


Mathematical methods of classical mechanics

Lecture notes

Prologue

A good physics theory is concerned with observables, quantities that do not depend on
a system of reference (that is, coordinate system and other auxiliary data, such as metric,
etc). That is a lesson all mathematicians should learn too: deal only with objects that can
be defined invariantly (but be always prepared to compute in coordinates).

Illustrate this philosophy with what you learned (or did you?) from Calculus: df
makes invariant sense while f ′ does not.

Let U be some domain (manifold, if you wish), x ∈ U a point and v a tangent vector
at x. Assume a function f : U → R is given. Can you make a number out of these data?
Here is a construction. Let γ(t) be a parametric curve in U s.t. γ(0) = x and γ ′(0) = v.
Consider the number

Lv(f) :=
df(γ(t))

dt
|t=0.

Of course, this notation assumes that the number doesn’t depend on the parameterization
γ(t). Let us see what it is in coordinates:

Lv(f) =
∑

fxi
x′

i = ∇f · v,

and we see that Lv(f) really depends on v only. Moreover, we learn that, in coordinates,

Lv =
∑

vi∂xi
.

The operator Lv is the familiar directional derivative; we have identified tangent vectors
with these operators on functions.

Now it is clear how to define a covector df : given a vector v, the value df · v is Lv(f)
(everything is happening at point x). And what is the gradient ∇f? It doesn’t exist unless
one has a Euclidean structure. If this extra structure is present then vectors and covectors
are identified and ∇f is identified with df . Thus df exists while f ′ (gradient) does not.

1. Vector fields.

1.1. A boring but necessary exercise: how does a tangent vector change under a
change of coordinates?

Let x and y be coordinate systems, v and u the same vector in these coordinates,
respectively. The Chain Rule gives:

∂yj
=

∑ ∂xi

∂yj
∂xi

.
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Therefore ∑
vi∂xi

=
∑

uj∂yj
=

∑
uj

∂xi

∂yj
∂xi

,

and thus

vi =
∑ ∂xi

∂yj
uj ,

or v = Ju where J is the Jacobi matrix.

Important Exercise. How does the differential df change under a change of coordi-
nates? The answer illustrates the difference between vectors and covectors.

1.2. A vector field v is when there is a tangent vector at each point (of the domain)
depending smoothly on the point. We already related a linear differential operator Lv with
this field. Another object is a 1-parameter group of diffeomorphisms, or a flow φt for which
v is the velocity field. This means:

(i) φsφt = φs+t;
(ii) dφt(x)/dt|t=0 = v(x).
That a vector field generates a flow is the principal theorem of the theory of ODE’s.

Examples. v = ∂x, u = x∂y in the plane. What are the flows? More examples:
x∂x + y∂y (dilation), y∂x − x∂y (rotation).

Exercise. Consider S3 as the unit sphere in the space of quaternions. One has three 1-
parameter groups of diffeomorphisms of the sphere: φt(x) = exp(ti)x, ψt(x) = exp(tj)x and
ηt(x) = exp(tk)x. Compute the respective three tangent fields in the Cartesian coordinates
in the ambient 4-space.

1.3. Consider two vector fields v and u with the respective flows φ and ψ. Do
the flows commute? Not necessarily as the above example shows. To measure the non-
commutativity, consider the points ψsφt(x) and φtψs(x). Let f be a test function. Then

Δ := f(ψsφt(x)) − f(φtψs(x))

vanishes when t = 0 or s = 0. Thus its Taylor expansion starts with the st-term.

Lemma. ∂2

∂s∂t(Δ)|s=t=0 = (LvLu(f) − LuLv(f))(x).

Proof. One has:
df(φtψs(x))

dt
|t=0 = (Lvf)(ψs(x)).

For g = Lvf one also has:
dg(ψs(x))

ds
|s=0 = (Lug)(x),

thus
∂2

∂s∂t
|s=t=0f(φtψs(x)) = (LuLvf)(x),

and we are done.
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The commutator LvLu(f) − LuLv appears to be a differential operator of 2-nd order
(you differentiate twice!) but, in fact, it has order 1. Here is a formula in coordinates:

LvLu − LuLv =
∑(

vi
∂uj

∂xi
− ui

∂vj

∂xi

)
∂xj

.

Definition. The bracket (or the commutator) of vector fields v and u is a new vector
field w := [v, u] such that Lw = LvLu − LuLv.

In coordinates,

[v, u]j =
∑(

vi
∂uj

∂xi
− ui

∂vj

∂xi

)
.

Example. Consider polynomial vector fields on the line: ei = xi+1∂x, i ≥ −1. Then
[ei, ej ] = (j − i)ei+j .

Exercises. 1). Continuing Exercise 1.2, compute the commutators of the vector fields
from that exercise.

2). Consider a linear space and let A be a linear transformation. Then v(x) = Ax
is a vector field called a linear vector field. Show that the respective 1-parameter group
consists of the linear diffeomorphisms φt(x) = exp(tA)(x) where

eA = E + A +
A2

2
+

A3

3!
+ ...

Let B another linear map and u(x) the respective linear vector field. Compute the com-
mutator [v, u]. Hint: this is again a linear vector field.

1.4. Let v, u be vector fields and φs, ψt the respective flows.

Theorem. The vector fields commute if and only if so do the flows:

[v, u] = 0 iff ψsφt = φtψs.

Proof. In one direction the statement is clear. Outline the converse argument. Let f be
a test function. We have:

Δ(s, t) = f(ψsφt(x)) − f(φtψs(x)) = o(s2 + t2), s, t → 0, (1)

and we want to show that Δ = 0.
Consider a rectangle in the s, t-plane with the vertex (s0, t0). Divide each side into

N equal parts. To a path from (0, 0) to (s0, t0) on this lattice there corresponds the
diffeomorphism according to the rule:

[t1, t2] → φt2−t1 , [s1, s2] → ψs2−s1 .

Any path can be changed to any other in at most N 2 elementary steps. According to (1),
each such step leads to a discrepancy of order 1/N 3. Thus Δ is of order 1/N for every N ,
that is, Δ = 0.

Remark. Consider a manifold M and its submanifold N . Let u and v be vector
fields on M , tangent to N . Then, obviously, u, v are vector fields on N (strictly speaking,
we should denote them by u|N , v|N). It follows from our (conceptual) definition of the
commutator that [u, v]|N = [u|N , v|N ]. Therefore [u, v] is tangent to N .

1.5. The commutator of vector fields has three algebraic properties: it is skew-
symmetric, bilinear and satisfies the following Jacobi identity.
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Lemma. For every three vector fields one has

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0. (2)

Proof. One has:

L[[u,v],w] = L[u,v]Lw − LwL[u,v] = (LuLv − LvLu)Lw − Lw(LvLu − LuLv).

The sum (2) contains 3 such blocks, 12 terms altogether, and they cancel pairwise.

Definition. A linear space with a skew-symmetric bilinear operation (commutator)
satisfying the Jacobi identity (2) is called Lie algebra. An isomorphism of Lie algebras is
a linear isomorphism that takes commutator to commutator.

Example. One example of Lie algebras is known from Calculus 3: it is the algebra
of vectors in 3-space with respect to the cross-product.

We have just proved that an associative algebra can be made into a Lie algebra by
setting: [A, B] = AB −BA. For example, starting with the algebra of n×n matrices, real
or complex, one arrives at the Lie algebras gl(n,R) and gl(n,C), respectively.

Exercise. Consider the associative algebra of 2× 2 real matrices with zero trace and
form the Lie algebra as above: [A, B] = AB−BA; this Lie algebra is called sl(2,R). Prove
that sl(2,R) is isomorphic to the Lie algebra of vector fields on the line ∂x, x∂x, x2∂x and
that sl(2,R) is not isomorphic to the Lie algebra of vectors in 3-space with respect to the
cross-product.

1.6. Recall the following definition (from the previous topics course, Differential
Topology).

Definition. A Lie group is a smooth manifold G which is also a group, and the two
structures agree: the inversion map G → G and the multiplication map G × G → G are
smooth.

Examples. Rn is a group with respect to the vector summation, and so is the torus
Tn = Rn/Zn; these groups are commutative. GL(n,R) is the group of non-degenerate
n × n matrices; SL(n,R) is its subgroup consisting of the matrices with determinant 1;
O(n) ⊂ GL(n,R) consists of the matrices that preserve a fixed scalar product (equiv-
alently, AA∗ = E where E is the unit matrix); SO(n) ⊂ O(n) consists of orientation
preserving matrices. All these groups have complex versions; U(n) ⊂ GL(n,C) consists
of the matrices that preserve a fixed Hermitian product (equivalently, AA∗ = E where A∗

is the transpose complex conjugated matrix), and SU(n) ⊂ U(n) consists of the matrices
with unit determinant.

Exercise. SO(2) is diffeomorphic to the circle, and so is U(1). The group SU(2) is
diffeomorphic to S3.

It is also well known that SO(3) = RP3 (see Differential Topology or ask those who
attended).

Given a Lie group G let g = TeG be the tangent space at the unit element. Similarly
to Section 1.3, one makes g into Lie algebra. Vector v, u ∈ g determine 1-parameter
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subgroups φt, ψs ⊂ G. Then there exists a unique vector w ∈ g such that the respective
1-parameter subgroup ητ ⊂ G satisfies the following property:

ηst = φtψsφ−tψ−s mod o(s2 + t2).

This vector w is called the commutator: w = [v, u]. For example, if G is a commutative
group then g is a trivial Lie algebra.

Of course, a smooth homomorphism of Lie groups induces a homomorphism of the
respective Lie algebras, that is, a linear map that takes commutator to commutator.

The explanation of the above construction is as follows. Every x ∈ G determines a
diffeomorphism Rx : G → G given by Rx(y) = yx. Given v ∈ g we obtain a right-invariant
vector field whose value at x is dRx(v) ∈ TxG. Thus we embed g in the space of vector
fields on G, and g inherits the commutator from this Lie algebra.

On the other hand, the Lie algebra of vector fields on a manifold is the Lie algebra
of the ”Lie group” of diffeomorphisms of this manifold (caution is to be exercised since
everything is infinite-dimensional here).

Example. Let G = GL(n,R). Then g is the space of matrices. Given a matrix A,
the respective 1-parameter subgroup is exp(tA). One has:

etAetBe−tAe−tB = E + st(AB − BA) + o(s2 + t2) = est[A,B],

therefore the Lie algebra structure in g is given by the commutator [A, B] = AB − BA.
This Lie algebra is denoted by gl(n,R). The same formula defines the commutator in
other matrix Lie algebras sl(n,R), o(n), so(n), u(n), su(n), etc.

Exercise. Prove that sl(n) consists of the traceless matrices and o(n) of the matrices
satisfying A∗ = −A.

Assume that a Lie group G acts on a manifold M ; this means that one has a smooth
homomorphism from G to the group of diffeomorphisms of M . This homomorphism in-
duces a homomorphisms of Lie algebras g → V ect(M), the Lie algebra of vector fields on
M . Thus g has a representation in V ect(M).

Example. The group SL(2,R) acts on the real projective line by fractional-linear
transformations. One obtains a homomorphism from the Lie algebra sl(2,R) to the Lie
algebra of vector fields on RP1. Choosing a coordinate x on RP1, the image of sl(2,R)
consists of the fields ∂x, x∂x, x2∂x.

Let G1 → G2 be a covering of Lie groups, for example, Rn → Tn or SU(2) =
S3 → RP3 = SO(3). Since a covering is a local diffeomorphism and the construction of
Lie algebra is infinitesimal, the respective Lie algebras coincide: g1 = g2. In particular,
su(2) = so(3). Note also that so(n) = o(n) since O(n) consists of two components, and
only the component of the unit element, SO(n), is involved in the construction of the Lie
algebra.

The theory of Lie algebras and Lie groups is very much developed, up to strong
classification results. One of the results is that if g is the Lie algebra corresponding to a
compact Lie group G then G is determined by g up to a covering. We will mention only
one notion of this theory.
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Definition. Given a Lie algebra g, a Killing metric is a metric satisfying

([x, y], z) + (y, [x, z]) = 0

for all x, y, z ∈ g.

Lemma. The formula (X, Y ) = −Tr(XY ) defines a Killing metric on the Lie algebra
so(n).

Proof. If X = xij then (X, X) =
∑

x2
ij , the usual Euclidean structure in space of

dimension n2. Its restriction to so(n) is a Euclidean structure too. One needs to check
that

Tr((XY − Y X)Z + Y (XZ − ZX)) = 0

for X, Y, Z ∈ so(n). This equals

Tr(XY Z − Y XZ + Y XZ − Y ZX) = Tr(XY Z − Y ZX) = 0

since the trace is invariant under cyclic permutations.
Likewise, one defines a Killing metric on u(n) as Re (−Tr(XY )).

2. Differential forms.

2.1. Start with linear algebra. Let V n be a linear space. We will deal with tensor
powers V ⊗ ... ⊗ V and exterior powers ∧kV = V ⊗k mod (u ⊗ v = −v ⊗ u).

Question: what’s the dimension of ∧kV ?
A linear 1-form on a vector space V is a covector, i.e., an element of V ∗. A linear

2-form (or an exterior 2-form) is a skew symmetric bilinear function ω on V :

ω(u, v) = −ω(v, u).

Example. If V is the plane then det (u, v) is a 2-form. More generally, consider
n-dimensional space and fix a projection onto a 2-plane. Then the oriented area of the
projection of a parallelogram is a 2-form. This example is most general.

Question: what’s the dimension of the space of 2-forms? What is its relation to
∧2V ∗?

Likewise, a k-form on V n is a skew symmetric k-linear function, that is, an element
of ∧kV ∗. For example, an n-form is proportional to the determinant of n vectors.

Exterior forms make an algebra with respect to the operation of exterior or wedge
product.

Definition. Let α be a k-form and β an l-form. Define α∧β as the k + l-form whose
value on vectors v1, ..., vk+l equals

∑
(−1)μα(vi1 , ..., vik

)β(vj1 , ..., vjl
),

where i1 < ... < ik, j1 < ... < jl, sum over permutations (i1, ..., ik, j1, ..., jl) of (1, ..., k+ l),
and μ is the sign of this permutation.
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Lemma. The exterior product is associative and skew-commutative: α∧β = (−1)klβ∧α.

Exercise. Prove this lemma.

Example. If α is a k-form with k odd then α ∧ α = 0. On the other hand, consider
2n-dimensional space with coordinates pi, qi, i = 1, ..., n, and let ω =

∑
pi ∧ qi. Then

ω ∧ ... ∧ ω (n times) is a non-zero 2n-form.

Exercise. Consider R3. Given a vector v, consider the 1-form αv and the 2-form ωv

defined by
αv(u) = (u, v); ωv(u, w) = det (v, u, w).

Prove the following:
αv ∧ αu = ωv×u; αv ∧ ωu = (u, v) det.

This exercise shows that the cross-product is a particular case of the exterior product of
forms.

Consider two linear spaces U and V and a linear map f : U → V . Given a k-form α
on V , one has a k-form f∗(α) on U : its value on vectors u1, ..., uk is α(f(u1), ..., f(uk)).
This correspondence enjoys an obvious property (fg)∗ = g∗f∗.

2.2. Let M be a smooth manifold.

Definition. A differential 1-form on M is a smooth function α(v, x) where x ∈ M
and v ∈ TxM ; for every fixed x this function is a linear 1-form on the tangent space TxM .

Examples. If f is smooth function on M then df is a differential 1-form. Not every
differential 1-form is the differential of a function: if x is the angular coordinate on the
circle then dx is a differential 1-form which fails to be the differential of a function.

Differential 1-forms in Rn can be described as follows. Choose coordinates x1, ..., xn.
Then every differential 1-form is written as f1dx1 + ...+ fndxn where f1, ..., fn are smooth
functions of x1, ..., xn.

Definition. A differential k-form on M is a smooth function α(v1, ..., vk, x) where
x ∈ M and vi ∈ TxM, i = 1, ..., k; for every fixed x this function is a linear k-form on the
tangent space TxM .

Differential forms form a vector space, and they can be multiplied by smooth functions.
The exterior product of differential p and q forms is a a differential p+q-form. A differential
k-form in Rn can be written as

∑
i1<...<ik

fi1,...,ik
dxi1 ∧ ... ∧ dxik

.

Since every manifold Mn is locally diffeomorphic to Rn, one has a similar expression in
local coordinates on M . Of course, there are no non-trivial k-forms for k > n.

To change coordinates in differential forms one uses the Important Exercise from
Section 1.1.

Exercise. Express the forms xdy − ydx and dx ∧ dy in polar coordinates.
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2.3. Differential forms are made to integrate (recall Calculus 3). Start with a partic-
ular case. Let P ⊂ Rn be a convex polyhedron and ω = f(x)dx1 ∧ ... ∧ dxn an n-form.
Define ∫

P

ω =
∫

P

f(x)dx1...dxn.

Clearly, this integral is linear in ω. If P is decomposed into two polyhedra P1 and P2 then
∫

P

ω =
∫

P1

ω +
∫

P2

ω.

Important Example. Consider two polyhedra P1 and P2 in Rn and let f : P1 → P2

be an orientation-preserving diffeomorphism. Then for every n-form one has:
∫

P1

f∗(ω) =
∫

P2

ω.

Indeed, the RHS is
∫

P2

f(y)dy1...dyn =
∫

P1

D(y)
D(x)

f(y(x))dx1...dxn =
∫

P1

f∗(ω),

the first equality being the change of variables formula and the second following from the
definition of f∗(ω).

In general, one integrates a k-form on Mn over a k-chain. The definition will generalize
the integral of a 1-form over a curve (recall Cal 3 again).

Definition. A singular k-dimensional polyhedron σ is an oriented convex polyhedron
P ⊂ Rk and a smooth map f : P → M . Then −σ differs from σ by the orientation of Rk.
A k-chain is a linear combination of singular k-dimensional polyhedra. Given a k-form ω
on M , one defines ∫

σ

ω =
∫

P

f∗(ω).

The definition of integral is extended to chains by linearity: if c =
∑

kiσi then
∫

c

ω =
∑

ki

∫
σi

ω.

Exercises. 1. Show that
∫
−σ

ω = − ∫
σ

ω.
2. Let f : Mn → Nn be a k-fold covering of compact manifolds and ω is an n-form

on N . Prove that ∫
M

f∗(ω) = k

∫
N

ω.

2.4. Let P ⊂ Rn be an oriented convex polyhedron.
Definition. The boundary ∂P is the n − 1-chain whose singular polyhedra are the

faces of P oriented by the outward normals. The boundary of a singular polyhedron is
defined analogously and the definition is extended to chains by linearity.
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Lemma. ∂2 = 0.

Proof. One needs to check that each codimension 2 face of P appears in ∂2(P ) twice with
opposite signs. Intersecting by a plane, the claim reduces to the case of polygons which is
obvious.

2.5. The familiar differentiation operation f → df extends to an operation of exterior
differentiation that assigns a differential k + 1-form dω to a differential k-form ω.

Given tangent vectors v1, ..., vk+1 ∈ TxMn, we define dω(v1, ..., vk+1) as follows.
Choose a coordinate system near point x; such a choice identifies v1, ..., vk+1 with vectors
in T0Rn = Rn. Let P be the parallelepiped generated by these vectors. The coordinate
system provides a singular polyhedron P → M . Let

L(v1, ..., vk+1) =
∫

∂P

ω.

Definition-Proposition. The principal k + 1-linear part of L(v1, ..., vk+1) is a skew-
symmetric linear function, independent of the choice of the coordinate system:

dω(v1, ..., vk+1) = lim
ε→0

1
εk+1

L(εv1, ..., εvk+1).

If, in local coordinates,

ω =
∑

fi1,...,ik
dxi1 ∧ ... ∧ dxik

then
dω =

∑
dfi1,...,ik

∧ dxi1 ∧ ... ∧ dxik
.

Example. Consider the case of 0-forms, i.e., functions. Let f be a function on M .
The singular polyhedron is a curve on M from point x to point y whose tangent vector
is v ∈ TxM . Then L(v) = f(y) − f(x), and the principal linear part of this increment is
df(v).
Sketch of Proof. Let us make a computation is a particular case: ω = f(x, y)dx. Let u
and v be two vectors (which will be multiplied by ε). The sides of the parallelogram P are
given by:

t → tu, t → u + tv, t → tv, t → v + tu; t ∈ [0, 1].

Therefore ∫
∂P

ω =
∫ 1

0

(f(tu) − f(v + tu))u1 − (f(tv) − f(u + tv))v1dt.

Next,
f(v + tu) − f(tu) = fx(0, 0)v1 + fy(0, 0)v2 + (ε2)

and
f(u + tv) − f(tv) = fxu1 + fyu2 + (ε2).

Thus ∫
∂P

ω = fy(u2v1 − u1v2) + (ε3),
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that is,
dω = fydy ∧ dx = df ∧ dx.

If one changes the coordinate system then the curvilinear parallelogram P will be replaced
by a new one, P ′; however ∫

∂P ′
ω −

∫
∂P

ω

is cubic in ε. The general case is similar but more cumbersome to compute.
2.6. The exterior differentiation enjoys the following properties.

Lemma. (i) d(ω + η) = dω + dη.
(ii) d(ωk ∧ ηl) = dω ∧ η + (−1)kω ∧ dη.
(iii) If f : M → N is a smooth map and ω is a form on N then df ∗(ω) = f∗d(ω).
(iv) d2ω = 0.

Proof. The first is obvious, the third immediately follows from the definition. The second
is best checked in local coordinates:

ω =
∑

fIdxi1 ∧ ... ∧ dxik
, η =

∑
gJdxj1 ∧ ... ∧ dxjl

.

The last property is also verified in local coordinates.
2.7. We are ready to prove an important result.

Theorem. Given a k + 1-chain c and a k-form ω, one has

∫
∂c

ω =
∫

c

dω.

Proof. Consider first the case when c consists of one singular cube f : P = Ik+1 → M .
Partition P into Nk+1 equal cubes Pi. Let ε = 1/n. Consider a small cube Pi with edges
vi
1, ..., v

i
k+1 of order ε. Then, according to the definition,

dω(vi
1, ..., v

i
k+1) =

∫
∂Pi

ω + o(ε(k+1)).

It follows that
Nk+1∑
i=1

dω(vi
1, ..., v

i
k+1) =

∫
∂P

ω + o(ε).

The LHS being the Riemann sum for
∫

P

dω,

the result follows by taking the limit ε → 0.
Next, one proves the formula for a simplex; the general result will follow since every

polyhedron partitions into simplices. The result for a simplex follows from that for a
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cube: there is a smooth map from a cube to a simplex which is an orientation preserving
diffeomorphism in the interior and which is an orientation preserving diffeomorphism on
some faces while other faces are sent to faces of smaller dimensions. Alternatively, one
may approximate a polyhedron by a union of cubes; we do not elaborate.

Examples. 1. Let us deduce the classical Green theorem. Let P be an oriented
polygonal domain in the plane, and ω = fdx+gdy is a 1-form. Then dω = (gx−fy)dx∧dy,
and we have: ∫

∂P

fdx + gdy =
∫

P

(gx − fy)dxdy.

2. Next we deduce the divergence theorem
∫

P

divFdV =
∫

∂P

(F · n)dA

where P is an oriented domain in 3-space. Let

ω = F1dy ∧ dz + F2dz ∧ dx + F3dx ∧ dy.

Then dω = divFdV . On the other hand, we remember from Cal 3 (if not, prove it!) that

n1dA = dy ∧ dz, n2dA = dz ∧ dx, n3dA = dx ∧ dy.

Therefore (F · n)dA = ω, and the divergence theorem follows.
3. Finally, we deduce the Stokes theorem. Let P be an oriented surface in 3-space

with boundary. Let T be the unit tangent vector field along ∂P and F a vector field along
P . Then ∫

P

(curlF · n)dA =
∫

∂P

(F · T )ds.

Consider the 1-form ω = F1dx + F2dy + F3dz. Then, as above, one has:

(curlF · n)dA = dω.

On the other hand,
T1ds = dx, T2ds = dy, T3ds = dz,

so (F · T )ds = ω. The Stokes theorem follows.
2.8. Since d2ω = 0 one has: Im d ⊂ Ker d. One defines the de Rham cohomology of

a smooth manifold:
Hi

DR(M) = Ker d/Im d,

where d is taken on i-forms on M . A form ω is called closed if dω = 0; a form ω is called
exact if ω = dη. Thus i-th de Rham cohomology is the quotient space of closed i-forms by
the exact ones.

Examples. 1. Let M be a connected manifold. Then H0
DR(M) = R. Indeed, if

df = 0 then f is constant.

11



2. H1
DR(R) = 0 since for every f(x) one has: fdx = dg where g =

∫
f . In contrast,

H1
DR(S1) = R since fdx is exact only if

∫
fdx = 0.

3. Let Mn be a closed oriented manifold. Then Hn
DR(M) = R. Indeed, every n-form

is closed, and for every n − 1-form ω one has:∫
M

dω =
∫

∂M

ω = 0.

Exercise. Compute H1
DR(T 2).

Integration provides a pairing between chains and forms; Theorem 2.7 implies that
one also has a pairing between singular homology (with real coefficients) and de Rham
cohomology. De Rham’s theorem asserts that this pairing is non-degenerate:

H∗
DR(M) = H∗(M,R).

For example, the statement that

Hi
DR(Rn) = 0, i > 0

is called the Poincaré lemma. A proof can be deduced from Theorem 2.7. Let P be a
singular polyhedron in Rn. Denote by CP the cone over P . Then one has:

∂CP + C∂P = P.

In particular, if ∂c = 0 then c = ∂b. Given a form ω, define Hω by∫
c

Hω =
∫

C(c)

ω

for every chain c. Then dH +Hd = id; one can write an explicit formula for Hω. It follows
that Ker d = Im d.

One of the advantages of de Rham cohomology is that the ring structure is very
transparent: the multiplication is induced by the wedge product of differential forms.

Exercise. Prove that the wedge product induces a well-defined multiplication of de
Rham cohomology classes.

2.9. Let us discuss relations between vector fields and differential forms. Let ω be a
k-form and v a vector field. Define a k − 1-form ivω by the formula:

ivω(u1, ..., uk−1) = ω(v, u1, ..., uk−1).

Exercise. Show that iviuω = −iuivω.
Next, define the Lie derivative. Let v be a vector field and ω a differential k-form. Let

φt be the respective 1-parameter group of diffeomorphisms. Then Lvω is a k-form such
that for every chain c one has: ∫

c

Lvω =
d

dt
|t=0

∫
φt(c)

ω.

In particular, Lvf = df(v) is the directional derivative.
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Lemma (homotopy formula). One has:

ivdω + divω = Lvω.

Proof. Define the homotopy operator H: given a singular polyhedron f : P → M , let
Hf : P × [0, 1] → M be given by the formula (x, t) → φt(x). Then one has:

φ1(c) − c = ∂Hc + H∂c.

This implies the desired formula.
Exercise. Show that dLv = Lvd.

Lemma (Cartan formula). Let ω be a 1-form and u, v be vector fields. Then

dω(u, v) = Lu(ω(v)) − Lv(ω(u))− ω([u, v]).

Proof. A direct computation in coordinates.
The following monster is the Cartan formula for k-forms:

dω(v1, ..., vk+1) =
∑

(−1)i−1Lvi
ω(v1, ..., v̂i, ..., vk+1)+

∑
i<j

(−1)i+jω([vi, vj ], v1, ..., v̂i, ..., v̂j, ..., vk+1);

the ”hat” means that the respective term is omitted.
Exercise. Show that
1). [Lu, iv] = i[u,v];
2). [Lu, Lv] = L[u,v].
Example. Let Mn be a manifold with a volume n-form μ, and v a vector field on

M . Then Lvμ = fμ where the function f is called the divergence of v. A computation in
coordinates yields the familiar formula for the divergence.

2.10. Let M be a smooth manifold.
Definition. A k-dimensional distribution (or a field of k-planes) is given if at every

point x ∈ M a k-dimensional subspace Ek ⊂ TxM is given, smoothly depending on the
point x. A distribution is oriented or cooriented if so is the k-space E at every point.

Example. A 1-dimensional oriented distribution E determined a vector field tangent
to E. Conversely, every non-vanishing vector field integrates to a 1-dimensional oriented
distribution.

Definition. A k-dimensional foliation is a partition of Mn into disjoint union of k-
dimensional submanifolds locally diffeomorphic to the partition of Rn into k-dimensional
parallel subspaces. The respective k-dimensional submanifolds are called the leaves of the
foliation

Examples. 1. Start with a partition of Rn into k-dimensional parallel subspaces,
and factorize by the integer lattice. One obtains a k-dimensional foliation on the torus.

13



2. Consider the foliation of the strip |x| ≤ π/2 by the graphs y = tan2 x + const.
Rotate the strip about the vertical axis to obtain a foliation of a solid cylinder. Factorize
by a parallel translation in the vertical direction to obtain a foliation of a solid torus; the
boundary torus is a leaf. The 3-sphere is made of two solid tori; we obtain a foliation of
S3 called the Reeb foliation.

A k-dimensional foliation determines a k-dimensional distribution. Is the converse
true? Given a distribution Ek, consider the space of vector fields tangent to E and denote
it by V (E). Similarly, consider the space of differential 1-forms that vanish on E; denote
by Ω(E).

Theorem (Frobenius). A distribution E is a foliation iff V (E) is a Lie algebra or,
equivalently, dΩ(E) ⊂ Ω(E) ∧ Ω(M).

Proof. If E is a foliation then, as we noticed before, one has: [u, v] ∈ V (E) for all
u, v ∈ V (E).

Conversely, let V (E) be a Lie algebra. Choose k linearly independent vector fields
v1, ..., vk in a small neighborhood that span E, and choose coordinates so that v1 = ∂x1.
Let fi = dx1(vi), i = 2, ..., k, and set: ui = vi − fiv1. That is, u is obtained from v by
deleting the term with ∂/∂x1. Then dx1(ui) = 0. Consider the family of hyperplanes
x1 = const. It follows that the fields ui, i = 2, ..., k are tangent to these hyperplanes.
Moreover, that space generated by the fields ui is a Lie algebra. By induction, we have a
k − 1-dimensional foliation F . The products of the leaves of this foliation and segments of
the x1-axis are the leaves of the desired foliation.

Choose a basis of vector fields v1, ..., vn so that v1, ..., vk generate E. Let α1, ..., αn be
the dual basis of 1-forms: αi(vj) = δij . Then Ω(E) is generated (over smooth functions)
by αk+1, ..., αn. According to the Cartan formula,

dαq(vi, vj) = Lvi
αq(vj) − Lvj

αq(vi) − αq([vi, vj ]).

For i, j ≤ k and q > k the first two terms on the RHS vanish. The RHS vanishes for
all q > k iff [vi, vj ] is a combination of v1, ..., vk, i.e., when V (E) is a Lie algebra. The
LHS vanishes for all i, j ≤ k iff dαq belongs to the ideal generated by αk+1, ..., αn, that is,
dΩ(E) ⊂ Ω(E) ∧ Ω(M).

Example-Exercise. Every codimension 1 distribution is locally given by a 1-form α.
This distribution is a foliation iff dα = α ∧ β. Prove that this is equivalent to α ∧ dα = 0.

Exercise: Godbillion-Vey class. Let F be a cooriented codimension 1 foliation on
a manifold M . Choose a 1-form α ∈ Ω(F ); then dα = α∧β for some 1-form β. Prove that
β ∧ dβ is a closed 3-form, and that its cohomology class does not depend on the choices
involved.

Example. In 3-space with coordinates x, y, z consider the 1-form α = dz+ydx. Then
α ∧ dα is a volume form. This 2-distribution E is an example of a contact structure. In
terms of vector fields, ∂y and y∂z − ∂x form a basis of V (E).

Exercise. Consider the space C2 and the unit sphere S3 in it. For x ∈ S3 define a
2-dimensional tangent space: E2(x) = TxS3 ∩ √−1TxS3 (the unique copy of C contained
in the tangent space TxS3). Prove that E is a contact structure.
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3. Symplectic geometry.

3.1. Start with symplectic linear algebra.

Definition. A symplectic structure ω in a linear space V is a non-degenerate skew-
symmetric bilinear form.

Note that ω(u, u) = 0 for all u ∈ V .

Examples. An area form in the plane is a symplectic structure; one can choose a
basis (p, q) such that ω(p, q) = 1. Taking a direct sum of a number of planes, one obtains
a symplectic structure in every even-dimensional space with a basis (p1, ..., pn, q1, ..., qn)
such that the only non-trivial products are ω(pi, qi) = 1, i = 1, ..., n. Such a basis is called
a Darboux basis.

Let U be a linear space. Then the space U ⊕ U ∗ has a symplectic structure defined
as follows:

ω(u1, u2) = ω(l1, l2) = 0 and ω(u, l) = l(u).

Exercise. Prove that this is a symplectic structure.

Lemma. A symplectic space has an even dimension.

Proof. Choose a Euclidean structure in V n. Then ω is given by a linear operator A:

ω(u, v) = (Au, v).

Since ω is skew-symmetric, one has: A∗ = −A. Therefore det A = det A∗ = (−1)n det A.
If A is non-degenerate n must be even.

Similarly to a Euclidean structure, a symplectic structure identifies the space with its
dual: to a vector u ∈ V there corresponds the covector ω(u, ·) ∈ V ∗.

Theorem (linear Darboux theorem). All 2n-dimensional symplectic spaces are lin-
early symplectically isomorphic.

Proof. Induction in n. For n = 1 the claim is obvious. Choose a pair of vectors p1, q1 ∈
V 2n such that ω(p1, q1) = 1, and let U be the plane spanned by these vectors. Consider
the orthogonal complement to U with respect to ω; this is a 2n − 2-dimensional space,
say, W . Then W is a symplectic space. By the induction assumption, it has a basis
(p2, ..., pn, q2, ..., qn) as in the above example. One adds (p1, q1) to this basis, and the
result follows.

Definition. A subspace L ⊂ V 2n of a symplectic space is called Lagrangian if ω
vanishes on L and L has the maximal possible dimension.

Lemma. This dimension is equal to n.

Proof. Let L′ be the orthogonal complement of L. Then L ⊂ L′ and dim L′ = 2n− dim
L. Therefore dim L ≤ n. Examples of Lagrangian subspaces are provided by the p- or
q-spaces in a Darboux basis.

Clearly, every 1-dimensional subspace of the plane is Lagrangian.
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Exercise. Consider the symplectic space U ⊕ U ∗. Let A : U → U∗ be a linear map.
Prove that the graph of A is a Lagrangian subspace iff A∗ = A. Conclude that the manifold
of all Lagrangian subspaces in 2n-dimensional symplectic space has dimension n(n+1)/2.

3.2. Definition. A symplectic structure on a manifold M is a non-degenerate closed
differential 2-form ω. Given two symplectic manifolds (M1, ω1) and (M2, ω2), a smooth
map f : M1 → M2 is symplectic if f∗(ω2) = (ω1). A symplectic diffeomorphism is called a
symplectomorphism.

The tangent space of a symplectic manifold is a linear symplectic space; in particular,
dim M is even. The condition that ω is closed is harder to “visualize”.

Examples 1. Let M be R2n with Darboux coordinates (p1, ..., pn, q1, ..., qn). Then
ω = dp1 ∧ dq1 + dp2 ∧ dq2 + ... + dpn ∧ dqn is a symplectic structure. The same formula
defines a symplectic structure on 2n-dimensional torus (p and q are cyclic coordinates).
The natural embedding j : R2n ⊂ R2n+2 is symplectic.

2. Let M be a smooth manifold. Then the cotangent bundle T ∗M has a canonical
symplectic structure ω. First, one defines a canonical 1-form λ called the Liouville form.
Let p ∈ T ∗

x M and let v be a tangent vector to T ∗M at point p. Consider the projection
π : T ∗M → M ; then dπ(v) ∈ TxM . We define λ(v) as p(dπ(v)). Then one defines ω = dλ.
A diffeomorphism of M induces a symplectomorphism of T ∗M .

To express λ is coordinates let (q1, ..., qn) be local coordinates on M . Then (p1 =
dq1, ..., pn = dqn) is a basis in every cotangent space T ∗

x M . Thus (p1, ..., pn, q1, ..., qn) are
local coordinates in T ∗M , and one has: λ = p1dq1+...+pndqn. Therefore ω is a symplectic
form.

Cotangent bundles appear in classical mechanics as phase spaces of mechanical sys-
tems; we will later discuss this in some detail.

3. Let M be a surface. A symplectic structure on M is just an area form (it is closed
automatically). Thus every oriented surface has a symplectic structure. A symplectic map
of surfaces is simply an orientation and area-preserving map.

Note that if (M, ω) is a closed (compact, no boundary) symplectic manifold then ω
defines a non-trivial de Rham cohomology class. For example, the sphere S2n is not a
symplectic manifold unless n = 1.

Exercise (Archimedes). Consider a sphere in 3-space and a circumscribed cylinder.
Let f be the radial projection from the sphere to the cylinder. Prove that f is a symplectic
map.

3.3. Euclidean structure identifies tangent and cotangent spaces and associates the
gradient vector field with a function. Similarly, a symplectic structure on a manifold M
associates the symplectic gradient sgrad H with a function H : M → R (the function H is
often called a Hamiltonian and the vector field sgrad H a Hamiltonian vector field).

Definition. The field sgrad H is defined by the equality ω(v, sgrad H) = dH(v) that
holds for every vector field v on M . Equivalently, isgrad Hω = −dH.

In other words, sgrad H is the vector field dual to the 1-form dH with respect to the
symplectic structure ω.

Example. Compute sgrad H in Darboux coordinates in which ω =
∑

dpi ∧ dqi. Let
sgrad H =

∑
ai∂pi + bi∂qi. One has: isgrad Hω =

∑
aidqi − bidpi. On the other hand,
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dH =
∑

Hqi
dqi + Hpi

dpi. Thus ai = −Hqi
, bi = Hpi

, and

sgrad H =
∑

Hpi
∂qi − Hqi

∂pi.

Exercises. 1. Prove that H is constant along the trajectories of the vector field sgrad
H (hint: find the directional derivative of H along this field).

2. Find the integral curves of the fields sgrad x2 ±y2 in the plane with the symplectic
structure dx ∧ dy.

3. Compute the vector field sgrad z on the unit sphere x2 + y2 + z2 = 1 with its
standard area form.

Lemma. A Hamiltonian vector field preserves the symplectic structure.

Proof. Let v = sgrad H; we want to show that Lvω = 0. Indeed,

Lvω = ivdω + divω = −ddH = 0,

and we are done.

It follows that the respective 1-parameter group of diffeomorphisms consists of sym-
plectomorphisms.

Conversely, if Lvω = 0 for some vector field v then ivω is closed, and therefore locally
there exists a function H such that ivω = −dH. Thus v is a locally Hamiltonian vector
field. However the function may not exist globally: consider, for example, the field ∂x on
the torus with the symplectic structure dx ∧ dy.

3.4. One can define a Lie algebra structure on the space of functions on a symplectic
manifold. Let (M, ω) be a symplectic manifold and f, g two smooth functions. Define the
Poisson bracket

{f, g} = dg (sgrad f).

In other words,
{f, g} = ω (sgrad f, sgrad g).

Example. Compute the Poisson bracket in Darboux coordinates:

{f, g} =
∑

fpi
gqi

− fqi
gpi

.

Exercise. Show that the Poisson bracket satisfies the Leibnitz identity:

{f1f2, g} = f1{f2, g} + f2{f1, g}.

Clearly, the Poisson bracket is a skew-symmetric bilinear operation on functions.
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Proposition. 1. The Poisson bracket satisfies the Jacobi identity:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

2. One has:
[sgrad g, sgrad h] = sgrad {g, h}.

Proof. The sum in question is a combination of second partial derivatives of the three
functions involved. Let u, v, w be the symplectic gradient of the functions f, g, h. The
second partial derivatives of f appear as follows:

{{f, g}, h}+ {{h, f}, g} = LwLv(f) − LvLw(f) = L[w,v](f).

The last expression involves only one derivative, thus the sum in question is free from
second derivatives of f . The same applies to g and h, therefore, the sum is zero. This
proves the first claim.

The first claim thus can be written as

L[w,v](f) + {{g, h}, f} = 0

or
L[v,w] = Lsgrad {g,h}.

The second claim follows.
Therefore the mapping f → sgrad f is a Lie algebra homomorphism.
Exercise. Prove the above Proposition by a direct computation in Darboux coordi-

nates.
3.5. Unlike Riemannian geometry, symplectic geometry does not have local invariants.

More precisely, one has the next result.

Theorem (Darboux). Every two symplectic manifolds of the same dimension are locally
symplectomorphic.

Proof. We may assume that two symplectic forms ω0 and ω1 are given in a neighborhood
of the origin U ⊂ R2n. Moreover, since every two linear symplectic structures are linearly
isomorphic, we may assume that the restrictions of both forms to the tangent space at the
origin coinide. We will construct a diffeomorphism f of a possibly smaller neighborhood
of the origin such that f∗(ω1) = ω0.

Use the following homotopy method. The form ωt = (1 − t)ω0 + tω1 is a linear
symplectic structure on the tangent space at the origin, and dωt = 0. Therefore ωt is a
symplectic structure in a small neighborhood of the origin. Moreover, ωt = ω0 + tdσ where
σ is some 1-form. We will find a family of local diffeomorphisms ft, fixing the origin, and
such that f∗

t (ωt) = ω0.
The main idea is to represent the maps ft as the flow of a time-dependent vector field

vt:
dft

dt
(x) = vt(ft(x)).
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Since f∗
t (ωt) = ω0, one has:

0 =
df∗

t ωt

dt
= f∗

t (Lvt
ωt +

dωt

dt
) = f∗

t (Lvt
ωt + dσ).

Thus
Lvt

ωt + dσ = 0 or ivt
ωt + dσ = 0.

Since ωt is non-degenerate, the last equation uniquely determines the desired vt, and we
are done.

Darboux theorem implies that, without loss of generality, any local computation can
be made in Darboux coordinates. Darboux theorem is only a local result: there may be
many non-equivalent symplectic structures on the same manifold.

Example. Consider the plane with a linear symplectic form and an open disk. These
are diffeomorphic but not symplectomorphic manifolds: the area of the former is infinite
and that of the latter is finite.

3.6. Let (M2n, ω) be a symplectic manifold and N 2n−1 ⊂ M a smooth hypersurface.
Then the restriction of ω to N is not non-degenerate anymore: it has a 1-dimensional
kernel at every point.

Definition. The characteristic direction ξx ⊂ TxN is Ker ω|TxN . The characteristic
foliation F is the 1-dimensional foliation on N whose tangent line at every point is the
characteristic direction.

Let N be a non-singular level surface of a smooth function H.

Lemma. For every x ∈ N one has: sgrad H(x) = ξx.

Proof. One has: isgrad Hω = dH = 0 on N .
Assume that the space of leaves of the characteristic foliation F is a smooth manifold

X2n−2 (locally this is always the case).

Theorem. X2n−2 has a canonical symplectic structure.

Proof. Let p : N → X be the projection. Define a 2-form Ω on X as follows. Let u1, u2

be tangent vectors to X at point x. Choose a point y = p−1(x) and tangent vectors
v1, v2 ∈ TyN such that dp(vi) = ui, i = 1, 2. Set: Ω(u1, u2) = ω(v1, v2).

We need to show that this is well defined. One may change vi by an element of Ker
dp, that is, by a vector from ξy, but such a change does not effect ω(v1, v2). One may also
change the point y. Such a change is induced by the flow of the vector field sgrad H from
the preceding lemma. Since sgrad H preserves the form ω, this does not effect ω(v1, v2)
either.

Since TX = TN/ξ and ξ is the kernel of ω, the form Ω is non-degenerate. It remains
to show that Ω is closed. Consider a point x ∈ X , and choose a point y = p−1(x). Consider
a small 2n−2-dimensional disk V that contains y and is transversal to F . Then U = p(U)
is a neighborhood of x, and p : V → U is a diffeomorphism. Moreover, p takes Ω to ω|V .
Since ω is closed, so is Ω.

The above construction is called symplectic reduction.
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Two Important Examples. 1). Consider Euclidean space Rn+1 and identify the
tangent and cotangent spaces using the Euclidean structure. Then TRn+1 = R2n+2 =
T ∗Rn+1 is a symplectic manifold with the Darboux symplectic structure dp ∧ dq, where
(q, p) is a tangent vector with foot point q. Consider the function H(q, p) = p2/2. Then
sgrad H = p∂q; this is a constant flow with speed |p|. Consider the ”unit energy” hyper-
surface H = 1, and make the symplectic reduction construction. The quotient space is
the space L of oriented lines in Rn+1. We conclude that L is a 2n-dimensional symplectic
manifold. Moreover, one has the following result.

Lemma. The space L is symplectomorphic (up to the sign) to T ∗Sn.

Proof. Let l be an oriented line. Denote by p the unit vector in the direction of l and
by q the foot of the perpendicular from the origin to l. The map l → (q, p) defines an
embedding of L to TRn+1, transversal to the trajectories of the field sgrad H. Therefore
the symplectic structure on L is dp ∧ dq. On the other hand, q is perpendicular to p,
therefore the set of pairs (p, q) is TSn (where p is a point of the sphere and q is a tangent
vector). Identifying the tangent and cotangent spaces again, we obtain the result.

In particular, the space of oriented lines in the plane is the cylinder with the area
form dp ∧ dα. One can reconstruct the metric of the plane from this area form. Namely,
the next result holds.

Lemma. Let γ be a plane curve. Given an oriented line l, let f(l) be the number of
intersection points l ∩ γ. Then

length γ =
1
4

∫
L

f(l)dp ∧ dα.

Proof. It suffices to consider a broken line. Since both sides of the equality are additive,
it is enough to consider one segment. For a segment, this is a direct computation.

The above result belongs to integral geometry.
Exercises. 1. Prove that the space of non-oriented lines in the plane is diffeomorphic

to an open Moebius band.
2. Repeat the construction from the previous example replacing Euclidean space by

S2. Show that the quotient space L is the space of oriented great circles in S2, and that
L is symplectomorphic to S2 with its standard area form.

3. Start with an area form φ(p, α)dp ∧ dα on the space of oriented line sin the plane;
here φ(−p, α + π) = φ(p, α) > 0 is a positive even function. The formula from the above
lemma defines a new “length” in the plane. Prove that this length satisfies the triangle
inequality, that is, the straight segment is the shortest curve between two points.

2). Clearly Cn is a symplectic manifold. Apply symplectic reduction to show that so is
CPn. Start with Cn+1 with its Darboux symplectic structure, and let H(q, p) = (q2 +p2).
Then sgrad H = 2(p∂q − q∂p). The unit energy hypersurface is the unit sphere, and the
vector field is the Hopf field v(z) = iz. The trajectories are exp(it)z, and the quotient
space is CPn.

This example provides a link between symplectic and algebraic geometry: a smooth
algebraic subvariety of CPn is also a symplectic manifold.
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3.7. The last sections are a very brief introduction to calculus of variations and its
relation to symplectic geometry.

To fix ideas, consider parametric curves γ(t), a ≤ t ≤ b in a manifold M . A functional
F : γ → R is a function whose argument is a curve.

Example. Let M be a submanifold in Euclidean space. The length functional is

∫ b

a

|dγ/dt|dt,

and the energy functional is ∫ b

a

|dγ/dt|2dt.

Exercise. Show that the length functional, unlike the energy one, is independent of
parameterization of the curve.

An infinitesimal deformation (or a variation) of a curve γ(t) is a 1-parameter family
of curves γε(t); a variation is determined by the vector field along the curve

v(t) = dγε(t)/dε |ε=0.

Informally, γ + εv is thought of as a curve, close to γ.

Definition. The functional is called differentiable if the familiar limit

Φ(γ, v) := (F (γ + εv) − F (γ))/ε |ε=0

is a linear function of v. This linear function of v is often called the variation of F . A
curve γ(t) is called an extremum of F if Φ(γ, v) = 0 for every variation v.

Example. A straight segment with fixed end-points in Euclidean space is an ex-
tremum of the length functional. Indeed, γ(t) = et where e is unit a unit vector. Let v(t)
be a variation; note that v vanishes at the end-points of the curve. Then

|γ′
ε(t)| = 1 + ε e · v′(t) + O(ε2).

Since ∫
e · v′(t) dt = 0,

the result follows. The extremals of the length functional are called geodesics.
Exercise. Prove that the great circles on a sphere are geodesics.

Let L(x, u, t) be a time-dependent smooth function on TM called, in this context, the
Lagrangian. Consider the functional on, say, closed curves in M :

F (γ) =
∫

L(γ(t), γ′(t), t) dt.
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Theorem. A curve γ(t) is an extremal of the functional F if and only if the following
Euler-Lagrange equation holds identically along γ (that is, x = γ(t), u = γ ′(t)):

d

dt

∂L

∂u
=

∂L

∂x
.

Proof. Choose a local coordinate system near γ. One has:∫
L(γ + εv, γ′ + εv′, t) dt =

∫
L(γ, γ′, t) dt + ε

∫ (∂L

∂x
(γ, γ′, t)v +

∂L

∂u
(γ, γ′, t)v′

)
dt.

Integrating by parts on the RHS, one concludes:

Φ(γ, v) =
∫ (∂L

∂x
(γ, γ′, t) − d

dt

∂L

∂u
(γ, γ′, t)

)
v dt.

This integral vanishes for every v iff the expression in the parenthesis is zero, i.e., if Euler-
Lagrange equation holds.

Example. Let L(x, u, t) = u2/2. Then the Euler-Lagrange equation reads: u′ = 0.
Therefore the extremals are the lines x(t) = ut + c.

Remarks. 1. Assume that L(x, u) does not depend on time. Using the chain rule,
the Euler-Lagrange equation can be rewritten as Luxu + Luuu′ = Lx.

2. Although the computation was made in local coordinates, its result, the Euler-
Lagrange equation, has an invariant meaning.

Exercises. 1. Consider a Lagrangian L(x, u) in Euclidean space satisfying:
(i) L(x, u) is homogeneous of degree 1 in u, i.e., L(x, tu) = tL(x, u) for all t > 0;
(ii) the matrix of mixed partial derivatives Lxu is symmetric.
Prove that the extremals are straight lines (not necessarily arc-length parameterized!)
2. Consider the Lagrangian

L(x, u) =
u2

1 − x2
+

(u · x)2

(1 − x2)2

where |x| < 1. Prove that the extremals are straight lines (this is the hyperbolic metric
inside the ball).

3. Let M be a hypersurface in Euclidean space. Prove that the geodesics γ(t) on
M satisfy the following condition: for every t the acceleration vector γ ′′(t) belongs to the
2-plane spanned by the velocity γ ′(t) and the normal vector to M at point γ(t). Also
prove that the extremals of the energy functional are the geodesics with a constant speed
parameterization. This means that the geodesics are the trajectories of a free particle on
M : the only force acting on the particle is perpendicular to the hypersurface.

3.8. Assume that the Lagrangian L(x, u) is a time-independent convex function of u.
Again working in local coordinates, set:

q = x, p = Lu.

In these new coordinates, the Euler-Lagrange equation reads: p′ = Lq. Define a new
(Hamiltonian) function as follows:

H(q, p) = pu − L(x, u);

the correspondence L → H is called the Legendre transformation; it has an invariant
meaning to be discussed in the next section.
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Theorem. The Euler-Lagrange equation is equivalent to the Hamilton equations of the
vector field sgrad H:

q′ = Hp, p
′ = −Hq .

Proof. One has:

dH = Hpdp + Hqdq = pdu + udp − Lxdq − Ludu = udp − Lxdq

(the second equality due to p = Lu). Therefore

Hp = u, Hq = −Lx.

Since u = p′ and, due to the Euler-Lagrange equation, Lx = d(Lu)/dt = p′, the result
follows.

Remark. The respective symplectic structure is dp ∧ dq = d(Lu) ∧ dx.
Thus the trajectories of the Hamiltonian vector field are the extremals of the respective

Lagrangian. This result provides an equivalence between Lagrangian and Hamiltonian
mechanics, and shows that the variational calculus is closely related to symplectic geometry.

Example: Billiard. Let γ be a closed convex plane curve. The billiard dynamical
system describes the motion of a free particle inside γ, subject to the law of elastic reflec-
tion: the angle of insidence equals that of reflection. The billiard transformation T acts
on the space of oriented lines intersecting γ; it sends an incoming ray to the outgoing one.

Let t be the arc-length parameter along γ. Given an oriented line l, let γ(t1) and
γ(t2) be the intersection points with the curve, and let φ1,2 be the angles between γ and
l at points γ(t1,2). Note that (t1, t2) can be used as coordinates of the line l. Denote
by H(t1, t2) the distance between points γ(t1) and γ(t2). It follows from the Lagrange
multipliers method that

∂H(t1, t2)
∂t1

= − cos φ1,
∂H(t1, t2)

∂t2
= cos φ2.

Hence
dH = cosφ2dt2 − cos φ1dt1,

and therefore
sin φ2dt2 ∧ dφ2 = sinφ1dt1 ∧ dφ1.

This is a T -invariant symplectic form.
Exercise. Prove that this T -invariant symplectic form coincides with the previously

discussed area form dp ∧ dα on the space of oriented lines.
Continue with billiards. Consider three consecutive points:

(t1, φ1) = T (t0, φ0), (t2, φ2) = T (t1, φ1).

It folows from the previous formulas that

∂H(t0, t1)
∂t1

+
∂H(t1, t2)

∂t1
= 0.
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This formula gives the billiard transformation a variational meaning. Suppose one wants
to shoot the billiard ball from a given point x ∈ γ so that after a reflection at point y ∈ γ
it arrives at a given point z ∈ γ. How does one find the unknown point y? Answer: this
point is a critical point of the function |xy| + |yz|.

Exercise. Extend the above results to multi-dimensional billiards.
3.9. In this last section we discuss the geometrical meaning of the Legendre transfor-

mation. For simplicity, we talk about single variable although everything extends verbatum
to multivariable case. Let f(u) be a convex function: f ′′(x) > 0. Fix a number p and
consider the line v = pu. Consider the distance (along the vertical) from the line to the
graph of the function:

pu − f(u) := F (p, u).

There exists a unique u for which this distance is maximal: f ′(u) = p. Denote this maximal
distance by g(p) – this is the Legendre transformation of the function f(u).

Example. If f(u) = ua/a then g(p) = pb/b where 1/a + 1/b = 1.
It follows from the definition that

pu ≤ f(u) + g(p)

for every pair (u, p). This is called the Young inequality. In particular,

pu ≤ ua

a
+

pb

b

for u, p > 0, a, b > 1, 1/a + 1/b = 1.

Proposition. The Legendre transformation is involutive.

Proof. Consider two planes: (u, v) and (p, r) ones. Consider the equation

r + v = pu.

For a fixed (p, r) this equation describes a non-vertical line in the first plane; for a fixed
(u, v) it describes a non-vertical line in the second one. Thus the planes are dual: a
(non-vertical) line in one is a point of the other.

Given a convex curve γ in one plane, the set of its tangent lines is a curve γ∗ in the
other plane; this curve is called a dual curve. It follows from definition of the Legendre
transformation that the line v = pu − g(p) is tangent to the graph v = f(u). Thus the
graph of g(p) is dual to the graph of f(u).

It remains to show that duality is an involutive relation. Let γ be a curve and γ∗ its
dual. A tangent line to γ∗ is a limit position of a line l through two very close points, say,
A, B ∈ γ∗. The points A, B in the second plane correspond to two lines a, b in the first
plane, tangent to γ. The intersection of two very close tangents to γ is a point L, dual to
the line l and close to γ; in the limit, L ∈ γ. Thus γ∗∗ = γ.

Exercise. Describe the curves, dual to v = u2 and to v = u3.
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