the energy.

When the total energy is negative, the classification is more complex. As in
the positive energy case, the possibility exists that one particle escapes leaving
a binary behind. However, there are also many types of bounded motion. The
term interplay refers to motions with repeated close approaches among the
particles. Ejection refers to motions where two particles form a binary, while
the third is repeatedly ejected on large nearly elliptical orbits, much as comets
are ejected from the solar system. Revolution is the case where the orbit of
the third body surrounds a binary. We have discussed the equilibrium solu-
tions of Lagrange and Euler already. As we show below in a special case,
these solutions are unstable unless there are large differences in the masses.
The periodic orbits can be of any type of bounded motion just mentioned.

The oscillatory motion listed in Table 5.1 was not discovered until 1960. It
consists of a binary and a third particle which moves along a line perpendicu-
lar to the orbital plane of the binary and through its center of mass. The
oscillating particle goes to infinity along this line while its velocity goes to zero
in finite time, and this behavior is repeated as time goes to infinity. Obviously,
this case is not of physical interest.



406 Many-Particle Systems

The classification gives us a general picture of the possible motions, but it is
not specific enough to answer the most important questions, such as, which
type of motion will ensue from given initial conditions with negative total
energy. However, it has been determined that for arbitrary initial conditions
hyperbolic-elliptic escape is the most likely. Interplay is a necessary prelude
to ejection, and repeated ejections may lead to escape. Usually, the particle
which escapes has the smallest mass.

The Restricted Three Body Problem

The three body problem can be viewed as a perturbation by the third particle
of the two body motion of the other two particles, called primaries. For this
purpose, it is convenient to employ Jacobi coordinates x and r. The vector x is
the position vector of the third particle with respect to the center of mass of
the primaries, located at

Therefore,

where and The relative position vector for
the primaries is

In terms of the Jacobi coordinates, the relative positions of the third particle
with respect to the primaries are

In terms of the Jacobi coordinates, the three body equations of motion (5.2)
take the form of an equation for the relative motion of the primaries

coupled to an equation for the motion of the third body with respect to the
primaries

Here, and are to be regarded as auxiliary variables defined in terms of the
Jacobi variables by (5.19).



The Newtonian Many Body Problem 407

Jacobi coordinates are most appropriate when the mass of the third body is
much less than the mass of either primary. When the mass is so small that
its influence on the primaries can be neglected, we can write

and Equations (5.20) and (5.21) reduce to

The problem of solving these equations is called the ristricted three body
problem.

We already know the general solution of the two body equation (5.22) for
the primaries. However, the general solution of (5.23) is still unknown,
though many special solutions have been found. Thus, the restricted three
body problem is still an open area for research.

Most three body research has concentrated on the circular restricted prob-
lem, which is restricted to circular solutions of the primary two body equation
(5.22). Besides the helpful mathematical simplifications, this special case has
important practical applications. It is a good model, for instance, of the
Sun-Earth-Moon system, or of a spacecraft travelling between the Earth and
Moon. So let us examine this case in more detail.

To that end, it is convenient to make a slight change of notation in (5.22)
and (5.23), writing

The circular solution to (5.24) with angular frequency is

where

and r is a fixed vector, the relative position vector of the primaries in the
rotating system. The motion of the primaries is most easily accounted for in
(5.25) by transforming it to the rotating system in which the primaries are at
rest. Accordingly, we write

and substitute into (5.25) to get the equation of motion in the rotating system:
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where

is an “effective force” with and given by (5.19). Thus, the circular
restricted problem has been reduced to solving this equation. Before looking
for specific solutions, we ascertain some general characteristics of the equa-
tion.

We note that the “effective force” F(x) is a conservative force with
potential

that is,

This can be proved by using properties of the gradient operator
established in Section 2-8 to carry out the differentiation of (5.31). Using

and we find that the negative gradient of the “cen-
trifugal pseudopotential”

is the “centrifugal pseudoforce”

The last two terms in (5.30) are obtained from the last two terms of (5.31) by
using the chain rule and

Multiplying the equation of motion (5.29) by and using (5.32), we easily
prove that

known as Jacobi’s integral, is a constant of the motion. Of course, this is just
the energy integral for the three body system with the contributions of the
primaries removed, as allowed by the approximation in the restricted prob-
lem.

Before studying particular solutions of the restricted problem, we can
simplify computations by choosing a unit of length so that

a unit of time so that

and a unit of mass so that
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Defining a mass difference parameter by

we have

where is positive for

Equilibrium Points

A point at which the force function F(x) vanishes is called an equilibrium
point (stationary point or libration point) of the differential equation (5.29). A
particle initially at rest at an equilibrium point will remain at rest, because its
acceleration vanishes. The equilibrium points are “critical points” of the
potential U(x), for, from (5.32) we see that

that is, at an equilibrium point the directional derivative of the potential
vanishes in every direction a.

The equilibrium points are solutions of the equation

where, by (5.19) and (5.36c),

Dotting (5.37) and (5.38)
with we determine that

Therefore, all equilibrium
points lie in the orbital
plane of the primaries
(called the primary plane).

The solutions of (5.37)
are just restricted versions
of the exact solutions of Lag-
range and Euler which we
found for the general three
body problem. Therefore,
since the primaries have a
fixed separation, there are
two equilibrium points

at the vertices of equila-
teral triangles with Fig. 5.4. The five Lagrange points of the restricted three

and three equilibrium body problem.
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points collinear with the positions of the primaries (Figure 5.4).
The five equilibrium points are called Lagrange points.

The Lagrange points are of more than mere academic interest. Groups of
asteroids known as the “Trojans” are found near the points and  of  the

asteroids temporarily trapped near the point of  the Sun-Earth system may
be responsible for a faintly glowing spot in the night sky called the gegenschein.

Stability of the Lagrange Points

An equilibrium point is said to be stable if a particle stays near it when
subjected to small disturbances. To investigate the stability at we deter-
mine how the force function F(x) varies with small displacement  from  A
Taylor expansion (Section 2.8) gives us

where higher order terms can be neglected. Introducing the notation
and differentiating (5.30) we obtain

where and are given by (5.38). With  substitution of (5.39) and
into the equation of motion (5.29) yields the variational

equation

This is the linearized equation for motion near an equilibrium point. We say
“linearized”, because is the linear approximation to the force
The equation is called a variational equation, because it describes deviations
(variations) from a reference orbit, namely the circular orbit of an equilib-
rium point in the primary plane.

The theory of differential equations tells us that stability (instability) of the
linearized equation is necessary for stability (instability) of the nonlinear
equation it approximates. To prove that stability of the linearized equation is
also sufficient for stability of the nonlinear equation is a difficult mathematical
problem that has been solved only for particular cases, too difficult to broach
here. We must be content with the results of a linear analysis, a study of
solutions to the linearized equation (5.41). Stability at the various Lagrange
points must be examined separately. But first it is advisable to ascertain the
qualitative features of the variational equation which contribute to stability.

For the displacement component along the direction normal to

Sun-Jupiter system. The Lagrange point  of the Earth-Moon system has
been suggested as a suitable place for a space colony. Reflected light from
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the primary plane, by dotting (5.40) and (5.41) with we obtain the equation

Since the coefficient is positive, is limited to small harmonic oscillations.
Therefore, the equilibrium points are stable with respect to displacements
normal to the primary plane. So, for the rest of our analysis we limit out
attention to motions within the primary plane.

From (5.40) we see that is a symmetric linear function. Moreover, for
displacements in the primary plane,

We shall see that the first coefficient vanishes when evaluated at the Lagrange

which holds for any direction in the primary plane. This tells us that the
effective potential U(x) is a maximum at the equilibrium points. In other

primary plane. Nevertheless, and are stable equilibrium points if a
certain condition on the masses of the primaries is met.

To see how stability is possible on a potential hill, consider a particle at rest
which has been nudged off the peak. The repulsive force accelerates it
downhill. As its velocity increases, according to (5.41) the Coriolis force
increases, and the particle is deflected to the right. If the deflection is
sufficient, the particle starts back uphill and slows down until it starts to fall
down again, repeating the process. Thus, the Coriolis force can bind a particle
to a “pseudopotential” maximum, producing stability. The rightward deflec-
tion of the Coriolis force is opposite in sense to the rotation of the primaries,
which we express by saying at the particles motion is retrograde.

To see if the conditions for stability are met at the Lagrange points, we
must examine the solutions of the variational equation (5.41) quantitatively.
At the triangular Lagrange points and
reduces to a strictly repulsive force

At the sides of the triangle are related by

where is the unit bivector for the primary plane. Note that

words, the Lagrange points and are peaks of potential hills in the

points and      so   for      This tells us that is a repulsive
force increasing linearly with distance. We can express this in another way by
inserting (5.32) into (5.43) to get
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implies so substitution of (5.46) and (5.36) into (5.45) leads to the
following explicit form for the linearized force:

This can be simplified by expressing in terms of its eigenvectors. That is
most easily done by writing

where is an eigenvector which can be obtained from r when is known.
Now,

and this will simplify the last term in (5.47) if

This implies that

so we can put (5.47) in the general form

with

in this particular case. From (5.50)

showing that and are eigenvectors of with eigenvalues It
is worth noting that we have illustrated here a new general method for solving
the eigenvalue problem in two dimensions, which has some advantages over
the methods developed in Section 5-2.

We use (5.50) to put (5.41) in the form

It is convenient to reformulate this as an equation for the spinor

which relates to by Thus, we obtain

Our stability problem has been reduced to studying the solutions of this
equation.
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From our experience with linear differential equations in Chapter 3, we
know that (5.55) has circular solutions of the form if
However, when the solutions cannot be of this form, because the
conjugation changes the sign of the exponential. This suggests that we
consider a trial solution of the form

where a and b are complex coefficients to be determined by the initial
conditions. The parameter must be real (i.e. scalar) for a stable solution, for
if it has a finite imaginary part one of the exponential factors will grow
without bound.

Substituting (5.56) into (5.55) and separately equating coefficients of the
different exponential factors, we obtain

Assuming we eliminate a and b from these equations to get

This is a quadratic equation for with the solution

For the particular values of and in (5.51), this becomes

Both roots will be real if and only if

and both real roots will be positive since Thus we have found a
condition on the masses of the primaries necessary for stability at

For the Sun-Jupiter system, the mass ratio is about 1000:1, so
For the Earth-Moon system, the mass ratio is about 81.4:1 so
These values satisfy the inequality (5.60), so the Lagrange points and
are stable for both systems.

For a real and positive root determined by (5.59), we know from our
study of the harmonic oscillator that the solution (5.56) describes an ellipse.
However, (5.56) is not the form for a general solution as it is in the harmonic
oscillator case, for the coefficients a and b are not mutually independent,
being related by (5.57). It is of some interest, therefore, to determine initial
conditions which produce such a special solution. We choose initial time in
(5.56) so that a is real and positive. Then (5.57) and (5.51) tell us that



414 Many-Particle Systems

Using (5.54) and (5.56), we can write the solution in the form

This shows us that the major axis of the elliptical orbit must be aligned with
the principal axis of the force function Then (5.61) implies that the
coefficient (a – b) is negative, which tells us that the orbit is retrograde. For
an initial position on the principal axis, the constant (a + b) is determined
by

The initial velocity is then determined by

where the constant is determined by (5.61). More generally,
Equation (5.62) determines a unique orbit, through any specified initial
position.

According to (5.59), two unique positive values for are allowed, say
and with For each of these, there is a special solution of the form
(5.62). So through any given point there pass exactly two retrograde elliptical
orbits, an orbit with large angular frequency and one with small frequency

Every allowed motion is a superposition of these two, that is to say, the
general solution of the variational equation (5.53) has the form

where the determine the by (5.57), and can be regarded as two
independent complex coefficients determined by the initial conditions.

Stability of the collinear Lagrange points  can be investigated in
the same way as The linearized force is found to have the same general
form (5.50) with but the values of and differ from those in (5.51).
They produce roots of opposite sign from (5.58). The positive root character-
izes a retrograde elliptical orbit just as in the case. However, the negative
root implies that is imaginary, and this leads to an exponentially divergent
solution when inserted in (5.56). Thus, special initial conditions produce
bounded elliptical motion at the collinear Lagrange points, but these equilib-
rium points must be regarded as unstable, because the general solution (of the
form (5.56)) is divergent. In a real physical situation where an object is
trapped in an elliptical orbit at one of the collinear points, external disturb-
ances will eventually deflect it to an “unbounded orbit” so it escapes.

A global perspective on possible orbits with a given energy can be gained
from a contour map of the effective potential, which has the form
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Fig. 5.5. Contour map of the Earth-Moon potential in the synodic (rotating) reference system.

in the primary plane. At large distances the first term dominates, so the
potential decreases with and the  equipotential curves are nearly circular.
Each mass is centered in a potential well, so nearby equipotentials are circles
around it. The Lagrange points and are potential maxima, as we have
shown. These are the critical features of the contour map in Figure 5.5. The
map shows the three collinear Lagrange points as saddle points. This can be
verified analytically by showing that, at the collinear points,

for and

for

The energy integral (5.35) implies that a particle with total energy C cannot
cross a contour determined by the equation U(x) = C; its motion is confined
to regions where U < C. Thus, a particle trapped at will circle the peak but
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Fig. 5.6. Earth-Moon “bus route” in the synodic (rotating) reference system (found by
Arenstorf (1963)).

never climb higher than U = C. It is worth noting that if the particle’s kinetic
energy is dissipated by collisions with gas, dust or small bodies, then it will
slide down the peak, increasing the amplitude of its oscillations about
This has been suggested as the origin of the large amplitude oscillations of the
Trojan asteroids.

The regions excluded by energy conservation are called Hill’s regions by
astronomers, after G. W. Hill who pointed out that the stability of the Moon’s
orbit is assured by the fact that it lies within its bounding contour which
encircles the Earth. The contour map is a helpful guide in the search for
periodic solutions, to which we now turn.

Periodic Solutions

The systematic search for periodic solutions of the circular restricted three
body problem was inaugurated by Poincaré in a masterful series of mathe-
matical studies. He conjectured that every bounded solution is arbitrarily
close to some periodic solution, possibly with very long period. This reduces
the classification problem to classification of period solutions. Periodic solu-
tions are more easily classified, because the behavior of a periodic function for
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Fig. 5.7. Earth-Moon “bus route” in the sidereal (non-rotating) reference system (Arenstorf
(1963)).

all time is known when its behavior for a finite time (the period) has been
determined.

Another reason for studying periodic solutions is to use them as reference
orbits for calculations which account for other physical effects by perturbation
theory (Chapter 8). A prime example is the Hill-Brown lunar theory. With
the Sun and Earth as primaries, Hill (1877) found a periodic solution within
the Earth’s potential well (Figure 5.5) known as Hill’s variational curve. The
curve is an oval, symmetrical about the primary axis and elongated perpen-
dicular to the axis. With this as a reference curve, a description of the Moon’s
motion with high precision was developed by Hill and Brown. Since 1923,
Brown’s results have been used in preparing tables of lunar motion.

A solution is periodic with period T if, for any time t,

The solution depends parametrically on the mass and energy parameters
and C. When a particular periodic solution has been found, a whole family of
periodic solutions can be generated from it by varying the parameters. Thus,



418 Many-Particle Systems

Hill’s variational curve generates a family of periodic orbits about the smaller
primary. The shape of the curve varies as the parameters are changed; the oval
develops unforeseeable cusps and loops; they can be found only by numerical
calculation. Poincaré called this family of orbits solutions of the first kind.

Solutions of the second kind lie in the primary plane and loop around each
primary. The existence of periodic orbits which pass arbitrarily close to each
primary was first proved by Arenstorf (1963), and many such orbits have
since been calculated. A particularly good candidate for a lunar bus route is
shown in Figures 5.6 and 5.7. The buses would shuttle material and people
between the Earth and Moon with minimal fuel consumption.

Before the invention of the modern computer, the computation of three
body orbits was long and laborious. An enormous number of periodic
solutions, many with bizarre shapes, have been found in the last 25 years.
Interest in the 3-body problem has never been greater for both practical and
mathematical reasons. It remains an open and active field for research. For
more information the reader should consult the specialized literature. The
most comprehensive account of 3-body research is by Szebehely (1967).

6-5. Exercises

(5.1)

(5.2)

(5.3)

(5.4)

Use Equation (5.12) to show that the orbit of particle 1
solves the equation

Solve Equation (5.16) and  determine the collinear solutions ex-
plicitly when all three particles have identical masses.
Verify the Jacobi equations of motion (5.20) and (5.41) and  the
following expressions for the total angular momentum  ,  kinetic
energy K and “central moment of inertia”

where and
Show that at the collinear Lagrange points the linearized
equation for deviations in the primary plane has the form of equa-
tion (5.50), where and

Prove therefrom that the collinear Lagrange points are unstable.



Chapter 7

Rigid Body Mechanics

Rigid Body Mechanics is a subtheory of classical mechanics, with its own
body of concepts and theorems. It is mainly concerned with working out the
consequences of rigidity assumptions in models of solid bodies.

The formulation of rigid body theory in Section 7-1 is unique in its use of a
spinor equation to describe rotational kinematics. This makes the whole
spinor (quaternion), theory of rotations, with all its unique advantages,
available for application to rigid body problems. Sections 7-3 and 7-4 present
one of the most extensive mathematical treatments of spinning tops to be
found anywhere, certainly the most extensive using spinor methods. Some of
this material is likely to be difficult for the novice, but comparison with
alternative approaches in the literature shows that it includes many simplifi-
cations. Since this is the first extensive spinor treatment of classical rotational
dynamics to be published, it can probably be improved, and it is wide open
for new applications. This approach is closely related to the quantum mecha-
nical theory of spinning particles, so it narrows the difference between classi-
cal mechanics and quantum mechanics.

The treatment of inertia tensors in Section 7-2 is intended to be complete
and systematic enough to make it useful as a reference.

7-1. Rigid Body Modeling

This section is concerned with general principles and strategies for developing
rigid body models of solid objects. We can distinguish three major stages in
the development of a rigid body model. In the first stage, a suitable set of
descriptive variables is determined to describe the structure and state of
motion of the body as well as its interactions with other objects. In the second
stage, the descriptive variables are combined with laws of motion and interac-
tion to determine definite equations of motion for the body. In the final stage
the equations of motion are solved and their consequences are analyzed. In
this section we will be concerned with the first two stages only, but we will

419
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stop short of developing specific models. Specific rigid body models and their
ramifications will be studied in subsequent sections.

A complete set of descriptive variables and laws of motion for an arbitrary
rigid body is listed in Table 1.1. The dynamical laws of rigid body motion
were derived from the laws of particle mechanics in Section 6.1. Now,
however, when we do rigid body mechanics we take the laws of rigid body
motion as axioms, so no further appeal to particle mechanics is necessary,
unless one wants to consider alternatives to the working assumption of
rigidity. To apply the laws of motion, we need to understand and control the
descriptive variables, so we approach that first.

State Variables

We designate the position and attitude of a rigid body respectively by a vector
X and a unitary spinor R. The vector X designates the center of mass of the
body. The spinor R relates the relative position r of each particle in the body
to a relative position in a fixed reference configuration; specifically, the
spinor-valued function R = R(t) determines the time dependent rotation
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so that

(1.2)

where is the rotational velocity of the body as specified in Table 1.1. The
position x of a particle in the body is given by

(1.3)

It follows that the motion of a rigid body can be described completely by
specifying its position X = X(t) and its attitude R = R(t) as functions of time,
for the trajectory x = x(t) of each; particle in the body is then determined by
(1.3). The translational and rotational trajectories X = X(t) and R = R(t)
resulting from the action of specified forces are determined by the laws of
motion in Table 1.1 together with specified initial values for and as well as
X and R. At any time t, the state of translational motion is described by the
center of mass position X(t) and velocity while the state of rotational
motion is described by the attitude R(t) and rotational velocity Accord-
ingly, the descriptive variables X, , R, are called state variables or
kinematic variables for the rigid body.

Object Variables

Object variables describe intrinsic physical properties taking on particular
fixed values for each particular object. Values of the object variables for a
composite object depend on its structure. The object variables for a rigid
body are the mass m, inertia tensor and the location of the center of mass X
with respect to the body. Size and shape are also intrinsic properties of a rigid
body, but they play no role in rigid body kinematics, so they need not be
represented by object variables. However, the geometrical properties of size
and shape play an important role in dynamics, since they determine the points
at which contact forces can be applied.

In modeling an object as a rigid body, the first problem is to determine the
values of its object variables. Methods for solving this problem are discussed
in Section 7-2. In our discussion here we take it for granted that the values of
the object variables are known. We are interested here in general properties
of the object variables.

To interpret, analyze and solve Euler’s equation, we need to know the
structure of the inertia tensor and its relation to the kinematic variables. We
established in Section 6-1 that the general properties of the inertia tensor in
Table. 1.2 follow from its definition in Table 1.1. With these general proper-
ties in hand, we need not refer to the detailed definition of the inertia tensor
in our analysis of Euler’s equation.

Since the inertia tensor is linear and symmetric (Table 1.2), we know from
Section 5-2 that it has three orthonormal principal vectors (k = 1, 2, 3)
satisfying the eigenvalue equation
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with principal values (k = 1, 2, 3). From the positive definite property
(Table 1.2), it follows that each principal value is a positive number. The
determination of principal vectors and values for specific bodies is carried out
in Section 7-2, but for the purpose of analyzing rotational motion, it is only
necessary to know that they exist.

The principal vectors specify direc-
tions in fixed relation to the rigid body.
It is convenient to imagine that the k

are rigidly attached to the body at the
center of rotation (assumed to be the
center of mass unless otherwise speci-
fied). The lines through the center of
rotation with directions are called
principal axes of the body (Figure 1.1).
Since the rotate with the body, ac-
cording to (1.2) they obey the equation
of motion

Fig. 1.1. Principal axes for an arbitrary
According to (1.1), the solution to these body.
equations can be given the form

where is any standard frame of constant vectors. Since it
follows from (1.6) that

where the body frame has been chosen to be righthanded.
Euler’s equation can be decomposed into its compo-

nents with respect to the body frame, with the result
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where and  Most of the literature on rigid body motion
deals with Euler’s equation only in its component form (1.7). In contrast, we
will develop techniques to handle Euler’s equation without breaking it up into
components. This makes it easier to interpret results and visualize the motion
as a whole, and it has certain mathematical advantages. It should be noted,
however, that (1.7) does not give the components of Euler’s equation with
respect to an arbitrary coordinate system. Rather (1.7) gives the components
with respect to a special frame determined by the intrinsic structure of the
body. So we should expect (1.7) to have some special advantages. Indeed, in
Section 7-4 we shall see that (1.7) is most useful for treating the rotational
motion of an asymmetric body.

The vector is the rotational velocity of the body relative to the
nonrotating space frame. From the viewpoint of an observer on the spinning
body, the body is at rest while the universe rotates around it with a rotational
velocity which differs from only in that it rotates with the body. More
specifically, the rotational velocity with respect to the body frame is given by

note that

Consequently, Euler’s equations (1.7) can be regarded as equations for either
or We will work mostly with but will be needed when we wish to

interpret observations with respect to a rotating frame such as the Earth.

Change of Base Point

The equations in Table 1.1 decompose the motion of a rigid body into
translations and rotations which can be analyzed separately, although they
may be coupled. This decomposition is achieved by choosing the center of
mass X as a base point (or center of rotation) through which the rotation
passes. Sometimes, however, the description of motion is simpler when
referred to a different base point Y in the body. Let us examine this possi-
bility. The chosen center of rotation Y can be designated by its directance

to the center of mass X. The angular momentum about this point is
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so by expanding the right side of (1 .11) we

Thus, is the sum of the body’s “intrinsic angular momentum”   with respect
to the center of mass and its “orbital angular momentum” with
respect to base point. Furthermore, from (1.2) it follows that for

so (1.11) yields

This defines the inertia tensor which determines the angular momentum
as a function of the rotational velocity Since we can express
(1.12) as a relation among inertia tensors

This important formula is called the parallel axis theorem, because it relates
the rotational motion about an axis through the center of mass to the
rotational motion about a parallel axis passing through another base point of
the body (Figure 1.2).

We can get an equation for the rotational motion about
Y by substituting (1.12) into the rotational equation of
motion from Table 1.1; thus,

where

is the torque about the new base point. Inserting

into (1.15), we get the rotational equation of motion in
the form

The coupled equations (1.17) and (1.18) are useful in
problems where Y = Y(t) is a function specified by con-
straints, in other words, when the solution of the trans-
lational equation of motion is known. Most important is
the case when Y is a fixed point so Then (1.18)
reduces to

This is identical in form to Euler’s equation (Table 1.1) for motion about the
mass center. The only difference is in the choice of inertial tensor according to
(1.13) or (1.14).

Fig. 1.2. Any point Y
in a rigid body can be
chosen as a center of
rotation, and the ro-
tational velocity has the
same value at all
points of the body.
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To sum up, a change of base point from X to Y can be regarded as a change
of translational state variables. Although this does not affect the rotational
state variables R and it does induce changes in the inertia tensor and the
equations of motion.

Constants of Motion

In rigid body mechanics, constants of motion arise from symmetries of the
equations of motion, just as in particle mechanics. As in particle mechanics,
constants of the translational motion derive from special properties of the
applied forces. Similarly, constants of rotational motion derive from special
properties of the applied torque. We derived the internal energy conservation
law for a system of particles in Section 6-1. But if we are to carry out our
program of developing rigid body mechanics independently of particle mech-
anics, we must see how energy conservation for rotational motion can be
derived from Euler’s equation.

Using the kinematic property of the inertia tensor in Table 1.2, we find that
and with the symmetry property we have

Therefore Euler’s equation gives

for the rate of change of the rotational kinetic energy This
is the most we can say about rotational energy without some specific assump-
tion about the torque.

In the important case of a single force F applied at a point r fixed in the
rotating body, the torque is = r × F, and

For a conservative force with potential V = V(r), we know from Section 2-8
that

Then, from (1.20) we get the rotational energy

as a constant of motion. For the important case of constant force, we use
(1.21) directly to get
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Of course, it is possible for translational and rotational energies to be
conserved together even when they are not conserved separately.

Other constants of motion derive from the fact that the torque is a product
of vectors. Thus, even for an arbitrary force we have

If the force acts always on the same point in the body, then and
Obviously vanishes if we shall see

that it also vanishes for an axially symmetric body if r lies along the axis of

Therefore, if F is constant, then is a constant of the motion. Thus, for the
case of a constant force acting at a fixed point on the body, the quantities

and are all constants of the rotational motion. By finding these three
constants we have, in effect, integrated Euler’s equation to determine the
rotational velocity This reduces the problem of determining the rotational
motion to integrating for the attitude R. That is still a tricky
problem, as we shall see in Sections 7-3 and 7-4.

A Compact Formulation of the Rigid Body Laws

The center of mass momentum P and “internal” angular momentum  of a
rigid body can be combined into a single quantity P, defined by

Lets call this the complex momentum of the body. Similarly, a force F and
torque applied to a rigid body can be combined in a single quantity

called a complex force or wrench on the body. With these definitions for P and
W, the laws for rigid body translational and rotational motion in Table 1.1 can
be combined in a single equation

which we might call the complex law of motion for a rigid body.
Now the question is whether the motion law (1.27) has any physical

meaning or value beyond the fact that it is the most compact formulation of
the rigid body motion laws which we could hope for. The first thing to note is
that the complex combination of momentum and angular momentum in
(1.25) is geometrically correct since, as we have noted before, the angular
momentum is most properly represented geometrically as a bivector

symmetry. Therefore, in these cases so is a constant of
the motion.

Similarly,



Rigid Body Modeling 427

Thus, P is more than a mere formal combination of “real vectors” P and   with
a “unit imaginary” i; it is a combination of physically distinct vector and
bivector quantities. Similar remarks apply to the complex force, since the
torque is most properly represented geometrically as a bivector

The “complex vector” P represents the state of rigid body motion in the
6-dimensional space of vectors plus bivectors. The dimension of this space is
exactly right, because a rigid body has six degrees of freedom. Moreover, the
partition of this space into the 3-dimensional subspaces of vectors and
bivectors corresponds exactly to the partition of a rigid motion into transla-
tional and rotational motions. Thus, the description of rigid motion in this
space by the law (1.27) makes sense physically. We shall see below that the
“complex formulation” has a deeper physical meaning and some mathemati-
cal advantages. Since this compact formulation of rigid body theory with
geometric algebra has not been published previously, the full extent of its
usefulness remains to be determined. In the meantime, we always have the
option of treating translational and rotational parts separately as usual.

Of course, our use of a complex momentum calls for a complex velocity V
defined by

In working with complex vectors, it is convenient to introduce a scalar
product defined by

Using (1.25) and (1.28), then, we find that the total kinetic energy K of a rigid
body is given by the simple expression

And from the motion law (1.27), we find that the change in kinetic energy is
determined by the equation

One would expect this to be most useful in problems where rotational and
translational motions are coupled, as in rolling motion.

Equipollence and Reduction of Force Systems

A single force F applied to a rigid body at a point r in the body frame, exerts a
torque  Therefore, the full effect of the force on the body is
represented by the “complex interaction variable”

In Section 2-6 we saw that any vector F and its moment determine a
unique oriented line with directance from the origin (= center
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of mass here). For this reason, a wrench of the form (1.32a) is sometimes
called a line vector, and it can be written in the equivalent form

The oriented line is called the axode and d is called the moment arm of F or W
(Figure 1.3).

The equivalence of (1.32b) with
(1.32a) means that F would have
the same effect on the body if it
were applied at the point d instead
of at r or, indeed, at any other point
on the axode. Forces applied at
different points of a rigid body are
said to be equipollent if and only if
their line vectors (wrenches) are
equal. This implies that two forces
are equipollent if and only if they Fig.   1.3. The axode of a force F

have the same axode and magni-
tude.

The concept of equipollence is readily generalized to systems of forces.
Suppose that forces are applied simultaneously to rigid body
at points respectively. Each applied force determines a
wrench on the body

where is the moment arm to the ith axode. The net effect on the body, of
the entire system of forces, is determined by the superposition of wrenchs
producing the resultant wrench

where is the resultant force and  is the resultant torque.
This is the superposition principle for rigid body mechanics. According to the
motion law (1.27), the entire effect of a system of forces on a rigid body is
determined by its resultant wrench. Therefore, two different force systems will
have the same effect on rigid body motion if and only if their resultant wrenches
are equal. In that case, we say that the force systems are equipollent.

We can use the fact that equipollent force systems have identical effects on
rigid body motion to simplify our models by replacing a given system of forces
by a simpler system equipollent to it. This is called reduction of forces (or
wrenches). To facilitate force reduction, we now develop a few general
theorems.

First we note that equipollence relations are independent of base point. To
prove it, we recall that a change in base point from the center of mass induces
a change in the resultant torque of a system of forces (given by (1.15)) while
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the resultant force F is unchanged. Therefore, a shift of base point changes a
wrench to

Since F is the same for equipollent force systems, their wrenches will be
changed by the same amount and so remain equipollent.

The base point independence of equipollence relations is especially impor-
tant in rigid body statics, the study of force systems that maintain mechanical
equilibrium. A body is said to be in mechanical equilibrium if the resultant
applied wrench vanishes, that is, if the system of applied forces is equipollent
to zero. In a typical statics problem, one of the forces and/or its point of
application is unknown and must be computed from the other known forces.

which is trivially solved for and its moment arm Evidently every statics
problem is essentially a problem in wrench reduction. The main trick in such
problems is to choose the base point to simplify the reduction. For example,
the torque reduction is often simplest if the origin is chosen at the intersection
of concurrent axodes. Of course, the best choice of origin depends on the
given information.

Parallel Forces

For a system of parallel forces we can write where u is a unit
vector and The resultant wrench of the system is then

If the resultant force

does not vanish, then we can write (1.37) in the form

where

Thus, we have proved that any system of parallel forces with nonvanishing

If is the wrench of a unknown force and is the resultant
wrench of the known forces, then the equation for mechanical equilibrium
can be written
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resultant F is equipollent to a single force F with moment arm d given by
(1.38).

For a uniform gravitational field acting on the body, we have
where is the mass of the ith particle, so (1.38) becomes

This is an expression for the directance of the center of mass from a line with
direction u passing through the origin (= base point). Of course, d vanishes if
the origin is the center of mass as we have been assuming. But our argument
shows that the result (1.39) must hold for any chosen base point.

For the case of two parallel forces, (1.38) is simply

This should be recognized as the expression for a “point of division” dis-
cussed in Section 2-6. Many other geometrical results in that section are
useful in the analysis of force systems. Note that (1.40) immediately gives us
the elementary “law of the lever”; it tells us that the effects of parallel forces
applied at and can be exactly cancelled by a single force applied to the
point of division d.

Couples

A pair of equal and opposite forces applied to a rigid body is called an applied
couple. The wrench C for a couple of forces and applied at points and

is (Figure 1.4)

Thus, the wrench of a couple can be written

where d is the directance between the axodes of the couple. Clearly, the
resultant force of a couple is always zero and its resultant torque is zero if
d = 0.

Since for a
couple, it follows from (1.35) that
the torque exerted by a couple is
independent of. the base point. As
(1.41) shows, the torque of a couple
depends on the force and the
directance d. Therefore, equipol-
lent couples can be obtained by Fig. 1.4 A couple and its wrench C.
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changing the magnitudes of and d in inverse proportion or by displacing the
point at which is applied to any desired point as long as d is kept fixed.

Any system of applied forces with a vanishing resultant force can be reduced
to a couple, that is, the system is equipollent to a couple. For, in general, such
a system has a nonvanishing torque so the wrench of the system has the
form To find an equipollent couple, we pick any force orthogonal
to and write

This determines the directance of the couple:

As a corollary to this result, we can conclude that any system of couples is
equipollent to a single couple.

Reduction to a Force and Couple

We are now in position to ascertain the most general reduction theorem. The
wrench of any system of forces has the form A single force F
acting at the base point produces no torque, and we have proved that a couple
producing a given torque can always be found. Therefore, any system of
forces can be reduced to a couple and a single force acting at the base point.
However, this reduction is not an equipollence relation, because it depends
on the choice of base point.

To find the simplest equipollence reduction, we decompose into compo-
nents and respectively orthogonal and parallel to F. Define a moment
arm d for the force F by

so that

This is a line vector describing the action of a single applied force. Now
choose a couple with torque and note that we can write

where

When the torque of a couple is collinear with a force F as expressed by (1.44)
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and (1.45), we say that the couple is parallel to the force with pitch h.
Now we add (1.43) and (1.44) to get

The right side of this equation is the wrench for a single force F applied
together with a parallel couple. A shift of base point will change the torque

but it will not change the body point at which the force F is applied or
the torque of the couple. Since the left side of (1.46) may be regarded as the
resultant wrench of an arbitrary system of
forces, we have proved that every system of
forces is equipollent to a single force and par-
allel couple. This includes the limiting cases
h = 0 and When h = 0 the wrench
reduces to a line vector, so the force system is
equipollent to a single force without a couple.
We may assume that the case de-
scribes a pure couple, obtained by taking the  Fig. 1.5. A “wrench” generates a
limit as in such a way that  the  screw motion along its axode.
product in (1.44) remains finite.

A force system consisting of a single applied force and a parallel couple is
called a “wrench” in older literature on mechanics (Figure 1.5), whereas we
have used the term wrench (without quotes) for the complex force of any
force system. Our definition is more practical, since we then have frequent
occasion to use the term, whereas an actual applied “wrench” is very rare
physically. It is most convenient to use the same term wrench for either sense,
since the two senses can be distinguished from the context, and they are
intimately related. Then our major conclusion in the preceding paragraph can
be expressed more succinctly as: any system of forces can be reduced to a
wrench. For similar reasons, it is convenient to use the term couple for any
applied torque which can be produced by a couple of forces, even if it is
actually produced by a larger number of forces.

To appreciate the aptness of the term “wrench”, consider a wrench applied
to a rigid body at rest. The force F will produce an acceleration along its
axode, whereas the couple hF will generate a rotation about the axode. The
instantaneous composite motion is therefore an instantaneous screw displace-
ment. It is analogous to the motion of a physical screw turned by a physical
wrench.

Concurrent Forces

One other kind of force system is of general interest. A system of forces is
said to be concurrent if the axodes of all the forces pass through a common
point. Let r be the position vector of this point with respect to the body center
of mass. Then the wrench of the system is
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Therefore,

where d is the moment arm of the resultant force F. Thus, we have proved
that a system of concurrent forces is equipollent to a single force with axode
passing through the intersection of their axodes. The case of parallel forces
with can be regarded as the limit of this case as

The example of two concurrent contact forces is illustrated in Figure 1.6. A
more significant example is the case of a central force field acting on all the
particles of the body, in particular, a gravitational field. According to (1.47),
the effect of the entire field is equivalent to the effect of a single force F
applied at the point d. In the gravitational case, this point is called the center

of gravity. In general, the
center of gravity differs from
the center of mass, except in
the limiting case of a uni-
form gravitational field. This
means that a body in a non-
uniform gravitational field
experiences a torque about
its center of mass. For exam-
ple, the nonuniform gravi-
tational fields of the Sun and

Fig. 1.6. Two concurrent forces are equipollent to a the Moon exert a torque on
single force F with moment arm d. the Earth. We shall investi-

gate that in Chapter 8.

7-1. Exercises

(1.1)

(1.2)
(1.3)

(1.4)

Derive the general properties of the inertia tensor in Table 1.2
directly from its definition in Table 1.1.
Derive the component form (1.7) for Euler’s equation.
Prove that the scalar product defined by (1.29) is symmetric and
positive definite.
Show that is invariant under a shift of base point, that is

Show that is not invariant in the same sense. What is the
meaning of this?
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7-2. Rigid Body Structure

The kinematics of rigid body motion depends on only a few intrinsic proper-
ties of the body, namely, its mass m, center of mass X and inertia tensor In
this section we develop methods for determining X and from the distribu-
tion of mass in a given body.

So far we have regarded rigid bodies as composed of a finite number of
point particles. However, our results can easily be generalized to describe
continuous bodies by standard techniques of integral calculus. Thus, a continu-
ous body can be subdivided into N parts, where the k-th part contains a point

has volume and mass The mass, of the body is then

In the limit of infinite subdivision as and the sum becomes
an integral:

where dV is the element of volume and is the mass density at each
point x of the body. Let it be understood that the integral in (2.2) is to be
taken over all points of the body and further that the integral reduces to a sum
for any part of the body composed of point particles.

Determining the center of mass

The distribution of mass in a body is described by the mass density
It determines the center of mass X defined by

This is the generalization of our earlier definition to continuous bodies.
The center of mass for a given body can always be calculated by performing

the integral in (2.3). However, the calculation can often be simplified by using
one of the general theorems which we now proceed to establish. In the first
place, we are not much interested in the center of mass X relative to an
arbitrary origin, because this can be given any value whatever merely by a
shift of origin. Rather we are interested in the center of mass relative to some
easily identifiable point Y of the body. Accordingly, let us write

for the position of a particle relative to Y, so
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Thus, the center of mass relative to our specially chosen origin Y is given by

where now we write Equation (2.4) is mathematically identical to
(2.3), but it differs in the physical assumption that the origin need not be a
fixed point in an inertial frame. Thus, for the purpose of calculating the center
of mass, we are free to choose any convenient point in the body as origin
without considering motion of the body. Once the center of mass has been
identified, its motion can be determined from the equation for translational
motion.

Symmetry Principles for the Center of Mass

The center of mass can often be identified from symmetries of the body.
There are three major types of symmetry: reflection, rotation and inversion.
A body with “reflection symmetry” or “mirror symmetry” is symmetrical
with respect to reflection in a plane. We can describe this with the mathemati-
cal formulation of reflections developed in Section 5-3. Let n be a unit normal
to the symmetry plane and select some point in the plane as origin. The
symmetry of the body is then described by the condition that the mass density
is invariant under the reflection

that is,

This is illustrated in Figure 2.1. Now, from (2.4) and (2.5b) we obtain

Therefore,

telling us that R lies in the sym-
Fig. 2.1. A body with a single symmetry plane. metry plane. Thus we have proved
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the theorem: If a body has a plane of symmetry, then the center of mass is
located in that plane. This theorem has some obvious corollaries: If a body has
two distinct symmetry planes, then the center of mass is located on their line of
intersection. If a body has three symmetry planes which intersect at a single
point, then that point is the center of mass.

Rotational symmetry tells us more about the center of mass than a single
reflection symmetry. A body is said to have a symmetry axis if it is symmetri-
cal with respect to a nontrivial rotation about that axis. The adjective
“nontrivial” here is meant to exclude the “trivial symmetries” under rotations
by integer multiples of which every body possesses. To describe a rota-
tional symmetry mathematically, let us choose an origin on the axis of
symmetry so a rotation about this axis can be written

where S is a unitary spinor. This rotation is a symmetry of the body if it leaves
the mass density invariant:

Applying this to the center of mass vector (2.4), we obtain
(

which tells us that the center of mass is invariant under It follows (from
5-3.20) that the center of mass must lie on the axis of symmetry. Thus, we
have proved the theorem: If a body has an axis of symmetry, then its center of
mass lies on that axis. As an obvious corollary we have: If a body has two
distinct symmetry axes, then the axes intersect at a point which is the center of
mass.

A homogeneous plane lamina in the shape of a parallelogram, as shown in
Figure 2.2, is invariant under a rotation by about an axis along n through its
center. It is obviously invariant under reflections in its plane as well. There-
fore, its center of mass is located at the point

if a corner is chosen as origin. This
choice has the advantage of relating
R to the vectors a and b in Figure
2.2 which characterize the shape of
the body. If the parallelo-
gram reduces to a rectangle and the Fig. 2.2. The symmetry axis of a parallelogram
body has additional symmetries; passes through its center,
specifically, it is symmetric with respect to reflections in the two planes
passing through R with normals a and b. However, the location of the center
of mass is unaffected by this additional symmetry.
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A body is said to have inversion symmetry if the origin can be chosen so that

that is, the mass density is invariant under the inversion For a body
with this kind of symmetry

so R = 0. Thus, we have proved that if a body has inversion symmetry, then
the center of inversion is the center of mass.

A homogeneous parallelopiped with intersecting edges which are not
perpendicular provides an example of a body with inversion symmetry with-
out any rotation or reflection symmetries.

It is a well-established convention that the phrase “a symmetry of the
body” refers to invariance of the body under an orthogonal transformation of
the three kinds (reflections, rotations, inversions) already discussed or any
combination of them. But there is another common kind of symmetry which
we have already mentioned without giving a proper definition, namely, the
symmetry of a continuous body when all of its component particles are
physically identical. A body with this kind of symmetry is said to be homoge-
neous. The mass density of a homogeneous body has the same value at each
point of the body. It follows that

that is, the mass m of the body is directly proportional to its volume V. Then
from (2.4) it follows that

so the location of the center of mass R is determined by the geometry of the
body alone. In this case, the center of mass is called the centroid.

The Additivity Principle for the Center of Mass

Besides the symmetry principles just mentioned, the most useful general
principle for determining the center of mass is additivity: If a body is com-
posed of N bodies with known masses and mass centers then the mass
center R of the composite body can be obtained by treating the parts as
particles, that is,

where, of course, This is an elementary conse-
quence of the additivity of the integrals (2.4) and (2.10)
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Example 2.1. Centroid of a Triangular Lamina

The additivity principle applies also to a continuous subdivision of a body.
For example, let us calculate the centroid of the triangular lamina shown in
Figure 2.3. We subdivide the triangle into narrow strips of width parallel to
one side. By symmetry, the centroid of a strip is at its center

where is a scalar parameter in the range The directed area of the
strip is

where is the directed area of the triangle. The mass of the strip is

Where

So the centroid of the entire triangle is

The vector specifies a median of the
triangle (the line segment from a vertex
to the midpoint of the opposite side), so
(2.15) says that the centroid is located
on a median two thirds of the distance
from a vertex. This must be true for all
medians, so we can conclude that the
three medians of a triangle intersect at a
common point, the centroid of the tri-
angle. This result is so simple that one
suspects it can be obtained without in-
tegration. Indeed it can! Regard the
triangle in Figure 2.3 as half a parallelo-
gram with edges a and b. We know by
symmetry that the centroid of the paral-
lelogram is By additivity, must lie
on a line connecting the centroids of the
two identical triangles. Therefore the Fig. 2.3. Subdivision of a plane triangular
centroid of each triangle must lie on lamina.
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the median contained in the diagonal of the parallelogram. Since the centroid
lies on one median, it must lie at the intersection of all three medians, as we
found before by calculation. Unfortunately, our symmetry argument does not
give the factor 2/3 in (2.15).

Example 2.2. Centroid of a
Hemisphere

As another application of the addi-
tivity principle, let us calculate the
centroid of a hemisphere. As indi-
cated in Figure 2.4, we can sub-
divide the hemisphere into thin disks
with centers on the axis of sym-
metry. A disk of thickness dz and
centroid has mass
So the mass of the hemisphere is

Fig. 2.4. Subdivision of a hemisphere into
disks.

and the centroid of the hemisphere is

The centroid of any solid of revolution can be found in a similar way. Such a
body can always be subdivided into disks so its centroid is given by

where is the square of the radius of the disk with centroid from an
origin located at the intersection of the axis of symmetry with the base of the
body.

Calculating the Inertia Tensor

The inertia tensor for a system of particles

generalizes to

for a continuous body. Although (2.18) holds for any chosen origin, it will be
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most convenient to assume that the origin for (2.18) is the center of mass
unless an alternative is explicitly specified.

Example 2.3. Inertia tensor of a thin uniform rod.

The inertia tensor of a homogeneous rod can be calculated directly from
(2.18) without difficulty. By symmetry the centroid of the rod is at its center,
so we take that as the origin. Let the rod have directed length 2a and
negligible thickness so we can regard it as a continuous line of mass points
with direction specified by a vector a. Then designates the points of
the rod when the values of are in the range In this case the
volume integral (2.18) for the inertia tensor reduces to a line integral. Thus,

Therefore

is the inertia tensor for a homogeneous rod of length From the parallel
axis theorem (1.14) we find that the inertia tensor with respect to either end
of the rod is

Note that (2.19) is an explicit representation of the inertia tensor for a rod
in terms of a vector a which directly represents the length and alignment of
the rod. Similarly, for more complicated bodies we aim to evaluate the
integral (2.18) to represent the inertia tensor for a body explicitly in terms of
vectors describing prominent geometrical features of the body. But before
attempting to integrate (2.18) for a complex body, it will be worthwhile to see
how the problem can be simplified by exploiting the principles of symmetry
and additivity which we used to simplify center of mass calculations.

Symmetry Principles for Inertia Tensors.

Let us first investigate what symmetries of a body tell about its inertia tensor.
We have seen that a symmetry of a body is best defined as an orthogonal
transformation which takes each point r to a point and leaves the
mass density invariant, that is,
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In Section 5-3 we proved that any orthogonal transformation can be written in
the explicit form

where and the plus (minus) sign is used if 5 is an even (odd)
multivector. In particular, (2.21b) is identical to the reflection (2.5a) if S = n
or to the inversion if S = i.

To determine the relation of to the. inertia tensor, we can use (2.21b) to
obtain

So, because of (2.21a).

where Thus we have the operator formula

or, equivalently,

This may be regarded as the precise mathematical formulation of the state-
ment that “the inertia tensor of a body is invariant under every symmetry of the
body”. It is not true, however, that every orthogonal transformation which
commutes with the inertia tensor is a symmetry of the body.

Equation (2.22) relates symmetries to principal vectors and principal values.
If a is a principal vector of with principal value A, then we write

From (2.22) it follows that

that is,

Thus, any symmetry-related vector of a principal vector a is also a
principal vector with the same principal value. A number of corollaries follow
easily for the various kinds of symmetry.
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(1) The normal of any symmetry plane is a principal vector.
(2) The axis of a nontrivial rotation symmetry is a principal axis.
(3) If there is a nontrivial rotation symmetry through an angle less than
then all vectors orthogonal to the rotation axis are principal vectors with the
same principal value.

It should be noted that inversion symmetry tells us nothing about the inertia
tensor, though it does tell us the location of the center of mass.

The Additivity Principle for Inertia Tensors

For direct calculation of an inertia tensor, additivity is the most important
general principle. To formulate and derive this principle, it is convenient to
designate a given body by the set of mass points which make it up. Now if a
body is subdivided into N bodies it follows from the
definition (2.18) that its inertial tensor is subject to the corresponding subdivi-
sion;

where the integrals are over the indicated bodies (sets of particles). This
relation can be expressed in operator form

describing the inertia tensor of a body as a sum of inertia tensors of its
parts. The primes serve as a reminder that the inertia tensors in (2.24) are
generally not referred to the mass center of the component bodies.

It is essential to realize that the additivity relation (2.24) holds only for
inertia tensors referred to a common origin, so the parallel axis theorem (1.14)
is needed to exploit it. Thus, if a body is composed of N parts with known
masses mass centers and inertia tensors then its inertia tensor can
be found by the following steps. First, the inertia tensors of the parts must be
referred to the origin by the parallel axis theorem (1.14), so we write

Then the inertia tensor of the body is given by additivity;

where, of course,
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is the center of mass of the body. The inertia tensor is referred to the
origin, so the inertia tensor with respect to the center of mass is determined
by the parallel axis theorem

It will be noted that the parallel axis theorem (2.26) can be interpreted as an
additivity relation, for the last term in (2.26) is the inertia tensor with respect
to the origin of a single particle located at the center of mass R.

The need to use (2.26) can be avoided by selecting the center of mass of the
body as origin before making the calculation, so (2.25) gives directly;
thus,

where is the directance from the CM of the entire body to the CM of its
k-th part.

For a continuous subdivision of a body into parts the sum (2.27) goes over
to an integral

For each value of the parameter in the range is the inertia
tensor per unit mass of the body part with mass and center of mass
Equation (2.28) is a powerful means for calculating inertia tensors. It enables
us to calculate the tensors for 2-dimensional bodies from the tensors for
1-dimensional bodies, and then calculate the tensors for 3-dimensional bodies
in from those of 2-dimensional bodies. This is best understood by working out
some examples.

Example 2.4. Homogeneous triangular lamina

Let us use the additivity principle to calculate the inertia tensor of a homo-
geneous triangular lamina. We can subdivide the triangle into narrow strips
indexed by a parameter as indicated in Figure 2.3. We have already
determined in (2.14) that the mass of a strip is and we know
from (2.15) that the CM of the triangle is so the relative CM of the strip

Therefore (2.28) gives us

is From the expression (2.19) for the inertia tensor for a rod,
we can write down the inertia tensor per unit mass for the strip
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Carrying out the elementary integrations, we obtain

for the inertia tensor of a homogeneous triangular lamina.
The inertia tensor (2.29) can be expressed in forms that look more sym-

metrical as shown in the exercises, but (2.29) is preferable for some purposes.
For example, for an isosceles triangle we have and (2.29) shows
immediately that and are the principal vectors of the triangle with
principal values given by

Of course we would recognize that and are principal vectors from
symmetry principles, and that is sufficient reason to express the inertia tensor
in terms of them.

Example 2.5. Elliptical lamina

For calculating the inertia tensor of a homogeneous elliptical lamina, the
additivity formula (2.28) is not very helpful. It is easier to make a direct
evaluation of the integral

Let the semi-major and minor axes of the ellipse be specified by vectors a and
b. The points in the ellipse can be parametrized by the equation

where

This reduces the integration over the ellipse to integration over a circular
disk, which is readily carried out by using polar coordinates and Thus,
the element of area of the ellipse is so the
area of the ellipse is
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in agreement with our calculation in Section 4-2 by a different method. Now,
when (2.32a) is substituted into (2.31) we obtain

for it is obvious by symmetry that

Also by symmetry, we have

Thus, we obtain

for the inertia tensor of a homogeneous elliptical disk.
Note that before the last integral over was carried out we could have

written the inertia tensor in the form

where

So by using the additivity principle in reverse we can conclude that the inertia
tensor tor a homogeneous elliptical loop is

Note also that the inertia tensor for a flat elliptical ring can be calculated from
(2.34) by raising the lower limit of integration.

Matrix Elements and Moments of Inertia

In most physics books the inertia tensor is calculated and used in matrix form
only. We have developed techniques for dealing with the inertia tensor as a
single entity, but we must consider its matrix elements to make contact with
the literature.
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Let be any righthanded orthonormal basis of vectors. According to the
definition of the inertia tensor (2.18),

where From this we obtain the matrix elements

The conventional way to calculate an inertia tensor is by evaluating the
integrals (2.37) to get its matrix elements. The diagonal elements of the
matrix are called “moments of inertia”. In particular,

is “the moment of inertia about
Of course, the numerical values of the matrix depend on the basis

to which it is referred. The matrix takes its simplest form when referred to a
basis of principal vectors for then

which produces the diagonal matrix

where, according to (2.37) and (2.38),

The principal values of the inertia tensor are called principal moments of
inertia,

The trace of the inertia tensor Tr is defined as the sum of diagonal matrix
elements. From (2.37) and (2.40)

The right hand side of (2.42) shows that the trace is independent of basis, so
(2.42) relates any set of diagonal matrix elements to the principal moments of
inertia. This relation is sometimes useful for calculating principal values.

Equation (2.38) shows that the moments of inertia must be positive
numbers, but the special nature of the inertia tensor puts further restrictions
on their relative values, as we shall now show. From (2.38) and (2.42) we
have
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Hence,

The integral here will vanish only if for all points in the body,
which can occur only if the points lie in a plane with normal . Therefore, for
a plane lamina with normal , (2.43) reduces to

Of course, a plane lamina is only a convenient mathematical idealization
justifiable for bodies of negligible thickness, so for a real body (2.44) can be
only approximately true.

The relation (2.43) holds for any orthonormal basis, so it applies to the
principal moments of inertia; thus,

Furthermore, this relation holds for any permutation of the subscripts, so the
sum of any two principal values can never be less than the other principal
value.

Moment of Inertia and Radius of Gyration About a Line

So far we have discussed moments of inertia only as parts of a complete
matrix of inertia. But when a body is rotating about a fixed axis with known
direction u, only the moment of inertia about that axis is of interest. The
moment of inertia about (a line with direction) u is

Equation (2.46) implies that is always a positive number for a real body.
Vanishing moments of inertia occur only for mathematical idealizations such
as a rod without thickness, as described by (2.19).

Note that is the perpendicular distance of the point r from the
line with direction u passing through the origin. Therefore, the integral in
(2.46) is a sum of the squared distances weighted by the mass of each
point. Instead of the moment of inertia , it is sometimes convenient to use
the radius of gyration about u defined by

The radius of gyration can be interpreted as the distance from the axis of a
single particle with mass m with the same moment of inertia as the body with

particle at R is , so

,

tensor in (2.46). This follows from the fact that the inertia tensor for a
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which agrees with (2.47) if Thus, we have a kind of equivalence
in inertia of a whole body to a single particle. Our next task will be to
investigate this kind of equivalence systematically and in complete generality.

Classification of Rigid Bodies

Two rigid bodies are said to be equimomental if they have the same mass and
principal moments of inertia. A glance at the equations of motion for a rigid
body in Section 7-1 shows that they are identical for equimomental bodies
subject to equivalent forces. Thus, equimomental bodies are dynamically
identical, though they may differ greatly in size and shape. The shape of a
body is relevant to its motion only in the possibilities it gives for applying
contact forces.

It is always possible to find a small set of particles equimomental to a given
continuous body. For example, from the inertia tensor (2.19) for a rod we can
see that the rod is equimomental to a system of three particles, one particle of
mass m/6 at each of the points and one particle with mass 2m/3 at the
origin. The particles are symmetrically placed so their centroid will be at the
origin, and the particle at the origin is needed so the system will have the
correct total mass. It will be noted that other sets of particles will give the
same result, for instance, two particles with mass m at the points

Rigid bodies fall into three dynamically distinct classes, depending on the
relative values of their three principal moments of inertia  A body is
said to be

(1) centrosymmetric if all its principal moments are equal
(2) axially symmetric if it has exactly two distinct principal moments (e.g.

(3) asymmetric if it has three distinct principal moments (e.g.  ).
This terminology necessarily differs from that in other books, since there is no
standard terminology available for these three classes.

The inertia tensor of a centrosymmetric body is determined by a single
number, its principal moment of inertia  Every line through
the center of mass is a principal axis, so the dynamics of the body is
completely independent of its attitude, that is, the dynamics would be
unaffected by a finite rotation of the body about any axis through the center of
mass. This rotational invariance of a centrosymmetric body is a dynamical
symmetry and should not be confused with the geometrical symmetry of a
body. The bodies listed in Table 2.1 are all centrosymmetric, so they have the
same dynamical symmetries, but their geometrical symmetries are quite
different. For example, the sphere is geometrically symmetrical under any
rotation about its center, so its dynamical symmetry is identical to its geo-
metrical symmetry. However, the cube is geometrically symmetrical only
under particular finite rotations, such as a rotation by about one of its
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diagonals. Nevertheless, the geometrical symmetries of the cube imply that
all its principal moments of inertia are equal by theorems we have established
above, so its dynamical symmetry is a consequence of its geometrical sym-
metry. For other bodies in Table 2.1, such as the hemisphere or the cylinder,
geometrical symmetry alone is not sufficient to determine dynamical sym-
metry.

Inertia tensors of some axially symmetric bodies are expressed in “canoni-
cal form” in Table 2.2. These tensors are completely determined by a unit
vector e along the “dynamical symmetry axis” and the two distinct principal
moments of inertia and The vector e is the principal vector of the
inertia tensor corresponding to the principal value , so is the principal
value of any vector orthogonal to e. To determine the effect of on an
arbitrary vector u, we break u into components parallel and perpendicular to
e. Thus,

The dependence on e can be simplified by using =e(eu – e .u) =
u – ee.u, so

(2.48)

This is the “canonical form” adopted for the tensors in Table 2.2. There are
other interesting forms for the inertia tensor. For example, substitution of

into (2.48) yields the “symmetrical” form
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However, we shall see that (2.48) is most useful when we study dynamics.
The “canonical forms” for the inertia tensors of asymmetric bodies in Table

2.3 have been chosen to show their relation to the geometrical structure of the
bodies. The principal axes and principal values are not evident from these
forms, but must be calculated by the methods of Section 5-2. Some examples
are given in the exercises. We shall see that it is important to know the
principal axes when analyzing the motion of a body.

7-2. Exercises

(2.1) Calculate the centroid and moment of inertia of a hemispherical
shell.

(2.2) Find the centroids of a solid circular cone, a hollow circular cone,
and half conical shell (Origin as indicated in Table 2.2).

(2.3) Find the centroids of a solid semicylinder and a half cylindrical shell
(Origin as indicated in Table 2.2).

(2.4) Find the centroid of a half torus (Origin as indicated in Table 2.2).
(2.5) Find the centroid of a spherical cap cut from a sphere of a radius a

by a plane at a distance b from the center of the sphere.
(2.6) Determine the centroid and volume of the intersection of a sphere

of radius a with a cone of vertex angle   and vertex at the center of
the sphere.

(2.7) A cylindrical hole of radius b is cut from a cube of width 2a with an
axis at a distance d from the center of the cube and perpendicular to
a face of the cube. Find the mass, centroid, and inertia tensor of the
resulting body if it has uniform density

(2.8) Calculate the moment of inertia of a homogeneous cube directly
from Equation (2.18).

(2.9) Let three intersecting edges of a cube be designated by vectors
with Calculate the inertia tensor about a

corner of the cube. Determine its principal vectors and principal
values and its matrix elements with respect to the edges of the cube.

(2.10) Find the moment of inertia of a rectangular parallelepiped with
edges a, b, c about a diagonal.

(2.11) A particle of unit mass is located at each of the four points

Find the centroid and inertia tensor of the system.
(2.12) A homogeneous rod of mass m and directed lenght 2a has rotational

velocity    about one end. What is its kinetic energy?
(2.13) Three particles of unit mass are located at the points

Find the principal moments of
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inertia about the origin and the corresponding principal vectors.
Express the inertia tensor about the origin in terms of its principal
vectors.

(2.14) Calculate the inertia tensor for an ellipsoid in the form given in
Table 2.3 by generalizing the method of Example 2.5 to reduce
integration over the ellipsoid to easy integrations over a sphere.

(2.15) For a given body, prove that if a line is a principal axis for one of its
points, then it is a principal axis for all of its points and it passes
through the centroid of the body, and conversely.
Prove also that a line with direction u and distance from the
centroid can be a principal axis for one of its points if and only if

(2.16) Derive the inertia tensor for a homogeneous triangle in the form
shown in Table 2.3. Show that its principal values are

(2.17) If locate the vertices with respect to the centroid, show that
inertia tensor of a triangle of mass m can be put in the form

(2.18) Let designate the edges of a homogeneous tetrahedron
and let locate the vertices with respect to the centroid.
Show that its inertia tensor is

(2.19) A homogeneous triangle of mass m is equimomental to a system of
four particles with one at its centroid and three of the same mass
either at its vertices or at the midpoints of its sides. Find the particle
masses in each of the two cases.

(2.20) Show that a homogeneous tetrahedron of mass m is equimomental
to a system of six particles with mass m/10 at the midpoints of its
edges and one particle of mass 2m/5 at its centroid.

(2.21) Prove that every body is equimomental to some system of four
equal mass particles, and that every plane lamina is equimomental
to three equal mass particles.

(2.22) Legendre’s Ellipsoid. Prove that every body is equimomental to an
ellipsoid.

(2.23) Inertia tensors and are related by the displacement equation

Their principal vectors and principal values are specified by
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For R.e3 = 0, prove that:
(a) and
(b) For k = 1, 2 and i = e1 e2,

where

(c)

where
(2.24) For the plane lamina in Figure 2.5,

calculate the principal moments of
inertia and the angle specifying
the relative direction of the princi-
pal axes.

7-3. The Symmetrical Top

In this section we study the rotational motion
of an axially symmetric body, which might be
referred to as a top, a pendulum or a gyro-
scope, depending on the nature of the mo-
tion. From Section 7-2, we know that the inertia tensor for an axially
symmetric body can be put in the form

where and are the principal moments of inertia, and e is the
direction of the symmetry axis. According to the parallel axis theorem, this
form for the inertia tensor will be preserved by any shift of base point along
the symmetry axis; the effect of such a shift is merely to change numerical
values for the moments of inertia. Consequently, the results of this section
apply to the motion of any symmetrical top with a fixed point somewhere on
its symmetry axis.

Recall that the rotational equations of motion consists of a dynamical
equation (Euler’s equation)

for the angular momentum   driven by an applied torque and a kinematical
equation

for the attitude spinor R depending on the rotational velocity The spinor R
determines the principal directions of the body by

Fig. 2.5.   Plane lamina indicated by
shaded area.
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for fixed For an axially symmetric body we write e = e 3, so

This relation couples the two equations of motion (3.2) and (3.3) by virtue of
(3.1), and further coupling derives from the fact that an applied torque
usually depends on R as well. Such coupling makes the equations of motion
difficult to solve. Consequently, closed solutions exist for only a few cases,
and more general cases must be treated by approximations and numerical
techniques. Fortunately, the simplest cases are the most common, and they
provide a stepping stone for the analysis of more complex cases, so our
primary aim will be to master the simplest cases of rotational motion com-
pletely.

Qualitative Features of Rotational Dynamics

Before getting involved in the details of solving Euler’s equation, it is a good
idea to identify the major qualitative features of rotational dynamics. Sup-
pose a body is spinning rapidly with angular speed about a principal
direction e with moment of inertia Then its rotational velocity is
and its angular momentum is This state of affairs will
persist as long as no forces act on the body, since   = 0. Now, if a small force
F is applied to a point r = re on the axis of rotation, Euler’s equation can be
put in the approximate form

or

This equation displays two major features of gyroscopic motion. First, it tells
us that a force applied to the axis of a rapidly spinning body causes the body
to move in direction perpendicular to the force. This explains why leaning to
one side on a moving bicycle makes it turn rather than fall over. Such
behavior may seem paradoxical, because it is so different from the behavior of
a nonspirining body. But it can be seen as a consequence of elementary
kinematics in the following way. Consider the effect of an impulse F
delivered in a short time to the spinning disk in Figure 3.1. Since the body is
rigid, the torque about the center of the disk exerted by the force F is
equivalent to the torque exerted by a force F' applied at a point on the rim as
shown. But the effect of an impulse F'    is to alter the velocity v of the rim
by, an amount , thus producing rotational motion perpendicular to F as
asserted.

The second thing that Equation (3.6) tells us is that the larger the values of
I and   , the smaller the effect of F. This is sometimes called gyroscopic
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stiffness, and it accounts for the great
directional stability of a gyroscope. The
dynamical properties of a slowly rotating
body are quite different. Indeed, for val-
idity of (3.6) it is necessary that

This condition determines
what is meant by a small force in gyro-
scopic problems.

Now let us turn to a detailed analysis of
the equations of motion and their ramifi-

A spinning body is said to be spinning freely if the resultant torque on it
vanishes. According to Euler’s equation , then, the angular momentum 
of a freely spinning body is a constant of the motion. To obtain a complete
description of motion, it is still necessary to determine the attitude R as a
function of time by integrating the kinetic equation To do this, we
need to know the rotational velocity , but that can be obtained from (3.1).
Thus, we find

Now, using and we can put the kinematic equation of
motion in the form

This is an equation of the form

where

For a freely spinning body, both , and are constant, so (3.8a) has the
elementary solution

where describes the attitude at time t = 0.

cations.
Fig. 3.1. Deflection of a spinning body by
an impulse.

Free Precession
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From the solution (3.9), we find that the motion of the body’s symmetry
axis is given by

where is the initial direction of the symmetry axis. Equation
(3.10) tells us that the symmetry axis precesses about the angular momentum
vector    with a constant angular velocity  as shown in Figure 3.2a, b.
Therefore, by observing the free precession of the symmetry axis, the angular
momentum can be determined.

speed  about its symmetry axis positioned along some arbitrary direction
The second factor “tilts” the symmetry axis from to a specified

direction Of course, we could take if we chose
The third factor in (3.9) describes a precession of the body. Thus, the solution
(3.9) describes a body spinning with angular speed  about its symmetry axis
while it precesses with angular velocity  This motion is called Eulerian free
precession.

The resultant rotational velocity  can be determined from (3.8a), (3.9)
and (3.10); thus,

This tells us that precesses about along with e, with the three
vectors ,  , e remaining in a common plane The precession

Fig. 3.2a. Free precession for an Fig. 3.2b. Free precession for
oblate body  a prolate body

We can now supply the physical interpretation of the solution (3.9). The
first factor in (3.9) describes a rotation of the body with constant angular
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of e and is illustrated in Figure 3.2a for an oblate body such as the
Earth or a disk, and in Figure 3.2b for a prolate body such as a
football.

Free precession of the Earth produces an observable variation in latitude.
From (3.9) and (3.11) we find that the resultant rotational velocity in the
body frame of the Earth is

This says that precesses with angular velocity about the Earth’s
symmetry axis The vector is the direction of the celestial north
pole. On a short timelapse photograph with a camera pointing vertically
upward the star trails are arcs of concentric circles centered on the celestial
pole, so the direction of relative to the earth can be measured with great
accuracy. Successive measurements determine its motion relative to the
Earth.

One complete rotation of the Earth about the celestial pole defines

1 siderial day

From an independent analysis of perturbations by the Moon (Chapter 8), it
has been determined that Therefore, (3.12) and (3.11)
predict that the celestial pole will precess about the Earth’s axis with period

Empirically, it is found the celestial pole precesses irregularly about the
Earth’s axis, tracing in one year a roughly elliptical path on the Earth’s
surface with a mean radius of about four meters. Analysis of the data shows
that the orbit has two distinct periods, one of 12-month and the other of
14-month duration. The 12-month period is accounted for by seasonal
changes in the weather, primarily the formation of ice and snow in polar
regions. The motion with a 14-month period is called the Chandler wobble
after the man who discovered it. This is identified with the Eulerian wobble
predicted above.

The large discrepancy between the observed 14-month period for the
Chandler wobble and the prediction of a 10-month period in (3.13) deserves
some explanation. It results from the fact that the Earth is not an ideal rigid
body. Without developing a detailed theory, we can see qualitatively that the
elasticity of the Earth will lengthen the period. Consider what would happen
if the rotation of the Earth were to cease. If the Earth were a liquid body, it
would clearly assume a spherical shape when the centrifugal force is turned
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off. But the Earth, or, at least, its shell, is an elastic body, so it will tend to
retain its shape, though its oblateness, as defined by will decrease.
Similarly, the oblateness will be decreased, because the Earth’s instantaneous
axis of rotation is not along the polar axis, and (3.13) shows that this will
lengthen the period of the wobble. A quantitative analysis of this effect is a
complex problem in geophysics, requiring an analysis of fluctuations due to
earthquakes, tidal effects, seasonal motions of air masses, etc. It is an active
area for geophysical research today.

Reduction of the Symmetric Top

The analysis we have just completed has a significance that goes well beyond
free precession. For it suggests a method of reducing the equations of motion
for an axially symmetric body to the simpler equations of motion for a
centrosymmetric body. Notice that Equations (3.8a, b) are valid for any
motion of an axially symmetric body. Furthermore, we can separate (3.8a)
into the two equations.

and

with

Now (3.14b) is the attitude equation for a centrosymmetric body with mo-
ment of inertia I, and it can be solved independently of (3.14a) using the
equation of motion

Then the solution to (3.14a) can be found from (3.14b); specifically, it has
the form

where, by (3.8b)

and

Note that the integral form of (3.15b) even allows time variations in I and to
be taken into account.

Let us call the reduction of the equations of motion just described the
reduction theorem for a symmetric top, and let us refer to the motion
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described by (3.15a) as the Eulerian motion, since it generalizes the Eulerian
free precession. The reduction theorem tells us that the motion of an axially
symmetric body can be obtained from the motion of a centrosymmetric body
simply by superimposing the Eulerian motion. It also tells us that the Eulerian
free precession is maintained even in the presence of a torque if for
then we know from Section 7-1 that = e·  is constant and (3.15b)
integrates to give us the same result as the one obtained for zero torque. This
provides justification for ignoring torques when analyzing the Eulerian pre-
cession of the Earth.

The Spherical Top

From now on we restrict our analysis to the reduced equations of motion

These are general equations of motion for the attitude of a centrosymmetric
body subject to a single force acting at a point r fixed in the body. We know
from Section 7–2 that every centrosymmetric body is equimomental to a
spherical body. So we refer to (3.16) as the dynamical equation of motion for
a spherical top. The reduction theorem tells us that from the solution of the
equations of motion for a spherical top, we get the solution for an axially
symmetric body simply by multiplying by the Euler factor (3.15a). Actually, it
won’t be worth the trouble for us to include the Euler motion explicitly,
because it affects only the rate of rotation about the symmetry axis. The
motion of the symmetry axis is the most prominent feature of rotational
motion, and is completely described by the reduced equations.

It should be noted that (3.16) and (3.17) are coupled equations, since the
direction of r depends on the attitude R. Also, to relate the solution to the
axially symmetric case, the direction of r must be that of the symmetry axis

so it will be unaffected by the Euler factor. To make this explicit and lump all
the constants together, let us write r = re and write (3.16) in the form

where the effective force G is defined by

Now a significant mathematical advantage of the reduction theorem can be
seen. It enables us to combine the coupled equations (3.17) and (3.18) into a
single spinor equation of motion for the body. We get the equation by
differentiating (3.17) and using (3.18); thus,
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To make this a determinate equation, we need to express the last term as a
definite function of R. This can be done in several different ways. We can
eliminate either or G.e in favor of the other by noting that for constant G
Euler’s Equation (3.18) admits the effective energy

as a constant of the motion. Either or e.G can be expressed in terms of R
by using

or

To keep these alternatives in mind, let us write the spinor equation of motion
for a spherical top in the standard form

where L can have the various forms

to be used in (3.24) along with (3.22) or (3.23).
The spinor equation of motion (3.24) can be put in many alternative forms

by various parametrizations of the spinor R. For example, we can use the
Euler parameters introduced in Section 5-3 by writing

This has the advantage of explicitly exhibiting the direction  of the instan-
taneous axis of rotation. Substituting into the spinor equation (3.24) we
obtain

Let us simplify this by choosing which we are free to do. Then
separating scalar and bivector parts and using we obtain
a pair of coupled equations of motion for the Euler parameters

The Euler parameters are related by  but the Equations
(3.27a, b) look more complicated if   is eliminated in favor of  As a function
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of the Euler parameters, the direction of the symmetry axis is

We shall find the Euler parameters useful for small angle approximations and
motion in a vertical plane, but different parametrizations are better in other
situations.

The spinor equation of motion (3.24)
would be interesting to study for a variety
of forces, but we shall use it only for the
so-called Lagrange problem, in which case
G and E are constants. To relate the equa-
tions to a concrete problem, let us consider
the object in Figure 3.3, sometimes called
a gyroscopic pendulum. The object is an
axially symmetric body consisting of a disk
attached to one end of a rigid rod along its
axis. The other end of the rod is held fixed,
but the object is free to spin about its axis
and rotate in any way about the fixed
point. Neglecting friction, the entire
torque about the fixed point is due to the
resultant gravitational force F = mg acting
at the center of mass at a directance r from
the fixed point.

Now let us turn to the problem of finding solutions to the spinor equation of
motion. We begin with the simplest special cases to gain insight.

Small Oscillations of a Pendulum

When we write the spinor measures the deviation of the
symmetry axis e from the downward vertical For small deviations from the
vertical, the angle is small, so we can use the power series expansion of the
exponential function to get the approximate expression

good to first order for Note that right side (3.29) is an expression
for R in terms of Euler parameters and , so we can insert these
values into (3.27a, b) to obtain L = G and the first order equation for

To understand equation (3.30), notice that is merely the projection
of onto the horizontal plane, so the vertical component of  satisfies

Fig. 3.3.   The gyroscopic pendulum.
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The solution of this equation will be incompatible with the assumption that
is small unless , so we may assume that Note, however, that if
the object were hanging vertically and spinning about its symmetry axis with
constant angular velocity then the rotation angle would be

Therefore, the assumption that the angle is small implies that the
object is not spinning about its axis, so its motion is that of a pendulum.

For horizontal we have so and (3.30) reduces to

This will be recognized as the equation for a harmonic oscillator, so the
solution is an ellipse in the horizontal plane with the parametric form

For horizontal , the Equation (3.28) for the axis reduces to

This gives us the value of e to second order from the first order value of the
angle The term differs from only in being rotated by
in the horizontal plane. Therefore, along with (3.32) the first two terms in
(3.33) describe the orbit of the vector e to first order as an ellipse in a
horizontal plane with its center at The second order term in (3.33) is
directed entirely along the vertical; it has the effect of bending the elliptical
orbit on the plane to fit it on the unit sphere and make it compatible with the
condition = 1.

The solution (3.32) tells us that the motion is periodic with period T given
by

where the value of  G is taken from (3.19). According to the parallel axis
theorem, where  is the moment of inertia at the
center of mass and is its radius of gyration. Therefore,

For this reduces to the formula for the period of a simple pendulum,
for which the mass of the bob is supposed to be concentrated at a single point.

Steady Precession

Now let us return to the study of the exact spinor equation

with L given by (3.25). The terms on the right must be cancelled by the   R on
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the left, so and must be produced by differentiation. This suggests that
we look for a solution of the form

where

Then

If a solution with constant and is possible, then

From this we see that a solution is achieved if

where L = E + 2G.e must be a constant, so G.e is constant. The last two
equations can be solved to get and in terms of G and L but different
expressions for and are more helpful.

Inserting (3.37) and (3.38) into (3.36), we obtain the total rotational
velocity of the body

where as before. The total angular speed about the symmetry axis
is

The right side of this equation shows that  is a constant of the motion.
Now we solve (3.38) and (3.41) for and  and we find two pairs of so-
lutions

The reader may verify that, if the expression (3.40) for   is inserted into
then (3.39) is obtained as an identity when (3.38) is used.

Therefore (3.39) does not give us any additional information about
Having established that the conditions for a solution have been satisfied, we

can write the solution explicitly:
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and we can take if we set the initial value for the symmetry
axis. The solution (3.44) has exactly the same mathematical form as the free
precession solution (3.9). Both solutions describe a body spinning with
angular velocity while it precesses steadily with angular velocity
However, their physical origins are totally different. The solution (3.44)
describes a forced steady precession, because it results from an applied
torque.

Of course, (3.44) is the reduced solution for an axially symmetric body, so
to get the full solution we must multiply it by the Euler factor. According to
(3.8b), the angular speed of the Eulerian motion in this case is

The full solution for steady forced precession of an axially symmetric body is
therefore

The effect of the Eulerian motion is to shift the component of along e to
produce a new rotational velocity The amount of the shift is given by

This relation makes it easy to convert results for centrosymmetric bodies to
results for axially symmetric bodies. For example, using it in (3.43) we obtain

expressing the angular precession speed in terms of the actual rotational
velocity for an axially symmetry body. It will be noted that the conversion
does not alter the functional form of the basic relations, so we might as well
deal with the simpler relations in terms of and make the conversion only at
the end of calculations when numerical results are desired.

The expression (3.43) for the angular precession speed is the item of
greatest interest here, because it describes the motion of the symmetry axis.
Let’s see what it tells us about various special cases. For a rapidly spinning
body the kinetic energy is much greater than the potential energy. Therefore,

and we can expand the square root in (3.43) to get

Thus, to a good approximation we have the two solutions
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and

The solution (3.50a) is said to describe a fast top, because the precession
speed is large. It describes an upright top if and a hanging top (or
gyroscopic pendulum) if The two possibilities are shown in Figure
3.4. The solution (3.50b) describes a slow top because the precession speed is
small. The negative sign shows that the precession is retrograde, that is, in a
sense opposite to the spin about the symmetry axis. The reciprocal relation

tells us that the spin , about the symmetry axis will be small for
a fast top and large for a slow top.

Fig. 3.4. Steady precession.

It should be appreciated that this analysis merely shows that the states of
fast and slow steady precession are possible, without indicating the conditions
under which they can be achieved. In fact, fast precession is comparatively
difficult to achieve except under laboratory conditions, while slow precession
is a common phenomena observed in the motion of a child’s top, of the Earth,
and of molecules.

The Sun and the Moon exert a torque on the Earth as a result of the Earth’s
oblateness, which is measured by the fractional difference of its
moments of inertia. This produces a precession of the Earth’s axis about the
normal to the ecliptic (the plane of the Earth’s orbit about the Sun). The
intersections of the equator with the ecliptic are called equinoxes, so the
effect is observed on Earth as a precession of the equinoxes on the celestial-
sphere, with different stars becoming the “pole star” at different times.
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However, the torque is so weak that the precessional period is about 25,000
years. We shall see how to calculate this value in Chapter 8. Figure 3.5 shows
the relation of the equinox precession to Eulerian precession.

Note that steady precession is possible only if since
otherwise the square root in (3.43) is not defined. This implies that a certain
minimum energy is needed for precession of a top in an upright position, since
then G.e < 0. For an erect top, and the condition that it will remain
erect becomes strictly a condition on its kinetic energy
When this condition is met, precession is indistinguishable from spin about
the symmetry axis, and the top is said to be sleeping.

Fig. 3.5. Gyroscopic motion of the Earth; Eulerian motion and precession of the equinoxes.

For the expression (3.43) reduces to

and the motion is referred to as a conical pendulum. Since for
an axially symmetric body, we will get when is relatively small. In
any case, the conical pendulum requires that the kinetic energy of rotation
about the symmetry axis be small.

Deviations from Steady Precession

The solution for steady precession which we have just examined is an exact
solution of the equations of motion, but it is a special solution. Nevertheless,
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for any total energy there is always a solution with steady precession. It differs
from other solutions with the same total energy in having the kinetic and
potential energy as separate constants of motion. Therefore, we can describe
any solution in terms of its deviation from steady precession.Accordingly, we
write the solution in the form

where,

The spinor U in (3.52) describes the deviation from steady precession. To
obtain a differential equation for U, we substitute (3.52) into the equation of
motion

and use (3.53a, b, c, d). Thus,

Hence,

Also, from (3.52)

where

Hence, from (3.53b),

This shows that the last term in (3.54) is a function of U only.
To study small deviations from steady precession, let us introduce Euler

parameters by writing

Substituting this into (3.54) and separating bivector and scalar parts we obtain
the two equations
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where

From (3.55b) we obtain

so from (3.56) we get

This is to be used in (3.58a, b) to express the equations as functions of
and

For the small angle approximation we have

So using and in (3.58a, b) and (3.61), we obtain, to first order
in the equations

Equation (3.63a) integrates immediately to

where the integration constant has been set to zero so that (3.63b) is satisfied.
From (3.59) and (3.53a, b, c) we have

which enables us to show that (3.63b) follows from (3.64).
The solution to (3.64) is the rotating vector

where is a constant vector orthogonal to An additive constant vector
parallel to has been omitted from (3.66), because its only effect would be
to change initial conditions which are already taken care of in specifying the
vector

We now have a complete solution to the equation of motion, and we can
exhibit it by writing the attitude spinor R in the form

where is the rotating vector given by (3.66). This shows explicitly the
time dependence of the rotational motion and its decomposition into three
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simpler motions. As noted before, the first factor in (3.67) describes a
rotation of the body about its symmetry axis, while the third factor describes a
steady precession. The second factor describes an oscillation about steady
precession called nutation. To visualize the motion, we consider the orbit
e = e(t) of the symmetry axis on the unit sphere.

To first order, substitution of (3.66) into (3.60) gives us

Note that the term as a linear function which projects onto a plane
with normal and rotates it through a right angle. Therefore, it projects the
circle into an ellipse with its major axis in the plane containing and
the normal to the circle Thus, (3.68) describes an ellipse

centered at
and lying in the tangent
plane to the unit sphere,
as shown in Figure 3.6.
The eccentricity of the el-
lipse depends on the
angle between and

For a slow
top so

and the ellipse is
nearly circular.

The orbit e = e(t) of
the symmetry axis is the
composite of the elliptical Fig 3.6 First order orbit of the symmetry axis

motion (3.68) and the
steady precession, as described by

The resulting curve oscillates with angular speed

between two circles on the unit sphere with angular separation as
indicated in Figure 3.7. We use the term nutation to designate the elliptical
oscillation about steady precession, though the term ordinarily refers only to
the vertical ‘nodding’ component of this oscillation.

To determine the qualitative features of the orbit e = e(t), we look at the
velocity

The nutation velocity is exactly opposite to the precession
velocity only when the orbit is tangent to the upper bounding circle in
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Figure 3.6. Therefore, has its minimum values at such points, and
only on an orbit for which

This is the condition for the cuspidal orbit in Figure 3.7. A looping orbit
occurs when and a smooth orbit without loops occurs
when A cuspidal orbit can be achieved in practice by
releasing the axis of a spinning top from an initial position at rest. Therefore,
the two other kinds of orbits can be achieved with an initial impetus following
or opposing the direction of precessional motion.

Equation (3.67) is an approximate solution of Euler’s equation for the
Lagrange problem with the same accuracy as the harmonic approximation for

the motion of a pendu-
lum. In Section 7-4 we
will find the exact sol-
ution in terms of elliptic
functions. Unfortu-
nately, the exact sol-
ution is difficult to
interpret and awkward
to use. However, all its

Fig. 3.7. Nutation of the symmetry axis of a precessing top. qualitative features are
already displayed in a

much more convenient form by the approximate solution (3.67). Moreover, in
many applications the exact solution has little advantage, because of uncertain-
ties about perturbing forces such as friction. As a rule, therefore, we expect the
approximate solution to be more valuable than the exact solution.

Effects  of  Friction

Since friction is a contact force, the effect of friction on a spinning body
depends on the distribution of frictional forces over the surface of the body.
For a symmetric top spinning about its symmetry axis with its CM at rest, the
forces of air friction are symmetrical about the axis. Consider the frictional
forces f and at two symmetrically related points r and as shown in Figure
3.8. The frictional force is opposite to the velocity of the surface at the point
of contact and by symmetry. Therefore, the two forces make up a
couple with torque.

It is most important to note the direction of the torque is opposite to that of
the angular velocity. Also, if the frictional force is proportional to the velocity
at the point of contact, then it is also proportional to The same
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conclusions hold for all other pairs of symmetrically placed points. Therefore,
the resultant torque due to air friction has the form

where is a positive scalar depending on the
shape of the body, the viscosity and density of
the air and, to some extend, on for
reasons discussed in Section 3-5. From Euler’s
equation we obtain

For a linear resistive force, is constant, so

Fig. 3.8. Air friction on a spinning

Thus we have exponential decay of the spin top

For a slow top the effect of air resistance due to its precession will be small
compared to the effect due to the spin about its symmetry axis. Therefore, the
main effect of air resistance on a slow top will be simply to slow down its spin
at a roughly exponential rate. Thus, for a sleeping top, the spin is reduced
by air friction as well as by friction at the point of support until the condition
for stability no longer holds. Then it begins to fall so nutation and precession
set in. As the spin continues to decrease, the amplitude of the nutation
increases until it is so large that the top falls over.

When a rapidly spinning top is
placed on a rough surface, as in-
dicated in Figure 3.9, a force f of
sliding friction is exerted at the
point of contact. The torque ex-
erted by the frictional force can be
separated into two parts:

where and
The torque simply reduces
the spin in the manner that Tig. 3.9. The rising top.
has just been described, and it will
be comparatively small for small The torque  has the form e × G
which we have already studied, so we know that it will produce precession
about –f. Since f lies in a horizontal plane as shown in Figure 3.9, this torque
will make the symmetry axis precess toward the vertical, and we speak of a
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rising top. As the top rises, its rotational speed decreases, since kinetic
energy is converted to potential energy. Once the top is erect it becomes a
sleeping top, since vanishes. On the other hand, if the slipping ceases
before the top is erect, rolling motion sets in.

Magnetic Spin Resonance

The spinor formulation of rotational dynamics has important applications to
atomic physics, since atoms, electrons and nuclei have intrinsic angular
momenta and magnetic moments. Consider an atom (electron or nucleus)
with intrinsic angular momentum l and magnetic moment According to
electromagnetic theory, a magnetic field B will exert a torque so the
rotational equation of motion for the atom is

Atomic theory asserts l and are related by the “constitutive equation”

where  is a scalar constant called the gyromagnetic ratio. Consequently, the
equation of motion can be written

This implies that is a constant of motion, so the effect of B is to produce a
time dependent rotation of  l. We know that such a rotation is most efficiently
represented by the equation

where is the initial value of I. Accordingly, we can replace (3.78) by the
spinor equation of motion

subject to the initial condition U(0) = 1.
The spinor U in (3.80) should not be confused with the attitude spinor for a

rigid body. According to current atomic theory, the attitude of an atom is not
observable, so there is no attitude variable in the theory. The angular
momentum and energy of an atom are observable, so there is a dynamical
equation for rotational motion in atomic theory. But, in contrast with the
macroscopic mechanics of rotating bodies, there is no kinematical equation
for attitude.

suitable magnetic fields. To see how this can be done, we study the solution of
(3.80) for particular applied fields. The dynamical spinor equation (3.80) is
preferred over the vector equation (3.78), because it is easier to solve. For a
static field the solution of (3.80) is simply

Experimentalists wish to manipulate the magnetic moment by    applying
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This tells us that I and precess about the magnetic field with an angular
frequency

Now suppose we introduce a circularly polarized monochromatic plane
wave propagating along the direction of the established static magnetic field

At the site of the atom, the magnetic field of such a wave is a rotating
vector

where and are constant vectors for which and
The resultant magnetic field acting on the atom is therefore

where

The form of (3.83) suggests that we should write U in the factored form

Then, the spinor equation of motion gives us

Hence R obeys the equation

This has the solution

where

The motion of I is therefore completely described by the spinor

This tells us that the motion is a composite of two precessions with constant
angular velocities.

The experimentalist can tune the frequency of the electromagnetic wave
until the condition, for magnetic resonance is achieved. Under this
condition, (3.88) gives which is orthogonal to and Then
(3.89) tells us that is precessing with angular velocity orthogonal
to in a frame which is precessing about with angular speed Since

typically, the composite motion will be a steady spiral
motion, as illustrated in Figure 3.10. If I is initially aligned with when the
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electromagnetic radiation is
turned on, then its direction will
be reversed in a time
Consequently, a single “spin flip”
can be produced by a pulse of
duration T at resonance.

Since the gyromagnetic ratio
has different values for different
types of atoms, the radiation field
can be tuned to detect specific
atomic types by magnetic reson-
ance even when they are buried in
complex biological materials. For
this reason, magnetic resonance is
widely used for chemical analysis.

Fig. 3.10. Simultaneous precession of the mag-

(3.1) Let be the angle between the angular momentum I and the
symmetry axis of a freely spinning axially symmetric satellite. Prove
that

where is the kinetic energy.
The free Eulerian wobble of a satellite produces periodic internal
stresses leading to energy dissipation without altering the angular
momentum. Show, therefore, that the wobble tends to damp out
if the satellite is oblate.

(3.2) A heavy homogeneous right circular cone spins with its vertex fixed.
The axis of the cone is 10 cm. long, and the radius of its base is 5 cm.
The cone precesses steadily with a period of 4 sec. How many
revolutions per second does the cone make about its own axis?

(3.3) A homogeneous circular disk of radius r spins on a smooth table
about a vertical diameter. Prove that the motion is stable if the
angular speed exceeds

(3.4) When Equation (3.69) describes the orbit of a so-called
spherical pendulum. Sketch the orbit for appropriate choices of the
free parameters. Show that the orbit of a spherical pendulum cannot
have loops or cusps such as those in Figure 3.7.

(3.5) A spinning top is held fixed in an upright position and suddenly
released. Describe the motion if the condition for stability of a
sleeping top is not satisfied.

7-3. Exercises     netic moment about the fields and at reson-
ance.
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(3.6) The tippie-top is a child’s toy consisting of a decapitated ball with a
short stem as shown in Figure 3.11. If the tippie-top is set on a table,
stem upward, with sufficient spin about its stem, it will do a com-
plete flip-flop ending up in the steady precession standing on its
stem. Similarly, if a hard boiled egg lay-
ing on a table is given sufficient spin about
a vertical axis, it rises to steady precession
standing on its narrow end. Provide a
qualitative explanation for such behavior.
Assuming that the ball is hollow, show
that the “flip time” for the tippie-top is
approximately (The behavior
of the tippie-top has been discussed in the
American Journal of Physics on several Fig. 3.11. The tippie-top.

occasions).

7-4. Integrabie Cases of Rotational Motion

When the general solution to a system of differential equations can be
expressed in closed form, we say that the system is integrable. A solution in
closed form is expressed in terms of a finite number of known functions (in
contrast to an infinite series). Such a solution is sometimes said to be exact, as
opposed to an approximate solution obtained by truncating an infinite series.

The rotational equations of motion are integrable in only a few simple
cases, in particular, the plane pendulum, the symmetric top in a gravitational
field, and a freely spinning asymmetric body. The general solutions in all
these cases are expressible in terms of elliptic functions, and we shall find
them in this section.

Constants of Motion for the Lagrange Problem

The problem of integrating the equations of motion for a symmetric top
subject to a gravitational torque is called the Lagrange problem. In Section
7-3 we reduced the equations of motion for a symmetric top to those for a
spherical top. So we begin here with the reduced equations.

where

and
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for a constant force (eg. F = mg) applied at the point re.
In Section 7-3 we combined (4.1) and (4.2) into a single second order

differential equation, but to find the exact solution it is more efficient to
exploit the constants of motion directly. As we have noted before, equation
(4-2) admits three integrals of motion, namely,

and the energy integral

By finding these three integrals of the motion, we have effectively integrated
the dynamical equation (4.2), leaving us with three first order scalar equations
to be integrated for R.

The Compound Pendulum

The motion of a pendulum is a special case of the motion of a symmetric top.
A compound pendulum is a rigid body free to rotate about a fixed horizontal
axis under the influence of gravity (Figure 4.1). If I is the moment of inertia
for the axis, then the equations of motion for the pendulum are exactly as
specified above.

For a pendulum

Therefore, the motion of the pendulum is
completely determined by the energy in-
tegral (4.7). Equations (4.8) allow us to
parametrize the attitude by

where and are scalars and is the
direction of the fixed rotation axis. If R is
to specify the deviation from the down-

Fig. 4.1. A compound pendulum. ward vertical direction then it is
related to the angle of deviation by

However, the motion is more simply described in terms of the parameters
and instead of as we see below.
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Substituting (4.9) into the energy integral (4.7) and using to
eliminate we obtain

With a suitable identification of constants, this can be put in the standard
form of Equation (B.2) in Appendix B; so the solution can be expressed in
terms of elliptic functions. There are three cases to be considered, depending
on the value of

where is the maximum kinetic energy of the pendulum.
(a) When E < G, let so (4.11) assumes the form

With the change of variables and this equation becomes
identical with (B.2), so it has the solution

Since we have from (B.9)

Also, we can write

where is the value of at the angle of greatest deflection from
the vertical. Thus, the spinor solution to the equations of motion can be given
the explicit form

where is the modulus of the elliptic function.
Comparing (4.13) with (B.7) we can conclude that the period of motion is

When then and so the period we
found in (3.34) for small oscillations. The exact value of the period for a
pendulum depends on its amplitude, as shown in Table 4.1.

(b) When E > G let so (4.12) gives us
and (3.34) becomes

Hence,

and
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so

This solution describes a pendulum which makes complete revolutions with
period

This is twice the period of R, because so the period of the
pendulum motion is the period of In the preceding case, the periods of R
and were the same.

(c) When E = G, we have and (4.11) becomes

This has the solution so

The pendulum never quite reaches the upward vertical position.

Solution of the Lagrange Problem

We have reduced the Lagrange problem to solving the three integrals of
motion (4.5), (4.6) and (4.7). The next step is to identify the parameters
which provide the simplest description of the motion, as we did in the special
case of the pendulum. To do that we note that the vector G introduces a
preferred direction in the problem, the “downward vertical”. For an erect
top, we are interested in deviations of the top’s symmetry axis from the
upward vertical, so we specify For a hanging top, as in the case of
the pendulum, would be more appropriate. Both cases are taken care
of, respectively, by writing

Now the factor  in (4.7) suggests that we might simplify the
energy equation by writing
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where and are quaternions which commute with for then

The commutivity with implies that we can write

where and are scalars. Of course,

so the parameters are related by

The variables are called the Cayley-Klein parameters in the scientific litera-
ture. However, our formulation identifies the imaginary unit in these parame-
ters as the specific bivector This enables us to see exactly when and why
the Cayley-Klein parameters are useful, namely, in rotational problems
where a preferred direction is specified. Readers who are familiar with
advanced quantum mechanics will be interested to note that our decomposi-
tion of the spinor R into Cayley-Klein parameters corresponds exactly to the
standard decomposition of an electron wave function into “spin up” and
“spin down” amplitudes.

To express the integrals of motion in terms of the Cayley-Klein parameters,
note that

This helps us compute

Also we find

with a similar expression for Now the integrals of motion (4.5) and (4.6)
can be put in the form

Or equivalently,
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It will be noted that these expressions are analogous to angular momentum
conservation for central force motion. They enable us to calculate by
straightforward integration when is known.

To evaluate the energy integral we calculate

So with the help of (4.23), we find

For this tells us that

Using (4.27) in the energy integral (4.7), we get

From (4.25) and (4.26a, b) we find

Substituting this into (4.29) and using (4.23) to eliminate we obtain

This differential equation can be solved for and then can be obtained
from (4.23).

According to Appendix B, Equation (4.31) has a closed solution in terms
of elliptic functions given by

where a and b are constants. This tells us that is a periodic function of time
with maximum and minimum values satisfying

Thus, oscillates symmetrically about the value

Comparing (4.31) with (B.12) and (B.16a, b, c, d) in Appendix B, we find
that b is determined by the cubic equation

and (4.33a) tells us how to identify the “physical root”. Also, after b is known
we can get a by solving the quadratic equation
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and (4.33a, b) tells us that the “physical root” must satisfy Finally the
“time constant” in the solution is obtained from a and b by using

and the modulus of the elliptic function is given by

Thus, we have determined all the constants in the solution (4.26a) for
Using (4.32) we solve (4.26a) for the angle

This can be put in the standard form

where

is a standard function known as the incomplete elliptic integral of the third
kind. By the same method we find

Numerical values for the elliptic integrals as well as the elliptic functions can
be found in standard tables, but nowadays it is much more convenient to get
the results by computer calculation.

We now have a complete closed solution of the Lagrange problem. Unfor-
tunately, our solution is not easy to interpret. A picture of the motion can be
obtained by computer simulation, or, more laboriously, by further math-
ematical analysis of the solution. But we will not pursue the matter further,
since we already have a clear picture from our approximate solution in
Section 7-3.

Freely Spinning Asymmetric Body

We turn now to the problem of finding an analytic description for the motion
of an arbitrary, freely spinning rigid body. The dynamical equation of motion
for the body is
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Note that because of the vanishing torque, this equation is not coupled to the
kinetic equation

Therefore, it can be solved directly for and the result can be
inserted into (4.44) to determine the attitude spinor R. From (4.43) we can
conclude immediately that the angular momentum and the energy

are constants of motion. So we want to solve the differential
equation (4.43) for in terms of l and E.

Before attempting a general solution, let us consider the possibility of
steady rotational motion about a fixed axis. In that case and (4.43)
implies that so must be collinear with l. Since this is
possible only if is directed along one of the principal axes. Moreover, if

then (4.43) implies that Therefore, in the absence of an
applied torque, steady rotational motion is possible if and only if the axis of
rotation coincides with a principal axis of the inertia tensor. We will ascertain
conditions for the stability of steady rotation later on.

Returning to the general problem, we follow (1.7) and put the equation of
motion (4.43) in the form

where the

are components of the rotational velocity with respect to the principal axes.
Since we have already analyzed the motion of a symmetric body, we assume
that all the principal moments of inertia have different values.

The three variables are related by the integrals of motion

Therefore we should be able to eliminate two of the variables from (4.45a, b,
c) to get an equation for the third alone. To this end, it is convenient to
eliminate each variable in turn from (4.47a, b) to get
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To obtain an equation for alone, we square (4.45c) and use (4.48a, b) to
eliminate and thus,

Comparing this with the equation

we see that it will have a solution of the form

provided

and

Of course we are free to label the so (4.52) holds, and we notice that the
inequalities (4.53) are then consequences of (4.48a, b). Therefore, the con-
ditions for the solution (4.51) are satisfied; and the constants can be evaluated
by inserting (4.51) into (4.49). At the same time, by comparing the two
lines of (4.49) we can determine and There are two cases, for which
we find

Case (a):

Case (b):

For both cases we get

For case (a),

and for case (b)
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The quantities and can be taken to be positive. To determine the signs
of and we substitute the solutions into (4.45a, b, c), and after carrying
out the differentiation (see Appendix B), we obtain

Therefore, if we take then Finally, note that the two cases are
distinguished by the requirement that the expression for in (4.56a) or
(4.56b) must satisfy By substitution into (4.48a), we see that this
requirement can be reexpressed as the condition that

This completes our solution of the dynamical equation of motion.
The problem remains to determine the attitude spinor R from the known

functions We could proceed by integrating

but there is a much simpler way which exploits the constants of motion and
determines R almost completely by algebraic means. The angular momentum
direction cosines

are more convenient parameters than the because then we can write

where we have used our prerogative to identify with the distinguished
direction in our problem. Note that with this choice (4.51) gives

The question is now, what does (4.60) tell us about the functional form of R?
As before, the fact that is a distinguished direction suggests it may be

convenient to express R in terms of Cayley-Klein parameters:

Using this parametrization for R, from (4.60) we obtain
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Hence,

and

Since

from (4.65) we obtain

And (4.66) give us

Thus, we have determined and as functions of the so we can
complete our solution by determining That requires an integration.

Instead of determining directly, it is more convenient to determine
the variable

which, as established in Exercise (4.6), is one of the Euler angles. Using

we can express in terms of the Cayley-Klein parameters or the Euler angles
and their derivatives (Exercise 4.5). Whence we obtain

Eliminating we get

This integrates to
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where is the incomplete elliptic integral of the third kind defined by
(4.40).

Although we now have a complete and exact analytic solution to our
problem, the solution does not immediately provide a clear picture of the
body’s motion. For that purpose, we now look at the problem in a different
way.

Poinsot’s Construction

To develop a picture for the motion of a freely spinning asymmetric body,
consider the restriction on the rotational velocity     due to the energy integral:

This is the equation for an ellipsoid; call it the energy ellipsoid. Thus, for a

The normal to the energy ellipsoid at a point is given by the gradient

For a constant angular momentum l, this puts a further restriction on the
allowed values of Indeed, for fixed  l and variable  the energy integral

is the equation for a plane with normal l and distance 2E/l from the origin.
This plane is called the invariable plane. Therefore, for given E and l, at any
time t, the invariable plane is tangent to the energy ellipsoid at the point

(Figure 4.2) Moreover the energy ellipsoid can be said to roll on
the invariable plane without slipping, since the point of contact is on the

instantaneous rotation axis.
This picture of the motion is
due to Poinsot (1834). An ap-
paratus that shows subtle fea-
tures of the motion has been
described by Harter and Kim
(Amer. J Phys. 44, 1080
(1976)).

As varies with time, it
traces out a curve on the energy
ellipsoid called the polhode and
a curve on the invariable plane
called the herpolhode. We have
already found a parametric

Fig. 4.2. The invariable plane is tangent to the energy

given rotational kinetic energy E,  must be a point on this ellipsoid. Note
that the principal axes of the energy ellipsoid are the same as those of the
inertia tensor. So the attitude of the energy ellipsoid in space faithfully
represents the attitude of the body itself.

ellipsoid at 
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equation for the polhode, given by (4.51) and (4.54a, b). But a nonpara-
metric representation makes it easier to picture the curve as a whole. This is
easily found by noting that angular momentum conservation implies that
must lie on the ellipsoid

Therefore, the polhode is a curve of intersection of the two ellipsoids (4.72)
and (4.75). This tells us at once that a polhode is a closed curve, so the motion
is periodic. Polhodes for various initial conditions are shown in Figure 4.3. A
polhode can be interpreted as the curve traced out by the tip of the  vector
as “seen” by an observer rotating with the body.

Fig. 4.3. The energy ellipsoid, showing polhodes for different initial conditions

Questions about the stability of rotational motion are best answered by
examining the family of polhodes with different initial conditions. We have
already proved that steady rotation is possible only about a principal axis. To
investigate the stability of steady rotation quantitatively, we consider a small
departure from the steady motion by writing

where

indicates that is directed along the principal axis, and

must be satisfied for a small deviation The plan now is to get an equation
for so we can study its behavior. Substituting (4.76a) into (4.72) and (4.75)
and using (4.76b), we get
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Using the approximation (4.76c) and eliminating  from these two equa-
tions, we get the desired equation for

This is, in fact, an exact equation for the projection of the polhode onto a
plane with normal If we decompose into its components with
respect to the principal axes, this equation can be written

This will be recognized as the equation for an ellipse if is greater than or less
than and . This means will stay close to during the entire motion.
Therefore, steady rotation about the two axes with the largest and smallest
moment of inertia is stable.

On the other hand, if the value of is between the values of and  then
(4.78) is the equation for a hyperbola. So if has any small value initially, it
will increase with time, and will wander away from Therefore, steady

rotation about the intermediate principal
axis is unstable. This can be seen by ex-
amining the polhodes in Figure 4.3. And it
can be empirically demonstrated by at-
tempting to throw an asymmetric object like
a tennis racket up in the air so that it spins
about a principal axis.

As the energy ellipsoid rolls on the invari-
able plane, the polhode rolls on the herpol-
hode. In contrast to the polhode, the
herpolhode is not necessarily a closed curve,
but as shown in Figure 4.4, it must oscillate
between maximum and minimum values
corresponding to maxima and minima of the
polhode.

Fig. 4.4. The herpolhode is confined
to an annulus in the invariable plane.

7-4. Exercises

(4.1)

(4.2)

Verify the expressions (4.5), (4.6) and (4.7) for the constants of
motion in terms of R and
For compound pendulum, show that the frequencies of oscillation
about two different parallel axes will be the same if and only if

where r and  are the distances of the points from the CM,
and is the CM radius of gyration. Show also that the oscillation
frequency is that of a simple pendulum with length
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(4.3) Show that the elliptic integral (B.6) in Appendix B can be written in
the form:

Expand the integrand in a series and perform term-by-term inte-
gration to get the following expression for the period of a plane
pendulum:

Thus, show that the first order correction for the period in the small
angle approximation gives:

where is the angular amplitude.
(4.4) A plane pendulum beats seconds when swinging through an angle of

6°. If the angle is increased to 8°, show that it will lose approxi-
mately 10 beats a day.

(4.5) In the extensive literature on the Lagrange problem, the motion is
usually parametrized by Euler angles. To compare the literature to
the approach taken here, recall that the parametrization of a ro-
tation by Euler angles is given by:

where and are orthogonal constant unit vectors. For a rotating
body subject to a constant effective force G, we take and

as the axis of symmetry. Then is called the
precession angle, is called the nutation angle, and is called the
phase angle. Show that the rotational velocity in terms of Euler
angles is given by:

where,

Show that the constants of motion and E =
yield the equations
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The solution of these equations is discussed by many authors. Use

To establish the converse relations, show that

Whence,

(4.7) For the case of steady forced precession, compare the solution in
terms of elliptic functions to the exact solution obtained in Section
7-3.

(4.8) Show that when the R is expressed in terms of Cayley-Klein para-
meters the spinor equation (3.24) can be separated into two
uncoupled second order equations:

Of course, since G is a parameter which can have either sign, the
two equations are essentially the same. To solve this equation
directly, it is helpful to rewrite it by defining which is a
vector because of Equation (4.21). In terms of this variable the
equation becomes

which we recognize as the equation for a particle in an unusual
central force field. Use this fact to get Equations (4.26a) and (4.31)
directly as first integrals of the motion with undetermined constants.
Note that if we use Equation (4.32) we can put the above equation
in the form

where A and B are scalar constants. This is called Lamé’s equation.
Although we have solved this equation for the case of the top, that
does not end the matter, because the form of our solution is

our results to express cos in terms of elliptic functions and show
that it is a solution to the last of these equations.

(4.6) Show that the Cayley-Klein parameters are related to the Euler
angles by
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probably not optimal. We derived separate expressions for the
modulus and angle of whereas there are alternative expressions
for as a unit which can probably be calculated more easily. This is
a worthy issue for mathematical research. Evaluation of the sol-
utions is discussed by E. T. Whitaker (A Treatise on the Analytical
Dynamics of Particles and Rigid Bodies, Dover, N.Y., 4th Ed.
(1944), especially p. 161). Lamé’s equation is discussed by Whitaker
and Watson (Modern Analysis, Cambridge U. Press (1952), Chap-
ter 23). No doubt there are significant improvements yet to be made
in the theory of the top, and we can expect new insights from
bringing together spinor theory and the classical theory of elliptic
functions.

7-5. Rolling Motion

The mathematical description of rolling motion requires both translational
and rotational equations of motions coupled by a rolling constraint. Consider
a centrosymmetric sphere of radius a, mass m, and
moment of inertia rolling on a rough
surface with unit normal n at the point of contact.
Let f denote the “reaction force” exerted by the
constraining surface on the sphere (Figure 5.1).

The translational and rotational equations of
motion for the sphere are

where is the center of mass velocity. These equations apply to a sphere
rolling on an arbitrary surface even if the surface is moving, provided the
surface is mathematically prescribed, so the normal n is a known function of
position and time. Of course, we are interested here only in continuous
surfaces with a unique normal at every point.

The velocity v of the point on the sphere which is instantaneously in contact
with the surface is determined by the kinematical relation

Suppose the constraining surface is moving with a velocity u at the point of
contact. The relative velocity v – u must vanish if the sphere is not slipping.
Therefore, the equation of constraint for rolling contact is

The velocity u will be known if the motion of the constraining surface is
prescribed.

Fig. 5.1. Forces on a sphere
rolling on a surface with unit
normal n.
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Now we have sufficient equations to determine rolling motion of the sphere
on a given surface. A general strategy for solving these equations is to
eliminate the reaction force between (5.1) and (5.2) to get

Then (5.4) can be used to get separate equations for and V. However, it
must be remembered that (5.5) does not hold when f = 0, that is, when the
sphere loses contact with the constraining surface.

This is as far as we can go with the theory of rolling motion without
assumptions about the constraining surface. So we turn now to consider
special cases.

Rolling on an inclined plane

For a fixed inclined plane, the normal n is constant and the equation (5.4) for
rolling contact reduces to

From (5.2) we find that hence the spin about the normal

is a constant of the motion. We can combine (5.6) and (5.7) to solve for
Thus,

so

Now we substitute this into (5.5) to get an equation for V alone:

The outer product is more convenient than the cross product form of this
equation, because the condition  from (5.6) tells us that we can divide
by n to get

Thus, the sphere rolls in the plane with a constant acceleration, which has the
value (5/7) if the sphere is a homogeneous solid  The trajectory
is therefore a parabola
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for initial position and velocity
Substituting (5.11) into (5.8), we find the explicit time dependence of the

rotational velocity

The attitude R = R(t) can be determined from this by integrating
However, the integration is not trivial unless the sphere starts from rest, since
the direction of is not constant.

Rolling in a spherical bowl

For a sphere rolling inside a fixed spherical container of radius b, we can write
X = (a – b) n (Figure 5.2). Therefore the unit normal n is a natural position
variable, and the rolling constraint can be written

This implies that and (5.2) implies that
Therefore, in this case also

is a constant of motion.
Equation (5.5) subject to (5.13) is nearly the same

as the equation of motion for a spherical top, so our
experience with the top suggests that the best strategy
is to look at once for constants of the motion. Using
(5.13) to eliminate V, we can put (5.5) in the form

The quantity is square brackets here can be identified as the angular momen-
tum of the sphere (per unit mass) about the point of contact.

As in the case of the top, from (5.15) we find that

is a constant of motion. We can get one other constant of motion from (5.15),
namely the total energy, which we can also write down from first principles.
The kinetic energy is

The potential energy is

Fig. 5.2. Sphere rolling in
a sphere.
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So the effective energy constant is

The three integrals of motion (5.14), (5.16) and (5.17) can be expressed as
equations for the attitude spinor R by writing

and using Clearly, a solution in terms of elliptic functions can be
found by introducing Cayley-Klein parameters in the same way that we
handled the top.

When it is possible for the sphere to lose contact with the
container. For contact to be maintained, the normal component of the
reaction force must be positive. Using (5.1), this condition is expressed by

With (5.13), this contact condition can be put in the form

It can be further reduced by using the energy equation (5.17).

Rolling inside a cylinder

For a sphere rolling inside a fixed vertical cylinder
of radius b, it is convenient to represent the
upward vertical direction by and para-
metrize the inward normal n of the constraining
cylinder in terms of an angle by writing

Then an explicit parametrization X = X of
the center of mass is given by

(Figure 5.3).
To get suitable equations for the parameters, first

note that (5.8) holds for rolling motion on any fixed
surface even when is not constant. Dif-
ferentiating (5.8) we get

and substituting this into (5.5), we obtain

Fig. 5.3. Sphere rolling in-
side a vertical circular cylinder.
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Differentiation of (5.20) and (5.21) yields

By substituting this into (5.22) we get

The coefficients of the orthogonal vectors n and in this equation
can be equated separately to give us three scalar equations:

From (5.23a) we find

When this is inserted in (5.23b) we find

where is a second constant of integration. Using these results in (5.23c), we
obtain

From this equation we can conclude that the ball oscillates vertically with
simple harmonic motion of period

about the horizontal level

This may explain why a golfball or basketball which appears to have been
“sunk” sometimes rises up and out of the hole.
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Rolling and Slipping

If the sphere is slipping as it rolls on a fixed surface, then (5.3) gives us the
slipping constraint

The appearance of this new variable v is offset by introducing an empirically
based law for the reaction force of the form

where and the coefficient of  friction  µ  is a positive scalar
constant characteristic of the surfaces in contact.

Let us consider the slipping motion for the simple case of a billiard ball on a
horizontal table. In this case g = –ng and  so after (5.30) is inserted
in (5.1), we can separate the vertical component of the equation

from the horizontal component

By eliminating N between these two equations, the translational equation of
motion is reduced to

Similarly, by substituting (5.30) into (5.2) and using (5.31a), the rotational
equation of motion is reduced to

By eliminating between these last two equations we get

where was used in the last step.
Next we differentiate the slipping equation (5.29) and eliminate with

(5.34) to get

Using (5.32) to eliminate we get

(5.36)

This tells us that is constant and the speed is determined by
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So the speed decreases linearly:

And slipping continues until v = 0 at time

(5.38)

A billiard ball is a uniform solid, in which case and
The trajectory of the ball during slipping is obtained by integrating (5.32);

so

This is a parabola if, This explains (in principle!) how a billiards
trick shot artist can shoot around obstacles.

The rotational velocity is found by inserting (5.39) and (5.37) into (5.29) to
get

Note also that (5.33) implies that is a constant of the motion.
Combining these results, we obtain

where

is the initial angular velocity. After slipping ceases, the ball rolls with a
constant angular velocity

Rolling on a rotating surface

Consider a sphere rolling on a surface which is rotating with a constant
angular velocity Then, if the origin is located on the rotation axis, the
center of mass position vector X with respect to the rotating surface is related
to the position vector in the “rest system” by
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where

The kinematical variables in the two systems are therefore related by

Therefore, the equations of motion in the rotating system are

The “pseudoforces” and “pseudotorque” due to the rotation are explicitly
shown. Note that the “apparent gravitational force” mg is a rotating vector
related to the constant gravitational force in the rest system by

The rolling constraint in the rotating system is, of course,

By way of example, let us examine the rolling motion on a vertical plane
rotating about a vertical axis (like an opening door). In this case
and is a constant vector in the plane. Also, It
will be convenient to decompose X into a vertical component

and a horizontal component

Then and when we eliminate the constraining force
f between (5.45) and (5.46) we get

We use this to eliminate from

to get
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We can determine the time dependence of by using (5.46) and (5.48) to
get

Integrating this, we obtain

Finally, by substituting this into (5.50) we get a determinate equation for the
trajectory

This separates easily into uncoupled equations for horizontal and vertical
displacements. The equations tell us that the ball recedes radially from the
rotation axis with steadily increasing speed while it oscillates vertically with
simple harmonic motion of period

7-5. Exercises

(5.1)

(5.2)

(5.3)

(5.4)

A homogeneous sphere of radius a rolls on the outer surface of a
sphere of radius b. If it begins from rest at the highest point, at what
point will the sphere lose contact? For what values of the coefficient
of friction will slipping begin before contact is lost?
A sphere rolls on the inner surface of a right circular cone at rest
with a vertical axis. Compare its translational motion with that of a
heavy particle constrained to move on the same surface. Show that
the vertical component of the angular velocity is a constant of the
motion.
For a sphere rolling in a spherical bowl as described in the text,
show that the condition for steady motion in a horizontal circle of
radius r with constant angular speed is

where
Determine the orbit of a homogeneous sphere rolling on a horizon-
tal turntable. Show that there are circular orbits with period com-
pletely determined by the period of the turntable. (K. Weltner, Am.
J. Phys. 47, 984 (1979)). Compare the motion with that of a charged
particle moving in a magnetic field (J. Burns, Am. J. Phys. 49, 56
(1981)).
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For a sphere rolling on an inclined plane which rotates with a
constant angular velocity show that, with a proper choice of
origin, its translational equation of motion in the rotating frame can
be put in the form

where is the component of perpendicular to the plane, and  f  is
a linear vector function. Determine f, and discuss qualitative char-
acteristics of the motion.
For a sphere rolling on the inner surface of a cylinder rotating about
its vertical axis with a constant angular velocity, show that the
vertical component of the motion is simple harmonic and determine
its period.
Analyze the motion of a homogeneous sphere rolling on a horizon-
tal plane subject to a central force specified by Hooke’s law.
Study the scattering of a sphere rolling on a  surface of revolution
(C. Anderson and H. von Baeger, Am. J. Phys. 38, 140 (1970)).

7-6. Impulsive Motion

An impulsive force F is very large during a short time interval and
negligible outside that interval. The effect of an impulsive force on a particle
is to produce a sudden change in velocity given, from by

where

is called the impulse of the force. In saying that the impulsive force is “large”,
we mean that during the change in velocity is significant and the effect of
other forces is negligible. As a rule, the time interval can be taken to be so
short that the change in velocity given by (6.1) can be regarded as instanta-
neous.

For any system of particles to which a system of impulsive forces is
applied during we can neglect all other forces and write

during Whence the impulsive change in center of mass velocity V is given
by

where is the impulse of  on the ith particle.

(5.5)

(5.6)

(5.7)

(5.8)
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Similarly, during the total angular momentum of the system of
particles satisfies

The can be regarded as fixed during Therefore, the impulsive change in
rotational velocity is given by

where the linearity of the inertia tensor has been used.
Though the impulsive forces produce only an infinitesimal displacement

during they nevertheless do a finite amount of work. This produces a finite
change in the kinetic energy which can be expressed in the form

or in the form

Therefore, by (6.3) and (6.4), the impulsive change in kinetic energy K is given
by

or

The impulse equations (6.3) and (6.4) apply, of course, to a rigid body, and
they suffice to determine the effect of given impulses on the body. Details of
the impulse forces during are unnecessary. In fact, such data are rarely
available for actual impacts. The real circumstances where (6.3) and (6.4)
apply are fairly limited. At the least, it is necessary that be large compared
to times for elastic waves to travel through the body, but small compared to
the period of oscillation of the body as a physical pendulum.

From now on, we limit our considerations to the case of a single impulse J
delivered to a rigid body at a point with position r in the center of mass
system. Then the Equations (6.3) and (6.4) for translational and rotational
impulse reduce to

In addition, from kinematics we have

for the velocity v of the point at which the impulse is applied. These three
equations are linear in the seven vectors V, J, r, v, so they can
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readily be solved for any three of the vectors in terms of the other four.
Usually the initial values and r are given and the final values V,  are to
be determined. So we have two cases of particular interest, when either J or v
is prescribed.

Motion initiated by an impulse

If a rigid body at rest is set in motion by a blow, then

Thus the center of mass moves in the direction of the blow, and for a
prescribed impulse J the rotational velocity is given by

Inserting this in (6.9) we find

This tells us that the particle which receives the blow does not generally move
in the direction of the blow.

Using (6.6) we find that the energy imparted to the object by the blow can
be expressed in the form

This tells us how the energy imparted varies with the direction of the blow.
As an example, let us examine the effect of an impulse from a cue stick on a

cue ball in billiards. Suppose that the cue stick is stroked in a horizontal
direction in a vertical plane through the center of the cue ball. Then (6.10)
and (6.11) give us the scalar relations

where and h is the height of the
contact point above the center of the cue ball
(Figure 6.1). If the cue ball is to roll immedi-
ately without slipping, then the rolling con-
dition must be satisfied and (6.14a, b)
imply that

struck” The ensuing motion is determined by results in Section 7-5
with (6.14a, b) as initial conditions. From (5.38) we find that the cue ball will
slip for a time

Fig. 6.1. Cue stick impulse de-
livered to a cue ball.

The cue ball will slip as it moves if it is “high struck” or “low
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after which, according to (5.39), it will have a speed
Billiard balls are quite smooth, so little angular momentum is transferred

when they collide. Moreover, the collisions are nearly elastic. When the cue
ball strikes an object ball “head on”, conservation of momentum implies that
all its velocity will be transferred to the object ball. However, if it is still
slipping, the cue ball will then accelerate from rest and follow the object ball
if it had been high struck or retreat back along its original path if it had been
low struck. The first case is called a “follow shot”, while the second is called a
“draw shot”.

The effect of striking the cue ball to the left or right of the median plane is
to give it left or right English (= spin about the vertical axis) in addition to the
rolling or slipping motions we have discussed. Ideally, English will be con-
served during motion and collisions with the smooth balls, but not in colli-
sions with the rough cushions on the billiard table.

The mechanics of billiards was developed by Coriolis (1835), and it is used
in the design of equipment for the game. For example, the cushions on a
billiard table are designed to make contact with a billiard ball at a height
h = (2/5)a above the ball’s center, so that collision with the cushion does not
impart to the ball any spin about a horizontal axis.

Constraint on the point of contact

An impulse may be known indirectly from its effect on the velocity of the
particle to which it is applied. In that case, we eliminate J from (6.7) and (6.8)
to get

Then, since the velocity v in (6.9) is known, the two equations (6.9) and
(6.17) can be solved for the unknowns V and Eliminating V between these
equations to solve for we get

Note that (6.17) implies that

(6.19)

that is, the “radial component” of the angular momentum is conserved
through the impact.

To complete our solution for we need a specific form for the inertia

and write . Then (6.19) implies
tensor Let us consider the important special case where and
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and (6.18) yields

Finally, we can get V by substituting this into (6.9), and the impulse J which
produces this result can be found from (6.7).

In the special case where the impulse brings the point of impact to rest, we
have v = 0. Consequently, the motion immediately after impact is a rotation
about the point of impact. See Exercise (6.5) for an example.

Properties of impulsive forces

When a ball is bounced vertically off a fixed horizontal floor, it is found
empirically to lose a fixed fraction of its translational kinetic energy in the
bounce, irrespective of its initial velocity over a wide range. Thus, the kinetic
energies before and after collision with the floor are related by

where e is a constant in the range When e = 1 energy is con-
served, and the collision is said to be elastic. If e = 0 the collision is said to be
completely inelastic. The constant e characterizes elastic properties of the
objects in collision. It is called the coefficient of restitution, because it charac-
terizes the fact that during collision the forces of compression deforming the
ball are greater than the forces of restitution restoring its original shape. We
can see this by decomposing the impulse J delivered by the ball to the wall
into two parts,

By definition, the compressive impulse brings the ball to rest, so

Then, in accordance with (6.7), the restitution impulse propels the ball
from rest to its final velocity;

The relation between the forces of compression and restitution can be
described by

•)

It then follows immediately from (6.23b, c) that
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And this implies (6.22) as anticipated.
The value of this analysis lies in recognizing that the coefficient of resti-

tution characterizes only the normal component of the impulse at the point of
contact. The tangential component of the impulse derives from the frictional
force, so it vanishes if the surfaces are ideally smooth. Experiments have
shown that the empirical “laws of friction” are the same for impulsive forces
as for the smaller forces between objects in continuous contact. Therefore,
the empirical force law (5.30) implies a relation between the normal and
tangential components of the impulse in a collision with slipping between
surfaces. See Exercise (6.4) for an example.

To see how the coefficient of restitution is used to characterize a collision
between moving bodies, let us consider a collision between two balls. Let the
balls have masses m and M and center of mass velocities V and U respectively.
According to (6.7), the impulse J applied by the second body on the first
produces a change of velocity to

By Newton’s third law the impulse of the first on the second must be –J.
Therefore,

and the impulsive change in the relative velocity of the spheres is given by

For application to the present problem, the relation expressed by (6.25) must
be put in the more general form

where n is a unit normal to the balls at the point of contact. Then from (6.27)
we find that the normal component of the impulse has the value

If the balls are perfectly smooth, then this gives the entire impulse
and velocities after impact are completely determined from (6.26a, b). In the
limit (6.29) gives the impulse for collision with a moving wall.

To see the impulsive effects of friction, let us consider a ball bouncing off a
fixed, plane surface. Suppose that the coefficient of restitution is unity, and
suppose that friction is sufficient to eliminate slipping during contact. A
commercially produced ball that comes close to meeting these requirements
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of perfect elasticity and roughness is called a Super-Ball. From (6.28) we
obtain immediately

where n is the unit normal to the plane (Figure 6.2). Thus, perfect elasticity
implies that the normal components of the velocity is simply reversed by a

bounce. Since there is no slipping during
contact, the frictional force will not do work,
so the total energy, will be conserved in a
bounce.

For ball of radius a and moment of inertia
, Equation (6.8) for the angular

momentum impulse gives us

Multiplying this by n, we note that the
scalar part gives

while the bivector part can be put in the form

where

is the tangential component of V, and

is the velocity of the point of contact with respect to the center of the mass.
Equation (6.33) describes the conversion of linear momentum into

angular momentum due to the action of the frictional force, while (6.32) tells
us that the normal component of the angular momentum is conserved.
Energy conservation puts an additional restriction on the kinematical vari-
ables.

To put energy conservation in its most useful form, we decompose the
kinetic energy into normal and tangential parts by writing

Since the normal components and are separately conserved in
the collision, energy conservation reduces to a relation among the tangential
components, which can be written

(6.35)

Thus, we have reduced the description of frictional effects in a bounce to two

Fig. 6.2.  A ball bounching off a fixed
surface.
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equations (6.33) and (6.35). This is all we can learn from general dynamical
principles. However, there is another property of the frictional force which
we need to determine the direction of the tangential impulse.

During the bounce, the frictional force is opposite in direction to the
velocity

of the ball at the point of contact. Therefore, if the initial angular velocity is
orthogonal to the plane of incidence, as expressed by the equation

then the frictional force will lie within the plane. Consequently, the velocity
impulse and the trajectory after the bounce will lie in the incident plane.
On the other hand, if , then the ball will have a velocity component
normal to the incident plane after bouncing, that is, the ball will bounce
sideways.

Let us restrict our analysis to the case where the initial condition (6.37) is
satisfied, as presumed in Figure 6.2. Then, if is a unit vector as indicated in
the figure, we can write and , so (6.33) reduces to the
scalar equation

Also (6.34) reduces to the scalar relation

Now the energy equation (6.35) can be put in the form

which, with (6.38), can be reduced to the simpler condition

or

According to (6.36), this says that the tangential velocity v of  the contact point
is exactly reversed by a bounce.

Solving (6.38) and (6.40) for the final state variables, we get

For a Super-Ball = 2/5, and these equations become
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As a particular example, let Then recalling (6.30), we find that the
angles of incidence and rebound (Figure 6.2) are related by

and the final spin is

On multiple bounces, the Super-Ball exhibits some surprising behavior (Exer-
cise (6.7)).

7-6. Exercises

(6.1) Under what conditions can the motion of a free rigid body be
arrested by a single impulsive force?

(6.2) An impulse J is applied at one end of a uniform bar of mass m and
length 2a in a direction perpendicular to the bar. Find the velocity
imparted to the other end of the bar if the bar is (a) free, or (b) fixed
at the center of mass.

(6.3) A flat circular disk is held at its center and struck a blow on its edge
in a direction perpendicular to the radius and inclined at 45° to the
plane of the disk. About what axis will it begin to rotate? Describe
its subsequent motion. How would the motion be altered if the disk
were tossed into the air before being struck?

(6.4) A thin hoop of mass m and radius a slides on a frictionless horizon-
tal table with its axis normal to the table and collides with a flat,
rough, vertical wall. Initially, the hoop is not spinning and it is
incident on the wall with speed at an angle of After
momentarily sliding during contact coefficient of kinetic fric-
tion) the hoop rebounds. Assuming that the coefficient of restitution
is unity, determine the angle of reflection  and the angular velocity

after collision.
(6.5) A hoop of mass m and radius a rolls on a horizontal floor with

velocity towards an inelastic step of height the plane of
the hoop being vertical and perpendicular to the edge of the step.
(Figure 6.3)
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(a) Show that the angular velocity of the hoop just after colliding
with the step is

(b) Find the minimum initial
velocity required for the
hoop to mount the step if

Fig. 6.3. Rolling hoop colliding with ait does not slip. step.
(c) Find the maximum initial

velocity for which the hoop can mount the step without losing
contact.

(6.6) A homogeneous solid cube is spinning freely about one of its long
diagonals when suddenly an edge with one end on the rotation axis
is held fixed. Show that the kinetic energy is reduced to one twelvth
the original value.

(6.7) Consider a Super-Ball bouncing between two parallel planes, such
as floor and the underside of a table. Show that with = 0, after
three bounces

showing that the motion is almost exactly reversed as in (Figure
6.4a). What moment of inertia should a Super-Ball have if it is to
return precisely along its original path, as in Figure 6.4b (R.
Garwin, Am. J. Physics 37, 88–92 (1969)).

Fig. 6.4. A Super Ball thrown without spin will follow the path indicated in (a), bouncing
from the floor to the underside of a table and back to the floor. The tangent of the angle of
bounce is 3% greater than that of the angle of incidence. For comparison, the trajectory of a
body which returns precisely along its original path is shown in (b).
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(6.8) A ball which is not rotating strikes a plane surface at an angle of 45°
and rebounds at an angle of 45°. Show that the coefficient of
friction must have the value

where e is the coefficient of restitution.



Chapter 8

Celestial Mechanics

Celestial Mechanics is the crowning glory of Newtonian mechanics. It has
revolutionized man’s concept of the Cosmos and his place within it. Its
spectacular successes in the 18th and 19th centuries established the unique
power of mathematical theory for precise explanation and prediction. In the
20th century it has been overshadowed by exciting developments in other
branches of physics. But the last three decades have seen a resurgence of
interest in celestial mechanics, because it is a basic conceptual tool for the
emerging Space Age.

The main concern of celestial mechanics (CM) is to account for the motion of
celestial bodies (stars, planets, satellites, etc.). The same theory applies to the
motion of artificial satellites and spacecraft, so the emerging science of space
flight, astromechanics, can be regarded as an offspring of celestial mechanics.
Space Age capabilities for precise measurements and management of vast
amounts of data has made CM more relevant than ever. Celestial mechanics
is used by observational astronomers for the prediction and explanation of
occultation and eclipse phenomena, by astrophysicists to model the evolution
of binary star systems, by cosmogonists to reconstruct the history of the Solar
System, and by geophysicists to refine models of the Earth and explain
geological data about the past. To cite one specific example, it has recently
been established that major Ice Ages on Earth during the last million years
have occurred regularly with a period of 100,000 years, and this can be
explained with celestial mechanics as forced by oscillations in the Earth’s
eccentricity due to perturbations by other planets. Moreover, periodicities of
minor Ice Ages can be explained as forced by precession and nutation of the
Earth’s axis due to perturbation by the Sun and Moon.

We have already covered a good bit of celestial mechanics in preceeding
chapters — the one and two body Kepler problems in Chapter 4, and the
Newtonian three body problem in Section 6-5. This chapter is concerned
mainly with perturbation theory. The standard formulation of perturbation
theory in general use and presented in recent texts is more than a hundred
years old. It has the drawback of appearing unnecessarily complicated and
difficult to interpret. This chapter presents new formulation of perturbation

512
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theory which exploits the advantages of geometric algebra, developing it to
the point where calculations can be carried out efficiently. Its effectiveness is
demonstrated by first order calculations for the principle perturbations in the
Solar System. We stop just short of calculating the periodicities of the Ice
Ages, which is a second order effect.

8-1. Gravitational Forces, Fields and Torques

The Newtonian theory of gravitation is based on Newton’s law of gravita-
tional attraction between two material particles, which can be put in the form,

V — V

where G is the universal constant of gravitation, with the empirical value

The force law (1.1) specifies the force on a particle of mass m at x due to a
particle of mass at in an inertial system. As we have noted before, the
potential energy of the 2-particle gravitational interaction is

and this determines the gravitational force by differentiation;

(1.4)

It will be convenient to introduce an alternative formulation of gravitational
interactions in terms of gravitational fields.

We define the gravitational field (x, t) of a single particle located at
(t) by

The particle at (t) is called the source of the field and the mass  is the
source strength. The field is a function which assigns a definite vector  (x, t)
to every spatial point x. The field at x may change with time t due only to
motion of its source.

If a particle of mass m is placed “in the gravitation field” g1 at the point x,
we say that the field exerts a force

Although this is mathematically identical to Newton’s force law (1.1), the
field concept provides a new view on the nature of physical reality which has
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evolved into a new branch of physics called classical field theory. From the
Newtonian point of view, particles exert forces directly on one another in
accordance with the force law (1.1), though they may be separated by large
distances. From the viewpoint of field theory, however, particles interact
indirectly through the intermediary of a field. Each material particle is the
source of a gravitational field which, in turn, acts on other particles with a
force depending on their masses, as specified by (1.6). The gravitational field
is regarded as a real physical entity pervading all space surrounding its source
and acting on any matter that happens to be present.

The development of gravitational field theory leads ultimately to the
conclusion that the expression (1.5) for a Newtonian gravitational field must
be modified, and Einstein’s Theory of General Relativity proposes modifica-
tions which have been confirmed experimentally with increasing precision
during the last two decades. Einstein’s theory therefore sets definite limits on
the validity of Newtonian theory, but it also tells us that the corrections to
Newtonian theory are utterly negligible in most physical situations. So it will
be worth our while to study the implications of Newtonian gravitation theory
without getting involved in the deeper subtleties of field theory.

The concept of a gravitational field has a formal mathematical advantage
even within the context of Newtonian theory. It enables us to separate
gravitational interactions into two parts which can be analyzed separately,
namely, (a) the production of gravitational fields by extended sources, and
(b) the effect of a given gravitational field on given bodies. We study the
production of fields first.

The one-particle Newtonian field (1.5), can be derived from the gravita-
tional potential

by differentiation; thus,

where is the derivative (or gradient) with respect to x. The gravita-
tional potential energy (1.3) of a particle with mass m at x is given by (x,
t) = (x, t). However, it is essential to distinguish clearly between the
concepts of  “potential” and “potential energy”. The latter is shared energy of
two interacting objects, while the former is characteristic of a single object, its
source.

The gravitational field g(x, t) of an N-particle system is given by the
superposition of fields:

On a particle of mass m at x, this field exerts a force
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as required by the superposition law for forces. This field can also be derived
from a potential; thus,

where

And the potential energy of a particle in the field is given by

Note that this does not include the potential energy of interaction between
the particles producing the field. The internal energy of the N-particle system
can be ignored as long as we are concerned only with the influence of the
system on external objects.

The Gravitational Field of an Extended Object

The gravitational field of a continuous body is obtained from the field of a
system of particles by the same limiting process used in Section 7–2 to define
the center of mass and inertia tensor for continuous bodies. Thus, we
subdivide the body into small parts which can be regarded as particulate, and
in the limit of an infinitely small subdivision the sum (1.9) becomes the
integral

where = dm( ,t) is the mass of an “infinitesimal” corpuscle (small
body) at the point at time t. Similarly, the limit of (1.12) gives us the
gravitational potential of a continuous body:

Hereafter, we will not indicate the time dependence explicitly. The relation
g = still applies here. This enables us to find g by differentiation after
evaluating the integral for in (1.15).

For a spherically symmetric body the integral is easy to evaluate. We chose
the origin at the body’s center of mass and indicate this by writing r and
instead of x and (Figure 1.1). The symmetry is expressed by writing the
mass density as a function of radial distance only. Thus,
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where = sin is the “element of solid angle”, and

For r = , we can easily evaluate the integral

And the remaining integral simply gives the total mass of the body

Therefore, the external gravitational potential of a spherically symmetric body
is given by

This is identical to the potential of a
point particle with the same mass lo-
cated at the mass center, so the gravi-
tational field g = of the body is
also the same as for a particle. Since
many celestial bodies are nearly
spherically symmetric, this is an excel-
lent first approximation to their gravi-
tational fields, indeed, a sufficient
approximation in many circumstances.

A more accurate description of
gravitational fields is best achieved
by evaluating the effects of deviations from spherical symmetry. We expand
the potential of a given body in a Taylor series about its center of mass. Since

, we have

where the are the Legendre polynomials (see Exercise (8.4) in Section
2-8). We will need explicit expressions only for
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The last line of (1.18) shows that the magnitude of the nth term in the
expansion is of the order so the series converges rapidly at a distance r
which is large compared to the dimensions of the body. The expansion (1.18)
gives us an expansion of the potential.

By (1.19),

since the center of mass is located at the origin. Recall (from Section 7-2),
that the inertia tensor of the body is defined by

and the trace of the inertia tensor is given by

where are principal moments of inertia. Therefore,

which defines a symmetric tensor

Adopting well-established terminology from electromagnetic theory, we may
refer to as the gravitational quadrupole tensor.

Now the expanded potential can be written

This is called a harmonic (or multipole) expansion of the potential. The
quadrupole term describes the first order deviation from the field of a
spherically symmetric body. From this the gravitational field g = can be
obtained with the help of
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Thus,

This expression for the gravitational field holds for a body of arbitrary shape
and density distribution.

From Section 7-2 we know that the inertia tensor for an axisymmetric body
can be put in the form

where is the “equatorial moment of inertia”, is “polar moment of
inertia”, and u = is the direction of the symmetry axis. Then (1.22) and
(1.20b) gives us

From (1.24), therefore, the gravitational field for an axisymmetric body is
given by

where R is the equatorial radius of the body and  is defined by

The constant is a dimensionless measure of the oblateness of the body, and
the factor in (1.27) measures the rate at which the oblateness effect falls
of with distance.

For an axisymmetric body the effect of harmonics higher than the quadru-
pole are not difficult to find, because the series (1.18) integrates to a harmonic
expansion for the potential with the form

where the are constant coefficients. As mentioned above, is a measure of
oblateness and is related to the moments of inertia by (1.28). The constant
measures the degree to which the body is “pearshaped” (i.e. southern
hemisphere fatter than northern hemisphere). The advantage of (1.29) is that
it can be immediately written down once axial symmetry has been assumed,
and the can be determined empirically, in particular, from data on orbiting
satellites. For the Earth,
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Clearly, the quadrupole harmonic strongly dominates. Although for
the are of the same order of magnitude, the contributions of the harmonics
decrease with n because of the factor in (1.29). Since the are
independent of radius, comparison of the for different planets is a meaning-
ful quantitative way to compare shapes of planets.

Gravitational Force and Torque on an Extended Object

The total force exerted by a gravitational field on a system of particles is

where is the position of the kth particle at time t. In the limit for a
continuous body this becomes

where the time dependence has been suppressed.
For the force on an extended body due to a particle of mass M at the origin,

(1.32) gives us

where r is the center of mass of the body and the variable of integration has
been changed from x to (Figure 1.2). In accordance with Newton’s third
law, the expression (1.33) for the force of a particle on a body differs

only in sign from the express-
ion (1.14) gives for the force
of a body on a particle. Conse-
quently, the result of approxi-
mating the right side of (1.33)
by expanding the denomina-
tor can be written down at
once from previous approxi-
mation of the gravitational
field. From (1.24) with (1.22)
we getFig. 1.2. Integration variable for the gravitational

force of a point particle on an extended body.



520 Celestial Mechanics

To second order, this is the gravitational force of a particle (or a spherically
symmetric body) of mass M on an extended body with mass m and inertia
tensor This is quite a good approximation for many purposes in celestial
mechanics.

The gravitational torque on a body (with center of mass at r as base point)
is given by

where = x – r, as in Figure 1.2. If the field is produced by a particle at the
origin, then x × g = 0. Therefore substitution of (1.34) into (1.35) gives us

This is a useful expression for the torque on a satellite. Note that it vanishes
identically if the body is spherically symmetric.

Tidal Forces

In the preceding subsection we examined the gravitational force and torque
on a body as a whole. Besides these effects, a nonuniform gravitational field
produces internal stresses in
a body called tidal forces. To
have a specific example in
mind, let us consider tidal
forces on the Earth due to
the Moon.

We aim to determine the
tidal forces on the surface of
a spherical Earth (Figure 1.3).
For a particle of unit mass at
rest at a point R on the surface of the Earth, we have the equation of motion

The first two terms are the gravitational attractions of the Earth and Moon
respectively, and f is a force of constraint due to the rigidity of the Earth. The
term a on the right is the acceleration of the noninertial system in which the
particle is at rest. Considering only the two body motion of the Earth and
Moon about their common center of mass, we have

Fig. 1.3. Geocentric coordinates for the Earth and
Moon.
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To this we could add the centripetal acceleration due to the rotation of the
Earth, but we have already studied its effect in Section 5.6, and it is com-
pletely independent of tidal effects. The effect of the Earth’s rotation on the
tides is due entirely to the rotation of the position vector R, as we shall see.

Inserting (1.38) into (1.37), we find that the constraining force required to
keep the particle at rest is given by

The negative of the last term is the tidal force. Since the radius of the Earth
R = is far less than the Earth-Moon distance r = we can employ
the binomial expansion

So, as a first order approximation for the tidal force we have

This expression applies to every point on the surface of the Earth; the
distribution of forces is
shown in Figure 1.4. Note
that the Earth is under
tension along the Earth-
Moon axis and under
compression perpendicu-
lar to the axis. The sym-
metry of the tidal field
may be surprising, in par-
ticular, the fact that the
tidal force at the point
closest to the Moon has
the same magnitude as at

the furthest point. This symmetry disappears in higher order approximations,
but they are negligible in the present case.

In the Earth-Moon orbital plane, the tidal force (1.40) has a component
tangent to the Earth’s surface except at the four points
Consequently, water on the surface of the Earth piles up at these points into
two high and two low tides. Since the Earth’s axis is nearly perpendicular to
the Earth-Moon orbital plane, the tidal bulges are swept over the surface of
the Earth by the Earth’s rotation, producing the semi-diurnal tides, that is.

Fig. 1.4. The tidal force field on the surface of the Earth.
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alternating high and low tides every twelve hours. A tidal bulge at one point
on the Earth rotates “out from under the Moon” before it collapses, since
frictional forces retard its collapse as well as its build-up. Consequently, an
observer on the Earth will see a time lag between the appearance of the Moon
overhead and the maximum tide (Figure 1.5).

Tidal friction dissi-
pates the Earth’s rota-
tional energy, thus re-
ducing the Earth’s angu-
lar velocity and gradually
increasing the length of a
day. At the same time the
tidal force reacts on the
Moon to accelerate it. This increases the Moon’s orbital energy, so it recedes from
the Earth, and its orbital period gradually increases. Though energy is dissipated,
the overall angular momentum of the Earth-Moon system is conserved under the
action of tidal forces. So tidal forces drive a transfer of spin angular momentum to
orbital angular momentum. This process will continue until the length of the day
equals the length of the month, and the vanishing of tidal friction prevents further
angular momentum exchange. However, solar tides will continue to slow down the
Earth’s rotation, so the Moon will begin to approach the Earth again with an orbital
period locked in synchrony with the Earth’s rotation.

Observational evidence leads to a value of 4.4 cm for the rate of tidal
recession of the Moon. By angular momentum conservation, one can infer
from this a rate of change in the length of day of about two milliseconds per
century. Techniques for measuring such small time changes have been devel-
oped only recently. The rate of tidal energy dissipation corresponding to such
a change is on the order of W.

A closer look at the tidal phenomena raises many questions which are
subjects for active geophysical research today. By precisely what mechanism
is tidal energy dissipated, and how accurately can it be estimated from
geophysical models? What is the relative effectiveness of surface tides and
body tides in dissipating energy? Has the rate of tidal energy dissipation been
uniform over geologically long times? Then how close to the Earth was the
Moon in the distant past? What bearing does this have on theories of the
Moon’s formation?

Of course, the tidal mechanism is operating throughout the solar system. In
general, satellites in subsynchronous orbits spiral in towards the parent
planet, while satellites in suprasynchronous orbits spiral outward. The moons
of Mars, Phobos and Deimos, fall, respectively, into these two categories.

Now let us examine a tidal effect which has been ignored in our discussion
so far. The inclination of the Moon’s position with respect to the equator
varies between 18° and 29° each month. To describe its effect on the distri-

 Fig 1.5.    Tidal lag.
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bution and periodicity of the tides, we consider
the radial component of the tidal force, which,
by (1.40). has the value

The tidal periodicity is completely determined by
the term in brackets. We can analyze it by intro-
ducing equatorial coordinates as shown in Figure
1.6. Let be the colatitude and the longitude
of a fixed point R on the Earth, and let and

be the corresponding coordinates for the di-
rection of the Moon. Applying the law of
cosines from Appendix A to the spherical tri-
angle in Figure 1.6, we obtain

whence

The three terms in this sum show three different periodic variations in the
tidal force. With the first term shows the major effect of a semi-
diurnal periodicity. The second term has diurnal periodicity, while the third
oscillates twice a month due to the motion of the Moon.

The Sun produces tides on the Earth in the same way as the Moon. From
(1.40), the relative magnitude of solar and lunar tidal forces is

(1.44)

The Sun and the Moon combine to produce high “spring” tides and low neap
tides.

The Shape of the Earth

The shape of the Earth plays an important role in cartography and many
geophysical phenomena, so we need a precise way to characterize it. A
theory of the Earth’s shape is developed by supposing that it originated from
the cooling of a spinning molten mass to form a solid crust. Regarding the
oscillating tides induced by other bodies as secondary effects to be considered

Fig. 1.6. Equitorial coordinates
for the position of the Moon and a
point on the Earth. N indicates
north and designates the zero of
longitude on the prime meridian.
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separately, we model the Earth as a spinning fluid held together in steady
state equilibrium by the gravitational field. In a geocentric frame spinning
with the Earth the fluid will be at rest, with an effective gravitational potentional
at its surface of the form

where is the true gravitational potential and the last term is the centrifu-
gal pseudopotential. The gravitational field

must be normal to the surface, for if it had a tangential component that would
force fluid to flow on the surface. That means the surface of the Earth is an
equipotential surface defined by the equation

where K is a constant to be determined.
Since the spinning fluid is axisymmetrical, its gravitational potential  can

be described by the Legendre expansion (1.29), so, to second order, the
shape of the Earth is described explicitly by the equation

where specifies the rotation axis and a is the equatorial radius of the
Earth. The surface described by this equation is called the geoid. Its deviation
from a sphere is characterized by a parameter  called the flattening (or the
ellipticity) and defined by

where c is the polar radius of the Earth. The constant K in (1.47) is evaluated
by setting r = c with = 1, yielding

The  flattening can be expressed in terms of the other parameters by setting
r = a and = 0 in (1.47). That gives

Since and are known to be small quantities, it suffices to solve this
equation to first order, and we get

(1.50)
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where

is the ratio of centripetal force to gravitational force at the equator.
The expression for the geopotential can now be written in the form

This can be used to determine the flattening from empirical data. For the
gravitational acceleration at the pole and at the equator , it gives

Gravimetric measurements give the values

(1.54)

Using values for the a and from Appendix C, from (1.53) we calculate

As a check on the internal consistency of the theory, in (1.50) these numbers
give a value for which agrees with the values (1.30) from satellite data to
better than one percent.

The shape of the Earth as described by the geoid (1.47) agrees with
measurements of sea level to within a few meters. However, radar ranging to
measure the height of the ocean is accurate to a fraction of a meter. So
geodocists are engaged in developing more refined models for the shape of
the Earth. The main deviation from the geoid is an excessive bulge around the
equator. This has been attributed to a retardation in the rotation of the Earth
over past millions of years — one more clue among many to be fed into a
conceptual reconstruction of the Earth’s history.

8-1. Exercises

(1.1) For an axisymmetric body, a harmonic expansion of the gravi-
tational field can be put in the form



526 Celestial Mechanics

g2(r) is given in Equation (1.27). From Equation (1.29), show that

(1.2) Show that to second order the gravitational force of one extended
body on another is given by

where

and is the inertia tensor for body k.
(1.3) The variation in the water level from low to high tides can be

derived from Equation (1.40), assuming that the water is in equilib-
rium in the unperturbed field . Show that variations at the
equator are of the order

This is comparable to the variations observed on small Pacific atolls
which approximate open ocean conditions. How does vary with
latitude?

(1.4) The periodicity of the first term in (1.43) is not exactly semi
diurnal, since the angle depends on the motion of the
Moon as well as the rotation of the Earth. Show that its actual
periodicity is 12h and 26.5 min, so high tide is observed about 53
min later each day.

(1.5) Derive the Equations (1.53) and check the computation of (1.55).
(1.6) The geoid is nearly an oblate spheroid. That can be established by

considering the equation for an oblate spheroid,

For small = (b – c)/c, this can be put in the approximate form

Show that to first order in  the Equation (1.52) for the geoid can be
put in this form, and relate the parameters and a there to the
parameters and b here.
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8-2. Perturbations of Kepler Motion

The Newtonian two-body problem is the only dynamical problem in celestial
mechanics for which an exact general solution is known. We call the motion in
that case Kepler motion. Approximate solutions to a large class of more
difficult dynamical problems are best characterized as perturbations (or dis-
turbances) of Kepler motion. To that end, we write the translational equation
of motion for a celestial body (planet, satellite, spacecraft, etc.) in the form

where f is referred to as the perturbing force (per unit mass). The perturbing
force is said to be small if that is, if it is much smaller in
magnitude than the Newtonian force. If the primary body is large enough to
be regarded at rest, then = MG in (2.1), where M is the mass of the
primary. Otherwise, should include the two-body correction determined in
Section 4-6. We can always insert the two-body correction at the end of our
calculations if the degree of precision requires it.

Gravitational perturbation theory is concerned with general methods for
solving Equation (2.1) for any specified perturbing force. Several methods
have been widely employed for a long time. However, we shall develop here a
new coordinate-free method exploiting the advantages of geometric algebra.
A more sophisticated method will be developed in Section 8-4. Instead of
attacking the equation directly, it is best to reformulate the problem by using
our knowledge about Kepler motion to take the Newtonian force into account
once and for all. Then we can analyze the effect of the perturbing force
separately.

From our study of the Kepler problem in Section 4-3, we know that the
instantaneous values of the position and velocity vectors r and v determine a
unique Kepler orbit, which may be an ellipse, a hyperbola or a parabola. The
orbit is completely characterized by an angular momentum vector (per unit
mass)

h = r × v (2.2)

and an eccentricity vector given by

The vectors h and are called orbital elements. Although these two vectors
characterize the orbit completely, we have seen that it is useful to classify
orbits by the values of another orbital element, the energy (per unit mass) E,
given by
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Unique values for the orbital elements h
and are determined at each time t by
(2.2) and (2.3), even in the presence of a
perturbing force f. They specify a Kepler
orbit instantaneously tangent to the actual
orbit at the point r = r(t). This Kepler
orbit is called the osculating orbit of the
motion. Since h and are constants of
the unperturbed motion, the osculating
orbit will be identical with the actual
orbit when f = 0. When f 0, h and
are no longer constant, so the osculating orbit must change continuously in
time. We can picture the perturbed motion as motion of a particle on a Kepler
orbit which is being continuously deformed by the perturbing force. This
picture is of great value for understanding the effects of perturbations.

To describe the deformation of an osculating orbit analytically, we need
equations of motion for and h. These are easily found by differentiating
(2.2) and (2.3) and eliminating derivatives of v and using (2.1) and the
identity

established in Section 4-3.
In this way, we obtain the coupled equations

= r × f, (2.6)

Since h and are constants of the unperturbed motion, they will be slowly
varying functions in the presence of a small perturbation, and approximate
solutions to their equations of motion (2.5) and (2.6) will be easy to find. This
is the main reason for considering perturbations of orbital elements rather
than working directly with the Newtonian equation of motion (2.1). How-
ever, our formulation of perturbation theory can be further improved.

The main drawback of a perturbation theory for h and is the fact that
these vectors are not independent of one another. Each vector alone is
equivalent to three scalar elements, but together they are equivalent to only
five because of the orthogonality condition = 0. We can eliminate the
redundancy due to this constraint by introducing a spinor R determined by
the equations

These equations determine a dextral frame

Fig. 2.1. The osculating (Kepler) orbit
is instantaneously tangent to the true
orbit at the point r = r(t).
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which we call a Kepler frame, because it specifies the attitude in space of the
osculating Kepler orbit. Given a fixed frame the attitude of the osculat-
ing orbit is completely determined by the spinor R, so let us refer to R as the
attitude element.

Instead of the redundant vector elements h and we can work with the
independent elements R, h = |h| and  This choice has additional
advantages of a direct geometrical meaning. While the attitude of the oscu-
lating orbit is described by the spinor R, its size and shape are described by h
and Actually, the orbit size is directly described by the Kepler energy
element E defined by (2.4), while is the shape parameter. With (2.4) we can
eliminate any one of the elements h, E in favor of the other two, but it is
best not to commit ourselves to a particular choice prematurely.

From our study of rotational kinematics, we know that the attitude element
R obeys an equation of form

so we need to determine from the perturbing force. Because of (2.8a) and
(2.8b), the derivatives of h and can be put in the form

These equations can be solved for as follows: First eliminate the unwanted
by the multiplications

The first of these equations can be solved for if we get an independent
relation for from the second. Since = 0, we get

Therefore,

This is, of course, a general kinematical result giving the rotational velocity of
the frame determined by any two time dependent orthogonal vectors.

To ascertain how depends on the perturbing force we insert the equation
of motion for h and into the kinematic formula (2.12). Note that (2.6) give
us

since = 0. And (2.7) gives
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Hence,

Substituting (2.13) and (2.14) into (2.12), we get the desired expression

If desired, we can eliminate v from this expression by using (2.3), which yields
the relations

We can interpret (2.15) by regarding the entire osculating orbit as a rigid
body slowly “spinning” in space with rotational velocity and symmetry axis
along h. The physical significance of the two terms on the right side of (2.15)
can be identified at once. The first term describes
an instantaneous rotation about the radius vector r. This can only tilt the
orbital plane and the symmetry axis of the orbit, just as the axis of an axially
symmetry spinning rigid body is tilted in precession and nutation. The last
term describes an instantaneous rotation in the orbital plane about the
symmetry axis along h, a motion called pericenter (perihelion or perigee) or
apse precession by astronomers. Apse precession is most simply characterized
mathematically as a change in direction of the eccentricity vector  in the
orbital plane. Note that the apse precession coefficient in (2.15) shows the
contribution of angular momentum change in the term with (r × f) =

We get an equation of motion for the attitude of the osculating orbit by
inserting the explicit expression (2.15) for into the spinor equation =

Also, we need independent equations for the orbital size and shape
parameters. We can obtain such equations easily from (2.1 la, b) by using

Thus, we obtain

and

One of these equations can be replaced by the energy equation

which is most easily derived from (2.1) in a manner we have noted before.
To complete this formulation of perturbation theory we need to add an
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equation for the effect of perturbations on the time of flight along the
osculating orbit. However, we shall skip that, because it will not be needed,
for the particular problems which we shall consider, and the method of
Section 8-4 is probably better for that purpose anyway.

Orbital Averages

In many problems of satellite motion the variation of orbital elements is slow
compared to the orbital period. In such problems we can simplify our
perturbation equations considerably by averaging over an orbital period while
holding the orbital elements fixed. This time-smoothing procedure eliminates
oscillations in the orbital elements over a single orbital period. It eliminates r
and v from the perturbation equations, reducing them to equations for the
orbital elements R, h, and E alone. We shall refer to the resulting time-
smoothed equations as secular equations of motion; since the changes in the
orbital elements they describe are called secular variations by astronomers.
Secular equations are most appropriate for investigating long-term pertur-
bation effects.

The orbital average of a physical quantity f = f(t) is defined by

where T is the period of orbital motion, and the orbital elements are held
constant in the integration. To compute the average therefore, f must be
expressed as an explicit function of the orbital elements. After averaging, we
release the time dependence of the orbital elements so becomes a function
of time.

Our secular equations of motion for the orbital elements can be written

where

Also,

When a definite perturbing force function f is given, the indicated time
averages can be performed, and these become definite differential equations
to be solved for the time dependence of the orbital elements.



and relate the position vector
to the orbital elements as shown in

true anomaly and the eccentric anomaly. The dimensionless time variable

is called the mean anomaly, and is the initial time of pericenter passage. The
orbital frequency parameter

is called the mean motion by astronomers. For parametric representations,
the following relations are useful:

where

The true anomaly is related to the time parameter by angular momentum
conservation;
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To facilitate applications of the theory, we collect relations needed to
evaluate orbital averages efficiently and establish specific results which will be
useful in calculations later on. Orbital averages are often easier to compute
when the independent variable is
an angle instead of time, because
the parametric representation of
the orbit is simpler. So we need
explicit parametric represen-
tations for the dependent variables
of interest and relations among
the alternative parameters. The
relations we need were derived in
the first part of Chapter 4, primar-
ily in Section 4-4, so we can just
write them down here.

The angle variables of interest,

Figure 2.2. Astronomers  call the Fig. 2.2. Parameters for an elliptical orbit.
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By differentiating Kepler’s Equation (4–4.4) and using (2.28) we find

These last two equations can be reexpressed as the differential relations

This enables us to express the time average in any of the equivalent forms

(2.34)

where r can be expressed in terms of by (2.28) as needed.
To illustrate averaging calculations, we work out a few examples.

Hence,

In general,

When the numerator is expanded here, odd powers in cos can be discarded,
since

if k is an odd integer. From considering (2.28), it is evident that is a more
convenient parameter than in these cases, because the cosine appears in the
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numerator instead of the denominator. The opposite is true in the next
example.

Hence,

Notice the reciprocity between and in the integrals for (2.35) and (2.37).
Considering (2.28), it is evident that this reciprocity is a general relation, and
it is not difficult to prove that

Results of computations by the above method are given in Table 2.1. This
straightforward method is adequate for computing any desired orbital aver-
age, but we shall develop an elegant alternative approach.
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Orbital averages can be systematically computed by exploiting the relation

Since v is a time derivative its orbital average vanishes; explicitly.

Therefore, from (2.39) we immediately get

Note that this implies the relations
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To transform (2.39) into a form for computing general orbital averages, we
multiply it by r and separate scalar and bivector parts. The scalar part can be
written

or

The bivector part gives us

Adding these two equations and solving for r, we obtain

Since this gives us the time average

with the help of (2.29) and (2.35). More generally, (2.43) gives us

Since the last term here is again a total time derivative, it averages to zero,
and we get

Using (2.38), for n 4 this can put in the slightly simpler form given in
Table 2.1.

Now let u be an arbitrary constant vector. With a Kepler frame (2.9) as
basis, we can write u in the expanded form

where Using (2.43) in the form

we get
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The last term will yield a vanishing orbital average even when multiplied by
an arbitrary polynomial in r. Therefore, (2.47) gives us

The average of can be computed from (2.30), which gives us

Then, for n 5, (2.38) can be used to put (2.48) in the useful form given in
Table 2.1

We now have all the techniques needed to reduce the orbital average of any
homogeneous function of r to averages of powers of r = Let us consider
one more example, which will be needed for our calculations later on.
Dotting (2.47) with an arbitrary constant vector w and multiplying by (2.46),
we get

(2.50)

Proceeding as before to compute the orbital average, we get the result in
Table 2.1.

Astronomical Coordinates

Our specification of orbital elements and equations of motion is mathemati-
cally complete. However, we need to relate our attitude element to a
conventional set of orbital elements to facilitate comparison of our results
with observations and our theory with conventional perturbation theories.

To measure the attitude of a satellite orbit in space, a system of astronomi-
cal coordinates must be set up. These angular coordinates relating points on
the celestial sphere, a unit sphere with points representing directions in
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physical space. Positions
of the “fixed” stars are
nearly constant on the
celestial sphere, so they
are good points of  refer-
ence.

The first step in set-
ting up a coordinate sys-
tem is selection of a
convenient orthonor-
mal frame of fixed
reference directions. A
pole vector is chosen
normal to a reference
plane, which intersects
the celestial sphere in a
reference equator. The Fig. 2.3.  Coordinates for the orbit of a satellite projected on

the celestial sphere.vector is an arbitrary
direction in the reference plane, usually chosen as the direction of an easily
identifiable star for observational convenience. Then, of course, is deter-
mined by

The osculating orbit of a satellite projects to a great circle on the celestial
sphere. The Kepler frame of the orbit is related to the reference frame

by

The attitude element R can be parametrized by a set of Euler angles
as indicated in Figure 2.3; from Section 5-3 we have

Let us refer to these three angles as Eulerian (orbital) elements. To facilitate
discourse, it is convenient to introduce some additional nomenclature from
astronomy.

The angle is the inclination of the orbit The orbital motion
is said to be direct if and retrograde if The vector

is the direction of the ascending node where the orbit crosses the reference
plane. The angle is the longitude of ascending node. The angle is the
argument of pericenter.

For observational astronomy, the most practical coordinate system is the
equatorial system, a geocentric system in which the celestial north pole is the
point where the Earth’s axis penetrates the celestial sphere. In this system the



Perturbations of Kepler Motion 539

path of the sun is a great circle on the celestal sphere called the ecliptic. The
ecliptic cuts the celestial equator at two points called the equinoxes. The vernal
equinox is the ascending node of the ecliptic, and this is taken as the reference
direction There is more special nomenclature for the equatorial system
which need not concern us here.

Another widely used coordinate system is the ecliptic system, in which the
north pole is the direction of angular momentum vector of the Earth’s orbit
about the sun and is also taken to be the direction of the Vernal equinox.
The trouble with the equatorial and ecliptic systems is their reference direc-
tions are not truly constant, as we shall see.

Conventional perturbation theories use Eulerian elements to specify the
attitude of an orbit, and so develop equations of motion for these variables.
In contrast, use of the spinor element R enables us to develop the theory and
applications without prior commitment to a particular set of angle variables.
This has important practical as well as conceptual advantages: (1) A single set
of Eulerian elements cannot be used for orbits of arbitrary eccentricity and
inclination, because their equations of motion become ill-defined for some
values of the parameters. (2) The variables which provide the simplest
solution of the attitude equation of motion depend on the perturbing force,
and they are not necessarily Euler angles. (3) Variables suitable for handling
one perturbation may not be optimal when many perturbations are consid-
ered together.

Although we eschew the use of Eulerian elements in our perturbation
theory, when the functional form of the attitude spinor R has been deter-
mined for a particular problem, we may wish to express the results in terms of
Euler angles for practical reasons. That can be done by solving (2.52) for the
Euler angles in terms of R. The derivatives of the Euler angles related to the
rotational velocity of a Kepler frame by

a result derived in Chapter 7. This can be solved to get the variations in the
Eulerian elements from Thus, multiplication of (2.54) gives us

and

whence,
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Referring to Figure 2.2 for interpretation, a time variation of the inclination
is called nutation of the orbit. A variation of is called precession of the
nodes or longitudinal precession. A variation of is called, as before,
precession of the apses or major axis. Either type of precession is said to be
direct if the angle increases or retrograde if it decreases. The orbital tilt
mentioned previously in the discussion of Equation (2.15) is a combination of
nutation and longitudinal precession. Indeed, the decomposition of tilt into
nutation and precession depends on the chosen reference direction.

Conventional equations of motion for the Euler elements can be derived
from (2.55a, b, c) after inserting the expression for in terms of the
perturbing force given by (2.15). But we have no need for those equations.

8-2. Exercises

(2.1) Begin with the general three body equations (6–5,2). Let particle 1
be the primary with particle 2 as its satellite and particle 3 a
perturbing body. Derive the perturbed 2-body equation

where and the exact
perturbing force is given by

Note that f is a definite function f(r, ,t) if (t) is a specified
function of time. Show that f can be derived from the potential

(2.2) Evaluate in Table 2.1 for various values of n. Is there a pattern?
(2.3) Show that for a satellite subject to a central perturbing force

is a constant of the motion. Therefore, the eccentricity oscillates
between maximum and minimum values depending on
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8-3. Peturbations in the Solar System

In this section we discuss the principal perturbations on satellites in the solar
system and calculate their long-term effects to first order. The various pertur-
bations can be classified into three main types:

(A) Gravitational perturbations following from Newton’s law have the
largest effects. Two subtypes are particularly important : (1) Quadrupole
perturbations due to an asymmetric mass distribution in a nearby body, (2)
Secular third body perturbations due to a distant orbiting body. These
perturbations have a wide variety of effects on the orbital and rotational
motions of planets and satellites.

(B) Non-Newtonian perturbations from Einstein’s theory of Relativity have
the most subtle effects, which can be identified only after the Newtonian
effects have been accounted for with great precision.

(C) Non-gravitational perturbations such as atmospheric drag, the Solar
wind and magnetic forces are negligible for the planets and larger satellites,
but their effects on artificial satellites and the smaller asteroids are quite
significant.

We will employ the secular perturbation theory developed in Section 8-2,
so let us repeat the equations of motion for the orbital elements for easy
reference:

where

and

is a Kepler frame, with And

Also, we need the relations

where a is the semi-major axis and T is the period of the osculating elliptical
orbit. The variable v can be eliminated in the orbital averages by using
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In particular, in (3.1b) it is convenient to use

We will refer back to Section 8-2 for calculation of the averages in these
equations. But note that if f = is a static conservative force, then

Therefore, such a force can change the shape but not the size of the orbit.

Oblateness Perturbations

The Earth’s oblateness has significant effects on the orbits of artificial satel-
lites near the Earth, and an evaluation of the effect of the Sun’s oblateness on
the orbit of Mercury is needed for testing Einstein’s theory of gravitation. To
be more specific, the main effects of the Earth’s oblateness on a near satellite
are more than a million times greater than the effects of the Moon. Oblateness
produces one of the two main perturbations on near satellites; the other is
caused by the Earth’s atmosphere. These two perturbations can be consid-
ered separately, because their effects are different in kind. Anyway, in first
order perturbation theory, the effects of different perturbations are simply
additive.

In Section 8-1, we found that oblateness of an axisymmetric planet pro-
duces a quadrupole gravitational force (per unit mass) on a satellite with the
explicit form

with

where is the equatorial radius of the planet, and u is a unit vector along the
planet’s symmetry axis.

We derived the force (3.9) from a potential, so (3.8) tells us immediately
that the Kepler energy E is a secular constant of the motion. To determine the
secular equations for the other orbital elements, we need the following orbital
averages which are easily calculated from Table 2.1 in Section 8.2.
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where
Insertion of (3.11) into (3.2) tells us at once that h, like E, is a secular

constant of the motion, so must be constant as well. Therefore the satellite
orbit does not change size and shape under an oblateness perturbation; it only
rotates rigidly in space with its focus at the center of the primary as a fixed
point. In other words, the secular effects of oblateness are entirely deter-
mined by the secular rotational velocity Inserting the orbital averages
(3.11), (3.12) and (3.13) into (3.1b), we get

where

The equation of motion for the attitude spinor can therefore be written

where

and

Since and are constant vectors, Equation (3.16a) integrates to
.

where is the initial value of the attitude spinor R.
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Equation (3.17) specifies the attitude of the orbit at any time. We have
already met such an equation in our study of spinning bodies, and that
experience is helpful in interpreting it. Since is constant, the orbital
angular momentum vector h = undergoes steady gyroscopic precession
about the symmetry axis = u of the oblate
primary. This is the same thing as longitudinal
precession of the ascending and decending nodes,
as shown in Figure 3.1 for the case of an
artificial Earth satellite. Using (2.55b), we find
that on one revolution the nodes precess through
an angle

The negative sign means that the precession is
retrograde. The precession rate decreases with
increasing inclination and vanishes for a polar
orbit. Observations of this precession by arti-
ficial Earth satellites provide precise values for  and higher order harmonic
coefficients when included in the perturbation theory.

The other vector in (3.17) gives the precession rate of the apses in the
orbital plane. In one revolution the axis turns through an angle as
shown in Figure 3.2. According to (3.16b), the precession rate depends on the
inclination of the orbit and vanishes at the critical angle

The precession is retrograde for larger
inclinations and direct for smaller inclina-
tions.

Note that the magnitude of the oblate-
ness effects decrease with increasing range
by a factor so they are quite negli-
gible at the distance of the Moon.

Secular Third Body Forces

Consider two satellites orbiting a common primary. Suppose the primary is at
rest at the origin and the orbit of the outer satellite is a given 2-body ellipse.
The very long term effect of the outer satellite (the third body) on the inner
satellite can be estimated by a method originally employed by Gauss. The

Fig. 3.1. Satellite orbit on the
celestial sphere showing regres-
sion of the ascending node along
the equator due to the Earth’s ob-
lateness.

Fig. 3.2. Precession of the major axis
(or perigee) due to oblateness.
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time interval must be long enough for the third body to make many orbital
revolutions. If the periods of the two satellites are incommensurable, there is
no correlation between their positions on their respective orbits, and the net
third body potential at any position r is given by the time average

This is the same as the potential of an elliptical ring formed by smearing the
mass of the perturbing body over its orbit with a density proportional to its
transit time. We shall refer to it as a secular potential to remind us to the
special conditions for its applicability.

We can estimate the time average in (3.20) by expanding the integrand in
the Legendre series (1.18). Since we obtain

where the subscripts indicate parameters of the third body orbit, and is the
unit normal of the orbital plane. To lowest order, the secular gravitational
field of the perturbing body is

It may be surprising to get an axially symmetric field.  The field is independent
of the alignment of the major axis for two reasons: the origin is at a focus
rather than the center of the ring, and the mass density on the ring increases
with distance from the origin at a rate just sufficient to cancel the 1/r fall off in
potential. Note that the field strength for an elliptical ring is greater than that
for a circular ring with the same mass and major axis, since

At points which are closer to the ring than the origin, the Legendre
expansion converges so slowly that a great many terms are needed to approxi-
mate the secular potential accurately. A more efficient method is available
when the ring is circular. In that case the potential can be evaluated explicitly
in terms of elliptic integrals, but a more elementary approach will suffice here.
We suppose that the satellite orbits are coplanar, so we need to evaluate the
secular field only in that plane. It will be convenient to calculate the field
directly instead of indirectly by calculating the potential first. The secular field
at r is given by
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where the true anomaly has been substituted for the time variable. The
circular orbit can be parameterized by and

where i is the unit bivector for the orbital plane. On the other hand,

is the simplest parameterization of the relative position variable (Figure 3.3.),
enabling us to put (3.23) in the form

This suggests that would be the most appro-
priate integration variable. The variables are
related by

which we obtain from (3.24) and (3.25). To
express R as a function of we eliminate
from (3.27); thus,

The positive root of this equation gives us

It will be convenient to define

Note that

The differential for the change in variables from to is obtained by
differentiating (3.27). After some algebra, we get

Now we are prepared to derive an explicit formulation of the integral in
(3.26); thus,

Fig. 3.3. Coplanar orbits with a
common primary. The outer orbit is
circular.
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Therefore, our expression for the secular field can be written

The integral can be evaluated in terms of elliptic integrals, but we will be
satisfied with a binomial expansion of the denominator to get

This should be compared with the expansion

That shows that the second order term in (3.32) is essential for second order
accuracy better than ten percent. Inserting these expansions into (3.31), we
get

To first order this agrees with the result (3.22) from the Legendre expansion,
except for a factor which we could include in (3.33) to
account for a small eccentricity in the orbit.

Solar and Lunar Perturbations of an Earth Satellite

To investigate the influence of the Sun on the orbit of an Earth satellite, we
adopt a geocentric reference system. In this system the Sun orbits the Earth,
and thus generates perturbing gravitational field which, according to (1.40),
is given in the vicinity of the Earth by
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where r is the position of the satellite, is the (instantaneous) direction of
the Sun, is the Sun’s mass, and is the semi-minor axis of the Sun’s
orbit about the Earth, To determine the secular effect
of this perturbation we first hold fixed and average over the orbit of the
satellite.

The secular rotational velocity of the orbit, is calculated from (3.1b),
with the help of Table 2.1 to compute the averages. Writing

we find:

Using and it will be convenient to write
this in the form

where is defined by

with as the orbital period of the Sun and T as the orbital period of the
satellite. Also, we calculate
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The computed values for in (3.37) and in (3.38) determine in (3.35).
Now, to relate the computed value for to observed data, we introduce

Eulerian coordinates [as in (2.52) and 5-(3.42)] with the notation

where u is the (constant) pole vector of the ecliptic, n is the direction of
the ascending node, and with These coordinates are
accordingly related to (3.35) by

In terms of these coordinates the position of the Sun is given by

where per day per year. For comparison with (3.40) we
can express in terms of n and u by using

For a nearly equatorial satellite orbit, an approximation to first order in
will be sufficient and gives us

The Eulerian coordinates in (3.39) and (3.40) can be interpreted as follows:
The node n of the satellite orbit precesses about the ecliptic pole u with
angular speed so is the nodal precession angle. The angle describes
the inclination of the orbital plane and nutation about an average value since,
as shown below, is periodic. The observed perigee precession rate is given
by approximately equal to for a near equatorial orbit.

Let us see what the above results tell us about the motion of the Earth’s
most important satellite, the Moon. The eccentricity of the Moon’s orbit has
the empirical value and its average inclination is so
the orbit is nearly equatorial. The Sun’s eccentricity is so, noting
that from (3.37) we obtain

Inserting (3.41) into (3.36) we obtain

Inserting (3.42) into (3.38) and neglecting the term of order we obtain
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Hence, by comparison with (3.40),

and

Introducing the variable equations (3.44) and (3.46) can both
be put in the form with This equation is separable
in u and t, so it can be integrated directly to give

In the last line the secular term has been extracted from the first line without
identifying the form of the periodic terms, by examining the values

The secular term gives us the angular rate

Applied to (3.42), this gives us the nodal precession rate

The minus sign on the right means that the precession is retrograde. For the
precession period, (3.50) gives yr, which is quite close
to the observed value of 18.61 yr.

Likewise, from (3.44) we obtain the perigee precession period

This is not impressively close to the observed value of 8.85 yr, but it agrees
with the more conventional calculation by Brouwer and Clemence to the same
order, and Vrbik has extended the present method to achieve near perfect
agreement (See References).

Newton’s original calculation of the lunar perigee precession (in Book I,
Proposition 45 of the Principia) is off by a factor of 2. This is just the result
obtained if the second order term is dropped from the denominator of
(3.51), as happens when the perturbing force (3.34) is replaced by its average
value (3.22). Note that the second order term in the nodal calculation (3.50)
contributes only a few percent. This explains why Newton’s calculation of
the lunar nodal precession was so much more accurate than his calculation of
the perigee precession.
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As Whiteside explains (See References), Newton was so frustrated by the
failure of his lunar perigee calculation that he initially added a fudge factor
to make it agree with the observational data. Later he tried to improve his
calculations by adopting Jeremy Horrock’s picture of the Moon’s orbit as
a Keplerian ellipse, deformed as a whole by the Sun’s perturbation. That
picture has been made precise by the method in this Section, but Newton
was not able to bring it into more than qualitative agreement with the data
available in his day.

Solar-driven nutation of the Moon’s orbital plane is, to the first approx-
imation, determined by (3.47). To estimate its frequency and amplitude
from (3.47), we replace by its value for the observed average inclination

Then with the help of (3.50), the nutation frequency is found to
be rad/yr, and the nutation amplitude is

This agrees with the observed value. On top of this there is a smaller nutation
due to the term of order in (3.38). Also, the Sun drives a 40% oscillation
in the Moon’s eccentricity.

For long-term solar effects on a near-Earth artificial satellite our results
will be more accurate than for the Moon and especially significant since they
apply for arbitrary inclination and eccentricity. However, the satellite will be
perturbed by the Moon as well as the Sun. In fact, the lunar effect is more
than twice as great as the solar effect, for an estimate of the ratio of their
effects from (3.37) gives

This is the same as our earlier estimate for the ratio of lunar/solar tidal forces
on Earth.

To calculate the first-order lunar-solar effects on an artificial satellite, we
simply add separate versions of (3.39) for the Sun and Moon, thus

It should be noted that a second order calculation of lunar effects
should not be expected to give better than 10% accuracy, because a bound
on the accuracy is given by the ratio

Luni-Solar Precession and Nutation

Since the Earth is oblate, the nonuniform gravitational fields of the Sun and
the Moon exert torques on the Earth, driving changes in the direction of
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Earth’s axis known as Luni-Solar precession and nutation.
To calculate the long-term effects of the Sun on the Earth’s rotation we use

the secular field (3.34). This field exerts a torque on the Earth

Using the expression (1.20a) for the inertia tensor this can be written

Then, using the special form (1.25) for the inertia tensor of an axisymmetric
body, we get

where e designates the symmetry axis of the Earth. To this we must add a
completely analogous expression for the Moon to get the total Luni-Solar
torque

Now, by the method developed in Section 7-3, we can reduce the equation
of motion for the Earth’s angular velocity to the form

or

where F is defined by

We know from our studies in Sections 7-3 and 7-4 that the solution of (3.57)
can be quite complicated even when F is constant, but it is sensitive to initial
conditions. Fortunately, any large nutation that the Earth may have had as a
result of initial conditions has long since been damped out by the time
dependence of F.

To extract the main effects from (3.58) we assume that is constant,
though it actually precesses slowly due to perturbations by the other planets.
We know from (3.44) that precesses about with a period of 18.6 yr.
Therefore, the direction of F oscillates and this drives a nutation of the
Earth’s axis with the same period. This nutation with a period of 18.6 yr is
called Luni-Solar nutation. The nutation is an oscillation about steady preces-
sion superimposed on the Chandler wobble shown in Figure 3.5 of Section
7-3.
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To study the steady precession, we separate it from the nutation by
replacing in (3.58) by its mean value over its period where

Introducing empirical values for the other parameters, we get

By Equation (3.50b) of Section 7-3, the period of precession for slow top is
given by

Here day. Hence, for the period of Luni-Solar precession we get
the estimate

This is reasonably close to the observed value of 25400 yr. The Luni-Solar
precession is directly observable as a precession of the equinoxes. Note that
the minus sign in (3.58) means that the precession is retrograde.

Satellite Attitude Stability

In Section 8-1 we found that an asymmetric body with inertia in the field
of a centrosymmetric body with mass M is subjected to a gravitational
torque

This is appropriate for investigating short-term effects of gravitational
torques, in contrast to (3.55), which applies only to long-term effects.

Note that the torque (3.61) vanishes if one of the principle axes is aligned
with r. It is of interest to investigate the stability of such an alignment for
orbiting satellites. Such knowledge can be used, for example, to keep commu-
nication satellites facing the Earth. Fortunately, the simplest alignment is also
the most significant, so we shall limit our attention to that case.

We suppose that one principal vector is perpendicular to the orbital
plane, so it is not affected by the orbital motion. Then we can write
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where measures the deviation of from so and
It follows that

Also, if is the angular velocity of the satellite, then
Therefore, Euler’s equation for the satellite reduces to

For a circular orbit, we can write where n is the constant orbital
angular velocity. Then in the small angle approximation it is
evident that solutions to (3.62) are stable about if and unstable
if

Assuming and constant, we recognize (3.62) as the
equation for a pendulum, for which we found the general solution in terms of
elliptic functions in Section 7-4. For small displacements from equilibrium,
the satellite oscillates harmonically with natural period

This result is pertinent to the Moon. Its mean rotational period is equal to its
orbital period, so it orbits with the same face (centered at one end of its
longest principal axis) directed towards the Earth. A small perturbation
would be sufficient to set the face in harmonic oscillation about this equili-
brium motion. In principle, one could measure the period of this oscillation
and obtain a value for from (3.63). But the actual oscillations are so
small and the period is so long that such a measurement was not feasible until
quite recently. However,the same quantity can be determined from the
observation the forced oscillation which synchronizes the orbital and rota-
tional motions. This is due to the fact that the Moon’s orbit is actually
elliptical, so the factor undergoes small oscillations over an orbital period
which force oscillations of the angle according to (3.62).

The equivalence of lunar spin and orbital periods is an example of spin-
orbit resonance which exists throughout the solar system. It is believed to
come about in the following way: The Moon loses an arbitrary initial spin
gradually by tidal effects until it falls into a stable resonant state, where the
rotational motion is sustained by parametric orbital forcing through the

coefficient in the torque. Mercury is in a 3:2 resonant state. Other
spin-orbit resonances are found among the moons of the major planets, and
some moons are coupled in orbit-orbit resonances as well.
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The Advance of Mercury’s Perihelion

We turn now to secular perturbations by the planets. As a specific example,
we evaluate the secular perturbations of Mercury. We shall see that the main
effect is a forward precession of Mercury’s perihelion. Historically, difficulty
in accounting for this effect provided the first evidence for limitations of
Newtonian theory, and the resolution of the difficulty was one of the first
triumphs of Einstein’s General Theory of Relativity. More accurate data from
the space program will undoubtedly make this a more stringent test of
gravitational theories in the future.

We aim to calculate the main effect on Mercury to an accuracy of a few
percent. From the table of planetary data in Appendix C, we conclude that,
to this accuracy, we can neglect the inclinations and eccentricities of the
perturbing planets; for our experience with Solar perturbations has taught us
that the relative effect of inclination is on the order of the sine of the angle,
and eccentricity corrections are on the order of eccentricity squared. Accord-
ingly, we can use (3.31) and (3.32) in a heliocentric reference system to
describe the secular force of the pth planet on Mercury. The force is a
central force

where has the explicit form

Our perturbation equations (3.1) to (3.4) tell us that the only secular effects
of a central force f is a precession of the apses at a rate

Computation of the orbital average can be simplified by exploiting the fact
that the radius r oscillates about Mercury’s semi-major axis a. To second
order, a Taylor expansion gives us

Inserting this into (3.64b) and computing the orbital averages

we obtain
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Although Mercury has a large eccentricity the coefficient
shows that the last term can be neglected in our approximation.

Inserting (3.67) into (3.65) and using (3.64b) as well as the identity

we get the secular precession rate in a form which is convenient for computa-
tion:

Here T is Mercury’s orbital period and Ms is the mass of the sun. In units with
the Earth mass and Earth-Sun distance set equal to 1, the coefficient in (3.68)
has the value

where the units of radians per day have been converted to seconds of arc per
century. To evaluate the remaining factor in (3.68), it is convenient to express

as the product of a dominant term

and a correction factor

Then, we compute the derivatives

And we use these results in

This quantity is evaluated numerically for each of the perturbing planets in
Table 3.1, which also displays values for the various factors so their contribu-
tions can be assessed. Values for the three most distant planets Uranus,
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Neptune and Pluto have been omitted, since it is evident that, by compari-
son with the small contribution of the larger and closer planet Saturn, their
contributions are negligible. Figures in the last column are the calculated
precession rates due to each of the five closest planets. For the total secu-
lar precession rate of Mercury’s perihelion due to planetary perturbations we
obtain

This is within 2% of the accepted value about as close as we
should expect.

For comparison with our results, results of the most precise and carefully
checked calculations are displayed in Table 3.2 for Earth as well as Mercury.
In the case of Mercury, the difference of between the observed ad-
vance and the calculated planetary effects was recognized as a serious problem
from the time of the first accurate calculations by Leverrier in 1859. Many
theories were proposed to account for it. These theories are of two general
types: (1) those in which Newton’s law of gravitation is retained, but the ex-
istence of an unobserved planet or ring of material particles inside Mercury’s
orbit is postulated; (2) proposals to modify Newton’s law. More recently,
the possibility that some or all of the discrepancy may be due to the oblate-
ness of the Sun has been considered seriously. Einstein’s theory of General
Relativity, proposed in 1915, accounted for the discrepancy in spectacular
fashion. His theory provides an explanation of the second type, but it is
distinguished from alternatives by (a) its lack of arbitrariness (no adjustable
constants are introduced), (b) its accurate prediction of other phenomena
such as gravitational deflection of light passing near the Sun, (c) the fact
that it is a derived consequence of deep revisions in the foundations of me-
chanics. Observations have been sufficient to completely rule out theories
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of the first type only recently, but the exact magnitude of the Sun’s oblateness
effect is still uncertain.

Although we cannot go into Einstein’s theory here, we can evaluate its
implications for planetary motion. According to Einstein’s theory, the New-
tonian gravitational force on a planet should be modified by adding the terms

where is the gravitational potential, and c is the speed of light in a vacuum.
For a spherically symmetric Sun, so

To evaluate its secular effects on the motion of a planet, we first note that its
secular torque vanishes:
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Therefore, like a central force, it will not contribute to secular precession or
nutation of planetary orbits, and its effect on apse precession is completely
determined by its secular average

Before computing the average, it is convenient to use to
write (3.74) in the form

We can easily compute the average of each term with the help of Table 2.1.
Since the orbital element E is to be regarded as constant when computing
averages, the last term does not contribute, because

For the first term, we compute

To evaluate the second term, we use which also
implies Therefore

The first term on the right vanishes, and to evaluate the second term we
compute

Then, since we have

Thus, for the secular value of (3.76), we find

With a similar evaluation of the remaining term in (3.1b), for the relativistic
contribution to perihelion precession, we find
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When empirical values are inserted, this gives for Mercury and
for Earth, as reported in Table 3.2.

From observation of the Sun’s surface shape and rotation rate, the Sun’s
quadrupole moment is believed to be comparatively small, contributing less
than one arc second per century to the advance of Mercury’s perihelion. A
much larger would be inconsistent with Einstein’s explanation of the
advance. Skeptics have pointed out that the Sun may be rotating more rapidly
beneath its visible surface, thus producing a larger However, it is not
difficult to show that a large enough to contribute more than to
Mercury’s advance would be inconsistent with empirical data on precession of
nodes and change of inclination for orbits of the inner planets. For we have
seen that contributes to these effects while, because of (3.75), relativity
does not. This issue will be set to rest when NASA completes its goal of
determining the Sun’s accurately with observations on artificial satellites
orbiting close to the Sun.

8-3. Exercises

(3.1)

(3.2)

(3.3)

(3.4)

The gravitational force of the Sun on the Moon is much larger than
that of the Earth. How is it, then, that we can ignore the Sun in a
first approximation when calculating the orbit of the Moon? Sup-
port your explanation with order of magnitude estimates.
Use Equation (3.18) to calculate the rate of regression of the lunar
nodes. Compare with the observed result of for regression
along the ecliptic. Take into account the fact that the inclination of
the Moon’s orbit to the equator varies by about 10°.
The greatest known oblateness effect in the Solar System occurs for
Jupiter’s fifth satellite which is so close to the highly oblate (1/15.4)
planet that the nodes regress more than complete revolutions
per year. The inclination of the orbit is 0.4°, and km
for the planet. Use this information to estimate the quadrupole
moment of Jupiter.
The artificial Earth satellite Vanguard I launched in 1958 had the
following orbital elements:

Semi-major axis
Eccentricity
Inclination
Mean motion
Period

For Vanguard I and a synchronous (24 hr) satellite, calculate the
oblateness and lunar-solar perturbations and compare with the
results of L: Blitzer in the following table:
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(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

The estimated lifetime of Vanguard I is 200 yr. How much has its
orbit been changed by the above perturbations since it was
launched?
At what distance from the Earth will Lunar-Solar and Oblateness
effects on an Earth satellite be of the same order of magnitude?
The Sun produces radial oscillations in the orbit of an Earth satellite
which average to zero over the orbital period. To investigate the
magnitude of this effect, suppose that the unperturbed orbit is a
circle of radius r and the Sun is in the orbital plane. Derive a first
order expression for the radial variation as a function of the time.
Show that it is harmonic with period T/2 and a maximum displace-
ment

where is the “mean motion” of the satellite
about the Earth and is the mean motion of the Earth about the
Sun. Show that ranges from less than one meter for a near Earth
satellite to 2500 km for the Moon. Note the similarity of this effect
to the tides.
To account for the discrepancy in the advance of Mercury’s
perihelion, Seeliger proposed the “screened Kepler potential”

for the gravitational potential of the Sun. Assuming deter-
mine the value of d required. (Reference: N. T. Roseveare, Mer-
cury’s Perihelion from LeVerrier to Einstein, Clarendon, Oxford,
1982).
Calculate the precession rate of Earth’s perihelion due to Mars,
Jupiter and Saturn and compare with the results in Table 3.2.
Equations (3.31) and (3.32) for the secular field of a planet apply
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(3.10)

(3.11)

(3.12)

(3.13)

only inside the planet’s orbit. Derive corresponding equations for
the secular field outside the planet’s orbit. Use these equations to
calculate the precession rate of Earth’s perihelion due to Mercury
and Venus. Compare your results with those in Table 3.2.
For a charged particle bound by a Coulomb force, determine the
secular effects of perturbing constant magnetic field B, including the
Larmor precession frequency.
For a charged particle bound by a Coulomb force determine the
secular effects of a perturbing constant electric field E.
The Newtonian equation of motion for a planet under the influence
of the Sun alone can be written

where p = mv. Einstein’s Theory of Special Relativity simply
changes the expression for the momentum to where

and c is the speed of light. Adopting this change,
show that the equation of motion can be written in the form of a
perturbed Newtonian equation

where, since the perturbing force is given by

How much does this contribute to the advance of Mercury’s perihe-
lion?
Show that for a constant perturbing force the orbital elements
satisfy the secular equations of motion

Study the consequent changes in the shape and attitude of the
osculating orbit.

The averaging can be simplified by noting that

and

so
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(3.14)

(3.15)

(3.16)

Solar Wind. The intensity of Solar radiation at the mean Earth-
distance from the Sun (the solar constant) is

On an absorbing body, this produces a radiation pressure normal to
the incident beam of magnitude

where c is the speed of light.
On the Earth satellites at altitudes above 800 km, the effect of

radiation pressure is greater than atmosphere drag. The greatest
effect has been observed on the 30 km ECHO balloon in its nearly
circular orbit at an altitude of 1600 km. Assuming that the balloon is
perfectly reflecting with area/mass = estimate its
daily variation in perigee due to radiation pressure. Thus, show that
radiation pressure can have a substantial effect on a satellite’s
lifetime. Note that the Solar radiation force can be regarded as
constant, so the results of the preceding exercise can be used.
According to the drag paradox, atmospheric drag increases the
speed of a satellite as it spirals inwards. Prove this statement using
only very general assumptions about the drag force.
From Section 3-4, we know that the atmospheric drag force on a
satellite is of the form

where drag coefficient is the atmospheric density, A is the
effective cross-section area of the satellite, and V is the satellite
velocity with respect to the local atmosphere. The simplest model
atmosphere is spherically symmetric with a density distribution

which falls off exponentially with distance, so

where is the density at some chosen level and is a scale
factor.

Derive secular equations of motion for perturbation by drag
alone. Averages over the exponential density can be expressed as
Bessel functions, but a simpler approach, sufficient for rough
analysis, is to expand about r = a before averaging over a
period of the osculating orbit.

Show that drag does not alter the orbital plane. Derive an
expression for the secular decay in size of the orbit, and show that
the orbit tends to become increasingly circular as it decays. (For a
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detailed treatment of atmospheric drag, see D. G. King-Hele,
Theory of Satellite Orbits in an Atmosphere, Butterworth, London,
1964).

8-4. Spinor Mechanics and Perturbation Theory

This section develops a new spinor formulation of classical mechanics which
has not yet been widely applied, so it is a promising starting point for new
research. The spinor formulation of perturbation theory in celestial mechan-
ics has clear advantages over alternative formulations, so we will concentrate
on that. But the approach is not without interest in atomic physics as well, for
one cannot help asking if the classical spinor variables have some definite
relation to the spinor wave functions in quantum mechanics. The question has
not yet been studied in any depth. Nor are the purely classical applications of
spinor mechanics sufficiently well worked out to present here. So we will be
content with a formulation of the general theory without applications.

Position Vector and Spinor

From our study of linear transformations in Chapter 5, we know that
geometric algebra enables us to write any rotation-dilation of Euclidean
3-space in the canonical form

where x and are vectors and U is a nonzero quaternion (or spinor) with
conjugate This equation describes the rotation and dilation of any given
vector x into a unique vector The modulus of the spinor U is a positive
scalar determined by

Consequently, the spinor U, like any nonzero quarternion, has an inverse

Equation (4.1) can now be written in the form

This exhibits the transformation as the composite of a rotation and a
dilation by a scale

We can use this result to represent the position of a particle by a position
spinor U instead of a position vector r. We simply choose an arbitrary fixed
unit vector and write
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This is just Equation (4.1) applied to a single vector rather than regarded as a
linear transformation of the whole vector space. Squaring (4.2), we get

so

Thus, the radial distance r is represented as the scale factor of a rotation-
dilation.

Although the position vector r is uniquely determined by the position
spinor U according to (4.2), the converse is not true. Indeed, if S is a spinor
such that

then (4.2) gives us

where

and S is arbitrary except for the condition (4.4). The condition (4.4) simply
states that is an eigenvector of the rotation In other words, S may be
any spinor describing a rotation about the axis, so it can be written in the
parametric form

where is the scalar angle of rotation and i is the unit pseudoscalar.
Let us refer to the transformation (4.6) of U into V as a gauge transform-

tion, because it is similar to the gauge transformation of a spinor state
function in quantum theory. We say then that Equation (4.2) is invariant
under the one-parameter group of gauge transformations specified by (4.6)
and (4.4) or (4.7). If Equation (4.2) is regarded as a linear transformation of
the vector into r, the gauge invariance simply means that this transforma-
tion is invariant under a rotation about the radial axis. We suppose that is
some definite unit vector, though the choice is arbitrary. Given by
Equation (4.2) a spinor U determines a unique vector r, but the vector r,
determines U only up to a gauge transformation. This nonunique correspon-
dence between spinors and vectors is to be expected, of course, because it
takes four scalar parameters to specify the quaternion U but only 3 parame-
ters to specify the vector r. To associate a unique spinor U with the vector r,
we must impose some gauge condition consistent with (4.2) to fix the gauge
uniquely. A natural gauge condition appears when we consider kinematics.

Velocity Vector and Spinor

Let r = r(t) be the orbit of a particle in position space, so is the
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angular momentum (per unit mass), and

The kinematic significance of this quantity will become apparent in the
following.

Equation (4.2) relates an orbit U = U(t) in spinor space to an orbit r = r(t)
in position space. We still need to relate the velocity in spinor space to the
velocity in position space. Differentiating we obtain

Next, it will be convenient to introduce a quaternion W defined by

where is a vector and (4.9) has been used to determine that
We can put (4.10) in the form

from which we obtain If we insert these expressions into the
equation

obtained by differentiating (4.2), we get

Using (4.10) this can be written

Then using we obtain

Thus, we identify as the angular velocity of the orbit r = r(t).
According to (4.13), the radial component of is irrelevant to Hence,

we are free to eliminate it by introducing the subsidiary condition

This condition can be written in several equivalent ways; thus,

or,

which after inserting (4.10) and (4.2), gives us
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This is equivalent to the scalar condition

Thus, we have expressed the subsidiary condition as a relation between U and
its derivative

Now, using (4.15) in (4.12) we obtain

Solving for W and using (4.10), we get the fundamental result

Comparison with (4.8) shows us that the angular velocity is related to the
angular momentum by

This is a consequence of or, if you prefer, an alternative form of the
subsidiary condition (4.14).

Equation (4.19) specifies completely our desired relation between and
Various special relations between and are easily derived from it. For
example,

Useful alternative forms of (4.19) are obtained by multiplying it by r and
using (4.12). Thus, we obtain

or, equivalently,

The subsidiary condition (4.17) is a gauge condition. To see how it deter-
mines the gauge, consider an arbitrary time dependent gauge transformation
V = SU. We wish to relate to to determine the effect of the gauge
transformation. Differentiating (4.7) with we have

So, using (4.11), we have

With the help of (4.5) we can put this in the form

This is a completely general relation showing how W can be altered by a
gauge transformation. Using the specific form (4.19) for W, we obtain
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This shows explicitly that the gauge transformation adds a radial component
to the angular velocity. We can solve (4.25) for with the result

This reduces to the subsidiary condition (4.17) if and only if Thus, the
subsidiary condition fixes the gauge to a constant value. In other words, the
gauge can be choosen freely at one time, but its value for all other times is
then fixed by the subsidiary condition.

We have proved that any alternative to our gauge condition will have, in
general, an angular velocity with a nonvanishing radial component. Equation
(4.13) shows that a radial component of the angular velocity will not affect the
velocity in position space, so we are free to adopt alternative gauge
conditions. A physically significant alternative will be discussed later.

The Spinor Equation of Motion

The spinor acceleration corresponding to the acceleration vector in position
space is most easily found by differentiating (4.22). Thus,

Hence,

where Thus, in spinor space it is natural to introduce a new time
variable s related to inertial time t by

Now we have a complete system of equations relating position, velocity,
acceleration and time variables in position space to corresponding variables in
spinor space. These are general kinematic results, enabling us to transform
any problem or relation from position space to spinor space or vice-versa.

Given the vector equation of motion in position space
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where f is an arbitrary perturbing force (per unit mass), the spinor equation of
motion is obtained by substitution into (4.27). Thus, we obtain

where E is the Kepler energy

The spinor equation of motion (4.30) becomes a determinate equation in
spinor space when f is given as an explicit function of r and so rf can be
expressed as a function of U and by using (4.2) and (4.21). It can be solved
subject to the subsidiary condition in the form (4.16) or (4.17). The subsidiary
condition can be shown to be a constant of motion, so if it is imposed initially,
it is automatically maintained for all subsequent times. Note that the pertur-
bation factor in (4.30) decomposes naturally into a radial
part which can alter the size and shape of the osculating Kepler orbit and a
torque which can alter the attitude of the orbit in space. This is
closely related to the alternative gauge condition discussed below.

The spinor equation of motion (4.30) was first derived in a more compli-
cated form by P. Kustaanheimo in 1964. Kustaanheimo and E. Stiefel recast it
in a matrix form, which is now known as the KS equation. Geometric algebra
has enabled us to further simplify the derivation and formulation of the
equation as well as clarify its interpretation. For example, it helped us see the
elementary kinematic meaning of the subsidiary condition (4.17), which was
never recognized in the matrix formulation.

Stiefel and Schiefele (1971) have shown that solving the perturbed Kepler
problem by integrating the KS equation is numerically more efficient and
accurate than standard methods for integrating the Newtonian equation of
motion. Therefore, we can confidently expect no lesser advantage from
developing the theory for integrating our spinor equation (4.30). We could, of
course, simply translate the integration methods of Stiefel and Scheifele into
our language. But we could probably do better by developing new methods
which exploit the special advantages of geometric algebra. That is a task for
the future.

To see what has been gained in the transformation from vector to spinor
equation of motion, we briefly examine solutions of the unperturbed spinor
equation, which we can write in the form

where the primes represent differentiation with respect to s. For the case
E < 0, this has the mathematical form of the equation for a harmonic
oscillator with natural frequency
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So it has the general solution

where and are the initial spinor position and velocity. We can evaluate
and in terms of the initial position and velocity vectors and using

(4.2) and (4.21). The evaluation is simplified if we use our prior knowledge
that motion lies in a plane. We are free to choose then the rotation

is confined to the orbital plane, and (4.2) can be put in the form

Therefore,

and, in particular,

Similarly, (4.22) and (4.28) give us

and, in particular,

Therefore, the solution (4.34) can be put in the form

Of course, from (4.33) the value of is determined by

Now that we have U = U(s) as an explicit function of s determined by the
initial conditions, our solution will be completed by integrating
to get s as a function of t. We shall see that, in fact, this last step is equivalent
to solving Kepler’s equation.

Additional insight into the spinor solution is gained by writing it in the
alternative form

where is the unit bivector for the orbital plane. From (4.35) it follows
that the bivector part of U must be proportional to i. Inserting (4.42) into
(4.35) we get
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This should be compared with the parametrization of r with respect to the
eccentric anomaly

If we choose then the comparison tells us that

and

Equation (4.45) tells us how are related to the standard orbital elements.
Of course and are alternative orbital elements appropriate in the spinor
theory.

Equation (4.46) tells us that the parameter s differs from the eccentric
anomaly only by a scale factor which is itself an important
orbital element. Thus, the eccentric anomaly appears naturally in the spinor
theory, in contrast to its rather ad hoc introduction in the vectorial theory
through Kepler’s equation. Since the parameter s is equivalent to the eccen-
tric anomaly when E < 0, we can be sure that the Equation (4.28).

integrates to Kepler’s equation, so we need not
discuss its solution here. However. Kepler’s equation applies only when
E < 0, whereas (4.28) applies also when E = 0 or E > 0. Thus, s is a
universal parameter, generalizing the eccentric anomaly to apply to all cases.

It is readily verified that the solutions (4.40) and (4.42) apply also when
E > 0. provided one understands that the imaginary root of is a
bivector, namely, Stiefel and Scheifele show that
the solution can be cast in a form which applies also when E = 0. Then we
have a universal solution of the spinor equation which applies for any energy.
This is important, for perturbations can change the sign of the energy, so one
does not want solutions which break down when that happens.

The striking thing about the unperturbed spinor equation
is the fact that it is a linear differential equation. Thus, the change in variables
from vectors to spinors has linearized the Newtonian equation
Moreover, it has eliminated the singularity at r = 0. where becomes
infinite. The elimination of a singularity in this way is called regularization.
Regularization has real practical value, for it eliminates the instabilities
(errors) in numerical integration that occur near a singularity. This is compu-
tationally important in close encounters between celestial bodies, such as a
comet grazing the Sun.

To sum up. the universality, linearity, and regularity of the spinor formula-
tion are three major reasons for its computational superiority over the
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standard vectorial formulation of the general two body problem, and this
becomes more significant when perturbations are included.

An Alternative Gauge Condition

We have seen that the spinor state function U is related to any acceptable
alternative state function V by a gauge transformation V = SU. According to
(4.5), U and V determine the same orbit r = r(t). As a geometrically signifi-
cant alternative to the gauge condition (4.16), consider

where is an arbitrarily chosen fixed unit vector orthogonal to Equation
(4.47) is consistent with (4.5) since Therefore it is acceptable as a
gauge condition.

The condition (4.47) has a number of advantages. To begin with, it assures
that V has a direct geometrical interpretation. The spinor V determines both
the position r by (4.5) and the plane of motion in position space by (4.47).
Conversely, given the position r and the plane of motion specified by h, then
V is determined uniquely (except for sign) by Equations (4.5) and (4.47).
Thus, V provides a unique and direct description of the position and plane of
motion at every time.

A further advantage of using V appears when we relate it to the spinor R
which determines the Kepler frame

(k = 1, 2, 3). This frame, with is specified by the physical
conditions

and

where is the eccentricity vector pointing towards periapse of the osculating
orbit.

Equations (4.47), (4.49). and (4.50) determine a unique factorization of the
spinor state function V into

where Z and R can be regarded as ‘internal’ and ‘external’ state functions
respectively. Consistency of (4.47) with (4.49) implies that

Hence, we can write Z in the form
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Then, using (4.47) and (4.50) we obtain

This exhibits as the true anomaly of the osculating orbit.
The internal state function Z describes the size and shape of the osculating

orbit as well as location on the orbit. If we take the eccentricity  the
angular momentum and the true anomaly as internal state variables,
then Z is a determinate function of these variables. Actually,
we can identify Z with U in the unperturbed case, so, according to (4.42) and
(4.45), it is better to choose a, s as internal state variables, so

Although the fixed reference frame can be chosen arbitrarily, it will
most often be convenient to associate it with an initial osculating orbit of the
particle. For Kepler motion the best choice is

where is the initial angular momentum and is the initial eccentricity
vector. The initial value of the spinor V is then

where is the initial true anomaly.
The external state function R determines the attitude of the osculating orbit

in position space. Of course, R is exactly the attitude spinor used in Sections
8-2 and 8-3.

The factorization V = ZR should be of value in perturbation theory,
because it admits a systematic separation of perturbation effects determined
by the geometry of the orbital elements. Unfortunately, the spinor equation
(4.30) loses its simplicity when translated into an equation for V instead of U,
although, of course V can be identified with U in the absence of perturba-
tions. On the other hand, if the factorization V = ZR is used, it might be best
to work with a pair of weakly coupled equations for R and Z , but we cannot
pursue that theme here.

Applications

During the last few years Jan Vrbik has demonstrated the practicality of spinor
perturbation theory with many applications to celestial mechanics. Titles of his
published papers are listed in the references, but more papers are in the works.
Readers concerned with high accuracy in orbital calculations are advised to search
out Vrbik’s work.



Chapter 9

Relativistic Mechanics

With respect to the theory of relativity

it is not at all a question of a

revolutionary act, but of a natural

development of a line which can be

pursued through centuries.

—Einstein

Einstein’s special theory of relativity is the climax of the spectacular development of
classical electromagnetic theory that took place during the nineteenth century. The
two postulates of Einstein’s theory were firmly grounded in the two great triumphs
of electromagnetic theory, (1) Faraday’s law of electromagnetic induction and (2)
Maxwell’s electromagnetic theory of light. In 1905 Einstein laid down the funda-
mentals of relativity theory in a single paper entitled “On the Electrodynamics of
Moving Bodies.” In the opening paragraph he called attention to a frame-dependent
asymmetry in the theory of electromagnetic induction, which, as he said, “does not
seem to be inherent in the phenomena.” He noted that according to Newton’s laws
the mutual forces between a magnet and a conductor in relative motion depended on
which of them was taken to be at rest. To remove such asymmetries and construct
a theory in which the interaction between any two objects is independent of the
reference frame, Einstein proposed that they should satisfy:

The Principle of Relativity: All inertial systems are equivalent with respect to the
laws of physics.

This principle was not original with Einstein. Indeed it was presented as a corol-
lary of the first law of motion in Newton’s Principia, and it was formulated earlier
by Galileo in his analysis of motion, and by Huygens in his analysis of collisions.
However, Einstein promoted it from a corollary to an axiom of physics, and he
applied it to Maxwell’s equations as well as Newton’s laws. This revealed an incon-
sistency between electromagnetic theory and Newton’s mechanics, for the Galilean
transformations, which leave Newton’s laws unchanged, are not compatible with

574
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Maxwell’s equations. Einstein resolved the conflict by reformulating the laws of
mechanics in accordance with his second postulate:

Invariance of the speed of light: The speed of light in empty space has the same
numerical value in every inertial system.

This postulate had direct experimental support from the famous Michelson-Morley
experiment, though Einstein had said that the experiment was not a major factor
in his thinking. His earliest idea on the subject was a simple thought experiment
conceived when he was 16 years old. He reasoned that, to an observer moving along
side a light beam, the beam would appear as a standing wave. But such a phenomena
does not seem to arise in nature, so he reasoned that inertial frames moving with
the speed of light must be impossible. Thus Galilean relativity and its source in
Newtonian mechanics are suspect. Still more convincing was Einstein’s analysis of
the role of light in measurements of time, which we will discuss later. Initially, the
confidence of Einstein and his early supporters in relativity theory came not from
experimental evidence for its postulates, but from its profound theoretical virtues.
Relativity theory resolves a fundamental inconsistency between Newtonian mechan-
ics and electromagnetic theory. It modifies Newtonian mechanics by providing an
operational analysis of time measurements and a unified theory of space and time.
This leads to, among other things, a unified view of mass, energy, and momentum.
Direct tests of relativity theory and comparisons with alternative theories are still
occasionally discussed today, but the indirect experimental support for relativity the-
ory is overwhelming. Every successful experiment in high-energy physics, every
operating dynamo and electric motor quietly proclaims the truth of relativity theory.

Relativity is now as well established as any component of physical theory, so
we can confidently take Einstein’s postulates for granted and examine their conse-
quences. Relativity theory is not an independent theory that stands on its own. In this
chapter we develop it as a slight but profound modification of Newtonian mechanics
to make it consistent with the properties of light. We regard relativity theory as com-
pleting the development of classical mechanics by supplying it with correspondence
rules defining the time variable, which are absent in Newtonian theory.

9-1 Spacetime and its Representations

Relativity theory is founded on Einstein’s analysis of the operational rules employed
in measurements on moving bodies. Following Einstein, we assume the existence of
rigid bodies, clocks, and light signals to be used for assigning to any event a definite
time and position in a given inertial system. Einstein pointed out that measurements
on moving bodies always require judgments of simultaneous events. Thus, to
measure the orbit of an object one must make successive determinations of the
position of the object simultaneously with the reading on a clock. If the object and
the clock are separated by a finite distance, their simultaneous states are usually
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ascertained by an observer from the simultaneous arrival of light signals from both
of them. Einstein noticed that this method does not produce an unambiguous result
if the finite speed of light is taken into account, because the result obviously depends
on the distances of both the clock and the object from the observer. Thus, he realized
that the notion of simultaneity must be defined explicitly for distant events if it is
to be applied unambiguously in measurement.

Einstein provided an operational definition of simultaneity for a given inertial
system by describing a thought experiment for synchronizing clocks in different
places. Suppose we have identical clocks located at each of fixed points and

separated by a considerable distance. An observer can use a clock to assign
time values to events in its immediate proximity, but a comparison of readings on
different clocks is meaningful only if the clocks have been synchronized. Einstein
defined synchrony of the clocks at and using light signals in the following
way. Suppose a light signal departs from at time on the clock at then it is
reflected from a mirror at at time on the clock at and finally it arrives back
at at time on the clock at We say that the two clocks are synchronized if

This definition presumes that the time of flight from to is equal to its time of
flight back, and that can be established only by an independent assumption. It takes
two clocks which are already synchronized to measure the one-way time of flight.
The speed of light can be measured using a single clock only by measuring the round
trip time of flight. Thus, in accordance with Einstein’s second postulate we assume
that

is a universal constant, the speed of light in empty space.
Having thus given an explicit, natural definition of “simultaneity” for an arbitrary

inertial system, Einstein went on to prove that the definition is frame dependent, that
is, observers using different inertial systems disagree as to which events are regarded
as simultaneous. This striking result is known as the relativity of distant simul-
taneity, and it specifies the sense in which the term “relativity” applies to Einstein’s
theory. The result is striking because it flatly contradicts notions of simultaneity
which had been taken for granted in Newtonian physics. In the next section we shall
see that it is responsible for the seemingly paradoxical results of relativity theory, but
first we need to reconcile Einstein’s principles with our notions of space and time.
That will occupy us for the rest of this section.

It will be convenient to refer to the body of assumptions made to represent the
physical properties of space and time as the Zeroth Law of Physics. We shall
not attempt a rigorous formal statement of the Zeroth Law here. Rather we follow
the usual practice of physicists by introducing our assumptions about space and
time informally in the properties we ascribe to inertial reference systems. We follow
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Einstein in proving that his postulates imply a relation between inertial systems which
differs from the one in Newtonian theory. However, we will proceed in a different
way which takes advantage of geometric algebra and helps bring to light the deeper
significance of Einstein’s argument, first understood by Hermann Minkowski who
expressed it this way:

Henceforth space by itself and time by itself are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an indepen-
dent reality.

This union of space and time has come to be known as spacetime. Accordingly,
we will regard relativity theory as a modification of the Zeroth Law: from the New-
tonian conception of space and time as distinct entities to Minkowski’s conception
of spacetime as a single entity. We shall use Einstein’s two principles to ascertain
the physical geometry of spacetime. When the properties of spacetime have been
understood and given a suitable mathematical formulation, the consequences of rel-
ativity theory are most easily derived and understood as consequences of spacetime
properties.

The Zeroth Law gives formal expression to the idea that every real event occurs
at a particular time and place. Thus, in a given inertial system every localized event
occurs at a particular time t and place x. We shall say that the time-position pair
(t, x) designates a spacetime point. Geometric algebra enables us to represent a
spacetime point by a single quantity with scalar and vector parts:

Here c is a constant which converts the time unit to the length unit so both terms in
(1.3) are expressed in the same unit. We will soon see that one should choose c to
be the speed light, as Einstein’s second postulate singles out that constant.

For each different value of the time t and/or position x there is a different X.
The set of all such quantities is a linear space of four dimensions.
Now we assume that each distinct X represents a unique spacetime point and every
spacetime point can be so represented, whether or not it is the location of an actual
physical event. The set of all spacetime points is called spacetime. Thus, we have
assumed that spacetime can be represented as dimensional linear space {X}.
In other words, the linear space {X} is a mathematical model of spacetime.

Everything we know about physical spacetime is known through its representation
by some model, so when we think about spacetime and its properties we are actually
thinking about the model. For this reason it is often convenient to regard the model as
spacetime itself. Thus, we may speak of a “spacetime point X,” thereby suppressing
the distinction between X and the point it represents. However, we attribute an
independent existence to spacetime which might not be accurately represented by
our model, so we must keep the distinction clear when considering the possibility
that the model is wrong. Indeed, Einstein’s General Theory of Relativity calls for
modifications of the model specified by his Special Theory as given here.
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Everything we have specified about our spacetime model so far is consistent
with Newtonian Theory. But the model {X} is incomplete because it is referred
to a single inertial system. According to the Relativity Principle, we still need to
determine how the model {X} is related to the model referred
to any other (primed) inertial system. Since each inertial system is presumed to be a
different representation of one and the same real spacetime, there must be a unique,
single-valued, invertible function relating the coordinates in each pair of inertial
systems. Let us express this fundamental relation by writing

To complete our modeling of spacetime, we need to determine the function explicitly.
To simplify this task, we are free to suppose that X = 0 and = 0 designate the
same spacetime point.

Now we are ready to see what the Relativity Principle implies about the functional
form of In the unprimed inertial system the orbit of a particle is described by a
function  specifying the particle’s position x at each time t. The graph of
this function in spacetime is the function

describing a curve in spacetime called the history of the particle. It specifies the
spacetime point at which the particle is located for each time t. For a free particle
with velocity v, the orbit beginning at is described by

with

This line is graphed in Figure 1.1. Now it should be clear that Newton’s First Law
can be stated in the following form: The history of any free particle is a straight
line (in spacetime). The Principle of Relativity requires this law to hold for any
inertial system. Therefore the function relating two inertial systems in (1.4) must
map straight lines uniformly onto straight lines. This is equivalent to requiring that

be a linear function, though we will not go into a mathematical proof of the fact.
We have yet to work out the time implications of Einstein’s second principle.

That principle attributes uniform straight line motion to light in any inertial system,
the history of a light signal in spacetime is a straight line, and our formulation of
Newton’s First Law applies to light particles (photons) as well as material particles. A
further implication of the second principle is obtained by considering the expression
(1.2) for the speed of light in the form
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Fig. 1.1. Newton’s First Law: The history X(t) of a free particle is a straight line
in spacetime. Note that this line in the 4-dimensional spacetime can be diagrammed
completely in 3-dimensional perspective, with the vectors and v determining a spatial
plane at time and the time axis graphed perpendicular to this plane. Note also that the
time axis can be regarded as the history of a particle at rest at the origin of space.

where and This is a relation between the spacetime
point whenwhere the light is emitted and the point whenwhere
the light is received.

At this point it is convenient to introduce some notation which enables us to write
equations like (1.8) in more compact form. To each spacetime point
there is a conjugate point

related by space inversion. Now (1.8) can be written

where Since we are free to designate any spacetime point as the
origin, we can set and write to put (1.10) in the simpler form

This holds for any spacetime point X which can be reached by a light signal from the
origin. Moreover, Einstein’s second principle says that it should hold in any inertial
system. Therefore,
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where in the primed inertial system designates the same spacetime
point as X.

Equation (1.12) applies to any spacetime point connected to the origin by a straight
line which could be the history of a light signal. From this fact and the fact that inertial
systems are related by a linear transformation it follows that

for any spacetime point designated by X and in different inertial systems. In
other words, the quantity is an invariant of the linear function relating inertial
systems. Since the choice of origin is arbitrary, we can re-express (1.13) as an
invariant relation between any pair of spacetime points:

where and
Since the relation (1.13) is independent of the inertial system used to designate

the points, it represents an objective property of spacetime itself. Indeed, the relation
contains the entire content of relativity theory. In every inertial system the history of
a light signal is a straight line, so our formulation of Newton’s First Law (Fig. 1.1)
applies to light particles. For this reason physicists often take it as a starting point
for their work with spacetime.

Rather than take the time to complete the derivation of (1.13) from Einstein’s
principles directly, we shall use (1.13) to find an explicit form for the function (1.4)
relating inertial systems. The uniqueness of this result then justifies the generalization
from (1.12) to (1.13).

Before getting into the details of our derivation, it will be helpful to generalize
the notion of “conjugation” introduced by (1.9). We define the conjugate of an
arbitrary multivector M by

This conjugation can be regarded as the operator product of reversion and space
inversion (which simply reverses the sense of the odd part of M). From the similar
property of inversion, it follows that the conjugate of a product is given by

Lorentz Transformations

A linear function relating inertial systems (1.4) and preserving the invariant rela-
tions (1.13) is called a Lorentz transformation.

It is important to note the similarity between Lorentz transformations and rotations
in space. A spatial rotation is a linear transformation which leaves the distance
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between points in space invariant, while a Lorentz transformation is a linear function
which leaves the interval between events in spacetime invariant. From Chapter 5,
we know that every spatial rotation can be put in the form

where R is an even multivector satisfying This suggests that any Lorentz
transformation can be put in the form

where M and L are multivectors to be determined. But (1.3) says that X can have
scalar and vector parts only. Therefore  so we must require

Thus, we consider

as the general form for a Lorentz transformation. In addition, we must require

to satisfy (1.18a) and maintain the invariance of for all X. This is easily proved
by substituting (1.18a) into (1.13).

We can show that the spatial rotation (1.17) is a special kind of Lorentz transfor-
mation by setting R = L in (1.18a,b). From (1.15) it follows that for any
even multivector, in which case the condition (1.18b) becomes

and the Lorentz transformation (1.18a) reduces to

which gives and the rotation (1.17). This is to be interpreted as a change in
inertial system produced by a spatial rotation of the reference frame. It expresses the
fact that transformations which leave spatial distances unchanged also preserve the
spacetime invariant (1.14). It may be noted that space reflections also leave distances
invariant, but we will exclude them from our considerations because they are not
physical operations on rigid bodies and so do not arise in a change of reference frame.

Boosts

Before treating the general case, we consider another special kind of Lorentz trans-
formation determined by the condition so that (1.18a) becomes
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This kind of transformation is called a boost because it can be regarded as a “boost”
of particles at rest in the primed system to some velocity v in the unprimed system.
Thus, if the transformation is applied to the history of a particle at rest at the spatial
origin in the primed system, then (1.19) reduces to

If the primed frame is moving with a constant velocity v relative to the unprimed
frame, then in this equation, and we obtain

The ratio is determined by the condition

where Thus

where

We can take the square root of (1.20a) to obtain (see Exercise (1.1))

Since this is such a complicated function of v, it will usually be more convenient to
work with the simpler expression for  in (1.20a).

For some purposes it is convenient to write

Then and and, of course,

as required by (1.18b). Comparison with (1.20a) gives
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The parameter a is called the rapidity. Specifying the rapidity is obviously equiv-
alent to specifying the velocity of a Lorentz transformation. We have seen in Sec.
5-3 how the equation

provides a parameterization of the rotation (1.17) in terms of an angle b. Similarly,
(1.22) provides an angular parameterization of a boost where, as we shall see, a can
be interpreted as an angle in the (t, v)-plane.

Having determined the parameterization and interpretation of a boost, we can
calculate the effect of a boost on the representation of an arbitrary spacetime point.
The transformation (1.19) is a “boost by velocity v,” so the inverse of (1.19),

is a boost by velocity Note that conjugation of (1.21) simply reverses the sign
of v. Let us decompose the position vector x into a component collinear with v
and a component orthogonal to v, noting that

Then we can put (1.24) in the form

Using (1.20a,b) and separating scalar and vector parts of (1.25) we obtain

For an arbitrary event, these equations give the explicit relations between the positions
and times ascribed by two different inertial systems.

For low velocities (that is, for we have and
(1.26b) reduces to

which will be recognized as the Galilean transformation relating inertial systems
in Newtonian (nonrelativistic) mechanics (Sec. 5-5). In general, the equations of
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Fig. 1.2. A spacetime map of events in the (t,v)-plane. The lines t = const. represent
events which are simultaneous in the unprimed system. The lines = const. represent
simultaneous events in the primed system. No two events in this plane are simultaneous
in both systems.

relativistic mechanics reduce to equations of Newtonian mechanics in the nonrela-
tivistic limit, that is, for speeds much less than the speed of light.

The import of the equations (1.26a,b,c) is best understood by using them to con-
struct a spacetime map (or diagram) showing the relative motions of the two frames
and their relations to spacetime points (or events). Since (1.26c) shows that is
unaffected by the boost to a new frame, the relevant information can be shown in
a two-dimensional map giving the time and place of events with position vectors
collinear with v as shown in Figure 1.2.

The primed frame is a rigid body (Sec. 5-5) which we may suppose is at rest at
the point = 0, so its history is a line with the slope

This line is the shown in Figure 1.2. Similarly, the ct-axis determined by
the equation x = 0 can be regarded as the history of the unprimed frame.

The horizontal line in Figure 1.2 with the equation t = 0 represents a set of
simultaneous events in the unprimed system. Similarly, by setting = 0 in (1.26a),
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Fig. 1.3. Different inertial systems are different (but equivalent) ways of representing events
and geometrical relations among events.

we obtain the equation for simultaneous events in the primed
system. This describes a line in Figure 1.2 with slope

Each line parallel to this line also represents a set of simultaneous events in the
primed system. Once again we see the relativity of simultaneity. Both systems
represent every event, but they disagree as to which events are to be regarded as
simultaneous.

The time and position assigned to an event in an inertial system are relations
of the event to the motion of the inertial frame. Consequently, different inertial
systems assign different positions and times to one and the same event, as indicated
in Figure 1.3. The position vector in an inertial system represents a relation between
simultaneous events in that system. Hence, the position vectors for the two systems in
Figure 1.3 necessarily relate different pairs of events. Two different inertial systems
are used to label one and the same event in Figure 1.3 to show how the systems are
related, but one system is sufficient for most purposes; so from here on we will stick
with a single system whenever possible.

General Lorentz Transformations

The relation between two inertial systems depends only on their relative velocity,
which we have shown determines a unique Lorentz transformation (boost) charac-
terizing the relation completely. Within a given inertial system with fixed origin,
the reference frame (or body) can be subjected to a rigid rotation, which we have
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shown is also a Lorentz transformation. We conclude, therefore, that every Lorentz
transformation relating inertial frames can be expressed as the composite of
a boost and a spatial rotation.

With this established, the proof of our conjecture that every Lorentz transformation
can be written in the “canonical form” (1.18a) will be complete if we show that

where

and

For then (1.18) can be expressed as the composite of the two transformations

and

We have already established that the first of these is a rotation while the second is a
boost.

We can prove (1.30 a,b,c) by deriving R and B from L in the following way. First
write and notice that and Consequently if B is defined
by

then and Now define R by

Then so as required. This
completes the proof of our theorem.

If desired, we can express B in terms of the relative velocity of inertial frames by
using a result of Exercise (1.2) in (1.31a).

For convenient reference we can summarize and extend slightly what we have
learned about Lorentz transformations in the following theorem and corollaries.

Theorem: Every Lorentz transformation can be expressed in the canon-
ical form

where

Corollary: The Lorentz transformation can be expressed as the composite of a
rotation followed (or preceded) by a boost by writing
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where

and

Corollary: Parameterization of the boost by rapidity a or velocity v is given by

where

Parameterization of the rotation by angle b is given by

Lorentz Group

The composite of two Lorentz transformations is itself a Lorentz transformation.
Thus, the transformation

followed by

produces the composite transformation

where

This last equation shows that we can compute the composite of Lorentz transforma-
tions by multiplying spinors just as we did for rotations. The only difference is that
Lorentz transformations require a more general definition of spinor, as specified by
(1.33a,b,c).

It should be obvious at this point that the Lorentz transformations form a group.
The set of Lorentz transformations is called the Lorentz group. Our analysis shows
that the (spatial) rotation group is a subgroup of the Lorentz group. The boosts,
however, do not form a group. This can be proved by actually computing the
composite of an arbitrary pair of boosts. The composite of two boosts must be
equivalent to the composite of a rotation and a single boost, since every Lorentz
transformation can be put in this form. This is expressed by the equation
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where, for k = 1, 2, 3,

All we need to do is solve for the boost velocity and the rotation angle b in
terms of the given boost velocities and A procedure for doing this has been
established in (1.33a,b,c). First, we eliminate the rotation angle from (1.37a) to get

from which we obtain

and

Then we can use (1.21) to solve (1.37a) for b. The most convenient form for the
solution is

9-1 Exercises

(1.1) Given and show that

where [Hint:

(1.2) Lorentz Transformation of Velocity

Note that Equation (1.7) applies to the motion of any particle for a sufficiently
short time interval Use the linearity of the Lorentz transformation (1.4)
to prove that

Use these results to prove that any particle with velocity with respect to
the primed frame has velocity v with respect to the unprimed frame given by

Using the canonical form derive the general result
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and u is the velocity of the primed frame with respect to the unprimed frame.

(1.3) Show explicitly that the Lorentz transformations have all the properties of a
group.

(1.4) Work out the derivation of (1.38 a,b) and (1.39) in complete detail, but take
care to make it algebraically compact and efficient.

9-2 Spacetime Maps and Measurements

This section is concerned with constructing spacetime maps to describe spatiotem-
poral relations among physical measurements. Just as conventional mapmaking is
based on Euclidean geometry and trigonometry, so spacetime mapmaking is based
on geometry and trigonometry, albeit of a non-Euclidean kind. The two kinds of
geometry and trigonometry are very similar, as we shall see.

We begin by examining the relations between two spacetime points (or events)
designated by and in some inertial system. The
quantity

describes a relation between the two points, but it is frame-dependent, it describes
a relation of the two points to an inertial frame. However, we have established that
the scalar quantity

is a frame-independent relation between points. It is said to be a relativistic in-
variant or a Lorentz invariant. Its positive square root  is
called the interval between events and Likewise is called the squared
interval, though strictly speaking it is not an algebraic square when it has a negative
value as allowed by its definition (2.2).

The sign of the squared interval makes an absolute (i.e. invariant) distinction
between three kinds of intervals. The interval is said to be timelike if

lightlike if or spacelike if . These names suggest a
physical interpretation which is specified by considering free particle trajectories.
As in Euclidean geometry, two points in spacetime determine a straight line as well
as an interval on the line. A line is said to be timelike, lightlike, or spacelike when
an interval on the line is timelike, lightlike, or spacelike, respectively.

Any lightlike line can be interpreted as the history of a real or hypothetical light
signal. Likewise, any timelike line can be regarded as the history of a free particle,
though we defer a proof of this fairly obvious fact until later. The time recorded on a
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Fig. 2.1. A spacetime map of lines through an event Only events on or inside the light
cone can be causally related to Points in timelike, lightlike and spacelike relation to

are shown.

clock moving on a timelike line is called the proper time on the line. For an inertial
system in which a given free particle is at rest, equation (2.2) reduces to

Thus, a timelike interval can be interpreted as a measure of the proper-time
interval on the history of a real or hypothetical free particle connecting the events.

For a pair of simultaneous events, equation (2.2) reduces to

so the interval is equal to the spatial distance between the events. We shall
prove that any pair of events on a spacelike line are simultaneous in some system.
Hence, any spacelike interval can be interpreted as a spatial distance.
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Figure 2.1 is a spacetime map of lines through an event The set of all events
that lie on the lightlike lines through is called the lightcone of It has two
distinct parts. The backward lightcone consists of events from which a light signal
could be sent to The forward lightcone consists of events to which a light
signal could be sent from Points inside the forward lightcone could be reached
by a free particle traveling from while a particle could be sent to only from
points inside the backward lightcone. Points outside the lightcone could be directly
connected to only by particles that travel faster than the speed of light. Such
“superluminal particles” would have such strange and striking properties that they
could hardly pass unnoticed, yet there is not a shread of experimental evidence for
them, so we shall not entertain the possibility here. Accordingly, we assume that the
lightcone separates events that might be causally related to by the passage of a
particle of light from events in the “Absolute Present” which cannot be causally
related to

The map of Figure 2.1 shows one time dimension and only two dimensions
of space, since all four dimensions of spacetime cannot be depicted on a two-
dimensional map, though they are easily represented algebraically. For illustrative
purposes, maps of a timelike plane usually suffice, as in Figure 2.2. A timelike
plane is a (2-dimensional) plane in spacetime which contains timelike lines. This is
to be distinguished from a spacelike plane which contains only spacelike lines. The
geometry of a spacelike plane is just the old Euclidean geometry with which we are
all so familiar. But the geometry of a timelike plane is non-Euclidean, so we will
concentrate on understanding that.

It is conventional in spacetime maps to draw lightlike lines with a slope of 1, as
in Figure 2.2. This amounts to employing a system of units in which c = 1, so that
the units of time are the same as the units of length. Thus, if the meter is the unit of
length, then the meter is the unit of time. Physically, one meter of time is the time it
takes light to travel one meter. This is a very small unit of time by ordinary standards,
but it is a natural unit if light is taken as the standard motion to which other motions
are compared in measurement, and, of course, this is an absolute standard in the
sense that it is the same in all inertial systems.

Note also that the constant c appears in the general expression (2.2) for an interval
as a conversion factor relating the units of time and length, but the interval applies
to an arbitrary pair of events, even if they have nothing to do with light. Evidently,
c is not just a property of light but a general property of spacetime relations. Its
appearance in (2.2) means that a single unit suffices for the measure of spacetime
intervals. This will be expressed more accurately later with the statement spacetime
is isotropic. There was once time when different units, such as fathoms and leagues,
were used for horizontal and vertical distances on Earth, but these were reduced to a
single unit after Newtonian theory made it clear that space is isotropic. Similarly,
it is appropriate to use the same units for time and length in relativity. Nevertheless,
we shall stick with the standard units for time and length.
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Fig. 2.2. A spacetime map of events in a timelike plane. Two distinct lightlike lines pass
through each point in the plane. They are formed by the intersection of the plane with
the lightcone of the point.

Spacetime Trig

Now let us consider relations among three spacetime points. Three points
determine a triangle and a plane if they are not on a single line. One can

“solve” a triangle in spacetime with geometric algebra just as one solves triangles in
Euclidean space. With the notation introduced by (2.1), the equation for the triangle
with vertices at and can be written
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From this equation we obtain an equation relating relativistic invariants:

With notation of (2.2) for a squared interval, this can be written

where

For a triangle in a spacelike plane, equation (2.7) is exactly the law of cosines, one
of the basic equations of Euclidean trigonometry. For a triangle in a timelike plane
the law is slightly different because at least one of the squared intervals may be
negative or zero.

Let us refer to the invariant as the scalar product of with
This generalizes the notion of the scalar product between vectors. When

we say that is orthogonal (or perpendicular) to and
we apply the same terms to the corresponding lines. In this case, equation (2.7)
reduces to the equation

for a right triangle. For a spacelike right triangle, there exists an inertial system in
which all three events are simultaneous and, in accordance with (2.4), (2.9) can be
put in the form

This is, of course, the familiar Pythagorean theorem. Let us refer to the more
general relation (2.9), holding for right triangles in timelike as well as spacelike
planes, as the neo-Pythagorean theorem. Actually, we have used this theorem
wherever we expressed an interval between events in terms of times and distances
(as in (2.2)): for, in any inertial system the time axis is orthogonal to every line
of simultaneity (a spacelike line through simultaneous events). To illustrate this
point, let us apply the neo-Pythagorean theorem explicitly to the triangle in Figure
(2.2), where and
In this case, the orthogonality condition is satisfied, and
(2.9) can be given the form

This is a relation between intervals on three sides of a right triangle, but the minus
sign makes it different from the Pythagorean theorem.
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Fig. 2.3. Spacetime diagram for Einstein’s procedure for synchronizing clocks at rest.

Relativity of Simultaneity

A Spacetime map of Einstein’s procedure for synchronizing two clocks at rest is
shown in Figure (2.3) A light signal leaves the first clock at time is reflected at
time on the second clock and returns to the first clock at time As specified
previously, by equation (1.1), the clocks are synchronized if their times are related
by

The same procedure also gives us the relative position

(both distance and direction) between the clocks. This is the basis for the method of
radar ranging, one of the most practical and accurate methods for measuring large
distances in the solar system. For example, by reflecting laser pulses from mirrors on
the Moon, the surface-to-surface Earth-Moon distance has been measured to within
a few centimeters.

In any spacetime map we can represent an inertial frame (or observer, if you will)
by a single timelike line with a (proper) time scale on it. For by Einstein’s procedure
we can assign, in principle at least, a definite position and time to any event. The
procedure is expressed as a geometrical construction in Figure 2.4. To assign a
time and position to an arbitrary event we must determine which event on



Relativistic Mechanics 595

Fig. 2.4. The position and time of an event X are determined geometrically by “dropping
a perpendicular” to the observer’s history. The spacelike line through X and is a line of
simultaneity, so it is perpendicular to the observer’s history. Note that triangle
is congruent to triangle because “two sides and an included angle are equal.”

the observer’s history is simultaneous with X. This can be done geometrically by
constructing the lightcone at X to determine the points and  where it intersects
the observer’s history. Then

The time and position to be assigned to X are then determined by (2.11) and (2.12)
as before.

The relativity of distant simultaneity is illustrated in Figure 2.5 by using “Einstein’s
Construction” for two different observers. Note that the distances are related to times
in the figure by

where and These two equations for two triangles with a common
lightlike side in the figure have the form of the neo-Pythagorean theorem (2.9); hence
the corresponding triangles are isosceles right triangles. Furthermore, the relation

shows that the two triangles are similar because corresponding sides are propor-
tional. Clearly there are an infinite number of such isosceles right triangles with
a common lightlike hypotenuse. In contrast, Euclidean geometry allows only two
distinct isosceles right triangles with a common hypotenuse.
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Fig. 2.5. The relativity of distant simultaneity follows by geometrical construction from
Einstein’s operational definition of simultaneity.

A different view of the relativity of distant simultaneity is given in Figure 2.6.
Lines of simultaneity for two different observers are drawn through events A and
B, separated by a spacelike interval. The time order of the two events is shown to
be opposite for the two observers. For the unprimed observer, A occurs before B

But for the primed observer, B occurs before A The reader
may construct the history of an observer for whom A is simultaneous with B.

Time Dilation and Length Contraction

A relation between time intervals measured by two observers with a relative velocity
v is determined by the triangle in Figure 2.2. We have seen that for this triangle the
neo-Pythagorean theorem gives

Inserting x = vt into this relation and solving for t, we obtain
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Fig. 2.6. The time order of events separated by a spacelike interval depends on the observer.

where

We encountered this relation in our derivation of the Lorentz transformation, but
now we are better prepared to interpret it.

Equation (2.14a) is called the time dilation formula. It relates the time t on a
clock at rest to the time on a moving clock. Since we have that is
to say that a time interval t on a clock at rest is greater than the corresponding time
interval on a moving clock. The relation is often expressed by saying that “moving
clocks run slow.” This expression is a helpful mnemonic, but it is a major source
of confusion about relativity when interpreted too literally. For relative motion is a
symmetrical relation, and either of the clocks can be regarded as at rest while the
other is in motion, so it cannot be strictly correct to say that one clock runs slower
than the other without some qualification that breaks the symmetry.

The time dilation formula (2.14a) is clearly not a symmetrical relation between
t and The source of this asymmetry can be seen in Figure 2.2, which tells
us how to interpret the formula. There we see that ct and describe relations
between different pairs of events determining different sides of a triangle. The
unprimed observer assigns the time t to event as well as to because he
regards them as simultaneous. But is not simultaneous with in the primed
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Fig, 2.7. The time dilation formula specifies the ratio of two timelike sides of a right
triangle.

system. Simultaneity is not a symmetrical relation between inertial systems. The
asymmetry is shown in Figure 2.7, obtained from Figure 2.2 by using Einstein’s
procedure to determine the event which is simultaneous with in the primed
system. Note that the figure contains two distinct right triangles with a common
vertex From the triangle we obtain

as before. Similarly, from the triangle we obtain

Finally, taking the ratios of the sides opposite and combining the results, we
obtain
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Fig. 2.8. The Lorentz contraction, like time dilation, is a consequence of the relativity
of simultaneity. It is not a physical contraction but a relation between two different
measurements on the same object.

Thus, corresponding sides of the two triangles are proportional, so the triangles
are similar in the usual sense. The triangles don’t “look” similar because a non-
Euclidean rule has been used to assign “lengths” to the sides. However, the point
of most interest is that the two triangles show how the time dilation formula can be
applied consistently with either observer regarded at rest.

To compare measurements of length by different observers, it is necessary to
provide an operational definition of measurements on a moving body by an observer
at rest. For a rigid rod moving with velocity v and aligned along the direction of
motion, the observer determines the simultaneous positions of its ends and takes the
distance between those points as the length. A spacetime map of the procedure is
given in Figure 2.8. For the observer “at rest” the length is the distance between
the simultaneous events and But an observer moving with the rod measures
a different length because for him is simultaneous with The relation
between lengths can be determined by comparing the similar right triangles in the
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figure. These triangles are the same as those in Figure 2.7, so we obtain, as in (2.15),

Thus

which says that the length of the moving rod is less than the length of the same rod
at rest. This is called the Lorentz contraction. But it is not a physical contraction of
a moving body in the direction of its motion as Lorentz originally proposed. Instead,
it is a relation between two different measurements, as Figure 2.8 clearly shows.
Lorentz and Einstein came up with the same formula but it had totally different
meanings in their two theories. In Lorentz’s theory the formula was merely an ad
hoc assumption, while in Einstein’s theory it is a consequence of profound ideas
about time and space measurement.

For a long time physicists believed that, because of the Lorentz contraction, the
photograph of a sphere moving about the line of sight at nearly the speed of light
would look like an ellipse. It was not until 1959 that James Terrell pointed out that
they had failed to make an elementary distinction between measurement and visual
appearance. A photographic image is formed by light that arrives simultaneously
at the photographic plate, but the image of an extended object must be formed by
light that left different parts of the object at different times, because the parts are at
various distances from the plate. Because of the finite speed of light, then, the time
delay in the arrival of light from various parts of a moving body produces a distorted
image in both relativistic and nonrelativistic theories. Curiously, in the relativistic
theory this distortion has the effect of canceling the Lorentz contraction for small
objects in the visual field, so the objects appear to be rotated rather than distorted.
The effect on large objects is more complicated, but it can be determined from the
aberration formula which we shall derive later.

The Twin Paradox

The time dilation formula can lead to paradoxical results if the relativity of simul-
taneity is not taken into account when it is applied. The famous “twin paradox”
arises from the following scenario: Suppose that one of two identical twins is an
astronaut who makes a roundtrip journey to a destination outside the solar system.
During the trip he ages while his stay-at-home brother ages If he travels at
the same speed both going and coming, then the time dilation formula gives
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Fig. 2.9. Spacetime map for a roundtrip space flight outside the solar system.

For example, if then and if years, then
years. Thus the astronaut is four years younger than his brother when he returns.

An apparent paradox comes from arguing that, since all motion is relative, the
astronaut can be regarded as the one at rest, while his brother recedes with speed
and then returns at the same speed, so he should be older rather than younger than
his brother. But this argument is wrong, for the spacetime map of the trip in Figure
2.9 shows that it is not symmetrical with respect to the motion of the twins. The
astronaut departs at arrives at his destination at and finally returns home
at It is true that the motion is symmetrical in the sense that either twin can be
regarded as at rest during the free flight. But an asymmetry in the motion occurs at

where the astronaut must accelerate in order to turn around for the return trip.
To compute the time required for a trip to some destination outside the solar system

is a problem in spacetime trigonometry. In the present case, the problem is to “solve



602 Spacetime Maps and Measurements

the triangle” in Figure 2.9. We can do this most easily by introducing the
point simultaneous with in the solar inertial system. This breaks the triangle
into two right triangles which we have already solved, so we arrive immediately at
the correct solution (2.18).

Note that the astronaut shifts from one inertial frame to another at Before he
turns around, the event at home is simultaneous with in his frame, and after
he turns around, is simultaneous with So if he computes the time elapsed
at home by a simple-minded application of the time dilation formula considering
himself at rest during flight, he will have determined only the time elapsed between

and and between and To make the calculation by this method correct
and complete, he must account for the resynchronization of distant clocks required
when he shifts inertial frames at in order to calculate the time elapsed between

and at home. Of course, this is the hard way to solve the problem, and the
only reason for considering it is to understand exactly how the twin paradox arises
by applying the time dilation formula without taking the relativity of simultaneity
into account.

Although the time dilation formula (2.18) implies that the astronaut will be younger
than his brother when he returns, it does not imply that he will live longer. All other
things being equal, both twins will have the same lifetime, the same number of ticks
on their biological clocks. The effect of the trip was merely to desynchronize their
biological clock by allowing the astronaut fewer ticks, so he has more ticks remaining
when he returns.

Someday the effect of space travel on aging may be familiar from experience. But
the time dilation formula has already been subjected to direct tests in experiments
on elementary particles and on atomic clocks. Unstable elementary particles such
as the muon and pion have short lifetimes (less than sec.) and they often
have relativistic velocities in modem high-energy experiments, so time dilation is
a common effect which must be taken into account in the design and interpretation
of such experiments. A measurement of the time dilation effect on macroscopic
objects has been made by Hafele and Keating; they took Cesium atomic clocks on
round-the-clock equitorial trips on commercial airliner and observed the small time
lag predicted by the dilation formula.

Our map of the astronaut’s trip in Figure 2.9 neglects the effect of acceleration on
his clock at the beginning and end of each leg of the trip, not to mention the effect
of the Earth’s rotation and acceleration about the sun on his stay-at-home twin. To
be sure that these effects are indeed negligible, we must know how to compute the
lapse of proper time along the history of an accelerated particle.

The history of an accelerated particle is a timelike curve, that is, a curve whose
tangent at every point is a timelike line. The proper time can be regarded as a
measure of arc length along the curve. Thus, we may approximate a given curve
by a polygonal line with segments of length as indicated in Figure 2.10. The
proper time between events and is then given by the integral defined as
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Fig. 2.10. The time lapse recorded on a clock transported from one place to another depends
on its path. The straightest path gives the longest time.

a limit in the usual way:

This defines the proper time interval along a timelike curve in terms of the time
interval along straight line segments. In Figure 2.10 a segment of the curve is
approximated first by a single line segment of “length” and in the second
approximation by two line segments of length and But we know from
our discussion of the twin paradox that Hence, the estimate of
proper time along the curve can only be reduced by each successive approximation,
and we may conclude that
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Fig. 2.11. The endpoints of X and of congruent timelike line segments with a common
origin lie on a hyperoloid. This shows us how to draw timelike line segments with the same
“length” but different “direction.”

where and equality obtains only if the curve is a straight line.
Thus, we have proved that the longest timelike curve between two events is a
straight line.

We know now how to calculate the time lapse due to a specified acceleration, and
we shall carry out such calculations later on. But without calculation we can assert
that our estimates of time lapses in the twin paradox would be slightly smaller if
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accelerations were taken into account, and for long trips at high speeds the effect of
initial and final accelerations would certainly be negligible. Of course, all this ignores
the enormous practical problems that make travel outside the solar system unfeasible
in the foreseeable future. On the one hand, there is the problem of supplying the
enormous energy needed to achieve relativistic velocities. (We shall see how to
estimate this later.) On the other hand, there is the problem of enabling the human
body to withstand the required acceleration.

Congruence

The geometrical theory of congruence underlies the theory of measurement in space-
time as well as in space, for measurement involves comparison of event pairs, and
that is what the theory of congruence is about.

We say that two line segments are congruent if their square intervals are equal.
Since a line segment is determined by its end points, congruence of line segments is
a relation between pairs of points. Let us first consider line segments with a common
end point, which we take to be the origin. For a specific value of the interval, say

the set of all congruent line segments is determined by the set of all
solutions of the equation

This is the equation for a hyperboloid of revolution in spacetime; it intersects a
timelike plane in a hyperbola, as shown in Figure 2.11. The complete hyperboloid
consists of two disconnected branches, one inside the forward light cone and one
inside the backward light cone. It can be generated by spatial rotations of the
hyperbola in Figure 2.11 “about” the time axis.

We have proved that the interval is invariant under a Lorentz transformation

In the preceding section we interpreted this as a relation between different labels
X and assigned to one and the same event by different observes. This is called
a passive interpretation of the Lorentz transformation. Alternatively, we can in-
terpret (2.22) as a congruence relation between two different points X and in
the same inertial system. This is called an active interpretation of the Lorentz
transformation.

Any two points X and on the same branch of the hyperbola in Figure
2.11 are related by a boost

(with an active interpretation, of course). We can prove this simply by solving for
in terms of X and Recalling from the last section, the parameterization of
in terms of the rapidity a and the velocity v, we obtain
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Fig. 2.12. Triangle is congruent to triangle

From this we obtain the scalar product

Clearly, we may regard a as the angle between and X. Since our choice of points
was arbitrary, this shows that the scalar product of any two points on timelike lines
through the origin is proportional to the hyperbolic cosine of the angle between them.

As in Euclidean geometry, two triangles in spacetime are said to be congruent if
their sides are congruent. The two congruent triangles in Figure 2.12 are related by
a Lorentz transformation, subject to the active interpretation, of course. However,
if we were to insist on the passive interpretation of the Lorentz transformation, then
the two triangles would be describing the same events, and Figure 2.12 would be
showing how these events are represented differently in different inertial systems. In
fact, if triangle describes the twin problem in the inertial system of the
stay-at-home twin as before, then triangle describes the same problem
in the inertial system of the astronaut on the first leg of his trip, because the two
triangles are related by boosts of

The interval between any pair of events is invariant under translations as well as
Lorentz transformations. Thus, if the transformation

is applied to events and then
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so is invariant. The term  in (2.25) specifies a translation in
time by    and in space by

Transformations of the form (2.25) make up a group called the Poincaré group. It
is generalization of the “Euclidean group” of rigid displacements (studied in Sec. 5-
5), just as the Lorentz group is a generalization of the spatial rotation group. Under the
active interpretation, the Poincaré group may be regarded as the congruence group
of spacetime because it relates all congruent configurations of events in spacetime.
This is of great importance in the application and interpretation of physical theories,
for to compare experiments carried out at different times and places, some relation
of congruence between measurements must be established.

The invariance of intervals under Lorentz transformations is sometimes expressed
by saying that spacetime is isotropic, which is to say that all time and space di-
rections are equivalent insofar as congruence relations are concerned. Similarly, the
invariance of intervals under time and space translation is expressed by saying that
spacetime is homogeneous. Thus the Poincaré group represents the isotropy and
homogeneity of spacetime, the congruence of all free particle motions at all places
and times.

Under passive interpretation of the Poincaré transformation (2.25), both X and
refer to the same physical event, but the equation still represents more than a

trivial change of names. It can be interpreted as a rotation, boost, and translation of
one inertial frame to produce another inertial frame. Thus, the invariance of intervals
under the Poincaré group also expresses the fact that they are independent of the
inertial frame to which measurements might be referred. Subject to the passive
interpretation, we might refer to the the Poincaré group as the relativity group of
spacetime, since it specifies all possible relations of any event to an inertial frame.
Contrast this with the active interpretation of the Poincaré group as a congruence
group relating different events.

The Doppler Effect

Light signals provide the most common and convenient means of comparing widely
separated time intervals. Let be the proper time between emissions of two
light signals from a receding source which are separated by time when they are
received as shown in Figure 2.13. To relate   to  is another simple problem in
spacetime trig. First, we draw a line parallel to the source history through  This
reduces our problem to solving the triangle

The triangle can be solved by applying (2.7) and using (2.24) to put it in the form
of a “hyperbolic cosine law”:

Writing
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Fig. 2.13. The ratio of time intervals between light signals depends on the relative
velocity of source and receiver.

our “cosh law” for the triangle can be put in the form

from which we obtain the Doppler factor

The two roots correspond, respectively, to approaching and receding sources. The
student should draw a diagram for the case of an approaching source and verify that
the same “cosh law” applies to both receding and approaching cases.

If  is the time between emission of successive crests of a monochromatic
electromagnetic wave, then  is the frequency of the emitted wave and

is the frequency of the received wave. So from (2.26) we obtain

This describes a Doppler shift in frequency due to the relative motion of source
and receiver. For an approaching source we have D > 1, so the shift is to higher
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frequency. In the visible range this would be a shift toward the blue end of the
spectrum, so it is called a blue shift. For a receding source the shift is to the lower
frequency, a red shift.

The Doppler formula (2.28) differs in form from the classical (nonrelativistic)
formula only by the time dilation factor   The “classical Doppler  factor”
expresses the fact that, in the rest system of the source, the frequency with which the
observer intercepts wave crests is increased if he is moving toward the source and
decreased if he is moving away.

The Doppler effect is a major tool of astronomy for gaining information about
stars. Various elements in a star, such as hydrogen, can be identified from their
optical spectra. The frequencies of light emitted by atoms at rest are known, so they
can be compared with observed frequencies to get the value of the Doppler factor
from which the velocity of the source can be calculated by (2.28). The following
applications are of special interests:

(1) The rate of rotation of the Sun can be determined by comparing the blue
shift from one edge with the red shift from the opposite edge.

(2) The rotation rate of a double star can be determined from the broadening
of its hydrogen spectral lines, even when the stars cannot be resolved into
separate images.

(3) The Doppler broadening of spectral lines of light from atoms in a hot gas is
due to random motions of the atoms and provides a measure of the temperature
of the gas.

(4) Hubble’s law states that distant galaxies are receding from the Earth with
velocities proportional to their distance from the Earth. The velocities, of
course, are determined from red shifts. Hubble’s law is one of the main
empirical supports for the Big Bang Theory, which holds that the galaxies
are flying apart from a primeval explosion marking the beginning of the
Universe. From the empirical value of Hubble’s constant, the age of the
Universe is estimated to be between 9 and 12 billion years.

Doppler Aberration

The Doppler equation (2.18) applies only to an approaching or receding source. The
more general case of a source in oblique motion cannot be represented by a planar
map, so let us treat it by purely algebraic methods.

Consider the observation of a monochromatic wave by two observers with relative
velocity v. To the unprimed observer the wave has a frequency (circular frequency

and propagates in the spatial direction In the unprimed system the
direction of propagation in spacetime is then described by
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The constant c has been inserted here so k will have units of (wavelength)–1, as
is conventional. Since the propagation is in a lightlike direction,

So we write

Similarly, in the primed system the direction of propagation is described by

The two descriptions are related by the boost

where
The scalar part of (2.32) gives us

Thus we obtain the general Doppler formula

This reduces to our previous formula (2.28) when
It should be noted that our derivation of the Doppler formula (2.33) did not actually

require that either observer was source or receiver of the electromagnetic wave. The
formula merely describes a relation between the descriptions of an electromagnetic
wave in two different inertial systems. A more symmetrical relation can be obtained
by taking the scalar part of the inverse boost  to get

Then by dividing (2.33) by (2.34) we get the symmetrical relation
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Unfortunately, this relation doesn’t appear to be very useful. But notice that we
can eliminate two frequencies altogether by multiplying (2.33) and (2.34). Thus we
obtain

Writing  we obtain

This is the Doppler aberration formula.
Suppose both observers are observing light from a star. Then according to (2.36)

their telescopes must be pointed at different angles   and  with respect to v. This
effect is known as stellar aberration, and astronomers must take it into account when
comparing observations at different times of the year because of changes in the
direction of the Earth’s velocity.

The stellar aberration effect becomes spectacular at relativistic speeds such as
might be achieved by a space traveler. For example, equation (2.37) implies that for
the velocity v toward the north celestial pole, the primed observer sees the northern
celestial hemisphere of the unprimed observer compressed into smaller and smaller
regions about the north pole as his velocity increases (see Figure 2.14).

In particular, equation (2.37) implies that

when

This shows that in the limit  the entire northern hemisphere of the unprimed
system is compressed into the north pole, so the rest of the celestial sphere is covered
by what was formerly the southern hemisphere. At the same time, (2.33) implies
that light from the northern hemisphere is increasingly blue shifted, while light from
the southern hemisphere is red shifted. Also, as more stars are clustered in the
region of the pole, the intensity of light from that region naturally increases. The
same kind of phenomenon is commonly observed in particle accelerators. Charged
particles radiate light when they are accelerated, and as their velocities approach the
speed of light the radiation is increasingly concentrated in the forward direction, a
phenomenon known as the headlight effect.

Doppler aberration has also been used for accurate measurements of the Earth’s
velocity with respect to the cosmic microwave background. This is electromagnetic
microwave radiation with a frequency spectrum equivalent to that of light emitted by
a black body at a temperature of about 3°Kelvin. According to the Big Bang Theory
this is primordial radiation produced in the Big Bang which has been traveling about
the universe ever since. Besides the Hubble red shift, experimental measurements
of the background radiation provide the strongest evidence for the Big Bang Theory.
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Fig. 2.14. Views of the northern celestial hemisphere as seen by an observer at the center
and traveling towards the north celestial pole. For the view at rest the constel-
lations shown are the Big Dipper, Cassiopeia, and Hercules. At the higher speeds Orion,
part of Aquarius and the Southern Cross come into the field of view. (Figure used by
permission from G. Scott and H. van F. Driel, “Geometrical Appearances at Relativistic
Speeds,” American Journal of Physics, 38, 971 (1970).)

Of interest here is the fact that the background radiation defines an inertial reference
frame for the Universe in which radiation is isotropic. For an observer moving
with respect to this frame the intensity of the background radiation will be increased
in the direction of motion as a result of Doppler aberration, and his velocity can
be deduced from measurements of the intensity distribution. For the Earth, mea-
surements must be made from artificial satellites, because much of the background
radiation is absorbed by the Earth’s atmosphere. By this method a value of about
390 km/sec has been found for the Earth’s velocity.
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Fig. 2.15.

9-2 Exercises

(2.1)

(2.2)

(2.3)

(2.4)

Derive the Doppler formula from the trigonometry of Figure 2.15 by first
establishing

Establish the similarity of  “lightlike” triangles in Figure 2.15 by proving that

In the twin problem, each twin can “watch” the aging of the other by
continuously receiving light signals from each other, as indicated in Figure
2.16. Calculate the aging and of the homebody “seen” by the
traveler on each leg of his journey. Similarly, calculate and interpret    and

Show that the results are consistent with the round trip aging given by
the time dilation formula.

Prove that

(a) Every lightlike line is orthogonal to itself.

(b) Every line orthogonal to a given timelike line is spacelike.
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Fig. 2.16.

(2.5)

(2.6)

(2.7)

(2.8)

The wavelength of the line of hydrogen is  What will be
the measured wavelength of the line in the absorption spectrum of a
star receding from the Earth at one percent of the speed of light? (Ans.

Measured on Earth, the   line from opposite sides of the Sun’s equator
differ in wavelength by  Assuming this effect is due to the
rotation of the surface of the Sun, show that the period of rotation is about 25
days. (The mean solar radius is 

Calculate the width of  lines due to Doppler broadening at 6000° K.
(Recall that the average kinetic energy per atom in a nonrelativistic perfect
gas is

where   is Boltzmann’s constant and T is the absolute temperature.) (Ans.

The unit pseudosphere in spacetime is determined by the equation
1. Draw a map of its intersection with a timelike plane. Show that it is
composed of three disconnected branches. Show that its intersection with a
spacelike plane through its center is a unit sphere which can be described by
the equation 
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9-3 Relativistic Particle Dynamics

The entire physical content of the relativity theory has been incorporated into our
concept of spacetime. It is fully expressed by the Lorentz transformation between
inertial systems and the invariant interval between events. No dynamical assumptions
are involved. However, the theory has profound dynamical implications, because it
revises the Newtonian conception of time on which dynamics depends. Our objective
in this section is to formulate dynamics in accord with relativity theory and examine
some of its implications.

Our formulation of spacetime and its properties unifies the Zeroth and First Laws
of motion. Dynamics is expressed by the Second Law of motion in Newtonian theory,
so the most straightforward approach to relativistic dynamics is to seek a generalized
Second Law. The Principle of Relativity is our guide, for it holds that all formulations
of the Second Law in different inertial systems must be equivalent. To determine the
nature of this equivalence we first study the kinematics of an accelerated particle.

Covariant Kinematics

We have seen that in a given inertial system the history of a particle can be specified
by the function so

Alternatively, we can describe the history as a function of its proper time by writing

Therefore

This 4-component quantity is called the 4-velocity to distinguish it from the 3-
velocity  which has only 3 components.

The particle history described by  in one inertial system is related to
the description   in another system by a Lorentz transformation

Therefore, since L is independent of  the 4-velocities in the two systems are also
related by a Lorentz transformation

This simple transformation law shows that rather than is the appro-
priate expression for the velocity of a particle in spacetime. The 4-velocity is said
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Figure 3.1. The 4-velocity  of a particle is tangent to its history at 

to be a covariant quantity to express the fact that its transformation law (3.5) is the
same as the transformation law (3.4) for points. The quantity  is, accordingly,
not covariant.

In accordance with the usual rules of the differential calculus, the 4-velocity
is defined by

where is a directed chord on the history as shown in
Figure 3.1. For small proper-time intervals

which in the limit gives the Lorentz-invariant relation

Thus, unlike the 3-velocity, the 4-velocity has a constant magnitude independent of
the particle history. Furthermore, when (3.3) is substituted into (3.7) we obtain
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Hence

This differs from the similar relation (1.20a) obtained from a Lorentz transformation
in that v is not necessarily constant.

In terms of the 4-velocity V of a particle we can define a 4-momentum P in
analogy with the definition of momentum in Newtonian mechanics. We write

where the proportionality constant m is called the proper mass or rest mass of the
particle. We will prove that p can be identified with the 3-momentum of Newtonian
mechanics while the scalar E can be interpreted as the corresponding energy of the
particle. The energy E and momentum p are not mutually independent; by virtue
of (3.7), they are subject to the Lorentz-invariant relation

The constant c here appears to relate the conventional units of mass, energy, and
momentum.

The energy and 3-momentum are related to the 3-velocity by

Equating scalar and vector parts separately we obtain the several relations

and

where we have introduced the relative mass defined by

Equation (3.12) is in accord with a definition of mass as the ratio of momentum
to velocity. But we have two different kinds of 3-velocity, and
Accordingly, we have two different concepts of mass. Corresponding to   we
have the rest mass m which is a constant intrinsic property of the particle, like the
mass in Newtonian mechanics. On the other hand, corresponding to v we have the
relative mass  which, according to (3.13), increases with increasing velocity. It
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is evident that this velocity dependence of relative mass is due to the time dilation
factor which is a purely kinematic relation independent of any concept
of mass. Therefore it seems best to dispense with the notion of relative mass and
apply the term “mass” exclusively to rest mass. The notion of relative mass was
discussed here only because it often appears in the literature.

For a particle at rest, according to (3.11) the energy reduces to the rest energy
The increase in energy when the particle is moving should be regarded as

kinetic energy. Accordingly, we define the kinetic energy K of a particle by

A binomial expansion of the time dilation factor gives us

So, for the kinetic energy (3.14) is well approximated by   the
familiar nonrelativistic expression for kinetic energy.

Covariant Dynamics

The relativistic dynamics of a particle is described by the covariant generalization
of Newton’s Second Law:

In words, “The 4-force f is equal to the rate of change of 4-momentum or, alterna-
tively, the rest mass times the 4-acceleration.” As in Newtonian theory, this equation
defines the notion of force, but it is not an equation of motion for the particle until
the force is specified as a definite function of position and velocity in spacetime,

Thus, the central problem in relativistic as well as nonrelativistic particle mechanics
is to find the appropriate force functions.

Equation (3.16) determines the 4-force in all inertial systems when it is known in
one system. It follows by differentiation of (3.5) that the 4-acceleration is a covariant
quantity, that is,

Therefore, the equation of motion (3.16) will be covariant if the 4-force is also
covariant, transforming according to
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It should be mentioned that the arguments of the force function (3.17) must also be
transformed, as shown explicitly by

If (3.16) is the equation of motion in the unprimed inertial system, then the Lorentz
transformations of the acceleration (3.18) and the force (3.19) give

for the equation of motion in the primed frame. Thus, the Second Law of motion has
exactly the same form in all inertial systems because it is a covariant equation,
which is to say that all its terms are covariant quantities. This is the precise sense in
which the laws of physics are to be regarded as “ equivalent with respect to all inertial
systems” as required by the Principle of Relativity. Actually, there are two ways that
laws of physics can satisfy the Principle of Relativity. They may be expressed by
invariant as well as covariant equations. For example, the interval function on
spacetime specifies an invariant system of relations among events, which is one of
the fundamental laws of physics, though it is not often called a law.

To relate the 4-force to the 3-force of Newtonian mechanics, we decompose it
into scalar and vector parts by writing

The reason for inserting the factors  and  will soon be evident. First
note that by differentiating   we obtain

so

or

from which we obtain

Thus, we can write the 4-force in the general form

Now the Second Law (3.16) can be written
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Separating this into scalar and vector parts, we obtain

and, since

Equation (3.22) differs from Newton’s Second law only in the dependence of mo-
mentum on the time dilation factor

Equation (3.23) justifies our interpretation of K as kinetic energy, for f · v is the
rate that work is done on the particle by the 3-force f. Actually, equation (3.23) can
be derived from (3.22), so (3.22) is mathematically equivalent to the covariant form
for the Second Law (3.16). Thus, we can use either (3.22) or (3.16) as the relativistic
equation of motion for a particle. Each form for the equation of motion has certain
advantages as we shall see.

Having determined the general form for the relativistic equation of motion for a
particle, we now examine the specific form of the electromagnetic force, the most
important force to be treated within the relativistic theory. The electromagnetic
4-force on a particle with charge q is

where is the electromagnetic field, and  is the scalar-plus-
vector part of FV. To relate this to the more familiar 3-force, we write

The vector part gives us

This is exactly the expression for the electromagnetic force which we used in the
nonrelativistic theory. So relativistic theory does not require any modification of the
electromagnetic interactions if we adopt the 4-force (3.24).

The covariant equation of motion for a charged particle in an electromagnetic
field,

can be reduced to a simpler equation. Since  the 4-velocity                  at
any time is related to the initial 4-velocity   by a Lorentz transformation
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where  and   This is, of course, an active Lorentz transformation
and should not be confused with the passive Lorentz transformation (3.5) relating
the 4-velocity in different inertial frames. The “relativistic spinor” U must obey the
equation of motion

as is readily verified by differentiating (3.27) to get (3.26).
The electromagnetic spinor equation (3.28) has the same advantages as the similar

spinor equation which we used in Chapt. 5 to describe a rotating rigid body. In
particular, for the important case of a uniform electromagnetic field
we have and we find at once the exponential solution

The 4-velocity is therefore given by

This much of the solution is actually simpler than the nonrelativistic case treated
in Section 3-7. However, to determine the history we must perform
another integration. From (3.30) we obtain

where has been chosen as the origin. The integral in (3.31) is a little
tricky to evaluate in the general case, so in preparation for it, let us first examine the
important special cases of pure electric and magnetic fields, and then establish some
properties of electromagnetic fields in general.

Motion in a Constant Electric Field

For the case of a “pure” electric field F = E , we can write (3.30) in the form

where

and

is the part of  which commutes with E , while
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is the part that anticommutes with E. Equation (3.32) gives the 4-velocity V from
its initial value   by a boost of rapidity
Since  and

from the scalar part of (3.32) we obtain

This describes how the particle’s energy, increases with proper time.
From the vector part of (3.32) we obtain an expression for the velocity

Note that the velocity component perpendicular to the field is not
constant though the momentum component   is constant.

The particle history is obtained immediately by integrating (3.32), with the result

The scalar part of this equation gives us the functional relation between the time t
and the proper time

This equation can be used in connection with (3.34) and (3.35) to get the particle
energy and velocity as functions of t and 

The vector part of (3.36) is a parametric equation for the orbit of the particle,

For the special initial condition or it reduces to

This is a parametric equation for a catenary. In the “weak field approximation”
specified by the condition
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for experimentally reasonable time intervals we have cosh  and
(3.39) reduces to

Thus we obtain a parabolic orbit for motion in a constant electric field, just as in the
nonrelativistic theory. The weak-field approximation (3.40a) amounts to assuming
a small acceleration. To get the nonrelativistic limit, the small velocity condition

is not sufficient; a small acceleration (or a weak force) is also required. Of
course, even a weak force can produce a high velocity if it acts for sufficient time.

Let us consider another special case, namely when Of course, the orbit
is explicitly specified by (3.38) as accelerated motion along a straight line. But a
simpler description of the motion is given by (3.36), which, for  can be
written in the form 

where we have introduced the notation

From (3.41 a) we can eliminate the dependence by forming the invariant

Using (3.41b), we can put this in the form

This is a nonparametric equation for a hyperbola in a timelike plane. Therefore
(3.41 a) is a parametric equation for this hyperbola. Of course, the parametric equa-
tion describes the “hyperbolic motion” of the particle more completely than the
nonparametric equation because it specifies the location of the particle on the hyper-
bola in terms of its proper time.

Figure 3.2 is a spacetime map of the hyperbolic motion due to a constant force
f. The point  is called the event horizon for the motion. The asymptote for the
hyperbolic history lies in the lightcone for the event horizon. This line determines
the “last chance” to “communicate” with the particle, for after an observer crosses
this line no light signal he sends will ever catch the receding particle, unless, of
course, the particle’s acceleration is reduced.

Now that we have achieved an understanding of hyperbolic motion, we are in
position to interpret the general solution (3.38). The first term on the right of (3.38)
describes hyperbolic motion in a timelike plane, while the second term describes a
uniform drift with velocity  in a direction perpendicular to the plane. Therefore,
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Figure 3.2. Hyperbolic motion of a particle subject to a constant force f.

the composite motion can be pictured as that of a particle moving along a “drifting
hyperbola.”

Motion in a Constant Magnetic Field

For the case of a “pure” magnetic field F = iB, we can write (3.30) in the form

where

and

is the part of   which commutes with B, while

is the part which anticommutes with B.
Since the scalar part of (3.44) gives us and, since

we can integrate immediately to get

The vector part of (3.44) gives us the velocity
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Thus, the velocity is a rotating vector, and  is the cyclotron fre-
quency, just as in the nonrelativistic case treated in Sec. 3–6. When we use
in (3.47) to express velocity in terms of time, we find  for the frequency.
Thus, the relativistic solution differs from the nonrelativistic limit only by a reduction
in the cyclotron frequency by the factor 

The orbit obtained by integrating (3.47) is, of course, a helix, just as in the non-
relativistic case, so there is nothing new to be learned by discussing it here.

Covariance and Invariance of the Electromagnetic Field

Since  is the transformation of the 4-velocity for a change of inertial
system, the equation of motion (3.26) for a charged particle will be covariant only if
the electromagnetic field obeys the transformation law

This is easily verified by substituting the transformations of F and V into (3.26), and
using  Let us see what it implies about the transformation of the electric
and magnetic fields under a boost.

For a boost by velocity u, we have

Breaking into a component   which commutes with u,
and a component   which anticommutes with u, we can put (3.48)
in the form

Then separately equating vector and bivector parts, we obtain

Considering the simplicity of the transformation law (3.48) for F, it is obviously
preferable to treat the electromagnetic field   as a unit, rather than
transform E and B separately by (3.51 a,b).
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From (3.48) we find that

Thus,

is a Lorentz invariant, and its scalar and pseudoscalar parts are independently in-
variant. Therefore, if electric and magnetic fields are orthogonal  in one
inertial system, then they are orthogonal in all inertial systems. And if the fields are

equal   in one system, then they are equal in all systems.
The invariant (3.52) provides the basis for an invariant classification of electro-

magnetic fields. A field is said to be null (or lightlike) if 
electriclike (or timelike) if or magneticlike (spacelike) if

The names for the last two classes are justified by the fact that
a field can be transformed into a pure electric (or magnetic) field by a boost if and
only if it is electriclike (or magneticlike), as we shall prove. Null fields arise mostly
as electromagnetic radiation; it can be shown that a monochromatic plane wave is a
null field.

Every nonnull field is related to a unique electriclike field
by a “duality rotation,” which has the form

where is a scalar in the range We can prove this by solving for
By hypothesis, the invariant

is a positive scalar. By squaring (3.53) we get the relation between invariants

Hence,

determines in terms of E and B. We get f in terms of E and B by inverting (3.53);
thus,

from which we can read off the values of e and b in terms of E and B.
To prove that the electriclike field f is related to a pure electric field   by a boost
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we assume that the boost velocity u is orthogonal to so that

Our theorem will be proved if we can solve this for and u in terms of e and b.
The magnitude of is determined by the invariant

The vector part of (3.58) gives us hence

and

The bivector part of (3.58) gives us

hence

Thus, our theorem is proved. By interchanging e and b in the argument we get the
boost relating a magneticlike field to a pure magnetic field.

The same transformation can be applied to an arbitrary nonnull field; thus,

The components and of the field are
parallel fields. Thus, we have determined how to transform any nonnull combination
of electric and magnetic fields into a pair of parallel fields.

General Motion in Constant Electric and Magnetic Fields

Now we are prepared to analyze the motion of a charged particle in an arbitrary
nonnull combination F = E + iB of constant electric and magnetic fields. This
generalizes the nonrelativistic treatment in Sec. 3-7. We use the decomposition

where and f = e + ib are given in terms of E and B by (3.55) and
(3.56). It will be convenient to write



628 Relativistic Particle Dynamics

where .

and

Then

The reader is reminded that the last equality holds only because  commutes with
Since

Now the expression (3.30) for the 4-velocity V of the particle can be put in the
form

This can be simplified by decomposing into

where and are defined by

Note that
and

Using this we can reduce (3.65) to the form

This can be integrated immediately to get a parametric equation for the particle
history,

Note that for the special case  and  equations (3.67) and (3.68) reduce
exactly to the equations (3.32) and (3.36) for the motion in a pure electric field. For

and g = 0 they describe motion in parallel fields. In this case, we know from
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our discussions of the pure electric and magnetic cases that the first term on the right
side of (3.68) traces out a hyperbola in spacetime while the second term describes a
rotating vector. Therefore, the composite motion can be pictured as a spiral winding
around a hyperbola in spacetime. This also provides an interpretation of (3.68) for
the general case, for we know that in general E and B can be transformed into
parallel fields by a boost of velocity

To get explicit expressions for the energy and momentum as well as the orbit of
the particle in the general case, we need to express and in terms of the given
vectors so we can separate (3.67) and (3.68) into scalar and vector parts. To this end
we compute

and

Since we obtain

Also, we need

and

It is now a simple matter to split (3.67) and (3.68) into scalar and vector parts. For
example, from the scalar part of (3.67) we get an equation for the particle’s energy

namely,
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From the vector part of (3.68) we get the orbit,

9-3 Exercises

(3.1) According to equation (3.5) the 4-velocities in two inertial systems are related
by or

If the primed frame is related to the unprimed frame by a boost of velocity
u, then

where

In this case, derive the “Doppler relation” for material particles

and the velocity addition formula

Prove that implies in other words, if a particle’s speed is
less than c in one inertial system, then it is less than c in every inertial system.
Also, establish the Newtonian velocity addition formula in the
limit of small velocities.

(3.2) For a nonnull field F = E + iB related to an electriclike field f = e + ib
by a duality rotation, prove that
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(3.3) For hyperbolic motion (Figure 3.2), show that the particle’s 4-acceleration
is tangent to its line of simultaneity at each proper time, and all such lines
intersect at the event horizon. Show also that the particle’s 3-velocity is given
by

(3.4) A particle subject to a constant force f has an initial momentum Derive
the following expression for its velocity.

(3.5) For the case of constant orthogonal fields (E•B), express the solutions (3.71)
and (3.72) explicitly in terms of E and B when Show that the
orbit of a charged particle in the composite field F = E + iB will be a
straight line if and only if it is injected into the field with an initial velocity

Compare this with the nonrelativistic result in Section 3-7,
and explain how it can be used in the design of a particle velocity selector.
(Hint: show that g = 0 and in (3.67) and (3.68).) Do a similar
analysis for the case of orthogonal fields with

(3.6) For a charged particle in a constant null field F = E+iB, show that 4-velocity
is given as a function of proper time by

(Hint: expand equation (3.30) in a power series.) Derive therefrom that the
particle’s energy is given by

and its velocity is given by

where
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(3.7) For a particle with momentum p and energy show that

If the particle is subject to a force derived from a static potential
U = U(x), show that the “total energy” W = E + U is a constant of the
motion.

For a central potential U = U(r) = U(r), show that the angular momen-
tum is also a constant of the motion. Therefore, r can be
parametrized in the form where is a constant unit vector in the
i-plane, and

To get an equation for the orbit in the parametric form use this to
prove that

Then establish and obtain the differential equation

For a Coulomb potential U = –k/r, write and differentiate to
get the equation in the form

This has the same form as the equation for a harmonic oscillator with natural
frequency subject to a constant force, so it is easily
solved. Show that for bounded motion in the nonrelativistic limit,
the solution reduces to an elliptical orbit. The solution for can be
interpreted as a precessing ellipse. Show that in one period the periapse
precesses by the amount

Compare this with the perturbation calculation of relativistic precession in
Chapter 8.
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When applying these results to atoms, we must use quantum theory which
requires that the angular momentum is quantized in units of Plank’s constant

The greatest precession occurs in hydrogen for In this case we
have where e is the electron charge. Then

where is known as the “fine structure constant.”
Thus, relativity predicts a very slow precession of electron orbits in atoms.
Though the energy of such precession is comparatively small, it is neverthe-
less readily measured by spectroscopists, and it provided one of the first high-
precision tests of relativity.

9-4 Energy-Momentum Conservation

We have seen how Newton’s First and Second Laws can be given a reformulation
consistent with relativity theory. But Newton’s Third Law presents serious difficul-
ties which even today have not been resolved to the satisfaction of all physicists.
For one thing, the relativity of distant simultaneity makes action at a distance an
ambiguous concept. The ambiguity is evident in Figure 4.1 depicting a repulsive in-
teraction between two particles. The question arises, is the force exerted by particle
1 on particle 2 at X equal and opposite to the force exerted by particle 2 on particle
1 at A? or at B? or at C? or wherewhen?

The usual resolution to this difficulty is to dispense with the idea of action at
a distance and assume that the Third Law applies only to the interaction of
objects at a spacetime point. This is called the principle of local interaction. The
principle applies to the interaction between two charged particles in the following
way. At some spacetime point particle 1 transfers a unit of 4-momentum to the
electromagnetic field in accordance with the Third Law. Then the field propagates
in  accordancewith Maxwell’sequation to particle 2  to which it transfers  some  or all of
the 4-momentum. Evidently the principle of local interaction requires the existence
of fields, electromagnetic or whatnot, to mediate the interaction between particles.
And note that this conforms to the idea of causality, for since electromagnetic fields
propagate with a finite speed, in any inertial system there will be a finite delay
between the emission of 4-momentum by one particle (“the cause”) and its absorption
by another (“the effect”). However, profound difficulties with “self-interaction”
appear when one attempts to incorporate these ideas into a complete and consistent
quantitative theory. Fortunately, we can get useful information from the Third Law
without becoming embroiled in these difficulties.

In Newtonian mechanics the Third Law can be formulated in terms of momentum
exchange with the consequence that the total momentum of an isolated system is
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Figure 4.1. The 4-velocity of particle 1 at point A determines an “instantaneous inertial
system” with time axis tangent to the particle’s history at A. In this system, event A is
simultaneous with event X on the history of particle 2. But in the instantaneous system

of particle 2 at X, event C is simultaneous with X. And to the observer, event B is
simultaneous with X. Thus, the notion of “simultaneous interaction” between particles is
ambiguous.

conserved. In relativity theory this must naturally be generalized to 4-momentum
exchange. For example, the equation

describes the rate at which 4-momentum is transferred from an electromagnetic field
F to a particle of charge q. The local Third Law then requires that there exist
another equation describing the action of the particle on the field, that is, the rate
at which the field loses (or gains) 4-momentum. There is such an equation, but it
would take us too deeply into electromagnetic theory to consider here. All we need
is the general energy-momentum conservation law: The total 4-momentum of
an isolated system is a constant of the motion in every inertial system. We
shall see that this law leads to the spectacular conclusion that mass can be converted
into energy. Einstein himself regarded this mass-energy equivalence as the most
important consequence of relativity theory.

To apply the energy-momentum conservation law we must be able to evaluate
the 4-momentum. This can be quite difficult, if not impossible, for a system of
interacting particles, but it is easy for a system of free particles. For this reason
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Figure 4.2. The total 4-momentum P for an isolated system of particles is conserved no
matter what the nature of their interactions. In the asymptotic regions where the particle
interactions are negligible, P is simply the sum of the 4-momenta for all the particles on a
specified hyperplane (specified by the condition t = const., for example). Because the
are constant within an asymptotic region the sum is actually independent of the chosen
hyperplane, so the “relativity of distance simultaneity” does not lead to any ambiguity in
the result.

the energy-momentum conservation law is especially useful in problems with free
particles in the initial and final states. For example, in the reaction (or collision)
illustrated in Figure 4.2 there are two free particles with 4-momenta, and in
the initial state, say at time in a particular frame. So the total 4-momentum of the
system is

After the particles collide there are four free particles in the final state (at time
and the 4-momentum of the system is
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Energy-momentum conservation tells us

Therefore,

where the indices i and f refer to particles in initial and final states respectively.
Using we can separate scalar and vector parts to get energy
conservation

and momentum conservation

Of course, we could separate energy and momentum conservation in Newtonian
mechanics. The difference here is that the energy and momentum of each particle is
related to its mass by the Lorentz-invariant relation

The reaction produces a change in the total mass of the system given by

This is equivalent to an energy

called the Q-value for the reaction. A reaction is said to be exothermic if Q > 0 or
endothermic if Q < 0. The Q-value is a measure of the mass converted into kinetic
energy by the reaction. We can prove this by substituting for each
of the particles into (4.5a) to get the change in kinetic energy

Thus, an increase in kinetic energy corresponds to a decrease in mass and vice-versa.
It should be clear that the above relations hold for any number of particles in the

initial and final states, though one seldom encounters reactions with more than one
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or two particles in the initial state. Furthermore, the relations apply to any kind of
reaction, be it chemical, nuclear or subnuclear. In chemical (i.e. atomic) reactions the
mass changes are so small as to be unobservable in most circumstances, but Q-values
are readily measured, often as changes in temperature. Though the conservation
laws of the nonrelativistic theory are adequate for chemical reactions, it is well to
remember that the Q-values are actually due to changes in mass.

The Q-value for an atomic reaction is on the order of an electron volt, but for a nu-
clear reaction the Q-value is of the order of an Me V. (See Table 4.1 for an explanation
of units.) Consequently, mass changes in nuclear reactions are readily detectable,
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and the relativistic law must be used to account for energy-momentum balance with
an accuracy of better than a few percent. Nuclear masses can be measured to six or
seven significant figures with a mass spectrometer, so the relativistic conservation
law has been severely tested on many occasions, and it is now accepted without
question as a major tool of nuclear physics. Actually, evidence for mass-energy
equivalence appeared in chemistry long before anything was known about nuclear
structure. It was noted that atomic masses are approximately integral multiples of
the smallest atomic mass, that of hydrogen. We now know that this is because each
atomic nucleus contains an integral number of protons and neutrons, and it can be
explained quantitatively by mass-energy conversion. Consider the element helium,
for example. The rest energy of the helium nucleus  (also called an alpha
particle) is

From Table 4.2 the rest energy (mass) of two protons and two neutrons is

So the difference is

This is the binding energy of an  the energy which must be supplied to
decompose it into its constituents. The fraction

shows that the mass of a neutral helium atom differs from the mass of four protons
(or hydrogen atoms) by about one percent. The electron masses (Table 4.2) are
negligible in this estimate.

It is now well established that atoms and atomic nuclei are composed of electrons,
protons, and neutrons, though there is still some doubt that protons and neutrons
actually retain their identities when they are bound in a nucleus. These basic building
blocks of matter are called elementary particles, though there is reason to believe
that the proton and neutron are themselves composed of particles called quarks,
which are even more elementary. The structure of the proton is probed in reactions
with Q-values on the order of 1 GeV and higher. In such high-energy reactions a
bewildering variety of new particles are created. Most of these “elementary particles”
are unstable and soon decay or react violently with another particle. Table 4.2 lists
the most stable elementary particles and some of their properties. The interactions
among the elementary particles are imperfectly known, but the relativistic energy-
momentum conservation law applies rigorously nevertheless.
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Reaction Threshold

A collision between two elementary particles may produce new particles if sufficient
energy is available. The total 4-momentum of the collision is

where and are 4-momentum of the colliding particles. The reaction energy
mc2 is defined by
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The threshold for a particular reaction is defined by the condition

In other words, at the threshold the reaction energy is equal to the sum of the rest
energies of all particles in the final states. Now suppose that particle 1 is a projectile
fired at the target particle 2 at rest. The kinetic energy of the projectile needed
to produce the reaction is called the threshold energy. It is determined by (4.12),
which can be written in the form

since  because   Writing

and substituting

into (4.14), we obtain

This shows that the threshold energy must be greater than the Q-value
for an endothermic reaction, more than twice as great if It is thus
impossible to convert all the initial kinetic energy into mass.

One of the spectacular events in high-energy physics is the production of particle-
antiparticle pairs. For example, the production of a proton-antiproton pair in the
reaction

The threshold energy for this reaction is easily found from (4.16); thus

Particle Decay

Many elementary particles are unstable and decay into two particles (Table 4.2). For
2-particle decay we have the conservation law
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where the total reaction 4-momentum P is identical to the 4-momentum of the
initial particle. It is of interest to determine how the kinetic energies of the products
depend on the masses. The kinetic energies may be needed to account for subsequent
reactions or simply to identify one of the particles. For example, in the decay

the hyperon is uncharged, so it cannot be observed directly, but its mass can be
inferred from the energies of the proton and the pion.

The decay energy can be calculated in essentially the same way as we calculate
the threshold energy. Assuming that the particle is at rest before decay, we get an
equation for the kinetic energy of one of the products from

which gives us

A similar equation obtains for the kinetic energy of the other particle. Write
and use

(i = 1, 2) for the kinetic energies of the decay products in the rest system of the
parent. Applying this to the (4.18), we get

Radiative Emission

The result (4.19) can be applied also to the emission of light from an atom, but to
do it we need two basic properties of the photon from quantum theory. According
to quantum theory a single excited atom does not radiate light in all directions as
might be supposed from classical theory; rather, it emits a single pulse, or photon, in
a definite direction. Relativity then tells us that the photon travels along a lightlike
path, so its 4-momentum P satisfies
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Thus, the photon mass is zero. From (4.20) it follows that

where, of course, Recalling (3.12), we note that (4.21) applies to particles
of any mass. Also, from the relation we conclude that E = K if
m = 0, in other words, all the energy of a massless particle is kinetic energy.

The second thing that quantum theory tells us about a photon is that it has a definite
circular frequency related to its energy by Planck’s law

where and

is Planck’s constant. Consequently, the 4-momentum of a photon can be written

where is a unit vector in the direction of motion.
Returning now to consider radiative emission from an atom, we take for

the mass of the photon in (4.19); hence  is the change
in rest energy of the atom, and, for the kinetic energy of the emitted photon,
(4.19) gives us

Thus, the light emitted from an atom carries information about the “allowed” energy
levels of the atom. For atomic electron transitions is typically on the order of
an electron volt, so the term in (4.24) is negligibly small. However, for
nuclear transitions approaches the order of an MeV, so the term is significant.
The high-energy photons emitted from nuclei are called

When a free atom emits a photon it recoils. If the atom is initially at rest, the
momentum of the recoiling atom is equal and opposite to the momentum of
the photon. Hence, from (4.21) the recoil velocity is given approximately by

For a radiating atomic nucleus bound in a crystal, quantum mechanics requires that
under certain circumstances it cannot recoil independently of the rest of the crystal,
so we must take the mass m here to be the mass of the entire crystal. Since this
mass is so huge, the recoil is completely negligible, and according to (4.24) the
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frequency of the emitted photon is given precisely by This process is
called recoilless emission or the Mössbauer effect after the man who received a
Nobel Prize for discovering it. It produces radiation extremely sharp in frequency,
so it has been used in many experiments for high-precision measurements.

The  Compton  Effect

The scattering of photons by free electrons is called the Compton Effect. For this
reaction,

the energy-momentum conservation law is

where

and

are the energy-momentum vectors of the photons, and

where m is the electron mass.
The most interesting aspect of the Compton effect is the shift in frequency (energy)

of the photon produced by the scattering. We could determine this by breaking the
4-momentum conservation law (4.26) into separate conservation laws for energy and
momentum, but it is more efficient to work directly with Lorentz invariants as in our
treatment of decay processes. We may assume that the electron is initially at rest, so

Then, by “squaring”

we obtain

or

Introducing the scattering angle  by

we can write the result in the form
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Or, since frequency is related to wavelength by the result can be
expressed as a shift in wavelength

For light scattered through this reduces to

This quantity is called the Compton wavelength of the electron. The verification of
the wavelength shift (4.29) by Arthur Compton in 1923 did more than anything else
to convince physicists that photons are real things.

Pair Annihilation

When an electron collides with its antiparticle, the positron the two
particles annihilate to produce a pair of photons. Note that this reaction

differs from the Compton process (4.25) by a replacement of particles in the initial
state with their antiparticles in the final stage, or vice-versa. This important general
relation is called crossing symmetry.

If the electron and positron are initially at rest in the annihilation process (4.31),
then momentum conservation implies that the momenta of the two photons are equal
and opposite, so their energies are equal. Then, conservation of energy implies

Hence the wavelength of each photon is the Compton wavelength This
is the wavelength of a photon with the same energy as the rest energy of an electron.

The annihilation process shows that the entire rest mass of a particle can be
converted into kinetic energy. This establishes Einstein’s formula as the
correct value for the total energy of an isolated system, and corroborates the idea
that all mass can be regarded as a form of energy. According to Newtonian theory,
only differences in energy can be measured, so the total energy is defined only up
to an arbitrary constant. Relativity theory thus goes beyond Newtonian theory by
establishing an absolute value for the energy of an isolated system.

Center of mass and Laboratory Systems

The 4-momentum P for any two-particle collision has been defined in terms of the
initial particle 4-momenta and by
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Such an equation holds in any inertial system, but its scalar (energy) and vector (mo-
mentum) parts are different in the various systems. As in the nonrelativistic theory
of scattering discussed in Chapter 4, two inertial systems are especially important,
the laboratory (LAB) and the Center of Mass (CM) systems.

The LAB system is defined as the system in which the target particle is at rest. This
can be formulated mathematically by writing so (4.32) can be written

Let us distinguish CM variables by primes, writing

The CM system is defined by the condition that the momenta of the colliding particles
are equal and opposite. So the vector part of (4.34) reads

while the scalar part is

Thus, is a positive scalar, the reaction energy for the collision.
The LAB and CM systems are related by a boost

So the parameters of the boost are given explicitly by

The LAB and CM 4-momenta of the particles are now related by

or the inverse transformation
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The scalar and vector equations relate the LAB and CM energies and momenta
directly. The LAB and CM 4-momenta for the products of a collision will also be
related by (4.38). Let us examine the case of elastic scattering.

Elastic Scattering

A collision is said to be elastic if the number of particles and the particle masses
are conserved. Thus, for any 2-particle elastic collision we have 4-momentum
conservation

along with the invariants

Elastic scattering was treated nonrelativistically in Sec. 4-7. As explained there, the
relation between scattering angles in CM and LAB systems is particularly important
for relating theory to experiment, so we shall work it out in relativistic theory as well.
In some respects, the relativistic theory is actually simpler than the nonrelativistic
theory, as we shall see.

In the CM system, the separate energy and momentum conservation equations are

The CM  scattering angle is defined by

where i is the unit bivector for the scattering plane. With a little algebra, one can
prove from (4.41 a,b) and (4.42a,b) that the CM energy of each particle is separately
conserved, that is,

and

Consequently, and the effect of the scattering is simply to rotate the
momentum vectors, as described by

Equations (4.44a) and (4.44b) can be combined to represent the scattering as a
Lorentz transformation of the 4-momenta for each particle; thus

and
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where

These equations describe the elastic scattering completely in terms of the single
parameter

We can also describe the scattering as a Lorentz transformation in the LAB system.
Combining the passive LT (4.38) with the active LT (4.45a), we obtain

Thus,

where

with given by (4.37) and

because as a consequence of (4.39a) and as a consequence of
the definition of i by (4.43).

Now we can express the LAB energy and momentum transfer in terms of the CM
variables by evaluating the scalar and vector parts of (4.46a). This is most easily
done by using (4.37) in the form

Thus, using we obtain

And using (4.37), we find after some algebra,

where

and
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From the scalar part of (4.49) we find the fractional kinetic energy loss

From the vector part of (4.49) we find

where is given by (4.50 a,b), and where

and is the LAB scattering angle defined by

Equation (4.51) for the fractional energy loss is the generalization of equation
(4-7.15), to which it reduces in the nonrelativistic limit. Its consequences are similar
to those noted in Section 4-7. For example, for a head-on collision the energy loss
has its maximum value

From this we may conclude that if all the energy will be transferred to the
target in a head-on collision in the relativistic as well as the nonrelativistic theory.

Equation (4.52) relating LAB and CM scattering angles generalizes equation (4-
7.21), to which it reduces in the nonrelativistic limit. Therefore its consequences for
low-energy scattering are similar to those discussed in Section 4-7. As the energy

increases, the factor in (4.52) increases without bound from its low-energy
value Consequently, the LAB angle  corresponding to a given CM angle
decreases with increasing energy. Therefore the distribution of scattering particles
becomes increasingly concentrated about the forward direction

9-4 Exercises

(4.1) A particle of mass and velocity collides with a particle of mass
at rest, and the two particles coalesce. Determine the mass of the composite
particle and show that its velocity is given by
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(4.2) For the reaction calculate the threshold frequency in the
rest system of the initial electron.

(4.3) A pion has velocity when it decays into a muon with velocity and a
neutrino. Determine the energy and velocity of the neutrino. What is the
Q-value for this decay? (Ans. 33.9 MeV.)

(4.4) Prove that a high-energy photon cannot decay spontaneously into an electron-
positron pair.

(4.5) According to Newtonian mechanics, if a particle of mass m collides elastically
with a particle of the same mass at rest, the velocities of the emerging particles
are orthogonal. To compare this with the prediction of relativistic mechanics,
derive the following expression for the angle  between emerging particles
as a function of initial kinetic energy K and its change

For a fixed K, graph as a function of

(4.6) What kinetic energy must an electron have to be able to impart half of it to a
proton initially at rest?

(4.7) Determine the maximum possible kinetic energy of each particle emitted in
the decay of a muon at rest.

(4.8) A particle of mass m and kinetic energy K is scattered by a particle of like
mass at rest. Derive the following expression for the fractional energy loss

where is the LAB scattering angle.

(4.9) Suppose a positron annihilates with an electron at rest. Show that Compton’s
formula (4.28) describes the resulting photons. Determine the kinetic energy
of the positron from the photon frequencies.

(4.10) Prove that the CM energy of each particle is separately conserved in 2-particle
elastic scattering.
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9-5 Relativistic Rigid Body Mechanics

So far we have developed relativistic dynamics only for structureless point particles.
But every known object, even an electron, has some internal structure; so something
more than a point-particle model is needed to describe them. We have seen that in
Newtonian mechanics the simplest model for an extended object is a rigid body. In
this section we seek a relativistic generalization of that model.

In the nonrelativistic theory of Chapter 7, the principal axes of a rigid body were
represented by a right-handed set of three orthonormal vectors  so that the
rotation of the body with rotational velocity is described by the equations

(for k = 1,2,3). This set of equations can be reduced to a single spinor equation

by writing

where R†R = 1 and the are fixed vectors.
These equations can be adopted also in the relativistic theory to describe a spinning

rigid body with its center of mass at rest in a given inertial system. In doing this one
avoids any analysis of internal forces in the body, just as in the nonrelativistic theory.
One should keep in mind that the magnitude of the angular velocity is limited by the
requirement that the speed of a material particle cannot exceed the speed of light. Of
course, a solid body will be increasingly deformed the faster it spins, and it will fly
apart before the motion of any part comes close to the speed of light. The rigid body
model ignores such deformation in the relativistic theory just as in the nonrelativistic
theory. The above equations can be regarded as a mathematical definition of rigid
body motion. The question of how well the rigid body describes any particular real
object is set aside for the time being.

Our equation for the rigid body describes the attitude of the body without reference
to its size or shape. So we regard the body as a particle located at a single point with
structure represented by the attached to that point. The 4-velocity for the body
at rest is To describe a rigid body in motion we give the body a boost to a
4-velocity

where L = L† and as before. This must be accompanied by a boost of the
principal axes to
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where

and, of course, Note that

Thus, the 4-velocity V and the principal axes of a body in motion are determined
by a single “Lorentz spinor” U, as expressed by (5.5) and (5.7). The spinor U
determines a Lorentz transformation relating the moving body to a reference body
with principal axes at rest in a given inertial system. Equation (5.6) expresses
the decomposition of this Lorentz transformation into a spatial rotation followed by
a boost in a way we have analyzed before.

Any motion of a rigid body can be described by a spinor function  of
the proper time. This determines a 1-parameter family of Lorentz transformations
which specify the 4-velocity and the principal axes at each
time according to (5.5) and (5.7). The spinor equation of motion for the body can
be put in the form

where the overdot indicates differentiation with respect to proper time, that is,
By differentiating we find that

From this we can conclude (see Eq. (1.11a)) that  has only vector and bivector
parts. Thus we can write

where and are vectors. This shows that  has 6 independent components. Let
us refer to as the rotational 6-velocity, since it generalizes the rotational
3-velocity in (5.2).

The 6 components of correspond to the 6 degrees of freedom in the spinor U.
In the non-relativistic theory one has separate equations for the 3 translational and
the 3 rotational degrees of freedom of a rigid body. Our relativistic theory unites
them in the single equation (5.8).

Using (5.8) to differentiate (5.5) and (5.7) we obtain

and

It will be noted that for equation (5.10a) becomes the equation of
motion (3.26) for a point charge. Thus, the electromagnetic field  can
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be interpreted as a rotational velocity. In this case (5.10b) describes the spinning of
a charged particle with some kind of internal structure. We shall see, in fact, that
this is a useful model for an electron or a muon.

Whatever the forces and torques on a body, they determine some functional form
for from which the motion can be deduced. The expression for contains all
the dynamics for a rigid body. To see how to incorporate dynamics into we need
to see how internal and external dynamics can be separated. One way to make the
separation is to split into two parts;

where

and

Equation (5.11b) shows that is completely determined by the translational motion
of the body, in other words, by the history of the body, from which

and can be computed. Conversely, the translational motion is
completely determined by and unaffected by for by inserting
(5.11 a,b,c) into the translational equation of motion (5.10a), we obtain

We may then conclude that describes rotational motion which is independent of
the body’s translational motion. This tells us how to describe the acceleration of a
rigid body without rotation; we simply take so that

This kind of motion is sometimes called Fermi-Walker Transport. Note that it does
not mean that the principal axes are constant. Indeed, for this case (5.10b) becomes

This equation is needed for each to maintain the orthogonality condition
as it moves along the particle history.

An alternative way to separate translational and rotational motions is to decompose
the motion into a rotation and a boost by writing U = LR as in (5.6). The main
problem then is to determine the relation of the rotational 3-velocity in (5.2) to
the 6-velocity To accomplish this we differentiate U = LR and use (5.2) to get
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Comparison with (5.8) then gives us

or

By differentiating we find that

Using this in the preceding equation we obtain

We still need to relate to and express it in terms of the velocity and acceler-
ation.

To express in terms of the velocity v and acceleration
from we form

The scalar part of this expression must vanish since implies
this gives us

which is, of course, what we would get by differentiating The
remaining part of the expression gives us the result

Now to express in terms of v and we use

obtained from (5.4) (see Exercise 1.1). Differentiating this and using (5.18) and
(5.19), we obtain
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The vector part of this expression along with (5.16) and (5.19) gives us

The bivector part along with (5.19) gives us

Now we can use (5.22) in (5.17) to get

where

and

This shows that the rotational frequency can be decomposed into a part
determined by and a part determined by For Fermi-Walker transport

and

This tells us that an acceleration of the body induces a rotation of the according
to (5.1). This rotation is called the Thomas precession after the man who identified
this relativistic effect. Note that for linear acceleration, so the Thomas
precession arises from a change in the direction of motion.

To interpret the Thomas precession correctly, one must realize that the do
not represent principal directions in an inertial system. The represent principal
directions of the body moving in a given inertial system. According to (5.5), the
are related to the principal directions in the rest system of the body by a one-
parameter family of Lorentz transformations The rest
system of an accelerated body is not an inertial system, though it can be regarded as a
one-parameter family of inertial systems. The Thomas precession can be interpreted
as a rotation induced by shifting from one of these inertial systems to another.

Particles with an Intrinsic Magnetic Moment

The most important applications of the general theory we have just developed are
to atoms and elementary particles such as the electron and the muon. These tiny
objects can be accelerated in the laboratory to relativistic speeds, and the effects of
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such accelerations on their internal structure provide sensitive tests of our models for
them. To be sure, the complete theory of these objects requires quantum mechanics,
but for many applications the theory can be reduced to classical models such as the
one we consider here.

Section 7-3 considers the equation

describing the precession in a magnetic field of the intrinsic spin (angular mo-
mentum) s of a particle with magnetic moment and with e as the
electron charge and g-factor g depending on the structure of the object. Here we
determine the relativistic generalization of this equation.

The spin s is a vector of fixed length in the rest system of the particle, so it can
be treated in exactly the same way that we treated the principal axes previously.
Therefore, in analogy to (5.5), the spin s in the rest system is related to the 4-spin S
in an inertial system by the boost

Correspondingly, the effective electromagnetic field  in the rest system
is related to the field by

Hence

Transforming this back to the inertial system we find

Thus, introducing the notation

in exact analogy with (5.11 b,c), we can write

where the Lorentz transformation has been evaluated in terms of the velocity as in
(3.51). Now we can get explicit expressions for and in terms of the impressed
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electromagnetic field  by identifying with the angular velocity in
(5.24) and comparing (5.27) with (5.23c). Thus we obtain

and

These equations specify the torque exerted by the electromagnetic field.
We still need to ascertain the effect of forces accelerating the particle, that is, we

need to determine and the corresponding Thomas frequency This requires
some additional assumptions. The analysis here will be limited by the condition
that the magnetic moment does not affect the acceleration of the particle. It can be
shown that this condition obtains for atoms when the field is constant,
and for electrons it appears to hold under all conditions. Subject to this proviso, we
may assume that if the particle has charge e, then its acceleration is the same as that
of a structureless point charge. Comparing the equation of motion (3.26) for a point
charge with (5.12), we can conclude that

We have seen that this is equivalent to the equation of motion

Substituting either of these expressions into (5.23b), we obtain

Now we can add (5.28) and (5.31) to get

The equation of motion for the 3-spin is accordingly

This is the desired generalization of the nonrelativistic equation (5.24). It was found
first by L.H. Thomas in 1927. Writing



Relativistic Mechanics 657

where is the initial value of the 3-spin, we can reduce (5.34) to the simpler spinor
equation

In spite of the complicated appearance of in (5.32), integration of (5.35) for
constant fields is straightforward, since for this case we have already obtained explicit
expressions for and v as functions of proper time in Section 9-3. Just the same,
there is a much simpler approach to which we now turn.

It is certainly not obvious from looking at (5.32) and (5.33) that they are consistent
with a covariant description of spin precession, but we know that they are from the
way we derived them. A manifestly covariant description of spin precession is
obtained by adding (5.29) and (5.30) to get

The covariant equation of motion for the 4-spin is accordingly

This equation with given by (5.36) is known as the Bargmann-Michele-Telegdi
(BMT) equation. Of course, it can be reduced to the simpler spinor equation

with

This reduction of the BMT equation to a spinor equation was not available to its
originators because they used a different mathematical formalism.

The spinor equation (5.38) can be regarded as the fundamental relativistic equa-
tion of motion for a charged particle with intrinsic magnetic moment in a constant
electromagnetic field. For so-called Dirac particles, such as the electron and the
muon, the equation holds even when F is not constant, but so far applications have
been limited to the case of constant F. Although we cannot go into the theory here,
it should be mentioned that the Dirac theory of the electron implies that g = 2, in
which case (5.38) reduces to the simple form

Experiment supports this prediction to high accuracy. This seems to be telling
us something fundamental about the structure of the electron, but exactly what is
still a matter for conjecture. Relativistic quantum electrodynamics predicts small
deviations from g = 2 for the electron and the muon, although the deviations are
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smaller than one part in ten million, and found to be in good agreement with theory.
This is a sensitive test of the theory, so there is continued interest in improved
measurements of g.

The spin precession can be calculated by solving the spinor equation (5.35) for R
or equation (5.38) for U. The latter equation not only looks simpler, it is sometimes
easier to solve, and it determines both the velocity and the spin. Its solution may be
facilitated by putting it in the form

where For constant F we see immediately that the solution can be
put in the form

where is the initial 4-velocity and satisfies

Note that (5.42) differs from (5.35) in describing only the “anomolous part” of the
rotation. Likewise, differes from in (5.27) by

When E = 0, both and the angle between v and B remain constant. Then if the
initial velocity is orthogonal to B, the double cross product in (5.43) reduces to

and is constant if R commutes with B. Subject to these initial conditions for
motion in a pure magnetic field the solution (5.41) takes the form

where from (3.46),

is the “relativistic frequency” and
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Figure 5.1. The spin vector, initially collinear with the velocity, is shown at successive
points on a circular orbit in a magnetic field B (for g>2).

We can put (5.44) in the form U = LR, where

and

Using (5.46b) in (5.34), we get the spin s as an explicit function of time.
This result has been used to measure g by measuring the spin precession. The first

factor in (5.46b) gives the precession of the velocity with the cyclotron frequency
Therefore, the second factor describes a precession of the spin with respect to

the velocity with frequency For particles injected into the magnetic field with
v perpendicular to B the orbit is circular with period Therefore, with
each complete circuit the spin rotates through an angle

(Fig. 5.1). The angle between the spin and velocity can be magnified by passing
through many circuits.

For an arbitrary constant field F it is necessary to integrate (5.42) to evaluate
in (5.41). The integration is straightforward, because the time dependence of is
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determined by in (5.43), and that is already known from (3.67). To express the
result in terms of lab time t, one needs (3.71) to convert from proper time For the
general case the result is too messy to be worth exhibiting here.

9-5 Exercises

(5.1) What sense does it make to compare directions of the magnetic field B and
the particle velocity v in the LAB system with the direction of the particle’s
spin s in its rest system?
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Spherical Trigonometry

In Section 2-4 we saw how efficiently geometric algebra describes relations
among directions and angles in a plane. Here we turn to the study of such
relations in 3-dimensional space. Our aim is to see how the traditional subjects
of solid geometry and spherical trigonometry can best be handled with
geometric algebra. Spherical trigonometry is useful in subjects as diverse as
crystalography and celestial navigation.

First, let us see how to determine the angle that a line makes with a plane
from the directions of the line and the plane. The direction of a given line is
represented by a unit vector while that of a plane is represented by a unit
bivector The angle between and is defined by the product

where i is the unit righthanded trivector, is a unit vector and The
vector and trivector parts of (A.1) are

Our assumption that i is the unit righthanded trivector fixes the sign of
so, by (A.2b), is positive (negative) when is righthanded (left-
handed). The angle α is uniquely determined by (A.1) if it is restricted to the
range
 Equations (A.2a, b) are perfectly consistent with the conventional in-

terpretation of and as components of projection and rejection, as
shown in Figure A.1. Thus, according to the definition of projection by Equation
(4.5b) of Section 2-4, we have

We can interpret this equation as follows. First the unit vector is projected
into a vector with magnitude Right multiplication by  then
rotates the projected vector through a right angle into the vector which
can be expressed as a unit vector times its magnitude Thus, the

661
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product is equivalent to a projection of into the  plane followed by a
rotation by

To interpret the exponential in (A.1), multiply (A.1) by to get

This expresses the unit bivector as the
product of orthogonal unit vectors and
The factor has rotated into the  plane.
We recognize as a spinor which rotates
vectors in the plane through an angle
The unit vector specifies the axis of rota-
tion.

Now let us consider how to represent the
angle between two planes algebraically. The
directions of two given planes are represented
by unit bivectors and We define the dihedral angle c between and by
the equation

Both the magnitude of the angle (with ) and the direction
of of its plane are determined by (A.3). Separating (A.3) into scalar and
bivector parts, we have

Note that for c = 0, Equation (A.3) becomes so since

The geometrical interpretation of (A.3) is indicated in
Figure A.2, which shows the two planes intersecting in a
line with direction The vector is therefore a com-
mon factor of the bivectors and Consequently
there exist unit vectors  and orthogonal to such that

Note that the order of factors corresponds to the orien-
tations assigned in Figure A.2. The common factor
vanishes when and are multiplied;

Note that this last equality has the same form as Equation (4.9) with the unit

Fig. A.1. The angle between a vec-
tor and a bivector.

Fig. A.2. Dihedral Angle.
Note that the orientation of

is chosen so it opposes
that of if is brought into
coincidence with by ro-
tating it through the angle
c.

and       have the factorizations
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bivector of the plane expressed as the dual  of the unit vector It
should be clear now that (A.4b) expresses the fact that  is a bivector
determining a plane perpendicular to the line of intersection of the and

planes and so intersecting these planes at right angles.

Fig. A.3. A spherical triangle. Fig. A.4. Altitudes of a spherical
triangle.

Now we are prepared to analyze the relations among three distinct direc-
tions. Three unit vectors can be regarded as vertices of a spherical
triangle on a unit sphere, as shown in Figure A.3. The sides of the triangle are
arcs of great circles determined by the intersection of the circle with the
planes determined by each pair of vectors. The sides of the triangle have
lengths A, B, C which are equal to the angles between the vectors This
relation is completely described by the equations

where The unit bivectors are directions
for the planes determining the sides of the spherical triangle by intersection
with the sphere. Of course, we have the relations

as well as

The angles a, b, c of the spherical triangle in Figure A.3 are dihedral angles
between planes, so they are determined by equations of the form (A.3),
namely,
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where
Equations (A.5a, b, c) and (A.7a, b, c) with (A.6a, b) understood deter-

mine all the relations among the sides and angles of a spherical triangle. Let
us see how these equations can be used to derive the fundamental equations of
spherical trigonometry. Taking the product of Equations (A.5a, b, c) and
noticing that

we get

This equation can be solved for any one of the angles A, B, C in terms of the
other two. To solve for C, multiply (A.8) by to get

If the exponentials are expanded into scalar and bivector parts and (A.7a) is
used in the form then (A.9) assumes the expanded form

Separating this into scalar and bivector parts, we get

Equation (A.10) is called the cosine law for sides in spherical trigonometry. It
relates three sides and an angle of a spherical triangle and determines any one
of these quantities when the other two are known.

Since the value of C can be determined from A and B by (A.10), the
direction  is then determined by (A.11). Thus equations (A.10) and (A.11)
together determine C from A and B. Nothing resembling Equation (A.11)
appears in traditional spherical trigonometry, because it relates directions

whereas the traditional theory is concerned only with scalar relations.
Of course, all sorts of scalar relations can be generated from (A.11) by
multiplying by any one of the available bivectors, but they are only of
marginal interest. The great value of (A.11) is evident in our study of
rotations in 3 dimensions in Section 5-3.

We can analyze consequences of (A.7a, b, c) in the same way we analyzed
(A.5a, b, c). Observing that



Spherical Trigonometry 665

we obtain from the product of Equations (A.7a, c, b)

This should be compared with (A.8). From (A.12) we get

The scalar part of this equation gives us

This is called the cosine law for angles in spherical trigonometry. Obviously, it
determines the relation among three angles and a side of the spherical
triangle.

The cosine law was derived by considering products of vectors in pairs, so
we may expect to find a different “law” by considering the product
Inserting from (A.5b) and the corresponding relations from
(A.5c, a) into we get

We can find an analogous relation from the product Using (A.7b), we
ascertain that

Obtaining the corresponding relations from (A.7a, b), we get

The ratio of (A.15) to (A.16) gives us

This is called the sine law in spherical trigonometry. Obviously, it relates any
two sides of a spherical triangle to the two opposing angles.

We get further information about the spherical triangle by considering the
product of each vector with the bivector of the opposing side. Each product
has the form of Equation (A.1) which corresponds to Figure A.1. Thus, we
have the equation

The angles are “altitudes” of the spherical triangle with lengths
as shown by Figure A.4. If the trivector parts of (A.18a, b, c) are

substituted into (A.15) and (A.16) we get the corresponding equations of
traditional spherical trigonometry:
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This completes our algebraic analysis of basic relations in spherical trigo-
nometry.

Exercises

(A.1) Prove that Equation (A.8) is equivalent to the equations

and

(A.2) The spherical triangle satisfying Equations (A.5) and (A.7)
determines another spherical triangle by the duality
relations

The triangle is called the polar triangle of the triangle
because its sides are arcs of great circles with  and as

poles.
Prove that the sides of the polar triangle are equal to

the exterior angles supplementary to the interior angles  of
the primary triangle, and, conversely, that the sides A, B, C of the
primary triangle are equal to the exterior angles supplementary to
the interior angles of the polar triangle.

From Equations (A.18a, b, c) prove that corresponding altitudes
of the two triangles lie on the same great circle and that the distance
along the great circle between and is

(A.3) For the right spherical triangle with prove that

(A.4) Prove that an equilateral spherical triangle is equiangular with angle
a related to side A by

(A.5) Assuming (A.5a, b, c), prove that
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Hence,

Use this to derive the sine law, and, from (A. 19), expressions for
the altitudes of a spherical triangle.

(A.6) Prove that

Assuming (A.5a, b, c) use the identity

to prove that

Note that this can be used with (A. 19) to find the altitudes of a
spherical triangle from the sides.

(A.7) Find the surface area and volume of a parallelopiped with edges of
lengths a, b, c and face angles A, B,

(A.8) Establish the identity

Note that the three terms differ only by a cyclic permutation of the
first three vectors. Use this identity to prove that the altitudes of a
spherical triangle intersect in a point (compare with Exercise
2–4.11a).

(A.9) Prove that on a unit sphere the area of a spherical triangle with
interior angles a, b, c (Figure A.3) is given by the formula

Since is given by the difference
between the sum of interior
angles for a spherical triangle
and a plane triangle, it is often
called the spherical excess.
Hint: The triangle is determined
by the intersection of great cir-
cles which divide the sphere into
several regions with area

or as shown in Figure A.5.
What relation exists between the
angle a and the area Fig. A.5. Spherical excess.
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Elliptic Functions

Elliptic functions provide general solutions of differential equations with the
form

where f(y) is a polynomial in Such equations are very common in
physics, arising frequently from energy integrals where the left side of the
equation comes from a kinetic energy term.

Since different polynomials can be related by such devices as factoring and
change of variables, it turns out that the general problem of solving (B.1) for
a large class of polynomials can be reduced to solving a differential equation
of the standard form

for and The solution of this equation for the condi-
tions

is denoted by

(B.4).

(Pronounced “ess-en-ex”). Of course, this function depends on the value of
the parameter k, which is called the modulus.

Direct integration of (B.2) produces the inverse function

668
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It is an odd function of y, which increases steadily from 0 to

as y increases from 0 to 1. Consequently, is an odd function of x, and
it has period 4K; that is

The integral (B.6) is called a complete elliptic integral of the first kind. We can
evaluate it by a change of variables and a series expansion:

The function K(k) is graphed in Figure B.2.
Two other functions cn x and dn x can be defined by the equations

along with the condition that their deriva-
tives be continuous to determine the sign
of the square root. Since dn x is
always positive with period 2K, while cn x
has period 4K.

The three functions sn x, cn x and dn x
are called Jacobian elliptic functions, or
just elliptic functions. They may be re-
garded as generalizations or distortions of
the familiar trigonometric functions. In-
deed, from the above relations it is read-
ily verified that for

and for

Traditionally, the nomenclature of elliptic functions is used only when k is in
range 0 < k < 1.

Graphs of the elliptic functions are shown in Figure B.2. Tables of elliptic
functions can be found in standard references such as Jahnke and Emde

Fig. B.1. Graph of the period 4K as a func-
tion of the modulus k.
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(1945), but programs to evaluate elliptic functions on a computer are not
difficult to write, and some are available commercially.

Fig. B.2. Graphs of the elliptic functions sn x, cn x, dn x for

For applications we need some systematic procedures for reducing equa-
tions to the standard form (B.2). Consider the equation

where A, B, C and D are given scalar constants. This can be reduced to
standard form by the change of variables

and a, b, are constants. To perform the reduction and determine the
constants, we differentiate (B.13) to get

The left side of this equation can be expressed in terms of  by substituting
(B.12) and (B.13), while the right side can be expressed in terms of by
using

Then, by equating coefficients of like powers in y, we obtain

When these four equations are solved for the four unknowns b, a, and
the solution to (B.12) is given explicitly by (B.13). To prepare for this, we
eliminate from the third equation and from the second, putting the
equations in the form
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After the cubic equation (B.16a) has been solved for b, the quadratic
equation (B.16b) can be solved for a. Then the values of a and b can be used
to evaluate and

The theory of elliptic functions is rich and complex, a powerful tool for
mathematical physics. We have discussed only some simpler aspects of theory
needed for applications in the text.

Exercises

(B.1) Establish the derivatives

where
(B.3) Find a change of variables that transforms

into an equation of the form (B.12).

(B.2) Show that  and  are solutions of the differential
equations
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Tables of Units, Constants and Data

C-1. Units and Conversion Factors
Length

1 kilometer (km)
1 angström (Å)
1 fermi
1 light-year
1 astronomical unit (AU)

Time, frequency
1 sidereal day

1 mean solar day
1 sidereal year
1 sidereal month
1 Hertz

Force, Energy, Power
1 newton (N)
1 joule (J)

1 MeV
1 watt

Magnetic Field
1 tesla

C-2. Physical Constants
Gravitational constant
Speed of light
Electron mass
Proton mass

672
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Neutron mass
Electron charge

C-3. The Earth
Mass
Equatorial radius
Polar radius
Flattening
Principal moments of inertia

Polar
Equitorial

Inclination of equator
Length of year (Julian)

C-4. The Sun
Solar mass
Solar radius
Solar luminosity
Mean Earth-Sun distance

C-5. The Moon
Lunar mass
Lunar radius
Inclination of lunar equator

to ecliptic
to orbit

Mean Earth-Moon distance
Eccentricity of orbit
Sidereal period

C-6. The Planets



Hints and Solutions for Selected
Exercises

“An expert is someone who has made all the mistakes”
H. Bethe

“Therefore we should strive to make mistakes as fast as
possible”

J. Wheeler

Section 1-7.
(7.1c) (Given)

(Addition Property)
(Associativity)
(Additive Inverse)
(Additive Identity)

(7.1d)

(7.2a)

This is undefined if

(7.2b) If then is idempotent.

(1.1)

Note that the ambiguity in writing  is inconsequential.
(1.2) If and then

674

(7.2c) If then So if  then
which is a contradiction.

(7.2d) If and then Hence

Section 2-1.
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so
and then, from Exercise (1.1),

(1.3) provided the denominator does not vanish.

(1.4) First show that Then use to get

(1.5)

(1.6)
Separate scalar and bivector parts.

(1.7)

(1.8)
Repeat the operation until a has been moved to the far right within
the bracket. Then use which follows from
Exercise (2.4).

(1.11) One proof uses equations (1.8) and (1.14).

(1.12)

(1.13)

(1.14) Use (1.24a, b) and Exercise (1.13) as follows,

(1.15) If then there exist scalars such that
Hence

If then

(1.17)

we would have and which is
inconsistent with
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Section 2-3.

(3. 1a) By (1.5),
or by (1.4),

(3.1b) a vector.

implies
and also

(3.2)

(3.3)

Equate vector and trivector parts separately to get the first two
identities.

Equate vector and trivector parts separately.

(3.4)

(3.5)

(3.7) Make the identifications Hamilton chose a
lefthanded basis, in contrast to our choice of a righthanded basis.

(3.8)

The last step follows from

(3.9)

(3.10) This problem is the same as Exercise (1.4),
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Section 2-4.

(4.5b)

(4.7) The figure is a regular hexagon with external angle
there are two other

(4.8a)
For  this reduces to

(4.8b, c) These identities were proved in Exercise 1.1. Note that the second
identity admits the simplification if

For and the identities reduce to

(4.8d, e) Note that because Thus,

The desired identities are obtained by adding and subtracting this
from the identity

For and these identities reduce to

(4.9b) Eliminate
and

(4.10)
(4.11a) Establish and interpret the identity

Note that if any two terms in the identity vanish, the third vanishes
also. Note that this is an instance of logical transitivity, and that the
transitivity breaks the symmetry of the relation.

(4.11b) Establish, interpret and use the identity
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Alternatively, one can argue that  and
implies Here the transitivity in the argument

is quite explicit.
(4.11c) Use the facts that and

Whence,
What more is needed to conclude that

Section 2-5.

(5.8)

The quantity  has the form of a complex number and, as can
be verified by long division, submits to the binomial expansion

which converges for

Section 2-6.

(6.2) (a) Equation (6.2) implies
(6.2) (b) {x} = half line with the direction u and endpoint a.

(6.3)

(6.4)
(6.5) The solution set is the line of intersection of the A-plane with the

B-plane.

(6.6)

(6.7)

Hence,

But so

(6.1)            etc.
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(6.8)
(6.10) Comparing Figure 6.2 with Figure 6.4b, we see that we can use

(6.17) to get

(6.11) The area of the quadrilateral 0, a, b, c is divided into four parts by
the diagonals. The theorem can be proved by expressing the div-
ision ratios in terms of these four area.

(6.12) An immediate consequence of Equation (6.13).
(6.13)  By Equation (6.12), we may write

Whence,

So, if

If the lines are parallel and may be regarded as in-
tersecting at After deriving similar expressions for p and q we
can show that

and Exercise (6.12) can be used again.
(6.14) implies
(6.15)  or, to use the special form of Exercise

(6.14),
(6.16) Expand
(6.17) At the points of intersection
(6.18) The equation for the line tangent to the circle at the point

can be written Its square is
Evaluate at  and solve for d.
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(6.19)

(6.21a)

(6.22)

(6.23) (a) Write Then
Hence, and which describe a

hyperbola in terms of rectangular coordinates.
(b) A circle with radius and center at
(c) The evolvents of the unit circle, i.e. the path traced by a point

on a taut string being unwound from around the unit circle.
(d) A lemniscate. Note that it can be obtained from the hyperbola

in (a) by the inversion
(6.24) (a) For this describes a cone with vertex at the

origin and vertex angle given by cos  it reduces
to a line when and a plane when  Only zero is a
solution when

(b) Interior of a half cone for
(c) Cone with vertex angle symmetry axis and plane of the

cone.
(d) describes a hyperboloid asymp-

totic to the cone in (c).
(e) Paraboloid.
(f) For and circle if ellipse if

parabola if hyperbola if

Section 2-7.

(7.1)

(7.2b) Differentiate
(7.3) Generate the exponential series by a Taylor expansion about

and write  Conversely, differentiate the exponential series
to get F.

(7.4) (a) Use the fact that the square of a k-blade is a scalar,
(b) Consider where A is a constant bivector.

(7.5) Separate d/dt into scalar and bivector parts.
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(7.7) and according to Equation (7.11),

Section 2-8.

(8.2a)

(8.2b)

(8.2f)

(8.5) Write and

Then

and

So

and

This has the scalar part

and the bivector part

The principal value is obtained by integrating along the straight line
from a to b or along any curve in the plane which can be con-
tinuously deformed into that line without passing through the
origin. If the straight line itself passes through the origin, the
bivector part of the principal part can be assigned either of the
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values If the curve winds about the origin k times, the value
of the integral differs from the principal part by the amount
with the positive (negative) sign for counterclockwise (clockwise
winding.

Section 3-2.

(2.2) This expression has the draw-
back that r and are not independent variables. For given and r,
the two roots are times of flight to the same point by different
paths. For given  they are times of flight to two distinct points on
the same path equidistant from the vertical maximum.

(2.4) Therefore, horizontal
range x is a maximum for fixed and y when

(2.6) Suggestion: Use the Jacobi identity for g, v, r and the fact that the
vectors are coplanar.

(2.7)

Section 3-5.

(5.1a)
b)
c)

(5.2)      11 m
(5.3) 120 m/s.
(5.5) The heavy ball beats the light one by 2.2 m and 1/20 sec.

Section 3-7.

(7.2)

Section 3-8.

(8.5)
where

and the so-called Larmor frequency is defined by

The general solution is
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where

The solution can be interpreted as an ellipse with period processing
(retrograde) with angular velocity while it vibrates along the B direction
with frequency and amplitude

Section 4-2.

(2.4)

(2.5)

(2.6)

(2.7)

(2.9)

Section 4-3.

(3.5)

(3.6)

(3.9)
(3.10)

(3.11)

Section 4-5.

(5.1) for all values of r implies
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(5.2) In each case the integral can be simplified by changing to the
variable or to

(5.3) Investigate derivatives of the effective potential higher than second
order.

Section 4-7.

(7.4)

(7.5)

(7.6)

Section 5-1.

(1.1)
(1.2)

(1.3)

(1.4) only if all vanish provided

(1.5)
(1.6) Solution from Exercise (2–1.3)

(1.7) Solution from Exercise (2–1.4)

(1.8) Use Equations (2–1.16) and (2–1.18).
(1.10)
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(1.12)

Section 5-2.

(2.1)

(2.3b)
(2.5)

(2.6b) .
(2.7) A quadric surface centered at the point a, as described in Exercise

(2.6) with No solution if all eigenvalues of are negative.

Section 5-3.

(3.1)
(3.2)
(3.3)
(3.5)
(3.6) Use the relations  and
(3.7) From Exercise (3.6)

(3.12)
(3.13)

(3.15)



686   Hints and Solutions for Selected Exercises

(3.16) Eigenvector Principal values
Principal vectors

whence tan

Section 5-4.

(4.2)

(4.6)
(4.7)
(4.8)

Section 5-5.

(5.3) Using Equations (3.42a, b, c),

(5.7)

Section 5-6.

(6.1)
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East.
(b) In an inertial frame, the Easternly velocity of the ball when it is

released is greater than that of the Earth’s surface.
South.

Section 6-1.

(1.1) Consider the universe.
(1.3) Energy dissipated =

Section 6-2.

Section 6-3.

Section 6-4.

Section 7-2.

with   unnormalized
where and are nor-

malization factors.
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from the center of the sphere.

(2.23) Use the method at the end of Section 5–2.

Section 7-6.
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Appendix A

= 2ab sin C + 2bc sin A + 2ca sin A.

From Exercise (A.6),
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textbooks. They should begin to familiarize themselves with the wider scientific literature
as soon as possible. The sooner a student penetrates the specialist literature on topics that
interest him, the more rapidly he will approach the research frontier. He should not be
afraid to tackle advanced monographs, for he will find that they often contain more lucid
treatments of the basics than introductory texts, and the difficult parts will alert him to
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Chapter 1

A satisfactory history of geometric algebra has not yet been written. But Kline traces
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development. The scholarly work by Van der Waarden shows clearly the common historical
origins of geometry and algebra. Clifford’s book is one of the best popular expositions ever
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discussed in Schubring’s book.
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in a manner closely related to the techniques of Geometric Algebra.

C. Zwikker, The Advanced Geometry of Plane Curves and Their Applications, Dover, N.Y.
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Cambridge (1967–81), 8 Vol.

Section 3-5.

The forces of fluids on moving objects are extensively analyzed theoretically and empirically
in Batchelor’s classic.

G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge U. Press, N.Y. (1967).
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Brillouin’s classic is an object lesson in how much can be accomplished with a minimum
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Section 6-4.
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Section 7-4.
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E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies.
Cambridge. 4th Ed. (1937).

Chapter 8

Stacey and Kaula present fine introductions to the rich field of geophysics and its gener-
alization to planetary physics, showing connections to celestial mechanics. The book by
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bined. Kaplan gives a more complete treatment of spacecraft physics.
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acceleration, 98, 312
centripetal, 312
Coriolis, 312

ambient velocity, 146
amplitude of an oscillation, 168
analyticity principle, 122
angle, 66

radian measure of, 219
angular momentum 195ff

base point, 423
bivector, 196
change of, 423
conservation, 196, 338
induced, 330
internal, 337
intrinsic, 424, 655
orbital, 337
total, 337
vector, 196

Angular Momentum Theorem, 338
anharmonic oscillator, 165
anomaly,

eccentric, 532
mean, 532
true, 532, 573

apocenter, 213
apse (see turning point),
area,

directed, 70
integral, 112ff, 196

associative rule, 27, 32, 35
astromechanics, 512
asymptotic region, 210, 236
attitude, 420

element, 529, 549
spinor, 420

Atwood’s machine, 354
axode, 428

ballistic trajectory, 215

barycentric coordinates, 82
basis, 53

of a linear space, 53, 363
multivector, 53
vectorial, 49, 260

beats, 365
Big Bang, 611
billiards, 498, 503
binding energy, 638
bivector (2-vector), 21
basis of, 56

codirectional, 24
interpretations of, 49

blade, 34
boost, 581, 586, 605
Brillouin zone, 374

Cayley-Klein parameters, 480, 485, 495
celestial mechanics, 512ff
celestial pole, 458, 538
celestial sphere, 466, 537
center of gravity, 433
center of mass, 230, 336

additivity principles for, 437
of continuous body, 434
symmetry principles for, 435ff

(see centroid)
system, 644

center of mass theorem, 336
centroid, 438
chain rule, 100, 105, 108
Chandler wobble, 458
characteristic equation, 166, 171, 383
Chasles’ theorem, 305
chord, 79
circle, equations for, 87ff
Classical Field Theory, 514
Clifford, 59
coefficient of restitution, 505, 511
collision,

694
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elastic, 236, 505
inelastic, 346, 505

commutative rule, 15, 35
commutator, 44
Compton effect, 643
Compton wavelength, 644
configuration space, 351, 382
congruence, 3, 303, 605
conjugate, 579, 580
conjugation, 580
conicoid, 91
conic (section), 90ff, 207
constants of motion,

for Lagrange problem, 476
for rigid motion, 425
for three body problems, 399

constraint, 181
bilateral, 188
for rolling contact, 492
for slipping, 497
holonomic, 185, 351, 354
unilateral, 188

continuity, 97
coordinates,

complex, 371
ecliptic, 238ff
equitorial, 238ff
generalized, 350, 381
ignorable (cyclic), 358
Jacobi, 406
mass-weighted, 385
normal (characteristic), 362, 364
polar, 132, 194
rectangular, 132
symmetry, 388

couple, 430
covariance, 619
covariant kinematics, 615
Cramer’s rule, 254
cross product, 60

degrees of freedom, 351
derivative,

by a vector, 117
convective, 109
directional, 105, 107
of a spinor, 307
partial, 108
scalar, 98
total, 109

Descartes, 5
determinant, 62, 255

of a frame, 261
of a linear operator, 255, 260
of a matrix, 258, 260

differential, 107
exact, 116

differential equation, 125
dihedral angle, 662
dilation, 13, 52
dimension, 34, 54
Diophantes, 9
directance, 82, 87, 93, 427
direction, 11

of a line, 48
of a plane, 49

dispersion relation, 373
displacement,

rigid, 303, 305
screw, 305

distance, 79
distributive rule, 18, 25, 31, 35
Doppler effect, 607

aberration, 609, 644
drag, 146

atmospheric, 215, 563
pressure, 149
viscous, 149
(see force law)

drag coefficient CD, 147
drift velocity, 159
dual, 56, 63
dynamical equations, 454

(see equations of motion),
dynamics, 198

eccentricity, 90, 205
eccentricity vector, 91, 205, 527
ecliptic, 466, 539
eigenvalue problem, 264ff

brute force method, 384
eigenvalues, 264ff

degenerate, 266
eigenvectors, 264ff, 272
Einstein, 574
elastic modulus, 374
elastic scattering, 646
elastic solid, 360
electromagnetic wave, 174
elementary particles, 638
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ellipsoid, 276
ellipse, 91, 96, 173, 174, 199, 203, 208

semi-major axis of, 212
elliptic functions, 222, 478, 481, 668ff

modulus of, 668
elliptic integral, 482, 490, 545, 547

B-669ff
energy,

conservation, 170
Coriolis, 342
diagrams, 223, 229
dissipation, 177, 241
ellipsoid, 487
internal, 342ff
kinetic, 182, 337

internal, 341
rotational, 338
translational, 337

potential, 182
storage, 177, 364
total, 182, 206, 528
transfer, 238, 344, 364
vibrational, 342

energy-momentum conservation, 633
epicycle, 201
epitrochoid, 201, 204
equality, 12, 37
equations of motion, 125

rotational (see spinor equations),
340, 420

secular, 531
for orbital elements, 531

translational, 335, 420
equiangular spiral, ISS
equilibrium, 379

mechanical, 429
point, 409

equimomental rigid bodies, 448
equinoxes, 539
equipotential surface, 116, 185
escape velocity, 214
Euclid, 29
Euclidean group, 607
Euclidean spaces

2-dimensional, 54
3-dimensional, 54
n-dimensional, 80

Euler, 121
Euler angles, 289, 294, 486, 490, 538

Euler’s Law (equation), 340, 420, 454
components of, 422ff

Euler parameters, 382, 315
event, 584
event horizon, 623
exponential function, 66, 73ff, 281

factorization, 45
Faraday effect, 179
Fermi-Walker transport, 652
field, 104
first law of thermodynamics, 344
fluid resistance, 146ff
force, 121

4-force, 618
binding, 164
body, 125
centrifugal, 318, 332
conservative, 181, 219
contact, 125
Coriolis, 319, 322, 324, 328
electromagnetic, 620
fictitious (see force law), 317
generalized, 353
impulsive, 214, 501
perturbing, 143, 165, 527
superposition, 122
tidal, 520

force constants, 380
force field, 184

central, 219
conservative, 184, 219

force law, 122
conservative, 181ff
constant, 126
Coulomb, 205,

with cutoff, 251
electromagnetic, 123, 155, 620
frictional, 192, 471
gravitational, 123, 200, 205, 513
Hooke’s, 122, 361, 364
inverse square, 200
magnetic, 151
phenomenological, 195
resistive (see drag), 146

linear, 134, 154
quadratic, 140

forces on a rigid body,
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concurrent, 433
equipollent, 428
parallel, 429
reduction of, 428

frame (see basis), 261
body, 339
Kepler, 529
reciprocal, 262

frequency,
cutoff, 371
cyclotron, 154
Larmor, 328
normal (charcteristic), 362

degenerate, 362
oscillator, 168
resonant, 177

multiple, 397

Galilean transformation, 574, 583
geoid, 524, 526
geometric algebra, 53, 55, 80
geometric product, 31, 39
geometry,

analytic, 78ff
coordinate, 78
Euclidean, 79
non-Euclidean, 79

geopotential, 525
Gibbs, 60
golden ratio, 226
grade, 22, 30, 34
gradient, 116
Grassmann, 12, 14, 28
gravitational field, 513

force exerted by, 513, 520
of an axisymmetric body, 518
of an extended object, 515ff
source, 513
superposition, 514

gravitational potential, 514
harmonic (multipole) expansion of, 517
of a spherically symmetric body, 516

gravitational quadrupole tensor, 517, 542
gravity assist, 239, 242
group,

abstract, 296
continuous, 298
dirotation, 296

orthogonal, 2 99
representation, 297
rotation, 296ff
subgroup of, 299, 306
transformation, 295
translation, 300ff

guiding center, 158
gyroscope, 454
gyroscopic stiffness, 455ff

Hall effect, 160
Halley’s comet, 214
Hamilton, 59, 286
Hamilton's theorem, 295
harmonic approximation, 380
harmonic oscillator, 165

anisotropic, 168
coupled, 361
damped, 170
forced, 174
in a uniform field, 173, 202, 325
isotropic, 165

headlight effect, 611
heat transfer, 345
helix, 154
Hill’s regions, 416
history, 578
hodograph, 127, 204
Hooke’s law, 122, 166
hyperbola, 91, 96, 208

branches, 213
hyperbolic functions, 74
hyperbolic motion, 623
hypotrochoid, 202, 204

idempotent, 38
impact parameter, 211, 245
impulse, 501
impulsive motion, 501
inertia tensor, 253, 339, 421, 439
inertial frame, 586, 594

additivity principles for, 442
calculation of, 439
canonical form for, 451
derivative of, 340
matrix elements of, 445
of a plane lamina, 274
principal axes of, 422
principal values of, 422

Euclidean, 301ff
Galilean, 313
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symmetries of, 448
inertial system, 578, 630
initial conditions, 125
initial value problem, 208

gravitational, 513
inner product, 16ff, 33, 36, 39

, 43
isotropic,

space, 591
spacetime, 591

integrating factor, 134, 139, 152, 173
interaction, 121
interval, 589, 606

lightlike, 589
spacelike, 589
squared, 589
timelike, 589

invariant, 606
inverse, 35, 37
inversion, 293, 437

Jacobi identity, 47, 83
Jacobi’s integral, 408

Kepler, 200
Kepler motion, 527
Kepler problem, 204
2-body effects on, 233
Kepler’s equation, 216ff, 533
Kepler’s Laws,

first, 198
second, 196, 198
third, 197, 198, 200, 203

modification of, 233
kinematical equation,

for rotational motion, 454
kinematics, 198
kinetic energy,

relativistic, 618
KS equation, 569

laboratory system, 644
Lagrange points, 409
Lagrangian, 353
Lagrange’s equation, 190, 353, 380
Lagrange’s method, 354
Lame’s equation, 491
Laplace expansion, 43, 261
Laplace vector (see eccentricity vector),
Larmor’s theorem, 328

lattice constant, 367
law of cosines, 19, 69

spherical, 523, 664, 665
law of sines, 26, 70

spherical, 665
law of tangents, 294
lemniscate, 204
lever, law of, 430
lightcone, 591
line,

equations for, 48, 81ff
lightlike, 589
moment of, 82
spacelike, 589
timelike, 589

line integral, 109ff, 115
line vector, 428
linear algebra, 254
linear dependence, 47
linear function, 107, 252ff, 578

(see linear operators)
linear independence, 53
linear operators, 253ff

adjoint (transpose), 254
canonical forms, 263, 270, 282
derivative of, 316
determinant of, 255, 260
inverse, 260

matrix element, 262
matrix element, 257
matrix representation of, 257
nonsingular, 256
orthogonal, 277

improper, 278
proper, 278

polar decomposition, 291
product, 253
secular equation for, 265

complex roots, 268
degenerate, 266

shear, 295
skewsymmetric, 263
symmetric (self-adjoint), 263, 269ff

spectral form, 270
square root, 271

trace, 295
linear space, 53

dimension of, 54
linear transformation (see linear operator)
Lissajous figure, 169
logarithms, 75ff
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Lorentz contraction, 599
Lorentz electron theory, 179
Lorentz force, 123
Lorentz group, 587
Lorentz transformation, 580, 586, 647

active, 605
passive, 605

Mach number, 149
magnetic spin resonance, 473ff
magnetron, 202
magnitude, 3, 6

of a bivector, 24
of a multivector, 46
of a vector, 12

many body problem, 398
constants of motion, 399

mass, 230
density, 434
reduced, 230
total, 336, 434

mass-energy equivalence, 634
matrix, 257

determinant of, 259, 260
equation, 258
identity, 258
product, 258
sum, 258

mean motion, 532
measurement, 2
Minkowski, 577
model, 378
modulus,

of a complex number, 51
of an elliptic function, 668
of a multivector, 46

Mohr’s algorithm, 273
moment arm, 428
momentum, 236

4-momentum, 634
conservation, 236, 336
flux, 347
transfer, 238, 240

Mössbauer effect, 643
motion, 121

in rotating systems, 317ff
rigid, 306ff
translational, 335

(see rotational motion, periodic
motion)

multivector, 34
even, 41
homogeneous, 41, 12
k-vector part of, 34 39
odd, 41
reverse, 45

natural frequency, 168
Newton, 1, 120, 124
Newton’s Law of Gravitation, 398

universality of (see force law), 201, 203
Newton’s Laws of Motion,

zeroth, 615
first, 579, 615
second, 41, 615, 618
third, 335

in relativity, 633
nodes,

ascending, 538
line of, 290
precession of, 540

nonrelativistic limit, 584
normal (to a surface), 116
normal modes, 362

degenerate, 383
expansion, 364
nondegenerate, 383
normalization, 377
orthogonality, 369
wave form, 369

number, 3, 5
complex, 57
directed, 11, 12, 34
imaginary, 51
real, 10, 11, 12

nutation,
luni-solar, 551
of a Kepler orbit, 540
of a top, 470
of Moon’s orbit, 550

oblateness,
constant J2, 518
of Earth, 459, 467
perturbation, 542, 560

Ohm’s law, 137
operational definition, 576
operators (see linear operators), 50
orbit, 121
orbital averages, 253ff
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orbital elements, 527
Eulerian, 538
secular equations for, 531

orbital transfer, 214
orientation, 16, 23, 51
origin, 79
oscillations,

damped, 393
forced, 395
free, 382
phase of, 168
small (see vibrations), 378

osculating orbit, 528
outer product, 20, 23, 36, 39

of blades, 43
outermorphism, 255

parabola, 91, 96, 126, 207
Parallel Axis Theorem, 424
parenthesis, 42

preference convention, 42
for sets, 48

particle, 121
decay, 640
unstable, 242

pendulum,
compound, 463, 477, 489
conical, 467
double, 355, 386

damped, 395
Foucault, 223
gyroscopic, 462
simple, 191, 463
small oscillations of, 462
spherical, 475

pericenter, 91, 213
perigee, 213
perihelion, 213
period,

of an oscillator, 168
of central force motion, 221
of the Moon, 203

periodic motion, 168, 478
perturbation,

oblateness, 542, 560
theory, 141, 320
gravitational, 527, 541
third body, 541

photon, 578, 641
physical space, 80

Planck’s law, 642
plane,

equations for, 86ff
spacelike, 591
timelike, 591

Poincaré, 399, 416
Poincaré group, 607
Poinsot’s construction, 487
point of division, 84, 430
polygonal approximation, 143
position, 80, 121, 420

spinor, 564
position space, 314
potential, 116

attractive, 229
barrier, 228
central, 220
centrifugal, 224
effective, 220, 408, 414
gravitational, 514, 516
screened Coulomb, 224
secular, 545
Yukawa, 224

precession, 222
luni-solar, 552
of Mercury’s perihelion, 542ff
of pericenter, 53U
of the equinoxes, 46B, 553
relativistic,

General, 559
Special, 562

precession of a rigid body,
Eulerian free, 456, 467, 475
relativistic, 650ff
steady, 463, 483

deviations from, 467
Thomas, 654

principal moments of inertia, 446
principal values, 269, 292
principal vectors, 269, 292

of inertia tensor, 422
Principle of Relativity, 574
projectile,

Coriolis deflection, 321ff
range, 127, 136
terminal velocity, 135
time of flight, 130, 132

projection, 16, 65, 270, 661
proper mass, 617
proper time, 590, 602



Index 701

pseudoscalar,
dextral (right handed), 55
of a plane, 49, 53
of 3-space, 54, 57

pseudosphere, 614

quantity, 34
quaternion, 58, 62

theory of rotations, 286

radius of gyration, 447, 463
rapidity, 583, 587
reaction energy, 639, 645
reference frame (body), 314
reference system, 317

geocentric, 317
heliocentric, 317
inertial, 311
topocentric, 317

motion of, 327
reflection, 278ff

law of, 280
rejection, 65
regularization, 571
relative mass, 617
relativity, 575, 607

General Theory, 514, 542, 557, 577
of distant simultaneity, 576
Special Theory, 562, 577

relaxation time, 135
resonance, 176

cyclotron, 162
electromagnetic, 175
magnetic, 331, 473ff
multiple, 396
spin-orbit, 554

rest mass, 617
reversion, 45
Reynolds Number, 147
rigid body classification, 448

asymmetric, 448
axially symmetric, 448, 454
centrosymmetric, 448

rocket propulsion, 348
Rodrigues’ formula, 293
rolling motion, 492ff
rotation, 50, 278, 280ff

axis, 304
canonical form, 282, 288
composition, 283
group, 295ff, 587

matrix representation, 296
spin representation, 296

matrix elements, 286,
with Euler angles, 294

oriented, 283
parametric form, 282
physical, 297
right hand rule, 282
spinor theory of, 286
rotational motion, 317

integrable cases (see spinning top) , 476
of a particle system, 338
of asymmetric body, 482
of the Earth, 327, 551

stability of, 488

satellite,
orbital precession, 544
perturbation of, 547
synchronous orbit, 203

scalar, 12
scalar integration, 100
scalar multiplication, 12, 24, 31, 35
scattering,

angle, 210, 245, 646
in CM system, 237, 242
in LAB system, 239, 242

Coulomb, 247, 250
cross section, 243ff

LAB and CM, 248ff
Rutherford, 247

elastic, 236
for inverse square force, 210ff
hard sphere, 246

semi-latus rectum, 91, 212
sense (or orientation), 51
siderial day, 458
simultaneity, 576, 594
solar wind, 563
solid angle, 244
spacetime, 577

homogeneous, 607
isotropic, 607
map, 584, 589

spatial rotation, 581, 586
speed of light, 575
sphere, equations for, 87ff
spherical excess, 667
spin precession,

relativistic, 658



702 Index

spinning top,
fast, 466
hanging (see precession, rotational

motion), 466
Lagrange problem for, 462, 479, 490
relativistic, 650
rising, 473
sleeping, 473
slow, 466
spherical, 460
symmetrical, 454ff

Eulerian motion of, 460
reduction of, 459

spinor, 51, 52, 67
derivative of, 307
Eulerian form, 284
improper, 300
mechanics, 564
parametrizations, 286
unitary (unimodular), 280

spinor equation of motion,
for a particle, 569
for a spherical top, 461
relativistic, 657

stability, 165, 227, 380
of circular orbits, 228
of Lagrange points, 410ff
of rotational motion, 488
of satellite attitude, 553

state variables, 126
Stokes’ Law, 147
summation convention, 63
super-ball, 507, 510
superposition principle,

for fields, 514
for forces, 122
for vibrations, 363

symmetry of a body, 435ff, 441
synchronizing clocks, 594
system,

2-particle, 230ff
closed, 346
configuration of, 350
Earth-Moon, 234
harmonic, 382
isolated, 232, 336
linear, 378
many-particle, 334ff
open, 346

systems theory,
linear, 378

Taylor expansion, 102, 107, 164
temperature, 346

tensor, 253
three body problem, 400

circular restricted, 407
periodic solutions, 416

classification of solutions, 404
collinear solutions, 402
restricted, 406
triangular solutions, 402

tidal friction, 522
tides, 522
time dilation, 596
tippie-top, 476
torque, 338

base point, 424
gravitational, 520
moment arm, 428

translation, 300
(see group)

trivector, 26
trigonometric functions, 74, 281
trigonometry, 20, 68

identities, 71, 294
spherical, 661

trochoid, 159, 217
turning points, 213, 221, 227
twin paradox, 600

units, 672

variables,
interaction, 334
kinematic, 421
macroscopic, 345
object, 421
position, 334
state, 420

vector, 12
addition, 15
axial, 61
collinear (codirectional), 16, 64
identities, 62
negative, 15
orthogonal, 49, 64
orthonormal, 55
polar, 61
rectangular components, 49, 56
square, 35
units, 13

vector field, 184
vector space, 49, 53
velocity, 98

4-velocity, 615
6-velocity, 651
additional theorem, 314



Index 703

angular, 309
complex, 427
filter, 160
rotational with Euler angles, 308, 423,

315, 490
spinor, 564
translational, 309

vibrations,
of H2O, 392
lattice, 366
molecular, 341, 387ff
small, 341, 378

Vieta, 9

wave,
harmonic, 372
polarized, 375
standing, 372
traveling, 372

wavelength, 369
wave number, 369
weight,

apparent, 318
true, 318

work, 183, 342ff
microscopic, 345

Work-Energy Theorem, 343
wrench, 426

reduction of, 431
superposition principle, 428

Zeeman effect, 332
zero, 14
Zeroth Law, 80, 576
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