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Preface 

M . RAYMOND JANCEL has written, during the last decade, numerous 
very exhaustive papers on the foundations of statistical mechanics, 
both in its classical and quantum form. He has followed closely all 
research which has been undertaken in recent times on these 
difficult subjects and the researches which he has pursued, in 
collaboration with M. Kahan on the theory of plasmas, have also 
led him to study the evolution of non-equilibrium systems and the 
range of validity of Boltzmann's equation. 

M. Jancel was thus particularly well qualified for presenting to 
us a general study on the foundations of classical and quantum 
statistical mechanics. The difficulties of the subject are well known 
and the author has reviewed them in the very interesting intro-
duction to his book. Although nobody is in doubt today of the 
validity of the remarkable interpretation of Thermodynamics 
with which Statistical Mechanics, following the efforts of Boltz-
mann and Gibbs, has recently provided us, it still remains ex-
tremely difficult to give a completely accurate justification for it. 
The method, which consists in beginning with Liouville's theorem, 
can only be developed in a satisfactory manner by introducing 
hypotheses of the ergodic type; however, despite the numerous 
efforts which have been made in this direction and the remarkable 
progress which it has been possible to make, these hypotheses 
could not be justified in a completely satisfactory manner, even 
in classical statistical mechanics. It had been hoped that in quan-
tum statistical mechanics the situation would have been more 
favourable, because of the quantum uncertainties, but M. Jancel, 
who had already studied this question thoroughly in his doctoral 
thesis in 1957, shows us that it is nothing of the kind and that 
the difficulties are even greater here than in classical mechanics. 

It is true, there exists another method of justifying the principles 
of statistical mechanics, which starts from the hypothesis of 
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"molecular chaos" of Boltzmann and which relies on the more 
or less generalised / /- theorems. But it likewise comes up against 
the difficulties, which M. Jancel has painstakingly studied and very 
shrewdly analysed, as much in classical mechanics as in quantum 
mechanics. The discussion becomes even more tricky when we 
consider non-equilibrium states, the conservation of "molecular 
chaos" , the validity of Boltzmann's equation and the whole range 
of problems of this type which the author has dealt with in the last 
part of his book. 

We shall not try to analyse further an account where each 
chapter would require an exhaustive study. M. Jancel's book, 
where all the problems are studied in a very detailed manner, 
reveals that the author has a very profound knowledge of the 
difficult questions which he explains clearly after having thought 
about them for a long time. He has looked at every aspect of these 
questions and his conclusions rely on very extensive information, 
as proved by the copious bibliography at the end of the book. It 
is certain that this book does its author the greatest credit and 
that it will constitute, henceforth, a source book which is indispens-
able for all researchers who are interested in the difficult task of 
examining in detail the theoretical foundations of statistical 
mechanics as they are at this moment in the present state of the 
problem. 

Louis DE BROGLIE 



Preface to the English edition 

I N recent years, research into statistical mechanics has continued 
to develop in directions which had already become evident at the 
moment of appearance of the French edition of this book. They 
have given rise to numerous and important works which have been 
based in particular on the study of the evolution of non-equilibrium 
systems and on the derivation of kinetic equations and generalised 
"Mas te r Equat ions" starting from Liouville's equation. Whilst 
these researches have, up to now, not involved a widespread 
evolution of the problem related to the interpretation of Statistical 
Mechanics, nevertheless they have contributed to making more 
precise the conditions of irreversibility and they have enabled us to 
analyse, in certain cases, certain detailed mechanisms. Thus, 
recent works, in particular, have improved the theory of irre-
versible processes and they have enabled us to study the return 
to equilibrium (relaxation times, etc.), but they have not contributed 
any significant change in the ergodic theory. Another important 
contribution of recent years has been to emphasise the major role 
played by certain limiting processes, such as the limit of weak 
coupling (A -» 0), the well-known limit as Τ -> oo and, especially, 
the limit of "large systems" (N->ao) which appears to be an 
essential element of irreversibility (infinite duration of Poincaré 
cycles). In this connection we note that another concept has been 
evolved which is capable of opening new vistas of research: it 
concerns the non-commutation of the limiting processes Ν ->oo 
and Γ -^οο , the first limit being taken before any time-average is 
evaluated whenever one wishes to obtain a macroscopic or thermo-
dynamic description of the observed system. 

This is why we have believed it necessary to proceed with 
publication of this book, by trying to take into account the prin-
cipal views of research actually used in these domains. As it was 
unfortunately not possible for us to take into account all the works 
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xii 

relating to these questions, we have been obliged to choose from 
amongst the various theories those which appeared to us at the 
time to be the most representative of a certain flow of ideas and the 
richest in new ideas about the problem of the foundations of 
Statistical Mechanics. 

First of all it appeared essential to us to give a detailed account 
of perturbation methods based on the development of the résolvant 
operator associated with Liouville's equation. We have pres-
ented this study at the end of Chapter V by choosing the 
framework of the theory of Prigogine and his co-workers. 
These authors, by the systematic use of the Fourier coefficients 
of the distribution functions, write down the equations for a 
"correlation dynamics" which makes possible a deep insight into 
the mechanics of irreversibility. 

In parallel with these techniques, it seemed to be equally useful 
for us to explain the major steps of Zwanzig's method which has 
the great advantage of avoiding, at least in its early developments, 
the complex formalism of perturbation theory. By relying on the 
necessarily incomplete nature of any macroscopic description, 
this method introduces suitable projection operators which have 
the effect of retaining only part of the information contained in the 
density-matrix (or in the distribution function for Ν particles). 
Thus, we end in a very simple way with so-called "p re -Mas te r" 
equations, which are still equivalent to Liouville's equation and 
therefore reversible, but which constitute an important inter-
mediate stage for the derivation of the truly irreversible kinetic 
equations. Although we have explained this theory in its quantum 
aspects at the end of Chapter VI, it is important to note that it 
can be applied equally well to the classical case provided Liouville's 
quantum operator is replaced by the corresponding classical 
operator. 

Finally, it seemed to us to be equally necessary to come back 
to certain aspects of the ergodic theory and particularly to the 
important role played by the primary integrals other than that of 
the energy. These problems, which we study at the end of Chap-
ter I, have led us to explain Lewis's theorems and to discuss the 
difficulties encountered by the "probabi l i ty" ergodic theorems 
because of the possible existence of these supplementary integrals. 
At the end of Chapter III, we have also given a brief account of 
Ludwig's ideas concerning macroscopic observation and of an 
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ergodic theorem of Golden and Longuet-Higgins, which stresses 
once more the importance of the limit process as Ν -» oo. 

In Appendix IV we have given a brief account of some recent 
Russian work in classical ergodic theory. 

I would like to take advantage of expressing my most sincere 
thanks on this occasion to D . ter Haar, who has been kind enough 
to interest himself in the publication of this book in English and who 
has devoted much time to the critical work of translation and editing. 
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1. Recent years have seen the achievement of important ad-
vances in the domain of applications of classical and quantum 
statistical mechanics. By way of illustration, it is sufficient to 
recall the multiplicity of projects instigated by the study of classical 
and quantum plasmas, as well as the large extent of research on 
low-temperature physics, where the problems dealt with relate 
exclusively to quantum statistical mechanics (analysis of the effect 
of the condensation of bosons in gases, problems of the super-
fluid state, spin temperature, etc.). These various advances have 
been accomplished as much by the introduction into statistical 
mechanics of new methods of calculation—this is the case, for 
example, of perturbation methods borrowed from the quantum 
theory of fields [see, for example, Abrikosov, Gor 'kov and Dzyalo-
shinskii, 1965; Kirzhnits, 1967]—as by the impetus given to 
research by the exploration of relatively new domains such as 
plasma physics. 

Even though the field of application of statistical mechanics 
is extending itself to the point that this discipline now plays a 
fundamental role in modern physics, the often discussed theoretical 
problems raised by the introduction of statistical methods in 
physics remain meanwhile without a definitive answer. Thus, it is 
necessary to return to a study of the foundations of statistical 
mechanics and to study the actual state of this question, the more 
so because certain new results have been established recently 
in this field, particularly in quantum ergodic theory. The in-
terest of such an improvement, moreover, is not only theoretical, 
because the various applications which come to our mind are often 
concerned with fundamental problems, sometimes by throwing 
new light on them: such is the case, for example, with the problem 
of describing non-equilibrium systems and that of the domain of 
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validity of Boltzmann's equation, completely revived by research 
in plasma physics. 

Thus, the present book has the objective of presenting as complete 
a critical account as possible of the foundations of statistical 
mechanics and of the various problems set by the theoretical 
justification of its methods. In doing this, I have laid down the 
following general rules: on the one hand to compare the classical 
and quantum aspects of the questions dealt with at each stage 
of reasoning, whilst highlighting the characteristics belonging 
to each of the two theories; on the other hand to analyse, inde-
pendently of all possible applications, the nature and physical 
contents of the methods employed for justifying the fundamental 
postulates of statistical mechanics. Thus defined, the point of 
view which I have put forward is appreciably different from that 
adopted by Khinchin (1949, 1960) in his two fundamental works, 
where greater importance is given to the mathematical problems 
set by the calculation of average values and the application of the 
asymptotic theorems of probability calculus. 

2. The object of statistical mechanics is the atomistic inter-
pretation of the macroscopic properties of matter and radiat ion; 
it has thus the task of bridging the gap between the microscopic 
description of elementary phenomena and the macroscopic 
description of systems at our scale. Because of the corpuscular 
structure of matter, statistical mechanics considers any physical 
system as a mechanical system composed of a large number of 
constituents (elementary particles, atoms, molecules); the object 
of this discipline is thus reduced to studying the macroscopic pro-
perties of mechanical systems with a large number of degrees of 
freedom. Consequently, the first problem which is posed, is that 
of defining the actually observed macroscopic quantities, starting 
from the microscopic mechanical quantities of the system. 

We achieve this by analysing the nature and properties of ma-
croscopic observations, which lead directly to the introduction of 
the concept of probability in physics. In fact, macroscopic observers 
such as we are, are under no circumstances capable of observing, 
let alone of measuring, the microscopic dynamic state of a system 
which involves the determination of an enormous number of para-
meters, of the order of 1 0

2 3
. Against this very large number of 

microscopic parameters, it is necessary to set the very small number 
of variables used in the macroscopic description, such as the tem-
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perature and pressure of a gas in the equilibrium state. The result 
is thus that macroscopic observation is always—and here is its 
essential character—a highly incomplete observation of the under-
lying mechanical state of the system and that a whole ensemble of 
possible dynamic states corresponds to the same macroscopic state, 
compatible with our knowledge. Thus, the fundamental concept 
of statistical ensembles of systems, is introduced quite naturally 
and, with it, that of a probability density defining a statistical 
weight for the various systems in the ensemble. The method of 
statistical mechanics will thus consist in associating with each macro-
scopic observation a certain representative ensemble of virtual 
systems, which are independent of one another, and in adding to 
these ensembles a probability density in phase in the classical 
theory, or a statistical operator or density matrix in the quantum 
theory. The concept of a stationary ensemble will correspond to 
the concept of thermodynamic equilibrium and the macroscopic 
quantities observed will then be defined as the values of the micro-
scopic observables associated with the measured quantities, averaged 
over all systems of the ensemble. 

Given the essentially statistical nature of this method, one would 
not know how to escape from the necessity of defining the a priori 
probabilities for constructing the representative ensembles. The 
simplest postulate, compatible with the requirements of invariance 
under the equations of motion, is that of equal probability of equal 
volumes of phase space in classical theory and that of equal prob-
ability of states and uniformly distributed phases in quantum 
theory; this is the fundamental hypothesis of statistical mechanics. 
In this connection we emphasise as from now that the concept of 
probability comes into quantum statistical mechanics under two 
essentially different aspects: on the one hand in the quantum sense, 
because of the very nature of the definition of the state of a system 
in wave mechanics, and on the other hand in the classical sense, 
by virtue of the incomplete nature of any macroscopic observation. 
Thus, the method based on the concept of a representative ensemble 
is found to be completely defined in classical theory as well as in 
quantum theory; we shall make constant use of it in this book, 
whilst still reserving discussion of certain aspects of the method of 
the kinetic theory of gases during the study of the / /- theorems. 

3. It is a well-known fact that in the history of the sciences, the 
historical development of a theory rarely proceeds by following a 
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logical order. Such, indeed, is the case of statistical mechanics; it 
is, in fact, in the kinetic theory of gases that the probability con-
cept first appeared with the idea of the velocity distribution function, 
to which the names of Clausius, Maxwell, and Boltzmann remain 
attached. It was necessary to await the efforts of Gibbs in order 
that the properties of statistical ensembles of systems be brought 
to light, as well as their thermodynamic analogies, which are the 
foundation of the whole of statistical mechanics. Although the 
kinetic method assumes, to a certain extent, a more physical aspect, 
the role of the probability concept is not so clearly distinguished 
here, as the long and famous controversies about the / / - theorem 
between Boltzmann, on the one hand, and Loschmidt and Zermelo, 
on the other hand, bear witness; moreover, it is in the course of 
these controversies and in reply to the arguments of his opponents 
that Boltzmann elaborated little by little the statistical interpreta-
tion of the kinetic theory of gases, and that he set in motion his 
ideas concerning ergodic theory. 

Thus, the ground had already been largely cleared when Gibbs ' 
works appeared; the concept of statistical ensembles of systems 
had just been born. It had to reveal itself subsequently most fruit-
fully as much on the theoretical plane where the probability con-
cept is introduced naturally, as we have just seen, as well as in 
the field of applications where the results obtained are at once in-
dependent of the structure and the generally unknown interactions 
of the particles which constitute the observed system. If Gibbs was 
thus the first to show the thermodynamic analogies of the pro-
perties of ensembles, he did not go so far as to affirm that the mean 
values of the microscopic observations represented effectively the 
physically observed quantities; actually, he considered those en-
sembles of systems as a rational model, which presented interest-
ing similarities with the principles of thermodynamics without, 
however, furnishing a true explanation. This latter step had to be 
surmounted by other authors, first of all by Einstein in his work 
on the Brownian movement, contemporary with but independent 
of Gibbs, and later by the founders of modern statistical mechanics 
(Ehrenfest, Uhlenbeck, Fowler, Tolman, etc). The reasons for these 
reservations of Gibbs lay in the difficulties which classical statistical 
mechanics encountered with the theory of the specific heat of di-
atomic gases and with radiation phenomena. Actually, the prin-
ciples of statistical mechanics were not concerned, since the tran-
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sition to the quantum description was to make possible the solution 
of this paradox; we have here an illustration of the close relations 
which are established between the development of statistical me-
chanics and that of the quantum concepts, of which another 
particularly striking example is furnished by the origin of Planck's 
quantum of action itself. 

4. The method of statistical mechanics being thus well denned 
and the validity of its hypotheses being confirmed in addition by 
experimental results, it remains to justify from the theoretical point 
of view the fundamental assumptions of this discipline. In fact 
although the introduction of the Gibbs ensembles is a natural con-
sequence of the incomplete nature of our macroscopic observations, 
all the same a single system of the ensemble, at least from the 
mechanical point of view, corresponds in effect to the observed 
physical system, and a single trajectory in / '-space or a single vec-
tor Ψ in Hilbert space is associated with it. Thus, whilst noting 
that a precise and maximum determination of the state of the 
system is macroscopically impossible, it appears, however, to be 
difficult to state, without a more thorough examination, that the 
system is " b y r ight" in an undetermined state, which would mean 
that we should question the physical reality of the state; we note 
that such a statement, however, would be more acceptable within 
the framework of the usual interpretation of wave mechanics, where 
the function Ψ represents only the state of our knowledge of the ob-
served system. Apart from the introduction of such virtual ensembles 
of systems, it is necessary once more for us to justify the fundamental 
postulate of statistical mechanics relative to a priori probabilities, 
these being in fact completely foreign to the principles of me-
chanics. 

We are thus in the presence of two possible descriptions of a 
physical system: (i) the microscopic description, where only a 
single system is considered whose evolution is reversible and in 
general quasiperiodic, and where the physical observables are either 
phase functions in classical mechanics or Hermitian operators in 
wave mechanics; (ii) the macroscopic description, involving a 
statistical ensemble of systems whose average behaviour, which is 
the only one measured by experiment, must in particular possess 
the necessary properties of irreversibility. This being so, the justi-
fication of the method of statistical mechanics then poses the follow-
ing problems: A : For what reasons can we represent the macro-
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scopic quantities observed by the averages of the microscopic 
observables in a representative ensemble? Β : Is it possible to prove 
the tendency of these mean values to develop towards equilibrium 
states represented by stationary ensembles, as the irreversibility of 
macroscopic evolution demands? C : If the answer to Β is affirma-
tive, how is it possible to reconcile this irreversibility with the re-
versibility and the quasiperiodicity of mechanical systems? In order 
to answer these questions, various attitudes are possible and we 
follow ter Haar (1955) in distinguishing three of them: 

The utilitarian point of view—for which the assumptions intro-
duced are considered to be sufficiently justified by their conse-
quences, that is to say by the agreement of the theoretical conjec-
tures with the experimental facts; any method leading to correct 
results can then be held to be valid. If several methods of calculation 
lead to the same results, the choice between them is reduced to 
a simple matter of convenience: such is the case, for example, 
with microcanonical and grand-canonical ensembles which give 
the same average values for a system having a large number of de-
grees of freedom. It is hardly necessary to stress the fact that this 
attitude is unsatisfactory for the theoretician. Even within the field 
of applications, such a point of view lends itself to criticism: thus 
according to Khinchin, microcanonical and canonical ensembles 
only provide equivalent results for certain types of phase functions 
(sum-functions); for other phase functions, the utilitarian attitude 
does not allow a choice to be made, without recourse to experiment, 
of the ensemble which it is convenient to use. Be that as it may, 
the utilitarian point of view does not make it possible to avoid 
questions Β and C about the evolution of the system and its ten-
dency towards a state of equilibrium: the generalised / / - theorem 
is needed to provide an answer to these questions. 

The formalistic point of view—which considers mechanical systems 
as isolated systems whose energy and number of particles are fixed; 
in classical mechanics it corresponds to trajectories on a hyper-
surface of constant energy. The only stationary ensemble adapted 
to these conditions is the microcanonical ensemble which thus 
plays a privileged role; canonical and grand-canonical ensembles 
appear either as mathematical procedures suitable for simplifying 
the calculation of average values, or as representative ensembles of 
subsystems in thermal equilibrium in the midst of a vaster, isolated 
system. From this point of view, the main problem is to justify the 
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use of microcanonical averages in analysing the properties of the 
dynamic trajectory of a system observed on a hypersurface of con-
stant energy: this is the aim of the ergodic theory which can, more-
over, be stated in formally parallel terms in statistical quantum 
mechanics, the trajectory of the system on a hypersurface of phase 
space being replaced by that of the vector Ψ on the unit hyper-
sphere of Hilbert space. 

The physical point of view—which consists in attributing a funda-
mental character to the incomplete nature of our macroscopic 
observations and which leads to the concept of an ensemble re-
presentative of the state of a system. This concept is thus con-
sidered to be the starting point and sufficiently justified by our 
absence of information on the observed system; as we have already 
mentioned, this point of view is defended more easily within the 
framework of quantum ideas, as there does not exist in the normal 
interpretation of wave mechanics an objective and intrinsic state 
of a system, independent of measurements. The different stationary 
ensembles are then introduced naturally by the analysis of the 
physical condition of the observed system and by looking carefully 
at the concept of an isolated system. According to the degree of 
isolation of the system, one arrives with Gibbs, and above all with 
Tolman, at the concepts of perfectly isolated systems, represented 
by a microcanonical ensemble and systems which are "essentially" 
isolated and which are described by canonical or grand-canonical 
ensembles. This being so, it remains to answer questions Β and C, 
as in the utilitarian point of view, and to justify moreover the postu-
late of equal a priori probabilities; for this purpose, one must turn 
again to the generalised / / - theorem. 

5. Such are the various possible attitudes facing the problems 
which are raised by the justification of the fundamental postulates 
of statistical mechanics. In final analysis, they lead to the use of 
two distinct general methods: that of the ergodic theory and that 
of the generalised / /- theorem. In order to analyse the contents of 
these methods, it is necessary for us to refer once again to two 
characteristic properties of macroscopic observation which we 
have as yet not considered: (a) any observation is necessarily ex-
tended over a finite interval of time, which is generally large on the 
microscopic scale; (b) a macroscopic measurement always involves 
a certain inaccuracy of the measurement result. 

Let us consider, then, the ergodic theory in classical theory in 
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order to fix the ideas. In this case we have to deal with an isolated 
and conservative mechanical system, whose evolution is described 
by the trajectory of the representative point Pt of a system on a 
hypersurface Σ of phase space; the microscopic quantities asso-
ciated with the system are the instantaneous values of phase func-
tions f{Pt). Now, according to (a) experiment never measures these 
instantaneous values, but only the time-average of the phase func-
tions over an interval T. If we are interested in the equilibrium 
properties, we must observe the system over a sufficiently long period 
in order that the equilibrium state be established. Thus, we are led 
to consider the limit of the time average of the phase functions 
for Τ tending to infinity, so that the ergodic theory reduces to the 
following problem: Can we prove the equality of the limit of the 
time averages and of the phase averages taken over the hyper-
surface Σ, which corresponds here to the microcanonical ensemble? 
It is clear that the complete solution of this problem would contri-
bute a satisfactory answer to the questions raised by the justification 
of the principles of statistical mechanics. Actually, the equality of 
the time and of the phase averages justifies, first of all, the intro-
duction of uniformly distributed statistical ensembles ; it thus con-
tributes an answer to question A and knowledge of the trajectory 
of the actual physical system is no longer necessary for calculating 
the time averages. Moreover, as the limits of these time averages 
are equal to the statistical averages at equilibrium, it follows that 
the system exists for most of the time in a state of equilibrium and 
that it is sufficient to observe it only over a period which is suffi-
ciently large for seeing it tend towards such an equilibrium state. 
In this manner, it leads to an interpretation of macroscopic irre-
versibility which is compatible with microscopic reversibility and 
which enables us to anticipate the existence of fluctuations : such is 
the answer to questions Β and C; it assigns an essential role to the 
limit Τ -+ oo. The justification for the methods of statistical me-
chanics then rests entirely on the dynamic properties of the ob-
served systems. Despite the remarkable efforts of Birkhoff, von 
Neumann, Hopf, etc., we shall see that such a programme does 
not fail to raise some very great difficulties and that we are 
obliged to be satisfied, within the actual state of our knowledge, 
with the "probabi l i ty" ergodic theorems. (I have denoted it thus, 
to underline the fact that statistical concepts play a major role here, 
contrary to what occurs in the ergodic theory proper.) 
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The method, based on the proof of a generalised / /- theorem, is 
very much different in spirit: it accepts at the outset the concept of 
statistical ensembles of systems and the concept of a probability 
density in phase. In this point of view it is thus sufficient to show that 
these probability densities tend, in the course of evolution, towards 
one of the microcanonical, canonical or grand-canonical stationary 
distributions. However, such a result cannot be obtained with the 
fine-grained densities that satisfy Liouville's fundamental equation, 
which is reversible like all the equations of dynamics. We are thus 
obliged to turn to the second property of macroscopic observation 
mentioned above: in fact, because of the inaccuracy inherent in 
any observation, phase space can be divided up into finite cells of 
extension in phase (coarse graining), by which a coarse-grained 
probability density is defined, the importance of which has been 
particularly emphasised by P. and T. Ehrenfest. As this coarse-
grained distribution does no longer satisfy Liouville's equation, 
one is now in a position to establish a generalised / / - theorem which 
shows us the probable direction of evolution. However, this theorem 
has, above all, a qualitative value and it is quite inadequate for 
serving as the basis for a description of the irreversible evolution 
of non-equilibrium systems. Questions Β and C thus receive a 
qualitative answer, which leaves alone a detailed analysis of the 
irreversible processes themselves. Let us emphasise, in addition, 
that the generalised / / - theorem does not permit in any way the 
justification for the hypothesis of equal a priori probabilities— 
necessary for statistical mechanics—since these are used in the 
definition itself of coarse-grained densities; the justification for 
this hypothesis can thus be attempted only within the framework 
of the ergodic theory. 

These general considerations highlight certain essential points : 
first of all, the special role played by the properties of macroscopic 
observation at each stage of reasoning; it is for this reason that 
the incomplete nature of observations on our scale is the origin of 
the basic idea of representative ensembles and that the ergodic 
theory and the generalised / / - theorem depend on the finite duration 
and on the inherent inaccuracy in any macroscopic measurement. 
On the other hand, only the ergodic theory could be in a position 
to answer all the fundamental questions and especially question A ; 
thus, the formalistic attitude will be important for the physical 
point of view. Because of the impossibility of verifying the con-
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ditions for ergodicity, we shall see that we are led, in fact, to adopt 
an intermediate attitude, resting on the demonstration of the " p r o b -
abil i ty" ergodic theorem. Finally, as the generalised / /- theorem is 
reduced to a qualitative interpretation of the property of irrever-
sibility, a precise analysis of the evolution of non-equilibrium 
systems would have to rely on supplementary principles or hypo-
theses. 

6. If we now place ourselves within the framework of quantum 
concepts, the foregoing conclusions remain valid. Actually, apart 
from any formal differences, the logical structure of quantum sta-
tistical mechanics is identical, in essence, to that of classical sta-
tistical mechanics. The concept of the representative ensemble is 
introduced for the same reasons as in classical theory and the prob-
ability distributions thus met with must be carefully distinguished 
from specifically quantum probabilities. Contrary to what one 
might expect, the indeterministic nature of wave mechanics does 
not facilitate the solution of problems set by the foundations of 
statistical mechanics. We shall even see new difficulties arising be-
cause of certain features which are inherent in quantum theory. 

Thus, the concept of phase of classical mechanics cannot be 
transposed to wave mechanics all at once, because of the Heisenberg 
relations. The quantum theory imposes on us a functional represen-
tation of the state of a system described by a vector Ψ in Hilbert 
space. A set of vectors Ψ in the functional space must thus be asso-
ciated with an ensemble of quantum systems and the role of the 
probability density in phase in classical mechanics is played by 
the statistical operator. Moreover, by virtue of the essentially sta-
tistical nature of the quantum theory, the probability concept ap-
pears in statistical mechanics under two radically different aspects: 
on the one hand, under the form of quantum probabilités which do 
not satisfy the normal rules of probability calculus and which are 
connected with the very nature of the quantum description of the 
state of a system; on the other hand, under the form of classical 
probabilities which have the same origin as in classical statistical 
mechanics. The distinction between these two types of probability, 
which corresponds moreover to the difference between mixtures 
and pure cases, turns out to be fundamental. However, as the sta-
tistical nature of the quantum theory is completely independent of 
the methods of statistical physics, it does not introduce any essen-
tial change into the principles of statistical mechanics, but only 
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some modifications of its mathematical form, which we shall study 
in Chapter II. 

Another characteristic property of wave mechanics without a 
classical parallel relates to the fact that any two quantities are not, 
in general, measurable simultaneously, unless their associated ope-
rators commute with one another. Because the quantities observed 
macroscopically are simultaneously measurable and as they corre-
spond, moreover, from the point of view of classical physics to 
the intrinsic properties of the system, we might ask ourselves if 
we shall not encounter a new difficulty here. This obstacle is avoided 
by ascribing a system of operators to the observed microscopic 
quantities, so-called macroscopic operators, which satisfy the re-
quired properties of commutability. Because of their strong de-
generacy and because of their non-commutation with the micro-
scopic Hamiltonian, these macroscopic operators play an important 
role in the ergodic quantum theory as well as in the proof of the 
generalised / / - theorem; we have devoted the second section of 
Chapter II to them. 

We come now to another important consequence of the quantum 
theory, to which we shall return often, especially in the ergodic 
quantum theorem in Chapters III and IV: this is the absence of 
evolution of a quantum system when it is in a stationary state. 
This refers both to the properties of the integrals of motion and to 
the nature of the quantum description of the state of a system: 
in fact, only the probabilities relative to the various eigenstates of 
a quantity have a physical significance and the time-dependence 
of these probabilities alone determines the evolution of the system. 
If a system exists, for example, in a well-defined microscopic 
energy state the probabilities of any physical quantity associated 
with the system remain invariant with time so long as no external 
perturbation interferes. We note, moreover, that the microcanonical 
ensemble is then reduced to a single vector Ψ, associated with the 
energy state considered, unless this state is degenerate. This pro-
perty of stationary states raises serious difficulties in the quantum 
ergodic theory: they can only be overcome by making use of the 
strong degeneracy of the macroscopic observables. 

Finally, it still remains for us to evoke the specifically quantum 
relationship between spin and statistics, which is the origin of 
another essential difference between the classical and quantum 
aspects of statistical mechanics. This relationship imposes a re-
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strictive condition on the choice of possible wave functions, to 
which corresponds a reduction of the "accessible" states for the 
system, the group of symmetrical states being associated with 
particles having integral spin, and that of antisymmetrical states 
being associated with particles having half-odd-integral spin. This 
condition thus leads us to the two types of quantum statistics, the 
Bose-Einstein and Fermi-Dirac statistics, which are applied with 
so much success, especially in low-temperature physics. Even 
though this separation into symmetrical and antisymmetrical states 
is the origin of a certain complexity of the mathematical equipment 
of the theory, in particular for calculating average values, it does 
not appear to play an important role in the problem of the foun-
dations of statistical mechanics; in fact, it corresponds simply to 
the existence of a uniform integral of motion and it is necessary 
only to consider from the start one or the other of the two groups 
of states: this is what we shall do, in general, in this book. 

7. The foregoing considerations are directed towards the plan 
of this book ; quite naturally, it comprises two parts : the first part 
is devoted to the ergodic theory and the second part to the study of 
//-theorems and kinetic equations. In each part I have endeavoured 
to treat in parallel the classical and quantum aspects of the problems 
studied, stressing at the same time the similarities and differences 
between the classical and quantum theories. In addition, I have 
developed particularly the subjects where some recent advances 
have been achieved, confining myself simply to mentioning results 
acquired long ago and which can be considered as well known. 
Thus, only a single chapter—the first—is devoted to classical er-
godic theory, where the modern ergodic theorems of Birkhoff, von 
Neumann and Hopf are reviewed, in addition to Khinchin's method 
for evaluating—for a system with a large number of degrees of 
freedom—the mean squares of phase functions of the " s u m " 
type. In order to facilitate the explanation I have set out, in Appen-
dix I, a detailed analysis of the concept of metrical transitivity 
and the study of the asymptotic properties of structure functions 
for systems with weakly coupled constituents; in this connection, 
I leave aside the calculation of averages of phase functions, which 
is outside the scope of our subject. 

On the other hand, I have reserved three chapters for an account 
of the quantum ergodic theorem, because of the progress accom-
plished recently in the domain of the probability ergodic theory, 
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thanks to the work of various authors and to the research under-
taken in my doctoral thesis and developed subsequently. Chapter II 
deals with the definition of statistical ensembles of quantum 
systems and with the introduction of macroscopic operators, which 
play a principal role in all the arguments. In Chapter III, I then 
deal with the quantum ergodic theory proper, with an account of 
the methods of Ludwig, of von Neumann, and of Pauli and Fierz. 
After having analysed the method of averages over all possible 
macroscopic observers, I show how we are led to the concept of 
the quantum probability ergodic theorems, the proof of which 
occupies the whole of Chapter IV and which, together with Chap-
ter VI, comprises the most original part of the book. As all the 
results of this chapter rest on the asymptotic properties of the unit 
hypersphere of w-dimensional space, real or complex, I have—as 
in classical theory—given in Appendix II a study of these hyper-
spheres and of the corresponding probability distributions. 

In the second part, devoted to the study of irreversible processes, 
I have, on the other hand, developed at greater length certain 
classical problems, because of the recent papers in the field of classi-
cal kinetic equations which were stimulated by the progress of 
plasma physics. This is why I have devoted the whole of Section V 
of Chapter V to the detailed study of the various methods of inte-
grating Liouville's classical equation, on the deduction of the 
"Mas te r Equa t ion" in quantum theory, and on the quantum par-
allel of the hypothesis of molecular chaos. Finally, in the last chapter, 
taking the place of the conclusion, I return to the properties of 
macroscopic observation by emphasising the differences which 
distinguish it from quantum measurements and which certain 
authors have considered, together with Klein's lemma, as the foun-
dation of macroscopic irreversibility. 

8. In conclusion, let us point out the essential themes of this 
book. In the first place, it is shown how the ergodic problem can 
be stated in terms which are formally similar in classical theory 
and in quantum theory, despite a few important differences which 
we have already emphasised. In both cases, the proof of the ergodic 
theorems encounters difficulties which are still unresolved ; in fact, 
it would be necessary to satisfy certain conditions of ergodicity, 
which are unverifiable in practice: these are the hypotheses of 
metrical transitivity in classical theory, the absence of degeneracy 
and of resonance frequencies in quantum theory. This situation is 
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complicated again in the quantum ergodic theorem, where the 
properties of stationary states force us to make use of macroscopic 
observables and to take the averages over the ensemble of all the 
possible macroscopic observers (von Neumann, Pauli-Fierz). The 
existence of quantum ergodic systems could only thus be established 
relative to macroscopic observers ; once again, such a result would 
be valid only as a "probabi l i ty" result. It thus appears that the 
ergodic problem raises greater difficulties in quantum theory than 
in classical theory and that we are still far from its definitive solu-
tion in both cases. Moreover, the ergodic theorems always allow 
the possibility of exceptional trajectories whose set is of measure 
zero; we cannot eliminate them without accepting the following 
postulate, whose statistical nature is obvious : the states belonging 
to a set of zero measure are never observed in reality. 

This is why the second theme of the book is aimed at getting rid 
of these various conditions, by relying on the following statement: 
the ergodic theorems are generally stated for any dynamic systems, 
independently of their number of degrees of freedom; these are, 
in fact, statements of general mechanics, bearing on ensembles of 
trajectories. However, macroscopic systems always have an enor-
mous number of degrees of freedom, which give to the phase func-
tions or to the quantum averages representing physical quantities, 
particular properties connected with the geometrical properties of 
hypersurfaces in a space with a large number of dimensions, n. 
We note that n, which is proportional in the classical case to the 
number Ν of particles of the system, is in the quantum case a very 
rapidly increasing function of N, because of the functional descrip-
tion of the system. In relying on the asymptotic properties of these 
hypersurfaces and using from the start the point of view of the 
theory of classical or quantum statistical ensembles, we can then 
prove without any particular hypothesis about the dynamic struc-
ture of the system the probability ergodic theorems, which establish 
the equality of the time and microcanonical averages, except on a 
set whose measure decreases very rapidly as Ν increases. In quan-
tum theory, microscopic and macroscopic theorems can be proved, 
a comparison of which emphasises the fundamental importance of 
the strong degeneracy of the macroscopic operators. In all cases, 
these results rely exclusively on the limit Ν -> oo, which thus plays 
a privileged role in place of the limit Τ -» oo. By interchanging 
these two limit processes, it is shown in addition that the quantum 
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ergodic theorems of von Neumann enter again into the framework 
of the probability ergodic theorems and that the ergodicity con-
ditions, which were required, are finally superfluous. Finally, it is 
shown that the proof of the quantum probability ergodic theorems 
rest, in fact, on the asymptotic properties of the macroscopic ob-
servables themselves. These latter results have been obtained re-
cently, as a consequence of work to which we have already made 
reference: they have thus enabled us to clarify the problems posed 
by the ergodic quantum theory and they are presented as the 
quantum extension of Khinchin's classical arguments. 

In the second part, we approach another fundamental theme 
of the book, namely, the study of the irreversible evolution of non-
equilibrium systems. We deal first of all with the generalised 
/ /- theorem which gives rise to developments entirely analogous in 
classical and quantum theory. The quantum concept of sub-spaces 
or cells in Hilbert space associated with a macroscopic operator 
corresponds to the classical concept of cells in extension in phase. 
These operators enable us, in addition, as we have already empha-
sised, to overcome the specific quantum difficulties associated with 
the existence of stationary states; because of their non-commutabi-
lity with the microscopic Hamiltonian they lead, in fact, to a defi-
nition of non-stationary statistical ensembles which describe the 
evolution of the system. In classical, as in quantum, theory we 
arrive at the same conclusions: the generalised / / - theorem gives 
only an indication to the direction of evolution of a system im-
mediately after the moment of a macroscopic observation; its value 
is thus essentially qualitative. In order to obtain kinetic equations, 
we must analyse the process of evolution itself in more detail. 

If we wish to draw conclusions from the generalised / / - theorem 
which are valid for longer durations (of the order of the relaxation 
time) and which give rise to quantitative predictions, we must try 
to renew at each instant the hypotheses made for the initial moment 
of the macroscopic observation; we have here the problem of con-
servation with time of the property of molecular chaos which is 
expressed, in quantum theory, by the vanishing of the off-diagonal 
elements of the density matrix. By accepting the existence of such a 
property, we are led to a "Mas te r Equat ion" , which leads to re-
presenting the evolution of a gas by a Markovian process. However, 
one has substituted in a more or less explicit manner for the 
dynamic description of the evolution of the system, a stochastic 
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description which is not in general compatible with the laws of 
mechanics; on the other hand, the same is true for the Boltzmann 
equation, whose stochastic significance is far from being com-
pletely clarified. In final analysis, we can only discuss the validity 
of such descriptions by reverting to Liouville's fundamental equa-
tion in its classical or quantum form. The various methods of ap-
proximate integration of this equation (the B.B.G.K.Y, equations, 
Bogolyubov's method, etc.) have thus as objective a study of which 
hypotheses and which approximations are necessary for deriving 
the kinetic equations such as the Master Equation, the Boltzmann 
equation, the Fokker-Planck equation, etc. ; this analysis depends 
on the large number of degrees of freedom of the system (limit 
Ν -* oo) and enables us, in certain cases, to remove the contra-
dictions between microscopic reversibility and macroscopic irre-
versibility, by distinguishing between different scales of observa-
tion. 

9. In the terms of this study, what can we say about the actual 
state of the problems raised by the foundations of statistical me-
chanics? In the light of the foregoing results can we make a choice 
between the formalistic point of view and the physical point of 
view? In order to attempt to answer these questions, we emphasise 
first of all that the programme of the ergodic theory is far from 
being completed in its entirety and that, despite the numerous re-
markable efforts—especially in the classical domain—it is in fact 
illusory to attempt to found the methods of statistical mechanics 
on a purely dynamic basis. It would thus appear that the formalistic 
attitude must lose much of its interest, since we must always have 
recourse to statistical concepts which are foreign to mechanics, be 
it only to eliminate exceptional trajectories, which continue to exist 
in the ergodic theory. However, we have succeeded in proving the 
probability ergodic theorems, by heavily making use of the limit 
Ν -> oo ; the theorems are sufficient both for justifying the hypo-
thesis of equal a priori probabilities of statistical mechanics and to 
establish the principles of statistical thermodynamics. On the other 
hand, as we have seen that the generalised / /- theorem has mainly 
a qualitative value and that it is inadequate for serving as the basis 
for the principles of statistical mechanics, one might think that 
the physical attitude itself must be partially revised and that the 
truth is contained, probably, in a reconciliation of the two points 
of view, formalistic and physical. 



General Introduction 

Actually, because of the physical conditions which are particular 
to macroscopic systems, the concept of the statistical ensemble 
must necessarily be retained as it is an essential concept; it depends 
both on an analysis of the properties of macroscopic observation, 
which constitutes the physical aspect of the problem, and on the 
interpretation of the role played in physics by the concept of 
probability itself; this raises an important epistemological pro-
blem. Thus, statistical mechanics appears in final analysis as a 
theory of macroscopic observation of systems with a large number 
of degrees of freedom. This being accepted, the "probabi l i ty" 
ergodic theory suffices to justify the postulate of equal a priori 
probabilities and the use of microcanonical ensembles for describ-
ing isolated systems; canonical and grand-canonical ensembles are 
then introduced as either representative ensembles of sub-systems 
in equilibrium in a vaster system, or as mathematical procedures 
which are convenient for calculating average values in systems 
with a large number of degrees of freedom. The fundamental 
questions A, Β and C thus receive a satisfactory answer and it can 
be stated that a microscopic system exists most of the time in an 
equilibrium state represented by a stationary ensemble; if, as a 
result of fluctuations, it diverges significantly, we can expect to see 
a rapid return towards equilibrium. Moreover, as we have empha-
sised, the analysis of this return to equilibrium and more generally 
of irreversible processes, raises problems which are especially asso-
ciated with the conservation with time of the property of molecular 
chaos. 

Nevertheless, we cannot say that the problems raised by the 
foundations of statistical mechanics have thus received a definitive 
solution; quite the contrary, the numerous points which remain 
to be explained or defined more precisely can give birth to interest-
ing projects. Within the framework of the ergodic theory, for 
example, two paths of research are open to us : the one, by extending 
the work of Birkhoff and von Neumann, would carry out the study 
of the dynamic properties of systems which have a large number 
of degrees of freedom, from the point of view of mechanics; the 
other, following the ideas of the probability ergodic theorem, would 
lead to a more precise statement of the statistical laws satisfied by 
ensembles of macroscopic systems. The problem which offers the 
most possibilities in this respect, however, is surely that of non-
equilibrium systems ; on the one hand, we encounter here, starting 
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from the establishing of kinetic equations, various still unsolved 
problems, such as the conservation of the property of molecular 
chaos; on the other hand, we may think that the numerous re-
searches carried out in the sphere of plasma physics would supply 
us with new methods, amongst others, the diagram method which 
appears to be destined to be extended considerably in the years to 
come. 

Finally, to change the subject completely, the problem of the 
foundations of statistical mechanics would appear in a new light if 
mechanics itself were to undergo complete modifications. Such 
would be the case with the substitution of non-linear equations for 
the present linear equations, following the researches undertaken 
by M. Louis de Broglie and his school with a view to a causal inter-
pretation of wave mechanics. The properties of such equations, in 
particular the existence of limit cycles, would be in the nature of 
contributing new elements into the principles of statistical mecha-
nics and eliminating, perhaps, certain of the difficulties that we 
have encountered. 

In concluding this introduction, I am pleased to express my 
sincere gratitude to M. Louis de Broglie for the great honour which 
he has afforded me in writing the Preface to this book and to 
express to him my profound gratitude for the interest which he has 
always shown towards my researches, and which owe so much to 
his teaching. 

To M. Jean-Louis Destouches, who has shown such interest in 
this problem and who has always encouraged me and guided me 
in the achievement of this work, I express my sincere gratitude 
and my most hearty thanks for having been willing to accept this 
book into his series. 

I also owe my thanks to M. Theo Kahan, who was willing to 
check the proofs of this book and I am pleased to express my sincere 
gratitude for the valuable and friendly support which he has al-
ways given to me during the interesting and fruitful discussions 
that we have held together. 



CHAPTER I 

The Ergodic Theory in Classical 
Statistical Mechanics 

I. Statistical Ensembles of Classical Systems 

1. Definition of ensembles of systems. Liouville's theorem 

In classical mechanics, the state of a system with η degrees of 
freedom is described by its η coordinates qt and their η conjugate 
momenta pt (i = 1, 2, n); the set (qi9pt) defines a point Ρ in 
a phase space (jT-space) of In dimensions. The motion of this 
point is described by the Hamiltonian equations 

dH . dH 
qt=-^=[qi9H]9 P i= - — =[Pi9H], (1.1) 

where the [ ] are Poisson brackets and H is the Hamiltonian 
of the system. These equations determine the trajectory of the point Ρ 
in phase space: from t0 to t9 the representative point of the system 
passes from P0 to Pt. If the system is conservative ( / / independent 
of t) and if there are no singularities, equations (LI) are the infini-
tesimal transformations of a continuous group of transformations 
(P0 -> Pt) with parameter t which transforms the phase space into 
itself. If Tt denotes the transformations of this group, we have 

Pt = Ttp0, 
with 

Ts+t = TsTt and T0P0 = P0. (Ι.1') 

Thus, to the motion described by (Ι .Γ) there corresponds an 
automorphism of /^-space whose invariants are the integrals of 
motion of the system (LI) . The integral of motion of the energy, 
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H = const, defines a hypersurface Σ of (In — 1 ) dimensions in 
/"-space; it plays a privileged role for isolated systems. The group 
of automorphisms (Ι .Γ) will be without singularities and Tt will 
be determined analytically over Σ, if the hypersurface Σ is located 
entirely in a region of / - space where the Hamiltonian is uniform 
and analytical. 

The Hamiltonian of an " i so la ted" system includes internal inter-
actions, interactions with external bodies being expressed by a 
conservative (time-independent) potential, depending only on the 
coordinates of the system considered, as well as interactions with 
the walls involving external parameters (fixing the position and 
shape of these walls) which do not depend explicitly on the time. 
The energy of such a system will be constant, so that the point Pt 

will remain on a hypersurface Σ; because of the walls, this hyper-
surface will be completely bounded and the measure μ(Σ) will be 
finite, which is essential for the arguments of the ergodic theory. 

An ensemble of systems is defined by a set of points in / - s p a c e ; 
such an ensemble is thus defined by a phase density / ) ( / , t) which 
represents the number of points per unit volume with In dimen-
sions in the vicinity of the point Ρ at time t. By definition, this 
density must satisfy the relation 

The function D(P, t) must also satisfy the hydrodynamic equa-
tion of continuity 

(1.2) 

r 

(1.3) 

which, because of (1.1), assumes the form 

dD 

dqt dpt 

dD dH ÔD dH) 
(1.4) 

because we have according to (LI) 

(1.5) 

4 
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Since the total variation of D as a function of time is 

dD dD 

— = — +[D,Hl (1.6) 

we have, by comparison with (1.4) 

dD 
^ - = 0. (1.7) 

This latter equation (1.7) is the differential expression of Liou-
ville's theorem, because it states that D(P, t) is an invariant integral 
of motion, i.e. that 

JD(P,t0)dr= JD(P,t)dr, (1.8) 

where Vt is the region occupied at t by the points which occupy V0 

at the initial time. 
If we take D = const, expression (1.8) shows that the measure 

of a hypervolume of phase space is invariant with respect to the 
equations of motion: the elementary measure dF thus constitutes 
an invariant measure in Γ-space with respect to Tt. We recall also, 
without proving it, that the measure dT is invariant under 
canonical transformations of the coordinates and momenta of the 
system. In what follows, we shall always use the normalised density 
ρ(Ρ, t), defined by 

D(P, *) 
ρ ( ρ , 0 = τ — . (1.9) 

D(P, t)dr 

Relation (1.2) can then be written as 

jQ(P,t)dr= 1 (1.10) 
r 

and ρ(Ρ, t \ naturally, satisfies the same equations as D(P, t). 

2. Stationary ensembles 

These correspond to the case of statistical equilibrium; in order 
that an ensemble be stationary, it is necessary and sufficient that 
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the density ρ be time-independent: 

(1.11) 
dt 

or, according to (1.4) 

Iß, H] = 0. (1.11') 

It can be seen immediately that ρ = const is a solution of the 
equations (1.11) so that if a uniform distribution is realised at 
the initial time, it will be maintained in the course of evolution. 
Apart from this trivial solution, equations (1.11) allow as a solution 
any function ρ = ρ(/), where / is an integral of motion of the 
system considered. In fact, we have by definition 

df » / df . df A 

- - Μ * * * * » ) - 0 · < U 2 > 

whence, according to (1.4), 

δρ dQ » / df . df Λ 

< L 1 3 ) 

In the case of a conservative and isolated system it is natural to 
use the total energy of the system as the integral of motion; we 
are thus led to introduce the microcanonical ensemble for de-
scribing the statistical equilibrium of isolated systems. On the 
other hand, we also use canonical and grand-canonical ensembles 
in statistical mechanics; we have thus four fundamental stationary 
ensembles : 

(a) Uniform ensemble. This is defined by ρ = const. It corre-
sponds to an ensemble whose representative points are distributed 
uniformly over phase space. It is of interest as it shows that there 
is no mechanical reason which can lead to assigning a privileged 
role to any region of .Γ-space. This ensemble also has the property 
of being invariant under canonical transformations, so that if we 
have a uniform distribution for a system of variables (qk9 pk), we 
will have the same distribution for any other system of canonically 
conjugate variables (Qk, Pk). 

(b) Microcanonical ensemble. For isolated conservative systems, 
the energy integral plays a privileged role; statistical equilibrium 
being assured by any density of the form ρ(Η)9 the microcanonical 
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ensemble is formed by taking the uniform distribution in an energy 
shell (Ε, Ε + δΕ) and by taking ρ = 0 over the rest of space: this 
ensemble describes the state of statistical equilibrium of an isolated 
system whose energy lies between Ε and Ε + δΕ. 

In the case where distends to zero, the microcanonical ensemble is 
reduced to the constant energy hypersurface Σ: Η = Ε. For such 
an ensemble the invariant density over the hypersurface is given 

b y t 
dZ 

this enables us to define an invariant measure and, eventually, a 
probability law over the hypersurfaces Σ of JH-space. 

We note, moreover, that if we had m uniform integrals of motion 
in addition to the energy, a subset *M with {In — m — 1) dimen-
sions would correspond to it in .Γ-space and that it would define, 
starting from άΓ, an invariant measure over Jt. However, in an 
isolated system the only known uniform integrals are the momentum 
and the angular momentum, and it can be shown that they need 
not be taken into consideration because of the role of the walls: 
for example, if the walls are perfectly reflecting, the momentum 
of a molecule which rebounds at the wall is not conserved. This 
justifies the assigning of only a single uniform integral, the energy 
integral, to an isolated system and describing such a system by a 
microcanonical ensemble. % 

(c) Canonical ensemble. This is defined by 

ρ = β<
ψ
-

Ε)/
\ (1.15) 

where Ε is the energy of the system (a function of the coordinates 
and momenta) and 0 is the modulus of the distribution; Ψ and θ 
are parameters with the dimensions of energy and are connected 
by the relation 

e-v» = fe-
E
'°dr. (1.16) 

r 

The various possible values of the parameters Ψ and θ correspond 
to different macroscopic conditions of the observed system; 0 is 

t The proof o f this result will be found in § 4 of Appendix I. 
Î For a more detailed discussion o f the role of uniform integrals of mot ion , 

see also Appendix I, § 3 . 
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( 1 . 1 7 ) 

i 

8 

proportional to the absolute temperature and Ψ is equal to the 
free energy apart from an additive constant. It can be shown that 
a canonical ensemble represents the distribution of the states of a 
system coupled with a thermostat (for the proof, see Chapter IV) 
and that it is thus particularly appropriate to the description of 
macroscopic systems in thermostatic equilibrium. 

(d) Grand canonical ensemble. In everything up to now, we 
have considered systems having a specified number of particles; 
if we wish to describe a system in which chemical reactions are 
taking place, we must break away from this condition. We are 
thus led to introduce ensembles of systems having a variable 
number of particles: Gibbs (1902) has called these grand ensembles 
in contrast to the preceding ensembles (having a specified number 
of particles) called petit ensembles. 

If we suppose that the system considered contains h kinds of 
particles and if nt denotes the number of particles of the ith kind, 
the density of a grand ensemble will be a function of nt and of the 
variables (qi,Pi); let ρ(ηί9 . . . , « A ; P) be this density: then ρ dT 
represents the number of systems of the ensemble having nt particles 
of the ith type and found in the element dr. (It should be mentioned 
that the element dF depends on nx, since the number of degrees of 
freedom, n, of the system is expressed as a function of nt by the 
formula η = £ ntri9 where rt is the number of degrees of freedom 

i 
of the particle of the /th type.) 

In addition, we must discriminate between phases characterised 
by specific or generic definitions: if we consider two states for a 
system which differ only by the exchange of two particles of the 
same type, the specific definition considers that these states 
correspond to two different phases (specific phases) whilst the 
generic definition considers them as belonging to the same phase 
(generic phase). The number of specific phases contained in one 
generic phase is obviously J ^ ! . 

i 
This being granted, a stationary grand ensemble, distributed 

canonically, or a grand canonical ensemble is defined by a specific 
density ρ of the form 



Ergodic Theory in Classical Statistical Mechanics 

where Ε is the total energy of the system and 0 is the modulus; 
Ω, θ and μι are parameters to be determined from macroscopic 
conditions of the system. 

For the generic density qg we have 

Qg = Σ Q* =
 e x

P Ω + ΣμίΠι — Ε 
•)/·] 

(1.18) 

since the energies of all the specific phases corresponding to the 
same generic phase are equal. According to equations (1.17) and 
(1.18), the grand canonical ensemble can be considered as a weighted 
collection of petit canonical ensembles: in fact, it suffices to 
fix the value of nf in order to obtain the formulae of the preceding 
subsection (in particular, the modulus θ is also proportional to 
the absolute temperature). The quantity Ω is determined by the 
equation 

exp (Ω +£wt - ή 

"ι ...nh J 

Γ 

Π " 
ί / Γ = ι 

(1.19) 

which can be written as 

exp 

= Σ 
[ff™)/*! -Ε/θ 

(1.190 

The integral in (1.19') is equal to β~
ψ/Θ

 according to (1.16); we thus 
have the relation 

= Σ 
exp [ (Σ /ν^-η /θ ] 

(1.20) 

These grand canonical ensembles are well suited for describing 
systems in equilibrium in contact with a thermostat and a "part icle 
reservoir" (playing the same role as a thermostat). In Chapter IV 
we shall see the relations which exist between canonical and grand 
canonical ensembles on the one hand and the microcanonical 
ensembles, used exclusively in the ergodic theory, on the other 
hand. 

2 a FCM 9 
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3. Fundamental hypothesis of classical statistical mechanics 

Statistical mechanics considers the correspondence of an en-
semble of systems to a macroscopic physical system. This ensemble, 
called the representative ensemble, is made up from systems, which 
are independent of one another and with a structure similar to 
the system studied, with an appropriate statistical distribution. 
Such an ensemble thus enters into the framework of the ensembles 
of systems studied above and possesses all the properties which we 
have mentioned. This ensemble must be constructed, obviously, in 
such a way that the states of the constituent systems correspond 
to the partial knowledge of the state of the real system {accessible 
states), knowledge acquired by macroscopic observation; it will thus 
include all systems whose states are compatible with our macro-
scopic knowledge. In order to conclude the determination of this 
representative ensemble, we must define a probability density for 
it: thus, an essentially statistical hypothesis must be made concern-
ing the a priori probabilities appropriate to the various states of the 
system compatible with our knowledge. We note that we can choose, 
for this purpose, any law of a priori probability over jT-space (or 
over the hypersurface Σ), provided that it is an invariant measure 
with respect to 

The assumption which is usually made (and which is the most 
natural one) is that of equal a priori probability for equal volumes 
of Γ-space. The result is that the relative probabilities of finding the 
system in specified regions of the jT-space are proportional to the 
measure of these regions; the probability thus defined is indeed 
an invariant measure with respect to Tt, because of the invariance 
of αΓ demonstrated in § 1$ (in addition, we note that as the meas-
ures of the volumes of the extension in phase are invariant under 
canonical transformations, our assumption of equal a priori 
probabilities is thus valid for any system of canonical variables). 

This postulate is of a purely statistical nature and, even if it 
cannot be deduced from the principles of mechanics, it cannot 
contradict them; in fact, there would be incompatibility between 
the principles of mechanics and this statistical postulate if it 

t Cf. Appendix I, § 4. 
% In the case of a hypersurface Σ, this assumption leads us to adopt the 

density (1.14); see Appendix I, § 4. 
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limited the set of possible mechanical movements, or if the dynamic 
laws had led us to choosing another assumption than the one 
adopted: the previously-stated assumption only gives weights to all 
possible movements (without restricting them) and we have seen, 
on the other hand, in studying the uniform ensemble, that the 
Hamiltonian equations do not lead to a concentration of re-
presentative points of the systems in any particular region of phase 
space. This assumption is only finally justified by the agreement of 
the theoretical predictions with the experimental results; this is 
why certain authors, such as Tolman (1938), accept it as a basic 
assumption for founding statistical mechanics and, in adopting 
a utilitarian point of view, they consider it as sufficiently justified 
by its consequences. 

With these definitions, macroscopic quantities are expressed by 
statistical averages of the corresponding functions of mechanics, or, 
for a quantity f{P), 

Thus, these averages are the only quantities which, from the 
point of view of statistical mechanics, are accessible to macroscopic 
observations: they offer the advantage that they can be calculated 
without integrating the equations of motion, at least in the station-
ary case. 

If we wish to free ourselves from the utilitarian point of view, 
the fundamental problem of statistical mechanics thus is to 
justify the use of these statistical averages by considerations which 
bear on the dynamic behaviour of the actual system whose evo-
lution is determined by the Hamiltonian equations: we shall see 
how the ergodic theory is attempting to resolve this problem. 

II. Ergodic Theorems in Classical Mechanics 

1. The ergodic problem 

We are interested here in the case of an isolated system whose 
energy can be considered as fixed: the representative point Ρ 
of the system moves thus on a hypersurface of constant energy 
H(P) = Ε and the statistical ensemble which correspond to this 
situation is, as we have seen, the microcanonical ensemble. If 

(1.21) 

r 

11 
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we accept that macroscopic quantities are represented by the 
phase averages of the corresponding functions of mechanics, 
these will be given according to (1.21) by expressions of the type 

Σ 1 f dZ 

^ = M^J / (PW' ( L 2 2 ) 

Σ 

where μ(Σ) is the measure of the hypersurface H(P) = Ε and where 
d!T/gradii is the invariant measure on Σ, according to (1.14). 

On the other hand, however, it is known that the mechanical 
evolution of the actual system is described by the point P , which 
moves on a single trajectory defined by the equations (Ι .Γ) (or by 
the In — 1 integrals of motion of (1.1)). Thus, to each quantity 

f{P) corresponds a function of Pt: f(Pt) = f(TtP), whose value 
would be defined at each instant if the trajectory and the motion 
of the point Pt along it are known. However, since this instantane-
ous value is not found by macroscopic observation, it is accepted 
that this observation only enables us to determine the time-average 
of these functions over an interval of time T:~\ this interval Τ 
corresponds to the duration of the observation, which is very 
large in relation to the microscopic evolution of the system. The 
quantities observed in actual fact will then be described by ex-
pressions of the form 

t0+T 

f(Pt)
T
=jJf(P,)dt. (1.23) 

ίο 

The fundamental problem of statistical mechanics will be 
resolved if we can justify the replacement of the time-average 

f{Pt) , taken over a trajectory, by the phase mean f(P) , taken 
over the microcanonical ensemble: this is the more general form 
under which the ergodic problem is posed and its solution would 
enable statistical mechanics to be founded on a purely dynamic 
basis; we shall see, however, that the statistical element cannot 
be eliminated completely. 

t This definition of observed macroscopic quantities depends o n the fact 
that the recording devices always behave as integrators, whatever may be the 
apparatus used. W e shall use another definition of macroscopic quantities in 
the second section, based on the inherent inaccuracy of any macroscopic o b -
servation (see Chapter V, § II. 1). 
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The macroscopically small time Τ is generally assumed to be a 
very long one in relation to the process of the return to equi-
l ibr ium! (the time of free flight of the particles, relaxation time, 

r 
etc.), which leads us to consider the limit off(P t) for Τ -> o o . The 
macroscopic quantities will then be represented by 

f{Pt) = XimflP,), (1.23') 
T-* oo 

Γ oo 

if we can establish the convergence of f(Pt) towards f(Pt) and 
if the relaxation time of the system is small. We note, moreover, 
that the passage to the limit Τ -> oo cannot give rise to any serious 
objection against the ergodic theory, if we take account of the 
properties which we shall establish later on both for the " s u m " 
phase functions in classical theory (see Section III of this chapter) 
and for the macroscopic observables in quantum theory (see 
Chapter IV). 

Thus, in order to solve the ergodic problem, we are led to 
proving: 

(a) the existence of the l imi t / (P t) °° ; 

(b) that this limit, if it exists, is the same for all trajectories. 

According as we search for an almost certain convergence or 
convergence in the quadratic mean, the first part of the proof 
assumes either the form of BirkhofTs theorem or that of von Neu-
mann 's theorem; the second part can be proved only by making an 
assumption concerning the dynamic structure of the system—an 
assumption which is the same in the two types of convergence. 

2. Birkhoff
 9

s theorem (1931a, b) 

If Ω is an invariant set in phase space, of finite volume, and if 
f(P) is a function summable over Ω and determined at every point 

t0+T 

ΡεΩ, the limit lim — f(Pt) dt exists for all points Ρ of the 
T - o o Τ J 

to 

set Ω, except at the most for a certain set of zero measure. 
It is then easy to show that this limit is independent of the initial 

time t0 (it is thus an integral of the system). BirkhofTs theorem, 

t The order of magnitude o f Tis thus much larger than that of the duration τ 
introduced by Kirkwood (cf. Chapter V, § V.3) . 
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which we are stating here without proof,! enables us to establish 
property (a) since the hypersurface Σ is an invariant set of / - space ; 
it is applicable to very general cases, with the sole condition that 
the group of transformations Tt ("f lux" Tt) be measurable. :£ Thus, 
for every f(P)eL1(Q) we have an f*(P)eLl(Q), invariant o v e r ß , 
such that we have almost everywhere (a.e.) 

ΛΛ)β= \im7(Pt)=f*(P); (1.24) 
T-+ oo 

if, moreover, ιη{Ω) is finite (this is the case if the system is enclosed 
in a completely bounded region) we have also 

jf*(P)dP = jf(P)dP. (1.240 
Ω Ω 

Property (b) is only satisfied, on the contrary, by means of a 
fundamental assumption concerning the system: the set Ω (or, in 
our case the hypersurface Σ) must be metrically transitive, that 
is to say that this set (or this hypersurface) cannot be separated 
into two invariant subsets of non-zero measure. 

In fact, it is then easy to show that /(Λ)°° = f*(P) *
s
 constant 

almost everywhere o v e r ß ; for, if it were not so, a number a would 

exist such that the conditions /(Λ)°° < # and /(Λ)°° > a would 
define a separation of the set into two invariant subsets of non-zero 
measure, which is contradictory to our hypothesis. I t can be 
established without difficulty that this constant is equal to the 
microcanonical average off(P) . f t Conversely, since we can show 
that if every / * ( P ) is constant almost everywhere over Ω, the set Ω 
is metrically transitive, J J the assumption of metrical transitivity of 
Ω is thus equivalent to the ergodic hypothesis stated in the following 
form: all time limits f*(P) are constant almost everywhere over Ω. 

A system for which the hypersurface of constant energy is 
metrically transitive is called metrically transitive. Thus, we have 

t For this proof, see Appendix I, § 2. 
t Suppose that &~ is the straight line o f the variable t and Λ C Ω is a mea-

surable set; the flux Tt is measurable if the set produces the points (Ρ χ t) 
of the space ß x J , such that Pt e A is measurable relative to the measure pro-
duced i n f 2 x ^ . 

f t See Appendix I, § 3. 
%% See also Appendix I, § 3. 
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the following result: if a system has the property of metrical transiti-
vity, one has 

We note first of all that the replacement of the time averages by 
the phase averages is thus assured for all trajectories of the hyper-
surface, except perhaps on a set of zero measure. We have thus 
a stochastic convergence of the almost certain type, so that the set 
of exceptional trajectories—for which the theorem could not be 
used — can be neglected only on condition that the previous result 
is considered as a statistical statement: a zero a priori probability 
must be assigned to a set of initial conditions of zero measure.f 
Above all, we note that there is no criterion which permits us to 
recognise whether a physical system possesses the property of 
metric transitivity: the existence of this property must therefore 
be assumed in order that relation (1.25) be satisfied ; this assumption 
concerning the structure of the system corresponds to the ergodic 
hypothesis introduced by Boltzmann$ (which was unacceptable 
for topological reasons) or to the quasi-ergodic hypothesis (which 
was inadequate for establishing the equality of the time and phase-
averages). We shall encounter the same difficulty with von Neu-
mann's theorem. 

3. Von Neumann's theorem 

Von Neumann has proposed another solution to the ergodic 
problem by drawing attention to the convergence in quadratic 
mean which is entirely satisfactory for application to physical 
problems. F rom this point of view it is, in fact, sufficient to prove 
that there is a constant C such that the error incurred by replacing 

t W e emphasise, however, that this hypothesis has a very different character 
from the statistical postulate adopted from the utilitarian point o f view by 
certain authors such as Tolman. 

% Cf. Appendix I, § 1. 

(1.25) 

Σ 

t0+T 

15 

by C is always physically negligible (von Neumann, 

for this, it is necessary that the statistical dispersion 
around C is small, or 

(1.26) 
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where Ω is an invariant set of P-space; the constant C is inde-
pendent of the point Ρ and it can be shown easily that it can be 
replaced by the phase average of / ( P ) , with the result that (1.26) 
becomes 

J f(P,)-f(P)\
2
dr<e. (1.27) 

Ω 

In order to be able to establish this result, we shall state the 
ergodic theorem of von Neumann. For this purpose, Koopman 's 
method is used (Koopman, 1931) which associates a Hilbert 
space with the quadratically summable functions / ( P ) i n ß ; 
if τη{Ω) is an invariant measure over Ω, the scalar product of 
f(P) G Σ2(Ω) and g(P) βΣ2(Ω) is defined by 

Since Tt is an analytical group of analytical transformations of Ω 
into itself (or more generally a measurable flux), the scalar product 
( / (P f) , g) is a measurable function of t and we define the time 

τ 
average f(Pt) by 

(/ΙΛ),*)=4; 
ο 

with the property 
τ 

KP,) 

if{P,),g)dt, (1.28) 

^11/11· (ΐ·28') 

We then introduce the U, transformations induced in this space 
by the group Tt, by putting 

Utf(P)=f(T,P)=f(Pt), (1.29) 

where Ut has the group properties (if Η is conservative, uniform 
and analytic): 

UtUs=Ut+S9 U0 = l. (1.290 

In addition, this group is unitary because of the conservative 
nature of equations (Ι .Γ) and of the resultant invariance of the 
scalar product (£/,/, Utg). Thus, by applying one of Stone's 
theorems (Stone, 1930) we can define the spectral resolution of 

1 6 
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Ut which can be written as 

- ι 
Jœt dE(œ). (1.30) 

By using the properties of the spectral operator Ε(ω) we can 
then prove von Neumann's theorem (von Neumann, 1932 a) : 

For every given point f(P) of the space 3^, an average point 
f*(P) can be associated with the set of points Utf(P), such that 

t0+T 

lim 
Γ->οο 

£/,/(/•) Λ - / V ) = lim 
Γ->οο 

Λ Λ ) -f*(P) = o, 

(1.31) 

where f*(P) is invariant in the broad sense over Ω, or f*(Pt) = 
f*(P), for all given values of t. Thus, according to (1.28'), we have 
the relation 

ΙΙ/ΊΙ £ 11/11· (1-32) 

This theorem, which is mathematically a theorem of strong 
convergence in the Hilbert space is analogous to Birkhoff 's 
theorem but with a convergence in quadratic mean. 

If, at the same time, we have f(P)eL2(Q) and f(P)eL1(Q), it 
can be shown that the two limit functions / * ( P ) , defined respectively 
by Birkhoff's and von Neumann 's theorems, are equal in as far 
as functions defined almost everywhere over Ω are concerned. 

We note that if f(P) is the characteristic function of a set A <= β , 
f*(P) represents the limit of the average time during which the 
point Pt is located in A. If we denote this mean time by Ζ , (1.31) 
can be written as 

l i m / 
T->oo 

Ζ - Z(A, P) 
2
 dr=0, (1.3Γ) 

where Z(A, P) corresponds to f*(P). 
However, if (1.31) establishes property (a), property (b) and 

equation (1.26) will be satisfied only if / * ( P ) and Z(A, P) are 
independent of the point P. For this, it is necessary again that the 
system possesses the property of metric transitivity; if this con-

17 
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dition is fulfilled, we can write 

f*(P) 

and 

Z(A, Ρ) = 

f{P)dr 

μ{Ω) 

Thus, we have for a metrically transitive system 

= 0 . lim 
Γ->οο 

Τ Ω 

f(Pt)-f(P) 

(1.33) 

(1.33
7
) 

(1.34) 

Relation (1.26) is thus found to be satisfied, the proof of which 
constitutes the fundamental problem of statistical mechanics; 
moreover, it can be stated in a probabilistic form: 

A value of Τ = Τ(ε, δ) can be found for every value of ε > 0 and 
δ > 0, such that 

Prob 7 ] / Ι Λ ) Λ - > àj g ε, provided τ > Τ(ε,δ). 

(1.35) 

It is obvious that the theorem is applicable without modification 
if the invariant set Ω is the hypersurface Σ; it is sufficient to 
replace Ω by Σ and dF by d!27/grad Ε in the foregoing formulae. 

4. Hopfs theorem 

Hopf (1932b, c) has proposed a statement which is a little 
different from the previous theorem: it is important from the 
physical point of view since it enters into the framework of Gibbs ' 
theory of ensembles and it is of interest in that it lends itself to a 
convenient comparison with quantum theory. The foregoing 
theorems can be derived by choosing as the invariant set Ω a shell 
of P-space, defined by the invariant volume contained between 
two adjacent hypersurfaces H{P) = Ε and H(P) = Ε + δΕ; this 
corresponds more to the physical reality, where measurements are 
never absolutely precise. 

18 
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On the other hand, H o p f s theorem is derived mathematically 
from that of von Neumann by transition from strong convergence 
to weak convergence. Physically, it introduces this transition by 
posing the ergodic problem in a different way: instead of justifying 
the substitution of time- by phase-averages, it defines an initial 
distribution g(P) in J'-space and it attempts to show that the 
evolution of the system has the consequence of making this density 
g(P) tend towards a stationary and uniform limit density g*(P). In 
this form, Hopf 's ergodic theorem is not without similarity to the 
//"-theorems for ensembles of systems such as we shall be studying 
in Part II . If g(P) is the initial distribution of the systems in Γ-
space, the mean value of a function f(P) is then given by the 
Hermitian scalar product 

(f,g) = \AP)g{P)dr, (1.36) 
V 

where V is the hypervolume enclosed between the two hyper-
surfaces. 

At time t the initial distribution becomes Utg(P) and the problem 
is to study its evolution with time. If there is ergodicity, in the sense 
of a convergence in quadratic mean, Utg(P) will tend toward a 
limit distribution g*(P) with the result that we shall have 

T0 + T 

Urn ^ J U Utg) - (/, g*)\
2
 dt = 0 . (1.37) 

TO 

This is the mathematical expression of H o p f s theorem; it 
denotes physically that the time-average of statistical fluctuations 
of the phase-average of f(P) around its limit value (/, g*) tends to 
zero, when Τ increases indefinitely. 

In order that the tendency of the initial distribution g(P) towards 
the limit distribution g*(P) be assured, it is necessary that on the 
shell δΕ a certain process of " m i x i n g " of the initial conditions 
occurs; this is the process which Hopf has analysed and which 
we shall encounter again in studying the / /- theorems. In order to 
state correctly the conditions which the system must fufill in order 
that the theorem (1.37) is true, we must introduce the Cartesian 
product of ,Γ-space with itself: Γ χ Γ; then, the hypersurface 
Σ χ Σ' of the space Γ χ Γ corresponds to a pair of hyper-
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surfaces (Σ,Σ') of .Γ-space. Hopfs theorem is then satisfied if 
any hyper surface Σ in .Γ-space is metrically transitive and if almost 
all the hypersurfaces Σ χ Σ' in Γ χ Γ have the same transitivity 
property. 

In order to facilitate comparison with quantum theory, we 
shall show briefly the mathematical elements of the proof of 
the foregoing theorem which rests, like that of von Neumann 's 
theorem, on a theorem of harmonic analysis (Hopf, 1937): 

+ 00 

If g(t) is a function of the typeg( i ) = j e
ia>t

 dv(co), where v(co) is 
- 00 

a distribution function with bounded variation, with both a con-
tinuous and a discontinuous part, we have 

t 0 + T 

g(0 - £ [ν(ων + 0) - υ(ων)] é' dt = 0 , (1.38) 

where £ represents the discontinuous part of ν(ω). For the appli-
tt)v 

cation envisaged, this formula can be written also as 

to + T 

• 1 f 
im — 

= 00 Τ J 

lim 
τ 

(f,Utg)~ ('·£ e'^'[E(mp + 0)-E(œr)]g\ 

to 

2
 dt = 0 

(1.380 

which reduces to (1.37) when the only discontinuity of ν(ώ) is at 
the point ω = 0, by putting 

g*(P) = (E(+0)-E(0))g(P). (1.39) 

The proof of (1.37) then becomes easy; in fact, we put U't = Ut 

- (E( + 0) - E(0)) and 
+ 00 

(f, Utg) - (f,g*) = if, U',g) = j e
lmt
d(J, E'(œ)g). 

— OO 

The spectral decomposition Ε'(ω) is now continuous everywhere 
and, by putting (/, Ε'(ω) g) = F(œ), we show that 

f 0 + r +00 

lim 
τ 

e
ia)t
dF(œ) Ι dt = 0, (1.40) 

to —00 

20 
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where F(œ) is continuous everywhere. By putting χ = ω — ω', we 

have +00 +00 +00 

J j e
ia)t
dF(œ)

 2 = j e
ixt j dF(œ) dF(œ- χ). 

The function G(x) = J* F{(o — χ) dF(w) is continuous everywhere 
— 00 

and we have 
f o + Γ + oo 

1 

~T 
to — 00 

+ 00 

f é 
< J 

J 
- oo 

+ 00 

+ ζ 

~ε~Τ 
oo 

e'
x
'dG(x) dt 

JxUo + T) 

ixT 
d\G{x)\ < d\G(x)\ 

d\G(x) I = \G(e)\ \G(-e)\+—\(f,g)\
2
. (1.41) 

First of all, ε is chosen sufficiently small in order that the first 
term is less than (3/2, then Τ sufficiently large so that the second 
term becomes, in its turn, smaller than ό/2, which completes the 
proof of (1.40) and (1.37). 

We can see that the result depends essentially on the continuity 
of F(a>) and therefore on the fact that Utg has a discontinuity 
only at the point ω = 0, a condition that we shall meet again in 
quantum theory. 

The last part of (1.41) enables us to give a mathematical estimate 
of the time Τ necessary that expression (1.40) is smaller than a 
given quantity δ. We see that the time Τ depends on the value 
of ε, which itself depends on the function G(x) and which reflects 
the dynamic properties of the system; therefore, this estimate is in 
fact theoretical rather than practical and cannot lead to a precise 
evaluation pf the relaxation times. 

III. The Hypothesis of Metric Transitivity 

1. Properties of sum functions 

The ergodic theorems, which are essential for statistical me-
chanics, can thus be proved, provided the system possesses the 

21 
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property of metric transitivity. However, even though it is possible 
to construct models of ergodic systems, these models are far from 
real physical systems; there is, in fact, no criterion for recognising 
whether the usual models of macroscopic systems satisfy the 
ergodic hypothesis; systems are known, even, which are not 
ergodic, such as quasi-periodic systems which play an important 
role in physics. We note again that the hypothesis of metric 
transitivity just restates that over the invariant set Ω there is no 
integral of the equations of motion which is not constant almost 
everywhere over 

For all these reasons, we are led naturally to investigating 
whether or not it is possible to break away from this hypothesis in 
justifying the replacement of the time- by the phase-averages in 
more general cases. In this connection, we note immediately that 
the ergodic theorems stated previously are related to a convergence 
of a stochastic nature (almost certain convergence with the ex-
ception of a set of zero measure, or convergence in quadratic 
mean with the introduction of an initial distribution g{P) in 
H o p f s hypothesis), with the result that the statistical element of 
the theory cannot be eliminated. 

On the other hand, the theorems mentioned above are valid 
for any system, independently of the number of degrees of freedom 
of these systems: they correspond to results of general dynamics 
which are not specially adapted to the demands of statistical 
mechanics. However, macroscopic systems are systems with a 
very large number of degrees of freedom: this leads to special 
properties of the phase functions f{P) and theorems can be estab-
lished, which are very close to the ergodic theorems, without 
difficulty and without another hypothesis concerning the structure 
of the system. In a certain sense, they constitute a generalisation of 
the normal theorems and we shall call them "probabi l i ty" ergodic 
theorems. We shall show some results obtained by Khinchin— 
results that we shall extend ultimately to quantum statistical 
mechanics. 

The discussions which follow depend, on the one hand, on the very 
large number of degrees of freedom of the system (permitting the 
use of the central limit theorem of probability calculus) and, on the 
other hand, on the special form of the phase functions which 

t Cf. Appendix I, § 3. 
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occur in statistical mechanics . | In general, these are " s u m " 
functions, as Khinchin calls them (Khinchin, 1949; Truesdell and 
Morgenstern, 1958), that is to say, they are the sum of functions 
which each depend on the dynamic coordinates of a single particle. 
Such a phase function can thus be written as 

f(P) = ifi(Pi), (1.42) 
i=l 

where each term is a function of the coordinates of a single par-
ticle.J By making use of the asymptotic formulae of the theory of 
probabilitiestf we shall see that such functions possess certain 
remarkable properties : 

(a) Their dispersion is of the order of magnitude rfi (n denotes 
the number of particles here). 

(b) The result is that these functions are constant over any 
hypersurface, except over a set of very small measure. 

(c) It is legimitate to replace their time- by their phase-averages 
except over a set of very small measure. 

The first property is easily shown by using the decomposition 
(1.42); we have, in fact, 

—Σ η —Σ 

f = Σ ft (1.43) 
i=l 

and for the dispersion of / : 
Σ Σ 

( / - / Τ = {i(fi-7i)}2 

Σ Σ 

= Σ (fi - ff + Σ (f - fi) U - A) • (1.44) 

This dispersion consists thus of two sums: the first is the sum 
of η bounded terms and the second of n

2
 terms of order l/n [this 

t W e mention also that one of H o p f s theorems has been proved recently 
without a special hypothesis about the functions; see Chapter IV, § IV.4. 

% W e note that in the general case a phase function can be written in the 
form: 

/ Α » ) = î f i ' K P ù + i/P(p„ pj)+• • • • 

/=1 / . / -L 

t t See Appendix I, § 4 and Khinchin (1949). 
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last result is obtained by applying the central limit theorem of 
probability calculus to the calculation of the averages and dis-
persions of phase functions of the type (1.42); see Khinchin, 1949]. 
We can then write 

(f-fY=0(n), 

or 
Σ\1 

•Σχ2 2 

0 ( i * ) , 

which proves property (a). 
The dispersion can by definition be written as 

1 r -
Σ
Λ 2 dE 

[f(P)-f\ 
grad Ε 

= S. 

If, now, we consider the quantity 

f(P)-f 
dE 

grad Ε 
= s; 

(1.45) 

(1.46) 

we can see immediately that, according to Schwartz's inequality, 

S
r
 ^ S± = 0(/i*), (1.47) 

which proves property (b). 

2. The probability ergodic theorem 

We are now in a position to justify the replacement of the time-
averages by phase-averages. By giving the same meaning to 

f(Pt) and f(Pt) °° as before, a set of points A of the surface Σ can be 
oo Σ 

defined for which \f{Pt) — f(P) \ > a and a set A
T
 for which 

Τ —Σ 

\f(Pt) — / I > fl/2, where a is a positive number. Because, 
according to Birkhoff 's theorem, f(Pt) -+ /(P f)°° as Γ -> oo, we 
have for a sufficiently large value of Γ the obvious relation between 
the measures of the sets A and A

T
: 

μ(Α
Τ
)>^μ(Α). 
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We derive from i t : 

αμ(Α) 

ί 
Τ —Σ 

f(P<) -f 
άΣ 

grad Ε 

4J* 
0 AT 

Τ 

4 M 
0 AT(t 

Τ 

4 M 

AP,) 

—Σ 

-f 
άΣ 

KP)-f 

grad Ε 

dZ 

grad Ε 

f{P)-f 
dZ 

grad Ε 
= S'M(Z), (1.48) 

where we have used (1.46). Then, according to (1.48) we obtain 

μ(Α) 4S' 

~μ~(Σ) < (1.49) 

If we choose, for example, a = 5 '
3 / 2

, by using (1.49) and (1.47) 
we find that the relative measure of the set of points for which 

/(Λ) ~f(P) 

is a quantity of the order of magnitude n
-
*. This result can be 

expressed in the probabilistic form 

Prob f(P,) -AP) > Cn
1
) = 0 (« -* ) . (1.50) 

Thus, we have an estimate of the order of magnitude of the 
error incurred by replacing the time- by the phase-averages. This 
error will be small since η will be large, which allows us to resolve 
practically the fundamental problem of statistical mechanics 
without resorting to the ergodic theorems of the foregoing section 
and, as a consequence, by freeing ourselves from the improvable 
hypothesis of metric transitivity. We shall say that (1.50) constitutes 
a probability ergodic theorem and that it is equivalent to (1.35) 
with an ε and a δ dependent on n; it follows that the equality 
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= f(P)
S is valid over almost the entire surface Σ apart from 

a set of very small measure, corresponding to exceptional initial 
conditions. 

In addition, a similar result can be obtained by using relation 
(1.32) which, in our case, can be written as 

jl l i m y j / (P ( ) dt άμ(Σ) £ J\f\2
 αμ{Σ). 

If, now, the constant (f )
2 is subtracted, we have 

1 

μ(Σ) f(P.) f αμ(Σ) £ l / l 2 - 7\)αμ(Σ). 

(1.51) 

According to property (1.24'), we can write 

as a result of which (1.51) assumes the form 

1 f/ oo -Σχ2 

αμ(Σ) S 
1 

(f-f)
2
 αμ(Σ)=0{ή), 

(1.52) 

because of the assumption which we have accepted in this sec-
tion. Thus, we find a result similar to (1.50) in a form which will 
be directly comparable with the results that we shall obtain in 
quantum theory. 

The postulates of classical statistical mechanics are thus proved 
in ultimate analysis by considerations which involve the law of 
large numbers and especially the asymptotic geometrical pro-
perties of hypersurfaces of constant energy (or structure functions) 
in 6fl-dimensional space.f It must be emphasised also that even 
though in the foregoing proof a predominant role is played by 
statistical considerations based on the limit process η oo, it 

t See Appendix I, § 4 and Appendix II, § 1 ; see also Part II, Chapter V, 

§ I I L 1 . 
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does not impose any structure which is peculiar to the Hamiltonian 
of the system, apart from the canonical nature of the time-evo-
lution; this point of view is contrary to that of Birkhoff's theorem, 
where the statistical element is reduced to eliminating a set of zero 
measure, but where the conditions imposed on the structure 
of the system play an essential role. The advantage of these results 
lies not only in avoiding the difficulties of the ergodic theory but 
also in extending the methods of statistical mechanics to systems 
which are not ergodic in the strict sense: this is the case, for 
example, with quasi-periodic systems composed of a large number 
of harmonic oscillators loosely coupled to one another (Terletskii, 
1949). We shall not stress these developments, because we shall 
consider them more thoroughly in quantum theory. 

In conclusion, it is important above all to point out that even 
if the ergodic theory enables the fundamental hypothesis of 
statistical mechanics to be proved, it does not constitute a deriva-
tion of the principles of statistical mechanics beginning with the 
laws of mechanics. Actually, the possibility of exceptional tra-
jectories always exists and these can be eliminated only by neglect-
ing either a set of zero measure in the exact theory or a set of very 
small measure in the approximate theory; the ergodic theory thus 
always maintains a statistical aspect. From this point of view, we 
could in addition break away from the hypothesis of micro-
canonical distributions over the hypersurface 27, since it is suf-
ficient to have a distribution function such that a set of very small 
measure has a very small probability. 

It can be shown also that the ergodic theory is only a parti-
cular application of the general ergodic theorems of the theory 
of stochastic processes; for this, it is sufficient to note that a 
mechanical function f(TtP) appears as a strictly stationary random 
function of the time t, if we suppose that the point Ρ is chosen at 
random in .Γ-space with a probability law defined by Prob {Pe A} 
= μ(Α), where A is a sub-set of Ω. Moreover, if f(P) is quadratic-
ally summable, f(TtP) is a strictly stationary random function of 
the second order and we can apply to it all the known properties 
of groups of unitary transformations of Hilbert space; the ergodic 
theorems of Birkhoff and von Neumann can be derived from these 
properties, which appear as a particular case of the ergodic 
theorems dealing with stochastic processes represented by strictly 
stationary random functions of the second order. 
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3. The role of primary integrals—Lewis's theorem 

In recent years Khinchin's work has given rise to statements 
and comments from various au thors ! referring at the same time 
to the validity and physical significance of his method ; they have 
likewise given birth to a flow of similar ideas in quantum theory 
and we shall discuss these developments at length in Chapter IV 
of this book. In what follows, we shall confine ourselves to stressing 
two statements which appear to us to be essential: the first con-
cerns the possibility of putting part of Khinchin's proof into the 
form of a theorem from the general theory of dynamics; the 
second concerns the difficulties encountered by Khinchin's theory 
because of the possible existence of primary integrals other than 
those of energy. 

In order to be able to discuss usefully these various points we 
shall first of all in this section analyse the role of the primary 
integrals of a Hamiltonian system in ergodic theory. This method 
will lead us naturally to stating Lewis's theorem which, in a certain 
sense, generalises Birkhoff 's theorem. Then, in the light of these 
latter developments we shall return in the next section to Khin-
chin's method and we shall then try to define more precisely its 
exact significance. 

(a) The role of primary integrals. The connection between the 
ergodic hypothesis and the primary integrals of a system results 
from the following important property: if we consider a Hamil-
tonian system, which is metrically transitive on a constant energy 
hypersurface 27, no other primary integrals of motion can exist 
which are not constant almost everywhere over Σ; in fact, if 
such an integral were to exist, we could then resolve Σ into two 
invariant sub-sets of non-zero measure.$ Since the non-existence 
of primary integrals other than energy is thus a necessary condi-
tion for metric transitivity, it can be seen that the finding of the 
constants of motion of a Hamiltonian system is an essential 
problem of the ergodic theory. Morever, let us note that it is 
convenient to distinguish two types of primary integrals in this 
problem: the so-called "global" integrals which are constant at 
all times for an arbitrary trajectory of the system and the so-called 

f Amongst these should be mentioned the contributions of Truesdell ( 1 9 6 1 ) 
and Farquhar ( 1 9 6 4 ) . 

ί See § I I I . 4 of this chapter and Appendix I , § 3 . 
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"local" integrals which are constant only for a limited time 
and for certain regions of phase space. Only the global integrals 
are of interest for the ergodic theory, since 2«-l local inte-
grals always exist, corresponding to a particular trajectory of the 
system. 

Unfortunately, there is no general method available which 
enables us to determine all the global primary integrals of a 
Hamiltonian system; the only known integrals are in reality the 
following: the integral of the energy for an isolated system enclosed 
in a space of finite volume and the integrals of energy, linear and 
angular momentum for an isolated system which is free in space. 
We have already pointed outf that the necessary existence of 
walls leads to the disappearance of the conservation of linear and 
angular momentum, with the result that the only known remaining 
primary integral is the energy of the system. Nevertheless, the 
work of Prigogine and co-workersj enables us to establish that 
in the case of an infinite system other primary integrals with 
singular Fourier transforms exist which are associated with^each 
of the invariants of the unperturbed Hamiltonian. However, since 
the ergodic theory only considers systems of finite volume, the 
wall effects also tend to destroy the invariants with singular 
Fourier transforms: these must be included, therefore, in the 
category of local integrals. 

Apart from the cases which we have just mentioned, nothing 
is known for certain concerning the existence of other primary 
integrals. The only known result is due to a theorem by Poincaré 
(1892) which states that a dynamic Hamiltonian system of finite 
volume has no " u n i f o r m " primary integral other than that of 
energy and the components of linear and angular momentum. In 
order to understand the exact scope of this theorem, certain 
definitions are necessary; actually, Wintner (1941) has shown that 
in reality the theorem concerns not the " u n i f o r m " integrals in the 
mathematical sense of a function which assumes only a single 
value at each point, but the so-called " i so la t ing" integrals which 
define a hypersurface in phase space and which enable us to 
reduce the number of dimensions of the set over which the trajec-
tory moves. Since these are the only integrals in which we are 
interested from the point of view of the ergodic theory, it would 

t Cf. Chapter I, § 2 c . 
t Cf. Chapter V, Section VI. 
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appear that Poincaré's theorem makes a decisive contribution to 
our problem. It turns out, however, that this is not the case, for 
the following reasons: Poincaré's theorem does not apply to any 
" isola t ing" integral, but only to the class of these integrals which 
are analytic in a parameter which measures the development. This 
parameter depends on the particle masses of the system which 
must therefore be considered as variables. Since they are actually 
fixed in any dynamic system, Wintner concludes that the domain 
of analyticity is reduced to a single point, which removes all 
dynamic significance from the theorem; other pertinent criticisms 
have been made also against the significance of Poincaré's result by 
Truesdell (1961) and by Cherry (1925). 

Apart from these negative conclusions, it has not been possible 
to obtain any other result about the existence of " g l o b a l " and 
"isola t ing" primary integrals other than energy. Similarly, ten-
tative attempts, especially by Oxtoby and Ulam (1941), to establish 
the metric transitivity of general dynamic systems does not appear 
to lead to results which are directly applicable in physics (cf. 
Appendix I, § 1). Nevertheless, the number of primary integrals to 
be considered can be again reduced by noting, with Khinchin, that 
these integrals must necessarily belong to the class of so-called 
" n o r m a l " phase functions (Khinchin, 1949) [or "un i fo rm" phase 
functions according to Rosenfeld's terminology (Rosenfeld, 
1952)]; that is, functions which take only one value for all phases 
corresponding to the same physical state of the system (cf. Appen-
dix I, § 3). Under these conditions, we must substitute for the 
concept of metric transitivity in the strict sense that of metric 
transitivity in the extended sense (or in the "phys ica l" sense 
according to Rosenfeld) ; this is a property according to which an 
invariant set cannot be resolved into two sub-sets of non-zero 
measure, such that all points corresponding to the same physical 
state are contained in the same sub-set (cf. Appendix 1, § 3). Our 
problem, therefore, reduces to that of finding all the global, 
" i so la t ing" and normal primary integrals of a Hamiltonian 
system. But since it appears to be just as difficult to determine the 
normal integrals as those which are not normal, it can be seen 
that our problem remains as large as ever and that, despite a 
formulation which is as precise as possible, we are not actually 
able to establish a general criterion of metric transitivity in the 
extended sense. 
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(b) lewis's theorem. As it is evident from the foregoing analysis 
that it is not possible to eliminate the a priori existence of primary 
integrals other than of energy, it is useful to study what happens 
with the ergodic theory in the general case where a Hamiltonian 
system possesses several global integrals which are independent of 
one another. This is the purpose of Lewis's theorem (Lewis, 1960) 
which enables us to calculate the time-average in the case where 
the hypersurface Σ is not metrically transitive. 

Let us consider a global integral y{P)9 or invariant of motion, 
which is by definition a constant function over almost all trajec-
tories of /"-space, that is to say we have: y(TtP) = y(P) except 
at most over a set of zero measure. Since, in physical cases, the 
number of dimensions of P-space is finite and equal to 2n9 at 
most (2n — 1) independent integrals of motion can exist. Suppose 
now that we have k independent primary integrals yt(P) with 
k ^ 2n — 1; we say that they constitute a complete invariant of 
motion which we shall denote by Y(P) with: 

Y(P) = {yx(P)9 y2(P), ..., yk(P)}. (1.53) 

F rom this definition, it follows necessarily that any measurable 
integral of motion depends functionally on Y(P) almost everywhere 
in .Γ-space. But we know, from Birkhoff 's theorem, that the time-
average /(Pi)°° of a phase funct ion / (P) exists in this case and that it 
is constant along almost all trajectories; it is thus an invariant 
of motion which depends functionally on 7(P). We can write 

therefore 00 
f(P,) = F[Y(P)], (1.54) 

a.e . 

with the result that, since the complete invariant Y is assumed to be 
oo 

known, the problem of calculating f(Pt) is found to reduce to 
that of determining the function F. 

Now, the values of the complete invariant Y(P) defined 
in P-space constitute a set of points in the Euclidean space Rk 

with k dimensions. If we consider an arbitrary Borel set Β in Rk9 

a measurable set of points of P-space corresponds to the average 
of the inverse function Y~

1
{B)'9 because of the invariance of 

7(P), this set Y~
l
(B) differs from an invariant set in jT-space only 

by a set of zero measure. BirkhofTs theorem can be applied there-
fore to the set 7

_ 1
(2?) and, if we denote the invariant Lebesgue 
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measure in /"-space by dm(P), we obtain from equation (1.24') 

J F(Y(P)]dm(P) = J f(P,)dm{P) = j * f{P)dm{P). (1.55) 

Y-HB) Y-HB) Y-HB) 

However, the measure m in / '-space introduces a measure M in Rk 

according to the formula: 

M(B) = mlY-^B)]. (1.56) 

Thus, for every measurable function F: 

j F[Y(P)]dm = j F(Y)dM, (1.57) 

Y-HB) Β 

whence, by comparison with equation (1.55), 

j F(Y)dM = j fdm. (1.58) 

Β Y - H B ) 

Thus, we have found in terms of known quantities the integral 
of F over an arbitrary Borel set of Rk. In order to obtain F itself, 
it remains now for us to differentiate in the sense of the abstract 
theory of differentiation; this derivative must be calculated for a 
value of Y given by Y(P) = u, where u = {ul9u2, ...,uk) re-
presents particular values, assumed to be known, of the integrals 
^ 1 ^ 2 5 • • • J i t - According to a result from lattice theory, the 
concept of differentiation is generalised in such a way that the 
derivative of an integral of the function F(Y) over an arbitrary 
set Β of 7?fc-space is evaluated for the set Y = u by: 

J F(Y)dM 

5 ->o Μ[Ιδ(μ)] 

where Iô(u) is the set of points for which the invariants yt{P) satisfy 
the inequalities: 

\yt - ut\ ύ à. (1.60) 

Applying this result to equation (1.58), we obtain finally: 

j F(Y)dM 

F ( M) =
 ^"ZiTiuXl

 { L 6 1) 
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and, returning to / '-space, 

/ KP) dm 

F { U )
Z . iTo m{Y-VM]} '

 ( L 6 2) 

The set Sô(u) = Y^ll^u)] is a set of points of /"-space which form, 
according to the definition of Iô(u), a thin layer around the hyper-
surface Y(P) = u. Taking into account equations (1.24) and (1.54), 
we have finally: 

w j fdm 

APt) = f*[Y~\u)] = l i m ^
(
: > . (1.63) 

a.e. a,e. <5-*0
 m

i^ô\
u
)ï 

This is Lewis's first theorem: it shows us that for almost all tra-
jectories for which the complete invariant Y(P) has the value w, 
the time-average of a phase function f(P) is equal to the phase 
average as defined in equation (1.63), that is to say, with an equal 
a priori probability in the sense of the measure m for each phase 
of a thin layer around the hypersurface Y(P) = u. If this hyper-
surface is sufficiently " s m o o t h " for analytical methods to be 
applicable, we can calculate the limit of equation (1.63) and thus 
obtain the time-averages. 

In the case where the complete invariant Y(P) is reduced to 
the energy of the system, we fall back on Birkhoff's theorem with 
the property of metric transitivity. If the motion were not metrically 
transitive, we could resolve the hypersurface Σ into two invariant 
subsets of positive measure, whose characteristic functions would 
then be invariants of motion, functionally independent of the 
energy. If, however, the complete invariant Y(P) is not reduced to 
the energy of the system, Lewis's theorem goes much further than 
Birkhoff 's result, in the sense that it shows us how the time-averages 
must be calculated in the case where the hypersurface Σ is no longer 
metrically transitive. We have still the equality of the time-averages 
and of the phase-averages, provided that we confine ourselves to 
that part of phase space which is contained in a thin layer around 
the hypersurface Y(P) = w, over which we can define an invariant 
measure. This procedure, therefore, has the effect of replacing the 
hypersurface Σ—which does not have the property of metric 
transitivity—by the hypersurface Y{P) = w, which has this 
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property since it is defined by a complete invariant of motion; put 
in this form, Lewis's result could have been expected a priori. We 
note that Truesdell (1961) called these new phase-averages panta-
microcanonical averages. 

To conclude, we note also that Lewis has demonstrated a 
second theorem which is valid for " s m a l l " systems in weak 
interaction with a large thermostat. As before, it is assumed that 
we know one complete invariant of the total system, small system + 
thermostat; by taking into account the asymptotic properties of 
the thermostat [see, for example, §V.2 of Chapter IV and also 
Appendix I, § 4], it can then be shown that the time-averages of the 
phase functions of the small system are equal to the phase-averages 
taken over an ensemble which is a generalisation of the canonical 
distribution. In this distribution, which Truesdell called panta-
canonical, the complete invariant Y plays the role of the energy E, 
with the result that the exponential e~

ßE
 is replaced by an expression 

of the form e~
ißiyi + ß i yi +

 "'
 + ß k y k )

; we note that we can develop, 
starting from this new ensemble, a thermostatics which differs 
significantly from the normal thermostatics (Grad, 1952). 

4. Some remarks on Khinchin's asymptotic method 

Having thus defined the role of primary integrals in ergodic 
theory, we can now return to a discussion of the asymptotic results 
obtained by Khinchin. We point out first of all that Khinchin's 
proof consists of two essentially different stages. The first concerns 
the asymptotic properties of the sum functions which are expressed 
by formulae (1.45) and (1.47); this is a geometrical result which is 
related to the large number of degrees of freedom of the system, but 
which does not involve its dynamic behaviour. The second stage 
corresponds to the proofs of § 2 which show up a fundamental 
property of the phase functions contained in relation (1.52). This 
property can be stated as follows : the phase dispersion of the time-
average / (Λ)°° °f

 a
 phase function f is always less than the phase 

dispersion of the function f itself Although this result has been 
proven in § 2 for a hypersurface Σ of constant energy, it naturally 
remains valid for any invariant set in P-space. Moreover, as its 
proof only involves Birkhoff 's theorem and as the measure used 
does not come into the reasoning, this result can be extended to the 
case of an arbitrary measure on condition that it is conserved by 
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the dynamic group Tt. This part of Khinchin's theory thus assumes 
a very general mathematical character which relates it to the 
theorems of general dynamics established by Birkhoff, von Neu-
mann, and Hopf. If Ω denotes any invariant set, an identical 
reasoning to that which led to equation (1.52) shows that we have 
completely generally: 

/ oo - ß \ 2 / - ß \ 2 

1/(Λ) - / ) û\f-f ) , (1.64) 
where the averages over the set Ω are taken with any measure which 
is invariant with respect to Tt. Equation (1.64) can be expressed in 
terms of probability by following Kur th (1958) and using Bien-
aymé and Chebichev's inequality which allows us to evaluate 
the probability for the deviation-of a random function h from its 
average value h as a function of its dispersion; this inequality can 
be written a s : 

1 — 
Prob {\h - h\ ^ oc} ^ — (h - h)

2
. (1.65) 

By putting h = f(Pt) and by using equation (1.24'), we have 
according to equation (1.52) 

Prob 
( oo -Ω ) 1 / -

ß
\ 2 

( f(Pt) - f £ * U - T I / - / j , (L 66) 

where oc is an arbitrary positive number. If we put oc = (f — f ) 
we obtain the inequality: 

Ω\2 

Prob{ \ f (P t) - f % K j { f - f y } ^ J L j ( f - f j , 
K
 (1.67) 

which can be compared with equation (1.50). 
Inequalities (1.66) and (1.67) express the complete dynamic 

content of Khinchin's method; they are valid for any definition 
of probability, provided it is invariant with respect to the group Tt. 
However, in order that these results are applicable to the ergodic 
theory, it is essential that this definition satisfies the following two 
conditions: 

1. That the phase dispersion of the physically interesting func-
tions / (i.e. of the sum functions in Khinchin's theory) is small. 
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2. That the probability for the occurrence of phases correspond-
ing to a set of very small measure is itself very small. 

The first condition involves the asymptotic geometrical pro-
perties of systems with a large number of degrees of freedom, 
established in § 1 in the case of a microcanonical distribution. 
In order to satisfy the second condition it suffices to limit oneself 
to probability distributions which are absolutely continuous relative 
to the invariant measure over the invariant set Ω considered. 

We note now that the introduction of absolutely continuous 
probability distributions is already necessary in the strict ergodic 
theory, in order to eliminate the exceptional trajectories for which 
there is no equality of time and phase averages. In addition, this 
will raise a serious objection to the point of view which consists in 
founding statistical mechanics on a purely dynamic basis because, 
even by accepting the hypothesis of metric transitivity, it is necessary 
to give again an a priori significance to the probability concept 
of a set on the hypersurface Σ (see also below). Thus, we return 
to the statistical point of view of the theory of representative 
ensembles which the ergodic theory aims to prove; we note, 
however, that the condition of absolute continuity of the prob-
ability relative to the measure over Σ is much weaker than the 
hypothesis of equal probability of equal volumes of phase space 
which is the basis of the theory of representative ensembles. 

This being so, Khinchin's method has essentially the aim of 
using the statistical element which is the basis of the ergodic 
theory in order to try to dispense with the hypothesis of metric 
transitivity relating to the dynamic structure of macroscopic 
sysiems; for this, it is sufficient to replace the sets of zero measure 
of the exact theory by sets whose measure approaches zero as 
η -> o o . However, it is precisely on this point that the use of 
Khinchin's method encounters a serious difficulty which we shall 
now examine. Suppose, for example, that there exists a supple-
mentary primary integral in addition to the energy. The geometrical 
result, according to which the dispersion of a sum phase function 
is very small relative to the microcanonical ensemble, always 
remains valid; we can again deduce from it that the time average 
of a sum function only differs from the microcanonical average 
over a set of very small measure. However, because of the existence 
of a supplementary integral, the trajectories are all located on a 
subset whose number of dimensions is smaller than that of Σ; this 
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subset is therefore of zero measure with respect to the micro-
canonical distribution over Σ and, consequently, the set of all 
phases with a physical significance is also of zero measure. 
If, then, we define a distribution of probability over Σ such 
that a set of zero measure has a zero probability (absolutely 
continuous probability), it follows that these phases have a zero 
probability of being observed, although these are the only phy-
sically achievable ones. Thus, the use of Khinchin's method, which, 
in principle, would enable us to dispense with the hypothesis of 
metric transitivity, runs up against a contradiction in the case where 
the hypersurface Σ is not metrically transitive; such a paradox does 
not occur in the exact ergodic theory, since in this case we must postu-
late the metric transitivity of Σ, which is perfectly compatible with the 
elimination of a set of exceptional phases of zero measure. 

Two ways are presented to us for trying to avoid this difficulty. 
The first consists in assuming that the supplementary invariants 
of motion have a very small microcanonical dispersion with 
the result that they are constant over almost the entire hyper-
surface Σ, except over a set of very small measure; this condition, 
which would be effectively fulfilled if the invariants of motion were 
sum functions, reverts in fact to making an assumption concerning 
the structure of the Hamiltonian which seems as difficult to 
prove as that of metric transitivity, even by restricting ourselves 
to " i so la t ing" and " n o r m a l " integrals. Another method, proposed 
by Truesdell, starts by distinguishing the so-called "cont ro l lable" 
integrals, whose form is known explicitly and whose value can be 
fixed by experiment, and the non-controllable integrals—called 
" f r e e " integrals by Khinchin, or " res idua l " integrals by Trues-
dell—whose form and value are not known to us (cf. Appendix I, 
§ 3). We note that the controllable integrals are necessarily normal 
whilst the free integrals are not necessarily so and may therefore 
not have a physical significance. The value of the controllable 
integrals is always fixed by experiment: this is the case with the 
energy for all systems; this would also be the case for linear and 
angular momentum for systems in which these quantities are 
conserved. In fixing the value of these controllable integrals, we 
define a subset J( of phase space over which we can define an 
invariant measure according to Lewis's method; in this way, we 
obtain a distribution which Truesdell called polymicrocanonical 
and which can be related to the microcanonical distribution in the 
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case when the only controllable integral is the energy of the system. 
In order that Khinchin's method might then be applied, Truesdell 
suggests that the unknown values of the " f r e e " integrals be 
considered as random variables defined on the subset J(9 their 
values being distributed with equal a priori probability relative 
to the polymicrocanonical measure. In Truesdell's terminology 
this is the hypothesis of the zero set: the time averages are equal 
to the phase averages taken over the subset J(, except for a set 
of very small polymicrocanonical measure. In this framework, the 
introduction of a polymicrocanonical measure does not correspond 
to that of a representative ensemble of a collection of identical 
systems, but provides only a criterion for determining the trajec-
tories which are of no importance in the application of Khinchin's 
ergodic theorem; this is the minimum concession that can be made 
to the theory of representative ensembles. 

Let us quote yet another paradox of Khinchin's theory, called 
the paradox of weak interactions, which we also consider in Appen-
dix I, §4 , and which leads to some interesting comments. The 
argument is as follows: Khinchin's theorem has been proved only 
for systems whose Hamiltonian is separable, that is to say of the 

η 

form Η = Hi ; however, in this case we have η integrals of motion 

Ht = Eti and there can be no question of ergodicity with respect 
to the hypersurface Σ since there is no interaction between the 
various components of the system. The reply to this objection de-
pends on the fact that the Hamiltonian is only separable in as far as 
the interaction term, of the order of magnitude of λ, is negligible com-
pared with the Hamiltonian of a component. The results obtained 
with the separable Hamiltonian constitute, therefore, an approxi-
mation of more exact results which we would have if the interaction 
was not neglected. In reality, we are dealing with two limit processes, 
η -> oo and λ -> 0, whose order is not unimportant ; the paradox 
arises from the fact that we have first taken the limit λ -> 0, which leads 
us to consider the double limit process lim lim. However, it seems that 

π-+00 λ->0 

the limit η oo must be taken first, since an interaction which is 
itself very small compared with the energy of a component can involve 
phase transitions which are not negligible. In order to obtain physi-
cally acceptable results it is necessary to interchange the foregoing 
double limit and to consider the process lim lim . 

λ -> 0 η oo 
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This idea has been used recently by Mazur and van der Linden 
(1963) who have been able to show, by means of certain supple-
mentary hypotheses, that the asymptotic properties of Khinchin's 
phase functions could be extended to systems formed of weakly 
interacting components. The fact that the two limit processes λ -* 0 
and η -> oo are not commutative is an important result that we shall 
meet again in establishing a Master Equation, especially in the 
" w e a k c o u p l i n g " limit (cf. Chapter V, § VI, and Chapter VI, § V). 

In conclusion, we see that the ergodic theory is actually a long 
way from having attained its objectives. In fact, it encounters two 
major difficulties: the first, of a dynamic nature, is related to the 
hypothesis of metric transitivity or to hypotheses relating to the 
structure of the invariants of motion, for which there is no cri-
terion which enables their justification to be proved, at least in 
certain cases; the second, perhaps more serious, is related to the 
inevitable introduction a priori of a statistical element into the 
theory, in the form of a hypothesis of absolute continuity of the 
probability distribution of the initial phases, which is necessary 
in order to eliminate exceptional trajectories. Although the sta-
tistical content of this hypothesis is much " w e a k e r " than that of 
the theory of representative ensembles, nevertheless the possibility 
of justifying the methods of statistical mechanics on a purely dyna-
mic basis appears to remain very improbable. 

Nevertheless, there is a natural way to introduce statistical con-
cepts into ergodic theory: this is the so-called "coarse-graining" 
of phase space which leads to replacing "fine-grained" by "coarse-
grained" quantities. According to this procedure, the phase space 
is divided in phase cells, constructed in such a way that macroscopic 
observation—which is necessarily imprecise—does not enable us 
to distinguish between different phases in one cell; under these 
conditions, the observed physical quantities are no longer phase-
functions themselves but only certain averages of these functions 
(see Chapter V, § II. 1). Since the probability distribution used for 
calculating these averages obviously is not known, the hypothesis 
of absolute continuity can be assumed, in order that the exceptional 
phases of zero measure (or of very small measure) are automatically 
eliminated by the averaging process. 

We are thus led to trying to replace the ergodic theorems, which 
have been established for fine-grained quantities, by the ergodic 
theorems dealing with coarse-grained quantities, the most con-
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venient way of doing this being that offered by Hopf's theorem. 
This method, however, raises difficult problems: first of all, con-
ditions for ergodicity must be found which correspond to the 
"mix ing" processes of the initial conditions ("weakly mixing" 
processes in the case of H o p f s theorem, cf. Chapter I, §11.4), 
which imply very strong hypotheses concerning the dynamic struc-
ture of the Hamiltonian; moreover, it appears that these conditions 
are still insufficient for ensuring uniformity of the density and of the 
coarse-grained quantities (see the detailed discussion by Farquhar, 
1964). On the other hand, the "coarse graining" method encoun-
ters in the same way the following important difficulty : actually, 
there is no precise indication which enables us to determine the 
size of the phase cells or the number of macroscopic quantities 
which must be measured in order to determine at every instant the 
macroscopic state of the system. Uhlhorn's attempt (1960, 1961), 
in which .Γ-space is replaced by the "phase space of an experi-
ment" associated with the measure of a "complete" ensemble of 
macroscopic observables, also encounters an objection of this kind. 
We point out, finally, that research which is actually being under-
taken is tending to prove that the whole procedure of "coarse-grain-
ing", over time (see Kirkwood's method, described in Chapter V, 
§ V. 3) or over phase space, is insufficient by itself for justifying 
the methods of statistical mechanics. 



CHAPTER II 

Quantum Mechanical Ensembles. 
Macroscopic Operators 

W E shall develop quantum statistical mechanics by following a 
similar scheme to that of classical theory and it will be interesting 
to show the points which are common to both theories. In this 
chapter we shall define statistical ensembles of quantum systems 
by using the formalism of the density matrix and we shall study 
subsequently their evolution; having defined stationary ensembles, 
we shall then be able to calculate the statistical averages of observ-
ables for quantum systems, similar to the phase-averages of classical 
quantities. Then, having defined the macroscopic operators asso-
ciated with macroscopic observations, we shall deal in Chapter III 
with the study of the ergodic quantum theory by following a 
course comparable with that of H o p f s theorem in classical mecha-
nics. We shall then encounter the quantum analogy of the hypo-
thesis of metric transitivity and we shall show, in Chapter IV, how 
we can avoid these difficulties by similar reasonings to those of 
Khinchin in classical mechanics. 

I. Statistical Ensembles of Quantum Systems 

1. The statistical matrix in quantum mechanics 

A quantum system with η degrees of freedom is described by a 
wave function W{...ql9 . . . , / ) over the configuration space of the 
system defined by the η coordinates qt. The evolution of the system 
is determined by Schrödinger's equation 

0Ψ 
Η ψ = ih — 9 ( H I ) 

dt 
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where H is the quantum Hamiltonian of the system; the Hamil-
tonian of an isolated system is defined by conditions similar to 
those used in classical theory. We shall accept, in what follows, 
that the system occupies a finite part of space and that the spectrum 
of H is a discrete spectrum which can be degenerate for certain 
energy values; these conditions correspond to those of classical 
theory relative to the finite measure of the hypersurface Σ. 

Suppose, now, that we have expanded the function Ψ(ί) in a 
series of orthonormal functions φ{\9 which constitute a basis in 
Hilbert space; we have 

^(..^,. . . ,0 = Σ^(0^(..^.·.). (Π.2) 
i= 1 

The coefficients ct(t) define in Hilbert space the vector W(t) of 
unit length whose end moves over the hypersphere defined by 

I W 0 l 2 = i- (Π.3) 
i= 1 

The trajectory of Ψ(ί) over this hypersphere is determined by 
the solution of equation (II. 1). As in classical mechanics, a group 
of Ut transformations can be associated with (II. 1), which trans-
form the hypersphere into itself in the course of t ime; we have the 
relations ψ^ = CtW{0) (II.4) 

ÛtÛs=Ût+s, ffo = l . ( I L 5 ) 

The Ut transformation represents the operator of evolution asso-
ciated with the system (II. 1) and it can be written, if the Hamilto-
nian is time-independent (we are interested in what follows only in 
conservative systems, as in classical mechanics), as 

Üt = e x p ^ - ^ / f t J . (II.6) 

If we know the function Ψ(ί), we can calculate the quantum me-
chanical average of an observable defined by a Hermitian operator Λ Ϊ : 

(Ψ, ΑΨ) = Σ O*(0 Φ) {<pj, Αφ,). (11.7) 
I. J 

t W e shall assume always that the wave functions and the eigenfunctions 
satisfy the symmetry properties required by the nature of the particles con-
sidered. 
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By putting 

cf(t)ci(t) = Qu(t), (118) 

equation (II.7) becomes 

A(t) = (Ψ, ΛΨ) = Σ QuiO (<PJ, ΑΨΊ). (Π.9) 
Equation (II.8) defines a matrix ρ called the density matrix (or 

the quantum statistical operator) associated with the pure case Ψ(ί). 
It is easy to see that it has the following properties: 

(a) This matrix is Hermitian since Qu = ρ*. 
(b) Its trace is equal to unity; we have, in fact, 

00 00 

T r $ = Se« = l W 0 l 2
 = i- (Π.10) 

i= 1 i = l 

(c) It satisfies the relation 

Q
2
 = Q, (Π.11) 

since we have 
00 

(Q
2
)U = Σ CjWkCi = c*ct = QU. 

According to (11.11), the matrix £ is a projection operator on 
the state Ψ and it can be written: ρ — ΡΨ. 

With these definitions, the quantum mechanical average of an 
observable Â is given by 

Α(ί) = Ίτ[ρ(ί)Α}. (11.12) 

Thus, we see that the quantum properties of a system existing in 

a pure case are described completely by the statistical matrix ρ. 
The equation of evolution of this matrix is obtained easily by 

starting with equation (II. 1). In fact, it can be written as 

with Hlk = (ψι, H<pk); whence, by taking the complex conjugate of 
the preceding expression and by noting that 

d
Qij = dcf c g» dCj 

dt dt '
 J

 dt
 9 
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we arrive at 

(11.13) 
dt 

equation (11.13) can be written in matrix language: 

dt h 
(11.14) 

or, by introducing commutators which, apart from a factor, 
are the quantum equivalent of the Poisson brackets in classical 
mechanics, 

The solution of (11.14) can be written in operator form as 

The matrix £(i) represents the maximum knowledge we can have 
about a quantum system in the pure case Ψ(ί): it comprises the 
probabilities of the various states (diagonal elements) and the corre-
lations between these states. The probabilities which it involves are 
the specifically quantum probabilities which follow from the nature 
of the description of a physical system in wave mechanics. These 
probabilities must be carefully distinguished from the probabilities 
in the classical sense which occur in the definition of ensembles of 
quantum systems. [In addition, we know that the probabilities of 
quantum mechanics do not obey the normal rules of probability 
calculations (de Broglie, 1948, 1957).] 

2. Definition of ensembles of quantum systems 

For similar reasons to those explained in classical theory we are 
led, in quantum statistical mechanics, to study ensembles of systems. 
As before, it is the incomplete nature of the macroscopic obser-
vation, only giving us limited information about a system depen-
dent on a very large number of parameters, which leads us to 
replace the real system by an ensemble of systems conveniently con-

dt ti 
(11.15) 

<?(o = û,m ο* (II. 15') 
with 

e , / 0 ) = c ; ( 0 ) C i( 0 ) . 
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Equation (11.19) shows us that the mean value of a quantity Â 
taken over such an ensemble of systems can be written in a form 
which is identical to equation (11.12), provided that an average 
statistical matrix is defined 

Qij = Σ Qu = c^*(t)c\«\t). (11.20) 
./Γ <x=l 

This matrix characterises the statistical ensemble used : we have 
defined it by supposing that the ensemble contains a finite number 
of systems. However, one is more often led to using infinite sets 

t W e note that in quantum theory, the concept o f accessibility must take 
account of the properties o f symmetry or antisymmetry of the wave functions. 
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structed and corresponding to various microscopic states compati-
ble with our observation [accessible states^]. 

Suppose, now, that to a physical system studied through macro-
scopic observation is associated an ensemble of identical systems 
which are independent of one another and each described in a 
pure case by a wave function Ψ

(α)
 (t) (a = 1, 2, 

(11.16) 

An elementary statistical matrix 

corresponds to each of these functions Ψ
(α)
 (t). 

The quantum mechanical average of an observable Â for a 
system in the state Ψ

(α)
(ί) can, according to (11.12), be written as 

(11.17) 

and the mean value of Â, over the ensemble of the systems con-
sidered, assumes the form 

(11.19) 
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of systems; in this case, the sums of (11.19) and (11.20) must be 
replaced by integration in the functional space with a suitable 
weight (in the sense of classical probabilities, naturally): the sta-
tistical ensemble considered is thus represented by a cluster of 
points on the hypersphere (II.3) of the complete Hilbert space. 

Since we cannot define a measure in Hilbert space with a count-
able infinity of dimensions, we are led to assume that our data 
concerning the system are such that the various possible states 
compatible with our observation form a discrete and finite series 
(the case where it is known that a quantity exists in a given interval 
comprising η possible states). The hypersphere (II.3) has, in this 
case, a finite number of dimensions and a measure can be defined 
on this hypersphere, and therefore a weight for our statistical en-
sembles. We shall see in the next section that it is always possible 
to return to this case and we shall apply this method, ultimately, 
to the microcanonical ensemble with a view to establishing the 
quantum ergodic theorems in quadratic mean. For this purpose, 
we shall use the statistical ensemble defined by a uniform distri-
bution over the unit-hypersphere of 2«-dimensional space ; t in 
addition, we shall encounter other statistical ensembles in Chap-
ter VI during the proof of a quantum kinetic equation. $ 

The matrix (11.20) is thus the quantum parallel of the classical 
distributions (1.9) in jT-space; we must not, however, lose sight of 
the fact that statistical ensembles represented by ρ are defined in 
functional space and that they are, in particular, much richer in 
possibilities than the corresponding classical ensembles (we shall 
have occasion to return to this point in Chapter IV, § IV.4). Taking 
account of this difference, the matrix ρ possesses, in addition, simi-
lar properties to those previously established for the classical 
ρ(Ρ,ί). They are derived from the relations (11.10) and (11.11), 
proved for the statistical matrices associated with a single system. 
We have the following properties for ρ: 

(a) It is Hermitian, since it is the sum of Hermitian matrices: 

ρ 0· = ρ*. (11.21) 

(b) Its trace is equal to unity, or 

T r g = 1; (11.22) 

f See Appendix II. 
t Cf. Chapter VI, § II. 
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this relation is, of course, the quantum parallel of equation (1.10). 
We note further that the eigenvalues of ρ are necessarily positive 
(or zero) and that their sum is equal to unity by (11.22), since ρΗ 

represents the probability that a system chosen at random in the 
set is found in the state i. 

On the other hand, it no longer has, in general, the property (II. 11): 
ρ

2
 = ρ. This relation is valid only for statistical matrices describing 

a pure case and it is easy to show that (11.11) is the necessary and 
sufficient condition for a given statistical matrix to represent a pure 
case. The relationship ρ

2
 = ρ then characterises the case of maxi-

mum knowledge of the state of a quantum system. 
The statistical matrices ρ describe the most general mixtures (von 

Neumann, 1932f; Fano, 1957) of pure cases. The spectrum of ρ is 
generally a point spectrum; it can be written ρ = Σ w

tP<Pi> where 

wt is the relative weight of the pure case Ρφι. In such a mixture, 
statistics is involved twice: first of all in the form of specifically 
quantum probabilities (associated with the pure cases Ρφι) and 
then by the introduction of classical probabilities translating our 
incomplete knowledge of the dynamic state of the system. The 
operators ρ involve, as special cases, mixtures which can be asso-
ciated with pure cases by cancelling the phase relationships existing 
between the various eigenstates of a quantity. For example, if the 
system is described by a wave function Ψ(ί), expanded in a series 
of energy eigenfunctions y)h we can write 

The mixture corresponding to this pure case is that in which we 
have a set of systems distributed over various states i with prob-
abilities given by rf. It is easy to see that we obtain such a mixture 
by considering the ensemble of systems described by functions 
similar to Ψ(ί) but with arbitrary initial phases oci9 distributed uni-
formly between 0 and 2π. The statistical matrix associated with 
this ensemble is then 

oo 

Wit) = Σ ne' ,Ha,-tE,t/hy (11.23) 
ί= ι 

Quit) = r,r,e' 

(11.24) 
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These results are ultimately used in the quantum ergodic theory 
(especially in the first quantum ergodic theorem) and in the quan-
tum theory of measurement. 

The evolution of the statistical matrix ρ(ί) as a function of time 
is obtained easily by starting from equation (II. 15) for an elementary 
statistical matrix. Actually, the matrix ρ(ί) is derived from @(t) by 
a linear operation (summation or integration); equation (11.15), 
which is itself linear, can then be written immediately as 

^ = U l H U (11.25) 
dt h 

This relationship is the quantum parallel of Liouville's theorem', 
by using the definition and the properties (Aeschlimann, 1952) of 
the time-derivative of an operator in quantum mechanics, we note 
that (11.25) can be written, in fact, in the form 

£ _ ± β * ] _ = £ Ε - 0 . (11.26) 
dt h dt 

Thus, the comparison between the statistical matrices ρ(ί) and the 
distributions ρ(Ρ, t) in the phase space of classical mechanics is 
accomplished. We have thus been able to define statistical en-
sembles without having recourse to a phase space, which is for-
bidden to us in quantum mechanics because of the rules of non-
commutation between canonically conjugate quantities. 

The solution of (11.25) is analogous to (11.15'); we have: 

l(t) = ÛMO) Of (ΙΙ.25') 

and the mean value of a quantum observable taken over the en-
semble described by the matrix ρ(ί) can then be written as 

Ä(t) = Tr [l(t) Â) = Tr [ÛM) Û*Â). (11.27) 

This is the quantum parallel of the phase averages of classical sta-
tistical mechanics given by (1.21). Because of the properties of in-
variance of the trace under unitary transformations, this expression 
is invariant under these transformations as its physical nature re-
quires. 

3. Stationary ensembles 

As in classical mechanics, we shall now define stationary en-
sembles; these are ensembles for which we have dçjdt = 0. As in 
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classical mechanics, one can satisfy this relation either by a con-

stant matrix - - _ _ 
Q = Qo, Qu = Qoôij, (11.28) 

or by matrices for which [ρ, Η]- = 0, i.e. with integrals of motion 
In the general case, the statistical matrix of a stationary ensemble 
is thus a function of the Hamiltonian H; we must have the operator 
relationship 

l=f(H), or QiJ=[f(H)]iJ (11.29) 

for the matrix elements. If the matrix is written in the energy re-
presentation, we have 

Qu=f(Ei)ôiJ. (11.30) 

According to the choice of the function f(Et)9 we shall have parti-
cular statistical ensembles; as in classical mechanics, three en-
sembles are of physical interest: these are the microcanonical, ca-
nonical, and grand-canonical ensembles. 

(a) Uniform ensemble. This is defined by equation (11.28); ρ 0 

here denotes the relative probability since it is not possible to 
normalise the probability, as this ensemble contains an infinite 
number of states. This ensemble has an important property: that 
of invariance of the density matrix under unitary transformations; 
we have, in fact, 

QtJ
 = Σ QmnSmjSnt = Σ £o àmnS*jSni = ρ 0 Σ s

*jSmi = Q0 àtJ (II.28') 
η, m η,m m 

according to the properties of unitary transformations. This pro-
perty is the quantum parallel of the invariance of the uniform en-
semble in classical mechanics under canonical transformations. 
This uniform ensemble will be useful to us later for stating the 
fundamental postulate of quantum statistical mechanics. 

(b) Microcanonical ensembles. This corresponds to a uniform 
distribution for an ensemble of systems whose energy levels are 
contained in a narrow band δΕ and, as a result, it permits us to 
describe an isolated physical system (whose definition is similar to 
the classical definition given in Chapter I ) ; the energy of such a 
system must, in fact, be considered as constant but, since it cannot 
be known with precision,! we should know simply that the system 

t In quantum theory, such a precision is anyway excluded by the fourth 

Heisenberg relation, 
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is found in an energy interval (Ε, Ε + δΕ). By accepting that there 
should be η eigenvalues of the energy within this interval, this iso-
lated system will be described by an ensemble of systems uniformly 
distributed over the various levels of the interval δΕ; the corre-
sponding statistical matrix will thus be obtained with a funct ion/*^) 
which is constant within the interval considered, or 

(ρ0 du if Ε < Et< Ε + δΕ, 
Qu = \ " (Π.31) 

(θ for other values of Ei9 

with ρ 0 = 1 /η if the levels Et are not degenerate [otherwise, a de-
generate level must be reckoned as often as its degree of de-
generacy!] . It can be written in operator language as 

. ι - -
 s 

n i = i 

Since, according to the fourth Heisenberg relation there is an 
uncertainty in the energy ΔΕ for a duration of observation At 
such that Δ Ε ^ h/At, the magnitude of the interval δ Ε defining the 
microcanonical ensemble will be, in general, much larger than AE, 
since it corresponds to a macroscopic observation of the system. 
We shall thus have 

δΕ > AE. (11.32) 

(c) Canonical ensemble. This corresponds to a system in thermal 
equilibrium with a thermostat and its statistical matrix is defined 
by the operator relation 

I = ̂ -* ) / θ, (11.33) 

where the parameters Ψ and 0 have meanings similar to those in 
classical theory. In the energy representation, the function f(Et) 
of (11.30) assumes the form 

f(E,) = e ^ -
E

'
w 

f In the case of a precise observation o f the system, extending over a very 
long duration, we should have a single eigenstate and the microcanonical en-
semble would reduce to the uniform distribution over the various degenerate 
states corresponding to the observed eigenvalue. 
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and the canonical ensemble is described in this case by the sta-
tistical matrix 

§υ = β«-™·δ„. (11.34) 

(d) Grand canonical ensemble. Grand ensembles are introduced 
into quantum statistical mechanics for the same reasons as in clas-
sical theory; moreover, their definition is simpler in quantum 
theory since the property of indistinguishability of particles of the 
same species in wave mechanics makes the distinction between 
specific and generic phases useless. 

If we assume, as in Chapter I, that the system consists of h kinds 
of particles (with a variable number nt of particles of the /th kind), 
the energy levels of the whole system are functions of the numbers 
nt: we write them as En{n^)\ we must introduce, therefore, the par-
ticle number operators Nt having nt for eigenvalues (Jordan and 
Klein, 1927; Jordan and Wigner, 1928). The statistical matrix of 
the quantum mechanical grand canonical ensemble must then com-
mute with H and also with all the Nt ; it is given by 

§ = exp + £μ,#, - Η^θ^ , (11.35) 

where the parameters Ω, θ and μί have the same interpretation as 
in classical theory. In particular, we have the relation 

h 

e-oie 
= T r e x p ~

 È
) j

e
\

 ( I L 3 6) 

If we use an orthonormal base which simultaneously diagonalises Ê 
and all fit, equation (11.36) is written in this base 

r/ ι· \ ι η 

0 e-oie = Σ
 e x

P [ Τ Σ μ*ι - z&d) Ι β], (11.36') 
ni...nh,n | _ \

i =1
 // 

which is similar to the classical formula (1.19'). 

4. Fundamental hypothesis of quantum statistical mechanics 

Exactly as in classical mechanics we have just obtained an en-
semble of systems, which have the same structure as the actual 
system and which are independent of one another, to correspond 
to macroscopic observations on a physical system; this ensemble 
is weighted by a quantum statistical matrix ρ. Nevertheless, in order 
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with rf = rf = ρ0, for all i and j . 
This corresponds to the uniform statistical ensemble defined 

earlier for the various possible states of a system; as in classical 
mechanics, equation (11.26) shows that this fundamental statistical 
hypothesis cannot contradict the laws of quantum mechanics. 
Moreover, as the uniform ensemble Q0ÔU is invariant under unitary 
transformations according to (11.28'), it follows that the condition 
of equal a priori probabilities and of randomly distributed phases 
for the various quantum states is invariant both under the evolution 
of the system and under all changes of representation', this hypo-
thesis thus plays a similar role to that of equal probability of equal 
volumes of extension in phase in classical statistical mechanics. 

On the other hand, we must note here a difference with classical 
theory: in classical mechanics, it is sufficient to assume equal prob-
ability of equal volumes in /"-space in order to obtain the invariance 
with respect to the equations of motion, whilst in quantum me-
chanics the assumption of equal probability for a set of energy 
states is not sufficient for establishing invariance with respect to 
the unitary operator of evolution; this can easily be seen by putting, 
for example, QU = Q0Ôu + Atj(l — ôu) which is neither invariant 
nor stationary. This is due to the fact that (11.37) can be satisfied 
in numerous different ways because of the phase relationships and, 
consequently, because of the new possibilities for superposition of 
the quantum states; therefore it is necessary to refine the two parts 

(11.37) 

to choose this distribution | , we must have, as in classical theory, 
a starting assumption concerning a priori probabilities to be as-
signed to various states of the system compatible with our infor-
mation. 

The required statistical hypothesis in quantum statistical me-
chanics is that of equal a priori probability and of randomly 
distributed phases for the non-degenerate quantum states of a 
system. This hypothesis implies that in the absence of precise in-
formation concerning the probability amplitudes ct = Γ 4 β

< Α ί
, we 

choose a représenta tiveensemble such that the probabilities 
ρΗ = r] are equal and such that the phases <xt for all systems in 
the same state i are uniformly distributed. We shall then have 
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of the fundamental statistical assumption referring to the ampli-
tudes and phases of the ct coefficients.! 

As in classical statistical mechanics, the fundamental problem 
of quantum statistical mechanics is to justify the use of these re-
presentative ensembles and of the statistical averages to which they 
are related : the quantum ergodic theorem is intended to accomplish 
this programme by attempting to define in a suitable manner, 
starting from the wave function Ψ(ί) of the observed system, the 
macroscopically observed quantities. However, before passing on 
to this study, we must yet develop a particular point of quantum 
theory—that of macroscopic operators. 

II. Macroscopic Operators 

1. Macroscopic energy 

We know that in quantum mechanics any two physical observ-
ables are not generally measurable simultaneously. If Â and Β 
denote respectively the Hermitian operators corresponding to 
these quantities, we have the Heisenberg relations 

A A AB ^ B]_\, (11.38) 

where A A and AB are defined by 

AA = J(Â- Â)
2
 and AB = J (Β - Ê)

2
 (11.39) 

(the mean values here, obviously, denote the quantum mechanical 
averages). We note the well-known fact, that two events are mea-
surable simultaneously if the two corresponding operators Â and Β 
commute; this property of quantum observables constitutes one 
of the essential differences between wave mechanics and classical 
mechanics; it involves a difficulty which is inherent in quantum 
statistical mechanics, since quantities observed macroscopically are 
measurable simultaneously. 

This is why numerous authors (von Neumann, 1929; Watanabe, 
1935; Pauli and Fierz, 1937; van Kampen, 1954), in order to take 
into account this essential difference between microscopic observ-
ables and quantities observed macroscopically, have defined— 

t The importance of the uniform ensemble has been stressed in particular 
by Dirac (1929) and by von N e u m a n n (1927 a). 
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starting from microscopic operators—the so-called macroscopic 
operators which have the required properties of commutability. 
The introduction of these operators is not without analogy to 
those of phase cells, which enable a coarse-grained density to be 
defined, in the sense of the Ehrenfests, in classical statistical me-
chanics. We shall study the role of these macroscopic operators, 
together with the definition of coarse-grained quantum densities in 
the second part of this book, but we must introduce them at this 
stage because they play an important role in quantum ergodic 
theory; we shall draw inspiration here from the intuitive method of 
van Kampen, while referring the reader to the works of von Neu-
mann for the mathematical aspects of this problem. 

The definition of these operators begins with that of the macro-
scopic energy. We note that a macroscopic measurement of energy 
of a system always occurs with an inaccuracy of δΕ, identical to 
that which we have used to define the microcanonical ensemble. 
Since the system has a large number of degrees of freedom, there 
will be always a very large number of eigenvalues of the energy 
spectrum contained in the interval δΕ. As we have mentioned al-
ready, the conditions for macroscopic observation are such that 
always δ Ε > ΔΕ, where ΔΕ is the uncertainty in the energy ac-
cording to the fourth Heisenberg relation. We are thus led to 
divide the energy spectrum into cells e

a
\ e

{2)
, e

i0i
\ in such 

a way that a macroscopic measurement of energy could only in-
dicate to us that the system has an energy belonging to one of the 
cells e

(a
\ Therefore, we must consider all the eigenvalues of the 

same cell as equal to the same value ê
ioC)

 lying between E
i<x)
 and 

E
i<x)
 + δΕ

{<χ
\ Corresponding to the microscopic energy operator 

Η = ς
Ε
ΪΚ> (

IL4
°) 

i 
where Pxpi are the projection operators associated with the energy 
eigenvectors, we then have a macroscopic energy operator 

& = Σ^"Ψα), (11.41) 

where we have put 
S(«> 

P
m
 = Z

p
v>r (11.42) 

i = l 

The macroscopic operator jft is obviously much more degenerate 

than the corresponding microscopic operator H. Each energy 
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œil e
(<x)

 contains S
i<x)

 eigenvalues of the microscopic energy, with 
the result that each eigenvalue <^

(a)
 of the macroscopic operator 

is S
ia)
 times degenerate and we have 

5<«> = T r ρ(«)β (Π.43) 

2. Macroscopic observables in general 

Having thus defined a macroscopic energy operator, we shall 
construct other macroscopic quantities commuting with jfc. Sup-
pose that vi is a microscopic operator corresponding to a quantum 
observable which is not measurable simultaneously with H. We 
should have for Â and H a relationship similar to (11.38): we shall 
use it here in its approximate form, that is to say, by keeping to 
orders of magnitude and by replacing the standard deviations of 
(11.38) by the uncertainties themselves. We shall then be able to 
write 

ΔΕΔΑ ~ | [ i , / Z ] _ | . (11.44) 

However, macroscopic observation of this quantity is made neces-
sarily with an inaccuracy of OA, which will also satisfy the relation 
öA> ΔΑ. The product of the inaccuracies of the quantities will 
then be much larger than that of the uncertainties of a quantum 
origin. We shall then h a v e | 

ÔEÔA > ΔΕΔΑ. (11.45) 

Let us consider now the matrix elements A u in the microscopic 
energy representation ψί and let us write out the matrix element 
of the commutator [A, ; this becomes 

[Â,HUJ = (Ei-EJ)AiJ. (11.46) 

Then, according to (11.44), by considering only orders of magnitude, 
we can write 

(Ei - Ej) A t J ~ ΔΕΔΑ <ÔEÔA. (11.47) 

If, now, we chose i and j in such a way that Et — Ej ~ δΕ, we 
have AE 

Α,.^—ΔΑ < δΑ. (11.48) 
δΕ 

Thus, it can be seen that the matrix elements A u corresponding to 
differences Et — Ej of the order of δΕ can be neglected; this in-

f This condit ion can be obtained also by supposing that A is a "s lowly 
varying" quantity, which satisfies the relation δ A ^ Àât. 
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m = l 

volves the grouping of all non-negligible elements of the matrix Au 

into a band along the principal diagonal, a band which is narrow 
compared with the size of the e

ia)
 cells according to (11.48). By 

neglecting moreover the matrix elements involving two adjacent 
energy zones, the matrix associated with the microscopic operator Â 
will be reduced to a set of sub-matrices, each corresponding to a 
single energy cell e

i<x
\ 

In denoting the operator constructed in this way by s/9 it can 
be seen that it commutes with the operator $ and answers com-
pletely to the definition of macroscopic operators stated previously. 
Actually, according to (11.46) the commutator [Â, H]_ is equal to 
AijÇEi — Ej): if Et and Ej belong to the same energy cell, the 
bracket (Et — E3) is zero, since macroscopically Et and Ej are con-
sidered to be equal to <f

(Λ)
 and, if Et and Ej belong to different 

energy cells, then the element Au is zero, according to what was 
said earlier. 

In particular, we can find a unitary change of variables in each 

cell e
ia)
 which enables us to make Jfc and s& simultaneously dia-

gonal; this change of variables can be written for the cell oc as : 

zie) = EVv. - (11-49) 
i = l 

The set of these changes of variables for the different cells e
i<x) 

defines an orthonormal base in Hilbert space relative to which the 
operators 3tf and ja/ are simultaneously diagonal. In each of the 
energy cells we have 

tô\ÂX™) = A™ômn. (11.50) 

As there are errors (öA)ß in the macroscopic observation [we 
put (δΑ)β since, although of the same order of magnitude, they are 
not necessarily identical for all cells of the spectrum of Â], the set 
of the A™ can be divided into N

(<x)
 groups for which the eigen-

values of sf must be considered as equal to the same value af\ 
We are thus led to a finer sub-division of Hilbert space into cells, 
to which correspond the projection operators 
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the degeneracy of the value aft* being given by 

Trp™ = j<*>. (11.52) 

These numbers will always be very large for a system with a large 
number of degrees of freedom. According to the foregoing defi-
nitions we have the following relations: 

JV(«) N(«) 

S<«> = £j<«> and Ρ^ = ΣΡ
(

β"\ (11.53) 
β=ί β=1 

and the macroscopic operator assumes the form 
JV(«> 

oc β= 1 

Having thus defined the macroscopic operators for the energy 
and for a quantity Â, it is easy to extend this definition to other 
quantities B, C, ... The arguments are identical and lead us to the 
definition each time of a new set of cells, after making a change of 
variables, appropriate for each energy cell e

{
*\ (If we consider, for 

example, a second quantity B, we have the relation δΑ 6B > ΑΑΔΒ; 
the result, as before, is that the elements of the matrix Βββ, in-
volving two cells β ar.e negligible, and that the operator Β can be 
divided up in its turn into a system of sub-matrices, each operating 
in one cell β.) Thus, it can be assumed that the macroscopic state 
of the observed system is defined completely by the macroscopic 
energy and a set of macroscopic operators ( J / , «^, ^ , ...) which 
set up a system of cells over the Hilbert space subtended by a 
suitably chosen orthonormal base This base is obtained from 
the energy eigenfunctions by a unitary transformation of the 
formf 

Î%* = T,CÎSW (11.55) 
i= 1 

A system of cells, defined by their projection operators i ^
a )

, 
corresponds to this, with 

s<«> 

k=l
 k 

f (11.55) obviously is only an approximate relation, with the same approxi-
mations as before; it would only be exact if the summation were taken over all 
states \pt of Hilbert space. 
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where s[
a) is the size of the cell. In supposing that there are N

M 

cells in each cell e(a) obviously we have the relationship 

#(«) JV(«) 

Si"> = %s<"\ and P ( a ) = £ / * a ) . (11.57) 
v=l v=l 

Since the transformation matrix C^f is unitary for each cell e
ioc)

, 
we have in this case 

Σ C i f C i T ' = ô,j, (11.58) 

which can also be written as 

1 ^ = « « . (11.580 
i= 1 

Other relations can be deduced from (II.58') which will be useful 
later on. In fact, we can derive two relations from (II.58') by 
taking k = I and k Φ I: 

Σ (Ί^ (ΓΊ 2 = 1 = ôkk, (11.59) 
i 

Yï^cifdf = 0 ( H O . (Π.60) 
i 

where the symbol ΣΜ denotes summation over the SM states of 
the cell ec

«\ 
By squaring (11.59) we obtain 

(Ç ( e )iciï }iy = i ( e ) ic« } l 4 + I wlQ (r }l 2 ic<fl2 = ι = ««. 
(11.61) 

Likewise, by multiplying (11.59) by the identity Χ ( α ) |^ α ) | 2 = δ„ 
it also becomes ' 

Znci?\2 \cif\2 = inc i fV ici^i2 

+ Z w | C Î ? | a | C g f )| 2 (11.62) 
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In the foregoing, we now have the necessary equipment to deal 
with the various aspects of the ergodic theory in wave mechanics 
and we shall see, in the second part of this book, that these macro-
scopic operators enable us to define the coarse-grained statistical 
densities necessary for proving a quantum //- theorem. 

(11.66) 

(11.65) 

appear in the calculation of the macroscopic averages, defined in 
a cell ν with sl

a)
 dimensions. These quantities satisfy the following 

relations : 

(11.64) 

Finally, we point out that we shall see expressions of the type 

(11.63') 

or even 

(11.63) 

We obtain another type of relation by starting from (11.60); by 
multiplying by 0, it becomes 



CHAPTER III 

The Ergodic Theorem in Quantum 
Statistical Mechanics 

I. The Ergodic Problem in Quantum Mechanics 

As in classical mechanics, where the ergodic theory presents two 
aspects, two ergodic theorems can be distinguished in quantum 
mechanics, which correspond respectively to those of Birkhoff and 
Hopf in classical theory. The evolution of an isolated physical 
system is determined by the motion of the end-point of the vector 
Ψ(ί) over the unit hypersphere of Hilbert space; this motion is 
defined by equations (II.1)-(II.6); to each observable represented 
by a Hermitian operator A there corresponds a quantum average 
value depending on Ψ(ί), or A(t) = (Ψ, ΑΨ), and A(t) is completely 
defined if the trajectory of Ψ(ί) is known. As in classical mechanics, 
we accept that macroscopic observation does not permit the in-
stantaneous value of A(t) to be found, but only its time-average 
over a time interval T; thus, we study the quantity 

which are the quantum parallel of (1.23). Under these conditions, 
the fundamental hypothesis of statistical mechanics will be justified 
if we can prove the equality of the time-averages (III . l) and of the 
statistical averages (11.27), calculated with the microcanonical 
distribution (11.31). We shall see that this programme, in quantum 
theory, encounters additional difficulties due to the special pro-
perties of stationary quantum states. 

The first ergodic theorem consists in proving the existence of a 

τ 

(III . l) 

0 
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limit of A(t)
T
, when Τ -> oo and in establishing under what con-

ditions this limit is independent of the initial state. It is presented, 
therefore, as the quantum parallel of Birkhoff 's theorem and the 
condition for the absence of degeneracy in the spectrum of the 
Hamiltonian corresponds to the classical hypothesis of metric tran-
sitivity. 

The second quantum ergodic theorem, more useful for physical 
applications, is analogous to H o p f s theorem in classical mechanics; 
in this case, it will be necessary for us to have recourse to a certain 
definition of macroscopic observables (in the sense of G. Ludwig) 
in order to try to establish a convergence towards averages which 
are time independent. Moreover, we shall have to assume not only 
the non-degeneracy of the Hamiltonian spectrum but also the 
absence of resonance frequencies in this spectrum: these conditions 
are analogous to those stated by H o p f s theorem, but we shall see 
that they appear to be even more restrictive in quantum mechanics 
than in classical mechanics. 

Finally, we shall show that it has not been possible to prove 
rigorously the equality of the time-averages and the microcanonical 
averages for one system but only statistically, by resorting to an 
average over a set of possible macroscopic observers, following 
von Neumann; this latter restriction modifies considerably the 
real significance of the quantum ergodic theorem of von Neumann's , 
the statistical nature of which thus becomes obvious. 

We shall try to break away from the two foregoing ergodic 
theorems, which have a range of application more restricted than 
in classical theory because of the nature of the assumptions con-
cerning the Hamiltonian spectrum and because of the difficulties 
which are inherent to the quantum ergodic theory; we shall see 
that we can succeed by taking account of the statistical aspect of 
the theory. This is why, after developing the two usual theorems 
of the quantum ergodic theory in this chapter, we shall study in 
Chapter IV an approximate form of the ergodic theorems called, 
as in classical theory, the "probabi l i ty" ergodic theorems and, at 
the same time, we shall rely on the quantum parallel of von Neu-
mann's condition (1.26) and on the asymptotic behaviour of certain 
quadratic averages (when the number of degrees of freedom of the 
system becomes very large). We shall use from the start ensemble 
theory, employing the quantum ensembles of Chapter II and we 
shall show that ergodic theorems in quadratic mean can then be 
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proved without needing the assumptions made above. This result, 
which depends on the macroscopic nature of the system considered, 
will be compared with Khinchin's asymptotic formulae in classical 
mechanics. 

II. The First Quantum Ergodic Theorem 

In this theorem, we consider an isolated system as being in a 
pure case described by the wave function ^(0; we seek, therefore, 

to prove the existence of a limit of A(t)
T
 when Τ -+ oo, or 

τ 

lim A(t) = lim - \ A(t) dt. (III.2) 
Γ=οο T=oo Τ J 

Ο 

and to deduce the conditions under which this limit is independent 
of the initial phases: thus, we obtain the quantum parallel of Birk-
hoff's theorem. 

If xpi and Et are the eigenfunctions and eigenvalues of the 

Hamiltonian Η and if Ψ(0) is the wave function of the system at 

t = 0 , we have 

^ ( 0 ) = £ 0 , ( 0 ) ^ , ( I I I . 3 ) 
i = l 

with 

c,(0) = ne**, (ΙΠ.4) 

where rt is the modulus and oct is the phase of ^ ( 0 ) . At time t, 
Ψ(0) is transformed into Ψ(ί) according to equation (II.4), and it 
can be written as 

Ψ(0 = Σ r
i e t e | e~ I B < , / V (ΙΠ.5) 

It can be seen that the transformation Ψ(0) Ψ(ί) leaves the 
probabilities for various states ψί which are equal to rf unchanged. 
On the contrary, the phases of the various states are functions of 
time and, in the y)t representation, the statistical matrix of the pure 
case Ψ(ί) can be written as 

QiJ(t) = rtrj e
n
«*-"

j)
 e-

iiEi
~

Ej)t/h = ρ , / 0 ) e-«*i-W>m ( m . 6 ) 

With the foregoing expressions, we have for the quantum average 
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value A(t) of an observable A 

A(t) = £ rtrj e
i(ai
-

aj)

 e-«*i~*jM A j i, (III.7) 
i,J 

where AJt is the matrix element (rpj9 Ay)t). 
00 

If the series £
 r
i *

s
 convergent, expression (III . l) can then be 

i = l 

written as 

ο ^ ο ' 
(ΙΙΙ.8) 

and, if now we take the limit of this expression as Τ -> oo, it can 
be seen that we revert (always in the case where the series of the 
values rt is convergent) to evaluating the limits 

ι fe_i(£(-£j)(/Vij ( m 9 ) 

However, these expressions are equal to 0 or 1 according to 
oo 

whether Et Φ Ej or Et = Ej. It follows that the limit A(t) of 

A(t)
T
 as Γ - ^ oo always exists: this result is the quantum equivalent 

of Birkhoff's theorem. 
This limit, however, depends generally on the initial phases <xt: 

it is independent of them only if there is no degeneracy in the spec-
t rum of the Hamiltonian. In this case, we have 

Τ oo oo 

lim A(t) = A(t) = %
r
?

A
n- (ΠΙ.10) 

T= oo i = l 

If, for example, an eigenvalue Ej had a degeneracy of order 2, the 
eigenfunctions y)JX and ipJ2, the amplitudes rn and rJ2 and the 
phases <xn and ocJ2 would correspond to it. Then, in the expansion 

of 4̂(0°° we should have, in addition to the diagonal terms 
rfxAnn + rf2Aj2J2, expressions of the form 

rnrJ2AJ2J1 #*n-*s* + rJ2rnAJ1J2 

= 2rnrJ2 Rt(AJ2J1 e"*»'"*), (ΙΠ.11) 

which depend, obviously, on the initial phases a , . 
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If we introduce the mean statistical matrix defined by (11.24), 
equation (III. 10) can then be written as 

τ 

co ! 
A(t) = lim — 

Γ=οο Τ 

Trfe(f) A) dt = Ύτ(ρ
α
Α). (III. 1 2 ) 

ο 
Thus, we see that the time-average taken over the pure case re-
presented by the matrix (III.6) has the effect of replacing this pure 
case by the mixture defined by the matrix (11.24) : the second term of 
(III. 12) is thus independent of the initial phases <xt. We can say, by 
using the terminology of quantum statistical ensembles, that the time-
average of a quantity A{t) is equal to the statistical average taken 
over the pure case ensemble Ψ(ί) corresponding to (III.6) with the 
phases distributed uniformly over the interval (0, 2π). 

This result has been obtained at the price of an assumption con-
cerning the nature of the system, namely that the Hamiltonian 
spectrum is non-degenerate. This corresponds to the hypothesis of 
metric transitivity in classical theory: actually, this latter hypo-
thesis, in classical mechanics, can be defined by saying that the 
trajectory covers completely the hypersurface of constant energy 
(by passing as close as we wish to every point of the hypersurfaceZ) ; 
in the same way, we can say in wave mechanics, that the hypothesis 
of non-degeneracy of the spectrum of Η has the effect of allowing 
the trajectory of Ψ(ί), over the unit hypersphere, to cover the 
statistical ensemble corresponding to the matrix which has the rf 
as weights: stated in this form, the first ergodic theorem is then 
completely the quantum equivalent of Birkhoff's theorem. 

Their physical significance is different, however: actually, 
although knowledge of the initial phase is sufficient to determine 
the energy surface in classical mechanics over which the movement 
takes place, the knowledge of the initial vector Ψ(0), according 
to (III.3), defines only a statistical distribution of the quantum 
system over all possible energy states. Moreover, and this is the 
essential fact, the previous theorem does not establish the equality 

oo 

of A{t) with the microcanonical mean ((1/AI) £ An), since it does 

not deal with the probabilities rf, which remain unchanged during 
the evolution of the system: this is a characteristic property of 
wave mechanics; it is associated with the fact that, since the energy 
is an integral of motion in a conservative system, the distribution in 

64 
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probability of any quantity is independent of time when the system 
is in a stationary state (we have ψ = and the time-dependent 
exponential, of modulus 1, is contained in the factor at). This 
property constitutes an additional difficulty of the quantum ergodic 
theorem which will make it necessary to introduce averages over 
macroscopic observers in the second ergodic theorem; moreover, 
we shall see in Chapter IV that the elimination of this difficulty 
rests, in fact, on the asymptotic properties of the quantities ]T

 r
f^u 

on the unit sphere in 2w-dimensional space. j ' 
We note also that we have had to assume convergence of the 

series £
 r
i \ this convergence cannot be associated with any physical 

significance. Apart from this difficulty of a mathematical nature 
[which we shall avoid by showing that in quantum statistical me-
chanics we can always restrict ourselves to a finite number of terms 
in (III.8)], the hypothesis of non-degeneracy of the spectrum of the 
Hamiltonian does not seem to be acceptable, since in the majority 
of simple quantum physical systems (atoms, molecules), the existence 
of degenerate levels is the general rule and not the exception ; more-
over, there is little likelihood that such is not the case also for the 
more complex systems envisaged in statistical mechanics. Thus, it 
appears that the quantum ergodic theory encounters a difficulty at 
this point which is greater than in classical theory, where the as-
sumption of metric transitivity does not clash at first sight with 
objections of the same kind: thus, we can say that the existence 
of ergodic systems in the foregoing sense is much more conjectural 
in wave mechanics than in classical mechanics. Since we shall en-
counter this difficulty again in the quantum parallel of H o p f s 
theorem, we can conclude that the justification of the principles 
of quantum statistical mechanics by the ergodic theory is even 
more slender than in classical mechanics. 

III. The Second Quantum Ergodic Theorem 

1. Statement of the theorem 

This is the quantum parallel of H o p f s theorem. If §(t) is the 
matrix representing a statistical ensemble of systems, the average 

t Another method of overcoming this difficulty consists in the introduction 
of non-stationary ensembles (cf. Chapter VI, Section III, § 2). 
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value over this ensemble of the observable A is given, according 
to (11.27), by Ίτ(Αρ(ί)); if we define the operator Wt by the rela-
tionship 

g ( 0 = WM)= ÛM0)Û*, (111.13) 

this average value can be written as 

T r ( i | ( O ) = T r ( i ^ ( 0 ) ) . (III. 14) 

We shall have an ergodic theorem similar to that of Hopf if we 
can prove that the distribution Wt§(0) tends in the quadratic 
mean towards a limit distribution ρ

+
(0), in such a way that 

lim — 
Τ= ο ο Τ 

|Tr (AWtg(0)) - Tr ( i |
+
( 0 ) ) |

2
 dt -> 0. (111.15) 

However, the statistical matrix of a mixture §(0) can always be 
written as the weighted sum of elementary matrices £ Φ ν(0) corre-
sponding to pure cases described by the functions Φ ν , or 

§(0) = Σνν,ρΦν(0). 

Expression (III. 15) can then be written as 

(III. 16) 

Γ=οο Γ J 
Ση^Τι^ΜΟ ) ) - T r ( ^ : v ( 0 ) ) } dt9 (111.17) 

since the statistical weights wv are unaffected by the operator \yt. 

According to Schwartz's inequality we have 

τ 

Ζ ^ lim I f Σ w, | T r (AWtè*M - Tr ( ^ £ ( 0 ) ) |
2
 dt 

Γ = oo Τ J ν 

ο 

= Um £ w , | i j | T r ( i ^ v ( 0 ) ) - T r ( ^ £ ( 0 ) ) |
2
 dt 1 

(III. 18) 

6 6 
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with the result that it is sufficient to prove theorem (III. 15) for a 
pure case represented by the statistical matrix ρ φ(0) = Ρφ. 

As before, we shall assume that we are dealing with a system 
whose Hamiltonian is time-independent, with a discrete spectrum 
and that it can be written Η = Σ EtPyi9 where PVi are the pro-

jection operators corresponding to the eigenvectors of the energy ; 
we shall assume further that the spectrum of the Hamiltonian is 
non-degenerate. The initial state of the system is represented by 
the matrix ρ φ(0) [which we denote by ρ(0) for simplicity], and the 
quantum average value A(t) of an observable Â in the pure case 
described by Ρφ can be written [in the Heisenberg representation, 
which will be more convenient here for u s f ] : 

A{t) = TriW'Jm) = YeiŒ'~Ej)'lh(Ei\Â\Ej)(EM(0m), (ΙΠ.19) 
i j 

with W'tÂ = ÛfÂÛt; by putting Et — Es = hœ/2n, we obtain for 
(III. 19), from the fact that the spectrum of H is non-degenerate, 

At) = Σ e
itot
 Σ (Et\Â\Et - hœ) (Ε, - Αω|ρ(0) 1^)· (ΠΙ-20) 

[Expression (III. 19) is obviously identical with (III.7) because of 
(III.6), but the notation used here is more convenient for stressing 
the role of degeneracies and of resonance frequencies; cf. (111.20) 
and (111.25).] 

The problem is to show that A(t) tends in quadratic mean to-
wards a limit which is time-independent. The time-independent 
terms in A(t) are of the form 

Z{Et\Â\Et)(Et\m\Ed, 
Ei 

and so we shall put 

Tr ( ^ + ( 0 ) ) = Σ (ßt\Ä\Ed (Et\m\Et). 0Π.21) 
Ei 

We note that for the same reasons as before, Τ Γ ( ρ
+
( 0 ) ^ ) = ΣΓΜ«* 

i 
(in the notation of Section II) is not equal to the microcanonical 
average; this difficulty will be raised only with von Neumann's 
theorem and the "probabi l i ty" theorems of Chapter IV. 

t Here, we follow Ludwig (1954). 
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1 τ 

A\(j) - Tr(i<?+(0))|
2
 dt 

Ο 

τ 

lim ^ Γ Σ > ' ^ ( ω ) 
Γ=οο Τ J ω 

Ο 

2
 Λ -> 0, (111.22) 

where, according to (111.20) and (111.21), we have put 

i O when ω = 0, 

Y^Ei\Â\Ei-hœ){Ei-hœ\^(0)\Ei) when ω * 0. 

Et 

(111.23) 

According to the foregoing definition we have g*(a>) = g(—ω), 

with the result that (111.22) can be written as 

τ 

Ζφ = lim 1 Γ Σ e
t o ,

i (û ) )
 2

 Λ = Σ Ιβ(«>)1
2
 - 0 ; (ΙΠ.24) 

Τ — co 1 J ω ω 
Ο 

Ζ φ can become very small only if all the moduli of g(co) are small: 
it is sufficient that a single value of \g(co)\ is large in order that A(t) 
does not tend towards a limit. The necessary assumption for proving 
that Ζφ tends towards zero concerns the Hamiltonian of the 
system: it is assumed that there are no resonance frequencies co, 
i.e. that unless / = V and j = j'9Et — E5 Φ E[ — EJ 9 for every pair 
(A i'j'l applying this condition to (111.23) we obtain 

/ 0 if ω = 0, 

ν for one single term for which Et — Ej = hœ. (III.25) 

We can now evaluate Ζ φ for a pure case; actually, we have—with 
t h e n r e v i n n s n o t a t i o n — ( Ε λ η ( 0 \ \ Ε λ = (ΕλΦΛ(Φ\ΕλΛ w h e n c e 

We shall now try to show that 

t With the notation of Chapter II, we should have for example (£} |Φ) = c,(0). 
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The form of (111.26) (where we have the inequality sign because we 

should drop terms where E, = Ej) suggests that we compare Ζφ 

with the average value of Â
2
 taken with respect to ρ

+
(0) , or 

I
5
 = ττ(Αψ(0)). Putting 

(111.27) Max \(Et\A\Ej)(Ej\0)\, 
v . r . 

e n n a t i o n fTTT 2 6 Ϊ c a n h e w r i t t e n a s 

and, by applying Schwartz's inequality, it becomes 

Since we have 1, the previous relation can be 

(111.28) 

(111.28') 

(111.29) 

written as 

or even 

with 

In order that δ be very small compared with 1, the matrix elements 
(Ei\Â\Ej) must be very numerous; this condition can be defined 
more precisely by noting that if E0 and E£ are the values of the 
energy corresponding to m, it follows by (111.29) that 

(111.30) 

If, on the other hand, S
v
is the number of elements (Ei\Â\Eq) for 

which 

we shall have according to (III.30): 

(111.31) 

(111.30') 

69 



Classical and Quantum Statistical Mechanics 

70 

Thus, we can see that according to (III. 30'), the number S
v
 must 

be very large in order that δ be very small, with the result that 
among the matrix elements (Et\Â\Ej) there will be a large number 
of the same order of magnitude ; this condition may be compared 
with that used in Chapter II to define macroscopic observables 
and it has been generalised in a recent paper (Ludwig, 1958 a, b ) : 
it leads to the concept of strongly ergodic observables and of macro-
scopic observables in the sense of Ludwig. 

Having established the conditions for which theorem (111.22) is 
valid for the pure case ΡΦν, by putting this result in equation (III. 18) 
we have 

Ζ ^ Σ wvô Tr(Â
2
Qt(0)) = δ Tr (Αψ(0)), (111.32) 

ν 

with the result that (III. 15) is satisfied if δ -> 0; thus, we have more 
precisely defined the method which is to be used for a rigorous 
proof of the second quantum ergodic theorem, which requires that 
the average of the variations of A(t) around Ύτ(Αζ>

+
(0)) are very 

small compared with Tr(Â
2
ç

+
(0)). 

2. Existence conditions and comparison with Hopfs theorem 

We have seen in the preceding section that the proof of theorem 
(III. 15) requires the following three conditions: 

(a) Non-degeneracy of the spectrum of H: this assumption has 
already been analysed in the first quantum ergodic theorem. 

(b) Absence of resonance frequencies in the spectrum of H, 
which is the quantum parallel of the assumption necessary for 
proving H o p f s theorem, dealing with the metric transitivity of 
the coupled hypersurface Σ χ Σ'. Actually, if these conditions 
were not fulfilled, the time-averages Ζ would depend on the initial 
phases oct, and we should have terms similar to (III. 11). Ludwig 
has, in fact, shown, as an example, that in the case where A(t) 
takes the form of a Fourier series and where the motion is periodic, 
every possibility of convergence would be excluded unless Â com-
mutes with Ê. 

(c) Condition (111.31) imposed on the observable Â, which 
amounts to considering its spectrum as strongly degenerate from 
the macroscopic point of view. This condition, which is necessary 
for having δ -> 0, has no classical equivalent and thus constitutes 
an additional difficulty which is inherent in the quantum ergodic 
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theory. Although Ludwig (1958a, b) has attempted, in his recent 
papersf to derive such a condition for the intrinsic properties of 
observed macroscopic systems, we may say that the precise proof 
of the second quantum ergodic theorem is not always realised 
in practice. In order to avoid this difficulty, we can try to accept 
that the correct statement of H o p f s theorem in quantum me-
chanics must make use of the macroscopic observables defined in 
Chapter I I ; we are thus led to the statement of the theorems of 
von Neumann and of Pauli-Fierz which we are now going to 
study. 

Before doing this, we shall show by relying on the unitarity of the 
operator of evolution that we can extend more widely the mathe-
matical analogy between the classical and quantum forms of 
H o p f s theorem. Indeed, because of the unitary nature of the 
operator W't9 defined by (III. 19), we can define its spectral reso-
lution as follows 

+ 00 

W[ = j e
ia>t

dF(co), (111.33) 
— 00 

where the Ρ(ω) are the projection operators defined by 

H<») Â = ΣΩ KAK> (ΠΙ·34) 
Ei,Ej 

the symbol £
ω
 denotes here a sum over all the Et and Ej such that 

Et — Ej ̂  Ηω. With (111.34) we have a spectral resolution corre-
sponding to that given by Stone's theorem (1.30) in classical 
mechanics. 

At the point ω = 0, Ρ(ω)Α has a discontinuity defined by 

(F( + 0) - F(0)) Α = Σ PWiÂPWi. (111.35) 

If the assumptions of the ergodic theorem are fulfilled (non-
degeneracy and absence of resonance frequencies), to some value 
of ω which is non-vanishing there corresponds a single matrix 
element which defines the discontinuity in Ρ(ώ) Â at the point 
ω, or (F(+co) - Ρ{ώ))Α = ΡψιΑΡψί, where naturally we have 
Et — Ej = fico. In addition, if the observable Â satisfies the re-
quirements of a macroscopic observable in Ludwig's sense, 

t W e shall return to the proof of the quantum equivalent of Hopf ' s theorem : 

see Chapter VI, § III, 2 . 
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i.e. (III.31), the sum on the right-hand side of (III.35) includes 
a large number of terms, with the result that the discontinuity 
PWiÂPWi is negligible compared with the discontinuity in F(oo) Â at 
the origin. If follows that Tr (Wt'AQ(0)) is a function whose spec-
tral decomposition is almost continuous and involves only a 
single discontinuity at the origin; moreover, this is given by 
(III.35). Thus, we can apply the mathematical theorem (1.38) to 
Tr (W;AQ(0)) which has helped us to prove H o p f s classical 
theorem. We then have 

τ 

lim — Γ|Tr (W;AQ{0)) - Tr (ρ(0) [F( + 0) - F ( 0 ) ] i ) |
2
 dt -> 0 

τ=π Τ J 
ο 

(II 1.36) 

which assumes the form (III.22) if we note that, according to 
(111.35) and (111.21), we have 

Tr (ρ(0) [F( + 0) - F(0)] Â) = Tr (Αρ+(0)). 

In conclusion, we see that there is a close parallelism between 
the classical or quantum expression of the ergodic theorems in 
quadratic mean and that they are both based on the same mathe-
matical foundations. It is in order to be able to use the mathematical 
theorem (1.38) that we have had to make the assumptions con-
cerning the spectrum of the Hamiltonian on the one hand and to 
introduce, on the other hand, macroscopic quantities in the sense 
of Ludwig. 

We have mentioned already that the assumptions concerning 
the spectrum of H are very limited from the point of view of 
quantum mechanics; in the present case, the assumption of non-
degeneracy of the eigenstates of H is still inadequate : it is necessary 
to add that of the absence of resonance frequencies in the spectrum 
of H. This additional assumption will even reinforce the hypo-
thetical nature of the existence of ergodic systems in wave me-
chanics. 

With regard to the last condition (c) referring to macroscopic 
observables it is, as we have seen, an additional obstacle to the 
accurate proof of the second quantum ergodic theory. We can 
endeavour to satisfy it by recourse to the macroscopic observables 
of Chapter II ; by way of justification, we can say that their intro-
duction is made necessary at the same time by the special nature 
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of quantum observables, which are not measurable simultaneously 
in general and by the time-evolution of the quantum average 
values—the probability amplitudes being time-independent in the 
energy representation—that we have mentioned already on the 
occasion of the first ergodic theorem. By using the macroscopic 
operators already defined in (11.54)—(11.58) we shall prove, in 
the next section, an ergodic theorem in quadratic mean, either in 
the form which von Neumann gave to it, or in the form of Paul i -
Fierz; we shall then be able to define more precisely the exact role 
played in the proof by these macroscopic operators and we shall 
see that we can obtain, in reality, only a convergence in probability 
by resorting to the concept of an average over an ensemble of 
possible macroscopic observables. 

IV. The Proofs of von Neumann and Pauli-Fierz 

1. Von Neumann's method (Von Neumann, 1929) 

This consists in the first place in replacing the microscopic 
operator Â in expressions (III. 19) and (III.22) by a suitably 
constructed macroscopic operator: we shall use, for this purpose, 
the operator defined by equations (11.54)—(11.58). Thus, we obtain 
for the average value of the macroscopic operator stf in the pure 
case Ψ(ί): 

= Tr (ίν ( (μ/) = ΣΣ «WiO, (111.37) 
α ν = 1 

with 
w

(
;\t) = Ύτ(ΡΨυ)Ρ^). (111.38) 

In order to calculate the expression for the statistical average, we 
define in the second place the operator §

+
(0) so as to obtain the 

microcanonical distribution; we then determine it by assuming 
that each state on the same energy shell e

ia)
 has the same probability, 

which corresponds to a generalisation of the microcanonical 
ensemble. If Ρψ(0) represents the pure case at / = 0, we shall 
have: 

|+(0) = V
 T r

 (
ρ
™ > *

Μ
) . (111.39) 

a T r P
( > ) 

the quantity W
M
 = Tr (ΡΨ(0)Ρ

{α)
) is the probability of finding 

the system at / = 0 in the energy shell e
i<x
\ With these definitions, 
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the statistical average $0 can be written as 

ce ν = 1 

We can then form the expression 

W 
(111.40) 

1 

Τ 
K ( 0 - ^\

2
dt, (111.41) 

in place of (111.22), where we have for the term to be integrated 

K ( 0 - λ/ ι 
2 _ 

JV(") 

« ν = 1 
(111.42) 

As before, the form of this expression suggests a comparison 

with the average of j ^
2

, which can be written as 

w ·(«) 

v = 1 

(111.43) 

By using Schwartz's inequality in equation (111.42), we obtain, 
using (111.43), 

K ( 0 - ^ | 2
 ύ ^ 2 Σ Σ c? ci ι W ™ - Ι , ι Ξ ^ 2 · 

(ΠΙ.44) 

Thus, we shall have proved theorem (III. 15) if we are able to 
prove that the time-average I°° of the factor λ tends to zero as Τ 
tends to infinity: we shall see that, in fact, we can obtain only a 
convergence in probability. 

In order to proceed to this proof, it is necessary to study the 
term w^\t) which is time-dependent; this can be written as 

s<«> 

w\«\t) = t\{Gk«\W{t))\\ (111.45) 

because of the definition (11.55) of the functions Ω
{
£\ which 

subtend macroscopic cells with index v. If Ψ(ΐ) is the pure case 
defined by (III.5), (111.45) assumes the form 

(ΙΠ.46) 

7 4 
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or again, by expanding the square, 
Λ<χ) 

i.J 

(111.460 
The last sum in this expression can be written as 

Σ ( V i - ̂ ) Ψ,) = Σ Cl?*Ci? = D$, (WIM) 
k=l k=l 

by using the transformation matrix of (11.55) and the de-
finition (11.64). 

Because of the definition of the functions and equation 
(11.58), the sum (111.47) vanishes if ψί and xpj do not both belong 
to the energy range e

(a}
; the result is that the sum (111.46') over 

ι and j involves only the indices corresponding to the range e
ia)
: 

the quantity wf\t) is thus expressed as a finite sum of terms 
belonging to a single energy shell. In order to prove our theorem, 
we must now evaluate the time-average as follows: 

τ 

Τ 
0 

Τ 

~T}\htJ [u so*")]' 
ο 

(111.48) 

where represents a sum over states belonging to the 
u 

energy shell e
{c 

We can see immediately that the previous expression can only 
be reduced to terms independent of the phases oct if the two con-
ditions of absence of degeneracy and resonance frequencies in the 
spectrum of the Hamiltonian are fulfilled simultaneously: these are 
the assumptions which we have discussed already. 

If these two conditions are fulfilled, we can see now how it can 
be proved that the time-average of the factor λ of (111.44) tends to 
zero. We calculate the time-average (111.48), which can be written 

4 a * 75 
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where we have put 

Pu 
, ( « ) 

(111.51) 

(111.52) 

As in the previous section, we verify again that the assumptions 
of ergodicity, depending on the spectrum of H, are insufficient for 

— 00 

making λ approach zero and that it is necessary to add a supple-
mentary condition. However, we can see easily that the terms of 
expression (III.51), which depend on changing the variables 
Ckf (i.e. on a change in the definition of the macroscopic cells) by 
means of / 4 "

}
, are separated from the terms which define the pure 

case considered, that is, rf and W
ia)
. If we can show that all the 

are less than ε, we can deduce easily that I ° ° is less than 2ε. 
The method used by von Neumann and Pauli-Fierz to prove 

this latter point consists in considering the set of possible sub-
divisions of Hilbert space into macroscopic cells (or, in other words 
the set of possible macroscopic observers). By assuming the equi-

76 

with the foregoing assumptions as 

FÜ>°= { ς > < 2 ( ^ - I W . ( i n . 4 9 ) 

By applying Schwartz's inequality to the first term and by 
noting that Y^rf = W

i<x
\ we have 

I 

oo / (λ) \ 2 

i \ S J i*j 

(III. 50) 

—oo 

Thus, according to (111.44), we obtain an upper limit of λ by 
writing 
_ o o iV(«) ςτ(Λ) oo 

Μα) (Γ- / i « ) \ η 2 
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probability of all macroscopic observers we can show that the 
probability of a subdivision of the set providing a value of 
which is larger than a certain given value is very small. 

The subdivisions of Hilbert space are defined by the matrix 
Clf which occurs in the preceding expressions through D\p ; we 
are thus led to studying the distribution in probability of the 
expressions Djf for an energy shell e

ia
\ If the coefficients Cffl are 

considered as the components of unitary vectors in a Hilbert space 
with S

icc)
 dimensions, each value of D\f represents the scalar pro-

duct of the projections of two such vectors on a cell with s™ 
dimensions. Because of the assumption of the equiprobability 
of macroscopic observers, the probability of finding subdivisions 
corresponding to elements of Okf located inside a given solid angle 
of Hilbert space is proportional to the magnitude of this solid 
angle (or, what amounts to the same, to the area of surface cut 
out of the unit sphere by this solid angle); the calculation of the 
probability P(D) dD that the quantities lie between D and 
D + dD is thus reduced to a problem of geometrical probabilities 
dealt with by von Neumann and Pauli-Fierz in particular. The 
following expression is found for P(D): 

P(D) = KD
s
*\l - D)**-**, (111.53) 

where Κ is a normalising constant. It can be seen from (III.53) 
that the most probable value of Dff is s^/S™ and, on the other 
hand, that the maximum is extremely sharp : this is a consequence 
of the asymptotic geometrical properties of the unit hypersphere in 
2«-dimensional space. We can deduce from this result the prob-
ability that the upper limit of the is larger than a number e0 

fixed in advance (always over an interval e
( a )

) ; t
 w e

 find f °
r
 this 

probability an expression of the form 

K' exp £ - s0 + 2\n S<«>], (111.54) 

where K" is a number of order unity; this result is valid only if 

ε0 > — . We can see that in this case, for values of ε 0 

(S — 2) 

f W e refer to Appendix II for all intermediate calculations. 
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which are not too small, the probability (III.54) becomes very 
small provided that 

o(* ) 

^ — > ( 2 1 η £
( α )

)
2
. (111.55) 

This condition expresses simply that the average number of eigen-
states per macroscopic cell with suffix ν must be very large, which 
is completely acceptable if we are dealing with a macroscopic 
physical system. 

Thus, we can say that it is very probable that a macroscopic 
observation attributes values to such that 

D
u = ^ 7 < V PÏÏ = °> σπ.56) 

with the result that we can write 

Prob lim - i | ( ^ (0 - ^ ) 2
 dt > η\ < δ, (111.57) 

^ ο ' 

(the probability having the classical meaning which we have just 
assigned to i t) ; this inequality is satisfied when the conditions 
concerning the spectrum of the Hamiltonian and those relating to 
the definition of macroscopic operators are fulfilled. We can see 
that it is only possible, in fact, to prove the second quantum 
"probabi l i ty" ergodic theorem by invoking the macroscopic 
nature of the system and the assumption of equiprobability of all 
macroscopic observers; this constitutes an additional difficulty 
which is inherent in the quantum ergodic theory, because in 
classical mechanics the hypothesis of metrical transitivity is 
sufficient to ensure an almost certain convergence or a convergence 
in quadratic mean. We shall show, moreover, in the next chapter, 
that the average over the macroscopic observers actually plays a 
fundamental role in the foregoing proof and that it renders useless 
any assumption concerning the spectrum of the Hamiltonian. 

Finally, we note that the distribution (III.53) also enables us to 
calculate the average of the factor λ°° for all macroscopic observers; 
for this purpose we use formulae (36) to (43) of Appendix II, 
which give the averages < | C ^ |

2
> , <|C<?|

4
>, <|C£>|

2
 |C<?|

2
> and 

<IQfl2 IQvl2)» where the symbol < > denotes the average over 
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, ~ i S ? \ t ' V S
M 

+ 

(111.51') 
whence 

oo \ JV<«> f / 

1
 ï ' ï M ï "

r t
(

D
" 

«(«) \
2 

+ Σ <*)
 2 2 

r
i

r
J 

i*J 

By replacing the averages by their value, we obtain finally 

- o o \ N(«) _ ι / N
M

\ 

λ ) = ̂ T , i = 0 ( i l _ ) (111.57') 

which, put into (111.44), enables us to obtain a result which is 
equivalent to (III.57); we shall encounter also a similar formula 
in the next chapter [cf. (IV.77)]. 

2. The Pauli-Fierz method 

This method can be reduced easily to that of von Neumann, 
because the definition of macroscopic cells which it uses comes 
within the framework of the general scheme that we have indi-
cated. Since the probability wl

a
\t) of finding the system in the r th 

cell is defined by (III.38),the entropy of the system can be written 
as 

SiO = - Σ Σ ^ ( 0 In (ΠΙ.58) 
oc v= 1 Sv 

[putting k = 1 in formula (26) of Appendix III.B] and for the 
corresponding microcanonical entropy we have 

—m oo τχ/(α) 

S = - Y W
M
ln——, (111.59) 

<χ= 1 Ο 
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different macroscopic observers. If we assume that the system 
occupies a single energy shell e

ia
\ according to (111.51) we have: 

—oo JV(«> r / («) \ 2 
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Thus, we have encountered an expression which is similar to the 

factor X
m
 of (III.51): starting from here, the reasoning of the 

previous section applies in the same way. We deduce that for 
almost all macroscopic observers the limit of the time-average 
of the entropy of the system (III. 58) is equal to the microcanonical 
entropy, which can be written as 

Prob{(s(0 - S ) > η] < δ. (111.63) 

3. Fierz's criticism 

This criticism is concerned first of all with the a priori assump-
tion of equiprobability of macroscopic observers; Fierz (1955) 

80 

where W
ia)
 = Tr (ΡΨ0)Ρ

(λ)
) is the probability of finding the system 

in the shell e
(<x

\ In order to prove an ergodic theorem we consider 
τ 

S(t) = lim - \S(t)dt (111.60) 
T=œ Τ J 

by restricting ourselves to a single shell e
i<x
\ 

Putting this result in (111.60), we obtain for the difference 

If we put χ = w
(

vfls
a

v and y = W
{a)
jS

ia
\ we obtain 

and we evaluate the difference S(t)™ — S™ by using a well-known 
relation satisfied by the function L(x, y) = x(ln χ — In y) — χ + y9 

namely that we have for χ and y > 0, 
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draws attention to the fact that this assumption is unfounded 
physically and that it tends to associate the property of ergodicity 
not with the system observed but with the macroscopic observer. 
In addition, we shall encounter in Chapter IV another incon-
venience of this type of averages so that it will be preferable to 
change to ensemble averages such as we defined in Chapter II. 

Moreover, Fierz simplifies the proof of the previous section, on 
the one hand by using directly in the definition of S(t) the fact 
that the system has a large number of degrees of freedom and, 
on the other hand, by using separately the first quantum ergodic 
theorem. We note in this case that the number of cells N

i<x)
 con-

tained within an energy shell e
((x)

 must be at least of order of 
magnitude 1 0

2 0
, since N

M
 is the number of states which can be 

distinguished by a macroscopic observer; furthermore, the entropy 
of the system in units of k (Boltzmann's constant) is also of order 
1 0

2 0
, which means that s

(

v

a)
 and S

M
 are approximately of order 

exp(10
2 0

) . The result is that w
(

v

a)
 is of order Ι Ο "

2 0
 and In w

(

v

a)
 is 

negligible compared with In s
(

v

a
\ so that the entropy (III.58) can 

then be written more simply as 

N(«) 

S(t) s £ ΣΧ α )1η4Α >· (111.64) 
oc v= 1 

On the other hand, if we are restricted to a single energy shell 
e

M
 and if we consider the quantity 

it can be shown easily that © is almost equal to the microcanonical 
entropy; in fact, the sum ]T

 s
i

a)
 l

n
 s

(

v

a)
, which satisfies the con-

dition Σ s
(

v

a)
 = S

(
"\ is a minimum for s

(

v

a)
 = constant ~ S

M
IN

M
; 

V 
we have, therefore, 

© > V _ ! _ l n ( - ] = In - ln7V
( Ä )

. 

In addition, by using the property 0 < s^/S^ < 1, we can also 
show that 

(α) ( Λ) (a) 

© = Y - ^ - l n + y ^ l n - l î — < ln 
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@ ~ In = S (111.66) 

Because of the approximate formulae (111.66) and (III.64) we 
shall have established the existence of an ergodic theorem provided 
we prove the equality 

τ 
* - w o 

© = lim - £ W?\t) In s™dt, (111.67) 
Γ = oo Τ J v=l 

or 
(α) ΛΓ(«). 

Σ In s(

v

a) = Σ wie)(0 In s<a); 

the ergodic theorem will thus be proved if 
oo „(a) 

(111.68) 

According to equations (111.46') and (111.47), we have at once 

w<*>(*) = Yfrtrje**
1
-"* e~ D$, (111.69) 

i,j 

and, by applying the first ergodic theorem to this expression, it 
becomes ^ 

wï\t)=Y;r?D<l\ (111.70) 
i 

In order to obtain (111.70) we must assume that the spectrum 
of H is non-degenerate (on the other hand, the condition ][] rt < oo 

i 
has become superfluous, since we are dealing in general with a 
finite number of terms in the shell e

i<x)
). 

In order to prove (111.68) we now evaluate 

Λ ) < max 
(<*) 

S™ 

(111.71) 

82 

By comparing these two inequalities, we have finally 

In - ln7V("> ^ S ^ In 

Since In S
M is of order 1 0 2 0 whilst In N

M is of order 50, we 
can neglect In N

(oc) in comparison with In S
(a
\ whence 



Ergodic Theory in Quantum Statistical Mechanics 

83 

in which we have used the relationship rf = 1, valid for the 

shell Thus, it is sufficient to prove that the quantity on the 
right-hand side of (111.71) is practically zero for all changes of the 
variables C

{

kf: it is thus related to the problem of geometrical 
probabilities which we have already resolved earlier. It can be 
deduced that (111.71) can be considered as always zero except 
for extremely improbable macroscopic observers. 

The foregoing proof is simpler than the proofs of von Neumann 
and Pauli-Fierz for the following reasons: on the one hand it 
derives the maximum advantage in the definition of £(0 from the 
large number of degrees of freedom of the system considered; 
on the other hand, it depends solely on the absolute value of the 
difference between the time-average and the statistical average, 
instead of depending on the time-average of the square of the 
difference between the actual quantity and its statistical average. This 
latter simplification enables us to use the first ergodic theorem with-
out having recourse to the supplementary assumption of the ab-
sence of resonance frequencies in the spectrum of the Hamiltonian. 

We note, finally, that expression (111.71) highlights the important 
role played by strongly degenerate macroscopic operators in the 
second part of the proof: in fact, the use of the first ergodic 
theorem is insufficient [depending only on the phases of )] and 
it is still necessary to prove the convergence of the square of the 
probability amplitudes (which are unaffected by the evolution 
operator) towards s

(

v

a)
IS

(<x)
. I t is the introduction of macroscopic 

observers which enables us to use statistical considerations which 
are necessary for proving the theorem in probability. 

In the following chapter, we shall deal with certain of these 
considerations which, combined with the systematic use of quantum 
statistical ensembles, will enable us to obtain the probability 
ergodic theorems without a restrictive assumption concerning the 
nature of the system. We must, therefore, develop in quantum 
theory a method which is similar to that proposed by Khinchin 
in classical statistical mechanics, and introduce averages over 
ensembles of systems (or, which amounts to the same thing, 
averages over ensembles of initial conditions). We shall then see 
that the ergodic theorems established by von Neumann and by 
Pauli-Fierz do, in fact, come within the framework of these 
probability ergodic theorems, the averages over ensembles of 
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systems being replaced here by the averages over the ensemble of 
macroscopic observers. Moreover, we shall show that these two 
types of averages are mathematically equivalent, but that there 
are strong physical reasons for preferring the methods which use 
averages over statistical ensembles of systems. 

These reasons depend on two types of argument: first of all, 
there are the criticisms already mentioned by Fierz relating to 
the hypothesis of equal a priori probability of all macroscopic 
observers. These criticisms are based on the fact that the thermo-
dynamic properties of a macroscopic system are completely defined 
by a single complete system of macroscopic observables, which 
commute with one another. It follows that not all the macroscopic 
observables can be measured and that the introduction of the 
ensemble of all the macroscopic observers has no physical signi-
ficance. In this connection, we shall note moreover with Farquhar 
(1964) that in practice, it is not the hypothesis of equal a priori 
probability of all macroscopic observers that is used, but a hypo-
thesis of equal probability for the different unitary transforma-
tions of the sub-space of S

M
 dimensions corresponding to a given 

energy shell. However, as there is no one-to-one correspondence! 
between macroscopic observers and the bases this latter 

hypothesis is not equivalent to that of equal a priori probabilities 
for all macroscopic observers; in fact, the a priori probabilities for 
different macroscopic observers are not equal, but they are such 
that we have an equal probability for the bases {Qk

a)
} which subtend 

the unitary sub-space considered; this is the assumption made 
implicitly in all calculations of averages over the "ensemble of 
all macroscopic observers". 

Another type of objection to von Neumann's procedure is based 
on the fact that the ergodicity of any macroscopic observable can 
be established independently of the time evolution of the system. 
This result, which we shall be discussing in detail in the next 
chapter, shows us that von Neumann's theorem only expresses the 
geometrical properties of the set of unitary transformations of a 
space with a large number of dimensions; under these conditions, 
the ergodicity no longer appears to be connected in any way with the 
dynamic structure of the system. We shall see that these two kinds 

t In fact, many equivalent unitary transformations Q ,
( a)

 can be associated 
with each macroscopic observer. 
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of difficulty disappear when we express it within the framework of 
the probability ergodic theorems, by adopting a point of view 
similar to that of Khinchin in classical theory. 

4. Return to "individual" ergodic theorems 

Before dealing with the study of the quantum probability ergodic 
theorems, it would appear to be useful, nevertheless, to return to 
the " indiv idual" quantum ergodic theorems, for which the equality 
of the time averages and of the phase averages can only result from 
the properties of the dynamic evolution of a single system. The 
need for this return to the " indiv idual" theorems is due to two 
reasons. On the one hand, this point of view is the only one that 
permits us to relate the fundamental principles of statistical mecha-
nics to the dynamic properties of a system and to the structure of 
its Hamiltonian. On the other hand, the probability ergodic theo-
rems which we shall obtain in Chapter IV themselves encounter 
difficulties which are completely comparable with those that we have 
already discussed in Chapter I, § III.3, when discussing the corre-
sponding classical theorems. We can, in fact, argue along similar 
lines: the theorems in question should in principle be applicable 
whatever the dynamic structure of the system, provided a uniform 
probability distribution is taken over the whole of an energy shell ; 
on the other hand, however, the existence of constants of motion 
other than energy, associated with degeneracies of the Hamiltonian, 
has the effect of making certain states of the given energy shell 
"inaccessible". There is therefore a conflict between the possible 
existence of primary integrals other than the energy of the system, 
and the hypothesis of equal probability of all states of an energy 
shell; it follows that the probability ergodic theorems, just like 
the von Neumann and Pauli-Fierz theorems, are too general to 
allow ergodic systems to be distinguished from those that are not. 

Thus, there remains the problem of finding the conditions for 
ergodicity. We recall in this connection that the conditions for the 
absence of degeneracy and of resonance frequencies in the spectrum 
of the Hamiltonian are not sufficient, as we have already emphasized 
previously. In fact, this can be seen directly by constructing counter-
examples, where manifestly non-ergodic systems satisfy these con-
ditions. This is the case with the model proposed by Fierz in which 
a fluid rotates in a cylindrical container: the angular momentum 
around the axis of the cylinder is then a constant of motion, as a 
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result of which not all the states of the energy shell are accessible. 
Such a system is therefore not ergodic, although the conditions for 
the absence of degeneracy and of resonance frequencies in the 
energy spectrum could be satisfied if intermolecular forces are 
taken into account. We shall also see in Chapter VI that other con-
ditions of ergodicity have been obtained by Prosperi and Scotti by 
modifying the definition of the statistical ensembles considered; 
instead of calculating the averages by using a uniform probability 
distribution over the whole of an energy shell, we limit ourselves 
to a uniform distribution over that single cell, which is occupied 
initially by the system according to the macroscopic observation. 
Unfortunately, it appears to be difficult to define more precisely 
the exact significance of the conditions of ergodicity which one 
obtains in this way (cf. for example, the inequalities (E2) in Chap-
ter VI, § 1.2) and especially to determine what class of physical 
systems satisfy these conditions. 

Since these works have so far not given satisfactory solutions to 
these problems, it would appear to be of interest for us to give a 
brief account of two attempts which are capable of opening up new 
ways for research: these are recent papers by Ludwig (1960, 1961) 
and the ergodic theorem proposed by Golden and Longuet-
Higgins (1960). 

(a) Ludwig's macroscopic observables. Ludwig's point of view 
consists essentially in a criticism of the concept of macroscopic 
observable, as introduced by von Neumann and van Kampen. 
According to Ludwig, the definition of such observables should 
result objectively from the intrinsic properties of a system with a 
large number of degrees of freedom, and should not be connected 
in a subjective way with the imprecise nature of macroscopic ob-
servation. How to define macroscopic observables as intrinsic pro-
perties of the system is the problem set by Ludwig and he attempts 
to resolve it by introducing the concepts of "discernibility" of 
two states and the " m e a s u r e " of this discernibility. 

The basic idea is as follows: Consider two states of a system 
represented by the statistical operators qx and ρ2; the average 
values of a microscopic Hermitian observable Â are different for 
the two statistical ensembles, except obviously if ρλ = ρ2. In this 
latter case, we say that the two ensembles ρχ and ρ2 are microscopic-
ally "indiscernible". This is no longer true on the macroscopic 
scale in which, because of its strong degeneracy, a macroscopic 
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observable can have its average values equal for two ensembles 
Q t and ρ 2 which are microscopically discernible. This leads us to 
attempt to relate the problem of the objective definition of macro-
scopic observables to finding a criterion which enables us to 
distinguish two "macroscopically discernible" states. 

In order to treat this idea mathematically, we consider first of 
all the microscopic case and we shall consider the Hilbert space 
formed by the class of completely continuous Hermitian operators. 
We define in this space the scalar product of two operators Â and Β 
by: 

(Â,Ê) = T r ( i ^ ) , (111.72) 

and the norm of some operator Â by : 

\\Â\\ =(Â,Â)*; (111.73) 

this must be finite in accordance with the condition of continuity. 
In particular, the average value of any Hermitian operator Â for 
a statistical ensemble § can be written as follows: 

À = Tr QÂ) = Q,Â). (111.74) 

Let us consider now two statistical ensembles represented by 
the operators ρ λ and ρ 2 . Ludwig then defines a "d i s tance" be-
tween these two ensembles by : 

< K h I I — Villi ; (in/75) 

this has two important properties: on the one hand, it satisfies the 
triangular inequality; on the other hand, it is such that the average 
values of an observable Â in these two ensembles satisfies the 
inequality 

|^i - A 2 \ = |Tr(M) - Tr(M)l ^ 2y/2\Ä\d(ßl9Q2). 

(111.76) 

This latter property shows us that the "d i s t ance" αφί9 ρ 2) can be 
interpreted as a "microscopic measure of discernibility" of the 
two ensembles ρ χ and ρ 2 . In fact, if 

d(h,h) < 1, (ΙΠ.77) 

the average values Ät and Ä2 will be very close and it could be 
said that the states Qj and ρ 2 are almost indiscernible; moreover, 
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if ρχ = ρ2, we have Äx = Ä2 and the two states are completely 
"indiscernible". 

Having obtained these conditions, Ludwig's procedure then con-
sists in attempting to generalise the concept of "measure of dis-
cernibility" of two ensembles to arrive at a definition of macro-
scopic observables. We begin by introducing more general "dis tan-
ces" , daQl9 ρ2), which possess properties similar to the distance*/ 
(they satisfy especially the triangular inequality). We can then 
associate with these generalised distances, the so-called "α-con-
t inuous" classes of Hermitian operators, which are those which 
satisfy a relation of the form (III.76), with d replaced by da; these 
α-continuous operators correspond to observables whose measure 
only enables us to distinguish two statistical ensembles to an extent 
represented by the distance da Qt, ρ2). 

We can apply this method to the definition of macroscopic 
observables; in this framework, it is necessary first of all to intro-
duce a "macroscopic measure of discernibility" of two ensembles 
ΟΜΦΙ > £2) · We next define the macroscopic observables as being 
represented by the class of commuting operators which are M-
continuous with respect to dM. If {Qk} denotes a base of eigenvectors 
of these operators and if Pük are the corresponding projection 
operators, the "d i s t ance" between two eigenvectors is given by: 

d„(Qk9QÎ) = dM(P0k9P0t). (111.78) 

It follows that if we have dM (ΡΩι9 ΡΩ}) < 1, we define a group of 
vectors Qt which are associated with the values of almost identical 
macroscopic measures; we note, moreover, that this property is 
analogous to that which results from the introduction of "ce l l s " 
in the usual theory. The foregoing definitions therefore lead to 
macroscopic observables which are almost equivalent to those of 
von Neumann and van Kampen but which, by their construction, 
are independent of the observer considered and therefore no longer 
have a subjective character. Ludwig's procedure would therefore 
allow us to obtain, at least formally, the macroscopic observables 
as intrinsic properties of the system, on the one condition that we 
must know how to determine the "measure of macroscopic dis-
cernibility" dMQl9 ρ2). Unfortunately, it has not been possible to 
establish this essential point, even in the case of systems with a 
large number of degrees of freedom. Ludwig's programme has not, 
therefore, been completely accomplished, with the result that the 
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it indicates that the relative time-variation of the average quantum 
value A(t) of a macroscopic observable Â must be very small. In 
order to satisfy equation (III.79), we show that any eigenvector Φ ( 

of the Hamiltonian Η must satisfy the ergodicity condition 

ΙΙΦι - Ρ**Φι\\ < 1, (111.80) 

where P
(

k

m)
 denotes the projection operator onto a phase cell, char-

acterised by a sharp entropy maximum, the macroscopic integrals 
of motion having fixed values. If we return to the notation of 
von Neumann's macroscopic observables, it can be shown that 
relation (III.80) leads to ergodicity conditions comparable with 
those proposed by Prosperi and Scotti (cf. Chapter VI, § III.2); in 
particular, we note that the quantities 

l(ßi- \<p,) I
2
 = i c r I

2 

must all be of the same order of magnitude. Nevertheless, this ana-
logy cannot be pushed too far, because of the difference in structure 
between Ludwig's observables and those of von Neumann. In quite 
the same way, Ludwig's ergodicity condition comes up against the 
same objections as those of Prosperi and Scotti, namely, that its 
physical significance is not clear and that it does not provide any 
criterion which will allow us to recognise whether or not a Hamil-
tonian system is ergodic. 

(b) The ergodic theorem of Golden and Longuet-Higgins. We shall 
now study a very different attempt, proposed by Golden and 
Longuet-Higgins, which results in the formulation of an ergodic 
theorem which is valid for a macroscopic system. The essential 
feature of this theory lies in the fact that it introduces neither 
macroscopic operators nor "coarse-graining" processes: themacro-

(111.79) 

Leaving aside this problem, we now come to the ergodic theorem 
established by Ludwig for his macroscopic observables. It can be 
obtained by imposing on the M-continuous operators, which we 
have just introduced, a condition identical to the one we already 
used in Section III of this chapter; in our notation, this can be 
written as : 

theory which we have just outlined remains for the present just an 
attempt. 
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scopic nature of the system appears only in the spectrum of the 
Hamiltonian, which is assumed to be continuous. The theory thus 
obtained, is applicable therefore to a situation which is comparable 
to that envisaged by Van Hove in his theory of irreversible pro-
cesses. 

The fundamental argument of the work of Golden and Longuet-
Higgins is that the time evolution of a quantum system is very dif-
ferent when the Hamiltonian spectrum is discrete from when it is 
continuous. Let us deal first with the case in which the Hamiltonian 
has a discrete spectrum with eigenvalues which can be degenerate. 
It is known that the average quantum value of any observable A 
will fluctuate indefinitely with time and that it will not tend to any 
limit unless it is constant at every instant. Moreover, a strict demon-
stration of this result can be given by considering, with Golden 
and Longuet-Higgins, the time average of the variation of A(t), 

\A{t)-A{t)) , (111.81) 

and by noting that this expression would become zero if A(t) 
tended asymptotically towards a limit which, if it existed, would 

be necessarily equal to ̂ 4(0°°· In order to calculate the time aver-
ages, these authors introduce the expression: 

OO OO 

z\dt e~
zt
A(t) = zjdt e~

zt
 Tr [§(/) Â]; (111.82) 

0 0 

this is a time average weighted by e~
zt
 which, for ζ = 0, reduces 

to the ordinary time average of A(t). Thus, we have the result: 

oo 

oo f* 

A(t) = lim ζ \ dt e~" Ίτ [§(t) Â] = £ Qmn(0)ANM. (111.83) 
z->-0 J mn 

0 (Em = En) 

Similarly, we have : 
00 OO 

(A(Î) - A(t)Y = lim ζ Γ dt e~" [A(Î) - A(t)] 
z->0 J 

0 

= ΣΐίΚω)Ι2> (ΠΙ.84) 
αιΦΟ 
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where we have pu t : 

g(co)= Σ Qnm(0)Amn; (111.85) 
(.En = Em — ha)) 

we note in passing that this function g(œ) is reduced to that used 
by Ludwig (Chapter III, § I I I . l ) if the spectrum of the Hamiltonian 
were non-degenerate. It can be seen from equation (III.84) that 
expression (111.81) will only vanish if all the g(co) are zero for ω φ 0. 
However, according to equation (III.85), we have the two rela-
tions : oo 

A{t) = g(0), A(0) = g(0) + Σ *(*>)• 011.86) 
ω Φ Ο 

It follows that if A{t) tends asymptotically towards a limit A(t)°°9 

we must have A(0) = Α(ί)°°, which involves A(t) already having 

the value Α(ίγ at t = 0 and that it remains constant at every sub-
sequent instant. Actually, this result only expresses the properties 
of almost-periodicity of the state vector Ψ(ί) (cf. Chapter VI, §1.1) 
and of the statistical operator (cf. Ono, 1949 and Percival, 1961). 

Moreover, it is easy to show that this result remains valid if we 
introduce " t ime-smoothing" of the statistical operator. The argu-
ment is the same as that used in Chapter V for Kirkwood's method 
(Chapter V, § V.3). We define a new statistical operator by: 

+ oo 

ρ(0 = f dtflr) g(f + τ ) , (111.87) 

— 00 

where / ( τ ) is a real non-negative function whose integral with re-
spect to r is equal to unity. By forming the time derivative δρ(ί)Ιδί, 
it can be seen easily from equation (III.87) that ρ(ί) obeys the equa-
tion of evolution: 

do 2πΐ ^ η 

— = — [q,h]- (111.88) 

As this equation is identical with equation (11.25) satisfied by ρ, 
the theorem that we have just proved for ρ will be applicable in 
the same way to ρ. 

On the other hand, since the observable A is considered to be 
arbitrary, we can equally apply the foregoing result to a "coarse-
grained" property of the system. It can be concluded, therefore, 
from this study that the two processes of " t ime-smoothing" and 

9 1 
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"coarse-graining" are incapable of freeing us from the almost 
periodic nature of evolution and enabling us to obtain an asymp-
totic convergence of A(t) towards a limit value. This is the funda-
mental obstacle encountered by the ergodic theory of finite systems, 
whose Hamiltonian has a discrete spectrum; in order to attempt to 
avoid this difficulty, it appears necessary therefore to take into 
account the macroscopic nature of the system being considered. 

For this reason, we now come to examine—with Golden and 
Longuet-Higgins—the case of an infinite system whose Hamiltonian 
has a purely continuous spectrum. In this case, the eigenstates are 
represented by the set of numbers (Ε', oc'), where E' denotes the 
energy of the system and od represents the values of another set of 
variables of the system ; we note that these quantities od can always 
be omitted if the system is not degenerate. With this notation, 
(Ε'(χ'\ρ\Ε"(χ"

>
) and <2sV|^i |2s 'V> are the matrix elements corre-

sponding to the operators ρ and Â in the energy representation 
and the representation associated with the quantities od. We shall 
assume in what follows that the energy E' is measured by starting 
from the lowest eigenvalue of the Hamiltonian. 

As before, the operators Â and H do not explicitly depend on 
the time (isolated system case), as a result of which we have: 

we note that this average value must be an even function of t be-
cause of the dynamic reversibility of the equations of motion. 
By putting 

(111.89) 

χ 

x = i(E" + E')9 y = i(E"-E')9 

equation (III.89) can be written as 

(111.90) 

+ 00 00 

A{t) = 2 \ dy \ dx Γ £ <x — y9 α' |ρ| χ + y9 oc"} χ 
- o o |y| L«''«" 

x <x + y,oc"\Â\ χ — y, oc'}] exp(2/y///z) 

+ 00 

(111.91) 

- 00 

92 



Ergodic Theory in Quantum Statistical Mechanics 

£ 0 ) = ]
 D X

\ Σ < * - y>*'\Q\x + y,oc"}(x + y,oc"\A\x - jvx'>]. 
\y\

 le
'«"

 J 

(111.92) 

This expression shows us that g(y) must be real in order that A(t) is 
an even function of t. But we have also g{—y) = g*(y) because of 
the hermiticity of the operators ρ and Â. It follows that g(y) is also 
an even function of y. 

With these definitions, the time average of A(t) can, according 
equation (111.83), be written as 

^ +00 +00 

A(t) = 2 lim ζ f dte~
zt
 f dyg(y) exp (2iyt/h) 

z->0 J
 J 

— OO — 00 

+ 00 

= 2 lim ζ 
z->0 

— 00 

+ oo 

dyg(y) 

= 2 lim f 

in which we have used the fact that g(y) is real. 

We consider now the function 
2 

(111.93) 

: we note that it 
z

2
 + 4y

2
lh

2
\ 

is very small for \y\ > ζ and that it is close to unity if <̂  z. 
As we are interested in the limit case as ζ -> 0, it can be seen that 

the integral (111.93), and therefore Α{ΐγ\ vanishes in the limit as 
ζ 0 if g(y) is not singular at the point y = 0. If, now, we assume 
the following general form for g(y): 

g(y) = GÔ(y) + h(y), (111.94) 

where h(y) is not singular at the point y = 0, we obtain for the 

time average 4̂(0°° · 
+ 00 

A{t)= lim Γ dyGöiy) Γ ^ ' Ά = 2G, (111.95) 
ζ->ο J | _ ζ

2
 + 4^

2
/Λ

2 J 
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in which, following a procedure already used, we have pu t : 
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whence we have for the time average |y4(i)]
2
 ' 

+ 00 +00 

[A(t)]
2
 = 4 lim [ dy [ dy'g(y) g(y') Γ 1. 

— oo - oo 

(111.97) 

If we repeat the previous argument, it can be seen that integration 
over y' leads to zero, unless g(y') has a singularity at y' = y. 
However, according to (III.94) the only singularity occurs at y = 0; 
thus, we obtain : 

+00 

[A{t)f = 4 l i m f dyg(y)\ ^ 1 
^ o j \_z2 + 4(y - y ' ) 2 l h 2 J 

- 00 

which reduces in turn to AG
2
 after integration over y. Finally, 

therefore, we have: 

[A(t)]
2
=4G

2
 = Uo°°)2, (111.98) 

which shows that the variations of A(t) vanish completely in the 
course of time. 

Naturally, it may be that the function g(y) has other singularities 

than the one at y — 0. It can easily be seen in this case that the re-

sult (111.95) always remains valid whereas the value of [A(t)]
2
°° is 

no longer given by equation (111.98). Thus, we now have [Α(ί)]
2<
° 

φ (Α(ί)°°)
2

9 with the result that A(t) continues to fluctuate indefi-
nitely. It follows therefore that the necessary condition for satis-
fying that the system should have an ergodic behaviour is that the 
function g(y) should have no other singularity than that located 
at y = 0, that is to say for E' = E". 

94 

The same reasoning can be applied for calculating the time 
average of [Λί ( ί ) ]

2
· We have, first of all: 

+ 00 

[Λ(/)]
2
 = | 2 j dyg(y)cxp(2iytlh)\

2 

— 00 

+ 00 +00 

= 4 j dy j dy'g(y) g{y') exp [2i(y - y') t/h], (III.96) 
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It will be noted that the theorem of Golden and Longuet-Higgins 
is thus stated in a form which is completely analogous to that of 
the theorems of harmonic analysis, the theory of which we have 
outlined in Chapter I, § II.4 in connection with the classical ergodic 
theory. The condition of ergodicity at which we have arrived is 
comparable with the hypothesis of metric transitivity but unfortu-
nately it has the same disadvantage as the latter: it is, at present, 
impossible to obtain a criterion which allows us to recognise 
whether a real physical system satisfies this condition or not. 

As we have mentioned, it follows from this study that the time 
behaviour of the average values A(t) is qualitatively different for 
infinite systems. It is not without interest to note that this result 
apparently leads to a paradox, since an infinite system can only be 
expressed as the limit of a finite system whose dimensions are in-
creased indefinitely: we could expect, therefore, to obtain final 
results in agreement with one another. In order to resolve this 
paradox, we are led to point out that the method used in fact 
involves two limiting processes, namely the processes t -+ oo and 
V (or N) -> oo. In the case of a finite system, we take the limit 
/ -> oo, then we make the dimensions of the system subsequently 
tend to infinity; in the case of the infinite system, on the contrary, 
transition to the limit V(pr N) -* oo is carried out first of all, be-
fore letting t -> oo. The fact that the results obtained by these two 
processes do not agree expresses simply that the two limiting pro-
cesses considered do not commute with one another: this is the 
one idea which appears to us to be fruitful and to which we shall 
be returning (cf. for example, Chapter IV, § V.4). According to 
what we have said previously, it seems as though the correct way 
of dealing with the theory of irreversible processes consists in 
making the dimensions of the system tend to infinity before cal-
culating the time averages of the observed quantities; in this way, 
the duration of the Poincaré cycles become infinite and we can rid 
ourselves of the almost-periodicity of the time evolution of finite 
systems. 

In conclusion, we point out that the theorem of Golden and 
Longuet-Higgins can be compared with the result obtained by 
Van Hove in his work on the Master Equation. Van Hove studies 
the asymptotic behaviour of an infinite system whose Hamiltonian 
is the sum of an unperturbed Hamiltonian having a continuous 
spectrum and a perturbation term which is assumed to be small 
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(hypothesis of weak coupling). The condition which ensures that 
such a system exhibits the desired irreversible behaviour, is that 
(5-type singularities exist for the diagonal matrix elements describ-
ing the transitions between the eigenstates of the unperturbed 
Hamiltonian. Although this result is completely similar to that of 
Golden and Longuet-Higgins, it is difficult to make a more de-
tailed comparison because the two conditions which have been 
considered depend on functions which are defined differently. 
Moreover, the situations considered are appreciably different, since 
the theory of Golden and Longuet-Higgins is based on the total 
Hamiltonian of the system and does not depend on any perturba-
tion calculations. 



CHAPTER IV 

Probability Quantum Ergodic 
Theorems 

I. Comments on the Quantum Ergodic Theory 

We have seen in the previous chapter that the quantum ergodic 
theory raises additional difficulties as compared with the classical 
ergodic theorem. In fact, even if we had been able to prove an 
ergodic theorem similar to that of Birkhoff, this would not apply 
to probability amplitudes (which are time-invariant in the energy 
representation) with the result that for applications to quantum 
statistical mechanics we must use the parallel of Hopf's theorem. 

In the proof of this second theorem we have encountered the 
assumptions stated earlier concerning the spectrum of H, which 
are the quantum parallel of the hypothesis of metrical transitivity, 
which is needed in classical mechanics; however, even though it is 
difficult to verify that a classical physical system actually possesses 
this property, the existence of ergodic systems is not altogether 
improbable in classical mechanics (it has been possible to construct 
mathematically some actual examples) (Hopf, 1937). On the other 
hand, we have mentioned already that by the very nature of quan-
tum systems the assumption of non-degeneracy and the absence of 
resonance frequencies in the spectrum of the Hamiltonian restrict 
considerably the real applicability of the quantum ergodic theory; 
it can be said that the existence of quantum ergodic systems seems 
to be not very probable. Moreover, these assumptions do not suf-
fice to ensure a convergence towards microcanonical averages: in 
fact, we have been able to prove the second probability ergodic 
theorem only by introducing the concept of macroscopic observables 
and of averages over a set of possible macroscopic observers. These 
concepts enable us to resolve the difficulties raised by the special 
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nature of quantum observables (non-commutable with one another) 
and, above all, to devote ourselves to statistical considerations 
justified by the large number of degrees of freedom of systems 
observed macroscopically. Thus, even if we can avoid the incon-
venience associated with the time-invariance of the probability 
amplitudes in the energy representation, we introduce, by means 
of averages over macroscopic observers, a statistical element which 
is foreign to quantum theory. 

That is why we shall try, by relying on the definition of ensembles 
of quantum systems similar to Gibbs ensembles, to prove the 
probability ergodic theorems which allow us to break away from 
the restrictive assumptions concerning the spectrum of the Hamil-
tonian. Thus, we shall be able to justify the fundamental hypothesis 
of statistical mechanics, namely the replacement of time-averages 
by statistical averages (similar to phase-averages), with the help 
of arguments comparable with those of Khinchin in classical me-
chanics. 

For this purpose, we shall let correspond to an isolated physical 
system whose energy is known macroscopically a microcanonical 
ensemble of systems represented by all points of the unit hyper-
sphere of 2S

M
 dimensions, which is invariant under the equations 

of motion and over which we define a uniform distribution in 
accordance with the fundamental assumption of quantum sta-
tistical mechanics. The time-average of an observable Â is thus re-
presented as a random variable defined over the unit hypersphere 
and, if the spectrum of the Hamiltonian is non-degenerate, it is 
independent of the initial phases (first ergodic theorem). We can 
then show that the dispersion of this random variable is of order 
1/S

( f l t )
, if we accept that the matrix elements AH are all bounded. 

Subsequently, we shall extend this first result to the case of macro-
scopic o b s e r v a b l e s ^ , the division of Hilbert space into "ce l l s " 
enabling us to dispense with any assumption concerning the nature 
of the spectrum of H: thus, a probability ergodic theorem will be 
proved, which suffices to serve as a basis of quantum statistical 
mechanics. 

Finally, in Section IV we shall discuss the significance of these 
results by establishing first of all an asymptotic property of the 
standard deviation of the macroscopic observables themselves from 
which the ergodic theorems are derived. In this way, we shall re-
derive the results of recent work by Bocchieri and Loinger and we 
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shall show that because of the commutability of the operations of 
the time- and microcanonical-averages, von Neumann's quantum 
ergodic theorem becomes again a probability theorem, the assump-
tions concerning the spectrum of the Hamiltonian having become 
in fact useless. To conclude, we shall study the analogy between 
the classical and quantum aspects of the probability ergodic 
theorem and we shall discuss the properties of a model of quantum 
systems similar to that of Khinchin in classical mechanics. 

The foregoing thus justifies the use of microcanonical ensembles 
for quantum statistical mechanics: it still remains to establish the 
relations between microcanonical, canonical, and grand-canonical 
ensembles, which play an essential role in the thermodynamic 
applications of statistical mechanics. As in classical mechanics 
(cf. Appendix I), we shall see that it is possible to show that a 
system in thermostatic equilibrium must be represented by an 
ensemble of canonically distributed systems, by starting from the 
fact that the total system (observed system + thermostat) is an iso-
lated system represented by a microcanonical ensemble; moreover, 
the same method can be extended to grand-canonical ensembles. 
Thus, even if the microcanonical ensemble is little used in practice, 
its theoretical importance remains very great since, according to 
the foregoing, it is at the basis of the whole of statistical mecha-
nics. 

II. First Probability Ergodic Theorem (Jancel, 1955a) 

1. Status of the problem 

We shall suppose in what follows that the energy of the isolated 
system is known macroscopically, i.e. within an interval of δΕ; in 
other words, that the system is located in a single energy shell e

ia)
. 

We note without difficulty that this condition in no way restricts 
the generality because we have seen in the calculations of the pre-
vious chapter that all the arguments refer to a definite shell e

M 

and that their extension to many shells changes in no way the na-
ture of the problem. Let, as before, 

S(«) 

ψ(ί) = £ r i É?
i a<<r i E i i /V (IV.l) 

i = l 

be the wave function of a system corresponding to a pure case 
compatible with our macroscopic data. Let us now consider a 
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microscopic observable Â whose quantum average in the pure case 
Ψ(ί) is given by 

A{t) = Σ w i f o ' - ^ - ' ( E ' - E ^ ( % > Α Ψ , ) = EetKO)*-"*'-*'»^«. 
ij iJ 

(IV.2) 

To begin with, let us apply the first ergodic theorem, which leads 
us to assume that the Hamiltonian of the system is non-degenerate ; 
with this assumption, the limit of the time-average of A(t) exists 
and, according to (III. 1 0 ) , it is given by 

Α{ί)=Σ^Αιι. (IV.3) 

We note that here we can manage without an assumption con-
cerning the convergence of £ rt since, usually, the number of eigen-

states in a shell e
(a)
 is finite. On the other hand, since the system is 

non-degenerate, the microcanonical distribution corresponds to an 

equal probability for different eigenstates and, if A™ denotes the 
microcanonical average of Â, according to (ΙΙ.3Γ) we have 

—m Λ S(") 

"-̂ ,5"- <IV-4) 

As we have noted already, we have generally 4̂°° φ AT (unless 
all values of AH are equal over the energy shell e

( a )
) . That is why 

we shall adopt the statistical point of view, by defining a uniform 
distribution of systems over the unit hypersphere in 2«-dimensional 
space; this point of view (which we adopt in the whole of this 
chapter) will enable us to overcome the difficulties in relation to 
the stationary quantum states, thanks to the asymptotic geometrical 
properties of the unit hypersphere. 

Since the macroscopic observation is incomplete, it does not 
permit us to describe the system by a well-determined wave func-
t ion; a set of possible wave functions exists which is compatible 
with this observation and in which all wave functions have the 
form (IV. 1 ) (in the case of an energy measure), with the values of 
the rf connected by the relation 

S(«) 

£ r (

2
 = l , (IV.5) 

ί= ι 
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(IV.7) 

With these definitions the numbers c f(0) and, hence, the quan-

tities A(t) and ^4(0°° are random variables defined over the hyper-

t Since η represents the number of states in an energy shell, we shall denote 
the number of particles in the system by TV in this chapter. 

t The averages are taken here over the initial condit ions ; however, because 
of the invariance property o f the uniform ensemble, we can define these 
averages at any instant, as we can see by writing ρ / / ί ) = rfieWi-M, with 

ßt = α ζ — (iEtt/h) and e'(0<-Ao
w
 = δυ; it is also because of this invariance that 

the average A{t)
m
 is time-independent. 
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which can be rewritten as 

ΣΦ)ο?φ) = ί, (IV.5') 
i 

where the values ^(0) = r%e
ioti
 represent the initial components of 

the state vector Ψ. 
The statistical method consists then in associating with such a 

macroscopic observation a statistical ensemble of systems corre-
sponding to the set of wave functions defined by (IV. 1) and (IV.5). 
This set is represented by all the points of a hypersphere of radius 1 
in 2«-dimensional space (in what follows we put η = £

( α )
) , | over 

which we must define an a priori distribution which is invariant 
under the equations of motion. In accordance with the fundamental 
hypothesis of quantum statistical mechanics we shall, for the prob-
ability law of the Cj(0) , take one which corresponds to the uniform 
distribution over the hypersphere : if da2„ is an element of area of 
this hypersurface of measure σ2„, the invariant probability density 
will be da2Ja2n. _ 

According to formula (27) of Appendix II, we have rf = l/n, 
so that the chosen distribution corresponds just to the microcano-
nical ensemble (in future, we shall denote the averages taken over 
this ensemble by the superscript m)\% thus, according to (IV.4) 
and (IV.2), we can write: 

m m η —m ι π —m 

A(t) = Αφ) = Σ
 r
i

 A
it = - Σ

 Α
»: =

 Α
 . (

ι ν
· 6 ) 

ί=ι η ί = ι 
since e

ii<Xi
~"

j)m
 = 0, if i φ j . We note, likewise, that as in classical 

mechanics [cf. formula (1.24')] we have 
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sphere (IV.5) or (IV.5'), with the distribution do2n\o2n. In order to 
justify the methods of statistical mechanics, it is sufficient to prove 

that the second moment of 4̂(0°° — A™ [i.e. the square of the stand-
ard deviation of the random variable 4̂(0°°] c a n he made very 
small, when the number of degrees of freedom of the system is 
very large; we shall show that this second moment tends to zero 
as 1/«, using the assumption that all the AH are bounded. 

2. Statement of the first probability ergodic theorem 

According to relations (IV.7) and (IV.4), we have 
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Bv putting ίΐν.3) in (IV.8) we obtain finally 

(IV.8) 

(IV.9) 

with 

However, according to formulae (27) and (30) of Appendix II, 
we have 

with the result that (IV. 10) can be written as 
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If we assume now that the matrix elements AH are all bounded 
by a number AM, it is easy to evaluate (IV. 13). We note first of 

all by (IV.9) that {AT)
2
 is, at the most, equal to A

2

M, which is obvious 

by the definition of AT: the first term on the right-hand side of 
(IV. 13) is then of order \\n and the same is true for the second 
term, since we have certainly 

YA
2
i < nA

2

M. 
i=l 

Equation (IV. 14) shows that it is legitimate to replace the time-

average 4̂(0°° by the microcanonical average A™ for all macro-

scopic systems; thus, we have the first probability ergodic theorem: 

the time-average A(t)°° is equal to the microcanonical average A™ 
except over a set of very small measure, corresponding to a set of 
exceptional initial conditions. 

We have had to accept the assumption of non-degeneracy of 

the Hamiltonian spectrum; this is essential for ensuring that Α(ί)°° 
is independent of the initial phases; we shall see later to what 
extent it is possible to dispense with this assumption. On the other 
hand, if the condition about the bound of the AH is not re-
strictive from the physical point of view, the fact that we consider^4M 

to be independent of η is an additional assumption which is not 
satisfied in general. We shall see, however, that for a simple model 
such as the one we shall study later (cf. Section IV) the increase 
of AM with η is much slower than that of n, so that the result 
(IV. 14) remains valid. In particular, (IV. 14) can also be written 

Prob 
-co —m 

A(t) - A > e j - + 0 , as l / S
w

- > 0 . (IV.15) 

In conclusion, we are replacing the ergodic theorems of Chap-

ter III by the probability theorems (IV. 14) and (IV.15) which can 
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or, by virtue of (IV.9), 

Since η = S
(a)
 is always very large in macroscopic systems we can 

write 

(IV.14) 
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serve as the foundation of quantum statistical mechanics, by de-
pending essentially on the large number of degrees of freedom of 
the system and on the asymptotic geometrical properties of the 
hyperspheres in 2«-dimensional space: this result makes obvious 
the principal role played by the law of large numbers in macroscopic 
systems. As in classical theory, we could dispense with the assump-
tion of a uniform distribution over the unit hypersphere provided 
that the chosen distribution assigns a very small probability to a 
set of very small measure; this statement is valid for all the results 
in this chapter: we shall not return to it. 

The foregoing developments have been obtained more easily 
than Khinchin's evaluation in classical mechanics and without 
making a special assumption concerning the observable Â: this is 
due to the fact that the formal integration of the equations of 
motion is always possible in quantum mechanics and that the 
time-dependence of the quantities A(t) can be expressed in a 
simple way. We note also that the convergence towards zero of 

v4(0°° — A™ is more rapid in quantum mechanics than in classical 
mechanics, the difference arising from the fact that we consider 
here averages taken in the functional space of S

(a)
 dimensions. 

Actually, we can take for S
ia)

 either Fierz's approximation 
~ exp ( ΙΟ

2 0
) , or we can make a direct estimate of this same 

quantity by using a well-known result of quantum statistical me-
chanics: if we have a system with 37V degrees of freedom and if ΔΦ 
is the classical extension in phase contained between the hyper-
surfaces E± and E2, the number of quantum states contained be-
tween Ei and E2 is ΖΐΦ/Α

3 Ν
. We can make simple use of this for-

mula in the case of a perfect gas consisting of Ν indistinguishable 
point particles; then, for the extension in phase inside the hyper-
surface Ε = constant, we have 

0=V
N
a3N(2mE)

3NI2
, 

whence 

S m = -J^— = lla^mNilmEY
3
"'

2
'-

1
 ÔE 

h N\ h
 V

 ' 

- * [ ( W ! " -
where V is the volume occupied by the gas, Ε is the energy of the 
system, m is the mass of a particle, σ3Ν is the volume of the 3N-
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dimensional hypersphere, and δΕ is the energy range of the shell e
ia)
 ; 

ε = \kT denotes the average energy per particle and ν = VjN the 
specific volume of a particle. 

Thus, we see (see also Appendix I, § 4) that S
M
 is an expo-

nential function of Ν which provides, for the second moment (IV.8), 
a more rapid decrease than some power of 1 jN. 

III. The Macroscopic Probability Ergodic Theorem 

1. Role of degeneracy of the spectrum of Η 

The results of the preceding section are only valid if the assump-
tion of non-degeneracy of the Hamiltonian spectrum is satisfied— 
an assumption which is still too restrictive as we have seen. Before 
introducing macroscopic operators which will allow us to dispense 
with it, we shall analyse how these degenerate terms occur in the 
microscopic theory. 

Let us consider an isolated quantum system whose wave func-
tion is of the form (IV. 1); the quantum average of an observable Â 
is then given by (IV. 12), which can also be written as 

A(t) = ^ Α Η + £ / y , e '
0
* '

-
" ' ' e~

i(
-

E
'~

Ej)
'

lh
 AJt. (IV.17) 

i = l i*j 
If the Hamiltonian of the system is degenerate, the time-average 

Ait)
00
 is no longer given by (IV.3) and it is necessary to resolve the 

sum Σ of (IV.17). If the η states i comprise n' non-degenerate 
i*J 

states denoted by k, /, and n" degenerate states denoted by 
Xp,Kqih-> ·> the suffix ρ varying from 1 to gx (where gx is the de-
gree of degeneracy of the state κ), we have by definition 

Σ8* = η"' (IV-18) 
κ 

andthen(« — 1) terms of Σ
 a r e s

P Ü t
m t o

 non-degenerate, degenerate 

and cross terms. We obtain 

Σ r,rj e
H
«'-"

J
> e-

%iE
'-

E
'*

l%
 Ajt = Σ V , e

1
^'^ e-

w
" -

E Ù
'

l h
 Alk 

'+Σ V » , [e'^-^e-'^-^rY'U^ + e-^-^e^-^y^A^] 

+ Σ Σ V « . ^ w (IV. 19) 
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The sum contains the ri(ri — 1) non-degenerate terms; the 

sum includes Inn" cross terms; the sum contains 

g*gx degenerate terms belonging to the different energy states; 

finally, the sum contains the - 1) terms grouped 

according to the state E». We can verify easily by (IV. 18) that the 
sum of all these terms adds up to the n(n — 1) terms of 

Having stated this, let us calculate the time-average of 
(IV. 17) : we can see from (IV. 19) that only the terms in and 

will make a contribution as Τ -> oo ; in fact, all the other terms 
contain an exponential factor of the form exp [ — i(Ea — Eß) tjh] 
whose time-average is zero, since we have necessarily Ε^φ Εβ. 
Finally, if the Hamiltonian is degenerate, we have: 

the sum containing j?vfav — 1) terms. As we have seen al-

ready in Chapter III, the time-average of A(t) is no longer inde-
pendent of the initial phases ocXp ; on the other hand, one can 
prove again the relationship 

(IV.21) 

Let us try now to evaluate the standard deviation of the time-

average . According to (IV.21) we have 

(IV.22) 

and for 
1
 according to (IV.20) 
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When we form the microcanonical average (A(t)~)
2
, only the 

terms independent of the phases oc give contributions which are 
non-vanishing. Thus, the cross terms Χ Χ Σ give a zero contri-

i κ ρφ q 

bution and, in the sum Σ Σ Σ , the only phase-independent 
κ,κ' ΡΦ q p''4= « ' 

terms are those for which κρ, = κα and κ^, = κρ. Because of the 
hermiticity of Â, these terms can be written as 

Σ Σ \^xpXq\
2 r

l P

r
l t 

κ ρΦβ 

and we have 

/ oo \ 2 — m m m 

U(0 ) = Σ rt Al + Irfrf ΑΗΑη + Σ Σ « K „ J 2 , 
(IV.24a) 

whence 
m 

-m\ 2 η 

- I 
i = 1 

+ 

oo\ 2 /—m\ 2 η r—m /—m\ 2π 

(̂o) -U ) - z ^k -U 2 ) ] 
= 1 

i ^ k ? - C f ) ( ? ) ] 
+ Σ Σ « K „ J 2 . av.24b) 

κ ρ Φ ί 

By using the formulae of Appendix II for the moments rf* and 

rfrf
1
, we obtain finally 

n(n + 1) n
2
/ i = i \n(n + 1) n

2
/ i = M 

" — Ζ Τ ^
2 +

- Γ ^ ( Ζ
Α

»
 + Σ ΣΜ« ΛΙ

2)· (ΐν.25) 
« Η- 1 w(« + 1) \ i κ ρΦβ / 

If, as in the previous section, we suppose that the matrix ele-
ments are all bounded by a number AM, we can see that we 
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can write 

oo —m\ 2 / 1 \ 

A(t) - A) = O(-) + —A
2

M, (IV.26) 
\n J n(n + 1) 

oo 

so that the standard deviation of A(t) does not necessarily de-
crease with 1/«*, but depends on the numbers gx corresponding 
to the degrees of degeneracy of the various states κ. In a general 
way, the standard deviation depends essentially on the value of 
the term 

T ^ r E E I W , (IV.27) 
n(n + 1 ) κ ρ Φ β 

and only an evaluation of the off-diagonal matrix elements AXpXq 

for macroscopic systems can allow the behaviour of (IV.25) to be 
defined more precisely as η oo. We shall see now how the intro-
duction of macroscopic observables enables us to overcome effec-
tively this difficulty and we shall show in Section IV another as-
sumption concerning the nature of the macroscopic system (an 
assumption similar to that of Khinchin's " s u m " functions) which 
makes it possible to evaluate the term (IV.27). 

2. The macroscopic probability ergodic theorem 

Let us introduce now the macroscopic description of the system 
defined by the orthonormal base Qk

a)
 [cf. (11.55)]. The wave func-

tion (IV. 1) can then be written as 

W(t) = £ rt e
iXi
 e~

iEitlh
 £ Cff'Q™ (IV.28) 

i=l k=l 

with 

ω£Λ)(0 = Σ r
i

 e i ai
 e -

i E i t , h
C ^ \ (IV.29) 

Let stf be the macroscopic operator associated with the micro-
scopic observable Â; according to (11.54) its eigenvalues α£

α)
 are sl

a) 

times degenerate and its quantum average can be written, by 
virtue of (111.46'), (111.47) and (111.37), as 

;v(«) sv(«) λγ(«) 

= Σ °™ Σ Ι4α)(012 = Σ a™W?\t)9 (IV.30) 
».= 1 * = 1 ν = 1 
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s/{t) = ΣαΙΛ)^Λ0 (IV.33) 

where w[
a
\t) is the statistical weight at t of the cell ν given by 

W?\t) = X rtrj e
< (

" < - ^ e-
iiEt

-
E
'»'

h
D\Y9 (IV.31) 

D\p being the quantity defined by (11.64). As in the microscopic 
ergodic theory explained in the preceding section, we consider a 
microcanonical ensemble of systems having (IV. 1) for their wave 
functions; the numbers ct = rte

i<Xi
 then become random variables, 

satisfying the relationship = Σ
 r

f
 =

 1· I*
1 o f

d e r to have a 
i i 

microcanonical ensemble, we must select for the ct a uniform distri-
bution over the complex hypersphere σ2„ with η ( = S

i<x)
) dimensions. 

By taking the average of s#(t) over the hypersphere a2n (or the 
phase average), we find the microcanonical average of the observ-
able ; actually, whatever t may be, by (11.66) and the formulae 
from Appendix II , we have 

tn m m 

ν ν i,J 

— m ι ι Ν(«) 

= Σ <P Σ rf D\Y = - Σ α™ Σ W = - Σ W . 
v t η ν i η ν=ι 

(IV.32) 
On the other hand, we define likewise, starting from (IV.30), 

oo 

the time-average stf(t) . We must discriminate, as in the preceding 
section, between the degenerate states (denoted by xP9 xq) and the 
non-degenerate states (denoted by k, /, . . . ) . Obviously, we have 

1 0 9 

and. from (TV.3IV we obtain for an expression which is 
similar to (IV.20): 

It is easy then to prove the relation 

(IV.34) 

(IV.35) 
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which corresponds to (IV.21); actually, by (IV.34) we have 

This being so, we must consider the expression 

in order to prove an ergodic theorem in quadratic mean and which 
can according to (IV.35) be written as : 

First of all, by (IV.33) and (IV.34) we have 

(IV.37) 

with 
(IV.38) 

and 
(IV.39) 

Next, we must take the microcanonical average of (IV.38): 
the only terms making non-zero contributions are those which 

(IV.40) 
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oo"| 2 — m m 

+ Σ Σ « Ι4£,Ι2> (ΐν-41) 
κ Ρ * q 

oo"j Γ οο"| — m m 

ίφ. / 

+ Σ Σ « 0 & Χ £ > (IV.42) 

whence 

MoT 

κ ρφ « 

φ + 1) 

χ (Σ(<4 α )) 2 Γ2Σ W ) 2 + Σ />i?^+ Σ Σ l < J 2 l 
Ιν L i i*J κ ρΦβ J 
+ Σ < W p Σ W W * + Σ + Σ Σ ^ Ä l ) · 

νΦν' L i i + J κ ρφ<ζ J j 

(IV.43) 

We then consider the terms in Σ Σ'
 c an

 ^
e w r

i
t t en 

κ ρΦβ 

Σ Σ [Σ(^Λ )) 2 UC.I2 + Σ W ^ A V l 
κ ρΦ q\_ ν νΦ f ' J 

= Σ Σ | Σ ^
Α )

< χ ,
2
 (ΐν.44) 

κ ρφ q\ ν 

(since we have D^Xq = D%£p). Each term of the sum (IV.44) is 
positive and so we have necessarily 

Σ Σ Σ 4 β ) ^ 2 < Σ | Σ « « > 2 

κ ρΦ q ν ίΦ71 ν 

= Σ Œ f o ^ W i 2 + E W W l 
ίΦ^ίν νΦν' J 

(IV.45) 
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are independent of the phases <xt; as before these are, apart from 
the terms of the sum Σ> those terms of the sum Σ for which 

/,/ κ,κ' 
κ
α = K'

 a n
d

 κ
ρ = K' · We have thus 
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«12 γ 
< n(n + 1) 

+ Σ < W ρ Σ » W S + Σ (»u&J? + ο \ Μ ? Ί \ \ · 

ν*ν' l i iïj il 
(IV.46) 

Moreover, according to (11.64) we have 

i i*j 

= 2 \ Σ Μ Σ icir'r + Σ Μ Σ icir'i2 iciii2! 
Lfc i k*k' i J 

+ \ Σ Μ Σ IQW ic^i2 + Σ (ν ) Σ l ^ l 2 ic#i2i 
Lfc i*J k*k' «Φ./ J 

+ \ Σ
Μ

Σ \ ε « \
2

\ c t f \
2
 + Σ

Μ
Σcif'ctfctfcpn-, ( i v . 4 7 ) 

Ik i*j k*k
f
 i*j J 

however, by virtue of formulae (11.61), (11.62) and (11.63), we have 

2 Σ 0 0 [Σ IcifV + Σ icfi»!2 Iç&Vl = 2 Σ (ν ) aS? = 2^, ( iv.48) 
k L i i + J J k 

Σ^ΡΣΙ^Ι 2 ici?l2 + Zdcir'l2 ic#l2 + Q(f *Q(;>c<f>c<f>*)i 

= Σ
(
'
}
 Μ*-*- = £"Χ4* - i ) . (IV.49) kΦk' 

whence 

2Σ(^) 2 + Σ(&η»υ + l ^ u l
2

) = 2̂ > + ( 4
Λ )
 - 1) 

i i*j 

= sl*>(si» + 1). (IV.50) 

Similarly, we can show that 

i i+ j k.k' 

The result is then, using (IV.46), (IV.51) 
m 

[ • ^ C o T <
 1 g f r W W + Ο + Σ ^ t f ' W ' ) 
« ( « + 1 ) l » γΦγ' ) 

(IV.52) 
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and, by substituting into (IV.43), 
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Γ 00-12 / — m\2 / c(<*)2 , (a) (<x)2 

^(0 -W ) < Σ ( ^ ) 2 ( \ ' 
ν \ n(n + 1) rr 

+ I W « ? » ( — L - - --L) 
1 1 

- — V -τ (Σ («<«W2 + Σ W W 

+ ,
 1

 J t f ' )
2

^ (IV.53) 
w(« + 1) ν 

or 

/ co — m\2 

v
 — = 0\ — )· (IV.56) 

( 
Since we have accepted that in a macroscopic system all the 

values si
00
 are large, it follows that the time-average s&(t)° can be 

and according to (IV.37) and (IV. 32), 
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This last result will enable us to show that the quantity 

is very small for a macroscopic system. 

In fact, if we make no assumption concerning the eigenvalues crv

a
\ 

we can make appear in the second term on the right-hand 

side of (IV. 54); if we denote the smallest value of si
a)
 by sm and if 

we put ε = , we have 

whence, by substituting in (IV.37), we obtain easily 

(IV.55) 
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1 

n(n + 1) ν n(n + 1) v η + 1 

whence the result 

(IV. 58) 
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considered as equal to the phase average s# , except over a set of 
very small measure: this is a probability ergodic theorem satisfied 
by macroscopic observables. 

If, in addition, we suppose that the eigenvalues a
(
f are all bounded 

by a number aM, we can even improve the preceding evaluation, 
since in this case we have 

(IV. 57) 

m 
I oo — m \ 2 

[s/(t) - si ) 

PT 
if a\

a)
 < aM, which naturally has the same consequences. Thus, 

we have established a probability ergodic theorem for the macro-
scopic observables s/(t) similar to the one we obtained in classical 
mechanics, starting from Khinchin's results relative to sum func-
tions (cf. Chapter I ) ; we do not make any special assumption here 
concerning the structure of the system, except that the time evo-
lution is governed by the unitary operator (II.6) and that the quan-
tities accessible to experiment are well represented by so-called 
"macroscopic" observables when the system considered has a 
very large number of degrees of freedom. 

It is the introduction of the macroscopic observables associated 
with the averages over the unit hypersphere with In dimensions 
which has permitted us to break away from the hypothesis on non-
degeneracy of the spectrum of the Hamiltonian; we shall analyse 
in a little more detail (see Section IV) the exact role played by 
these macroscopic observables in the elimination of degenerate 
terms. We shall show also in that section that formula (IV. 56) can 
be extended to the averages s#(f) themselves, at any time t; in this 
way we shall rederive the results of recent works (Farquhar and 
Landsberg, 1957; Bocchieri and Loinger, 1958, 1959), which we 
shall compare with von Neumann's quantum ergodic theory, mak-
ing its meaning more exact. Finally we shall establish the analogy 
between the quantum ergodic theory formulated in this way and 
the classical ergodic theory applied to Khinchin's sum functions; 
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by assuming a similar structure for macroscopic systems as that 
proposed by Khinchin for classical systems, we shall see that the 
microscopic observables themselves satisfy a relation of the type 
(IV. 56), which completes the analogy between the classical and 
quantum aspects of the ergodic theory. 

Before commencing this study, we shall conclude this section by 
showing that equivalent results are obtained by taking the average 
over a microcanonical ensemble of systems, or by taking an aver-
age over all possible macroscopic observers. In fact, in order to 
obtain another macroscopic observer, starting from the observer 
characterised by the vector Ω{Ω^}, we apply a unitary transforma-
tion Û to Ω which leads to a new vector Ω'{Ω\*

ν
} ; by definition 

we have 

Ω'=ϋΩ, Q\*
y
 = Σ UlkQl*\ = Σ ΚΩ\*

Υ
, (IV.59) 

4 α ) (0 = Σ^' ίΟ Ulk, œ\"y{t) = Σ ^ ) ϋ * . (IV.61) 

In order to obtain all possible macroscopic observers, we must 
take all systems of Uîk satisfying the relationship 

i.e. to each system of Ulk there corresponds one point of the com-
plex unit sphere of η dimensions. Since, according to (IV.61), to 
each system of values Ulk there corresponds a system of co\

aV
(t), 

it follows that the end-point of the vector {ω{α)'(0} traverses the 
entire unit sphere a2n when the Uik take all values compatible 
with (IV. 62); in fact, because of the unitarity of Ü, we have 

k 

whence, according to (IV. 28) 

ψ(ί) = Σ^γ{ί)Ω\*' = Σ ΣύΛΟΩΡ = Σ^'Σ^ΛουΖ, 
* ' * (IV.60) 

with 

k 

ΣΙ^Ι 2 = ι» (IV.62) 

Σ \ω\"
ν
\

2
 = Σ Σ âiFœP'UiU, 

I I k,k' 

= Σ {Σ I4Ä )I 2 \ulk\
2 + Σ ω?ώρ·υζυ*λ 

I [ k k*k' ) 

= Σ Ι4α)12
 + Σΰ?)*Ρ'**· = Σ Ι4α)12

 = ι. 
(IV.63) 
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IV. Statistical Properties of Macroscopic Observables. Com-

parison with Classical Theory 

We shall now discuss the results obtained in the preceding sec-
tions and we shall examine their meaning. We shall commence 
by studying the standard deviation of the variables <s/(t) over the 
hypersphere a2n which will enable us to compare the approximated 
ergodic theorem (IV. 56) with von Neumann's quantum ergodic 
theory. Then, having analysed the role of macroscopic observables 
in the theory, we shall establish a relation between the classical 
and quantum forms of the ergodic theory. 

1. Statistical properties of macroscopic observables 

In order to establish the macroscopic ergodic theorem, we have 
relied on the inequality (IV.46) in which a sum Σ occurs as the 

'=*=/ 

second term, taken over all states i and j 9 degenerate or non-de-
generate. The form of the second term of (IV.46) in this way leads 
us to study the second moment of the random variable j/(t) — Jf™ 
over the hypersphere σ2η at any time t (Jancel, 1960a); according 
to (IV.30) and (IV.31) we have 

Wit)}2 = Σ 4r>2[w<"Xt)]2 + Σ d?a™w?Xt)w$Xt)9 (IV.64) 
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We can then make the set of systems satisfying (IV.63) corre-
spond to the set of macroscopic observers characterised by (IV. 62). 
In addition, we can say that the relation (Ψ, Üü

(

k

a>
) = (ϋ^Ψ,Ω^) 

shows that rotation of the eigenvector Ω
{<χ)

 of a macroscopic 
observer by applying Û to it, is equivalent to rotating the represen-
tative vector Ψ of the system by applying the operator Û'

1
 to i t ; 

the set of vectors Ψ thus obtained is represented completely by 
all the points of the unit hypersphere σ2η with 2n dimensions : the 
averages taken over a microcanonical ensemble of systems or over 
the ensemble of macroscopic observers thus provide equivalent 
results. We shall see in the next section, however, that there are 
weighty reasons for preferring the methods based on averages of 
the microcanonical type. 
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W?\t)Y = Σ'? (IV.68) 
i= 1 

+ (I%>D<? + WW) = °* f' 
i±j n(n + 1) 

W;\t) w^\t)\ = Y^rf D\YD\Ï> (IV.69) 

ç(<*)ç<<*> 

t*j n{n + 1) 
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(IV.66) which make non-vanishing contributions are those which 
are independent of the phases oct; thus, the average of the sum 
Σ £ is z e ro a nd w e obtain the phase-independent terms of £ Σ 

ι Λ Φ / ι Φ / λ : Φ / 

by putting / = / and j = k. Then, according to (IV. 50), (IV. 51), 
(IV.65) and (IV.66) we have: 

thus, we must calculate the microcanonical average of (IV.64) or 

the averages As we have mentioned 

already in calculating the only terms of (IV.65) and 

written as 

Since the second moment of s/(t) — can be 

(IV.65) 

with 
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In this way we see that the right-hand side of (IV.46) is 
ttl 

exactly equal to [stf(t)]
2
 and that equation (IV.53) can then be 

written as m 

0012 / —m\ 2 m I —m\ 2 

.</(*) J [st{t)f - [s/ ) , (IV.70) 
with 

ν |_ n(n + 1) n
2
 J 

[_«(« + 1) n
2
 J 

« + 1 w(« + 1) ν 

(IV.71) 

We can deduce from it, by reasoning similar to that of section III, 

that 

Thus, the standard deviation of stf(t), compared with stf'\ is 
independent of the time and is always at least of order \js%. This 
result could, however, have been predicted: in fact, the time evo-
lution causes only a variation of the phases (# f — ιΕ$\Κ) which 
induces a displacement of the vector Ψ over the hypersurface a2n ; 
however, the microcanonical ensemble represented by a uniform 
distribution over σ2η is time-invariant, with the result that the 
average over σ2η of a function of the time like [<srf(t)]

2
 must itself 

be independent of t. 

This important statistical property of macroscopic observables 
depends only on the breakdown of Hilbert space into cells and on 
the unitarity of the operator of evolution; if the numbers s

(

v

a)
 are 

all very large, the quantities s/(t) are almost equal to the micro-
canonical averages s/

m

9 except over sets of very small measure 
corresponding to exceptional initial conditions. The approximated 
ergodic theorem (IV. 56) can be derived from it as well as von Neu-
mann's ergodic theorem, as we shall see now. 

<9(_L \ ( a r b i t r a r y ^ ) , 

7 , (IV.72) 
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2. Return to von Neumann's quantum ergodic theorem 

In order to do this, we shall consider the expression 

lim — f (s/(t) - s/ Ydt (IV.73) 

it is easy to show that we can interchange the two integrations 
over the time and over the hypersphere a2n · In fact, if we evaluate 

1 
K(0]2

 dt, we can see by (IV.64), (IV.65) and (IV.66) that the 

kinds: (a) terms involving products of degenerate factors; (b) terms 
corresponding to resonance frequencies Et + Ek = Ej + Ex and, finally, 
(c) phase-independent terms. If we take the microcanonical average, 
terms (a) and (b) make a zero contribution and we have, finally, 

W{t))
2
 dt 

= Σ*ϊη Σ'* (W)2 + Σ'ΐ'ΐ (WWj + \D\?\i) 
-ι i*j 

+ Σ « ? > £,·* WW + Jjfrf (WW + WW 

= W(t)Y K(0] 2
 dt, (IV.74) 

according to (IV.68) and (IV.69); we can then interchange the two 
averaging processes. In particular, we shall have 

sift 
—m\ 2 

lim _ L I \sf(f) - stf ) 
τ - ™ 

ο 
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terms of which remain non-vanishing as Τ -> oo are of three 
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Τ m 

(IV.75) 

We have here a result similar to von Neumann's quantum ergo-
dic theorem and it can be seen that we have not made any assump-
tion concerning the nature of the spectrum of H; actually, terms 
corresponding to degeneracies and to resonance frequencies of H 

are eliminated if we take the microcanonical average of (srf{t) —stf™)
2 

Thus, it is the introduction of the statistical point of view from the 
beginning of the proof which has allowed us to break away from 
any assumption concerning the spectrum of the Hamiltonian. 
Obviously, it follows that the result (IV.75) is a theorem of general 
statistical mechanics and is valid only for an ensemble of systems; 
it belongs to the category of probability ergodic theorems. 

In von Neumann's proof, we try to found statistical mechanics 
on a purely dynamical basis, by trying to obtain a true ergodic 
theorem which refers only to a single system; it is this which 
leads us to make the assumptions already mentioned concerning 
the nature of the spectrum of H. These, however, are insufficient 
and we must return to statistical considerations about the ensemble 
of all possible macroscopic observers; as we have noted in the 
preceding section the identity of these averages and of the micro-
canonical averages, it follows that we can interchange the time-
average operation and that of the average over the ensemble of 
macroscopic observers. According to the foregoing, it is obvious 
that von Neumann's quantum theorem is simply a consequence of 
the average over these observers ; the assumptions concerning the 
spectrum of H become redundant, with the result that von Neu-
mann's quantum ergodic theorem has only a statistical meaning, 
as we have mentioned already (see Chapter III), and that it falls 
within the category of probability ergodic theorems. 

Moreover, if we actually calculate the averages of (IV.65) and 
(IV.66) over the ensemble of macroscopic observers with the help 
of formulae (36)-(43') of Appendix II, we can confirm that we 
find the results (IV.68) and (IV.69), independently of the nature 
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of the time evolution of the system : it suffices that the relationship 
Σ ct(0)

2
 = 1 is satisfied at each instant, i.e. that the norm of the 

i 
vector Ψ(ί) is conserved. Such is not the case for the proof founded 
on microcanonical averages (equivalent to the averages over the 
initial conditions, see § IV.II . l) , since the invariance of the micro-
canonical ensemble relative to the unitary operator of evolution 
plays an essential role here. Because of this difficulty, added to 
which is that of justifying the a priori assumption of equiprobability 
of the macroscopic observers, it is preferable to place ourselves at 
the onset within the framework of ensemble theory; this leads us, 
without special assumption, to the probability ergodic theorems 
sufficient for justifying the use of the microcanonical ensemble. 

We may mention also that in von Neumann's method we 

compare Çs/(t) — stf™)
2
 with the microcanonical average of the 

observable s/
2
 ; thus, we must show that the time-average of the 

factor 

' - Σ - ^ ^ ί ' ) - - ^ ) (IV.76) 

is as small as we wish [cf. formula (111.44) applied to a single 
energy shell]. If we form the microcanonical average of λ, we 
obtain, according to (IV.68) 

Σ |_s«»2(s«» + i)J ~ s w + ι 

(Γ). (IV.77) 

Indeed, we find again equation(111.57')—as would be expected—by 
virtue of the identity between the microcanonical averages and the 
averages over the ensemble of macroscopic observers, proved by 
equations (IV.62) and (IV.63). We point out, finally, that we can 
prove equally well an ergodic theorem by starting from the entropy 
of the system defined by formulae (III.64) and (111.65): it suffices 
to calculate the quadratic mean of the variable S(t) — ©. 
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Summarising, the quantum ergodic theory—as we have em-
phasised already—is unable to prove the equivalence of the time 
and phase averages and it encounters difficulties at least as great 
as classical theory. Only the introduction of a statistical point 
of view allows us to prove probability ergodic theorems which 
constitute in some measure a generalisation of the normal ergodic 
theorems and suffice to justify the methods of statistical mechanics. 
From this point of view, von Neumann's quantum ergodic theorem 
is a special case of these probability theorems; if we wish to 
compare it with theorem (IV.56) we have, by applying Schwartz's 
inequality: 

τ τ 

[ l i m I [sf(t)dtX ^ Hm I f [s/(t)]
2
 dt, (IV.78) 

0 0 

whence, since both sides are positive 

lim I I stf{t)dt 

Ο 

m ρ Τ 

1 lim 
T-yoo χ 

W{t)]
2
 dt 

(1V.79) 
which can also be written as 

/ oo m\ 2 lim ^ Γ / —
m

\
2 

0 

= (s/(t) - s# )
2 (IV.80) 

this result being already contained in the inequalities (IV.46) and 
(1V.70). Before comparing these results as a whole with those of 
classical theory, we must analyse in detail the role played by 
macroscopic observables in the proofs. 

3. The role of macroscopic observables 

The interesting point in these observables is obviously the intro-
duction of an additional "macroscopic" degeneracy, implied by 
the division of Hilbert space into "ce l l s " with s^ dimensions. 
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i*j ν 

(IV.81) 

which originate from [<z?(t)]
2
 . In the microscopic theory, the sum 

Σ Σ \Ακρκ9\
2
 corresponds to them and this sum has as upper bound 

κ ρΦβ 

Σ \Aij\
2
 ; this latter expression originates from the average [^4(0]2 

in fact, by (IV. 17), we have 

W(t)f = Σ^
4
 Αι + Σ Ή (AtiAjj + \AU\

2
). (IV.82) 

i i Φ j 

By comparing this with [stf(t)]
2
 , we can verify that the transition 

from microscopic to macroscopic observables is expressed by the 
relation ^ ^ ^ ^ χ ^ ( lv 8 3 ) 

V V 

These formulae can be obtained directly by using the change of 
variables (11.55) and assuming the operator Â to be diagonal and 
with degeneracy s

(

v

a)
 in the representation Ω[

α)
, which reduces to 

identifying it with the macroscopic operator. 
Given this, let us consider the sum ΣΜο|2^ if

 w e
 assume, for 

/φ/ 

a rough approximation, that \ A U \ < A M 9 it can be seen that this 
- I) A 

^L^^L^Ai. (IV.84) 
n(n + 1) n(n + 1) 

sum is of order n(n — 1) Α
τ

Μ and that 
12 

(b) It allows us also to evaluate terms arising from degeneracies 
of the Hamiltonian; in macroscopic theory, these are of the form 
Σ Σ I Σ α

Ι
Λ )

^ χ 9 \
2 a n c

*
 a n u

P P
e r

 bound is, according to (IV.45), 
κ ρφ q ν 

determined by the terms 
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or to compare it with another quantity, such as 

We can say that this division into cells is involved in three different 
ways in the foregoing proofs. 

(a) It permits us to give an upper limit to expressions such as 
(IV. 54) without making an assumption about actually, by 
returning to the corresponding microscopic expression (IV. 13), 
we see that it is necessary to make certain assumptions about 
the numbers A n if we wish to find an upper bound for the quantity 



Classical and Quantum Statistical Mechanics 

Obviously, this expression does not tend to zero with 1/«, 
which makes it difficult to eliminate the degenerate terms given by 
(IV.27). If, on the contrary, we use the relation (IV.83), we have 
immediately by formulae (11.61) and (11.63): 

ΣΙ Au\
2 

i*j ν 

= Σ(«ί β )) 2Σΐ^?Ι 2 

ν i,j 

< Z | E < W 

whence, by assuming that the a
(

v

a)
 are bounded by ah 

ΣΙΣ4 (<*) •nOOl •Σ4' naK 

(IV.85) 

(IV.86) 

Thus, the transition from the microscopic to the macroscopic 
representation enables us to find an upper bound for the sum 
Σ \Aij\

2
 by an expression which is proportional to n; it is this 

I */ 

which enables us to eliminate the degeneracies of the Hamiltonian 
and to arrive at the general result (IV.72). Once we have arrived at 
this stage of the reasoning, it is natural to ask ourselves the follow-
ing question: is it possible to evaluate the matrix elements Au by 
taking into account the macroscopic nature of the system, in such 

a way that an upper limit for the sum ̂  ^ £ \^u\
2 c a n

 be 

found in the form of a quantity which approaches zero when η 
increases indefinitely? We shall try to give certain elements of an 
answer to this question in the next section. 

(c) This division into "phase cells" enables us also to show 
that the statistical weight w^Xt) of each cell is, at every instant, 
practically equal to its relative weight in the microcanonical 
ensemble, i.e. s

(

v

a)
IS

M
. Actually, according to (IV.68) we have: 

(0 m\ 2 ω ) 
0(a)2 

?(<χ)2 

(IV.87) 

sl"\S
w
 + 1 ) s\ 

1 
ox) 

+ 1 
ο 

which proves the stated theorem provided that s
(

v

a)
 is sufficiently 

large, whatever the value of v. We could establish a similar 

124 



Probability Quantum Ergodic Theorems 

formula by using the time-average * n place of wl
a)
(t) and 

we would find in this way the results obtained by various authors 
(Bocchieri and Loinger, 1958, 1959; Farquhar and Landsberg, 
1957) in recent papers. In addition, we note that in the first and 
third references the averages are taken with respect to the ensem-
ble of macroscopic observers, which changes nothing in the final 
conclusions because of formulae (39) to (43) of Appendix II. More-
over, by summing (IV.87) over the N

ia) cells of the energy shell 
we obtain the results of Bocchieri and Loinger (1959): 

s<«> 
< Σ - 7 Γ Γ (IV.87') 

and, by taking the time-average, 

Γ->οο Τ J 

K\t) 

P( « ) 

S<"> 

dt (IV.87") 

We point out also that Prosperi and Scotti (1959) have recently 
evaluated the probability that one of the quantities (IV.87) is 
larger than a given value during a fraction of time exceeding a 
specified duration. 

In order to emphasise the role played by dividing Hilbert space 
into cells, we must now calculate the expression corresponding to 
(IV.87) for a single quantum state; we have 

(rt-7f)' C D " η - 1 

η + 1 
(IV.88) 

Thus, we prove—as we could have predicted—that a property 
such as (IV.87) is only satisfied in the case when a large number 
of states are grouped in the same cell: the role of macroscopic 
degeneracy is thus found to be clearly defined. 
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Classical and Quantum Statistical Mechanics 

where the microcanonical average denotes the average over a 
hypersphere of constant energy. The analogy between this re-
lationship and (IV.72), which is valid for quantum macroscopic 
observables, is obvious and they are both fundamental for proving 
the probability ergodic theorems; actually, (1.52) corresponds to 
relation (IV.89), which can be written as 

so that the state of the ergodic theory is the same in its quantum 
and classical aspects; however, two important differences must be 
pointed out. 

The first arises from the differences existing between the order 
of magnitude of l/N in (IV.89) and l / .S

( a)
 in (IV.72); if, in fact, we 

take for S<"> the estimate (IV. 16), we see that l / .S
( a)
 < IjN since 

increases exponentially with N. This must be attributed to the 
functional representation of particles in wave mechanics; actually, 
in classical mechanics, the representative point of the system is a 
point in 67V-dimensional space and the microcanonical average 

m 

(IV.89) 

-m •m 

(IV.90) 
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4. Comparisons with the classical ergodic theory 

We have seen that it is impossible in classical mechanics to 
prove the equality of time-averages (whose existence is assured by 
the ergodic theorems) and phase-averages without involving un-
verifiable assumptions (metric transitivity) concerning the nature 
of the system; even then, the ergodic theorems mentioned are valid 
apart from a set of zero measure. Thus, we have seen how a 
statistical element is introduced into the theory and we have 
shown, by following Khinchin's reasoning, that the methods of 
statistical mechanics could be justified if we took account of the 
large number of degrees of freedom of a macroscopic system. This 
result is essentially based on the following statistical property of 
the " s u m " functions of a system of Ν particles: 
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Uo°°-(r)2] ^ 

t For an introduction of functional space in the classical ergodic theorem, 
see especially the paper by Albertoni, Bocchieri, and Loinger (1960). 

1 2 7 

is taken over a hypersurface of (6Ν — 1) dimensions; in quantum 
mechanics the vector Ψ is defined in a functional space of η = S

ia) 

dimensions and the averages are taken over a hypersphere whose 
number of dimensions is proportional to the measure of the hyper-
surface with (6N — 1) dimensions. It follows that the sets of 
possible states of quantum statistical mechanics are much richer 
than the corresponding classical sets.f 

The second difference lies in the use of macroscopic ob-
servables in quantum statistical mechanics, whilst the classical 
theorem (IV.90) is valid only for sum phase functions. This brings 
us back to the question we raised at the end of subsection (b) of the 
preceding section and which we can reformulate thus : is it possible 
to justify, for a system with a large number of degrees of freedom, 
the use of macroscopic observables possessing the required pro-
perties? We may note first of all, by referring to the intuitive defi-
nition of these observables in Chapter II, that we have made use 
largely of the macroscopic nature of the observed system and that 
in consequence the definition of macroscopic observables seems 
to be quite natural. Obviously, however, this is only a qualitative 
argument which does not eliminate the external interference of 
the macroscopic observer and which can not prevent us from 
considering the introduction of these observables as a supple-
mentary assumption, inherent in quantum theory. 

In order to try to answer this objection, we shall conclude this 
section by constructing a quantum model similar to Khinchin's 
model and for which the ergodic theorems can be written directly 
in terms of microscopic observables (Jancel, 1960 b) ; in this way 
we shall have taken an additional step in reconciling the classical 
and quantum ergodic theorems by breaking away from the concept 
of macroscopic observables. We note first of all that a property 
of the form (IV.80) can be extended to microscopic observables; in 
fact, by applying Schwartz's inequality we have 
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using a method which is similar to that 01 Khinchin. Let us 
suppose first of all, that our system consisting of Ν particles is 
described by the Hamiltonian 

Ν 

Η = £ #
( κ )

, (IV.93) 

where Η
(κ)

 represents the Hamiltonian of the xth particle; this 
amounts to neglecting, to a first approximation, the supposedly 
small interaction between the particles themselves. If the particles 
are identical, the Hamiltonians are equal and their eigenfunctions 
are given by 

Η
Μ

Ψκί(κ) = ΕκίΨκί(κ); (IV.94) 

the eigenf unctions of Η can then be expressed as products of 
functions φΧ{, or 

2, . . . , Λ Ο = Π <Pxi(*) = 9>«,0) Ψβίϊ) — <PKt(*) ··· ̂ ,(^0· 
(IV.95) 

In order not to complicate the proceedings needlessly, we shall 
consider Maxwell-Boltzmann statistics, that is, we shall not take 
into account the indistinguishability of the particles; it does not 
play an essential role in the discussions which follow. 

Having said this, let us consider the quantum microscopic 
observables of the " s u m " type as Khinchin did in classical theory. 
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where, according to (IV.17) and (IV.82), 

We shall now evaluate the terms by 

depending on the off-diagonal terms [see also formula (IV.25)]. 

As we have pointed out already in § 3(b), the difficulties con-
cerning the degenerate terms originate from the sum 
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These observables are of the form 

Α = Σ^\ (IV.96) 

where the operator Â
M
 acts only on the coordinates of the κΰι 

particle; we get immediately 

Ν Ν 

An — Σ A il ? = Σ At* , 
(IV.97) 

where ι and j denote eigenstates represented by the functions 
(IV.95), with energies Et and Ej contained within the energy shell 
(Ε, Ε + δΕ). Thus, since the φχ.(κ) form an orthonormal system, we 
have 

A\f = (φαί(\)φβί(2) ...φκί(κ) ...φνί(Ν)9 

ΑΜ
φαί(\)φβί(2)...φκί(κ)...φνί(Ν)) 

= (Ψκί, Â
M

 Ψχ) = A%i9 

4iï
y
 = ΨβίΆ - · · % ((*) · · · ΨΜ \ (IV.98) 

A
M

Vafl)Vßß)...Vuj{x)...V9J(N)) 

= (<Pxt9 Â
M
<Pxj) àaiaj ... öXi.Ux..1öXi + l t X j +1 ... δν.ν 

=
 A^ljô^^j ... <5 κ._ i t X j- ιδ χ.+ i,XJ+1 ... àViVJ. 

Thus, the off-diagonal terms A\f are non-vanishing only for 
states which differ between themselves only in the wave function 
of the H t h particle. We note, in addition, that the eigenstates of a 
single particle are represented by all values of the spectrum of 
H

M
 below Ε + δΕ, which is the total maximum energy of our 

system. 
In order to be able to evaluate the sums £ A]t and £ Mu|

2
>

 w e 

shall make the following assumption: we shall assume that the 
matrix elements referring to a single particle are bounded, i.e. we 
shall put ^ A™ and \A*?\ ^ A<£9 whatever the value of i 
and j . This assumption is physically natural and does not encounter 
the difficulty which we pointed out in section II of this chapter: in 
fact, the matrix elements depend neither on the number of particles 
nor on the number of states contained in the energy shell δΕ. With 
this assumption, we have immediately for Ait and for the micro-

6 FOM 129 



Classical and Quantum Statistical Mechanics 

/ = 1 

ΣΛ? ( ^ΛΓ 2 π4Τ, (IV.102) 
i= 1 

whence 

—L— Σ 4 < ^ 4 , m
 - ^ 7 · (IV.103) 

«(« + 1) <=i « 4 - 1 

Since, according to (IV. 16), η is an exponential function of Ν of 
the form KNa

N
 δΕ, it follows that N

2
jn rapidly approaches zero 

when Ν becomes very large; we can then write 

— L _ f 4 ι = ο(—)~ oil], (iv.io4) 
n(n + 1) t=i \ n J \n) 

which justifies a posteriori the statement at the end of section II , 
according to which it was legitimate to neglect the dependence 
of the A a on n. 

Let us consider now the sum of the off-diagonal terms \Atj\
2
. 

According to (IV.97) we have: 

\Au\
2
= Σ W + Σ

Α
υ

Α
ν

)
* (IV.105) 

κ= 1 κ + χ' 

and, by virtue of (IV.98) we have 

M i j } | 2 = M*%|2
 ^oiiocj · · · à M i- i t M j- 1 ôXi + l t X j +1 ...dViVJ, 

Α
ϋ

 Α
ϋ —

 Λ
κίκ]

Λ
χΊκ'ί\Ριχι<χ} ··· ° X i- l t x j - l

 χ 

Χ
 (ßatecj ··· ^κίκ] · · · ^ χ ' , - Ι , χ ' ^ - Ι ^ « Ί + Ι , κ ' ^ + Ι · · · ^ ν , ) = 0, κ φ κ'. 

(IV. 106) 
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If, then, we consider the sum we can certainly write 

(IV. 101) 

α ν 100Ϊ 

(IV.99) 

canonical average , 

whence 
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(The last equation is due to the fact that we have always κ + κ', 
by assumption and κ ι φ κji κ^ ·ή- κ^ as otherwise one of the o's 
would necessarily be zero, since i φ j for the total state; but 
dHiXj and δχ>.χ̂  occur in Α$

Ί
* and A\f respectively, whence the 

vanishing of the product A^Aft'**.) By putting it in (IV. 105), we 
have 

Ν 
(«) 12 
XiXj\ 

x = 1 " " " x=l 
\^u\

2
 — Σ M***!2 ~~ à<xi(Xj ... àMi__ltMj_i ô X i + l t X j +1 ... άνιν]Σ\Α, 

(IV. 107) 
We consider now the sum 

Ν 

Σ \^ij\
2
 ~ Σ Σ ··* à X i- l , X j- l ô X i + l t X j + 1. . . ôViVj \Ax.Xj\

2
, 

i*j x=l i*j 

(IV. 108) 
where the indices / and j correspond to all possible states represented 
by (IV.95). We begin by carrying out the summation over i with j 
fixed : the indices ocj ... vj are then completely defined (as well as 
their order) and the only states ι giving non-zero contributions are 
those for which Λ , = ocj9 ..., κι — 1 = κ} — 1, κι + 1 = κ} + 1, ... , 
v t = Vj. These states are then obtained by varying the index κί9 

so that the total energy Et remains inside the shell δΕ; thus, we 
have the relation 

Et - Ej = EXi - EXJ ^ δΕ (IV. 109) 

which shows that the difference EXi — EXj is at most equal to 
δΕ. The result is that the number of states i making a non-zero 
contribution to (IV. 108) with / fixed, is equal to the number of 
states EXi contained in an energy shell E'9 E' + δΕ9 with E' ~ EMJ. 
Since this number is given by n1 = ΚχΕ'^δΕ (see Appendix I, § 4) 
and we have certainly E' ^ E, n1 has ΚχΕ^δΕ as upper limit. 
Evaluating now the summation in (IV. 108) over j (from 1 to S

M
) 

and over κ (from 1 to N), we have (always with the assumption 

Σ \
A
u\

2
 = Nn^A^

2
, (IV.110) 

whence 

1
 Σ \ Α ΐ ] \ ^ - ^ - Α ^ \ ( I V . l l l ) 

n{n + 1) i*j η + 1 
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a relation which is valid when TV is sufficiently large. 
By putting the asymptotic formulae (IV.104) and (IV.112) 

in (IV.92), it can be seen that it is possible to write 

for the second moment of the microscopic quantity A{t) — Ä . 
This result is proved for a " s u m " observable of the form (IV.96); 
according to (IV.91), we then obtain a probability ergodic theorem 
for the observable Â. Comparison of formulae (IV.89) and (IV. 113) 
on the one hand, and (IV.90) and (IV.91) on the other hand, each 
obtained for " s u m " functions, emphasises the straight analogy 
between the quantum and classical forms of the ergodic theory. 
In this way, the simple quantum model which we have just analysed 
enables us to establish an even more accurate agreement between 
the two theories, by showing that it is possible to break away from 
the use of macroscopic observables, at least in certain cases. 

In conclusion, we have been able to develop the quantum ergodic 
theory in a manner similar to classical theory. This has been made 
possible by the important distinction between the probabilities of 
quantum mechanics and the probabilities in the classical sense 
which are used to define, in quantum statistics, ensembles of 
systems: this difference is apparent in the definition of the matrices 
ρ and ρ of Chapter I I ; the matrix ρ, which satisfies the quantum 
analogy of Liouville's theorem, thus plays the role of the phase 
probability density of classical mechanics. 

It is important to emphasise that, even if we have justified the 
fundamental principles of statistical mechanics by proving the 
probability ergodic theorems, we have not been able to prove a 
true ergodic theorem establishing the equality of the time-averages 
and the microcanonical averages for a single system, without 

(IV.112) 

•m 

(IV. 113) 

—m 
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Since η is always of order KNa
N
 ÖE, the ratio Nnll(n + 1) rapidly 

approaches zero when Ν becomes very large. We can then write 
approximately 
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recourse to an assumption concerning the nature of the system. In 
this connection, the differences which we have encountered in 
Chapter III between the classical and quantum forms of the theory 
are due mainly, as we have mentioned already, to the special pro-
perties of quantum observables which are not measurable simul-
taneously and whose quantum averages are time-dependent only 
through the phase factors (stationary states). In the second ergodic 
theorem, this difficulty has led us to introduce macroscopic 
operators and to be satisfied with a convergence in probability. 
Thus, not only has it been impossible for us to base quantum 
statistical mechanics on a purely dynamic basis, but there is still 
no rigorous proof of the quantum parallel of H o p f s theorem; only 
the papers by Ludwig (1958 a, b) already mentioned perhaps 
open up a path of research in this field. 

Thus, we have been led quite naturally to accept the point 
of view of statistical ensembles of systems and to prove in the pre-
sent chapter quantum probability ergodic theorems similar to the 
corresponding classical theorem (1.52). The result is that if we 
consider a microcanonical ensemble of virtual systems identical 
with the observed system, the time-average and the microcanonical 
average of a physical quantity are almost equal for all systems of 
the ensemble, except for an ensemble of systems (associated with 
a set of exceptional initial conditions) whose measure is negligible 
when the number of degrees of freedom of the system is suffi-
ciently large. Even if such a statement were sufficient for the basis 
of statistical mechanics, nevertheless there exists the possibility of a 
macroscopic system being found in exceptional states which do 
not satisfy the properties of ergodicity, but whose observation is 
highly improbable; we recall, moreover, that the classical ergodic 
theorems of Birkhoff and von Neumann also involve the possi-
bility of exceptional trajectories whose total measure was zero. 
Finally, the justification of the fundamental hypothesis of statistical 
mechanics appears, in the final analysis, as an application of the 
law of large numbers and of the geometrical properties of certain 
hypersurfaces in 2«-dimensional space. 

The foregoing results can be extended in various directions; 
we point out especially the recent paper by Prosperi and Scotti 
(1960; see also Chapter VI, section III), who, by replacing the 
microcanonical averages by averages over all states belonging to a 
single quantum cell, obtain in this way new conditions of ergodi-
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city: we shall return to this point in the course of studying the 
generalised i7-theorem. We point out also that Albertoni, Boc-
chieri, and Loinger (1960) have been able to prove a classical 
theorem which justifies the methods of classical statistical me-
chanics, without any condition of ergodicity, for systems possessing 
a large number of degrees of freedom; it is the classical analogue 
of the quantum probability ergodic theorems and a generalisation 
of Khinchin's results (valid only for " s u m " phase functions). 

Finally, we could consider as an additional difficulty of the 
quantum ergodic theorem, the necessity for calling on macroscopic 
observables: this theory would then have a "subject ive" nature 
connected with the essential role of the macroscopic observer. We 
can object to this that we have proved a probability ergodic 
theorem, valid for microscopic observables of the " s u m " type, 
which in this case eliminates the difficulties relating to the inter-
ference of the macroscopic observer. Moreover, it is probable that 
this type of proof could be extended to more general microscopic 
observables (for example, of the form Â = £ Â

M
 + £ Α

(κ,λ)
), pro-

κ κ,Λ 

vided that we take into account explicitly the macroscopic nature 
of the system studied. Thus, the introduction of macroscopic ob-
servables would be, above all, a convenient way of expressing form-
ally the special properties of quantum observables associated with 
a system having a large number of degrees of freedom. Be that 
as it may, the similarity between the classical and quantum for-
mulation of the ergodic theory shows that classical and quantum 
statistical mechanics rest on the same fundamental principles, 
whose interpretation is connected with that of the classical concept 
of probability in physics.f 

V. Relations between Microcanonical, Canonical and Grand-

Canonical Ensembles 

The proof of the ergodic theorems allows us to justify the use in 
statistical mechanics of the microcanonical ensemble: it is applic-
able to isolated systems whose energy is known either precisely 
or within a range δΕ. However, it is interesting from the point of 
view of physics, and particularly of thermodynamics, to study the 

t In this connection, see the study by B ö h m and Schützer (1955) and the 
epistemological papers of Costa de Beauregard (1958, 1960). 
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distribution of systems in thermal contact with their surroundings: 
it is known that this situation is properly represented by the 
canonical distribution. We shall conclude this chapter by showing 
how we can deduce it from a microcanonical distribution without 
assumptions. We shall carry out this study for quantum systems and 
we shall proceed according to a method which is similar in all 
points to that followed by Khinchin (1949; see also Rosenfeld, 
1952, 1955) in classical theory; in addition, we shall see that this 
can be applied also to the derivation of the grand-canonical 
ensemble : in this way, we can justify the use of canonical and grand-
canonical distributions starting from the results of the ergodic 
theory. 

1. Average values in coupled systems 

We consider a system s, which is in thermal equilibrium with the 
surroundings or with a thermostat Γ, of which we suppose that 
the heat capacity is so large that exchanges of heat with s do not 
change its temperature. (The number of degrees of freedom of s is 
thus very small in comparison with that of Γ.) The two systems s 
and Γ, by free exchange of energy, are at the same temperature 
(that of the thermostat) and form a total system S which can be 
considered as isolated: we shall suppose that the system S is 
described by a microcanonical ensemble; our problem then is to 
calculate the statistical distribution of s, starting from that of S. 

We shall assume also that the magnitude of the interaction 
between S and Tis negligible, so that the total energy Es is the sum 
of the energies Es and ET of the systems s and Τ Since we are 
interested in the system s, we shall calculate the quantities referring 
to this system, i.e. the statistical averages of the observables of the 
system s taken over the microcanonical ensemble corresponding 
to S. In order to put the problem mathematically, we consider two 
quantum systems (1) and (2) described by the Hamiltonians 

and #
( 2 )

 and by the wave functions and Ψ
(2
\ The 

Hamiltonian of the total system is described by 

Η = χ /
( 2 )

 + Η™ χ 7
( 1 )

, (IV. 114) 

where I
ia)
 represents the unit operator in Hilbert space of the 

system oc and where the multiplication signs denote the direct 
products of operators which operate in different Hilbert spaces. 
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The total wave function, which can be written as χ Ψ
(2)
, is a 

vector in the Hilbert space which is the direct product of the two 
Hilbert spaces corresponding to systems (1) and (2). The eigen-
energies of the total system are i s /

0
 + Ej

2
\ with the projection 

operators P V l( D
 x
 ; in particular, we can associate the pro-

jection operator &(χ) = χ p^n χ ρ (IV.115) 

Ei + Ej^X 

with the total energy. We deduce from this the fundamental 
relation + ̂  

dÛ(X) = J dÛ
a
\X') dU

i2)
ß - λ ' ) , (IV.l 16) 

— oo 

where the integration is carried out over λ'. 
By applying this relation to the system s and to the thermostat Γ, 

when the interaction energy is weak we have 
+ 00 

d(j{X) = j dÛs(X') dÛT(X - λ'). (IV. 117) 
— 00 

Since the state of the total system is described by a microcanonical 
ensemble, the corresponding density matrix ρ will be equal to the 
projection operator over the energy range in which the total system 
exists. Thus, by denoting this operator by Δ {7(A), we have 

(IV.118) 
ΊτΔϋ{λ) 

whence, by (IV.l 17), 

+ 00 
AUß) 

TrAÛ(X) 
αΰΑλ')ΑυΛλΓλ'\ (IV.l 19) 

ΊτΔυ(λ) 

We can then find an expression for the average value of an 
observable Â

(s)
 of the system s; actually, the operator 

Â = Α
ω
 χ î

m
 (IV. 120) 

corresponds to the operator Â
(s)
 in Hilbert space of the total 

system; its mean value is given, according to (IV.118) and (IV. 119) 
by +00 

J ΎτΔϋ(λ) 
Tr[Ä

is)
dUsß')]

 Ύ τ Δ υ
τ ( λ - λ ' ) ( I V 1 2 1) 
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As the integration is overA', we see that the average values of the 
observables Â

(s)
 are calculated with a distribution which depends 

only on the variable λ' of s and which is defined by (IV. 121). We 

Tr Δϋτ(λ — λ') 
must evaluate therefore the expression x which 

ΎτΑϋ(λ) 
defines the effect of the thermostatic contact on the distribution of 
the system s. We shall calculate now an asymptotic value for the 
preceding expression using the properties of the thermostat. 

2. Properties of the thermostat 

The thermostat only needs satisfy the condition of being a 
system with a very large number of degrees of freedom (this 
number is much higher than that of the observed system s); 
therefore, we can suppose that it comprises a very large number 
of parts Tl9 T2, Ti9 Tn, the interactions between which can 
be neglected [system with weakly coupled components')*] ; by 
using formula (IV. 116) we can then write: 

dÛM)
 =

 { Γ1 dÛTi{Ad} dÛTn (ή - " i > (
ΐ ν

·
1 2 2

> 

Λ ι Λ η - ί 

whence we obtain 

Tr[dÛT(A)] = j . . . j * |"ζΤΓ[^ Γ | (^,)] |τΓ^ Γ ι 1 ^ - Σ/<)]· 
Λη-ί 

(IV.123) 

These formulae are the quantum parallels of the law of com-
pounding invariant measures of energy hypersurfaces in classical 
mechanics (Khinchin, 1949, pp. 41 and 8 1 ; see also Appendix I, 
§ 4). The formal analogy of (IV.123) with the law of compounding 
of probabilities suggests that, with Khinchin, we use the central 
limit theorem for calculating the probabilities, in order to obtain 
an asymptotic expression for (IV.123): 

If we consider η stochastic variables xt with independent 
η 

distributions Ui{x^dxi9 the distribution of the sum x = YJxi 

/ = 1 

t For the definition o f such systems, see Appendix I, § 4. 
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where Β is the sum of the dispersions of the variables xt. Given 

in the form of (IV. 123), we shall find an asymptotic formula for 

Tr [dUT(A)] by using the previous theorem. 
Before we can use this theorem, we assign to each Tr [dUTi(Ai)] a 

normalised probability distribution : 

Φτ,(β) 

which satisfies a law of compounding similar to (IV. 123). For the 
normalisation function ΦΤί(β), we have: 

+ 00 

Φτ,(β) = j e-"
At
TT[dÛTl(Af)] = Tr[exp(-/î£ r , )] , (IV. 127) 

— 00 

so that the asymptotic law for the total system can be written as 

du
ß

T(A) = J _ exp Γ - Ο
1
 - Ë T )

2
 "I d A ( I V 1 2 8) 

J2nBT L
 2

^τ J 

where ET represents the average value of the energy in this distri-
bution and BT represents the sum of the energy fluctuations of 
the various components. We obtain from (IV. 128) the asymptotic 
law for Tr [dUT(A)]: 

Tr[dÛT(A)] = ^ £ L exp ΓβΑ -
 ( IL

 " ^ 1 M, (IV. 129) 
J2nBT L

 2
^τ J 

where Φτ(β) is the product ]J ΦΤί(β)· 
/=1 

obeys the law 

M ( x ) = i " ' i { r t " ' ( X i ) ^ ' } M " ( x ~ 5 X f ) ' (IV'124) 

If the distributions u^Xi) fulfil certain conditions (the most impor-
tant of which is that the dispersion of the variables xt is finite), 
the distribution law for χ has the asymptotic form 

u(x) dx = —1= exp
 (

* ~*
)2
 j àx9 (IV.125) 
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3 . The canonical and grand-canonical ensembles 

Let us apply this result to the argument λ - λ' = Λ ; by observing 
that 

(A - ΈΤΥ = (λ' - Es)
2 

and that the fluctuations of the system studied are generally several 
orders of magnitude smaller than those of the thermostat whose 
average is BT, we have 

Ίχ[άΰτ{λ - λ')] ~ °^}_é
a
-^dA. (IV. 130) 

\Ι2πΒτ 

Likewise, for the total system we shall have 

Τ γ [ Λ 7 ( Α ) ] ä ePdA. (IV. 1 3 1 ) 

V 2τΐΒς 

On the other hand, we have Φ8(β) = Φτ(β) Φ8(β) (by definition and 
because the interaction between s and Τ is negligible) and BS&BT9 

since Bs differs from BT only by the contribution of the small sys-
tem s, which can be neglected. Thus, we have (by considering the 
interval of energy Δλ as physically very small): 

T r [ ^ r ( A - ^ ) ] ^ _ l _ ^ 

Ίχ[Δΰ{λ)} Φ8(β) 

with the result that the distribution defined by (IV. 1 2 1 ) can be 
written as 

+ 00 

1 Γ ι 0-ß
HS 

es = — — e~
ßV
 dÛs{X') = — — e-

ßHS
 = — — (IV. 133) 

Φ,(β)) ΦλΡ) Trie-?"*) 
— 00 

[by using formula (IV. 1 2 7 ) ] . 

This is the canonical distribution for the system s: the effect 
of the thermostat is found to be concentrated in the parameter β. 
Thus, we see that a canonical distribution can be derived which 
corresponds to a system in thermal equilibrium with a thermostat, 
by using the microcanonical ensemble for an isolated system. 

In this way, we see that the whole of statistical mechanics 
rests, in the ultimate analysis, on the study of isolated systems and 
on the justification of the replacement of observed quantities 
concerning these systems by the averages taken over the micro-
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canonical ensemble: this is the problem dealt with by the ergodic 
theory. 

We can even interpret the foregoing result by saying that in 
statistical equilibrium the state of some small part of an isolated 
macroscopic system (whose interaction with the remainder of the 
system is weak) is properly represented by the canonical ensemble 
defined by formula (IV. 133). This property is satisfied by any sub-
system (even microscopic) provided that it is small compared with 
the total system; in particular, we can apply it to the case of an 
atom in a perfect g a s : | w e obtain in this way the Maxwell-Boltz-
mann distribution, which shows us that the analogy between this 
and the canonical distribution is not fortuitous. 

On the other hand, it is easy to connect the distribution para-
meters with the observed macroscopic quantities; in fact, we 
have for the mean value of the energy 

where Φ3(β) is the partition function corresponding to the canonical 
ensemble, starting from which we can calculate the thermodynamic 
quantities. Formula (IV. 134) then allows us to establish: 

(a) the principle of equipartition of energy; 
(b) the relation β = 1/kT, where Τ is the absolute temperature 

[it is sufficient to apply (IV. 134) to a monatomic perfect gas]. 
By comparing now (IV. 133) and (11.33), we can see that the 

parameters of the canonical distribution (11.33) can be written as 

Thermodynamical considerations lead, in addition, to iden-
tifying Ψ with the (Helmholtz) free energy F of the system. Without 
further emphasis on these applications, we can see that the canoni-
cal ensemble plays a principal role in the thermodynamic appli-
cations of statistical mechanics by enabling us to define the concept 
of thermal equilibrium; this is why it was fundamental to establish 

t Cf. Appendix I, § 4 . 

^ Tr(H
s
e-

ßus
) 

F s = —r- ^ ~ 
Tr(é?-0«') 

dln<l>s(ß) 

dß 
(IV. 134) 

(IV. 135) 
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the relationship between this ensemble and the microcanonical 
ensemble. 

The same considerations can be developed for the grand-
canonical ensemble. Actually, the proof of the canonical distri-
bution rests on the use of the central limit theorem (IV. 125): 
the use of this theorem is legitimate in the case where we are 
looking for the statistical distribution between different parts of a 
system, for a quantity which satisfies a conservation law and a 
law of additivity; this is the case with the energy according to 
formula (IV. 114). It is the same for numbers of particles of different 
kinds which we introduce into the definition of grand ensembles; 
thus, we can apply the previous reasoning to a small part of a large 
system composed of h species of particles: the large system plays 
here, at the same time, the role of a thermostat and of a "particle 
reservoir" for the small sub-system considered. The law of distri-
bution for the numbers of particles of each kind in the sub-system 
thus has a form comparable with the canonical law for energy and 
new macroscopic parameters μι make their appearance, which are 
related to the average numbers of particles nt in the same way as 
the modulus of the canonical distribution is related to the average 
energy; thus, a system composed of a variable number of particles 
in statistical equilibrium with its surroundings is described ade-
quately by a grand-canonical ensemble of the form (11.35). 

As for the canonical ensemble, we can express the parameters Ω, 
θ and μχ as functions of the average values of the energy and 
of the numbers of particles of the system considered. For this 
purpose, we calculate the following average values: 

_
 Ω

 + -
 E

n(
n
i) 

E= Σ £ n ( " i ) e x p -
ni...nh,n 

Ω + Σ/MiWi - En(nt) 

"ι = Σ
 w

'
e x

P
 !

— ( / = 1 , 2 , . . . , A ) , 
nlm..nhtn Ό 

(IV. 136) 
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to which we add the relation 

(IV. 137) 

obtained by starting from (11.36'). We then show that, just as for 
the canonical ensemble, we have 0 = AT and that the parameters μι 
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must be identified with the chemical potentials introduced by 
Gibbs. 

We shall end this discussion by mentioning that in the case 
of systems with a very large number of degrees of freedom, we 
arrive at the same results for the average values of the sum func-
tions whether we calculate them in a microcanonical ensemble 
or in canonical or grand-canonical ensembles. More precisely, we 
can say that the average values calculated in a microcanonical 
ensemble corresponding to a given energy E0 are equal to those 
calculated in a canonical ensemble corresponding to an average 
energy Ε = E0; however, this is valid only if the quantities whose 
averages we are taking can be put into the form of sum functions 
in the sense of Khinchinf (see Chapter I). This result allows us to 
simplify the calculation of mean values, since we are dealing now 
with independent variables which are being restricted no longer by 
constraints such as the fixing of the energy or of the number of 
particles. Thus, we can justify the use in statistical mechanics of 
canonical and grand-canonical ensembles by understanding it as a 
purely mathematical procedure, suitable for simplifying the calcu-
lation of the average values of the sum functions: it is possible also 
to develop statistical mechanics by taking the canonical or grand-
canonical distributions as a starting assumption without forgetting, 
however, that these are based on the microcanonical distribution. 

Concerning the physical significance of these ensembles, it is 
made more precise by the analysis of the present section, ac-
cording to which the canonical and grand-canonical ensembles 
representing a system in statistical equilibrium with its surround-
ings, are deduced from the microcanonical distribution associated 
with the total system (observed system + surroundings) considered 
as isolated. As the justification for the microcanonical ensemble 
itself depends on the existence of an ergodic theorem, we see that 
the ergodic theorem in its precise or "probabi l is t ic" form actually 
contributes the indispensable foundation of statistical mechanics. 
Thus, the objections to the ergodic theorem based on a criticism of 
the concept of an isolated system appear to be without foundation; 
however, if such a concept is frequently an abstraction, from the 
point of view of physics, because of the small but numerous and 

t If this condition were not fulfilled, we would risk introducing serious errors ; 
thus, for example, the energy dispersion is zero for the microcanonical ensemble 
but has a positive value in the canonical ensemble. 
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almost uncontrollable interactions of a given system with its 
surroundings, it is conceivable nevertheless that the changes in 
energy of a macroscopic system with its surroundings are made 
sufficiently small to be able to neglect them on our scale. Moreover, 
if we accept that it is preferable, according to the degree of isolation 
of the system,! to represent it by a canonical ensemble, nothing 
remains except that the use of such representative ensembles rests 
on the fundamental postulate of statistical mechanics about a priori 
probabilities; this postulate relies necessarily for justification on 
either the ergodic theorem—at least in its approximate form—or 
on the / /-theorems and on the kinetic method which we shall be 
studying in the second part. (We shall see, nevertheless, that the 
/ /- theorem in its generalised form can be proved strictly only by 
recourse to the results of H o p f s ergodic theorem; see Chapter V, 
§ II.4 and Chapter VI, § III.2). 

4. System-thermostat coupling and irreversibility 

To conclude, we shall point out that the concept of interaction of 
a system with its surroundings can be used with a view to placing 
on a wider basis the problem of proving the foundations of statisti-
cal mechanics. In this class of ideas, we can visualise two research 
methods, according to the manner in which the coupling between 
the observed system and its environment is described. In the first 
method, the system being studied is considered as a small part 
of a larger system whose total Hamiltonian comprises three terms: 
the Hamiltonian of the observed system, the Hamiltonian of the 
" sur round ings" forming the thermostat, and a generally very 
small interaction potential. We then examine under what con-
ditions the time average of an observable of the system being 
studied can be equal to its phase average. We must classify under 
this line of research the work of Klein (1952) who finds the 
ergodicity conditions for the expansion coefficients of the wave 
vector W(t) of the total system. Although these conditions are in 
fact almost identical to those we encountered when studying the 

t See, concerning this subject, the analysis o f R. C. Tolman (1938), Chap-
ter XII . W e point out also that some authors, for instance Landau and Lifshitz, 
consider that the inevitable interaction between a quantum system and the 
measurement equipment being used by the observer could play an essential 
role in the irreversible evolution towards equilibrium. W e shall postpone the 
discussion o f this problem until Chapter VII. 



Classical and Quantum Statistical Mechanics 

144 

earlier quantum ergodic theorem (cf. Chapter III, § II), they must 
be interpreted differently here, since they refer now not to the 
system itself but to its interaction with the surroundings; they 
remain, nevertheless, completely formal and come up against 
the same objections as in the case of an isolated system. Ekstein's 
attempt (1957) also belongs to this same method of research; the 
thermostat is considered as if formed from Ν identical systems 
interacting with the system being studied through a potential of the 
form XV. Ekstein then shows that the time-average and the phase 
average of an observable in the observed system are equal for 
"a lmost a l l " interactions XV, when Ν becomes very large and the 
coupling constant becomes very small; "a lmost a l l " denotes here 
that the averages are taken with a uniform probability distribution, 
as we have done in the present chapter for isolated systems. This 
method is therefore similar to that which leads to the probability 
ergodic theorems and, in consequence, suffers from the same 
disadvantages, namely, the incompatibility between a uniform 
probability distribution and the possible existence of primary 
integrals other than energy (see Chapter I, § III.4 and Chapter III, 
§ IV.4). We shall remember, however, from this attempt by Ekstein 
the essential role played once more by transition to the limit as 
Ν -+ oo. We have already emphasised several times, especially in 
connection with the theorem of Golden and Longuet-Higgins 
(cf. Chapter III, § IV.4), the importance of this limiting process which 
does not commute with the transition to the limit as Τ-+ oo. It 
appears as though the systematic application of this limiting process 
to the situation envisaged here would open an interesting way 
of research, as seems likely from certain calculations on which 
we are engaged at present. 

Another route consists in describing the interaction of the 
system with its environment by a perturbation of a statistical 
nature which is responsible for the irreversible evolution of the 
system. This line of research, which has been developed by various 
au thors , ! leads to the introduction of a stochastic term in the Liou-
ville equation which replaces the usual perturbation potential XV. 
This term has the effect of producing sudden changes in the tra-

f F r o m amongst the papers relating to the irreversible evolution o f a system 
towards a stationary state, we cite those by Bergmann and Lebowitz (1955) 
and Lebowitz and Bergmann (1957). For the case o f systems in equilibrium, 
we cite papers by Blatt (1959) and Mayer (1961). 
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jectory followed by the unperturbed system, and thus giving rise 
to a "scinti l lat ing" motion of the representative point Pt of the 
system which describes a discontinuous trajectory in phase space. 
In order to obtain the desired evolution, it is necessary to impose on 
this random perturbation certain supplementary conditions; 
in particular, it must be such that the point Pt finally passes 
through all the "accessible" points of the phase space of the 
system. By virtue of this latter condition, suggested earlier by 
Maxwell (1879; see also Truesdell, 1961), the integrals of motion 
of the unperturbed system are destroyed by the presence of the 
stochastic perturbation. Although the irreversibility of the evolu-
tion thus appears to be well established, we must not forget 
however that it is actually introduced a priori into the description 
of the interaction between the observed system and its surround-
ings, which is expressed as a "Zit terbewegung". Finally, the 
supplementary conditions which it is necessary to impose on this 
interaction contribute to reducing further the interest in this method 
of research: they are of an essentially statistical nature and com-
pletely comparable with the hypothesis of molecular chaos 
introduced right at the first appearance of the kinetic theory 
of gases; as we shall have occasion to see in later chapters, this 
kind of hypothesis is, in fact, just as restrictive as the ergodic 
hypothesis. 
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In the first part we have studied how the classical and quantum 
ergodic theorems enabled us to answer the fundamental question 
of statistical mechanics by identifying the limit of the time-
averages of mechanical quantities with the statistical averages 
taken over the microcanonical ensemble. According to the pro-
perties of microcanonical ensembles (stationary ensembles describ-
ing an isolated system), we can assume that the ergodic theory, 
although justifying the methods of statistical mechanics for macro-
scopic systems, shows that an isolated system tends naturally after 
quite a long time (measured in terms of the microscopic evolution) 
towards statistical equilibrium states. This is particularly obvious in 
the case of Hopf 's theorem since we determine by this theorem the 
conditions under which some initial distribution approaches a 
limit distribution. We have mentioned already, however, that in 
this connection we could not draw precise conclusions from the 
ergodic theory concerning the manner and rapidity with which the 
equilibrium state was achieved, without integrating the equations 
of motion; now, this is precisely what statistical mechanics aims 
to avoid. 

In fact, by depending on time-averages over very long periods 
and on stationary ensembles, the ergodic theory enables us above 
all to establish the principles of statistical mechanics for systems 
in equilibrium; with regard to the study of the irreversible evo-
lution of non-equilibrium systems, we must turn to other more 
suitable methods which we are going to discuss in the second part 
of this book. These must achieve a dual purpose ; on the one hand, 
to take account of the irreversibility of evolution, which forms the 
objective of the / /- theorems, and, on the other hand, to enable a 
quantitative study of irreversible events and of their tendency 
towards equilibrium, which is described by kinetic equations. 
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Historically, the first method used with success was that of the 
kinetic theory of gases, based on the concept of the velocity 
distribution function, which led to Boltzmann's equation relating 
the macroscopic evolution of a gas with its microscopic (atomistic) 
structure. We know that this equation depends on the dynamic 
study of binary collisions between atoms and on the postulate of 
molecular chaos, whence we deduce the irreversibility of evolution 
with the aid of Boltzmann's if-theorem. But the conclusions of this 
theorem appear to be contradicted by the objections of Loschmidt 
and Zermelo based on the dynamic properties of a mechanical 
system which led Boltzmann afterwards to draw attention to the 
statistical significance of the / / - theorem; this significance still had 
to be examined thoroughly by the work of P. and T. Ehrenfest. 
Finally, Boltzmann's equation and the / / - theorem are based on the 
postulate of molecular chaos, whose statistical nature is well-
established but whose real content is far from being completely 
elucidated; the fundamental problem of statistical mechanics of 
non-equilibrium systems is thus to explain the necessary assump-
tions for establishing an //- theorem and for deducing the kinetic 
equations which generalise Boltzmann's equation. If we adopt 
the point of view of Gibbs' ensembles, this problem becomes one of 
analysing under which conditions a statistical ensemble of systems 
represented by a non-steady-state distribution tends towards a 
steady-state ensemble. We can then prove that the fine-grained 
densities of the first part are not suitable for a proof of / /- theorems, 
since they obey Liouville's equation (or its quantum parallel) which 
is reversible like all the equations of classical or quantum me-
chanics. Thus, the important question is posed immediately of 
the compatibility of the dynamic properties of a mechanical system 
and of its irreversible evolution from the macroscopic point of view. 

A first answer to this question is provided by the introduction of 
coarse-grained statistical densities in the sense of Ehrenfest, whose 
definition in classical mechanics is based on the division of .T-space 
into cells of finite volume and, in wave mechanics on the quantum 
"ce l l s " associated with the macroscopic operators of Chapter II. 
With the help of these definitions we can then establish completely 
analogous classical and quantal generalised / /- theorems, valid for 
ensembles of systems, by relying precisely upon the difference in 
evolution between the fine-grained densities ρ and the coarse-
grained densities P. We can see at once that the quantum proof 
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of the / / - theorem includes, with Klein's lemma, an extra element 
of irreversibility inherent to the quantal density matrices ρ. We 
shall show also that the introduction of macroscopic "ce l l s " in 
quantum theory enables us to avoid the difficulties concerned with 
the evolution of an isolated system towards a state of equilibrium 
(by breaking away from perturbation potentials external to the 
system). 

Unfortunately, the generalised / / - theorem does not constitute a 
strict proof of the tendency of a system towards an equilibrium 
state, but it contributes only to the qualitative arguments which 
make such an evolution probable. Such an evolution can be deter-
mined effectively only by integrating the equations of motion 
and hence by looking for solutions of Liouville's equation; 
actually, in this model, the probability is involved only in the initial 
distribution P(0), the evolution of the distribution being governed 
by the deterministic equations of mechanics. In order to get away 
from this difficulty, we can try to reject the mechanical description 
of Liouville's equation in order to make use of models inspired by 
the theory of stochastic processes. 

Accepting that only binary collisions determine the mechanism 
of evolution, we can calculate first of all the probabilities for 
transition between the various cells of / '-space, relying on the 
fundamental assumption of statistical mechanics, which is equi-
valent—in the case of a uniform gas and for a given instant—to the 
hypothesis of molecular chaos (Stosszahlansatz). If we consider a 
single system, we can then express the most probable value for the 
time derivative of Η and thus obtain an //- theorem which gives 
rise to the well-known discussions of Ehrenfest concerning the 
statistical nature of this theorem. In doing this, we shall pay par-
ticular attention to examining thoroughly the fundamental assump-
tions which are essential to the kinetic theory and to establishing 
Boltzmann's equation; we shall see, in particular, that to use the 
transition probabilities calculated with the help of the fundamen-
tal principle of statistical mechanics is strictly valid only during 
a quite short interval of time after the instant of macroscopic obser-
vation which determines the initial statistical ensemble. It follows 
that if we wish to apply the results obtained previously to study the 
evolution of the system over a long period (for example, for a cal-
culation of relaxation times) and to derive Boltzmann's equation, 
we must assume that the hypothesis of molecular chaos is valid at 
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every instant of evolution. Compared with the fundamental assump-
tion of equiprobability of statistical mechanics, this latter assump-
tion is naturally much more restrictive, since it introduces the 
concept of probability into the evolution mechanism itself. 

This is why we are led, with a view to analysing the real signi-
ficance of this hypothesis, to attempt to describe the evolution 
of a uniform gas by a Markovian stochastic process in / '-space. 
By choosing for the transition probabilities those provided by the 
"Stosszahlansatz", we find that the distribution functions of 
jT-space must obey a linear equation called the " Master Equat ion" , 
from which we can derive a non-linear equation of the Boltzmann 
type, by means of appropriate assumptions. Moreover, we can 
show that these assumptions can be incorporated—at least in 
certain cases—in the initial conditions and that they are not 
incompatible with the "Maste r Equa t ion" ; we emphasise, in 
addition, that in all these arguments the large number of degrees of 
freedom of the equation plays an essential role, as in the ergodic 
theory. The real significance of the Clausius-Boltzmann assumption 
of molecular chaos is thus explained, but the result is applicable 
only to a uniform gas; unfortunately, there is nothing at present 
similar in the general case of a non-uniform state. In conclusion, 
we see that even if the generalised ^ - theorem provides a theoretical 
framework which is adequate for describing the irreversible evo-
lution of a macroscopic physical system, it has been possible to 
obtain quantitative results only by introducing a random element 
into the evolution of the system itself an element which can be 
reduced in certain cases to a Markovian stochastic process in 
/ - space 

However, if the introduction of the necessary assumptions for the 
kinetic method, or of carefully chosen stochastic processes enables 
us to describe the irreversible behaviour of a non-equilibrium 
system, it is essential nevertheless that this description remains 
compatible with the subsequent dynamic evolution expressed by 
Liouville's equation; this is the sole condition to which the funda-
mental problem of the statistical mechanics of evolutive systems 
will be reduced. This is why we review the various researches 
undertaken on Liouville's equation itself and on its approxi-
mate integration, discussing more particularly Brout and Bogol-
yubov's methods, which appear to open the most interesting pro-
spects. Bogolyubov's method, especially, draws attention to the 
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existence of various time scales in the evolution of a gas; these 
enable us to take into account, to a certain extent, the mechanism of 
macroscopic irreversibility and we can associate with them different 
levels of observation of the state of a system: in this way, the role 
played in statistical mechanics by certain properties of macroscopic 
observations, which we have already analysed in the general intro-
duction, can be made more precise. Seeing the importance of the 
work accomplished in classical theory, we have been obliged to 
devote the whole of Chapter V to an account of the methods of 
classical statistical mechanics and we shall not deal with the quan-
tum point of view until Chapter VI. 

In addition, the foregoing results are extended without difficulty 
to the quantum theory where we can repeat point by point the dis-
cussions and stages of reasoning of classical theory by calculating 
the time-proportional transition probabilities with the help of the 
fundamental assumptions of quantum statistical mechanics, which 
we have explained in Chapter II. Similarly, we can apply Markovian 
stochastic processes to the study of irreversible quantum events by 
setting up a "Mas te r Equa t ion" for the distribution function of 
the occupation numbers of the individual stationary states of the 
particles. 

Finally, in a last chapter taking the place of a general conclusion, 
we shall return to an element of irreversibility specifically belonging 
to wave mechanics, which appears via the Klein lemma: we shall 
see that its nature enables us to connect it with the irreversibility 
of the quantum measuring process. After a rapid review of the 
measuring process, we shall show the fundamental difference 
existing between macroscopic and quantum irreversibility which 
appears at a certain stage of the measuring process. We shall see 
that this difference is reduced to that existing between the square 
of the probability amplitudes which determine a pure case, and the 
probabilities in the classical sense which are involved in the defi-
nition of statistical ensembles of systems and of mixtures especially. 
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CHAPTER V 

Η-Theorems and Kinetic 
Equations in Classical 
Statistical Mechanics 

I. Mechanical Reversibility and Quasi-Periodicity 

1. Mechanical reversibility 

In this first section we shall study certain properties of mechanical 
systems which are at the root of serious difficulties for statistical 
mechanics of non-equilibrium systems, difficulties that we shall 
try to overcome in subsequent sections. We begin by showing that 
the fine-grained densities ρ(Ρ, t ) defined in Chapter I are not suitable 
for describing the irreversible evolution of a system. We recall first 
of all that the equations of classical mechanics are reversible and 
this is expressed by the invariance of the Lagrangian equations 
under the transformation of t to — / and qt to — qt. In fact, if the 
Lagrangian L is conservative and quadratic in the generalised velo-
cities qi9 the system of Lagrange equations 

d dL dL _ 

dt dqt dqt 

can be written also in the form 

d dL dL _ 

dt' dq\ dq\ ~ ' 

in which we have put t' = —t9 q&t) = — qt( — t), q[(t) = q^ — t); 
the motions described by qt(t) and q[{t) are thus equally solutions 
of the Lagrangian equations and they correspond to the same tra-
jectory traversed in the reverse direction with opposite velocities. 
It follows that to every solution determining a possible motion 
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of the system there always corresponds the reverse motion obtained 
by replacing t by — t and qt by — qt. 

This completely general result is the origin of the first principal 
difficulty encountered in statistical mechanics of non-equilibrium 
systems which must emphasise a privileged direction of evolu-
tion. In fact, if a specified mechanical motion of the system corre-
sponds to an evolution taking place in a certain direction, we see 
from the above argument that the reverse motion which is theore-
tically possible involves an evolution in the opposite direction. This 
statement is at the basis of Loschmidf s paradox, which appears 
to contradict the conclusion of Boltzmann's / / - theorem and which 
makes necessary the introduction of the statistical point of view 
in the kinetic theory of gases. 

This statistical point of view leads us to consider statistical en-
sembles of systems in P-space, defined by an, in general non-
stationary, fine-grained density ρ(Ρ, i ) , and whose evolution is 
determined by Liouville's equation 

This is obtained from the equations of classical mechanics and it 
retains, as a consequence, their reversible nature; moreover, it 
expresses only the conservation of density in phase, as we can easily 
ascertain by writing (V.l) in the form: 

where djdt is the derivative operator of hydrodynamics "following 
the mot ion" . We can say also that the evolution of the probability 
fluid is equivalent to that of an incompressible fluid in /"'-space. 

It follows from this property that there is no privileged direction 
of time for the evolution of such ensembles of systems and that it 
is not possible to establish an / / - theorem for fine-grained densities, 
without recourse to supplementary assumptions which risk contra-
dicting the principles of classical mechanics. 

In addition, we can express this property in another way by 
introducing a quantity similar to the one we shall use later in 
the proof of the generalised / /- theorem. Let this quantity be 

(V.l) 

(V.l ' ) 

(V.2) 
r 
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which is equal to the phase average of ln ρ |
 a n (

l which is made a 
minimum by microcanonical, canonical and grand-canonical stati-
onary ensembles, as we shall show in the next section. However, if 
ρ evolved in such a way as to approach a stationary density, the 
quantity a would have to be decreasing and we should have 
dajdt < 0. However, we can prove without difficulty by using (V.l ' ) 
that dajdtis zero; in fact, we have 

It follows that the quantity a remains constant during evolution, 
which expresses in another way the reversibility of classical mecha-
nics and the impossibility of proving a privileged direction of evo-
lution with fine-grained densities. We shall see that this difficulty 
is removed by the introduction of coarse-grained statistical den-
sities in the sense of Ehrenfest, which alone allow us to state 
the / /- theorem correctly. 

2. Extremum properties of stationary ensembles 

Before going further, it is interesting to show that the densities 
defining the stationary ensembles make the expression a a minimum. 
In order to prove this result, we must look for expressions of ρ 
which make or a minimum; this minimum is connected with supple-
mentary conditions corresponding to the various macroscopic states 
considered: we shall therefore use the method of Lagrangian mul-
tipliers. To a small variation δρ of ρ, according to (V.2) there corre-
sponds a small variation δσ given by 

(a) In the case where we know that the system is in an energy 
shell δΕ, the foregoing integration is carried out only over the 
region of Γ contained in this shell, and we have the supplementary 
condition 

(V.3) 

Γ 

(V.4) 
Γ 

(V.5) 
δΕ 

t η = In ρ is what Gibbs calls the index of probability in phase. 
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jdT 

ÔE 

and in this way we find again the microcanonical ensemble. 
(b) If only the average energy of the system is known, the supple-

mentary conditions r 

α' = )ραΓ= 1, (V.5') 
r 

and 

b = j ΕράΓ = Ê, (V.10) 
r 

must be added to (V.4), to which correspond the variations 

δα'=$δραΓ and öb = JEdQdr. (V . l l ) 

Γ Γ 

a will be extremal if we have 

δα + oc
f
 δα' + 006 = 0 , 

or 

j (In ρ + 1 + oi + /MS) <5ρ</Γ = 0 , (V.12) 
r 

whence we obtain 

ρ = ê-
1
-""**. (V.13) 

from which we obtain for the variation δα, 

δα = ΙόραΓ. (V.6) 
δΕ 

a will be extremal if we have 

δα + oc δα = 0 

(where oc is a parameter to be determined); thus, by (V.4) and V.6) 
we must have 

| ( 1 η ρ + 1 + α)δραΓ= 0 , (V.7) 

ÔE 

whence 

ρ = ^ "
1 _ α

 on δΕ. (V.8) 

The constant oc is determined by putting (V.8) in (V.5); thus it 
becomes 

(V9) 
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If we compare it with formula (1.15), we find the canonical en-
semble in its usual form by putting 

- 1 - = — and β = — . (V.15) 
0 θ 

(c) In the case where the number of particles is not fixed and 
where only its mean value is known, the condition 

c = jngdr = ή (V.16) 
r 

must be added to relations (V.5') and (V.10). The variation 

'ôc = jnÔQdr (V.17) 
r 

corresponds to (V.16) and a will be extremal if 

δσ + oc' δα + ßob + γ de = 0 , 
or 

| ( 1 η ρ + 1 + oc' + βΕ + γή)δραΓ = 0, 

r 

whence we derive 
Q = e-l-«'-ßE-yn ( V 1 8) 

We find again the grand-canonical ensemble of formulae (1.17) and 
(1.18) by putting 

ß = l , y--f. (V.180 

In this way we have verified that the stationary ensembles (V.8), 
(V.13) and (V.18) correspond to an extremum of the quantity a. 
It is easy now to verify that this extremum is in effect a minimum. 
For this purpose, let us consider two densities ρχ and ρ 2 , where ρ χ 

is one of the three stationary distributions encountered above and 
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As before, we determine oc' and β starting from relationship 
(V.5') and (V.10); in particular, we have for oc': 

e-
1
-*' = — ! . (V.14) 

e~ßEdr 
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where ρ 2 is defined by 

Δη being some phase function. We have always δρ = ρ2 — ρι 
= ρ ι ( ^ — 1) and, in the microcanonical case where ρί = con-

stant, we have according to (V.5): 

JV* - l)dT = 0 . 

If, now, we form the difference 

<*2 - tfi = / (ρ 2 1ηρ 2 - ρι In ρι) αΓ, 
the quantity: 

J ( l - Ι η ρ χ Η ρ ! -Q2)dT 

can be added, which is zero since ρ! is constant; the difference 
<r2 — #ι can then be written 

* 2 - * i = JQi[^e
Ari
 - e

An + 1]</T. (V.19) 

This expression is always positive, by virtue of the properties of 
the function y = xe* — + 1 which is positive for Λ ; Φ 0 and 
zero for χ = 0 (we have, in fact, X0) = 0 and dyjdx = xe

x which 
always has the sign of x). Thus, we have: 

<*2 —
 σ

ι > 0 , 

which establishes the property stated for the microcanonical en-
semble. Similarly, an expression of the form (V.19) would be ob-
tained for canonical and grand-canonical ensembles by adding 
to σ2 — σ± the quantities 

Ι\β(Ψ-Ε)+1](β1-ρ2)αΓ 

and j [β(- Ω — ημ + Ε) — 1 ] (ρ 2 - ρ±) αΓ, 

which confirms the minimum properties of these distributions. 

3. Poincaré's theorem 

In addition to the so-called mechanical reversibility, we must 
point out another important property of classical mechanical 
systems which is expressed by Poincaré's theorem: If the hyper-
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surface Σ of constant energy has a finite size, the system will along 
almost all trajectories return as closely as required to its initial phase 
after a sufficiently long time (Poincaré, 1890; Carathéodory, 1919). 

In order to prove this theorem, we must define more clearly 
what is understood by the return of the system close to its initial 
phase P0 (occupied at the instant t0). Let τ be an interval of time 
and {Pn} the series of points Pn occupied at the times t0 + nx\ we 
can say that the system returns almost to P0 if any neighbourhood 
dPo of P0, however small, contains at least one point of the series 
{Pn}. The exceptional phases are those for which there exists a 
neighbourhood of P 0 which does not contain any point of the 
series {Pn} : the theorem will be proved if we can prove that these 
phases form a set of zero measure. 

The proof rests on Liouville's theorem and on the finite size of 
the hypersurface Σ. In fact, we shall cover this with a net whose 
meshes, demarcating the regions Un, are so fine that for every 
point Ρ of Σ and any neighbourhood ôP of P , there corresponds 
at least one region Ut which contains the point Ρ and is contained 
in δΡ: in this way we can have infinitely small meshes and an 
enumerable infinity of regions Un. We consider now a region Ut 

and, in this region, the set of exceptional phases Xt ; in the course 
of time this set is transformed into a series of set Xj

n)
 (corresponding 

to the times t0 + nr) which cannot have any common point, by 
hypothesis; therefore, the series {X^} defines an enumerable infinity 
of disjointed sets, all having the same measure as Xt, according to 
Liouville's theorem. The measure of their sum is equal to the sum 
of their measure: it must be finite, since μ(Σ) is finite. Thus, 
μ{Χι) = 0. 

We can repeat this argument for all sets Xt constructed from 
a region Ut\ the set of all the exceptional phases is obviously: 
X = Σ %i and according to the result for μ(Χι), we have 

I 

i 

Thus, Poincaré's theorem shows that the evolution of a mechani-
cal system has almost always a quasi-periodic character: after a 
sufficiently long time, called the recurrence time, the system passes 
again through a state which is infinitely close to its initial state. 
We point out in passing, that the proof of this important topo-
logical property of the trajectory depends, like the entire ergodic 
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theory, on the theory of the measure of sets (see Chapter I and also 
the historical review in Appendix I). 

If we consider a metric transitive system and a sub-set A of the 
hypersurface Σ, it is easy to show that the recurrence time Tx 

corresponding to a point of A is given by (Kac, 1947 a, 1959; Birk-
hoff, 1931a): 

(V.20) 
m(A) 

where m(A) is the relative measure of the sub-set A (m(A) = μ(Α)Ιμ(Σ)) 
and where τ is the interval of time which separates two successive 
observations of the system. | 

Since it is almost impossible to be certain that the property of 
metric transitivity is always satisfied, formula (V.20) is difficult to 
use and it can in general be replaced, in order to calculate Ττ, 
with rougher estimates, based on certain stochastic models (see 
in particular, the work of Smoluchowski (1916 a, b) and also Ap-
pendix III, formulae (14) and (23)). The recurrence times thus 
calculated vary within considerable proportions according to the 
number of degrees of freedom of the system: if the system is 
macroscopic, they correspond always to enormous durations; they 
can be observable processes and even very small for systems (or 
subsystems) of microscopic dimensions. If, for example, we con-
sider the density fluctuations of a system under normal conditions 
of temperature and pressure, the recurrence time, corresponding to 
a density excess of 1%, varies from 1 0 1 0 14 to 1 0 " 1 1 sec, according 
as the linear dimensions of the system are of order 1 cm (macro-
scopic system) or 10~ 5 cm. 

The " recur rence" theorem thus raises a new difficulty for de-
scribing the evolution of systems by a mechanical model, the quasi-
periodicity of trajectories over the hypersurface seeming to be 
irreconcilable with the irreversible evolution of a macroscopic 
system: this is the famous Zermelo paradox, which constitutes, 
with Loschmidt's objection based on mechanical reversibility, one 
of the fundamental difficulties of the kinetic theory of gases, and 
of the interpretation of Boltzmann's / /- theorem. We note, however, 

t Naturally, we eliminate the trivial case where τ - * 0 ; actually, we have 
also Tx 0, which corresponds to the case of a system for which the repre-
sentative point has not yet left the region A. 
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from the few numerical data mentioned above, that the reversibility 
or the irreversibility of the evolution depends on the dimensions 
of the observed system: (a) If the system is of microscopic size, 
perceptible fluctuations about equilibrium are anticipated and may 
be reproduced at very short intervals of time, (b) On the contrary, 
if the system is macroscopic the fluctuations, even very small ones, 
appear only after a period which is so long that it can be considered 
justifiably as unobservable; the relaxation times of the system are 
incomparably smaller than this very large period, with the result 
that the observed evolution is effectively irreversible. 

Be that as it may, the foregoing results show that statistical me-
chanics of non-equilibrium systems must give an answer to the 
following fundamental question: How can mechanical reversibility 
and quasi-periodicity be reconciled with macroscopic irreversibility? 
We shall see in what follows, what is the actual state of this pro-
blem and we shall explain the proposed solutions (which are far 
from being definitive) by discriminating the following stages in the 
reasoning: 

1. The definition of coarse-grained distributions enables us to 
establish that a certain quantity Ή [analogous to σ of (V.2)] is 
certainly not increasing during evolution: this is the purpose of 
Section II of this chapter. This generalised / / - theorem, however, 
can neither prove the tendency towards equilibrium nor describe 
this evolution effectively; for this, we should be able to integrate 
Liouville's equation. 

2. By depending on the fundamental hypothesis of statistical 
mechanics (equivalent in certain cases to the "Stosszahlansatz") 
we can calculate the probabilities for transitions between the cells 
in phase space and obtain a kinetic equation similar to that of 
Boltzmann, for the case of a uniform gas. The proof of this kinetic 
equation, however, supposes in fact the validity at every instant 
of the "Stosszahlansatz" principle, with the result that the evolu-
tion of the system is no longer compatible with Liouville's equation, 
as we shall show in Section III . Thus, Boltzmann's equation is an 
equation of a statistical nature, but it is based on assumptions 
whose real significance (in the meaning of the theory of stochastic 
processes) is far from being clear. It is certain, however, that 
the probability does not appear only in the definition of an initial 
statistical ensemble (as is the case in the generalised / / - theorem 
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and in the ergodic theory), but that it is involved in the evolution 
process itself. 

3. This last statement leads us to attempt to describe the irre-
versible evolution of a system by a Markovian stochastic process 
in phase space; this method is studied in Section IV. With the 
transition probabilities provided by the Stosszahlansatz, we set up 
a linear "Mas te r Equa t ion" from which we can deduce by reduc-
tion an equation which is similar to Boltzmann's equation in the 
uniform case, provided that certain correlations are neglected. The 
significance of the Boltzmann equation is thus explained in this 
case, but it seems to be very difficult to extend this method to 
the case of a non-uniform gas. 

4. If the introduction of certain stochastic processes enables us 
to describe the tendency towards equilibrium of a macroscopic 
system, it does not follow that its microscopic evolution remains go-
verned by Liouville's deterministic equation; we have thus returned 
once again to the difficult problem of studying the solutions of 
this equation. This is the aim of Section V in which, having re-
called the method of successive reductions of Liouville's equation 
leading to the B.B.G.K.Y, equations, we point out the broad lines 
of Brout 's method (in which we are seeking to derive the "Mas te r 
Equa t ion" from Liouville's equation) and that of Bogolyubov 
which enables us to obtain formally generalised kinetic equa-
tions. In this way, perhaps we can hope to bridge the gap between 
the macroscopic and microscopic descriptions by depending once 
again on the large number of degrees of freedom of the system. 

II. Coarse-Grained Densities and the Generalised 

//-Theorem 

1. Coarse-grained densities 

We have just seen that the statistical description provided by the 
density ρ cannot lead to a privileged direction of evolution because 
of the reversibility of classical mechanics. In order to obtain an 
/ / - theorem which assures macroscopic irreversibility we are com-
pelled to introduce the coarse-grained density in phase space, by 
adopting a definition which is appropriate for the macroscopic 
state of a physical system starting from microscopic mechanical 
quantities. We discuss here the method of "coarse-graining" of 
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/ '-space by P. and T. Ehrenfest, since it is the best suited for studying 
the / /- theorem ; we shall encounter other definitions of coarse-
grained densities in Section V during the study of the kinetic 
equations, starting from Liouville's equation [see also the second 
footnote to § II.4]. 

Let us suppose that our system consists of Ν similar particles, 
each of which has r degrees of freedom described by the r variables 
( # i > #2> ···>#»·); we can associate with them an individual phase 
space, //-space, defined by 2r coordinates (ql9 ...,qr; ρί9 ...,/*,). 
The physical state of our system is thus represented by a cluster 
of Ν points in //-space; we note in passing that in the case where 
r = 3 (point particles), //-space is six-dimensional. Since macro-
scopic observation is, by its nature, unable to determine these 2r 
coordinates precisely, we shall assume that it enables us to distin-
guish only whether the molecule has its 2r coordinates contained 
between qt and qx + ôqi9 and pt and pt + dpt (i = 1 , 2 , r ) ; in 
this way, we shall be led to dividing //-space into a set of cells cot 

corresponding to the macroscopic inaccuracies ôqi9 öpi9 and each 
occupying a volume 

ω
ί = àqx ... ôqrôp1 ... ôpr. ( V . 2 1 ) 

in //-space. We shall suppose in what follows that these cells are 
sufficiently small compared with the measurable macroscopic di-
mensions but large enough to contain a large number of mole-
cules (P. and T. Ehrenfest, 1911). 

If, now, we consider the whole system, its macroscopic state will 
be described by the set {nt} of the numbers of molecules contained 
in different cells cof : in .T-space of 2Nr dimensions there will corre-
spond to this configuration a cell whose volume is given by 

(δυ)Γ = Γ Κ ' . ( V . 2 2 ) 

But since the permutations of molecules in the cells of //-space 
do not change the macroscopic state of the system, there will be 
in P-space 

Gn = ( V . 2 3 ) 
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cells (ôv)r corresponding to the same macroscopic situation. Thus, 
each set of numbers {wj will define, in .Γ-space, a " s t a r " Ωη whose 
measure is given by 

TV' 

W(Qn) = Gn(ôv)r = —— Πω"/ , with = (
V
-

2 4
) 

i 

Thus, to the division of //-space into cells œt there corresponds 
a division of P-space into stars Ωη which enable us to define the 
macroscopic state of a system: this s ta ters determined by the star 
occupied by the representative point of the system in jT-space and 
the most precise macroscopic observation can distinguish only in 
which star the system is located. Let us also point out that to these 
cells there corresponds a time of observation, which is small but 
finite, although this is not clearly specified in the definition: in 
fact, the representative point of the system in .Γ-space always needs 
a finite time for traversing any star Ωη with the result that tran-
sition from one macroscopic state to another can occur generally 
only after a finite period. 

Let us suppose now that we are dealing with a statistical ensemble 
of systems defined by a fine-grained density ρ; according to the 
definition of macroscopic observation adopted above, we shall not 
observe precise and instantaneous values of this density, but only 
the respective statistical weights of the stars Ωη given by the inte-
grals: 

Under these circumstances the probability of finding a system of 
the ensemble at a point of Ωη will be defined by the quantity 

JQdr 
P„ = 2= . (V.25) 

»TO 
This is the coarse-grained density (in Ehrenfest's sense) at the 
point (qi9Pi): we see by its definition that it is the mean of the 
fine-grained density ρ taken over Ωη; this density Ρ is therefore 
constant over each star and it satisfies the relationship 

ΣΡηΦ{Ωη)= 1, (V.26) 
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which can be written also as 

jPdT=l; (V.26') 
r 

we note that the quantity 

P'n = PnW(Qn) (V.25') 

represents, therefore, the probability of finding a system of the 
ensemble in the star Ωη. 

2. Definition and properties of Η 

We shall study now the evolution of the coarse-grained density 
PQP, Ot

 a n
d we shall try to show that, from some initial value, 

it tends irreversibly towards a stationary distribution. For this 
purpose we define a quantity H, similar to the quantity a introduced 
in (V.2), by the relation 

Η=ΣΡη^ΡηΨ(Ωη) (V.27) 

or : 

H = j PlnPdr, (V.27) 
r 

since Pn is constant over the whole volume Ψ(Ωη). 

We note that the quantity H, defined by (V.27), depends essentially 
on the size of the stars Ωη9 which correspond to macroscopic 
observations. On the other hand, we can replace the definition 
(V.27') by 

H= j glnPdr = ï n P , (V.28) 
r 

which is equivalent to (V.27') because of (V.25). Equation (V.28) 

shows that Η is the mean value of In Ρ taken over the ensemble of 

systems defined by the statistical density ρ, which justifies our 

writing "H". _ 
We can verify easily that Η has the same extremum properties 

as a. In other words, Η is made minimum by microcanonical, 

canonical or grand-canonical distributions according as we are 

t In this chapter, we shall denote the representative point of the system 
by & in order to avoid any confusion with the coarse-grained density P. 
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dealing with an isolated system, a system in thermal equilibrium 
for which Ε is known or with a system for which only Ε and ή 

(average number of particles) are specified, respectively. As before, 
the distributions in question can be written as 

Ρ = constant over δΕ, 

Ρ = 0 elsewhere 

for the microcanonical ensemble, 

ρ = 6<
ψ
-

Ε
ν

θ 

for the canonical ensemble, and 

Ρ = exp 

(V .8 ' ) 

(V.13') 

(V.l 8 " ) 

for the grand-canonical ensemble. _ 
On the other hand, the evolution of Η with time is different 

from that of a because of the introduction of coarse-grained den-

sities which no longer satisfy equation (V. Γ) ; if the initial distribution 

is not a stationary distribution, we have necessarily dPjdt ψ 0 

(because of the deformation of the volumes in phase space during 

motion), whence we obtain dH\dt 4= 0 in contrast to da\dt = 0. 

We shall show now that evolution probably take splace in a pre-

ferential direction by proving the inequality H(t) ^ Z/(0): this is 

the aim of the / / - theorem for an ensemble of systems, and is called 

the generalised H-theorem. 

3. The generalised H-theorem 

Let us suppose now that the initial state of the system (at t±) is 
determined by a macroscopic observation of the type defined pre-
viously; one can define a statistical ensemble of systems with a 
fine-grained density ρ χ corresponding to this state. The macroscopic 
observation determines the relative weight of the various stars, so 
that the density ρχ must be constant over them (in accordance with 
the fundamental statistical assumptions) and equal to the sta-
tistical weights defined by the observation. Thus, we see that, ac-
cording to these conditions, at the initial time tx the fine-grained 
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(V.29) 

(V.30) 
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density ρ 1 is equal to the coarse-grained density P1 [using the defi-
nition (V.25)]. At t l 9 we have for all points of phase space: 

Qi = Λ, 

Ηγ = j ρί In ρ! άΓ. 

r 

If ρί corresponded to a stationary statistical ensemble, for 
example to a uniform distribution over an energy shell δΕ, the 
density ρ(ή would remain constant and equal to ρ χ ; we should 
have also Ρ = ρ = const, with the result that we should find 
directly an equilibrium state, where Η would be a minimum ac-
cording to (V.8'). However, in the general case where the initial 
observation fixes the system in a state far from equilibrium, the 
fine-grained density ρ(ί) will vary with time in accordance with (V. l ) ; 
because of this variation, ρ(ί) and P(t) will be different at any t 
later than t1. In fact, even though the representative points of the 
systems, initially in the same star Ωη, always occupy a constant 
volume in / '-space equal to W(ün) (according to Liouville's theo-
rem), the shape of the new volume during evolution becomes very 
different from that of the initial volume, in such a way that it 
extends over a very large number of stars Ωη; each of these is 
therefore occupied at t by numerous "f i laments" of representative 
points corresponding to a large variety of values of the fine-grained 
density ρ : the result is, that there is a difference between the fine-
grained and coarse-grained densities at / ; this difference involves a 
decrease in Ή. Thus, at t2 > t l 9 we have 

H2 = JP2 In Ρ2αΓ = jQ2 In Ρ2άΓ, 

r r 

according to (V.28). Let us now find the difference H1 — H2\ 
according to (V.29) and (V.30) we have 

Hv-H2 = \ (Ql \nQl - ρ 2 1ηΡ 2) dT. (V.31) 
r 

In order to study this expression, we note first of all that ρ! In 
can be replaced by ρ 2 In ρ 2 under the integration sign, by virtue of 
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Liouville's theorem; actually, by (V.3) and (V.2) we have: 

- ^ ί ρ 1 η ρ ^ = 0 , 
dt % 

r 
whence 

j £>! In Qidr = j ρ2 In ρ2 dr. 

r r 

On the other hand, we can add the quantity — ρ2 + P2 under 

the integral sign, which gives a zero contribution by definition; 

with these modifications (V.31) can be written as 

H1-H2 = j (ρ2 In ρ2 - ρ2 In Ρ 2 - ρ 2 + P2) άΓ. (V.32) 
r 

The / / - theorem will be proved if the integrand / is always positive. 
Let us verify that this is indeed so by calculating the derivative 
δί/ορ2 for a given value of P2. We have 

3 1
 = l n . " 

8ρ2 Ρ 2 

which is positive if ρ2 > P2 and negative if ρ2 < P2. Since, on 
the other hand, / and δΙ/ορ2 are zero for ρ2 = P2, we can see that 
expression / is a minimum for ρ2 = P2 and that it is positive if 
{?2 Φ ?2 \ according to (V.32), we have therefore, at all times 

Η, - H2 ^ 0; (V.33) 

this is the generalised / /- theorem. 

4. Discussion of the generalised H-theorem 

It can be seen from the foregoing developments that this theorem 
is obtained without any special assumptions, except the fundamen-
tal assumption of statistical mechanics, which is necessary for the 
statistical description of macroscopic phenomena and which cannot 
contradict the reversibility of the laws of mechanics. The proof 
rests essentially on the fact that the fine-grained and coarse-
grained densities are equal at the moment of the initial observation 
[equation (V.29)] and that they generally become different during 
the evolution, whence we derive equation (V.30). This inequality 
will be valid at all times during the evolution, so that we can 
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assume (without, however, proving it rigorously, which would ne-

cessitate integration of the equations of motion) that the quantity H 

continues to decrease until an equilibrium distribution is achieved. 
In order to understand the nature of this process we consider 

the volume of extension in phase corresponding to the represen-
tative points located initially in some star Ωη: as we have mentioned 
already, this volume is deformed during evolution, while main-
taining a constant size (Liouville's theorem) and it is drawn out 
into long "f i laments" which finally extend over very many stars. 
After a certain time, each Ωη is thus occupied by points which, 
initially, happened to be in very many other stars and which corre-
spond to many different values of the fine-grained density ρ: thus, 
a mixture of initial conditions is achieved, involving a change of 
the coarse-grained density and a decrease of H. 

Because of this process, it is probable that the densities ρ and Ρ 
differ more and more in the course of time and that Η will continue 
to decrease until the system attains a steady state. If the system is 
isolated, the representative points will remain contained within an 
energy shell Ε, Ε + δΕ and evolution will proceed until the coarse-
grained density Ρ becomes uniform over the shell considered. We 
can deduce from this by considering the evolution of the total 
system (system + thermostat) and by using an expression for the 
number of states of the thermostat contained in an energy interval 
that the density P , corresponding to a system in thermostatic con-
tact with its surrounding, will tend towards a canonical distribu-
t ionf (Tolman, 1938, pp. 477-501). Once such a steady state is 
reached, the quantity Η can no longer decrease, since it has at-
tained its minimum value. 

It is important to emphasise that these results are not exact, 
that they have only a qualitative value and that, in particular, we 
cannot estimate the time required to reach an equilibrium distri-
bution: we can only assert, by virtue of (V.33), that H(t) ^ H(0) 
and that the process which involves this inequality proceeds con-
tinuously during the evolution of the system; we can deduce from 
this that the coarse-grained density probably approaches a steady 
state distribution. Moreover, this is completely illustrated by the 

t Certain difficulties are encountered, however, in showing the tendency o f 
Ρ towards a canonical ensemble; see for instance Lorentz, 1907. 
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example (given by Gibbs) of a mixture of water and black ink, 
initially separated: it is well-known that by stirring it, this liquid 
will approach a state of mixing with a uniformly grey colour. 
Since the fine-grained densities of the filaments of water and black 
ink at a specified point of the liquid do not change during the 
motion, this stabilisation involves the coarse-grained density which 
corresponds to our macroscopic observation. We point out, in 
addition, that the process which we have just described and which 
enables us to prove the generalised / / - theorem is similar to the pro-
cess of mixing of initial conditions (corresponding to the various 
hypersurfaces of constant energy within the same energy shell δΕ) 
necessary in ergodic theory for proving H o p f s theorem: in this 
way we can establish a certain reconciliation between the method 
of H o p f s ergodic theorem and the less exact method of the 
generalised / /- theorem. F rom this point of view, the conditions 
for ergodicity stated by H o p f s theorem (see Chapter I, § II.4) can 
be considered as the conditions necessary for the exact proof of 
an / / - theorem; this shows that the solution of the ergodic problem 
is essential for a theoretical justification of the methods of sta-
tistical mechanics (see also Chapter VI, § III.2). 

To summarise, the definition of coarse-grained densities Ρ ap-
pears to be the indispensable theoretical basis for describing the 
irreversible evolution of a macroscopic sys tem; ! in particular, it is 
important never to lose sight of the finite dimensions of the stars 
in .T-space, if we wish to avoid the paradoxes of the kinetic theory 
of gases. In fact, certain systems may behave peculiarly (corre-
sponding to very special initial conditions) and no tendency towards 
an equilibrium state may occur in such a case; however, because 
of the finite size of the stars in / ' -space, such systems are very rare 
compared with all the systems occupying a given star, with the 
result that their observation can be considered as highly improb-
able. In conclusion, we emphasise that in the present theory the 
concept of probability is involved solely in defining the initial 

t W e note, in addition, that we can resort to other definitions o f coarse-
grained quantities which are not equivalent to the one by the Ehrenfests ; this 
is the case with the quantities coarse-grained over posit ion which were intro-
duced by Mass ignon (1957) and which are very suitable for a study o f the 
hydrodynamic properties o f a fluid. W e shall encounter also, in Kirkwood's 
method, time-averages of the fine-grained density and, in Bogolyubov's method , 
a certain synchronisation process (see Chapter V, § V.4). 
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distribution P(0), but that the evolution takes place according to 
the deterministic laws of mechanics,! the irreversibility arising from 
the gross nature of our observations. Thus, it is not possible to have 
any kind of contradiction between the statistical conclusions of the 
theory and the reversible behaviour of mechanical systems. 

III. Transition Probabilities and Boltzmann's Equation 

1. Definition of H(Z, t) 

The foregoing considerations have enabled us to show that the 
coarse-grained distribution Ρ of a statistical ensemble of systems 
would probably approach an equilibrium distribution which makes 
the quantity H SL minimum. However, the nature of the argument 
allows us neither to prove exactly the irreversibility of the evo-
lution nor to calculate effectively the speed of approach towards 
equilibrium; in particular, we cannot estimate the relaxation time 
of a system which is not in its macroscopic equilibrium position. 
For this it would be necessary, in fact, to be able to deter-
mine at each instant, or at quite small intervals of time τ, the 
density Ρ which can be calculated only by starting from the expres-
sion for the fine-grained density ρ(ί); since this satisfies equation 
(V.l), we find that we have returned to the problem of the inte-
gration of Liouville's equation. The earlier results, based on the 
generalised / /-theorem, thus provide only a theoretical proof of the 
principles of statistical mechanics, by highlighting in a qualitative 
way the tendency of a distribution towards equilibrium, without 
allowing a quantitative study of it (in particular, we note that the 
relaxation time depends essentially on the size of the stars Ωη which 
is not otherwise specified here: only their finite nature is important). 

In order to begin such a study without solving the equations of 
motion, we shall return to the physical system studied and we shall 
see how we can describe the evolution in time of its macroscopic 
state. We know that in the mechanical description a microscopic 
state of the system is represented by a point 0* of P-space and that 
the trajectory of this point in /"-space defines the (reversible) evo-
lution of the system; but this trajectory, in fact, is not known to us 
since macroscopic observation does not allow us to define precisely 

t This kind o f process is called crypto-deterministic by Whittaker (1943). 
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the exact position in / '-space of the representative point SP{t) but 
only to say that 0*(t) is located in one of the stars Ωη. So long as 
the point &(t) occupies the same star, the macroscopic state of 
the system remains unchanged and it is determined completely by 
the set of numbers {nt}. Just as we have seen in the first section, to 
each of these constellations there corresponds a volume W(Qn) 
given by (V.24). If we denote by Ζ the macroscopic state of the 
system corresponding to the occupation of Ωη, we can assign a 
quantity H(Z) to each state Ζ which is defined, according to Boltz-
mann's concepts, by the logarithm of the extension in phase (or 
the statistical weight) corresponding to Z , or 

H{Z) = - In W{Z) = £ > i h* w( + const. (V.34) 
i 

It is easy to prove that H(Z) is minimum for the Maxwell-Boltz-
mann distribution: actually, since the system is isolated with an 
energy which is known within an interval δΕ and each Ωη has a 
weight proportional to its volume, the most probable distribution 
will be defined by the set {wj corresponding to the star ß m a x of δΕ 
having the maximum weight; thus it will be determined by the 
conditions 

δ In Ρ = δ In W(Z) = - £ (In nt + 1) dnt = 0, \ 
1
 (V.35) 

i i
 J 

which are satisfied (we use, as before, the method of Lagrangian 
multipliers) by the Maxwell-Boltzmann formula 

w( m a x ) = <r*-0% (V.36) 

where the et denote the energies of molecules located in œt (it is 
assumed in the calculations that the quantities nt are large enough 
to enable us to use Stirling's formula). 

Moreover, if we consider the volume of a star Ω'9 close to ß m a x 

and corresponding to occupation numbers n\ — «
(max)

 + δηΐ9 we 
find for this volume by (V.35) and (V.36): 

Ψ(Ω') = ^ ( Û m a x) e x p 1 Σ 

i n\ (max) 
(V.36') 

in which we have retained only the terms of second order in 
Thus, it can be seen that the maximum W{üm̂  of the volumes 

1 7 3 
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W(ût) of the shell δΕ is a very sharp maximum as soon as the nt 

are large. I t follows that the volume occupied by non-Maxwellian 
states is very small in comparison with that occupied by the Max-
wellian state. This result, which is essential for statistical mechanics, 
is associated with the asymptotic properties of JV-dimensional space 
and is expressed in a more precise way by using the central limit 
theorem following Khinchin (see Appendix I, § 4 ) ; f it plays a 
principal role in the reasonings of the probability ergodic theory 
(see Chapter I, § III . l and Chapter IV) and it allows us to assume 
the return to the Maxwellian state of a non-equilibrium system; 
we are going to analyse this return in detail in what follows. 

Let us return now to the point 0*(t): its trajectory traverses in 
succession various Qt (which corresponds to variations in the num-
bers rii) and macroscopic observation only enables us to confirm 
that the system occupies successively a certain sequence of stars; 
to each of them there corresponds a value of H{Z) which changes 
suddenly when we note the presence of 0>(t) in another star. The 
set of values of H(Z) in the course of time is thus represented by 
the function H(Z, t) which evolves stepwise (see Appendix III, 
Fig. 1 a) : in order to solve the fundamental problem of statistical 
mechanics of non-equilibrium systems, we must prove that H(Z, t) 
will for the majority of the time be in the vicinity of Hmin (corre-
sponding to Qmax) given by (V.36) and that, if at t0 the quantity Η 
has a value Η0 which is much greater than Hmin, the function H(Z, t ) 
will decrease rapidly, starting from H0, to Hmin. In order to try to 
show these various points without carrying out a complete inte-
gration of the equations of motion, we shall define the transition 
probabilities P(Qt, Qj) giving the probability that the system initi-
ally in Qt passes into Ω} at the end of a small time r . By deriving 
(V.34) with respect to time, we have 

= Σ (1 + In «,) ^ = Σ On nt) ±L (V.37) 
dt t dt t dt 

(we have used that Ynt = N) and it can be seen that the study of 

the behaviour of H(Z, t) thus reduces to that of the numbers dnjdt 
which depend on the probabilities P(üi9Qj). 

t This result must be related also to the phenomenon o f the insensitivity o f 
Boltzmann's formula (Appendix III.B). 
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We shall start by calculating, first of all, these transition prob-
abilities by using the fundamental assumption of statistical me-
chanics and by assuming that the evolution mechanism is deter-
mined exclusively by binary collisions between the atoms (or mole-
cules) of the system. We shall then be able to show the decrease 
of the most probable value of H(Z9 i ) a t a given instant and we 
shall see that it is still necessary to make an additional assumption 
about the evolution of the gas if we wish to obtain the / / - theorem 
and Boltzmann's equation, so that they are valid at any instant. 
It is with a view to analysing the importance of this latter assump-
tion that we shall try, in Section IV, to describe the successive 
passage of the representative point SP{t) through the stars Ωί9 

Ωί+ί9 as a stochastic process of the Markov type, with the 
transition probabilities Ρ(Ωί9Ωό) given by the "Stosszahlansatz" ; 
such a method, naturally, could find its justification only in the 
large number of degrees of freedom of the system studied and more 
particularly in the large value of the numbers nt. Thus, we are led 
to study the properties of the "Mas te r Equa t ion" and to justify 
its application to the problem of the approach to equilibrium of a 
macroscopic system. 

If we apply the methods of statistical mechanics exactly, we can 
still say that the most precise macroscopic observation only per-
mits us to say that the system exists in an initial star Ω0 with volume 
W(fl0): to this star there corresponds a set of points of jT-space 
representing an ensemble of systems. To this ensemble there corre-
sponds, in turn, an ensemble of trajectories in P-space which 
describe the mechanical evolution of the different systems of the 
ensemble considered; at tt = t0 + τ we have a set of values for 
H(Z9 ti) and we can associate with them an average value J^

7

1 

defined by means of an uniform distribution over the initial en-
semble Ω0 (in accordance with the fundamental assumptions of 
statistical mechanics); we could define similarly 2tif2 at t2 = t0 + 2r, 

and at tn = t0 + nr. The / /- theorem would be established 
in this case—if we could prove by depending upon the large num-
ber of degrees of freedom tha t : 

(a) the dispersion of the values of H(Z9 tn) around J4?n is very 
small; 

(b) the series, , 3ff2 > ···> decreases monotonically, starting 
f r o m / / o , to Hmin. 

The proof of these two theorems encounters the same difficulty 
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as that which we have previously pointed out—we must be able to 
integrate the equations of motion. We shall show that they are 
valid, at least for a small interval of time after the initial instant t 0 , 
by taking for the unknown transition probabilités the most probable 

value of dnjdt at t0 which we shall denote by calculated 

by means of the fundamental hypothesis of statistical mechanics; 

the most probable value is chosen here for reasons of mathe-

matical simplicity and in order to conform to historically estab-

lished practice. By limiting ourselves to the case in which the 

variation of the numbers nt arises solely from binary collisions 

between molecules, i.e. by accepting the homogeneity of the gas 

in the absence of external forces, we shall verify that it is always 

possible to obtain again Boltzmann's equation. 

2. Proof of Boltzmann's equation 

For this purpose we shall assume : 

(a) that our physical system is a gas sufficiently dilute that only 
binary collisions between molecules need be taken into account; 

(β) that it is uniformly distributed in a total volume V with a 
total energy Ε and that there is no external field; 

(γ) that we are dealing with molecules with spherical symmetry 
which allows us to dispense with taking collision cycles into 
account; //-space is then six-dimensional and we can divide it into 
equal cells œt which are a product of the total volume V of the 
position space and a cell ω, of momentum space: mt = Väjt. 

According to the method of statistical mechanics, we can make 
correspond to our gas a virtual ensemble of systems, all satisfying 
the partial specification of the state of the gas and uniformly 
distributed in accordance with the fundamental assumption of equal 
phase probability. In what follows, we shall suppose that the state 
of the gas is specified at t (playing the role of an initial moment) 
by a macroscopic observation which determines the occupation 
numbers ni9 nj of the cells œt and ω,·; on the other hand, since the 
molecules are distributed uniformly in the volume V, the probability 
of finding the centre of gravity of any molecule in a volume ôV is, 
for the ensemble considered, given by bV\V. In this way we can 
calculate the most probable value for the number of collisions 
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which transfer two molecules from the cells (œt, ω,) to the cells 
(cok9 cot) during an interval of time dt = τ following the initial in-
stant /, by calculating the volume in which the centre of gravity of 
one of the molecules must be located in order that a single collision 
would in fact occur with the other molecule during at. If de-
notes this most probable number per unit time, we havef 

a[\r = (
ν
· 3 8 ) 

where is a constant which depends on the parameters defining 
the collision. We calculate, similarly, the most probable number of 
inverse collisions (cok, ω/) -> (coi9 ω,): 

flîjr = Λ " λ * λ , τ , (V.38') 

where Α)\ is equal to A^ according to the principle of dynamic 
reversibility. The coefficients Ak\ are given by 

Alj= W ^ U ' t i dQ, (V.39) 

where gu is the relative velocity of the molecules / and j9 ad(gij9 χ) 
is the differential collision cross section, which is a function of the 
relative velocity gtJ and of the angle of scattering χ, and dQ is an 
element of solid angle in the direction χ. For the rigid sphere model, 
we have simply 

4 

where δ is the molecular diameter. 
The fundamental statistical assumption which enables us to 

calculate a*h and a™ is here analogous with the assumption of mole-
cular chaos introduced by Boltzmann; formulae (V.38) and (V.38') 
are those obtained by starting from the "Stosszahlansatz" and 
we shall see that Boltzmann's equation can be deduced from them. 
We define, in fact, a set of functions of the time ft(t) by the relations 

Λ ι = / ι ( Ο ω , = Vf It) ω,. {Ν AG) 

t W e follow here Tolman (1938, p. 128if.), to w h o m we refer for details 

o f the calculations. 
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The set {/*(0} defines a particle density in //-space which depends, 
according to condition (c), only on the coordinates u, v, and w 
of momentum space. We shall denote it by ft(u, v, w , t), where ft 

is the value of f(u, v, w , t) for the cell ώ ( ; we have, with this 
notat ion: 

d[
3
i = Aiifif/otcoj, i ki (y^\) 

Now, according to Liouville's theorem, we have 

Allays = Α^ω,ω, = B ^ (V.42) 

whence 

*% = B^ftfj> ( V · 4 3) 

a
" =

 B
{!i)

fkfl
-

 ( v
-

4 4 ) 

According to the definitions of ak\ and of ^ — J we can write also : 

au = _ / d n A = _ Wijfi_= /dnk\ _ ^ dfk 

k l
 \ dt )p ' dt \ dt )p

 k
 dt 

\ dt J ρ dt \ dt J ρ dt 

dH(Z, t) 
We are now able to calculate the most probable value of — — 

by means of formulae (V.43), (V.44), (V.45) and (V.37). If we are 
interested only in the most probable variations of H(Z, t) pro-
duced by collisions of the type c o n s i d e r e d , ^ , coj) -> (co f c, ω,) , and 
of the opposite type, (cok9 œt) -> (coi9a)j)9 we have by denoting this 

dfl ( V ·
4 5

) 

dH 

dt /, v dt m \ dt IR; 
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(V.46) 
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with 

kl 

= Bf,fj(- In/ , - Infj + lnfk + In/,) Aft 

Ms 

(V.47) 
and 

= Bfkf, In fifj 

M, ' 
(V.48) 

whence we obtain easily 

M i ) 
\ dt I Ρ 

= B(fifj-fkfl)\n 
fkfl 

fifj 
(V.49) 

This latter expression is of the form B(x — y) ln (y/x) : it is thus 
always negative according to the properties of fi9 and this proves 
the / /- theorem in this case; this result is extended without difficulty 
to other collisions in such a way that it remains valid for the total 
variation of H(Z, t). 

Formula (V.49), by identifying the mean values of defined 
previously with the most probable values of H{Z9 t)9 allows us to 
check points (a) and (b) of section 1 for a short interval of time τ 
after the instant of the initial observation; thus, the programme 
stated above would be fulfilled if the results of (V.49) could be 
extended to every instant / : but this would necessitate an additional 
assumption which does not enter into the framework of the funda-
mental postulate of statistical mechanics. We shall return presently 
to this point ; we note first that this additional assumption is at 
the basis of Boltzmann's equation. 

In fact, we can easily deduce Boltzmann's equation giving the 
variation of f(u9 v9 w91) due to collisions by using formulae (V.43), 
(V.44) and (V.45) for all possible groups of cells (œi9œj) and 
(ω Λ, coi); finally, we can write 

where \p(g9 χ) = gad(g9 χ) depends only on the relative velocity g 
of the two molecules before the collision and on the angle χ 

(ffi - f'fi) V>(g, X) du, dv, dw, dÜ9 (V.50) 
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between this relative velocity and the direction of the solid angle dQ. 
As usual, we have put 

/ = f(u, v, w, t) fi = f(ux, v1, w1, t) before the collision; 

/' = f(u', v'9 w', t), fl = f(u\, v[, w[, t) after the collision. 

Strictly speaking, equation (V.50) is valid only for a short inter-
val of time τ after the macroscopic observation, for it is by virtue 
of the result of this observation that we have constructed the sta-
tistical ensemble enabling us to calculate expressions (V.38-V.38'). 
If we accept that Boltzmann's equation is valid at every instant, 
we can deal quantitatively with the problem of the irreversible 
evolution of a gas which satisfies conditions (a), (/S), and (y), but 
at the price of an additional assumption which we shall study pre-
sently. Starting from (V.50) we obtain also: 

f - i l l h - 1 « χ
 < v

-
5 i

> 

χ ip(g, χ) du dv dw dux dv± dw1 dQ, 

whence we obtain, for the same reasons as before 

ύ 0; (V.52) 
dt 

there can be no equality sign unless we have identically 

fÂ-f'fl = 0. (V.53) 

This is the principle of detailed balancing in classical statistical 
mechanics (it assumes this form only for molecules with spherical 
symmetry); we know that (V.53) has the Maxwell-Boltzmann 
distribution as its only solution: 

180 

(V.53') 

We note that condition (β) allows us here to simplify the cal-

culation of since the change in the numbers nt then comes 

exclusively from binary collisions. We know that, in the general 
case, we introduce into the first term of (V.50) terms which express 
the effect of a density gradient or of external forces on the gas. 
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Thus, we end with the complete Boltzmann equation: 

Of d
f

 d
f

 d
f π Of π Of ^ df — + u—+ + w— + X— + Υ— + Z — 

dt dx dy dz du dv dw 

= jjjjj (f'fl - ffi) ψ(8, X) du, dv, dw, dû, (V.50') 

where now / = f(u9 v9 w9 x9 y, z9t) and where X9 Y and Ζ are the 
components of the specific external forces, assumed to be velocity-
independent; in order to obtain the collision term, we must as-
sume further the principle of molecular disorder (or the principle 
of molecular chaos in Boltzmann's sense), which postulates the 
absence of correlations between the positions and velocities of 
two particles prior to collision : the number of collisions of a given 
kind is then proportional to the product ffx. Thus, it is not possible 
to arrive at equation (V.50') by simply following the method which 
we have just used to obtain (V.50), since this would involve an 
additional assumption expressing that the effects of the density 
gradient and the external forces, on the one hand, and those of 
binary collisions, on the other hand, can be considered separately. 
There exists, in fact, "interference" between the first and second 
term of (V.50') as we shall see in Section V in connection with 
Bogolyubov's method: the interpretation of Boltzmann's equation 
(V.50') is also made more critical by it. 

Nevertheless, it is important to emphasise that in its complete 
formBoltzmann's equation makes possible a quantitative description 
of the various transport phenomena and of the tendency towards 
equilibrium in agreement with experimental results, thanks to 
various approximation methods due to Maxwell (1867, 1879 a), 
Lorentz (1905). Hilbert (1912), Enskog (1917), Chapman (see 
Chapman and Cowling, 1953), and Grad (1949, 1952, 1958) (see 
also Jancel and Kahan, 1964). In addition, we mention that we 
can prove similarly an / /- theorem starting from (V.50

r
), by means 

of certain limit conditions and for external forces which can be 
derived from a potential. 

3. Statistical interpretation of Boltzmann's equation 

An analysis of the foregoing results gives rise to many important 
points : 

(a) Knowledge of Boltzmann's function f(u9 v9 w91) is equivalent 
to a knowledge of the occupation numbers ni9 with the result that if 
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/(w, v, w, t0) is given we know in which star Ω0 of / - space the 
system exists; expressions (V.50) and (V.51) for dfjdt and dHjdt 
refer to the most probable evolution of H(Z, t) and off(u, v,w,t) 
beginning with the appropriate initial expressions. The relation 
between f(u, v,w,t) and the coarse-grained density in / - space is 
thus made more precise; this relationship makes certain that the 
evolution described by means of f(u, v,w,t) is irreversible. 

(b) In fact, Boltzmann's equation is deduced from considerations 
which depend on the division of μ-space into finite cells œt; when 
we use the differential form (V.50) or (V.51) we assume that these 
cells are sufficiently small on a macroscopic scale to be replaced 
by the volume element dudvdw: but we must never lose sight of the 
fact that each of these volume elements must be large enough to 
contain a finite and large number nt of molecules and large enough 
t h a t / b e a continuous function of (w, v, w ) . | These points emphasise 
the essentially statistical nature of Boltzmann's equation, since 
knowledge of / does not constitute a precise definition of the me-
chanical state of the system. 

(c) By depending on the foregoing points, we can avoid the usual 
paradoxes of the kinetic theory of gases: it is well known that 
these originate from either the reversibility principle of classical 
mechanics [Loschmidt's paradox (Loschmidt, 1876 a, b , 1877): to 
every evolution of a system such that Η is decreasing, there corre-
sponds the inverse mechanical evolution in which Η increases 
with time], or Poincaré's recurrence theorem [Zermelo's paradox 
(Zermelo, 1896 a, b ) : after a sufficiently long time, the system 
passes through states close to the states which it has occupied 
previously with the result that H must increase after a certain 
period]. 

We must note first of all that these paradoxes both rely on 
theorems of mechanics which deal with an exact dynamic state of 
the system: thus, they cannot contradict the results of the / / - theo-
rem, which depend on the most probable behaviour of an ensemble 
of such mechanical systems. This, according to the nature of the 
proof itself, is essentially a theorem of statistical mechanics; thus, 
it is applicable only to a system whose macroscopic state is known. 
To this macroscopic state there corresponds a very large number 
of microscopic states capable of containing states which give rise 

t For a definition of the kinetic method, see also Section V of this chapter. 
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to an increase of H. Theorem (V.49) then shows us that the number 
of these latter is certainly very small relative to the states corre-
sponding to a decrease of H, if the system is sufficiently remote 
from equilibrium; the decrease of / / c a n thus be considered as very 
probable, at least for a small duration following the initial observa-
tion (obviously, this must be related to the properties of the sharp 
maximum of W%Om a x)). The reversibility principle involves, on the 
contrary, only a single microscopic state of the system and the 
effective realisation of an inverse evolution would be possible only 
on condition that the speeds of all the molecules were accurately 
known and that they could all be reversed at a given instant. Thus, 
the two theories are applicable to very different physical situations: 
by introducing the concept of the preparation of a system in a 
given macroscopic state, the / / - theorem simply expresses the fact 
that it is much easier, when the macroscopic state considered is 
sufficiently far from equilibrium, to prepare the system in a state 
which gives rise to a decrease of H than to subject it to initial 
conditions such that H increases. 

With regards to Zermelo's paradox, this concerns the evolution 
of an isolated system over a very long durat ion; according to 
Poincaré's theorem, every decrease of H must be compensated at 
the end of an interval of time which may be very long, by a corres-
ponding increase, with the result that increases and decreases of H 
are produced with equal frequency for an isolated system. This 
conclusion cannot be avoided since, if we consider the micro-
canonical ensemble representing an isolated system, there is 
corresponding to every state in this ensemble always an inverse 
state for which the direction of evolution is found to be reversed; 
moreover, this is not a contradiction of the fact that the most 
probable evolution of an isolated system at a given instant is a 
decrease of H, since the statistical nature of theorem (V.49) does 
not exclude the possibility of an increase of H for certain states. 
Statistical and mechanical considerations, on the contrary, are 
complementary to one another and enable us [as shown by P. and 
T. Ehrenfest (1911); see also Appendix III , § 5] to describe the 
evolution of H(Z, i ) as a series of fluctuations above the value 
Hmia; moreover, these fluctuations are the more unusual the more 
they deviate from the equilibrium position; they are, in fact, un-
observable events because of the enormous duration of the time 
of recurrence (see § 1.3 of this chapter). 



Classical and Quantum Statistical Mechanics 

(d) The considerations of the previous section enable us to 
describe the evolution of a macroscopic system, either for a very 
long or very short duration after the instant of the initial observa-
tion. It remains now for us to study the irreversible tendency of 
the system towards its equilibrium state, which involves inter-
mediate durations of the order of relaxation times. If, for this 
purpose, we use Boltzmann's equation (V.51), we have already 
seen that it introduces surreptitiously a supplementary assumption 
which we shall now analyse. We note first of all that formulae 
(V.49) and (V.51) rely essentially on the fundamental postulate 
of statistical mechanics which, in the case we are considering, is 
equivalent to the molecular chaos hypothesis (Stosszahlansatz) ; 
but this theory is applicable only to the instant at which the initial 
macroscopic observation is completed and this enables us to 
define the statistical ensembles used. It follows that the most 
probable numbers of collisions given by (V.38) and (V.38') are 
valid only during a short interval of time τ which follows the 
instant of observation; the same is, therefore, true for the value 

of — i . We conclude from this that if we wish to describe the 

irreversible evolution of a system and its tendency towards equi-
librium (relaxation time) by equations (V.50) and (V.51), we must 
make not only the assumption of molecular chaos (which provides 
us with the numbers a^) but we must accept also that this assump-
tion is valid at every instant: let us show that this latter condition is 
capable of contradicting the laws of mechanics, which was not the 
case for the assumption of molecular chaos (at a given instant t0). 

We suppose that, in fact, an initial observation at t0 had shown 
us that the system occupied a star Ω0 to which, for the function H, 
there corresponds a certain value H(t0) which is appreciably dif-
ferent from Hmin. Since nothing was known about the system prior 
to the instant of observation, we associate with this condition the 
virtual ensemble of systems represented by the points of Ω0 and in 
this way we can calculate the most probable value of dHjdt at the 

instant t0, or ( I — ) I . We deduce from it that the most probable 

value of Η at an instant tt (close to / 0) is given by 

H(tl) = H(t0) + j (tl - t0) (V.54) 

184 



Η-Theorems and Classical Kinetic Equations 

and it is assured that < H(t0); the most probable star 
at tx is a star Qt which corresponds to i / ( / i ) . If, however, we wish 
to proceed further we must assume that a new observation on the 
system is made at t t , which will show us that it occupies a new star 
Ω[, which is generally different from but close to Ω1 and such that 
the value of ϋΓ'(?ι) which corresponds to it is very probably less 
than H(t0). If we wish, starting from this new situation, to calculate 

the value of ( — ) in order to deduce the ultimate evolution of 

the system, we must construct a new statistical ensemble com-
patible with the observation at t±. By proceeding as before, it 

most probable value of Η at an instant t2 satisfies the relationship 
H(t2) < H(t))\ the decrease of Η during an evolution of long 
duration would thus be proved, on condition that the series of 
successive observations of the physical system! is taken into 
account. (We note that it is not necessary for the observation to be 
actually made, since we are dealing here with a macroscopic ob-
servation to which corresponds an objective state of the system.) It 
must be emphasised, however, that it is no longer valid to consider 
solely, in order to determine the new ensemble at t1, the results of 
the observation at this instant: in fact, we now know something 
more about the system—we know that it occupied the star Ω0 at 
t0, with the result that we would have to assume—as elements of 
the ensemble in question—only systems of Ω[ which had occupied 
Ω0 initially; it is clear that this selection can be made only after 
integration of the equations of motion. We conclude from this, that 
if the results of (V.38)-(V.38') (which are valid only at t0) are 
applied to the instant t l 9 we must assume that the "macroscopic 
system has no memory" and that everything proceeds as if we 
were able to ignore its previous development. 

Nevertheless, it is obvious that such an assumption will na-
turally lead to a contradiction of the laws of mechanics and of the 
consequence of Liouville's equation ; indeed, it introduces a random 
element into the evolution itself and no longer only into the initial 
conditions. The question of knowing how we can reconcile a 

f The same point of view has also been adopted by ter Haar (see in particular 
ter Haar, 1955). 

would be shown that I I is always negative and that the hi ρ 
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deterministic mechanical evolution of a system with such a model 
will be dealt with in Section V, but we can mention at this point 
that it is reasonable to assume that in the case where the observa-
tions do not provide a precise specification of the state of the 
system and where the number of degrees of freedom is very large, 
the states to be left out of the ensemble are quite small in number 
and distributed in such a way that the sign of dHjdt is not modified 
by their elimination. 

Because of these arguments, we can see finally that the use of 
Boltzmann's equation in studying the irreversible evolution of 
dilute gases is valid only provided that we accept that the effectively 
observed state is well represented by the most probable state 
[determined by (V.54)] and that we may apply to each stage of 
evolution suitable statistical assumptions without taking account 
of the previous states occupied by the gas. 

We shall end this section by comparing Boltzmann's / /- theorem, 
which we established in (V.49), with the generalised / / - theorem of 
the preceding section. If we return to the definition of H accord-
ing to (V.27), it can be seen that we can write 

Η = Σ 0 η — ^ 1 η - ^ ( ^ ) Γ = Σ Ρ ; ΐ η - ^ — (V.27") 
Gn(ôv)r Gn(ôv)r n Gn(ôv)r 

since we have, from (V.25') and (V.24), P'n = PnGn(ôv)r. On the 
other hand, according to (V.34), we can put 

In î = //„, 
Gn(ôv)r 

where Hn is Boltzmann's / / , associated with a system in the 
macroscopic state n. We can then write 

Η=Σ
 P

nHn + Σ
 Ρ
ή In P'n = i/syst + Σ Κ In Ρ,' (V.54') 

η η η 

and we can see that Η is the sum of two terms : Hsyst, which is the 
average, for all members of the ensemble, of the values of Boltz-
mann's / / cor responding to each state n, and £ / ^ l n P'n, which 

η 

is related to the distribution of the systems of the ensemble over 
the different stars Ωη. In the special case where P'n = 1, which repre-
sents a system in the state n, we have simply Ή = Hn. 

In order to compare the two //-theorems, we now differentiate 
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(V.54') with respect to / ; this gives us 

dt dt η dt 

whence it results that the decrease of R originates from two terms : 
(a) the term in dHsysJdt9 which decreases by virtue of Boltz-

mann's / / - theorem; actually, since Hn is decreasing for each system 
of the ensemble, the same is the case for the average value of Hn in 
the ensemble; ^p, 

(b) the term in ]T In P'n which decreases similarly because of 

the qualitative reasoning of Section II and this decrease expresses 
a progressive uniformisation of the ensemble over the different 
possible conditions Ωη. We have thus established the relation 
between Boltzmann's / / - theorem and the generalised / / - theorem 
corresponding to Gibbs ' ideas. 

IV. Stochastic Processes and //-Theorems 

1. Stochastic evolution of a distribution P(nl9 ni9 /) 
in Γ-space. "Master Equation" 

We have just seen that if we wish to obtain quantitative results 
relative to the irreversible evolution of a system, we have so far avail-
able only Boltzmann's equation (valid for dilute gases). However, 
we have seen that this involves assumptions which can contradict 
the laws of mechanics and which depend essentially on the applica-
tion at each instant of the principle of molecular chaos; thus, we 
introduce ar andom element into the evolution itself of a macrosco-
pic system; we must analyse this now. We shall show in this section 
that the evolution of the system is comparable, at least in the case 
of spatial homogeneity, to a Markovian stochastic process: the 
tendency towards an equilibrium distribution can then be 
established, thanks to recent advances in the theory of stochastic 
processes (Chandrasekhar, 1943; Moyal, 1949; Kac, 1959; Sie-
gert, 1949; Wang and Uhlenbeck, 1945)f which we must first of all 
discuss briefly. 

Since our aim is to reconcile the dynamic reversibility and the 
irreversible evolution of a system, it is important to note that the 
characteristic aspect of Markovian steady-state processes is 

t For mathematical papers dealing with these problems, we refer to the 
references at the end o f the book. 
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precisely that of combining the quasi-periodic motion of the 
individual elements of an ensemble with a monotonie tendency of 
the initial probability function towards an equilibrium distri-
bution : it is because of this property that we try now to compare the 
evolution of a macroscopic system with those processes for which 
we shall derive the fundamental equation. 

Suppose, then, that a stochastic variable X takes a discrete 
set of values Xt at discrete instants of observation ts = sr. If 
P(Xj\Xi, s) is the conditional probability that we have X = Xx at 
the instant sr9 if X = Xj at t = 0, this probability will satisfy 
Smoluchowski's equation 

in the case of a Markovian process. 
The conditional probabilities P(Xl\Xi9 1) are called transition 

probabilities and, if we denote them by Q(Xl9 Xt), we have 

We can then rewrite (V.55) in the form 

P(Xi9s) - P(Xi9s - 1) 

= £' [P(Xl9 s - 1) Q(Xl9 Xt) - P{Xi9 s - 1) Q(Xi9 Xt)]9 (V. 55,) 

where we have omitted for simplicity the initial state X3 and where 
Σ' signifies that the sum is taken over all states except the one 

corresponding to / = /. This latter equation is easily interpreted: 
in fact, the time variation in the number of states Xt is equal to the 
gains due to transitions Xt -> Xt, less the losses due to transitions 
Xi-tX^ If all the variables are continuous, Smoluchowski's 
equation can be written (with the same notation) as 

It can then be shown in the discrete case, under very general 
conditions, that the conditional probability P ( X f , s) tends, as 
s -> oo, in a monotonie way towards an equilibrium distribution, 
although each series of observations Xl9 Xl9 shows a quasi-
periodic behaviour without a privileged direction of evolution; 
this result, expressing the ergodic properties of Markovian chains, 
probably extends to the continuous case. 

P(Xj\Xi9 s) = Y P(Xj\Xl9 s - 1) P(Xl\Xi9 1) (V.55) 

YQ(Xl9Xi) = 1. 

dY[P(Y91) Q(Y9 X) - P(X91) Q(X9 Y)]. (V.55 2) 
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In order to define more precisely the relations existing between 
the evolution of a gas and such a stochastic process, it is convenient 
to consider the total / - space of the system. Let us suppose that 
the system be sufficiently dilute that binary collisions between 
molecules are relatively rare. In the absence of collisions, the 
representative point of the system &(t) describes a straight line 
over a constant-energy hypersurface in / - s p a c e ; at each collision, it 
makes a sudden jump on the hypersurface, then describes a new 
straight line, and so on. This motion resembles a " r a n d o m wa lk" 
over the hypersurface, which seems to justify the description of the 
irreversible evolution of the system by a Markovian stochastic 
process in / - space , since the random walk problem is a well-known 
special case of Markovian processes. 

If we return to the macroscopic description of the system, 
/ - space appears to be divided into stars üt (corresponding to the 
set {rti}) and the system passes successively and in a random way 
(since we do not know its precise mechanical state) during its 
evolution from one star to another. Thus, we shall try to describe 
such an evolution by a Poisson type Markovian process in / - s p a c e ; 
in order that such a problem is well defined, it is sufficient to 
know the probabilities for a transition per unit time which corres-
pond to the probabilities P(ûi9Qj) about which we spoke in the 
previous section. In the case where the gas is sufficiently dilute and 
spatially uniform, the obvious choice is to take as the expression 
for these probabilities the most probable number of transitions, 
calculated on the assumption of molecular chaos: the irreversible 
evolution of a gas will be described therefore by a Markovian 
process with transition probabilities given by (V.38) and (V.38'). 
There will be a distribution function corresponding to the random 
motion of the point 0>(t) in / - space , and it will depend on the 
quantities nt (defining the stars ß f ) . If P(nl9 n2, ni9 ...; t) de-
notes this distribution function it will obey the following equation, 
which is analogous to (V.55i): 

dP(nl9 ...,rii, ...;t) 

dt 

= i Σ [
A
u(

n
k + l)P(nl9 . . . 9 n k + l9 ·.., 

-Α%ηηΡ(ηΐ9...9ηι,...;ί)]. (V.56) 
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This is the "Mas te r Equa t ion" : the first term on the right-hand 
side corresponds to the molecules which enter per unit time into 
the star defined by the numbers nt and the second term corresponds 
to molecules which leave this same star; we see that (V.56) is a 
linear equation, which constitutes an essential difference with 
Boltzmann's equation. The distribution P{n1, ..., nt,...;/ ) is 
equivalent to the coarse-grained density in Ehrenfest's sense but 
its evolution with time is different from the evolution of the 
coarse-grained density: in fact, P(nl9 ni9 . . . ; t ) is the distribu-
tion corresponding to a Markovian stochastic process [obeying 
(V.56)] whilst the evolution of the coarse-grained density is 
determined by Liouville's equation (which expresses the laws of 
mechanics) as well as by the size of the stars in .T-space. 

If we denote the sum over all the nx by so that Σ
 η

ι = N>
 w e 

η i 
must have 

ΣΡ( / ι 1 , . . . , / ι ι , . . . ; 0= 1. (V.57) 
71 

Actually, by taking Σ of (V.56) we can prove that this normali-
η 

sation is conserved in the course of t ime; we then have 

Ι-ΣΡί»!, . . . , n „ . . . ; 0 = 0 , (V.58) 
€t η 

in which we have used the microreversibility Α%, = A
k

tj and the 
symmetry of (V.56) in (ij) and (AT). If, now, we define the average 
values of the nq by 

η* = Σ
η
Λ*ι>->"ι>-\*)> (

ν
·

59
) 

we obtain, according to (V.56): 

Σ 4 j x 

dt 2 ( U ) , ( * o 

η 

- n/iinjPbti, . . . , β „ ...;01· (V.60) 

We can verify easily that the cubic terms in the n, in (V.60) 
always cancel out, so that we can write, according to definitions 
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(V.59), 

dt 2 Jiki) 

(V.61) 

By comparison with equations (V.44)-(V.45), it can be seen 
that (V.61) assumes a form which is equivalent to Boltzmann's 
equation, provided we put 

which amounts to neglecting correlations between the values of nt: 
this can be regarded as not too restrictive if the values of nt are 
very large. In the same way, we would obtain a hierarchic chain 
of coupled linear equations for the time-derivatives of higher-order 
moments ; Boltzmann's non-linear equation appears therefore as 
an approximation to the first equation of this chain of linear 
equat ions.! 

On the other hand, Siegert (1949) has shown that the Master 
Equation (V.56) leads, as t + o o , to the microcanonical equi-
librium distribution, which justifies the application of (V.56) to 
the study of the irreversible evolution of a macroscopic system. 
Moreover, the foregoing argument shows us that we can ob-
tain Boltzmann's equation starting from the distribution 
Ρ(ηί9 ..., ni9...; t) provided tha t : 

(a) the average occupation number value nq9 calculated by means 
of P(nl9 ni9 t)9 is identified with the most probable value 
defined in the previous section; 

(b) the absence of correlations between the nt is assumed. 

Having obtained these first results, the final development of the 
theory can be undertaken by following several different routes. 

1. The foregoing scheme can be used with a view to examining 
thoroughly the real significance of the molecular chaos hypothesis, 
which is expressed here by the condition (V.62): the first problem, 
then, is to study the compatibility of this condition with the Master 
Equation. Since this equation is linear and only involves first-order 
time-derivatives, its solution is completely defined in principle 

t This is associated, naturally, with the derivation o f Boltzmann's equation, 
starting from the B . B . G . K . Y . chain o f equations. 

(V.62) 
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if we are given the initial distribution P(nl9 ni9 . . . ; 0) which we 
can always choose in such a way that (V.62) is satisfied at the 
initial instant. Having determined the general solution, 
P(nl9 t) of (V.56) corresponding to this initial distri-
bution it would be neccessary then to prove that condition (V.62) is 
conserved, that it is satisfied completely at every instant, and that 
it is thus a consequence of the Master Equation, provided that 
it is introduced by virtue of the initial condition on 
P{nl9 n i 9 0 ) . Since the proof of this property is very tricky in 
the general case, we shall only consider this problem within the 
framework of Kac's simplified model, which we shall deal with in 
the second part of this section. 

2. On the other hand, we must try to reconcile the Master 
Equation and Liouville's equation. Actually, we know that the 
Master Equation results from the introduction of a random element 
into the evolution of the gas : thus, it is essential to define precisely 
to what degree of approximation this description is compatible 
with Liouville's deterministic equation, which remains the exact 
equation governing the mechanical evolution of a system. We 
shall see, by explaining in the next section the interesting attempt of 
Brout, that it is not impossible to achieve such a programme, 
provided that we deal with spatially uniform systems; this con-
dition, unfortunately, is very restrictive since it involves the im-
possibility of deriving the complete Boltzmann equation (with the 
flow terms) from the Master Equation. 

3. Finally, we can envisage numerous applications of this 
general theory to various special models, such as Ehrenfest's so-
called "dog-flea" and "wind-wood" models (Ehrenfest, 1907; 
Smoluchowski, 1912; ter Haar and Green, 1953, 1955; Green and 
ter Haar, 1955). The interest in these models is that they deal with 
extremely simple cases, in which the foundations of the theory of 
irreversible processes can be discussed more easily, due especially to 
a thorough comparison between the coarse-grained density P(qt, pt, 
/ ) and the distribution P{ni9 ni9 ...; t); in particular, it would 
be possible thus to define precisely the role of the size of the stars 
Qt which, in any case, will correspond always to large values of 
nl9 if we wish to justify the application of stochastic processes to 
the description of the irreversible evolution of macroscopic 
systems. 
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2. Kac's model (Kac, 1954, 1959) 

We shall conclude this section by studying briefly a model pro-
posed by Kac ; this enables us to demonstrate, in a very special case, 
the conservation during evolution of the property of molecular 
chaos. We consider a perfect gas, spatially homogeneous, in which 
the only evolution factors are the collisions between molecules; if 
vl9 vv are the velocities of the η molecules, the representative 
point of the system moves in the 3/i-dimensional / '-space over a 
hypersphere with 3n — 3 dimensions, defined by the relations 

which express the conservation of energy and momentum during 
collisions. (Conservation of momentum is not realised if we take 
into account wall effects; this restriction actually arises from the 
fact that the reduced Boltzmann equation is not strictly valid if we 
take into account the external force corresponding to the presence 
of a container.) 

If I ? is a point of this hypersphere, we shall denote 
by Φ(Ε, t) d

3n
~

3
R the probability that the representative point of 

the system is in the element d
3n
~

3
R around the point R at the 

instant t, so that Φ(/?, t) represents the probability density as 
function of R over the hypersurface (V.63). By assuming now that 
the evolution of the system can be described by a random walk 
over the hypersphere (V.63), with the transition probabilities 
determined by the hypothesis of molecular chaos, Φ(/?, t) will 
satisfy the Master Equation 

In (V.64), R' = 0tJR represents the rotation experienced by R 
during the impact of the two molecules / and j , whose line of 
centres forms the axis of the solid angle element d

2
Q; 0U is thus 

an operator which depends on the collision parameters (gu and χ) 

and the probability for such a collision is — d
2
Q by virtue of the 

hypothesis of molecular chaos (V.38) {V is the volume occupied 
by the gas and we have: \pu = gtJ ad(gij9 χ)). 
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d<P(R, t) 

dt 
= -^-Σί W < W 0 - W 0} Wu d

2
Q SE L0. (V.64) 
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As before, we note that we are dealing with a linear equation 
(L is a linear operator). In order to establish the relation with 
Boltzmann's equation it is necessary to introduce "successive 
contract ions" (or "marginal distributions") of the function 
<P(R, t). We have, by definition, for the distribution function with 
k particles, Fj*> : 

Fi"
}
 = / . . · / d*vk+1 ... dHnO{R, t), (V.65) 

and, according to (V.64)-(V.65), the integro-differential equation 
satisfied by F[

n)
 can be written as 

d^{FT{v\,v2,t) 

- F2

n
\v1,v2,t)}w(g,x)d

2
ü. (V.66) 

We see that (V.66) is equivalent to Boltzmann's equation, if we 

identify the function / of the kinetic theory of gases with ρ F[
n)
 and 

if we put 

^ 2 > i , *>2, 0 = F^(pl9t)F^\v291). (V.67) 

We restate in (V.67) the assumption about the absence of 
correlations which we have encountered in (V.62), but described 
here with the marginal distributions in place of the average values. 
We shall study now the compatibility between relation (V.67) and 
the Master Equation which determines the time evolution of 
Φ(/?, t). We note immediately that this relation amounts to 
imposing a certain condition on Φ(/?, t); however, because of the 
linearity of (V.64), Φ(/?, t) is unambiguously determined once we 
know Φ(/?, 0). It follows that the property postulated in (V.67) 
must be incorporated in the initial conditions 0(R, 0) and that it 
must be conserved with time. The non-linear nature of Boltz-
mann's equation in this case would originate from the initial form 
of the distribution function Φ(1?, 0); thus, in the case of spatial 
homogeneity, the real significance of Boltzmann's equation would 
be stated explicitly: it would correspond to aMarkov ian stochastic 
process with transition probabilities given by the " Stosszahlansatz" 
and an initial distribution satisfying (V.67). 

It is difficult to prove the conservation in time of the property 
(V.67) in the general case of equation (V.64). Kac has been able 
to prove this conservation for a considerably simplified model : we 
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first of all abandon the conservation of momentum, which amounts 
to the removal of the second equation of (V.63) (motion now takes 
place over the hypersphere S^ - i with (3n — 1) dimensions and 
with radius w^Jn); we next restrict ourselves to the case in which the 
collision probability y>ijlV is constant and equal to v\2nn\ finally, 
we simplify the rotations in six dimensions by replacing them 
with rotations in two dimensions Α^(θ) in the (ij) plane. Equa-
tion (V.64) can then be written in the following form (R is now a 
point on the sphere S 3 l l_i) : 

δΦ(Ε, t) 

dt 
Lr4>, (V.68) 

where Lr is the reduced linear operator defined by 
2π 

Ann ij J 
dd(e

WLiJ
 - 1), (V.69) 

and where Lu is the operator of infinitesimal rotations in the (ij) 
plane. We derive from (V.69) the analogue of Boltzmann's equation 
by "con t rac t ion" and by adding an assumption of the type (V.67). 
Because of the linearity of (V.68), it is necessary to introduce 
this assumption into the initial distribution Φ(Κ, 0) and to establish 
its conservation with time. By virtue of the properties of the 
operator Lr9 we can show that if a series of distributions 0n(R, 0) 
which are quadratically summable on S^- i possesses "Boltz-
mann's proper ty" , 

lim F k

n
\ x l 9. . . 9 x k ; 0 ) = Π

 l im
 *?\xj><>)> (

ν
·

7 0
) 

n->oo j= 1 n-*ao 

the functions 0n(R91) which are solutions of (V.68) also satisfy 
"Bol tzmann's proper ty" , that is, 

lim F£\xl9...9xk;t)= Π
 l im

 * Î W ) - (V.70') 
n-+oo j= 1 n-* co 

This expresses the "p ropaga t i on" in time of Boltzmann's property; 
the result is that the non-linear nature of Boltzmann's equation 
originates from the initial conditions satisfied by the function 
0(R9 0) which elucidates in this case the contents of the hypothesis 
of molecular chaos.f Unfortunately, this proof is valid only for 

t W e note once again the essential role played by the large number of 
degrees o f freedom of the system (transition to the limit η ->oo) . 
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the very special model which we have considered and can be ex-
tended only with difficulty to cases which are of physical interest 
(we mention, for example, that it is inapplicable to the case of the 
elastic hard spheres) ; nevertheless, it indicates an interesting field of 
research. 

We can show also without difficulty, by starting from (V.68) 
an / /- theorem which expresses the ergodic properties of the Marko-
vian process considered. Indeed, we have 

— Î0(R9t)ln0(R,t)dI £ 0, (V.71) 
dt J 

the equality holding for the microcanonical distribution 

Φ(* , 0 =
 1

 , (V.72) 
μ Ο ^ Η - ι ) 

where μ(Ξ3η_ί) is the measure of the (3« — l)-dimensional hyper-

surface and where the convergence 0(R91) -+ — - - i s a weak 
M ^ 3 « - l ) 

convergence in Hilbert space associated with the functions 0(R, t). 
We can deduce from (V.71) an / /- theorem which is analogous to 
that of Boltzmann and we can show similarly that for the contracted 
distribution we have 

lim /?>(* , 0 ~ - L < r x 2 / 2 . (V.73) 

In addition, we emphasise that we can prove, without additional 
difficulties, the validity of these ergodic properties for the Master 
Equation (V.64) itself, contrary to what occurs for the conserva-
tion in time of Boltzmann's property. 

V. Integration of the Liouville Equation 

Throughout the foregoing sections we have been halted fre-
quently by the problem of the integration of Liouville's equation ; 
this has been the case first in studying the time evolution of coarse-
grained densities, then for discussing the validity of the theory of 
molecular chaos in Boltzmann's equation, and finally in justifying 
the Master Equation. For this reason, we shall devote the present 
section to a more detailed study of Liouville's equation, by pointing 
out the principal methods used for deriving kinetic equations of the 
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Boltzmann type or for justifying the description of the evolution 
of a system by a Markovian stochastic process; in doing this we 
shall mainly emphasise the various hypotheses which introduce an 
element of irreversibility into the evolution. Having discussed the 
derivation of the reduced chain of equations (the so-called 
B.B.G.K.Y, chain of equations), we shall analyse in succession the 
essential principles of the methods of Born and Green, Yvon, 
Kirkwood, and Bogolyubov, and we shall conclude by discussing 
Brout 's method, which establishes a bridge between the Master 
Equation and Liouville's equation. 

1. The B.B.G.K.Y. equations (Bogolyubov, Born and Green, Kirk-
wood, Yvon) 

We derive these from Liouville's equation by successive inte-
grations (process of marginalisation) and we are guided by the 
following remarks: in general, observed macroscopic quantities 
are independent of the distribution function for η particles 
ρη(χί9 xn9 0>t but depend only on the distribution function 
for s particles, where s is nearly always small. Frequently, even, 
it is sufficient to know the distribution function of a single 
particle (s = 1), i.e. the distribution function in //-space. Since 
these functions are obtained by integration of the distribution 
ρη(χί9 . . . , x„ , 0 in e s p a c e over the η — s remaining variables 
(marginalisation), they satisfy the differential equations derived 
from Liouville's equation by integrating over these « — s variables. 
We are thus led to defining the specific distribution functions 
for s particles, ρ$(χί, xs, t), and the corresponding generic 
function fs(xi, xS91) by 

& ( * i , 0 =-l-Fs(xl9...,xs ,0 
' s 

= j " · J " e * (
x
i > ...,xn9t)d

6
xs+1 ...d

6
xn9 I ( v . 7 4 ) 

(#1 - s)\ 

we have introduced the functions Fs in order to emphasise the role 

t In what follows jcf stands for r f, p{, that is, it is a point in the 6-dimensional 
//-space (monatomic gas). 
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et 

m 

= [H„ Qs] + (n - s) [ Σ [
φ
' .ru , d

6
xs+1, (V.79) 

J 1 ^ i ^ s 

of the volume V containing the system, using Bogolyubov's nota-
tion. According to these definitions, Qs(xi9 xS91) d

6
x1 ... d

6
xs 

represents the probability of finding the s particles considered in 
the element of volume d

6
xt ... d

6
xs at t, whatever the dynamic 

state of the other η — s particles. 
The differential equations satisfied by Qs(xl9 ...9 xS9t) are then 

obtained by integrating Liouville's equation (V. 1) over the η — s 
variables x s + l9 · . . ,* , , . We shall assume in what follows that the 
Hamiltonian of the system is of the form 

H= Σ + Σ
 φ

υ> (
ν
·

7 5
) 

where Φ ^ = Φ(\*ι — Γ/1) represents the interaction potential be-
tween the pair of particles (i9j) and H(x!)9 which is given by 

H(xt) = + U(rt), (V.76) 

is the sum of the kinetic energy of the particle i and the potential 
energy U(rt) due to the external forces and to wall effects. With 
this notation, Liouville's equation (V.l) can be written as 

^= =[#,&,]= Σ [H(xt),e.]+ Σ (v.77) 
Öt 1 ̂  ί ^ π l^Kj^n 

or according to (V.76), 

ôf=- Σ ( ^ · ν „ ρ η ) + Σ (vfit/,-vPipn) 
Ct 1 ^ f \ mf J i^i^n 

+ Σ ( ν „Φ«·ν Ρ ιρ . ) . (V.77') 

By integrating (V.77) over the η — s variables xs+i, · · · , xn and 
by taking account of the symmetry of ρη in the variables x1, ... x n 

as well as of the relations 

j [H(xt)9 Qn] d
6
xt = 0, jj [0ij9 Qn] d«Xi d«Xj = 0, (V.78) 

we obtain finally 
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in which we have put 

(V.80) 

The wall effects occur in (V.79) as a result of the potentials U(rt); 
it can be shown, as we shall see in discussing Bogolyubov's method, 
that these effects are negligible if the volume V of the container be-
comes very large; thus, we shall assume starting from now that the 
potentials U(r^) involve only external forces but no wall effects. 

The cases s = 1 and s = 2 are particularly important for what 
follows; putting X, = — V r ii / ( r 1) for the external force acting on 
the particle 1, we have the equations 

ψ = [H(Xl) + Η(χ2) + Φί2,ρ2] 
dt 

+ ( * - 2 ) f Σ [&i3,Q3]d«x3 (5 = 2) , (V.81) 

+ ( « - ! ) ( Υ Γ 1Φ 1 2 · VPiQ2)d«x2 ( 5 = 1 ) . (V.82) 

We can see from (V.79) that the equation of 5-th order is related 
to the (s + l)-st-order equation through the distribution function 
ρ$+1 occurring in the integral term; the system (V.79) represents 
therefore a chain of coupled equations equivalent to Liouville's 
equation; these are the B.B.G.K.Y, equations. In particular, the 
integral term of equation (V.82), satisfied by ρΐ9 expresses the 
binary interactions of particles ("collisions") and, consequently, 
it depends on the distribution function ρ2(χί, *2> 0· It is by carry-
ing out certain approximations on this term that we can try to 
derive Boltzmann's equation from (V.82), provided we let the 
generic function fx = ηρ, correspond to the distribution function 
f(x9 i ) f rom the kinetic theory of gases. 

Before pointing out the various methods proposed for this deri-
vation, we must make a preliminary comment concerning the two 
ways of introducing statistical considerations in mechanics, i.e. 
concerning the concept of distribution functions. The first method, 
which is that of statistical mechanics, consists in considering an 
ensemble of systems identical with the physical system being studied; 
this ensemble is completely determined by a probability density in 
jT-space represented by the function ρ„(χι, ...,xn9t); thus, one has 
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implicitly in mind the possibility of experiments which are repeated 
on each system of the ensemble. The quantities observed macro-
scopically are then the average values of the mechanical observables 
taken over this ensemble of systems with the distribution function ρη. 
This is the point of view that we have adopted generally through-
out this book; in this case, the distribution function Qi(xi9t) is 
simply a marginal probability density which is deduced from ρη 

by "successive cont rac t ions" . ! 

We have encountered already the second method during the 
introduction of the ft(t) functions in Section III of this chapter: 
this is the method of the kinetic theory of gases which consists in 
defining in //-space a distribution function / ( J C , t) representing the 
density of particles located in a volume element d

6
x of //-space, 

which is "neither too large nor too small". This latter definition is 
essential to the theory, since the element d

6
x considered must be 

large enough to contain a very large number of particles and small 
enough for variations of macroscopic quantities to be negligible 
on this scale. The existence of a distribution function in this way is, 
in some way, the fundamental postulate of the kinetic theory of 
gases, to which a precise expression can be given only in the 
limiting case as η -> oo. 

This function / must be distinguished from the marginal distri-
bution ηρΐ9 since it actually represents the numerical density 
related to a single physical system and not a probability density 
associated with a statistical ensemble of systems; it describes a 
different physical situation corresponding to the observation of 
a single system which involves a large number of particles (and 
even an infinitely large number). According to what we have seen 
in Section III, it is reasonable to assume that the transition from 
the probability density «ρ ι (χ ι , 0 to the distribution function f(x, t) 
of the kinetic theory of gases can be carried out only by a certain 
process of averaging, similar to that which leads to the definition of 
coarse-grained densities in Ehrenfest's sense. This remark is the 
basis of the different methods of deriving Boltzmann's equation, 
which we shall study now. 

t We point out, that from this point of view equation (V.82) determines the 
distribution function of a single particle in interaction with its surroundings; 
this interaction, represented by the integral term of (V.82) is of a disordered 
nature and lends itself to a description of a stochastic character. 



//-Theorems and Classical Kinetic Equations 

2. The methods of Yvon (1935, 1937a, b) and of Born and Green 
(1946,1947) 

These two methods, which are essentially similar, consist in intro-
ducing truncated distribution functions defined as functions of a 
parameter <5, whose order of magnitude is equal to the range r0 of 
the intermolecular forces. Following Grad (1958), we define the 
truncated distribution function ρ%χί9ΐ) by 

ρΪ(*ι, 0 = J " f t , ( * i , 0 d*x2 ... d
6
xn9 (V . 83 ) 

where D is a 6(n — l)-dimensional region defined in the following 
way: if rl is the position of the particle 1, a region Dt of μ,-space 
is assigned to each particle i such that 

(V.84) 

and we put D = D2 x D3 χ ... χ Dn (the χ sign denotes here 
the direct product of the different regions); thus, D contains all 
states of the particles 2, ..., η for which none of these particles is at 
a distance less than δ from particle 1. Similarly, we define 

02(*i>*2>O = JQn(Xi,X2, .·.,*„, 0 ^
6
* 3 . . . r f

6
* „ , (V.85) 

w i t h / ) ' = D3 χ Z) 4 χ ... χ Dn ;ρ
δ

2 is not symmetrical in xt and x2 

since the integration region contains only x1 and not x2. Having 
done this, we obtain the differential equation satisfied by ρ

δ

χ by 
integrating Liouville's equation (V.77 r) over the region D; using 
the identities 

j {Vr2.A{rl9r2))d*r2 = - j> (A-d
2
S)9 

| r 2 - n | > o \r2-ri\=ô 

V r i - f j A(rl9r2)d*r2] 
l\r2-ri\>ô 

( j Vri.A(rl9r2)d*r2\- j> (A-d
2
S)9 

\ \ r 2 - r i\ > ô J | r 2 - n | =0 

(V.86) 
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(V.87) 

where S2 represents the sphere \r2 — rx\ = δ. In the case where 
the intermolecular force becomes negligible for \r2 — r x | > <5,(V.87) 
is reduced to 

dt \m1 J 

= (n-l)j> Q
Ô

2((V2 - VL) · d
2
S) d*v2 ; (V.87') 

s2 

we obtain a similar equation for ρ
δ

2 by integrating over D'. This 
equation shows us that the number of " f r e e " particles (separated 
from other particles by a distance at least equal to the range of the 
intermolecular forces) only changes due to the loss of particle pairs 
which penetrate their sphere of mutual influence or to the gain of 
particle pairs which move away sufficiently from one another. Thus, 
equation (V.87') has, in common with Boltzmann's equation, the 
property that the variation of ρ\ is determined by "comple t e " 
collisions. Concerning the term of equation (V.87) which we 
neglected, this represents the correction to be applied to (V.87') 
for taking "g raz ing" collisions into account in the case where the 
range of the intermolecular forces is relatively large. 

We shall now be able to derive Boltzmann's equation formally 
from equation (V.87'), provided that we introduce a certain number 
of supplementary assumptions. First of all, we rewrite the collision 
term of (V.87') using the normal notat ion; we introduce the polar 
coordinates (Z>, ε) in the plane through the centre of S2 perpendi-
cular to the relative velocity g21 = v2 — vl9 with 0 ^ b g δ and 
0 g ε ^ 2π. In order to evaluate the scalar product (g21 -d

2
S), 

we must discriminate on .S2 the two hemispheres S2 for which 
(£21 · d2

S) > 0 (particles which are moving away from one another) 
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and S2 for which (g2i'd
2
S) < 0 (particles which are approaching 

each other). For these conditions we have 

(g2i'd
2
S) = gbdbde on S 2 , (g2i.d

2
S) = - gb db de on S2 

(g = I f t i l ) ; (V.88) 

on the other hand, to every point (b, ε) of the plane there corre-
sponds a point of S2 that we shall call r2(b, ε) and a point of S2 

that we shall denote by r2(b, ε). Equation (V.87') then becomes 

dt V m
i J 

= ( " - ! ) / t?S(*i, *2

+) - ρ$(*ι, X2)]gb db άεd*v2, (V.89) 

where we have written x2 for (p2, r2) and jc 2 for (p2, r 2 ). 
Having done this, we can proceed from equation (V.89) to 

Boltzmann's equation by making the following four assumptions: 
(a) We assume that the function ηρ^χ,, t) can be identified with 

the function/(jc, t) from the kinetic theory of gases; this amounts 
to considering the number of particles colliding at t as negligible 
compared with n. 

(b) It is supposed that the gas density is low enough to take into 
account only binary collisions, the number of ternary and higher 
order collisions being negligible compared with that of the binary 
collisions. If then we consider equation (V.81), satisfied by 
ρ2(*ι, x2, t) in the case where | r 2 — rx\ < δ, it can be seen that 
the integral term which contains the ternary collisions is negligible 
in comparison with the Poisson bracket expressing the binary 
interaction between particles 1 and 2 ; it follows, therefore, that 
equation (V.81) reduces, for the duration of a binary collision, to 
Liouville's equation in the 12-dimensional space of particles 1 
and 2. The solution of this is ρ2 = constant over a trajectory in 
this 12-dimensional phase space corresponding to the two-body 
problem; thus, ρ2(* ΐ5*2, t) can be replaced by ρ2(*ί> *2> 0 > 
where x[ and x2 are the points occupied by particles 1 and 2 at t', 
the moment at which the collision commences, in such a way that 
these particles are located at x, and x2 at time t at the end of the 
binary collision considered. 

(c) We apply the principle of molecular chaos, assuming that 
we can replace ρ2(χΐ9χ2) by ρι(*ι)ρι(*ϊ) and ρ2(χ[,χ2) by 
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Ε?ι(*ί) Qi(
x
2)- This expresses how two particles on the point of 

colliding are statistically independent, whereas they can be corre-
lated after collision; if this distinction were omitted, and if we had 
put simply ρ2(Χί,χ2) = Qi(

x
2) we should see the collision 

term of (V.89) disappear. 
(d) We assume, finally, that the variations of ρ1 are sufficiently 

slow to be able to replace rä, r[, r'2 by rx and / ' by t; this substi-
tution is justified easily if we note that the various positions r 
and the time t' differ from r x and t only by amounts of order δ. 

By carrying out these various transformations in (V.89) and by 
replacing η — 1 by n, we have finally 

dt \m J 

= jjj WiSi > * )fWi , Ί , 0 -fiVi >
 r
i, 0 / ( » i >

 r
i , t)]gbdbde d

3
v2 ; 

(V.90) 

which is Boltzmann's equation.f The method ew have just de-
scribed is similar to those proposed by Yvon, on the one hand, 
and by Born and Green, on the other hand; it has the advantage of 
showing clearly that Boltzmann's equation in its usual form (V.90) 
ceases to be valid if the density or the range of the intermolecular 
forces become too large. However, the foregoing proof involves 
certain approximations whose precise justification is difficult; this 
is the case particularly for the assumption of molecular chaos and 
the question remains open of knowing whether Boltzmann's irre-
versible equation can be deduced from Liouville's reversible equa-
tion without external interference of a stochastic nature. 

Actually, it is this property of irreversibility which distinguishes 
Boltzmann's equation from Liouville's equation and hence from 
the chain of equations (V.79) to which Liouville's equation is equi-
valent. This difference can be illustrated by comparing the in-
variance during motion of the quantity a, defined in (V.2), with 
the monotonie decrease of Boltzmann's //-function. In order to 
elucidate this point, we define the quantities σΓ and σμ by 

<*τ = \ Qn in ρη dr, σμ = j ρ χ In ρί d
6
xl, (V.91) 

t The role of the primed and unprimed variables is reversed here in relation 
to equation (V.5(y), but nothing is changed obviously because of the micro-
scopic reversibility. 
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where ρ„ and are the probability densities in / '-space and //-space, 
respectively. [Of course, σΓ is identical with a of (V.2).] According 
to (V.74) we have necessarily the relation 

σΓ̂ ησμ; (V.92) 

the equality only occurs if the particles are independent, which in-
volves 

Qn(*i, · · · , * * ) = ρ ι ( * ι ) ρ ι ( * 2 ) · · · £ ! ( * * ) . (V.93) 

Even though σΓ remains constant during the evolution described 
by Liouville's equation (V.77), the same is by no means true for σμ, 
whose time-variation cannot be studied in a simple manner. We 
note, however, that if we choose the initial distributions Q ^ X i , 0) 
and ρ „ ( * ι , xn, 0) so that (V. 93) is satisfied, we shall have initi-
ally o>(0) = ^ ( 0 ) ; since o> remains constant during motion we 
can see, by (V.92), that σμ(ί) must always remain smaller than 
σμ(0). However, in order to proceed further and obtain Boltzmann's 
JT-theorem, we must replace equation (V.82) by (V.90), i.e. we 
must justify the kinetic method by proceeding from ρ χ functions 
to ρι functions and by accepting the set of assumptions (a)-(d); 
of these, it is obviously assumption (c) of molecular chaos that is 
essential for ensuring the irreversibility and monotonie decrease 
of H. In order to find out whether this assumption is compatible 
with Liouville's equation, it would be necessary to show that the 
property of molecular chaos is conserved in time, just as we proved 
at the conclusion of Section IV for a special case of the " Master 
Equat ion" . 

We shall again find in the account of Kirkwood's method the 
assumptions which we have just stated; more precisely, we shall 
see once again that the function / of the kinetic theory of gases 
must be defined by a certain averaging process which relates it 
to coarse-grained densities and is related to the necessarily finite 
nature of the volume elements in //-space. 

3. Kirkwood's method (1946, 1947) 

This method depends essentially on replacing the concept of a 
coarse-grained density introduced in Section II by that of the time-
average of probability densities over an interval r . Let us consider, 
in fact, the time-average over the interval τ of an observable 
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G(r
( n )

, />
( n )

) t
w
hich does not depend on the time explicitly; by intro-

ducing the evolution operator Tf
n)
X of Chapter I, this time-average 

can be written as : 
τ 

6 = 1 J* G(Tl"V\ 7 f y
n )

) dd, (V.94) 
0 

where the operator J j "
)
 moves the representative point (r(n), p

(n)
) 

at t to the representative point at t + Θ. Let us assume now—and 
this is the essential assumption—that a physical quantity observed 
in a system in evolution must be identified with the phase average 
of the time-average G(r

in
\ p

in)
), or 

X 

G = IjjVv" d
3n
p

M
^G{Tfr

w
, Tfp™)Qn{r«\p«\ t)d6, 

(V.95) 

which can be written, by virtue of Liouville's theorem, as 

G = jj G(r<
n
\ /><">) & , ( Γ <">, /><">, t) d

3n
r™ d

3n
p<

n
\ (V.96) 

in which we have put 
Τ 

QJLr™, p
in
\ t) = 1 |ρ„(ι·«,/><">, ί + θ)άθ. (V.97) 

Ο 

The quantity observed macroscopically is thus identified with 
the average of G(r(w), pin)

) calculated with the density ρ Λ, which is, 
itself, the time-average over the interval r of the probability density 
Qn(r

(n)
9 />

(w
\ 0· We note that the mean density ρ π similarly obeys 

Liouville's equation | f and that, in consequence, the introduction 
of the time-average is insufficient in itself alone for making irre-
versibility appear; this can be obtained only by means of supple-

f W e introduce here the notat ion r
in)
 = ( Ι Ί , r2, · · ·, rn), p

(n)
 = (pt, p2,. ·., pn) ; 

r
(n)

 and p
(n)

 are vectors in configuration space and m o m e n t u m space, respec-
tively. This is in particular the notat ion used by de Boer (1949) and by Hirsch-
felder, Curtiss and Bird (1954). 

i W e write here Tt

{n)
 in order to emphasise that we are dealing with the opera-

tor corresponding to the w-body problem. 
t t Actually, Liouville's equation is linear and the same is true for the trans-

formation which defines ρ„ starting from ρη. 
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mentary assumptions which we shall state later. It must be noted 
also that if we consider the averages taken over all the coordinates 
and momenta as in (V.96), we can then prove the interchangeability 
of the two operations of time-average and phase-average, which 
can be written as G — G. Kirkwood has shown, on the one hand, 
that these two averages are not interchangeable in the case where 
the integrations are not carried out over all variables and that, on 
the other hand, this non-interchangeability is connected with dissi-
pative processes originating during return to equilibrium. 

Having stated this, we can identify the function f(r,p, t) of the 

kinetic theory of gases with the time average fi(rl9pl9t) of the 

generic marginal distribution, defined by 

Μ'ι,Ρι,Ο = λ J J ^ r ^ , ^ , / ) ^ " -
1

^ « " - « ^ " -
1

^ ^ - ^ . (V.98) 

We obtain the equation satisfied by f t by taking the time-average 
of equation (V.82) over the interval r ; it becomes 

- ^ • + ( » I - V r l ) / l + f ^ - V . 1 V l 

dt \ml J 
τ 

= 1 Γ iï (ν Γ ιΦ 1 2· ν Ρ ι/ 2(ΓΓι · ι , T™rl9T™Pl, TÎ*p2))d*r2d*p2M9 

ο
 J

 (V.99) 

and this equation is identical with that of Boltzmann, providing 
that we make the following three assumptions: 

(a) The density is sufficiently low that only binary collisions are 
considered; Liouville's equation applied to the collisions of two 
particles can be written in this case as 

fi(rl9 r29pl9p291) = / 2 ( 7 Î
2 )

r l s T e

( 2
V 2, Τ<

2)
ρί9 T<

2)
p291 + β). 

(b) The interval τ must be large compared with the duration of 
a collision but small on the scale of the recurrence time in order to 
avoid the difficulties arising from Poincaré's recurrence theorem ; this 
must enable us to make the integral on the right-hand side of (V.99) 
proportional to r , so that τ disappears from the final equation. 
Very probably it is this assumption which introduces the irreversi-
bility in (V.99); in addition, this must be compared with the defi-
nition of functions truncated at a distance δ, since it leads similarly 

207 
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to an equation in which only "comple te" collisions are involved 
and thus enables us to assume molecular chaos. 

(c) Finally, we suppose that the deviations from equilibrium 
are sufficiently small to be able to replace the time-average of the 
product fi{p\)fi(Pi) by the product of the time-averages. 

By means of these three assumptions and after quite long cal-
culations, Kirkwood succeeded in obtaining Boltzmann's equation 
for the function f,, or 

Summarising, we can say that the methods which have just been 
analysed emphasise the various problems which are raised by 
deriving Boltzmann's equation, starting from Liouville's equation, 
yet without contributing definitive solutions; in particular, it seems 
to be natural to identify the distribution function f(x, t) of the ki-
netic theory of gases with a certain average of the marginal prob-
ability densities of statistical mechanics by taking either a coarse-
grained density or a time-average over an interval τ of the distri-
bution functions. We shall proceed now to the study of an entirely 
different method proposed by Bogolyubov. 

4. Bogolyubov's method (1946 a, b) 

The essential features of Bogolyubov's method are the definition 
of three time-scales distinguishing several stages in the evolution 
of the gas and the expansion of distribution functions in a power 
series in the concentration. 

We start again with the system of equations (V.79) in which we 
make the transition to the limit η -» oo ; from the various ways of 
proceeding, we choose the one in which we have also V oo in 
such a way that the concentration n\V — c remains constant. By 
using the Fs functions of (V.74), the system (V.79) can then be 
written as 

—± = [HS9Fs] + c\ Σ [^i,s+i,Fs+l]d
6
xs+i, (V.101) 

dt V™i / 
jjj [ / i ( / i ) / i ( / > 2 ) - / ι ( / > ι ) / ι ( Λ ) 1 gb db de d*p2. (V.l 00) 

dt 

208. 
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where the integration is carried out over the whole of / / s + 1- space and 
where the contribution arising from wall effects disappears as a 
consequence of transition to the limit (actually, these terms are 
of the form [ £ / F( r f ) , Fs] and are non-vanishing only if the r f are 
in the vicinity of the boundary surface which is made to move to 
infinity). The Fs functions which satisfy (V.101) are thus asympto-
tic expressions for the distribution functions of a system containing 
a very large number of particles enclosed in a macroscopic volume V. 
By dealing with the case of a low concentration and with short 
range interaction forces, we can try to solve the system (V.101) by 
finding for Fs an expansion in series of powers of the concentration 
(similar to the well-known virial expansion); we can then put 

Fs = Fs° + cF}+ c
2
Fs

2
 + . . . . (V.102) 

Elementary considerations show, moreover, that the expansion 
(V.102) is in effect one in powers of the "dimensionless densi ty" 
r^c, where r0 is the range of the intermolecular forces. Putting 
(V.102) into (V.101) and comparing coefficients of the same powers 
of c9 we obtain ~>Fo 

1
r-=[H„F?], (V.103) 

dt 

of! 

dt i l k 
[Hs.F,

1
] + Γ Σ ^ +i^s° +iK*s +i. (V.104) 

In order to simplify, we shall assume in what follows that the 
external forces determined by the potentials C/(r f) vanish; the H(x^) 
thus contain, according to (V.76), only the kinetic energy terms. 
In order formally to solve this system, we introduce the operator 
Γ ,

ω
 corresponding to the s-body problem, i.e. to the motion of s 

point particles of mass m with a Hamiltonian Hs. If (xl9 xs) 
represents the dynamic state at the initial time, the operator Tj

s) 

has the effect of replacing these variables by 

(Χι(χι, ..., xs, t), ..., Xs{xι j •·•} / ) ) 

which represent the state of the system at / ; we can write symbolic-
ally the following two relations for a function ψ(χί9 xs): 

r,(eV(*i >·..,*.) =y(*i,...,*s); 

4-l?M*i> - *.) = IH„ Ί?]ψ(χΐ9 ..., χ,)], 
ct 

(V.105) 

209 



Classical and Quantum Statistical Mechanics 

210 

With this notation, the solutions of (V.103) and (V.104) can 
formally be written as 

...,χ,,Ο = 7 ΐ ^ ° ( * ι , . - , x „ 0 ) , (V.106) 

Fi(xl9 . . . , χ β , 0 = r iW^ , x „ 0 ) + JjïlV.) x 
0 

x / [̂ Σ ^ + ι > ^ ° +ι ( * ι > . . . , x , + i,ö)] rf6x.+ i | dB , (V.107) 

whence, for the distribution function F5(xl9 . . . , x s , f)> 

Fs(XI , x s , / ) 

= T^Fjix,, . . . , χ , , Ο ) + c J (ri'i-e, / [isZ 5Φ ( , ΐ + 1) 

0 

7 l V 1 }F e + . . χ β + χ , 0)] < / 6 * s + ί ) αθ + c
2 . . . . (V. 108) 

The physical interpretation of this expansion is simple ; to a first 
approximation we have in fact Fs(t) = T-)Fs(0), with the result 
that the variation in time of Fs takes place as if the s particles were 
moving independently of other particles. The correction term in c 
takes account of the interaction with the (s 4- l)-st particle; this 
is an interaction which is added on starting from s particles of the 
complex considered. 

In studying the limit of applicability of such an expansion we 
shall see two characteristic times of evolution of the gas appear. 
We choose, in fact, as the unit of length the range r0 of the inter-
molecular forces and as the unit of time the average duration of a 
collision r c = rQ\V (where V is the mean speed of the particles). 
With these units, the functions appearing in our equations are of 
order unity and the term in c in (V.108) has an order of magnitude 
equal to that of the principal terms multiplied by (φί/τ€). The 
condition for the applicability of the expansion (V.108) is then 

t<-^-= to (V.109) 

where t0 is a time equivalent to the time of free flight (time interval 
between two collisions) λ/V, where λ is the mean free path. xc and t0 

are the two characteristic times that we have mentioned: for gases 
of low density we have always t0 > r c , the ratio t0\xc being of order 



Η-Theorems and Classical Kinetic Equations 

10
2
 to 1 0

3
; according to the foregoing, we can see that (V.108) is 

also an expansion in powers of r c / r 0 . 
The special consequence of this is that (V.108) can be used only 

for an interval t < t 0, during which the momentum distribution 
Fi{p, 0 °f

 a
 molecule does not deviate appreciably from the initial 

distribution, since this distribution does not depend directly on 
molecular interactions. It follows that the foregoing method cannot 
be applied to the establishment of a kinetic equation, since we must 
follow in this case the variation of the distribution function Ft 

over a time which is sufficiently long to reveal the irreversible 
tendency towards an equilibrium distribution (for example, the 
Maxwell distribution). 

However, the expansion (V.108) will enable us now to study the 
correlation functions Fs with s ^ 2 over a time which is large com-
pared with T c (in fact, we have generally 1/r^c > 1) and to show that 
they satisfy certain limiting conditions expressing a synchronisation 
process between the Fs and Fx terms. For this purpose, we give several 
definitions concerning the evolution of a complex of s particles in 
the case where the repulsive interaction potential is decreasing 
monotonically and becomes negligible for r > r0. Since the par-
ticles are all separated by a distance greater than r0, their motion 
tends towards a uniform and rectilinear motion, so that we have 

the speed of the tendency towards uniform motion assures the 
validity of the relation 

(V.110) 

OO 

J {Pi" - Τί'Ιρ,} T
(
-

S
lpt} dd - J * { P <

S )
 - Τ%Ρι) άθ 

ο ο 

with t{P}» - Τ-] - Τ-)ρι) - • Ο as t + oo ; 

We derive from this 

i 9 ( V . l l l ) 
m 

with 

(V.112) 

ο 
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In this notation, P /
j )
 is the initial momentum of the ith particle 

in the ".s-tuple" collision which leads to the state (xl9 xs) at t 
and R\

5)
 is the position that this particle would occupy at t if it 

had continued its motion with the initial momentum P\
s)
. Since 

the real motion is distinguished from the uniform motion only 
during the time in which the interparticle distances are of order r0, 
it follows that for \rt — r,| ~ r0 the duration of the approach 
process (V.l 10) and (V.l 11) is of order xc = r0\V. 

Now let us apply these results to the study of the correlation 
functions Fs (s = 2). We know that they can be chosen arbitrarily 
at the initial time, provided that we take into account that the 
correlations decrease as the inter-particle distances increase; thus, 
if the particles are further away than r 0 , the functions Fs can be 
expressed practically by products of the F1. With the previous 
notation, the Fs functions would then satisfy the asymptotic con-
dition 

T™B{F,(xl9...,xe90)- Π Λ(*ΐ ,0)}->0 as θ - + o o ( ^ 2), 

(V.l 13) 
which can be written also as 

FM(xlt...,x„t)- Π Fi(Rf,PÎ
s
\t)-+0, as / ^ + o o . 

(V.l 14) 

The result of this is that in the principal terms of the correlation 
functions Fs a process of synchronisation with F, is produced, 
with the result that the Fs functions can be approximated by the 
products of F^R^, P\

s)

91) which are determined completely by 
a knowledge of the distribution function F, at t. The duration of 
this process is of order rc and it can be seen that two processes can 
be distinguished in the evolution of the gas : a slow process, asso-
ciated with the variation of the momentum distribution of a single 
particle, with a characteristic duration of order t0 (the mean free 
flight time) ; a rapid process, corresponding to the synchronisation of 
the correlation distribution functions (s = 2), with a characteristic 
duration of order rc (the duration of a "coll ision"). The fast pro-
cess can be described by the expansion (V.l08) which is applicable 
for t > T c ; on the contrary, the slow process can be described by 
this method only at its start. 
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Summarising, if we consider the evolution of the gas described 
by the distribution ρη9 we can distinguish several stages in this evo-
lution: 

(1) The initial stage, in which all the correlation functions 
Fs(xl9 xS9 t) (s ^ 2), determined by starting from the arbitrary 
function ρη(χχ, ..., χ Λ, 0) vary rapidly over a duration of order rc; 
only the function F^x, t) varies slowly, as we have seen already. 

(2) The kinetic stage; after a time of order r c , the final evolution 
of the gas is determined by the time-variation of Fx ; since the corre-
lations Fs depend on F± at equilibrium, we can assume that because 
of (V.114) they are of the form 

Fs(xi9 ...9xS9t) = Fs(xl9 . . . , χ , , Λ ) , (V.115) 

i.e. that they depend on the time only through Ft, whatever the 
initial distribution. On the other hand, the kinetic equation satisfied 
by Fx must take the form 

^ L = A(x'9F1); (V.116) 
dt 

it is this which describes the time-evolution of the gas in the kinetic 
stage. The solutions which satisfy (V.115) are obviously not the 
most general ones, but the procedure for using them is similar 
to that leading to the normal solutions of Boltzmann's equation 
(Chapman-Enskog method). We can say that at the beginning of 
the time rc there is a kind of "con t rac t ion" in the description of 
the gas since it depends only on a much smaller number of variables 
(namely, F1 in place of all Fs). This is similar to Kirkwood's average 
process: in the two cases a large part of the initial information 
contained in the function ρη(χι, ...9xn90) is lost after an interval 
of time of order r c . 

(3) The hydrodynamic stage; this involves a third characteristic 
time L/V, where L is a macroscopic length over which we can 
establish a significant variation of macroscopic quantities such as 
the density, the macroscopic velocity of the gas or the temperature. 
For gases of low density and with macroscopic quantities which 
are slowly variable, we have LjV > t0> xC9 which justifies the use 
of the Chapman-Enskog approximation method for solving Boltz-
mann's equation (in this way we obtain the so-called " n o r m a l " 
solutions of this equation). 
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dt 
= Aoix^FJ + cAAx^FJ + Λ 4 2 ( χ ι ; ^ ) + ... (V.118) 

and the coefficients A09 Al9 must be such that equation (V.101) 
is satisfied. If we write this equation for s = 1, we have immediately 

AobilFJ = [Hl9Ft] = - ^--Vr̂ JFl9 

AifalFJ = \[012,F°2{xl9x2'9F1)]d
6
x29 (V.119) 

Ar(x1;F1) = j [0l2,F»-
1
\xi9x2;F1)]d'x2. 

We can see that the term A0 corresponds to the flow term of 
Boltzmann's equation (independent of "collisions") and that the 
coefficients Ar can be calculated if we know the various approxima-
tions of the function for two particles F2; thus, we must calculate 
these approximations starting from equations (V.101) for s ^ 2. 
If we note that the time-derivative of FS9 by virtue of (V.115), 
(V.116) and (V.118), can be written as 

dFs ôFs dF* 6FS , . . 0 . 
s
 -

 s 1
 =—*-(A0 + cAx + c

2
A2 + ...) dt ÖFY dt ÖF1 

= D0FS + cD.F, + c
2
D2Fs + 

where dFsldF1 is the functional derivative of Fs with respect to F1 

and where we have put 
OF 

D.F^—^AXxM, (V.120) 
dFL 
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Having reached now the kinetic stage, we shall derive the kinetic 
equation by relying on relations (V.115) and (V.116). For this pur-
pose, we shall again turn to a series expansion of the Fs functions 
by putting 

Fa(xl9 xS91) = F?(xl9 . . . , α τ , , ^ ) + cF^(xl9 . . . , x s , J ^ ) + 

(V.117) 

similarly, the kinetic equation (V.116) assumes the form 

OF, 
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equations (V.101) then give [by taking (V.117) and by equating 
coefficients of the same powers of c] 

[HS,F°S] -D0F° = 0, (V.121) 

[Ha9F
x

a] - D0Fl = - i Γ Σ
 φ

Μ + ι , ^ ° + ι 1 d«xs+l 

J
 ll^i^s J 

= - ^ i , . . . , χ , ; /
7
! ) , 

? 

(V.122) 

with an obvious definition of ips(xi, xs; Fx) which depends 
only on F°. In order to solve these differential equations in F°s, 
F)9 we must state the corresponding limiting conditions. These 
are deduced from (V.113) by taking (V.115); in this way we obtain 

T
{
ll{Fs{xl9...,xs;T

i

d

1)
Fl)- Π (T^F,)} -> 0, as 0 ^ + o o , 

(V.123) 

which, taking account of the expansion (V.117), resolves into 

( T% { F ° ( X l x s ; T^F,) - Π (T^F,)} - 0 , (0 -» + oo). 

\ Ti ' J f ïOt! , * s ; T^FJ - 0 , (V.124) 

Given these limiting conditions (V.124), we can find the solutions 
of equations (V.121)-(V.122) and we can determine in this way 
the expression for F

r

s, and consequently for Ar, as funct ional of 
the function Fi(x). By following a reasoning similar to that carried 
out for formulae (V.106) and (V.107) and by using the notation of 
(V.110) and ( V . l l l ) , we obtain at once 

/?(*lf xs; FJ = Π
 F

i&ï
y
> ( V ·

1 2 5
) 

whence, from (V.119), 

A1(x1;Fl) = \ \ 0 1 2 9 Π ^ι(*Γ\Λ ( 2 ))Κ*2. (V.126) 

Similarly, by taking the second condition of (V.124) into account 
and by proceeding to the limit 0 = + o o , we have next: 

oo 

FUxi, . · . , Xs', Fi) = j T*%pAxl,...,xl\li»Fl)dB, (V.127) 
ο 
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d
6
x2. (V.128) 

By proceeding in the same way for the other approximations, 
we can write for Fs the following formal expression: 

OO 

F, = Π ^ ( Ä ' S )> p
i

S)
> t) + cf T^fs(Xi, xs; T^F,) dQ + 

l < l < s £ 
0 (V.129) 

and for the kinetic equation : 

dt 
= [H^ Fi] 

+ cj [<Pl2,Fi(R\
2
\ P[

2
\ t) Fi {R2

2
\ i»<2)

 t)]d
6
x2 

00 

+ c
2 j * Φ12, j Τ^ψ2(Χι, x2; T^Fi) dQ d

6
x2 + .... 

L ο 
(V.130) 

If we neglect terms starting with c
2 (containing ternary and higher 

order interactions), we obtain the kinetic equation in first approxi-
mation 

dt ( « i V r i) 
F, 

+ c | [ Φ 1 2 , ^ ( Μ 2 \ Ρ ί 2 ) , 0 ^ ι ( Μ 2 ) , ^ 2 ) , 0 ] ^ 6 χ 2 . 
(V.131) 

By analysing the integral term of this equation, which expresses the 
effect of binary "collisions", we can compare (V.131) with Boltz-
mann's equation, the function / of the kinetic theory of gases being 
equated here with cF1(x1, t). In the special case of spatial homo-
geneity, the collision term is calculated by noting that, because of 
the definition of the we have 

= - Γ — + —,F1(P[
2
\t)F1(P2

2
\t)\, (V.132) 

|_2w! 2m 2 J 
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whence, for the coefficient A2, 
co 

A2(xi;F1) =j Φ 1 2 , j TÎ
2
^2(x1,x2;T

i

e

i)
Fl)de 
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so that the distribution function -Fi(pi ,0 satisfies the equation 

where p\ andp' 2 are the momenta "before the collision", expressed 
as a function of the momenta pv, p2 "after the collision"; (V.133) 
is obviously identical with Boltzmann's equation in the case of 
spatial homogeneity and in the absence of external forces. 

In the general case of a spatially inhomogeneous distribution, 
we calculate the collision term by a similar procedure, starting for 
example, from the equation [H2, F2

0)
] — D0F2

i0)
 = 0. In this way 

we obtain a much more complicated expression than previously 
and one which is not reduced simply to the Boltzmann collision 
term ; it depends in particular on the value of the distribution func-
tion F(rl9pl91) taken at different points R[

2)
 and R

{

2

2)
 of physical 

space, as well as on its derivatives with respect to the space co-
ordinates. As a result, there is a coupling in the Boltzmann equa-
tion between the collision term and the flow term connected with 
the density gradient; this relation expresses the existence of a trans-
fer of molecular properties by means of collisions and not only 
by the free motion of the particles. The importance of this coupling 
depends, naturally, on the range and nature of the inter-particle 
forces; in particular, the collision term is simplified considerably 
for the model of elastic hard spheres of diameter δ—in the latter 
case we have 

where k is a unit vector in the direction of g21. It can be seen that 
the collision term depends on the value of the distribution function 
at the points r1,rJ — ok and r1 + ok and that the relation con-
sidered obviously depends on the particle diameters. The function 
Fi(ri,Pi, 0 thus satisfies, to a first approximation, an equation of 
the Boltzmann type, provided that the model of perfectly elastic 
hard spheres is adopted and that the variation of Ft over a distance 

—
 Fi(pi9 t) F{(p29 /)] g21bdbded

3
p2, (V.133) 

(V.134) 

- Fx{rl9pi9 t)Fi(rl - ök,p2, t)] g21b db de d
3
p2, 
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of order of the molecular diameter is neglected.f Finally, we point 
out that the coupling between the two terms of the Boltzmann equa-
tion would assume a still more complicated form in the presence 
of external forces, since these would be involved in the definition 
of P}

s)
 and Α ,

Ω
, as well as in Hs and D0 ; thus, we can give a precise 

meaning to the assumption formulated at the end of Section III, 
according to which we can consider separately the effects of free 
flow and the effects of collision. 

Summarising, we can see that Bogolyubov's method allows us 
to obtain a kinetic equation which generalises Boltzmann's equation 
and which reduces to it—to a first approximation—in a certain 
number of cases. It depends on two essential points: on the one 
hand, the synchronisation process between the correlation func-
tions Fs and the function F1, which corresponds to a kind of " coarse-
graining" and which, applied to (V.113), leads to the limiting con-
dition (V.124) playing the role of the principle of molecular chaos 
(this process, moreover, introduces a characteristic time of order 
of the duration of a collision xc \ it would be interesting to compare 
it with the time τ introduced by Kirkwood in order to define the 
time-average of the distribution functions); on the other hand, the 
expansion in powers of the concentration—similar in the case of 
equilibrium to the virial expansion and to the cluster functions me-
thod of Ursell-Mayer (Ursell, 1927; Mayer, 1937)—which enables 
us to find the order of magnitude of the contribution from collisions 
of various orders and, by confining ourselves to a first approxima-
tion, to consider only the effect of binary collisions. 

As regards the irreversibility of the evolution, it appears to be 
connected first of all with the process of synchronisation between Fs 

and F1 (coarse-graining) and to the limiting conditions (V.113) 
and (V.124)J corresponding to the assumption of molecular chaos; 
in addition, we note that this latter assumption is essential in order to 
be able to extract from the B.B.G.K.Y, chain of equations, which 
are totally reversible, an irreversible equation involving only Fx. 
The interest in Bogolyubov's method, therefore, is to enable us to 
make more precise the meaning and the limit of validity of the 

t Such an approximation would n o longer be valid for dense gases; con-
cerning this, we can compare equation (V.134) with that proposed by Enskog 
for studying dense gases (see Chapman and Cowling, 1953, chapter 16). 

t The role of these limiting condit ions has been studied in detail by Cohen 
and Berlin (1960; see also Cohen, 1962), 
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necessary assumptions for establishing Boltzmann's equations, 
namely, the introduction of coarse-grained densities or of the time-
averages of the probability densities, the limitation to binary colli-
sions and the principle of molecular chaos. This method relates 
them to the general theory and to the fundamental physical para-
meters such as the "collision dura t ion" rC9 the range r0 of the 
intermolecular forces, the concentration c and the mean free 
flight time 10. 

5. Liouville's equation and the Master Equation. BrouVs method 

We shall conclude this section by showing briefly the essential 
characteristics of the method proposed by Brout (1956), for the 
purpose of establishing a bridge between Liouville's deterministic 
equation and the "Mas te r Equat ion" . We shall all the time con-
sider a system composed of a very large number of particles η 
(η can therefore be considered as infinitely large) and we shall 
suppose for simplicity that there are no external forces. Liouville's 
equation, (V.77'), can in this casef be written as 

Φ-+ Σ («vV r ()<?„+ Σ (—·ν,Λρ.. = <>. (V.135) 

Ct 1 ^ ί ^ π 1 ^i<J^n \ mt J 

in which we have put FtJ = -Vri0u. If ρ ^ , vn9 rx, rn, 0) 
denotes an initial distribution, we have for the distribution at timef : 

Qn(vl9 ...9vH9rl9 ...,r n,0 = ρη(νϊ\ - ; V n \ r;\ . . . , r~
f
, 0 ) , 

(V.l 36) 

where v\\ v~\ r\'9 . . . ,#·" ' are the velocities and positions of 
the particles at —t9 corresponding to νί, vn9 rx, rn at time 0; 
the parameters i r ' and r

_i
 are determined, obviously, by the move-

ment of the η particles under the effect of the interaction forces Fu. 
It will be useful for us to introduce also the velocities [ι^'] and the 
positions [r,"'] of the particles, in the case where they are not sub-
jected to these interaction forces; in this case we have a rectilinear 
and uniform motion, whence 

[*ΓΊ = vi9 [ι-Γ'] = r, - vtt. (V.137) 

t W e neglect the effect of the walls, although they are involved in the inte-

gration limits for the r. 
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Having done this, we define the functions 

ρ(1, . . . , / ; , ...,/i,0 (V.138) 

[rr'],...,^',...,^,...,^/,...,^]^), 

where » l 5 vjt'9 ...,»», [ιί'], ···, ...9r;J, are 
the velocities and positions of the η particles of the system at — /, 
given that only the forces of interaction Fiitix9 with 1 ̂  κ9 λ ^ v9 

are non-vanishing, while all other interactions are zero ; the primed 
indices i[9 i'v denote the particles which are effectively inter-
acting. Since a "coll is ion" involves always two particles at least, 
we complete the foregoing definition by putting 

ρ(1, . . . , / ; , = ρ(1, ...,/!) = ρ(Όί9...9υη9 [r^]9[r~
f
],0). 

(V.139) 

We introduce now the following cluster functions: 

C° = ρ(1,2 ... η) 

C} = ρ(1, 2, ..., ι", ..., w) - ρ(1, 2, ..., ι, ..., η) = 0, 

^ = ρ(1, 2 , . . . , Γ, /ι) 

-ρ (1 , 2, . . . , / ' , . . . , , ! ) 

- ρ(1, 2, ..., /, ..., η) + ρίΐ, 2, ..., /ι), 
(V.140) 

C
i u - . i v = Ρ θ > " ' C 

- Σρ(ΐ, ···> 'ί> ···> d > 'χ+ι. ···> C • ··> Ό 
κ = 1 

+ Σ @( ^ ' * ' ' » '
f
l ' · · · » - 1 9 Ϊχ ·> ίκ + 1 » * · ' > 1 ^ κ < λ ^ r ·/ ./ Ν 

^ Λ - 1 5 'λΐ 1 ? ···>*!;> ··· j 

+ (-1)"ρ(1, 2, . . . , / ! ) , 
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and we have the fundamental identity 

= ρ ( » ι
ί

> - , » / , '
,

1 ' , . , . , Γ / , θ) (V.141) 

η 

= c° + £ c / + Σ <^+··· = Σ Σ eu........ 

The different cluster terms have the following meaning: if no 
particle interacts in the interval (0, t), then all the C

v
 are zero and 

we have ρ(ί) = ρ(1, 2, ..., ή). If only the two particles 1 and 2 inter-
act in the same interval, the clusters C° and C

2

2 are then non-
vanishing and we have ρ = C° + C\ + C\ + Cf2 = ρ(Γ,2 ' , . . . ,« ) . 
Similarly, if the three particles 1, 2 and 3 interact, we have 

ρ = c° + C\ + C2

X
 + Ci + C? 2 + Cf 3 + C 2

2

3 + C f 2 3, 

and so on. The more particles there are interacting, the more terms 
are contained in ρ, the highest order of the cluster being equal to 
the total number of particles which interact. The expansion (V.141) 
is thus of the same nature as that of Ursell-Mayer for the equili-
brium case; moreover, we can contract equation (V.141) by inte-
grating over a group of η — s variables and then we obtain equa-
tions which are identical with those of Green (1956 b). 

In order to find the Master Equation, we shall assume now that 
the interaction is represented completely by the hard spheres model; 
we shall suppose in addition that, since the system is spatially homo-
geneous, the distribution function ρ η is independent, at the initial 
time, of the distance ru of the two particles i and j , when we have 
r
u > à (β is the molecular diameter). This assumption can be put 
in the form 

Q(vi9 - ..9vn,rl9 . . . , r n, 0) = Φ(ΌΙ, ...9υη,0)Ψ(Γΐ9 0), 

where, for dilute gases, we have in the zeroth approximation of 
the virial expansion 

W(rx, r n , 0) - , for all ru ^ δ (V = total volume). 

= ι 1 ^ i < j g n 

(V.142) 

(V.143) 
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V V 

where δ(χ) = 

f ... Γ Π {1 - * | r , - r, |)} rf3!-, ... rfV 

1 if 0 ^ χ < δ9 

Oifx ^ δ. 

Now we shall attempt to calculate: 

Φ(ρι> ~;Vn9t) = J ... j Qn(vl9 ...9vn9rl9 ...,rn9t)d
3
r1 ... d

3
rn9 

V V (V.145) 

by using the expansion (V.141). First of all, we have 

J . . . J C 0 ^ . . . ^ ^ ? ! γ β , 0 ) , (V.146) 
ν ν 

and, since C? = 0, we must then calculate terms of the form 
η 

] · ί Cfjd
3
r1 ...d

3
rn. If we suppose, for simplicity, that / = 1 

and j = 2, we have according to (V.137): 

j ...j C
2

12d
3

ri...d
3
rn 

ν ν 

η 

= / ... j [ρ(1' ,2 ' , . . . , » ) - ρ(1,2 , ...,n)]d
3

ri . . . r f ' r . 

η 

- J - / { W . »Γ, " 3 , - , «>») W , r i» , [r3-«], ..., [»·„""']) 

= / · . · / [ Φ ( » Γ ' , » 3 , ..., ν„) Ψ(τ:', rl\ r3, ..., r„) 
V ν 

-Φ(νι, ...,vJW{rlt . . . , ^ ) ] ^ ... rf»r.. (V.147) 
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Since we have assumed that the system was spatially homo-
geneous at the initial time, we can put in addition: 

Π {i - * Ι η - öl)} 
(V.144) 
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Since we have 

! ' · · ί Ψ(Τι, r2, ..., rn, 0) d*rz ... d*rn = ρ(ΓX, R 2 , 0) ~ -L , 
κ κ F 2 

we can write 

J . . . J C ; 2 d
3

r i . . . d \ 
V V 

η 

=
 ψϊ j [ Φ (" ί ~ ' ' C 2~' ' » 3 , . · . , vn) - Φ ( ΐ ) 1( Β 2 , .... »„)] rf

3
R, < /

3
R 2 , 

S(P1,|>2> 

(V.148) 

where S(v,, u 2) is a region of (6-dimensional) μ-space for which 
C 2

2 φ 0. It is clear that rx (or R 2 ) can be taken arbitrarily in V 
(since we neglect wall effects); on the other hand, the condition 
C 2

2 φ 0 implies that R 2 must be chosen in such a way that the 
particles located at (r,, v2) and ( R 2 , v2) at t = 0, make exactly one 
collision during the interval ( — t, 0) (we take an interval of time 
much larger than the mean duration of a collision, which enables 
us to consider all collisions as complete). In the special case of 
the hard spheres model, we obtain easily 

j ... J e ; , . » ' , , ... d'r. 

_ I i f 
2 V) 

m&12R, t) - 0(R, f )] Ψ12 d
2
Q = tL120(R, 0 ) , 

(V.149) 
in which we have used the notation of Section IV. Taking account 
of all binary collisions, we can then write 

0(R, t) = Φ (R, 0) + t X L,j0(R, 0) + ... . (V.150) 
1^ i<j£n 

We note that the operator L = £ LtJ = \ £ Ltj is precisely the 
l£i<J£n i,j 

linear operator of the Master Equation and that the solution of 
(V.64) can be written formally as 

0(R, t) = e
Lt
0(R, 0) = (l + tL + —L

2
 + . . . W o ) . (V.151) 

2 ! / 

2 2 3 
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Thus, we see that if we neglect powers of L greater than or equal 
to 2 in (V.151), we fall back on the expansion (V.150), limited to 
terms in C

2
. 

In order to treat this problem in its entirety, we should have to 
consider all the C

v
 terms (with ν ^ 2) of the fundamental expan-

sion (V.141); the transition from Liouville's equation to the Master 
Equation would then be assured if we could establish, by means 
of certain conditions, that the contribution of terms in C

v
 are ex-

t
2
 t

3 

pressed by successive powers of L, — L
2
, — L

3
 . . . . Brout has been 

able to prove effectively such a result by considering only binary 
collisions and by means of certain approximations (almost in-
stantaneous collisions, . . . ) . 

In the general case, the study of the various C
v
 with ν ^ 2 is 

particularly complicated ; by relying on the analysis of the different 
types of ternary collisions (Green, 1956 b) it has been possible to 
show that the terms in C

3
, combined with certain terms of C

4
, 

t
2 

make a contribution equal to — L
2
0(R, 0), provided that the gas 

is assumed to be sufficiently dilute and that collisions of a "cycl ic" 
nature are neglected as well as certain wall effects. Subsequently, 
we can extend these arguments to terms going from C

n
 to C

2n
 and 

we can attempt to show that they provide a contribution of the 
/" 

form - L"0(R, 0). 

It is obvious, however, that the study of the general case comes 
up against almost insuperable difficulties: in the first place, we 
must analyse different collision configurations, which leads us to 
introduce diagrams similar to those used by Feynman in quantum 
field theory; then we must take certain limits (n -> oo, K-> oo, 

η 

c = — -> 0, / -» oo with ct fixed), which again increases the diffi-

culty of the problem.! Be that as it may, it does not appear to be im-

possible to derive the Master Equation from Liouville's equation 

f In this connection, we draw attention to recent papers by Prigogine and 
Balescu (1959 a, b ; 1960). In addition, we note that this diagrammatic method 
appears to be applicable with success to numerous problems o f statistical 
mechanics. 
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VI. Prigogine's Theory of Irreversible Processes 

1. Introduction 

Given the importance of recent work inspired by the theory of 
Prigogine and his colleagues, we shall now briefly discuss this me-
thod, emphasising the characteristic features. As in previous models, 
this method is applicable to a system whose Hamiltonian can be 
put in the form: Η = H0 + λν, where λ is a parameter which 
characterises the order of magnitude of the perturbation V. It in-
volves the following essential concepts, which we shall analyse in 
the following: 

(a) The definition of a "résolvant opera to r" associated with 
Liouville's equation and the use of its expansion in powers of A. 

(b) Replacement of the distribution function fs and of the phase 
density ρ(Ρ, t) by their Fourier transforms with respect to space 
coordinates; these transforms are related to various correlations 
as well as to the deviation of the state of the system from spatial 
uniformity. 

(c) Derivation of the chain of equations satisfied by the Fourier 
components of the phase density ρ(Ρ,ί); in this way we obtain 
a "dynamics of correlat ions" in which the interactions described 
by V have the effect of inducing transitions between the various 
Fourier coefficients. By using the expansion of the résolvant 
operator in powers of A, these transitions can be represented by 
" g r a p h s " in more and more complicated diagrams, corresponding 
to the various ways of interacting in the system. The analysis of 
these different types of graphs enables us to study the time-
evolution of the system and we shall see that, in certain limited 
cases which are of practical interest, we shall arrive at generalised 
kinetic equations. 

9 FCM 225 

in certain limiting cases, so that the method which has just been 
outlined opens up an interesting field of research. We must empha-
sise, however, that the Master Equation has the inconvenience 
of being very difficult to generalise in the case of spatial inhomo-
geneity ; it follows that it is not always known to what extent Boltz-
mann's complete equation can be deduced from a certain stochastic 
process. 
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2. Liouville's operator in classical statistical mechanics and the 
formal solutions of Liouville's equation 

We begin by introducing Liouville's classical operator L which 
can be associated with Liouville's equation (V.l) . This operator, 
which was first introduced by Koopman and then studied by 
von Neumann, is a Hermitian operator L whose action on a phase 
function f(P) is described by the definition: 

Lf=i[H,f). (V.152) 

Under these conditions, equation (V.l) becomes 

= - / £ ρ , (V. 153) 

dt 

and for the formal solution we have 

ρ (Ρ , ί ) = e-
iù

Q(P,0), (V.l 54) 

where e~
iLt
 is a unitary operator (because of the hermiticity of L) 

defined by its series expansion. 
Similarly, the time-evolution of any phase f u n c t i o n / ( P ) can be 

expressed by: 

% = - [H9f] = iLf (V.155) 
dt 

the formal solution of which can be written as : 

f(P, t) = f(Pt) = e
th
f(P, 0); (V.156) 

we note, in passing, that the operator e
iLt
 is none other than the 

operator denoted by Ût in Chapter I. 
Equations (V.l54) and (V.156) therefore introduce into classical 

mechanics a kind of Heisenberg representation of the time-evolution 
of a system. As we have seen in Chapter I, the average value f(Pt) 
of a physical quantity f(P) is given by the scalar product (/, ρ(ί)) 
and, by virtue of the unitarity of the operator of evolution, we have 

APt) = ( / , e(0) = (/> e-
iù

Q(0)) (V.157) 

= (e
iLt
fQ(0)) = (f(Pt)9Q(0)); 

thus, it can be proved that the calculation of average values at 
time t can be carried out in two ways, but that it suffices to make 
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a single statistical assumption concerning the distribution of the 
initial phases of the system. 

We shall find similar solutions in quantum theory with the 
definition of a Liouville quantum operator (Chapter VI, §V.2) ; 
we note also that the operator e~

iLt
 is frequently called the propa-

gator or Green function associated with Liouville's equation. We 
shall, especially in what follows, make use of the Laplace transform 
with respect to time of this propagator, which is defined by : 

00 

J dte-
st
e-

iù
 = (V.l 58) 

s + iL 

(s + iL)'
1
 is the resolvant operator, also called the propagator or 

Green function, associated with Liouville's equation. If we define 
the Laplace transform g(s) of ρ(ί) by 

00 

g(s)= j dte-
s
'g(t), (V.159) 

0 

the Laplace transform of Liouville's equation (V.l53) can then be 
written as : 

sg(s) - ρ(0) = -iLg(s), 

the formal solution of which is 

g(s) = (s + iL)-
1

 Q(0); (V.160) 

thus, we prove the important role played by the operator (s + iL)'
1
. 

It will be convenient for us to introduce a complex variable: 

z = is (V.161) 

and to reserve the name résolvant operator for the operator R(z), 
defined by -

R(Z) = _ . (V.162) 
L — ζ 

Under these conditions, equation (V.160) will become 

g(z)= -iR(z)Q(0). (V.163) 

If we consider cases in which the Hamiltonian Η can be put in the 

f o r m
 H=H0+XV, (V.164) 
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the operator L will be equal to the sum of the two terms 

L = L0 + XL\ (V.165) 

where L0 corresponds to the free motion of the particles and XL' 

to the interaction term A Κ By defining a résolvant operator R0(z) 

associated with Liouville's unperturbed operator L0 and by making 

use of the operator identity 

Â-
1
 - B-

1
 = Â-\B - Â)B-\ 

we can write 

R{z) - R0(z) = -XR0{z)L'R(z), (V.166) 

whence, by iteration, we obtain : 

R{z) = f R0(z) [£ ' , R0(z)]". (V. 167) 
n = 0 

This relation can serve as the basis for a perturbation expansion 
and the formal solution of (V.163) can now be written as : 

g(z) = - i f M*) [L\ Roi*)]"- (V.168) 

In order to obtain a solution to Liouville's equation (V.153), we 
must return ultimately to the initial function ρ(ί) by inverting the 
Laplace transform (V.159). According to well-known methods (see 
for example, Doetsch, 1943), this becomes 

γ + too 

ρ(ί) = — Γ dse
,s
(s + iL)-

1
 ρ(0), (V.169) 

lui J 
γ— ioo 

where the integration contour is a straight line parallel to the 
imaginary axis, having to its left all the singularities of the operator 
(s + iL)'

1
; in this case ρ(ί) vanishes for t < 0, which corresponds 

to the " c a u s a l " solution. 
Thus, the crucial role played by the singularities of the operator 

(s + iL)'
1
 can be seen. Since L is a Hermitian operator with 

real eigenvalues, (s + iL)'
1
 has all its singularities on the imaginary 

axis. For a finite system, these singularities are isolated, whilst 
for an infinite system (with Ν, V -* oo) there is a finite discontinuity 
on the imaginary axis associated with the continuous spectrum 
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of L; in this latter case, the causal solution is given by the function 
g

+
(s)9 which is analytic in the right-hand half-plane and is continued 

analytically in the left-hand half-plane. 
If we use the variable z, we have 

+ oo + (y 

Ρ(0 = f dze-
,zt
R(z)Q(0), (V.170) 

2ni J 
— ao + iy 

where the integration contour is now a straight line parallel to the 
real axis, above all the singularities of R(z), located on the real axis. 
Because of the presence of the exponential e~

izt
, we can replace this 

straight line by a closed integration contour C, comprising a 
straight line located just above the real axis and running from 
right to left, and a sufficiently large semicircle in the lower half-
plane. Taking equation (V.l67) into consideration we have finally: 

9(0= --^-:jdze-
itz
R(z)Q(0) 

c 

= - J _ ( L z e - ' z t Σ (-λ)"Ά0(ζ)[Ζ',ΛΟ(Ζ)]»Ρ(0), (V.171) 
2ni J n=o 

C 

which we shall use as the basic formula in the perturbation calcula-

tions ; we note also that we must use the function g
+
(z) = — ÎR

+
(Z)Q(0\ 

which is analytic in the upper half-plane and is continued analytic-

ally in the lower half-plane. 

3. Fourier series expansion of the distribution functions 

A. We shall proceed now to a study of the Fourier components 
of the distribution functions fs and of the phase density Ρ(Ρ, t). 
We note first of all that Liouville's equation, written in the form 
of equation (V.l53) represents a formal analogy with Schrödinger's 
equation of quantum mechanics. In particular, we can look for 
the eigenvalues and eigenfunctionsof the linear Hermitian operator L , 
with suitable boundary conditions; as for the operators of quantum 
theory, we shall encounter either discrete spectra (case of finite 
systems) or continuous spectra (case of infinite systems), or the 
two combined. If cpk(P) is the orthonormal base, assumed to be 
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It can be seen that the eigenfunctions associated with free motion 
of the particles are plane waves, whose "wave vectors" ks are real 
vectors determined by the conditions at the boundaries. Since we 
are interested only in " l a r g e " systems for which we must let V 
(at the same time as N) approach infinity, these conditions at the 
boundaries generally play a negligible role in the theory and we can 
choose the simplest of them. We shall take, therefore, periodic 
boundary conditions, such that 

<P{k}(ri . . . rN) = φ{Κ}̂ 1 + ...,rN + F~*) , 

which, for the kj, involve the relations: 

= (V.177) 

where the ns are vectors whose components are integers. The set 
of eigenfunctions cp{k) constitutes a complete orthonormal base in 

t In future, Ν will denote the total number of particles of the system. 
t The symbol {k} denotes the set of wave vectors k1, k2, kN. 
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complete, of the eigenfunctions of L , the formal solution of equa-
tion (V. 153) can be written as 

ρ(Ρ ,0 = Σ**(θ9>*(/0, (V.172) 
k 

where the ak(t) are of the form: 

ak{t) = cke-
a
*\ (V.173) 

and the Xk are the eigenvalues corresponding to the functions φ]ι. 
As in quantum theory, we can change the "representa t ion" 

and it will be convenient to introduce the representation corre-
sponding to the free motion of the particles. In this case we have:f 

Ν p2 Ν /ρ \ 

Ho = Σ Lo= - i l i — 'Vrj) (V.174) 
i = i 2m j = i \ m J 

and the eigenfunctions and eigenvalues of L0 are given by:J 

Ψ μ ) = Κ - ~
/ 2
 e x p / £ ( * , · » · , ) (V.175) 

j 
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configuration space (rl9 rN)9 but not in the total phase space of 
the system. It follows that in equations (V.l72) and (V.173), the 
coefficients ak(t) or ck are functions of the moments (pl9 ...,/>#): 

the c f c(pi, . . . , Ρ Ν )
 a r e n o ne

 other than the multiple Fourier expan-
sion coefficients with respect to the space variables of the density 
ρ(Ρ). In the case of free motion of the particles we shall have, 
therefore: 

Q(Pi · - P n , rt - - rN ; t) = Σ c{k)(Pl.. .pN) exp |i £ (kj · j^r, - iL t ^ j , 

(V.l 78) 

an equation which expresses simply that ρ(Ρ, / ) is an arbitrary 
function of the pj and of the τΛ — Pji/m. 

If, now, we return to the general case in which the Hamiltonian 
is of the form Η = H0 + λν, we can continue in the representation 
associated with the free Hamiltonian, which means again con-
sidering the Fourier expansion of the phase density ρ(Ρ, /)· In 
equation (V.l78), the coefficients c{k] thus become functions of 
time because of the existence of the perturbation XV\ we can write 
now: 

In this expression, the effects due to H0 (free motion) are separate 
from those resulting from the interaction represented by the per-
turbation XV\ thus, we have the equivalent of the interaction re-
presentation used in quantum theory. We obtain easily, starting 
from Liouville's equation (V.l53) and definitions (V.l72) and 
(V.175), the equations satisfied by the coefficients c{k)(t); we|have:f 

^ ψ ΐ = - a Σ <{k}\L'(t)\ {*'}> c{k.}(t)9 (V.180) 
dt {k} 

with 

£'(/) = e
iÊot

L'e-
iLot

; (V.181) 

t W e shall omit showing the dependence of the Fourier coefficients o n 
the moments p l t .,pN, when n o ambiguity is possible. Thus in (V.180) we 
write C{k}(t) instead of C{k}(pi,p2, · · · , / > # ; 0 · 
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?(v*<)}.«< 

Σ (λ - - W ' ) = - a Σ <{*}l£'l{*'}> <?(»,(/)· 

(V.187) 

232 

the <{Λ}|ί/(ί)|{*}> denote the matrix elements of the operator L'(t) 
with respect to the eigenfunctions cp{k) and φ{1ιι]. Since the operator 
L0 is diagonal in the representation chosen, equation (V. 180) can 
be rewritten as 

St {*/} { J \ m )) 

Χ <{*}|î'|{*'}> EXP j - 1 Σ · -̂ -/̂ J cTFC.,(I), (V.182) 
where the matrix elements <{£}|Z/|{A'}> are given by: 

({k}\L'\ {*'}> = V~
N j exp j - / Ç (kj · R,)j L' χ 

Χ exp |i Ç (* ; · R/)jrf
3R1 < /

3
r 2 . . . < /

3
#V (V. 183) 

It will happen frequently that we shall introduce the whole time-
dependence in the Fourier components of the density ρ(Ρ, t). Thus, 
we obtain new coefficients Q{k)(t)9 which are related to c[k)(t) by: 

and which are defined by the usual formulae: 

(V.184) 

(V.185) 

The expansion of equation (V.179) can then be simply written as : 

(V.186) 

and the time-evolution of the Fourier coefficients Q{k}(t) is deter-
mined by the set of equations 
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B. Having thus defined the Fourier coefficients of the phase 
density ρ(Ρ, t), it now remains to study the physical significance 
of the new quantities that we have just introduced.,,We begin first 
of all by establishing certain fundamental properties of these co-
efficients. 

If we consider systems in which the interactions are pair-inter-
actions which depend only on the distance between the particles, 
we can write: 

V= Σ ^ ( k i - O l ) (V.188) 

and 

L' = Σ Lu = i Σ (V„K„ · (V„ - V,,)) . (V.l89) 
i<j i<J 

Thus, for the matrix elements of equation (V. 183), we have: 

<{*}|£'| {*'}> = Σ <{*} \L'u\ {*'}>, (V.190) 
KJ 

with, taking into account the orthogonality relationships satisfied 
by the cp{k)9 

({k}\L\j\{k'}y = 

- V-\{kt - k[) - V\ki_K\ (V Pi - Vp,)) ô
K
\ki - k j - k \ - k]) χ 

x Π *Kr(*. - K)- (V.191) 

In equation (V.191), δ
Κτ
(α) denotes the Kronecker <5-function equal 

to 0 if α Φ 0 and equal to 1 if a = 0; on the other hand, we have 
put : 

Κ,,, = K"* j VtJ\r\)e-
iu
'*d

3
r9 (V.192) 

the Fourier component depending only on the modulus of /, 
since the potential Vu is a function of the distance |r| alone (central 
force hypothesis). Thus, we see that the effect of the interaction 
represented by L is expressed by a sum of terms of the type (V.191) 
in which only two "wave vectors" are changed. This is a conse-
quence of the binary nature of the interaction. Moreover, we prove 
the law of conservation of wave vectors, since we must have in every 
transition : 

*; + *; = *, + kj9 (V.193) 

which, in fact, expresses the translational invariance of the pro-
perties of the system (central force hypothesis). Although these 
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properties obviously depend on the form of the Hamiltonian, they 
play an important role in the theory later on. 

We shall consider now the case of a homogeneous system; by 
definition we must have : 

Q(Pi,p2, - ,Ρνϊ *Ί + a, rN + a; t) 

= q(PI,P2, -,ΡνΙΓ,, ...,rN;t). 

If we substitute this relation in the expansion (V.l86), we can 
prove that all the coefficients Q { k }, whose sum of the wave vectors 
is non-vanishing, must be zero. Because of the conservation law 
(V.l93), this condition is not changed with time and we can see 
therefore that the Fourier coefficients, the sum of whose wave 
vectors is non-vanishing, are related to deviations of the system 
from the state of spatial homogeneity. 

For example, the velocity distribution function of Ν particles 
is given by: 

Q(Pi,p2, :,Ρν;0 = JQ(P,t)d*r1d*r2...d*rN = V
N/2

Q{0}; (V.194) 

it can be expressed in terms of the Fourier coefficients ρ { 0} having 
all its wave numbers zero. Similarly, the deviation from spatial 
homogeneity for a particle is related to the Fourier coefficients 
having a single vector k which is non-vanishing (we shall denote 
them by Q k l { 0 }) . Actually, by using definition (V.74) and denoting 
by ψι(ρι, t) the velocity distribution function for a single particle, 
we have (with c = ΝIV) 

f i ( P i 9 r i ;t ) - €Ψι(ρΐ9ί) = cV*
12
 Σ f Qkme

mrr)
d

3
P2..-d

3
pN. 

(V.195) 

On the other hand, it can be shown that the Fourier coefficients, 
whose wave vector sum is equal to zero, are related to different 
correlation functions of the system in the uniform state. Thus we 
have for the pair correlation function g2(rl — r2;t): 

giir, - r2;t) = V
2
 j S(P9t)d*Pl...d*pNd*rz...d*rN - 1 

= V
NI2 E J e ^ - M o , ^ - ^ ! d'p2...d*pN; (v 1 % ) 

in this case, the integral over the moments of the coefficient Qk,-k{o} 

is simply the Fourier coefficient of the function g2. It can be 
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and where r denotes the number of non-zero and independent A> 
vectors which occur in ρ{Ιί} (that is to say, the number of non-zero 
wave vectors less the number of relations of the type YJit — 0). 

i 

Under these conditions, the expansion (V.186) now assumes the 
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proved similarly that the coefficients Qkk>k>>{0} > with k + k! + k" = 0, 
correspond to conditions in which three particles are correlated 
together; we could obtain a similar interpretation for the Fourier 
coefficients which have a larger number of non-zero wave vectors. 

Since the distribution functions fs (defined by (V.74)) have 
Fourier coefficients containing at most s non-zero vectors k, it can 
be seen that all the physical quantities can be expressed directly as a 
function of Fourier coefficients having a very small number of non-
zero wave vectors. Amongst these coefficients, those whose A>vector 
sum is zero correspond to correlations of the system in the uniform 
state, the others describing deviations from the state of spatial homo-
geneity. On the other hand, the interactions included in the opera-
tor L have the effect of inducing transitions between the different 
Fourier coefficients; thus, we obtain a "correlation dynamics" , 
the equations of which are given by equation (V.187). Moreover, 
because of the conservation relations (V.193), the time evolution of 
the coefficients with YJt = 0 is completely independent of that of 
the coefficients with YJc φ 0; in a non-uniform system these two 
types of coefficients have a completely independent time behaviour. 
The study of this correlation dynamics will enable us to establish 
kinetic equations which are valid for sufficiently long times. 

Before dealing with this problem, we must draw attention to 
an important property of the Fourier coefficients in the limit as 
N,V-+oo, with N/V = c. We note first of all that according to 
the foregoing results it is suggestive to rearrange the expansion 
(V.186) according to increasing number of non-zero wave vectors k 
which occur in the ρ{Η}. On the other hand, in order to study the 
limit of infinite systems, it is convenient to introduce the coeffi-
cients Q{k} 

g{k} = V
N/2

QrQ{k}, (V.197) 

in which we have put 
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following form (Prigogine, 1962): 

ρ(ΛΟ= ν~
Ν
[ρ0+Ω-

1 

Σ Σ ê(A)e' k j 

where we have denoted by g(jk, lk>, ...) a Fourier coefficient such 
that the vector k corresponds to the particle j , the vector ft' to the 
particle /, If, now, we proceed to the limit Ω oo we can 
replace the sums over the wave vectors in equation (V.199) by 
integrals. Since, because of equation (V.177), the density of states 
is equal to Ω, we have the relationship Ω~

ι
 £ -> \d

z
k and for-

mula (V. 199) becomes :
 k 

+ £ f f d*kd*k'fäkJL)e
iik
''

rj)+tik
''

ru
 + ···]· (V.200) 

However, if we consider the distribution functions fs defined by 
equation (V.74), we must accept that they tend towards a finite 
limit value which depends only on c = N/V, when Ν and V ap-
proach infinity with c constant: this is the hypothesis relating to 
the finite nature of the distribution functions, which is necessary for 
defining intensive physical quantities. If, therefore, we introduce 
the expansion (V.200) in Equation (V.74), important restrictions 
concerning the Fourier coefficients ρ{Η} result from this hypothesis: 
it can be seen that the coefficients ρ0, Q(jk), §(Λ> · ·

 n e e
^ not 

depend explicitly on Ν or V but only on the ratio NjV. This re-
striction, which is equivalent to the hypothesis concerning the finite 
nature of the distribution functions, can also be expressed in an-
other form; actually, if we compare the Fourier transform of ρ(Ρ, t) 
with the supposedly valid expansion (V.200), we see that it is neces-
sary that this Fourier transform can be expressed as a sum of terms, 
each containing one singularity of the type öik^ ö{k2) ... ô(kj) .... 

t Σ ' denotes that we are summing over all the wave vectors k, except k = 0 ; 

k j,l kk' j,l 
+...], (V.199) 

k 
we have here written ρ 0 in place of ρ{0}. 
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In conclusion, we point out that the expansion (V.200) bears 
a close relation to an expansion of the fs functions in clusters 
generalising a similar expansion used for the equilibrium state. 
This expansion leads to the introduction of the cluster functions 
us(Pi, . · , />*; rl9 rs; t) = w s(l, 2, s) defined by (Fs = c

s
fs): 

F1 = u1+ Φί9 

F2 = I I 2(1 , 2) + W l( l ) 0 , (2 ) + 11,(2) Φ±(1) + Φ 2 ( 1 , 2) , (V.201) 

R=0 ( P R) 

where 0s(pi, ...,/>s; 0 is the velocity distribution function of ^ 
particles. The Σ represents the sum over all the permutations ASSO-

CJV) 
ciated with the different ways of assigning the r variables of the 
functions ur (but not over the permutations of these variables them-
selves, once they are fixed). It can be seen that the Fourier coeffi-
cients of the functions ur, <{Ä}|t/r>, are non-vanishing only if the 
set of the non-zero vectors k occurring in {k} corresponds to the r 
variables of w r. Moreover, if we accept the factorisation property t 
of the functions Φ 5 , Φ 5(1 , 2, s) = 0 ^ 1 ) 0 , ( 2 ) ... 0x(s)9 it can 
be shown that the functions us can be expressed as sums of Fourier 
coefficients. More precisely, the functions us are in this case the 
Fourier transforms of the sums of all the coefficients ρ(1 k l , 2k2, ... sks)9 

with non-zero wave vectors corresponding to the particles (1 ,2 , . . . ,s) ; 
for example, we have 

Μ ι ( 1 ) = β - 1 Σ ' ρ Ο > ί ( Λ Γ ι ) , (V.202) 
k 

« 2(1 , 2) = Ω~
2 Σ [ρ(1„ 2k) β'<*·'·>+«*··«> 

kk' 

+ ß C f d t - 2 - t ) e l , H " " ' ! | ) ] 
We note that these relations are simplified again in the uniform 
case; in the previous example, it can be seen that «,(1) = 0 and 
t / 2( l , 2) is reduced to the second sum of the bracket. 

4. Generalised kinetic equations 

We proceed now to a study of the time-evolution of the coeffi-
cients Q{k)(t), for which we shall use the résolvant formalism ex-

t It corresponds to the hypothesis according to which the correlations have a 
finite range (cf. Prigogine, 1962). 
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plained in Section VI.2. If we put the Fourier expansion (V.l86) 
into equation (V.171), we obtain the fundamental equation: 

2πι J {fc'} 

x Σ (-V\{k}\R0(z)[L', R0(z)T\{k'}} ρ{η(0), (V.203) 

where the résolvant operator R0(z) of the unperturbed system is 
diagonal in the Fourier representation, which can be written as : 

<{*} \R0(z)\ {*'}> = — ! d { k ), i n. (V.204) 

Although it is obviously out of the question to calculate explicitly 
the sum of all the terms of the expansion (V.203) which would 
amount to supplying the exact solution of an JV-body problem, 
nevertheless we can obtain the equations describing the time-
evolution of the various Q{k)(t) by rearranging and regrouping the 
terms in equation (V.203). We point out first of all that each opera-
tor 11 introduces a sum of N(N — l)/2 operators of the type L'u 

corresponding to the binary interaction of the two particles i and j . 
To each of these L'u there corresponds a matrix element of the type 
<{£}|Ly|{£'}> which we have calculated in (V.191): it has the effect 
of modifying the "initial s ta te" characterised by the set of wave 
vectors {A

7
}, by inducing a " t rans i t ion" from this state to the state 

represented by the system of vectors {k} ; we note that because of 
equation (V.l93), the sum of all the wave vectors must be con-
served during these transitions. Thus, we can speak of an " in i t i a l " 
state of correlations {k'} which are propagated from right to left, 
in undergoing " t rans i t ions" induced by the matrix elements of 

the type <{*}|^|{Α'}>· 
Thus, we are led to representing this situation by the system of 

diagrams (or graphs) invented by Prigogine and his co-workers, 
in which the state of the system corresponding to the coefficient 
£{fc<}(0) is described by a set of superimposed horizontal lines, the 
number of lines being equal to the number of non-zero wave vectors 
of {£'}; each line is denoted by the suffix of the particle associated 
with the corresponding wave vector. These states are propagated 
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— ;> < 
(d) (e) (f) 

Figure 1 

We note that the six basic diagrams can be arranged in three cate-
gories : 

(oc) those which correspond to a propagation of correlations in 
which the number of lines is not modified by the vertex (diagrams 
(a) and (d)); 

(β) those which describe the creation of correlations where the 
number of lines is larger to the left than to the right of the peak 
(diagrams (b) and (e)); 

(γ) finally, those corresponding to the destruction of correlations, 
where the number of lines is smaller to the left than to the right 
of the peak (diagrams (c) and (f)). 

Amongst the various combinations of these elementary dia-
grams, we must point out the "cyc l e " represented by Fig. 2, 

i 

o > 
J 

Figure 2 
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freely from right to left by the action of the operator R0(z) but are 

modified by the interaction terms Z y which induce the transitions 
represented by "ver t ices" ; these are the points of meeting or 
intersection of lines which are associated with the matrix element 
<{Α:}|Ι^|{Λ'}>. Because of the conservation relations (V.193), it can 
be seen easily that only the six fundamental vertices of Fig. 1 can 
be encountered. 

i i i ; 

(a) (b) (c) 
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which, after the creation and the destruction of a correlation between 
the particles i and j, leads the system from an initial state without 
correlations to a similar final state. This diagram, which plays a 
fundamental role in the study of the velocity distribution function, 
corresponds to the operator: <0|i?u(z)|0> which, according to 
(V.203) and (V.204), can be written as : 

<O|Ä, /Z) |O> = - — + A2<OI ±£;,[ΑΟ(Ζ)£;,] — ιο> = - — 
ζ ζ ζ ζ 

+ ̂ -Σ <ΐο £;,|{*}> 1 — <{*>|£yo>. 
Ζ

2
 {k} (k · (vt - Vj)) - ζ 

(V.205) 

This being so, the set of terms of the expansion (V.203) can be 
represented by complicated combinations of the six fundamental 
vertices of Fig. 1. The general term of (V.203) gives contributions 
of the form: 

Σ Σ < { * } I Ä O ( Z ) Σ îy l {*"}> Σ <{*"}l*o(z) Σ i'u\{k"V - * 
{k'} {k"} i<j {k'"} Kj 

χ Σ£Μζ)\{ν}>ρ{*Ίφ). 

These different terms can be rearranged and expressed by means 
of one of the three operators defined by the following formulae 
(Stecki and Taylor, 1965): 

—The general operator of correlation creation ^({k}, [k'}\ z): 

CO 

# ( { * } , {*'}; ζ) = Σ ( - λ ) " <{k}\[R0(z), L T I { * ' } > , (V.206) 
n = l 

in which the number of non-zero wave vectors is larger in {k} 

than in {k'}. 

—The general diagonal operator W({k};z): 

Ψ({υ); ζ) = Σ (-λ)" <{*}|Ζ'[Α0(ζ),£Τ"Ί{*}>, (V.207) 

where the number of non-zero wave vectors is the same in the 
initial and final states. 
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—The general destruction operator â>({k},{k'}; ζ ) : 

<§({*},{*'}; ζ) = f {-X)
n
({k}\L\ Αο(ζ)Π{*'}>, (

ν
·

2 0 8
) 

n= 1 

where the number of non-zero k vectors is smaller in {k} than in 
{£ '}; in the foregoing definitions, it is assumed implicitly that no 
intermediate, state {£"}, {£" ' } , . . . is identical with the initial state{£'}. 
Thus, we obtain three functions of ζ whose analytic properties are 
similar to those of the résolvant operator R{z). We shall assume 
that these are analytic functions of ζ in the upper half-plane Im ζ 
> 0, and that they have analytic continuations into the lower 
half-plane Im ζ < 0; we shall assume, in addition, that these 
continuations have poles located in the lower half-plane at a 
finite distance from the real axis, f The functions which we have 
just defined, therefore, will be denoted in future by Ψ

+
 and ^

+
 ; 

in addition, we note that the function Ψ
+
 is identical with the sum 

of all the "diagonal fragments" represented by Prigogine by the 

diagram ^ § ^ , whilst the functions and @
+
 correspond to the 

diagrams ψ> and ^ respectively. Finally, these functions have 

inverse Laplace transforms which we shall denote in the following 

by £({*} , {k'}; τ), # ({*} ; τ) and â({k},{k'}; τ), where τ is the 
auxiliary time variable. 

Following the method proposed by Prigogine and Résibois 
(1961), it is then possible to obtain generalised equations satisfied 
by the various Fourier coefficients of the phase density ρ(Ρ, t). 
It can be seen immediately that the velocity distribution function 
corresponding to the Fourier coefficient ρ0(0 (with all the ^-vectors 
zero) satisfies an equation which can be written symbolically as : 

Qo(0 = f m
 m

 [Qo(0) + Σ < É?*'(0)], (V.209) 

m = 0 k' 

where
 m

 represents a sequence of m arbitrary "diagonal frag-

ments" . With the previous notation, equation (V.209) can be 

t W e note that the nature and posit ion o f these poles depend o n the inter-
molecular potential force; for certain potentials, we can have other types o f 
singularity (branch points or essential singularities). 
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written analytically as : 

βο(0 = - - ^ - i à z e - ' " - f ( - 1 ) " i - ^ ^ i k ( O ) + â
+
( z ) ] ; 

2πι J Ζ m = 0 \ ζ ) 
c
 (V.210) 

by taking the derivative with respect to t and by applying the con-
volution theorem for Laplace transforms, we have finally 

dt #o ( Τ ) Q 0( t - r ) d r + SS(t); (V .211 ) 

this is the general kinetic equation satisfied by the velocity distri-
bution function. It can be seen that this equation is non-Markovian 
and that the effect of initial correlations is described by the in-
homogeneous term &o(t) which represents the sum of all the " d e -
struct ion" terms leading to a final state with {k} = {0}. 

This method can be applied easily to the study of the equations 
describing the time-evolution of correlations. We note first of all 
that, for every Q{k)(t)9 the terms of the expansion (V.l86) divide 
themselves into two groups representing an entirely different time 
behaviour. Thus, it is quite in order to split up each of the Q{k)(t ) 
according to the formula 

<?<*>(') = e«(0 + eii>(0; (v.212) 

the primed part corresponds to terms which result from the propa-
gation and the destruction of the initial correlations, whilst ρ{"}(0 
includes the other terms and represents that part of the correlations 
which is "c rea ted" , starting from a correlation state of lower 
order. These two parts, ρ' and ρ", correspond also to different types 
of equations. It can be shown easily thatQ[k](t) satisfies an equation 
similar to (V.211) and, proceeding as for ρ0(0> w e

 obtain: 

+ i[Zi(*/-»/)Jew(0 

= J é+({k},T)Q'{k}(t - Τ ) a + J{T , (0, 
0 

(V.213) 
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which differs from (V.211) only by the presence of the flow term 
'ΙΣ fa · Vj)] ρ(Λ}. With regards to ρ{1} (t)9 it can be established, still 

i 

by the same method, that it satisfies the equation 

t 

<?«(') = Σ [v+({k}AWl*)Q'{k-)(t-r)*, (V.214) 

which states that the part of the correlations is obtained by 
the action of the operators ^ ( r ) acting on the primed part of the 
Fourier coefficients corresponding to a correlation state {ft'} of 
lower order than {ft}. Equations (V.211), (V.213) and (V.214) are 
the generalised kinetic equations satisfied by a classical fluid; we 
shall see when discussing Zwanzig's method in Chapter VI that we 
can obtain similar equations in quantum theory. It can be proved 
that these equations are all non-Markovian ; this non-Markovian 
character results from the finite duration tini of collision processes ; 
the expression of Q

f

{'k} and of the derivatives δρ0/οί and d^{k]jdt at 

time t depend on collisions which began at an earlier time of order 
t — tint ?

 a n
d which finish at the time t; hence, the evolution inte-

grals which occur in the second terms. Thus, the system has a 
" m e m o r y " which extends over a duration of the order of tint, 
and this effect is governed by the time-dependence of the functions 
£ ( τ ) and # ( r ) . 

It can be shown, by following the method of Prigogine and 
Résibois, that the equations (V.211) and (V.213) reduce to Markov 
equations for times t > i l n t. We note first of all that if the G(T) 
operators vanish practically for τ > t i n t9 it is possible to extend 
the limit of integration to infinity without affecting the results. 
On the other hand, we can neglect the inhomogeneous terms 
&i(t) or3{k}(t) for sufficiently long times t. Elementary reasoning 
then consists in expanding ρ0(ί —

 τ
) or ρ[^ in Taylor series around 

ρ0(0 and expressing the moments of Φ^{τ) or of ^
+
({f t} , r ) as 

functions of the derivatives at the point ζ = 0 of the Laplace trans-
form ^ ( z ) or !P({ft}, z). We obtain finally for the velocity distri-
bution function, the Markov equation: 

= β/η+(0)ρο(Ο = Ω <HP ρ0(0, (V.215) 
dt 
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where Ω is defined by 

Q = l + </><
1 ) +

(0) + ^ <
1 ) +

( 0 ) ¥ ^
1 ) +

( 0 ) + i ^
2 ) +

( 0 ) ? F o
+
( 0 ) + ... 

with Ψο
)+
(0) denoting the vth order derivative of Ψο (ζ) at the point 

ζ = 0. Similarly, equation (V.213) is replaced by the Markov 
equation 

4~ + i Σ to * Λ'*>(') = Ö*i*>(0; (V.216) 

equation (V.214) remains, for its part, unchanged, except that the 
Q{K) now satisfies the Markov equation (V.216). We note that these 
equations have been proved more rigorously by Prigogine and 
Résibois (1961). 

The Markovian equations which we have just established are 
irreversible, in contrast to the fundamental equations (V.211-214) 
which, in principle, provide exact solutions of Liouville's equation. 
Equations (V.215-216) describe the return to equilibrium of the 
system and a generalised / /- theorem can be established which in-
cludes the following three stages: 

(a) By making use of equation (V.215) and with a power expan-
sion of the concentration, we prove that ρ0(0 tends towards the 
velocity distribution function at equilibrium, ρ*

α
. 

(b) In the same way, starting from (V.216) we show that 

iim ρ μ ο = ο, ( v 2 1 7 ) 

which expresses the "des t ruc t ion" of the correlations contained 
in ρ' after a sufficiently long time t. 

(c) By substituting the previous result in equation (V.214), corre-
lations of the type ρ\ί)(ΐ) are given at the end of a very long time, by: 

t 

Q'm«) = j #+({*}.{0};*)<?oC - τ) A , (V.218) 
Ο 

which shows that the correlations are then functionals of the velo-
city distribution function ρ 0 . In the limit as t -» oo, ρ0(0 - • QI

Q

9 

and we have : 
00 

lim e'^it) = { {0}; τ)çfdt. (V.219) 
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We then show, and this is the third part of the generalised / / -
theorem, that these correlations correspond to those calculated 
starting from a canonical ensemble by equilibrium statistical me-
chanics. 

Thus, we prove that the Markov equations (V.215)-(V.216) and 
(V.218) provide a sharp interpretation of the mechanism of irre-
versibility. What distinguishes these equations from the correspond-
ing reversible equations, is that it suffices for calculating ρ0(0> o r 

Q{k)(t), to know ρ 0(0) or ρ{*}(0). On the other hand, it can be seen 
from equation (V.214) that the calculation of ρ\ί)(β) only involves 
the correlations Q{k) (0) of a lower order {A:'} ; consequently, there are 
no terms existing in the Markov cycle which express a correlation 
of lower order as a function of a higher-order correlation. These 
terms, on the other hand, exist in the reversible equations (V.211) to 
(V.214) and they establish a link between the corresponding equa-
tions for various Q{k)(t). Transition to Markov equations thus has 
the effect of decoupling the kinetic equations which determine the 
evolution of the correlations and, in consequence, of decoupling 
the equations of the B.B.G.K.Y, hierarchy. In the limit as t -*· o o , 
the ρ'{*}(0 vanish, which expresses the "des t ruc t ion" of the initial 
correlations, and the state of the system is described simply by 
the velocity distribution ρ0(0> satisfying equation (V.215), and by 
the correlations Q^(t) which are expressed according to equation 
(V.218) as functionals of ρ0(0· 

In conclusion we point out that we find again, in a different form, 
Bogolyubov's ideas of expressing higher-order correlations as func-
tionals of the distribution function of one particle. In fact, it can be 
proved that the Markov equations which we have just discussed 
contain Bogolyubov's kinetic equations, at least in the lowest order 
of the expansion parameter. Nevertheless, a complete comparison 
of the two methods is not easy, since the explicit form of Bogolyu-
bov's kinetic equations does not include terms of higher order (see 
Stecki and Taylor, 1965). 



CHAPTER VI 

H-Theoremsand Kinetic Equations in 
Quantum Statistical Mechanics 

The study of the evolution in time of macroscopic systems develops 
in quantum theory by considerations similar to those followed for 
classical systems. We shall begin by establishing an / /- theorem for 
ensembles of quantum systems by introducing (as in the classical 
case) coarse-grained statistical densities in the sense of Ehrenfest : 
we shall see that the special properties of quantum observables 
make the introduction of macroscopic operators indispensible for 
defining the quantum parallel of finite cells of extension in phase 
(or stars in jT-space) in classical statistical mechanics and that the 
results obtained with these definitions are open to the same inter-
pretations and to the same criticisms as those of classical theory. 

In order to obtain a more detailed description of the evolution 
of a macroscopic quantum system, we shall prove a quantum 
kinetic equation by making use of time-proportional transition 
probabilities: in this way, we shall find without difficulty all the 
results, especially those concerning the quantal / /-theorems, show-
ing moreover the significance of the perturbation potential V 
which causes the transitions. As in classical statistical mechanics, 
we shall prove that the formulae obtained are valid only for the 
short interval of time that follows the instant of macroscopic 
observation; their extension to any instant, which alone can enable 
us to make a quantitative study of irreversible phenomena, thus 
requires a supplementary assumption of the same kind as that 
introduced in classical theory: it is necessary that the quantum 
parallel of the property of molecular chaos be conserved in time. 

Above all, in this chapter, we shall discuss the various assump-
tions which are essential for describing the irreversible evolution 
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of a macroscopic quantum system, by using the essential quantum 
theoretical relations (such as Klein's lemma) and by comparing 
at each stage of reasoning the classical and quantum aspects of 
the foundations of statistical mechanics of systems in evolution. 
We shall show, particularly, in the last section that the considera-
tions of Sections IV and V of the preceding chapter can be extended 
to quantum theory by means of certain adaptions which enable us 
to obtain, for example, a chain of equations similar to the 
B.B.G.K.Y. equations, a quantum Boltzmann equation and a 
" Master Equat ion" , whose justification poses in final analysis pro-
blems similar to those encountered in classical theory. 

I. Fine- and Coarse-grained Densities in Quantum Mechanics 

1. Properties of the fine-grained densities § 

As in classical mechanics, the fine-grained densities defined in 
Chapter II by the density matrices [equation (11.20)] cannot de-
scribe the irreversible evolution of the system; in fact, they obey 
an equation similar to that of Liouville : 

4 ^ = 4 - ^ - · (vu) 

dt h 
which can be derived from Schrödinger's equation 

ΗΨ(ί) = i h ^ ^ - 9 (VI.2) 
dt 

with which is associated the evolution operator 

U(t) = e x p [ - iHt/h], (VI.3) 

However, it is easy to show that the transformation (VI.3) is 
reversible and that the same is true for (VI. 1), the formal solution 
of which can be written as 

5(0 = t>(0 5(0) £/*(/); (vi.r) 
there will thus be no privileged direction of time for ensembles of 
systems described by a fine-grained density 5 . In order to establish 
this property of reversibility, we suppose first of all that in terms 
of some base φί we have Ψ = £ c^i9 or Ψ* = ]T cjty,*. If the φι 

i i 
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are the eigenfunctions of an operator which is a real analytic ex-
pression, <pf is also an eigenfunction and corresponds to the same 
eigenvalue (the case of position operators qk); on the contrary, 
if (pi is an eigenfunction of an operator corresponding to a pure 
imaginary expression, φ* is an eigenfunction corresponding to the 

same eigenvalue with its sign changed (the case of momenta 
h d \ 

pk — -ζ— -ζ—I. Thus, the functions Ψ and Ψ* lead to the same 
2πι dqj 

predictions for the measurement of observables with real operators 
and to opposite eigenvalues of purely imaginary operators. In 
order to prove the reversibility of (VI.2), it is sufficient then to 
show that the wave equation describing the evolution of a system 
for a reverse order of time 0 = — / is obtained by taking the complex 
conjugate of (VI.2). Assuming that the Hamiltonian Η is a real 
analytic expression (as is always the case in normal wave mechanics), 
we obtain from (VI.2): 

ΗΨ*(ί) = - ih
 K)

 (VI.2') 
dt 

which can be written also as 

HW*(t) = ih — i l l . (VI.2") 

3 ( - 0 
Putting - / = θ and Ψ*(-θ) = χ(θ), (VI.2') becomes 

CO 

which is equivalent to (VI.2) with a reversed order of t ime: the 
wave function χ(θ) takes a value at the instant t which is the com-
plex conjugate of Ψ at the instant — f.f 

In addition, we can express the reversibility of evolution by 
introducing a quantity similar to that used in classical theory 
[equation (V.2)]; let 

a = T r ( | In | ) (VI.4) 

t This property o f microscopic reversibility appears to be completely 
general; the foregoing proof, in fact, can be applied to other equations such 
as those of Dirac, quantum electrodynamics (see in particular Watanabe, 
1951, 1955a, b, c). 
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be this quantity. Because of the properties of the trace of a matrix 
under unitary transformations, it can be seen that a remains con-
stant with time [since the evolution is described by the unitary 
operator (VI.3)]; in this case, we can write 

= 0 , (VI.5) 
dt 

which shows the need for introducing, as in classical statistical 
mechanics, coarse-grained densities in order to establish an H-
theorem. 

We note also that a possesses the same minimum properties as 
its classical counterpart. If we are dealing with an isolated system 
whose energy is contained in a shell δΕ, a is a minimum if ρ is the 
microcanonical ensemble. 

? fMu if Ε ί Ε , κ Ε + δΕ, ( V I 6) 

( 0 in other cases. 

Similarly, if only the average energy of the system is known, 
a is minimum if ρ is the canonical ensemble 

% = e ^ - ^ ; (VI.7) 

and the grand-canonical ensemble 

ë = e
ß ( ü +

^ ~
a )

 (VI.7') 

makes a minimum if only the average energy and the average 
number of particles of the system are known. We obtain these 
results by following the same route as in classical theory: we look 
for the minimum of equation (VI.4), connected by the relationships 

Trg = 1, ΊχφΗ) = £ , TTQN) = w, 

and we use the method of Lagrangian multipliers. 
Besides the property of reversibility, we can also, as in classical 

mechanics, establish the quasi-periodic nature of the evolution by 
proving (Bocchieri and Loinger, 1957) the quantum parallel of 
Poincaré's recurrence theorem. Suppose, in fact, that we have a 
system whose energy spectrum is discrete ; we can show that there 
is always at least one time, r , such that \\Ψ(τ) — Ψ(0)\\ < ε, where 
Ψ(ί) is the state vector in the Schrödinger representation. With the 

249 



Classical and Quantum Statistical Mechanics 

notation of Chapter III, § II, we have 

W(t) = Σ fié 
.Hoci-Eit/h). 

whence 

\\Ψ(τ) - Ψ(0)\\ = 2 Σ rf (1 - cos Εφ). 

Since we can always choose Ν such that : 

Σ^ 2(1 - cos i -

it is sufficient to prove that there is a value of τ such that 

however, this is a normal result of the theory of quasi-periodic 
functions. Thus, we have proved a quantum recurrence theorem, 
in which the assumption concerning the discrete nature of the / / -
spectrum (bounded system) plays a similar role to the assumption 
relating to the finite size of the Σ hypersurfaces in classical me-
chanics. Mechanical reversibility and periodicity, therefore, in 
quantum theory as in classical theory, contradict the irreversi-
bility of macroscopic evolution. This involves the same conse-
quences and poses the same problems in both theories : in particular, 
we must define coarse-grained densities in quantum theory. Before 
dealing with these problems, we must still study a specific quantum 
property of fine-grained densities. 

2. Klein's lemma 

The quantity a is not involved directly in the calculations leading 
to the //- theorem ; it is the quantity 

which plays a predominant role. We shall now prove an essential 
property of (VI.8), known by the name of Klein's lemma (1931): 
during evolution, expression (VI.8) is decreasing continually (or, 
at best, it is constant in the case where ρ is a diagonal matrix). For 
this purpose, we must calculate first of all the expression for the 

" £ ( 1 - c o s ^ r / Ä ) < - i ; 
i = 0 2 

Σ Qkk In Qkk 
(VI.8) 

k 
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density matrix ρ(ί) at starting from the expression for this matrix 
at t0 = 0. 

Since the evolution of a quantum system is described by the 
unitary operator (VI.3), the c^t) coefficients of the expansion of 
Ψ(ί) = £ Ci(t) (pi satisfy the equations 

i 

Φ) = Συυ(ί)φ). (VI.9) 
j 

Taking the complex conjugate of (VI.9) and multiplying term by 
term, we obtain 

c*(0 c,(0 = Σ UijUiicM c,*(0) (VI.10) 

which gives us the time-evolution of the density matrix of a pure 
case. Taking mean values (as we showed in Chapter II), we 
proceed from elementary density matrices to density matrices ρ, 
whose time evolution is determined according to (VI. 10) by 

êik(0 = Z ^ A ^ i ( 0 ) . (vi.li) 

This equation, which we shall use frequently in what follows, 
can be derived also directly from (VI. 1). We shall deal often with 
the case where ρη (0) is diagonal (assumption of a uniform distri-
bution of the initial phases); equation (VI. 11) can then be written 
as 

V v i . i ^ ; 

(VI. 13) 

which, for the diagonal terms Qa(t), becomes: 

Having done this, we are now able to prove Klein's lemma; 
for this purpose, we consider two instants t' and t'\ with t" > t\ 
to which correspond the values ρ' and ρ" of the matrix ρ: we shall 
suppose that 3' is diagonal, so that we have 

(VI. 14) 

(VI. 15) 

Applying formula (VI. 13), we get 

http://vi.li
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where Uu denotes here the matrix element of the operator 
Û(t" - t'). 

We introduce now the following expression: 

QJt = Q'jj[\n fa - In g;; - 1] 4- & (VI. 16) 

which is always non-negative; actually, it is of the form L(x9 y) 
= x(ln χ — In y) — χ + y: if χ and y > 0, this quantity is positive 
or zero according as χ Φ y or χ = y (as we saw in Chapter III) ; 
the elements ρη and ρ\\ are of course positive (since they are 
probabilities) and they are generally different if the observable 
chosen for the expansion of Ψ(ί) is not an integral of motion (in 
other words, if it does not commute with the Hamiltonian). We 
multiply QJt by the positive quantity \Utj\

2 and we sum over the 
indices i and j ; we obtain 

Σ I UU\
2
Q'JJ In q'jj - Σ I Uu\%jIn ft - Σ IU,J\

2
Q'JJ + ΣI υ„\

2
ρύ è ο. 

υ υ υ υ 
(VI. 17) 

Since the matrix UtJ is unitary, we have, in addition 

Σ ^ « = Λ«· (VI. 18) 
i 

Putting (VI.18) and (VI. 15) in equation (VI. 17), we obtain 

Σ QJJ I" QJJ - Σ Qu In eil - Σ ë'jj + Σ Qu ^ 0. (VI. 19) 
J i J i 

Since the last two terms of the preceding expression represent the 
trace of the density matrix ρ at t' and f ", which is always equal to 1, 
equation (VI. 19) can be written 

Z ^ l n ^ - Z ë « l n ë Î U o . (vi .20) 
j i 

This is Klein's lemma : the equality sign is valid only if the matrix ρ" 
(at t") is itself diagonal, which is not generally the case. Thus, it 
is the existence of the non-diagonal terms ρ'0' φ 0 [calculated using 
(VI. 12)] which leads to the inequality (VI.20): this inequality is 
contrary to the invariance of the trace expressed by (VI. 5) which 
corresponds to the classical relationship (V.3); it expresses a certain 
spreading of the fine-grained density over the different states, 
which has no classical equivalent. We note that the preceding 
result is valid only if the matrix ρ is diagonal at t\ We can also 
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put (VI.20) in a different form, by associating with 5 a diagonalised 
matrix £ d, defined by 

(lä)u = QtAj, (VI.21) 

to which a new quantity ad corresponds : 

<xd = T r ( | d l n | d ) . (VI.22) 

Klein's lemma then takes the form 

a'd̂ a'd'; (VI.23) 

this relation expresses the fact that the transformation making 
the transformation from Qd to ρ" is not unitary. 

3. Coarse-grained densities in quantum mechanics 

In order to define the coarse-grained densities necessary for 
describing the irreversible evolution of a macroscopic system, we 
must define first of all the macroscopic state of a quantum system. 
The usual method (employed in particular by Pauli and Tolman) 
was as follows: suppose that we have a quantum-mechanical 
macroscopic system represented by a matrix Qtj(t), whose elements 
are written in the system with base {ç?J corresponding to the 
observable A ; the spectrum {<xj of A is assumed to be discrete 
(spatially bounded system) but very dense, so that the calculations 
can be carried out as if we were dealing with a continuous spectrum 
(time-proportional transition probabilities). A macroscopic ob-
servation of A does not allow us to assign to the system a specified 
eigenvalue oct but allows us only to distinguish between various 
groups of these eigenvalues; thus, macroscopic observation leads 
us to divide the set {<xj into groups denoted by the suffix ν and each 
including Gv eigenvalues. 

The probability that a macroscopic observer finds that the 
observable A of the system has a value contained in a group ν is 
then given by 

Λ(0 = Σ&ιΟ ( ν ι· 2 4> 
i= 1 

and we define, starting from Pv(t), a coarse-grained density 
Ptj(t) by the relation 

Ρ (f} δ
 Gv 

Λ/0 = - ^ - à ( J = 2lL £ (VI.25) 
G„ G„ i=i 
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The coarse-grained matrix P(t) is normalised like ρ; according to 
(VI.24) we have 

T r P ( / ) = 1. (VI.26) 

Under a change of coordinates, the matrix Ρ is transformed in 

the usual way; if S is a unitary transformation of Hilbert space, we 

have 

P' = s-'Ps, 
or 

Pkl
 =

 Σ Ski PijSjl
 =

 Σ Ski PiiSil 
ij i 

which, using definition (VI.25), can be written as 

? ί ι =Σ^τ Σ Sü
1
 Sit· (VI.27) 

v (Jv i=l 

We can then use this matrix Ρ as we used Ehrenfest's coarse-
grained densities in the classical theory; in this way, we prove an 
//- theorem for an ensemble of systems (Pauli, 1928; Tolman, 
1938). 

We must point out, however, that the definition of the matrix Ρ 

depends on the choice of the base {<pj, i.e. on the observable A 

which is being considered: in particular, the matrix Ρ will be 

diagonal only in the system {<pj, as equation (VI.27) shows. On the 

other hand, the quantity Η is defined by the relation 

Η = Tr (P In Ρ) = Σ PJt) In Pkk(t\ (VI.28) 
k 

and it assumes the form of the last term only if the matrix Ρ is 
diagonal. Since this happens only for the base {<pj, the definition 
(VI.25) of coarse-grained densities has the disadvantage of making 
the macroscopic properties of the system depend on the nature 
of the observed quantities, and thus on the observation itself; 
thus, we find a difficulty which is inherent to quantum statistical 
mechanics, due to the non-commutability of microscopic ob-
servables. 

We can avoid this difficulty here by using the definition of the 
macroscopic observable which we discussed in Chapter II. We 
recall that this method consisted in constructing a set of simul-
taneously measurable macroscopic observables which define, in 
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the complete Hilbert space, a set of sub-spaces (similar to the 
classical stars of / '-space) subtended by the eigenvectors Ω^ and 
grouping together s

(

v

a)
 macroscopic eigenvalues equal to one 

another (macroscopic degeneracy). The eigenvectors ß /

( a )
 are 

defined by the change of variables (11.55) 

Φ
}
 = Σ<:*Ψ*> (

Ν Ι
·

2 9
) 

k= 1 

where tpk are the eigenfunctions of the microscopic Hamiltonian. 
These operators will enable us to define the macroscopic state of a 
quantum system and to study its evolution. 

We start by defining in this case the coarse-grained density ma-
trices. Let Ψ(ΐ) be the wave function of the system considered. 
We can put 

Ψ(0 = ΣΣ^\ί)Ω^\ (VI.30) 
« i = l 

since the i2 f

( a)
 constitute an orthonormal base in Hilbert space. 

We point out first of all that there is no exchange of probability 
between the various shells e

( a)
 during evolution. Consider, in 

fact, the matrix elements (Ω\**9 ϋ(ί)Ω^); we can write them, 
according to (VI.29) and (VI.3) as : 

/S(«) S(ß) \ 

and, by expanding the operator e~
iHt/h

9 we can prove that non-zero 
contributions could originate only from terms corresponding 
to k = /; however, according to (VI.29), k and / are necessarily 
different if α Φ β; we have, therefore, 

(Ω\«\ Û{t)Qf>) = 0 if oc Φ β, (VI.31) 

which is a consequence of the approximations made in Section II of 
Chapter II in order to obtain (11.25) or (VI.29). We can then 
write 

S<«) S(0) 

Σ \c\"\t)\
2
 = Σ \c\

a
\0)\

2
, (VI.32) 

i = 1 1=1 
which reduces, however, to stating the principle of conservation of 
macroscopic energy which is an integral of motion. 
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Thus, it is sufficient to limit ourselves in (VI.30) to the expansion 
of Ψ(ί) in terms of the functions Ω\

α)
 of a single energy shell; in 

what follows, we shall always use the reduced expansion 

S(«) 

ψ(ί) = Yjc\«Xt)Q\«\ (VI.33) 
i= 1 

An elementary density matrix 

Q\f(t) = cf'\t)c\'\t), (VI.34) 

corresponds to this pure case. The point of view of statistical 
mechanics consists then in representing the macroscopic system by 
an ensemble of systems (Jancel, 1956) defined by a mean density 
matrix 

elf(0 = c^(t)c\'\t), (VI.35) 

where the averages are taken with a suitable probability distribution 
as we have seen in Chapter II. 

Having done this, a macroscopic observation will enable us 
only to know the statistical weight of a cell ν (according to its 
definition). If P

{

v

a
\t) is this statistical weight, we have 

s («) 

^ ( 0 = Σ Α ) . (VI.36) 
i= 1 

These are the quantities P(„a)(0 which describe the macroscopic 
state of the system; by starting from these, we can define a coarse-
grained matrix by putting 

p\«\t) = ^ Ρ
(

Λ 0 = ̂ Tel?(0- ( ν ι · 3 7 ) 

This matrix P
i<x)

 possesses the same properties as the matrix Ρ 
defined in (VI.25). In particular, we have always the relation 

Tr P
M
(t) = 1. (VI.38) 

But P
i<x
\t) no longer gives rise to the difficulties encountered 

previously, since it has been defined in a system of coordinates 
where all the macroscopic observables are diagonal; it is related 
to the quantities P

(

v

a
\t), which have a physical meaning, by the 

relation 
Pl«\t) = s^P\?(t). (VI.39) 
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II. The Η-Theorem for an Ensemble of Quantum Systems 

We are now able to use a reasoning similar to that of Chapter V 

in order to prove a generalised / / - theorem (Jancel, 1956). Starting 

from the coarse-grained matrix P
M
 of (VI.37), we define first of all 

a quantity H
{(X
\t) given by 

S(") 

H
(
«Xt) = Tr (P

M
 In P

M
) = £ P}f

}
(/) In P\t\t); (VI.40) 

i= 1 

H
M
(t) has the same properties as its classical parallel. Actually, 

according to (VI.37) we have 

S(«) 

H
ia
\t) = £ ρ<«> In P\f = Tr (In P

ia)
), (V1.41) 

where the average is taken over the statistical ensemble defined by 

ρ*Ρ; furthermore, H
(a)
(t) has the same minimum properties as 

the quantity a of (VI.4). Contrary to the case for cr, however, we 

shall show that H
ia
\t) is not constant in time, because the trans-

formation determining the evolution of P
iex
\t) is not unitary. 

Suppose, in fact, that at t0 = 0 the macroscopic state of the 
system be completely defined, i.e. that the quantities P*

a )
(0) are 

known; we must then represent the macroscopic system by a 
statistical ensemble of systems defined by a matrix ρ

( α )
(0) in 

accordance with the fundamental postulates of quantum statistical 
mechanics. Thus initially! we have 

ρ<;'(0) = ôu = p£>(0). (Vi.42) 
S
v 

The fine-grained and coarse-grained density matrices are then 
equal; the quantity H

i<x)
 assumes thus, at the initial time, the 

form 

H
M
(0) = Σ ΡΐΐΧΟ) In Ρ\ΐ\0) = Σ

 ln
 ê l f i O ) · (VI.43) 

i i 

At a later time t, the value of the coarse-grained matrix will be 
calculated by starting from (VI.37), which requires a knowledge of 

t N o t e that we define in this way a statistical ensemble which is not a 
stationary o n e ; see also § III.2 and the discussion of equation (VI.56). 
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ρ|Ρ(ί); by using (VI. 13) and (VI.42) we obtain 
«<·> ρ (f)\ *ν<«> 

e(,?}(0 = Σ WU\
2
QÏÏO) = Σ WeuX» (vi.44) 

without difficulty. We can see that the value of ρ«α)(0 depends on 
the contributions originating from all the cells v' of the shell e

M
: 

these various contributions are determined by the evolution of the 
vector Ψ(ΐ) of (VI.33), which describes in time a trajectory over 
the unit hypersphere of the Hilbert sub-space corresponding to the 
shell e

(a)
. Initially, Ψ(0) is determined by the coefficients c, ( a )(0) 

which satisfy the relationships P
(

v

a
\0) = Σ Κ ( α )(0)|2 for each 

/ = 1 

cell v; the initial statistical ensemble is then obtained by 
taking, in each of these cells, a uniform distribution over the 
hypersphere of $*a) dimensions of radius [Pl^iO)]*, which corre-
sponds to relation (VI.42): the Pl

a
\t) are calculated by starting 

from this initial statistical ensemble. If, now, we consider the 
trajectory of Ψ(ί), we can see from (VI. 12) and (VI.44) that it is 

jv<«> 

such that the quantities Σ |c/ ( a )(0|2 a r e not invariant; the result is 
that at /, we have i =1 

/7Α(0 = Σ Α ) 1 η Λ ( Γ ) ( 0 , with &\t)*P\?{t). (VI.45) 
i= 1 

If, now,we form the difference H
(a
\0) - H

icx
\t) we obtain 

#<«>(0) - R<*\t) = χ } $ f (0) In tâ\0) - $?(t) In /><?>(/)) ; 
( = 1 

(VI.46) 
applying Klein's lemma (VI.20), it becomes 

•/7<«>(0) - #<«>(/) ^ χ ' Ε1Ρ(ί)1ηϋΡ(/) - Ä ) l n P i f V ) ) . (VI.47) 
i = 1 

As before, we can add to the right-hand side a term of the form 

Σ (-eP(0 + PuK*))>
 w i th t h e r e s u lt t h at (VI.47) can be written 

I 

as 

/7 ( Λ )(0) - H
{a
\t) è 

Σ (êIF}(0 In ôî?(/) - Ä ) In P,(f }(0 - Ä ) + P\f(t)Y (VI.48) 
i= 1 
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Again, the right-hand side of (VI.48) is essentially positive since 

we have ffi(t) and P^\t) > 0 ; thus we have 

//<">(()) - H
(
"\t) ^ 0 . (VI.49) 

Hence, we confirm that the quantity R
i<x
\t) decreases, starting from 

its initial value / 7
( a )

(0 ) , and we can show, by considerations which 
are comparable point by point with those of Chapter V , | that 
H

ia
\t) probably will continue to decrease with time, until it has 

reached its minimum value corresponding to a stationary state 
of the macroscopic system. When this state is reached, P

(a)
 is given 

by one of the microcanonical, canonical or grand-canonical 
distributions defined by (VI.6), (VI.7) or (VI.7'): starting from 
this instant, we have again 

il?(0 = P\f{f). (VI.50) 

The same remarks and the same reservations as in classical 
theory (cf. Chapter V, § II.4) can be made concerning the quali-
tative nature of this result and we can establish also a parallel 
between the ergodic theorem in H o p f s form (studied in Chap-
ter III) and the generalised / / - theorem (see also § III.2). Finally, if 
we analyse the causes of the decrease of H, we can see that they 
are two in number: 

(a) The first is due to equations (VI.42) and (VI.45) which ex-
press the initial equality of the fine-grained and coarse-grained 
matrices and their inequality at t: it corresponds to the difference 
between the fine-grained and coarse-grained density in classical 
mechanics; 

(b) The second concerns the property of fine-grained matrices 

5 expressed by Klein's lemma: there is no parallel in classical 

mechanics since £ ρ»* In ρ£*\t) is not the trace of a quantum ope-
i 

rator ; since it expresses the fine-grained density spread over 
different states, certain authors make the proof of the / /- theorem 
depend on this single property. We shall return to this subject in the 

t The fine-grained density spread over the very numerous stars is replaced 

here by the spread of the probabilities ρ|Ρ(ί ) over the different subspaces (corres-

ponding to macroscopic cells) of Hilbert space: we find again the process of 

" mi x i ng " of the initial conditions connected with formulae (VI. 12) and 

(VI.44). 
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next chapter and we shall see that this property can be related to the 
irreversible perturbation due to quantum observations on the 
system: its role, therefore, will be of little importance in all cases 
where the perturbation of the system by the observer can be 
neglected; since this is the case of macroscopic observations, we 
can consider this second cause as not playing an essential role in the 
decrease of H(t). 

III. The Kinetic Equation and Irreversible Processes 

1. "Complementarity" between microscopic and macroscopic 
descriptions 

The above proof of the generalised / /- theorem for a statistical 
ensemble of systems is formally analogous to the usual proofs 
of Pauli and Tolman, although it uses a different definition of 
coarse-grained matrices ; we shall see now that this definition enables 
us also to avoid certain difficulties in the considerations of iso-
lated systems. In fact, if we apply the usual method to such a 
system, we must expand its wave function in terms of the energy 
eigenfunctions; since the energy is in practice known only approxi-
mately within a range δΕ, the expansion will involve only « ( = 5

( Λ )
) 

terms and we shall have 

«"(0 = i>.(Ov«. (VI.51) 
i = 1 

with 

Σ ki(0la = i. 
i = 1 

In the absence of other data about the system, the initial statisti-
cal ensemble will be determined by 

k l 7 » - ; (vi.52) 
η 

this is the microcanonical distribution. Since the energy is an 
integral of motion, it is not possible to prove that the system 
evolves: we find a difficulty which has been encountered 
already in ergodic theory, namely the absence of evolution of 
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probability amplitudes due to the particular time-dependence of the 
integrals of motion in wave mechanics. 

We avoid this difficulty by introducing a perturbation potential V 
representing the effect of the surroundings (usually we justify 
this potential by a discussion of the concept of an isolated system). 
The total Hamiltonian can then be written as 

H = Ho + V, (VI.53) 

where H0 represents the unperturbed Hamiltonian. The observed 

macroscopic quantities correspond to groups of eigenvalues of 

H0, so that there are transitions between these states induced by 

the operator V. Thus, we obtain evolution because the operator H0 

does not commute with H; we have, in fact, 

[H,H0]- = [Κ H0]- Φ 0 . (VI.54) 

This is the same as saying that macroscopic quantities do not 
commute with the corresponding microscopic quantities. In the 
probabilistic language of wave mechanics, we can say that there 
exists a "complementar i ty" between the microscopic and macro-
scopic descriptions of physical phenomena. The term "comple-
mentari ty", however, is used here in a different sense from that 
taken, in quantum theory, in the discussion of the Heisenberg 
uncertainty relations satisfied by canonically conjugate quantities. 
It means simply that any macroscopic description necessarily 
involves a certain inaccuracy of our knowledge of the subjacent 
microscopic state and, likewise, that a precise microscopic descrip-
tion does not enable us to restore, without a restrictive assump-
tion, the properties of the macroscopic evolution. This comple-
mentarity is thus not specifically quantal, since it does not involve 
Planck's constant; it involves the existence of fluctuations! and 
it is connected, in fact, with the introduction of macroscopic 
observables with which we associate a coarse-grained density (in 
the sense of Ehrenfest) for describing the irreversible evolution of a 
physical system. 

We can prove without difficulty, by referring to the construction 

t A n example o f these "complementary" quantities is provided by the 
energy and temperature of an isolated system. If the energy is known with 
precision, we must expect to find temperature fluctuations ; conversely, if the 
temperature is fixed, it is the energy which fluctuates. 
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of macroscopic operators discussed in Chapter II, that these 

operators do not commute with the corresponding microscopic 

operators. The only exception to this rule is provided by the 

macroscopic energy: actually, the o p e r a t o r ^
7
 possesses by 

construction the same eigenfunctions ipk as the microscopic 

Hamiltonian H; we have in this case, 

[jf, Ê]- = 0 , (VI.55) 

which ensures conservation of macroscopic energy and the validity 

of (VI.31). On the contrary, we will have for other operators s/ 

corresponding to microscopic observables Â (non-commuting 

with H) 

[a, Â]_ φ 0 , H\_ Φ Of. (VI.56) 

However, macroscopic observation has been defined with respect 

to the operators stf (since it allows us to distinguish by hypothesis 

between the N
(a)

 groups of eigenvalues of $4 in the shell e
ia)
) : the 

macroscopic state is thus described in the representation of eigen-

functions of J/ and, according to (VI.56), there will necessarily 

occur an evolution starting from the initial state.J 
Thus, we see that the evolution of an isolated system can be 

obtained in wave mechanics by the introduction of macroscopic 
operators which enable us to avoid (or to justify) the use of a 
perturbation potential external to the system. In what follows, we 
shall again define more precisely the relations existing between 
the two methods. 

Since wave mechanics always allows us to integrate formally 
the equations of motion, we can calculate the coarse-grained 
density starting from the fine-grained density; according to (VI.36) 
and (VI.44) we have: 

Pl"\t) = Σ q\?(0 = Σ -̂S- Σ Σ l^/OI2; (vi.57) 
i = i v'=i s;V i = u = i 

t The fact that we might have at the same time 

HL Φ 0, w i t h [Je, H]_ = [ J f , sé\_ = 0, 

originates, obviously, from the fact that H is, in the shell e
( f l c )

, a whole multiple 
of the unit operator because of its definition. 

% We note that due to the non-commuting of &l and of H the ensembles 
introduced in § TI and § III.2 are not stationary. 
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this relation can be rewritten as 

Pl'XO = Σ ^<(0 P'AO), (VL58) 
Vf 

with 
ι S (") S '(") 

^ '
)
^ )

 =
 - 7 ^ Σ Σ W ) l

2
. (VI.59) 

s]? i=i j=i 

The time-evolution of the quantities Ρΐ
Λ
\ί) depends, through the 

intermediary of J~
(

vf,(t), on the matrix elements Utj{t)\ according to 
(VI.3), these can be written as 

Uu(t) = (Ω\«\ 

= ô,j -l-t{&«\ Hüf) - JL ζ-(Ω<«\ Η
2
Ω^) + ...; 

h h
2
 2! 

(VI.60) 

from (VI.29) we then derive 

Η Ω ^ ) = (Σ ci-V», # Σ cjrv«) 

= ( Σ <#V», Σ ciï^m) = Σ c î T ç a 

and similarly 

(£><">, //
2
ß<«>) = X C\fC£Ei, .... 

k 

Substituting into (VI.60), we obtain 

uu(t) = d,j - i - ί Σ c ^ ' c ä - ~ Y c \ s r c ^ E î + ... 
/j * / τ 2! it 

- * „ + Σ « - ς ; ; ' ( - | , £ . - ± ^ £ , · + . . . ) 

- « u + z c ; » * " c i " ( « " " " " " - i ) , 

whence, because of the unitarity of the matrix Cj^, we derive: 

He 

the corresponding expression for ^~[f,(t) is derived immediately. 
We are now able to compare the preceding results, obtaintd 

by means of macroscopic observables, with the usual formulae 
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derived from (VI.53). In fact, we suppose in this formalism that 
the states actually observed correspond to groups of eigenvalues 
of the non-perturbed Hamiltonian H0, the perturbing potential V 
enabling us to define the transition probabilities from one group to 
another in the unperturbed spectrum. It is interesting, therefore, to 
expand the wave function of the system in terms of the eigen-
functions of H0; it then becomes 

V(') = Σ
 c
<0) v!

0>
, (VI.62) 

i 

where the c f(/) obey the relation 

^(0 = Σ^·(0θ(0) . (VI.63) 
j 

If we introduce the eigenfunctions ψκ of the total Hamiltonian 

Η = H0 + V, we can expand the unperturbed functions ^
0 )

 in 

terms of the ψη, or 

νί0 ) = Σ 4 Λ and ν„ = Σ4."Λί°\ (VL64) 
Π ί 

with 
= d* 

since the matrix din is unitary. If, now, we calculate the matrix 
elements Uu(t) in terms of the eigenfunctions and eigenvalues of 
the total Hamiltonian / / , we obtain (by a calculation which is 
similar at all points to the preceding calculation): 

ί/ο(0 = Σ ^ - ί Ε " " \ (VI.65) 
η 

Thus, we see that expression (VI.65), which determines the evo-

lution in terms of the eigenstates of H0, is similar to (VI.61) which 

defines the evolution in terms of the eigenfunctions of the macro-

scopic operators: the operator H0 plays here the role of the 

macroscopic operator and the change of variables (VI.64) is 

similar to (VI.29). This provides a possible interpretation of the 

usual separation of the Hamiltonian of a system into two parts, the 

second of which can be considered as a perturbation. [The only 

difference arises from the fact that H0 does not commute with Η 

whilst commutes with Η according to (VI.55); however, this is 

of no fundamental importance since we know, from the calcula-
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tion of transition probabilities, that the conservation of energy 
within an interval AE, compatible with the duration of the ob-
servation, is assured, provided that the perturbation potential V 
is small.] 

In particular, if we stick to the first approximation, we have for 
the eigenfunctions of the total Hamiltonian: 

Ψ, = νί0 ) + 

and, by expressing as a function of the ψ{
0)
 we can calculate 

the coefficients din of (VI.64): 

din — 

1 IF I = 72, 

y in 

1 IF Ι = W, 

IF ι Φ Λ, 

Γ<0) (0) 
if ι φ Λ » 

(VI.66) 

We have by substitution in (VI.65) and neglecting terms in 

V
2
 (first approximation) 

Unit) = e "
I J W

\ 

Uu(t) = dJte-JEit/h + j*e-iEtt/h 

v* V
Ji 

ΕΓ - E) (0) Ε)
Ό)
 - E\ (0) 

e-iEjt/k ( / + y )e 

(VI.67) 

Using the property of Hermiticity of V(V* = F / ;) and the ex-
pression for the total energy, which can to a first approximation 
be written as Et = Ej

0)
 + K f i, we can write 

^ ( 0 = P < 0,
K

" ο,, [ e - ' *
< 0 , ,

' V " ' « " » - e-'
E
^e-^""\ (i + j). 

Substituting this result in (VI.63) and putting 

φ ) = «,(/) e-'
E
'^"\ 

]0a FCM 265 
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it becomes 

fl4(/) = uXO) e - , F» r / fc 

(0) 
V P

lE
i
 t /h

 (0) (0) 

+ Σ ο ο [ g" , ( £/ + V i i ) t /h
 -

 e
~

iiEj +VJJ)t,k
]aAP)> (VI.68) 

j*i(Et - Ej) 

whence, by confining ourselves to a sufficiently small interval of 
time t (we neglect the products Vnt\ we obtain 

V (0) (0) 
at{t) = A,(0) + Σ Γ,ο ) " « ο t*''*' ~

EJ ) Φ
- Π Β / O ) . (VI.68') 

Starting from this formula, the transition probabilities between the 
various eigenstates of a system can be calculated ; in the case where 
the spectrum is very dense, we see that these probabilities are 
proportional to the time: thus, we have proved the relationship 
between the method based on the definition of macroscopic 
operators and those normally used in quantum statistical me-
chanics. 

If we use the scheme provided by macroscopic operators 
the more general equations connected with the evolution of macro-
scopic quantities are given by (VI.58) and (VI.59). They enable us 
to determine, for the time interval which follows the macroscopic 
observation, the quantities P

(

v

a)
(t) which represent the physically 

observable quantities. The form of this equation depends essen-
tially on the matrix ^^(t) which determines the transition pro-
babilities from a cell v' to a cell v; this matrix depends in its turn 
on the microscopic nature of the system observed and on the 
way in which the macroscopic observables are defined [on the 
one hand by the coefficients according to (VI.61) and, on 
the other hand, by the quantities s

(

v

a)
]: therefore, the form of 

equations (VI. 58) can only be defined precisely by choosing 
special examples and by adapting each time the formalism to the 
conditions of the problem considered. 

2. Return to ergodicity conditions 

It should be noted that the introduction of averages over the 
macroscopic cells ν (implied, for example, in (VI.42)) and the 
definition of a coarse-grained density Pl

a)
(t) enables us to show 
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the evolution of a quantum system and to obtain new conditions of 
ergodicity for ensuring that a macroscopic system tends towards 
an equilibrium state. Actually, we suppose that the initial state 
of the system is such that only the cell v' is occupied; in this 
case: P<?}(0) = 1 and, according to (VI.58), P

(

v

a
\t) = ^ ( t ) . 

Ergodicity will exist if we have 

whence, according to (VI. 59), we have for the condition of ergodicity 

We emphasise again that the evolution of the system is shown to 
exist because of the introduction of macroscopic operators and 
cells and by the definition of a statistical ensemble of systems which 
does not remain stationary during the evolution (contrary to the 
microcanonical ensemble used in the first part). In the present case, 
this statistical ensemble is defined initially as the uniform ensemble 
over the cell v' ; according to the notation of Chapter II, an initial 
density matrix s<*> 

KO) = ^ 3 Σ / * · 
corresponds to it. v 

We can obtain less restrictive conditions of ergodicity by im-
posing only a convergence in quadratic mean (Prosperi and Scotti, 
1960); the statistical weight of a cell ν can be written (for a system 
located initially in the cell v') as 

( E i ) 

w?\t) = Σ Ι^(0Ι 2 =Σ Σ UuU?kc<*\0)c™\0)9 

s
M
 s<?> 

i = l i j,k=\ 

and we have the following time-average 

S / 

Σ Ε$ΕΪΙή«\0) 4«>*(0) #>(0) c<?>*(0), - Σ Σ 
j,k=l j',k'=l 

10a* 267 
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c(«) 
Σ ^ 5 - ^ Μ · 

If, now, we take the average over an ensemble of systems uniformly 

distributed over the cell v', we have first (denoting this average 

by · · ·") according to the results of Appendix I I : 

ή*\0) οΓ*(0) c)V(0) c
{

kV*(0) = 
1 

+ 1) 

and we obtain a condition of ergodicity by writing: 
ν ' 

Σ ^ ( • < - « ) - F R , ) 

Γ * ( α) 

N(<x) ι /sv'(«) ν 2 V 

- Σ - T i k i ( Σ E» ) + Σ \E$ 

(<5,fc fy,*, + dJk, ôkr), 

<v)i2 
(E a) 

This condition can be satisfied by assuming, for example, that 

1
 V 

ι 1 " 1 

The inequalities (E 2) provide the most general conditions of 
ergodicity for a convergence in quadratic mean; if they are sa-
tisfied, we have an ergodic theorem which is a generalised form 
of H o p f s quantum theorem. A much more restrictive way of 
ensuring this convergence would be to assume the condition 

(E 3) 

in which case the equality w^Hj) — s^lS™ would be satisfied, 
whatever the initial conditions. 

For a better understanding of the nature of these various con-
ditions of ergodicity, we must express the UtJjt) as functions of the 
Ckf according to (VI.61): we then verify that the conditions (E) 
bear at the same time on the definition of macroscopic cells 
and on the structure of the microscopic Hamiltonian of the system. 
Their analysis is obviously very complicated and a new difficulty 

268 

where we have put 
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3. The kinetic equation in quantum mechanics. Pauli
9
s equation 

For the purpose of arriving at a quantum kinetic equation, we 
shall make an assumption concerning the matrix ^ " ^ ( O I suggested 
by the result of first-order perturbation theory ; we shall assume that, 
given the large number of degrees of freedom of the system, the 
transition probabilities are proportional to the time: this enables 
us to write (knowing that we must justify this assumption for each 
problem studied): 

*1?(0 = + Kf.At, (VI.69) 

whence we derive, according to (VI.58): 

Pl«\t) = Pl"\0) + Λ / Σ W*$P$X0). (VI.70) 

Since At is macroscopically small, we can conclude from this 
that 

(
d
im = ^ ( o - ^ ( Q ) . Σ ^ > ( 0 ), ( V L 7 1) 

V dt Jt=0 At 

In order to obtain a kinetic equation at t, we must repeat at each 
instant the reasoning which we have pursued for (VL71), that is 
to say, we must construct new statistical ensembles compatible 
with our information at t. If we accept that the fundamental 
assumption of quantum statistical mechanics expressed by (VI.42) 
can be applied at every / (we shall return to this point later), we 

269 

appears—that of proving that a physical system actually possesses 
such properties. By way of example we have, in the case where there 
is no degeneracy of the microscopic energy, 

5
r oo S<*>

 S
p 

Σ u m « Σ cl?*Cj? Σ ic/pl2, 
i = 1 1=1 i = l 

and condition (E3) can then be written as 

Σ I2 =
 O(«) » 

i = l
 0 

this condition is similar to the one we have already encountered 
when discussing Fierz's method (cf. Chapter III, § IV.3). 
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have 

dP<t\t) 

dt 
= Σ W^P^Xt). (VI.72) 

This is the most general form of the kinetic equation in quantum 
statistical mechanics which could be derived from the formalism of 
macroscopic observables. It enables us to describe the irreversible 
evolution of a macroscopic system, as we shall see at the end of 
this section, by calculating dHjdt with time-proportional transition 
probabilities. 

We shall mention briefly a few properties of the matrix W\f,\ 
from the relation 

Σ = U 

we derive 
N
— dP

(a) 

0, 
v=i dt 

whence, according to (VI.72), 

Λα) 

270 

Equation (VI.72) can then be written as 

(VI.73) 

On the other hand, if we suppose that Pv>(0) is initially of the form 
<5V'V0 it becomes, according to (VI.58) and (VI.69), 

It follows that the Wx̂  are necessarily positive and that they can 
be interpreted as transition probabilities. Thus, equation (VI.73) 
is a probabilistic equation of the Master Equation type, satisfied by 
a Markovian process. 

Finally, the Ww satisfy also important symmetry properties; 
according to (VI.61) we have UJt(t) = U*( — t). If we take the case 
in which the operators Η and A are real, the same is true for their 
eigenfunctions; we can then choose the functions to be real, so 
that the coefficients C^f are real in their turn and the matrix Uu 
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is symmetrical. Thus, we have Utj(t) = Un(t) whence, by substitut-
ing in (VI.59), we obtain: 

= s^^vf. (VI.74) 

and, according to (VI.69), 

s^Wlf] = s<p?W%. (VI.75) 

We can then easily prove, starting from these general relations 
(and by introducing slightly different variables), the symmetry 
relationships which correspond to Onsager's reciprocity formulae 
in the theory of irreversible phenomena [see especially van Kam-
pen, 1954].f 

The foregoing results are valid only if the transition probabilities 
are time-proportional; we have seen that it is necessary to verify 
this assumption for each particular case and we know already 
that it is valid if we accept the perturbed Hamiltonian model. It 
was with this model that Pauli proved for the first time a Master 
Equation of the type (VI.73), which is usually called Pauli's 
equation. It does not deal with a coarse-grained distribution but with 
the probabilities |cf(0|2 = Pi for the unperturbed quantum states 
of the system which we are assuming to lie sufficiently densely 
so that we can consider the spectrum of H0 to be continuous. This 
equation can be written as 

Τ = Σ ( » « * - Α , π Λ ) (VI.73') 
at ρ 

where the wir, which are given by 

w l r = 2πλ
2
ό(£<?> - £<°>) \Vir\

2
, *>»> = h v „ 

f We obtain symmetry relationships which generalise (VI.75) by taking complex 

operators A and / / ( p r e s e n c e of a magnetic field). W e note also van Kampen's 

point of view according to which it would not be necessary to use the con-

cept of ensembles of quantum systems in order to obtain the Master Equation. This 

point of view depends, on the one hand, on the form of the average quantum 

value for a pure case of a macroscopic observable s# [which, according to 

(III.37) can always be compared with an average over a certain classical en-

semble, with the weights >ν
(

ν

Λ )
(0] and, on the other hand, it depends on an 

assumption of irregularity of the phases of the coefficients C j
( f l t)

 for the pure 

case (VI.33), recurring at every instant 

Nevertheless, it seems difficult not to adopt a statistical interpretation for 

this, since it corresponds in fact to the conservation with time of the property 

of molecular chaos. 



Classical and Quantum Statistical Mechanics 

272 

are obtained by starting from (VI.68') and the assumption of 
uniformly and randomly distributed phases at every time t (random 
phase approximation). As for λ, this is a small parameter which 
characterises the order of magnitude of the perturbation V and 
which enables us to define more precisely the conditions necessary 
for the validity of the Born approximation. 

Thus, the kinetic equations (VI.73) have been proved only 
at the price of a supplementary assumption, namely that we can 
use for any time the condition (VI.42) which was valid for the 
initial statistical ensembles; it can be expressed as 

0^\t) = 0 if ι Φ 7. (VI.76) 

This is the hypothesis of "molecular disorganisation" (Pauli, 
1928) which amounts to neglecting the off-diagonal elements of 
the density matrix. It is necessary for enabling us to calculate 
Pl

A)
(t) by a formula similar to (VI.44); we note, however, that it is 

incompatible with equation (VI. 12), according to which the off-
diagonal terms g)f(t) are generally non-vanishing, even if 
ρ|Ρ(0) = 0. This assumption can thus be contradictory to the 
laws of wave mechanics: we encounter the same difficulty as in 
classical theory, where we must assume that the property of 
molecular chaos is conserved with t ime; this leads to restriction 
of the possible movements of the representative point in -T-space. 
Here, it is condition (VI.76) which corresponds to this extension of 
the property of molecular chaos: moreover, we can develop in 
quantum theory a discussion which is similar to that in Section III 
of Chapter V, by making the trajectory of Ψ(ί) over the S

( i 0
-dimen-

S(«) 

sional hypersphere £ |CJ
a )
(0|

2
 = 1 correspond to the movement of 

/ = 1 

the point ï?(t) in i^-space, and the cells with s
(

v

a }
 dimensions to 

the stars in Γ-space. 
Since this condition is realised after a quantum measurement on 

the system, certain authors have assumed that one could not 
speak about the irreversible evolution of a quantum system without 
carrying out a series of measurements (see for example, Delbrück 
and Molière, 1936) on this system: this point of view is unsatis-
factory, since the quantities considered are macroscopic and must 
be independent of the observation actually carried out on the 
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system. (We shall return, however, to this point in the next chapter 
when stressing the difference between macroscopic observation 
and quantum measurement.) 

In this way we are led, as in classical mechanics, to regard 
(VI.76) as a supplementary assumption of a stochastic nature 
which introduces a certain random element into the evolution of a 
macroscopic system. As in classical theory there are two routes 
for research: either to try to show that there are no actual discre-
pancies between the microscopic mechanical evolution of the 
system and the statistical description adopted for macroscopic 
phenomena, or to attempt to construct models of particular 
stochastic processes which are suitable for describing the physical 
phenomena under consideration (we shall give an example later on 
in this chapter). . 

In the first class of ideas, it would be necessary to take account 
of the large number of degrees of freedom of the system (the 
5

(
"

}
 will be very large) in order to justify the models used ; in this 

connection we mention Van Hove's method (1955) who attempts 
to determine what conditions must be satisfied by a perturbation 
potential V in order that the property of molecular chaos is 
conserved with time : this is a problem which we have encountered 
already in classical statistical mechanics. Van Hove obtains, in 
this way, a Pauli type kinetic equation for a coarse-grained 
distribution, by making the assumption of molecular chaos only 
at the initial instant t 0. In a general way, the proof of a kinetic 
equation of the type (VI.72) rests in final analysis, as in classical 
theory, on the study of the time-evolution of the fine-grained 
densities ρ described by the exact equation (VI. 1). We shall show 
in the next section that the classical methods described in Sec-
tion V of Chapter V can be extended in a certain way to quantum 
theory and that we can in this way obtain a quantum Boltzmann 
equation. 

We shall end this section now by showing the form taken by 
the generalised / /- theorem, with the assumption of time-pro-
portional transition probabilities. For this purpose we shall adopt 
definitions (VI.24) and (VI.25) of coarse-grained densities, according 
to which Η can be written as 

II«) = Σ Λι(0 In P„(t) = Σ Λ In , (VI.77) 
ι ν G„ 
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whence we derive 

^ = Σ ( 1 η Ρ , - 1 η σ , ) ^ . (VI.78) 
dt ν dt 

In order to evaluate dH\dt9 we must know the quantities dPy\dt\ 

we calculate them by using equations (VI.68') which give the first 
approximation of perturbation theory (with an external perturba-
tion V). We assume (as we have already pointed out previously), 
that the unperturbed energy spectrum of H0 is sufficiently dense to be 
able to treat it as a continuous spectrum: with these conditions 
the transition probabilities are proportional to the time. If the 
system exists at t = 0 in the group of states Gy9 we can write 
at / 

n*)=^-Txvt (VI.79) 

and, if the system is at t = 0 in the group G v, we have also 

Pn{t) = ^ T m t 9 (VI.80) 

with 

Tvx = TMV. (VI.81) 

More generally, if the system is distributed initially in many 
groups of states Gx9 Gx9 with the respective weights Ρκ and P v , 
the transition probabilities per unit time between the states κ 
and ν are given by 

Ζκν = AXVGVPX9 Ζνκ = ΑνκΟκΡν, (VI.82) 

where (because of the Hermiticity of the perturbation operators and 
because of our statistical assumptions) 

Ακν = Ανκ and Ακν = - i — Γ Κ Ρ. (VI.83) 

The quantities dPv/dt can then be written as 

dP 

~r= Σ (ζ** - z j = Σ Ακ(ονρκ - GKP9)9 (vi.84) 

Qt κ κ 
IIA 
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whence, by substituting in (VI.78): 

dt 2 v.* GVP„ 

- Λ l A'G'e-{k-^ak-*τ)· (V05) 

We see that dHfdt is always negative, with the result that Η de-
creases to the point where we have 

ρ ρ 
-ϊ- = - 2 - , (VI.86) 
G, Gx 

or 

Ζκν = Ζνκ. (VI.86') 

Equation (VI.86) shows that equilibrium is attained with a 
uniform coarse-grained density (microcanonical ensemble) and 
relation (VI.86') expresses the principle of detailed balancing of 
quantum statistical mechanics. 

In the formalism of macroscopic operators, we put similarly 

#(0 = Σ Λ
( β )

1 η π £ - 0^77') 
ν Sv 

and we see that, because of assumption ÇVI.69), dHjdt ^ 0 and that 
statistical equilibrium is achieved when we have 

- T T ^ - T T - (VI.86") 

We note that the foregoing results are open to the same discuss-
ions as in classical theory: the statistical interpretation which we 
must give is precisely similar to that which we developed in Sec-
tion III of Chapter V. Their range of validity is limited to a macro-
scopically small interval of time after the instant of observation and 
their extension to any instant necessitates an additional assump-
tion: this amounts to assuming that the mechanical evolution of 
a macroscopic system (with a large number of degrees of freedom) 
is such that the initial property of molecular chaos is conserved 
with time. We encounter, therefore, in quantum theory difficulties 
of the same nature as in classical mechanics in order to reconcile 
mechanical reversibility and quasi-periodicity with macroscopic 
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irreversibility. We could try specially, as in Section IV of Chapter V, 
to define the equations which govern the evolution of the distri-
bution function P(nl9 ni9 t) of a Markovian process whose 
transition probabilities are provided by the hypothesis of mole-
cular chaos, i.e. by formulae (VI.93) of Section IV. We shall see 
at the end of the next section that equations similar to (V.56) can 
be obtained which open up a field of interesting research for a 
more thorough study of irreversible phenomena in quantum 
physics. 

IV. Boltzmann's Equation and Stochastic Processes in 

Quantum Theory 

We shall now show how the reasoning of Sections IV and V of the 
preceding chapter can be extended to quantum theory, with parti-
cular emphasis on Boltzmann's quantum equation and on the 
derivation of the Master Equation. 

1. The individual H-theorem 

Since we have been interested up to now only in the generalised / / -
theorem, we shall start by proving an //- theorem for a single 
quantum system, similar to that of Boltzmann's / /- theorem in 
classical theory. In fact, if we are interested in a single system we 
can, exactly as in classical mechanics, make a quantity H corres-
pond to it which is defined along Boltzmann's lines (by making 
all the Pv equal to zero, except one) by 

H = —In G, (VI.87) 

where G represents the number of microscopic complexions of 
the system compatible with the macroscopic state observed: this 
is analogous to the volume of a star in / '-space. We calculate G 
by enumerating the various states occupied by the particles which 
make up the system (the method is similar to the transition from 
/'-space to //-space). If we have divided the energy spectrum of a 
particle into groups containing gt eigenstates with energy et and if 
nt is the number of particles occupying the group with index /, G 
will assume different values according as the particles obey Boltz-
mann, Bose-Einstein or Fermi-Dirac statistics. Using an obvious 
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notation, we have 

GB.E. = Π 
(«ι + gl 1)! 

i ntl(g, - 1)! 

G F D. = l i - ft! 

' (gi - «<)!"(! 

From these expressions we derive 

(VI.88) 

# = ς Γ * 
i L 

= Σ Ι ^ « 1 η — - ( » ( + « f i ) l n (VI.89) 

(where Λ = 0, + 1 or — 1 for Boltzmann, Bose-Einstein and Fermi -
Dirac statistics, respectively) and 

dH ^ dn, t n, 
= 2^ — - In 

dt ι dt gi + arii 
(VI.90) 

which is the quantum parallel of (V.37). As in classical mechanics, 
we cannot calculate dHjdt without knowing dnjdt: however, for 
this it would be necessary to integrate the equations of motion. 
Thus, we can only evaluate the average values of dnjdt, (dnijdt)m, 
and of dHjdt, {dH\di)m, by the method of transition probabilities. 
We can use this method by supposing that the Hamiltonian of 
the system can be written in the form Η = H0 + V, where 

Ho = Σ Ht (VI.91) 
i 

is the Hamiltonian of the free particles. We suppose further that 

the interaction V can be put into the form 

ν=ΣΚ> (VI.92) 

where Vu denotes the interaction potential between two particles i 
and j; because of the various approximations used and of the fact, 
especially, that we are dealing with the first approximation in 
perturbation theory, this latter assumption amounts to considering 
only binary collisions as in Boltzmann's equation (case of dilute 
gases). We point out that the perturbation potential V has a 
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precise physical meaning here, corresponding to the internal structure 
of the system and that the splitting of H into two terms falls exactly 
within the framework of the theory involving macroscopic opera-
tors ; the results that we derive can provide, therefore, an acceptable 
interpretation of the irreversible phenomena. 

If we denote by Zj'/' the average number of transitions per unit 
time which take particles from the initial cells (ij) to the final 
cells ( / ' , / ) we have (always to a first approximation) 

Z\f = Aïfntnjigi. + anv)(gj. + ocnr)9 

Zjff = A%,nvnj,(gi + αηΛ) (gj + <xnj), (VI.93) 

with Ay = Α%. 
These expressions are calculated by means of the fundamental 

assumption of statistical mechanics which is, at the initial instant, the 
same as the hypothesis of molecular chaos expressed by (VI.76) (for 
details of the calculations see Tolman, 1938, pp. 436-450); thus, 
equation (VI.93) is the quantum parallel of formulae (V.38)-(V.38

;
) 

of classical theory. In this case we have 

\ dt Jm jo'j) 

occurring when the « f are distributed according to the Maxwell-
Boltzmann, Bose-Einstein or Fermi-Dirac laws depending on the 
values of oc. Equation (VI.94) is thus the quantum parallel of 
(V.49) and its interpretation gives rise to the same remarks as in 
classical theory, especially concerning the role of the hypothesis of 
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From this we see easily that 0, the equality sign 

(VI.95) 

(VI.94) 
whence we derive 



//-Theorems and Quantal Kinetic Equations 

279 

molecular disorganisation (cf. § 3 in Section III of Chapter V); we 
shall see now under what conditions a quantum Boltzmann equa-
tion can be obtained. 

2. A quantum Boltzmann equation 

As we have emphasised already, the quantum kinetic equations of 
the form (VI.72) can be justified in the final analysis only by 
studying the fine-grained density represented by the statistical 
operator ρ; this includes the maximum amount of data that we can 
collect concerning a macroscopic quantum system. As in classical 
theory, we shall see that the fundamental equation (VI. 1) of the 
Liouville type can be replaced by a chain of equations obtained by 
successive "cont rac t ions" and that we end up in this way with 
a quantum kinetic equation of the Boltzmann type, by means of 
certain approximations. 

For this purpose we adopt the coordinate-space representation 
of the statistical operator ρ (^-representation, where the base 
functions are the functions ô(r)) defined b y | 

gn(r<
n
\ r

(
">'; / ) = Ψ*(^, ί)Ψ(^

η
\ t) 

= I ë i ^ V "
)
' ) V i ( r

c
"

)
) . (VI.96) 

ij 

It can be seen that, in this representation, the density matrix ρ„ 
depends on the 6n space coordinates r

(n)
 and r

(w)
', just as in classical 

theory the phase density ρ„ depends on the η space vectors r
( n) 

and on the η momenta p
{n
\ To the operation which consists of inte-

gration with respect to the variables p
in)
, which leads for example to 

Qn(r
(n)
) = j Qn(r

in
\ p

in)
) d

3n
p

in
\ there corresponds in quantum 

theory the operation which consists in taking the diagonal ele-
ment, for example, §n(r

in
\ r

in)
). The relation Tr ρ = 1 can in this 

notation be written as 

jQn(r
in
\^

n)
)ô(r

in)
 -r<»>')d*"r

(ny
d

3n
r™ = j Qn(r

(n
\ r

in)
) d

3n
r

(n)
 = 1; 

(VI.97) 

t Once again we use the notat ion R
( W)

 for the vector (ΙΊ , r n ) of the con-
figuration space of the system and ρ„ for the density matrix of a system with η 
particles. 
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also, for the average value of an observable A, we have 

A = Tr^J) = j{[£„, Â]_ (r(">, r<">)} d
3n
r

(n
\ (VI.98) 

The calculation of the average value of a quantity reduces thus 
to integrating the diagonal element of {[ρη,^ί]_ (r(n), r

( n )
) } o v e r r

( n )
; 

this clearly resembles the classical integration J ρ„(ι
Λη
\ p

in)
) A(r

in
\ 

p
{n)
) d

3n
p

in}
 d

3n
r

in)
 ; we can say, therefore, that the quantum opera-

tion J ...o(r(n) — r(n)/) d
3n
r

in)
\corresponds to the classical operation 

ί ...d
3
y

n
\ 

Having done this, we can make reduced density matrices, 
(introduced for the first time by Husimi, 1940) Qs(r

is
\ r(s)'; t) 

correspond to the classical probability densities §s(rl9 rst 

PIJ -iPsl t). We obtain these reduced density matrices by taking 
the diagonal elements for the coordinates of particles which do not 
belong to the group (s) considered and by integrating over these 
variables; we have, therefore, 

Φ
ω

, '
ω

' ; ί ) = j QXr^r
in
-

s
\r

isy
^

n
-

s)
)d

3n
r

in
-

s
\ (VI.99) 

The diagonal terms §s(r
is)
, r

(s)
; t) are the quantum parallels of the 

classical distribution functions Qs(r
(s
\ t) = j Qs(r

is
\p

is
\ t)d

3s
p

is)
; 

similarly, the generic probability densities fs(r
is
\p

(s
\ t) have the 

reduced matrices: 

/^rV; 0 = Qs(r
is
\ r

(sY
 ; t). (VI. 100) 

(n - s)\ 

for their quantum analogues. 
By relying on these definitions, we can according to Born and 

Green derive from (VI. 1), a chain of quantum equations which 
is similar to the B.B.G.K.Y, equations. By introducing the opera-
tion T r s (reduced trace) which, applied to an operator Âs(r

is)
, ι ·

ω
' ) , 

has the form 

Trs(Âs) = Jj Aa(r<», r W ) d(rs - r's) d
3
*rs d

3
^, (VI. 101) 

we obtain in fact—starting from the equation dQjdt = /[ρ„, Hn]Jh 
the reduced equation 

= 4" [§η-ι,Η„.χ] _ + 4- " Σ Τ Γ , Ε - , *«„] - , (VI.102) 
dt h h ι=ι 
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where Hn is the quantum Hamiltonian corresponding to the classical 
definition (V.80). By repeating the contraction (n — s) times, we 
have finally 

which is the quantum parallel of equation (V.79). Similar equa-
tions can be written for the generic matrices (VI. 100) and, in the 
case s = 1, an equation similar to (V.82) is obtained. 

It is not possible to proceed directly from (VI. 103) for s = 1 to 
an equation of the Boltzmann type, since it is not possible, in 
wave mechanics, to define precisely distribution functions in the 
P-space of the system. However, if we take the limit as h -» 0, it 
can be shown that equations (VI. 103) are equivalent to the corres-
ponding classical equations (correspondence principle): it is then 
possible to find a Boltzmann equation with certain characteristic 
modifications of the quantum theory (Kikuchi and Nordheim, 
1930; Nordheim, 1928a, b ; Uehling and Uhlenbeck, 1933). 

Before showing the form of this equation, we shall analyse 
briefly another method which is suitable for founding quantum 
statistical mechanics, namely the Wigner function method (Wigner, 
1932). We know that the concept of the distribution function 
cannot be applied directly to quantum theory, because of Heisen-
berg^ uncertainty principle which does not allow a precise locali-
sation of the representative point of the state of the system in phase 
space; this leads us to define the statistical operators or density 
matrices that we have used throughout this book. Wigner's method 
consists in constructing precisely a distribution function ^ „ ( r

( r t )
, 

p
in
\ t) which has no simple interpretation in terms of probability 

concepts (for example, it can become negative) but which can be 
used directly for calculating average values in a manner similar 
to the corresponding classical formulae.! 

The Wigner distribution function can be defined by starting 
from the density matrix in the coordinate or momentum re-

f There is yet a third method for dealing with quantum statistical mecha-
nics: this is the method of second quantisation. It is not our intention to deal 
with it here ; a complete discussion of it will be found in the book by Massignon 
(1957). 

= 4" # J - + τ Σ T r 5 + 1& + 1 , Φ , , 5 + 1] _ (VI.103) 
. LV_ Λ ' ΛJ . / J 

η n i = i 
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presentation; we have (with ^ n = n \ ρη): 

irn(r<"\p™, t)= — feipiu)r{n)')/h χ 

/ 23„J 

h
3 n

\ 

ei(p(n)'-r(»))/h χ 

χ ^n(p
in)
 - ip

in)
'9p

(n)
 + ip™', t)d

3
Y

nY
, 

(VI.104) 

where Ψ*η is real but not necessarily positive. Integration of this 
function over all momenta gives the diagonal elements of the 
density matrix in coordinate space; similarly, integration over the 
coordinates gives the diagonal elements of the density matrix in 
the momentum representation. The interest in Wigner's function is 
that it enables us to calculate average values by formulae which are 
identical to the classical formulae; in fact, it can be shown that 
because of (VI.104) we have 

G =jfirH(r<*\P<"\ t) G(r
(
"\/><">) d

3n
r

in)
 d

3
Y"\ (VI .105) 

which avoids the operational technique of the density matrix; 
similarly, numerous results obtained with ôn remain unchanged 
with the function i^n. 

The functions satisfy a differential equation which is derived 
from the fundamental equation (VI. I) by taking account of de-
finition (VI.104); similarly, we can define successive "cont rac t ions" 
of # V Thus, it has recently been possible to show (Mori and Ono, 
1952) that it would be possible to obtain a quantum Boltzmann 
equation for dilute gases, starting from the differential equation 
which is satisfied by Wigner's function Ψη. If we introduce again 
the distribution function f(r, v, t), this quantum Boltzmann equa-
tion assumes the form 

• ^ + ( f V r / ) + 
dt 

IfifV + e/i) (i + of) 

- ΑΛΙ + Qf[) (l + Of')] a{g, χ) sin χ αχ de d
3
vt, (VI. 106) 

where oc(g, χ) is the quantum cross-section of two particles moving 
with the relative velocity g and where θ = (h

3
lm

3
G)e; G is the 
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statistical weight corresponding to the particle considered and ε is 
equal to — 1 , 0 or 1, depending on whether we are using Fermi-
Dirac, Boltzmann or Bose-Einstein statistics. It can be seen that 
the flow term is identical with the classical term (as was shown by 
Kikuchi and Nordheim, 1930) and that the collision term involves 
two essential differences: (a) we have replaced gbdbde by the 
quantum differential cross-section oc(g, χ) sin χ d% de, which intro-
duces quantum diffraction effects in the collision process of the 
two particles (the modifications obtained are particularly im-
portant for hydrogen and helium); (b) we see terms in (1 + Of) 
appearing, which are particularly important at low temperatures 
and which express the effects of symmetry and take into account 
the behaviour of degenerate gases. Of course, Boltzmann's equa-
tion (VI. 106), inasfar as it is valid from the quantum point of 
view, gives rise to the same criticism as we have made concerning 
the corresponding classical equation; we note, finally, that one 
can obtain an / /- theorem which is identical with (VI.95), if we 
define Η by: 

3. The Master Equation in quantum theory 

We shall end this section by giving a few brief observations on 
the formulation of the Master Equation in quantum theory (we 
shall follow a recent paper by Mathews, Shapiro and Falkoff, 
1960). As in classical mechanics, we can try to describe the irre-
versible evolution of a macroscopic system by a Markovian 
stochastic process with the probabilities for transitions per unit 
time given by first order perturbation theory [see, for example, 
formulae (VI.66)-(VI.68)]. The probability distribution 
P(ni9 ni9 ...; t) = P « / i | ; f ) is then expressed as a function 
of the occupation numbers nt of the different individual states of 
the particles and it satisfies the equation 

; / + A ) = Σ P«m\ ; / ) P « w | ; / - <n\ ; / + dt) (VI.108) 

[which is similar to (VI.55)], where P « w | ; t -> <n|; t + dt) is the 
conditional probability of finding the occupation numbers <«| at 
the instant t + dt, given the numbers <jn\ at the instant /. If we 
restrict ourselves to stationary transition probabilities, where 

H= / I n / - - + / In - + / ) \ d > v . (VI .107) 
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P « m | ; t -» <n|; t + d t ) depends only on the interval d t and not 
on t, we can define a matrix Q((m\ -» <«|) by 

ß « m | -> <n|) = lim 
· ρ « ΐ Η | ; / - < » Ι ; ί + Λ)-Π*».-

i 

(VI. 109) 

which, by virtue of the definition of transition probabilities, has 
the following properties: 

ß « / w | - > <n|) è 0 if < / Κ | Φ < Λ | , (VI.110) 

Q«m\->(m\)= - Σ Q«m\-<n\). 
<n\*<m\ 

If (m\ φ <n|, Q((rn\ -* <«|) represents the probability of the 
system passing from the state (m\ to the state <«| per unit time. 
With these definitions, equation (VI. 108) can be written as 

= Σ*«*Ι;Οβ«™ΐ - <n\); (vi.iii) 
Ct <m| 

this is the "Master Equa t ion" in the quantum case [formally 
equivalent to (VI.73) and similar to equation (V.55 2)] the formal 
solution of which is : 

<P(0I = <P(0)\e*, (VI.112) 

where <P(0)| is the row vector corresponding to the initial distribu-
tion P « w | ; 0). In the case where the number of states is infinite, the 
Master Equation (VI . I l l ) is equivalent to an infinite set of differ-
ential equations; its solution can be made easier by introducing a 
generating function Φ defined by 

<Hzi, z2, ... ; Ο = Φ(|ζ> ; 0 = Σ zî1*? · · · It). (VI. 113) 

and which corresponds to P. 
The interest in this function Φ is due to the fact that we can 

deduce all the moments of Ρ and its marginal distributions, by 
noting that the summation of Ρ over all values of nt for each value 
of ι amounts to putting zt = 1 in Φ. Thus, we obtain the rela-
t i

0 1 18 Λ / Ι V Λ 

^ > ; 0 z 1 =z 2 = . . . = i = l ; 

δ e 
x—φ ntnJ..Ml = lzi — Zj—...zl — 0 \ . (VI. 114) 

L CZi OZj 
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On the other hand, the marginal distribution P{nl ,n2;t), for example, 
is given by the set of coefficients of z j ' z^ in the series expansion of 
Φ(ζί ,z2;t) which is obtained, starting from (VI. 113), by putting all 
zt except zt and z 2 equal to 1. According to (VI . I l l ) we can see 
is that Φ satisfies the partial differential equation 

ΟΦ 

— (!*> ; 0 = Σ Σ p
«m\ ; 0 Q«m\ - <Λ|) Π zV 

Ct <w| <m| i 

; | z> Φ ( | ζ > ; / ) , (VI.115) - Ή 
in which we have put 

I\<m\; | z » = X ß « n i | -* < κ | ) Γ Κ " " " . (VI.115') 
<»| i 

This equation is equivalent to the Master Equation ( V I . I l l ) 
and it is quite general; it assumes special forms once we 
determine the transition probabilities of the problem considered. 
If it be limited to the case of binary collisions (dilute monatomic 
gases), equation (VI.115) can be simplified and becomes: 

= - ztzj) [0,3/1 + θ ζ Α ) (1 + Ozfid]Φ 
dt 4 ijki 

(VI. 116) 

[equation (VI. 116) is similar to the equations obtained by Moyal, 
1949, and Siegert, 1949]; we note that even in this simple form, no 
general solution is known for (VI. 116). However, we can deduce 
from it the equations satisfied by the moments of Ρ of various 
orders ; if we limit ourselves to the first order, we find the equation : 

= i-Σ μΐ> | Β / ι+βΗ»)(ΐ + β«.) 
at 2 jki 

- A% nknt(l + Qnt) (1 + 0/i,)] ; (VI. 117) 

this is analogous to equation (VI.61) with θ = 0 and it can only 
be reduced to a quantum Boltzmann equation if we make the 
additional assumption: 

ntn/l + Onk)(l + ö/i,) = π , π / 1 + 6nk)(l + 0Ä,), (VI. 118) 

which is equivalent to (V.62) with 6 = 0 ; thus, we meet again the 
hypothesis of molecular chaos which we have discussed already. 
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Of course, the question remains open of knowing to what extent 
we can deduce these probabilistic equations from the exact 
equations of wave mechanics. The foregoing involves, in fact, the 
implicit assumption that the occupation numbers remain " g o o d " 
quantum numbers at every instant. Since they correspond to the 
diagonal elements of the density matrix, we encounter in fact 
Pauli's hypothesis according to which we can neglect the off-
diagonal elements of the density matrix; this amounts to assuming 
that the property of molecular chaos is conserved during evolution. 
An important task therefore remains to be accomplished with a 
view to justifying the probabilistic equations of the form (VI . I l l ) , 
starting from equation (VI. 1) which is satisfied by the fine-grained 
density ρ; thus, we have returned to the problems which we studied 
in section III of this chapter and here we recall once mere the 
work of Van Hove (1955, 1957, 1959) who has succeeded, by 
means of the condition of molecular chaos at the initial instant, to 
obtain the Master Equation as a first approximation of the quantum 
equations of motion of a system composed of a large number of 
weakly coupled particles. 

V. Zwanzig's Method 

1. Introduction 

Amongst the methods which have been proposed recently 
for attempting to resolve these problems, it seems appropriate to 
discuss Zwanzig's method (1960, 1964) which, at least in its early 
development, can be presented in a simple form. Without recourse 
to the complex formalism of graphs, it allows us to arrive by a 
direct route at a generalised "Mas te r Equa t ion" which is equiva-
lent, apart from the notation, to the equations obtained previously 
by Nakajima (1958), by Montroll (1960, 1962) and by Prigogine 
and Résibois (1961; Résibois, 1963). 

This method depends essentially on the following statement: 
in many problems of statistical physics, complete and precise 
knowledge of the statistical operator q{t) is not generally necessary. 
This is due to the fact that, on the one hand, we are only interested 
in certain classes of observables and that, on the other hand, we 
only consider certain types of initial conditions; in this respect, it is 
sufficient to recall the important role played in the preceding 
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sections by the diagonal elements ρΗ(ί) of the density matrix and 
by the initial condition of random phases ρ 0(0) = 0. We must 
therefore distinguish in the total operator ρ(ί) a "relevant" part 
denoted by gR(t) and an "irrelevant" part denoted by £j(i), 
which does not contribute to the calculation of the average values. 
More precisely, we assume that ρ(ί) can be split according to the 
formula 

ρ(0 = $*(') +$/(0, ( V U 19) 
with the condition 

Tr (QjÂ) = 0. (VI. 120) 

It follows that for the average value Ä(t) of an observable A, we 
have 

Â{t) = Tr(ùRÂ). (VI.121) 

It is clear that this analysis will depend essentially on the nature 
of the problem studied. In a general way, it can be achieved by 
defining a Hermitian projection operator P, such that 

P&f) = QR(t), (1 - P) fa) = ρ,(0, (VI. 122) 

where Ρ satisfies the relation 

P
2
 = P . (VI.123) 

For example, if we are interested only in the probabilities of the 
states / of a quantum system (as is the case in the kinetic equation), 
it is sufficient to know the diagonal part of ρ; therefore, we shall 
construct the projection operator Ρ in such a way that its applica-
tion would diagonalise the matrix ρ. Similarly, if we wish to 
introduce the reduced density matrices for s particles, &(r

( s )
, r

( s )/
 ; t), 

the operator Ρ will be defined by formula (VI.99); its application 
is a matter of taking the partial trace of ρ over the (n — s) particles 
which do not belong to the group considered. In addition, these 
considerations can be extended to the classical case where we 
define similarly distribution functions for s particles [cf. formula 
(V.74)]; the operator Ρ reduces in this case to an integration over 
the 6(n — ^-dimensional partial phase space. 

This being so, Zwanzig's method consists in obtaining a precise 
equation of evolution for the "re levant" part QR(t)9 starting 
from Liouville's equation. We shall see that this equation, which 
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is equivalent to Liouville's equation, can be put in the form of a 
generalised "Mas te r Equat ion" , although it does not yet involve 
any element of irreversibility. However, it constitutes an excellent 
point of departure for various approximations, according to the 
nature of the problem being studied, and we shall show that it 
leads, in the limit of "weak coupling", to an irreversible Master 
Equation of the type of Pauli's equation. 

2. The Liouville operator in quantum theory 

Before describing this method, it will be convenient to introduce 

Liouville's quantum operator L, which is analogous to the operator 

which we have encountered already in the classical case. 
We write the quantum parallel of Liouville's equation (frequently 

called von Neumann's equation) in the form: 

^=-UH/Q]. (VI.124) 
dt h 

and we define a linear Hermitian operator L by 

I g (VI.125) 
h 

Equation (VI.124) then becomes 

= - ÎLQ (VI.126) 
dt 

and hence takes a form which is completely equivalent to the 
corresponding classical equation [see equation (V.l55)]. 

This operator L [first introduced by Klein (1952), then studied 
by Fano (1957) and Kubo (1957)] acts on the set of operators in 
the space of quantum states and it has the effect, in a given re-
presentation, of transforming a matrix with two indices to another 
matrix with two indices. Liouville's quantum operator L is there-
fore a mathematical creation with four indices (called a tetrad), 
whose elements Lukl are defined by: 

(£β)υ = Σ ω « ; (VI.127) 
kl 

Since L is the commutator with H, we can show that we have 

Luki = ^ (#,A, - HtJôik). (VI. 128) 
h 
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In consequence of equation (VI. 128) we have the following two 
relations : 

L < l tt = 0, Σ Α , * , = 0 . (VI.129) 
k 

On the other hand, for the algebra of these tetrads we have the 
two obvious rules : 

( î ) i * i = a , A i , (vi .130) 

which defines the unit-tetrad, and 

( L ^ ) , * , = Σ Σ ( Î 1 W I 2 U , (VI .131) 
m π 

for the rule of multiplying two tetrads. 

Once this operator L has been introduced, the formal solution 
of von Neumann's equation can be written as 

KO = e~
iL
%0), (VI. 132) 

where the unitary operator e~
iU
 can be defined by an expansion 

of the exponential function; it is called the propagator, or the 
Green function, associated with von Neumann's equation, since 
it enables us to express the evolution of the system as a function 
of the initial conditions. Equation (VI. 132) can be rewritten in 
matrix form: 

ριΧ/) = Σ ( ^ "
ΐ 1

% « ^ ι ( 0 ) , (VI. 132') 
kl 

and, differentiating with respect to time and using equation (VI. 128), 
we can prove the identity 

= (*"
, l î r / à

) i . (e
lût
'%. (VI.133) 

Applying this last relation to equation (VI. 132) we find the familiar 
solution : 

§(/) = e~
iât/h

ë(0) e
i h t l

\ (VI. 134) 

in which the unitary evolution operator e~
iHtfh

 enters. 
Similarly, an observable A which does not depend explicitly on 

the time satisfies, in the Heisenberg representation, the equation 

dA i 

= _[//, A]_ = iL A, (VI. 135) 
dt h 
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the formal solution of which can be written as 

Â(t) = e
ru
Â(0). (VI. 136) 

It follows that for the average value of A(t) we have 

A(t) = Tr[i(0,1(0)]- = Tr [ i (0 ) , § ( / ) ] - , (VI. 137) 

because of the unitarity of the operator e~
iLt
; thus, we find for the 

average values a property similar to that which we have already 
established in classical theory [see equation (V.157)]. 

We note, in conclusion, that the introduction of the operator L 
has two advantages: on the one hand, it enables us to write in a 
more manageable form the perturbation expansions as a function 
of the coupling parameter; in fact, in the case where the Hamil-
tonian is given in the form H — H0 + XV, we have similarly 
L = L0 + XL' and the perturbation operator L always appears to 
the left of ρ(0) in the expansion, whilst, in Hamiltonian formalism, 
the operator V appears both to left and to the right of ρ(0). On the 
other hand, the operator L enables us also to arrive at a very 
simple expression for the résolvant equation associated with (VI. 126). 
This can be verified by defining the Laplace transform g(s) asso-
ciated with ρ(/), through 

oo 

g(s) = j dt e-
s,
§(t); (VI.138) 

0 

the Laplace transform of equation (VI. 126) then gives 

sg(s)-kO)= -iLg(s), (VI.139) 

the formal solution of which can be written as 

gW=—Urê(O), (VI.140) 
s + iL 

where (s + iL)~
l is the resolvant operator associated with the 

unitary operator e~
iLt
. (It is also called the propagator or the 

Green function of the problem.) 

3. Zwanzig's equation 

Let us suppose now that we have defined a projection operator Ρ 

which is time-independent, with P
2
 = P9 such that : 

ή Κ ο = <?*(o, α - Ρ) ê(o = $z(o, 
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whence 

g(0 = P§(t) + (1 - P)KO = gR(t) + ρ,(ί). (VI.141) 

It can be seen from the above that this operator Ρ is also a tetrad; 

for example, in the special case where Ρ has the effect of diago-

nalising the matrix ζ> (we denote this diagonalisation operator by D , 

in what follows), we have 

D§ = & (VI. 142) 

or, in matrix terms, 

0Q)u = hfiu (VI. 143) 

and 

ΑΛ ι = ΜιΑι· (VI-144) 

This being so, we shall establish Zwanzig's equation in the general 

case, without discussing the special form of the operator P. Let 

us consider Liouville's equation (VI. 126) and let us apply to it 

successively the projectors Ρ and (1 — P ) . Taking account of 

equation (VI.141), it becomes 

dt 

30,(0 

= — iPLQR(t) - iPLQtO), (VI.145) 

dt 
= - P)L§R(t) - i(l - P)LQ,(t), (VI.146) 

or again, by noting that we have P$R = QR and (1 — P)êi = Qi, 

£>ρ*(0 
dt 

du,(0 

= — iPLPgR(t) - iPL(\ - P)e,{t), (VI.145') 

- / ( l - Ρ)£<5.,(0 - i d - P)Ul - P)Ù,(t). 
dt 

(VI.146') 

Zwanzig's method consists in looking for an equation of evolu-
tion for the "relevant" part gR(t) only; we can do this by eli-
minating ρ,(0 from the two previous equations. For this pur-
pose we write the formal solution of equation (VI.146) by consi-
dering it as a linear equation in §j(t) with the inhomogeneous term 
- / ( l - P)LQR. 
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We find therefore: 
t 

§,(<) = e - '
( ,

-
A &

$ , ( 0 ) - / / A e - » - ^ ( l - P)LeR(t - τ ) , 
0 

(VI. 147) 

where the operator &(t) = e-m-p>Lt ls ^ Q propagator associated 
with equation (VI. 146). We obtain Zwanzig's equation by putting 
this formal solution into equation (VI. 145). We have, finally, 

t 

^ p - = -IPLURQ) - iPL9(t)ù,V) - ^dxG(x)QR(t - τ ) , 

0
 (VI. 148) 

where 

G(T) = Pl9(r)(l - P)L = PLe-^-
hù
(\ - P ) L . (VI.149) 

Equation (VI. 148) is an exact equation satisfied by the "re-
levant" part QR(t) of g(t); in this sense, it is equivalent to Liou-
ville's equation and it results simply from the fact that we are 
interested only in one portion of the data contained in the total ρ. 
We note that it contains a convolution integral expressing the non-
Markovian behaviour of QR(0 and that it still depends on the 
initial conditions ê/(0). 

A simpler form can be obtained for equation (VI. 148) by parti-
cularising a little the problem being studied. We note first of all 
that we often have the relation : 

P L P = 0; (VI. 150) 

this is the case, for example, with the operator D as we shall see 
in what follows. This relation has the effect of eliminating the first 
term on the right-hand side. On the other hand, we can restrict 
ourselves to the study of cases where the initial condition 

0/(0) = 0 (VI.151) 

is satisfied; if Ρ = D, this relation expresses the absence of initial 
correlations in the system: this is the hypothesis of "molecular 
chaos" at the initial instant. With the two conditions (VI. 150) 
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4. Derivation of a generalised "Master Equation" 

We shall see now how we can use equation (VI. 152) to establish 
the generalised "Mas te r Equa t ion" obtained according to various 
methods by Nakajima, Zwanzig, Montroll , Prigogine and Résibois. 
Since the previous conditions are still too general, we must fix our 
model more precisely. 

We shall suppose that, in what follows, the Hamiltonian is of 
the form 

H = Ho +λ¥, (VI.153) 

where A is a parameter characterising the order of magnitude of 

the perturbation V; it follows that we have, similarly: 

L = L0 + λί'. (VI. 154) 

In addition, we shall use the representation of the eigenfunctions 

of H0, in which the matrix elements (L0)iJkl can be written as 

(Lo)ijki = (Ei- Ej)ôikôJl9 (VI.155) 

the Ει denoting the eigenvalues of H0. We shall assume further 

that L' has no diagonal elements, which means assuming that the 

perturbation V only has the effect of inducing transitions between 

the eigenstates of H0. Finally, we shall take as QR(t) the diagonal 

part | d(0 of the operator ρ(ί); in this case, the operator Ρ is none 

other than the projector D defined by equations (VI. 142), (VI. 143) 

and (VI. 144). In this case, we can prove the relation: 

DLD = 0, (VI. 156) 
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and (VI. 151), Zwanzig's equation assumes the simple form: 

t 

= - f dt G ( T ) QR(t -τ), ( V I . 152) 
dt J 

Ο 

which is always equivalent to Liouville's equation. If condition 
(VI. 151) were not satisfied, we would have the supplementary term 
— /PL^(i)e/(0) which, in principle, enables us to study the effect 
of the initial conditions on the final evolution of the system. 
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= -λ
2 

dt 
0 

dxG\r)Qd{t - τ ) . (VI. 160) 

This equation is still exact, equivalent to Liouville's equation 
and, in consequence, reversible; it is strictly valid for our model 
in the case where the initial conditions £/(0) = 0 are satisfied. 

We write equation (VI. 160) in the matrix form: 

dt j J 
j(T)ëjj(t - τ ) A (VI.161) 

dt 
ο 

with 

Wu(r) = - [ ί ' β -
1 τ ( 1

-
0 ) ί

ί ' ] ι ω = -[L'9(r)L']iUJ, (VI. 162) 

using the property (VI. 144) of the operator D. In order to obtain 
a "Master Equat ion" , it remains for us to show that the Wtfit) 
represent the transition probabilities of the state j to the state i . 
Since the trace of ρ is equal to unity, it is sufficient to verify the 
relations 

Z ^ o W = 0, Σ ^ / τ ) = 0; (VI.163) 
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since be definition we have 

(DLD)iJki = àijLiikkôkl, 

which becomes zero because of equation (VI. 129). Similarly, we can 

prove the formula 

DL0 = L0D, (VI. 157) 

as a consequence of equation (VI. 155). By combining this latter 

equation with (VI. 156), it can be shown that the operators D and L 

satisfy the following two relations: 

DL = λϋί', (1 - D)LD = XL'D. (VI. 158) 

Under these conditions, the kernel G(r) of Zwanzig's equation 
becomes 

G( T) = X
2
DL'ê(T) I'D = λ

1
 G {τ), (VI. 159) 

with the result that Zwanzig's equation can now be written as 
t 
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these are obtained by writing the matrix element [ϋΦΰ]ηη and 
by using the property = 0 [cf. equation (VI. 129)]. In parti-

I 

cular, we obtain from equation (VI. 163): 

Wii{r) = - Σ Wu(r), 

with the result that equation (VI.161) assumes the form 
t 

-^i i = Α
2
 Σ [dzWJix) [§jj{t - τ) - QH{t - τ)] (VI. 164) 

Ot j*i J 
0 

f 

= λ
2
 Σ f dv[fVtJ?)Qj# - τ) - WJT(T)Qtt(t - τ)]. 

This is Zwanzig's generalised " Master Equation " ; it corresponds 
closely, in notation, to the equations obtained separately by the 
various authors that we have mentioned previously (cf. Zwanzig, 
1960, 1964). Although this equation now has the familiar form of 
a "gains- losses" balance sheet, it is still equivalent to Liouville's 
equation for the model envisaged here. It is thus an exact and re-
versible equation and we can prove that it differs from a true 
irreversible "Mas te r Equa t ion" by the presence of the convolution 
integral. It should reduce to an equation of Pauli's type if it could be 
established that we have, under certain conditions, WU(T)= WtJd(T), 

with the Wij constant and independent of τ. In order to distinguish 
the reversible equations such as equation (VI. 164) from an irre-
versible "Mas te r Equat ion" , certain authors such as Mazur have 
proposed that they should be called "Pre-Master Equat ions" . 

We note, finally, that the integral on the right-hand side of 

equation (VI. 164) is formally of second order in λ and that terms 

of higher order are contained in the exponential factor of the 

operator Zwanzig's equation is thus easily adapted to pertur-

bation calculations, since the first-order term in λ
2
 is obtained by 

replacing L by L0 in the index of Φ ; the propagator associated with 

free particles e~
iTL
° is thus seen to appear. 

5. Time evolution; Pauli equation 

In order to discuss the conditions under which the behaviour of 
the system will be irreversible, we must study the time evolution 
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which results from equation (VI.161) or (VI.164). In order to 

simplify this study, we shall suppose for the moment that ρ and G 

are scalar functions and that we have the initial condition ρ(0) = 1. 

We shall consider the equation : 

et = - A
2 j G(r, Α)ρ(ί - r) A , (VI. 165) 

in which we have recalled the dependence of the function G on A 
and we are interested in the case in which the intensity A of the 
perturbation is small (weak coupling). 

(a) The most elementary argument consists then in assuming that 
dg/dt is small and that it is of the order of λ

2
, which permits us 

to write 

ö(t - τ) ~ ρ(ί) + 0(λ2). (VI.166) 

Equation (VI. 165) then reduces to 

? 1 = - Α 2 I j G ( T , A) rfrjg(0 + 0(λ% (VI. 1 6 7 ) 

the solution of which is: 

ρ(0 = exp - A
2
 Jrfr Jrfr'G(T',A) + <9(A

4
) (VI. 168) 

since ρ(0) = 1. If we assume that the function G(r,A) is integrable 
from zero to infinity, a characteristic time exists for the system, r c , 
for which we have to a sufficient degree of accuracy 

t T C 

J A C ( t , i ) - J A G ( T , A ) (VI. 1 6 9 ) 

0 0 

for a sufficiently large value of t. Thus, we have 

t X T c 

Jrfr J rfr'G(r',A) - / J A 6 ( r , A), 

0 0 0 

with the result that for t > r c we have an exponential decrease of 
ρ(0 given by: 

g(0 ~ e "
r / TR

 + 0 ( A
4
) , (VI. 1 7 0 ) 
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with a relaxation time xR defined by: 

τ *
1
 = λ

2
 j ΰ(τ9λ)άν. (VI. 171) 

(b) Although this reasoning gives interesting indications con-
cerning the behaviour of the system with time and concerning the 
manner by which irreversible evolution can be obtained whilst λ is 
small, it does not have an exact character. We can attempt to im-
prove this by resorting to the so-called "weak-coupl ing" limit 
introduced first by Van Hove. It consists in defining a new variable 0 
by 

0 = X
2
t (VI.172) 

and making λ 0 and t oo, whilst 0 remains constant. By sub-
stituting equation (VI.172) in equation (VI.165), the function ρ(ί) 
is transformed to a new function Ρ(θ) which satisfies the equation 

em θ/λ2 

de 

Taking the limit as λ 

dP(ß) 

de 

= - j rfrG(r,A)/>(0 - λ
2
τ ) . (VI.173) 

ο 

-+ 0, t -+ oo with θ constant, we find 

= rfrG(r,0)jp(ö), (VI. 174) 

the solution of which, 

P(0) = exp 
- Θ j rfrGCr, 0) 

(VI. 175) 

is equivalent to equation (VI. 170), with a relaxation time given on 
this occasion by 

r ;
1
 = λ

2
 J G(r,0)dT. (VI. 176) 

We note that we should obtain an identical result but in a more 
exact way by introducing the Fourier transform of the kernel 
G(r,A). 

(c) Despite the elegance of this weak-coupling method, we may 
ask how it has been possible to derive an irreversible evolution 
from the fundamental equation (VI.165) and, in particular, what 
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is the physical significance of the above arguments. Actually, we shall 
see that they cannot be applied to real physical situations because 
they depend on the hypothesis of integrability of the function G(r,X). 
This hypothesis, however, is not justified for systems with a finite 
number, N, of degrees of freedom: we can show, in fact, as we shall 
prove later when deriving Pauli's equation, that the operator 
G(r, λ) is generally a pseudo-periodic function of time, whose inte-
gral does not approach any definite limit. 

In order to overcome this difficulty and to obtain an irreversible 
evolution, it is necessary to assume that the number of degrees of 
freedom increases indefinitely, that is to say, to introduce the limit 
Ν -> oo. With a view to analysing the role played by this limiting 
process, we shall take once more a simple example given by Zwan-
zig, in which we suppose that G(T , λ) has the form of a sum of co-
sines, which is a special case of an almost periodic function. 
We put 

G M ) = I Σ (VI.177) 
Ν k=i \NJ 

and we consider the limit Ν -> oo. The Σ
 c a n

 then be replaced by 
an integral and we find :

 k 

lim G(T, λ) = ^LL9 (VI. 178) 

which, obviously, is no longer a periodic function of τ. 
On the other hand, we know the precise form of (7(τ,λ), since 

the kernel (VI.177) is a geometrical series. We have 

G(r,X) = J _ ( C O S T - 1) + — c o t ( — \ — . (VI. 1 7 9 ) 
IN 2N \2NJ τ 

Comparing expressions (VI. 178) and (VI. 179), it can be seen that 
in the case where Ν is finite, the limit (VI. 178) is a good approx-
imation only if the following two conditions are satisfied: 

1. We consider only " s m a l l " times τ, such that τ < N, i.e. small 
in comparison with the recurrence time of the system or the 
"re turn t ime" , equal in our example to 2πΝ. 
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2. Terms corresponding to microscopic fluctuations (or "no i se" ) , 
of order of magnitude 1/JV, can be neglected. 

In this way we see that the role of the limit JV-> oo is essentially to 
make the period T(N) of thè Poincaré cycles of the system approach 
infinity: this is an indispensable condition for making irreversibility 
appear. In addition, it can be seen that the time-evolution of a 
real physical system is characterised by the three time scales r c , 
TR and T(N). If the coupling λ is very small and if the number of 
degrees of freedom is very large, we shall always have xc <^ rR <ζ T(N), 
and for times r of the order of rR, we have a Markovian evolution 
described by one of the formulae (VI.170) or (VI.175). 

(d) It remains now for us to apply these arguments to the deri-
vation of Pauli's equation. We start from equation (VI. 164), which 
we shall rewrite by changing the notation of the quantum states. 
In a system with a large number of degrees of freedom, each quan-
tum state i includes numerous quantum numbers ; we denote by Ε 
the energy of the system and by <x the set of other quantum num-
bers necessary for specifying completely the level /. Each state is 
then denoted by (Eoc) and we put : 

ρΗ(ί) = Q{EOC; t) Wij{x, λ) = W(Eoc, E'a' ; τ, λ). 

With this notation, equation (VI. 164) can be written as 

We now give an explicit expression for the transition probabili-
ties W by always using the model of § 4. To a first order in λ we 
have, according to equation (VI. 162), 

θρ(Ε(\; t) 

dt 

λ 2 Σ Σ ί drW(Eoc, E'oC ; τ, λ) [ρ(£ V ; t - τ) 

— ρ(Ε(χ, t — τ)]. (VI. 180) 

Wu{r,X) = - {L'e-^Dujj + 0(λ). (VI.181) 

Remembering that 

-i(Ek-E0t/h 

L'uni —- \ΥιΦιι — 
η 

Vltôik], 
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= X W(oc, oc') [Q(EOC';6) - ρ (£« ; 0)], (VI. 185) 

2π 
W(oc, <%')= — I V(Eoc;Eoc')\

2
N(E) = W(oc', oc). 

h 

This is Pauli's equation which we have obtained by assuming 
that the density matrix was initially diagonal (condition ρ /0) = 0) 

we have 

Wu{r, λ) = 2 1 Vtf cos
 E i

 " ^ r + 0(A) 

= Α ι ν(Ε(χ\Ε'<χ')\
2
 c o s - ^ — — τ + 0(A); (VI. 182) 

we note in passing that we find again the pseudo-periodic be-
haviour of the nucleus G(r,X). Under these conditions, equation 
(VI. 180) becomes 

W ^ ' K y Σ Σ1 ldr\V(Eoc;EW)\
2
cos

E
-

E,
r χ 

dt E>X Ä
2
 J Ä 

χ [ö(E'oc'; t -r) - Q(Ea; t - τ)} + 0(λ
3
ρ) . (VI. 183) 

We shall obtain Pauli's equation if we can remove the convolu-
tion integral on the right-hand side. We must take account here 
of the fact that the system contains a large number of degrees of 
freedom; in this case, the spectrum of the energy levels is suffi-
ciently dense so that we can replace the £ by an integral. If N(E) 
is the density of levels, we have

 E
' 

dQ(E*;t)=p y ^ r d E> N ( r) [dr\V(Eoc;EW)\
2
cos^—-τχ 

dt If fi
2
J J h 

χ [ ρ ( £ ' α ' ; t - τ) - g(Eoc; t - τ)] + 0(λ
3
ρ). (VI.184) 

If we now carry out the transition to the "weak-coupling" 
limit (such as we defined under i ) , we see the appearance of a func-
tion δ(Ε — Ε') and we obtain finally: 

dg(Ea;0) 

do 

where we have put 
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and that the parameter λ is small (weak coupling). Nevertheless, in 
order to proceed from the exact equation (VI. 183) to the irreversible 
equation (VI. 185), we have had to make three additional assump-
tions: 

1. The system has a large number of degrees of freedom. 

2. The time / is large and of the order of 1/λ
2
. 

3. The matrix elements V(Eoc; E'a') are slowly varying functions 

of E'. Thus we prove once again the importance of transition 
to the limit Ν -> o o , which must be carried out in the exact equa-
tions before taking the "weak-coupl ing" limit. If these three 
assumptions were not satisfied, it would then be necessary to return 
to equation (VI. 183) which is still exact for small values of λ up 
to terms in λ

3
 ρ approximately. 

If we wish to discuss the physical significance and the limitation 
of the foregoing results, we can apply to equation (VI. 183) the 
elementary method described in (a). In this scheme, we replace 
Κ* - Ό by ρ (0 + 0(λ

2
ρ), with the result that equation (VI. 183) 

becomes in this approximation : 

dt e' »' h
2
 J h 

ο 

χ [ρ(Ε'<χ'; t) - g(Eoc; t] + 0(λ
3
ρ). (VI.186) 

We can then carry out integration over r ; we have immediately 

ί 

fiN(E) 

is satisfied. 
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If, now, we replace bv an integral of the form f dE\ it can 

be seen that, if t is sufficiently large, the term 

approaches the function πηο(Ε — Ε ), provided the inequality 

(VI. 188) 
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We can deduce from this that the time interval for which Pauli's 
equation is valid depends on the number of degrees of freedom 
of the system. The higher the number N, the less restricted is con-
dition (VI. 188); thus, we eliminate the Poincaré cycles from the 
system. 

In conclusion, we must emphasise the remarkable simplicity of 
the method proposed by Zwanzig which has enabled us to derive 
Pauli's "Mas te r Equa t ion" with the minimum of calculations. 
Moreover, Zwanzig has shown that his method could be applied 
also to classical theory and a "Mas te r Equa t ion" obtained, which 
was found previously by Brout and Prigogine. Whilst these results 
are not new, Pauli's equation having been obtained already with 
identical assumptions by Van Hove, it can be expected that this 
method will enable us to analyse in more detail the mechanisms 
which give rise to the irreversible evolution of macroscopic systems. 



CHAPTER VII 

General Conclusions. Macroscopic 
Observation and Quantum 
Measurement 

I N this book, we have studied the problem of the foundations 
of classical and quantum statistical mechanics and we have seen 
that the methods used are divided into two distinct groups: the 
ergodic theory and the / /- theorems. In addition, these correspond 
to a different definition of macroscopic quantities starting from 
the microscopic description. It can be said that the ergodic theory 
(which justifies the replacement of time-averages by phase-averages 
over the microcanonical ensemble) is a particularly suitable method 
for studying the stationary states of isolated systems and that the 
//-theorems describe more particularly the time evolution of the 
macroscopic state of the system. 

However, we have seen that the ergodic theory in itself involves the 
irreversible evolution of the system towards stationary states 
(although incapable of providing a quantitative analysis) and that 
the / /- theorems, in their generalised form, are comparable with 
H o p f s ergodic theorem and with its quantum parallel. We shall 
show now how the fundamental concepts of statistical mechanics 
are involved in the statistical interpretation of thermodynamic pro-
perties at equilibrium (statistical thermodynamics) and of the 
thermodynamics of irreversible processes. 
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I. Applications of Statistical Mechanics 

1. Statistical thermodynamics 

It is necessary here to justify the use of stationary ensembles 
and to deduce from the properties of these ensembles the laws of 
thermodynamics; for this, we can resort to two methods, used for 
defining macroscopic observables. 

(a) In the first method, the observed physical quantities are the 
time averages of the functions f(Pt) or of the quantum averages 
A(t) = (Ψΐ9 ÂWt). The ergodic theory attempts to prove the equality 
of these averages with the statistical averages taken over a micro-
canonical ensemble (which describe the stationary state of an 
isolated system). This being so, the mechanical evolution of such 
systems is described either by the trajectory of the representative 
point 0>(t) over a hypersurface of JH-space (or over an energy shell 
contained between two hypersurfaces), or by the trajectory of the 
affix Ψ(ί) over the unit hypersphere in the Hilbert subspace asso-
ciated with the shell e

(<x)
; the microcanonical ensembles are de-

fined by invariant measures on the hypersurface or on the unit hyper-
sphere. If we could prove an ergodic theorem which is valid for 
all trajectories, we should justify in this way—starting from mechani-
cal considerations—the use of the microcanonical ensemble from 
which the fundamental theory of statistical mechanics would be 
deduced. We have seen, however, that this is not so and that the 
exact ergodic theorems always accept the possibility of exceptional 
trajectories; thus, the ergodic theory has an inevitable statistical 
aspect (almost certain convergence or convergence in quadratic 
mean) and can be applied, as we have seen, only to systems 
which satisfy very restrictive conditions (especially in quantum 
theory). This is why we have stressed particularly the probability 
ergodic theorem (which we developed in detail from the quantum 
point of view in Chapter IV), in which the statistical aspect of the 
theory is used with advantage for breaking away from the assump-
tions of metric transitivity in classical mechanics, and of the ab-
sence of degeneracy and of resonance frequencies in the energy 
spectrum in wave mechanics. 

Thus, in classical statistical mechanics, as in quantum statistical 
mechanics (and without looking at the differences in detail between 
the two aspects of the theory which are mentioned throughout this 
book), the probability ergodic theory justifies the use of micro-
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canonical ensembles and thus permits the founding of the atomistic 
interpretation of the laws of thermodynamics, by relying essentially 
on the very large number of degrees of freedom of a macroscopic 
system. The statistical nature of the ergodic theory determines, in 
addition, the limit of validity of the laws of classical thermodyna-
mics, by leading us to expect fluctuations and to calculate them by 
means of the canonical and grand-canonical ensembles which we 
have defined, starting from the microcanonical ensemble. 

We shall now show briefly how we can arrive at the usual results 
of statistical thermodynamics; our aim, obviously, is not to give 
a complete report on the calculation methods used in statistical 
mechanics [we can refer for that to specialised books; see for 
example Massignon, 1957], but simply to recall how the exclusively 
theoretical considerations of this book are involved in the practical 
applications. 

(b) For this, we resort to the second more complete definition 
of the macroscopic state of a physical system. In classical theory, 
this macroscopic state is defined by covering //-space (associated 
with a particle) by a network of finite cells of extension in phase ω, , 
to which correspond the stars Ωη of -Γ-space. The more precise 
definition of the macroscopic state is obtained by the localisation 
of the point 0>(t) in a specified star in / '-space. We see here that 
the results of the ergodic theory relative to a hypersurface of con-
stant energy are inadequate (because of the natural inaccuracy of 
macroscopic observations), which proves the physical usefulness 
of H o p f s theorem. From this theorem we can then deduce the 
relation 

oo τ ΣΛΩ») » W 
/ ( Λ ) = l i m / ( P t ) = T J 7 / r, , » CVILl) 

η 

in which we assume that / is a function of the occupation numbers 
n{ of the cells ω, and where W(ü„) represents the statistical "we igh t " 
of the stars Ωη (which is taken to be proportional to the volume 
of these stars for the microcanonical ensemble). The calculation of 
the average values (VII. 1) can be undertaken by means of the 
Darwin-Fowler method (1923) used in the fundamental books by 
Fowler (1936) and Fowler and Guggenheim (1939); the compli-
cated formalism of this method, however, can be simplified con-
siderably (as shown by Khinchin) by a systematic application of 
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the central limit theorem of probability calculus (see Appendix I, 
§4) . On the other hand, we find Boltzmann's usual results by 
noting that the dimensions of the star Qmax (corresponding to the 
most probable state) are such that we can in all applications re-
place W(Z) by W(f)max) (because of the large number of degrees 
of freedom of the system and of the insensitivity of Boltzmann's 
formula to the definition of the elementary probability). We can 
then write 

and in this way we can obtain all the usual formulae (Maxwell-
Boltzmann distribution, equipartition of energy, . . . ) . 

Quantum theory follows a similar route, by characterising the 
observed quantities by macroscopic operators : they define Hilbert 
sub-spaces with suffixes ν of s

(

v

a )
 dimensions, which are analogous 

to the stars in P-space. We have seen that these operators, apart 
from the macroscopic energy, do not commute with the correspond-
ing microscopic operators. In particular, we can describe a quantum 
gas by taking Η = H0 + V for the Hamiltonian, where V is the 
interaction energy of the particles whose free Hamiltonian is H0: 
macroscopic observable states are then represented by groups of 
eigenvalues of H0 between which quantum transitions occur, which 
are produced by the potential V. We obtain the usual results by 
defining groups of eigenvalues of the energy of a single particle 
(by means of the well-known relationship gt = ω ί/Α

Γ
, where r is 

the number of internal degrees of freedom of the particles con-
sidered) and by calculating the number of complexions correspond-
ing to the macroscopic state of the system according to the type 
of statistics considered. 

The relation between the microscopic structure of the system 
and the thermodynamic functions is obtained by means of the sum 
over states (Planck's Zustandssumme), also called the partition 
function (Fowler); for one molecule it is defined by (β = 1/kT) 

where et is the eigen-energy of one particle; the classical formula 

(VII.2) 

ζ

μ = Is* e (VII.3) 

(VII.3') 
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corresponds to (VII.3). This partition function is related to the 
thermodynamic free energy F by the expression 

Ζμ = e~
ßF
. (VII.4) 

We can then evaluate, by means of formulae (VII.3) and (VII.4), all 
the usual thermodynamic functions (entropy, enthalpy, . . . ) , from 
which we can deduce the thermodynamic quantities obtained by 
experiment. 

In order to define the reversible transformations of thermo-
dynamics, we must resort to the canonical ensemble which re-
presents a system in thermal equilibrium with a thermostat. Using 
the property of adiabatic invariance of these ensembles (for this 
purpose the external parameters which occur in the Hamiltonian of 
the system are varied), we can work out a statistical interpretation of 
the isothermal and adiabatic reversible transformations of thermo-
dynamics: these must be such that the statistical equilibrium state 
is conserved during transformation. The thermodynamic quantities 
are calculated in this case by means of the partition function in 
/ '-space : 

ΖΓ = Σ7ι*~
βΕί

> (VH.5) 
f 

where the y t are the weights of the states with total energy Et; 
for a system composed of Ν independent particles, we have 
Ζr = (Ζμ)

Ν
. In the general case of real gases, the study of the thermo-

dynamic properties of the gas involves a calculation of Zr; this 
calculation has given rise to numerous works both in classical 
theory (the Ursell-Mayer method of cluster functions and Bogu-
lyubov's method) as well as in quantum theory where the formalism 
of quantum field theory has recently been used with success 
(Matsubara, 1955; Bloch and de Dominicis, 1958; Bloch, 1960). 

Finally, grand-canonical ensembles enable us to take up the 
study of the thermodynamics of physico-chemical processes. We 
point out, in addition, that the average values calculated by 
starting from grand-canonical ensembles are the same as those 
calculated by the Darwin-Fowler method; this result, which we 
have studied already from the theoretical point of view at the end 
of Chapter IV, is one of very great practical importance since it 
permits us to simplify the calculation of the average values (by 
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dispensing with the restrictive conditions implied in the definition 
of microcanonical and canonical ensembles); this is of particular 
interest for studying real gases. 

2. Irreversible processes 

We have seen that the study of the irreversible evolution of 
macroscopic systems encounters difficulties which are greater than 
the justification of the method of statistical thermodynamics based 
on the use of stationary ensembles corresponding to states of 
macroscopic equilibrium. In this study, macroscopic observables 
must be introduced by means of the method of phase cells, which 
enables us to define coarse-grained statistical densities; in this way, 
we have shown that any initial distribution tends probably towards 
an equilibrium distribution because of the difference between 
coarse-grained and fine-grained densities; this is the generalised 
^ - theorem which we proved in quantum theory in Chapter VI. 
This method, however, as we have seen involves two serious dis-
advantages: on the one hand, the /jf-theorem could not be proved 
exactly and, on the other hand, it can scarcely provide us with any 
more information about the evolution of the system than H o p f s 
ergodic theorem or its quantum equivalent; in particular, there is 
no means of obtaining practical quantitative results. Thus, in its 
generalised form the /7-theorem could only serve as a theoretical 
basis for the use of stationary ensembles in statistical thermo-
dynamics. 

In order to work out a quantitative theory which could serve 
as the basis of the thermodynamics of irreversible processes, we 
must try to analyse macroscopic evolution by comparing the sta-
tistical definitions of macroscopic quantities with the microscopic 
mechanical model of the system. From the point of view of me-
chanics, the evolution of the system is always described either in 
classical mechanics by the motion of the representative point 0*(t), 
which traverses successively different stars in / '-space, or in wave 
mechanics by the trajectory of W(t) over the unit hypersphere of 
the Hilbert sub-space associated with the shell e

( a)
 (different prob-

abilities for the sub-spaces with suffix ν correspond to different 
points of this trajectory). The macroscopic observer, however, can 
only ascertain successive transitions from one star to another in Γ-
space, or the changes in probability associated with the quantum 
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cells v: there is a "complementarity" between the macroscopic de-
scription and the microscopic description of the events; we have 
emphasised at length this aspect of the problem in Section III of 
Chapter VI. The statistical method, in this case, consists in re-
presenting the evolution of macroscopic quantities by average 
values (or most probable values) calculated with statistical en-
sembles defined in accordance with the initial macroscopic ob-
servations. 

We have seen that the results obtained by this method are only 
strictly valid for a (macroscopically) small interval of time after 
the instant of observation. If we require equations which are valid 
at any instant (such as the kinetic equations), we must assume that 
a statistical ensemble can be defined which corresponds to a 
macroscopic condition at any given instant, without taking account 
of the macroscopic states previously occupied by the system. This 
assumption is necessary for proving Boltzmann's equation and it 
reduces to accepting the conservation in time of the property of 
molecular chaos; moreover, we have found these conditions in both 
classical and quantum theory, when describing the irreversible evo-
lution of the system by a Markovian statistical process, with prob-
abilities given by the theory of molecular chaos. In both cases, the final 
justification of these theories depends ultimately on the approximate 
integration of Liouville's equation or of its quantum equivalent. 

It is essential to note that the foregoing considerations are in-
dependent of whether the macroscopic observation has or has not 
been actually performed: the macroscopic state of a system is, in 
fact, objective and therefore is independent of the observation; in 
particular, this does not disturb the system in an uncontrollable 
way as in the case of the quantum measurement and its effect on 
the system can always be made as small as desired. These points 
are just as valid in classical statistical mechanics as in quantum 
statistical mechanics; in addition, they will allow us to study in 
more detail the difference encountered in the proof of the H-
theorem between the classical and quantum cases. In fact, we must 
bear in mind that the decrease of H was due in both cases to the 
difference between the fine-grained and coarse-grained densities 
and that it was intensified in the quantum case by Klein's lemma: 
we can show that this latter cause of the decrease of H, which is 
without counterpart in classical theory, can be associated with the 
irreversible perturbation due to observations made on the system. 
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II. Quantum Measurement and Macroscopic Observation 

1. Quantal entropy 

Let us start by recalling the mechanism of a quantum measure-
ment (by using the normal interpretation of wave mechanics). If 
we denote the system in which we wish to measure an observable 
by I, the procedure consists in coupling this system with another 
system II in such a manner that the observable being measured 
in I must correspond to an observable in II. If the two systems I 
and II are initially in a pure case represented by the wave func-
tions φ and ψ respectively, the total system I + II also is in a pure 
case Ρ φ , with Φ = φψ. If 9^ are the eigenfunctions associated with 
the observable of I to be measured and if ipk are those associated 
with the corresponding observable of II, we can put 

ψ = Σ
 α
*Ρι

 a nd
 Ψ = Σ (VII.6) 

i k 

whence 

Φ = Ε « , with cik = aidk. (VII.7) 
i.k 

This being so, the first phase of the measuring process consists in 
suitably coupling systems I and I I ; this coupling leaves I + II in 
a pure case, but establishes a correspondence between t h e 0 f and^ f c 

such that Φ can be written as 

Φ = Σ
α
ιΨιΨι- (VII.8) 

i 

System I, which was described initially by a pure case with a 
density matrix 

Q
l
u = à*at (VII.9) 

is described, after the coupling, by a mixture with the diagonal 
density matrix: 

Q\j = Wt\
2
 ôu; (VII.10) 

the coupling between I and II thus has the effect of making the 
pure case (VII.9) change to the mixture (VII.10). 

The second phase of the measuring process is the observation 
of the result of measuring ipi9 which allows the wave packet to be 
reduced. After reading the measurement result, system I is again 
in a pure case, represented by ç>f. If we denote by a

1
 the quantal 
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entropy of I, defined by 

σ
ι
 = Τ ϊ ^ ΐ η ρ

1
) , (VII. 11) 

it is initially zero (pure case) ; then it increases sharply after coupling 
and becomes equal to — £ \at\

2
 ln |tff|

2
 (mixture); the reduction 

of the wave packet returns it to 0. Thus, there are two quantum 
entropy steps of equal amplitude and with opposite sign: one on 
establishing the coupling between I and II and one on reading the 
measurement result; in particular, it can be seen that the increase 
of quantum entropy is linked to the coupling between the observed 
system and the measurement equipment, without reading the mea-
surement result (Jancel and Kahan, 1955). Moreover, this is con-
nected with the subjective nature of the wave function in wave 
mechanics (within the framework of the usual interpretation). 

These results can be extended to a series of measurements under-
taken on a series of observables of a quantum system: according 
as we actually proceed or not in reading the measurement results, 
there are two different descriptions of the system. In the first case, 
there are two quantum entropy steps for each measurement, 
corresponding, respectively, to the coupling with an intermediate sys-
tem and to reading the measurement result; after each measurement 
the system returns to a pure case and the quantum entropy takes again 
a zero value until the next measurement. In the second case, where 
the result of the measurement is not read, we have a discontinuous 
increase of entropy at each coupling corresponding to a measure-
ment; the quantum entropy can then be represented by a stepped 
curve which takes account of the irreversibility of successive inter-
actions of the observed system with the intermediate systems. 
When we actually proceed to a maximal observation, the quantum 
entropy returns to zero: this behaviour shows actually that the 
quantum entropy expresses the state of our knowledge about the 
system. 

2. The role of Klein's lemma 

This being so, the proof of Klein's lemma depends essen-
tially on the fact that the initial matrix q\f (0) is diagonal. More 
precisely, if the initial statistical ensemble is determined by a 
macroscopic observation, corresponding to the quantities Ρ

(
„

α )
(0), 
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we can put 
d U ) / y y v 

= - ^
<

V (VII.12) 

whence we obtain for the matrix elements ρ\*\ή: 

3 ? ( 0 - E ^ Z W ( V I U 3 ) 

and 

It can be seen from (VII. 14) that the matrix ρ(Λ)(0> which was 
diagonal at time t = 0, does not generally continue to be diagonal 
and that it is the existence of off-diagonal terms which involve 
the inequality sign in Klein's lemma. On the other hand, as we 
saw when we derived the kinetic equation (see Chapter VI, 
§ III.3), the calculation of the observable macroscopic quantities 

P
(

v"Xt), starting from (VII. 13) [withP<Ä>(0 = Σ ρ-fV)] is valid only 
»=1 

for the interval of time which follows the instant of observation. 
If we wish to extend the foregoing results to any instant whatso-
ever, it must be assumed that : 

(a) we have, after each macroscopic observation at time t, 

jjjjp(/ + 0) = 0 if ι Φ k; (VII.15) 

(b) it is possible to define a new statistical ensemble at t + 0 by 

êE?<' + °) = -ir p* ( Ä )W *u> (
V I L 1 6

> 
S
v 

where Pl
a
\t) is calculated starting from (VII. 13). We see 

that formula (VII.15) can be made to correspond to the diagonali-
sation [described by (VII. 10)] obtained by coupling a quantum 
system with a measuring instrument. This comparison suggests 
that we interpret the decrease of Π due to Klein's lemma as the 
irreversible perturbation produced by observation of the system: 
since condition (VII.15) is not conserved with time by the laws of 
wave mechanics, we are reduced to assuming a series of successive 
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couplings between the system and the observer (or the surroundings 
of the system). 

In addition, with Born and Green (Born, 1948, 1949; Born and 
Green, 1948), we can make the proof of the / /- theorem depend on 
this single property of statistical matrices. By depending on the 
definition of gd given in (VI.21) and by putting 

Η=ΎτφΛ]η§Λ) = σΛ9 (VIL 17) 

the / /- theorem is reduced to Klein's lemma ; actually, according to 
(VI.23) we have 

H' = ad̂ a'd' = / / " ; (VII. 18) 

the equality sign is obtained if the matrix ρ is diagonal at /. How-
ever, (VII. 18) gives us no information about the final behaviour 
of ad; for example, we cannot conclude that a'd" < o'J for t'" > t". 
This proof, therefore, is valid only for times which follow imme-
diately after the macroscopic observation, unless we assume that 
the perturbation produced by this observation could be described 
by a series of measurements, as we indicated above: this would 
be interpreted in this case as an external effect of the surroundings 
on the system (criticism of the isolated system concept). 

3. Irreversibility of quantum measurement and macroscopic irre-
versibility 

This interpretation, however, does not take into account the 
nature of the macroscopic observation which enables us to ascertain 
only an objective state of the system without disturbing it (or with 
a very small perturbation). In the proof of the generalised / /-theorem, 
the decrease due to Klein's lemma will thus, in general, be negligible 
compared to the decrease due to the difference between the 

fine-grained density Q^(t) and the coarse-grained density P
itx
\t); 

this term could become important only in the case where the 

observation would lose its macroscopic nature. Moreover, ρ***(0) 
is diagonal, because of the initial equality of the fine-grained and 
coarse-grained densities and this condition is fulfilled also in classi-
cal theory. Further, the definition (VII. 17) of / / , and thus of the 
entropy of a system, does not involve the conditions of the macro-
scopic observation, which does not seem to us to be in accordance 
with Boltzmann's formula, while the definitions (VI.28) and(VI.40), 
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agree with Boltzmann s formula. It is necessary also to compare 
with one another the continuous change in the macroscopic entropy 
and the discrete change by " j u m p s " of the quantal entropy. 

Finally, we note that if quantitative information about the 
irreversible evolution of a system is desired, we must resort to 
assumption (VII. 16). However, this cannot be satisfied by a quan-
tum measurement process; this is an assumption of a statistical 
nature, which originates from the definition adopted for ensembles 
of systems. (It corresponds to the application at each instant of 
the fundamental hypothesis of quantum statistical mechanics; this 
application must be justified, as we have seen that it can be contra-
dictory to the laws of wave mechanics.) Hence, the analogy be-
tween the effects of macroscopic observations and of quantum 
measurements is particularly clear; in fact, contrary to this latter, 
macroscopic observation has no eifect on the system and it does 
not put it in a " s t a t e " . It is included in the reasoning only for 
constructing new statistical ensembles which constitute a mathe-
matical tool and which enable us to establish at every instant a 
bridge between the macroscopic quantities and the microscopic 
description of the event; moreover, we have seen in §111.3 of 
Chapter V that macroscopic observation played exactly the same 
role in classical theory. 

Summarising, we obtain in fact a description of macroscopic 
evolution by assuming successively that : 

1. The quantities P^Xt), calculated according to (VII. 13) at a 
time t close to the initial time t = 0 starting from P[

a
\0), represent 

completely the quantities actually observed macroscopically. 
2. We must define a new statistical ensemble at t + 0, since the 

quantities P
(

v*Xt) then correspond to a real macroscopic state of 
the system; we assume that this ensemble can be determined by 
starting from the P[

a
\t) by the fundamental postulate of statistical 

mechanics, without taking into account prior knowledge of P (

r

a )(0) . 
This last point is the cause of the difficulties in the theory of irre-
versible processes, as we have emphasised in Chapters V and VI 
and it leads us to try to describe the evolution of a macroscopic 
system by a Markovian stochastic process. 

which employ the coarse-grained density matrix 

(VII. 19) 
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Here again we find the parallelism between the classical and 
quantum theories; apart from the differences in detail which we 
have noted throughout the book, the basic structure of the two 
theories is the same: the probabilities involved are classical prob-
abilities which obey the classical rules of probability calculus; in 
the case of the irreversibility of the quantum measurement process 
(which is one of the fundamental differences between classical and 
wave mechanics), we have just seen that it does not appear to play 
an important role in the statistical interpretation of macroscopic 
irreversibility. This is connected with the remarks at the end of 
Chapter IV concerning the isolated system concept; we can con-
sider the interaction of a system with its surroundings to be negli-
gible, provided that the system has a large number of degrees of 
freedom (this is practically always so for systems envisaged in 
statistical mechanics) ; in this case, interactions with the surround-
ings are reduced generally to surface effects. Thus, contrary to 
the opinion of Landau and Lifshitz and other authors (see last 
footnote of Chapter IV) who assign an essential role to perturba-
tions created by the external observation, it would appear reasonable 
to support the opinion expressed by Pauli (1949) in considering 
that " t he difference between classical and quantum mechanics, 
which is so important in other respects, does not play an essential 
role in thermodynamic questions. Actually, the perturbation arising 
from macroscopic observations can be made small and a single 
macroscopic observation is, in principle, sufficient for proving 
whether or not the system has reached thermal equilibrium". 

In conclusion, we have seen that classical thermodynamics and 
its reversible transformations find a satisfactory atomistic inter-
pretation, thanks to the stationary ensembles of statistical me-
chanics—the use of which is justified by ergodic theory—more 
particularly in the form of the probability ergodic theorems. On 
the contrary, the study of the irreversible evolution of macroscopic 
systems encounters greater difficulties and leads us to make assump-
tions which are liable to contradict the laws of mechanics of macro-
scopic evolution; however, by not losing sight of the fact that 
observed macroscopic quantities are related to the definition of 
coarse-grained densities, we can hope that new methods for the 
approximate integration of Liouville's equation and a greater call 
on certain types of stochastic processes will enable us to give an 
account of macroscopic irreversible phenomena. 
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1. Historical review of ergodic theory 

The ergodic theory has its origin in the problems encountered 
by the kinetic theory of gases. The development of kinetic theory 
occurred in the second part of the nineteenth century, mainly 
through the important work of Clausius, Maxwell, and Boltzmann; 
its basic tasks were to define, from the microscopic point of view, 
what it was necessary to understand by the equilibrium state of a 
system and to explain further the irreversible tendency of a non-
equilibrium system to evolve towards equilibrium. We know that 
the method of the kinetic theory of gases leads us to interpret 
this equilibrium condition (to which the Maxwell-Boltzmann 
distribution corresponds) as the most probable state of the system 
and that it takes into account the irreversible evolution of a non-
equilibrium system, thanks to the proof by Boltzmann in 1872 
of the celebrated //-theorem. Subsequently, Loschmidt (1876) and 
Zermelo (1896) having shown that this theorem in its original form 
encounters insurmountable objections based on the reversible 
and quasi-periodic nature of the motion of Hamiltonian systems, 
Boltzmann was then led to highlighting the statistical aspects of 
the / /- theorem and to show that this theorem was concerned only 
with the most probable behaviour of a system; this statistical 
aspect, moreover, had to be analysed in detail and examined thor-
oughly by P. and T. Ehrenfest in 1911. 

However, in parallel with this work on the kinetic theory of 
gases, Boltzmann tried to open a new field of research by trying 
to establish that the equilibrium state of a system was equivalent 
to its average state. By this, he understood that the time-average 
over an infinitely long interval of time of some phase function must 
be equal to the value of this phase function at equilibrium. In 
addition, we note that this definition of the equilibrium state 
enables us to arrive at the identical conclusions to that of the 
kinetic theory of gases, by avoiding the paradoxes of the / / -
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theorem; actually, if the time-average of a phase function is 
equal to its value at equilibrium, it follows that the system will be, 
for most of the time, in an equilibrium state and that it will rapidly 
regain this state as soon as it deviates appreciably. It is in view 
of the calculation of these time-averages that Boltzmann was led 
as long ago as 1865 to introduce for the first time the hypothesis 
according to which the trajectory of a system passes through all 
points of the constant energy hypersurface. It was only in 1887 that 
the term ergodic theory (from the Greek έργον: work and οδός: 
path) was used for the first time by Boltzmann; the same theory 
was expressed by Maxwell (1879) under the name of " t h e assump-
tion of the continuity of p a t h " . We shall now define this theory 
more precisely: 

If Ji is the multiplicity of Γ-space (the intersection of the multi-
plicities corresponding to integrals of motion) over which the 
representative point of the system moves, it is said that the system 
is ergodic if the point Pt passes, during a sufficiently long interval 
of time, through all points of Ji. In the case where the ergodic 
system only has a single uniform integral of motion, the multi-
plicity Ji is the constant energy hypersurface Σ and it can be 
shown easily that there is only a single trajectory over 27, the 
different motions being distinguished only by the instant t0 at 
which the point Pt passes through a point P0 of the trajectory. 
It can be deduced from this property that the time the represen-
tative point Pt stays in a region 01 of 27 is proportional to the 
measure of 0t in Σ and that the time-average (taken over an in-
finitely large interval of time) of a function f(Pt) is equal to its 
phase average over Σ. 

Thus, the time-average of a phase function is replaced by its 
phase average over the whole hypersurface Σ, i.e. over a (micro-
canonical) ensemble of systems of the same energy. With this, 
the fundamental concepts of statistical mechanics were introduced 
implicitly for the first time, namely, concepts of ensembles of 
systems and averages over these ensembles, concepts which would 
be used and developed systematically by Gibbs some years later 
(1902). However, the progress of the analysis and, more parti-
cularly, of the theory of ensembles soon enabled one to show that 
the ergodic theory in the form given to it by Boltzmann must be 
abandoned. After the first objections by Lord Kelvin (1891) and 
Poincaré (1894), Rosenthal and Plancherel actually demonstrated 
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the impossibility of the ergodic theory (1913) by invoking the 
theory of the measure of sets. The principle of the proof is as 
follows: since the trajectory of the representative point passes 
through all points of Σ, it is similar to a Peano curve and, con-
sequently, it is a curve without tangent; this is in contradiction to 
the existence of the pt defined by the Hamiltonian equations of 
motion. 

In the face of the difficulties encountered by the Boltzmann-Max-
well ergodic theory and even before its impossibility had been effec-
tively established, P. and T. Ehrenfest (1911) proposed the quasi-
ergodic theory: this consists in assuming that the trajectories of the 
representative point Pt are not closed and that they pass as close 
as desired to every point of Σ; in other words, the trajectory of a 
quasi-ergodic system is everywhere dense on Σ (an example of 
such trajectories is provided by Lissajous figures, in the case 
where the ratio of the periods is not rational). The quasi-ergodic 
theory, however, was proved to be unsuitable for demonstrating 
the equality of the time-averages and phase-averages; this is why 
the many proofs of this equality which start from the quasi-
ergodic theory, such as that of Rosenthal (1914), are generally 
vitiated. We point out, nevertheless, that Fermi demonstrated in 
1923 the existence of a class of quasi-ergodic systems (kanonische 
Normalsysteme) but that he could not deduce the equality of the 
time- and phase-averages. In order to arrive at a satisfactory defini-
tion of the ergodic problem, it was again necessary to revert to exact 
mathematical definitions of sets which are everywhere dense and of 
zero-measure sets, and also to the fundamental concept of metric 
transitivity introduced by Birkhoff and von Neumann. 

These latter tasks were destined to lead to the modern statements 
of the ergodic theorems, with almost certain convergence in 
Birkhoff's theorem (1931) or with convergence in quadratic mean in 
the case of von Neumann and H o p f s theorems (1932). The solu-
tion of the ergodic problem was thus found to be reduced to 
proving that the constant energy hypersurfaces Σ are, in the case 
of macroscopic physical systems, metrically transitive. In fact, 
there is no criterion which permits us to establish with certainty the 
property of metric transitivity, with the result that this property still 
appears as an assumption concerning the nature of the system. It 
must be emphasised, however, that Birkhoff's theorem opens a new 
field of research and that it is at the origin of numerous recent 
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publications dealing with the study of the metric transitivity of hyper-
surfaces amongst which we mention in particular the important 
work of Oxtoby and Ulam (1941), who established the metric 
transitivity of a very general class of surfaces, polyhedrons of 
three and more dimensions, and show in this way that a topological 
objection to metric transitivity of systems cannot be raised; such 
surfaces, however, are very far removed from those encountered in 
physical systems, so that the ergodic problem still remains without 
a definitive solution. Before studying some aspects of the problem 
of the likelihood of the theory of metric transitivity, we shall 
review rapidly the proof of Birkhoff 's theorem. 

2. Birkhoff's theorem 

We shall give here the general principles of the proof; for the 
details we can turn to either Birkhoff 's original paper or Khin-
chin's account (for a more complete mathematical account see 
especially Blanc-Lapierre, Casal and Tortrat, 1959; Riesz, 1945). 
Birkhoff's theorem proves the existence of the limit 

tQ+T 

f*(P0) = lim -L [f{Pt)dt, (1) 
T - o o Τ J 

ίο 

for almost all trajectories of an invariant ensemble Ω of finite 
measure and the independence of this limit of the initial instant t0 

(the point P0 corresponds, obviously, to the position of Pt at t0). 
We start by proving the theorem for the case where the interval Τ 

varies by finite increments of duration τ ; then we put Τ = m and 
we study the limit of the series 

to + ητ 

Fn(P0)^ — Γ f(Pt) dt (2) 
m J 

to 

as η -> oo. 
Suppose that P0 be an exceptional phase, i.e. such that Fn(P0) has 

no limit. In this case, the upper bound F(P0) and the lower bound 

F(P0) are different; therefore, there exists a pair of numbers <x 

and β with a < ß9 such that 

F(P0)<oc, F(P0)>ß. (3) 
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Let D be the ensemble of these exceptional phases: we must 
show that it is of zero measure. We use the property by virtue of 
which, if D is of positive measure, it is possible to find a pair of 
numbers (α, β) which satisfy relation (3) for all phases P0 in a 
sub-ensemble D* of positive measure (for the proof, see especially 
Khinchin, 1949); we show then that the property μ(Β*) > 0 is 
contradictory to the inequality a, < β, which proves that the 
ensemble D is necessarily of zero measure. 

In order to emphasise this contradiction, we consider a series 
of times tk = t0 + kx and the series of corresponding phases 
Pk = Ptk and we put 

f k + l 

Λ(Λ>) = γ | / ( Λ ) Λ · (4) 

tk 

In addition, by changing the time origin, we have 

Λ(Λ>)=/ο(Λ). (5) 

With these definitions the time-average Fn(P0) can be expressed as 

W o ) = — "ΣΛ(Λ>). (6) 
n k=o 

We consider now a sub-ensemble D
(

0

n)
 of D* which we shall 

define more exactly below. During motion, the phases PQ of D
(

0

n)
 are 

transformed into Pk (after a time Ατ), and the ensemble D^
n)
 is 

transformed into D[
n
\ By integrating (6) over the set we 

have 

η F F„(/>o) Φ = Σ Ί Λ (Ρ 0) Φ = Σ Ί /ο(/>) Φ - (7) 
J *=ο J *=ο J 

D0<"> Ο θ
( η) 

We now choose such that for every phase P0 of D
{

Q

n)
 we 

have 

W o ) > ß; (8) 

in this case, we derive from (7) the inequality 

" Σ ί ΜΡ)Φ> ηβμ(Ο^). (9) 
fc=0 J 

Dkl") 

Let us suppose, further, that the ensembles D[
n)
 are disjoint and 
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denote by D
in) their sum 

D
(n)
 = £ D\ ;<Π) 

k ' (10) 

Since, according to Liouville's theorem, i«(D[" )) = μφ^), ine-
quality (9) can be rewritten as 

j f0(P) αμ> βμ (D*'). ( Π ) 

However, one can show that from such sums D
in) disjoint 

sets can be chosen for each value of η in such a way that they 
exhaust Z)*. By summing inequalities such as (11) over n, we obtain 

\/0(Ρ)αμ>βμφ*), (12) 

as η - > + 0 0 . 

Adopting the same argument with another definition of the 
ensembles D

{

Q

n) ,we obtain 

\/0{Ρ)άμ <χμ (Ζ)*). (13) 

It can be seen that the two inequalities (12) and (13) contradict 
the inequality oc < β, if μ(Ό*) > 0, so that the ensemble D of the 
exceptional phases is of zero measure. 

In order to complete the proof of Birkhoff 's theorem, we must 
still compare the average for an arbitrary interval of time Τ with 
that taken over the interval m closest to T. We have successively 

lim 
Π-+ 00 

t0+T to+T 

and 
ίο 

to + T 

to 

to + m 

(14) 

-L [f{pt)dt-— ( AP,)dt 
ητ J m J 

0 + 

I 
*0 

1 

nx 

to + T 

f{P,)dt è-\fn(P0)\. 
η 

(15) 
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We can verify easily that 

l i m i | / n ( P 0 ) l = 0 (16) 
«-•oo η 

almost everywhere. It is sufficient to show, using (5) and Liou-
ville's theorem, that the set of phases P0 for which | /„(P 0) | > ηε is of 
zero measure. We deduce then from (14), (15) and (16) the existence 

t 0 + T 

of a limit for the average — I f(Pt) dt, except over a set of zero 

measure. ^ 
To conclude, it remains for us to show that this limit is inde-

pendent of the initial instant t0. We have 

r0 + r ti + τ ti + T 

lim— Γ = l i m 1 f = l i m — f (17) 
Τ J T+h-to J Τ } 

to 

since the difference between the two latter expressions approaches 
zero with (ίχ — t0)IT. Finally, we see immediately that the dif-
ference 

ti + T ti + T ti 

τ \ τ \ T \ 
(18) 

to 

approaches zero with 1/Γ, which completes our proof. It follows 
that the l imi t /* (P 0) depends only on the trajectory considered and 
not on the position of P0 along this t ra jec tory : /*(P 0) is therefore 
an integral of motion. Since, further, every integral of motion is 
equal to its time-average, we can conclude that the set of time-
averages is identical with the set of integrals of motion. 

3. Notes on the metric transitivity of hypersurfaces 

We recall first of all the definition of metric transitivity: if Ω is an 
invariant set of finite measure in .Γ-space, it will be metrically 
transitive (and the group of automorphisms which describes the 
motion will be metrically transitive) if Ω cannot be divided into 
two invariant sub-sets Ωι and Ω2 of non-zero measure. As we have 
already pointed out in Chapter I, the property of metric transitivity 
implies that the limits f*(P) of the time-averages are constant 
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almost everywhere over Ω (unless we could decompose Ω into two 
invariant sub-sets of non-zero measure, since the f*(P) are inte-
grals of motion). 

For applications to statistical mechanics, the invariant set Ω is 
generally the hypersurface Σ (we shall return to this point a little 
further on) and it can then be proved easily that the time-average 
of any summable function f(P) is equal for almost all trajectories of 
Σ to the phase-average of / ( P ) . For this, it is sufficient to use 
equation (1.24'): 

sincef*(P) is constant almost everywhere. Thus, metric transitivity 
is a sufficient condition for ensuring equality of time- and phase-
averages. 

We show now that it is also necessary. In fact, let us suppose 
that the equality in question is satisfied for almost all trajectories 
and that nevertheless the hypersurface Σ can be decomposed into 
two invariant sub-sets Σ1 and Σ2 of non-zero measure; we con-
sider, as a summable function, the characteristic function of the 
sub-ensemble Σλ which takes the value 1 on Σ1 and 0 on Σ2 : its 
time-average is 0 or 1 whilst its phase-average is a number between 
0 and 1 (which is weighted by the relative measure of the two sub-
sets), which is contrary to our hypothesis and which proves that the 
property of metric transitivity is necessary to ensure equality of the 
two types of averages. We point out, in addition, that this argu-
ment shows that metric transitivity is a consequence of the ergodic 
hypothesis, according to which all time-averagesf*(P) are constant 
almost everywhere; in this way we have established the equivalence 
between the property of metric transitivity and the ergodic hypo-
thesis. Metric transitivity (or the ergodic hypothesis) is thus the 
essential and sufficient condition for ensuring the validity of the 
fundamental relation (19); this relation allows us to calculate the 
time-averages f*(P) without having to determine the mechanical 
trajectory of the system. 

Σ Σ 

which can be written as 

Σ 
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Having done this, it now remains to examine two important 
questions: 

(a) Why do we generally limit ourselves by considering only the 
energy as an integral of motion? 

(b) Is the ergodic theory, in its modern form, probable, i.e. is it 
not incompatible with the known properties of Hamiltonian 
systems? We shall see that the answer to these two questions 
depends essentially on the study of the physical meaning of the 
integrals of motion and on an extension of the concept of metric 
transitivity. 

(a) Controllable integrals. Our Hamiltonian system with Ν 
degrees of freedom has 2N — 1 independent integrals of motion 
which allow us to determine the trajectory originating from a given 
point P0; there remains a first-order differential equation for 
determining the motion of the point Pt along this trajectory. Since 
we can equate the set of time-averages and the set of integrals of 
motion (as we have shown in the previous section), it can be seen 
that it is necessary to assume that a large number of integrals of 
motion have no physical significance; otherwise, the macroscopic 
state of our system would depend, in fact, on 2N — 1 independent 
macroscopic quantities (corresponding to different time-averages), 
which is obviously contrary to experience. Therefore, we must 
define precisely what conditions must be fulfilled in order that an 
integral of motion should have a physical meaning. 

This condition can be obtained by requiring that a phase 
function representing a physical quantity assumes the same well-
defined value for all phases corresponding to the same physical 
state of the system. We note, in fact, that the same physical state 
is very often represented by more than one point of phase space. 
This is the case, for example, with angular variables, where we 
must consider as identical, states for which the values of the variable 
differ by an integral multiple of 2π. Another important example in 
physics is that of the difference between specific and generic phases 
for systems composed of identical particles (we mentioned this 
difference in Chapter I when defining grand-canonical ensembles): 
if the physical state of a system is described by the generic phase, all 
the specific phases which constitute this generic phase represent one 
and the same state of the system. Thus, a set of points of phase 
space often corresponds to the same physical state; however, the 
phase functions which describe the physical quantities must take the 
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same value for all phases which represent the same physical state. 
The phase functions which possess this property are called uni-
form (or normal according to Khinchin): they are periodic with 
respect to the angular variables and, if the state of the system is 
defined by its generic phase, they are symmetrical with respect to the 
groups of variables describing the various particles. All the physical 
quantities of a system must be represented, therefore, by uniform 
phase functions. Also, we generally impose the condition that the 
phase function must be continuous, which allows us to allocate to 
it neighbouring values for neighbouring microscopic states. 

In the majority of cases, these properties are only fulfilled by 
a limited number, k9 of integrals of motion Il9...9Ik9 which 
represent independent physical quantities whose value can be 
determined by macroscopic observation: these are the controllable 
integrals of the system. To them there corresponds an invariant 
set Jtk with IN — k dimensions, on which we can define an in-
variant measure and develop the ergodic theory. The ergodic hypo-
thesis can then be stated as : all the limits f*(P) are constant almost 
everywhere on the set Jtk9 they are therefore functions of the k 
controllable integrals Ik which determine the macroscopic state of 
the system. It is clear that the other (non-uniform) integrals of 
motion can then take any values since they are devoid of physical 
meaning: these are Khinchin's free integrals (Khinchin, 1949, 
pp . 50-51). 

If the energy is the only uniform integral of motion, the sub-set 
Jtk is the same as the hypersurface Σ; this is what we generally 
assume in statistical mechanics. We can show occasionally that 
this is so because of the mechanical properties of the system: this 
would be the case, for example, with an isolated system for which 
there would be no conservation of momentum and angular 
momentum because of wall effects; otherwise, we must accept it as 
an assumption which is justified by its consequences. For such an 
ergodic system the t ime-averages /* (P) are constant almost every-
where on Σ and are, therefore, functions of the energy E. 

It is important now to recall that—as we have seen in Chap-
ter I (Section III)—the phase functions having a physical signi-
ficance usually have a structure such that they are constant over 
the larger part of Σ, except over a set of very small measure. It 
follows that for the majority of trajectories over Σ, the time-
averages of these functions are close to one another and almost 
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equal to their phase average over Σ. Consequently, it is not necessary 
to fix the value of these integrals and only those integrals whose 
value, differing considerably from the phase average, would have 
been determined by macroscopic observation will be retained as 
controllable integrals. All other integrals of motion can be con-
sidered as free integrals: these include non-uniform integrals 
devoid of physical meaning and uniform (or normal) integrals 
whose value has not been fixed by macroscopic observation. These 
remarks allow us further to reduce the number of controllable 
integrals and in this way to justify in the majority of cases the 
special role of the energy integral of motion (which amounts to 
saying that the macroscopic state of a system which occupies a 
volume V is determined by a single macroscopic parameter which 
depends on the total energy of the system). It remains now for us 
to use the foregoing considerations in order to answer question (b) 
relating to the likelihood of the ergodic hypothesis. 

(b) Metric transitivity in the physical sense. We shall see first of 
all, by elementary arguments, that the concept of metric transitivity 
must be modified in order to make it likely. We consider, in fact, 
an integral of motion of a Hamiltonian system which is not the 
energy and which does not contain the time explicitly. It cannot be 
constant over the entire hypersurface Σ, otherwise its value would 
be determined completely by a knowledge of the energy, which is 
contrary to our hypothesis (and, since the function is continuous, it 
cannot be constant almost everywhere). It is then always possible 
to find a value oc such that the relations f(P)^oc and f(P) > oc 
define two sub-sets of non-zero measure (see Khinchin, 1949, 
p. 30) which is contrary to our hypothesis [f(P) is an integral of 
motion and the two sub-sets are invariant]. Thus, we can see that 
if it were not modified considerably, the hypothesis of metric 
transitivity of the hypersurface Σ would encounter an impossibility, 
just like Boltzmann's ergodic hypothesis. 

It is the limitation on the nature of the functions describing the 
physical quantities which will allow us to modify the formulation 
of the metric transitivity hypothesis, by assuming that only uniform 
(or normal) sum functions satisfy the ergodic hypothesis. For this 
purpose, we shall call any subdivision of the constant energy hyper-
surface into two sets of positive measure a normal one,when all the 
equivalent physical phases belong to the same set. A hypersurface 
will be metrically transitive in the physical sense if there does not 
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exist any normal subdivision. With this new definition, the condi-
tion which is necessary and sufficient for the time-average of a 
summable and uniform phase function to be equal to its phase 
average is that the hypersurface Σ be metrically transitive in the 
physical sense. 

Under these conditions, the ergodic problem is reduced to 
showing that constant energy hypersurfaces possess the property of 
metric transitivity in the physical sense. This modification of 
the statement of the problem will not affect our previous argument 
for the uniform integrals Ik: these define, in fact, a normal sub-
division of the hypersurface Σ, since they take the same value for all 
physically equivalent points. This proves simply, as we have seen 
already in the preceding section, that in this case it is necessary 
to use not the hypersurface Σ but the sets Jik. This is not the case 
for non-uniform integrals, since we cannot arbitrarily divide the 
hypersurface into two sets corresponding to the separation of all 
values of / into two parts, since this subdivision would not be nor-
mal. In order to have a normal subdivision, it would be necessary 
that the values taken by f(P) at physically equivalent points belong 
to the same section off(P) values. As we can see from examples, 
this condition may be incompatible with the existence of two 
invariant sub-sets of positive measure. The foregoing argument 
is therefore no longer valid for non-uniform integrals and transi-
tivity in the physical sense then becomes possible. However, since 
the Hamiltonian must satisfy certain conditions which cannot be 
stated in general terms, it follows that metric transitivity in the 
physical sense remains for the present a hypothesis concerning the 
nature of the system. 

Be that as it may, the foregoing remarks show that it is necessary 
to take account of all uniform integrals whose value must be 
fixed (controllable integrals): these define a set JÎk which we can 
then assume to be metrically transitive in the physical sense; this 
set reduces to the hypersurface Σ if the only uniform integral is the 
energy of the system. Nevertheless, in practice, all the uniform 
integrals different from the energy are constant over a very large 
part of Σ: the regions over which they differ significantly from 
this constant value are of very small measure and can be neglected, 
and the phase averages can be taken over the whole hypersurface 
Σ, which is the same as assuming that the only controllable integral 
is the energy of the system. 
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In the language of probability calculus we can say also that the 
localisation of a representative point of the system on the set Σ 
(oxJtk) is a random event, so that there is a very small probability 
of finding this point in an ensemble of very small measure. The in-
troduction of this point of view is also fully justified if we note 
that there is a very large number of possible trajectories with 
IN — k — 1 parameters on the set Jik associated with k control-
lable integrals, which cannot be distinguished macroscopically since 
they give the same value / * ( P ) to a macroscopic observable. If 
an experiment is carried out on the system (for example, the re-
cording of a physical quantitity), one of these trajectories is 
chosen but this choice does not aifect the value of / * ( P ) : this is 
the phenomenon of macroscopic reproducibility. The choice between 
all the possible trajectories on Jik can thus be likened to a test 
in the sense of probability calculus: consequently, it is legitimate 
to consider P(t0) as a random point (with t0 fixed) and P(t) as a 
random vector function of i, the probability on JKk being defined 
by an invariant measure. 

In conclusion, we shall illustrate the foregoing discussions by 
an example. We consider a system with two degrees of freedom 
described by two uncoupled rotations round fixed axes; let and 
φ2 be the corresponding azimuths and suppose for simplicity that 
the two moments of inertia are equal to unity. If pt and p2 are the 
canonically conjugate moments of the variables φι and φ2, the 
Hamiltonian of the system can be written as 

H = Up\+p\) (20) 
2 

and the Hamiltonian equations of motion give us 

* L - , a , * L « 0 , * i « 0 . (21) 
dt dt dt dt 

It can be seen from (21) that the conjugate moments p^ and p2 

are uniform integrals of motion and we shall assign to them the 
values w t and o>2, which give the value 

// = -((»} + o)l) (22) 
2 

to the energy of the system. 
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The set containing the trajectory is thus reduced to the (φ1, φ2) 
plane and the trajectory in this plane is a straight line defined by the 
equations 

φ1 = ω1ί + φ°ΐ9 φ2 = œ2t + φ2. (23) 

This plane is divided by the two sets of lines <ρχ = 2mn and 
φ2 = Inn (m and η integral) into a system of squares which 
contain all phases physically equivalent to one another. There is 
an a priori difficulty for using the ergodic theory, since the set on 
the (<ρι,φ2) plane is infinite: in fact, we can restrict our con-
siderations to a single square of the system. For this purpose we 
define the trajectory, which in this square is equivalent to the 
trajectory (23), by transferring into the square considered all the 
segments of the trajectory contained in the other squares; the 
equivalent trajectory obtained in this way is an ensemble of parallel 
segments; this ensemble is finite or infinite according as the ratio 
ω1/ω2 is rational or irrational. 

We note now that we have a fourth time-independent integral 
given by 

Af = <p2Pi - <PiPi - (24) 

It is easy to verify that it is not uniform; we have, in fact, for the 
initial phases φ\ and φ°2> 

MQ = φ
0

2ωχ - φ°ίω2, (25) 

and for the phase <p\ + 2/ηπ, φ2 + 2ηπ (which is physically 
equivalent to φ°19 <p% 

M — M0 + 2π{ηωι — ma>2), (26) 

which proves the non-uniformity of M. 
Finally, starting from the preceding remarks, we can show 

(Khinchin, 1949, pp. 60-61) that each square is metrically transitive 
in the physical sense, provided that the ratio ω1/α>2 is irrational. 
Since all squares are physically equivalent, this result is valid for 
the whole (φί9 φ2) plane: thus, we have an example of an infinite 
set, metrically transitive in the physical sense, and defined by 
assigning specified values to the uniform integrals; in addition, we 
note that general examples can be constructed of the same type 
as the example above (Hopf, 1937). 
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with 

If we consider a set A on Σχ, it will be transformed by the 
motion Tt into another set on Σχ, because of the invariance of 
Σχ; if, however, we were to define its measure by μ(Α) = J αΣ, this 

A 

f For the proof, see Khinchin, 1949, p. 34. 
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4. Structure functions in classical statistical mechanics 

(a) Definitions. We have just seen the role played in classical 
mechanics by constant energy hypersurfaces corresponding to the 
integral of motion H = E(qly qN;pl9 ...,pN): we shall now 
briefly discuss the properties of these hypersurfaces and on their 
use in the actual calculation of phase averages. 

First of all, it is generally assumed that physical systems con-
sidered in the applications are such that the region of /"-space 
defined by the inequality Ε < χ (with χ > 0) is a simply-connected 
domain, bounded by a closed hypersurface Σχ (corresponding to 
Η = x) which is sufficiently regular to permit the use of analytical 
methods. Consequently, the surface ΣΧι9 which corresponds to 
x1 < x2, is located entirely inside ΣΧ2 and the ensemble of hyper-
surfaces thus appears as a family of surfaces all contained one 
within the other. 

Bearing this in mind, the first step is to define an invariant 
measure on the hypersurfaces Σ. In fact, if we have defined the 
probability for P0 e A0 at t0, where A0 is some set on Σ, this is 
naturally equal to the probability of finding TtP0 eAt, where At 

follows from A0 by the transformation Tt; it follows that the 
probability with respect to Σ must be an invariant measure under 
Tt. In order to construct such a measure we depend on the follow-
ing theorem:! 

Let be the region of / - space corresponding to the inequality 
Ε < x, and let i

r
(x) be its volume; it is a monotonie function which 

increases from 0 to infinity with x. If f(P) is a summable function 
over "TX9 we have the relation 
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would not be generally conserved. In this case we consider at each 
point of A the normal to Σχ and its intersection with Σχ+Αχ; the 
ensemble of these segments constitutes an invariant region . y T in 
.T-space whose volume is also invariant and defined by 

M^O= / ψ(.Ρ)ΊΓ, (29) 
χ^Ε<χ+Δχ 

where φ(Ρ) is the characteristic function of the set «ΛΛ The ratio 
of this volume to Ax and the limit of this ratio are likewise in-
variant; according to the previous theorem, this limit can be 
written as 

g r a d £ 
ΣΧ A 

Thus, dT/grad Ε is an invariant definition of the measure on Σχ. 
By denoting the measure of the whole hypersurface Σχ by Ω(χ) 
we have according to (27) 

J g r a d £ 

and the phase average of a summable function on Σχ takes the form 

^
 =

 ~Ω(χ) \
Λ Ρ )

 grad Ε
 =

 ~Ω(χ) \ ^ ^ ^ 

The function Ω(χ) is a monotonie function which increases 
from 0 to infinity with x. Since it completely determines the funda-
mental properties of a mechanical system, it is called the struc-
ture function of the system being considered. We note that if the 
value of a phase function is completely defined by the energy of the 
system at the corresponding point of P-space, the integral of 
this function over the region Δ"Γ bounded by the two hyper-
surfaces ΣΧί and ΣΧ2 can be written simply as : 

j f(P)dr= j f(x)Q(x)dx. (33) 
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(35) 

(b) Systems with weakly coupled components. The law for combin-
ing structure functions. We shall assume now that the energy Ε of 
our system can be represented by the sum of two terms Et and E2, 
where Ex depends on one set of dynamic coordinates and E2 on 
the other coordinates; in this case, we can say that the system is 
divided into two components which are energetically uncoupled. 
We note in passing that this definition, which is useful from the 
practical point of view, leads to a paradoxical situation from the 
point of view of principles, since these require that there should 
be a continuous exchange of energy between the various com-
ponents of a given system (for example, between the constituent 
particles): in particular, a system which can be split into two 
parts, in the sense of the foregoing definition, cannot be ergodic 
since the energy of each component remains constant during 
motion. This paradox can be avoided by assuming that the com-
ponents of the system are only approximately isolated and, con-
sequently, weakly coupled but with an energy of interaction which 
is negligible compared with Εγ and E2, except on a set of very 
small measure. (For the mathematical implications of the defini-
tion of systems with weakly coupled components, see especially 
Blanc-Lapierre, Casal and Tortrat, 1959.) On the one hand, this 
interaction ensures the ergodicity of the system and, on the other 
hand, it is sufficiently small that its contribution can be neglected 
in calculating phase averages. 

Having made these reservations, let Ψ~(χ) and Ω(χ) be the 
functions defined previously for the total system and let ^ i ( x ) , 

a n
d Ω2(χ) be the corresponding functions for the 

two components considered. First of all, we have 

r(x) = J dr= j dTx j dr2 = j ir2(x - E^dT,, 
rx or,), (rx_Ei)2 (rx), 

(34) 

where (τΓχ)ι denotes the set of points of Γχ for which E1 < χ and 
where ( ^ _ £ ι ) 2 is defined in the same way. Since the phase func-
tion 2(x — Et) depends only on the energy Ex of the fiist com-
ponent, we have, according to (33), 

X GO 

nx) = / ^2(x - Ε1)Ω1(Ει)άΕ1 = j r2[x - y)Q1(y)dy, 
b ο 
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since V2(x — Ex) = 0 for Et > x. Differentiating with respect to 
x, we have finally 

00 
Ω(χ) = jül(y)Q2(x-y)dy; (36) 

This is the law for combining structure functions. It can imme-
diately be extended to the case of a system consisting of Ν com-
ponents; in this case we have 

where the integration is extended over the entire (N — l)-di-
mensional space. These formulae are important for calculating 
average values for a system of weakly coupled components; we 
shall conclude this brief review by pointing out the most important 
consequences of the foregoing formulae. 

(c) Distribution law for one component. If we are dealing with a 
two-component system and if A± is some set in the phase-space 
of component 1, the probability that the point Px (representing the 
state of component 1) belongs to Al is given by: 

Prob ( Λ G A,) = J - f Ω2(α - Ε,) άΓγ, (38) 
Ω(α) J 

At 

where Ω2 is the structure function of component 2 and where a is 
the total energy of the system. The distribution law for component 
1 in Γ1 is thus given by 

Ω(α) 

and the average value of a function / ( l ) , depending only on the 
coordinates of component 1, can be written as 

Ω(α) j J 
/ ( I ) = — J 7 (1)Ω 2(α - E^dT,. (40) 

Γι 
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In particular, for the average energy Εί, we have 

χΩ1(χ)Ω2(α — χ) dx, 
Ε, = _L J ΕγΩ2{α - E{) άΓγ =

 1 

Ω(α) J Ω(α) 

Γι 0 

(41) 
which shows that the energy distribution law for component 1 
is given by the density Ω1(χ)Ω2(α — χ)\Ω(ά). If formula (39) is 
applied to the case of a monatomic gas composed of Ν identical 
atoms enclosed in a volume V and if one chooses one atom as a 
component, we can find Boltzmann's law in the limit as Ν -> oo ; in 
fact, we have in this case 

(2nm)
3NI2

^ 

ß«N,W = V——
 2

- x
3
"'

2
-

1
 (42) 

r { f + > 
and the distribution law in the 3-dimensional physical space of an 
atom with energy JC is then given by Ω{Ν_λ){α — χ)ΙΩ^Ν)(ά)9 where a 
is the total energy of the gas . j Putting a = \ NkT and using 
Stirling's asymptotic formula for the factorials, then going to 
the limit as Ν -» oo, we have 

ß (*- i ) ( t f -x) _ I 1 ^ _ x \
3 N /2 

Ω(Ν)(α) V {InmkTf
12
 \ %NkT) 

-5/2 / N _ J X 3 / 2 { ! 

Ν J V (InmkTf
12 

e~
x/kI
 (43) 

This is Boltzmann's formula; the energy distribution is obtained 
by multiplying (43) by Ωχ(χ) = 2nV(2m)

3/2
x

1/2
. These considera-

tions show that the Maxwell-Boltzmann distribution is linked, in 
fact, with the asymptotic geometrical properties of the hypersurfaces 
of Η-dimensional space. These properties, and especially those of the 
unit hypersphere (cf. Appendix II), form the basis of the probability 

f We use the notation Ω(Ν) here as a reminder that the system is composed 
of Ν particles; it must not be confused with the notation Ωΐ9Ω2,which 
refers to the components of the system. 
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ergodic theory and of the proof of the / /- theorem (cf. Chapter I, 
section I I I ; Chapter IV, section IV; and Chapter V, section III). 

(d) Application of the central limit theorem. With a view to 
applying the previous results to the calculation of the average 
values of sum functions and to deriving the canonical distribution, 
it is convenient to use the formal analogy between (37) and the 
law of compounding of probabilities and to try to use the central 
limit theorem of the calculus of probabilities. However, the 
measures Ω^χ) cannot be identified directly with probability 
distributions, since these measures—whilst they are finite—are not 
generally bounded and increase like a positive power of the energy 
[see, for example, (42)] ; we are thus led to associating with Ω^χ) the 
conjugate distributions u$

a)
(x), defined by 

^ W ^ T T T T ^ Û ' W ( * > 0 ) , (44) 

where the generating function Φ/(α) satisfies the relation : 

φ^α) = je'^Qtiddx; (45) 

this is the Laplace transform of the structure function ß f(x ) . f 
Thus, the normalisation of the distributions (44), which satisfy 
a law of compounding similar to (37), is assured. In this case we 
can apply the central limit theorem of the calculus of probabi-
lities and from it deduce numerous applications such as the dis-
tribution law for a component of a system, the calculation of the 
average value and of the dispersion of the sum functions (results 
that we have used in Chapter I, Section III) and the derivation of 
the canonical distribution, as we have seen in Chapter IV (Sec-
tion V); in particular, we obtain directly the value of the average 
occupation numbers nt. 

In conclusion, we mention certain results (For the proofs, see 
Khinchin, 1949; Blanc-Lapierre, Tortrat and Casal, 1959.) For a 
system containing Ν components, the central limit theorem leads 

t It can also be identified with the partition function of statistical mechanics, 
starting from which all the thermodynamic properties of a system can be 
derived. 
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to the following asymptotic expression (as Ν -+ oo): 

U<"\x) ~ — i — e-<
x
-

A)2/2B
, Ω(Ν)(χ) = Φ(α) e«

x
U

M
(x), (46) 

(2nBy 

for the conjugate distribution U
{ot)

(x) associated with the total 
structure function Ω{Ν)(χ) with 

A = £ ak9 Β = Σ Φ(*) = Π φ ^ ) ' 
k = l k = l fc=l 

ak and are the mathematical expectation and the dispersion of 
each of the components of the system, and a value oc = θ must 
be chosen for the parameter oc, such that 

dln0(a)\ Jt_(d*in0(ay] ( 4 ?) 

doc /Λ=0 \
 d

*
2 

In particular, we find for the law of distribution for a component, 
according to (39) and (46) 

ΩΛα - ΕΛ e~
0Ei 

tfj^l ZlL ~ 1 (48) 
Ω(ά) Φ,(β) 

and for the average value of a sum function ^f(P) = Σ/'( '̂)] 

i=l i=lTi ΦΑ") 

We refer the reader to Chapter VIII of Khinchin's book (1949) 
for other applications and, especially, for the calculation of the 
dispersion of sum functions. Finally, we point out that the fore-
going methods can be applied similarly to quantum statistical 
mechanics, by means of certain adaptations which are necessary 
for taking account of the indistinguishability of particles and of the 
exclusion principle [see, for example, Chapter IV (Section V) and 
also Chapter V of Blanc-Lapierre, Tortrat and Casal, 1959]. 
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APPENDIX II 

Probability Laws in Real 
η-Dimensional Euclidean Space 

We shall study in this Appendix the definition of the laws of 
probability which are uniform on the unit hyperspheres of real 
Euclidean space with η and 2n dimensions, and then we shall 

calculate the average values rf
m
 and rfrf* used in Chapter IV. Next, 

we shall deal with problems related to the subdivision of Hilbert 
space into cells and to the calculation of the average values 

<ic£?R>, < | C < ? |
2
| C # |

2
> , . . . 

where the symbol <> denotes the averages taken over the collection of 
all possible subdivisions ; we shall deduce from it the laws of proba-
bility for the quantities μ\ρ and μ\? encountered in Chapter III. 

1. The unit hypersphere in η-dimensional space 

This hypersphere is defined by the equation 

* ϊ + * 2 + · · · + x
2
 = 1 0 ) 

and we shall try to define a uniform probability density on this 
hypersphere. For this purpose, we take parametric coordinates 
over the hypersphere (1) by putting 

Χχ = COS0!, 

x2 = sin 0 t cos θ2, 

x3 = sin 0 t sin 0 2 cos 0 3 , ^ 
» 

xt = s inö j ... s inö f . ! cos θ,, 

x„ = sin θ, ... s i n ö , , . ^ 
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Λ ( β ι , β 2 , . . . , β . _ 1 ) 
= s in""

1
 eism"--

Î
e2 ... sinl 

(3) 

The surface element on the hypersphere (1) can then be written 
as 

da„ = — d x 2 ... dxn_l — s i n " "
2
 0t sin"""

3
 θ2 ... s in0 r t_ 2 

dd1 dd2 ... d6n_l. (4) 

In order to cover the whole hypersphere, the parameters 
0 l 5 0 2 , . . . ,0 n_2 vary from 0 to π and 0 n_ t from 0 to 2π; if we 
denote the total area of (1) by σ Λ, we have 

π π π 2π 

σ„ = jsin-
2
eidei J"s in"-

3
0 2i /0 2. . . j sin 0„_ 2 </0„_2 j αθ„_1 

n-2 Ι " 

= 2π f ] I ("si sin* 0 </0 (5) 

We know that the integrals Jk = } sin
 k
0 </0 take different 

0 

values according as k is even or odd. We have (see, for example, 
Borel, 1914) 

^ = π 1.3.5 ...(2p- 1) f of k n 2 pt 

2.4.6 ...2p 

2.4 .6 . . . 2p 

1.3.5 ...(2/> + 1) 

Thus, we find for the area a. 

for k = 2p + 1. 

(6) 

(2πγ 

2.4.6... (η - 2) 
η-I 

2(2π) 2 

1.3.5 ... (η - 2) 

if « = 2ρ, 

(7) 

.if η = 2ρ + 1, 
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and we take for the uniform probability density over the hyper-
sphere (1) the following expression 

dPn = ^ = - I s i n
W

-
2
E i s i n

n
-

3
0 2 ... s i n 0 „ _ 2 rf0x ... (8) 

We can easily use it to derive the probability that xt be contained 
between xt and x1 + dx1; it is sufficient to calculate the pro-
bability Ρ{β^)άθ1 such that 0! be contained between dt and 
0! + ddl. According to (8) it becomes 

1
 n 

Ρ{θ1)άθ1=-ύη
η
-

2
θ1άβ1 f s i n

n
-

3
0 2 . 

an J 

η 2π 

j s in0, ,_ 2r f0„_ 2 j d6n_i = s i n " "
2
^ * ! . (9) 

0 0 Λ - 2 

Since xt = cos©!,*/*! = —sin©! άθχ and s in
2
 0j = 1 — xj , equa-

tion (9) can be rewritten to become 

P(x1)dx1 = — ( 1 - xft^dxt. (10) 

An interesting application of the foregoing results consists in 
showing that the law of probability for the component u of the 
velocity of a molecule in a gas tends to the Maxwell-Boltzmann 
distribution (see Borel, 1925, pp . 46 If.). It is sufficient to consider 
a monatomic gas consisting of Ν atoms of mass m, whose inter-
actions can be neglected; if we denote by ut the velocity components 
of the molecules, the conservation of the total kinetic energy of the 
gas can be written as 

$ηιΣ u
2
 = E, with η = 3N, (11) 

i= 1 

which defines a hypersphere of radius (lE/m)
112
 (in our problem 

ηθ 
this is the constant energy hypersurface). If we put Ε = y (where 

0/2 = kT/2 is the average kinetic energy of a gas molecule), we 
have, by replacing x\ in (10) by ηηήΐηθ, 

η / χ j
 1

 / I mu\\
2
 I' mu\\

 2 m
 j 

* , - _ ( l - -± - _ L ) ^ - „ „ , . (,2) 
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Since η is very large we take the limit of (12) as η -+ o o ; the 
asymptotic form of J „ _ 2 is 

and we have finally 

P ( W l) r f w i = J!Le--2rdul. (13) 
V 2πθ 

This is the Maxwell-Boltzmann law for a velocity component of a 
molecule; the calculation that we have just carried out is, in fact, 
a special case of the general method sketched in Appendix I (§ 4) 
and shows that the law (13) depends, as we have already mentioned, 
on the asymptotic geometrical properties of the unit hypersphere in 
Λ-dimensional space. 

2 . The unit hypersphere in In-dimensional space 

Obviously, the results of the preceding section are applicable to 
this case, since they are valid whatever be the number of dimen-
sions of the space. However, it will be more convenient for us to 
write the equation for the hypersphere considered in the form 

*? + y\ + xt + y\ + - + x
2

n + y
2

n = ι = Σ *ί Οί = *? + yh 
i= 1 

(14) 

as we have in mind to calculate the average values of expressions 
such as rf and rfrj encountered in Chapter IV. We shall carry out 
the change of variables 

χ ^rtcos(xiy yt = rt sin <xi9 (i = 1, 2, n), (15) 
with n _ l 

rl = 1 - Σ rh 
i = l 

its advantage is to introduce explicitly the angles ai9 which are 
the arguments of the complex coefficients xt + iyi = rt e

ioti
 of the 

expansion of the wave function in terms of eigenfunctions. Since the 
surface element on the hypersphere (14) can be written as 

da2n = ^dyx...dxn_vdyn_xdxn ^ 
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Since the variables rt here are always positive, we can vary the 

341 

we must calculate the functional determinant 

DjXiyi, · · · , * „ - ! Λ - 1 , * ι » ) . 

we obtain easily 

*
X

;
y it

 ~ ' * · > - - r i . . ι Γ η s inä„ , (17) 

whence, for the surface element da2n, 

D(x1yi, ..., ΛΓλ_ !.yw_ I , xn) 1 , , τ » 
ί / σ 2η = ί /Γχ . . . drn_1 d(Kl . . . ώ%„ 

D(rla1 ... r , , . ! ^ . ! , ^ ) j n 

i = l i= 1 

In order to calculate the area σ2η of the hypersphere (14), we must 
integrate over all possible values of the α,· and r, ; the angular vari-
ables <Xi are independent and vary from 0 to 2π, whilst the r, 
traverse the region defined by the inequality 

r\ + ... + r
2
_, ^ 1, with r

2

n = 1 - ( r 2 4 - ... + r
2

n_x). 

It is therefore completely in order to effect once again the change 
of variables (2) by replacing the xt by the rt. According to the 
results of the previous section, we have 

D\Pl ... ö n _ J 

= (-\)
η
-

ι
ύη

η
-

ι
θι ύη

η
-

2
θ2 ...ύηθη_1άθ1 ...αθη_ΐ9 

(19) 
whence 

Λ — 1 

y[ ridrt = s i n 2 " " ^ ! cos θ1 ύη
2η
~

5
θ2 cos θ2 ... s in 3 0„_ 2 cos θη_2 

i = 1 

χ sin θ„_! cos ΘΛ_χ άθχ αθ2 ... <1θη_2 αθη_χ. (20) 
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ί 
x sin ΘΛ_! cos θη_ι 

ο 
2π" 

(η - 1)! 

( 2 # Ι - 2 ) ( 2 Λ - 4 ) . . . 4 . 2 

(21) 

obviously, the first formula (7) is found again by putting η = p. 
The uniform probability density over the hypersphere (14) is, there-
fore, given by 

dP2n = = ( W ~ 1 ) ! "Π η drt Π dec,; (22) 
σ2η 2π

η
 i = l i = l 

if we are interested solely in the distribution dPn(... rt...) of the 
r,, we must integrate over all the oc9 whence we obtain 

dPn(... r, . . .) = n dr, = T-\n - 1)! \ \ r, drt. (23) 
cr2n i=i » = i 

In particular, we have for the probability law Ρ ( θ χ ) άθχ : 

s i n
2
" - ^ cos 6 ^ 

i>(0i) Λ λ = — 

j s i n
2
" " ^ ! cosöi i/Ö! 

ο 

= 2(w - 1) s i n
2
" " ^ cos Θ, dOl9 (24) 

whence we derive the marginal probability law Ρ (ΑΊ) drx : 

P(ri) dr, = 2(II - 1) r x( l - r
2
)""

 2
 </rl5 (25) 

which can be rewritten as 

P(u) du = (n- 1) (1 - u)
n
~

2
 du (26) 

by putting u = r
2
. 

It is now easy to calculate the average values rf*, rf and /fr/" of 
Chapter IV, starting from (23) and (20). First of all, by means of 
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parameters θ from 0 to π/2, and for the area a2n we have 

π/2 π/2 

σ2η = (2π)
Λ
 j s in

2
""

3
 θ1 cos θ, αθ, j s in

2
""

5
 θ2 cos θ2 άβ2 ... χ 

ο ο 
π/2 

(2π)
η 
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°2n J 
π/2 π/2 

= J sm
2n+1

et cosÖ! dd1 j s i n
2
" "

1
 0 2 cos 0 2 dd2 . . . χ 

0 0 

π/2 π/2 

χ j s i n ^ - ' ^ ^ ^ i c o s ^ . ! ^ . ! j s i n ^ - ^ ^ c o s
5

^ ^ χ 
0 0 

π/2 π/2 

x J s i n
2 (n 0 3

 0 / +i cos 0 ί + 1 rf0i+1 . . . J s i n 0 n_ i cos©,, .! dOn_1 

ο ο 
(28) 

and 

-m l Γ 
rfrf = rfrf da2 

<*in J 
π/2 π/2 

= j s i n
2 B + 1

0 ! cos θ, άθ,... j s i n
2 t

" - - '>
+ 5
 0,_ t cos 0,_ t x 

0
 0 

π/2 Λ /
2 

x j s i n ^ - ^ ^ c o s
3

© ^ j s i n ^ - ^ - ^ j + i C o s e j + i d B j + i . . . 

ο ο 
π/2 «I

2 

x J s i n
2 0 ,

-
< ) + 3

e l . 1 c o s e l . 1 d B l _ 1 J s i n
2 0

-
0
"

1
 0,· co s

3
 0, t/0, χ 

0 0 

π/2 π/2 

x J s i n
2 ( n

~ ° ~
3
0 < + 1c o s 0 i + 1r f 0 i +1 . . . j s inΘ Λ_! cosβ Λ_ 

0 0 

(29) 
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the preceding results, it can easily be established that 

— m ι /* ι 
rf = — r ,

2
< f o 2 . = — . (27) 

0^2» J η 

Thus, we verify that the probability distribution (22) corresponds 

really to the microcanonical distribution of the energy states in a 

given energy range. We show now how to calculate the expres-

sions rf
1
 and rfrf; we have successively: 

r? da2n 
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π/2 

j s i n
f c +1 

0 cos 0 dQ = 
1 

k + 2 

we can see that it remains for us to evaluate two integrals of the 
π/2 π/2 

form j sin* 0 cos
3
 0 άθ and j sin* 0 cos

5
 0 </0. Integrating by parts, 

we obtain easily 
π/2 

sin* 0 cos
3
 θ </0 

π/2 

j si, 

ο 
and 

— — Γ s in
f t+ 

k + 1 J 

2
0 c o s 0 < / 0 = • 

(A: + 1) (A: + 3) 

π/2 π/2 

Γ sin* θ cos
5
 θ ί/0 = — i — Γ : 

J k + 1 J 
s i n

A +2
 0 cos

3
 0 î/0 

(Â: + 1)(Λ + 3 ) ( * + 5) 

Expressions (28) and (29) can then be calculated completely, 
starting from these integrals, and we obtain 

(2π)" 2
3
 2 

σ2η 2 "
+ l

( « + l ) ! φ + 1 ) 

r
2
r

2
 -7, r, -
" (2π)" 1 

whence 
— m / — m \ 2 

a2m 2
n + 1

( n + l ) ! φ + 1) 

1 (» - 1) 

n{n + 1) «
2
 w

2
(« 4- 1) 

rfrf - ( i f ) ( 0

2
 ) = 

1 1 1 

n(n + 1) n
2 n

2
(n + 1) 

(30) 

(31) 

3. Probability laws for the quantities and 

We have seen in Chapter II that the proof of the ergodic theorems 
of von Neumann and Pauli-Fierz depends ultimately on the fact 
that a non-thermodynamic macroscopic observer would be ex-

3 4 4 

Since we have 
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tremely improbable; in other words, that the probability of a 
subdivision of Hilbert space into macroscopic cells assigning to 

a value which is larger than a certain given quantity would be 
very small. We shall give here the detailed proof of this by following 
the method given by Pauli-Fierz (1937) ; t we shall study in the first 
place the distribution in probability of μ\^ for the case where i =j= j 
and afterwards we shall proceed to study the distribution o f t h e / 4

a )
. 

(a) Probability law for D\f and average values. First of all, we 
must evaluate in a unitary space of S

i<x)
 dimensions the probability 

that D%\ defined by 

D\vï =V£ciï*CÏÏ> (32) 
k= 1 

has its value contained between u and u + du, assuming that all 
possible subdivisions in macroscopic cells are equally probable. We 
deduce from them the average values 

( I Q ^ I
4
) , < | c^l

2
IQ

(
f |

2
>, . . . , 

over all the possible bases Ω["\ that is to say, over all possible 
macroscopic observers. 

Because of the orthonormality relations which they satisfy (see 
Chapter II, § 2), the C

{

kf can be considered as components of 
unit vectors Ct on a complex unitary space with S

i<x)
 dimensions 

and, according to (32), D\p is the scalar product of the projections 
of the vectors Ct and Cf on a sub-space with s

(

v

a)
 dimensions. The 

averages must be taken over all possible subdivisions of the space, 
i.e. over all systems of coordinates C^f satisfying the relation 

S<«) 

ς I C R I
2
 =

1
 · 

i= I 

Since the unitary nature of the space is not involved here, this 
problem can be dealt with also in real2S

( a )
-dimensional space, where 

we shall be concerned with a uniform probability distribution over 
the unit hypersphere. 

We consider now, in this space, a unit vector Ω decomposed 
according to Ω = ρ + σ into two orthogonal components ρ and a 
respectively with Is^ and 2 ( S

( a)
 — j *

e )
) dimensions and we can 

t W e point out that, if the conclusions of this paper are accurate, certain 
intermediate calculations must be viewed with caution. 
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<(?
2
> = ( IQ ' r ' l

2
) = - 4 ; - , ( 3 6 ) 

3 4 6 

find the probability density that the square of the length |ρ |
2
 of 

the component ρ be contained between u and u + du. It is given by 
the area of a 2^

a )
-dimensional portion of the surface on the 2 S

( Ä )
-

dimensional unit sphere; we have thus for this probability 

W{u) du = ^ - ' - ' ( 1 _ M)s<«>-*v<«>-i d 

0 g u g 1 . ( 3 3 ) 

This function assumes a maximum for 

c
(
<*> _ ι m 

by putting 
sl

a)
 - 1 = mv and S

(
*> - 2 = M

( Ä )
. 

We note that, in the case where s
(

v

a)
 = 1, formula ( 2 6 ) of the pre-

ceding section is found again and that ( 3 3 ) represents, similarly, 
the probability that Dj /

0
 is contained between u and u + du, since 

by definition 

k= 1 

represents the square of the length of the projection of the unit 
vector Ci on a sub-space of 2s

{

v

a)
 dimensions. 

Having done this, it is easy to calculate from ( 3 3 ) various 
average values. First of all, multiplying ( 3 3 ) by u

n
 du and inte-

grating from 0 to 1, we have 

< 0 2n s = (s? + n - l)(sï> + n-2)...s™ 
β
 (S

M
 + η - 1 ) (S

M
 + η - 2 ) . . . S

M
 ' 

In the particular case η = sl
x)
 = 1, we have 

1 

and similarly, for = 1 and η = 2 , we have 

<<?
4
> = <|C«*I*> = — 7 - ^ — . ( 3 7 ) 

S
M
(S" + 1 ) 
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5 ( λ )( 5 ( λ ) + 1) S w ( î w + 1) 

and, consequently, 

< |C^nQ (f / | 2> = + (40) 

Similarly, by squaring the relationship I C ^
2
 = 1 [see Chap-

ter II, formula (11.61)], it becomes ' 

s(a\\cttYy + s<«>(s<*> - i) ( i c^ l 2 IQ^i 2) = 1, 

whence 

< | C ^ N C ^ > = ^ l r ^ ( i + y ) . (41) 

In addition, relations (11.62) and (11.63) give successively 

S<"><|Q(f>|2 |Q<i>|2> + S
M

( S
M
 - 1) <\d?\

2
 \Ctf\

2
) = 1, 

or 

<ic*<r>i2 ic#i 2> = wï_ t ( ί + * * *'>· ( 4 2 ) 

then 

S<»>(S<"> - i)<c(

k?'ctfc£fcft*> = - s ^ d C V ICffl2), 

whence 

C f f C f f C # - > = - s M ( s (l ) 2 _ ^ (/ Φ j , k Φ A:'). 

(43) 
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From this we can deduce immediately other average values by 
using especially the orthogonality relations satisfied by the Cj;?. In 
this case, according to (32), we have 

Σ \c™\2) = Σ \ci?\* + Σ \cif\2\cïï\\ (38) 
k= 1 / k= 1 k*kr 

and, putting η = 2 in (35), we have 

< ( ^ > ) 2 > = < ρ * > = | ^ | ^ , (39) 

whence, by using (37), 

5 ^ « > + 1) _ 2 5 « + _ I} < | C I ? ) |2 | Q ( F J ) | 2 >) 
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Finally, symmetry considerations show that we have the relations : 

<C
(

kfC<?> = <C<f*C<?>> = 0 (/ + y , k Φ * ' ) , 

<|Cfc

(?>|2 Q(?;*Q<?>> = 0 (ι Φ j Φ / ) . (430 

Thus we know all the average values that are used in Chapters III 
and IV. In addition, we can deduce the average value of the μ]^ 
over all possible subdivisions of Hilbert space; we find easily 
that 

N(«) ~(«) N(a) _ ι 

<A#> = {Σ - V = — τ-' ( 4 4 ) 

N<*> / (Λ) \ 2. Λ/(«>__ 1 

« M j ^ ' " ^ ) > = ^ ; (44'> 
it can be seen that these average values are of the order of N

(<x)
/S

(a
\ 

therefore inversely proportional to the average number of states per 
cell. We are now able to take up the study of the laws of probability 
for the quantities μ\^ and μ^. 

(b) Probability law for μ\^ with i Φ j . In order to give an estimate 
for this probability law, we shall evaluate the average values of the 
powers of μ^, i.e. of the sums of expressions of the type 

(
s v(

a
) \ 2n 

> ( 4 5) 
where xk and yk are the components in the S^-dimensional complex 
unitary space of two orthogonal unit vectors χ and y. As before, 
we can also deal with this problem in a real orthogonal space of 
2 5 ( a ) dimensions. We denote by r2 the length of the projection of χ 

on the subspace with s*a) dimensions ί r2 = £ x\ \ \ if we take a 

system of coordinates perpendicular to x, we have in such a system 

(Σ = r
2
\\ - r „ a ) V \ (46) 
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and thus 

sl
x
Vf + ! ) . . . (j<g) + 2« - 1) 

5(«)(S(«) + i)...(s<*> + 2« - 1) 

Since (1 - r*)" g 1, we have 

or 
sv(«) \ 2n 

^ sl
x
Xs™ + 1)... + 2« - 1) 

= 5<«)(5<«>+ i)... (s<«>+ 2« - 1) (SM- 1) 5 < Λ ). . . + η - 2) ' 

(48) 

Let us evaluate now the average value of the powers of μ\^\ we 
have 

/ Ν (
Λ
> ο(α) \fl 

whence we derive 

g £ / j > \ | / )( j ) | 2 . f (50) 

since the sum (49) contains only non-negative terms. By taking 
the average values, we have further, 

iV<«> / ο(<%)\,, 

«AiÎ?)») S ^ V ^ -
1
 Σ (A Ĵ <|Ζ>ί;>|

2
->. (51) 

where ζ is a component of a unit vector perpendicular to χ in 
( S

( ä )
 — l)-dimensional space. We calculate the average value of 

(45) at first keeping r v fixed and varying z, then by taking the aver-
age with respect to r v . In this case, by (35), we have 

(z
2n
\ = î (47) 

( 5
( α )

 - 1) S
ia
\S

M
 + 1 ) . . . (S

M
+ η - 2)

 9 
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ΆXkyk) 
We can therefore write 

iV(«) / o ( a ) \ n Ni*) / Ο ( α ) \ Η 

sl"Xsl«> + 1) ... (s™ + 2 / 1 - 1 ) 

S
i a

\ S
M
 + l ) . . . ( S

( a>
 + In - \){S

M
 - l)...(S

M
 + « - 2) ' 

(52) 
or 

< ( M
C Ä )

) " > <
 V

 V <Λ -t- ΖΠ) 

Λ Γ ^ " "
1
 ^ ' , ^ . Ζ . 2η V» 

;,?, («"( , +^) · ( 5 3 ) 
( 5

( α)
 - 1)" (5

( α )
> 

and, by noting that 

V - î - = 1 and Y f — ) < 1 if w > 1, 

we have finally 

Λ / W n - l 

<0θ"> ^ (1 + 2 / 2 )
2
» . (54) 

In order to deduce from this result the probability law for the 
we use the following relation: iff(x) is a monotonically increasing 
function which is nowhere negative, we have 

oo oo oo 

j f(x) W(x) dx=f> jf(x) W(x) dx >/(£) j W(x) dx, 

ο ξ ξ 

whence we derive an upper limit for the probability that χ > ξ ; 
we have 

W(x)dx < 

/ (£) 
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oo 

ί 

However, we calculated in (48) the average values of the quantities 
iDj/^

2
"; in fact, we have in real space with 2 .S

( ä)
 dimensions, 

/2s v(«) \ 2n 
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S
( Ä)

 - 1 (2« + 2) (2/2 + 1 )
2 Π +1

 5
( Ä) 

*
2
7 V

( a) 

r(<*> / 2 \ 2 

V +
 2ΛΙ + ι y 

S
( a )

 - 1 
e

2
, 

we shall choose e
2
 < 1 in order that <e"^* > is finite. 

o
w
 — 1 

Putting 

^ 2 V 
1 /£(«) - 1 

we have 
9 

(e
aV
^>> < 2 + 

and 

P r o b ^ i f > *} = 

/ " w * s ( 2 + i i = ? h [ - . - 7 i y . (56) 

Knowing the probability law for μ^, it is easy to derive the 
probability that the quantity (encountered in Chapter III , § IV . l ) 

j^to, fa JPIJ 
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Let us apply this relation by choosing as the function f(x) = e*^
x
 ; 

we have, using (54), 

,1=0/2! n = o 2n\ 

< 2 + -4", Σ — *
2
Ί — 1 (1 + 2#ι)

2
"· (55) 

i V
( Ä )

n = i 2«! \S™ - 1 / 

We choose α such that the series is convergent; since the ratio 
of two consecutive terms is given by 

<χ
2
Ν<·"> (2n + 3)

2n+2
 <x

2
N™ (Λ t 2

 N 2 , 1 +2 
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is greater than W
M
xj We have 

P r o b { M > W
M
x] 

2 In S' 
1 S

M
 - 1 

N' 
(57) 

which solves the first part of our problem. 

(c) Probability law for the μ^. First of all, we begin by studying 
the probability that 

and we derive from it the probability law for the μ\^ by applying 
the theorem mentioned earlier. We shall put henceforth, in order 
to simplify the writing, s^jS^ = gl"\ and we shall use the prob-
ability law for the given by W(u) du of (33). 

Let us consider now the inequality 

t For this purpose we use the following theorem : / / we have Ν positive random 
variables xx, ...9xN, and if 

Prob {xk>a} = Fk(a), 

the probability that the sum xx + x2 -f . xN is greater than a, is less than 
W(a) = Fi(api) + ··· H- FN(apN), where the pk are positive weights such that 

This is satisfied immediately for Ν = 2 and we prove it by induction for any 
value of N. Similarly, we establish that the probability that 

(58) 

it has two solutions: 

Jffl > yfti? + gl
a)
 when J^f + gï> < 1, 

Σ pk = ι-

W'(a) = F1(ä)+- + FN(a) 

where the pk and F^(a) have the same meaning as before. 
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is less than 
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and 

< g i
e )
 - when a<g[

A)
; 

we must therefore evaluate the two integrals 

j W(u)du and j W{u)du. 

gv<
a
> + y/agv(*) 0 

If we try to compare the integration limits with the value of u0 

which makes (33) maximum, we have, by evaluating \u0 — g*
Ä )
|, 

< _ L 

so that, if a > 1/.S
( ä )

, we can state that the maximum of W{u) 
is located outside the two integration paths ; it follows that the 
integrals are monotonie and that they can be overestimated by 
replacing W(u) by the value it takes at the lower or the upper 
limit. 

We must look, therefore, for a suitable evaluation of W{u) for 
the values considered. We shall begin by finding first of all a bound 
for W(u0). With the notation introduced in (34) and writing the 
Γ

1
· functions out explicitly, we have 

/ M
( Ä )

\ / m \
m v

 /Μ
{Ά)
 - m \

Μ ( α ) _ /
"

ν 

=/w. 

l«o - g , \ = 
2sr - S

m 

SW(S
W
 - 2) 

Since f(m,) = f(M
M
 — mp), it is sufficient to consider the case 

in which 2m„ < M
M
. We shall prove that / (0) = M

M
 + 1 ^f(m,)\ 

this results from the monotonie decrease of f(mv), from mv = 0 
to mv = M

M
/2. In fact, we have 

f(mv) = / mv V - / M<"> - m v \
M I

'
1
" " ' "

1 

f(my + 1 ) \ mv + \ ) \M
W
 - m v - l ) 

and 

In ^
( m v)

 w v( lnwi v - In (w v + 1)) 
/ K + l )

 vV
 ' 

+ ( Μ
( Λ)

 - w v - 1) [In ( Μ
( Λ)

 - w v) - In (M<"> - mv - 1)]. 
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dx χ + 1 jc + 1 

which is always negative; we can thus write 

f(mv + 1) < / ( m v ) , when 2mv ^ M
( Ä )

. 

If 2m,, > M
( a )

, we must interchange mv and M
i<x)

 — mV9 by 
virtue of the symmetry of W(u0), and we find a maximum for 
mv = M

( a )
; in addition, we have 

W(M
{<X)

) = W(0) = M
( a )

 + 1, 

with the result that we have always 

W(u0) < M
( a )

 + 1 = S
w
 - 1. (59) 

We now proceed to evaluate the ratio 

W(u) ( u \
W v

 / 1 - u \
m a )

 ~
mv

 u w v (w)_ Z t / γ γ 1 - uY 

Mo) \ W o / V1 " u
oJ 

, where u0 = 
W(uQ) \u0J \l -u0J Af<*> 

for values of w such that 

x = u - u0 > x0 = KO - "ο). (60) 

< —φ(τή)9 
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If we use the function 

L(x, y) = χ ( In χ - In y) - χ + y, 

we have finally 

In ^ " *
ν )
 = L(m„, m v + 1) - L(M<*> - m v - 1, M

( Ä)
 - mv) 

Amv + 1) 

and it is sufficient, in order that f(m) be decreasing and monotonie, 
to prove the inequality 

L(x, χ + 1) > L(y, y + 1) when 0 < χ < y. 

However, this follows from the sign of the derivative 

dL(x, χ + 1) χ χ 
= 1 — 4- in -

First of all, we show that 

In 
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where φ(τή) is a function to be determined which is independent 
of χ ; we have, 

m(i+±)<±m(i+^\, 
\ «0/ Xo \ " 0 / 

Ι η Λ ^ Λ < Λ . Ι η ( ί - ^ Λ . 
\ I - u0J x0 \ 1 - u0J 

In the case where 2mv < M ( a ), we can then put for cp(mv) 

(61) 

<p(mv) = mv In ( 1 + Λ /
( α)

 -- ™λ 

+ ( Μ ( Λ) - w v ) l n ( 1 -
Μ ( α )( Μ ( α ) - mv) 

Let us study the function φ(/η„), dealing separately with the 
case where mv = 0, since φ and x0 are then zero at the same t ime; 
we shall show that ç?(wr) passes through a maximum for m„ = 1, 
and then decreases monotonically. In fact, by putting 

1 

Af <«> - 1 ' ν/Λ/1*» 

we have for the derivative δφ/δξ 

1 + ξ
2
 δφ ξ 

Mw δξ V m ( * > ! + 1 JMW - ξ 

1 + - In 1 - M l -

(62) 

In order to show that the right-hand side of (62) is positive, we 
put 

1 
1 + 

ζ = (1 < ζ < M<">) ; 
1 -
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e x p [ - ^ /
 M

^ r + l n ( M
U )
 + 1)1; 

L V und - wo) J 
(63) 

WoO - "ο) 

this expression gives the probability that u — u0 = χ > x0 with 
mv > 1 and Κ = 1 — ln 2 ~ 0.3. We shall deduce from it the prob-
ability that j 

Sv 

If u - g
(

v

a)
 > \/(tfgJ

Ä >
), we deduce from it that 

1 
u - no >yfag™ 

according to the evaluation given previously of \u0 — g<
a )
|. 

In order that u — u0 > x0, it is necessary that a satisfies a certain 
condition; according to (60) we obtain 

2 
a > 

- 2 

and we arrive at the same conclusion for the case u < u0. If we 

/ (ö) 1 
put the relation x = V agv — —— in the overestimate (63) it 
becomes 

< exp [ - KjaS^ + Κ + ln S<">]. (64) 

after several transformations, we obtain for this right-hand side 

ζ - — - 2 ln ζ > 0 
ζ 

which is positive, since it vanishes for ζ = 1 and its derivative 

^1 — —j is positive. In addition, we have 

ψ(\) - In 2 + (Μ
( α
> - 1) l n ^ l ~ < In 2 - 1 = -K. 

We derive from the foregoing results an overestimate of the 
probability that u > u0 ; this is, according to what we have just 
seen, certainly less than 
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5
, ( α)

 - 2 
we have 

* ° b { Z ^ - ( ^ ) - ^ , ) 2 > « } 

< e x p f - Κ 1^1 a + Κ + ln 5 ( Λ ) 1 . (65) 
L V N

w J 
Comparing this with (57), it can be seen that the probability for 

finding an observer who observes a deviation of the entropy from 
its canonical value larger than 2a is smaller than 

A exp Γ- b I^L a + 2 In S
m

\ , (66) 

L V jv(a) 

with 

a > , A=[2+ _), b = —— 

S w _ 2 V N™*) e^2 

Thus, we are led to postulate that the average number of states 
S

M
IN

M
 in a phase cell must be very large compared with 2 ln S

(x)
, 

which seems physically probable. 
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There remains the case when mp = 0; in this case, 
ι 

j W(u)du = (1 - a ) * " "
1
 < e-

( S t
'

}
-

i ) a
, where u > uQ. 

η 

The case where α < 1/S
( a)

 does not occur here because u0 ~ l / 5
( a )

; 
expression (64) thus remains valid and gives us an estimate for the 

distribution of — j ^ - (Z)}/
0
 — gi

a)
)

2
. Using the theorem which has 

already served us, we shall evaluate the probability that £ 

χ (D%* — g^)
2
 > a, choosing the value l/N

M
 for the weights/? f c; if 

a > 



APPENDIX III A 

Ehrenfests' Model 

1. The function H(Z, t) and the "H-curve" 

We shall describe here the behaviour of the H(Z, t) function by 
analysing the well-known model of P. and T. Ehrenfest. We note 
first of all that, because of the finite nature of the cof cells, the vari-
ation of H(Z, t) considered as a function of the occupation numbers 
nt is discontinuous; 77(Z, t) is a step function, the time derivative 
of which only takes the three values 0 and ± oo : a step is produced 
each time a particle leaves one of the cells to enter another, thus 
causing two of the nt numbers to change by unity. The variation 
of H(Z,t) is thus properly represented by Fig. 3a (compare 
Chapter V, §111.1) and the Η-curve is obtained by choosing, on 
the i / (Z , / ) function, a discrete set of points corresponding 
to times separated by equal intervals At; At must be small in 
comparison with experimental macroscopic times, but sufficiently 
large to contain a large number of collisions; in this case, we obtain 
curve 3 b. 

H(Z,t) 

Ü1 

Fig. 3 a. 
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The fundamental problem of statistical mechanics is now 
to reveal the irreversible tendency of a system towards an 
equilibrium state and to study whether this macroscopic irre-
versible evolution is compatible with the reversibility of the micro-
scopic mechanical evolution. Since this problem cannot be ap-
proached by a precise study of the H(Z, t) function—it would re-
quire, in fact, total integration of the equations of motion— 
P. and T. Ehrenfest proposed in 1907 a stochastic model which 
shows qualitatively the behaviour of i / (Z , t) and which opens the 
way to a solution of the Loschmidt and Zermelo paradoxes; be-
sides its historical interest, this model (known as the "dog-flea" 
model) is an excellent example of the application of Markovian 
stochastic processes to study the problems of statistical mechanics ; 
we have outlined this application in Chapter V (Section IV). 

2. Ehrenfests' model 

Suppose that 2N balls, numbered from 1 to 2N, are distributed 
in two urns A and B; similarly, let us suppose that a set of 2N 
cards is arranged, also numbered from 1 to IN. A card is drawn 
and the ball whose number corresponds to that of the card, is 
changed from one urn to the other; after replacing the card in the 
pack, another card is drawn and so on and so forth. We denote 
by nA(s) and nB(s) the respective number of balls in urns A and Β 
after s draws; it is convenient to put 

H ( Z ) 

Fig. 3 b. 

or nA = Ν + k, nB = Ν - k. (1) 
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Similarly, we define the absolute value As of the difference nA - nB9 

or : 

4 = \nA(s) - nB(s)\ = 2\k\, (2) 

and, by drawing the curve of As = f(s)9 we obtain a curve similar 
to the step function H(Z9 t); Figure 4 shows the curve correspond-
ing to an actual experiment carried out with 40 balls (Schaefer, 
1955; Kohlrausch and Schrödinger, 1926). It is easily seen that the 
the excess As (which varies at each draw by 2 units) shows a 
marked tendency to decrease so long as it has a high value and 
that it fluctuates subsequently in the vicinity of As = 0. 

10 20 30 40 50 60 70 80 90 100 

Fig. 4. 

3. Transition probabilities and the fundamental equation 

In order to take account of the properties of this "z l s-curve" , 
we begin by studying the transition probabilities of this process. 
If we suppose that after s draws there are nA{s) = m balls in urn A, 
only the two situations 

nA(s + 1) = m + 1 or nA(s + 1) = m — 1 

can obtain after a new draw; in the case where m > N9 the 
first possibility corresponds to an increase of As and the second 
to a decrease of As. According to the nature of the draws, 
we have immediately for the transition probabilités (since 
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m = Ν + k) 

1X 2N - m Ν - k 
Q(m -» m + 1) = = 

2tf 2N 
2 N

~
A s

 if jfe > 0, so that m > N \ (3) 
4tf / 

* 2W 2tf 

2W + zJ 

4N 
if A: > 0, so that m > N ). (4) 

We see from (4), that the probability of a decrease of AS is the 
larger and, conversely, that of an increase of AS is the smaller, the 
larger is AS; this is the way in which the tendency of AS to decrease 
is expressed and we note that this tendency is much stronger when 
AS is larger. For example, if initially «^(0) = 2N, it is clear that the 
first draw will involve a decrease of AS = 2N of 2 units; with the 
second draw, however, we shall have still a probability 1 — l/2iV 
that AS continues to decrease and only a probability 1/2N that As 

reassumes its initial value. If 2N ~ 10
2 3

, it can be seen that the 
probability of AS decreasing remains very large u n t i U s has become 
quite small and that an irreversible decrease of AS can almost cer-
tainly be expected to be observed in this case. 

In addition, we can define more precisely the nature of this 
irreversible evolution by pointing out that P. and T. Ehrenfest's 
model is a special case of Markovian chain t (since the state of 
the system after the (s + l ) th draw depends only on the state after 
the 5 t h draw) and by writing Smoluchowski's equation satisfied 
by the conditional probability P(n\m, s) of finding nA(s) = m, with 
nA(0) = n; with the symbols of Chapter V (Section IV) we have 

P(n\m, s) = Σ W >
 s

 - 1) Qil\m); (5) 

according to (3) and (4), the transition probabilities Q{l\m) can be 
written as 

Q(l\m) = —ô(l - 1,m) +
 2 N

~
l
6 ( 1 + 1,m). (6) 

2N 2N 

t W e point out that there is a connection between Ehrenfest's model and 
the Brownian movement of an elastically-bound particle. 
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It follows that equation (5) takes the following form (where, in 
order to simplify, η is omitted by putting P(m, s) = P(n\m, s)): 

P(m9 S) =
 m + 1

 p(m + l, s _ l ) 
2N 

IN - m + 1 
+ — <P(m ~ 1, J - Ο, (50 

or again, by taking half the difference, k(s), as variable, 

P(k, s) =
 N + k + 1

 P(k + 1 , ^ - 1 ) 
2N 

Ν — k 4- 1 

2N 

The solution of equations (5') or (5"), with P(/w, 0) = ô(n, m) 
as the initial condition, is quite tricky and we shall make only a 
few remarks on this subject. Nevertheless, certain interesting results 
can be derived from (5") by calculating (k(s)} and <A:

2
(^)>; we 

have, to begin with, 

</:(*)> = Ç kP(K s) = ^1 - 1 ^ <k(s - 1)> = ι, ^1 - λ J, 
(7) 

with &(0) = w; thus, it can be seen that the average (k(s)} starts 
from η and approaches zero when s is sufficiently large. Subse-
quently, we find: 

('-|)'+τ['-('-I)} (8) 

so that if s -* oo, <A:
2
Cs)> -> N/2; we shall find this value, starting 

from the stationary distribution for Ehrenfest's model. 

4. Stationary distribution 

An important problem, from the point of view of physical analo-
gies, consists in studying the limit probability l imP(« |w, s); it is 

s-voo 

expected generally that this limit is independent of the initial state η 
and that we could write for it in this case W(m). However, Kac has 
shown that such was not the case in Ehrenfest's model (Kac, 1959), 
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but that this kind of stationary distribution could be obtained pro-
vided that the value of η = n0 of nA(0) is not fixed initially and 
that a distribution W(n0) of all possible initial values is taken (with 
2N 

Σ W(n0) = 1). We note that this amounts to replacing the system of 
ο 
Ehrenfest's two urns by an ensemble of such systems with initial 
values distributed according to W(n0). In introducing all the pos-
sible series ηθ9ηί9 ...9ns.l9m9 which progress from the initial value 
nQ to the final value ro, and taking account of the Markovian nature 
of the process, we have for the probability Prob {nA(s) = m) defined 
for the ensemble of systems 

P r o b f c ^ ) = m) = Σ W(n0) P(n0\m, s) 
no 

= Σ w
("o) ô("ol»i) ··· ß ( « . - i | m ) , (9) 

« 0 » 1 ΐ , · · · « 5_ 1 

where the Ô ( W Î - J | W I ) are the transition probabilities given by (6). 
We then try to find a quantity W(nQ) such that for every value of s 

Prob^Cs) = m) = W(m); 

for this, it is necessary that the equation 
2N 

W{m) = Σ W(n0) Q(n0\m) (10) 
iio = 0 

has a solution with W(m) ^ 0. We can verify easily that the only 
normalised solution of (10) is given by 

»W.^-Clf ; OD 
~™ \2J m\(2N-m)l 

this is the probabihty which would be obtained if we had assumed 
that the situation, with given nA and nB9 had been obtained by 
playing heads or tails; heads involves placing one ball in urn A and 
tails involves placing one ball in B. If 2N is sufficiently large it 
can be replaced, to a good approximation, by a Gaussian law 
which can be written as 

" Ή ^ ' Ή
-

^ ) ·
 ( , R) 

by using the variable k; we can verify easily that we have in this 
case, (ky = 0 and <&2> = JV/2. In view of a comparison between 
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Ehrenfest's Markovian process and the mechanical evolution of 
a system, it is interesting to note that equation (10) is the parallel 
of Liouville's equation and that it allows us to define the stationary 
distribution (11) playing the role of the invariant measure in phase 
space. 

5. Properties of the "As-curve" 

By considering the stationary case, it is easy to define more pre-
cisely certain properties of the zJ s-curve, following a well-known 
argument of P. and T. Ehrenfest. We consider a point of the curve 
corresponding to nA(s) = m; if m is significantly different from its 
average N9 this point will be very probably a maximum for the As-
curve. In order to see this, it is sufficient to note that there are 
only four possibilities for the As curve, represented by the schemes: 

(a) / \ (maximum at m) (γ) \ (descending curve) 
m-1 m-1 ^ „ 

m+1 m+1 

(β) ·.« (ascending curve) (ô) \ / (minimum at m). 

In the stationary case, the respective probabilités of these four 
events have, according to (3), (4) and (11), the following ratios :f 

N+k N-k 
pm:pt:p,.p.= — :l:l: — . (12) 

t Let us calculate, for example, p a ; this is the conditional probability 

Prob {nA(s — 1) = m — 1 , nA(s + 1) = m — 1 | nA(s) = m) 

and it can be written, according to the theorem of compound probabilities, as 

?Yob{nA(s — 1) = m — 1 , nA(s) = m, nA(s + 1) = m — 1} 

Prob {nA(s) = m) 

P r o b { n A( s - \ ) = m — 1} 

Frob{nA(s) = m) 

2N — m + 1 m 

Ci
N
 2N~ 

Qim - \\m)Q{m\m- 1) 

m l m \
2 

~2N
 =

 \ 2N! 
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Thus, it can be seen that the probability of event <x is significantly 
greater than that of the other events, when k is not too small: this 
implies that if we choose in the ensemble of the series n0,ni9 ..., ns, 

the sub-ensemble for which nA(s) = m9 there will be in this sub-
ensemble a majority of "cu rves" , which represents a maximum 
at this point. 

In the same way, it can be shown that 

Prob^C? ~ 1) = n\nA{s) = m) = Prob {nA(s + 1) = n\nA(s) = m), 

that is to say, the model is reversible. Thus, the reversibility and 
the tendency of As to decrease, starting from high values, are re-
conciled: this is the answer to Loschmidt 's paradox. Concerning 
Zermelo's paradox, its solution is found in calculating the time of 
return associated with the model; if we denote by P(n0\n0 ··· «o» H 0 ) 

the probability that the value n0 is found after s draws so long as 
the numbers w0 corresponding to intermediate draws differ from n0, 
we have, noting that we are dealing with a strongly stationary process, 

00 

£ Ρ(η0\ή0 ... w0> «ο) = 1 · (13) 
5 -1

 s - 1 

This is the recurrence theorem for a strongly stationary process, 
stating that every initial state n0 must be reproduced with a prob-
ability equal to 1. The average recurrence time Τ can in this case 
be written as 

00 j 2
2N 

Τ = Σ sP(n0\n0 ... Λ0, Ho) = — — = —JF I (14) 
1 rr(n0) C„0 

it is generally enormous as soon as IN is large and n0 is signi-
ficantly different from N. 

6. Calculation of P(n\m, s) 

In conclusion, we make now a few comments on the calculation 
of P(n\m9 s); because of the Markovian nature of the model we 
have 
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so that, if we denote by Q the matrix of the transition probabilities 
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where the are the coefficients of z
m
 in the expansion of the 

expression (1 — z)
N
~

J
 (l+z)

N+J
. It can be seen that as s oo, all 

the terms of (16) approach zero, except those corresponding to 
j = Ν and j = —N; the term j = Ν gives 

( - D" ( i )
2 K DT MV n )

 = ( i )
2
" C2J = W(m) (17) 

which corresponds to the stationary distribution; on the other 
hand, the term j — — Ν can be written as 

( - 1 )
S
( - 1 ) " Q )

2 N
 D

(

m-
N)
D

(

0

N
-

n)
= ( - \ )

s + n +m
 W(m) (18) 

and depends therefore on n; thus, we verify that P(n\m, s) does 
not approach a limit W(m) independent of n. 

Similarly, we can deduce from these formulae the results about 
the time of recurrence by introducing the probability P'(n\m9 s) 
such that m balls are observed in A for the first time after s draws 
when η balls were located initially in A. Then, we have the follow-
ing relation : 

P(n\m, s) = P'(n\m9 s) + £ P'(n\m9 k) P(m\m9 s - k); (19) 

h(n\m9 ζ) = X z
s
P'(n\m9 s)9 g(n\m9 z) = £ z

s
P(n\m9 s)9 (20) 

(16) 

s- 1 

if we introduce the generating functions 

OO 

5 = 1 

equation (19) is equivalent to 

h(n\m9 z) — 
g(n\m9 z) 

(21) 
1 + g{m\m9 z) 
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whose («, m) element is Q(n\m)9 P(n\m, s) is the (w, m) element of 
the matrix Q

s
. Kac (1947b) has shown that the matrix Q{n\m) can 

be diagonalised, although it is not symmetrical, and that its eigen-
values are the 2N + 1 numbers Xj = jjN with —N^j^ N. The 
probability P(n\m9 s) can then be expressed as a function of the 
eigenvectors of Q and we obtain 
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From this we deduce 

lim h(n\n, z) = h(n\n, 1) 

00 dh(n\n, z) 

dz 
= Σ P'(n\n,s) = 1 , lim 

W(n) ' 
(22) 

whence the average recurrence time Τ 

Τ = Σ sP\n\n, s) = lim 

00 dh(n\n, ζ) 

7z W(n) 
(23) 

Finally, if we wish to compare the previous stochastic process 
with the mechanical evolution of ensembles of systems (in Gibbs ' 
sense) in phase space, we can liken the probability Prob {nA(s) = m} 
= F(m9 s) to Ehrenfest's coarse-grained density in phase space. 
The function F(m, s) is determined from F(«, 0), which we take 
here to be different from W(ri) in order to have an evolution, and 
the generalised / / - theorem (in Gibbs ' sense) would be established 
in this case if lim F(w, s) = W{m). As we have seen, this is not 

satisfied for F(n, 0) = δηηο; we can say that the initial distribution 
is too fine-grained (or not sufficiently "coarse-grained"). In fact, 
according to (17) and (18) we have, for a very large value of s, 

If F(w, 0) varies slowly (coarse-graining), the second term is small 
everywhere when 2N is large; thus, although F(m9 s) does not 
strictly approach W{m\ the second term can be neglected and this 
amounts to an error of the order of l /N. 

F(w, s) = Σ F(n> °) p(n\m> - w( m) (24) 

+ ( _ i y + * w{m) Σ ( - l ) " F ( w , 0 ) . 
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Notes on the Definition of Entropy 

Entropy is related with the quantity Η by the well-known rela-
tion S = — kH (where k is Boltzmann's constant); there are two 
definitions of entropy by Boltzmann and Gibbs, corresponding to 
the two definitions of H which we analysed in Chapter V. Let us 
consider a system whose energy belongs to the energy shell Δ Ε 
and whose macroscopic states are defined by the stars Ωη of Γ-
space of size Wn(Qn) = μ(Ωη): Wn represents, therefore, the measure 
of the microscopic states corresponding to the same macroscopic 
state. Having stated this, for the definition of entropy according 
to Boltzmann, we can put [by (V.34)] 

SB = klnWn. (25) 

Gibbs' method consists in the introduction of a distribution func-
tion P'n in P-space, where P'n is the statistical weight of Ωη. According 
to (V.27"), Gibbs ' entropy is then defined by 

S G = - ^ΣΛ,Ίη^ - . (26) 
π Wn 

Finally, we have also encountered in Chapter III a third definition 
by Fierz where we put 

S¥ = kYjP'n\nWn. (27) 
η 

Here we have written only the classical form of the various defi-
nitions of entropy; the change to the quantum case can be made 
immediately (see Chapter VI). 

If, now, we compare these definitions for the equilibrium state 
we note at once that the concept of equilibrium is different accord-
ing to Boltzmann and Gibbs. F rom Boltzmann's point of view, 
the equilibrium state is that which makes the entropy a maximum; 
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if we denote by f 2 m ax the star of maximum size Wmax9 we shall have 

( S B ) e q = £ l n ^ r a a x. (28) 

In addition, because of the geometrical properties of iV-dimensional 
space, it is easy to show that the definition of equilibrium entropy 
(28) can be replaced by k In μ(ΑΕ) or k In i^(E)9 as long as Ν is very 
large, where μ(ΔΕ) is the measure of the shell Δ Ε and i^(E) is the 
volume enclosed by the hypersurface Η = Ε; this is the insensibility 
of Boltzmann's formula, pointed out by Gibbs and Lorentz (1916). 

From Gibbs ' point of view, the equilibrium state is defined by 
the distribution which makes the entropy 5 G a maximum; the 
equilibrium state is represented, therefore, by a certain distribution. 
In the case that we have chosen, this equilibrium distribution is 
the microcanonical distribution in the shell AE, Pn = Ψη\μ(ΔΕ\ 
because of the extremal properties of Η (and therefore of SO : see 
Chapter V). In this case we have 

( S e k = (SG)max = k In μ (AE). (29) 

Thus, we can see that the Boltzmann and Gibbs definitions are 
identical at equilibrium, provided that the number of degrees of 
freedom of the system is very large; it is easy to prove that the same 
is true for Fierz's entropy. 

If, now, we return to Ehrenfests' model, Boltzmann's entropy 
for a given state m can, according to ( l l ) , be written, as 

SB = klnC
2

m

N
 ; (30) 

the state of maximum entropy is achieved for m = Ν and we have 

(SB)eq = k In C
2

N

N
 ~ 2 kN In 2. (30') 

On the other hand, the function F(m, s) is involved in Gibbs ' en-
tropy, which can be written as 

So = -k Σ Hm, s) I n Γ ^ ^ Ι ; (31) 

this is a maximum for F(m, s) = W(m), or again 

(SG)cq = 2kN\n2. (3Γ) 

Finally, we can show (by making use of the convexity of the ex-
pression χ In x) that SG is an increasing function of s9 although 
F(m,s) does not approach W(m)9 in the strict sense; the mono-
tonic behaviour of SG must, therefore, be contrasted to the fluc-
tuating behaviour of SB9 similar to the curve in Fig. 4. 
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Note on Recent Developments 
in Classical Ergodic Theory 

THERE have in recent years been important developments in essen-
tially mathematical research on the ergodic properties of classical 
dynamic systems. This work, mainly by mathematicians from the 
Soviet school ,!

 l s
 based on the fundamental concept of an abstract 

dynamical system and it defines general classes of systems whose 
temporal evolution satisfies certain asymptotic properties (ergo-
dicity, mixing, etc.). It employs the generalised definition of the 
entropy of a measure preserving transformation, in the Kolmogo-
rov sense, and also several concepts, such as that of a ^-system, 
which are used in information theory. This research has led to 
some remarkable results such as, for instance, ergodicity and mix-
ing properties of geodesic flow on compact Riemannian manifolds 
with negative curvature or, more generally, of A>systems, and 
especially the proof of the ergodicity of the Boltzmann-Gibbs gas 
model.J These researches are therefore of major interest for the 
problems which we have considered in the present book; this is 
the reason why we have felt obliged to give in this appendix a 
short account of them, restricting ourselves to indicate the methods 
employed as well as the main theorems obtained, without insisting 
on rigorous proofs which would considerably go beyond the frame-
work of our treatment. 

t See, for instance, A n o s o v (1962, 1963), Arnold and Avez (1968; this 
reference contains an important bibliography of all papers by the Soviet 
school ) , Ko lmogorov (1954, 1956, 1959, 1960), Kouchnirenko (1965), Rohl in 
(1949, 1962), Rohl in and Sinai (1961), and Sinai (1960, 1961a, b , c, 
1963 a, b , c ) . 

t This is the model in which a gas is represented by perfectly elastic hard 
spheres in a parallelepiped with perfectly reflecting walls . 
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I. The Concept of an Abstract Dynamic System 

From the analysis of the fundamental concepts of classical 
statistical mechanics, given in Chapter I, it follows that the under-
lying mathematical structure of the theory contains essentially three 
concepts : 

/"-space which in the case of a classical dynamic system is the 
same as the real Euclidean space Rn; 

a measure μ defined on Γ; 
a group of automorphisms with a parameter Tt which is defined 

on Γ and which preserves the measure μ; for a Hamiltonian 
system the group Tt is generated by the equations of motion 
for the system. 

If we want to free ourselves from the particular framework of 
classical dynamics and forgetting about the physical meaning of 
these concepts, we are naturally led to consider abstract dynami-
cal systems whose definition rests upon the following two 
elements : 

A measure space represented by the triplet (Χ, Σ, μ) where X is 
a set with a sigma-algebraj Σ of measurable sub-sets of X and with 
a measure} μ defined on this σ-algebra. 

A group of automorphisms (modO)ff in the measure space 
(Χ,Σ,μ) which preserves measure; according to circumstances 
this group may be a continuous group with a parameter denoted 
by Tt, or a discrete group generated by the automorphism T. The 
essential point is the measure preservation by these automorphisms, 
which can be expressed as μ^Α) = μ(Α) for all teR and for 
any measurable set A ; we note that the transformation Tt (or T) 
itself is measurable on the product space Χ χ R and that it defines 
a measurable " f low" on the measure space (Χ, Σ9 μ). 

Let us straightaway remark that by considering a group of trans-
formations we require that the transformations Τ (or Tt) be in-
vertible, that is, that we can associate with each Τ a measure-
preserving transformation S such that ST = TS = I. S is the 

t Let us remind ourselves that a σ-algebra is a class o f sets which is closed 
under all countable operations o f the set (formation o f complements and 
reunions, or o f intersections according to the duality rule). 

t The measure μ is an countably additive set function which is non-negative 
but may be infinite. W e shall assume that the measure μ is σ-finite. 

f t The notat ion (mod 0) indicates that w e consider two transformations 
which differ merely o n a set o f measure zero to be equivalent. 
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inverse of Γ, which we can express as S = Γ
- 1

. Although in general 
the transformations considered in dynamic systems are invertible, 
we shall see that many results of the ergodic theory are valid for 
measure-preserving but non-invertible transformations, that is, for 
semi-groups of transformations Τ (or Tt). 

With these definitions we call the triplet (Χ, μ, Τ) formed by the 
measure space X, the measure μ, and the group of measure-
preserving automorphisms Τ (or Tt) an abstract dynamical system. 
This very general concept enables us to include systems which 
differ as widely as the Hamiltonian systems of classical mechanics, 
stochastic processes with discrete or continuous time variables, 
groups of geometric transformations defined on a measure space, 
etc. Of course, each of these cases corresponds to a particular 
choice of the space X and of the automorphisms Τ (or Tt). 

If we assume that the space X has a topology, we can define on 
X continuous flows Tt; if, moreover, X has the structure of a 
differentiable manifold, we can introduce differentiable flows. To 
illustrate the variety of applications included in this theory, let us 
give some examples of such systems : 

Hamiltonian systems for which the s p a c e r s the real Euclidean space 
R

2n
 with a Borel or Lebesgue measure; the group Tt associated with 

the Hamiltonian equations then defines a continuous flow on R
2n
. 

If the Hamiltonian His infinitely differentiable (C°°-function), the 
relation Η = Ε defines a C°°-differentiable flow defined locally by 
the C°° field of the vectors tangential to the hypersurface Η = Ε. 

Flows on the torus where the space X for the case of a two-
dimensional torus T

2
 is represented by the basic square with its 

opposite sides (of length unity) being identical. Using as measure 
the usual measure dx dy we obtain a measure space X on which 
we can define different automorphisms such as : translations 
(mod 1), linear transformations with determinant equal to 1, . . . . 

Bernoulli stochastic schemes for which the space X is the set of 
bilateral sequences Λ: = {xt} where the xt are equal to one of the 
first η integers 0, 1, 2, 1. We define a measure on X by 
assigning to each of these possibilities a mass ρά in such a way that 

η- 1 

Σ α = ι· 
J=O 

The automorphism Tis then a translation on A" which associates with 
the element χ = {xt} the element Tx = y = {yt} with yt = x / + 1; 
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one sees easily that this transformation can be inverted and that 
it preserves measure. 

Let us now conclude these general considerations by introducing 
an essential concept for the classification of abstract dynamic 
systems, the concept of isomorphism of two systems: 

We say that two systems (Χ, μ, Τ) and (Χ', μ\ Τ') are isomorphic 
if there exists a bijective application S of X onX' such that we have 

μ'[Ξ(Α)) = μ(Α) for all AeZ, 
and 

Τ = STS-
1
, 

where the application S clearly defines an isomorphism of the two 
measure spaces (Χ,μ) and (Χ',μ'); a similar definition occurs for 
the continuous case with a group Tt. 

The importance of this concept lies in the fact that the properties 
of abstract dynamic systems which only involve the measure and 
the structure of the group Τ are the same for two isomorphic 
systems. In particular, this is true for the asymptotic properties 
which we shall be considering; if one proves, for instance, the 
ergodicity of one abstract system, this property will also hold for 
all other systems which are isomorphic with that system. We see 
thus that the ergodic theorems which we shall now state to a large 
extent go beyond the primitive physical framework of the theory. 

II. Asymptotic Properties of Abstract Dynamic Systems 

We shall now study the asymptotic properties of such systems. 
Let us first of all remind ourselves briefly what the notation is 
which we shall be using and what the essential concepts are which 
we have used all the time in the present book. 

1. Definitions 

(a) Time averages. Let (Χ, μ, Γ) , or (Χ, μ, Tt), be a dynamic 
system with a discrete, or continuous, time variable, and let / 
be a function defined on A". The time average of / (if it exists) is by 
definition: 

ι
 N

~
1 

/ * ( * ) = lim — £ / ( Γ " * ) * if xeX, neZ+, 
N->oo Ν n = 0 
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in the discrete case ( Z
+
 represents the set of positive integers), and 

τ 

/ * ( * ) = lim — \f(Ttx) dt, xeX, te R, 
T-*oo Τ J 

0 

in the continuous case. 

(b) Space averages. By definition this is the integral o f / over the 
space A" with the condit ion! μ{Χ) = 1. We have thus : 

/= \χΑΧ)άμ, 

(c) Ergodic systems. With the above definitions, we say that a 
system is ergodic if for any //-summable function the time and space 
averages are almost everywhere equal, or, 

Pix) = /· 
a.e. 

We see immediately that the time average is for an ergodic 
system independent of the point x. 

(d) Decomposable systems. These are systems for which X is the 
disjoint union of two sets X1 and X2 which are invariant under Τ 
(or Tt) and have positive measure. We can thus write: 

X=X1uX2 with XlnX2 = 0, 

TX γ —~ X \, TX2 — X2, 
and 

μ(Χ1)>0, μ(Χ2)>0. 

Such a system is clearly not ergodic since when one takes for 
f(x) the characteristic function of ΑΊ (or of X2), we have f*(x) = f(x) 
so that the time average depends on x. An indecomposable system 
is called metrically transitive; therefore this property is the neces-
sary and sufficient condition for the ergodicity of a system, as we 
have seen already. 

(e) Mixing systems. By analogy with Gibbs ' example (where we 
consider a mixture of water and black ink) we say that a system 
(Χ, μ, Tt) is a mixing one if for any measurable sets A and Β we 
have 

lim μ[Τ,Α η Β] = μ(Α)μ(Β). 
/-»oo 

t We clearly assume here that the measure μ is finite and is then chosen 
in such a way that μ(Χ) = 1. 
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This property which plays an important role in the study of the 
foundations of statistical mechanics is stronger than ergodicity; 
every mixing system is, by the way, ergodic. One can similarly 
introduce other concepts, such as weak mixing. 

2. Asymptotic properties 

(a) Recurrence. The abstract dynamic systems which we have 
just defined satisfy very general asymptotic properties which are 
similar to Poincaré's recurrence theorem for a continuous Hamil-
tonian flow Tt. F rom an abstract point of view we can define the 
concept of recurrence as follows: 

Let Ε c X be a sub-set of X; we call a point χ e Ε recurrent 
(with respect to Ε and to T) if T

n
x e Ε for at least one positive 

integer n. (To simplify matters we shall consider the discrete case.) 
One can the state the Recurrence Theorem: 

If Ε is a measurable sub-set of a space X of finite measure and if 
Γ is a measure-preserving transformation of Τ onto itself, practi-
cally all points of Ε are infinitely recurring; that means that if 
χ e E, we have T

n
x e Ε for an infinite number of positive values 

of n. 
The essential elements of the proof are the following ones: Xhas 

a finite measure, μ(Χ) < oo, and Τ preserves measure. We note 
that the invertibility of Τ is not invoked so that the recurrence 
properties are valid for transformations which cannot be inverted. 

(b) Ergodic theorems for abstract dynamic systems. We have 
often indicated that the study of the ergodic properties of the 
transformations Τ contains two well separated stages. First of all, 
we must prove the existence of limits of time averages associated 
with certain classes of functions / defined on the measure space X; 
this is the object of the ergodic theorems which we are about to 
state. Then we have to determine under what conditions these time 
averages reduce (almost everywhere) to constants which moreover 
are equal to the space averages of the functions / ; this is the real 
ergodicity property to which we shall come back later on. 

The functions / which we are considering introduce different 
functional spaces in which the transformations Τ induce trans-
formations U. We shall essentially consider the class of summable 
functions, feL^X^) and that of the quadratically summable 
functions, f eL2(X, μ). Before stating the ergodic theorems let us 
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briefly remind ourselves of the properties of the operators U which 
are induced in the two functional spaces. 

(A) Properties of the induced operators U (or Ut) 

I f / i s some function on A", the operator U induced by Tis defined 

b y
 Uf(x)=f(Tx); 

this is a covering operation acting in the functional space asso-
ciated with / . U possesses two fundamental properties which are a 
consequence of its definition and of the fact that Τ conserves 
measures : 

U is linear. 
U is an isometry on Lt(X, μ) if Γ preserves measure. 
It follows that U is an isometry on L2(X, μ). If, moreover, the 

transformation Γ can be inverted, U is an invertible isometry; and 
we have thus a third property : 

U is a unitary operator on L2(X, μ) if Τ preserves measure and is 
invertible. This is in the discrete case the equivalent of the theorem 
stated for the continuous case by Koopman (1931): 

Any measurable and invertible flow Tt induces on L2(X, μ) a 
continuous and unitary group Ut with one parameter which is 
defined by Utf(x) =f(Ttx). 

We can now state the ergodic theorems for the abstract dynamic 
systems; they are a generalisation of the theorems which we have 
discussed in Chapter I of the present book. As we have already 
noted the kind of convergence adopted depends naturally on the 
functional space considered; we shall thus be dealing with a con-
vergence in quadratic mean in the case of L2 and a point (or nearly 
certain) convergence in the case of Lx. 

(B) Ergodic theorem in quadratic mean 

This is a generalisation of von Neumann 's theorem proved for 
unitary operators. It is the Mean Ergodic Theorem : 

If U is an isometry on the complex Hilbert space L2(X, μ) and if Ρ 
is the projection on the space of all vectors which are invariant under 

Ν- 1 

U the series N'
1
 £ U

J
f converges to Ρ for all f eL2. 

7 = 0 

We note that this theorem, which was proved by Riesz (1945) is 
not limited to unitary operators, as the transformations Τ are not 
necessarily invertible. 
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(C) Individual ergodic theorem 

This is a generalisation of Birkhoff's theorem and was also proved 
by Riesz (1945). It is the following theorem: 

If Γ is a measure preserving transformation, which is not neces-
sarily invertible, on the measure space (Χ, Σ, μ) (whose measure 

N-l 

may be infinite) and if f e LX(X, μ), N'
1
 £ f(T

J
x) will converge 

almost everywhere. The limit function / * is integrable and in-
variant (we have almost everywhere f*(Tx) = f*(x)); if, moreover, 
μ{Χ) < oo, we have , r , , , , 

The proof of this theorem is based upon an auxiliary statement 
due to Yosida and Kakutani (1939) which is called the maximal 
theorem. It states the Maximal Ergodic Theorem: 

Let (Χ,Σ,μ) be a measure space and f an integrable function 
onX. If Ε is the set of points χ such that at least one of the sums 
f(x) + f(Tx) + ··· + f{T

n
x) is positive, we have 

Ε 

These theorems establish the existence of " t ime" limits in very 
general circumstances. We can now return to the real ergodicity 
property. 

(c) Ergodicity and mixing. We have seen that a decomposable 
system is non-ergodic by virtue of the definition itself of ergodicity. 
Conversely, if a system (Χ, μ, Τ) is non-ergodic it is decomposable; 
indeed, there then exists a function whose time average f*(x) is 
not constant almost everywhere. As / * is invariant under Τ one 
can define two sub-sets of A" which are invariant under Γ and which 
have non-zero measure. We are thus led to the statement: 

The necessary and sufficient condition that an abstract dynamic 
system be ergodic is that it is indecomposable, that is, that any 
invariant measurable set has measure 0 or 1. 

Following what we have seen so far we can also say that a 
system is ergodic if, and only if, any invariant f u n c t i o n / e LX(X, μ) 
is almost everywhere constant. 

On the other hand it is easy to see from the definition of the mixing 
property that an abstract dynamic mixing system is ergodic. Indeed, 
if A is an invariant measurable sub-set and if we form Β = X — A, 
we have: , . _ „ 

377 



Classical and Quantum Statistical Mechanics 

in the continuous case (with an analogous definition for the discrete 
case). Note that one can also introduce mixings of a higher degree. 

We have several times emphasised that the essential problem is 
to determine under what conditions an abstract dynamic system is 
effectively ergodic (or mixing). The condition relating to the metric 
transitivity of a system is difficult to check and it is thus good to 
look for other conditions which are equivalent to it. We may 
look for a solution of this problem by studying the spectral struc-
ture of the induced operators. 

(d) Spectral properties of the induced unitary operators. We con-
sider here the case of the unitary operators U induced in L2(X, μ) 
by invertible transformations. We note that if two dynamic sys-
tems are isomorphic, they induce in L2 unitary operators U and U' 
which are equivalent. The invariants of the induced operator cor-
respond thus to certain invariants of the dynamic system : we call 
them spectral invariants; the spectrum of U also belongs to them. 
(On the other hand, the operators U and U' may be equivalent 
without the systems being isomorphic.) It now turns out that cer-
tain ergodic properties have a spectral counterpart. This is an 
important consequence of the following Eigenvalue Theorem: 

An invertible transformation Τ which preserves measure on a 
finite measure space is ergodic if and only if the number 1 is a simple 
eigenvalue of the induced unitary operator U. 

Thus, if Τ is ergodic, we have : 
(a) The absolute value of any eigenf unction of U is constant a.e. 
(b) Every eigenvalue is a simple one. 

τ 
Hm _ \μ(τχΑ η Β) - μ(Α)μ(Β)\ dt = 0 , 

ο 
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According to the mixing property we must thus have μ(Α) μ(Β) 
= 0, whence μ(Α) = 0 or 1. On the other hand, one can easily 
construct examples of ergodic systems which are not mixing (for 
instance, the ergodic translations defined on tori). 

The mixing property is thus much more restrictive that that of 
ergodicity. One can introduce concepts intermediate between 
ergodicity and mixing; this is the case for weak mixing, introduced 
by Haimos (1956): 

A dynamic system (Χ, μ, Tt) is weakly mixing if 
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(c) The set of eigenvalues of U is a sub-group of the circular 
group. 

(d) If the system is a mixing one, the only eigenvalue is 1. 

In the case of a continuous transformation Tt the spectrum of Ut 

is the spectrum associated with the resolution of the identity Ε 
(compare Stone's theorem, p . 16); the spectral resolution of Ut can 
be written as 

+00 

Ut = J e
l7liXt

 dE(X). 
-00 

We now see that an abstract dynamic system is ergodic if and only 
if λ = 0 has multiplicity 1 in the spectrum of Ut. 

The mixing property can still be translated in another way in the 
language of induced operators. Using the definition of mixing we 
obtain the following theorem: an abstract dynamic system is 
mixing if and only if for all / , g e L2(X, μ) we have 

Hm (U,f,g) = (f, l) (Ug). 
Γ->οο 

On the other hand, we say that an ergodic dynamic system has 
a truly continuous spectrum if constants are the only eigenfunc-
tions of Ut. We can then prove that the necessary and sufficient 
condition that an ergodic dynamic system has a truly continuous 
spectrum is that it is weakly mixing. 

We see thus the importance of the spectral properties of the in-
duced operator in the study of the ergodicity of dynamic systems. 
For the developments which we shall consider it is useful also to 
consider the case of a discrete spectrum. 

We say that an abstract dynamic system (Χ, μ, Τ) has a truly 
discrete spectrum if the eigenfunctions of the unitary induced 
operator U form a complete base of L2(X, μ). With this definition 
one can then prove the Theorem of the Discrete Spectrum : 

Two ergodic dynamic systems with truly discrete spectra are 
isomorphic if and only if their induced unitary operators are equivalent. 

This theorem must in principle enable us to answer any question 
about ergodic transformations with a discrete spectrum; for this 
one uses the following result: 

Theorem: A measure conserving ergodic transformation with a 
truly discrete spectrum is isomorphic with a rotation on a compact 
Abelian group. 
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This theorem has an important corollary : 

Corollary. Any sub-group of the circular group is the spectrum 
of a measure-preserving ergodic transformation with a truly discrete 
spectrum. 

The importance and generality of these results suggest that one 
of the problems of ergodic theory is to study how far the con-
sequences of the theorem of the discrete spectrum remain valid 
for systems whose spectrum is not necessarily discrete. In this 
context we mention in conclusion a special case of a continuous 
spectrum which often occurs, namely that of systems with a Lebes-
gue spectrum which is defined as follows (compare Haimos, 1956; 
Arnold and Avez, 1968): 

An abstract dynamic system (Χ, μ, Τ) with induced unitary 
operator U is said to have a Lebesgue spectrum L

l
 if there exists 

a complete orthonormal base of L2(X, μ) formed of the function 1 
and the functions fi} such that 

Ufu=fi.j+i for all i e l , j e Ζ 

(where Ζ denotes the set of positive or negative integers). 
The power of the set I is called the order of multiplicity of the 

Lebesgue spectrum ; if I is countably infinite, it has a countably 
infinite Lebesgue spectrum and if / contains one single element, 
we are dealing with a simple Lebesgue spectrum. 

With this definition we can now establish the following important 
theorem : 

Theorem: An abstract dynamic system with a Lebesgue spectrum 
is mixing. 

We note that one can construct automorphisms on the torus 
which possess this property (compare Arnold and Avez, 1968). 
Similarly one can show that the Bernoulli schemes have an infinite 
Lebesgue spectrum; they are thus all mixing and of the same 
spectral type. 

The application of these general results to the case of classical 
dynamic systems goes thus through the study of the spectral pro-
perties of the unitary evolution operator Ut, as we saw in Chapter I. 
This programme poses very difficult problems which we can only 
mention in this short note. We shall conclude this brief account 
by indicating another approach which is based upon a geralised 
definition of entropy in the Kolmogorov sense (1959) and on the 
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introduction of a particular class of abstract dynamic systems 
called AT-systems. 

III. Entropy and ^-systems 

We have seen that the ergodicity and mixing properties are 
connected with those of the spectral invariants of dynamic sys-
tems. We shall now introduce the concept of a generalised entropy 
which follows from information theory and which enables us to 
define a new invariant of dynamic systems. We have combined 
in the same section the study of the generalised entropy and that 
of the jK-systems as these ideas are both based upon a consideration 
of the algebras of measurable decompositions. 

1. Measurable decompositions 

If (Χ, Σ, μ) is a measurable space, a decomposition 
oc = {Ai, i e 1} of Xis a family of measurable non-empty sub-sets 
such that 

μ(ΑίηΑ^ = 0, if / φ ; ; μ(Χ-()Αι) = 0, 0 < μ(Αί) < oo. 
ici 

The decomposition oc is measurable if there exists a countable 
family of measurable sets {Bj9j e J} such tha t : 

(1) Each Bj is the reunion of sets of oc; 
(2) For each pair Ai9AjOÎoc there exists a Bk such that At <=. Bk, 

Aj φ Bk, or At φ Bk, Aj c Bk. 

According to this definition, the decomposition oc is measurable, 
if it is finite or countable. On the other hand, we can say that two 
decompositions oc and β are identical if they are the same except 
possibly on a set of measure zero; we then write oc = β (mod 0). 

We can assign a partial ordering relation to the family of measur-
able decompositions, and we define this as follows : we write oc ^ β 
if each set of oc is a reunion of sets of β except perhaps for a set 
of zero measure. We can then introduce an operation Y defined 
as follows: 

Let {oci, leL} be a family of measurable decompositions; we 
denote by 

oc = γ oct 

leL 
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the smallest decomposition containing all oct. For example, for the 
two decompositions oc = {At, iel] and β = {Bj9jeJ} we have 

oc Υ β = {Αι η Bj\/iiAt η Bj) φ 0, ielJeJ}. 

It follows immediately from this definition that the operation Y 
is commutative, oc γ β = β Y oc, and associative, (oc Y β) γ γ 
= oc Y (β Y γ). Finally, if oc ^ oc' and β ^ we have 

<x Y β £<χ' Y β'. 

We conclude these considerations by introducing the concept of 
the algebra of a measurable decomposition. The algebra stf(oc) 

generated by a measurable decomposition oc is the set formed by 
the countable reunions of elements of oc. With this definition one 
finds the following properties : 

sé(oc) = a!(ß)9 if oc = β; 

stf(oc) c &(β), if oc S β; 

l e L JeL 

The algebras of measurable decompositions are thus special 
cases of all measurable sets which we shall denote by Ji. By 
definition, a sub-algebra of measurable sets & of Ji is a part of 
closed for countable reunions and for changing to the comple-
ment. We can thus establish the following result: 

For any sub-algebra & of Ji there exists a measurable decom-
position oc such that IF — <stf(oc). 

2. Entropy 

Before introducing the concept of the entropy of an automor-
phism we shall define the entropy of a decomposition. We define 
the entropy of a decomposition oc as follows : 

= - Σ μ(Αΐ)\ημ(Αΐ). 

We note that we come back to the usual definition when we 
consider, for instance, a decomposition of Ν elements of the same 
measure ; indeed, we have in that case : h(oc) — In N. We note also 
that two equivalent decompositions have the same entropy; 
finally, if h(oc) = 0, all μ(Α^) vanish, bar one of them which is 
equal to 1. 
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By considering two decompositions oc = {Ai9ieI} and 
β = {Bj,je J} we can then introduce the concept of a conditional 
entropy, h(oc\ß)9 defined by 

= - Σ M ,̂ η Bj) In [μ{Αΐ η 2*,)M*,)]. 

We can then prove the following propert ies: 

Κ* Υ ß\ß) = K*\ß); 

h(pc\ß) ^ 0 , the equal sign holding if and only if oc ^ β; 

h(oc Υ β) = A(/î) + A(*|j8); 

h(oc) ^ h(oc')9 if Λ ^ <%'; A(«|j8) ^ A(*|/S'), if β ύ β'. 

We can now turn to the concept of the entropy of an automorphism 
with respect to a decomposition: 

If (X9 μ9 Τ) is a dynamic system, the number 

h(oc,T) = lim [h(oc Y Toc Y ··· Υ Γ""
1
*)] / / ! 

n->oo 

is called the entropy of the automorphism Τ with respect to a, 
finite or countable, measurable decomposition oc. Using the above-
mentioned properties of h(oc\ß)9 we can show that the limit h(oc9 T) 
exists and is equal to 

lim h(T
n
oc\oc Y Toc Y ··· Υ Τ " "

1
* ) . 

π->οο 

We now get to the definition of the entropy of an automorphism 
(see Kolmogorov, 1960; Sinai, 1960): 

The entropy h(T) of the automorphism T i s : 

h(T) = sup h(oc9 T)9 

where oc denotes the set of finite measurable decompositions. This 
entropy satisfies the following important theorem (which one can 
prove by considering two isomorphic systems) : 

The entropy h(T) is an invariant of the dynamic system (X9 μ9 Τ). 
To calculate the entropy of an automorphism we can use the 

Kolmogorov-Sinai theorem (Kolmogorov, 1959, 1960; Sinai, 
1960): 

If the decomposition α is a generator with respect to T, we have 
Α(Γ) = h(oc9 T). (We say that oc is a generator with respect to Τ if 

+ oo 

the closure of Y T
n
s/(oc) is identical with Jt.) 
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We can thus define the entropy of Bernoulli schemes, the entropy 
of ergodic automorphisms on a torus, etc. We can also prove the 
important Kouchnirenko theorem (1965): 

Classical systems have a finite entropy. 

It follows that abstract systems with an infinite entropy cannot 
be realised by classical systems; this is the case for diffusion-type 
Markovian processes. We shall now define a particular class of 
systems, the A!-systems, which possess remarkable properties. 

3. K-systems 

A dynamic system (Χ, μ, Τ) is a ^-system if there exists a sub-
algebra & of the algebra J( of measurable sets (mod 0) such that 

+ 00 

n = —oo 

where jV represents the algebra of the sets with measure 0 or 1 

a n d —F^o 

n= —oo 

where the bar indicates the closure operation. 
There is a similar definition for the continuous case, with TT 

replacing T. These systems possess important properties illustrated 
by the following theorems: 

A X-system has a countably infinite Lebesgue spectrum on the 
orthocomplement of constant functions. 

As a consequence, the Λ^-systems are mixing and ergodic, accord-
ing to the spectral theorems of Section II. 

The entropy of a A>system is positive. As a consequence we can 
show that there are systems with a Lebesgue spectrum which are not 
Α-systems. 

The jK-systems form a very large class of abstract systems; they 
contain for example the Bernoulli schemes; also many classical sys-
tems such as the automorphisms of the tori and the geodesic flows 
on compact Riemannian manifolds with negative curvature. Using 
these results one can then prove that the Boltzmann-Gibbs gas 
model is not only ergodic but, moreover, is a ÀT-system, a theorem 
which is essential from our point of view; of course, the elastic 
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collisions between the spheres which represent the gas molecules 
are the origin of the ergodicity and mixing properties of this model. 

The rigorous proof of this theorem is very tedious and long and 
we cannot dream of reproducing it here. We restrict ourselves to 
indicate that it rests upon the properties of a class of dynamic 
systems, the so-called C-systems, which are characterised by the 
existence of asymptotic orbits and of corresponding " s h e e t s " of 
the phase space. More exactly, one can say that the positive charac-
ter of the entropy and the properties of a ^-system are connected 
with the existence of bundels of asymptotic trajectories which 
approach each other exponentially; this is the case for the geo-
desic flow on Riemannian manifolds with negative curvature. 
Sinai's proof (1963 c) then consists in being guided by these pro-
perties in studying the Boltzmann-Gibbs model. He first of all 
proves that this dynamic system has a positive entropy; then he 
defines transverse sheets of the phase space similar to the ones 
one obtains in the case of the geodesic flow when one considers 
the families of manifolds orthogonal to the bundle of asymptotic 
trajectories. The ergodicity of the Boltzmann-Gibbs model then 
follows from the study of the σ-algebra generated by the decom-
position of the phase space in transverse sheets. 

We hope that this brief account is sufficient to show the import-
ance of modern research in ergodic theory and the interest which 
this research has for the study of the foundations of statistical 
mechanics. It seems certain to us that this research will lead in 
the near future to many important developments. 
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