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Chaotic Dynamics
An Introduction Based on Classical Mechanics

Since Newton, a basic principle of natural philosophy has been determin-

ism, the possibility of predicting evolution over time into the far future,

given the governing equations and starting conditions. Our everyday

experience often strongly contradicts this expectation. In the past few

decades we have come to understand that even motion in simple systems

can have complex and surprising properties.

Chaotic Dynamics provides a clear introduction to chaotic phenom-

ena, based on geometrical interpretations and simple arguments, without

in-depth scientific and mathematical knowledge. Examples are taken

from classical mechanics whose elementary laws are familiar to the

reader. In order to emphasise the general features of chaos, the most

important relations are also given in simple mathematical forms, inde-

pendent of any mechanical interpretation. A broad range of potential

applications are presented, ranging from everyday phenomena through

engineering and environmental problems to astronomical aspects. It is

richly illustrated throughout, and includes striking colour plates of the

probability distribution of chaotic attractors.

Chaos occurs in a variety of scientific disciplines, and proves to be the

rule, not the exception. The book is primarily intended for undergraduate

students in science, engineering and mathematics.

T A M Á S T É L is Professor of Physics at Eötvös University, Budapest,
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of interest are non-linear dynamics, statistical mechanics, fluid dynamics

and environmental flows.
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non-linear oscillator; Sections 1.2.1 and 5.6.2 and equation (5.85)) on

a stroboscopic map (Fig. 1.4), coloured according to the visiting

probabilities. The colour change from red to yellow denotes less than
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II. Chaotic attractor of a driven pendulum (Sections 1.2.1 and 5.6.3 and
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maximum; medium green to yellow represents between 4 and 50%;

bright yellow represents 50% and above. The picture contains

1000 × 1000 points.
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VII. Basins of attraction of two stationary periodic motions (limit cycle

attractors marked by white dots) of a driven pendulum (Sections 1.2.2

and 5.6.3 and equation (5.89)) on a stroboscopic map (like the one in
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mass of the swinging body is smaller than that in Fig. 1.17. The dotted
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presented in Plate II. Dark green is used up to 2% of the maximum,
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Preface

We have just seen that the complexities of things can so easily
and dramatically escape the simplicity of the equations which
describe them. Unaware of the scope of simple equations, man
has often concluded that nothing short of God, not mere equa-
tions, is required to explain the complexities of the world.

. . . The next great era of awakening of human intellect may
well produce a method of understanding the qualitative content
of equations.

Richard Feynman in 1963, the year of publication of the
Lorenz model 1

The world around us is full of phenomena that seem irregular and random

in both space and time. Exploring the origin of these phenomena is

usually a hopeless task due to the large number of elements involved;

therefore one settles for the consideration of the process as noise. A

significant scientific discovery made over the past few decades has been

that phenomena complicated in time can occur in simple systems, and

are in fact quite common. In such chaotic cases the origin of the random-

like behaviour is shown to be the strong and non-linear interaction of the

few components. This is particularly surprising since these are systems

whose future can be deduced from the knowledge of physical laws and the

current state, in principle, with arbitrary accuracy. Our contemplation of

nature should be reconsidered in view of the fact that such deterministic

systems can exhibit random-like behaviour.

Chaos is the complicated temporal behaviour of simple systems.

According to this definition, and contrary to everyday usage, chaos is not

spatial and not a static disorder. Chaos is a type of motion, or more gener-

ally a type of temporal evolution, dynamics. Besides numerous everyday

processes (the motion of a pinball or of a snooker ball, the auto-excitation

of electric circuits, the mixing of dyes), chaos occurs in technical,

chemical and biological phenomena, in the dynamics of illnesses, in

1 R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics,

Vol. II. New York: Addison-Wesley, 1963, Chap. 40, pp. 11, 12.
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xiv Preface

elementary economical processes, and on much larger scales, for exam-

ple in the alternation of the Earth’s magnetic axis or in the motion of the

components of the Solar System.

There is an active scientific and social interest in this phenomenon

and its unusual properties. The motion of chaotic systems is complex but

understandable: it provides surprises and presents those who investigate

it with the delight of discovery.

Although numerous books are available on this topic, most of them

follow an interdisciplinary presentation. The aim of our book is to provide

an introduction to the realm of chaos related phenomena within the scope

of a single discipline: classical mechanics. This field has been chosen

because the inevitable need for a probabilistic view is most surprising

within the framework of Newtonian mechanics, whose determinism and

basic laws are well known.

The material in the book has been compiled so as to be accessible to

readers with only an elementary knowledge of physics and mathematics.

It has been our priority to choose the simplest examples within each

topic; some could even be presented at secondary school level. These

examples clearly show that almost all the mechanical processes treated in

basic physics become chaotic when slightly generalised, i.e. when freed

of some of the original constraints: chaos is not an exceptional, rather it

is a typical behaviour.

The book is primarily intended for undergraduate students of science,

engineering, and computational mathematics, and we hope that it might

also contribute to clarifying some misconceptions arising from everyday

usage of the term ‘chaos’.

The book is based on the material that one of us (T. T.) has been teach-

ing for fifteen years to students of physics and meteorology at Eötvös

University, Budapest, and that we have been lecturing together in the last

few years.
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How to read the book

The first part of the book presents the basic phenomena of chaotic dynam-

ics and fractals at an elementary level. Chapter 1 provides, at the same

time, a preview of the five main topics to be treated in Part III.

Part II is devoted to the analysis of simple motion. The geometric

representation of dynamics in phase space, as well as basic concepts

related to instability (hyperbolic points and stable and unstable mani-

folds), are introduced here. Two-dimensional maps are deduced from

the equations of motion for driven systems. Elementary knowledge of

ordinary differential equations, of linear algebra, of the Newtonian equa-

tion of a single point mass and of related concepts (energy, friction and

potential) is assumed.

Part III provides a detailed investigation of chaos. The dynamics

occurring on chaotic attractors characteristic of frictional, dissipative

systems is presented first (Chapter 5). No preliminary knowledge is

required upon accepting that two-dimensional maps can also act as the

law of motion. Next, the finite time appearance of chaos, so-called tran-

sient chaotic behaviour, is investigated (Chapter 6). Subsequently, chaos

in frictionless, conservative systems is considered in Chapter 7, along

with its transient variant in the form of chaotic scattering in Chapter 8.

Chapter 9 covers different applications of chaos, ranging from engineer-

ing to environmental aspects.

Problems constructed from the material of each chapter (many also

require computer-based experimentation) motivate the reader to carry

out individual work. Some of the solutions are given at the end of the

book; the remainder appear (in a password-protected format) on the

following website: www.cambridge.org/9780521839129.

Topics only loosely related to the main train of ideas, but of his-

torical or conceptual interest, are presented in Boxes. Some important

technical matter (for example numerical algorithms, writing equations

in dimensionless forms) are relegated to an Appendix. A bibliography is

given at the end of the book, and it is broken down according to topics,

chapters and Boxes.

In order to emphasize the general aspects of chaos, the most impor-

tant relations are also given in a formulation independent of mechanics

xvi



How to read the book xvii

(see Sections 3.5, 4.7, 5.4, 6.3, 7.5 and 8.4). The description of motion

occurs primarily in terms of ordinary differential equations, and we

concentrate on chaos from such a mathematical background. Irregu-

lar dynamics generated by other mathematical structures, which do not

represent real phenomena, are thus beyond the scope of the book. The

case of one-dimensional maps is mentioned therefore as a special limit

only. This approach might provide a useful introduction to chaos for

all disciplines whose dynamical phenomena are described by ordinary

differential equations.

The book is richly illustrated with computer-generated pictures

(24 of which are in colour), not only to provide a better understand-

ing, but also to exemplify the novel and aesthetically appealing world of

the geometry of dynamics.





Part I

The phenomenon: complex motion,
unusual geometry





Chapter 1

Chaotic motion

1.1 What is chaos?
Certain long-lasting, sustained motion repeats itself exactly, periodically.

Examples from everyday life are the swinging of a pendulum clock or

the Earth orbiting the Sun. According to the view suggested by conven-

tional education, sustained motion is always regular, i.e. periodic (or at

most superposition of periodic motion with different periods). Important

characteristics of a periodic motion are: (1) it repeats itself; (2) its later

state is accurately predictable (this is precisely why a pendulum clock

is suitable for measuring time); (3) it always returns to a specific posi-

tion with exactly the same velocity, i.e. a single point characterises the

dynamics when the return velocity is plotted against the position.

Regular motion, however, forms only a small part of all possible

sustained motion. It has become widely recognised that long-lasting

motion, even of simple systems, is often irregular and does not repeat

itself. The motion of a body fastened to the end of a rubber thread is a

good example: for large amplitudes it is much more complex than the

simple superposition of swinging and oscillation. No regularity of any

sort can be recognised in the dynamics.

The irregular motion of simple systems, i.e. systems containing only

a few components, is called chaotic. As will be seen later, the exis-

tence of such motion is due to the fact that even simple equations can

have very complicated solutions. Contrary to the previously generally

accepted view, the simplicity of the equations of motion does not deter-

mine whether or not the motion will be regular.

Understanding chaotic motion requires a non-traditional approach

and specific tools. Traditional methods are unsuitable for the description

3



4 The phenomenon: complex motion, unusual geometry

Table 1.1. Comparison of regular and chaotic motion.

Regular motion Chaotic motion

self-repeating irregular

predictable unpredictable

of simple geometry of complicated geometry

of such motion, and the discovery of the ubiquity of chaotic dynamics

has become possible through computer-based experimentation. Detailed

observations have led to the result that chaotic motion is characterised

by the opposite of the three properties mentioned above: (1) it does

not repeat itself, (2) it is unpredictable because of its sensitivity to the

initial conditions that are never exactly known, (3) the return rule is

complicated: a complex but regular structure appears in the position

vs. velocity representation. The differences between the two types of

dynamics are summarised in Table 1.1.

The properties of chaotic systems are unusual, either taken indi-

vidually or together; the most efficient way to understand them is by

considering particular cases. In the following, we present the chaotic

motion of very simple systems on the basis of numerical simulations,

which are unavoidable when studying chaos. It should be emphasised

that all of our examples are discussed for a unique set of parameters, and

that slightly different choices of the parameters could result in substan-

tially different behaviour. These examples also serve to classify different

types of chaos and help in developing the new concepts necessary for a

detailed understanding of chaotic dynamics.

Fig. 1.1. Model of driven
oscillations: a body of finite
mass is fixed to one end of a
weightless spring and the
other end of the spring is
moved sinusoidally with time.

1.2 Examples of chaotic motion
1.2.1 Irregular oscillations, driven pendulum – the
chaotic attractor

Objects mounted on spring suspensions (for example car wheels and

spin-dryers) oscillate. Because of the losses that are always present due

to friction or air drag, these oscillations, when left alone, are damped

and ultimately vanish. Sustained motion can only develop if energy is

supplied from an external source. The supplied energy can be a more or

less periodic shaking, i.e. the application of a driving force (caused by

interactions with pot-holes in the case of the car wheel and by the uneven

distribution of clothes in the spin-dryer), as indicated schematically in

Fig. 1.1.

As long as the displacement is small, the spring obeys a linear force

law to a good approximation: the magnitude of the restoring force is
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Fig. 1.2. Irregular sustained oscillations of a point mass fixed to the end of a
stiffening spring (a driven non-linear oscillator), driven sinusoidally in the
presence of friction.

proportional to the elongation. In this case the sustained motion is reg-

ular: it adopts the period of the driving force. If the natural period of

the spring is close to that of the driving force, then the amplitude may

become very large and the well known phenomenon of resonance devel-

ops. For large amplitudes, however, the force of the spring is usually no

longer proportional to the elongation; i.e., the force law is non-linear.

Resonance is therefore a characteristic example for the appearance of

non-linearity.

For non-linear force laws, the restoring force increases more rapidly

or more slowly than it would in linear proportion to the elongation: we can

speak of stiffening or softening springs, respectively. Whichever type of

non-linearity is involved, the sustained state of the driven oscillation may

be chaotic. A qualitative explanation is that the spring is not able to adopt

exactly the sinusoidal, harmonic motion of the forcing apparatus, since

its own periodic behaviour is no longer harmonic. Thus, the sustained

dynamics follows the driving force in an averaged sense only, but always

differs from it in detail (instead of the uniform hum of the car or the

spin-dryer, an irregular sound can be heard in such situations). Neither

the amplitude nor the frequency is uniform: the sustained motion does

not repeat itself regularly; it is chaotic.

Figure 1.2 shows the motion of a body fixed to the end of a stiffening

spring and driven sinusoidally.1 It can clearly be seen that there is no

repetition in the displacement vs. time curve; i.e., the motion is irregular.

Slightly different initial conditions result in significant differences

in the displacement after only a short time (Fig. 1.3): the dynamics is

unpredictable. This figure also shows that the long-term behaviour is

of a similar nature in both cases: the two motions are equivalent in a

statistical sense.

1 The precise equations of motion of the examples in this section can be found in

Sections 5.6.2 and 5.6.3.
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Fig. 1.3. Two sets of motion
which started from nearly
identical positions. The small
initial difference increases
rapidly: the motion is sensitive
to the initial conditions and
therefore it is unpredictable.
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Fig. 1.4. Pattern resulting
from a sustained non-linear
oscillation in the velocity vs.
position representation, using
samples taken at time intervals
corresponding to the period
of the driving force. The
position and velocity
co-ordinates of the nth sample
are xn and vn, respectively.

An interesting structure reveals itself when we do not follow the mo-

tion continuously, but only ‘take samples’ of it at equal time intervals.

Figure 1.4 and Plate I have been generated by plotting the position and

velocity co-ordinates (xn, vn) of the sustained motion at integer multi-

ples, n, of the period of the driving force, through several thousands of

periods.

It is surprising that there are numerous values of xn to which many

(according to detailed examinations, an infinite number of) different

velocity values belong. Furthermore, the possible velocity values corre-

sponding to a single position co-ordinate xn do not form a continuous

interval anywhere. The whole picture has a thready, filamentary pattern,

indicating that chaos is associated with a definite structure. This pattern

is much more complicated than those of traditional plane-geometrical

objects: it is a structure called a fractal (a detailed definition of fractals

will be given in Chapter 2). Remember that a single point would cor-

respond to a periodic motion in this representation. Chaotic motion is

therefore infinitely more complicated than periodic motion.
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(a) (b)

Fig. 1.6. Motion of a driven pendulum. (a) The pendulum a few moments after
starting from a hanging state (over the first half period). (b) The path of the
end-point of the pendulum for a longer time: the pendulum swings irregularly
and often turns over. The horizontal bar indicates the interval over which the
suspension point moves.

Another example is the behaviour of a driven pendulum (Fig. 1.5).

The large-amplitude swinging of a traditional simple pendulum is non-

linear, since the restoring force is not proportional to the deflection angle

but to the sine of this angle. Without any driving force, the swinging

ceases because of friction or air drag: sustained motion is impossible.

The pendulum can be driven in different ways. We examine the case when

the point of suspension is moved horizontally, sinusoidally in time. In

order to avoid the problem of the folding of the thread, the point mass is

considered to be fixed to a very light, thin rod. With a sufficiently strong

driving force, the motion may become chaotic. Figure 1.6 shows the path

of the pendulum in the vertical plane.

Fig. 1.5. Driven pendulum:
the pendulum is driven by the
periodic movement of its
point of suspension in the
horizontal plane.

Note that the pendulum turns over several times in the course of its

motion. The ‘upside down’ state is especially unstable, just like that of

a pencil standing on its point. Two paths of the pendulum starting from

nearby initial positions remain close to each other only until an unstable

state, an ‘upside down’ state, separates them. Then one of them turns

over, while the other one falls back to the side it came from (Fig. 1.7).

The reason for the unpredictability is that the motion passes through a

series of unstable states.

The structure underlying the irregular motion can again be demon-

strated by following the motion initiated in Fig. 1.6 for a long time and

taking samples from it by plotting the position (angular deflection) and

velocity (angular velocity) co-ordinates (xn, vn) at intervals correspond-

ing to the period of the driving force (Fig. 1.8 and Plate II).

In a frictional (dissipative) system, sustained motion can only de-

velop if some external energy supply (driving) is present. Regardless of

the initial state, the dynamics converges to some sustained behaviour

that will therefore be called an attracting object, or an attractor (for the
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Fig. 1.7. Separation of the
paths of two identical driven
pendulums starting from
nearby points while passing an
unstable state. The notation is
the same as in Fig. 1.6. The
arrows show the direction in
which the end-points of the
pendulums move.
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21
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–21

Fig. 1.8. Pattern resulting
from a chaotic driven
pendulum (chaotic attractor)
obtained by plotting the state
of the pendulum in the
position–velocity co-ordinates
at integer multiples of the
driving period.

exact definition, see Section 3.1.2). Simple attractors correspond either

Fig. 1.9. The magnetic
pendulum: magnets are fixed
to the table and a point mass
attracted by the magnets is
fixed to the end of the thread.
The pendulum ultimately
settles in an equilibrium state
pointing towards one of the
magnets, but only after some
irregular, chaotic motion.

to regular or to ceasing motion. A sufficiently large supply of energy

inevitably brings about the non-linearity of the system; the sustained dy-

namics is then usually irregular, i.e. chaotic. This is accompanied by the

presence of a chaotic attractor, also called a strange attractor because

of its peculiar structure. Figures 1.4 and 1.8 display examples of chaotic

attractors.

1.2.2 Magnetic and driven pendulums, fractal basin
boundary – transient chaos

Consider a pendulum, the end-point of which is a small magnetic

body, moving above three identical magnets placed at the vertices of a

horizontal equilateral triangle (Fig. 1.9). When the force between the
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Fig. 1.10. Basin of
attraction of the three
equilibrium states of the
magnetic pendulum (one
white and two black dots).
Each point on the
horizontal plane is shaded
according to the magnet in
whose neighbourhood the
pendulum comes to a rest
when starting above that
point with zero initial
velocity.

end of the pendulum and the magnets is attracting, the pendulum can

come to a halt, pointing towards any of the magnets. Thus there are

three simple attractors in the system. Starting above any point of the

plane, we can use a computer to calculate which magnet the pendulum

will be closest to after coming to rest.2 By assigning three different

colours to the three attractors, and to the corresponding initial posi-

tions that converge towards them, the whole plane can be coloured.

Each identically coloured area is a basin of attraction. Surprisingly,

the basin boundaries are interwoven and entangled in a complicated

manner (see Fig. 1.10 and Plates III–VI); these simple attractors have

fractal basin boundaries. (Naturally, the close vicinity of each attractor

appears in one colour only: the boundaries do not come close to the

attractors.)

Motion starting near the fractal boundary remains irregular for a

while, exhibiting transient chaos, i.e. chaos lasting for a finite period of

time (Fig. 1.11), but ultimately it ends up on one of the attractors.

A driven pendulum (Fig. 1.5) may also exhibit transient chaos. When

the friction is sufficiently large, the pendulum can exhibit regular sus-

tained motion only. There are two options for the given parameters (see

Fig. 1.12, which depicts the paths corresponding to these two simple at-

tractors in the vertical plane). An overall view of the basins of attraction

can again be obtained by representing the starting point in the position

2 The equations of motion of the magnetic pendulum can be found in Section 6.8.3.
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Fig. 1.11. Path of the
end-point of the magnetic
pendulum viewed from
above. The motion is irregular
before reaching one of the
rest positions: it is transiently
chaotic. (The fixed magnets
are represented by solid black
dots.)

(a) (b)

Fig. 1.12. Simple periodic attractors of the driven pendulum: for sufficiently
strong friction only these two types of sustained motion exist. All the different
initial conditions lead to one of these motions, corresponding to a simple
attractor each.

(angular deflection) – velocity (angular velocity) plane in the colour of

the attractor which the motion ultimately converges to (Fig. 1.13 and

Plate VII).

Motion starting close to the boundary is similar initially to that seen

in the case of the chaotic attractor, but it ultimately converges to one

of the simple attractors. Irregular dynamics has a finite duration; it is

transient. There exist, however, very exceptional initial conditions from

which the dynamics never reaches any of the attractors, and is chaotic for

any length of time. There exists an infinity of such motion (Fig. 1.14),

but the initial conditions that describe these state do not form a compact

domain in the plane, but rather a fractal cloud of isolated points called a

chaotic saddle.
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Fig. 1.13. Basins of
attraction in the driven
pendulum on the plane of
initial conditions. The two
simple attractors in Fig.
1.12 appear here as points
(white and black dots),
and the initial states
converging towards them
are marked in black and
white, respectively.
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Fig. 1.14. Initial states of
the driven pendulum of
Fig. 1.13 that never reach
either simple attractor: all
points shown here are on
the basin boundary and, if
followed in time, they keep
moving between
themselves after every
period of the driving force.
This chaotic saddle is
responsible for chaotic
dynamics of transient type.

Thus, chaotic dynamics can also occur if the sustained forms of

motion are regular, but there are many possible transient routes (chaotic

transients) leading to them. In such cases several simple attractors co-

exist, each with its own basin of attraction defined by the set of initial

conditions which converges to the given attractor. The basins of attraction

often penetrate each other, and their boundaries can also be filamentary

fractal curves. The motion starting from the vicinity of these fractal basin
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boundaries behaves randomly along the boundary for a long time, as if

it is difficult to decide which attractor to choose. During this period of

uncertainty the motion is irregular and is bound to fractal structures.
l

Fig. 1.15. Body swinging on
a pulley: two point masses are
joined by a thread wound
around a pulley of negligible
radius, one of them swinging
freely in a vertical plane, the
other moving vertically only.

1.2.3 Body swinging on a pulley, ball bouncing
on slopes – chaotic bands

Let us examine what happens in frictionless (conservative) systems. Con-

sider two point masses joined by a thread wound about a small pulley

(see Fig. 1.15). The case when both points can only move vertically is a

well known secondary school problem. Here, however, we let one of the

point masses swing in a vertical plane (with the thread always stretched

for the sake of simplicity). It will be shown that new types of chaotic

motion develop under such conditions.3

The instantaneous length, l, of the thread of the point mass that can

swing is one of the position co-ordinates; the other is the angle of deflec-

tion. In the traditional arrangement, where only vertical displacement is

allowed, the heavier mass always pulls the other one up, but the situation

is much more interesting now. If the swinging body is thrust horizontally

with sufficient momentum while the other body moves downwards, then

the swinging body turns over several times, the thread shortens, the body

spins faster, and thus becomes able to pull the other body upward, even

if the latter is the heavier. (It is assumed that the swinging body does not

collide with anything and that the thread does not become unattached

from the pulley when turning over.) Thus, a long-lasting, complicated,

chaotic motion may develop. The path of the swinging body and the

length of the thread vs. time are shown in Figs. 1.16(a) and (b), re-

spectively. Again, the paths of the motion starting from nearby initial

conditions soon branch off; the motion is unpredictable.

An overview of the motion corresponding to a given total energy

can be presented with the help of some sampling technique. The system

is not driven in this case, and therefore sampling will not take place

at identical time intervals, rather at identical configurations: whenever

the swinging body passes through the vertically hanging configuration,

the instantaneous length, ln ≡ xn , of the swinging thread and the rate of

change of this length, vn , will be plotted as one point in the plane. Thus,

chaotic motion is represented by a sequence of points jumping around

in a disordered manner and dotting a finite region of the plane; This is

called the chaotic band (Fig. 1.17). Other initial conditions outside of the

3 The equations of motion of the examples in this section can be found in Sections 7.4.1

and 7.4.3.
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Fig. 1.16. Frictionless motion of a body swinging on a pulley. (a) The spatial
path of the swinging body (the initial position is marked by a black dot, the
pulley by the centre of an open circle); (b) the dependence of the length of the
swinging thread on time within the same time interval.

vn

0

–0.95

0.95

0

xn 1

Fig. 1.17. Overview of
the motion of a body
swinging on a pulley
without air drag and at a
given total energy, on the
basis of samples of length
and velocity (xn, νn) taken
when passing through the
vertical position, from the
left. The dotted region is a
chaotic band, which can
be traced out by motion
starting from a single initial
condition. The sets of
closed curves form regular
islands.

band may result in a single point, a few points or a continuous line, all of

which correspond to regular motion. These objects together usually form

closed domains that can be called regular islands. A frictionless chaotic

system is characterised by a hierarchically nested pattern of chaotic bands

and islands. Together they form a complicated structure of interesting

texture, different from the fractals presented so far (see Fig. 1.17 and

Plate VIII).

Our second example illustrates the fact that elastic collisions with flat

surfaces can also lead to chaotic motion. Maybe the simplest situation
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is the case of an elastic ball bouncing on two slopes that face each other

(Fig. 1.18). (A motion very similar to this can be realised in experiments

with atoms.) Chaotic behaviour arises because after bouncing back from

the opposite slope the ball does not necessarily hit its original position.

Non-linearity and inherent instability are caused by the break-point be-

tween the slopes. The chaotic motion of two balls dropped from identical

heights but slightly different positions soon branches off (Fig. 1.19), just

as in the previous examples.

A sampling technique providing a good overview of the dynamics

Fig. 1.18. Ball bouncing on
two slopes of identical
inclination that face each
other in a gravitational field.

is in this case to plot the two velocity components as points of a plane,

at the instant of each bounce (Fig. 1.20).

There is no need to apply driving forces in order to sustain a motion in

frictionless systems, since there is no dissipation and energy is conserved.

On the other hand, this motion cannot converge to a well defined sus-

tained motion because there are no attractors in frictionless, conservative

Fig. 1.19. Paths of two balls
starting from nearly identical
initial positions above the
double slope (the continuous
line is identical to that drawn
in Fig. 1.18). The motion is
sensitive to the initial
conditions.

1

1
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–1

0

0

Fig. 1.20. Pattern generated
by the possible motions of a
ball bouncing on a double
slope with given total energy
in a representation where the
abscissa is the velocity
component parallel to the
slope (un) and the ordinate is
the square of the component
perpendicular to the slope (zn)
taken at the instance of the
nth bounce. The dotted
region is a chaotic band. The
angle of inclination of the
slope is 50◦.
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Fig. 1.21. The three-disc
problem: particles
bouncing perfectly
elastically between
identical discs fixed at the
vertices of a regular
triangle. Paths starting
from nearby initial points
soon diverge.

systems. As a result, the nature of all motion strongly depends on the

initial conditions and the total energy. Regular motion corresponds to cer-

tain sets of initial conditions, while chaotic motion corresponds to other

sets. The initial conditions that lead to chaotic motion form chaotic

bands that, contrary to chaotic attractors, are plane-filling objects.

1.2.4 Ball bouncing between discs, mirroring
Christmas-tree ornaments – chaotic scattering

Three identical discs are placed at the vertices of a regular triangle in

the horizontal plane and a ball is bouncing among them – like in a pin-

ball machine (see Fig. 1.21). The motion is considered to be frictionless;

therefore the velocity of the particle is constant during the entire process.

Starting from a given point, the motion depends on the initial direction of

the velocity vector. Some initial conditions cause the particle to bounce

for a very long time between the discs; during this time the dynamics

of the particle is complicated and aperiodic.4 Two slightly different ini-

tial conditions cause the paths to diverge rapidly (Fig. 1.21); therefore,

this motion is also chaotic. The deviation of paths with nearby initial

conditions is easy to explain, since the discs act as dispersing mirrors

and the angle between the straight sections of the paths increases with

each collision. The complicated structure related to the motion mani-

fests itself in several ways. The number of bounces experienced by the

particles that start along a segment in a given direction towards the discs

strongly depends on the initial position. Some initial conditions lead to

many collisions (Fig. 1.22). Moreover, there is an infinity of initial points

4 A detailed investigation of this problem can be found in Section 8.2.3.
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Fig. 1.22. Number of collisions of 20000 particles starting with unit velocity at
right angles to the line segment drawn in Fig. 1.21, as a function of the y
co-ordinate. (The centres of the discs are at unit distance from each other.)

from which an arbitrary number of bounces can, in principle, occur (the

particles then become trapped among the discs), but these do not form

an interval: they form a scattered fractal cloud along the line segment.

Three or four Christmas-tree ornaments in contact with each other

reflect light several times before light reaches our eyes. The interesting

fractal images resulting from these reflective spheres (Plates IX and X)

are examples of everyday consequences of chaotic motion.

The process whereby a significant force is only present in a finite

region of a frictionless system is usually called scattering. Such a force

can be tested via the motion of particles approaching from large dis-

tances. This motion is initially rectilinear, but the force causes the path

to curve; then the particle leaves the scattering process and resumes its

rectilinear motion, most probably in a new direction. The chaotic nature

of the process arises because the motion may become long-lasting and

irregular in the region where finite forces are in action. In these cases we

speak of chaotic scattering. The average lifetime of chaos, similar to the

dynamics around fractal basin boundaries, is finite. Even though there

are no attractors in this case, the different outgoing states play a role

similar to that of simple attractors. Chaotic scattering always involves

transient chaos.

1.2.5 Spreading of pollutants – an application of chaos

Chaotic motion occurs in numerous phenomena related to practical

applications. One of these is discussed here: the spreading of pollutants
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(a) (b)

Fig. 1.23. Tank with two outlets. The outlets, when opened alternately,
generate chaotic advection in a flat container. (a) and (b) illustrate the flow in
the first and second half period, respectively. The flow itself is very simple; the
advection of the particles is nevertheless chaotic.

in a flowing medium (air or water). The environmental significance of

this matter is obvious.

Consider a large and flat container with two point-like outlets. Water

whirls while flowing out. The two outlets are alternately open, each for

half a period (Fig. 1.23), yielding a flow periodic in time. We want to

know how a dye particle moves in this flow. For the sake of simplicity,

it is assumed that the material properties of the dye are identical to that

of the liquid; the only difference is the colour. In this case, the motion

is determined by the condition that the instantaneous velocity of the

particle is identical to that of the liquid. The path of the particle is then

easy to follow.5 Chaos arises because a particle moving towards the open

outlet may not reach it within half a period; therefore it starts moving

towards the other outlet, but again it may be too late to be drained, and

so on. It may thus take a very long time before the particle flows out of

the container. Figure 1.24 illustrates two complicated paths starting very

close to each other, but leaving the tank via different outlets.

In the context of the spreading of pollution, it is especially important

to follow the motion of a dye droplet. This corresponds to the exami-

nation of the dynamics of an ensemble of particles, each starting from

a certain initial region, the initial shape of the droplet. A surprising

discovery is that, despite the chaotic motion of each individual parti-

cle, the drop traces out a well defined thready fractal structure (after

losing its original compact shape) within a short time (Fig. 1.25 and

Plate XI).

The spreading of impurities in the form of filamentary patterns can

be observed in numerous phenomena, ranging from oil stains on road

surfaces through the mixing of cream in coffee to the propagation of

5 The equation of motion for this example can be found in Section 9.4.1.
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Fig. 1.24. Paths of two dye
particles (continuous and
broken lines) starting near
each other in a tank with two
outlets (situated at (−1, 0)
and (1, 0)). The consecutive
black dots (squares) indicate
the instants when the left
(right) outlet is opened. In the
initial instant the left outlet is
opened. The time spent in the
tank is very different for the
two particles.

Fig. 1.25. Shape of a dye
drop initially and after five
periods in the tank with two
outlets.

chemical pollution in the atmosphere. This thready structure unmistak-

ably signals the chaotic motion of the individual pollutant particles.

The type of chaos found in the advection problem may depend on

the parameters of the system. The problem of the tank with two outlets

in the above arrangement is analogous to the problem of the fractal basin

boundaries. If the outlets are closed but the alternating whirling motion

is sustained by mixers, the so-called blinking vortex model is obtained.

In this case there is no outflow that could be the analogue of the simple
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Table 1.2. Comparison of the traditional and phase space
representations of dynamics.

Traditional representation Phase space representation

instantaneous co-ordinates point in the phase space

time-dependence (x(t), v(t)) trajectory (v(x))

structure in time structure in phase space

individual global

attractors for the advected particle; the chaotic behavior of the dye or

impurity particles is therefore the same as that of conservative systems.

It may be important to take into account that the density of the known

pollutant may not be identical to that of the fluid and/or that the particle

is of finite size (for example in the case of aerosols). Consequently, the

velocity of the particles usually differs from that of the liquid. It can

be shown that advection then corresponds to dissipative systems. The

advection dynamics can then have attractors, often even chaotic ones.

This implies that pollutant particles accumulate along a fractal pattern

on the surface of the fluid. This phenomenon can indeed be observed in

lakes, bays and harbours as a direct consequence of chaos!

1.3 Phase space
Our examples have shown that the traditional representation via the

displacement or velocity vs. time graphs does not provide a suitable

overview of the motion, since, however long the observation time may

be, one can always expect some further novel behaviour. The order ap-

pearing in chaos does not manifest itself in the position vs. time repre-

sentation, but rather in the position vs. velocity representation.

The instantaneous state of a mechanical system is given by its po-

sition and velocity co-ordinates, since the motion can be continued

uniquely if one knows these co-ordinates and the dynamical equation.

The position and velocity variables define the phase space of a system

(for more details, see Section 3.5). For motion occurring along a straight

line with position x and velocity v, the phase space is the (x, v) plane.

The state of the system is represented by a single point in the phase space,

and this point wanders, indicating the change of the state, as time passes.

The path of the motion in phase space is called the trajectory (Fig. 1.26).

The trajectory itself does not indicate directly how fast this change is

in time. The arrow only shows the direction of the motion. A set of

several trajectories, however, provides a global overview of the different

possible types of motion of the system (see Table 1.2).



20 The phenomenon: complex motion, unusual geometry

v v

t

t

x

x

Fig. 1.26. Trajectory in phase
space (thick line). The path
described by the motion of a
particle in phase space can be
constructed from the
respective projections of the
x(t) and υ(t) graphs. The
direction of time is
represented by the arrow on
the trajectory.
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Fig. 1.27. Monitoring trajectories using maps. In higher-dimensional phase
spaces, samples are taken on certain sections. The rule relating the co-ordinates
of two consecutive intersects of a trajectory with this surface (or equivalent ones)
is a map.

Two data points are often insufficient to define the state of a sys-

tem uniquely; i.e., the phase space is three- or more dimensional (this

is always the case with chaos). In such a situation it is useful to take

samples from the higher dimensional phase space according to some

rule. This is usually done by taking a ‘section’ of the phase space and

recording the points of a trajectory on this section only, as illustrated by

the schematic Fig. 1.27. In driven cases it is advisable to ‘look at’ the

system at time instants corresponding to integer multiples of the driving
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period. This representation is called a stroboscopic map. Thus, Figs. 1.4

and 1.8 exhibit the results of stroboscopic mappings. In non-driven cases

a section can be defined by the fulfilment of conditions corresponding

to certain configurations. This defines a Poincaré map, like the one seen

in Fig. 1.17.

Our examples have demonstrated that it is in such maps that the

fractal structure of chaotic dynamics becomes plausible. Only in special

cases (like those of the magnetic pendulum, the mirroring spheres and

advection) can fractal structures be observed in real space. Therefore

the use of phase space is inevitable as a means of understanding the

structure accompanying chaos. (However, phase space is very useful in

investigating regular motions also.)

1.4 Definition of chaos; summary
Chaos is a motion, a temporal dynamics of simple systems that can be

described in terms of a few variables. Such motion is:

� irregular in time (it is not even the superposition of periodic motions,

it is really aperiodic);
� unpredictable in the long term and sensitive to initial conditions;
� complex, but ordered, in the phase space: it is associated with a fractal

structure.

These properties are so strongly and uniquely bound to chaotic dy-

namics that they may be used to define ‘chaos’. We shall apply this

definition throughout the book.

The listed characteristics are present simultaneously: when a simple

system is aperiodic over a long time, its evolution must be unpredictable

and representable by a fractal structure in suitable co-ordinates. From

a traditional view, all three characteristics are novel and surprising. A

single common feature underlying them is that the long-term behaviour

is random-looking, irregular and therefore it can properly be described

by using probabilistic concepts only.

On the other hand, not all complicated temporal behaviour can be

considered to be chaotic, only those that derive from simple laws. Noisy
motion is the random behaviour of some component of a system with

a great number of constituents (for example the Brownian motion of a

particle), which is the consequence of the complicated interaction with

the environment (i.e. the other constituents). Chaos is a bridge between

regular and noisy motion. It differs from regular motion in that it is prob-

abilistic and differs from noise in that its randomness is due to the strong

interaction (following from simple laws) of the few constituents, i.e. to

the inherent dynamics. Noisy motion fills the phase space uniformly,

thus fractal structures cannot develop.
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Table 1.3. Basic types of chaos and related phenomena and sets.

Permanent chaos Transient chaos

Dissipative motion on chaotic chaotic transients towards

attractors attractors, fractal basin

boundaries (chaotic saddles)

Conservative motion in chaotic chaotic scattering (chaotic saddles)

bands

The traditional investigation of motion concentrates on regular, pe-

riodic behaviour, since the applied classical mathematical tools are not

suitable for describing chaos. These tools can only indicate chaos in as

much they break down and yield meaningless results. The modern ap-

proach, supported by numerical investigations, makes it clear that it is

regular motion that is exceptional.

Two important classes of chaotic dynamics (so far simply called

chaos) are permanent and transient chaos. In the latter case, only ex-

ceptional initial conditions lead to steady chaotic motion; typical initial

conditions result in finite time chaotic behaviour (which can last for an

arbitrary long time, however). Both classes can occur in frictional (dis-

sipative) systems as well as in frictionless (conservative) systems. The

phase space sets underlying different kinds of chaos (chaotic attractors,

bands and saddles) are collectively called chaotic sets. The main types

of chaotic dynamics are summarised in Table 1.3, and will be studied in

detail in Chapters 5–8.

It is also worth discussing the types of chaos from the point of view

of the energy input. In non-driven frictional systems, motion ceases and

chaos can only be present as a transient (often accompanied by a fractal

basin boundary). Driven frictional motions may be related to chaotic

attractors. In frictionless cases chaos (both in a chaotic band and in the

form of chaotic scattering) might occur without forcing.

1.5 How should chaotic motion be examined?
Before turning to a detailed analysis of motion, we list some instructions

worth keeping in mind in what follows, based on the lessons drawn from

the examples of this chapter.

� You should understand unstable behaviour (considered to be uninter-

esting in traditional approaches), even in non-chaotic systems.
� Become acquainted with the phase space representation of and the

geometric approach to dynamics and the use of the stroboscopic and

Poincaré maps.
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� It is pointless to hope that the long-term dynamics can be given ana-

lytically in terms of known functions (the infinite series constructed

to describe the dynamics do not even converge).
� Solve the equations of motion numerically.
� Proper understanding requires the introduction of new concepts and

the search for new theoretical relations.
� Do not forget about the measurement errors that inevitably accompany

observation and simulation, and follow their temporal evolution.
� Accept the necessity of using particle ensembles and of describing

them by means of probabilistic concepts (distribution, typical be-

haviour, average).
� Become acquainted with the geometry of fractals.

Box 1.1 Brief history of chaos

The possibility of chaotic motion was first formulated by the French mathematician Henri Poincaré in the

1890s (obviously in a terminology largely different from that used nowadays) in his paper on the stability of

the Solar System. Some time later, the Russian mathematician, Sonia Kovalevskaia, proved that the motion

of a heavy, asymmetric spinning top is usually chaotic (it is only regular at special values of the moment of

inertia). These results were mostly forgotten and only lived on in the first half of the twentieth century due

to the work of the American scientist George Birkhoff and his German colleague, Eberhard Hopf, on

statistical mechanics and ergodic theory. Independently of these developments, chaotic behaviour was found

in certain non-linear electrical circuits during World War II, but the results could not be properly

interpreted. As a continuation of the Birkhoff–Hopf line, in the mid 1960s the Russians Andrey

Kolmogorov and Vladimir Arnold and the German Jürgen Moser worked out the statement that has since

been named after their initials, the KAM theorem, formulating the condition of weak chaotic motion in

conservative systems. The investigation of strong chaos became possible due to the appearance of

computers. The behaviour related to chaotic attractors occurring in dissipative systems was first described

by the American meteorologist Edward Lorenz in 1963. He recognised the unpredictability of chaotic

behaviour in connection with the numerical solution of a model named after him. The term ‘chaos’ itself

was introduced by the American mathematician James Yorke for the random-looking dynamics of simple

deterministic systems in a paper in 1975. The work of the American physicist Mitchell Feigenbaum helped

the term become widespread. In 1978 he proved the system-independence, i.e. the so-called universality, of

one of the possible routes towards chaos. In the investigation of the statistical properties of chaos, a major

role was played by, among others, B. Chirikov, M. Berry, L. Bunimovich, J. P. Eckmann, H. Fujisaka, P.

Grassberger, C. Grebogi, M. Hénon, P. Holmes, L. Kadanoff, E. Ott, O. Rössler, D. Ruelle, Y. Sinai, and

S. Smale. The possibility of the occurrence of chaos has established a new way of thinking in widely

different disciplines (see Box 9.3); this has been pioneered by H. Aref, P. Cvitanović, J. Gollub, A.

Libchaber, R. May, C. Nicolis, H. Swinney, Y. Ueda, J. Wisdom, and others.



Chapter 2

Fractal objects

2.1 What is a fractal?
2.1.1 Objects with large surfaces

It is taken for granted that the surface or volume of a traditional geo-

metrical object, for example a sphere or a cube, is well defined. Indeed,

filling the object with smaller and smaller cubes leads to better and better

approximations, and the total volume of the cubes converges to that of

the object in question. It is well known that the surface, S, is proportional

to the second, while the volume V is proportional to the third, power of

the linear size, L , of the object. Consequently, the surface-to-volume

ratio, S/V , is proportional to V −1/3. (For plane figures, the ratio of the

perimeter, P , to the area, A, is proportional to A−1/2.) The surface-to-

volume ratio is therefore finite and becomes smaller as the size becomes

larger. This is why surface phenomena are of little importance com-

pared with volume phenomena for macroscopic systems of traditional

geometry.1

On the other hand, it is known that there exist macroscopic objects

with large surface area. These are always porous, with ramified or pitted

surfaces. Effective chemical catalysts, for example, must have a large

surface. The need for rapid gas exchange accounts for the large surface-

to-volume ratio of the respiratory organs. The surface area of the human

lungs (measured at microscopic resolution), for example, is the same as

1 This is used for example in thermodynamics, when the internal energy of a system is

considered to be the sum of the internal energies of the finite volume elements, thus

neglecting the interactions of the volume elements across the surfaces.
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that of a tennis court (approximately 100 m2), while the volume is only

a few litres (10−3 m3). How small the amount of matter is in candyfloss

or in beer froth can be checked with a single mouthful; the numerical

value of their surface area is much greater than that of their volume. Such

systems obviously do not follow the rule S/V ∼ V −1/3 which is valid

for traditional objects: indeed, our very concept of measuring surface

area has to be revised in view of these types of surfaces.

A unique value cannot be assigned to the surface of such ramified

systems because the surface area essentially depends on the resolution,

in other words, on the accuracy of the measurement (see Table 2.1).

The numerical value of the surface area increases with the resolution

of the observation, through several orders of magnitude. Consider, for

example, an island with an embayed coastline: one would try to determine

the perimeter of the island using a high-resolution map and counting how

many times a certain compass setting fits on the coastline. As smaller and

smaller settings are chosen, more bays and peninsulae appear; therefore

the number of settings required increases more rapidly than for an object

with a smooth perimeter. The resulting perimeter length keeps changing,

increasing as the compass setting decreases. The same tendency would

be observed when trying to measure the surface area of a mountain by

fitting smaller and smaller squares on it.

It is useful to introduce the term observed surface or perimeter. Con-

sider squares of size ε or line segments of length ε. The observed surface,

S(ε), or the observed perimeter length, P(ε), shows how the respective

values depend on the resolution, ε. For the sake of simplicity, the res-

olution is given in units of the linear size, L , of the system. Note that

ε is a dimensionless number smaller than unity, since the observed sur-

face or perimeter length should be determined on scales smaller than the

total extension. Refining the resolution implies decreasing ε. Experience

shows that for fractals the observed surface or perimeter increases as a

negative power of the resolution:

S(ε), P(ε) ∼ ε−γ , for ε � 1, (2.1)

where γ is a non-trivial (usually non-integer) positive power or expo-

nent.2 Since no precise value of the surface or the perimeter can be given,

they are better characterised by the exponent γ . This latter will prove to

be simply related to a quantity called the fractal dimension (see equation

(2.5)).

Fractals occurring in reality only approximate the property that

relation (2.1) is valid in the limit ε → 0, partly because the resolution can

never be infinitely fine, and partly because fractal properties are usually

2 The notation ∼ expresses proportionality without the prefactor written out.
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Table 2.1. Comparison of traditional and fractal objects. P(ε) and S(ε)

denote the perimeter length and surface area observed with accuracy
ε, respectively.

Traditional object Fractal object

perimeter P and surface S exist P or S is undefined

P(ε) and S(ε) convergent P(ε) or S(ε) increases with resolution

smooth on small scales ramified on small scales

lost or become meaningless below a certain size. (The lungs’ surface

becomes smooth, i.e. two-dimensional, on the micrometer scale of cells,

and measuring the perimeter of an island becomes meaningless at a scale

of a few metres where the coastline becomes undefined because of the

waves.)

The fact that the perimeter or the surface of a fractal is not defined

implies that the object cannot be well approximated with squares or

cubes: its structure differs fundamentally from that of traditional objects.

On the other hand, the fact that relation (2.1) is valid throughout several

orders of magnitude of ε indicates that the object exhibits the same

structure when observed at any resolution within this range: fractals are

said to be self-similar. The surface of the Moon is a good example: the

typical crater-dominated structure is characteristic from the millimetre to

the 1000 km scale, the latter approaching the Moon’s radius. Thus, the

surface of the Moon is self-similar throughout nine orders of magnitude.

This is why it is necessary to indicate the names or sizes of the main

craters in pictures showing the surface of the Moon. As this example

illustrates, self-similarity usually does not mean that a magnified view is

identical to the whole object, but rather that the character of the patterns

is the same on all scales.

As a mathematical model of a coastline, consider a Koch curve. It

is constructed as follows. First, a segment (shorter than 1/2) is removed

symmetrically from the centre of a unit interval, then two segments of

the same length as the remaining pieces are joined to the new end-points

in the shape of a roof (Fig. 2.1(a)). Denoting the length of the remaining

pieces by r (1/4 < r < 1/2), the result is a broken line of length 4r . This

process is then repeated with the segments of length r : the resulting new

segments are of length r2 (Fig. 2.1(b)). The essence of the algorithm

is an iterative repetition of the same rule applied always to the most

recently obtained segments. Meanwhile, the curve becomes more and

more broken and its length increases. The curve obtained as the limit

of this construction is called the Koch curve. At the nth step of the
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(a)

(b)

(c)

r

r r

r

Fig. 2.1. Koch curve. First
three steps of the
construction with
parameter r = 0.3.

construction, the length and the number of the segments are rn and 4n ,

respectively; the length of the curve is therefore P(n) = (4r )n . At the

same time, this is the observed length of the exact curve when using

the resolution ε = rn . Being interested in the resolution dependence of

the length, we express n via the logarithm of ε as n = ln ε/ ln r .3 Thus,

P(ε) = 4ln ε/ ln rε, and as a consequence of the identity 4ln ε = εln 4, we

obtain

P(ε) = ε1+ln 4/ ln r . (2.2)

The exponent γ defined by (2.1) is thus γ = ln 4/ ln (1/r ) − 1 > 0. The

length of a Koch curve is undefined, since the observed length is a neg-

ative power of the resolution. The part of the exact curve which sits on

an original segment of length r is a downscaled version of the full curve

by a factor of r . The same holds for any segment of length rm (m > 1),

with a reduction factor of rm . Koch curves are prototypical fractals. They

are, in addition, self-similar in an exact geometrical sense. Note that the

larger the parameter r , and therefore the exponent γ , the more ramified

the coastline it models. In the limit r → 1/4, on the other hand, the curve

turns into a straight line segment, since the intervals are too short to form

triangles. The length of a straight line segment does not therefore depend

on the resolution, and exponent γ vanishes as expected.

Problem 2.1 Examine how the perimeter of a traditional object, a cir-

cle of unit radius, varies with resolution when it is approximated by the

perimeter of an inscribed n-sided regular polygon, the side length ε,

being the resolution (n � 1, i.e. ε � 1).

3 In this chapter the notation ln may be considered to denote the logarithm of arbitrary

base.
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Problem 2.2 Determine the area of a Koch island formed by three

triadic (r = 1/3) Koch curves, the first four construction steps of which

are as follows:

Show that the area of the Koch island remains finite.

2.1.2 Fractal dimension

Objects with a large surface or perimeter are strongly ramified; the value

of their surface area or perimeter length increases with resolution, while

the entire object is restricted to a finite region of space. The concepts

of the traditionally two-dimensional surface and the traditionally one-

dimensional perimeter become meaningless, since these objects pene-

trate significantly into a space of dimension one more than their own. It

is therefore a straightforward generalisation of the concept of dimension

to assign fractional or irrational numbers greater than two (one) but less

than three (two) to objects with a large surface area (perimeter length)

so that the more ramified the object, the larger the dimension.

To this end, it is worth covering the object with cubes of linear

size ε. For a traditional body the number of cubes needed to cover it

is obviously proportional to ε−3, while for plane figures and lines, the

respective numbers of squares of size ε and segments of length ε are

proportional to ε−2 and ε−1, respectively. The exponent with opposite

sign is therefore the dimension itself, which is an integer for traditional

objects. A Koch curve, however, can be covered with 4n segments each

of length ε = rn , and this number can be expressed in terms of ε as

ε− ln 4/ ln (1/r ). Thus, the negative of the exponent is not an integer for

objects with large surface area.

To deduce the general definition of fractal dimension, consider a

set of points in a Euclidean space of d = 1, 2 or 3 dimensions (i.e.

along a line, on a plane or in space). Let N (ε) be the minimum number

of d-dimensional cubes of linear size ε necessary to cover the object

(Fig. 2.2). This number obviously increases with resolution, namely as a

negative power, but the exponent, D0, is not necessarily identical to the

dimension, d , of the space. The relation

N (ε) ∼ ε−D0 , for ε � 1, (2.3)
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Fig. 2.2. Measuring fractal dimension. A set of points (or any object) is covered
with identical d-dimensional cubes of size ε, and the number of cubes containing
points (grey boxes) is N(ε). As the resolution ε decreases, N(ε) increases
according to the relation N(ε) ∼ ε−D0 , where D0 is the fractal dimension.

defines the fractal dimension, D0, of the object in question. Rearranging

the equation yields

D0 = ln N (ε)

ln 1/ε
, for ε � 1. (2.4)

The fractal dimension can therefore be extracted from the dependence

of the number of covering boxes on resolution. This number equals d
for traditional objects. A set is described as fractal if its D0 is smaller
than the dimension of the space.4 The complement set of a fractal is

not a fractal. As for (2.1), relations (2.3) and (2.4) have to be fulfilled

throughout several orders of magnitude of ε (see Fig. 2.3).

Problem 2.3 Determine the number of boxes required to cover a unit

interval and a right-angled isosceles triangle, for which the length of

the equal sides is unity. Demonstrate that their respective dimensions

defined by (2.3) are indeed 1 and 2.

The relation to the observed perimeter or surface area is now obvious,

since this is the number of boxes multiplied by the length or area of a box:

P(ε) = εN (ε) and S(ε) = ε2 N (ε). The exponent γ in (2.1) is therefore

γ = D0 − 1 and γ = D0 − 2 (2.5)

for the perimeter and surface area, respectively. The rate of increase of

the observed surface area or perimeter is thus a unique expression of

the fractal dimension. Such systems are therefore better characterised

by their fractal dimension (or their exponent γ ) than by the numerical

value of their perimeter or surface area at a certain resolution.

4 Another class of fractals, fat fractals, will be discussed in Section 2.2.3.



30 The phenomenon: complex motion, unusual geometry

10
1−e

lnN(e)

ln

D0ln

1

+ constant1−e

Fig. 2.3. The fractal dimension is the slope of the straight line appearing in the
log–log plot of the number of boxes against reciprocal resolution. The curve
ln N vs. ln 1/ε deviates from a straight line of slope D0 both for resolution
approaching unity and for very small resolution. The respective reasons are that
for coarse resolution no power-law behaviour can be expected, and that on very
fine scales new effects set in and the system behaves differently.

The fractal dimension of a Koch curve is, according to (2.4),

D0 = ln 4

ln (1/r )
, (2.6)

a number between 1 and 2. For the triadic case (r = 1/3), D0 =
ln 4/ ln 3 = 1.262.5 As shown, the observed perimeter increases as

ε1−D0 , while the observed surface area decreases as ε2−D0 with refin-

ing resolution. This implies that on covering a Koch curve with squares

of size ε, the area of the object converges to zero and the curve does not

fill any part of the plane. On the other hand, the curve is more compli-

cated than any smooth curve, which is reflected by its increasing length

and by its dimension being greater than unity.

The dimension as a measure of ramification increases monotonically

with the parameter r . The choice r = 1/4 corresponds to a smooth line

segment, a one-dimensional object. Koch curves with parameter r close

to 1/4 are only slightly ramified (such as, for example, the edge of a slice

of cauliflower), while values D0 = 1.2 − 1.3 around r = 1/3 correspond

to the average dimension of coastlines or to the dimension of a section

through the Moon’s surface (Fig. 2.4). Values near r = 1/2 belong to

strongly jagged curves, with dimensions approaching 2 (see Fig. 2.5).

Almost plane-filling curves or space-filling surfaces are ubiquitous in

Nature. Examples are river networks, with their smaller rivers, brooks

and water courses spreading over the tributary basins, or the vascular

system of living organisms having a lymphatic system, and the dense

foliage of trees.

5 Irrational numbers are henceforth given up to three decimals.
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Fig. 2.4. Koch curves with parameters (a) r = 0.26, (b) r = 0.3, (c) r = 0.35,
(d) r = 0.4. Larger parameters, r , correspond to more jagged curves and higher
fractal dimensions. The respective dimensions are D0 = 1.029, 1.151, 1.321
and 1.513.

Fig. 2.5. Koch curve with
parameter r = 0.49 after
the first six steps of
construction. The exact
curve is almost
plane-filling; its dimension
is D0 = 1.943.

Problem 2.4 Calculate the dimension of this Koch-type fractal:

1
2
−

1
2
−

1
2
−0 1 0 1

(Measure three segments of length 1/2 onto the unit segment as shown,

and repeat this in a proportionally reduced fashion for the newly obtained

segments.)
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r
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Fig. 2.6. Cantor set: the first
four steps of the construction
with parameter r = 0.3. The
dimension of the set is
D0 = 0.576.

2.2 Types of fractals
2.2.1 Exactly self-similar fractals

An important group of fractals whose dimension can be expressed by

simple formulae is that of exactly self-similar fractals, in which small

regions of the fractal are similar to the entire fractal.

One-scale fractals consist of N identical parts, each a copy of the

entire fractal reduced by exactly the same factor, r < 1. Koch curves

are obviously of this type. Another typical example is a Cantor set. This

is constructed by preserving the two outer segments of length r < 1/2

of a unit interval, then removing the proportional middle segments of

the remaining pieces of length r , then of length r2, etc. (Fig. 2.6). Since

the number of segments of length ε = rn needed to cover the set is 2n , the

number of covering intervals is N (ε) = εln 2/ ln r , and

D0 = ln 2

ln (1/r )
. (2.7)

A Cantor set does not form a continuous curve, rather it is a dispersed

set of an (uncountable) infinity of points. Accordingly, its dimension is

less than unity.

Cantor sets and Koch curves consist of N = 2 and N = 4 identical

parts, respectively, that are exact copies of the entire fractal reduced by

a factor r each. Consequently, the fractal dimension of such self-similar

objects consisting of N units is expected to be

D0 = ln N

ln (1/r )
. (2.8)

This is easy to see: the minimum number, N (ε), of boxes correspond-

ing to resolution ε is obviously N N1(ε), where N1(ε) is the number of

boxes needed to cover one part. On the other hand, due to the similarity,

this is exactly the number of boxes covering the entire fractal if the size

of the boxes is multiplied by 1/r : N1(ε) = N (ε/r ). Altogether, there-

fore, N (ε) = N · N (ε/r ). Substituting definition (2.3) yields Nr D0 = 1,

which is equivalent to (2.8).

Problem 2.5 Determine the dimension of the fractals obtained by re-

peating a given construction step: (a) a Cantor cloud, (b) a Sierpinski

gasket and (c) a snowflake fractal.
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The white parts are removed from the initial black objects (top); the

resulting pattern is repeated several times in a self-similar way, which

results in the fractals shown at the bottom.

Problem 2.6 Determine the ratio of the observed perimeter to the ob-

served surface area of a Cantor cloud. At what values of the parameter

does the perimeter diverge?

Problem 2.7 A simple model of porous materials with a large surface

can be obtained by constructing (a) a Menger sponge or (b) a Sierpinski

tower. (a) A regular three-dimensional cross consisting of seven identical

cubes of size 1/3 is removed from a unit cube. This is repeated for the

remaining smaller and smaller cubes. (b) At the vortices of a regular

tetrahedron, four copies of the tetrahedron, reduced by a factor of one-

half, are kept. The rest is removed, and this process is repeated again and

again. What is the fractal dimension of each of these objects?

(b)(a)

A multi-scale fractal is a fractal consisting of N parts, each of which

is a copy of the entire fractal reduced by factors r j < 1, j = 1, 2, . . . , N .

Then the total number of boxes necessary to cover the fractal is
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Fig. 2.7. Two-scale Cantor set. The first four steps of the construction with
parameters r1 = 0.25 and r2 = 0.4 are shown. Segments are removed
repeatedly from the middle of the intervals in such a way that the length of the
preserved segments on the left and on the right is r1 and r2 times the original
length, respectively.

N (ε) = ∑N
j=1 N j (ε). However, because of the similarity, the number of

boxes covering part j is the same as the number of boxes covering the en-

tire fractal if the size of the boxes is multiplied by 1/r j : N j (ε) = N (ε/r j ).

Thus, N (ε) = ∑N
j=1 N (ε/r j ), and substituting definition in (2.3) yields

the following relation:

N∑

j=1

r D0
j = 1. (2.9)

The fractal dimension is now determined by an implicit equation that

can only be solved numerically; there is no explicit formula for D0.

A simple example of a multi-scale fractal is the two-scale or asym-

metric Cantor set. In the first step of its construction, a segment of length

r1 is kept on the left and a segment of length r2 is kept on the right end

of the unit interval. This is repeated for the smaller and smaller remain-

ing segments (see Fig. 2.7). For r1 = 0.25 and r2 = 0.4, for example,

the numerical solution of the equation (0.25)D0 + (0.4)D0 = 1 yields the

fractal dimension D0 = 0.605.

Problem 2.8 Determine the dimension of the two-scale Cantor set in

the special case when r2 = r2
1 = 1/4.

Problem 2.9 Determine the dimension of the two-scale snowflake

fractal constructed from a unit square by preserving four squares of

size 2/5 in the corners and a fifth of size 1/5 in the centre,

Repeat this for each remaining square.
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A

(a) (b)

B

C A

B

C

Fig. 2.8. Diagram explaining what is meant by projecting two sets, A and B,
together to obtain set C. The composite set C is also called the direct product of
components A and B. (a) Component A is a line segment. (b) Component A is
the union of three points. Component B is, in both cases, the union of four
points.

1

r r

Fig. 2.9. Cantor filaments: the first four steps of the construction with
parameter r = 0.4. This construction is similar to that of a Cantor set, but the
initial object is not a line segment but a square, and rectangles are removed
instead of intervals. The resulting dimension is D0 = 1.756.

2.2.2 Projecting together fractals

There exists an important class of fractals – whether exactly self-similar

or not – which can be decomposed into component fractals. This is the

case when a fractal is created by projecting two simpler fractals together

(see Fig. 2.8).

As a first example, consider the case of Cantor filaments. These are

constructed by symmetrically removing a rectangle from the centre of a

unit square in such a way that the two remaining rectangles are of width

r and of unit height. In the following steps the remaining, narrower and

narrower, rectangles, always of unit height, are thinned out in the same

manner (Fig. 2.9). The result is an infinite set of parallel unit intervals.

When intersected with a horizontal line, a Cantor set of parameter r is

obtained. Cantor filaments appear when projecting together a unit inter-

val and a Cantor set of parameter r . In other words they are the direct

products of these component sets. When determining the dimension of

Cantor filaments, notice that covering the object with squares of size

ε = rn yields 2n columns, containing 1/ε boxes each. Thus, the num-

ber of covering boxes is N (ε) = ε(ln 2/ ln r−1). The dimension of Cantor

filaments is therefore

D0 = 1 + ln 2

ln (1/r )
, (2.10)



36 The phenomenon: complex motion, unusual geometry

r
1

r
1

r
2

r
2

Fig. 2.10. Asymmetric Cantor cloud: the first four steps of the construction
with parameters r1 = 0.3 and r2 = 0.4. Rectangles are removed from the unit
square in a symmetrical cross shape in such a way that the sides of the preserved
rectangles are r1 and r2 times the original sides, and this is repeated iteratively.

greater than that of a Cantor set by one. An interesting feature of Can-

tor filaments is that their observed perimeter increases while their area

decreases with refining resolution. The observed perimeter, P(ε), can

be expressed as a negative power of the observed area, A(ε): P ∼ A−β ,

where β is positive. Thus, the larger the perimeter, the smaller the area!

Problem 2.10 Express the exponent β in terms of the fractal dimen-

sion.

An asymmetric Cantor cloud is obtained by removing a cross sym-

metrically from the centre of a unit square in such a way that four identical

rectangles of width r1 and height r2 remain (Fig. 2.10). This procedure is

then repeated for each remaining rectangle, keeping the proportionality

factors r1 and r2. The resulting set of points is concentrated in smaller

and smaller rectangles. Covering them with squares of size ε = rn
1 re-

quires 2n = εln 2/ ln r1 columns. Each of these columns now contains less

than 1/ε boxes, since a Cantor cloud is a fractal vertically also: a Cantor

set of parameter r2. Thus, the boxes of size ε = rn
1 are less densely

placed than in the case of a vertically continuous object. Their number

in a column can be estimated as ε− ln 2/ ln (1/r2), where ln 2/ ln (1/r2) is the

fractal dimension of the Cantor set formed vertically. The number of cov-

ering boxes is therefore N (ε) = 2nε− ln 2/ ln (1/r2) = ε{ln 2/ ln r1−ln 2/ ln (1/r2)}.
Thus, the fractal dimension is given by

D0 = ln 2

ln (1/r1)
+ ln 2

ln (1/r2)
. (2.11)

For r1 = r2 ≡ r , D0 = ln 4/ ln (1/r ), formally the same as the dimension

of a Koch curve for r > 1/4. The two fractals are, however, essentially

different, since one of them is a broken line, while the other is a set of

points dispersed in a plane. This example shows that fractal dimension

is only one measure of an object: identical dimensions do not imply

identical objects.

The determination of the dimension of a composite fractal ob-

tained by projecting two arbitrary fractals, embedded in perpendicular
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straight-line segments, together is based on the fact that the number of

squares of size ε needed to cover the composite fractal appears in the

form of a product: N (ε) = N (1)(ε)N (2)(ε). Here N (1)(ε) is the number

of columns of width ε perpendicular to the horizontal axis and N (2)(ε)

is the number of bands of height ε parallel to the horizontal axis. Each

N (i) increases according to the dimension D(i)
0 of the corresponding

fractal component: N (i)(ε) ∼ ε−D(i)
0 . For the co-projected set this yields

N (ε) ∼ ε−D(1)
0 −D(2)

0 ; therefore the total fractal dimension is

D0 = D(1)
0 + D(2)

0 . (2.12)

Thus, the fractal dimension of composite fractals is the sum of the di-

mensions of the components. These dimensions, D(i)
0 , are often called

the partial fractal dimensions.

This sum rule is valid not only for fractals embedded in one dimen-

sion, but also for the direct product of arbitrary fractals, and the number

of components is also arbitrary. The same relation holds for traditional

objects, as, for example, a plane is the direct product of two straight lines,

and its dimension is in fact 1 + 1. It is important to emphasise that the

sum rule is valid not only for fractals projected along perpendicular lines,

but also along arbitrary smooth curves. This is because such a projection

is a smooth transformation that can modify the prefactors not written out

in (2.3) only, not the exponent of the power law, the dimension.

Problem 2.11 What is the algorithm given in terms of the removal of

pieces from a unit cube which leads to the direct product of three Cantor

sets of parameter r = 1/3 placed along the edges of a unit cube? What

is the relation of the observed volume of this set to that of the Menger

sponge (Problem 2.7(a)) at the same resolution, ε = 3−n?

2.2.3 Thin and fat fractals

Covering a fractal embedded in d dimensions with d-dimensional cubes

of size ε, the observed volume V (ε) of a fractal is given by

V (ε) = εd N (ε). (2.13)

This is a generalisation of the traditional concept of volume.6 Because

of the resolution dependence (2.3) of the number of covering boxes, the

6 The observed surface area in this generalised concept is S(ε) ∼ εd−1 N (ε), which is for

d = 2, for example, the observed perimeter length.
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observed volume varies according to the following rule:

V (ε) ∼ εd−D0 , for ε � 1. (2.14)

The difference between the dimension of the space and that of the fractal

is often called the co-dimension of the fractal. The fractal dimension of

the objects examined so far is smaller than the dimension of the space;

consequently, the observed volume decreases with resolution. These

fractals may be called thin fractals, since their observed volume would

vanish in the limit ε → 0. One can also say that these fractals are not

space-filling; in a mathematical sense they are sets of measure zero. They

do not possess a volume, but they do have an extension; moreover, their

observed surface may tend to infinity. This has been shown for the Koch

curve embedded in a plane, where the two-dimensional volume – the

surface area – decreases, while the length increases with resolution.

The fact that the fractal dimension of a set equals the dimension of the

space, i.e. D0 = d , does not necessarily imply that the set is a traditional

object. Even if the observed volume converges to some finite value, V ,

for sufficiently small resolutions, it may occur that the structure of the

object is essentially ramified. Such objects are called fat fractals: parts

of them appear to be porous, while others look smooth. (‘Bulky’ plane

figures bounded by fractal curves, such as the Koch island in Problem

2.2, are not fat fractals.)

A measurable property of fat fractals is that their observed volume

depends on the resolution in such a way that the deviation from the

exact volume, V , decreases slowly and proportionally to a power of the

resolution:

V (ε) − V ∼ εα. (2.15)

Here α < 1 the fat fractal exponent, is a positive number. (For traditional

objects, α is typically unity; see Problem 2.3.) Exponent α is not a

dimension, rather it is the co-dimension of the difference of the observed

volume and the volume itself. As (2.15) indicates, the complement of a

fat fractal is itself a fat fractal of the same exponent α.

Problem 2.12 Consider a Cantor construction in which the propor-

tion of the interval length removed at step n is λn . Given the sequence

(λ1, λ2, . . . ), determine the fractal dimension D0. What is the condition

for D0 = 1?

Simple examples of fat fractals can be obtained by modifying the

Cantor construction. In the first step the centre third of the unit interval

is removed, but afterward it is 1/9 (and not 1/3) of the remaining 1/3

intervals, then 1/27 of the new segments, etc. At the nth step, 1/3n of the
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Fig. 2.11. Fat Cantor set. In contrast to a Cantor set, a decreasing proportion of
the segments is removed. These proportions are 1/3, 1/9, 1/27, . . . , 1/3n. The
total length of the fat Cantor set constructed in this manner converges to a finite
number greater than zero. The dimension is D0 = 1 and the fat fractal
exponent, α, is 0 < α < 1.

Fig. 2.12. Fat Cantor
filaments: the first three
steps of the construction.

Fig. 2.13. A prototypical
fat fractal of the plane. The
figure shows the result of
the construction described
in the text after three steps
with λ = 0.6.

remaining segments is removed (Fig. 2.11). The length of the removed

intervals decreases much more rapidly than the triadic Cantor set.

Problem 2.13 Determine the volume V (the length) and exponent α

of the fat Cantor set of Fig. 2.11.

Two-dimensional fat fractals can be obtained, for example, by form-

ing the direct product of a fat Cantor set (Fig. 2.11) and an interval as

shown in Fig. 2.12.

A more general type of fat fractal can be constructed by cutting out

areas of decreasing proportions from a compact object. In the example of

Fig. 2.13, a square of size λ < 1 is cut out in the first step from the middle

of a unit square. The continuations of the edges of this square define

rectangles of the remaning area. The construction goes on therefore by

cutting out a downscaled copy of each rectangle from its middle, and so
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on. In order to obtain a fat fractal, the reduction factor is chosen to be λn

in step n. The result is a planar object in which the black and the white

regions are intricately interwoven into each other, and both have finite

area.

In the following, the attributive of thin fractals will be omitted and

these objects will simply be called fractals, while fat fractals will always

be accurately named.

Problem 2.14 Determine the fat fractal exponent of the object shown

in Fig. 2.13.

2.3 Fractal distributions
In natural phenomena fractals not only mean a mere geometrical struc-

ture but also provide stages on which ‘something is going on’. Pro-

cesses occurring on fractals generate distributions of certain measurable

quantities. These generally become time-independent rather rapidly. The

character of such stationary distributions depends on the nature of the

process going on on the fractal. In the case of catalysts, the reaction prod-

uct is not necessarily of uniform distribution everywhere; for example,

the reaction rate might be higher in certain parts of the fractal and lower

in others. If the fractal is a connected set and its material is a conductor,

then an electric voltage generated between two points of this structure

will produce highly different current intensities at different sites of the

fractal. On fractals produced in the course of slow precipitation processes

(such as electrolytic precipitation), each point of the surface can be char-

acterised by the probability that a new particle will be bound to that point.

If particles move at random along the surface of the fractal, then some

points of the object may be visited more often than others. In chaotic

systems, it is a consequence of the dynamics that a time-independent

distribution develops on some fractal subset of phase space.

Since all these distributions are non-negative, they can be normalised

to unity on the entire fractal. Such distributions can therefore be con-

sidered as probability distributions, and their normalisation expresses

the fact that an event certainly occurs somewhere on the entire fractal.

Experience shows that distributions developing on fractals are rather

inhomogeneous and can themselves be considered as fractals in some

sense. It is not only the support of the distribution (the set where the

function is non-zero), but also the internal structure of the entire func-

tion that exhibits a fractal character. The dimension of this function is,

however, different from the dimension D0 of the support.

In the following, such highly inhomogeneous probability distri-

butions will be investigated for (for the sake of simplicity) fractals



2 Fractal objects 41

P x( ) P x( )

x

x x

x

P x( ) P x( )

0

0 0

01

1 1

1

1

1 1

1

5

5 5

5

(a)

(c)

(b)

(d)

Fig. 2.14. Fractal distribution: first four steps of the construction of a
probability distribution on a Cantor set with parameter r = 1/3. The parameter
of the distribution is p1 = 0.4 (p2 = 0.6). (a) The respective areas of the columns
on the left and on the right are p1 and p2. (b) The respective areas of the
columns from left to right are p2

1, p1 p2, p2 p1 and p2
2. Proceeding similarly in

(c) and (d), the distribution becomes more and more inhomogeneous.

embedded in one dimension. Let the chosen fractal be a triadic (r =
1/3) Cantor set, on which different distributions can exist. Consider, for

example, one that is constructed in parallel with the Cantor set. In the

first step, let the distribution be constant on the interval of length 1/3 kept

on the left, and let the probability of the entire interval be some number

p1 < 1. This will be the only parameter of the entire distribution. Let the

distribution be constant on the right interval as well; then, the probability

of this right interval is obviously p2 = 1 − p1 (Fig. 2.14(a)). In the next

step, the probabilities are divided in the same proportion. This means

that the probability of the outermost left interval is p2
1, that of the two

middle intervals is p1 p2 and that of the outermost right interval is p2
2 (Fig.

2.14(b)). Note that the total probability of the four intervals is still unity.

In the third step, the probabilities of the intervals from left to right are

p3
1, p2

1 p2, p2
1 p2, p1 p2

2, p2
1 p2, p1 p2

2, p1 p2
2, p3

2, respectively (Fig. 2.14(c)).

At the nth step, each probability takes on one of the possible values

pm ≡ pm
1 pn−m

2 , where m is less than or equal to n: m = 0, 1, . . . , n
(Fig. 2.14(d)). The number of intervals for a given parameter, m, equals

the number of possible ways of choosing m elements from n elements.

Consequently, altogether there are Nm = (n
m

)
intervals with probability

pm = pm
1 pn−m

2 . What are the typical intervals in this distribution? For a
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x

Fig. 2.15. Fractal distribution, and the typical intervals whose fractal dimension
is the information dimension D1. Below the graph both its support and the
typical intervals (bottom line) are displayed after n = 7 steps of the construction.
The height of the columns belonging to the typical intervals is marked by a
dashed line. For increasing n, the actual typical intervals provide a more and
more dominant proportion of the total probability.

given level n, intervals with the same pm carrying the maximum possible

total probability are considered to be typical.

Without violating generality, probability p1 can be assumed to be

less than p2: p1 < 1/2. The least probable box is then obviously the

leftmost one, while the most probable box is the rightmost one. This

latter is, however, not typical, since there is only one such box. Typi-

cal boxes are those that are not too improbable, and, in addition, their
number is sufficiently large to provide the main contribution to the to-

tal probability at any fixed n � 1, i.e. these are the intervals for which

Nm pm is maximum. It turns out that the total probability of these typical

boxes is unity (up to a tiny deviation, vanishing for n → ∞)! Therefore

they faithfully represent the entire distribution (see Problem 2.15). This

means that practically no probability is neglected when using the typical

intervals. The dimension of the fractal made up of the typical boxes is

called the information dimension of the distribution and is denoted by D1

(see Fig. 2.15). The number, N ∗, of the typical boxes therefore changes

with resolution (ε = 3−n in our example) as follows:

N ∗(ε) ∼ ε−D1 , for ε � 1. (2.16)

The information dimension pertains to a subset of the support, to

the typical intervals, therefore it cannot be greater than the fractal
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dimension:

D1 ≤ D0. (2.17)

Equality only holds when the distribution is homogeneous: only uni-

form distributions can have the same information and fractal dimension.

A distribution is fractal if relation (2.17) holds as an inequality. The

dimension (D1) of the set that behaves typically from a probabilistic

point of view is then smaller than the dimension of the entire support7

because it does not include the very probable or very improbable intervals

(Fig. 2.15). The more inhomogeneous a distribution, the greater the

difference between the fractal and the information dimensions.

Problem 2.15 Using Stirling’s formula (ln n! = n ln n for n � 1),

determine the value, m∗, belonging to the most probable intervals at

level n of the example shown in Fig. 2.14 and determine the information

dimension D1.

An alternative definition of the information dimension that also ac-

counts for the terminology is particularly well suited for numerical evalu-

ations. It is based on determining the distribution with a finite resolution ε.

Assume that the probability, Pi (ε), of each covering box is known. The in-

dex, i , of the boxes ranges from 1 to the total number, N (ε), of non-empty

boxes. Normalisation implies
∑N (ε)

i=1 Pi (ε) = 1. The inhomogeneity of a

distribution is characterised by its information content, the negative av-

erage of the logarithm of the probabilites. It assumes its minimum value

in uniform cases, which reflects that homogeneous distributions carry

the least information.

The information content, I (ε) = − ∑N (ε)
i=1 Pi (ε) ln Pi (ε), of a distri-

bution, Pi (ε), determined with finite resolution obviously depends itself

on the resolution. The finer the resolution, the more ramified, or uneven,

the distribution, and the greater its information content, I (ε). Experience

shows that the increase of the information content is proportional to

ln (1/ε), the prefactor being the information dimension:8

I (ε) = −
N (ε)∑

i=1

Pi (ε) ln Pi (ε) = D1 ln (1/ε), for ε � 1. (2.18)

7 The fractal dimension of the set that provides the leading contribution to the

(non-normalised) distribution consisting of the qth power (q = any real number) of the

interval probabilities can be determined in a similar way. This is the generalised

dimension, Dq . Since the weighing power, q, is arbitrary, an infinity of dimensions

belong to a fractal distribution. This is why fractal distributions are also often called

multi-fractals.
8 An equivalent form is exp I (ε) ∼ ε−D1 , which resembles (2.3).
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The information dimension thus depends not only on the number of cov-

ering boxes, but also on how occupied they are. The typical boxes, whose

number is N ∗(ε), faithfully represent the entire distribution. Their total

probability is practically unity, so the probability of each box is 1/N ∗.

Using this, the above sum can be written as
∑N ∗(ε)

i=1 1/N ∗(ε) ln N ∗(ε) ≡
ln N ∗(ε) to a good approximation. This again yields N ∗(ε) = ε−D1 , i.e.

D1 is indeed the fractal dimension of typical boxes. Definitions (2.16)

and (2.18) are therefore equivalent.

The information dimension is not only a proper measure of the

inhomogeneity of a fractal distribution, but is also a quantity which

is easy to handle numerically. The evaluation of the information dimen-

sion via (2.18) provides a good approximation of D1 for much coarser

resolutions ε than those at which (2.3) yields reliable values for the frac-

tal dimension. The explanation is that in the first case very improbable

boxes, which are difficult to find numerically, do not contribute.

Problem 2.16 Even on continuous supports inhomogeneous distri-

butions can exist with information dimension less than unity. Let the

unit interval be divided into three equal parts to which probabilities p1,

p2 = 1 − 2p1 and p3 = p1 are assigned, and each part is divided again

into three segments, etc. The first four steps of the construction are then

(p1 = 0.2, p2 = 0.6, p3 = 0.2):

P x( )
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1

5

x1

P x( )

0

1

5

x1

P x( )

x0 1

1

5

P x( )

x0 1

1

5

Determine the distribution at the seventh step, and calculate the

information dimension.
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Table 2.2. Basic types of chaos and the related fractals.

Permanent chaos Transient chaos

Dissipative attractors: Cantor saddles: Cantor clouds

filaments fractal boundaries: Cantor filaments

Conservative bands: fat fractals saddles: Cantor clouds

2.4 Fractals and chaos
Wide classes of fractals develop from complicated processes often in-

cluding random elements. Consider, for example, coastlines, the surface

of the Moon, catalysts, the lung or the foliage of trees. Our knowledge of

most of these processes is still insufficient for an appropriate modelling

of the formation of these fractal patterns.

Fractals associated with chaos are exceptional in the sense that they

are related to motion, more generally to temporal evolution, and do not

include random elements. Their origin is much better understood than

that of other fractals. Such fractals are unique consequences of the chaotic

nature of the dynamics. Contrary to the fractals examined so far, their

construction rule is not a simple recursive algorithm, but results from the
equation of motion itself. The rule is usually too complicated to make the

fractal dimension expressible by means of simple formulae. It is also true

that whenever a motion proves to be related to fractal structures, then it

is neccesserily chaotic: in chaotic systems we can therefore observe the

unity of dynamics and geometry. The more chaotic the dynamics, often

the more complicated the fractal structure related to it. Regular motion

is not related to fractals, but rather to simple structures belonging to the

realm of traditional geometry. The fractal patterns of chaos are, however,

generally not observable in real space; they become visible in phase space

only.

Different types of chaos are associated with different types of frac-

tals (see Table 2.2). Chaotic attractors are objects with a characteristic

filamentary structure. If smaller and smaller squares of a chaotic attractor

are magnified (see Fig. 2.16) it becomes obvious that the small details

are similar to each other. The almost parallel lines resemble Fig. 2.9

presenting Cantor filaments. The structure of chaotic attractors there-

fore corresponds to asymmetric (multi-scale) Cantor filaments, i.e. the

attractor is locally the direct product of a Cantor set and a smooth curve.

Smooth curves correspond to the direction along which nearby points

deviate from each other, while the Cantor structure is practically per-

pendicular to these. The latter is a consequence of dissipation, of the

convergence towards attractors.
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Fig. 2.16. Detail of Fig. 1.4
(chaotic attractor of an
anharmonic oscillator)
magnified ×10. The
filamentary fractal structure
also remains present in
successive magnifications,
providing more and more
straight lines.

The long-term motion of a body wandering on a fractal basin bound-

ary between attractors or being subjected to chaotic scattering is even

more subtle. The boundary itself is a Cantor filament (see Figs. 1.10

and 1.13) but the origin of chaos is a set more rarefied than this (see

Fig. 1.14). The chaotic saddle responsible for transient chaos does not

include continuous curves but exhibits the structure of an asymmetric
Cantor cloud, the direct product of two Cantor sets (as illustrated by

Fig. 2.10).

Fractal characteristics of the chaos of closed conservative systems

are again different. The boundaries of the islands belonging to regular

motions are rather ramified; they somewhat resemble Koch curves. A

much more significant property is, however, that chaotic bands extend

over two-dimensional domains of the plane. On smaller and smaller

scales, they are nevertheless interrupted by regular islands, representing

regular motion (see Fig. 1.17 and compare with Fig. 2.13). Chaotic bands
are therefore two-dimensional fat fractals (see Table 2.2).

Chaotic motion itself defines a probability distribution. This natu-
ral distribution gives the probability of visiting different points of the

chaotic set in the course of a long-lasting chaotic motion. The natural

distributions of both chaotic attractors and saddles is usually highly inho-

mogeneous, a fractal distribution. Therefore its information dimension,

D1, is less than the fractal dimension, D0, of the support (the attractor or

the saddle). Several examples for such natural distributions will be given

in Sections 5.4.4 and 6.3.2 (see also Plates XII–XVI and XVII–XIX, re-

spectively). It is a specific feature of conservative chaos that the natural

distribution on chaotic bands is uniform (see Plate XX) and hence not a

fractal distribution, although its support is a fat fractal.

The above-mentioned unity of dynamics and geometry manifests

itself in a unique relation between the information dimension, D1, and
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the parameter characterising the deviation of nearby chaotic trajectories,

as will be seen in Sections 5.4.6 and 6.3.3.

Box 2.1 Brief history of fractals

The first examples of fractals appeared as mathematical curiosities in the second half of the nineteenth

century. The Cantor set was invented by Georg Cantor, the founder of modern set theory, in 1883. Koch

curves originated with the Swedish mathematician, Helge van Koch, in 1904. These and other similar

examples were considered to have no connection whatsoever with any natural phenomena; nevertheless,

they had to be given a place in the edifice of mathematics. A Koch curve is, for example, continuous, but

nowhere smooth. Karl Weierstrass found a continuous function that is nowhere differentiable. These

discoveries were at first received with displeasure by many, which is well illustrated by the following lines

written by Ch. Hermite to T. Stieltjes at the end of the nineteenth century: ‘I recoil in fear and loathing from

that deplorable evil: continuous functions with no derivatives!’9 These developments shook classical

mathematics to its foundations, and the admission of the new concepts was followed by an advance in

abstract directions. Even though the connection between random walk and fractals began to take shape in

the first quarter of the twentieth century, half a century was still to pass before the extensive scientific

significance of fractals was recognised. This was the achievement of the Polish–French–American

mathematician Benoı̂t Mandelbrot (in the period 1977–1982), who also coined the name ‘fractal’ and

worked out the concept of fractal dimension (based on earlier works of F. Hausdorff and A. N.

Kolmogorov). The unusual structure present in the phase space of chaotic systems was pointed out by

Edward Lorenz in 1963. The exact connection with fractals and the importance of information dimension in

the description of chaotic attractors were demonstrated by E. Ott, J. Yorke, D. Farmer, C. Grebogi, P.

Grassberger and I. Procaccia during 1981 to 1985. (It is worth noting that the concept of information

dimension first appeared in the works of the Hungarian Alfréd Rényi on probability theory in the 1950s.)

Subsequently, the fractal concept has spread in science and mathematics due to M. Barnsley, K. Falconer,

H.-O. Peitgen, H. E. Stanley, T. Vicsek and numerous others.

9 This letter can be found at http://www-gap.dcs.st-and.ac.uk/∼history/Quotations/ Hermite.html
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Chapter 3

Regular motion

The simplest motion occurs in one-dimensional systems subjected to

time-independent forces. The most important characteristics of regular

(non-chaotic) behaviour will be demonstrated by means of such motion,

but this also provides an opportunity for us to formulate some general fea-

tures. The overview starts with the investigation of the dynamics around

unstable and stable equilibrium states, where the essentials already ap-

pear in a linear approximation. Outside of a small neighbourhood of

the equilibrium state, however, non-linear behaviour is usually present,

which manifests itself, for example, in the co-existence of several stable

and unstable states, or in the emergence of such states as the parameters

change. We monitor the motion in phase space and become acquainted

with the geometrical structures characteristic of regular motion. The un-

stable states, and the curves emanated from such hyperbolic points, the

stable and unstable manifolds, play the most important role since they

form, so to say, the skeleton of all possible motion. In the presence of

friction, trajectories converge to the attractors of the phase space. For

regular motion, attractors are simple: equilibrium states and periodic

oscillations, implying fixed point attractors and limit cycle attractors,

respectively.

3.1 Instability and stability
3.1.1 Motion around an unstable state:
the hyperbolic point

Let us start the analysis – contrary to the traditional approach – with the

behaviour at and in the vicinity of an unstable equilibrium state.1

1 A general mathematical definition of unstable (and stable) equilibrium states is given in

Section 3.5.4.

51
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Fig. 3.1. Unstable states: a ball placed on top of a convex surface and a pencil
standing on its point. Equilibrium is restricted to one point only, and a
displacement from this point, however small, causes the body to deviate at an
increasing rate.

An equilibrium state of a body at some position x∗ is unstable if,

when released from a slightly displaced position, the body starts moving

further away from x∗. Simple examples are a ball placed onto a convex

surface or a pencil standing on its point (Fig. 3.1). In the unstable state

itself there is no motion; the velocity vanishes. In the phase space (x, v),

an unstable state is thus a point (x = x∗, v = v∗ ≡ 0), called the fixed
point for this reason. For the time being, we examine one such point only

and place the origin of the co-ordinate system into this point by choosing

x∗ = 0. The force in the neighbourhood of an unstable state (unstable

equilibrium point) is always repelling and increases with the distance. To

understand the essence, it is sufficient to consider a linear force2 law, i.e.

F(x) = s2
0 x, (3.1)

where s0 is the repulsion parameter characterising the strength of the

instability. In this section this force law is assumed to be valid for

any displacement. We write the coefficient in the form s2
0 to make its

positiveness explicit.

Frictionless (conservative) case
The Newtonian equation of motion states that the acceleration equals

the force (per unit mass). Since the acceleration is the second

time-derivative,3 ẍ , of the displacement and the only force to act is F(x),

the equation of motion is ẍ = F(x). From (3.1) we obtain

ẍ = s2
0 x . (3.2)

Problem 3.1 Show that the motion of a pencil standing on its point

is described by equation (3.2). Derive the equation of motion valid for

2 Henceforth by force we understand force per unit mass. Thus, in single-body problems,

the mass, m, will not appear.
3 Time derivation is denoted by the two dots.



3 Regular motion 53

small angular deviations, ϕ, from the vertical position. For the sake of

simplicity, assume that the unit mass of the pencil is concentrated at

distance l from its point.

As for all linear, homogeneous differential equations with constant

coefficients, the solution is exponential. The assumption x = exp (λt)
leads to λ2 = s2

0 , i.e. exponent λ can only be the repulsion parameter,

s0, or its opposite, −s0. The general solution is a combination of these

basic solutions:

x(t) = c+es0t + c−e−s0t , (3.3)

which yields the velocity

v(t) = c+s0es0t − c−s0e−s0t . (3.4)

The solution corresponding to a general initial condition, x(0) = x0

v(0) = v0, fulfils x0 = c+ + c−, v0 = (c+ − c−)s0, and therefore

c+ = s0x0 + v0

2s0

, c− = s0x0 − v0

2s0

. (3.5)

Only a single pair of coefficients, c+, c−, is found, which illustrates the

uniqueness of the solution.

The phase space trajectories are obtained by eliminating time. Con-

sider the combinations v − s0x and v + s0x , which are, according to

(3.3) and (3.4), proportional to exp (∓s0t). Their product is therefore

time-independent,

v2 − s2
0 x2 = constant = v2

0 − s2
0 x2

0 , (3.6)

for any values x, v in the course of the motion.

The trajectories in the phase space are therefore hyperbolae around

the fixed point (Fig. 3.2). This is why such a fixed point is called a hyper-
bolic point.4 The asymptotes are the straight lines v = ±s0x emanating

from the origin. The hyperbolae are thus uniquely determined by the

single parameter, s0, of the dynamics.

Nearly all initial conditions result in a motion along a hyperbola,

causing the phase space point to deviate from the origin after a possible

initial approach. Note that despite the general moving away, there exist

special initial conditions from which the fixed point can be reached. If,

for a given positive initial co-ordinate, such a negative initial velocity is

chosen which falls on the line

v = −s0x, (3.7)

4 The term saddle point is also used.
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Fig. 3.2. Hyperbolic point and its neighbourhood (frictionless case): shown are
a few hyperbolic trajectories (thin lines) and the asymptotes (thick lines). The
motion along the trajectories follows the directions marked by the arrows. The
hyperbolic point can only be reached along one of the asymptotes, the stable
curve. The repulsion parameter is s0 = 0.7.

i.e. if the body is thrust towards the unstable state with a well defined

velocity, then in view of (3.3) and (3.5) it exactly reaches the origin

according to the law

x(t) = x0e−s0t (3.8)

(the pencil stops on its very point). In principle, the approach towards

the fixed point requires an infinitely long time, but in practice the body

reaches the fixed point (to a very good approximation) after a few mul-

tiples of 1/s0. The same is valid for the left branch of the asymptote,

v = −s0x , where the initial velocity is positive: in this case, the motion

goes in the opposite direction along the asymptote.

Along the other asymptote,

v = s0x, (3.9)

a moving away occurs according to the relation

x(t) = x0 es0t ; (3.10)

it is purely exponential from the very beginning (see (3.3) and (3.5)). The

closer the starting point to the fixed point (the smaller x0), the longer the

body remains in the neighbourhood of the hyperbolic point; the closer

the initial position of the pencil to the vertical, the longer it takes the

pencil to tip over.

The asymptote v = −s0x describes the exceptional motion of

asymptotically reaching the fixed point. This direction is therefore called
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x

initial distance of point pairs

Fig. 3.3. Deviation of
point pairs from each other
and from the hyperbolic
point (the origin). Rapid
deviation always occurs
along the unstable curve,
even when the initial
points are on different
sides of the stable curve.
The repulsion parameter is
s0 = 0.7. The distance
between the point pairs is
plotted at equal times.

the stable direction of the hyperbolic point, as opposed to the unstable

direction defined by the other asymptote. Straight-line segments cross-

ing the fixed point in these directions are parts of the stable and unstable
curves emanating from the fixed points. Figure 3.2 illustrates that the

stable and unstable curves divide the phase plane into four quadrants.

Note that the stable curve plays the role of a boundary. Trajectories em-

anated ‘above’ the stable curve imply deviation (the pencil falling) to the

right, while those departing ‘under’ it go in the opposite direction.

Instability in phase space is always related to the appearance of

hyperbolic points. The naı̈ve (and false) expectation to see a moving away

from an unstable point in all directions of phase space arises because in

everyday usage an equilibrium state is called unstable if a body tipped

out of that state, without initial velocity, moves away from that state.

The presence of the stable direction indicates that by taking into account

the initial velocity, the situation is less trivial. The clearest picture of

an unstable state and its neighbourhood unfolds itself in a phase space

representation.

For general initial conditions, after a sufficiently long time (t �
1/s0), the exponentially increasing term dominates expression (3.3):

x(t) ≈ 1

2

(
x0 + v0

s0

)
es0t . (3.11)

Particles leave the unstable state according to an exponential law. As a

consequence, particles starting from nearby initial points also deviate

from each other exponentially. If the initial conditions differ by small

values δx0, δv0 then, according to (3.11), the difference of the position

co-ordinates increases as

δx(t) ≈ 1

2

(
δx0 + δv0

s0

)
es0t for t � 1

s0

. (3.12)

The velocity difference behaves in a similar way, δv(t) ≈ s0δx(t). Thus

the full distance in phase space increases exponentially as well. Points

always depart along the unstable curve (Fig. 3.3). The system is therefore
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always sensitive to the initial conditions in the vicinity of a hyperbolic

point, since nearby trajectories rapidly deviate from each other. Only the

points of the stable curve are exceptions to this, since they approach the

origin and therefore each other.

Effect of friction
The motion of macroscopic bodies is usually affected by dissipative, i.e.,

energy-consuming, processes. The simplest example of these is friction
(air drag), a consequence of the interaction with the numerous particles

constituting the environment, described by means of simple empirical

laws. The friction force is typically a function of the velocity, and is

independent of position. For the sake of simplicity, we shall henceforth

assume that friction is directly proportional to the velocity.5 Thus, in addi-

tion to the position-dependent external force, F(x), a friction force −αv

is also present. Here α > 0 is the friction coefficient, considered to be

constant. The negative sign expresses that friction decelerates. Note that

friction of this type does not influence the equilibrium position since

there is no motion at that point.

The equation of motion with a finite friction coefficient is of the form

ẍ = +s2
0 x − α ẋ . (3.13)

Seeking the solution of this homogeneous, non-zero differential equa-

tion in the form of exp (λt), a quadratic equation, λ2 + αλ − s2
0 = 0, is

obtained, which yields two possible values for λ:

λ± = −α

2
±

√
α2

4
+ s2

0 . (3.14)

These are real solutions: λ+ is positive and λ− is negative. The solution

corresponding to the initial conditions, x(0) = x0 and v(0) = v0, is the

linear combination of the two exponential terms:

x(t) = c+eλ+t + c−eλ−t , (3.15)

and

c+ = −λ−x0 + v0

λ+ − λ−
, c− = λ+x0 − v0

λ+ − λ−
. (3.16)

The equation of the trajectories is

(v − λ−x)λ−

(v − λ+x)λ+ = constant = (v0 − λ−x0)λ−

(v0 − λ+x0)λ+ . (3.17)

These are also hyperbola-like curves, with two asymptotes (see Fig. 3.4).

5 ‘Static friction’, which is independent of velocity, is a simplifying term introduced to

describe how extended elastic bodies start sliding from their equilibrium positions.

This concept is not required in describing the motion of point-like objects.



3 Regular motion 57

unstable curve

stable curve

–4

–2

–1

1

2

4

–5 –3 –1 1 3 5 x

–3

3

Fig. 3.4. Hyperbolic point
in the presence of friction.
The character of the
structure surrounding the
fixed point has not
changed, only the
asymptotes have turned.
(The asymptotes of the
frictionless case are marked
with dashed lines.) The
parameters are s0 = 0.7,
α = 0.5.

Problem 3.2 Derive the trajectory equation (3.17) from (3.15).

The origin is therefore still called a hyperbolic point of the phase

plane. Again there are stable and unstable directions defined by the fol-

lowing asymptotes and displacement rules:

v = λ−x, x(t) = x0eλ−t , (3.18)

and

v = λ+x, x(t) = x0eλ+t , (3.19)

as generalisations of relations (3.8) and (3.10). The parameter λ+ charac-

terising the deviation along the unstable direction is called the instability
exponent. Note that λ+ is no longer identical to the repulsion parameter

s0, but depends also on the friction coefficient, thus reflecting the en-

tire dynamics (3.13). With friction, deviation is slower than without; the

angle between the unstable direction and the x-axis is therefore smaller

than in the frictionless case.

Problem 3.3 Show that the cross formed by the stable and unstable

directions turns, for very weak friction (α/2 � s0), as a rigid body.

It is of importance that friction has not destroyed the hyperbolic

character of the fixed point. This property is called the structural stability
of the hyperbolic behaviour against small changes of the parameters, in

the present case against friction.

Again, an exponential rule describes how nearby trajectories deviate

from each other:

δx(t), δv(t) ∼ eλ+t (3.20)
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for t � 1/ |λ−|. It must be kept in mind, however, that exceptional tra-

jectory pairs falling on the stable direction approach each other and

the hyperbolic point at an exponential rate, according to the rule eλ−t

(λ− < 0).

V (x)

x

Fig. 3.5. Potential around an
unstable state. The unstable
behaviour corresponds to the
motion ‘on top of a hill’.

Finally, we note that the concept of potential helps to establish a

qualitative understanding of the force law, F(x). The potential, V (x), is

a function yielding the potential energy per unit mass of a particle at

position x . If the force is of a restoring character, the potential increases

with the distance x , and vice versa. The force is proportional to the slope

of the potential: the general relation between the force, F(x), and the

corresponding potential, V (x), is

F(x) = −dV (x)

dx
≡ −V ′(x). (3.21)

If the potential changes only slightly during the motion, it can even be

said that a particle moves as if it were travelling on a V (x)-shaped relief

in a gravitational field. Usually, the vertical velocity component is also

important in the motion on a relief, but this is negligible when the po-

tential change is small. Henceforth, the potential–relief analogy should

always be applied with this restriction. The potential6 corresponding

to force (3.1) around an unstable state is V (x) = −s2
0 x2/2 (Fig. 3.5). This

Box 3.1 Instability, randomness and chaos

Very small differences in the neighbourhood of an unstable state (or of its stable curve in phase space) lead

to drastically different outcomes. If a pencil is placed onto its point as accurately as possible, it cannot be

predicted to which side it will fall when released. This is due to incalculable effects, such as the trembling

of our hand or a faint motion of the air. It is therefore a random event for the macroscopic observer whether

the pencil tips over to the right or to the left. The motion of a tossed coin is a similar phenomenon (the coin

can even fall onto its edge!); its outcome has always been considered as a random process. Instability

therefore involves unpredictability and random behaviour, but does not imply chaos in itself. The motion of

a pencil standing on its point is no longer unstable after it starts falling over, thus it cannot be considered to

be chaotic either. Instability is only a necessary condition for chaos. The sufficient condition is that

instability persists for any length of time during the motion; it emerges again and again. Chaos is sustained

instability. Chaotic motion is only possible if the motion passes through a sequence of unstable states. The

presence of an infinity of unstable, hyperbolic states is necessary to render chaos possible. Chaos is an

infinite repetition of the behaviour around a simple hyperbolic point. Knowledge of the motion around an

unstable point is therefore only an elementary step towards understanding chaos. It has to be completed

with the investigation of non-linear effects and of the emergence of instability.

6 Since the potential is only defined up to a constant, its value at the fixed point can

always be chosen to be zero.
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Fig. 3.6. Stable states: a ball placed at the bottom of a concave surface and a
pendulum. Rest is only possible at a single point, but, if the system is displaced,
it starts moving towards the equilibrium point.

potential therefore actually corresponds to a hill, the top of which (the

position x∗ = 0) is the unstable state, in accordance with the qualitative

picture of Fig. 3.1.7

3.1.2 Motion around a stable state

An equilibrium state of a body at some point x∗ is called stable if, when

released from a slightly displaced position, the body does not move

away: a restoring force acts towards the equilibrium position, x∗. In the

presence of friction, in addition, the particle gradually slows down and

comes to rest in the equilibrium state. A ball placed in a concave vessel or

the swinging of a pendulum around its vertical state (ϕ = 0) are simple

examples of this (Fig. 3.6). In the phase space (x, v), the stable state is also

characterised by a fixed point (x∗, v∗ ≡ 0). The position co-ordinate is

again chosen to be the origin: x∗ = 0. The force in the neighbourhood of

the stable state (of a stable equlibrium point) is of a restoring character;

it increases in the opposite sense to the displacement. In the simplest

approach, let the force be of the form

F(x) = −ω2
0x, (3.22)

where the parameter ω0 characterises the strength of the attraction.

Equation (3.22) describes the linear restoring effect of springs, and the

square of the parameter, ω0, is the force constant per unit mass. The

parameter, ω0, is called the natural frequency, because it determines

the period of the oscillation in the frictionless case. It is assumed in

this section that this model of attraction is valid for any displacement.

The coefficient has been written as −ω2
0 to make its negative sign

explicit.

7 In the frictionless case, the trajectories are the contours of constant energy per unit

mass, v2/2 − s2
0 x2/2 ≡ E ; the stable and unstable curves belong to the hill-top value,

E = 0.
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Fig. 3.7. Elliptic point and its
neighbourhood. The direction
of motion is represented by
arrows. The circulation always
occurs clockwise (since
positive velocities result in
positive displacements). The
natural frequency is ω0 = 0.7.

Frictionless (conservative) case: the elliptic point
The equation of motion of the frictionless case is ẍ = F(x), i.e.

ẍ = −ω2
0x . (3.23)

This is simply the equation of a harmonic oscillation with natural fre-

quency ω0.

Problem 3.4 Show that the motion of a pendulum around the vertical

position is described by equation (3.23) for small displacements.

The solution corresponding to the initial conditions x(0) = x0 and

v(0) = v0 is

x(t) = x0 cos (ω0t) + v0

ω0

sin (ω0t), (3.24)

as can be verified by substitution. This can also be written in the form

x(t) = A sin (ω0t + δ), (3.25)

where the amplitude, A, and the phase, δ, are determined by the equations

A2 = x2
0 + v2

0/ω
2
0 and tgδ = v0/(x0ω0).8

In the phase plane (x, v), the trajectories are ellipses centred at the

origin (Fig. 3.7), since taking the square of (3.25) and the corresponding

velocity yields

v2 + ω2
0x2 = v2

0 + ω2
0x2

0 = ω2
0 A2 = constant (3.26)

at any instant, t . Such fixed points are therefore called elliptic points.

Different initial conditions fall onto different ellipses only if the am-

plitudes are different. Contrary to a hyperbolic point, the trajectories do

8 This solution can also be given in the form of (3.15) and (3.16), with λ± = ±iω0.

Equation (3.24) is recovered by using the relations between exponential functions with

imaginary arguments and trigonometric functions.
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not leave the neighbourhood of an elliptic point; moreover, the distance

between neighbouring trajectories does not increase continually, since

δx(t) = δx0 cos (ω0t) + δv0

ω0

sin (ω0t). (3.27)

The difference therefore sometimes increases and sometimes decreases,

but it always remains bounded. Exponential deviation is characteristic

of hyperbolic points only.

Effect of friction (dissipative case): point attractors
In the presence of friction, the equation of motion is given by

ẍ = −ω2
0x − α ẋ . (3.28)

Seeking the solution in the form of exp (λt), a quadratic equation λ2 +
αλ + ω2

0 = 0 is obtained, yielding two possible values:

λ± = −α

2
±

√
α2

4
− ω2

0. (3.29)

The general solution is again of the form

x(t) = c+eλ+t + c−eλ−t , (3.30)

c+ = −λ−x0 + v0

λ+ − λ−
, c− = λ+x0 − v0

λ+ − λ−
. (3.31)

Since the real parts of the exponents, λ±, are always negative, the solution

describes a convergence towards the fixed point. What is seen here in

a concrete example is a general property of dissipative systems: such

systems forget their initial conditions. This means that the phase space

must have a subset that all trajectories reach. This attracting subset is

called an attractor. In our case, all the trajectories converge to the origin;

consequently, the attractor is a single point.

The elliptic point therefore loses its fundamental properties in

the presence of the slightest friction, i.e. it is structurally unstable.

Consequently, an interesting observation is that, while the nature of the

stable dynamics essentially changes when friction is switched on, the

behaviour characterising unstable dynamics is only slightly ‘deformed’

(Section 3.1.1).

The way in which the origin is reached, i.e. the type of the point

attractor, depends on the strength of the friction.

Weak damping: spiral attractor
If the friction parameter, α/2, is smaller than the natural frequency re-

sulting from the attracting force,

α

2
< ω0, (3.32)
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Fig. 3.8. Damped harmonic oscillation with exponentially decreasing
amplitude around a stable state in the presence of weak damping. The equation
of the dashed lines is ±Ae−(α/2) t . The initial conditions are x0 = 6, v0 = 0, and
ω0 = 0.7, α = 0.1.

the expression under the square root of (3.29) is negative, i.e. coefficient

λ± has an imaginary part. This corresponds to an oscillating decay with

frequency

ωα =
√

ω2
0 − α2

4
. (3.33)

Using (3.30), (3.31) and the relations between exponential and trigono-

metric functions, the solution fulfilling the initial conditions (x0, v0)

becomes

x(t) = x0e−(α/2) t cos (ωαt) + v0 + (α/2)x0

ωα

e−(α/2) t sin (ωαt), (3.34)

which can also be written as

x(t) = Ae−(α/2) t sin (ωαt + δ). (3.35)

This shows that the motion is a harmonic oscillation with an exponen-

tially decaying amplitude (Fig. 3.8). The frequency, ωα , decreases, the

oscillations slow, as the friction becomes stronger.

The trajectories in phase space approach the origin along a spi-
ral, according to the sign changes of the displacement and the velocity

(Fig. 3.9). The origin is therefore called an attracting spiral fixed point or

a spiral attractor. It is clear from (3.35) that the trajectory converges to

the origin exponentially. In a mathematical sense, it only reaches it after

an infinitely long time, but, due to the rapid decay of the exponential

function, the body is practically at rest after a few multiples of the decay

time 1/α.

Problem 3.5 Show that the trajectories around a spiral fixed point form

a logarithmic spiral.
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Fig. 3.9. Spiral attractor
and its neighbourhood.
The dashed line shows the
ellipse of the frictionless
trajectory. The parameters
and the initial conditions
are the same as in Fig. 3.8.
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Fig. 3.10. Overdamped oscillations: strong damping around a stable state. In
one of the cases (x0 = 11, v0 = 0), the body comes to rest without its
displacement changing sign, whereas in the other case (x0 = 6, v0 = −25), it
crosses to the opposite side once (ω0 = 0.7, α = 1.5).

Strong damping: node attractor
The period, 2π/ωα , of the damped oscillation goes to infinity as α/2 →
ω0, which indicates that the motion assumes a different character as it

leaves the range of weak damping (another structural instability). In the

overdamped case, when the coefficient, α/2, is greater than the natural

frequency ω0,

α

2
> ω0, (3.36)

the exponents λ± are real. This results in a decay without oscillations

(Fig. 3.10). The solution fulfilling the initial conditions (x0, v0) is of the

form of (3.30) and (3.31), but both exponents are now negative. Strong

damping qualitatively means that the motion takes place in a medium
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Fig. 3.11. Node attractor
and its neighbourhood: some
general trajectories (thin lines)
and the asymptotes v = λ±x
(thick lines). The parameters
are ω0 = 0.7, α = 1.5; λ− =
−1.02, λ+ = −0.48.

which is so dense that not even damped oscillations can develop, and the

body stops as soon as possible.

Two special lines appear in the phase plane: the straight lines v =
λ±x , along which the decay is described by means of a single exponential

(instead of the linear combination of two different exponentials). Since

the absolute value of λ− is greater than that of λ+, the second term in

(3.30) decays more rapidly, and after a long time the first term dominates.

The trajectories converge asymptotically to the straight line v = λ+x ,

along which their time dependence is characterised by a decay with

exponent λ+. Point attractors of this type are called node attractors
(Fig. 3.11). Points along the straight line v = λ−x are exceptional in the

sense that they converge to the origin from the very beginning with a fast

exponential decay, according to exponent λ−. This straight line defines

the direction of strong attraction, while the curve v = λ+x represents

that of weak attraction.

Note that all the results concerning motion around a stable point

can be obtained from the relations that were valid for the unstable case

by using the substitution s0 → iω0, where ω0 is real. The directions of

strong and weak attraction therefore result from the stable and unstable

directions by means of this transformation. Qualitatively speaking, due

to the change in the character of the force, the behaviour around a node

can be obtained from that around a hyperbolic point by turning the un-

stable direction from the first and third quadrants of the phase plane into

the second and fourth. Simultaneously, of course, the orientation also

changes from repulsing into (weak) attracting.

A node attractor, too, is reached at an exponential rate. Thus, the

distance between neighbouring point pairs also decreases exponentially:

δx(t), δv(t) ∼ exp (λ+t). An exponential convergence of point pairs can

also be seen in the neighbourhood of spiral fixed points. The motion in
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the neighbourhood of point attractors is thus not sensitive to the initial

conditions.

Problem 3.6 Determine the trajectories around a node attractor.

The potential corresponding to (3.22), characteristic of a stable state,

is V (x) = ω2
0x2/2 (the value at the stable fixed point is chosen to be zero).

The potential in question corresponds to a valley called a ‘potential well’

(Fig. 3.12), and the bottom of the valley, x∗ = 0, is the stable state, in

accordance with Fig. 3.6.9

V (x)

x

Fig. 3.12. Potential around a
stable state. Stable motion
occurs ‘at the bottom of a
valley’.

3.2 Stability analysis
The force F(x) is never an exactly linear function of the position, i.e.

the equation of motion is never exactly linear. Before examining the

equations of motion,

ẍ = F(x) − α ẋ, (3.37)

for an arbitrary force, F(x), in an extended region, it is worth locating

the possible equilibrium positions. These can only be fixed points, x∗,

where the force vanishes:

F(x∗) = 0. (3.38)

These are also the extrema of the potential defined by (3.21), where

V ′(x∗) = 0.

The location of the fixed points alone does not provide any informa-

tion about stability. Even though, in principle, a body placed at point x∗

always remains there, in practice numerous small external effects influ-

ence it. These move the point slightly off its equilibrium position. The

consequences of such small external disturbances can be investigated

by following the motion starting from positions slightly displaced from

x∗. The question is whether the particle moves further away from the

fixed point, i.e. whether the force repels it away from point x∗, or, on

the contrary, pulls it back there. If the former holds, the equilibrium po-

sition is unstable. Realistic systems cannot permanently remain in such

states.

The stability of a fixed point depends on the form of the force law

in a small neighbourhood of the fixed point. Any smoothly changing

force can be approximated around an arbitrary fixed point, x∗, in view

of (3.38) by

F(x) ≈ F ′(x∗)(x − x∗) ≡ −V ′′(x∗)(x − x∗). (3.39)

9 The elliptical trajectories of the frictionless case are contours of constant energy.
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Fig. 3.13. Dependence of
the stability of fixed points on
the local form of the force law
and the potential, and the
corresponding phase space
structures (trajectories of the
frictionless case are marked
with dashed lines): (a)
unstable, (b) stable state.

This implies that, in general, the force changes linearly for small dis-

placements from the equilibrium position. Expression (3.39) is, in fact,

a Taylor-series expansion up to first order. Since x − x∗ is small, higher-

order terms of the expansion are not included. The stability of the fixed

point already follows from this expression: when F ′(x∗) is negative, i.e.

the potential has a minimum (force locally attracting), the equilibrium

state is stable, and when F ′(x∗) is positive, i.e. the potential has a max-
imum (force locally repulsing), the equilibrium state is unstable. The

application of the potential is useful because it readily provides informa-

tion about the stability of the fixed point, in accordance with our previous

picture of a motion on a relief. While the qualitative nature of the fixed

point is determined by the sign of F ′(x∗), the measure of the stability or

instability is determined by the numerical value of the derivative. The

more rapidly the restoring force increases, i.e. the sharper the minimum

of the potential, the more stable a state becomes. The parameters s0

or ω0 used in the previous sections can always be determined around

fixed points, even in the case of non-linear forces. They are given by the

derivative in the fixed points:

F ′(x∗) = −V ′′(x∗) = s2
0 or − ω2

0, (3.40)

respectively, as shown in Fig. 3.13.

Problem 3.7 Analyse the stability of point x∗ = c for the force law

F(x) = ax(x − c) in terms of the parameters.
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Problem 3.8 Determine the range of validity of the linear approxima-

tion (3.39) in terms of both displacement and time. (Take into account

higher-order terms in the Taylor expansion.)

Problem 3.9 Estimate for how many seconds the linear approximation

(equation (3.1)) is valid for a falling pencil, for different, smaller and

smaller, initial angular deviations.

Around unstable states, the validity of the linear equation of motion

is always limited to finite times only, even for initial conditions very

close to the fixed point. The moving point deviates from the fixed point,

and thus, sooner or later, leaves the range where the force law, (3.39), is

valid. This is why traditional texts are not concerned with motion around

unstable states. To us, however, this is a hint to follow the motion into the

non-linear range. This raises the fundamental question of how the locally

straight stable and unstable curves continue outside the linear regime.

3.3 Emergence of instability
The non-linearity of a force law might be of such a nature that several

equilibrium positions become possible, and unstable and stable states

co-exist. In this section we investigate how a stable state can become

unstable, i.e. how instability emerges under changes of parameter. We

shall see that this is usually accompanied by the appearance of one or

more new stable states.

Due to non-linearity, the results of Section 3.1 are only valid locally,

in the vicinity of the stable and unstable states. It is also important

to understand the dynamics globally, i.e. far away from these points.

Knowledge of the phase space structure around the fixed points will

nevertheless be of great help: taking into account the fact that trajectories

cannot intersect, local properties can be joined together to provide a

global view. Generally speaking, we will give a geometric description of

non-linear motion in the phase plane. Concepts introduced here will also

play an important role in understanding more complicated motions. We

show that it is the hyperbolic (unstable) points that organise the global

behaviour.

3.3.1 Bistable systems

As a consequence of external changes, an originally stable system may

start showing signs of uncertainty; it may become bistable. In this case,

the single, originally stable, state ceases to exist and two different stable

equilibrium states appear. In the neighbourhood of the state that just

became unstable, the system has to ‘decide’ which new stable state to
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Fig. 3.14. Bistable systems. (a) Point mass fixed to two compressed springs and
moving horizontally along a rail. (b) Point mass moving along a ring, rotated at
a sufficiently large angular velocity, �. (c) Magnetic pendulum near two
attracting magnets. In all three cases, the system comes to a halt in one of the
two stable positions, which are mirror-images of each other.

approach. As an example, consider a point mass fixed to two springs

and moving along a horizontal rail (Fig. 3.14(a)). As long as the points

to which the springs are fixed are a long way from each other, the state

with zero displacement is the stable equilibrium. When the points get

close enough to each other, the mass moves to the right or to the left, and

two new stable states develop at positions x∗ and −x∗. This system is a

simple model of the buckling of longitudinally loaded rods. An analogous

phenomenon (Fig. 3.14(b)) is the motion of a point mass along a rotated

ring, having only one stable state at the bottom while the rotation is slow,

but settling in a position characterised by a finite angular deviation when

the rotation is fast enough. A third example could be a pendulum with

a steel ball as anchor (Fig. 3.14(c)), whose stable equilibrium state is in

the vertical position. However, when two attracting magnets are placed

near the pendulum, then a displaced state either to the right or to the left

will be the stable equilibrium position.

There are numerous similar examples with symmetrically arranged

equilibrium states. These can collectively be modelled by the force law:

F(x) = −ax(x − x∗)(x + x∗). (3.41)

Here a > 0 is a positive parameter, and x∗ > 0 and −x∗ < 0 are the

position co-ordinates of the stable states on the right and on the left,

respectively. The corresponding potential is given by

V (x) = −bx2 + dx4, (3.42)

where b = ax∗2/2 and d = a/4 are fixed parameters. Since the coeffi-

cient of the quadratic term is negative, the potential has a local maximum

at the origin that separates two potential wells, and potential (3.42) is

therefore called double-welled. Consequently, the behaviour of bistable

systems corresponds to motion around two wells separated by a hill in
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Fig. 3.15. Bistable
systems: a general model
of the force (a) and of the
potential (b). These graphs
correspond to functions
(3.41) and (3.42),
respectively, at parameters
a = 4, x∗ = 1 (b = 2,
d = 1).

between (Fig. 3.15). At the hill-top, F ′(x∗
0 = 0) = ax∗2, the repulsion

parameter is therefore given by

s0 = √
ax∗ =

√
2b. (3.43)

The force is attractive at the bottom of the wells and its derivative

is negative: F ′(±x∗) = −2ax∗2; consequently, the natural frequency is

given by

ω0 =
√

2ax∗ = 2
√

b. (3.44)

The global behaviour of the system can be constructed from the unstable

state at the origin and the stable states at ±x∗.

Problem 3.10 Determine the phase space trajectories of the friction-

less bistable system characterised by (3.41).

We discuss the global phase space behaviour for the dissipative case

in some detail. The character of the stable state is known to depend on

the friction strength; we choose the case of weak friction (α/2 < ω0).

The fixed points (x∗, 0) and (−x∗, 0) are spiral attractors, and the

origin is a hyperbolic point. The shape of the trajectories in their vicinity

can be obtained as discussed in the previous section (Fig. 3.13). There are

stable and unstable curves in the neighbourhood of the origin (the hyper-

bolic point). The formulae v = λ± x for the asymptotes (the parameters

λ± follow from (3.14) and (3.43)) are only valid in the immediate vicinity

of the origin. Now we investigate how these curves are continued when

moving away from the origin.



70 Introductory concepts

x

x

V x( )

–2 –1 0

0

–2

1 2

2

–2 1 2

2

P 3–

P 4–

P 1–

P 2–

(a)

(b)

Fig. 3.16. (a) Potential of a
bistable system and
(b) its global phase space
structure. The bottoms of the
two wells each represent a
spiral attractor, while the
hill-top is a hyperbolic point.
The trajectory of a body just
reaching the hill-top is the
stable manifold of this point.
The trajectory of a body
sliding down from the hill-top
with nearly zero initial speed is
the unstable manifold which
leads to one of the two point
attractors (a = 4, x∗ = 1,
α = 0.2).

In the neighbourhood of the origin, it is the points of the stable curve

v = λ− x that move towards the origin. There obviously exist points with

this property further away as well: the locally straight segment continues

as a bent curve. The set of all phase space points from which particles can

reach the hyperbolic point is called the stable manifold of the hyperbolic

point.

The manifold has two branches depending on the side (right or left)

from which the origin is reached. The branch emanating to the right

slowly bends upwards: the force becomes restoring after passing the

bottoms of the wells, and therefore negative initial velocities of smaller

and smaller absolute values are necessary for the body to reach the hill-

top (Fig. 3.16). The curve then intersects the x-axis. The first point of

intersection (P−1) is the position from which a body starting with zero

initial velocity slowly climbs up the hill. The stable manifold then bends

backwards: a finite positive initial velocity is necessary for a particle

thrust to the right to go high enough on the mountain side and to halt ex-

actly on the hill-top after turning back from the mountain. The manifold

continues further: the first intersection with the v-axis (P−2) corresponds

to the velocity with which a body has to be thrust to the right so that it

later stops exactly at its initial position. The manifold then skirts the left

well and intersects the negative x-axis (P−3).

Problem 3.11 What is the meaning of the stable manifold’s first inter-

section P−4 with the negative v-axis?
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The branch emanating to the left is the centrally symmetric image

of that emanating to the right. Both branches skirt the wells more and

more times, while moving further and further away from the origin. The

stable manifold is therefore a curve of infinite length.

The unstable manifold of the hyperbolic point can be defined in a

similar way. This is the trajectory of a body left alone on the hill-top

with a negligible initial velocity. It can also be considered as the set of

points (x, v) from which the body reaches the hyperbolic point in the

course of the time-reversed dynamics (a motion with initial condition

(x, v) running in the negative time direction). The unstable manifold in

the neighbourhood of the fixed point is a straight line segment whose

orientation coincides with the unstable direction of the fixed point. The

unstable manifold is thus a curve whose two branches leave the fixed point

in opposite directions. Qualitatively speaking, the unstable manifold is

the curve along which points from a tiny neighbourhood of the fixed

point move away from the fixed point. It is evident that the two branches

of the unstable manifold of the origin go into the two attractors, (x∗, 0)

and (−x∗, 0). The manifold in the immediate vicinity of the fixed point

attractors is a spiral corresponding to the phase space pattern of damped

harmonic oscillations.

Two simple attractors co-exist in bistable systems. Trajectories from

each point converge towards one of the attractors. The phase space can

therefore be split into two parts, depending on the well in which the

motion starting from a given point ends up. These are the basins of
attraction of each of the two attractors. Using an analogy from geog-

raphy, the basins of attraction are like the tributary basins of rivers.

The boundary between the basins of attraction is called the basin
boundary.

The two branches of the stable manifold of the origin split the phase

space into two rolled-up bands: the basins of the two fixed point attractors.

The stable manifold of the unstable hyperbolic point forms the basin

boundary (Fig. 3.17). A phase space curve that separates trajectories

corresponding to motions of different nature is called a separatrix. The

whole stable manifold is obviously a separatrix. Continuing with our

geographical analogy, the separatrix plays the role of a water-shed divide.

By drawing the stable and unstable manifolds of the hyperbolic points

and a few other characteristic trajectories, an overview of the entire phase

space and of the global dynamics can be obtained. This diagram is often

called a phase portrait.
It is worth emphasising that not even in the case of this simple

problem can the displacement vs. time function (or the trajectory) be

described by simple formulae. We recommend that the reader writes a

computer program to become acquainted with the dynamical properties.
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Fig. 3.17. Basins of attraction
in a bistable system. The
stable manifold of the origin
splits the phase space into the
basins of the right and the left
attractors (shaded and white
regions, respectively). The
parameters are the same as in
Fig. 3.16.

For those who are not familiar with the numerical solution of ordinary

differential equations, it is advisable to study the Appendix, specifically

Sections A.2, A.3, and A.4.2.

Problem 3.12 Determine the phase portrait of the motion under the

force F(x) = ax(x − c) (a > 0, c < 0), i.e. in the potential well V (x) =
acx2/2 − ax3/3, in both the conservative and the dissipative cases. This

force is used as a simple model of ship capsizing. In a strong, steady

wind a tall ship tilts to the leeside and might capsize. At the same time,

a certain position of the ship tilted to the winward side may be stable.

The minimum of the potential well corresponds to this latter state, while

its monotonous decrease for x > 0 corresponds to capsizing.

3.3.2 Bifurcation

It is interesting to follow the procedure outlining how an unstable state

emerges in a system susceptible to bistability. The position co-ordinate is

x , and some general parameter of the system, denoted by μ, is changed.

It is assumed that the system is symmetrical around some co-ordinate x∗
0

and that the force is everywhere attractive for relatively small values of

μ. There exists therefore only one stable equilibrium state, at x∗ = x∗
0 .

As μ is increased, the fixed point becomes less and less stable and loses

its stability at some critical value μc. At the same time, two new stable

fixed points appear outside of the centre, symmetrically to x∗
0 .
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Box 3.2 How to determine manifolds numerically

We briefly present a numerical algorithm to construct stable and unstable manifolds. After determining the

hyperbolic point, form a small square or disc made up of tens of thousands of points around the fixed point.

Since this object contracts in the stable and stretches in the unstable direction as time passes, this ensemble

of points appears to be a thin line after a few multiples of the time 1/λ−, and traces out longer and longer

segments of the unstable manifold (Fig. 3.18(a)). The stable manifold can be obtained from the same initial

object in a similar way, but now the time step has to be set to a negative value in the program, corresponding

to time-reversed dynamics (Fig. 3.18(b)).

–1

1

x–1 1

(a)

–1

1

x–1 1

–1

1

x–1 1

(b)

–1

1

x–1 1

–1

1

x–1 1

–1

1

x–1 1

Fig. 3.18. Numerical construction of the unstable (a) and stable (b) manifolds of the origin in the bistable
problem (α = 0.2, a = 2, x∗ = 1). The initial square of size 0.1 contains 40 000 uniformly distributed points.
The figures represent the initial state and the patterns seen after two and six time units (chosen to be 1/

√
b ;

see (3.43)).

Plotting the values of the possible equilibrium states, i.e. the fixed

points, vs. μ, a typical structure appears (Fig. 3.19). Three curves are

present for μ > μc, which deviate first rapidly and later more slowly

from each other as μ increases. Together with the single straight line

segment x∗ = x∗
0 of the range μ < μc, they resemble a fork. This is why

the whole process is called bifurcation. In the course of bifurcation, a

state loses its stability and, simultaneously, new stable states are born. The

critical point, μ = μc, is called a bifurcation point, and this symmetrical

bifurcation process is called a pitchfork bifurcation.
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Fig. 3.19. Bifurcation
diagram (schematic) of a
pitchfork bifurcation.
Co-ordinates x∗ of the
equilibrium states are given in
terms of a parameter μ. The
dashed line represents the
unstable state emerging from
a stable state. The shape of
the potential is also plotted for
selected values of the
parameter.

The system characterised by the potential in (3.42) is a good model

for pitchfork bifurcations if the parameter μ ≡ b can be changed in both

the negative and positive domains. For b < 0, only the origin can be a

fixed, stable, point. The bifurcation point is the value bc = 0; beyond this

the origin is unstable, but two stable fixed points are present at positions

x∗ = ±√
b/(2d).

An unambiguous indicator that the instability is approaching is that

the frequency of small oscillations around the stable state(s) decreases,

i.e. the period increases when approaching the bifurcation point, regard-

less of the direction, because the potential becomes flatter and flatter.

This phenomenon is called critical slowing down.10

Problem 3.13 A body of unit mass is fixed to the ends of two

springs of length l0 and force constant k acting from opposite directions

(Fig. 3.14(a)). The body can only move along a horizontal line. The other

ends of the springs are fixed outside this straight line, at the same dis-

tance, h. Describe the bifurcation process in terms of μ ≡ h. Show that in

the vicinity of the bifurcation point the force law is equivalent to (3.41).

Problem 3.14 Determine the frequency, ω0, of small oscillations

around the stable states on both sides of the bifurcation point in

Problem 3.13.

Problem 3.15 Determine the bifurcation diagram of a body moving

along a rotated ring (Fig. 3.14(b)) in terms of the angular velocity, μ ≡ �,

of the rotation.

10 A pitchfork bifurcation is the analogue of a second-order phase transition of

thermodynamics. The best known example of this is magnetic ordering, which

appears spontaneously below a critical temperature (no permanent magnetisation is

present above this temperature).
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diagram of a distorted
pitchfork bifurcation
(schematic). In
asymmetrical systems, at a
value μc of the parameter,
a second stable equilibrium
state arises abruptly,
together with an unstable
one (dashed line).

Problem 3.16 Work out the equation that determines the equilibrium

states of a magnetic pendulum (Fig. 3.14(c)). For simplicity, assume

that the force is of Coulomb type and that the pendulum is so long

that the motion occurs almost in the horizontal plane, the magnets

being at distance d below this plane. What is the condition for an

instability?

In systems without symmetry, bifurcations occur in a different way.

In such cases the stable state does not cease as the parameter μ in-

creases, but rather two new equilibrium solutions appear above a crit-

ical value, μc: one stable and one unstable (Fig. 3.20). When decreas-

ing the parameter μ from large values, one of the stable equilibrium

states suddenly disappears. A state belonging previously to this branch

changes abruptly.11 Therefore, this phenomenon is sometimes also called

a catastrophe. The whole bifurcation process is a distorted pitchfork

bifurcation.

In the course of bifurcations, not only the equilibrium positions are

modified, but also the complete phase portrait. Accordingly, the character

of the entire dynamics changes fundamentally.

Ω

d

l

Problem 3.17 Consider a pendulum hanging on a horizontal rod of

length d, rotating at angular velocity � around a vertical axis (imagine

a model of a merry-go-round). Determine the equation yielding the sta-

tionary angles of deviation, ϕ. Show that for a small length, d, of the

rod, the system undergoes a distorted pitchfork bifurcation in terms of

the angular velocity μ ≡ �.

Problem 3.18 Consider the system shown in Fig. 3.14(a) tilted from

the horizontal by a small angle of inclination, α. Show that a distorted

pitchfork bifurcation occurs in the system when changing parameter h,

which should be identified with μ in this case.

11 This is a phenomenon analogous to a first-order phase transition of thermodynamics.
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Fig. 3.21. Potential of the
motion on a bumpy slope,
(3.47), with parameters
A = 1, F 0 = 0.25.

3.4 Sustained periodic motion: the limit cycle
(skiing on a slope)
Problem 3.19 Determine the phase portrait of a weakly damped mo-

tion under the periodic force F(x) = −A sin x , A > 0, whose potential

is V (x) = −A cos x . According to the qualitative interpretation of po-

tentials (Section 3.1.1), the problem corresponds to a motion on a wavy

surface of period 2π , or on a bumpy road.12

Problem 3.20 Work out the phase portrait of Problem 3.19 in the fric-

tionless limit.

We examine a model which describes sliding on a bumpy slope. The

force is given by

F(x) = −A sin x + F0, (3.45)

which corresponds to the potential

V (x) = −A cos x − F0 x . (3.46)

Note that F0 > 0 is a parameter of the slope, the force due to the tilt

(Fig. 3.21). The dissipative case described by the equation of motion,

ẍ = −α ẋ − A sin x + F0, (3.47)

can also be considered as a model of skiing downhill on a bumpy slope,

assuming that the drag is proportional to the velocity.13

12 By means of the replacement x → ϕ, the pendulum problem is recovered with ϕ as

the angular deviation. Amplitude A has then to be identified with the ratio of

gravitational acceleration, g, to the length, l, of the pendulum.
13 By means of the replacement x → ϕ, we obtain the problem of a pendulum subjected

to a constant torque. The equation of motion also describes the dynamics of the
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The equilibrium positions, x∗, follow from F(x∗) = 0. They are

determined by the condition

sin 	 = F0/A (3.48)

(Fig. 3.22), where 	 > 0 yields the shift of the fixed point from nπ .

Since the absolute value of the sine function can only be less than unity,

the above equation has a solution only if

F0 ≤ A. (3.49)

There exists then a set of solutions x∗
+ = 	 + 2πn; i.e., the equilibrium

states at the bottoms of the dips on the slope. Shifting the points π +
2πn to the left by this same 	 yields the values x∗

− = π − 	 + 2πn,

the location of the unstable equilibrium states corresponding to local

maxima (Fig. 3.22). (If condition (3.49) is not fulfilled, the slope is so

steep that no equilibrium positions exist and the skier slides down from

everywhere.)

Problem 3.21 Determine the phase portrait of the motion on a bumpy

slope in the frictionless limit.

For weak friction, the points x∗
+ are spiral attractors, whereas the

points x∗
− are hyperbolic. The left branches of the unstable manifolds of

the latter points lead into the nearest spiral attractors (Fig. 3.23).

As long as the friction is not too strong, and for sufficiently steep

slopes, a body starting with a negligible initial velocity from the top

of a bump to the right not only reaches the next top, but also passes

over it with a finite velocity. From then on it passes over all the other

bumps. However, its velocity cannot increase arbitrarily, since friction

potential difference occurring in so-called ‘Josephson junctions’. Finite velocity

corresponds to finite potential drop.
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Fig. 3.23. Phase portrait of motion on a bumpy slope with weak friction
(A = 1, F 0 = 0.25, α = 0.1). Due to friction, one of the branches of each
unstable manifold leads into the attractor in the left hole; the other, however,
converges to an undulating curve representing downhill sliding with a bounded
speed, i.e. the limit cycle (thick line). The basin of attraction of the limit cycle
extends not only into the positive, but also into the negative half-plane. The
stable manifolds trace out the basin boundaries of the spiral attractors
distinguished by different shading.

increases with increasing velocity. Thus, after a sufficiently long time, a

sustained periodic motion develops. This cannot be of constant velocity,

since the motion has to be faster in the holes than over the bumps. In

the analogy with skiing this corresponds to a stationary downhill sliding

with pulsating velocity.14 Such types of motion are represented by a new

type of attractor in phase space whose trajectory is a periodic curve.

Such a periodic attractor is called a limit cycle. Contrary to the point

attractors discussed so far, the limit cycle represents a motion that does

not cease but remains sustained. This periodic motion develops due

to a constant input of energy, ensured in our case by gravitation. On

the limit cycle, the average amount of energy consumed by friction is

exactly balanced by the decrease of the gravitational potential of the

skier. Both point and limit cycle attractors belong to the class of simple

attractors.

The limit cycle can be reached both from above (from the direction

of large velocities) and from below. The former corresponds to the fact

that fast skiers lose speed until they reach the motion prescribed by the

limit cycle. On the other hand, the velocity of a skier starting slowly from

the top of a bump gradually increases. The right branches of the unstable

manifolds thus tend towards the limit cycle.

14 For a pendulum subjected to a constant torque this implies sustained rotation, while

for the Josephson junction this corresponds to the appearance of a sustained potential

difference.
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The left branch of the unstable manifold of a hyperbolic point leads

into the left neighbouring spiral attractor, which describes coming to a

halt in the hole left of the bump. There is therefore an infinity of point

(spiral) attractors in co-existence with a limit cycle. The stable manifolds

of the hyperbolic points form the basin boundary of the point attractor

to their left. Points departing outside these domains all converge to the

limit cycle (see Fig. 3.23).

It should be mentioned that, due to the periodicity, identical phase

portraits belong to each x interval of length 2π . If we do not wish to

distinguish the point attractors from each other, then the whole problem

can be analysed on the interval (−π, π ), i.e. it can be restricted to a spatial

period. This corresponds to ‘rolling up the phase space on a cylinder’,15

as shown in Fig. 3.24. In this representation the spiral attractor reflects

that the body comes to a halt somewhere. The trajectories become dense

around the limit cycle, illustrating its attracting nature.

Problem 3.22 Find out how the phase portrait of motion on a bumpy

slope changes as the friction coefficient increases (as the snow becomes

more and more wet).

3.5 General phase space
3.5.1 General definition of phase space

Processes taking place in continuous time are described by means of

differential equations. Even if in their original forms these are of higher

15 This is especially plausible in the case of a pendulum subjected to a constant torque,

whose position is defined by the angular deviation ϕ, which is 2π -periodic.
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order (including higher than first-order time derivatives), they can be

transformed into a set of first-order differential equations by introduc-

ing new variables (for example by considering the first derivative as a

new unknown). Autonomous differential equations are those that do not

explicitly contain time. Consider the autonomous system given by

ẋ = f(x), (3.50)

where x ≡ (x1, x2, . . . , xn) is an n-dimensional vector of the un-

knowns, and the functions f ≡ ( f1, f2, . . . , fn) are time-independent.16

Motion of the system implies the time evolution of n independent

co-ordinates which can be uniquely represented on the axes of an n-

dimensional co-ordinate system. The latter spans the phase space of the

problem.

An instantaneous state of the system is represented by a phase space

point, x. As the state changes, the point moves and traces out a trajectory.

In the overwhelming majority of systems investigated in physical

sciences, or more generally in natural sciences (and in economics), the

functions fi change smoothly, i.e. they are differentiable and the deriva-

tives are finite. In the following, differential equations will be understood

to be equations with this property. For such equations, given initial con-

ditions always lead to unique solutions. This implies that phase space

trajectories cannot intersect (otherwise two different solutions would

belong to the initial condition corresponding to an intersection). The

behaviour in phase space is similar to the motion of a fluid, where par-

ticle paths cannot cross each other. This is why the vector f is often

said to define a flow in phase space. Trajectories can ‘collide’ at a hy-

perbolic point, but even there they do not intersect: points belonging

to the two branches of the stable manifold tend towards each other, but

touch only after an infinitely long time. A system is called simple if its

dynamics is given in terms of a few variables, i.e. if its phase space

is low-dimensional (in practice this means a maximum of four to ten

variables).

In the phase space representation, time is not present explicitly, and

phase space, in principle, contains all possible motions. A single tra-

jectory in itself corresponds to an infinity of individual motions, i.e. all

those whose initial condition is a point of the trajectory (see Table 1.2).

In a two-dimensional flow, the dynamics is of the form

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2), (3.51)

where f1 and f2 are arbitrary functions.

16 Nonautonomous, driven cases are discussed in Chapter 4.
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For motion occurring along a straight line of the type investigated

so far, the equation of motion (3.37) can be written, by introducing the

notation x ≡ x1, v ≡ ẋ ≡ x2, in the form of (3.51) with

f1(x1, x2) = x2, f2(x1, x2) = F(x1) − αx2. (3.52)

Even though mathematically this is not the most general form, the most

important types of dynamical behaviour can all be observed within this

Newtonian framework.

3.5.2 Dynamics of phase space volumes

The use of phase space raises a question that does not arise in the tradi-

tional one-particle approach. How does some subset of the phase space

move, and how does its volume change in the course of the motion? By

motion of the phase space volume we mean that an arbitrary connected

volume is filled continuously with points (initial conditions) and the po-

sition of this set of points is recorded in the phase space after time t .
Consequently, tracing the motion of a phase space volume corresponds

to observing an ensemble of particles. The advantage of this method is

that, even if certain initial conditions are not typical, the ensemble will

show some kind of average behaviour. Investigating the time evolution of

phase space volumes is therefore a step towards a statistical description

of the dynamics.

Naturally, the shape of an initial object changes in time, and, usu-

ally, so does the volume. The rate of change of the phase space volume

is easy to determine. Consider a planar problem and a small rectan-

gle around point (x1, x2). The dimensions of the rectangle along the

x1- and x2-axes are 	x1 ≡ x ′
1 − x1 (Fig. 3.25) and 	x2 ≡ x ′

2 − x2,

respectively.

According to (3.51) and Fig. 3.25, the temporal change of the sides

is 	ẋ1 = (∂ f1/∂x1)	x1 and 	ẋ2 = (∂ f2/∂x2)	x2. The time derivative

of the phase space volume, � = 	x1	x2, is thus given by

�̇ = 	ẋ1	x2 + 	ẋ2	x1 =
(

∂ f1

∂x1

+ ∂ f2

∂x2

)
�. (3.53)

The phase space contraction rate, σ , defined by

�̇ = −σ�, (3.54)

is thus given by

σ = −
(

∂ ẋ1

∂x1

+ ∂ ẋ2

∂x2

)
≡ −

(
∂ f1

∂x1

+ ∂ f2

∂x2

)
≡ −div f. (3.55)
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x1x1

x2

x2

x'2

x1+ f1(x1)Δt x1 + Δx1+ f1(x1 + Δx1)Δt

x' x x1 1 1= +Δ

Fig. 3.25. Change of the phase space volume for a small rectangular object in
motion occurring along the x1-axis only. The left and right edges move to
positions x1 + f1(x1)	t and x ′

1 + f1(x ′
1)	t, respectively, in time 	t. The change

in the base length is therefore ( f1(x ′
1) − f1(x1))	t ≈ (∂ f1/∂x1)	x1	t, yielding a

rate of change of 	ẋ1 = (∂ f1/∂x1)	x1. A similar relation can be derived for the
rate of change of the height in motion along the x2-axis.

The contraction rate is therefore determined by the divergence of the

vector f defining the flow. This result is a generalised form of Liou-
ville’s theorem. It can be seen from the derivation that the statement

is valid for phase spaces of arbitrary dimensions. In a general flow, σ

depends on the position in phase space, and its sign is not necessarily

constant. Negative σ corresponds to the expansion of the phase space

volume.

In the Newtonian system, (3.52), the phase space contraction rate

is

σ = α. (3.56)

This implies that only friction, i.e. dissipation, can cause the phase space

volume to change. Since α is constant, in the dynamics studied so far,

((3.37) and (3.52)), the phase space contraction rate is independent of the

position. According to (3.54), the phase space volume, �, then changes

exponentially as �(t) = �0e−αt , which implies a fast decrease. Within a

few multiples of the decay time, 1/α, the phase space volume contracts

almost to zero (Fig. 3.26). Attractors are therefore always objects of zero

phase space volume.

The contraction of the phase space volume is related to irreversibil-

ity, and the basic law underlying irreversibility is the second law of

thermodynamics, which determines the direction of the time evolution

of macroscopic systems. An increase of the phase space volume would
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Fig. 3.26. Decrease of phase space volume around (a) a hyperbolic point and
(b) a spiral attractor (ω0 = s0 = 0.7, α = 0.5). In both cases the initial square of
size 0.5 is centred at (1.5, −1.5), and its position is presented in every time unit.

only be possible with negative friction. In isolated systems this is impos-

sible due to the second law.17

An important special class of motion is that of conservative systems,

where the phase space volume remains unchanged, i.e. � = constant.

According to (3.56), friction then has to vanish in (3.37), α = 0, and σ ≡
0 (Liouville’s theorem). This, however, does not exclude a significant

change in the shape of the phase space object, while leaving its volume

unchanged. Lack of friction also means that the total mechanical energy,

E = v2/2 + V (x), is conserved in time.

The fact that an unstable state in phase space is related to the ap-

pearance of hyperbolic points is a consequence of the contraction (or

preservation) of the phase space volume. Stretching along the unsta-

ble direction is only possible if contraction takes place along the stable

one.

Problem 3.23 Determine the phase space contraction rate of the flow

(the van der Pol oscillator) defined by the following equations:

ẋ1 = x2, ẋ2 = −x1 − α(x2
1 − 1)x2.

17 Expanding phase space volumes can only occur in exceptional cases when an energy

flux originating from its environment is flowing through the system. Then, the state of

the system deviates significantly from thermal equilibrium, so much that (at least in

certain locations) σ can become negative. Such cases can, of course, only be described

by equations different from (3.37).
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3.5.3 Time reversal, invertibility

In differential equations describing time evolution, the time arrow can

be reversed. Processes occurring in the negative time direction are also

uniquely determined by the initial conditions. The dynamics is therefore

called invertible. The inverted form of the general equation (3.50) is

given by

ẋ = −f(x). (3.57)

In numerical solutions, this simply corresponds to choosing negative

time steps. The phase space contraction rate of the inverted dynamics is

the opposite of the original, i.e. −σ . Time reversal implies that the func-

tions xi (t) are read backwards between given starting and end-points.

Consequently, the shape of the corresponding phase space trajectory

does not change; only the arrow-head has to be reversed. Phase space

therefore contains trajectories of both the original and the time-reversed

dynamics. We emphasise that invertibility does not imply reversibil-

ity in the thermodynamical sense. All dissipative processes are irre-

versible since the system always converges towards an attractor as its

ultimate state. Nevertheless, the inverted dynamics (3.57) exists, and de-

scribes escape from any small neighbourhood of the attractor of the direct

dynamics.

The inverted version of the frictional motion (3.37) is given by

ẍ = F(x) + α ẋ . (3.58)

Here, friction does not slow down the body, rather it speeds it up. This

illustrates that although invertibility ensures that the time-reversed mo-

tion is uniquely determined, it does not necessarily imply that the time-

reversed motion is physically realistic.

In the Newtonian scheme (3.37), it is usual to define time reversal

along with a change of sign of the velocity. The corresponding transfor-

mation is given by

t → −t, x → x, v → −v. (3.59)

This implies that besides changing the arrow-head, trajectories are mir-

rored on the x-axis.

Systems where time-reversed motions are all real motions are called

time-reversal invariant systems. The motion of such systems, if recorded

on a videotape and played backwards, appears to be as realistic as the

original; i.e., they are reversible motions in the thermodynamical sense as

well. Time-reversal invariance implies a vanishing phase space contrac-

tion rate, σ = 0. The equation of motion, (3.37), with α = 0 is invariant

under the transformation (3.59). This brings about a new symmetry in
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phase space: trajectories are symmetrical to the x-axis (see, for example,

Problems 3.10 and 3.20).

3.5.4 Fixed points and their stability in general
two-dimensional flows

The fixed points are the points x∗, where ẋ∗ = 0 = f(x∗), i.e. the points

at which the flow vanishes. Suppose we have found some fixed point

(x∗
1 , x∗

2 ) of equation (3.51). (In practice, this is not always simple since

a non-linear set of equations, f1(x∗
1 , x∗

2 ) = 0, f2(x∗
1 , x∗

2 ) = 0, is to be

solved.) The fixed point implies a time-independent state, but typically

none of the co-ordinates vanish, since they do not carry the meaning of

velocity.

The stability of a fixed point can be determined from the equations

valid in the immediate neighbourhood of the point. Assume that the

difference x − x∗ is small, such that it is sufficient to keep only the linear,

leading terms. The linearised form of equation (3.51) can be given by

(x1−̇x∗
1 ) = a11(x1 − x∗

1 ) + a12(x2 − x∗
2 ),

(x2−̇x∗
2 ) = a21(x1 − x∗

1 ) + a22(x2 − x∗
2 ).

(3.60)

Using the vector notation 	x = (x1 − x∗
1 , x2 − x∗

2 ), this linear set of

equations becomes

	̇x = A	x, (3.61)

where A is a matrix:

A =
(

a11 a12

a21 a22

)
=

(
∂ f1/∂x1 ∂ f1/∂x2

∂ f2/∂x1 ∂ f2/∂x2

)
. (3.62)

The elements of this stability matrix are the partial derivatives, ai j =
∂ fi/∂x j , evaluated at the fixed point.

With a trial solution of (3.60) in the form 	xi = ui eλt (i = 1, 2),

we find that λ has to fulfil the following set of equations:

λu1 = a11u1 + a12u2, λu2 = a21u1 + a22u2; (3.63)

i.e., λ is an eigenvalue of matrix A, since Au = λu. The condition for

the existence of a non-trivial solution of this set of homogeneous linear

equations is as follows:

λ2 − λTr A + det A = 0. (3.64)

Here, TrA ≡ a11 + a22 denotes the trace of the matrix and detA ≡
a11a22 − a12a21 is its determinant. This equation has two different com-

plex solutions, λ±, whose sum is the trace. On the other hand, the sum
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Table 3.1. Classification of the fixed points of two-dimensional flows
according to the real and imaginary parts of λ±.

Reλ± = 0 Reλ± < 0 Reλ− < 0 < Reλ+ Reλ± > 0

Imλ± = 0 (marginal) node attractor hyperbolic point node repellor

Imλ± = 0 elliptic point spiral attractor – spiral repellor

is the divergence of the linearised equation (3.60); thus,

λ+ + λ− = −σ (3.65)

holds in general. In other words, the negative sum of the eigenvalues

is the phase space contraction rate in the vicinity of the fixed point.

For conservative systems, λ+ = −λ−. An exceptional special case is

λ+ = λ− = 0. The fixed point is then called marginal since it is neither

stable nor unstable (the dynamics around it can only be determined from

a non-linear analysis).

The nature of a non-marginal fixed point follows from the properties

of the eigenvalues (in the following list, the ‘pictograms’ of the fixed

points are also given):

Hyperbolic point: λ± is real, λ+ > 0 > λ−. The instability

exponent defined in Section 3.1.1 is the positive eigenvalue, λ+,

of the general linear problem.

Elliptic point: λ± is purely imaginary (this is only possible in

conservative cases, with σ = 0). The natural frequency of Sec-

tion 3.1.2, ω0, is the absolute value of the eigenvalues of the

general linear problem λ± = ±iω0.

Node attractor: λ± is real and negative (σ > 0).

Spiral attractor: λ± is complex with real part Reλ± < 0 (σ > 0).

Node repellor:18 λ± is real and positive (only possible in

expanding phase spaces with σ < 0).

Spiral repellor: λ± is complex and Reλ± > 0 (only possible

in expanding phase spaces with σ < 0).

Repelling fixed points are also listed since the fixed point attractors

of a problem always appear as fixed point repellors in the inverted dy-

namics. For the sake of perspicuity, the different cases are summarised in

Table 3.1.

18 A repellor is a repelling object in phase space.
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Nodes and spiral fixed points can only occur in the presence of dissi-

pation, and in such cases they are necessarily attractors. Only hyperbolic

points can appear both in conservative and in dissipative systems (even

in expanding phase spaces), which illustrates their robustness.

The general solution of (3.60) is always a linear combination of two

exponentials with the eigenvalues as the exponents:

x(t) = c+u+eλ+t + c−u−eλ−t . (3.66)

The vectors u± are the (right) eigenvectors of matrix A: Aui = λi ui

(i = ±). Eigenvectors are the vectors that are only stretched, not rotated,

by matrix A, with the stretching rate as the eigenvalue. The coefficients

c± are determined by the initial condition, x0 = c+u+ + c−u−. Even

though the eigenvalues and eigenvectors can be complex numbers, (3.66)

is always real. A motion described by a linear equation can therefore be

decomposed into independent components determined by the eigenval-

ues and eigenvectors. If the eigenvalues (and therefore the eigenvectors)

of the stability matrix, A, are real, the eigenvectors determine directions

in phase space. A single exponential describes time evolution along these

directions. The trajectories asymptote to that eigenvector direction which

belongs to the greater eigenvalue. In the particular case of a hyperbolic

point, the stable and unstable directions coincide with the eigenvectors

belonging to the negative and positive eigenvalues, respectively. Sim-

ilarly, the directions of weak and strong attraction of a node coincide

with those belonging to the greater and smaller (now both negative)

eigenvalues, respectively.

Problem 3.24 Determine the stability matrix, A, of the mechanical

problem (3.52) linearised around a fixed point, and show that it yields

the same types of fixed points in the above general classification as those

obtained in Sections 3.1.1 and 3.1.2.

Problem 3.25 Analyse the stability of the linear problem defined by

the matrix

A =
(

1/2 1

a −2

)
(3.67)

in terms of parameter a.

Problem 3.26 Determine the nature of the fixed point in different re-

gions of the parameter plane defined by det A and σ for non-negative

phase space contraction rates: σ ≥ 0.

3.5.5 Phase portraits of general two-dimensional flows

The first step in unfolding the dynamics, (3.51), is to determine its fixed

points and their stability. We already know the trajectories characterising
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x
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spiral attractor

stable manifold
(separatrix)

limit cycle

hyperbolic point

unstable manifold

spiral repellor

Fig. 3.27. Schematic phase
portrait of a general
two-dimensional dissipative
system. The most complicated
possible attractor in a plane, a
limit cycle, is represented by
a closed curve.

the immediate vicinity of the fixed points (see Sections 3.1.1, 3.1.2 and

3.5.4). Using these as building blocks, a complete phase portrait can be

constructed. The stable and unstable manifolds of the hyperbolic points

play an especially important role. Both manifolds can be infinitely long

curves extending over large domains of phase space. The properties

observed in our previous examples are, in general, valid in dissipative

systems, the stable manifold always separates different attractors, and it

is the basin boundary; the unstable manifold, on the other hand, traces

out the way towards the attractors.

The Poincaré–Bendixson theorem states that in two-dimensional

phase spaces of dissipative systems, the only option for an attractor

(besides fixed points) is to be a limit cycle (Fig. 3.27). This prop-

erty expresses the fact that the phase plane is not spacious enough

to allow the appearance of complex trajectories. Such trajectories

would have to intersect, which is never possible in phase space. The

most complicated attractors of two-dimensional phase spaces are limit
cycles.

The Poincaré–Bendixson theorem is quite plausible. It is, however,

surprising (and cannot be proved mathematically, only demonstrated by

means of numerical simulations) that as soon as a single dimension is

added, the phase space becomes spacious enough to support intricate

chaotic dynamics.

In two-dimensional phase spaces there is no need for an extra search

for limit cycle attractors, since they can be obtained by simply track-

ing the unstable manifolds.19 A qualitative knowledge of these mani-

folds yields an overall geometrical view of the dynamics, or even of its

parameter-dependence, without having to solve the problem in detail.

This approach will also be useful in studying chaotic motion.

19 Or the trajectories emanated from repellors, if there are any.
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Problem 3.27 Determine the phase portrait of the system ẋ1 =
x2, ẋ2 = −αx2 + x1 − x2

1 + x1x2 (α > 0) by means of a numerical sim-

ulation of the manifolds of the hyperbolic point. Investigate the depen-

dence on parameter α.

Problem 3.28 By numerically tracking the trajectories around the

fixed point, determine the phase portrait of the van der Pol oscillator

ẋ1 = x2, ẋ2 = −x1 − α(x2
1 − 1)x2 (α > 0).



Chapter 4

Driven motion

The environment of simple systems is often not constant in time and it

can influence the system in a periodically changing manner. Think of a

body driven by a motor, or of the daily or annual cycle of our natural

environment. The change in the environment leads to a driving of the sys-

tem. We study the effect of an external, periodic driving force on a single

point mass moving along a straight line. As a consequence of driving,

the dimension of the phase space increases. In order to preserve an easy,

two-dimensional, visualisation of the motion, it is worth introducing the

concept of maps. Our aim is to show how different types of motion can

be monitored by means of maps. Limit cycles appear as fixed points,

limit cycles, corresponding to hyperbolic points in maps, and we formu-

late their stability conditions. Hyperbolic limit cycles, corresponding to

hyperbolic points in maps, and curves emanated from them, the stable

and unstable manifolds, constitute the skeleton of the possible motion in

maps. We show that continuous time equations of motion can only lead

to maps with certain well defined properties. Finally, we formulate what

types of systems are candidates for exhibiting chaotic behaviour.

4.1 General properties
4.1.1 Equation of motion

The driving force, besides having an explicit time dependence, might

also depend on the instantaneous position.1 The general form of the

1 It may also depend on the velocity, but we do not consider these cases.

90



4 Driven motion 91

equation of motion is given by

ẍ = F(x) − α ẋ + Fd(x, t), (4.1)

where the driving force, Fd, is periodic with some period T :

Fd(x, t + T ) = Fd(x, t). (4.2)

Since we consider quantities per unit mass, Fd is the acceleration due to

the driving force. Time now appears explicitly on the right-hand side of

the equation of motion; therefore it is non-autonomous. This seemingly

minor modification leads to significant consequences, because, as we

shall see, the dimension of the phase space increases by one. As a con-

sequence, a behaviour much more complicated than periodic, a chaotic

time evolution, may also appear.

The autonomous systems presented in Chapter 3 follow the same

dynamics irrespective of when they are initiated, and this is why we have

the freedom to choose the initial time arbitrarily. In contrast, for driven

motion the initial value of the driving force does matter. Two or more

types of motion may start from the same point (x, v) if this latter belongs

to different values of the driving force. Consequently, trajectories in the

(x, v)-plane generally intersect, even in the special case when trajectories

started at the same time are considered. This is so because the (x, v)-

plane is not identical to the entire phase space: co-ordinates (x, v) are

not sufficient to determine a state uniquely.

4.1.2 Phase space

It follows from the above that in order to characterise the motion uniquely

we need also to specify the ‘phase’ in which the driving force of period-

icity, T , acts. To this end we introduce the phase of the driving,

ϕ = 2π
t

T
+ ϕ0, (4.3)

which is, by definition, an angle, a periodic quantity with period 2π ;

� = 2π/T is called the driving frequency.

The driving force can then be expressed in terms of the phase as

Fd(x, ϕ). To determine the initial state uniquely, the initial phase, ϕ0, is

needed too. Introducing the velocity, v, and phase, ϕ, as new variables,

the non-autonomous equation (4.1) can be rewritten as an autonomous

system of three first-order differential equations:

ẋ = v, v̇ = F(x) − αv + Fd(x, ϕ), ϕ̇ = 2π

T
≡ �. (4.4)

The phase space (see Section 3.5.1) is therefore three-dimensional; a

state is uniquely determined by three data: x, v and ϕ. A periodically
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driven motion can thus be faithfully represented by a three-dimensional

flow (see Fig. 4.1), where the velocity along the phase axis is constant

in time.

x

Fig. 4.1. Trajectory of a
driven motion in its
three-dimensional phase
space (x, v, ϕ).

An important consequence of driving is that the mechanical energy

is not conserved (even if there is no friction): the system sometimes

gains and sometimes loses energy (when the external force accelerates

or decelerates it, respectively). It is impossible to reach an equilibrium

state because of the driving force, the velocity, v, is never zero for a

long period of time, and therefore the energy continually changes. There

may, however, exist states in which the motion, and consequently the

energy, are periodic in time. These sustained motions are limit cycles.

The simplest ones just take on the period, T , of the driving force, but

there may also exist limit cycles whose period is 2T , 3T , . . . , or, in

general, an integer multiple of the period T : nT , where n >1. These are

called higher-order cycles or periodic orbits (Fig. 4.2).

4.1.3 Stroboscopic maps

Instead of following the full three-dimensional trajectory, it is often use-

ful to study states with a given phase only. We look at the system,

or make snapshots of it, at instants which differ by integer multiples

of the period T of the driving force. At each instant the position and

velocity co-ordinates are registered. These differ from each other in the

subsequent pictures by finite values, since the time interval between

the snapshots is finite. This procedure can also be considered as taking

(a) (b)

x x

j j

Fig. 4.2. Limit cycles (periodic orbits) in the phase space of a periodically driven
system; the planes correspond to states differing by phase 2π (or time T ). (a)
One-cycle of period T . The intersections of the trajectory and the planes fall
above each other. (b) Two-cycle of period 2T . Only every second point of
intersection falls onto the same vertical straight line. The projections on the
(x, v)-plane are also indicated.
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2p

4p

6p

x

0

Fig. 4.3. Schematic view
of the generation of a
stroboscopic map. The
trajectory in phase space is
intersected by planes
perpendicular to the time
(phase) axis at time
intervals T (at a phase
change of 2π).

the intersections of the three-dimensional trajectory with planes of phase

ϕ − ϕ0 = 2π, 4π , . . . , 2πn, . . . (see Fig. 4.3).

Let us denote the position and velocity co-ordinates at the nth inter-

section by xn and vn , respectively. The co-ordinates in the nth plane

are uniquely related to those in the (n + 1)st plane: the solution of

(4.1) with initial conditions x0, v0, ϕ0 is unique, and the aforementioned

co-ordinates are two points along the trajectory. The rule

(xn+1, vn+1) = M(xn, vn) (4.5)

relating the discrete co-ordinates on subsequent snapshots is called a

map.2 For the different co-ordinates, the map is given by

xn+1 = M1(xn, vn), vn+1 = M2(xn, vn), (4.6)

where M1 and M2 are the functions that define the two components of the

map. Point (xn+1, vn+1) is the image of point (xn, vn), and the application

of the map is called iteration. This map is actually the discrete time form

of the differential equation (4.1). It is a difference equation, which always

exists, although to determine its specific form is not necessarily easy. For

observations taken at integer multiples of T , map (4.5) is the equation
of motion.

A stroboscope is a device providing a periodic flash light; maps of the

above kind are therefore called stroboscopic maps. Since at the instants

of the snapshots the driving is always in the same phase, the form of the

2 If it is not to be emphasised which iteration step is considered, the notation

(x ′, v′) = M(x, v) is used.
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Table 4.1. Comparison of continuous and discrete dynamics. The
definitions of quantities �± and J will be given in Sections 4.5

and 4.6.

Differential equation Map

trajectory: a line trajectory: a sequence of points

limit cycle fixed point

fractal dimension: D0 fractal dimension: D0 − 1

stability eigenvalues: λ± stability eigenvalues: �±
phase space contraction rate: σ area contraction rate: J

( , )x* *

( , )x0 0( , )x1 1

n

xn

Fig. 4.4. The dynamics on a
stroboscopic map consist of
jumps: the trajectory is a
sequence of discrete points
(xi , vi ), i = 0, 1, 2, . . . The
trajectory shown here
converges towards a fixed
point (x∗, v∗).

map does not depend on the plane on which it is applied: the stroboscopic

map is autonomous, the rule M itself is independent of n, the discrete

time.

The advantage of a stroboscopic map is that it is based on the

same co-ordinates as those used in non-driven cases. The motion in

the phase plane is, however, no longer continuous (Fig. 4.4). Instead of

the continuous lines of flows, trajectories on stroboscopic maps are se-
quences of points. It is true in general that the dimension of a given object

on a map is less by one than the dimension in the flow. So, for example, a

limit cycle of period T appears in the stroboscopic map as a single point.

The representation of a two-cycle consists of two points jumping back

and forth (see Fig. 4.2). The relation between the dynamics represented

by flows and by maps is summarised in Table 4.1.

Naturally, a stroboscopic map contains less information than the

original flow since the behaviour between two snapshots is not investi-

gated. In spite of this, we obtain a faithful picture of the general character

of the motion by following a map. Moreover, the information lost can be

regained if, instead of studying a map with a fixed phase, a whole family

of maps is considered as a function of the initial phase, ϕ0.

The plane of the map is considered as the discrete-time phase space

of the system and the motion on it as a discrete trajectory. The use of

maps is favourable in many respects, and it is worth turning from the
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three-dimensional approach to understanding this planar but discrete-

time dynamics as illustrated in the following sections.

Two large families of driving will be studied.

(i) Harmonic, in other words sinusoidal, driving: the driving force of period T

is a cosine or sine function of time,

Fd(x, t) = f0(x) cos (�t + ϕ0), (4.7)

where � = 2π/T is the driving frequency. The amplitude, f0(x), can be

an arbitrary function of the instantaneous position. In the simplest case, the

amplitude is chosen to be constant.

(ii) Periodic kicking corresponds to a succession of instantaneous momentum

transfers applied with some period T . No driving force acts between kicks.

The momentum transfer, 	v, is assumed to depend on the instantaneous

position co-ordinate x only, through a given function uI (x). Consequently,

the momentum transfer in such kicked systems is given by

	v = uI (x(t)) at t = ϕ0

�
+ nT (4.8)

and zero otherwise. Here, u is a typical value of the velocity jump, and

I (x) is a dimensionless quantity, which is of order unity for finite position

co-ordinates. For the time being, the form of I (x) is not specified.

Problem 4.1 Deduce the expression of the driving force for a period-

ically kicked system in terms of the delta function, δ(t) (which is zero

for t �= 0, but takes on such a large value at t = 0 that its integral over

any interval around the origin is unity).

4.2 Harmonically driven motion around
a stable state
Around a stable state (i.e. at the bottom of a well) the motion of a body

is expected to remain stable in the presence of driving. The system obvi-

ously possesses an attractor, due to friction, though the state belonging

to it is not an equilibrium, but is rather a time-periodic behaviour. With

a driving force of constant amplitude, the equation of motion for small

displacements, x , around the original equilibrium state (x = 0) is given

by

ẍ = −ω2
0x − α ẋ + f0 cos (�t + ϕ0), (4.9)

where f0 is constant. The natural frequency, ω0, usually differs from the

driving frequency, �. For the sake of simplicity, very weak damping is

assumed: α/2 � ω0.

With given initial conditions x0, v0 at time t = 0, the equation of

motion possesses a unique solution, x(t), v(t), which is a function of
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the initial phase ϕ0. For long times, t � 1/α, this solution converges to

a limit cycle attractor, x∗(t), v∗(t), corresponding to a harmonic oscil-

lation which has taken over the frequency, �, of the driving and is of

some amplitude A. The geometric representation of this limit cycle is a

regular helix, whose projection on the (x, v)-plane is an ellipse with semi-

major and semi-minor axes, A and �A, respectively (see Fig. 4.2(a)).

The particular forms of these quantities is given in Appendix A.1.1.

The stroboscopic map can readily be obtained from the exact solu-

tion, x(t), v(t). By choosing ϕ0 to be zero, the stroboscopic snapshots are

taken at the instants t = nT . The map co-ordinates are thus xn = x(nT )

and vn = v(nT ). From the particular forms of x(t) and v(t) (see

Appendix A.1.1) we find the stroboscopic map in the following form:

xn+1 ≡ M1(xn, vn) = x∗ + EC(xn − x∗) + E S

ω0

(vn − v∗), (4.10)

vn+1 ≡ M2(xn, vn) = v∗ − E Sω0(xn − x∗) + EC(vn − v∗). (4.11)

Here, (x∗, v∗) represents the fixed point of the map corresponding to the

limit cycle attractor, and

E ≡ e−(α/2) T , S ≡ sin (ω0T ), C ≡ cos (ω0T ). (4.12)

Parameter E is the damping factor of the oscillation amplitudes over

time, T , due to friction, while S and C characterise the phase of the

oscillation at time T .

The deviations 	xn = (xn − x∗, vn − v∗) and 	xn+1 = (xn+1 −
x∗, vn+1 − v∗) from the fixed point co-ordinates corresponding to the

limit cycle thus fulfil a linear map,

	xn+1 = L	xn, (4.13)

governed by the matrix

L =
(

EC E S/ω0

−E Sω0 EC

)
. (4.14)

Thus the map inherits the linearity of the equation of motion.

Let us examine how the iterates of a point on the stroboscopic map

converge to the fixed point. We assume that the deviations are propor-

tional to the nth power of some number �, i.e.

	xn ≡ xn − x∗ = ux�
n, 	vn ≡ vn − v∗ = uv�

n, (4.15)

which is analogous to the exponential behaviour seen in the continuous-

time dynamics. Substituting this into (4.10) and (4.11) leads to

�u = Lu; (4.16)
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thus, � is the eigenvalue of matrix L and u is its (right) eigenvector. The

characteristic equation is (EC − �)2 + (E S)2 = 0, with two solutions

for �:

�± = E(C ± i S) = e(−α/2±iω0)T . (4.17)

The absolute value of both eigenvalues is less than unity, and therefore

the fixed point is, in fact, attracting.

For a general initial condition, the motion on a stroboscopic map is

the linear combination of the powers of the two different eigenvalues:

	xn = c+�n
+ + c−�n

−, (4.18)

	vn = iω0c+�n
+ − iω0c−�n

−. (4.19)

The initial conditions (x0, v0) determine the coefficients c± as c± =
	x0/2 ± 	v0/(2iω0). Substituting this and the eigenvalues (4.17), the

complete solution appears in the real form:

	xn = 	 x0e−n(α/2)T cos (ω0nT ) + 	v0

ω0

e−n(α/2)T sin (ω0nT ),

	vn = −ω0	 x0e−n(α/2)T sin (ω0nT ) + 	v0e−n(α/2)T cos (ω0nT ).

(4.20)

Thus, the distance from the fixed point decreases proportionally to

e−(nα/2)T in n steps. At the same time, the points in phase space turn

around the fixed point in each step. Even though the points approach the

fixed point by jumps, they fall on a spiral-shaped curve (Fig. 4.5).
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Fig. 4.5. Spiral attractor of a driven harmonic oscillation. (a) Projection of a
flow trajectory starting from point x0 = −3, v0 = −3 onto the (x, v)-plane.
(b) Points of its stroboscopic map (black dots). The limit cycle is a closed curve
on the projection (thick line in (a)) and appears as a fixed point (large black dot)
on the stroboscopic map. The parameters are α = 0.05, � = 1, ω0 = 1.1,
f0 = 1 (E = 0.855, S = 0.120, C = 0.993).
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Problem 4.2 Determine the equation of the curve along which

points move when approaching the spiral attractor of the stroboscopic

map (4.20).

Consequently, this kind of attracting point is called a spiral attractor
on the map. The motion of the driven system around its limit cycle on the

stroboscopic map is thus similar to the motion of a non-driven system

around its stable equilibrium state in the flow.

Note that the stroboscopic map is invertible. This means that there

exists a unique map which describes the time-reversed dynamics. Nat-

urally, this is governed by the inverse matrix, L−1, whose eigenvalues

are the reciprocals of the eigenvalues of L . The fixed point is therefore

a spiral repellor in the reversed dynamics.

Problem 4.3 Determine the stroboscopic map of a sinusoidally driven

harmonic oscillator for arbitrary damping (α comparable with or larger

than ω0). What are the eigenvalues?

4.3 Harmonically driven motion around an
unstable state
The motion around an unstable state is also expected to remain unstable

in the presence of driving. It may happen, however, that the driving always

acts in such phases that it ‘pushes back’ the body that is ready to move

away. As a consequence, there exists a single periodic motion that never
leaves the vicinity of the original unstable equilibrium state, in contrast

with all other motion starting close to the original unstable state. The limit

cycle is therefore unstable in this case. Its instability is of a hyperbolic
nature, similar to that of the equilibrium state of a pencil standing on its

point.

On the stroboscopic snapshots taken at instants t = nT (ϕ0 = 0)

the map is again linear (see Appendix A.1.2). The matrix governing

the behaviour around the fixed point (x∗, v∗) is found for very weak

damping, α � s0, to be

L =
(

EC ′ E S′/s0

E S′s0 EC ′

)
, (4.21)

where

C ′ ≡ ch(s0T ), S′ ≡ sh(s0T ). (4.22)

The eigenvalues

�± = E(C ′ ± S′) = e(−α/2±s0)T (4.23)
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are now both real; �+ > 1 and �− < 1. The eigenvectors are u± =
(1, ±s0). The solution belonging to the initial condition (x0, v0) is given

by

	xn = c+�n
+ + c−�n

−, (4.24)

	vn = s0c+�n
+ − s0c−�n

−, (4.25)

where c± = 	x0/2 ± 	v0/(2s0). After a sufficiently long time (n � 1),

the deviation from the fixed point is typically proportional to �n
+:

	xn, 	vn ∼ �n
+. (4.26)

From initial conditions on the line vn − v∗ = s0(xn − x∗) (c− = 0),

the trajectory always remains on this line, and the distance from the

points to the origin increases in each iteration by a factor of �+. In

contrast, along the line vn − v∗ = −s0(xn − x∗) convergence occurs: at

each step the point moves closer by a factor of �− (�− < 1) to the

state (x∗, v∗) representing the unstable limit cycle. This type of fixed

point map is also called hyperbolic, and the above-mentioned two

straight lines are the unstable and stable manifolds of the fixed point,

respectively (see Fig. 4.6). Note that these directions are exactly the

directions of the eigenvectors of matrix L . It is worth emphasising that

the lines vn − v∗ = ±s0(xn − x∗) of the manifolds are both invariant
curves, i.e. curves which are mapped onto themselves in the course of

iterations. Not a single point can ever leave these curves. The manifolds

again form a cross of straight lines around the hyperbolic point.
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Fig. 4.6. Hyperbolic point
of a driven unstable state.
In panels (a), (b) and (c)
the projections of the flow
trajectories started from
three different initial
conditions ((x0, v0) =
(−1.8, 1), (1.8, −0.78) and
(1.8, −0.81), respectively)
are plotted; the thick
curves mark the unstable
limit cycle. The succession
of the stroboscopic points
(black dots) is also shown.
(d) Representation of the
stroboscopic map. The
stroboscopic points
indicated in (a)–(c) are all
shown, along with the
stable and unstable
manifolds (straight lines) of
the hyperbolic point (large
black dot). The parameters
are α = 0.01, � = 10,
s0 = 0.4, f0 = 20 (E = 0.997,
S′ = 0.254, C ′ = 1.032).
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Problem 4.4 Determine the equation of the curve along which points

move in the vicinity of the hyperbolic point of the map described by

(4.24) and (4.25).

The stroboscopic map is invertible in this case as well, and the inverse

map is governed by the matrix L−1. In the inverted dynamics, the stable

and unstable directions are interchanged, and the points move along

them according to the reciprocals of the original eigenvalues. Thus, a

hyperbolic point remains hyperbolic in the inverted map.

An interesting general relationship can be uncovered by comparing

the eigenvalues of the maps with those of the non-driven damped oscil-

lator or – more generally – of the linearised continuous-time dynamics.

In both unstable and stable cases,

�± = eλ±T (4.27)

holds, where λ± are the flow eigenvalues ((3.14) and (3.29)). Relation

(4.27) also holds for arbitrary damping (see Problems 4.3 and 4.5). This

implies that the behaviour around limit cycles on the stroboscopic maps

of driven systems is the same as the behaviour around the equilibrium

states of non-driven systems. Approaching an attracting limit cycle or

deviating from an unstable one happens in the same way as on the (x, v)

phase plane of non-driven systems, when observing the latter at integer

multiples of some time interval T .3

Problem 4.5 Write down the eigenvalues for the stroboscopic map of

a sinusoidally driven unstable state for arbitrary damping.

4.4 Kicked harmonic oscillator
Let us now investigate the effect of driving via kicks (see (4.8)) on

a weakly damped dynamics around a stable equilibrium state. This

corresponds to the motion of a point mass fixed to a spring with nat-

ural frequency ω0, damped with a friction coefficient, α/2 � ω0, and

subjected to abrupt momentum transfers at time intervals T (different,

in general, from the oscillation period). An abrupt momentum transfer

does not change the position. Think of a ball that is kicked. At the instant

of the kick, the velocity of the ball changes abruptly, but the ball does

not move yet. The displacement, x(t), is a continuous function during

the motion, while the velocity, v(t), exhibits discontinuities at intervals

3 This is due to the property of linear differential equations that the general solution of

an inhomogeneous equation contains the general solution of the homogeneous equation

(the non-driven case).
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Fig. 4.7. Motion of a kicked oscillator with kicking period T . The amplitude
function, called the parabola amplitude, is I (x) = 1 − ax2. The parameters are:
a = 1.8, u = 1, T = 3π/(2ω0) (the period of the kick is three-quarters of the
period of the oscillation), αT = 0.01.

T . The magnitude of these jumps is uI (x) (as given by (4.8)). Since the

velocity is the derivative of the position with respect to time, the function

x(t) breaks in the same points (Fig. 4.7), and the difference between the

slopes of the tangents from the right and from the left is just uI (x). If

function I (x) is neither constant nor linear, but is rather a given non-

linear (for example quadratic) function of the position, the sequence

of the momentum transfers and the displacement vs. time function

become inter-related in a non-trivial, complicated manner. Non-periodic,

chaotic motion may arise. This will be analysed in detail in Part III; our

aim here is to show that for this simple system the stroboscopic map

can be derived exactly regardless of the specific form of the kicking

amplitude, I (x).

As the kick is instantaneous, the velocity of the body is not unique

at that instant (although an arbitrarily short time later it is). This is why

we have to decide to consider either the state just before or just after the

kick. Both are identically correct; we must, however, apply our choice

consistently. We are now going to compare the states after the kicks.

For the sake of simplicity, the initial phase is set to zero, ϕ0 = 0,

which implies that the first kick comes at time t = 0, the second at t = T ,

and so forth. The stroboscopic map is derived in Appendix A.1.3, and,

by means of the shorthand notation given in (4.12), it can be written in

the form:

xn+1 = M1(xn, vn) ≡ ECxn + E S

ω0

vn,

vn+1 = M2(xn, vn) = −E Sω0xn + ECvn + uI (xn+1). (4.28)
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Although this form is valid for very weak damping (α � ω0) only, we

emphasise that the map can be derived exactly without any restriction

on the damping (see Problem 4.7).

Solely for the sake of compact notation, we choose a special value

for the kicking period. Let T be one-quarter of the period, 2π/ω0, of

the harmonic oscillator, so that ω0T = π/2. According to (4.12), in this

special case S = 1 and C = 0, and the kicked oscillator map simplifies

to

xn+1 = M1(vn) ≡ E

ω0

vn,

vn+1 = M2(xn, vn) ≡ −Eω0xn + uI (xn+1). (4.29)

Problem 4.6 Derive the stroboscopic map of the kicked harmonic

oscillator taken immediately before the kicks for T = π/(2ω0).

It is worth writing the map in a dimensionless form. By measuring

velocity and length in the units of the typical velocity jump u and of

u/ω0, respectively, this corresponds to the substitution

xn → u0

ω0

xn, vn → uvn, (4.30)

where the first factors after the arrows are the dimensional units, while

the second ones represent the new unitless magnitudes xn and vn . Sub-

stituting this into (4.29) leads to the dimensionless map:

xn+1 = Evn, vn+1 = −Exn + I (xn+1). (4.31)

Here, the natural frequency, ω0, and the typical kick strength, u, no

longer appear. Beside the dimensionless function, I , the damping fac-

tor, E = e−(α/2)T < 1, is thus the only important parameter of the

map.

Note that the inverse of the map exists again. Knowing the point

(xn+1, vn+1), its pre-image, (xn, vn), can be determined. From (4.31) we

obtain, after the substitution n → n + 1, n + 1 → n, the following:

xn+1 = − 1

E
vn + 1

E
I (xn), vn+1 = 1

E
xn . (4.32)

This is the inverted kicked oscillator map, which describes the time-

reversed dynamics. The inverse map is unique, irrespective of the specific

form of the function I (x) (which itself might be non-invertible). The

invertibility is a consequence of the invertibility of the underlying equa-

tion of motion.
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Problem 4.7 Derive the stroboscopic map of the kicked harmonic os-

cillator taken immediately after the kicks for arbitrary driving periods

and damping coefficients. Also determine the inverse map.

4.5 Fixed points and their stability in
two-dimensional maps
Consider a general two-dimensional map,

x ′
1 = M1(x1, x2), x ′

2 = M2(x1, x2), (4.33)

defining the discrete-time evolution of the quantities x1 and x2. To avoid

multiple indices, the discrete-time variables n and n + 1 are not written

out explicitly; instead, the images are denoted by primes. The fixed points

of the map are the pairs (x∗
1 , x∗

2 ), satisfying equations x∗
1 = M1(x∗

1 , x∗
2 )

and x∗
2 = M2(x∗

1 , x∗
2 ). Their stability can be determined from the dy-

namics of small deviations around the fixed point. It is then sufficient

to keep the leading, linear terms in the variables 	x1 = x1 − x∗
1 and

	x2 = x2 − x∗
2 . The resulting linearised map is of the form

	x1
′ = m11	x1 + m12	x2,

	x2
′ = m21	x1 + m22	x2.

(4.34)

By introducing the vector notation 	x = (	x1, 	x2), the linearised map

becomes

	x′ = L	x, (4.35)

where

L =
(

m11 m12

m21 m22

)
=

(
∂ M1/∂x1 ∂ M1/∂x2

∂ M2/∂x1 ∂ M2/∂x2

)
(4.36)

is called the stability matrix, and the derivatives in it are taken at the

fixed point x∗.

With a trial solution of (4.34) in the form of 	xi,n = ui�
n (i = 1, 2),

we find that � must satisfy the following equations:

�u1 = m11u1 + m12u2,

�u2 = m21u1 + m22u2.
(4.37)

Consequently, � is the eigenvalue of matrix L , and is the root of the

quadratic equation

�2 − �Tr L + det L = 0. (4.38)

The trace of the stability matrix is TrL = m11 + m22.
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Table 4.2. Classification of the fixed points of two-dimensional maps
based on the absolute values and the imaginary parts

of the eigenvalues.

|�±| = 1 |�±| < 1 |�−| < 1 < |�+| |�±| > 1

Im�± = 0 (marginal) node attractor hyperbolic point node repellor

Im�± �= 0 elliptic point spiral attractor – spiral repellor

This table is analogous to Table 3.1.

The character of a non-marginal fixed point can be determined from

the properties of the eigenvalues (see Table 4.2; the definition of J is

given in Section 4.6):

Hyperbolic point: �± are real, and the absolute value of one of

them is greater than unity; |�+| > 1, |�−| < 1.

Elliptic point: �± are complex with absolute values equal to

unity; |�±| = 1 (only possible in conservative cases with J = 1).

Node attractor: �± are real with absolute values less than unity;

|�±| < 1 (J < 1).

Spiral attractor: �± are complex with absolute values less than

unity; |�±| < 1 (J < 1).

Node repellor: �± are real with absolute values greater than

unity; |�±| > 1 (only possible in expanding phase spaces with

J > 1).

Spiral repellor: �± are complex with absolute values greater

than unity; |�±| > 1 (only possible in expanding phase spaces

with J > 1).

The classification is similar to that of the fixed points in the

continuous-time phase plane (Section 3.5.4), if the logarithms of |�±|
are identified with the eigenvalues, λ±, of the continuous case. The fixed

points of two-dimensional maps are therefore of the same type as those

of two-dimensional flows.

Elliptic fixed points can occur only in frictionless cases. Nodes and

spiral attractors appear only in dissipative systems. Solely hyperbolic

fixed points can be present in both conservative and dissipative systems.

The general solution is always a linear combination of two powers:

xn = c+u+�n
+ + c−u−�n

−. (4.39)

Here, vectors u± are the eigenvectors of matrix L , obeying equa-

tion Lu± = �±u±. The coefficients c± are determined by the initial
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condition, x0 = c+u+ + c−u−. If the eigenvalues and eigenvectors are

real, the eigenvectors mark directions in the plane of the map along which

a single power law describes time evolution. In the case of a hyperbolic

point, the stable and unstable manifolds coincide with the lines of the

eigenvectors belonging to the eigenvalues less than unity and greater

than unity in modulus, respectively.

Problem 4.8 Determine the fixed point – and its stability – correspond-

ing to the limit cycle of a harmonic oscillator kicked with a constant

amplitude: I (x) ≡ I0 in (4.31).

4.6 The area contraction rate
An important characteristic of dynamics generated by maps is how a

phase space area determined by given initial points evolves in time.

Since we are dealing with a discrete-time dynamics, the phase space

area may change significantly within a single iteration; in dissipative

systems, for example it shrinks. The factor by which a small phase space

area decreases in one step is called the area contraction rate.

The area contraction rate of a general two-dimensional map, (4.33),

at a given point (x1, x2) is given by the Jacobian, J , of the derivative

matrix, (4.36), of the map linearised at that point (which is now not

necessarily a fixed point):

J (x1, x2) ≡ ∂ M1

∂x1

∂ M2

∂x2

− ∂ M1

∂x2

∂ M2

∂x1

. (4.40)

Problem 4.9 Show that the image of an initially rectangular small area

is a parallelogram whose area is J times the area of the rectangle, where

J is the Jacobian evaluated at the initial position.

The Jacobian plays the same role in maps as does the phase space

contraction rate, σ = −div f, in continuous-time flows. A Jacobian with

absolute value less than unity describes local area contraction, while

an absolute value greater than unity would imply expansion. Thus, area

preservation only applies for |J | = 1. We emphasise that no value of

the Jacobian guarantees that the shape of the area remains similar to the

initial one. As it will be shown, one of the most conspicuous differences

between chaotic and non-chaotic systems is that, in the former case, the

phase space objects quickly lose their shape, become convoluted and

trace out complicated (fractal) sets, whereas in the non-chaotic case the

objects suffer weak deformations only. Both scenarios can happen at the

same value of J (provided some other parameters are different).
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The behaviour around a fixed point is described by a map, (4.35),

linearised at that point. Since the product of the eigenvalues is the deter-

minant, it is generally true that the product

�+�− = J (4.41)

is the area contraction rate at the fixed point. The Jacobian of the inverse

map is the reciprocal of the Jacobian of the original map.

Evaluating the Jacobian of maps (4.10), (4.11), (4.21), (4.28) and

(4.31) presented so far, we find that, in all these cases,

J = E2 = e−αT = e−σ T , (4.42)

where σ = α is the phase space contraction rate of the flow. The Ja-

cobian is thus independent of the location in phase space, an obvious

consequence of the constancy of the friction coefficient. The fact that

the Jacobian of the kicked oscillator map is constant is due to the non-

dissipative nature of the kick, which does therefore not contribute to J .

Parameter E appearing in (4.31) thus characterises both the damping and

the area contraction rate. It is worth noting that the damping observed

in the map can be strong even if friction is weak, provided the period is

long enough, since E depends on the product αT only.

Problem 4.10 Classify the fixed point characterised by the stability

matrix

L =
(

1/2 1

a −2

)
, (4.43)

depending on parameter a, in the region where the Jacobian is between

zero and unity.

Problem 4.11 Determine the nature of the fixed point of a general

two-dimensional map in different regions of the parameter plane defined

by J ≡ detL (0 < J < 1) and Tr L; cf. Problem 3.26.

4.7 General properties of maps related
to differential equations
Two-dimensional maps written down arbitrarily are generally not deriv-

able from three first-order ordinary differential equations. If, however,

they are, then this implies significant restrictions for the possible forms,

which will be presented on the basis of the examples studied so far.

The map must be invertible, since the continuous-time differential

equation underlying it is invertible (see Section 3.5.3). A necessary con-

dition for invertibility is that the Jacobian be non-zero in the entire plane.
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Our examples demonstrate that the Jacobians are positive. Simple

examples indicate that in maps with negative Jacobians the orientation

of plane figures reverses in each iteration. This is, however, impossible in

real systems. All trajectories of the three-dimensional flows investigated

move along the phase axis with a constant speed. The corners of a small

figure, for example a rectangle, therefore always lie in a plane (the plane

ϕ = constant) as the trajectories evolve in time. The vertices move rela-

tive to each other within this plane, and the figure deforms into a parallel-

ogram, but the orientation does not change (that could only happen if the

area became zero at some time, i.e. if trajectories intersected each other).

The necessary conditions for a map to be derivable from a differential

equation are as follows:

� the map should be invertible, i.e. it must possess a unique inverse

map;
� its Jacobian, J , should be positive everywhere; and
� J should be less than unity in dissipative systems (it is exactly unity

in conservative cases; see Chapter 7).

These conditions also apply to Poincaré maps, to be discussed in detail

later.

The global unfolding of the dynamics of a map, (4.33), with the above

properties follows similar lines to that of a two-dimensional flow. The

first step is to identify the fixed points and their stability. The trajectories

around fixed points are already known (see Sections 4.2–4.5), and, using

these as building blocks, the whole phase portrait can be constructed. In

this process the stable and unstable manifolds of the hyperbolic points

again play a particularly important role. The set of points that are mapped

asymptotically into a hyperbolic point form the stable manifold of that

hyperbolic point. The unstable manifold of a hyperbolic point is the stable

manifold of the same point in the inverted map.

Both manifolds might be infinitely long curves, which expand into

significantly large regions of the phase plane. At the same time, these

manifolds are invariant curves, i.e. curves mapped onto themselves. The

role of the manifolds is similar in maps to that seen in two-dimensional

flows. In dissipative maps the stable manifold always separates different

attractors; it is the boundary of the basins of attractions. The unstable

manifold, in turn, goes into one of the attractors.

In stroboscopic maps, higher-order cycles may also be present (cf.

Fig. 4.2). An n-cycle appears as a set of n distinct points mapped onto

each other, and each one returns to its initial position after n steps. All

points of an n-cycle are thus fixed points of the n-fold iterated map. Of

course, n-cycles can also be unstable. In such cases, the corresponding

fixed points of the n-fold iterated map are hyperbolic. This implies that
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in the n-fold iterated map every distinct point of the cycle possesses a

stable and an unstable manifold.

A statement similar to the Poincaré–Bendixson theorem does not ex-

ist for discrete-time two-dimensional maps. The attractors can therefore

be much more complicated than limit cycles; they can even be chaotic.

The phase portrait of a general two-dimensional map has a character

similar to that of the phase plane (Fig. 3.27), although it is much richer

in details (see Fig. 5.47).

Box 4.1 The world of non-invertible maps

When we play any motion recorded on a videotape backwards in time, we witness a unique, although

eventually strange, behaviour. This corresponds to the fact that the dynamics (the equation of motion or the

map derived from it) is invertible. If the dynamics has no inverse, this is analogous to a situation when the

film cannot be rewound. Non-invertibility is often the result of the inverse map being multi-valued. In this

case the original phase space cannot be the phase space of the inverted dynamics, because in the latter

several trajectories emanate from a single point. In the videotape analogy this corresponds to a strange

situation in which, before displaying a picture in the course of the reverse playing, we always have to select

one out of several options. The real world, however, is not like this.

Non-invertible maps appear in several mathematical models. These maps do not correspond to

differential equations. They cannot model real, physical processes in a faithful manner; they can at most be

highly idealised approximants. One of the most widely known examples is the logistic map4

xn+1 = 1 − ax2
n (4.44)

(a > 0). Every point, xn+1, can be reached from two pre-images: xn = ±√
(1 − xn+1)/a. Thus, the inverse

map is given by

xn+1 = ±
√

(1 − xn)/a. (4.45)

This is not unique, since it is important to know which sign is to be chosen. The analytic continuation of the

logistic map to the complex plane has similar properties. This quadratic map is most often written in the

form zn+1 = C − z2
n , where z is a complex number and C is a complex parameter.5

Stability properties of non-invertible dynamics essentially differ from those of invertible dynamics.

Hyperbolic behaviour cannot exist in non-invertible systems, since this requires the possibility of a unique

time reversal; the unstable manifold is always the stable manifold of the inverted dynamics. In

non-invertible systems, the unstable states are represented by repellors.

As stroboscopic maps cannot usually be derived exactly, it is often useful to follow the discrete-time

behaviour in a model map of a simple form. One should, however, make sure that the map is invertible,

otherwise a real process would be modelled in an unrealistic, non-invertible world.

4 Another often used form of the logistic map is xn+1 = r xn(1 − xn), r = √
1 + 4a + 1, which follows from (4.44) with

the substitution x → x(r − 2)/4 + 1/2.
5 The parameters, C , for which the iteration starting from zero does not tend to infinity constitute what is called the

Mandelbrot set.
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4.8 In what systems can we expect
chaotic behaviour?
As a consequence of the Poincaré–Bendixson theorem, no two-

dimensional flow can be chaotic.

If the dynamics is linear, there cannot be chaos, no matter how high

the dimension of the system is. A linear motion can be decomposed ex-

actly into components with exponential (or sinusoidal) time dependence,

called normal modes (see (3.66) and (4.39)). In other words, the time

evolution is a linear combination of a finite number of simple, indepen-

dent modes. This is not so for chaotic systems; chaotic motion cannot
be decomposed into elementary components.

Necessary conditions for chaotic dynamics to appear are that the

system is

� non-linear and that
� its dynamics may be described by at least three independent, first-

order autonomous differential equations (a three-dimensional flow).

Chaos may arise in every non-linear system whose phase space is at
least three-dimensional.

According to Section 4.7, two-dimensional invertible maps with pos-

itive Jacobians may be related to differential equations. Dynamics de-

scribed by such maps can therefore also be chaotic. Chaos may thus also

be present in any two-dimensional, non-linear invertible map.

(Experience shows that chaotic behaviour appears also in non-

invertible maps. The simplest mathematical models in which chaotic

dynamics is already possible are one-dimensional, non-invertible maps;

see, however, Box 4.1.)

A system is called chaotic if parameter values exist at which chaotic

motion is possible. Non-linear systems described by at least three-

dimensional flows are generally found to be chaotic. Chaoticity is thus

not an exception but the rule in such systems. Whether chaotic motion

arises or not at a certain parameter cannot, however, be decided by in-

specting the form of the equations. It can only be revealed via numerical

solutions.





Part III

Investigation of chaotic motion





Chapter 5

Chaos in dissipative systems

We begin the detailed study of chaotic behaviour with dissipative sys-

tems. We consider permanently chaotic dynamics (cf. Section 1.2.1), and

we start our investigations within the framework of a simple ‘model’ map,

the baker map. The most important quantities characteristic of chaos will

be introduced via this example. The simplicity of the map makes the exact

treatment of numerous chaos properties possible, an exceptional feature

in the world of chaotic processes. Next we turn to the investigation of a

physical system, the kicked oscillator, with different kicking amplitudes.

These functions will be chosen in such a way that, in the first case, the at-

tractor is similar to that of the baker map. In the second, the attractor has

a different structure and exhibits a general property of chaotic attractors:

it appears to be a single continuous curve. The special form of the am-

plitude function continues to make its exact construction possible. This

is no longer so, however, with the third choice, representing a typical

chaotic system. The parameter dependence of chaotic systems will also

be discussed within the class of kicked oscillators. Based on all these

examples, we summarise the most important properties of chaos, first

of all at the level of maps. As measures of irregularity, unpredictabil-

ity and complex phase space structures, we introduce the concepts of

topological entropy, Lyapunov exponents and the fractal dimension of

chaotic attractors, respectively. Special emphasis will be given to the

presentation and characterisation of the natural distribution of chaotic

attractors. This is the quantity that expresses the random nature of chaos

in a mathematical sense, being, at the same time, the only correct means

of characterising such motion over the long term. Then we briefly re-

view how all this appears in flows: we present continuous-time driven

113
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xn xn

n = 0 n = 1
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Fig. 5.1. Action of the baker
map on the unit square
(c = 1/3).

systems, for which even the stroboscopic map can only be given in a nu-

meric, rather than an analytic, form. Finally, by means of the example of

a water-wheel exhibiting random-like motion due to rain, we investigate

the chaotic dynamics of completely different physical origin, described

by equations similar to that of the celebrated Lorenz model, which plays

an important role in the science of chaos.

5.1 Baker map
5.1.1 Presentation of the map

A baker map (for the origin of the name, see Box 7.1) possesses all the

general properties required in Section 4.7 of maps related to differential

equations: it is invertible and its Jacobian is positive and not greater than

unity. A baker map is a prototype of chaotic dynamical systems. In this

field, its role is similar to that of the harmonic oscillator in the realm of

regular, non-chaotic motions.

The map can best be defined in terms of its action on its phase space,

the unit square. Within one iteration, the square is cut in two equal

horizontal bands; these are compressed in one direction by a factor of c
and stretched in the other by a factor of 2, and placed at the two opposite

sides of the square as shown in Fig. 5.1. In the dissipative case treated in

this chapter, contraction is stronger than stretching and the phase space

volume shrinks.

In mathematical terms, the map assigns to any point (xn, vn) of the

plane an image point

(xn+1, vn+1) = B(xn, vn), (5.1)

where the form of B depends on whether the point is situated below or

above the critical line vn = 1/2:

B(xn, vn)

=
{

B−(xn, vn) ≡ (cxn, 2vn), for vn ≤ 1/2,

B+(xn, vn) ≡ (1 + c(xn − 1), 1 + 2(vn − 1)), for vn > 1/2,
(5.2)
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Fig. 5.2. Phase space of the baker map. The form of the map is different below
and above the line vn = 1/2, but it is linear in both half squares (see (5.2)). The
hyperbolic points, H− = (0, 0) and H+ = (1, 1), are also marked, along with
their stable and unstable directions. The arrowed curves indicate motion around
the fixed points, i.e. jumping along hyperbolae.

and 0 < c < 1/2. In terms of the components,

xn+1 = B1(xn) ≡
{

cxn,

1 + c(xn − 1),
vn+1 = B2(vn) ≡

{
2vn,

1 + 2(vn − 1),
(5.3)

where the top and the bottom rows are valid with the respective conditions

vn ≤ 1/2 and vn > 1/2.

Mapping (5.2) describes that in one step each point moves twice

as far away vertically from and comes c times closer horizontally to

the origin or the point (1, 1), depending on whether the point is below

or above the line vn = 1/2, respectively (Fig. 5.2). This perpetually re-

peated stretching and contraction is an important property of chaotic

systems.

The baker map is piecewise linear: functions B− and B+ (or B1, B2)

are linear, and non-linearity is introduced into the system by the jump

between the two forms of (5.2).1 It is surprising and remarkable that such

a slight non-linearity is in itself sufficient for chaos to appear.

Hyperbolic points play a fundamental role in the organisation of

motion. To find them, we recall that a fixed point, (x∗, v∗), is left invariant

by the mapping B(x∗, v∗) = (x∗, v∗). In the bottom half-square, B− is

valid and, from (5.2), x∗ = cx∗ and v∗ = 2v∗, which can only be fulfilled

with x∗ = 0, v∗ = 0. In the top half-square, the only point that does

not move under B+ is (1, 1). There are therefore only two fixed points:

H− ≡ (0, 0) and H+ ≡ (1, 1). The baker map (5.2) can also be written

1 If the transition between the forms B− and B+ were not sudden but continuous in a

region around vn = 1/2, the map would be strongly non-linear there.
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as two maps linearised around the origin and point (1, 1):
(

xn+1

vn+1

)
=

(
c 0

0 2

) (
xn

vn

)
, for vn ≤ 1/2, (5.4)

(
xn+1 − 1

vn+1 − 1

)
=

(
c 0

0 2

) (
xn − 1

vn − 1

)
, for vn > 1/2. (5.5)

The dynamics is thus characterised around both fixed points (and in both

half-planes) by the matrix

L =
(

c 0

0 2

)
. (5.6)

The eigenvalues of stability matrix L are �+ = 2, �− = c < 1; the fixed

points, H±, are therefore hyperbolic (see Section 4.5). The eigenvectors

are u+ = (0, 1) and u− = (1, 0), and, according to (4.40), the Jacobian

(cf. Section 4.6) of the map is J = �+�− = 2c ≤ 1.

In Fig. 5.2 the character of the motion around the hyperbolic points

is indicated by arrowed curves. These two ‘interacting’ fixed points or-

ganise chaos, acting as a kind of ‘mixer’ within the enclosed area. Qual-

itatively speaking, we can also imagine the unit square as a ‘box ring’,

where a point that approaches one of the fixed points gets ‘knocked’

along the arrowed curve, and upon where, reaching the range of the

other fixed point, it receives further hits that push it towards the initial

fixed point, and so on.

The inverse of the baker map is easy to determine. To an arbitrary

point of the unit square, (xn, vn), it assigns the point

(xn+1, vn+1) = B−1(xn, vn), (5.7)

where

B−1(xn, vn) =
{

(xn/c, vn/2), for xn ≤ 1/2,

(1 + (xn − 1)/c, 1 + (vn − 1)/2), for xn > 1/2.
(5.8)

The effect of the inverse map depends on whether the observed point is

situated to the left or to the right of the critical line xn = 1/2.

5.1.2 Chaos in the baker map

The three characteristic properties of chaotic motion described in

Section 1.4 are irregularity, unpredictability and fractal structure. Now

we show that motion described by the baker map exhibits all three of

these properties.

Consider first an initial condition chosen at random and the trajec-

tory starting from it. Let x0 = 1/2 and v0 = 2/π2; parameter c is chosen

to be 1/3. Since v0 < 1/2, B− has to be taken in the first application

of (5.2): x1 = c/2 = 1/6 = 0.167, v1 = 2v0 = 4/π2 = 0.405. The new
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Table 5.1. Twenty iterates of the baker map from the initial condition
x0 = 1/2, v0 = 2/π2, with parameter c = 1/3.

Iteration (n) xn vn Iteration (n) xn vn

1 0.167 0.405 11 0.996 0.012

2 0.056 0.811 12 0.332 0.023

3 0.685 0.621 13 0.111 0.046

4 0.895 0.242 14 0.037 0.093

5 0.298 0.485 15 0.012 0.185

6 0.099 0.969 16 0.004 0.370

7 0.700 0.938 17 0.001 0.740

8 0.900 0.876 18 0.667 0.481

9 0.967 0.753 19 0.222 0.961

10 0.989 0.506 20 0.741 0.923

point still lies in the bottom half-square, implying the use of B− again:

x2 = c/6 = 1/18 = 0.056, v2 = 2v1 = 8/π2 = 0.811. Now v2 > 1/2;

therefore B+ is valid, and x3 = 1 + c(x2 − 1) = 37/54 = 0.685, v3 =
1 + 2(v2 − 1) = (16/π2 − 1) = 0.621, and so on. The map can, in prin-

ciple, be applied as many times as we like, but in practice it is better to

write a short computer program to carry out the iterations.2 Table 5.1

shows the numerical results.

Noticeably, none of the sequences xn and vn contain repetitions, but

these sequences are naturally too short for a final judgement to be formed.

By means of graphical representations, much longer sequences can be

overviewed. Figure 5.3 shows the values of xn and vn over the first 300

iterates. The diagrams indicate an irregular behaviour. The same would

be seen for any other initial condition or parameter.

The other important property of chaotic motion is unpredictability.

In order to illustrate this, let us consider two nearby points and see

how the distance between them increases in the course of consecutive

iterations. The initial condition for one of the points is again x (1)
0 = 1/2,

v
(1)
0 = 2/π2, while the other is x (2)

0 = x (1)
0 + 10−9, v

(2)
0 = v

(1)
0 + 10−10.

Figure 5.4 shows the logarithm of the distance vs. the iteration number, n.

This quantity increases linearly from the third to the 32nd iterate; the

distance therefore increases exponentially. The slope of the straight line

is 0.693. The motion is not predictable in the long run because of the

rapid divergence of trajectories.

The rate of deviation of nearby points is measured by the Lya-
punov exponent. The vertical component of the distance between two

2 Readers are encouraged to write their own programs to simulate baker (and other)

maps. Appendix A.4.1 provides help with this.
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Fig. 5.3. Time evolution in the baker map. The diagram shows no regularity
whatsoever: the temporal behaviour of the system is chaotic. The initial
condition is x0 = 1/2, v0 = 2/π2 (c = 1/3). We have joined up the values in the
vn and xn diagrams to guide the eye.
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Fig. 5.4. Change of the
phase space distance,
�rn =

√
�xn

2 + �vn
2 of two

points in the course of
iterations with an initial
distance �r0 = 1.005 × 10−9

between them. In the
logarithmic plot the distance
grows linearly up to the 32nd
iterate. The difference
increases to 109 times the
original value in 30 steps!

points doubles in one iteration; in n steps, therefore, �vn = 2n�v0 =
e(ln 2) n�v0. The Lyapunov exponent, λ, is read off from the relation

�vn = �v0eλn as

λ = ln 2 = 0.693. (5.9)

In the x-direction, the distance between two nearby points decreases

as �xn = cn�x0. The negative Lyapunov exponent defined via �xn =
�x0eλ′n is thus the logarithm of parameter c:

λ′ = ln c < 0. (5.10)
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Fig. 5.5. Time evolution of a single trajectory in phase space. Starting from
x0 = 1/2, v0 = 2/π2 (c = 1/3), the points obtained after 5, 50, 100, 300, 1000
and 10000 iterations are consecutively plotted in the (xn, vn)-plane. Due to the
increasing density, the size of the points has been gradually decreased. Arrows
show the order of succession of the first five points. These points are marked as
larger dots in all the panels.

In the expression of the total phase space distance, �rn =√
�xn

2 + �vn
2, the velocity difference increases, while �xn decreases,

in time. After a few iterations, therefore, �vn starts to dominate, and the

total distance increases according to the positive Lyapunov exponent, i.e.

�rn ∼ eλn . The positive Lyapunov exponent therefore yields the growth

rate of the full phase space distance between pairs of nearby trajectories

(for more details, see Section 5.4.2).

It is worth emphasising that, due to the finite extension of the phase

space, this rule of increase is only valid for a finite time (the smaller

the initial distance �r0, the longer this finite time). In Fig. 5.4 the two

points become so much removed from each other after the 32nd iterate

that they are in opposite positions within the unit square. Their distance

from one another can no longer increase substantially; the logarithmic

plot therefore goes into saturation, apart from small fluctuations.

Let us now represent a single trajectory in the phase space of the

baker map. As time passes, the points that are apparently jumping ran-

domly trace out more and more clearly a regular geometric structure
(see Fig. 5.5).
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Fig. 5.6. Time evolution of a phase space domain. In the numerical process a
grid of size 0.0001 is created in the range 0.1 ≤ x0 ≤ 0.3; 0.7 ≤ v0 ≤ 0.9, and
from each grid-point a trajectory is started (a total of four million). The images of
each point are plotted up to the seventh iterate (c = 1/3).

An important property of chaotic systems is that the dynamics (time

evolution) and the geometrical structure (a stationary phase space object)

are closely related. This illustrates that chaos does not represent complete

disorder (i.e. it is not the same as noise); if it did, the points would fill the

full unit square instead of tracing out a pattern. The initial condition is not

on the above-mentioned object of phase space; the trajectory nevertheless

approaches it very closely within a few iterates.

5.1.3 The chaotic attractor

The subset of phase space which the trajectory converges to is an attrac-

tor, namely a chaotic attractor. In order to illustrate this, we could use

many different initial conditions and show that they all converge to the

same set, on which the character of the motion, and thus the Lyapunov

exponent, is the same. Instead of individual trajectories, however, it is

better to explore the dynamics of a phase space volume filled with a large

number of points in a numerical simulation.

The phase space domain converges to the same set as a single tra-

jectory (Fig. 5.6). This experiment can be repeated from different initial

positions with different phase space volumes, and the same asymptotic
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Fig. 5.7. The baker
attractor (c = 1/3).
Numerically, the plot has
been created by
performing many (≈ 105)
iterates of an arbitrary
initial point and omitting
the first few dozens of
images because they are
usually not close enough
to the chaotic attractor.
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Fig. 5.8. Change of the phase space volume of the entire unit square
throughout three iterations. Areas originating from the top and from the bottom
half are distinguished by different types of shading. As the phase space volume
shrinks onto the chaotic attractor, the emergence of a fractal structure is
discovered (c = 1/3).

structure is obtained in all cases. It can therefore be stated that this

structure is an attracting set in phase space, i.e. an attractor. The basin

of attraction is the entire unit square.

The chaotic attractor of the baker map has thus been identified as

shown in Fig. 5.7. Note that the attractor of this simple model map has a

structure similar to that of the local patterns of the chaotic attractors of

the physical systems in Section 1.2.1.

The phase space volume tends to zero because of dissipation, in

agreement with the fact that a chaotic attractor has no area; it is a set of
measure zero, a fractal (see Section 2.2). The structure and development

of this fractal are easier to understand by following the motion of the

entire unit square over a few iterations (Fig. 5.8). The successive widths

of the resulting columns are c, c2, c3, . . . , whereas their number increases

as powers of two. The phase space evolution is exactly the same process

as that used in Section 2.2.2 to construct Cantor filaments (see Fig. 2.9);

the contraction rate, r , is now the parameter, c, of the baker map. The
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chaotic attractor therefore is a set of Cantor filaments. According to

relation (2.10), its fractal dimension is

D0 = 1 + ln 2

ln(1/c)
. (5.11)

The construction of Fig. 5.8 also shows that the two fixed points are,

in every step, parts (corners) of the outermost columns. We therefore

conclude that the hyperbolic points H± are on the chaotic attractor.

Problem 5.1 By means of numerical simulation, determine the chaotic

attractor of the baker map for different values of parameter c.

5.1.4 The chaotic attractor and unstable manifolds

Hyperbolic points always possess stable and unstable manifolds (see

Sections 4.3 and 4.5) which follow the directions of the eigenvectors

in the immediate vicinity of the fixed points. The eigenvector of fixed

points H± belonging to eigenvalue �+ is u+ = (0, 1); the unstable man-

ifolds begin therefore with a vertical segment. The question is, what

does the entire unstable manifold look like? First, we determine the

longest connected piece of the manifold emanating from a fixed point,

called the basic branch. For the fixed points H− and H+, these are the

segments (0, 0) − (0, 1) and (1, 0) − (1, 1), respectively, since in the in-

verted map all points on these segments move towards the corresponding

fixed points, along the segment. The construction of the entire manifold

is based on the observation that an initial segment of the unstable mani-

fold is mapped onto a longer segment of the manifold. In the baker map

the length of a vertical segment is multiplied by a factor of two in each

iteration (it can, however, only fit into the unit square if it is simultane-

ously ‘folded’). Using this, the unstable manifold can be constructed for

arbitrary lengths.

Figure 5.9 exhibits the beginning of the construction. The segment

containing the basic branch of the origin above the line vn = 1/2 does

not remain on the vertical axis, but is mapped onto a vertical line

with co-ordinate xn = 1 − c = 2/3, since, according to B+, (5.2), the

images of points with xn = 0 are the points with xn+1 = 1 − c. The

segment of the basic branch of the fixed point (1, 1) below the line

vn = 1/2 is mapped onto a vertical line with co-ordinate xn = c = 1/3

(according to B−, the images of points with xn = 1 are the points with

xn+1 = c).

In Fig. 5.10, further iterations are carried out and longer segments

of the unstable manifolds of the two fixed points are drawn. In each it-

eration the unstable curves are split in two (they are not connected here
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Fig. 5.9. Unstable manifolds of the fixed points H+ and H− (arrows pointing
downwards and upwards, respectively), obtained in the first two steps of the
construction: the basic branch (the left and right edges of the square) and its
first iterate (c = 1/3). Dotted lines indicate how the manifold segments are
joined to each other. The arrow with a tail, and its image, illustrate stretching
along the unstable manifold.
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Fig. 5.10. Continuation of the unstable manifolds of H+ and H− (arrows
pointing downwards and upwards, respectively) over further iterations. Images
of the basic branches are shown after (a) two and (b) three iterations. The
smallest distance between the vertical segments is (a) c2, (b) c3.

with dotted lines, but the arrows show unambiguously which fixed point

they belong to). Continuing the procedure, longer and longer segments

of both unstable manifolds become visible. Each of the unstable man-

ifolds is a discontinuous line of infinite length ‘squeezed’ into the unit

square.

Comparing the construction of the unstable manifolds with Fig. 5.8,

which shows the shrinking of the entire phase space volume, we make
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the interesting observation that pieces of the unstable manifold coincide

with the edges of the phase space volume columns. Since these columns

converge to the attractor (without their edges moving, by merely pro-

ducing further and further edges via splitting), we have to conclude

that the unstable manifolds of the fixed points belong to the attractors.

Moreover, the unstable manifolds appear to be identical to the chaotic

attractor.

All this is in accordance with our previous observations (Section 3.3):

unstable manifolds lead into attractors. Now we have a new situation

where the hyperbolic point is on the chaotic attractor, and, since the

manifold has to lead into this same attractor (there exists no other attractor

within the unit square), all this is possible only if the entire unstable

manifold is part of the chaotic attractor itself.

5.1.5 Two-cycles

Let us investigate whether there exist cycles in the baker map. The calcu-

lation of the two-cycles is similar to that of the fixed points, but the point

remains invariant after two iterations only: B2(x∗, v∗) ≡ B(B(x∗, v∗)) =
(x∗, v∗). It may occur that both points of a two-cycle are in the bottom

half, both are in the top half or one is in the top and the other in the bottom

half of the unit square. This corresponds, respectively, to applying the

form B− or B+ twice, or B− and B+ successively. In the first two cases, the

resulting points are the fixed points (0, 0) and (1, 1), since fixed points are

simultaneously two-, three-, etc. cycles as well. In the third case, we ob-

tain (x∗, v∗) = B+ B−(x∗, v∗) = (c2x∗ − c + 1, 4v∗ − 1). Thus, the co-

ordinates of one two-cycle point are x∗ = 1/(1 + c) and v∗ = 1/3. This

point3 is P1 ≡ (1/(1 + c), 1/3). Since this is in the bottom half-square,

the other cycle point can be determined by applying map B− to P1 once,

and is found to be P2 ≡ (c/ (1 + c) , 2/3). It is easy to verify that iterating

this again (applying B+) leads back to P1:

· · · B+−→ P1

B−−→ P2

B+−→ P1

B−−→ P2

B+−→ · · · . (5.12)

We have thus found three two-cycles. Two of them are the known fixed

points H+ and H−, and there exists only one non-trivial two-cycle: the

couple P1, P2.

Problem 5.2 Write the map (xn+2, vn+2) = B2(xn, vn) in a form sim-

ilar to (5.2). Using this, show that P1 and P2 form a two-cycle.

3 By applying the maps in reversed order (first B+, afterwards B−), the other point (P2)

of the two-cycle is obtained.
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Fig. 5.11. The two-cycle
P1, P2 and the baker
attractor. The two-cycle is
also hyperbolic and is part
of the attractor.

Figure 5.11 suggests that the two-cycle is on the chaotic attractor.

We can check this by plotting points P1 and P2 in figures of higher

resolutions. However high the resolution of the attractor is, we would

always find the points of the two-cycle to be on the attractor.

Both points of the two-cycle behave as hyperbolic fixed points, each

possessing its individual stable and unstable manifolds. We have seen

that the direction and strength of stretching and contraction are uni-

form throughout the baker map. The eigenvalues of the fixed points

of the twice-iterated map B2(xn, vn) are those of the once-iterated map,

squared: �2
+ = 4, �2

− = c2 < 1. The square roots of these, i.e. the eigen-

values corresponding to one iteration, are the same for both cycle ele-

ments as for the fixed points.

Problem 5.3 Construct the unstable manifolds of the two-cycle P1, P2

in a manner analogous to that applied for the fixed points.

We emphasise that the unstable manifolds of the two-cycle do not

coincide anywhere with the unstable manifolds of the fixed points. This

is only possible if the manifolds discussed so far are very close to each

other. This is the reason why any one of the manifolds approximates the

attractor very closely.

5.1.6 Higher-order cycles

Similar to the method of Section 5.1.5, other periodic orbits can also

be determined. Contrary to two-cycles, there usually exist several in-

dependent higher-order cycles of the same length. We can, for exam-

ple, find two independent three-cycles, consisting of six cycle points

altogether.

Problem 5.4 Determine analytically the three-cycles of the baker map.
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Fig. 5.12. Three-cycles.
There exist two independent
three-cycles, both of which
are hyperbolic and part of the
chaotic attractor (c = 1/3).
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Fig. 5.13. Higher-order cycles: all points of the cycles of length m = 8, 10 and
11. The cycle points of cycles of increasing length approximate the entire
chaotic attractor more and more accurately (c = 1/3).

Figure 5.12 exhibits the three-cycles and the arrows indicate the

motion of the cycle points under the mapping. The figure suggests, and

it can be checked in higher resolutions, that all the cycle points lie on the

chaotic attractor. Both three-cycles are hyperbolic, and the eigenvalues

of the cycle points for one iteration are �+ and �−, since the stability

matrix, L , is the same everywhere.

The elements of an m-cycle are the fixed points of the m-fold iterated

map, i.e. the roots of the equation (x∗, v∗) = Bm(x∗, v∗). Figure 5.13

exhibits all the points of a few higher-order cycles. There are visibly

more and more points that belong to longer cycles, and they can all be

checked to be on the chaotic attractor. Consequently, the points of higher-

and higher-order cycles represent the chaotic attractor itself more and

more accurately. In other words, the cycle points lie densely on the chaotic

attractor.

For each cycle point, the same statement holds as for the fixed points

and the two-cycles: their eigenvalues for one iteration are �− and �+.

Thus, all the cycles are hyperbolic. Consequently, the hyperbolic cycles

form the skeleton of the chaotic attractor.
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We will find it useful to deduce a relationship between the cycle

length and the number of cycle points. There exist two fixed points.

There is one two-cycle, and this implies two cycle points. Together with

the two fixed points, the total number of the elements of two-cycles

is four. We have found two three-cycles with six cycle points, and, on

adding the two fixed points, we have a total of eight elements for the

three-cycles. As far as the four-cycles are concerned, there exist three

independent ones with 12 cycle points. Including the two-cycle and the

fixed points, the total number of cycle points for the four-cycles is 16.

The number of five-cycles is five, which amounts to 32 points together

with the fixed points. These suggest that the total number, Nm , of cycle

points belonging to the m-cycles is 2m .4 The number of fixed points of

map Bm can also be obtained by direct calculation.

Problem 5.5 Determine the mth iterate of the baker map for the ve-

locity variable vn . (This can be achieved without taking variable xn into

consideration.) Determine the v∗ co-ordinates of all the fixed points of

Bm(xn, vn).

The total number of elements of cycles of length m is thus given by

Nm = 2m . (5.13)

Accordingly, there exist cycles of arbitrary length; moreover, the number

of all the points belonging to the cycles increases exponentially. The

growth rate, h, defined by the relation Nm ∼ ehm is called the topological
entropy (for more details, see Section 5.4.1). The topological entropy of

the baker map is therefore given by

h = ln 2 = 0.693. (5.14)

We arrive at the verification of our previous statement that chaos is an

unstable state (for example, the state illustrated by a pencil standing on its

point) appearing with infinite multiplicity. Thus, chaotic motion can be

considered as a random walk among unstable cycles. The iterated point

can temporarily approach one of the cycles (in Fig. 5.3, for example,

a four-cycle and a three-cycle take shape around n ≈ 30 and n ≈ 250,

respectively). Since, however, the cycles are unstable, the trajectory can

only remain in this neighbourhood for a finite time, and sooner or later

4 The same conclusion can be drawn by recognising that each column that appears in

Fig. 5.8 showing the mth image of the entire phase space volume contains one (and

only one) m-cycle point. The fixed points are always in the outermost columns, the two

central columns of the diagram for n = 2 contain points P1 and P2 of the two-cycle,

and in each of the six inner columns of the n = 3 case lies one three-cycle point (cf.

Fig. 5.12).
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Fig. 5.14. A few branches of
the stable manifold of (a) H−
and (b) H+ in the unit square.
Note that some branches
coincide, which is a mark of
the space-filling property of
these manifolds (c = 1/3).

it approaches another cycle. This is the origin of the irregular nature of

chaotic dynamics.

There is an unstable manifold of infinite length that emanates from

each cycle point, and these are also part of the attractor. In summary,

unstable manifolds of infinite length belonging to an infinity of cycle

points all belong to the chaotic attractor.

5.1.7 Stable manifolds, homoclinic points
and heteroclinic points

The hyperbolic cycle points also possess stable manifolds. The cycles

can be approached along these manifolds, and, since they are dense on

the attractor, the chaotic attractor itself is then approached. In the baker

map the stable manifolds of the cycle points are straight line segments

parallel to the xn-axis (Fig. 5.14), which provide a dense foliation of

the unit square, and are not of fractal nature. Together, all the stable

manifolds form the basin of the chaotic attractor.

The intersections of all stable and unstable manifolds are points with

interesting properties. They are usually divided into two groups. Homo-
clinic points are the intersections of the stable and unstable manifolds of

the same cycle point. Heteroclinic points, on the other hand, are the in-

tersections of the stable and unstable manifolds of different cycle points

(Fig. 5.15).

Homoclinic points are, at the same time, on both the stable and the

unstable manifold of the given cycle point. During iterations, they must

therefore simultaneously deviate from and approach the cycle point.

This is only possible if the homoclinic points never reach the cycle

points, i.e. they only approach them. Stable and unstable manifolds are

invariant curves that are mapped onto themselves. The images of the

manifold intersections must therefore also be intersections. Homoclinic

points are mapped onto other homoclinic points. In general, an infinity
of homoclinic points is formed along the manifolds of a single cycle
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Fig. 5.15. Homoclinic and
heteroclinic points. Black
dots and empty circles
mark cycle points and
homoclinic and
heteroclinic points,
respectively. A dotted line
indicates the continuation
of the unstable manifold of
the cycle point.

point. Heteroclinic points fulfil a similarly complicated requirement,

since – as we have seen – the unstable manifold of any cycle point is

nearly identical to that of another one. A typical heteroclinic point can be

mapped only onto another heteroclinic point in the course of iterations.

Homoclinic and heteroclinic points must therefore belong to aperiodic,
chaotic motion.

Since the unstable manifolds are part of the attractor, the homoclinic

and heteroclinic points, being subsets of these manifolds, also all lie on

the chaotic attractor, and, in addition, they are very close to each other.

If we choose a point on the attractor at random, then points of all three

types will be found in an arbitrarily small neighbourhood of the chosen

point. Chaotic motion, understood as wandering among cycle points, is

realised through the presence of homoclinic and heteroclinic points.5

5.1.8 Asymmetric baker map

The fact that the stability characteristics of the two fixed points and of

any periodic orbit are identical is a consequence of the symmetry of the

baker map (5.2). It is, however, easy to give an asymmetric extension,

where both the expansion and the contraction parameters depend on

which half-square the point is in. The form of this map is given by

(xn+1, vn+1) = (c1xn, a1vn) , for vn ≤ b, (5.15)

(xn+1, vn+1) = (1 + c2(xn − 1), 1 + a2(vn − 1)) , for vn > b. (5.16)

5 The relation between periodic points vs. homoclinic and heteroclinic points is similar

to that of rational and irrational numbers.
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Fig. 5.16. Action of an
asymmetric baker map on the
unit square (c1 = 0.2,
c2 = 0.6, b = 0.4).
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Fig. 5.17. The asymmetric
baker attractor (c1 = 0.2,
c2 = 0.6, b = 0.4).

Here, a1 = 1/b, a2 = 1/(1 − b), c1, c2 and b < 1 are positive pa-

rameters and c1 + c2 < 1. The mapping acts as follows: the region

vn < b is compressed along the x-axis by a factor c1, while it is ex-

panded by a factor a1 = 1/b along the vn-axis (Fig. 5.16). In the region

vn > b, the contraction and stretching factors are c2 and a2 = 1/(1 −
b), respectively. With c1 = c2, b = 1/2, the symmetric baker map is

recovered.

The more the ratio c1/c2 differs from unity, the more conspicuous

the asymmetry of the new baker attractor (Fig. 5.17). The directions of

the stable and unstable manifolds are unchanged; therefore, we present

no plots of the manifolds.

We emphasise, however, that the asymmetry is present even in the

special case when c1 = c2, as long as b 	= 1/2: a different number of

particles go to the left and right sides of the chaotic attractor. Then the

asymmetry does not arise in the geometrical structure of the attractor,

but rather in the probability distribution related to it (see Section 5.4.4).

Problem 5.6 Derive the equation for the fractal dimension of the asym-

metric baker map with parameter c1 	= c2.
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Problem 5.7 What relation must parameter b of the asymmetric baker

map fulfil between itself and the other two parameters so that the Jacobian

of the map is the same constant everywhere?

Problem 5.8 Under what condition will the Jacobian of the top half-

square be the reciprocal of that in the bottom half? Is such a map globally

area contracting?

5.2 Kicked oscillators
5.2.1 General properties

The stroboscopic map of periodically kicked harmonic oscillators was

derived in Section 4.4 (see (4.31)) in the dimensionless form

xn+1 = Evn, vn+1 = −Exn + I (xn+1). (5.17)

Here, E ≡ e−(α/2)T < 1 is a damping parameter measuring the power of

dissipation, and the phase space is the entire plane (xn, vn).

It is worth transforming map (5.17) into an equivalent form. This is

useful because, if E decreases (friction increases), the picture represent-

ing the motion in the phase plane (xn, vn) becomes compressed along

the xn-axis. By introducing a new variable and notation via

Evn → vn, E I (xn) ≡ f (xn), (5.18)

respectively, the picture size becomes independent of E , provided the

values of function f are of order unity. From (5.17),

xn+1 = vn, vn+1 = −E2xn + f (vn). (5.19)

In what follows we use this form of the kicked oscillator map and denote

it by K as follows:

(xn+1, vn+1) = K (xn, vn) ≡ (vn, −E2xn + f (vn)). (5.20)

In components:

xn+1 = K1(vn) ≡ vn, vn+1 = K2(xn, vn) ≡ −E2xn + f (vn). (5.21)

The Jacobian of the map is (see Section 4.6) J = E2.

The inverse of K , (xn+1, vn+1) = K −1(xn, vn), is obtained from

(5.19) for any (xn, vn) as follows:

xn+1 = − 1

E2
vn + 1

E2
f (xn), vn+1 = xn . (5.22)

It can easily be checked that (xn, vn) = K −1 K (xn, vn).

In the subsequent sections we analyse cases driven by amplitude

functions of the following form:
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Fig. 5.18. (a) Sawtooth, (b) roof and (c) parabola amplitude functions. (The
parameter a is equal to 1.95, 1.77 and 1.8, respectively.)
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Fig. 5.19. Chaotic attractors of the oscillator kicked with (a) a sawtooth, (b) a
roof and (c) a parabola amplitude. Parameter a is identical in each case to that
set in Fig. 5.18, and the respective values of E are 0.8, 0.7 and 0.25.

� sawtooth amplitude:

f (x) = ax − sgn (x), (5.23)

� roof amplitude:

f (x) = 1 − a|x |, (5.24)

� parabola amplitude:

f (x) = 1 − ax2. (5.25)

These are presented in Fig. 5.18. Since all three functions are non-linear

(even though the first two are piecewise linear), the quantity a > 0 is

called the non-linearity parameter. The stroboscopic dynamics of kicked

oscillators is characterised by two dimensionless numbers, the damping

and the non-linearity parameters E and a, respectively.

The motion of kicked oscillators is chaotic over a wide range of the

parameters. It is interesting to observe that the chaotic attractor appears to

be the union of infinitely many copies of the graph of f (x), as illustrated

in Fig. 5.19. (Note that the co-ordinates in Figs. 5.18 and 5.19 are not

the same.)
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Fig. 5.20. Fixed points
are obtained from the
intersections of the graph
of f (v∗) and the straight
line (1 + E 2)v∗ (schematic
diagram).

Our aim in this section is not to determine the chaos parameters (topo-

logical entropy, Lyapunov exponents, fractal dimensions), but rather to

explore the typical geometrical structures of chaotic attractors and their

basins.

5.2.2 Fixed points and their stability

We have seen in the example of the baker map that the unstable man-

ifolds of the fixed points are intimately related to the chaotic attractor.

Therefore, we determine here the possible fixed points and investigate

when they can be unstable (with a general amplitude f (x)). The equation

K (x∗, v∗) = (x∗, v∗) for the fixed point co-ordinates yields

x∗ = v∗, v∗ = −E2x∗ + f ∗. (5.26)

Here, and in the following, we use the notation f ∗ ≡ f (v∗) and f
′∗ ≡

f ′(v∗) (the prime denotes the derivative). According to (5.26), a condi-

tion for the existence of fixed points is that the equation

(1 + E2)v∗ = f ∗ (5.27)

has solutions (Fig. 5.20). We investigate functions f that possess two

branches, as shown in Fig. 5.18; we therefore usually obtain two fixed

points. As in the baker map, these will be denoted by H+ and H−.

The stability of a fixed point (see Section 4.5) follows from the

dynamics in its vicinity. Map (5.19) linearised around any of the two

(x∗, v∗) is governed by the stability matrix

L =
(

0 1

−E2 f
′∗

)
, (5.28)

whose eigenvalues are given by

�± =
f

′∗ ±
√

f ′∗2 − 4E2

2
. (5.29)
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Henceforth we follow the convention of denoting the eigenvalue with

the greater absolute value by �+. In (5.29), therefore, the positive sign

belongs to �+ if f
′∗ is positive; otherwise the negative sign should be

taken.

When determining the stability of the fixed points, we make use

of the fact (see (4.41)) that the product of the eigenvalues equals the

Jacobian:

�+�− = E2 < 1. (5.30)

We assume that the eigenvalues are real; in other words, that the discrim-

inant of (5.29) is positive: | f
′∗| > 2E . If |�+| > 1, then, according to

(5.30), |�−| < 1, and the fixed point is hyperbolic. If f
′∗ is positive –

if the fixed point lies in the domain where the kicking amplitude is an

increasing function – the condition for hyperbolicity is obtained via rear-

ranging (5.29): f
′∗ > 1 + E2. If, on the other hand, f

′∗ is negative, then

�+ =
(

f
′∗ −

√
f ′∗2 − 4E2

)
/2 < −1 and, according to (5.30), �− is

negative as well,6 and the fixed point is hyperbolic if f
′∗ < −(1 + E2).

In summary: hyperbolic points exist if

| f
′∗| > 1 + E2. (5.31)

This implies that the kicking amplitude must change sufficiently rapidly

around the fixed point in order for this latter to be unstable.

The eigenvectors of the hyperbolic point, from the solution of equa-

tion �±u± = Lu±, are given by

u± = (1, �±). (5.32)

The eigenvectors yield the local directions of the manifolds. Accordingly,

the eigenvalues �+ and �− are now the slopes of the basic branches
of the unstable and stable manifolds emanating from a fixed point, re-

spectively. The local forms, v±(x), of the basic branches around fixed

points are therefore given by

vn ≡ v±(xn) = �±(xn − x∗) + x∗. (5.33)

Here we have taken into account that x∗ ≡ v∗. The top (bottom) sign

belongs to the unstable (stable) manifold (see Fig. 5.21).

Problem 5.9 Under what condition will the fixed point of a kicked

oscillator be a node attractor or a spiral fixed point (for an arbitrary

function f )?

6 The consequence of negative eigenvalues is that the point jumps to the opposite side of

the fixed point in each iteration.
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Fig. 5.21. Local form of
the stable (v−) and
unstable (v+) manifolds of
a hyperbolic point in kicked
oscillators. The slopes are
given by the eigenvalues.

Problem 5.10 Analyse the stability of the fixed points of an oscillator

kicked with the linear amplitude function f (x) = 1 − ax (a > 0) and

give the equations of the stable and unstable manifolds.

Problem 5.11 Analyse the behaviour of a kicked oscillator for a kick-

ing amplitude f ≡ 1 = constant.

Problem 5.12 Derive the equations that determine the two-cycles of

a kicked oscillator with an arbitrary f (x).

5.2.3 Sawtooth attractor

The stroboscopic map of an oscillator kicked with a sawtooth amplitude,

(5.23), is the sawtooth map:

xn+1 = vn, vn+1 = −E2xn + avn − sgn(vn). (5.34)

The fixed point co-ordinates are given by

x∗
± = v∗

± = ±1

a − (1 + E2)
, (5.35)

where the upper and lower signs belong to H+ = (x∗
+, v∗

+) and H− =
(x∗

−, v∗
−), respectively.

It can be seen from Fig. 5.20 that the straight line (1 + E2)v∗ can

intersect the half-lines av∗ − 1, v∗ > 0 and av∗ + 1, v∗ < 0 only if its

slope is less than a. Therefore there exist fixed points only if a > 1 + E2.

This is equivalent to condition (5.31) of hyperbolicity. The fixed points

of an oscillator kicked with the sawtooth amplitude are therefore always

unstable. The stability matrix, (5.28), is, in our case, independent of the

position; consequently, all higher-order cycles are also hyperbolic. In

addition, their eigenvectors are identical, all given by (5.32).
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Fig. 5.22. The sawtooth
attractor (a = 1.95, E = 0.8).
The attractor has been
determined via numerically
following a single trajectory
and omitting the first few
steps, until the plot stopped
changing at the given
resolution. The two-cycle
marked by white dots (P1, P2)
are on the attractor. The
dashed lines indicate the basic
branches of the manifolds of
H±.

Accordingly, regular attractors cannot be present in this system.

The chaotic attractor obtained via numerical simulation is presented in

Fig. 5.22, which shows that the fixed points, H±, lie outside of the at-

tractor. Readers may check for themselves, however, that there exists an

infinity of higher-order cycles and that these are all part of the chaotic

attractor.

Problem 5.13 Demonstrate the self-similarity of the sawtooth attrac-

tor by consecutive magnifications of the rectangle marked around P1 in

Fig. 5.22.

Problem 5.14 Follow numerically the motion of a phase space domain

towards the sawtooth attractor.

Note that the sawtooth attractor is very similar to the baker attractor

(Fig. 5.7), as it resembles a ‘cut-in-two’ and distorted version of the

latter. The parallelogram formed by the basic branches of the manifolds

of the fixed points surrounds the chaotic attractor.7 This parallelogram

corresponds to the unit square of the baker map, but it is ‘wider’, since

its corners do not pertain to the attractor.

Problem 5.15 Determine numerically the chaotic attractor of a baker

map whose expansion factor is only 1.8 instead of 2 as given in (5.2).

The chaotic attractor of Fig. 5.22 appears to be a much more dis-

ordered set of lines than those of the baker attractor. Nevertheless, this

7 In fact, to obtain this parallelogram, the basic branch of the unstable manifolds has to

be extended beyond the vn-axis (cf. Fig. 5.25).
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object can also be constructed exactly. This is possible because map

(5.34) is linear within each half-plane (it only changes when crossing

the xn-axis.) Consequently, the basic branch of the manifolds of any cycle

point lying off the xn-axis is a straight line within an extended neigh-

bourhood of the cycle point. The end-points of the basic branches follow

from the mapping rule. As the lowest-order cycle on the attractor is a

two-cycle, it is helpful to construct the unstable manifold of this cycle.

Problem 5.16 Determine the two-cycle Pi (x∗
i , v∗

i ) (i = 1, 2) of the

sawtooth map. Demonstrate that x∗
i = −v∗

i .

The equation, vi+(x), of the basic branch of the unstable manifold of

the cycle point Pi = (x∗
i , v∗

i ) (i = 1, 2) can be expressed in terms of the

direction of the eigenvector, u+ = (1, �+), and the cycle co-ordinates

as follows:

vi+(x) = �+(x − x∗
i ) − x∗

i . (5.36)

Here, �+ is given by (5.29) with f
′∗ = a, and we have taken into account

that x∗
i = −v∗

i .

These basic branches are plotted in Fig. 5.23. One end-point of each

branch falls on the vn-axis. This is because all points (xn, vn = −0) that

approach the xn-axis from below are mapped into (xn+1 = 0, vn+1 =
1 − E2xn) according to rule (5.34), while the points (xn, vn = +0) are

mapped into (xn+1 = 0, vn+1 = −1 − E2xn). For not too large values,

xn , these fall on the upper and lower vn-axes, respectively. The points of

the two-cycle change positions in each iteration, along with the segments

of the basic branches between the xn and vn axes. Accordingly, the image

of the end-point on the vn-axis must coincide with the end-point of the

other basic branch off the vn-axis, as indicated in Fig. 5.23.



138 Investigation of chaotic motion

P1

P2

Ð2

Ð1

1

2

Ð2 Ð1 1 2

n

xn

(a)

Ð2

Ð1

1

2

Ð2 Ð1 1 2

n

xn

H−

H− H−

H−

(b)

Ð2

Ð1

1

2

Ð2 Ð1 1 2

n

xn

(d)

Ð2

Ð1

1

2

Ð2 Ð1 1 2

n

xn

H+ H+

H+ H+

(c)

Fig. 5.24. (a) Basic branches of the unstable manifold and their images in (b)
two, (c) four and (d) six iterations. Longer and longer segments of the
two-cycle’s unstable manifold are generated, providing better and better
approximants to the chaotic attractor (a = 1.95, E = 0.8).

Problem 5.17 Determine the end-point co-ordinates of the basic

branches of the two-cycle’s unstable manifold. Demonstrate that the im-

age of the end-point on the vn-axis is, in fact, on the straight line of the

other basic branch.

The segment of the basic branch which is not in the quadrant con-

taining the cycle points is mapped outside the basic branch (see Fig.

5.24(b)), since all segments along the unstable direction are stretched by

a factor of �+ > 1. Thus, repeated iterations generate longer and longer

segments of the entire manifold.
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Fig. 5.25. Stable and unstable manifolds of the fixed points. The curves
belonging to H+ and H− are plotted with continuous and dashed lines,
respectively, and arrows mark the directions of contraction and stretching. One
branch of each unstable manifold leads into the attractor; the other leads to
states with infinite velocity (which can be considered as simple attractors). The
stable manifolds also extend beyond the region shown (a = 1.95, E = 0.8).

Figure 5.24 presents the result obtained after a few iterations. Sur-

prisingly, the shape of the chaotic attractor is also satisfactorily traced

out. The chaotic attractor appears to be identical to the unstable manifold

of the two-cycle. Of course, to construct the unstable manifolds to infi-

nite length, an infinite number of iterations would be required. During

this construction, no point would leave the parallelogram surrounding

the attractor even once. This fact alone illustrates the rather complex pat-

tern of the full unstable manifold and the fractal structure of the chaotic

attractor. As in the case of the baker map, there exist cycles of arbitrary

length on the attractor.

The unstable manifolds of H± can be constructed similarly (see

Fig. 5.25). The fixed points are not part of the chaotic attractor, but the

unstable manifold branches that emanate towards the attractor lead into

it. In the other direction the manifold runs out to infinity: the oscillator

can take up an arbitrary amount of energy from the kicks, and form (5.23)

of the kicking amplitude allows it to develop arbitrarily large velocities

both in the positive and negative directions.

Problem 5.18 Determine the end-points of the unstable basic branches

of the fixed points, H±.

Next, we investigate the stable manifolds of the fixed points (and

cycle points). They consist of segments of slope �−, as follows from the

eigenvectors u− = (1, �−). The equations of the stable basic branches

can be determined in a similar way to (5.36). Further segments of the
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Fig. 5.26. Stable manifold of
the two-cycle (thin lines). The
stable manifolds of the fixed
points surrounding them are
marked with thick lines, and
the straight segments
connecting the points of
discontinuity, which are also
parts of the boundary, are
denoted by dotted lines
(a = 1.95, E = 0.8).

stable manifolds can then be obtained by applying the inverted map,

(5.22). During this, the stable manifold behaves as an unstable manifold

with stretching factor 1/�−. The stable manifold can therefore be con-

structed by means of the inverted map in the same manner as the unstable

manifold by means of the original map (Fig. 5.25).

In Fig. 5.26 we have plotted the stable manifolds of both the fixed

points, H±, and of the two-cycle. Contrary to the stable manifolds of the

fixed points, the two-cycle’s stable manifold fills a connected domain,

namely the area surrounded by the fixed point’s stable manifolds and by

the lines connecting the end-points of the discontinuities.

If we determined the stable manifold of any periodic orbit in a sim-

ilar way, it would also lie within this area and would also fill it. The

union of the stable manifolds of the cycle points is therefore – as op-

posed to the unstable ones – not of fractal structure. The area filled by

them is simply the basin of the chaotic attractor (see Fig. 5.27). This

Fig. 5.27. Phase portrait of
the sawtooth map. The basin
of attraction of the chaotic
attractor is shaded. It becomes
thinner and thinner for
increasing values of |xn|
(a = 1.95, E = 0.8).
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Fig. 5.28. The roof
attractor (a = 1.77,
E = 0.7) has been
determined by numerically
generating a single long
trajectory. The hyperbolic
points, H+ and H−, are
marked by large black and
white dots, respectively.
Two smaller white dots
indicate the two-cycle.

is in harmony with what we have seen for regular motion (see Section

3.3.1), since the stable manifolds of H+ and H− do indeed form the

basin boundary between the chaotic attractor and the attractors at ±
infinity.

5.2.4 Roof attractor

The stroboscopic map of an oscillator kicked with a roof amplitude,

(5.24), is the roof map:

xn+1 = vn, vn+1 = −E2xn + 1 − a|vn|. (5.37)

The fixed point co-ordinates are given by

x∗
± = v∗

± = 1

1 + E2 ± a
. (5.38)

Both fixed points are unstable for a > 1 + E2. Over a wide range of the

parameters where a chaotic attractor exists, we can see (Fig. 5.28) that

the fixed point H+ is on the attractor. The fixed point H− is, however, not

part of the attractor. Contrary to the sawtooth map, the two fixed points

are no longer mirror images of each other, and they play different roles.

Problem 5.19 Demonstrate the self-similarity of the roof attractor by

consecutive magnifications of the rectangle around H+.

The derivative of the roof amplitude function, (5.24), is either

f ′ = −a = constant or f ′ = a = constant, depending on whether x is
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Fig. 5.29. Unstable basic
branch of H+ and its first
three images. The unstable
manifold is continuous, but
broken (a = 1.77, E = 0.7).

positive or negative. The eigenvalues of the fixed points can be obtained

by substituting f
′∗ = ±a into equation (5.29). For H+ lying on the at-

tractor, �± < 0, while for H− lying off the attractor, �± > 0. Contrary

to the baker and sawtooth maps, the eigenvalues and eigenvectors are

now not identical for the two fixed points.

The map is piecewise linear; therefore, the stable and unstable man-

ifolds can again be constructed exactly. Since H+ is on the chaotic at-

tractor, the attractor can be well approximated by its unstable manifold.8

Again, one end-point of the unstable basic branch of H+ lies on the vn-

axis. As with the sawtooth attractor, its image is the other end-point of

the basic branch.

Problem 5.20 Determine the end-points of the unstable basic branch

of H+. Demonstrate that the image of the end-point lying on the vn-axis

is, in fact, on the straight line of the basic branch.

Figures 5.29 and 5.30 exhibit the first three and the next six images of

the basic branch, respectively. The essential difference with respect to the

cases analysed so far is that the unstable manifold has no discontinuities

8 Higher-order cycles of infinite number are again on the attractor.
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Fig. 5.30. Further images of the unstable basic branch of H+ (a continuation of
the sequence in Fig. 5.29). The chaotic attractor presented in Fig. 5.28 becomes
more and more clearly visible.

and remains continuous over its full length; i.e., the manifold inherits

the continuity of the amplitude function. After an infinite number of

iterations the infinitely long unstable manifold traces out the chaotic

attractor, but the result of the ninth iterate presented in Fig. 5.30 already

provides a rather good approximant.
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Fig. 5.31. Stable manifolds
of the fixed points. The thick
line marks the stable manifold
of H−, the basin boundary,
while the thin lines represent
(part of) the stable manifold of
H+ (a = 1.77, E = 0.7).

Problem 5.21 Based on map (5.37), mark on Fig. 5.29 the images of

the end-points and break-points. (Following the motion of these points

also provides a better understanding of Fig. 5.30.)

Even though the values of f ′ – and therefore the eigenvalues of

the stability matrix L (see (5.28)) – are identical in each half-plane, the

stable and unstable directions of the fixed point and of the higher-order

cycle points are not identical, even within one half-plane. The reason

for this is that the eigenvalues of a higher-order cycle point provide the

total stretching and contraction rates over a complete cycle. For an m-

cycle, the matrix of the linearised, m-fold iterated map can be calculated

by multiplying the matrices, L(x∗
i , v∗

i ) (i = 1, . . . , m), evaluated in the

cycle points. The eigenvalues and eigenvectors of the product naturally

differ from those of any L(x∗
i , v∗

i ) and also depend on how many cycle

points lie in one and in the other half-plane.

Problem 5.22 Determine the two-cycle of the roof attractor. Find also

its stability eigenvalues and its stable and unstable directions.

Let us now investigate the stable manifolds. The fixed point, H−, is

off the attractor; therefore, its stable manifold provides the basin bound-

ary. This manifold can be constructed by means of the inverted map

(5.22) (see Fig. 5.31). Since H+, on the other hand, is part of the chaotic

attractor, its stable manifold remains within the basin of attraction, com-

pletely filling the latter (cf. Fig. 5.31).

One branch of the unstable manifold of H− leads again into the

chaotic attractor; the other goes towards increasingly negative values

of (xn, vn) (see Fig. 5.32), as in Fig. 5.25. For large displacements,

the oscillator always receives a negative momentum according to the
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Fig. 5.32. Phase portrait
of the roof map. The basin
boundary is provided by
the stable manifold of H−.
The fixed points, the
attractor and the unstable
manifold of H− are also
indicated (a = 1.77,
E = 0.7).

amplitude function (5.24); therefore, it cannot reach arbitrarily large

values of xn .

5.2.5 Parabola attractor

The stroboscopic map of an oscillator kicked with a parabola amplitude,

(5.25), is the parabola map:

xn+1 = vn, vn+1 = −E2xn + 1 − av2
n . (5.39)

The fixed point co-ordinates are now given by

x∗
± = v∗

± =
−(1 + E2) ±

√
(1 + E2)2 + 4a

2a
. (5.40)

The derivative of the parabola amplitude function is f ′ = −2ax .

This, contrary to our previous examples, depends on position; conse-

quently, the matrix, L , of the linearised map is different in each point.

The eigenvalues of the fixed points can be obtained via substitution into

(5.29), and, as in the previous case, the eigenvalues of H+ (H−) are neg-

ative (positive). Fixed point H− is always hyperbolic; H+ is hyperbolic

only if a > 3(1 + E2)2/4. Over a wide parameter range there exists a

chaotic attractor (see Figs. 5.33 and 5.34); fixed point H+ is on the

attractor, but H− is not.

By means of the unstable manifold of H+, we can again obtain the

chaotic attractor. Since, however, the map is non-linear in every point,

the manifold is bent; the eigenvectors of the stability matrix, L , yield

the stable and unstable directions only locally. Equation (5.33) deter-

mines the tangent of the manifold in such a case. Consequently, when

constructing the manifold numerically (see Fig. P.18 in the ‘Solutions
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Fig. 5.33. The parabola
attractor (a = 1.8, E = 0.25)
determined from a long
trajectory. The fixed points,
H+ and H−, are marked with
black dots.

Fig. 5.34. Magnification of the rectangle in Fig. 5.33 by a factor of (a) 30 and
(b) 900. Even though at the original resolution the attractor appears to consist of
two lines only, the magnified picture, (b), demonstrates the self-similarity
characteristic of fractals.

to the problems’ section), we take a short segment and iterate that. The

unstable manifold proves to be not only continuous, but also a curve

without any break-points.

Problem 5.23 Demonstrate by means of a numerical simulation how a

short piece of the unstable manifold around H+ changes under iterations.

The stable manifolds of the fixed points can be determined in a simi-

lar way by means of the inverted map. In Fig. 5.35 the basin of attraction

is shaded, and the stable manifold of H− forms the boundary. One branch

of the unstable manifold of H− leads into the attractor; the other one leads

into negative infinity. As in the previous example, the stable manifold of

point H+ (on the attractor) fills the entire basin of attraction. The stable

manifold that forms the boundary is continuous, but the branch emanat-

ing to the right only bends back again at a large distance from the origin

(the first ‘arm’ does so at a distance of approximately −30 000 units);
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Fig. 5.35. Phase portrait
of the parabola map. The
basin boundary of the
chaotic attractor is the
stable manifold of fixed
point H− (a = 1.8,
E = 0.25).

therefore, we have not plotted it. The topology is nevertheless similar to

that of the roof map.

In summary, we have gradually deviated from the baker map through

the sawtooth, roof and parabola maps towards typical chaotic systems

(see also Problems 5.24 and 5.25). Meanwhile, the opportunity of using

an analytical approach has been lost, and so this must be replaced in all

respects by a numerical simulation.

Problem 5.24 By means of computer simulation, determine the

chaotic attractor of an oscillator kicked with the bell amplitude func-

tion f (x) = a(e−4x2 − 1) + 1 with parameters a = 2, E = 0.7.

Problem 5.25 By means of computer simulation, determine the

chaotic attractor of an oscillator kicked with the sinusoidal amplitude

function f (x) = a sin x . Apply periodic boundary conditions; i.e., al-

ways shift xn between −π and π . Let the parameters be a = 5, E = 0.7.

Box 5.1 Hénon-type maps

In 1976 the French astronomer Michel Hénon introduced the map later named after him, which transforms a

point (xn, yn) of the plane into

xn+1 = 1 − ax2
n + byn,

yn+1 = xn . (5.41)

Hénon proved that this is the most general form of quadratic maps, which yields a nice chaotic attractor

with the standard parameters a = 1.4, b = 0.3 (Fig. 5.36(a)).



148 Investigation of chaotic motion

It is worth comparing this with the parabola map. Introducing the new variable

v = 1 − ax2 + by, (5.42)

(5.41) becomes

xn+1 = vn, (5.43)

vn+1 = 1 − ax2
n+1 + bxn .

This is identical to (5.39), but only if E2 = −b. The original Hénon attractor does not correspond

therefore to the dynamics of kicked oscillators, or indeed to any physical system, since its Jacobian is

negative. For any negative b, however, it is equivalent to the stroboscopic map of an oscillator kicked with a

parabola amplitude. The case discussed in Section 5.2.5 corresponds to the choice b = −0.063.

A piecewise linear version of the Hénon map was given by the French mathematician René Lozi in the

form

xn+1 = 1 − a|xn| + byn,

yn+1 = xn, (5.44)

where the usual b values are positive (Fig. 5.36(b)).

In general, a Hénon-type map,

xn+1 = f (xn) + byn,

yn+1 = xn, (5.45)

is equivalent, with the choice b = −E2 < 0, to the stroboscopic dynamics of an oscillator kicked with

amplitude f (x) (Fig. 5.36(c)). The mathematical attractors belonging to positive b values differ significantly

from the physical attractors belonging to the opposites of b (they are not even necessarily both chaotic).

xn

yn

(a) xn

yn

xn

yn

(c)

–1

1

–1 1

–0.5

0.5

–0.5 0.5

–1

1

–1 1

–0.5

0.5

–0.5 0.5

–1

1

–1 1

–0.5

0.5

–0.5 0.5

(b)

Fig. 5.36. Hénon-type chaotic attractors. (a) Hénon attractor (in (5.41), a = 1.4, b = 0.3). b) Lozi attractor
(in (5.44), a = 1.7, b = 0.5). (c) Hénon-type sawtooth attractor (attractor of the map (5.45) generated with a
function f (x) of the form of (5.23); a = 1.6, b = 0.3).

5.2.6 The limit of extremely strong dissipation:
one-dimensional maps

A strongly damped motion of kicked oscillators arises if E =
e−(α/2)T 
 1, which can occur not only because of strong friction, but
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Fig. 5.37. Chaotic attractors for extremely strong dissipation (E = 0).
(a) Sawtooth amplitude, (5.23); the one-dimensional map, (5.46), is
xn+1 = ax − sign(xn), called a Bernoulli map (a = 1.95). (b) Roof amplitude,
(5.24); the one-dimensional map is xn+1 = 1 − a|xn|, called a tent map
(a = 1.77). (c) Parabola amplitude, (5.25); the one-dimensional map is
xn+1 = 1 − ax2

n , called a logistic map (a = 1.8).

also because of rare kicking. In the limit E → 0 of extremely strong

dissipation, no chaotic motion can develop with bounded kicking am-

plitudes, I , since the body practically comes to a halt before the next

kick. If, however, the magnitude of the momentum transfer is increased

at the same rate as E decreases, then the motion never ceases between

kicks. The change to new variables, (5.18), corresponds precisely to this

limit since the momentum transfer is I = f/E , with a finite f for any E .

Thus, in the form (5.19) chaos can be present even in the limit E → 0,

when

xn+1 = vn, vn+1 = f (xn+1). (5.46)

By means of the substitution xn+1 → xn , we obtain

xn+1 = f (xn). (5.47)

This is called a one-dimensional map, since the value of one of the co-

ordinates (for example the position) is uniquely determined solely by

the value of the same co-ordinate taken one step earlier. Moreover, the

chaotic attractor is, according to (5.46), a segment of a simple curve in

the (xn, vn)-plane, i.e. a piece of the graph v = f (x) (see Fig. 5.37). The

one-dimensional map, (5.47), describes the discrete-time motion on this

segment.

Note that for f ’s with a local extremum (as in all the examples

analysed so far) one-dimensional dynamics loses invertibility; xn is no

longer a single-valued function of xn+1, and the equation xn = f −1(xn+1)

may have two solutions (see Box 4.1). For any dissipation parameter

E 	= 0, the presence of the term (−E2xn) assures in (5.19) the existence

of a unique inverse given by (5.22). From the point of view of invertibility,
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the cases E 
 1 and E → 0 are therefore not identical. One-dimensional

maps represent a non-physical limit, when dynamics is non-invertible.

Furthermore, fractality is lost, since in the plane (xn, vn) the chaotic

attractor degenerates into a single curve segment (see Fig. 5.37). In spite

of this, one-dimensional maps, and the logistic map among them, are

useful mathematical tools in understanding certain concepts (such as,

for example, the time evolution of probability distributions (see Section

5.4.4) and universality (see Section 5.3).

5.3 Parameter dependence: the period-
doubling cascade
Whether chaotic attractors exist in a non-linear system depends on the

parameters. In the example of kicked oscillators, one reaches the chaotic

regime by increasing the non-linearity parameter, a, and this happens

via bifurcations (see Section 3.3.2). Since such bifurcations are charac-

teristic not only of kicked oscillators, but also of many other systems,

we turn to a general notation.

Denote the tunable parameter by μ and assume that, for small values

of μ, the system possesses only one fixed point attractor in the map

(i.e., an attracting limit cycle in the flow). One of the most typical roads

towards chaos is the period-doubling bifurcation sequence, or period-

doubling cascade.9 By increasing parameter μ, we find that, at a certain

value μ1, the fixed point becomes unstable and a two-cycle takes its role

over as an attractor. (This is similar to the pitchfork bifurcation seen in

Section 3.3.2, but the bifurcation now describes how limit cycles, instead

of equilibrium states, lose their stability.) The period of the attractor

is doubled. This attractor, however, is only stable up to another value

μ2, where an attracting four-cycle is born. At the value μn , a cycle of

period 2n appears, but it remains stable only up to a value μn+1, and so

on (Fig. 5.38). An important feature of period-doubling bifurcations is

that higher- and higher-order cycles are stable over shorter and shorter
intervals of μ. Therefore, with a finite change in the parameter, the

cascade reaches an accumulation point, where formally a cycle of length

2∞ appears. The parameter, μ∞, of the accumulation point is thus a

finite value. For values of μ greater than this, the system is capable of

exhibiting chaotic behaviour, since an infinity of unstable periodic orbits

has been created by then, suitable for forming the skeleton of a chaotic

attractor.

9 If there exist several fixed point attractors, then each of these can pass through its own

cascade independent of that of the others.
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Fig. 5.38. Schematic diagram of a period-doubling cascade. The vertical axis is
one of the co-ordinates (x∗) of the attractor’s points. Dashed lines refer to the
unstable limit cycles left in place of the simple attractors. Dotted vertical lines
mark bifurcation points. An infinity of bifurcations occurs before the
accumulation point, μ∞, and an infinity of unstable states is born. Chaos is
present in the region μ > μ∞.

In the vicinity of the accumulation point μ∞, all period-doubling

cascades behave as geometric sequences: the parameter, μn , of the nth

bifurcation point can be expressed as

μn = μ∞ − A

(
1

δ

)n

, (5.48)

where in all systems described by smooth (differentiable) maps the con-

stant δ is the same number:

δ = 4.669. (5.49)

This quotient of the cascade does not depend on the details of the sys-

tem; it is a universal property (the factor A, on the contrary, is not).

Furthermore, a similar rule applies to the width of the ‘forks’ appear-

ing in the cascade: these quantities go to zero as negative powers of the

number

α = 2.503. (5.50)

Since δ > α, when approaching the accumulation point, the forks be-

come more and more open. The numbers α and δ are called Feigen-

baum constants. We have now uncovered an important new property

of chaotic behaviour: the transition to chaos may possess universal
features.
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Fig. 5.39. Bifurcation
diagram of an oscillator kicked
with a parabola amplitude, of
the parabola map (5.39) at
E = 0.25 in terms of the
non-linearity parameter μ ≡ a.
The accumulation point is
a∞ ≈ 1.499. For a > a∞, the
parameters belonging to a
chaotic attractor are those
where the values of x∗ cover
an entire interval. The
diagram is obtained by
omitting the first 2000 iterates
to screen out transient effects.

The character of the cascade depends only on the form of the mapping

function around its extremum.10 For smooth maps this is typically well

approximated by a quadratic function. The cascade of an oscillator kicked

with a parabola amplitude (see Figs. 5.39 and 5.40) therefore proceeds

according to the Feigenbaum constants. In other cases, however, where

the mapping is not quadratic around its extremum points, the cascades

are different. In maps with break-points or discontinuities at the extrema,

as, for example, for the roof map, chaos appears abruptly when the fixed

point attractor loses its stability.

Problem 5.26 Determine the bifurcation diagram of the oscillator

kicked with a roof amplitude function (E = 0.7).

A kind of mirrored version of the period-doubling cascade can be

observed in the chaotic region μ > μ∞. Here, sufficiently far from the

accumulation point, the chaotic attractor appears as a single connected set

with an unstable fixed point on it (Figs. 5.33 and 5.40(c)). By decreasing

the parameter μ, the attractor splits into two pieces (see Fig. 5.40(b)).

The iterated points appear on these pieces in a strictly alternating manner.

10 In order to determine the stability of a limit cycle attractor of length 2n , the 2n-fold

iterated map should be investigated, whose contraction rate is the 2n th power of the

original Jacobian. Thus, in the vicinity of the accumulation point, n � 1, as far as the

stability of the attractor is concerned, all systems behave as if their Jacobians were

zero. This behaviour is therefore determined by the one-dimensional map arising in

the limit J → 0 of the original map. It can be shown that the new attractors appear

around the local extrema of the many-times-iterated map.
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Fig. 5.40. The chaotic region of Fig. 5.39. In intervals (a)–(c) a typical form
of the attractor on the (xn, vn)-plane is also shown. At a = ac2 = 1.793 the
bifurcation diagram widens abruptly. In the range a > ac2 = 1.793 the chaotic
attractors are of the type presented in Fig. 5.33. For a > ac = 1.859 the kicks
are so strong that the iterations always run out into infinity. Overall in the chaotic
region there exist periodic windows where the attractor is a periodic cycle.

The motion is still irregular on both pieces: it can be considered to be

a chaotic wandering around a two-cycle. The two-piece attractor does

no longer contains the unstable fixed point. The shortest unstable orbit

that belongs to the attractor is a two-cycle. By further decreasing the

parameter, the attractor suddenly falls into four pieces (see Fig. 5.40(a)),

and from then on the two-cycle is not part of it.

Above the accumulation point an increase in parameter μ typically

implies an increase in both topological entropy and positive Lyapunov ex-

ponent. In certain regions, however, these quantities might also decrease.

It is characteristic of systems described by smooth (differentiable) maps

that their chaotic attractors sometimes disappear (Fig. 5.40). In these

regions of parameter μ, which are parts of the so-called periodic
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windows, the attractors are periodic cycles11 (their length is never 2n

(n = 1, 2, . . .), since the stability of such cycles was already lost in the

course of the period-doubling cascade).

The question arises how typical the parameters μ∗ belonging to

chaotic attractors are. By considering any finite interval of μ that contains

chaotic parameters μ∗, one finds that the total length of the set μ∗ is finite
since the size of the windows belonging to higher- and higher-order

cycles decreases very rapidly. All this is similar to the construction of

Figs. 2.11 and 2.12, and the pattern of the fat Cantor filaments presented

there is, in fact, similar to the structure seen in Fig. 5.40 above the

accumulation point. The chaotic parameters, μ∗, therefore form a fat
fractal (see Section 2.2.3). A typical value of the fat fractal exponent, α,

defined by relation (2.15) is, for μ∗, α = 0.45.

5.4 General properties of chaotic motion
Based on the previous examples, we are now in a position to describe

the general properties of driven dissipative chaotic systems with three-

dimensional flows, represented by two-dimensional invertible maps. We

also give the general definition of a few basic characteristics as measures

of chaos. The map will be written in the form (x ′
1, x ′

2) = M(x1, x2).

5.4.1 The measure of complexity: topological entropy

The skeleton of chaotic attractors is the set of the unstable periodic orbits.

At the level of the stroboscopic map, these orbits are hyperbolic fixed

points or cycles. Which is the simplest hyperbolic periodic orbit lying on

the attractor depends on the parameters and can usually be determined by

numerical methods only. Trajectories started around hyperbolic orbits off

the attractor never return there, contrary to those started around hyper-

bolic orbits on the attractor. For large, extended chaotic attractors, a fixed

point or a two-cycle is typically part of the attractor.12 Independently of

whichever cycle is first in the sequence of periodic orbits belonging to

the attractor, the number of such cycles increases with their length. It

is a fundamental property that the longer the cycles, the more cycles of

the same length are found on the attractor. Their number increases, in

general, exponentially with the length: the number Nm of cycle points of

11 Chaos is, however, always present in the form of transient chaos; see Section 6.7.
12 If an unstable cycle is not on the attractor, but is close to it, the stable manifold of the

cycle cuts through the attractor, which therefore consists necessarily of several pieces

(see Figs. 5.40 (a) and (b)).
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the unstable cycles of length m (of period mT ) on the chaotic attractor

increases, for sufficiently large cycle lengths m, according to

Nm ∼ ehm . (5.51)

The parameter h is called the topological entropy.13 This leads to a

possible definition of chaos: a system is chaotic if its topological entropy

is positive, i.e. if h > 0.

The chaotic attractor is of finite size, and the unstable periodic cycles

are dense on it: one can find cycle points in arbitrarily small neigh-

bourhoods of each point of the attractor. The proportion of the periodic

cycles to those representing aperiodic motion (homoclinic and hetero-

clinic points) is the same as that of rational to irrational numbers. Thus,

a point chosen at random on the attractor does not coincide with any

of the cycle points: chaotic motion is, after all, a random walk among

the unstable periodic orbits. Consequently, chaotic motion does not re-

peat itself: it cannot be decomposed into the sum of even an infinity of

periodic motion with discrete frequencies.

A property of topological entropy that is easier to use in practice

is that it is also the growth rate of the length of line segments of the

phase space. A line segment of length L0 initially lying in the basin of

attraction is stretched more and more in the direction of the unstable

manifold under iterations. Let Ln denote the length of the line segment

after n iterations. Experience shows that, after a sufficiently large num-

ber of iterations (n � 1), this length increases exponentially, and the

growth rate is given by just the topological entropy, according to the

relation

Ln ∼ ehn . (5.52)

Qualitatively speaking, in the course of its stretching the line segment

approaches more and more unstable periodic orbits, and in n time steps

each orbit of length n gives an approximately identical contribution to

its growth. For a numerical determination see Appendix A.5.

Problem 5.27 On the basis of property (5.52), determine the topo-

logical entropies of the asymmetric baker attractor and the sawtooth

attractor.

13 This definition is based on the Boltzmann relation S = kB ln N known from statistical

physics, where N is the number of states, S is thermodynamical entropy and kB is

Boltzmann’s constant. It can be seen that the equivalent of S is hm; h is thus some

kind of entropy density.
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5.4.2 The measure of unpredictability:
the Lyapunov exponent

Dynamical instability
The existence of the densely lying hyperbolic cycles results in a rapid

deviation of neighbouring orbits called dynamical instability or sensi-
tivity to the initial conditions. In the neighbourhood of any point on the

attractor, a periodic orbit exists which is unstable. We have seen that

trajectories starting from the vicinity of hyperbolic points deviate at an

exponential rate in time (see Section 3.1). Thus, for two nearby points

around point r = (x1, x2) of the attractor, their distance increases accord-

ing to powers of the repelling eigenvalue characterising the periodic orbit

near r. If the initial distance �r0 ≡ [�x2
1,0 + �x2

2,0]1/2 in phase space

is sufficiently small, the distance �rn ≡ [�x2
1,n + �x2

2,n]1/2 after n � 1

steps can be obtained from �r0 via multiplication by an exponential

factor, i.e.

�rn(r) = �r0 eλ(r) n . (5.53)

The quantity λ(r) is called the local Lyapunov exponent. For relation

(5.53) to hold, we must assume that the distance �rn(r) after n itera-

tions is still small compared with the total extension of the attractor.

The factor exp (λ(r)n) is thus the repelling eigenvalue of the map Mn

linearised around one of the n-cycle points near point r. The local Lya-

punov exponent is therefore the logarithm of the repelling eigenvalue of

the n-fold (n � 1) iterated map taken for one iterate, i.e. the logarithm

of the nth root of the repelling eigenvalue of Mn . If n is sufficiently large,

then λ(r) obtained in this manner only depends on the position in phase

space.

The local Lyapunov exponent, λ(r), is a positive number, as all peri-

odic orbits on the chaotic attractor are hyperbolic. Since such a pos-

itive exponent can be assigned to any point of the attractor, typical

pairs of points on the attractor deviate with some average Lyapunov
exponent, λ̄:

�rn = �r0 eλ̄ n . (5.54)

In chaotic systems, the average Lyapunov exponent is positive: λ̄ > 0.

This is another property suitable for defining chaos. The exact manner in

which the average is to be taken will be discussed in Section 5.4.5. The

average Lyapunov exponent does not, of course, depend on the position

in phase space, rather it is a number characteristic of the chaotic attractor

(for numerical methods, see Appendix A.5).
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Fig. 5.41. An initial phase space element is stretched in one direction and
contracted in another direction over a few iterations, n. The total area decreases.

Another consequence of local hyperbolicity is that any two points

chosen in such a special way that they fall exactly on the stable manifold

approach each other. In this case, in the neighbourhood of point r,

�rn(r) = �r0 eλ′(r) n, (5.55)

where λ′(r) is negative. The average of these exponents is the average

negative Lyapunov exponent, λ̄′.
These statements can be summarised in an illustrative manner as

follows: a small disc of diameter l0 around point r of the attractor is

mapped into a stretched object in n steps, whose length and thickness

(see Fig. 5.41 for the initial phase) are given by

ln(r) = l0 eλ(r) n, l ′
n(r) = l0 eλ′(r) n . (5.56)

As the area in n steps is approximately lnl ′n , and we know that the area

is multiplied by the Jacobian J (r) < 1 in each step, (5.56) yields

λ(r) + λ′(r) = ln J (r). (5.57)

For typical points, therefore,

λ̄ + λ̄′ = ln J , (5.58)

where ln J is the mean value of the logarithm of the Jacobian on the

attractor. In a dissipative system this average is negative (the area de-

creases); therefore, we see that the contraction experienced in the stable

direction is, on average, stronger than the stretching in the unstable di-

rection, i.e. | λ̄′ | > λ̄.

It is worth noting what happens to the points and point pairs starting

outside the chaotic attractor. Inside the basin of attraction, such points

move towards the attractor, since it attracts all trajectories. When they get

so close to one of the points of the attractor that the linear approximation

becomes applicable, their distance from the attractor is multiplied in each

step by the factor eλ̄′
< 1, on average (while they also move along the

attractor, obviously). Therefore, the approach to the chaotic attractor (as

to any other attractor) occurs at an exponential rate. The average negative
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Lyapunov exponent, λ̄′, therefore also characterises the rate at which

points converge to the attractor. As the approach is of an exponential

character, the points are, in practice, on the attractor within a few steps,

of the order of 1/|λ̄′|. From then on the distance between neighbouring

points increases rapidly at the rate given by the positive average Lyapunov

exponent. In the period of time preceding the arrival on the attractor,

however, the distance between neighbouring points can also decrease, as

can be seen in the first few steps of Fig. 5.4.

Prediction time
A motion is considered to be predictable if, starting from a well defined

initial condition, the state arising after a long time is also well defined.

In practice, the definition of a state is never perfect; the initial condition

can only be given with some error. The motion is predictable if the

uncertainty arising from the initial error is still relatively small after a

long time.

The dynamics on chaotic attractors is not of this kind. The initial

distance, �r0, between two nearby points can also be considered as the

uncertainty in defining a state in phase space. Measuring the distance in

the units of some characteristic phase space distance (for example the

extension of the chaotic attractor), the dimensionless �r0 is exactly the

relative error in defining the state. Due to the dynamical instability on

the attractor, the relative error, �rn , seen after n steps is given by expres-

sion (5.54). If the error reaches the order of magnitude of the quantity

to be determined, i.e. if the relative error increases to unity (to 100%),

then the prediction is no longer reliable. The time over which this does

not occur yet is, from (5.54), the prediction time, given by

tp = 1

λ̄
ln

1

�r0

(5.59)

(measured in units of the driving period, T ). This time is principally

determined by the average Lyapunov exponent, or, more accurately, by its

reciprocal. Since in chaotic systems the Lyapunov exponent is usually of

order unity, the prediction time is typically that of a few iterations only.

Even though tp also depends on the initial error, it does so logarithmically,

which is a rather weak dependence. The average Lyapunov exponent can

therefore be considered as the measure of unpredictability: the greater

the λ̄, the shorter the time for which the behaviour of the system can be

predicted.

The significance of this result can truly be appreciated by examining

the predictability of regular systems. In such systems the error either

decreases with time or, if it increases, it does so, generally, at a linear rate

at most. Considering this worst case, the relation �rn = �r0(1 + λ̃n)
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replaces (5.54), where λ̃ is a parameter of order unity characteristic of the

non-chaotic error growth. With a small initial error �r0, the prediction

time is now given by

t (non-chaotic)
p = 1

λ̃

(
1

�r0

− 1

)
≈ 1

λ̃

1

�r0

, (5.60)

i.e. it is inversely proportional to the initial uncertainty.

As an example, let �r0 = 10−6 and take λ̄ = λ̃ = 1. The prediction

times are

tp = 6 ln 10 ≈ 14, t (non-chaotic)
p = 106. (5.61)

The long-term prediction of the state is impossible on the attractor of a

chaotic system.

It is also worth considering what happens if the accuracy of the

measurement is improved. Suppose that we are able to decrease the error

Box 5.2 The trap of the ‘butterfly effect’

The American meteorologist Edward Lorenz (see Box 5.6) gave a lecture in 1972 with the title:

‘Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?’. The term ‘butterfly

effect’ went into general use due to J. Gleick’s popular book Chaos: Making a New Science, which

implicitly suggested that the answer to Lorenz’s question is affirmative. Outside scientific literature this is

often interpreted as if modern sciences would claim that everything is related to everything, and we could

not therefore be sure of anything. In contrast to this, the analysis of chaotic systems shows that

unpredictability is limited, i.e. it only holds on the chaotic attractor. As far as motion before reaching the

attractor is concerned, we know for sure that it converges in phase space to a very small (but extended) set

of zero volume: the attractor. Nearby orbits do not diverge before reaching the attractor, since they do not

enter the vicinity of hyperbolic cycles. In addition, from a statistical point of view, the motion developing on

the attractor can be described with perfect accuracy (see Section 5.4.4). Even by accepting that the term

‘butterfly effect’ can be used as a synonym of sensitivity to the initial condition or unpredictability, we have

to emphasise that this effect can always be observed on chaotic attractors (chaotic sets) only. The question

addressed in Lorenz’s lecture can therefore only be answered if one can decide whether the initial trajectory

starting from Brazil and the one flicked by the flap of the wing are on the attractor to which the Texan

tornado pertains. This would be unlikely since there is practically no interaction between the air masses of

the southern and northern hemispheres (not to mention that in our terminology weather cannot even possess

a chaotic attractor since it not a simple system, being made up of a multitude of components). For the sake

of historical faithfulness, we add that Lorenz also noted in The Essence of Chaos that if the flutter of a

butterfly can generate a tornado then it can also prevent it from occurring. The frequency of extreme events

does therefore not increase due to a butterfly; the parallel illustrates the random character of the

phenomenon. With these metaphors, Lorenz intended to illustrate the difficulties of weather forecasting, and

did not give an answer to the question raised in the lecture’s title.
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by three orders of magnitude.14 The non-chaotic prediction time would

become 1000 times longer; in the chaotic case, however, the change is

not proportional to the improvement of the accuracy. In fact, tp does in-

crease, but by very little: by ln 1000/λ̄ ≈ 7/λ̄ ≈ seven iterates. Thus, the

prediction time becomes 21 time units (as opposed to 109). In a chaotic

system, a significant improvement of the prediction time is impossible.

5.4.3 The measure of order in phase space:
fractal dimension

In the course of iterating a phase space domain its area shrinks, since

J < 1, and the images move closer and closer to the chaotic attractor. In

each step the domain is stretched along the unstable direction, i.e. parallel

to the unstable manifold constituting the attractor, and is contracted in

the direction across the unstable manifold. Simultaneously, the domain

is folded again and again, since its length increases while being confined

to a bounded region. Since the thin filaments cannot intersect each other,

a structure similar to a Cantor set develops, perpendicular to the unstable

direction. The domain takes on a more and more filamentary structure,

and finally it adopts the shape of the chaotic attractor (see, for example,

Fig. 5.6).

The structure of a chaotic attractor is therefore that of a direct prod-

uct: in the unstable (stable) direction it is a continuous line (a fractal

similar to a Cantor set). All chaotic attractors thus have the structure

of distorted Cantor filaments (see Section 2.2.2). Their dimension can

always be written as the sum of two partial dimensions:

D0 = 1 + D(2)
0 , (5.62)

where the 1 is the partial dimension along the unstable direction, and D(2)
0

is the partial dimension along the stable direction, with 0 < D(2)
0 < 1.

The fractal dimension, D0, measures how much more complicated the

phase space structure is than for regular motion. In addition, its existence

demonstrates that an ordered phase space structure is associated with

motion which appears to be irregular in time.

5.4.4 Natural distribution

After overviewing the three essential characteristics of chaotic motion,

we now discuss in detail a quantity that provides their synthesis and also

generalisation: the probability distribution developing on the chaotic

14 Such sudden improvements were very rare in the history of science and were always

consequences of significant discoveries.
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attractor. The use of this quantity is unavoidable, since – as we have

seen – after a prediction time of merely a few time units, the motion

on the attractor can only be described with a 100% error. The observer

finds the motion to be random. Long-term behaviour can therefore be

characterised only by giving the probability that the state of the sys-

tem comes to a small neighbourhood of one point or another of the

attractor.

In order to interpret this accurately, it is useful to investigate the

dynamics of a phase space domain in a probabilistic sense before

reaching the attractor. The points constituting the phase space domain

will henceforth be called particles in order to facilitate a probabilistic

interpretation.

If initially particles are uniformly distributed, the density, P0(r), of

the probability that there is a particle within the phase space domain of

initial area A0 is P0 = 1/A0, and P0(r) ≡ 0 outside this domain. In one it-

eration of the map, the area decreases; therefore, the probability is greater

than at the beginning, since the number of particles is conserved and the

distribution is normalised to unity. The particle density defines some

distribution, P1(r), above the new shape of the phase space domain as

support. Furthermore, the distribution is no longer homogeneous, since,

in general, neither stretching nor contraction is homogeneous (the local

Lyapunov exponents are position-dependent). In the course of further it-

erations the area continues to decrease, and the probability density keeps

increasing. As a consequence of stretching, the probability distribution,

Pn(r), remains smooth along the unstable direction. Due to the repeated

folding, however, this is not so along the stable direction.

Continuing the iterations, the distributions, Pn , converge for n → ∞
to a limit distribution P∗, as follows:

Pn(x1, x2) → P∗(x1, x2), (5.63)

which is non-zero only on the chaotic attractor, a set of zero area. This

is the natural distribution15 of the chaotic attractor, a stationary, time-

independent distribution. The natural distribution yields the probability

that a point moving on the attractor for a long time visits a certain region

of the attractor. The natural distribution is the only proper tool for the

long-term characterisation of chaotic systems.

As a particular example, consider first the time evolution of the

probabilities in the symmetric baker map, (5.2). It is worth starting from

the initial distribution, P0 ≡ 1, which corresponds to uniformly filling

the entire unit square with particles. In the first step the phase space

15 In mathematical terminology, the natural measure.
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Fig. 5.42. Time evolution of the probability in the symmetric baker map over
the first three steps, starting from a uniform distribution, P0 ≡ 1, on the entire
phase space (c = 1/3). (The initial distribution is not presented.) Since the
distribution is independent of the velocities, only the x-dependence is displayed.
The sequence converges to the natural distribution, P ∗. The total area of the
columns remains equal to unity throughout.
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x10

Fig. 5.43. Natural distribution of the symmetric baker attractor obtained from
numerical simulation. A total of 300 000 iterations has been carried out from a
single initial point on the attractor, and a resolution of ε = (1/3)6 has been used
in x to represent recurrences.

volume is mapped into two rectangles of width c and unit length (see

Fig. 5.8). The number of particles is unchanged; the probability of finding

them is 1/2 on both sides, and the distribution function therefore takes

on the value P1 = (2c)−1 < 1 on the rectangles. In the next step, P2 =
(2c)−2 > P1, and this value belongs to four rectangles each of width

c2. The distribution is uniform in the direction of the unstable manifold

(along the vn-axis) (Fig. 5.42).

In the limit n → ∞, the sequence converges to the natural distribu-

tion, P∗, whose support is formed by a Cantor filament. A point moving

on the chaotic attractor of the symmetric baker map can therefore occur

on any of the Cantor filaments with equal probability. The natural dis-

tribution can also be obtained via a long-term numerical simulation of a

single trajectory (see Fig. 5.43).
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Problem 5.28 Show that in the symmetric baker map a linear ini-

tial distribution P0 = 1 + γ (x − 1/2) (independent of velocity) con-

verges to the same natural distribution, P∗, as the homogeneous initial

distribution.

Problem 5.29 Show that in the symmetric baker map a linear ini-

tial distribution P0 = 1 + γ (v − 1/2) (independent of position) con-

verges to the same natural distribution, P∗, as the homogeneous initial

distribution.

It is important to emphasise that the natural distribution is indepen-
dent of the initial distribution. If the particles are not uniformly dis-

tributed in the initial domain, or if the domain is chosen in a different

way, the initial differences disappear upon approaching the attractor. The

limit distribution is determined by stretching along the unstable mani-

fold and contraction along the stable manifold. The natural distribution

is therefore a distribution characteristic of the attractor only.

Based on the preservation of the particle number, a general relation

can be found between probability distributions Pn and Pn+1. The integral

of the probability distribution, Pn , over a small area is proportional to the

number of particles in that area. In the nth step the number Pn dx1 dx2

of the particles in the area element dx1 dx2 around point (x1, x2) has

to be equal to the particle number Pn+1 d A′ in the area d A′ around the

image point (x ′
1, x ′

2) = M(x1, x2); i.e., Pn dx1dx2 = P(n+1)d A′. Since

the area d A′ is a factor of the Jacobian J (x1, x2) (J > 0) smaller than

the original, the probability distribution at the (n + 1)st iterate follows

from that at the nth iterate as follows:

Pn+1(x ′
1, x ′

2) = Pn(x1, x2)

J (x1, x2)
. (5.64)

This equation, called the Frobenius–Perron equation, provides the time

evolution of distributions. Since time is discrete, it can also be considered

as a map acting on probability distributions. The sequence of distribu-

tions, Pn , with arbitrary P0 (within the basin of attraction) converges to

the natural distribution, P∗, of the chaotic attractor, a solution of (5.64)

with Pn+1 ≡ Pn ≡ P∗. The natural distribution, P∗, is therefore a fixed
point of (5.64), a simple attractor in the space of probability distribu-

tions. Since the natural distribution is unique and is the solution of an

exactly known equation, in a probabilistic sense chaos can be described

with perfect accuracy.

Problem 5.30 By means of equation (5.64), determine the distribu-

tion P1(x, v) obtained in one step from a general normalised initial dis-

tribution P0 ≡ g(x, v) > 0 defined over the entire phase space of the

symmetric baker map.
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Problem 5.31 Applying the same arguments as in the derivation of

equation (5.64), determine the relation between probability distributions

Pn and Pn+1 for a one-dimensional map xn+1 = f (xn), where the func-

tion f (x) has two branches. What is the natural distribution in the ex-

tremely strong dissipation limit (E → 0) of (a) the sawtooth, (b) the roof

and (c) the parabola maps at parameter a = 2?

Despite the simple form of (5.64), the natural distribution is usually

rather complicated. Its support is a fractal of measure zero; therefore,

in practice, the natural distribution cannot be determined with arbitrary

accuracy. Numerically, the procedure is to cover the attractor by small

squares of size ε, measure for each square how many points of a long

trajectory (obtained, for example, in 106 iterations) fall in the box, and

divide this number by the total number of points (see Fig. 5.43). In this

manner we determine the integral of the natural distribution over that

box to a good approximation. The average of a certain quantity taken

with this distribution only slightly deviates from the average taken with

the exact distribution (the difference is of the order of ε).

Natural distributions show a new facet of chaotic attractors. On a

fractal support embedded in two dimensions a usually highly inhomo-

geneous distribution appears (in a third dimension) whose local maxima

belong to the most often visited subsets of the attractor. A numerical

determination of the natural distribution proves in itself the chaoticity

of a system. Figure 5.44 presents the natural distributions developing on

the attractors of oscillators kicked with different amplitudes. Plate XII

and the back cover exhibit other views of these distributions in colour.

Problem 5.32 Determine via numerical simulation the natural distri-

butions on the chaotic attractors of the oscillators kicked with a bell-

shaped and a sinusoidal amplitude (see Problems 5.24 and 5.25).

From the evolution of the distributions, Pn , or directly examin-

ing P∗, the natural distribution proves to be a fractal distribution (see

Section 2.3). This implies that on plotting the distribution at finer and

finer resolutions (boxes of smaller and smaller size ε), more detail be-

comes visible and more information is gained. Accordingly, a finite in-

formation dimension, D1, can be assigned to the natural distribution (for

its numerical determination see Appendix A.5). As seen, D1 is the fractal

dimension of the regions that are typical with respect to the distribution.

Since the natural distribution is smooth along the unstable direction, the

total information dimension, D1, can be decomposed as follows:

D1 = 1 + D(2)
1 , (5.65)
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x

(a)

Fig. 5.44. Natural
distributions of kicked
oscillators. (a) Sawtooth
attractor (see Fig. 5.22).
(b) Roof attractor (see Fig.
5.28). (c) Parabola
attractor (see Fig. 5.33).
The apparent sudden
jumps in distributions (b)
and (c) are caused by the
sharp bends of the
unstable manifold,
constituting the attractor,
at certain locations. Along
the manifold, however, the
distribution changes
smoothly. The grid is an
aid seeing the perspective,
it does not indicate units.

(b)

x

where D(2)
1 is the partial information dimension in the stable direction.

The chaotic attractor contains regions that are non-typical with respect

to the natural distribution; the information dimension, D1, is therefore

less than the fractal dimension, D0, of the attractor, i.e. D(2)
1 ≤ D(2)

0 .

This is well illustrated by the example of the asymmetric baker map.

Starting from a homogeneous distribution on the unit square and again

investigating only a section parallel to x , we see that in one step the total
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(c)

xFig. 5.44. (c).

probability of the interval of width c1 on the left is b, that of the interval

of width c2 on the right is (1 − b), and so on (Fig. 5.45).

In order to determine the information dimension in a simple way, we

assume that c1 = c2 ≡ c; i.e., that the contraction rates in the x-direction

are identical. After n steps, the probabilities of the intervals of length

cn take on the values pm = bm(1 − b)n−m . Note that this is exactly the

construction of the fractal distribution of Fig. 2.14 (with the contraction

parameter c replacing 1/3). The information dimension, according to

definition (2.18), is

D(2)
1 = b ln b + (1 − b) ln (1 − b)

ln c
< D(2)

0 = − ln 2

ln c
. (5.66)

For example, for b = c = 1/3, D(2)
1 = 0.579 < D(2)

0 = 0.631.

Problem 5.33 Determine the information dimension of the natural

distribution of the asymmetric baker map with c1 	= c2.

5.4.5 The Lyapunov exponent as an average

A pair of points moving on the chaotic attractor is subjected to the effect

of different local Lyapunov exponents: the average Lyapunov exponent

is therefore the time-average of the local exponents. Since, however, this

same dynamics generates the natural distribution, the average can also

be considered as an average taken with respect to the natural distribution.

Consequently, the average Lyapunov exponent, λ̄, is obtained as the mean
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Fig. 5.45. Convergence of a uniform initial distribution of the asymmetric baker
map to the natural distribution (only the x-dependence is shown) in the first
three steps with c1 = 0.5, c2 = 0.25, b = 0.6.

value of the local Lyapunov exponents, λ(r) (see (5.56)), with respect to

the time-independent natural distribution, i.e.

λ̄ =
∫

dx1 dx2 λ(x1, x2) P∗(x1, x2). (5.67)

This also leads to a relation between topological entropy and the av-

erage Lyapunov exponent. According to (5.52), topological entropy is the

growth rate of the logarithm of the total length resulting from different

local line segments. On the other hand, the local Lyapunov exponent is

proportional to the logarithm of the length of a line segment (see (5.56)),

and λ̄ is the mean value of these exponents. The mean of a logarithm (a

convex function) is generally less than the logarithm of the mean. There-

fore, the topological entropy and the average Lyapunov exponent usually

differ, and the latter cannot be greater than the topological entropy:

h ≥ λ̄. (5.68)

The left-hand side of (5.68) represents the stretching rate (h) of a line

in phase space (see (5.52)), which can also be viewed as the filamen-

tary support of a probability distribution which is converging towards

and spreading along the attractor. The right-hand side of (5.68) is the

stretching rate, λ̄, of regions typically populated with respect to the nat-

ural distribution along the line. (Remember, any distribution converges

asymptotically to the natural one, as discussed in Section 5.4.4.) Thus, λ̄

can be interpreted as the growth rate of the average lengths obtained by

weighting with the natural distribution. Inequality (5.68) implies that the

stretching of a line is in general faster than that of its typical regions. The

difference is due to atypically populated (i.e. very rare) regions which

do not contribute to the average. Equality only holds in (5.68) if the val-

ues of the local Lyapunov exponents, the stretching rates, are the same

everywhere, in which case the natural distribution is a homogeneous

distribution on the attractor.
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Box 5.3 Determinism and chaos

It is wort emphasising that chaotic systems are deterministic. In a mathematical sense there exists a unique

end-point to each trajectory, since the equation of motion (the Newtonian equation) is an ordinary (i.e. not

noisy, in other words not stochastic) differential equation. Predictability is therefore present for initial

conditions specified with infinite accuracy.

From a practical point of view, however, the interesting issue is the behaviour with initial conditions

known with finite accuracy. The phenomenon of chaos demonstrates that for a practically deterministic (i.e.

predictable) behaviour of real processes – in which initial conditions are inevitably known with some finite

errors only – it is not sufficient that the system be deterministic in an idealised sense (for exactly known

initial conditions). Determinism in a practical sense is present in non-chaotic systems only.

We must be sure that initial errors can usually not be neglected; their time evolution might be the essence

of the phenomenon. Chaotic motion is an error amplifier. Beyond the short prediction time, chaotic motion

appears to be random, as if it originated from a stochastic equation of motion. It should be emphasised that

the random behaviour is not a consequence of the interaction with an environment composed of many

particles (as, for example, for Brownian motion) but a property of the deterministic inherent dynamics of a

few variables. Referring to this random behaviour of novel origin, chaos is often called deterministic chaos.

Chaotic processes thus shed new light on the role played by chance in the description of Nature: the origin

of random behaviour is not only the complexity of many-component systems, but also, surprisingly, the

inherent non-linear dynamics of simple systems.

The negative average Lyapunov exponent is the mean value of the

local exponents, λ′(r) (see (5.56)):

λ̄′ =
∫

dx1 dx2 λ′(x1, x2) P∗(x1, x2). (5.69)

Similarly, the average of any other quantity can also be calculated by

means of the natural distribution. For example, the average of the loga-

rithm of the local Jacobian, J (x1, x2), is the following integral:

ln J =
∫

dx1 dx2 ln J (x1, x2) P∗(x1, x2). (5.70)

In view of (5.57), the above relations provide the proof of (5.58).
The support of the natural distribution is a fractal; therefore the in-

tegrals must always be carried out with finite resolutions, i.e. over a dis-

tribution determined on boxes of size ε. For the asymmetric baker map,

the first construction step of the natural distribution (Fig. 5.45, n = 1)

can readily be considered as a distribution determined with a finite reso-

lution. Small segments mapped into the left domain of width c1 become

stretched by a factor of 1/b in the v-direction, while those mapped into

the right are stretched by a factor of 1/(1 − b). The local Lyapunov
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exponent is therefore λ = − ln b on the left side and λ = − ln (1 − b)

on the right side. The average taken with respect to the piecewise constant

distribution (with probabilities b and 1 − b) is therefore

λ̄ = −b ln b − (1 − b) ln (1 − b). (5.71)

This process should be repeated with better and better approximants of

the natural distribution, but the baker map is so simple that the result

does not change. For b 	= 1/2 , λ̄ < h = ln 2. For b = 1/2 we recover

the Lyapunov exponent, λ̄ = ln 2(= h), of the symmetric baker map.

Problem 5.34 By using the nth approximant of the natural distribution

of the asymmetric baker map, show that the average Lyapunov exponent

is indeed given by (5.71).

Furthermore, the local negative Lyapunov exponents in one step are

ln c1 and ln c2, which yields an average Lyapunov exponent given by

λ̄′ = b ln c1 + (1 − b) ln c2. (5.72)

For c1 = c2 = c, λ̄′ = ln c.

The average Lyapunov exponents are the weighted averages of all

the local exponents, and the weights to be applied are determined by the

natural distribution.

Problem 5.35 Determine the quantity ln J on the asymmetric baker

attractor.

Problem 5.36 Determine the average Lyapunov exponents of the saw-

tooth attractor.

5.4.6 Link between dynamics and geometry:
the Kaplan–Yorke relation

Both the information dimension and the average Lyapunov exponents

are determined by the natural distribution. We can therefore expect to

find an explicit relation between them. This rule, called the Kaplan–

Yorke relation is valid for chaotic attractors of general two-dimensional

invertible maps, and can be obtained from a simple argument. A phase

space volume element of radius l0 lying on the attractor is distorted

in n � 1 steps into a filament of average length l0eλ̄n and width

l0eλ̄′n , i.e. of average area An ≈ l2
0e(λ̄+λ̄′) n , folded in a fractal fashion

(Fig. 5.46). The time evolution of the phase space volume itself deter-

mines a typical small length scale, which is, in the nth step, l0eλ̄′n . After

n � 1 iterations, this can be considered as the size of the boxes needed
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l0

Fig. 5.46. A phase space volume element on the attractor is stretched
(contracted) by a factor of eλ̄n (e λ̄′n) along the unstable (stable) direction over
n � 1 iterations, and, simultaneously, it becomes folded several times.

to cover the fractal attractor traced out by this time, i.e. as the resolution

ε used in Section 2.1.2. The number of boxes of size εn = l0eλ̄′n needed

to cover the fractal is therefore given by

N (εn) = An

ε2
n

∼ e(λ̄−λ̄′) n . (5.73)

This number is the power (λ̄/λ̄′ − 1) of resolution εn ∼ eλ̄′n . The neg-

ative of this exponent can be interpreted as a fractal dimension de-

fined by either formula (2.3) or (2.16). Having considered here a typical
behaviour, (2.16) applies, and this dimension is the information dimen-
sion, D1, of the natural distribution. Thus, we obtain the Kaplan–Yorke
relation:

D1 = 1 + λ̄

|λ̄′| . (5.74)

Even though, in general, neither the information dimension nor the av-

erage Lyapunov exponent can be determined exactly, this explicit rule

between them always holds. Equation (5.74) is one of the most impor-

tant relations for attractors: it establishes a link between dynamics and

geometry, and indicates that, in chaos, unpredictability and fractal struc-

ture are inseparable.

The partial dimension, D(2)
1 ≡ D1 − 1 (see (5.65)), of the stable di-

rection is thus given by the ratio of the average Lyapunov exponents.

According to relation (5.58),

D(2)
1 = − λ̄

λ̄′ = λ̄

λ̄ − ln J
, (5.75)

which shows that the partial dimension is small for small positive Lya-

punov exponents, and is close to unity for large ones. At a fixed ln J < 0,

the more chaotic the system, the larger the dimension.
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The difference between the fractal dimension, D0, and the informa-

tion dimension is generally a small percentage; the relation

D0
>∼ 1 + λ̄

|λ̄′| (5.76)

can therefore be used to estimate the fractal dimension of the attractor.

The values of the two dimensions are identical only if the local Lyapunov

exponents are independent of position and the natural distribution on the

attractor is homogeneous.

Problem 5.37 Determine the fractal and information dimensions of

the sawtooth attractor.

Box 5.4 What use is numerical simulation?

The law of exponential error growth raises the following question: When applied to chaotic systems, are

numerical methods reliable at all? We give the answer in two stages.

As long as the moving point does not reach the vicinity of the chaotic attractor, there is no exponential

amplification of the errors (the many unstable orbits all lie on the attractor). Computer simulations with

sufficiently small numerical errors therefore correctly describe the approach towards the attractor. It also

follows from this that a numerical process can provide the shape of the attractor accurately, since this is a

consequence of the attraction along the stable direction.

In the course of the motion on the attractor, the concept of a single trajectory indeed becomes

meaningless beyond the prediction time. A time series obtained via long-term running can, however, be

considered as a typical trajectory. Statistical characteristics of the dynamics can thus be accurately obtained

from long-term simulations, and averages and variances can be determined. By monitoring a single point on

the attractor for a long time, the natural distribution can be determined with arbitrary accuracy. The same is

obtained by simulating many points (an ensemble of particles) for a shorter time interval. Following pairs of

nearby points and averaging over a sufficiently large number of pairs yields the average Lyapunov exponent.

Numerical processes are therefore well suited for accurately determining the phase space structures and the

statistical properties related to chaotic dynamics.

5.5 Summary of the properties of dissipative
chaos
Chaotic behaviour is possible in systems with three-dimensional flows

(two-dimensional invertible maps), and it generally occurs in sufficiently

non-linear cases. The characteristics of such systems are essentially de-

termined by their unstable periodic motions. Hyperbolic cycles that

are not on a chaotic attractor play the role of a water-shed divide.

Their stable manifolds form the basin boundary between the attractors
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basin boundary

unstable manifold leading into
another attractor (or to infinity)

H−
chaotic attractor

H+

Fig. 5.47. Schematic phase portrait of a general invertible two-dimensional map.

(see Fig. 5.47). One branch of their unstable manifolds leads into one,

the other leads into another attractor.

The chaotic attractor is an attracting invariant set on which a never-

recurring sustained motion takes place. An infinity of unstable periodic

orbits accumulate on the chaotic attractor, each of which possesses an

unstable manifold. (From a practical point of view, the unstable manifold

of any single cycle (of low period) can be considered to be the chaotic

attractor.) This shows that chaos is, in fact, a sustained instability. The

presence of hyperbolic cycles alone is, however, not sufficient to explain

chaotic behaviour. This latter is the consequence of the development of

homoclinic and heteroclinic points as intersections between the stable

and unstable manifolds of cycles. If one is formed, there has to exist

an infinity of them (see Box 6.3), since these can be mapped only into

points like themselves. In the course of their motion they have to approach

towards and move away from cycle points, which is only possible with

a never exactly recurring time evolution. Homoclinic and heteroclinic

points are therefore the elements that hold the cycle points together to

form a chaotic attractor.

The properties of a chaotic attractor can be formulated at several lev-

els. It is true to a good approximation (the difference is hardly perceptible

numerically) that a chaotic attractor is

� the union of all the unstable (hyperbolic) periodic orbits lying on the

attractor, or
� the unstable manifold of a single hyperbolic periodic orbit lying on

the attractor.

A more precise definition of a chaotic attractor is
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� the union of all the hyperbolic periodic orbits and of all the homoclinic

and heteroclinic points formed among the manifolds of these points,

or
� the union of the unstable manifolds of all the unstable periodic orbits

lying on the attractor.

The main properties of chaotic motion: irregularity, unpredictability

and ordered but complex phase space structure, are different manifesta-

tions of the same phenomenon. Characteristic numbers can be assigned

to each of them as follows.

� Irregularity: positive topological entropy, h > 0,
� Unpredictability: positive average Lyapunov exponent, λ̄ > 0,
� Phase space order: fractal or information dimensions less than the

dimension of the phase space, 2 > D1 > 1.

These properties reflect different aspects of chaos, manifested in one-,

two- and many-particle behaviour, respectively (by particle we still mean

a phase space point). Dissipative chaos is characterised by the simulta-

neous fulfilment of the above three inequalities.

The underlying reason for these properties is the existence of a nat-

ural distribution that determines the statistical properties of long-term

motion. Consequently, the characteristic numbers of the individual prop-

erties are not independent (see, for example, equations (5.68) and (5.74)).

These numbers also indicate the intensity of chaos: the larger their values,

the more chaotic the system.

A phenomenon analogous to sensitivity to the initial conditions can

also be observed in the parameter space: tiny changes of the parame-

ters can lead to strong alterations in the nature of chaos or even to the

disappearance of the chaotic attractor. This is a determinative feature of

chaos, as well as, for example, the universal character of the bifurcation

cascade leading to it. Any of these properties may be of help in deciding

whether a system is chaotic or not.

Problem 5.38 In order for a chaotic attractor to exist it is suffi-

cient that its information dimension be less than 2. In very excep-

tional cases, the attractor can be space-filling: its fractal dimension

can be two. This is the case for the asymmetric baker map with pa-

rameters c1 = 1 − b, c2 = b (the globally area preserving version of

Problem 5.8). Determine the attractor via numerical simulation. Com-

pute the quantity −ln J , the average phase space contraction rate, and

show that it is always positive in this case. Determine the information

dimension, D(2)
1 , up to leading order in terms of the asymmetry parameter

δ = 1/2 − b.
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Box 5.5 Ball bouncing on a vibrating plate

One of the simplest examples of dissipative chaotic motion that can also be demonstrated in practice is that

of a small ball bouncing on a harmonically oscillating plate, for example a vibrating loudspeaker

diaphragm. The vibration of the plate is periodic, but the driving – which is, from the point of view of the

ball, the collision with the plate – is not necessarily so. The origin of chaotic behaviour is that the flight time

of the ball is usually not identical to the period of the vibration; collisions therefore occur at different phases

each time. It is helpful to determine the state of the ball at the instants of the collisions, for example right

after bouncing back, and to monitor the motion in the form of a map relating these states (which, in this

case, is not a stroboscopic map). The form of the map can be derived because the motion between collisions

is the well known vertical projection.

Let the velocity of the plate be V (t) = V0 cos (
t). By neglecting air drag, a ball which starts moving

upwards with velocity vn at time tn will have velocity ṽn = vn − g�tn immediately before the next

bounce on the plate at time tn+1 = tn + �tn . The most important dissipative effect is the energy loss

during collisions. This is taken into account via a collision parameter, k < 1: the magnitude of the

velocity relative to the plate after a collision is k times that of the impact value. The relative velocity at

the instant before the (n + 1)st collision is ṽn − V (tn+1); the relative velocity after the bounce is

therefore k(−ṽn + V (tn+1)). Consequently, the velocity, vn+1, right after the (n + 1)st collision is

−kṽn + (1 + k)V (tn+1). The time of flight, �tn , is determined by the fact that the distance between the

positions of the plate at instants tn and tn+1 is the same as the displacement vn�tn − g(�tn)2/2 of the

ball.

The complete map is therefore given by

tn+1 = tn + �tn,

vn+1 = −k(vn − g�tn) + (1 + k)V0 cos (
tn+1),
V0



(sin (
tn+1) − sin (
tn)) = vn�tn − g

2
(�tn)2.

⎫
⎪⎪⎬
⎪⎪⎭

(5.77)

Measuring the velocity in units of V0, and using the phase φ = 
 t of the vibration instead of time, the

dimensionless map is given by

φn+1 = φn + �φn,

vn+1 = −k
(
vn − 2�φn

q

)
+ (1 + k) cos(φn+1),

}
(5.78)

where the phase difference, �φn , can be obtained from solving the following equation numerically:

sin (φn + �φn) − sin (φn) = vn�φn − (�φn)2

q
.

Here, q ≡ 2V0
/g is the dimensionless driving frequency. We suggest that the reader explores the details

of the dynamics individually.

We demonstrate the chaoticity of the system by presenting the chaotic attractor of the explicit map

obtained in the limit q � 1, corresponding to very fast vibrations of the plate (Fig. 5.48).
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Fig. 5.48. Bouncing ball: chaotic attractor of the map φn+1 = φn + qvn (�φn = qvn),
vn+1 = kvn + (1 + k) cos(φn+1) obtained in the limit q � 1 (k = 0.3, q = 20).

5.6 Continuous-time systems
The occurrence of chaos is generally due not to a sudden external inter-

vention, but to non-linearity. The reason we started with kicked systems

was because their maps can be derived exactly. Here we investigate pe-

riodically driven dissipative systems with smooth time dependence. In

such cases the stroboscopic maps can only be determined numerically;

the discrete-time behaviour generated by them is, however, of a character

very similar to that seen in the previous examples.

In relation to such systems, we explore the connection between

the structures of three-dimensional flows and two-dimensional maps.

All unstable periodic orbits are of hyperbolic character in the entire

phase space. This implies that there is a (non-closed) surface, the stable

manifold, pertaining to the helical trajectory of an unstable limit cycle,

and trajectories from each point of this surface run into the limit cycle

(Fig. 5.49). Close to the limit cycle, all trajectories on the surface of

the stable manifold approach the limit cycle at a rate of eλ′
f t , where

λ′
f < 0 is the continuous-time negative eigenvalue of the limit cycle.

(For a one-cycle, this corresponds to the eigenvalue λ− discussed in

Section 3.1.1.)



176 Investigation of chaotic motion
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periodic
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manifolds
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x

Fig. 5.49. Stable and
unstable manifolds of a
hyperbolic limit cycle of the
flow. The intersection of the
surfaces of the stable and
unstable manifolds is a
homoclinic trajectory. We
have also marked a few
trajectories within the surfaces
of the manifolds.

Similarly, another (non-closed) surface also exists, the unstable man-

ifold, in which a purely exponential deviation occurs according to the rule

eλ f t , where λ f > 0 is the positive eigenvalue of the limit cycle (analogous

to the instability exponent λ+ of Section 3.1.1). Since the exponential

time dependence is also valid for pairs of points, the eigenvalues λ f and

λ′
f can be considered as local Lyapunov exponents.

The phase space distance between two nearby points along the tra-

jectory of the limit cycle, will obviously not change in time. We can

say that the local Lyapunov exponent, λ0 f , characteristic of the motion

along a trajectory in the flow is zero: λ0 f ≡ 0.

The intersections between the stroboscopic planes taken with the pe-

riod T of the driving force and the manifolds of the flow (see Fig. 5.49)

determine the curves of the manifolds appearing in the stroboscopic map.

(Continuous trajectories moving on the surface of a manifold generate

points jumping along the manifold of the map.) The intersection lines of

the surfaces of the three-dimensional manifolds form non-periodic ho-

moclinic trajectories which generate the homoclinic points of the map.

The earlier observation that homoclinic points are mapped into homo-

clinic points corresponds to following the motion along a single three-

dimensional homoclinic trajectory (a homoclinic point and its image are

a phase difference of 2π away along the trajectory).

Since all trajectories cross the plane of the map in every period T , the

eigenvalues of a cycle point are in a simple relation with the eigenvalues

characteristic of the flow. For a fixed point, �+ = eλ f T and �− = eλ′
f T .
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Consequently, if the hyperbolic cycles form a chaotic attractor, the aver-

age Lyapunov exponents, λ̄ and λ̄′, of the map are related to the average

Lyapunov exponents, λ̄ f > 0 and λ̄′
f < 0, of the flow as follows:

λ̄ = λ̄ f T, λ̄′ = λ̄′
f T . (5.79)

The sum of the flow’s average Lyapunov exponents yields the opposite of

the average phase space contraction rate, σ̄ , on the attractor (see (3.65));

therefore, according to (5.57),

σ̄ T = −ln J . (5.80)

The average of the logarithm of the Jacobian is thus proportional to the

average phase space contraction rate of the flow.

Structures developing in the map are shifted and slightly distorted

when following three-dimensional trajectories (and return periodically

every T ). Such a smooth transformation cannot change the fractal prop-

erties of an object. Consequently, dimensions D0 and D1 do not depend
on the phase in which the snapshot is taken. In the flow, the trajectories are

smooth curves; the fractal dimension, D0 f , of the flow’s chaotic attractor

is therefore simply greater by 1 than that observed on the stroboscopic

map:

D0 f = D0 + 1. (5.81)

Similarly, on the basis of the Kaplan–Yorke relation, (5.74), the infor-

mation dimension of the flow’s chaotic attractor is found to be

D1 f = 2 + λ̄ f

|λ̄′
f |

. (5.82)

If we define the topological entropy, h f , of the flow as the growth rate of

the number of unstable periodic orbit elements in continuous time then

it is simply the topological entropy of the map divided by T : h = h f T .

Thus, relation (5.68) is also valid in the form h f ≥ λ̄ f .

Now we present a few chaotic systems with smooth time evolution.

Their attractors will be displayed on stroboscopic maps, since this is the

best tool to provide a clear picture.

5.6.1 Harmonic oscillator driven by a position-dependent
amplitude

We investigate a harmonic oscillator subjected to a sinusoidal driving

of period T , whose amplitude, f0, is a given function, f0(x), of the

instantaneous position (cf. (4.7)). In this system the effect examined in

kicked oscillators is smoothed out in time. As f0 has the dimension of



178 Investigation of chaotic motion

–5
–50

50

5xn

n

0

0

Fig. 5.50. Harmonic oscillator driven sinusoidally with amplitude I (x) = a sin x
(equation (5.84)): a chaotic attractor on the stroboscopic map generated
numerically with period T . The parameters are αT = 2.5, ω0T = 6, a = 600.

acceleration, we can write it in the form f0(x) = I (x/L)L/T 2, where L
is a characteristic length. The equation of motion is given by

ẍ = −α ẋ − ω2
0x + L

T 2
I
( x

L

)
cos

(
2π

t

T

)
. (5.83)

Measuring time in units of the driving period, T , and distance in units

of parameter L ,16 the dimensionless equation of motion is given by

ẍ = −αT ẋ − ω2
0T 2x + I (x) cos (2π t). (5.84)

The chaotic attractor obtained with the amplitude function I (x) = a sin x
is presented in Fig. 5.50.

5.6.2 Non-linear oscillator driven with constant amplitude

With this model, the effect of deviation from a linear force law is investi-

gated. We keep the driving amplitude at a constant value, f0 = I L/T 2,

where I is its dimensionless magnitude. The spring stiffens with elonga-

tion and the force per unit mass is written in the form −(ω2
0x + ε0 x3).

The equation of motion is given by

ẍ = −α ẋ − ω2
0 x − ε0 x3 + L

T 2
I cos

(
2π

t

T

)
. (5.85)

16 For those who are not familiar with writing equations in dimensionless forms we

suggest reading Appendix A.2.
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Measuring time in units of the driving period, T , and distance in

units of the parameter L = ω0/
√

ε0, the dimensionless equation (see

Appendix A.2.3) is given by

ẍ = −αT ẋ − ω2
0T 2(x + x3) + I cos (2π t). (5.86)

The attractor of this system has been shown in Section 1.2.1 (Fig. 1.4)

and in Plate I. with parameters αT = 0.6, ω0T = 6 and I = 1800. The

corresponding natural distribution is presented in Plate XIII and on the

front cover.

These examples illustrate that the chaotic attractor of an oscilla-

tor kicked with an amplitude depending smoothly on position basi-

cally does not differ from that of harmonically driven non-linear sys-

tems. It does not matter whether non-linearity arises from the amplitude

or the spring force; the structure of distorted Cantor filaments always

appears.

5.6.3 Pendulum with a harmonically moving suspension

In this example, the driving originates from the motion of the suspen-

sion. The point of suspension of a simple pendulum with a thin rod of

length l (Fig. 5.51) is moved along a horizontal line according to a har-

monic oscillation of amplitude A and period T . The displacement of the

suspension point is x0(t) = A cos(2π t/T ). We derive the equation of

motion in a reference frame fixed to the point of suspension. In such an

accelerating system an inertial force is present, which is proportional to

the acceleration:

a0(t) = −d2x0

dt2
= A

(
2π

T

)2

cos

(
2π

t

T

)
. (5.87)

By taking the algebraic sum of the horizontal and vertical force compo-

nents, the equations valid in a vacuum are given by

g

K
a0

l
x

y

Fig. 5.51. Pendulum in a
co-ordinate system fixed to its
point of suspension, which
oscillates horizontally. An
inertial force proportional to
acceleration, a0, acts on the
body. K is the force in the rod
per unit mass.

ẍ = −K sin ϕ + a0(t), ÿ = K cos ϕ − g, (5.88)

where K is the force exerted by the rod per unit mass and g is the grav-

itational acceleration (see Fig. 5.51). Using the relations x = l sin ϕ,

y = −l cos ϕ, we switch to the angle variable, and find that lϕ̈ =
ẍ cos ϕ + ÿ sin ϕ. Substituting equations (5.88), the force exerted by the

rod is cancelled out. Assuming a bearing resistance (friction) of coeffi-

cient α proportional to the angular velocity, we obtain the equation of

motion as follows:

ϕ̈ = −αϕ̇ − g

l
sin ϕ + A

l

(
2π

T

)2

cos ϕ cos

(
2π

t

T

)
. (5.89)
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Fig. 5.52. Chaotic attractor
of the driven pendulum on
stroboscopic maps taken at
different phases. In (a) (which
is identical to Fig. 1.8) the
initial phase is ϕ0 = 0; in
(b)–(h), it is ϕ0 = 2π/7, 4π/7,
. . . , 14π/7, respectively. (The
phase difference between (a)
and (h) is exactly 2π ;
therefore these are identical.)

Measuring time in units of the driving period T , the dimensionless equa-

tion of motion (cf. Appendix A.2) is

ϕ̈ = −αT ϕ̇ − g

l
T 2 sin ϕ + A

l
(2π )2 cos ϕ cos(2π t). (5.90)

The attractor of this system has been shown in Fig. 1.8 and in Plate II,

with parameters αT = 0.2π , T
√

g/ l = 2π/3 and A/ l = 2. The corre-

sponding natural distribution is presented in Plate XIV.

We now augment our knowledge about the structure of the attractor

by presenting its dependence on the driving phase. The flow trajectories
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are intersected at the instants kT/7 + nT (k = 0, . . . , 7), corresponding

to the respective initial phases ϕ0 = k2π/7 (k = 0, . . . , 7). This is as if

we looked at the chaotic attractor on different ‘floors’ within a single pe-

riod. With a continuous changing of the initial phase, we could move with

an ‘elevator’ upwards along the phase axis, obtaining thus the motion

of the chaotic attractor in continuous time (which naturally repeats itself

periodically with T ). The sequence of figures in Fig. 5.52 exhibits a few

frames of this film. The shape of the chaotic attractor naturally depends

on the phase ϕ0; its fractal dimension D0 (and information dimension

D1) are, however, independent of it – as mentioned at the beginning of

Section 5.6.

Fig. 5.53. Water-wheel.
Buckets are distributed along
the rim of the wheel mounted
on a horizontal shaft, and rain
falls onto them continuously.
The wheel can rotate freely in
both directions.

5.7 The water-wheel
Chaotic motion developing in dissipative systems can be a consequence

not only of a time-periodic external driving, but also of any kind of

energy input. In this general case, phase space is again at least three-

dimensional, but neither variable must necessarily go to infinity (as the

phase ϕ of the driving would do). In this case the chaotic attractor can

appear within some bounded three-dimensional domain of phase space.

A good example of this is the problem of a water-wheel, the equations

for which are similar to that of the celebrated Lorenz model.

Consider a heavy circular wheel with buckets distributed homoge-

neously along its rim (Fig. 5.53). The wheel can pivot freely to the

right or to the left about a shaft crossing its centre. Let a constant rain

of spatially homogeneous distribution fall onto this apparatus and as-

sume that some water is continuously leaking out of the buckets. The

question is whether, despite the symmetric layout, the water-wheel may

start rotating, and if it can, what will its motion be like in the long

run?
R

R

ϕ

Δϕ

m     t(  , )Δϕ ϕ

Fig. 5.54. Model of a
water-wheel of radius R , in
which the water distribution
along the rim is considered to
be continuous. Position along
the rim is determined by
angle ϕ; the water mass in an
arc element, �ϕ, is m (ϕ, t)�ϕ.

5.7.1 Equation of motion

As a simple model of the water-wheel, assume that the buckets are very

small, that there are many of them, and that their individual masses are

negligible. Thus, the distribution of water along the rim can be considered

to be continuous. Let the mass of water along a short arc element, �ϕ,

around angle ϕ fixed in space be denoted by m(ϕ, t)�ϕ (see Fig. 5.54).

Due to the inflow and outflow, the mass distribution, m, might also depend

on time.

In order to derive the wheel’s equation of motion, we have to de-

termine the gravitational torque of the water distribution about the axis.
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The contribution from an arc element around angle ϕ is given by

m(ϕ, t) �ϕ g R sin ϕ, (5.91)

where g is the gravitational acceleration and R is the radius of the wheel.

The gravitational torque of the wheel vanishes because of the symmetry

of its shape. Thus the resultant torque is the sum, or rather the integral,

of the elementary contributions (5.91):

M =
2π∫

0

dϕ m(ϕ, t) g R sin ϕ. (5.92)

Note that the resultant torque is non-zero only if the mass distribution,

m(ϕ, t), is asymmetric with respect to the angle ϕ.

A damping torque is also present due to friction, and is assumed to

be proportional to the instantaneous angular velocity, ω. The equation

of motion relates the applied torques to the angular acceleration:

�ω̇ = M − αω. (5.93)

Here, � is the moment of inertia of the system with respect to the axis and

α > 0 is the friction coefficient. For the sake of simplicity, we assume

that the wheel is much heavier than the total weight of the water in the

buckets; the moment of inertia � is therefore constant in time.

In order to calculate the torque, N , the mass distribution, m(ϕ, t), of

the water must be known. Assume that it can be written in the form

m(ϕ, t) = A(t) sin ϕ + B(t) cos ϕ. (5.94)

By this, we have only chosen a simple form for the angular dependence,

and the amplitudes A and B remain unknown. The idea is to derive

differential equations for A(t) and B(t). If the solution of the complete set

of equations yields A(t) 	= 0, then the mass distribution is asymmetric.

If this is not the case, the resultant torque is always zero, and only a

simple damped motion can develop (if the initial angular velocity is

non-zero).

Evaluating integral (5.92) using (5.94) (the integral of sin2 ϕ over

the entire period is π ), the total torque is given by

M = gRπ A. (5.95)

The equation of motion is therefore given by

ω̇ = gRπ

�
A − α

�
ω. (5.96)

Since function A(t) is not yet known, in order to obtain a closed set

of equations, another relation is needed, which will be provided by the

conservation of the water mass.
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The change of the mass per unit time, ϕ ·∂m(ϕ, t)/∂t , is due (i) to

the precipitation falling onto the arc element �ϕ, (ii) to leaking out, and

(iii) to the ‘turning in’ and ‘turning out’ of a certain amount of water

because of the rotation of the wheel. (Remember that the arc element,

�ϕ, is fixed in space.)

The precipitation is assumed to be uniformly distributed in space. Let

the mass of water falling onto a horizontal line segment of length R per

unit time be denoted by q > 0. This is a measure of the rain intensity.

Since the horizontal projection of an arc element of length R�ϕ is

R cos ϕ �ϕ, the amount of water falling onto the arc element per unit

time is q cos ϕ �ϕ.17 The amount of leaking water (which does not flow

into any of the other buckets) per unit time is assumed to be proportional

to the instantaneous mass, m, and the proportionality constant is denoted

by κ > 0. The loss of water per unit time is thus −κ m(ϕ, t) �ϕ. On a

given arc element, the water mass turning in and out per unit time is

ω m(ϕ, t) and −ω m(ϕ + �ϕ, t), respectively. For very small �ϕ, their

sum can be written as −ω �ϕ ∂m(ϕ, t)/∂ϕ.

Adding these and dividing by �ϕ, we obtain the equation of mass

conservation or the continuity equation of the water-wheel:18

∂m(ϕ, t)

∂t
= q cos ϕ − κm(ϕ, t) − ω

∂m(ϕ, t)

∂ϕ
. (5.97)

By substituting the mass distribution, (5.94), we obtain

Ȧ sin ϕ + Ḃ cos ϕ

= q cos ϕ − κ A sin ϕ − κ B cos ϕ − ωA cos ϕ + ωB sin ϕ.

Whereas in equation (5.96) only the amplitude, A, of the anti-symmetric

part appears, here both amplitudes are important. The equation can hold

for all angles ϕ only if the sin ϕ and cos ϕ terms vanish separately. This

leads to

Ȧ = −κ A + ωB,

Ḃ = q − κ B − ωA.
(5.98)

Equations (5.98) and (5.96) form a closed, autonomous set of first-order

differential equations for variables A, B and ω. The set of equations is

17 The precipitation distribution along the lower semi-circle should be determined

separately, and it depends on details like, for example, the degree of shadowing due to

the upper buckets. We keep here the form q cos ϕ because the actual form does not

essentially change the final result. If, for example, shadowing is complete, and q = 0

along the lower semi-circle, the parameter q in (5.98) should be replaced by q/2.
18 The general form of the continuity equation is ∂�/∂t + div(�v) = Q, where � is the

density of the conserved quantity, v is the flow velocity and Q is the source strength.

In our system, � → m, v → ω, Q → q cos ϕ − κm, and divergence is replaced by

partial differentiation with respect to ϕ.
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non-linear, and contains the simplest type of quadratic non-linearity via

the terms ωB and ωA. This set of equations uniquely determines the

rotation dynamics of the water-wheel. A sustained rotation implies the

existence of a solution in which ω does not tend to zero.

It is remarkable that these results remain unchanged if the assumed

mass distribution, (5.94), is replaced by the form m(ϕ, t) = A(t) sin ϕ +
B(t) cos ϕ + B0(t)+ ∑∞

n=2 (An(t) sin(nϕ) + Bn(t) cos(nϕ)). This is

because only the term A(t) sin ϕ contributes to integral (5.92), and the

torque is given by (5.95) in the presence of this general distribution also.

The continuity equation (5.97), yields, apart from (5.98), the relations

Ȧn = −κ An + nωBn , Ḃn = −κ Bn − nωAn , n 	= 1, for the coefficients

of the different harmonics. The coefficients An and Bn , n 	= 1, are there-

fore decoupled from equations (5.96) and (5.98). They do not affect A,

B and the angular velocity, i.e. whether, or how fast, the wheel rotates.19

The phase space of the essence of the water-wheel dynamics is thus

spanned by the variables A, B and ω. The system is dissipative, which

is shown by the positive sign of the phase space contraction rate, σ

(see (3.55)): σ ≡ −(∂ Ȧ/∂ A + ∂ Ḃ/∂ B + ∂ω̇/∂ω) = 2κ + α/�.20 The

water-wheel therefore possesses attractors.

5.7.2 Fixed points and their stability

In a fixed point of the flow, Ȧ = Ḃ = ω̇ = 0 holds. Therefore, the equa-

tions for a fixed point (ω∗, A∗, B∗) are, from (5.96) and (5.98), given by

gRπ A∗ − αω∗ = 0,

−κ A∗ + ω∗ B∗ = 0,

q − κ B∗ − ω∗ A∗ = 0.

⎫
⎪⎬
⎪⎭

(5.99)

One of the possible solutions is the trivial fixed point ω∗ = 0, A∗ = 0,

B∗ = q/κ . The angular velocity being zero, this is a state of rest of the

wheel. In accordance with our expectations, the condition for equilib-

rium is that the term proportional to sin ϕ is not present in the mass

distribution.

There may, however, exist other solutions. With ω∗ 	= 0, after elim-

inating A∗ and B∗, we obtain

ω∗ = ±
√

qgRπ

α
− κ2. (5.100)

19 This decoupling is valid even if the rain distribution is of the form

q0 + q cos ϕ + ∑∞
n=2 qn cos(nϕ). This implies that the water-wheel dynamics is

governed by (5.96) and (5.98) even if the plane of the wheel is tilted and rain is falling

onto a part of it only, as long as q 	= 0.
20 The system is dissipative even in the frictionless case due to the loss of water (the

term 2κ).
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qc0

∗

q

Fig. 5.55. Bifurcation diagram of the water-wheel. As long as the intensity of
the rain is less than the critical value qc, only one point attractor exists, which
represents a standing state. This fixed point becomes unstable at q = qc0, where
two new point attractors are born corresponding to uniform rotations in
different directions.

The condition for ω∗ to be real is that the discriminant be positive, i.e.

q > qc0 = κ2α

gRπ
. (5.101)

The intensity of the rain must therefore be greater than a critical value,

qc, for the wheel to rotate. The ± signs then correspond to rotations

in opposite directions, and there exist two non-trivial fixed points (see

Fig. 5.55). The two other variables take on the following values:

A∗ = ω∗ α

gRπ
, B∗ = ακ

gRπ
. (5.102)

The mass distribution is asymmetric, since A∗ 	= 0, and A∗ is propor-

tional to the angular velocity.

Problem 5.39 Estimate the critical rain intensity if the parameters of

the water-wheel are R = 0.3 m, κ = 0.1 s−1 and α = 1 kg m2 s−1 (this

latter is realistic for a wheel with a mass of approximately 1 kg). What are

the steady angular velocity and the values of A∗, B∗ for a rain intensity

q = 2qc0 above the critical value?

If the rain is light, i.e. if q < qc0 the fixed point ω∗ = 0, A∗ = 0,

B∗ = q/κ is stable (see Problem 5.40); it is an attractor. Consequently,

if the wheel is set into rotation, sooner or later it comes to a halt. If, on

the other hand, q > qc then the trivial fixed point is unstable (it becomes

a hyperbolic point) and the two non-trivial fixed points appear as at-

tractors (see Problem 5.41). The system therefore undergoes a pitchfork

bifurcation (see Section 3.3.2) as the intensity of the rain increases. The

phenomenon is analogous to the emergence of bistability presented in

Fig. 3.14. In the range q > qc0, small deviations that break the symmetry

of the mass distribution become magnified and lead to the appearance
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of a finite A∗. The water-wheel is then in uniform rotation to the right or

to the left.

It is worth writing the equations in dimensionless forms. Let us

introduce the new dimensionless variables x , y, z via the relations ω =
κx , A = B∗y, B = −B∗z + q/κ , and measure time in units of 1/κ .

Thus, (5.96) and (5.98) become

ẋ = −σ (x − y),

ẏ = r x − y − xz,
ż = −z + xy,

⎫
⎪⎬
⎪⎭

(5.103)

where only two dimensionless parameters remain:

σ ≡ α

�κ
and r ≡ qgRπ

ακ2
. (5.104)

The first is the ratio of the decay times related to leakage and friction,21

while the second is the dimensionless rain intensity. In the phase space

spanned by the new variables x , y and z, the trivial fixed point is the

origin, while the non-trivial fixed points are given by

x∗ = y∗ = ±√
r − 1, z∗ = r − 1, (5.105)

which exist for r > 1 only.

Problem 5.40 Show that in the range r < 1 (q < qc0) the trivial fixed

point is stable.

Problem 5.41 Determine the stability matrix of the non-trivial fixed

points. In what range of parameter r are these fixed points stable? (Sta-

bility is lost when the real parts of two complex eigenvalues vanish.)

Box 5.6 The Lorenz model

Edward Lorenz discovered in 1963 that in the model (since named after him) given by

ẋ = σ (y − x),

ẏ = r x − y − xz,
ż = −bz + xy,

⎫
⎪⎬
⎪⎭

(5.106)

with parameters r = 28, σ = 10, b = 8/3, even tiny differences in the initial conditions lead to large

deviations in the numerically simulated time evolution. This was the first example of the appearance of

unpredictability (and of the underlying chaotic attractor) in an autonomous system with few degrees of

freedom. The Lorenz model has since become a paradigm of continuous-time chaotic systems.

Equations (5.106) are related to the hydrodynamical equations of thermal convection, i.e. of the flow of a

fluid layer heated from below, under certain conditions. This phenomenon is, in fact, fundamental in the

21 The notation σ is used because of historical reasons; we emphasise that the σ of

(5.103) is not identical to the phase space contraction rate, which is σ + 2.
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study of atmospheric motion, since the ground warmed up by the Sun heats the air from below. As long as

the temperature difference, �T , across the fluid is small, no flow is initiated; only thermal conduction

occurs, since buoyancy is not large enough to overcome viscosity. Exceeding a critical temperature

difference, �Tc, the fluid starts flowing. Slightly above the critical value, the flow pattern is that of

counter-rotating cylinders whose axes lie in a horizontal plane. The diameter of these cylinders is, to a good

approximation, identical to the thickness of the fluid layer. In this regime, (5.106) can indeed be derived

from the hydrodynamical equations. Quantity x proves to be proportional to the intensity of the cylindrical

flow. Variables y and z measure the magnitude of temperature deviations from the temperature profile of

linear height dependence at wavelengths corresponding to the layer thickness and to its half, respectively.

The parameter σ is the ratio of the kinematic viscosity to the coefficient of thermal diffusion, Prandtl’s

number (which is 0.72 in air and 7.1 in water). The value b = 8/3 results from the cylindrical flow

geometry, and r ≡ �T/�Tc, with the restriction r ≈ 1. As long as r is less than unity, all initial motion dies

out. The Lorenz equation describes convection in the range 0 < r − 1 
 1 only. In the parameter range

where chaos appears (r > 24.06), however, the Lorenz model (5.106) is no longer to do with the problem of

convection. (This, of course, does not contradict the statement that if the temperature difference (and thus r)

increases, the hydrodynamical flows become increasingly complicated. This may be seen, for example, in

the process of warming water. These flows are described by the complete hydrodynamical equations that

cannot be reduced to a system of three ordinary differential equations in this range.)

Fortunately, there exist several physical problems where the Lorenz equations provide a faithful model

of the phenomenon within the physically relevant parameter range. This is the case of the water-wheel, with

the only difference that the value of b cannot be changed: the dynamics of the water-wheel is described by

the Lorenz equations with the choice b ≡ 1, in a context basically different from the original convection

problem.

5.7.3 Chaos of the water-wheel

By increasing the rain intensity (the dimensionless parameter r ), the

sustained rotation of the water-wheel does not always remain uniform.

Above a certain value, rc, the wheel rotates to the right for some time and

then to the left, and the directions are alternated at irregular intervals:

the motion is chaotic. Fixing the parameter σ , we observe (Fig. 5.56)

that by increasing r , chaos appears suddenly (more detail will be given

in Section 6.6), and not via the period-doubling cascade of Section 5.3.

For sufficiently large r -values, the two non-trivial fixed points also be-

come unstable and a single chaotic attractor exists. A trajectory running

on the attractor winds around one of the unstable fixed points a few

times and then switches over to the other unstable fixed point, and this is

repeated with an unpredictable number of rounds on each side. Neither

fixed point is part of the chaotic attractor; there are therefore two large

holes visible around them. The shape of the flow’s attractor resembles a

butterfly (see Fig. 5.57).
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Fig. 5.56. Bifurcation
diagram of the water-wheel at
σ = 10. At each r , four
trajectories are simulated and
the x values are plotted in the
time interval 500 < t < 600.
Chaos suddenly appears at the
value r = rc ≈ 15.0.

Fig. 5.57. The water-wheel attractor projected on the (x, z)- and (x, y)-planes
(σ = 10, r = 28). The unstable fixed points of the flow are each marked by a
black dot. The attractor is reminiscent of the Lorenz attractor (equation (5.106)
with b = 8/3).

A stereoscopic picture provides a clearer view (Fig. 5.58), and we

can perceive that the attractor is not a single, twisted, smooth surface

but that each butterfly wing consists of many surfaces very close to each

other, forming a fractal set.

In order to obtain a two-dimensional representation, we intersect the

attractor with a plane and mark the intersections of trajectories coming

from a given direction (for example from above). This defines what is

called a Poincaré map, to be discussed in more detail in Section 7.1.
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Fig. 5.58. Two stereoscopic views of the water-wheel attractor: (a) from above,
(b) from below (σ = 10, r = 28). The thin arrows in (b) mark the direction of
increase of x and y; the x- and y-axes are not visible.
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Fig. 5.59. Water-wheel attractor on the Poincaré section z = r − 1 (σ = 10,
r = 28).

On the Poincaré plane the attractor appears to be two simple curves (see

Fig. 5.59) since dissipation is strong (the volume shrinks by a factor of

e σ+2 = e12 ≈ 1.6 × 105 per unit time).

Problem 5.42 Determine the nth maximum, zn , of function z(t) on

the water-wheel attractor, and plot zn+1 vs. zn .

The great advantage of applying a map is that the natural distribution

can clearly be represented on it. By running a single long trajectory, we

can determine how often it visits different points of the attractor. The

distribution reflects the fractal structure better than the shape of the

attractor alone. At certain points (Fig. 5.60) the distribution takes on

very large values, while at others it is nearly constant, and these domains
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Fig. 5.60. Natural
distribution of the
water-wheel attractor on the
Poincaré section z = r − 1
(σ = 10, r = 28).

alternate at all scales. Even though the physical process behind the map

fundamentally differs from that of kicked oscillators, the character of

the distribution is similar to that for the parabola attractor (see Fig.

5.44(c)). All this indicates that the structure of chaotic attractors does

not essentially depend on whether the external energy supply is periodic

in time or of some other type.

Problem 5.43 Determine the chaotic attractor of the system of equa-

tions

ẋ = −(y + z), ẏ = x + ay, ż = b + xz − cz,

which is called the Rössler model, via numerical simulation, with pa-

rameters a = b = 0.2, c = 5.7. The entire attractor belongs to positive

values of the variables.



Chapter 6

Transient chaos in dissipative systems

Under certain circumstances chaotic behaviour is of finite duration only,

i.e. the complexity and unpredictability of the motion can be observed

over a finite time interval. Nevertheless, there also exists in these cases

a set in phase space responsible for chaos, which is, however, non-

attracting. This set is again a well defined fractal, although it is more

rarefied than chaotic attractors. This type of chaos is called transient
chaos, and the underlying non-attracting set in invertible systems is a

chaotic saddle. The concept of transient chaos is more general than that

of permanent chaos studied so far, and knowledge of it is essential for

a proper interpretation of several chaos-related phenomena. The basic

new feature here is the finite lifetime of chaos.

In dissipative systems transient chaos appears primarily in the dy-

namics of approaching the attractor(s). It is therefore also called the

chaotic transient. The temporal duration of the chaotic behaviour varies

even within a given system, depending on the initial conditions (see

Fig. 6.1 and Section 1.2.2). Despite the significant differences in the

individual lifetimes, an average lifetime can be defined. To this end, it

is helpful to consider several types of motion (trajectories) instead of a

single one: the study of particle ensembles is even more important in

transient than in permanent chaos.

In phase space, chaotic behaviour is confined to the vicinity of the

saddle. If we choose a region that overlaps the saddle but does not con-

tain attractors, and start N (0) � 1 trajectories on it, these trajectories

escape the pre-selected region sooner or later, and the long-lived ones

appear to be chaotic (but after escape their complexity may cease). The

number N (t) (N (n)) of trajectories remaining in the region up to time t

191
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Fig. 6.1. Chaotic transient in the water-wheel dynamics. The parameter r = 14
(σ = 10) is now outside of the chaotic region (r > rc = 15) determined in
Section 5.7 for σ = 10. The initial conditions are (a) x0 = −0.648, y0 = 0.591,
z0 = 13 (rounded to three decimal places) and (b) the same, but co-ordinate x0

is decreased by 10−7. Initially, the signals are similar to that of the permanently
chaotic water-wheel, but after some time they suddenly switch to a
time-independent behaviour corresponding to the fixed points
x∗ = y∗ = ±√

13, z∗ = 13. Note the major changes resulting from a tiny
difference in the initial condition: the lifetimes differ significantly, and, in
addition, the different types of motion converge to different fixed points.

(or iteration steps n) is thus a monotonically decreasing function of t .
After a sufficiently long time the decay is, in general, exponential1 (see

Fig. 6.2), i.e.

N (t) ∼ e−κt , or N (n) ∼ e−κn . (6.1)

Coefficient κ is called the escape rate (in continuous or discrete time,

respectively), whose reciprocal,

τ ≡ 1

κ
, (6.2)

can be considered to be the average lifetime of chaos. The non-zero

escape rate is thus a new, important chaos characteristic.

We start the study of transient chaos with an open version of our

‘model’ map, the baker map. Next, the chaotic transients of kicked

1 Similar to the law of radioactive decay.
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Fig. 6.2. Decay of the number N(n) of non-escaped particles in the
water-wheel dynamics (σ = 10, r = 14). Note that N0 = 106 points were started
in a square of size 2, centred at the origin of the Poincaré map, and were
followed up to n iterates. The slope on this log-linear plot is −0.063,
corresponding to an escape rate κ = 0.063 and an average lifetime τ = 15.9.

oscillators are investigated. Based on these experiences, the most im-

portant transient chaos properties can be summarised. Emphasis is laid

again on the natural distribution developing in such cases on chaotic

saddles. Critical phase space configurations, called ‘crises’, are iden-

tified which mediate transitions from one kind of chaos (for example

transient) to another (for example permanent). Finally we introduce the

problem of fractal basin boundaries and discuss its relation to transient

chaos.

6.1 The open baker map
A simple model of transient chaos is obtained by ‘opening up’ the baker

map discussed in Section 5.1. In this case the rectangles obtained in

one step from the two half-squares stretch beyond the unit square, thus

making escape possible (see Fig. 6.3). Accordingly, in the mathematical

definition, the stretching factor 2 in equation (5.2) is substituted by an

arbitrary value, a, greater than 2. The open symmetric baker map is

written as follows:

B(xn, vn)

=
{

B−(xn, vn) ≡ (cxn, avn), for vn ≤ 1/2,

B+(xn, vn) ≡ (1 + c(xn − 1), 1 + a(vn − 1)) , for vn > 1/2.
(6.3)

The map is defined on the entire (xn, vn)-plane, but the interesting dy-

namics is bound to the unit square. The Jacobian is J = ac, and the
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Fig. 6.3. Open (symmetric)
baker map (a > 2) acting on
the unit square.
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Fig. 6.4. (a) Points not
escaping the unit square
within one step and (b) their
images after one iteration.

system is dissipative for 0 < c < 1/a. For the sake of simplicity, we fix

b to be 1/2. The fixed points are again H− = (0, 0) and H+ = (1, 1).

In the boxing analogy mentioned in Section 5.1.1, it is now possible to

escape the ‘ring’, but points that have difficulties in finding their way out

are exposed to the ‘kicks’ of the two fixed points for a long time, and

perform chaotic motion while inside.

Let us find first the points that do not leave the unit square within

one step. The half-squares are mapped into columns of height a/2 > 1,

pieces of which lie outside the square (see Fig. 6.3). Points remaining

inside must therefore start from two horizontal bands, each of height 1/a
(see Fig. 6.4).

Points remaining inside for two steps must start from bands of height

1/a2 since two consecutive a-fold stretchings should lead to the unit

length. Four such columns exist (see Fig. 6.5). The fate of points not

escaping over four steps is shown in Fig. 6.6.

In general, points remaining inside for n steps start from 2n hori-

zontal bands, each of height 1/an . Thus, out of N (0) points distributed
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Fig. 6.6. (a) Points not escaping within four steps and (b)–(e) their images after
the first four iterations.

uniformly over the unit square, N (n) = N (0) · (2/a)n survive n iterates.

According to (6.1),

e−κn =
(

2

a

)n

, (6.4)

which yields

κ = ln
a

2
> 0. (6.5)
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Therefore the escape rate of the open baker map increases as the stretch-

ing factor, a, increases.

The distance of neighbouring point pairs increases – as follows from

(6.3) – by a factor of a > 1 in each step. The positive Lyapunov exponent

of the dynamics before escape is thus given by

λ = ln a. (6.6)

Note that this is greater than the value ln 2 valid for the baker attractor:

transiently chaotic systems are often more unstable than permanently

chaotic ones. The negative Lyapunov exponent characteristic of contrac-

tion is λ′ = ln c in this case also.

By extrapolating Fig. 6.6 to n steps, and taking the limit n → ∞, we

see that trajectories remaining inside for an arbitrary number of steps are

rather exceptional. Their initial conditions form along the vn-axis a set

of measure zero, a Cantor set of parameter 1/a (see Figs. 2.7 and 6.6(a)).

The dimension of this Cantor set, called the partial fractal dimension

along the unstable direction, is given by

D(1)
0 = ln 2

ln a
< 1. (6.7)

Similarly, the end-points of the trajectories remaining inside for n � 1

steps form a Cantor set of parameter c along the xn-axis (see Figs. 2.7

and 6.6(e)). The dimension of this Cantor set is given by

D(2)
0 = ln 2

ln 1/c
< 1, (6.8)

which is the partial fractal dimension along the stable direction. Points

never leaving the unit square (neither forwards, nor backwards, in time,

i.e. the direct product of the aforementioned two sets) form an asymmet-

ric Cantor cloud (see Fig. 2.10) of dimension

D0 = ln 2

ln a
+ ln 2

ln (1/c)
. (6.9)

This set is the chaotic saddle of the baker map (see Figs. 6.7 and 6.6(c)).

The basic difference from (5.11) is that the partial fractal dimension

along the unstable manifold is now less than unity.

The points of the saddle are mapped onto each other; the Lyapunov

exponents, λ and λ′, can thus be measured for an arbitrary length of

time. These points are, however, exceptional. Typical transiently chaotic

trajectories only come close to the saddle. Their divergence can therefore

be observed on average over a lifetime τ only.

The chaotic set is called a saddle because around each of its points

stretching takes place in one direction and compression takes place in

another, just like around hyperbolic (saddle) points (see Section 3.1.1).

Accordingly, we can talk of the stable and unstable manifolds of the
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xn
H−

H+

Fig. 6.7. Baker saddle: the
chaotic saddle of map (6.3)
with a = 2.4, c = 0.35.

entire saddle, which are Cantor filaments (see Section 1.2.2), whose

fractal dimension D(s)
0 and D(u)

0 is 1 + the partial dimension along the

unstable and stable directions, respectively:

D(s)
0 = 1 + D(1)

0 and D(u)
0 = 1 + D(2)

0 . (6.10)

Since D(1)
0 < 1, D(s)

0 < 2, the stable manifold is thus not space-filling; the

chaotic saddle therefore does not have a basin of attraction of finite area.

This is why it appears to be non-attracting. Note also that D0 < D(u)
0 ;

thus, the dimension of the saddle is smaller than that of its unstable

manifold. It cannot therefore be approximated by the unstable manifold.

In order to obtain a deeper insight into the saddle’s structure, it is

important to recognise that the open baker map also possesses a two-cycle

and higher-order cycles, and, moreover, that there is no upper bound on

the length and number of the cycles. All the cycles are hyperbolically

unstable.

Problem 6.1 Determine the two- and three-cycles of the open baker

map (6.3).

Problem 6.2 How does the m-fold iterated open baker map act on the

velocity variable vn? Based on this, determine the total number of the

fixed points of Bm(xn, vn).

The number of all the elements of the unstable m-cycles in the open

baker map is again

Nm = 2m . (6.11)

The topological entropy defined by Nm ∼ ehm (see Section 5.4.1) is thus

h = ln 2 = 0.693, (6.12)

which is now smaller than the positive Lyapunov exponent.
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Fig. 6.8. Higher-order cycles of the open baker map (6.3): all points of the
cycles of length m = 8, 10 and 11 (a = 2.4, c = 0.35), which gradually
approximate the chaotic saddle.

Figure 6.8 illustrates how the number of cycle points increases with

m. One can verify that all of these are on the chaotic saddle. The points

of the increasingly higher-order cycles trace out the chaotic saddle more

and more accurately. The hyperbolic cycles therefore provide a skeleton

for the chaotic saddle.

An unstable manifold of infinite length emanates from each cycle

point, and these manifolds prove to be all similar to each other. The

unstable manifold of the chaotic saddle is therefore simply the union of

the unstable manifolds of all the cycles. A similar statement holds for the

stable manifolds. The chaotic saddle can, therefore, also be considered

as the intersection of its own stable and unstable manifolds.

Problem 6.3 Construct the manifolds of the fixed points of the open

baker map, starting from the basic branches emanating from these points.

The intersection points of the stable and unstable manifolds of the cy-

cles again form homoclinic and heteroclinic points. Trajectories starting

(exactly) in the homoclinic or heteroclinic points must therefore perform

an aperiodic motion for an arbitrary length of time. All the homoclinic

and heteroclinic points are on the chaotic saddle, very close to each other.

Accordingly, the chaotic saddle can also be considered as the union of

the homo- and heteroclinic points formed among the manifolds of all the

hyperbolic cycles on it. Chaotic motion, interpreted as a random walk

between the cycles, is thus realised via the presence of homoclinic and

heteroclinic points again.

All these properties also hold for a generalised open baker map,

in which the stretching and contraction rates are different in the two

half-squares. As an extension of equations (5.15) and (5.16), such an
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Fig. 6.9. Asymmetric
baker saddle with a1 = 3,
a2 = 2.5, c1 = 0.25,
c2 = 0.45.

asymmetric open map can be defined as follows:

(xn+1, vn+1) = (c1xn, a1vn), for vn ≤ b,
(6.13)

(xn+1, vn+1) = (1 + c2(xn − 1), 1 + a2(vn − 1)), for vn > b,

where 0 < b < 1, a1b, a2(1 − b) > 1 and, c1 and c2 are positive param-

eters for which c1 + c2 < 1 holds. The stretching factors a1, a2 are now

independent of b; for the sake of simplicity, we fix b to be 1/2. The

saddle of this map is an asymmetric Cantor cloud (Fig. 6.9).

Problem 6.4 Derive the equations for the partial fractal dimensions of

the baker saddle of (6.13).

Problem 6.5 Another variant of the open asymmetric baker map is

given by

(xn+1, vn+1) = (c1xn, a1vn), for vn ≤ 1/2,
(6.14)

(xn+1, vn+1) = (1 − c2xn, a2(1 − vn)), for vn > 1/2.

Compute the fixed points, the two-cycle and the partial fractal dimensions

of the saddle.

6.2 Kicked oscillators
The dynamics, (5.19), of oscillators kicked with the amplitude func-

tions discussed in Section 5.2 is, for sufficiently large values of the

non-linearity parameter a, always transiently chaotic. Qualitatively this

is so because the momentum transfer of kicks is then so large that the

motion cannot be confined to finite xn and vn values for arbitrarily long

times; it converges ultimately to an attractor at infinity.

In Fig. 6.10 we present the saddles for values of the non-linearity

parameter slightly higher than those belonging to the attractors discussed
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Fig. 6.10. The (a) sawtooth, (b) roof and (c) parabola saddles at respective
parameters a = 2.6, a = 2.6 and a = 3.2 (E = 0.7).

in Section 5.2. Although the structures are more complicated than that of

the baker saddle, in a co-ordinate system defined by the local stable and

unstable directions, each saddle is the direct product of the two Cantor

sets, i.e. topologically they are asymmetric Cantor clouds.

It is remarkable that with the parabola amplitude one can easily find

chaotic saddles even for large E values (weak friction) where chaotic

attractors do not exist for any a. This illustrates that transient chaos is

more robust than permanent chaos.

Finally, we call the reader’s attention to the interesting fact that, for

large values of the non-linearity parameter, the saddle is confined to

smaller and smaller regions; it is more and more unstable, and becomes

increasingly similar to a baker saddle (see Fig. 6.11). The dynamics is

then basically controlled by the eigenvalues of the hyperbolic points, H−
and H+.

It can be shown that, for a � 1, the kicked oscillator dynamics can

be approximated by a baker map. The baker map, which could not so

far be related to a physical system, emerges in the strongly non-linear

limit of the kicked oscillators (and of some other physical systems, too)

producing transient chaos.

Problem 6.6 Choosing fixed point H− as the origin and H+ as point

(1, 1) of the co-ordinate system, show that a roof map (5.37) tends to a

baker map in the limit a � 1. Give the parameters of the chaotic saddle

in this limit.

Problem 6.7 To what kind of baker map does the general kicked os-

cillator map, (5.19), tend for large non-linearity parameter, if function

f has two branches that become steeper with increasing values of a?

(It is worth introducing new variables such that H− = (0, 0) and H+ =
(1, 1).)
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Fig. 6.11. Parabola saddle
for a relatively large value
of the non-linearity
parameter (a = 5.2,
E = 0.7).

Problem 6.8 Under what condition on function f (x) does the one-

dimensional map (5.47) (the extremely dissipative, E → 0 limit of

kicked oscillators) generate transient chaos? What is the equivalent of

the saddle now? Assume that f (x) is an even function.

Box 6.1 How do we determine the saddle and its manifolds?

It is much more difficult to generate chaotic saddles numerically than for attractors since following a single

trajectory over a long time does not yield the desired result. Numerous different methods have therefore

been developed, from which we present the simplest and most efficient possibility (all the saddles of the

book have been obtained by means of this method).

We start N (0) � 1 trajectories distributed uniformly over some region R of the phase space. If the

number of non-escaped points decreases very rapidly, or the decay is not exponential, then R does not

contain the saddle; we therefore choose new regions until an exponential decay is found. Once this is so, the

escape rate and its reciprocal (the average lifetime, τ ) can be estimated. (In this case R already overlaps

with the saddle, but it does not necessarily contain the entire saddle.) Next, we choose an iteration number,

n0, corresponding to a multiple of the lifetime, and we follow the time evolution of each point of R up to

time n0. We keep only those trajectories that do not escape R in n0 steps (their number is approximately

N0e−n0/τ ). If n0/τ is sufficiently large (but not so large that only a few points remain inside) then we can be

sure that trajectories with this long lifetime become close to the saddle in the course of the motion. This

necessarily implies that their initial conditions were in the immediate vicinity of the stable manifold of the

saddle (or of the saddle itself). Simultaneously, the end-points must be close to the unstable manifold of the

saddle since most points still inside after n0 steps are already in the process of leaving the region. The

mid-points of these trajectories (with n ≈ n0/2) are then certainly in the vicinity of the saddle. This we have
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seen in Figs. 6.6(a), (c) and (e) for a specific example. It applies in general that the initial, mid- and

end-points of trajectories with lifetimes of at least
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xn–0.5

0.5

–0.5

n

xn–0.5

–0.5

n

xn–0.5

0.5

Fig. 6.12. Generating the invariant sets of transient chaos in the roof map. Region R is a square of size 2 × 2
centred at the origin; N0 = 107, κ = 0.257 (a = 2.6, E = 0.7). Shown are the points of trajectories with a
minimum lifetime n0 = 16 at iteration numbers (a) n = 0, (b) n = 8 and (c) n = 16, well approximating the
stable manifold, the saddle and the unstable manifold, respectively.

n0 trace out, respectively, the stable manifold, the saddle and the unstable manifold within region R to a

good approximation. In practice, it is often sufficient to choose an n0 that is approximately four to six times

the lifetime, τ . (After this, it is easy to choose an R that contains the complete saddle.) Figure 6.12

illustrates the algorithm applied to the roof saddle.

6.3 General properties of chaotic transients
6.3.1 Chaos characteristics

The most important new feature of chaotic transients is their average

lifetime, τ , defined in (6.2), and its reciprocal, the escape rate. The other

characteristics are essentially the same as those introduced for chaotic

attractors; we therefore only refer to them briefly, and only provide for-

mulae that generalise previous relationships.

A measure of the complexity of the dynamics on and around saddles

is the topological entropy, i.e. the growth rate towards infinity of the

number of cycle points vs. the cycle length, as expressed by (5.51).

The same quantity can also be read off from the stretching process of

a line segment of initial length L0. Let L ′
n denote the length of the nth

image of the line segment measured within some fixed region around the

saddle.

This fulfils, for n � 1,

L ′
n ∼ ehn . (6.15)

The distinction between L ′
n and the full length, Ln , is necessary because

the latter increases faster (in the open baker map, (6.3), as an , while
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L ′
n ∼ 2n). The topological entropy is thus the growth rate of length within

the ‘interesting’ region around the saddle (for a numerical determination,

see Appendix A.5).

Problem 6.9 Determine the topological entropy of the asymmetric

baker maps given by equations (6.13) and (6.14).

Local Lyapunov exponents are again defined by relations (5.53) and

(5.54), with the restriction that both trajectories remain close to the sad-

dle.

The chaotic saddle has a direct product structure: its fractal dimen-

sion (see Section 2.2.2) is the sum of the two partial dimensions:

D0 = D(1)
0 + D(2)

0 , (6.16)

where D(1)
0 and D(2)

0 are the partial dimensions along the unstable and

stable directions, respectively, and 0 < D( j)
0 < 1, j = 1, 2.

6.3.2 Natural distribution

Long-time dynamics is characterised by a probability distribution on

chaotic saddles, which yields the probability that trajectories are in

the vicinity of one point or another of the saddle. In a mathematical

sense, this time-independent distribution characterises the dynamics of

points never leaving the saddle. Since the chaotic set is non-attracting,

the distribution cannot be constructed in a way similar to that seen for

attractors (Section 5.4.4). Its support is a Cantor cloud, an object that

is discontinuous in any direction. The simplest way to construct the

distribution is to follow numerous points initiated in some region around

the saddle for a sufficiently long time n0. The points of trajectories that do

not escape the region necessarily become close to the saddle at ‘half-time’

(see Box 6.1); therefore the distribution should be determined from these

points. In a numerical algorithm we cover the saddle with small squares

of size ε and for each box we record how many mid-points (n = n0/2) of

the non-escaped trajectories over iterations n0 � 1 fall into the box, and

we divide this value by the total number of mid-points. In this way, the

integral of the natural distribution, P∗, over each box is determined to

a good approximation. The natural distribution characteristic of saddles

is independent of the initial distribution of the points used to construct

it (just as for chaotic attractors; see Section 5.4.4).

Figure 6.13 shows the natural distributions on the chaotic saddles

of the asymmetric open baker map and of the oscillators kicked with



204 Investigation of chaotic motion

(a)

x

x

x

x

(c)

(b)

(d)

Fig. 6.13. Natural distributions of chaotic transients. (a) Asymmetric baker
saddle (see Fig. 6.9). (The distribution on a symmetric baker saddle would be
homogeneous in the sense that it would contain columns of the same height
only.) (b) Sawtooth saddle (see Fig. 6.10(a)). (c) Roof saddle (see Fig. 6.10(b)).
(d) Parabola saddle (see Fig. 6.10(c)). The resolution is ε = 1/1000 in all cases.
These distributions can also be viewed as variants ‘cut through’, as if with a
cookie cutter, of the distributions of chaotic attractors (cf. Fig. 5.44).

different amplitude functions. Some of these distributions, from different

views, are presented in Plates XVII–XIX.

The natural distribution, P∗, of chaotic saddles is also a fractal dis-
tribution (see Section 2.3), which provides more and more detailed infor-

mation as the resolution is refined. Accordingly, the natural distribution

possesses an information dimension, D1. Since the distribution is also

of a direct product nature, it is fractal along both the unstable and the

stable direction. The full information dimension is decomposed,

D1 = D(1)
1 + D(2)

1 , (6.17)
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into partial information dimensions D( j)
1 ( j = 1(2) for the unstable (sta-

ble) direction). The saddle also contains very rarely visited, and thus

atypical, regions; consequently, the information dimension, D1 can only

be smaller than the fractal dimension, D0, which naturally holds for the

partial dimensions also: D( j)
1 ≤ D( j)

0 , j = 1, 2.

Since the local Lyapunov exponents have been defined as the diver-

gence rates of particle pairs staying around the saddle for a long time,

the average Lyapunov exponents are averages taken with respect to the

natural distribution, P∗: Eqs. (5.67) and (5.69) also hold for transient

chaos. In principle, the positive Lyapunov exponent, λ̄, is the divergence

rate of point pairs remaining on the saddle forever. In practice, however,

it can also be obtained to a good approximation from pairs moving in the

vicinity of the saddle for a long time (see Appendix A.5). The prediction

time, given by (5.59), tp ∼ 1/λ̄, thus refers to the motion both on and

around the saddle.

Problem 6.10 Determine the average Lyapunov exponent in the asym-

metric open baker proof maps (6.13) and (6.14).

Problem 6.11 Determine numerically the natural distribution on the

asymmetric baker saddle of maps (6.13) and (6.14) at a given set of

parameters a1, a2, c1, c2 (b = 1/2). Show that the information dimension

is the same for each case. Determine analytically the partial information

dimensions.

The topological entropy of transient chaos differs from the posi-

tive Lyapunov exponent, even in the simplest case, when all the local

Lyapunov exponents are the same. Since this λ characterises the full

stretching, the length of a line segment is proportional to eλn after n
steps. The length of segments, L ′

n , remaining in a fixed region around

the saddle is a factor e−κn of the full length. The topological entropy, h,

is the stretching rate of L ′
n; i.e., from (6.15), ehn ≈ e(λ−κ)n . For n � 1

this implies

h = λ − κ. (6.18)

This relation holds for the open baker map (6.3).

In general, however, the local Lyapunov exponents are not identi-

cal, and the relation between the topological entropy and the average

Lyapunov exponent is given by

h ≥ λ̄ − κ. (6.19)

This implies that the stretching rate (h) of a phase space line within

a region around the saddle is larger than the stretching rate, λ − κ , of

the typical segments within the same region. Equation (6.19) holds, for
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en
Fig. 6.14. Points that do not
escape an unstable manifold
segment of unit length in
n � 1 steps form short
intervals of average length εn.
For a particular example, see
the vn-axis of Fig. 6.6(a).

example, for the asymmetric open baker map (6.13). (For the permanent

case, see (5.68).)

For a single hyperbolic point the escape rate coincides with the insta-

bility exponent, λ = ln|�+|. The topological entropy is, of course, zero,

from (6.18) so κ = λ holds. For chaotic saddles, h is strictly positive.

From (6.19) we thus obtain the important inequality:

κ ≤ λ̄. (6.20)

A saddle is thus less unstable globally than locally. It is the set of the

homoclinic and heteroclinic points among the infinitely many hyperbolic

points that makes the saddle more stable than its separate elements. Even

if a trajectory has escaped the neighbourhood of a hyperbolic point, it

will be trapped by other hyperbolic cycles for a while due to the in-

terwoven fractal topology of the stable manifolds. (Perfect global sta-

bility is realised in the limit κ = 0 only, when the saddle turns into an

attractor.)

6.3.3 Link between dynamics and geometry:
the Kantz–Grassberger relation

Since the chaotic saddle is characterised by two partial dimensions, the

link between geometry and dynamics is now reflected in two relations:

one valid along the unstable manifold, the other along the stable manifold.

The qualitative argument used in this section is an extension of one

leading to the Kaplan–Yorke relation; see Section 5.4.6.

Let us start with the partial dimension along the unstable manifold.

Consider a segment of unit length of the unstable manifold that inter-

sects the stable manifold. We distribute N (0) � 1 points uniformly on

this segment. After n � 1 iterations the majority of these have already

escaped the segment. The initial points of trajectories not escaping the

segment up to n steps (see Fig. 6.14) are on several small intervals, which

stretch to the full segment of unit length in n steps.

Their average length, εn , can therefore be estimated from the relation

εn exp (λ̄n) = 1, since the mean stretching rate per iteration is exp (λ̄),

where λ̄ is the average Lyapunov exponent. The typical interval length
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is thus given by

εn = e−λ̄n . (6.21)

For n � 1, the small intervals converge towards a fractal; their number,

N ∗(εn), therefore scales as

N ∗(εn) ∼ εn
−D

(1)
1 . (6.22)

Since these are typical intervals, it is not the fractal dimension, but rather

the information dimension, of the natural distribution that appears in the

exponent (see (2.16)). Moreover, the total length, εn N ∗(εn), of the small

intervals is, according to definition (6.1), proportional to the number

of points that have not yet escaped in n steps: e−κn ≈ εn N ∗(εn). Using

expression (6.20) for the interval length, we obtain

e−κn ∼
(

e−λ̄n
)(

1−D
(1)
1

)

, (6.23)

from which

D(1)
1 = 1 − κ

λ̄
= 1 − 1/λ̄

τ
. (6.24)

This relation, the Kantz–Grassberger relation, is perhaps the most im-

portant rule of transiently chaotic systems. It states that the dimension

observed along the unstable direction increasingly deviates from unity

the larger the ratio of the escape rate (a characteristic of the global insta-

bility of the saddle) to the average Lyapunov exponent (a characteristic

of local instability on the saddle). For a single hyperbolic point (κ = λ)

the partial dimension along the unstable direction is zero according to

the fact that the natural distribution of a hyperbolic point is localised to

that point, a zero-dimensional object. Since atypical intervals are left out

of the argument, N ∗(εn) is a lower bound on the number of all intervals

along the unstable manifold, and the partial fractal dimension is larger

than the information dimension: D(1)
0 > D(1)

1 . In practice, however, the

difference is often very small, and

D(1)
0 >∼1 − κ

λ̄
(6.25)

holds.

Let us now turn to the relation between the stable partial dimension

and the Lyapunov exponents. A phase space volume element of radius

l0 placed in the vicinity of a chaotic saddle becomes, in n � 1 steps, a

ribbon folded in a fractal-like manner (Fig. 6.15), with average length

l0eλ̄n and width l0eλ̄′n .

In accordance with escape, the ribbon extends at several locations

beyond the narrowest strip (the height of which is chosen to be unity)
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l0

Fig. 6.15. A phase space
volume element is in the
vicinity of a chaotic saddle
stretched (contracted) by a
factor of eλ̄n (e λ̄′n) along the
unstable (stable) direction
over n � 1 iterations.
Simultaneously, it becomes
folded several times and
extends beyond the narrowest
strip (dashed lines) containing
the saddle.

containing the saddle. Only a fraction exp (−κn) of the entire length

remains inside the strip (see Fig. 6.15), i.e. length l0e(λ̄−κ)n . Since the

height is unity, this equals the number N ∗(εn) of typical ribbon pieces,

lying parallel to the unstable direction, within the strip. The average

width of the ribbons is εn = l0eλ̄′n . Intersecting them along the stable

direction, we obtain intervals of size εn . According to the definition of

the partial dimensions, the number of typical intervals of size εn required

for full coverage is N ∗(εn) ∼ εn
−D(2)

1 (see (2.16)). Since this equals the

number of ribbon pieces, which is proportional to e(λ̄−κ)n, we obtain

εn
−D

(2)
1 ∼ e|λ̄′ |nD

(2)
1 ∼ e(λ̄−κ)n, (6.26)

from which

D(2)
1 = λ̄ − κ

|λ̄′| . (6.27)

The partial dimension along the stable direction is thus the ratio of the

difference of the positive Lyapunov exponent and the escape rate to the

absolute value of the negative Lyapunov exponent. Substituting (6.24)

into (6.27), we obtain

D(2)
1 = λ̄

|λ̄′| D(1)
1 . (6.28)

This implies that the products of the information dimensions and the

average Lyapunov exponents are the same in both stability directions.

The information dimension of the chaotic saddle is the sum of the

partial dimensions (see (6.17)):

D1 =
(

1 − κ

λ̄

) (
1 + λ̄

|λ̄′|
)

. (6.29)

The dimension of the saddle thus depends not only on the average Lya-

punov exponents, but also on the escape rate. Its numerical value gener-

ally hardly differs from that of the fractal dimensions.
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Fig. 6.16. Fractal lifetime distribution: the number, n, of iteration steps
occurring in a square of size 2.8 centred at the origin (and containing the saddle
of the roof map) by points started from the segment v = 0, 1 ≤ x ≤ 1.2, vs. the
initial x co-ordinate (a = 2.3, E = 0.7).

The respective information dimensions of the unstable and stable

manifolds are given by

D(u)
1 = 1 + D(2)

1 = 1 + λ̄− κ

|λ̄′| and D(s)
1 = 1 + D(1)

1 = 2 − κ

λ̄
, (6.30)

while, for the fractal dimensions, Eq. (6.10) holds.

The Kaplan–Yorke relation, (5.74), valid for chaotic attractors, is

recovered in the limit κ → 0.

6.3.4 Fractal lifetime distribution

If we select a region that contains (part of) the saddle and initiate points

along some curve in phase space, we find that trajectories remain in

the pre-selected region over a very wide range of times (Fig. 6.16).

This is because small differences in initial conditions lead to significant

variations in lifetimes.

Very large values can only belong to points where the selected curve

intersects the stable manifold of the saddle. It is therefore a fractal set

of points where the lifetime distribution takes on infinite values: the

singularities along the segment sit on a fractal set of points of dimension

D(s)
0 − 1 = D(1)

0 < 1.

The lifetime distribution, despite its complexity, is not in contra-

diction with the overall exponential decay. If we ask how many initial

points remain in the region for time n, we find that their number decays
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Fig. 6.17. Occurrence
number, N(n), of lifetimes, n,
of Fig. 6.16, projected on the
n-axis. The continuous curve is
N(15) exp (−κ(n − 15)) with
N(15) = 6464 and κ = 0.132,
determined from an
independent numerical
measurement.

according to exp (−κn) (see Fig. 6.17). This is so, irrespective of the

curve on which the lifetime distribution is taken. It is true that, in gen-

eral, the escape rate, κ , is independent of the region in which the statistics

is investigated (provided it overlaps the stable manifold).

Box 6.2 Significance of the unstable manifold

In transient chaos, the unstable manifold does not coincide with the chaotic set, i.e. the saddle. The unstable

manifold is nevertheless of great importance since trajectories of long lifetime ultimately leave the saddle

along this manifold. This feature can best be illustrated by the fate of a droplet in phase space. Those

exceptional points of the droplet that are on the stable manifold converge necessarily to the points of the

saddle; the others, however, escape. Points initially far from the stable manifold escape rapidly, while those

close to it stay around for a long time. The droplet is a connected phase space domain; its shape becomes

more and more complicated in time due to the different fates of nearby points, and, after a sufficiently long

time, the shape of the droplet traces out the unstable manifold of the saddle. Therefore, one can also say that

the unstable manifold is the main asymptotic transport route in phase space.

The effect is similar to what has been observed for a single hyperbolic point (Fig. 3.26(a)), but the shape

of the droplet is much more complicated now (see Fig. 6.18). The unstable manifold thus acts as a kind of
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Fig. 6.18. Spreading of a phase space droplet (black) from the vicinity of the saddle (grey). Time evolution
of a square of size 0.3, centred initially, (a), at (−2.2, 1) in the roof map (a = 0.7, E = 2.3). Panels (b), (c) and
(d) show the droplet after two, four and six iterations, respectively. While flowing away towards infinity, the
droplet traces out the unstable manifold. Note, however, that due to escape practically no point of the
droplet stays in the region shown for ever. A plot corresponding to n � 1 would therefore contain the saddle
on its own.

attractor for droplets overlapping with the saddle’s stable manifold: observed over a finite time, the droplets

contract onto the manifold. The fact that this is not a real attractor becomes evident, however, after a long

time when the overwhelming majority of the points of the droplet reach – along the unstable manifold – the

real attractor(s).

6.4 Summary of the properties of transient chaos
Transient chaos is a kind of metastable, decaying state, whose average

lifetime is finite. It precedes the convergence to the attractors, whether

they are simple or chaotic. In the latter case, the long-term behaviour

is also characterised by a positive Lyapunov exponent, but the value

typically differs from that for the transients.

Underlying transient chaos (in invertible systems) is a chaotic saddle,

which is, to a good approximation
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� the union of all the unstable (hyperbolic) periodic orbits lying on it

(or the set of the intersections of the stable and unstable manifolds of

a single periodic orbit on the saddle).

With a more precise definition, the chaotic saddle is

� the union of all the hyperbolic periodic orbits on the saddle and of all

the homoclinic and heteroclinic points formed among their manifolds

(or the common part of the stable and unstable manifolds of all the

infinitely many periodic orbits on the saddle).

Accordingly, the chaotic saddle can also be constructed by taking the

intersection points of the stable and unstable manifolds of some periodic

orbit (see Box 6.3). Thus, it is true in general that the vicinity of a saddle

is characterised by a kind of ‘tartan’ pattern, which is traced out by the

branches of the stable and unstable manifolds (Fig. 6.19). The manifolds

are not equivalent: along the stable manifold, infinite lifetimes can be

observed, whereas the unstable manifold marks the routes leading away

from the saddle. The inverse of a saddle is, of course, also a saddle, but

when reversing the direction of time, the arrows on the manifolds are

also reversed.

Dynamics on chaotic saddles, just like on chaotic attractors, is a

random walk among the infinitely many simple (periodic) but unsta-

ble cycles. The most important properties of transient chaos are again

stable manifold

D
0
(2)

D
0
(1)

unstable manifold

Fig. 6.19. ‘Tartan’ pattern of transient chaos showing the schematics of the
saddle’s manifolds. Partial fractal dimensions, D(1)

0 and D(2)
0 , along the unstable

and stable manifolds, respectively, are marked. Due to the Cantor filament
structure, the fractal dimensions of the stable and unstable manifolds are
D(s)

0 = 1 + D(1)
0 and D(u)

0 = 1 + D(2)
0 , respectively.
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Box 6.3 The horseshoe map

The observation that the existence of a single homoclinic point implies the chaoticity of a motion is due to

the American mathematician, Steve Smale. He showed that the dynamics around a hyperbolic fixed point

(cycle point) can then be approximated by – as we call it today – an open baker map. In order to

demonstrate this, let us consider a fixed point and the first homoclinic point of its manifolds (Fig. 6.20). A

square around the fixed point is stretched so much after a certain number of steps that its image – which

resembles a horseshoe – extends beyond the homoclinic point (Fig. 6.20(a)). Let this number of steps be

denoted by l. When the same square is iterated backwards, after a number of steps, m, we obtain a

rectangular object stretched along the stable manifold, which also contains the homoclinic point (Fig.

6.20(b)). If the map is applied to this stretched rectangle k = l + m times, the image of rectangle takes the

shape of a horseshoe (Fig. 6.20(c)).

The application of the k-fold iterated original map on the stretched rectangle is therefore called a

horseshoe map. Note that, within the rectangle, the horseshoe map has the same effect as the baker map:

the rectangle is mapped into two columns. After one more iteration it contains four columns, then eight,

and, after n steps, 2n columns. The topological entropy is thus h = ln 2 in this case also (the number of

unstable cycles is therefore also infinite; see (5.51)). A similar statement holds in the vicinity of heteroclinic

intersection points.

The argument is valid for all invertible maps, i.e. for area preserving ones also: the chaotic behaviour of

a system follows from the existence of a single homoclinic or heteroclinic point. Note, however, that this

ensures transient chaos only. For permanent chaotic behaviour, it is also necessary that the homoclinic and

heteroclinic points are dense along the unstable direction.

(c)(a)

homoclinic
point

(b)

fixed point

Fig. 6.20. Schematic construction of an invertible system’s horseshoe map. (a) The image of the square
around the fixed point surrounds the unstable manifold in the form of a horseshoe after l steps. (b) The mth
pre-image of the square. (c) The map iterated forward l + m times transforms the stretched rectangle into the
horseshoe, via an action similar to that of a baker map.

irregularity, unpredictability and ordered but complex phase space struc-

ture. In order to give a general definition of chaos, which also covers

transient chaos, one has to specify where to define the characteristic

quantities. Chaotic dynamics is
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� irregular: the topological entropy in some part of the phase space (not

neccessarily an attractor) is positive, i.e. h > 0;
� ordered: there exists at least one invariant set, the chaotic set (which

might also be a saddle), with a fractal natural distribution, i.e. 2 >

D1 > 0;
� unpredictable: the average Lyapunov exponent on the chaotic set(s)

is positive, i.e. λ̄> 0.

Transient chaos sheds new light on what has been discovered about

chaotic attractors (see Section 5.4.5). In the stable direction (i.e. on a

section along some branch of the stable manifold), all the chaotic sets

(attractors or saddles) of dissipative systems are fractals: D(2)
1 < 1. It is in

the unstable direction that considerable differences show up. The attrac-

tor is a chaotic set that is continuous along the unstable manifold, with

a smooth natural distribution in this direction: D(1)
0 = D(1)

1 = 1. Conse-

quently, its stable manifold is actually space filling: D(s)
0 = D(s)

1 = 2 (cf.

(6.30)), and its basin of attraction is finite. Since escape is impossible,

the entire unstable manifold is identical to the chaotic set in this case.

Chaotic saddles do not share these properties; they are discontinuous

along the unstable direction also and they appear as the direct products

of two Cantor sets.

The existence of chaotic transients indicates that even sets with

basins of attraction of zero area (volume) may become observable via

studying the finite-time dynamics. In general, we learn about transient

chaos not via the everlasting dynamics on the saddle, but via trajectories

coming close to the saddle and thus having finite, long lifetimes.

6.5 Parameter dependence: crisis
Let us investigate now how chaotic transients emerge when leaving the

parameter region of permanent chaos. We have seen in Fig. 5.47 that the

chaotic attractor is surrounded by the stable manifold of a hyperbolic

point situated outside of the attractor, which is simultaneously its basin

boundary. When some parameter, μ, is changed (for the kicked oscil-

lator, for example, when the non-linearity parameter, a, is increased)

the attractor becomes more extended and it becomes closer and closer

to the basin boundary. At a certain parameter value, μc, the attractor

touches its own basin boundary (Fig. 6.21). This situation is critical for

further development; it is referred to as crisis. For the parabola attractor

(at E = 0.25), the crisis value is (see Fig. 5.40) ac = 1.859.

In a crisis configuration, not only a few ‘extremal’ points of the

attractor touch the boundary. If a single such point (a heteroclinic point
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H+

H_

basin boundary

chaotic attractor

unstable manifold leading into 
another attractor (or to infinity)

Fig. 6.21. Crisis situation:
μ = μc (schematic
diagram). The attractor
reaches the basin
boundary and the basin
boundary touches the
attractor. Contact occurs at
an infinity of points
simultaneously (only a few
are shown).

between H− and H+) exists, then all of its images and pre-images must

also share this property (see Box 6.3). Therefore, an infinite number of

points simultaneously become common points of the attractor and the

basin boundary. Moreover, fixed point H− is included into the attractor.

A crisis situation therefore generally corresponds to the fully developed,

most extended state of an attractor, a configuration which is, however,

almost unstable.

Problem 6.12 Show that the attractors of the symmetric and asym-

metric baker maps of Section 5.1 are in crisis.

For parameters beyond crisis (μ > μc), no chaotic attractors exist.
This is so because, on the one hand, the unstable manifolds that con-

stituted the attractor before extend beyond the former basin boundary,

and, on the other hand, the latter curve, the stable manifold of H−, ‘bites

into’ the former attractor at several (in fact at an infinity of) locations

(Fig. 6.22). All of these observations imply that, in the vicinity of the

former attractor, arbitrary long motion is impossible and escape takes

place. Nevertheless, an infinity of unstable periodic orbits is still present;

the motion is therefore chaotic, but has a finite lifetime.

As a particular example, we present the crisis of the roof map (Fig.

6.23). The phase portraits at parameter values μ ≡ a slightly and greatly

beyond crisis are shown in Figs. 6.24 and 6.25, respectively. In Fig. 6.25

it is clearly visible that the primary structure of the saddle is determined

by the manifolds biting into each other.

Problem 6.13 Derive the crisis value, ac for the sawtooth map from

the equations of the manifolds around the fixed points.



H+

H−

Fig. 6.22. A state beyond
crisis: μ > μc (schematic
diagram) in terms of the
stable manifold of H− and of
the unstable manifold of H+.
Shading indicates the area
surrounded by the stable
manifold: it no longer
corresponds to a basin of
attraction.
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Fig. 6.23. Phase portrait of
the roof map in crisis
(ac = 1.7898, E = 0.7).
Around H−, its own stable
manifold accumulates and
touches the unstable manifold
in an infinity of points.

Fig. 6.24. Phase portrait of
the roof map immediately
after crisis (ac < a = 1.83,
E = 0.7). The unstable
manifold of H+ stretches
beyond the area bounded by
the stable manifold of H−,
which ‘bites’ into the unstable
manifold of H+ in a sequence
of increasingly narrow, and
ever deeper, bands (while it
also becomes more and more
folded).
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Fig. 6.25. Phase portrait
of the roof map greatly
beyond crisis (a = 2.3,
E = 0.7). The inset shows
the saddle.

Problem 6.14 Determine the phase portrait of the sawtooth map in

crisis for E = 0.8.

Problem 6.15 Derive the equation determining the crisis value, ac for

the roof map.

Problem 6.16 What condition must function f (x) of a one-

dimensional map (5.47) fulfil (in the realm of functions with a single

maximum) in order to be in crisis?

When departing from crisis with parameter μ within the transiently

chaotic region, the holes along the unstable manifold increase, escape

becomes easier and easier and, the lifetime, τ (μ), of transient chaos

decreases. Experience shows that near crisis this is proportional to a

negative power of the parameter’s deviation from the crisis value:

τ (μ) ∼ (μ − μc)
−γ , μ > μc, (6.31)

with γ as a positive exponent. Crisis is thus a kind of bifurcation, whose

vicinity, when approaching crisis from above (decreasing μ), is indicated

by a rapid increase in the lifetime.

6.6 Transient chaos in water-wheel dynamics
Permanent chaos has been observed in the dynamics of the water-wheel

for parameters μ ≡ r > 15.0 only (at σ = 10; see Fig. 5.56). If, con-

scious of the existence of transient chaos, we investigate the range

r < 15.0 without excluding the approach towards the attractor, we find

chaos to be present down to surprisingly small values of parameter r (see

Fig. 6.26).

Numerically, the chaotic saddle seems to appear around r = 10,

where it is still of very small extension and rather unstable. It becomes
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Fig. 6.26. Bifurcation diagram of the water-wheel indicating the presence of
transient chaos: the projection of the chaotic saddle on the x-axis is represented
by grey shading. Trajectories with lifetimes of at least 40 iterates within the band
|xn| < 2 of the Poincaré map have been considered for r < rc = 15.0, and their
x-values between the 5th and 20th iterate have been plotted. Note that the
diagram also differs from Fig. 5.56 in the region of permanent chaos (black
shading) since that has been generated in continuous time. In the present
representation, the non-trivial fixed points are clearly visible (black lines) up to
the point r = 17.5, where they lose stability. In the region 15 < r < 17.5, two
unstable limit cycles exist (represented by dashed lines) outside of the chaotic
attractor.

more extended and easier to observe as parameter r increases. The water-

wheel may therefore exhibit chaotic dynamics in relatively weak rain,

but for a finite time only. The chaotic saddle co-exists here with the

two non-trivial fixed point attractors. Due to the strong dissipation, the

saddle has practically no extension in the stable direction; it seems to be

the union of two Cantor sets sitting on slightly bent curves (Fig. 6.27).

The natural distribution appears therefore in the shape of two curtains.

The critical value, rc = 15.0, is approached from below in a sequence

of increasingly long chaotic transients. Permanent chaos emerges in the

water-wheel dynamics for increasing r via a crisis bifurcation (just like

in the kicked oscillator dynamics with decreasing non-linearity para-

meter a).

The period-doubling cascade discussed in Section 5.3 and the crisis

just investigated are two very common forms of the transitions towards

(permanent) chaos.
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Fig. 6.27. Water-wheel
saddle (inset) and the
natural distribution on it in
the Poincaré map z = r − 1
(σ = 10, r = 14). The
resolution is ε = 1/4000

6.7 Other types of crises, periodic windows
In the structure of chaotic attractors, drastic changes, such as sudden

enlargements, may occur when a parameter, μ, is changed. The critical

configurations where these changes take place are also called crises. In

contrast to the external or boundary crises investigated in Sections 6.5

and 6.6, when attractors touch their own basins, these are called internal

crises (see Table 6.1). In the example of the parabola map (μ ≡ a), a

jump in attractor size can be observed in Fig. 5.40 at the parameter value

ac2 = 1.793. For parameter values less than ac2, the chaotic attractor is of

small size; its neighbourhood, however, is, not ‘empty’: a chaotic saddle

can be found there (Fig. 6.28).

Consequently, some trajectories may wander for a long time per-

forming chaotic transients before settling on the attractor. For increasing

parameter μ, the saddle becomes more extended, the lifetime of the tran-

sients increases and finally, atμc2, a part of the saddle and the small attrac-

tor suddenly merge to form an enlarged attractor, via an internal crisis.

Problem 6.17 Determine the saddle surrounding the small-size roof

attractor for a = 1.62 preceding the crisis value ac2 = 1.632 of attractor

enlargement (see Problem 5.26 and Fig. P.21 in the ‘Solutions to the

problems’ section) (E = 0.7).

We have seen in Section 5.3 that parameter intervals exist, called

periodic windows, a part of which does not contain any chaotic
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Fig. 6.28. Chaotic saddle
around the small-size parabola
attractor for
a = 1.79 < ac2 = 1.793
(E = 0.25).
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Fig. 6.29. Bifurcation
diagram of the parabola map
(5.39) obtained by omitting
the first 50 iterates only (cf.
Fig. 5.40). In this way the
chaotic saddles filling the
periodic windows also appear
in the diagram, projected on
the x-axis (grey regions).

attractors.2 The chaotic parameter range above the accumulation point,

μ∞, has been found to be a nested set of chaotic and non-chaotic param-

eter values. Taking transient chaos into account, the situation becomes

considerably simpler: the periodic windows might be empty of chaotic

attractors, but not of chaotic saddles (Fig. 6.29). The infinity of unstable

2 The other parts of the periodic windows contain multi-piece, small-size chaotic

attractors (see e.g. Fig. 5.40) since the periodic orbits undergo a period-doubling

cascade within each window. Periodic windows end with internal crises.
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h

mm∞

Fig. 6.30. Devil’s staircase
structure of topological
entropy in the range
μ > μ∞ (schematic
diagram). In contrast, the
average Lyapunov
exponent of the chaotic set
(attractors and saddles) is
expected to be a smooth,
monotonically increasing,
function of a.

cycles developed on the route towards the accumulation point, μ∞, can-

not suddenly disappear from the system. Consequently, chaotic transients

are present in each periodic window.

By accepting that the concept of chaos includes its transient variant

also, the statement that the union of the chaotic parameter values, μ∗,

constitutes a fat fractal (Section 5.3) must be revised: chaos is present

on continuous parameter intervals above the accumulation point, μ∞.

Moreover, in certain cases, for example for kicked oscillators, the inter-

vals may be of infinite length.

The average Lyapunov exponent determined over the chaotic set (at-

tractor or saddle) is in general, for μ > μ∞, a monotonically increasing

function. A similar statement holds for the topological entropy, whose

typical shape is that of a devil’s staircase. This can be considered as the

integral of a homogeneous distribution over a Cantor set: it consists of

long constant intervals, with sudden jumps on a fractal set (Fig. 6.30).

Each jump in the topological entropy devil’s staircase corresponds to a

crisis, where new unstable orbits emerge.

6.8 Fractal basin boundaries
6.8.1 The phenomenon

For the kicked oscillators studied so far, the basin boundary (the stable

manifold of fixed point H−) between the chaotic attractor and an at-

tracting fixed point at infinity is a simple curve, just like the boundary

between the simple attractors in Section 3.3.1 (see Fig. 3.17). In view

of this, it may seem surprising that in systems where chaos may occur

at all (see Section 4.8), the basin boundary between even simple point

attractors is often very complex, i.e. of fractal nature (Fig. 6.31).

This implies that the basins of attraction become interwoven and be-

come very close to each other in the form of narrow bands. Particles that
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Fig. 6.31. Basins of attraction
(black and grey regions) of the
two fixed point attractors of a
harmonic oscillator kicked
with the amplitude function
f (x) = ax(1 − x2) (a = 2.8,
E = 0.7). The attractors are
marked by white dots.

start out from this part of phase space hesitate for a long time: it is diffi-

cult for them to ‘decide’ which attractor to converge to. In the meantime,

they move in a seemingly random manner without coming particularly

close to either attractor. Consequently, there must exist a chaotic saddle

between the attractors. It is the ‘hesitation’ that is a transiently chaotic

behaviour.

The basins of attraction touch each other in an intricate way. The

role of water-shed divide between different attractors, as already seen

in simple systems (Sections 3.1–3.3), is played by stable manifolds.

Fractal basin boundaries are thus always stable manifolds of chaotic

saddles, and their appearance is therefore always accompanied by chaotic

transients.

Problem 6.18 Determine the basins of attraction of the two attractors

co-existing in the two-fold iterated roof map at a = 1.55, E = 0.7.

When changing a system parameter, there might occur sudden

changes in the structure of the basin boundary: the latter might go over

from a smooth into a fractal curve. Such basin boundary metamorphoses
are themselves crises. In the course of such events, a horseshoe is formed

between the originally smooth manifolds of a simple hyperbolic orbit

on the boundary. With the creation of a chaotic saddle formed in this

way, the basin boundary becomes a fractal, i.e. the stable manifold of

the new saddle. When increasing the non-linearity parameter, a, of the

kicked oscillators, it depends on the dissipation parameter, E , whether a

basin boundary metamorphosis takes place before the boundary crisis is
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Table 6.1. Comparison of different crises.

Type of crisis Phenomenon

Boundary crisis chaotic attractor ceases to exist:

it is converted into a chaotic saddle

Internal crisis chaotic attractor suddenly enlarges:

a saddle is merged with a small size

attractor

Basin boundary metamorphosis the basin boundary changes its fractal

character: a hyperbolic point on the

boundary becomes part of a chaotic

saddle

reached and the chaotic attractor disappears. Table 6.1 provides a com-

parison of the main types of crises discussed.

Problem 6.19 The parabola attractor approaches crisis for E = 0.32

at ac = 1.843. By determining the basin boundary between the parabola

attractor and the attractor at infinity for a = 1.74 and a = 1.80 (E =
0.32), demonstrate that a basin boundary metamorphosis occurs at

around ac = 1.77. Show numerically that the fixed point H− does not

have homoclinic intersections below ac.

6.8.2 The uncertainty exponent

The existence of a fractal basin boundary implies that the outcome of

motion started from its vicinity is difficult to predict. Namely, the error

in determining the initial condition corresponds to a box of finite size in

phase space, which may overlap both basins of attraction. When initiating

the motion, it is therefore often impossible to predict which attractor the

trajectory will converge to. A quantity measuring the degree of this

uncertainty is the uncertainty exponent.
Let us cover the phase space with square boxes of size ε. A box is

considered to be certain if any number of points started from it converges

to the same attractor. Boxes without this property are called uncertain,

and their number is denoted by N (ε). The ratio of the number of un-

certain boxes to that of all the boxes, N0(ε), is f (ε) ≡ N (ε)/N0(ε).

For sufficiently fine resolution, the ratio, f, scales as a power of the

resolution:

f (ε) ∼ εα, (6.32)

where the positive exponent, α, is the uncertainty exponent. For smooth

basin boundaries, α = 1, while, for fractal ones, α < 1. In the latter



224 Investigation of chaotic motion

case, by increasing the resolution by a factor of, say, 100, the number

of accurately predictable boxes increases by a smaller factor only (for

α = 1/2, for example, by 10). The smaller the value of α, the more

hopeless it is to improve the accuracy: for α = 0.2, a decrease of f by a

factor of 10 would require an increase in resolution by 105!

The uncertainty exponent can be expressed in terms of the character-

istics of the chaotic saddle whose stable manifold is the basin boundary.

The number of uncertain boxes varies with an exponent corresponding

to the fractal dimension of the stable manifold, i.e. with −D(s)
0 . Since the

number of all boxes in a plane scales as ε−2,

α = 2 − D(s)
0 = 1 − D(1)

0 . (6.33)

Applying the Kantz–Grassberger relation, (6.25), we obtain

α ≈ κ

λ̄
. (6.34)

Thus, uncertainty is significant if the stable manifold of the saddle is

almost space-filling, i.e. if the average chaotic lifetime is long.

6.8.3 Continuous-time systems: magnetic and
driven pendula

The equation of motion of the magnetic pendulum presented in Section

1.2 is of simplest form if the thread is assumed to be long compared with

the amplitude of swinging. Without magnets, the pendulum oscillates in

this case with natural frequency ω0 = √
g/ l around the origin, practi-

cally in a horizontal plane. Let magnet i be located at distance di under

point (xi , yi ) of the plane of motion. Assuming a point-like interaction

of Coulomb type between the magnets, the force exerted by magnet i on

the swinging body is of magnitude γi/D2
i , where γi is a measure of the

magnet’s strength (positive for attraction), and

Di =
√

(xi − x)2 + (yi − y)2 + d2
i (6.35)

is the distance between the body and the magnet. The x- and y-

components of the force are obtained by multiplying the magnitude by

the factors (xi − x)/Di and (yi − y)/Di , respectively. Taking into ac-

count an additional damping term linearly proportional to the velocity,

the equation of motion of the magnetic pendulum in the presence of N
magnets is given by

ẍ = −ω2
0x − α ẋ +

i=N∑

i=1

γi (xi − x)

D3
i

, (6.36)
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Table 6.2. Parameters used in Figs.
1.10 and 1.11 and Plates III–VI.

In all cases, γi = 1.

α w0 d

Fig. 1.10 0.2 0.5 0.3

Fig. 1.11 0.05 0.5 0.3

Plate III 0.3 0.5 0.3

Plates IV, V 0.2 1.0 0.3

Plate VI 0.3 2.0 1.0

ÿ = −ω2
0 y − α ẏ +

i=N∑

i=1

γi (yi − y)

D3
i

, (6.37)

α > 0. For solely attractive interactions, the number of the attractors is

the same as the number of the magnets (for weak magnets there may be

an additional one, around the origin), but in a repelling case the number

of attractors depends essentially on the system parameters.

Each attractor is necessarily a point attractor, as all motion stops

due to damping. If we colour in the initial position (x0, y0) of the pen-

dulum released without any initial velocity (v0 = 0) according to the

attractor above which it stops, the basins of attraction become visible.

We obtain in this way a real space image of the basin boundary gen-

erally present in phase space, or, more precisely, an intersection of the

basins of attraction with the plane v = 0. Parameters used in figures and

plates exhibiting fractal boundaries of magnetic pendulums are given in

Table 6.2.

The equation of motion of the driven pendulum, the other example

in Section 1.2.2, has been given by equation (5.90). The parameters used

in Figs. 1.13 and 1.14 and in Plate VII are αT = 0.1π , T
√

g/ l = π/5

and A/ l = 0.8. The filamentary structure of the basin boundary in this

example only appears in phase space.

Problem 6.20 Determine the basins of attraction of the non-trivial

fixed points of the water-wheel for r = 14, σ = 10.

Problem 6.21 The dimensionless equation of motion of a ship sub-

jected to periodic waves (the driven version of Problem 3.12) is ẍ =
Ax(x + 1) − α ẋ + f0 cos (2π t). Determine numerically the basins of

attraction of the ship’s stable oscillation and of its capsized state (escape

from the potential well) for parameters α = 0.6, f0 = 3.8 and A = 55.

Plot the unstable manifold of the chaotic saddle.
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Box 6.4 Other aspects of chaotic transients

Chaotic transients occur in numerous, some of them everyday, phenomena. The small, double

pendulum-like, battery-driven machines designed to demonstrate chaos are usually seen in shop-windows

performing periodic motion only. The reason is that, in general, the system, reaches a transiently chaotic

state with a lifetime of a few minutes only, due to a gradual discharge of the battery (for several other

examples, see Chapter 9).

In the course of transport processes (diffusion, electric or thermal conduction, etc.), particles move

chaotically. Particles that do not leave a sample of finite length for a long time wander in the neighbourhood

of a chaotic saddle. The corresponding transport coefficient, for example the diffusion coefficient, is found

to be proportional to the escape rate; therefore, the longer the lifetime of chaos, the slower the transport.

If we select a sub-region of a chaotic attractor and track the trajectories starting from it until they leave

the region, we find transiently chaotic behaviour. Points never escaping the region (neither forwards nor

backwards in time) form a chaotic saddle. The periodic orbits of the saddle are a sub-set of all the cycle

points located in the selected region of the attractor. Transient chaos thus helps to explore the dynamics on

sub-sets of chaotic attractors, and it is therefore also related to the control of chaos (see Box 9.4).

It is interesting to note that weak external noise may transform a chaotic saddle into an effective

attractor. This is so because chaotic saddles and nearby attractors may merge into a single extended attractor

in the presence of noise. This phenomenon can be observed even in systems with simple deterministic

attractors: then weak noise converts transient chaos into permanent chaos (this is called noise-induced

chaos).



Chapter 7

Chaos in conservative systems

A special but important class of dynamics is provided by systems in

which friction is negligible, or, more generally, where dissipative ef-

fects play no role. In this case the direction of time is not specific, the

process described by a differential equation is reversible: forward and

backward time behaviour is similar. Think of, for example, a planet:

one cannot decide whether its motion recorded on a film takes place

in direct or in reversed time. In frictionless systems phase space vol-

ume is preserved, and attractors cannot exist. In such conservative sys-

tems, the manifestation of chaos is of a different nature than in dissipa-

tive cases. In this chapter we investigate persistent conservative chaos

where escape is impossible, and defer the problem of transient conserva-

tive chaos to Chapter 8. We start with the area preserving baker map

and the stroboscopic map of a kicked rotator. Next, the dynamics of

continuous-time, non-driven frictionless systems is considered. On the

basis of these examples, we summarize the general properties of con-

servative chaos, including one of the most important relationships, the

KAM theorem. The structure of chaotic bands characteristic of conser-

vative systems is discussed and compared with that of chaotic attractors.

Finally, we present how conservative chaos of increasing strength man-

ifests itself and we discuss the consequences.

7.1 Phase space of conservative systems
Since dissipation is unavoidable in typical macroscopic dynamics, we

consider the frictionless case only after studying the dissipative one.

Examples will be taken from the realm of motion taking place in a

227
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vacuum. Note, however, that the dynamics of spacecraft or planets in

the Solar System, or of charged particles in the electric and magnetic

fields of accelerators or fusion equipment, are all conservative processes

to a very good approximation. The advection dynamics of particles

in flows can be shown to be of the same kind to a first approxima-

tion. The main fields of application for conservative chaos are space

research/astronomy, plasma physics and hydrodynamics/environmental

physics.

Friction is always accompanied by phase space contraction. A basic

property of frictionless systems is that their phase space volume does

not change in time. This is why they are called conservative.1 The phase

space contraction rate, (3.55), of conservative systems is by definition

zero:

σ ≡ 0. (7.1)

An important consequence of this is that there cannot be any sub-sets

of phase space towards which a volume element could converge.2 In

conservative systems attractors (repellors) do not exist; the motion does

not forget the initial state: its character depends on the initial condition
even after a long time. This is why in conservative systems chaos typically

appears in co-existence with regular motion (as shown in Figs. 1.17 and

1.20 and Plate VIII).

This kind of chaos is naturally present in driven one-dimensional mo-

tion with a vanishing friction coefficient (α = 0). Conservative chaos

appears, however, in an additional class: in non-driven systems of at

least two spatial dimensions. In such systems it is of great importance

that the total energy is conserved. The position of a body in the plane
is specified by two position co-ordinates (x, y), to which two veloc-

ity components, (vx , vy), belong. The Newtonian equation determines

the two acceleration components in terms of the position. This system

of two second-order autonomous equations can be rewritten as a sys-

tem of four first-order equations. Due to the conservation of energy,

one of the four variables (for example, vy) can be expressed in terms

of the others, so only three independent first-order differential equa-

tions remain. We have seen in Section 4.8 that a necessary condition

1 Conservative systems are frictionless limits of dissipative systems. This limit, however,

might be very complicated (an increasing number of spiral attractors appear with

diminishing basins); it is therefore useful to study the conservative case on its own.
2 Such systems can be described efficiently by means of the canonical formalism of

classical mechanics, but we do not assume in the following that the reader is familiar

with this.
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(x0,  0)
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(a)

x

y
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(x1,  1)

(x2,  2)

Fig. 7.1. Poincaré map (conservative planar motion of a single point mass).
The section is taken here with the plane y = y0. (a) Points (xn, vn) are the
intersections with trajectories coming from above. (b) Periodic orbits consisting
of one loop correspond to the fixed points (x∗, v∗) of the map; those with two
loops correspond to two-cycles (P1, P2).

for chaos is an at least three-dimensional phase space. The same sit-

uation arises in the case of two bodies moving along a straight line.

We therefore conclude that conservative chaos may occur in the motion

of a single body in a plane or of two bodies along a line, even with-

out driving. Henceforth we do not study cases more complicated than

these.

In this new class it is also useful to monitor the three-dimensional

phase space motion in a plane in the form of a map, i.e. in discrete

time. This can be achieved by defining a Poincaré map: one of the po-

sition and velocity co-ordinates is recorded when the system happens

to be in a certain position. This can be, for example, that co-ordinate

y takes on a certain value y0. Defining a Poincaré map corresponds

to intersecting a continuous trajectory of the flow by a surface (see

Fig. 7.1). This surface is called a Poincaré section (and the entire phase

portrait is a Poincaré portrait). In order for the velocity value vx to be

unique, the intersections of trajectories coming from a certain direction,

for example from above, are recorded. The successive intersections obey

a map:

(xn+1, vn+1) = M(xn, vn). (7.2)

(For the sake of simplicity, subscript x of the velocity component is

omitted.) One sees from the definition that the fixed points of the map

correspond to periodic orbits of the flow.

In contrast to stroboscopic maps, the intersections are now taken

not at certain phases, but at certain configurations. The Poincaré section

has to be chosen in such a way that typical trajectories can intersect
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the surface many times. The explicit form of the map depends on the

choice. For properly chosen surfaces, however, the conclusions regarding

the global dynamics (whether it is chaotic, or what the ratio of the areas

belonging to chaotic and to regular trajectories is) are independent of the

location of the surface.

The Poincaré map is, of course, invertible since it is derived from

a differential equation (see Section 4.7). Due to the lack of friction,

the forward and backward dynamics are of the same nature. Therefore,

the inverse map, M−1, is equivalent to the original one. Since the area

contraction rate of an inverse map is the reciprocal of the original, the

Jacobian must be unity:

J ≡ 1. (7.3)

This ensures that there exist no attractors in the map either.

The Jacobian of driven conservative systems is also unity (cf. equa-

tion (5.80) with σ = 0). Thus, a common property of maps related to

any kind of conservative systems is that they are area preserving (in

suitably chosen co-ordinates at least). Relevant features of conservative

chaos can thus be understood by studying area preserving maps in the

plane. In view of (5.57), in such maps the local Lyapunov exponents are

the same in absolute value but are each other’s opposites:

λ(r) = −λ′(r). (7.4)

The average Lyapunov exponent is therefore (−1) times the average

negative exponent: λ̄ = −λ̄
′
.

Problem 7.1 How does the stability of a periodic orbit depend on the

stability matrix, L , of the corresponding fixed point of an area preserving

two-dimensional map?

7.2 The area preserving baker map
First, let us consider the area preserving case of our simplest chaotic

model, the baker map. It is worth considering immediately the asym-

metric (closed) case, given by equations (5.15) and (5.16), which is area

preserving if the height of the horizontal cutting line and the thickness

of the lower rectangle after compression are equal, i.e. if b = c1 < 1 and

c2 = 1 − c1. The map is given by

(xn+1, vn+1) =
(

bxn,
vn

b

)
, for vn ≤ b, (7.5)

(xn+1, vn+1) =
(

1 + (1 − b)(xn − 1), 1 + vn − 1

1 − b

)
, for vn > b. (7.6)
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Fig. 7.2. The area preserving baker map: Points of a trajectory started with
x0 = 1/2, v0 = 2/π2 after n = 10, 1000 and 30 000 steps (b = 1/3).

The phase space is the unit square. If a trajectory is started from

a point chosen at random inside this area, it visits the entire square

(Fig. 7.2). Chaos is more extended than in the dissipative case. Figure

7.2 also illustrates that the distribution of the points is uniform after a

sufficiently large number of iterations. The long-time chaotic behaviour

in conservative systems is thus also characterised by a time-independent

probability distribution. Its support is an extended area (not a fractal),

and the density is uniform.

The chaoticity of the motion is also demonstrated by the fact that

both the topological entropy and the average Lyapunov exponent – which

are defined in the same way as in dissipative cases (see equations (5.51)

and (5.54)) – are positive.

Problem 7.2 Determine the topological entropy of the area preserving

baker map.

Problem 7.3 Determine the average Lyapunov exponents of the area

preserving baker map. Derive the inverse map and show that it is equiv-

alent to the original (and therefore that its Lyapunov exponents are the

same).

The argument employed to unfold the relation between chaos and

the unstable manifolds of hyperbolic periodic orbits can be applied in the

same manner as in the closed dissipative case. We find that the chaotic

region is the union of the hyperbolic cycles’ unstable manifolds. Due

to the equivalence of the forward and backward iterations, however, the

stable manifolds now have a similar property.

It is also useful to follow the time evolution of the entire unit square.

Since it is mapped onto itself, details can only be discovered by distin-

guishing points originating above and below the dividing line. As the

number of iterations increases (Fig. 7.3), the two colours become dis-

persed in an increasing number of thin vertical bands (although not of the
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Fig. 7.3. Evolution of the entire phase space volume of the area preserving
baker map in eight iterations (b = 1/3). The points starting below (above) the
line vn = b are shaded dark (light) grey. After n = 8 steps, the two colours are
already well mixed.

same width). After an infinite number of steps, both colours are present

in an arbitrarily close vicinity of any point. A mixture of the two colours

arises. This is exactly the mechanism that plays a role in the mixing of

different materials (see Boxes 7.1 and 7.4 and Section 9.4).

Problem 7.4 A map similar to the area preserving baker map is called

the ‘cat’ map, defined on the unit square by the rule (xn+1, vn+1) =
(2xn + vn, xn + vn) with both xn and vn periodic in (0, 1). The map is

named after the cat head usually drawn into the unit square to illustrate

the action of the map.

xn

n = 0n

n = 1

xn

n

n = 1

xn

n

The middle and right panels show the image of the head in the entire plane

and in the periodic representation, respectively. Determine the cat map’s

average Lyapunov exponent, its topological entropy and the directions

of the unstable and stable manifolds.
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Box 7.1 The origin of the baker map

The (symmetric) area preserving baker map appeared first in the works of the German mathematician,

Eberhard Hopf, on ergodic theory in the 1930s. After defining the baker map, the author remarks that ‘the

repeated application of the map is something like the way puff pastry is made’, and he proves with

mathematical rigour the mixing property. The map’s action on the unit square is indeed very similar to the

process that the dough undergoes in the course of stretching. The stretched dough (whose volume is

practically conserved) is folded. The so-formed two-layered piece is stretched again, then folded, and these

steps are repeated (Fig. 7.4). A baker map given by (7.5) and (7.6) with b = 1/2 corresponds to a stretching

process in which the stretched piece of dough is not folded, but cut into two identical pieces which are then

put on top of each other (Fig. 7.4). (In the area preserving version of map (6.14) even the folding is similar

to that of dough stretching.)

The name of the map, accepted after Hopf’s studies, refers to the similarity with a baker’s work. At the

same time, this reminds us that chaotic processes result in continuous stretching, reordering and folding of

phase space. As kneading and stretching dough homogenise the initial distribution of the ingredients (salt,

sugar, flour, etc.), so do chaotic processes lead to good mixing in phase space.

The extension of the baker map to closed and open dissipative cases dates back to the 1980s. In the

dough-kneading analogy, the effect of these maps mimics the action of a ‘gluttonous’ baker who eats up a

certain (uniformly distributed) portion of the dough after each stretching step. No wonder that finally only

infinitely thin ‘salty sticks’ remain: the fractal filaments of the chaotic attractor or of the unstable manifold

of the saddle.

dough stretching:

n = 0

n = 1

n = 2

baker map:

Fig. 7.4. Schematic representation of the traditional stretching (the piece of dough is shown from the side)
and the stretching process corresponding to the baker map given by (7.5) and (7.6) (b = 1/2).

The area preserving baker map – although a good model from many

points of view – does not illustrate the general property of conservative

chaos (Section 1.2.3): that it co-exists in phase space with regular motion.

This feature is evident, however, for example in the frictionless limit
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Fig. 7.5. Phase portrait of a typical area preserving map: two independent
chaotic bands (black) of an undamped oscillator kicked with a roof amplitude
function; see (5.37) (a = 1.4, E = 1). The chaotic bands have a large extension
(see units), the white patches inside them belong to elliptic islands. (The point
H+ = (0.294, 0.294) is so close to the origin that it is not marked.)

(E = 1) of the kicked oscillator maps (Fig. 7.5). In the roof map (5.37),

fixed point H+ is stable for a < 2, and is necessarily elliptic. Around the

elliptic point and the higher-order elliptic cycles the motion is regular.

Between such elliptic islands chaotic bands appear, within which the

iterated point moves at random. There is no crossing allowed from one

band either to another band or to the elliptic islands, and vice versa. A

chaotic band can be traced out by any trajectory whose initial condition

falls into this band, since all such trajectories fill the band in the same

way.

7.3 Kicked rotator – the standard map
7.3.1 The map

In conservative systems, variables are often angles that determine the

position of a point along a closed phase space curve, for example

an ellipse. We therefore present a kicked model with a periodic co-

ordinate, which can be considered to be a prototype of conservative

dynamics.

Consider a body rotating freely about a vertical axis: a rotator. The

simplest way to realise this is to take a weightless rod of unit length in
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a horizontal plane, with one end fixed to a ball and the other end fixed

to a rotating vertical shaft (Fig. 7.6). The instantaneous position of the

ball is given in terms of its distance, x , along the unit circle’s perimeter

measured from a reference point (which is simply the deflection angle),

and is considered to be periodic in 2π . The kicking amplitude is written

as uI (x), where u is a characteristic velocity and I is a dimensionless

amplitude function.

x

Fig. 7.6. Kicked rotator. A
ball fixed to the end of a thin
rod of unit length moves on a
circular orbit, which is affected
by instantaneous momentum
transfers occurring with
period T .

Since we are dealing with a free kicked motion, the result of

Appendix A.1.5 applies:

xn+1 = xn + vn T, vn+1 = vn + uI (xn+1). (7.7)

Variables xn and xn+1 are angles; they represent the same position when

shifted by 2π . Measuring velocity in units of u and distance in units

of uT , the dimensionless form of the kicked rotator map is given by

(I ≡ f )

xn+1 = xn + vn, vn+1 = vn + f (xn+1). (7.8)

Problem 7.5 Derive the dimensionless map of the kicked rotator for

the before-kick co-ordinates.

Problem 7.6 Derive the map of the kicked rotator in the presence of

a drag linearly proportional to the velocity, both for the before-kick and

the after-kick co-ordinates.

An important special case of the rotator map is obtained with a

sinusoidal kicking amplitude function,

f (x) = a sin x, (7.9)

where a is a dimensionless positive constant called the non-linearity

parameter. Map (7.8) is then given by

xn+1 = xn + vn, vn+1 = vn + a sin xn+1. (7.10)

This is the standard map, which plays an important role in understanding

chaos in conservative systems.

Problem 7.7 Show that the standard map also describes the motion of

a charged rotator placed into a homogeneous electric field switched on

periodically for very short times.
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Box 7.2 Connection between maps and differential equations

The example of the kicked rotator is well suited for exploring the connection between differential equations

and maps. With a sinusoidal amplitude function (7.9), the dimensional stroboscopic map, (7.7), is as follows:

xn+1 = xn + vn T,

vn+1 = vn + ua sin xn+1.

After rearrangement,

xn+1 − xn

T
= vn,

vn+1 − vn

T
= ua

T
sin xn+1.

In the limit T → 0, the left-hand sides of the equations become the time derivative of x and v. If amplitude

a is proportional to T , i.e. a/T is kept constant while taking the limit, this is equivalent to

ẍ = ua

T
sin x,

which is the continuous-time equation of motion of a pendulum (see Problem 3.1 with g/ l → ua/T ).

Momentum transfers of decreasing strength and of increasing frequency indeed correspond to a

continuously acting force. The point x = 0 provides the unstable equilibrium position of the pendulum (a

pencil standing on its point).

The fact that the map belonging to finite values of T is chaotic is a warning concerning numerical

solutions of differential equations: if the time step h (see Appendix A.3) of the numerical simulation is

chosen to be too large, one may obtain erroneous results. This can make regular motion appear chaotic.

More generally, the dynamics of a stroboscopic map of period T essentially differs from that of the

differential equation obtained in the formal limit T → 0 of the map. In a two-dimensional phase space,

differential equations can describe regular motion only, while two-dimensional maps are usually chaotic.

7.3.2 Fixed points of the standard map and their stability

The condition for the existence of a fixed point (x∗, v∗) of (7.10) for

a �= 0 is as follows:

x∗ = x∗ + v∗, v∗ = v∗ + a sin x∗. (7.11)

This yields v∗ = 0 and sin x∗ = 0. A fixed point has to be a state of rest,

and it may therefore only exist in positions where the body is not exposed

to kicks. Two positions are therefore allowed, with co-ordinates x∗
+ = 0

and x∗
− = π . (Obviously, the values shifted by 2π are formally also

solutions, but these correspond to the same positions along the circle.)

The stability matrix, (4.36), of the fixed point H+ = (0, 0) is given

by

L =
(

1 1

a 1 + a

)
, (7.12)
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with eigenvalues

�± = 2 + a ± √
(2 + a)2 − 4

2
, (7.13)

which are positive for a > 0. As �+ is greater than unity, the fixed point

H+ is always hyperbolic.

Problem 7.8 Determine the directions of the stable and unstable man-

ifolds around H+.

The stability matrix of the fixed point H− = (π, 0) is obtained from

(7.12) by replacing a by −a. For a < 4, its eigenvalues are complex

with unit absolute values. Thus, fixed point H− is stable, elliptic for

not too large values of a, but loses stability for a > 4 (see Table 4.2).

For sufficiently strong kicks, even states with vanishing kick amplitudes

(x = 0 and π ) are unstable, because the momentum transfer changes

sufficiently rapidly in their vicinity.

The points P1 = (0, π ) and P2 = (π, π ) represent a two-cycle of

the standard map, which is stable for weak kicks. Since the velocity

is not zero here, this cycle corresponds to a rotation of the rod (in the

positive direction). Rotation in the opposite direction is described by the

two-cycle P ′
1 = (0, −π ), P ′

2 = (π, −π ).

Problem 7.9 Show that P1 = (0, π ), P2 = (π, π ) is a two-cycle. For

what values of a is it stable?

7.3.3 Discrete-time dynamics of the free rotator

When the rotator is not exposed to kicks (a = 0), it rotates with constant

velocity: vn = constant. The position co-ordinate changes by the same

amount in each step of map (7.10). How this simple dynamics mani-

fests itself depends curiously on the precise value of the velocity. If, for

example, the velocity is exactly π , we observe a two-cycle. Its position

is arbitrary, and therefore orbits starting from any point along the line

vn = π are two-cycles. (The cycle is marginal; the eigenvalues of the

linearised dynamics are �± = 1.) Similarly, the velocity values 2π/q
(q being a natural number) result in q-cycles, and motion belonging to

velocities of absolute values vn = 2πr (r < 1) is also periodic if r is

rational (i.e. r = p/q , where p and q are natural numbers). If, however,

r is irrational, the point does not return exactly to its initial position

after any finite number of steps. The orbit, no matter what the initial

co-ordinate x is, traces out the entire line segment vn = 2πr (see Fig.

7.7(a)).3

3 Such trajectories represent quasi-periodic motions of the map (see Section 7.5.1).
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Fig. 7.7. Phase portraits of the kicked rotator for different kicking strengths. The
parameter values are: (a) a = 0, (b) a = 0.25, (c) a = 0.9, (d) a = 1.5, (e) a = 3
and (f) a = 10. In all cases, the initial conditions are x0 = 0 and x0 = −3.1, with
values of v0 dividing the range (−π, π) into 30 equal parts. The number of
iterations is 5000. The closed loops and the curves crossing the entire interval
(−π ≤ xn < π) correspond to oscillations around stable cycles and to the turning
over of the rotator, respectively.

7.3.4 Chaos in the kicked rotator

In the presence of kicks (a �= 0), the only fixed points and two-cycles are

those determined in Section 7.3.2. In accordance with elliptic behaviour,

closed trajectories surround the fixed point H− and the two-cycles as
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long as a is not too large. This implies that the rotator oscillates with

some amplitude around the stable equilibrium state (similar to the way

in which a compass needle oscillates around the north–south direction).

Trajectories further away from the stable orbits are curves defined over

the entire x-range, and correspond to the rotator’s turning over (with non-

uniform velocity). For small values of a (Fig. 7.7(b)), the manifolds of

the unstable fixed point H+ look like simple separatrices, which separate

turnovers and oscillations.

For stronger kicks, however, it becomes visible that the ‘separatri-

ces’ are not sharp curves. In their neighbourhoods, points of a single

trajectory visit a whole two-dimensional region. This region is a chaotic

band, in which points jump in a random fashion with uniform asymptotic

distribution. Such bands exist also in other parts of the phase space, typ-

ically around separatrices of higher-order hyperbolic cycles (Fig. 7.7(c)

and Plate XX).

When the non-linearity parameter is increased further, the chaotic

bands widen. Oscillations around elliptic orbits are still present; some

of the smooth trajectories corresponding to turnovers, however, are de-

stroyed. They are replaced by a chain of tiny elliptic islands, with thin

chaotic bands between them. Each chaotic band is bounded: the veloci-

ties cannot take on arbitrarily large values in the course of iterations.

At a certain critical value, ac, however, even the last smooth curve

corresponding to turning over disappears. This critical value is found

numerically to be ac = 0.972. For kicks stronger than this, the interesting

situation arises that the velocity may take on arbitrary values. The total

area of elliptic islands decreases as a increases (Figs. 7.7(d) and (e)).

For sufficiently large values of a, all islands disappear, and the entire

phase space becomes a single chaotic band (Fig. 7.7(f)). Then the rotator,

starting from any initial condition chosen at random, moves chaotically.

Even a single trajectory visits the entire phase space, and the distribution

of the points becomes uniform. It is in this limiting case that the dynamics

is similar to that of the area preserving baker map.

Box 7.3 Chaotic diffusion

For parameter values greater than ac, nothing limits the velocity of the rotator. In every step it receives kicks

of strength a sin xn+1, depending on the position co-ordinate, xn+1. Since for large a the distribution of these

values is uniform, the kicking strengths may take on arbitrary values within the interval (−a, a). The

velocity change corresponds therefore to a random walk along a straight line (−∞ < vn < ∞). On starting

a large number of points from an interval of length 2π on the vn-axis, we find, accordingly, that the points

spread out more and more along this axis (Fig. 7.8), just like a drop of ink in a fluid at rest. Chaotic

dynamics thus generates a diffusion process.
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The diffusion coefficient is easy to estimate. In a random walk with displacement ri in step i (ri is a real

number) the total displacement in n steps is Rn = ∑n
i=1 ri . If the ri ’s can be considered as identical,

independent variables of zero average, the average displacement is Rn = 0, but the mean square

displacement, R2
n = (

∑n
i=1 ri )2, is non-zero (the average is taken over all the initial conditions). The average

of the mixed terms in the full square is zero because of independence: rir j = 0 if i �= j . Moreover, since the

averages of the individual squares are equal, the mean squared displacement is proportional to the number

of steps: R2
n = r 2

i n. The usual definition of the diffusion coefficient, D, of a random walk is R2
n = 2Dn,

which yields D = r 2
i /2.

Applying this to the kicked rotator, where the random walk takes place along the velocity axis and the

velocity jump is ri = a sin xi+1, we obtain the diffusion coefficient

D = 1
2

a2 sin2 xi+1 = 1
4

a2,

50000

100 000

150 000

number of points in cells

n = 10

n = 100

n—
2p

–10 0 10–30 –20 20 30

Fig. 7.8. Diffusion in the dynamics of the kicked rotator: distribution of 106 particles, started with a uniform
distribution on the cell (−π < x0 < π, −π ≤ v0 ≤ π) along the v-axis after n = 10 and 100 steps (a = 10).
The distribution is a bell-shaped one, typical of diffusion. The width of each column is 2π . The initial
distribution at n = 0 (the middle column of height 106/(2π)) is not displayed.

since the distribution of x is uniform, and the average of sin2 x is 1/2. This result is only valid in the limit of

strong kicks (a 	 1), because only in this case are the subsequent increments independent of each other.

The velocity Rn ≡ vn after n steps is the sum of the velocity increments; the mean square velocity is

therefore

1
2
v2

n = D n,

implying that the average kinetic energy increases linearly in time.

This shows that a motion of deterministic origin observed for a sufficiently long time can generate

exactly the same process as external noise. In the case of Brownian motion, which is a prototype of

diffusion, the force acting on the particle is noise-like and the equation of motion is stochastic, in contrast to

our example, where kicking is described by a simple, completely deterministic, dynamics. Nevertheless,

statistically they lead to the same result. Diffusion is not sensitive to the origin of the random behaviour.
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Fig. 7.9. Schematic
diagram of the stable and
unstable manifolds of an
area preserving map’s fixed
point, H. The consecutive
images (pre-images) of the
first homoclinic point, P ,
are denoted by 1, 2, 3 (−1,
−2, −3). Domains with
identical shading are
images of each other, and
have therefore equal areas.

7.3.5 Structure of chaotic bands

Let us study now in more detail the chaotic band around fixed point H+
when the velocity vn cannot yet take on arbitrarily large values (a < ac).

Figure 7.9 schematically represents the manifolds of a typical fixed

point. These are only slightly bent in the vicinity of the fixed point,

but further away they exhibit increasingly meandering and oscillating

behaviour. Thus, they unavoidably intersect each other somewhere in a

homoclinic point. Following the branches of the manifolds emanating

from the fixed point, the first intersection point is the first homoclinic

point, P . Whichever manifold is followed further, more and more ho-

moclinic points are found (see Box 6.3). Where the manifold returns

to the vicinity of the fixed point, its oscillations are already very large.

The reason for this is that the homoclinic points are denser close to the

fixed point (their distance is multiplied by |�−| < 1 in each step). Due

to area-preservation, the area enclosed by the manifolds between two

consecutive homoclinic points is the same as that of their image one step

later. The ‘tongues’ therefore become increasingly long and the mani-

folds meander more and more (generating newer and newer homoclinic

points).

This structure can be observed in Fig. 7.10, which shows a segment

of the manifolds of H+ = (0, 0) after an increasing number of numerical

iterations (the segment of the stable manifold must, of course, be iterated

backwards in order to obtain a longer piece). Following the manifolds

of increasing length, we find that they visit the entire chaotic band.

This holds for both manifolds. The width of the band is determined by

how strongly the manifolds oscillate. The skeleton of a chaotic band

is thus provided by the manifolds of the hyperbolic fixed points within

the band. In the band there may also naturally exist many higher-order

cycles. These possess manifolds of a similar nature, which also provide
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Fig. 7.10. Stable and unstable manifolds of fixed point H+ of the kicked rotator
(a = 0.9). (a) A square of size 0.00005, filled with 250 000 points and centred on
the fixed point, has been iterated 18 times forwards and backwards. The images
become so stretched along the manifolds that they return to the vicinity of the
fixed point. (b) Blow-up of the region around the origin. The oscillation of the
manifolds can be clearly observed. (c) Image of the manifolds after 50 iterations.
(d) The entire chaotic band traced out numerically by a single trajectory.

a skeleton of the band by themselves. (Among manifolds of different

cycles heteroclinic points are also generated; see Box 6.3.) A chaotic

band is thus always the union of the stable and unstable manifolds of all

the hyperbolic cycles it contains.

7.4 Autonomous conservative systems
7.4.1 Ball bouncing on a double slope

The simplest example of chaotic behaviour in non-driven conservative

systems is provided by a ball bouncing elastically in a vacuum between

two facing slopes of identical inclination, α. The description of the mo-

tion is based solely on the knowledge of oblique projection. Note that

the velocity vector at the instants of the bounces should be recorded and

a kind of Poincaré map should be constructed from this. The positions at
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Fig. 7.11. Bouncing of a
ball on a double slope. The
velocity is given in terms of
the perpendicular (w) and
parallel (u) components.
The rule connecting them
depends on whether the
ball remains on the same
slope (case 1) or not (case
2).

the instants of the collisions then follow from the conservation of energy,

while the paths between collisions are the well known parabola arcs.

Denoting the velocity components after the nth bounce by vxn and

vyn , the displacement and velocity components evolve until the next

collision according to

x(t) = xn + vxnt, y(t) = yn + vynt − g

2
t2, (7.14)

vx (t) = vxn, vy(t) = vyn − gt, (7.15)

where t is the time elapsed since the bounce. Initially the ball is on

the slope; its co-ordinates therefore fulfil yn/xn = tan α (see Fig. 7.11).

The dynamics basically differs according to whether the next bounce is

on the same slope or not. In both cases, the impact velocity should be

decomposed into components perpendicular and parallel to the slope,

since these are the components in which the rule of elastic bounce is

the simplest: the perpendicular component, w, changes sign, while the

parallel one, u, remains unchanged.

Case 1
If the ball does not jump to the other slope, the time, tn , elapsed until the

next bounce follows from the condition that the impact point, xn+1 ≡
x(tn), yn+1 ≡ y(tn), lies on the original slope: yn+1 = xn+1 tan α. From

(7.15),

gtn = 2(vyn − vxn tan α). (7.16)

Using this and (7.15), the velocity components, u and w, are obtained

after the next impact as follows:

un+1 = un − 2wn tan α, wn+1 = wn . (7.17)

This is the Poincaré map of bouncing on a single slope. It describes the

steady increase of the parallel velocity; the perpendicular velocity does

not change.

Problem 7.10 Derive map (7.17).
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Case 2
Positioning the origin of the reference frame into the break-point between

the two slopes, jumping over corresponds to the new co-ordinate xn+1

being negative. Since the ball hits the other slope, the new co-ordinates

now fulfil yn+1 = −xn+1 tan α. Based on (7.15), this yields for the flight

time, tn , the quadratic equation:

g

2
t2
n − (vxn tan α + vyn) tn − 2yn = 0. (7.18)

The solution is given by

gtn = vxn tan α + vyn +
√

Dn, (7.19)

where discriminant Dn is given by

Dn = (vxn tan α + vyn)2 + 4gyn . (7.20)

Co-ordinate yn follows from the energy conservation:

gyn + 1

2

(
v2

xn + v2
yn

) = E, (7.21)

where E is the total energy per unit mass. The velocity components at

the impact are obtained from (7.15):

un+1 = −un + wn tan α − wn+1 tan α, (7.22a)

wn+1 =
√

Dn cos α. (7.22b)

Problem 7.11 Derive map (7.22).

The mapping rule is made closed by taking the square of equation

(7.22b) and applying (7.20), (7.21) and the transformation derived in the

solution to Problem 7.10. Thus,

w2
n+1 = w2

n(cos2 2α − 2 cos2 α) + u2
n(sin2 2α − 2 cos2 α)

+ unwn sin 4α + 4E cos2 α. (7.23)

We introduce the new variable, z ≡ w2, which is proportional to the

kinetic energy carried by the velocity component perpendicular to the

slope. Thus, with (7.22), we have obtained the Poincaré map correspond-

ing to jumping over to the other slope.

The entire map may be written in a dimensionless form by measuring

the velocities in units of
√

2E . Utilizing trigonometric identities, the

dimensionless dynamics is given, in Case 1, by

un+1 = un − 2
√

zn tan α, zn+1 = zn, (7.24)
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and in Case 2 by

un+1 = −un + √
zn tan α − √

zn+1 tan α,

zn+1 = −zn

(
1 + 1

2
sin 4α tan α

)
− u2

n

1

2
sin 4α cotan α

+ un
√

zn sin 4α + 2 cos2 α. (7.25)

Problem 7.12 Show that the ranges of the dimensionless variables are

| un | ≤ 1 and 0 ≤ zn ≤ 1, and that the constraint zn ≤ 1 − u2
n must hold

in each step.

The mapping switches from (7.24) to (7.25) when the former loses its

α α

Fig. 7.12. Real space motion
corresponding to the fixed
point (0, z∗) of the map.

validity, i.e. when the new yn+1 computed from (7.24) becomes negative.

Then the kinetic energy, u2
n+1 + w2

n+1 = 1 − gyn+1/E , measured in units

of E , would be greater than unity. Thus, map (7.24) is valid as long as

the dimensionless kinetic energy expressed in terms of un+1 and zn+1 is

less than unity: (un − 2
√

zn tan α)2 + zn ≤ 1, i.e. |un − 2
√

zn tan α| ≤√
1 − zn . Consequently, if the nth point is in the region4

un ≥ 2
√

zn tan α −
√

1 − zn, (7.26)

then (7.24) should be applied; otherwise (7.25) should be used. (The role

of the boundary curve of inequality (7.26) is similar to that of the line

vn = b for the baker map described by (7.5) and (7.6)).

The map can have a fixed point only if it appears in (7.25) (map

(7.24) only describes bouncing downwards). The condition for this is

that u∗ = 0, i.e. that the impact is exactly perpendicular to the slope.

For the impact velocity w∗ = √
z∗, we obtain

z∗ = cos2 α

1 + (1/4) sin (4α) tan α
= cos2 α

1 + sin2 α cos (2α)
= 1

2 − cos (2α)
. (7.27)

In real space, the fixed point of the map corresponds to flying along a

single symmetric arc between the two slopes (Fig. 7.12). Interestingly,

the fixed point is stable only if the angle of the slopes is greater than 45◦.

For flat slopes the fixed point is hyperbolic.

Problem 7.13 Determine the map linearised around the fixed point.

Several higher-order cycles are, of course, also present in the map.

Their stability depends sensitively on the inclination of the slopes. In

addition to the case described in Section 1.2.3 (see Fig. 1.20, where

α = 50◦), Fig. 7.13 presents a further example.5

4 The condition un − 2
√

zn tan α ≤ √
1 − zn is automatically fulfilled since

|un | ≤ √
1 − zn .

5 We suggest that the reader explores the rich variety of the possible phase space

structures by means of a computer program iterating the map.
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Fig. 7.13. Phase portrait of a
ball bouncing on a double
slope, in the plane
(un, zn ≡ w2

n ), for α = 73◦

(1.274 radian). Trajectories
begin from 30 different initial
conditions.

Problem 7.14 Show that the dynamics is non-chaotic if the angle of

each slope is 45◦.

7.4.2 Spring pendulum

Consider a pendulum whose thread is a spring with rest length l0 and

l

x

y

ϕ

K

g

Fig. 7.14. Forces acting on
the spring pendulum.

natural frequency ω0. This can also serve as a model of a body fixed to

the end of a rubber thread; we assume that the thread never loosens. The

spring pendulum can turn over.

Let the origin of the co-ordinate system be the point of suspension

(Fig. 7.14). When the point of unit mass fixed to the end of the thread is

at (x, y), the length of the spring is l ≡
√

x2 + y2, and the force arising

in it is K = ω2
0(

√
x2 + y2 − l0). The horizontal and vertical components

of this force are K (−x/ l) and K (−y/ l), respectively. Since gravity acts

along the y-axis, the equations of motion are given by

ẍ = −ω2
0x

(
1 − l0√

x2 + y2

)
, ÿ = −ω2

0 y

(
1 − l0√

x2 + y2

)
+ g. (7.28)

Another representation is obtained by using the spring’s instantaneous

length, l, and its angle, ϕ, as new variables (x = l sin ϕ, y = l cos ϕ):

l̈ = lϕ̇2 − ω2
0(l − l0) + g cos ϕ, lϕ̈ = −2l̇ϕ̇ − g sin ϕ. (7.29)

Measuring distance in units of the spring’s rest length, l0, and time

in units of 1/ω0 (see Appendix A.2.2), we obtain the dimensionless

equations in rectangular coordinates as

ẍ = −x

(
1 − 1√

x2 + y2

)
, ÿ = −y

(
1 − 1√

x2 + y2

)
+ q, (7.30)
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Fig. 7.15. Poincaré
portrait, xn ≡ ϕn, vn ≡ ϕ̇n,
of the spring pendulum
obtained from eleven
different initial conditions,
with constant total energy
E = l̇ 2/2 + l 2ϕ̇2/2 −
ql cos ϕ + (l − 1)2/2 =
0.195; q = 0.07. The
dynamics is that of a
perturbed pendulum. In
spite of the relatively small
value of q, extended chaos
already appears in phase
space.

and

l̈ = lϕ̇2 − (l − 1) + q cos ϕ, lϕ̈ = −2l̇ϕ̇ − q sin ϕ, (7.31)

in polar co-ordinates. Here

q = g

ω2
0 l0

(7.32)

is the only dimensionless parameter of the system: the square of the ratio

of the spring’s period to that of a pendulum of constant length.

A value for q of order unity indicates that the properties of a pendu-

lum and of a spring are present in the system in about the same proportion.

The coupling of these properties is highly non-linear; chaos is therefore

at its strongest for such parameter values.

The Poincaré sections were constructed in two different ways. One

was taken in the position when l = l0, i.e. when the instantaneous length

of the pendulum was equal to the rest length (with positive stretching

velocity). The variables of the map are in this case the angular deflection,

xn ≡ ϕn , and the angular velocity, vn ≡ ϕ̇n (Fig. 7.15). In the other case,

the map was defined by the condition ϕ = 0 (ϕ̇ > 0), and it was plotted

in the plane of xn ≡ ln, vn ≡ l̇n (Fig. 7.16). Because of the choice ϕ = 0,

this is equivalent to taking another Poincaré section, the section defined

by x = 0, ẋ > 0 (on which xn ≡ yn, vn ≡ ẏn) in the Cartesian repre-

sentation (7.28). The phase portraits illustrate how elliptic and chaotic

domains are embedded into each other.
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Fig. 7.16. Poincaré portrait, xn ≡ ln, vn ≡ l̇n, of the spring pendulum with the
same parameters and initial conditions as in Fig. 7.15. (The domains of different
initial conditions, which succeed from the middle of Fig. 7.15 to its border,
appear here in a different order.)

7.4.3 Body swinging on a pulley

Two point masses are fixed to the ends of an unstretchable thread of

m g
1

m g
2

K

l

L l–

K

ϕ

Fig. 7.17. Forces acting on
the point masses at the ends
of the thread (see also Fig.
1.15).

length L , wound around a fixed pulley with negligible radius and mass.

The body of mass m2 can only move vertically, while the other body, of

mass m1, can also swing in the vertical plane. The instantaneous position

of the swinging point is given in terms of the angular deflection, ϕ, and

the distance, l, measured from the pulley. Due to the constant length of

the thread, the position of the other body is also uniquely determined.

When writing the equation of motion for m1, it is worth using a

frame co-rotating with this point. The instantaneous angular velocity is

ϕ̇; therefore, inertial forces also act on the body. The magnitude of the

centrifugal force is m1lϕ̇2, and it points outwards in the direction of the

thread, along with component m1g cos ϕ of the weight (see Fig. 7.17).

The acceleration in the direction of the thread is l̈, and therefore the

radial component of the equation of motion is given by

m1l̈ = m1g cos ϕ + m1lϕ̇2 − K , (7.33)

where K is the magnitude of the force in the thread. In the direction

perpendicular to the thread, the other inertial force, the Coriolis force,

acts in addition to the component −m1g sin ϕ of the weight. Since, in

the co-rotating frame, m1 moves radially with velocity l̇, the magnitude
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Fig. 7.18. Poincaré
portrait, xn ≡ ln, vn ≡ l̇n
(ϕ = 0, ϕ̇ > 0), of a body
swinging on a pulley for
mass ratio μ = 0.3. The
dimensionless total energy
is E = l̇ 2/2 + μl 2ϕ̇2/2 −
μl cos ϕ − (1 − μ)(1 − l )
= −0.3.

of the Coriolis force is 2m1l̇ϕ̇. For a positive angular velocity, ϕ̇, it de-

flects the body to the right of the instantaneous velocity. Consequently,

the equation of motion perpendicular to the thread is given by (see

Fig. 7.17)

m1lϕ̈ = −m1g sin ϕ − 2m1l̇ϕ̇. (7.34)

The equation for mass m2 moving vertically is simply

m2l̈ = K − m2g, (7.35)

since the thread is unstretchable and weightless, and the force in the

thread is of equal magnitude at both ends.

Adding together equations (7.33) and (7.35) causes the forces K and

−K to cancel. Dividing this and (7.34) by the total mass, m1 + m2, we

obtain the following equations:

l̈ = μg cos ϕ + μlϕ̇2 − (1 − μ)g, lϕ̈ = −g sin ϕ − 2l̇ϕ̇, (7.36)

where

μ ≡ m1

m1 + m2

. (7.37)

Measuring length in units of the total thread length, L , and time in

units of
√

L/g (which is proportional to the period of a pendulum of

length L), we obtain the dimensionless equations

l̈ = μ cos ϕ + μlϕ̇2 − (1 − μ), lϕ̈ = − sin ϕ − 2l̇ϕ̇. (7.38)

Figure 7.18 (and Plate VIII) shows a Poincaré portrait belonging to the

mass ratio μ = 0.3 (in Fig. 1.17, μ = 0.2). It is clearly visible that elliptic

and chaotic regions are embedded into each other.
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Problem 7.15 The height of the vessel shown in the following figure

can be expressed as follows:

V (x, y) = 0.5 − 10−2(x2 + 3y2) + 10−4(x2 + 3y2)2 + 2 × 10−3x2 y2,

where both the rectangular co-ordinates, x, y, and the height, V , is mea-

sured in centimeters (black and white bands indicate height differences

of 0.5 cm). Show that the motion of a ball starting on the rim of height 5

cm with zero initial velocity is typically chaotic by plotting an orbit on

the (x, y)-plane. Construct a Poincaré portrait. (For simplicity, consider

the motion to be a motion in potential V (x, y).)

x

y

7.5 General properties of conservative chaos
7.5.1 The role of tori

The closed phase space curves displayed in Figs. 7.13, 7.15, 7.16 and

7.18 correspond in the three-dimensional flows to ‘tube-like’ smooth

surfaces called tori (see Fig. 7.19(a)). These examples also illustrate that

tori are typical formations of the phase spaces of conservative systems,

even in most of the chaotic cases. One of the reasons for their ubiquity is

that stable cycles are elliptic: oscillating motion develops in their close

neighbourhood, but, due to the lack of friction, the point remains at a

finite average distance from the periodic orbit. Flow trajectories then

move on a surface surrounding the stable periodic orbit in the form of a

tube (see Figs. 7.19 and 7.20). Tori may also be present far away from the

stable orbits. A torus itself is always an invariant surface, i.e. a surface

whose points all stay within the surface in the course of the entire motion.

The period of the motion along the central line of a torus is usually

not equal to that winding around the torus surface (in Fig. 7.19(a) the

motion in the vertical plane and that perpendicular to it are examples of

this decomposition). The motion on tori is a combination of two types of

periodic motion of different frequencies: Their ratio, the winding number
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Fig. 7.19. Tori of conservative systems. (a) A torus in the phase space of an
autonomous two-dimensional system. (b) A torus in the phase space of a driven
one-dimensional system. The circular arc between the two black dots is the
angular deviation, 	θ1, of a trajectory running on the torus after one iteration of
(a) a Poincaré map and (b) a stroboscopic map.
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Fig. 7.20. Torus of a driven frictionless harmonic oscillator:
ẍ = −ω2

0x + f0 cos (2π t/T ). The motion is represented (a) in the (x, v)-plane
(the projection of a trajectory running on a torus as in Fig. 7.19(b)), and (b) in
the stroboscopic map. The point turns in the map by the same angle in each
step. The initial condition is the same as in Fig. 4.5; the parameters are
� = 1, ω0 = 1.1 and α = 0; E = 1.

ν ≡ ω1/ω2, is the same on the entire torus surface. The dynamics on a

torus is, of course, never chaotic.

Tori are represented in maps (both stroboscopic and Poincaré) by

continuous curves: the intersection of the torus surface and the plane

of the map. Hereafter, continuous curves appearing in area preserving

maps will also be called tori. Tori of maps are invariant curves, which

are mapped onto themselves. For a trajectory that intersects the plane of
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(a) (b) (c)

Fig. 7.21. Motion on tori of maps (schematic diagram). (a) Rational torus
(ν = 1/5); (b) rational torus (ν = 3/5); (c) irrational torus (ν = √

2/9).

the map with period T = 2π/ω2, the angle of turn along the map’s torus

is given by

	θ1 = ω1T = 2πν = 2π
ω1

ω2

. (7.39)

As far as maps are concerned, the winding number, ν, is the ratio of the

angle of turn along the torus curve per iteration to the full angle (2π ) (see

also Fig. 7.19). This can clearly be seen in the example of the sinusoidally

driven frictionless oscillator of natural frequency ω0, where T = 2π/�

is the driving period, ω1 ≡ ω0, and ν = ω0/� (see Fig. 7.20).

Problem 7.16 Determine the winding number from the eigenvalues,

�±, of the dynamics linearised around elliptic fixed points of two-

dimensional area preserving maps.

The motion on some of the tori may correspond to sliding over the

entire co-ordinate space (in the examples of the kicked rotator and the

spring pendulum it corresponds to turning over). In such cases, the curves

representing the tori in maps are not closed loops (cf. Figs. 7.7(a) and

(b) and 7.15).

The motion on tori is fundamentally different for rational than for

irrational winding numbers. In the rational case, when the winding num-

ber can be written as ν = p/q (where p and q are natural numbers), the

motion is periodic for any initial condition on the torus. Each discrete-

time trajectory then consists of q points, and the order in which they are

visited depends on p. If, for example, p = 1, the points follow one by

one in a certain direction, while for p = 3 every third point is taken (see

Figs. 7.21(a) and (b)). Trajectories beginning from different points on

the torus perform the same periodic motion; their union traces out the

closed curve of the map.

For an irrational winding number, when ν = ω1/ω2 cannot be written

as p/q , the motion is not periodic, and it never returns exactly to the

initial position (see Fig. 7.21(c)). Such a motion is therefore called quasi-
periodic. (A single trajectory is then sufficient to trace out the entire curve

of the torus in the map.) There are, however, approximate returns. The
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value of the winding number can be read off from observing several

close returns. Any point of the torus returns into a small neighbourhood

of its initial position, on average after 1/ν iterations.

According to the rational or irrational character of its winding num-

ber, a torus is henceforth called rational or irrational. It is always the

higher frequency that is considered to be ω2, and the winding number is

thus at most unity. In fact, any point of the interval (0, 1] can represent

a winding number.

The role of irrational tori depends on how irrational their winding

numbers are. Interestingly, the measure of a number’s irrationality can be

determined. This is possible because every positive irrational number,

σ , less than unity can be expanded in a continued fraction, i.e. it can be

written in the form

σ = 1

a1 + 1

a2 + 1

a3 + . . .

≡ [a1, a2, a3, . . .], (7.40)

where the ai values are natural numbers. The expansion is unique, and

is obtained by subtracting from 1/σ its integer part (a1), then taking

the reciprocal of the result and subtracting its integer part (a2), and so

on. If we stop after n steps in the expansion (an+1 = an+2 = . . . = 0),

we obtain a rational approximant to the irrational number. Obviously,

the convergence to a given irrational number is slower the smaller the

numbers, ai , are. The numbers considered to be ‘most irrational’ are

those that are the most difficult to approximate by rational numbers, i.e.

whose continued fraction contains the most numeral ones.

Problem 7.17 Determine the first five elements of the continued frac-

tion representation for the following numbers: π − 3, e − 2,
√

2 − 1,√
3 − 1 and (

√
5 − 1)/2. What is the deviation of these rational approx-

imants from the respective numbers?

In this spirit, the ‘most irrational’ number is the golden mean,

g = (
√

5 − 1)/2 = 0.618. The expansion of g only contains ‘1’ because

it is the solution of the quadratic equation g−1 = 1 + g. Only a little

less irrational are the so-called noble numbers: the continued fraction

expansion of the kth noble number is gk = [k, 1, 1, 1, . . .] (k > 1).

Problem 7.18 Determine the first few noble numbers.

7.5.2 The KAM theorem

We now investigate what happens to a non-chaotic conservative sys-

tem when it is perturbed by an external effect. Non-chaotic conservative
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Fig. 7.22. Phase portrait of
an integrable system (a simple
pendulum) with a periodic
position co-ordinate (the
angle).

systems are called integrable. The phase spaces of these integrable sys-

tems are characterised by elliptic orbits surrounded by tori. A simple

example is the pendulum (see Fig. 7.22). Even if a few hyperbolic or-

bits exist, their stable and unstable manifolds constitute a special torus

that leads from one hyperbolic point to the other. This special torus

is a separatrix between periodic or quasi-periodic motion of different

kinds. Although the phase space of the unperturbed pendulum is two-

dimensional, we might add a third direction along which nothing yet

happens. The phase space surfaces are then shells of cylinders whose

bases are the trajectories of the two-dimensional flow (x ≡ ϕ, v ≡ ϕ̇).

A weak perturbation, for example the pendulum thread becomes slightly

elastic, modifies the behaviour in the (x, v)-plane and terminates the

independence from the third co-ordinate (see Fig. 7.15).

The responses of rational and irrational tori to perturbative effects

differ fundamentally. In the rational case (periodic dynamics), any point

of the unperturbed map returns exactly to its starting position; pertur-

bative effects can therefore accumulate. Along irrational tori (quasi-

periodic dynamics), there is, however, no exact return, and perturbative

effects might average out. We thus expect a kind of resonance to occur on

every rational torus (and on nearby irrational ones): deviations from the

unperturbed dynamics increase in time, and lead to the destruction of the

torus. Rational tori are therefore also called resonant ones. No invariant

curves similar to the original ones remain in the neighbourhood of de-

stroyed tori, motion can no longer be quasi-periodic everywhere; these

are the regions in which chaos appears. Thus, the stability of a torus

against perturbations depends on whether the dynamics on it is suffi-

ciently aperiodic, i.e. whether the torus is sufficiently irrational. The

destruction of a few tori can clearly be seen in Fig. 7.7(b), where some

smooth curves are replaced by a chain of short segments.
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Fig. 7.23. KAM theorem: winding number intervals of surviving tori (black
segments) represented on the interval 0 < ν ≤ 1 of all possible winding numbers
(K = 0.2). The removed intervals belonging to fractions with denominators
greater than seven are so short that they cannot be seen in this resolution. For
the sake of clarity, the removed interval around ν = 1 is not marked.

The condition of the destruction of tori is formulated in precise

form by the Kolmogorov–Arnold–Moser (KAM) theorem. This is valid

for weak perturbations described by sufficiently smooth functions (the

perturbation strength is measured by a dimensionless number, ε  1).

The KAM theorem states that tori are not destroyed by perturbations

whose winding number, ν , satisfies

∣∣∣ν − r

s

∣∣∣ >
K (ε)

s5/2
(7.41)

for any rational approximant, r/s, of the winding number ν. The constant,

K , depends on the perturbation strength, ε, only, and tends to zero in the

limit ε → 0. Rational tori, and irrational ones whose winding number

can be well approximated by rational numbers, typically do not survive.

The preserved tori are the very irrational ones whose winding numbers

can accurately be approximated by rational numbers with very large

denominators only. The surviving tori are often called KAM tori.
According to condition (7.41), in the winding number interval (0, 1]

there exists a band of width 2K (ε)s−5/2 around every rational number,

r/s (see Fig. 7.23), where perturbations generally destroy all the tori.

(What exactly appears in place of the resonant tori will be discussed in

Section 7.5.3.) Since there exist s different fractions with denominator

s (r = 1, 2, . . . , s), the length of the ν-intervals around rational winding

numbers with denominator s that do not fulfil the KAM condition can

be estimated as 2sK (ε)/s5/2 = 2K (ε)/s3/2. The total length of such

intervals is given by

2 K (ε)
∞∑

s=1

s−3/2. (7.42)

The infinite series converges,6 and since K (ε) is small for small ε, the

total length is always less than unity. In spite of the fact that an infinity

6 The limiting value is 2.612.
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(a)

hyperbolic
point

elliptic
point

(b)

Fig. 7.24. The neighbourhood of a rational (resonant) torus. (a) Integrable
system. The middle curve is a rational torus with winding number ν = r/s; the
inner and outer curves represent irrational tori. The arrows mark the
displacement directions under the s-fold iterated map. (b) Perturbed system.
The inner thin line represents a curve which moves under the s-fold iterated
perturbed map in the radial direction only, as marked by the arrows. The bold
line is the image of the thin line; the intersection points of the two curves are
fixed points. The innermost and outermost curves represent surviving irrational
tori, i.e. KAM tori (their deformation is, for simplicity, not indicated).

of tori and their neighbourhoods are destroyed, the majority of the tori

survive for small ε.

The scenario found in the winding number interval faithfully reflects

what happens in phase space: the surviving tori fill a large proportion of

the entire phase space. Even though for small values of ε the phase space

volume of the destroyed tori is small, it is not zero, which implies that

chaos may appear due to an arbitrarily weak external perturbation on an

originally non-chaotic system.7 This is the mathematical background of

the statement that chaos is not an exceptional, rather a typical temporal

behaviour.

7.5.3 Remnants of resonant tori (microscopic chaos)

Consider a rational torus whose winding number is of the form ν = r/s.

Each point of the torus is a fixed point of the s-fold iterated unperturbed

map. In general, the winding number changes continuously; therefore,

on one side (say outside) of the rational torus there are tori with winding

numbers greater than ν. We select a strongly irrational nearby torus on

each side (see Fig. 7.24). Therefore, in the s-fold iterated map the points

7 It may, for example, appear in the dynamics of a planet orbiting a not perfectly

spherical celestial body, because the force is not exactly central (and the planet’s

angular momentum is not a conserved quantity).
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Fig. 7.25. Remnants of a
destroyed resonant torus: a
chain of elliptic and
hyperbolic points
(schematic diagram)
around which
quasi-periodic and chaotic
motion dominates,
respectively. Only a few of
all the oscillating manifolds
are shown. For better
visibility, the extension of
chaos (the amplitude of
the oscillations) is
enhanced.

on the outer (inner) irrational torus move anti-clockwise (clockwise), as

indicated schematically in Fig. 7.24.

Under the effect of a weak perturbation, the irrational tori, according

to the KAM theorem, remain as invariant curves (and become slightly

deformed), but their winding direction does not change. The rational

torus, however, is typically destroyed and ceases to exist as an invariant

curve. The question is whether there remain any invariant points when

this occurs. The original rational torus can be considered as a curve whose

points do not rotate in the s-fold iterated map. Owing to continuity, in

the vicinity of the original location of the torus there must exist points

at which no rotation takes place, even in the presence of perturbation.

These points can only move radially under the action of the s-fold iterated

perturbed map. The union of all these points (a non-invariant curve) is

marked by a thin solid line in Fig. 7.24(b). Due to area preservation,

the image of this curve must be a curve that intersects the original one.

The intersection points, whose number is even, are the fixed points of

the s-fold iterated perturbed map. The number of such fixed points is,

therefore, at least 2s, but can also be an integer multiple of this. The

stability of the fixed points can be read off from the displacement arrows

around the intersection points and the direction of motion along the

preserved tori. The remnant of a destroyed rational torus is a chain of

elliptic and hyperbolic points alternately following each other. This is

the Poincaré–Birkhoff theorem.

Hyperbolic points are the sources of chaos. As we have seen, gen-

erally speaking nothing keeps the stable and unstable manifolds from

intersecting each other (Fig. 7.25). (In the original integrable case, the

coincidence of the manifolds is due to a kind of inherent symmetry that

ceases to exist when perturbation is switched on.)
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The presence of homoclinic and heteroclinic points implies chaotic-

ity (see Box 6.3). In the debris of the resonant torus thin chaotic bands

therefore also appear along the manifolds of the hyperbolic points. The

irrational tori act as barriers to chaos since they are invariant curves that

cannot be crossed by trajectories in the plane of the map.

Smaller KAM tori are formed around the elliptic points of the debris.

The chains of short segments in Fig. 7.7(b) represent, in fact, chains of

small KAM tori whose vertical extension cannot be resolved. In these

regions the motion is basically quasi-periodic, and the elements of the

chains are called elliptic or regular islands. This is, however, not true ev-

erywhere, since our original argument applies here too: tori with rational

winding numbers must be destroyed. Around them a chain of elliptic and

hyperbolic points is formed again, but now on a smaller scale. If we mag-

nify any of these small KAM tori, we see that the structure repeats itself.

7.5.4 Macroscopic chaos

The KAM theorem is valid for very weakly perturbed integrable systems.

In a numerical simulation, such systems might appear to move every-

where regularly, and the value of the average Lyapunov exponent does

not considerably differ from zero. Chaos – although present – is difficult

to observe (microscopic chaos). For example, no extended chaos can yet

be observed in Fig. 7.7(b).

When the perturbation parameter ε is increased, one generally finds

that more and more KAM tori disappear,8 and, consequently, the origi-

nally adjacent and separated chaotic bands merge. The proportion of the

area of the elliptic islands inside them gradually decreases, and chaos

becomes stronger.

A system is called macroscopically chaotic if chaotic bands fill a

significant proportion of the entire phase space. We must not forget

that, when this happens, the condition of the KAM theorem (weak per-

turbation) is generally no longer valid. For finite, but not too strong,

perturbations, nevertheless, several elliptic islands are still present in

the chaotic bands. Moreover, within each island, between two adjacent

KAM tori, there are again chaotic bands and other elliptic islands, which

are themselves similarly structured, and so on to arbitrarily small scales.

The phase space structure then exhibits an easily observable self-similar

character. This is clearly visible in Figs. 7.7(c), 7.10(d) and 7.15. Since

chaotic and elliptic domains occupy a finite area larger than zero, the

phase space structures constitute a fat fractal (see Section 2.2.3). The

8 The surviving tori are called KAM tori, even for strong perturbations.
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Fig. 7.26. Arrangement
of chaotic bands (black)
and elliptic islands (white)
in macroscopic chaos
(schematic diagram). The
construction resembles
that of Fig. 2.13, and
indicates the fat fractal
character of the phase
space.

chaotic domain is pierced by elliptic regions on all scales (see Fig. 7.26).

According to numerical investigations, the fat fractal exponent defined

by equation (2.15) falls in the interval α = 0.3 to 0.7.

7.6 Summary of the properties
of conservative chaos
The properties of conservative chaos can be summarised as follows. Any

chaotic band is, to a good approximation,

� the union of all the unstable (hyperbolic) periodic orbits lying in it, or
� the unstable or stable manifold of a single periodic orbit inside the

band.

A more precise definition of a chaotic band is

� the union of all the hyperbolic periodic orbits and of all the homoclinic

and heteroclinic points formed among the manifolds of these orbits

within the band, or
� the union of the unstable and stable manifolds of all the unstable

periodic orbits it contains.

The description makes the similarity between the structures of a

chaotic band and a chaotic attractor quite clear. The difference is due to

the fact that, in conservative systems, motion forwards and backwards in

time is equivalent, and therefore both types of manifolds must be parts

of chaotic bands. In dissipative systems it is the lack of time reversal

invariance that leads to asymmetry: chaotic attractors contain only the

unstable manifolds, and, due to phase space contraction, they are fractal

objects of zero area.

The main properties of chaotic motion in conservative systems are

again irregularity, unpredictability and organised but complex phase

space structures. Characteristic numbers are again related to the indi-

vidual properties as follows.
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Fig. 7.27. Planar billiards in which chaotic behaviour extends over the entire
phase space. (a) Concave billiard, (b) Sinai billiard, (c) stadium billiard.

� Irregularity: the topological entropy of a chaotic band is positive;

h > 0.
� Unpredictability: the average Lyapunov exponent within a band is

positive (λ̄ > 0), and the natural distribution in the chaotic bands is

uniform (see Plate XX).9

� Structured phase space: the fractal dimension of chaotic bands is10

D0 = D1 = 2, but they are fat fractals with a non-trivial fat fractal

exponent α.

In a general conservative system the interwoven structure of chaotic

and elliptic domains is an essential feature of complex dynamics, which

has no counterpart in dissipative cases (this is exactly what the fat fractal

property refers to).

7.7 Homogeneously chaotic systems
With an increasing perturbation strength, it may happen that even the

last invariant phase space curve, the last KAM torus, breaks up. Since

the KAM theorem does not apply, this is not necessarily a golden mean

torus. Therefore, every single trajectory visits the entire phase space.

This behaviour can be observed in certain billiard problems, in the

dynamics of a ball moving in a region of the horizontal plane bounded

by vertical walls on which elastic bounces take place (Fig. 7.27). (The

disc scatterers of Section 1.2.4, to be treated in detail in Section 8.2.3,

define open billiard problems.)

The presence of a positive average Lyapunov exponent in some of

the closed billiard problems is easy to understand by means of an optical

analogy. The walls of a concave billiard problem (Fig. 7.27(a)) act as

dispersing mirrors: incident parallel orbits diverge after the collision.

9 This follows from equation (5.64): P∗ ≡ constant is always a solution for J ≡ 1.
10 Since the negative average Lyapunov exponent is (−1) times the positive one, (7.4),

D1 = 1 + λ̄/|λ̄′| = 2 follows from the Kaplan–Yorke relation, (5.74).
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The Sinai billiard problem (also known as Lorentz gas, Fig. 7.27(b)) is a

model for a particle wandering among identical discs placed on a large

square lattice. Assuming the dynamics to be translation-invariant, it is

sufficient to study the cell presented in the Fig. 7.27(b), with periodic

boundary conditions in both directions. The positive Lyapunov exponent

is again the consequence of the disc’s scattering effect. The stadium

billiard problem (Fig. 7.27(c)) consists of two semi-circles with parallel

straight line segments connecting them. The chaoticity of the motion is

not so obvious here. Qualitatively speaking, it is partially due to the fact

that, beyond their focal lengths, the focusing mirrors scatter the beams.

These billiard problems, together with the area preserving baker

map, the cat map and the strongly non-linear standard map (a 	 1),

exhibit a special type of chaos, in which the natural distribution spreads

uniformly over the entire available phase space,11 similar to the motion

of a gas molecule. The statistical properties of conservative systems with

a few components resemble, in this case, those of systems consisting of

1023 particles (see Boxes 7.3–7.5), and are similar to the characteristics

of noise.

Box 7.4 Ergodicity and mixing

A conservative system is called ergodic if randomly chosen trajectories visit the entire available phase space

volume (whose size is only limited by a few external constraints, first of all by the conservation of energy),

or, more precisely, if, sooner or later, it reaches an arbitrarily small neighbourhood of any point in phase

space. This class of problems originates from the statistical physics of high-degree-of-freedom systems,

where it is of central importance whether the time average of physical quantities equals the so-called

ensemble average taken with respect to a stationary distribution. If it is true that the trajectories visit the

entire phase space, the two averages are typically identical. It is also possible to speak of ergodicity over

certain sub-sets of the phase space. In this sense, the motion is ergodic in every single chaotic band of

conservative chaotic systems, even with a few variables.

Another important feature of many-particle systems is the mixing property. Qualitatively speaking, this

means that an ensemble of particles initially bound to a certain region spreads as time passes in such a way

that its shape ceases to be compact, i.e. it grows offshoots, and finally forms a ‘uniform’ net of very thin

filaments over the entire phase space (Fig. 7.28).

The mixing property on an invariant set, D, of a two-dimensional area preserving map, M , can be

formulated as follows. After a sufficiently large number of steps, the nth image, Mn S, of some domain, S,

fills the same proportion of any domain, S′, no matter how S′ is chosen. This implies that the ratio

11 In these exceptional situations, often arising as limiting cases of typical conservative

chaos treated so far, the chaotic domain is not a fat fractal, since it is not interrupted

by elliptic islands.
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A(S′ ∩ Mn S)/A(S′) (where A denotes the area) is independent of S′. In particular, choosing S′ to be the

entire domain D implies A(D ∩ Mn S) = A(Mn S) = A(S), so we obtain

A(S′ ∩ Mn S)

A(S′)
= A(S)

A(D)
, for n 	 1.

The amount of material initially in domain S is thus uniformly distributed over all sub-sets after a

sufficiently long time, in the same proportion as if the amount of material in S were uniformly distributed

over the entire invariant set, D (see also Fig. 7.3 and Box 7.1).

The mixing property implies ergodicity: each trajectory gets everywhere in mixing systems. On the

other hand, chaotic motion always produces efficient mixing; in fact, in each chaotic band the dynamics is

not only ergodic but also mixing.

Both ergodicity and mixing are properties valid on chaotic attractors (and saddles) of dissipative systems

(in the equation above, the area of the phase space regions is to be replaced by their weight taken with

respect to the natural distribution). Thus, as far as ergodicity and mixing are concerned, there is no

difference between dissipative and conservative (or permanent and transient) chaos.

Fig. 7.28. Schematic representation of the mixing property. Any phase space domain spreads out in a
filamentary manner. After a long time, the area ratio of the black regions to that of the white regions is equal
over any sub-set.

Box 7.5 Conservative chaos and irreversibility

An important feature of many-particle systems is macroscopically observable irreversibility, i.e. the

preferred direction of time. This is especially surprising in view of the fact that the microscopic equations

of motion are invariant under time reversal.

The same behaviour is typical also for homogeneously chaotic conservative systems with a few degrees

of freedom. In every single point of the phase space, motion starting forwards is equivalent to motion

backwards in time. One might thus expect that if a phase space volume element is followed over n steps

(until it becomes well mixed and its points are uniformly distributed in the entire phase space), and the

iterations are then reversed and carried out backwards for the same number of steps, then finally the initial

shape is recovered. Taking into account, however, that the final states are only known with a finite accuracy

due to the round-off errors of the numerical simulation, it becomes obvious that, after a certain number of

forward and backward iterations, n∗, the points do not trace out the initial shape, but remain dispersed
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(see Fig. 7.29). The reason for this is the sensitivity to the initial conditions. The critical iteration number,

n∗, is simply the prediction time (see Section 5.4.2) related to the number representation error 	, i.e.

n∗ ≈ ln (1/	)/ ¯|λ|. In general, the initial state of the system cannot be recovered due to round-off errors, or,

more generally, due to observations of limited accuracy, even if the dynamics is time reversal invariant.

To use an everyday example, this is like stirring cocoa powder into semolina cream (molecular diffusion

is negligible). If stirring is reversed, i.e. the original motion is performed backwards in time, the cocoa

powder does not recover its original shape, but becomes even better mixed.

Thus, irreversibility is a joint consequence of chaos and limited accuracy observations. It is a

manifestation of the lack of practical determinism and of the amplification of errors. The existence of

chaotic motion also sheds new light on the understanding of the irreversible behaviour of

high-degree-of-freedom systems.

n 20= n 35= n 50= n

xn1

1
n

xn1

1
n

xn1

1

Fig. 7.29. Does it return? Image of a square-shaped phase space volume of the area preserving baker map
(b = 1/3) after iterating it n steps forwards and backwards. For n = 20 the initial object is precisely recovered;
for n = 35 the borders become somewhat blurred (a few points, however, remain far away); and for n = 50
the initial object is no longer recognisable. The numerical accuracy that has been used corresponds to an
error 	 = 10−11. As λ̄ = 0.636 (see Problem 7.3), the value of n∗ is found to be 40. With higher precision the
blurring of the object occurs at larger values of n∗.



Chapter 8

Chaotic scattering

Scattering processes have played an important role in different sciences

since the discovery of the atomic nucleus by directing a particle beam

onto a thin layer of a solid and evaluating its deflection.1 Scattering

methods are now widely used in the investigation of material structures.

Other phenomena, such as, for example, the motion of a comet, or the

reflection of light on a set of mirrors, are also scattering processes (cf.

Section 1.2.4). Perhaps the simplest example is provided by the motion

of a particle under the effect of a force bounded to a finite region in space.

In general, a scattering process is the dynamics of a conservative system

that starts and ends with a very simple (usually uniform rectilinear)

motion, typically far away from the region where interactions are strong

(the scattering region). The well known classical examples of scattering

all exhibit regular motion. The moral of Chapter 7 is, however, also

valid in these cases: even the slightest perturbation makes the dynamics

chaotic. Chaotic scattering is, therefore, typical.

Because of the simplicity of the initial and final states, chaotic

behaviour can only extend to a finite domain of phase space, and it can

only be transient. Chaotic scattering is therefore the manifestation of

transient chaos in conservative systems. Consequently, it is related to the

chaotic saddle (see Chapter 6) of a volume-preserving (σ ≡ 0 or J ≡ 1)

dynamics. Since chaotic scattering is thus similar to dissipative transient

chaos, this chapter is restricted to a brief overview of the specific features.

For the sake of simplicity, only planar scattering will be considered.

1 By E. Rutherford in 1911.
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Scattering processes with regular and chaotic dynamics are funda-

mentally different. Through the example of the one-, two- and three-disc

problems (open billiards), we demonstrate that the possibility of chaos

suddenly arises with the appearance of a third disc. We also discuss

the properties of chaotic scattering in (the conservative limit of) kicked

systems and in motion developing under the effect of time-independent

forces changing continuously in space. Finally, we summarise general

relations characteristic of chaotic scattering.

8.1 The scattering function
A possible initial parameter of a scattering process is usually chosen to

be the distance, b, at which the particle would pass by the centre of the

scattering region (the origin) if there were no interactions present (see

Fig. 8.1). This is called the impact parameter. A possible output param-

eter is the angle between the straight lines of the incident and outgoing

segments of the orbit, the angle of deflection, θ . An important character-

istic of the scattering process is the functional relationship between the

angle of deflection and the impact parameter,

θ (b) =?, (8.1)

the scattering function.

The chaotic nature of scattering manifests itself in a very complicated

form of the scattering function. In such cases, a tiny change in b may

result in a significant change in the angle of deflection. In addition, these

scattering region

b

x

y

v0

q

Fig. 8.1. Characteristics of a scattering process. The scattering region is the
domain in which the interaction is significant. The particle is projected parallel to
the x-axis. The incident segment of the orbit is a straight line at distance b from
the x-axis; the deflected orbit tends asymptotically to a straight line under angle
θ to the x-axis (θ increases clockwise and takes on values in (−π, π)).
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singularities sit on a fractal set of the impact parameter. We study all this

in detail via the example of scattering on discs.

8.2 Scattering on discs
8.2.1 One-disc problem

Scattering is caused by the elastic collision of a particle with a disc of

radius R. The particle’s orbit breaks on the disc in the same way as a

light ray on a cylindrical mirror: the angles of incidence and reflection

are identical, φ0, (Fig. 8.2). Since there is no energy loss, the speed of

the particle is constant and can be chosen to be unity: |v| = 1. In the

range |b| ≤ R (the only range in which collision occurs) the angle φ0 is

related to the impact parameter via b = R sin φ0. For negative b values

(impact below the x-axis), the angle of incidence/reflection is negative.

The angle of deflection is the supplementary angle of 2φ0: θ = π −
2φ0. The scattering function is therefore given by

θ = π − 2 arcsin
b

R
, for |b| ≤ R; (8.2)

otherwise it is identically zero (Fig. 8.3).

8.2.2 Two-disc problem

The centres of two identical discs of radius R are chosen to be ar-

range symmetrically on the y-axis at distance a > 2R from each other

(Fig. 8.4). Let particles be incident parallel to the x axis. For impact

parameter values larger than the distance of the disc centres from the

b

x

y

f0

f0
f0

R

q

Fig. 8.2. Scattering on a single disc. The collision is elastic (no loss of energy):
at the point of collision the angle, φ0, between the incident straight line and the
incidence norm is identical to the reflection angle.
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Fig. 8.3. The scattering function in the one-disc problem. Apart from the points
b = ±R , it is a smooth function without any singularity (R = 0.3).

x

y

q

q

R

a
2
−

Fig. 8.4. Two-disc problem. One of the particles bounces back (|θ | > π/2), and
the other one (dashed orbit) is scattered forward (|θ | < π/2).

origin, |b| ≥ a/2, the scattering function is of the same form as in the

one-disc problem, just the variable is shifted by ±a/2. In the interme-

diate range |b| < a/2, a new possibility arises: the particle can bounce

between the two discs. The scattering function, obtained in this range

numerically (Fig. 8.5), displays the striking emergence of two impact

parameter values (±bc) where the deflection function is singular.

The explanation for this is that between the impact parameters of

backward and forward scattering (the particle escapes, respectively, with
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Fig. 8.5. Scattering in the two-disc problem (R/a = 0.3). The upper figure
depicts the scattering function for particles injected along the x-axis. Between
the disc centres there are two values, ±bc, where the deflection angle is singular.
The lower figure shows the lifetime distribution: number, n∗, of collisions before
escape (the height of the widest black band is unity).

a positive and a negative velocity component along the x-direction)

shown in Fig. 8.4 there must exist – due to continuity – a single value

that does not correspond to either type of scattering, rather to a motion

trapped between the two discs. Accordingly, between the two discs there

exists a periodic orbit bouncing to and fro along the y-axis. To use an

optical analogy, the two discs correspond to two dispersing mirrors, the

bouncing between them is therefore unstable. This orbit can thus be hit at

parameters ±bc only. With a b value close to the critical one, the particle

orbit comes close to the periodic orbit, but ultimately it deviates, execut-

ing several bounces before escape. When approaching the critical value,

the deflection angle therefore goes up and down more and more rapidly:

the graph of the function θ (b) accumulates at ±bc. Exactly at the critical

impact parameter, the lifetime of the scattered particle is infinitely long

between the discs (Fig. 8.5, lower figure).

In order to understand the dynamics better, we derive a kind of

Poincaré map relating the data of two consecutive collisions on the disc

surfaces. Collision n is chosen to be characterised by the angle θn between

the incident straight orbit and the x-axis (the same as the deflection
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Fig. 8.6. Geometrical relations required to construct the scattering map.

angle after the previous collision) and the angle of incidence, φn

(Fig. 8.6). Note that φn is positive if the incidence norm can be reached

by an anti-clockwise rotation of the incident orbit by an angle of φn .

Consider the triangle formed by the dashed horizontal line and the lines

of the incident and reflected orbits in Fig. 8.6. The sum of the angles

is π ; therefore, θn+1 = θn − 2φn + π . Shifting the line of the reflected

orbit parallel to itself so that it crosses the centre of one of the discs, we

obtain a rectangular triangle of hypotenuse a and of shorter right-

angle side R(sin φn − sin φn+1). Consequently (cf. Fig. 8.6),

a sin (π/2 − θn+1) = R(sin φn − sin φn+1). For collisions occurring on

the top disc downwards (θn+1 < 0), the left-hand side appears with oppo-

site sign. The scattering map of the two-disc problem is therefore given

by

sin φn+1 = sin φn − a

R
sgn(θn+1) cos θn+1, θn+1 = θn − 2φn + π. (8.3)

The phase portrait presented in Fig. 8.7 clearly indicates that

points (0, −π/2), (0, π/2), corresponding to bounces between the discs

along the y-axis, form a hyperbolic two-cycle. The initial co-ordinates,

x0 = constant, y0 = b, of the particle correspond to the collision co-

ordinates, φ0 = arcsin [(b − (a/2)sign(b))/R], θ0 = 0. The lifetime of
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sin( )f n

q n0 p–p 

0

1

–1

Fig. 8.7. Phase portrait of
scattering map (8.3) on the
(θ, sin φ)-plane (R/a = 0.3)
based on the manifolds of the
two-cycle (black dots,
connected by a double
arrow). The line of initial
condition, θ0 = 0, is marked
by a dashed line.

the scattering process is the number, n∗, of collisions before the particle

escaping the discs. The deflection angle, θ , is the angle of deflection after

the last collision: θ = θn∗+1. The values bc and −bc correspond to the

intersections of the stable manifold of the two-cycle with the line θ0 = 0

of initial conditions.

Problem 8.1 Show that map (8.3) is area preserving in the variables

θn , sin φn .

Problem 8.2 Determine the stability eigenvalues of the two-cycle of

map (8.3) for one iteration.

8.2.3 The three-disc problem

Besides the discs on the y-axis, we now add a third disc of identical

radius with its centre at the point x = −√
3/2, y = 0. A fundamentally

new scattering situation arises, since, after leaving the discs centred on

the vertical axis, the particle can bounce back from the new disc and

collide again with the previous ones. Accordingly, there also exist new

types of trapped orbits: besides the two-cycles corresponding to pair-wise

bouncing to and fro, the simplest type describes the bouncing around the

discs along an orbit of the shape of a regular triangle (Fig. 8.8(b)). (There

are two such triangular orbits, dependent on the winding direction.)

The Poincaré map relating the parameters of collision n and n + 1

can be obtained from that of the two-disc problem. To this end, we have

to be able to identify the disc on which collisions n and n + 1 occur.

By rotating the reference frame by 120◦ or −120◦, so that the discs

of collision n and n + 1 fall on the new y-axis, (8.3) holds again. The

motion can again be monitored on the plane θn, sin φn . The triangular

orbits appear in this map as three-cycles and prove to be hyperbolic.
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Fig. 8.8. A few simple periodic (all unstable) orbits of the three-disc problem
(R/a = 0.3).

(a) (b)

Fig. 8.9. Scattering orbits in the three-disc problem. In (a) and (b) the orbit
approaches cycles (a), (c), (d), and (c), (d), (j) of Fig. 8.8, respectively. Both
orbits escape after 14 collisions.

Problem 8.3 Determine the stability eigenvalues of the triangular orbit

of Fig. 8.8(b) for one iteration. (Consider bounces along the triangular

orbit and apply (8.3) with appropriate rotations).

In fact, an infinite number of trapped periodic orbits are present in

the system, all of them hyperbolic. Some of these are shown in Fig. 8.8.

A general scattering orbit can be considered as one wandering among

the unstable periodic orbits before escape takes place, as illustrated by

Fig. 8.9.

Owing to the presence of unstable cycles, the two critical points of the

two-disc problem are replaced by an infinity of critical b values belonging

to singularities. The scattering function is therefore very complicated in

the range |b| < a/2 (see Fig. 8.10).

The infinite number of hyperbolic cycles form a chaotic saddle

(Fig. 8.11) with fractal stable and unstable manifolds (Fig. 8.12). The

intersection of its stable manifold with the line of the initial condition
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Fig. 8.10. Scattering in the three-disc problem (R/a = 0.3). The upper figure
depicts the scattering function for particles injected along the x-axis. The lower
figure is the lifetime distribution: number n∗ of collisions before escape.
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Fig. 8.11. Chaotic saddle of the three-disc problem in the phase plane
(θn, sin φn): (a) R/a = 0.3; (b) R/a = 0.4. The mid-points of the trajectories not
escaping up to n0 = 8 and n0 = 12 collisions have been plotted at collision
number n0/2, respectively (cf. Box 6.1). In (a) the two-cycles and the three-
cycles are marked, along with their transformation under the scattering map.
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Fig. 8.12. Invariant manifolds of the three-disc problem (R/a = 0.4): (a) stable
and (b) unstable manifold. The plots have been generated from trajectories not
escaping before 12 collisions. Parts (a) and (b) are obtained at collision numbers
n = 0 and n = 12, respectively (cf. Box 6.1). The line of initial condition, θ0 = 0,
is marked by a dashed line in (a).

yields the b values where the scattering function is singular. Accordingly,

the lifetime in these points is infinite (Fig. 8.10, lower figure).

Problem 8.4 In the limit a � R, the chaotic saddle tends to the chaotic

saddle of an open area preserving baker map (for a dissipative analogy,

see Problems 6.6 and 6.7). The fixed points, H±, of the baker map cor-

respond to the triangular and pair-wise bouncing between the discs.2

Determine how the chaos parameters (the positive Lyapunov exponent,

the partial fractal dimensions, the topological entropy) of the scattering

process change with a/R in this limit.

Particles leave the scattering region across one of the three lines

connecting the centres of the discs. Accordingly, we can speak about

three different final escape routes of the scattering. If we assign a colour

to each of these, we observe that the plane of the map splits into three

escape regions (see Plate XXI). These are similar to the basins of at-

traction of dissipative systems, but they are not identical since there

exist no attractors in this case. In chaotic scattering, the escape regions

are separated by fractal boundaries. These boundaries contain the stable

manifolds of the chaotic saddle underlying the scattering process. In fact,

the stable manifold turns out to be on the boundary of all three colours

simultaneously.

2 Utilising the symmetries of the three-disc problem, the scattering map can be written in

a reduced form in which both pair-wise and triangular bouncings appear as fixed points.
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8.3 Scattering in other systems
Chaotic scattering can arise not only due to walls, ensuring elastic colli-

sions, but also to a force, F, or potential, V , changing smoothly in space.

In all cases where

F(x, y) or V (x, y) (8.4)

is not rotationally symmetric, and the force decays to zero for large

distances (the potential tends to a constant), chaotic scattering may occur.

A smooth analogue of the three-disc problem is provided by a potential

forming three identical Gaussian hills of half-width R and height V0,

centred at the positions of the discs (Fig. 8.13):

V (x, y) = V0

(
e−[x2+(y−a/2)2]/(2R2) + e−[x2+(y+a/2)2]/(2R2)

+ e−[(x+√
3a/2)2+y2]/(2R2)

)
. (8.5)

The motion now also depends on the total energy, E = v2
0/2 < V0, of

the particles. The instantaneous velocity of a particle starting far away

with initial velocity v0 changes continuously with the position, and in

the vicinity of the potential hills the orbit bends strongly. One can, how-

ever, still identify two cases that describe the basis of chaotic behaviour:

(i) bouncing between pairs of hills and (ii) bouncing around among three

hills. In a wide energy range below the hill-top, V0, the character of the

scattering is the same as in the three-disc problem: an infinite number

of unstable periodic orbits exist between the hills, forming a chaotic

saddle. It is a new feature that the properties of the saddle and of the

x

y

Fig. 8.13. Potential (8.5) corresponding to a ‘softened’ version of the three-disc
problem (a = 1, R = 1/6, V0 = 6). Black and white bands mark potential
differences of size �V = 0.5.
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scattering function, such as, for example, the fractal dimension, depend
on the total energy E . Moreover, the chaoticity of the scattering ceases at

energy Ec = V0 (in a kind of bifurcation). Bouncing is no longer possible

for E > V0, and particles pass over the hill-tops in a regular motion.

Chaotic scattering can also develop in driven one-dimensional dy-

namics if, besides a time-independent attracting force, F(x), a driving

force, Fd(x, t), is also present. In such cases, both forces have to decay

at large distances. For charged particles, the driving can be due, for ex-

ample, to illumination by laser light. Driving might force the particle

to exhibit random ‘wandering’ for a long time in the region where both

forces are significant. The incident and final states are, however, always

represented by uniform motion along the x-axis. In one dimension, it is

of course meaningless to speak of an angle of deflection, but the life-

time distribution and the phase space structures (in a stroboscopic map)

remain well defined.

Instantaneous driving (for example, the repeated application of

laser impulses) corresponds to kicking. The simplest models of this

kind can be obtained from the kicked free motion discussed in

Appendix A.1.5.

With a kicking amplitude function, f (x), tending to zero for |x | →
∞, the dimensionless scattering map is given by

xn+1 = xn + vn, vn+1 = vn + f (xn+1). (8.6)

This is formally the same as (7.8) but x is no longer periodic. Chaotic

scattering may occur for any non-linear kicking amplitude function.

Problem 8.5 Investigate the scattering map (8.6) for the amplitude

function f (x) = −7(x − x2)e−x . Plot the manifolds of the chaotic sad-

dle.

Problem 8.6 Investigate the scattering map (8.6) for the amplitude

function f (x) = −x(c − 1 − cx2/2)e−x2/2. Plot the chaotic saddle and

its manifolds for c = 10.

Problem 8.7 Start a large number of particles along the line segment

2 < x0 < 2.5, v0 = −1 of the scattering map (8.6) for the amplitude

function f (x) = −x(c − 1 − cx2/2)e−x2/2 with c = 5 (where a periodic

island exists around the elliptic fixed point of the origin). Determine how

the number of points not escaping the square |x |, |v| < 2 within n steps

changes, with n, up to 300 steps. Plot the chaotic saddle and its unstable

manifold.
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Box 8.1 Chemical reactions as chaotic scattering

Chemical reactions can be considered as scattering processes. Imagine that a molecule, AB, travels along a

straight line towards atom C, which is able to form a chemical bond with atom B (Fig. 8.14(a)). The

molecule and the atom do not interact initially (they move uniformly), but when the distance between them

becomes comparable to that between atoms A and B, all three pair-wise interactions may become of equal

importance. In this state, we can no longer speak of molecule AB; the three participating atoms constitute a

transition complex (Fig. 8.14(b)).

The interactions among the three bodies usually generate chaotic dynamics, which results, sooner or

later, in one of the bodies escaping. Finally, an atom and a molecule remain. The two possible outcomes

(Figs. 8.14(c) and (d)) are, however, fundamentally different: either a new molecule BC is formed and atom

A is released (reaction takes place), or molecule AB reappears, along with atom C (AB ‘bounces back’

from C). Moreover, small differences in the initial conditions may lead to drastic differences in the final

states: reactive and non-reactive processes exist that are strongly interwoven. The outcome of the scattering

process has a fractal structure. Underlying the dynamics of complex ABC, there exist then an infinity of

unstable periodic orbits, which provide the skeleton of a chaotic saddle.

The process described in the preceding paragraphs is a kind of scattering. The only difference between

this scattering process and the case in Fig. 8.1 is that the scattering potential is not fixed in space; rather it

moves together with the particles. We can therefore say that it is the theory of chaotic scattering that

provides a suitable frame for the proper classical mechanical description of chemical reactions. Since chaos

can only exist as long as all three atoms are close to each other, the lifetime of the transition complex is

identical to the average lifetime, τ = 1/κ , of the chaotic transients.

Similar phenomena occur in the collisions between atoms or ions. A particularly interesting case is that

of a He+ ion (He nucleus + one electron) and an electron. It has long been known that in the classical

description they do not form a stable atom, due to the repulsion between the electrons. One of the important

AB

ABC

AB

C

A CBC

(a)

(b)

(c) (d)

Fig. 8.14. Phases of the collision of molecule AB and atom C along a straight line (schematic diagram).
(a) Initial state. (b) Collision state: transition complex ABC. (c) Reactive outcome. (d) Non-reactive outcome.
The outcomes are sensitive to small differences in the initial conditions; reaction is one of the possible
outcomes of a chaotic scattering process.
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achievements of quantum mechanics is the explanation of the existence of a stable He atom. Recent

classical studies show, however, that the system undergoes chaotic scattering and the ultimate state is always

a He atom and an electron again. In analogy with chemical reactions (A=He++, B=C=e−), it is, however,

also true that in the classical description a metastable He atom of finite lifetime is present. The discrepancy

between the classical and the quantum world is, however, not so striking in the light of the discovery of the

metastability of classical He atoms. It is appealing to see that the quantum mechanical states of the He atom

are built upon the saddle of a transiently chaotic classical dynamics.

8.4 Summary of the properties of chaotic
scattering
Chaotic scattering is the conservative limit of transient chaos. Accord-

ingly, all the properties listed in Section 6.4 hold with the restriction

of volume preservation (σ = 0, or J = 1). Consequently (cf. (7.4)), the

average Lyapunov exponents are the opposites of each other: λ̄′ = −λ̄.

The partial information dimensions along the two manifolds are there-

fore obtained from (6.24) and (6.28) as follows:

D(1)
1 = D(2)

1 = 1 − κ

λ̄
. (8.7)

The information dimensions of the scattering chaotic saddle and its man-

ifolds are thus given by

D1 = 2

(
1 − κ

λ̄

)
(8.8)

and

D(u)
1 = D(s)

1 = 2 − κ

λ̄
, (8.9)

respectively. The fact that the partial dimensions and the dimensions of

the stable and unstable manifolds are identical is a consequence of the

time-reversal invariance of the conservative dynamics.

Besides these simplifying features, chaotic scattering also possesses

a property specific to conservative systems. Often, alongside an infinite

set of unstable periodic orbits, stable periodic orbits also exist, and the

neighbouring dynamics is then bounded. Such orbits cannot be reached

by particles incident from outside. They are elliptic, surrounded by KAM

tori. Inside the scattering region one may then also find bands of per-

manent chaos, regular islands, and KAM tori (see Section 7.5.2). The

set of all these bounded orbits is separated by an outermost KAM torus

from the scattering trajectories. Some of the latter may come close to

the outermost KAM torus and spend a long time there. Selecting these
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trajectories, we find that the number of non-escaped points decreases

much more slowly than exponentially; it follows a power law (see Prob-

lem 8.6). In the number of all non-escaped points, the decay rule (6.1)

of transient chaos therefore crosses over for long times into

N (t) ∼ t−σ , or N (n) ∼ n−σ , (8.10)

where σ is a positive exponent. This slow decay reflects the ‘stickiness’

of KAM tori, and is often observed in chaotic scattering. Since there is

no exponential escape from the vicinity of the outermost tori (or, more

formally, κ = 0 and consequently D0 = D1 = 2), the chaotic saddle is

very dense in these regions. There is thus a smooth cross-over at the

outermost KAM torus from a fractal chaotic saddle (transient chaos) to

a fat fractal chaotic band (permanent chaos).



Chapter 9

Applications of chaos

In this chapter we briefly present how chaos appears in problems of a

larger scale. We wish to illustrate by this (i) the ubiquity of chaos and

(ii) that numerous research problems are still to be resolved. Accord-

ing to the introductory nature of this book, the selection is based on

cases that are not too technically complicated. Solved problems are not

provided in this chapter; we merely formulate questions that may encour-

age the reader to investigate the subject further. We emphasise that, for

a given phenomenon, different aspects of chaos (permanent–transient,

dissipative–conservative) may be present simultaneously.

We start our survey with two problems, one related to space research,

the other to engineering practice, that have also played historically im-

portant roles: the gravitational three-body problem and the dynamics of

a heavy asymmetric top. Next we turn to a simple model of the general

atmospheric circulation, which nevertheless reflects important features

of the weather. Finally, we overview the occurrence of chaotic behaviour

related to fluid flows, and, in connection with this, we point out the rel-

evance of chaotic mixing in environmental fluid flows. Further fields of

application are discussed in the Boxes in this chapter.

9.1 Spacecraft and planets: the three-body
problem
In the course of their motion, spacecraft are subject to the gravita-

tional attraction of neighbouring celestial bodies. As gravitational in-

teraction with the Earth decays slowly, the effect of at least two celes-

tial bodies on the spacecraft have to be taken into account; i.e., that of

279
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the Earth–Moon, or (if the spacecraft moves further away) that of the

Sun–Jupiter couple. Often, the interattraction of spacecraft with the other

planets (for example Saturn) is not negligible either, but the three-body

problem describing the motion of three gravitationally interacting bodies

is a good model which shows the spacecraft dynamics to be, in general,

chaotic. Consequently, the uncontrolled orbits of spacecraft may become

complicated, and part of the engine’s task would be to keep the motion

exactly in the predefined direction. This same three-body problem pro-

vides insight into the issue of the stability of the Solar System, if the

spacecraft is substituted by a smaller planet. The ubiquity of chaotic

motion and the possibility of escape indicate instability. In fact, the birth

of chaos science can be traced back to Poincaré’s paper on the stability

of the Solar System in the 1890s.

We consider the simplest version of the three-body problem, as

Poincaré did, in which one of the bodies (the spacecraft or an asteroid,

for example) is so small that its feedback on the other two is negligible.

Furthermore, the large bodies are assumed to move on circular orbits in

such a way that all three bodies remain permanently in the same plane.1

We work in a reference frame co-rotating with the large bodies

around their centre of mass as the origin. The x-axis is chosen to con-

tain the large bodies of mass m1 and m2 (< m1). Their x co-ordinates

are given by x1 = −r0m2/(m1 + m2) and x2 = r0m1/(m1 + m2), re-

spectively, where r0 is the distance between the bodies (Fig. 9.1). The

gravitational force of magnitude γ m1m2/r2
0 (γ is the gravitational con-

stant) acting between the bodies is counter-balanced by the centrifugal

forces m1x1ω
2 or m2x2ω

2, where ω is the rotational angular veloc-

ity. From this, ω2 = γ (m1 + m2)/r3
0 . The gravitational forces acting

on the small body of mass m at point (x, y) are of magnitudes F1 =
γ mm1/s2

1 and F2 = γ mm2/s2
2 , where the distances can be expressed as

si =
√

(x − xi )2 + y2, i = 1, 2 (see Fig. 9.1).

The x- and y-components of the gravitational forces are −Fi (x −
xi )/si and −Fi y/si , respectively. In the rotating system, the small body

is subjected to both the centrifugal force and the Coriolis force. For a

positive angular velocity, the latter deviates the body to the right. In a

motion of velocity ẋ along the x-axis, for example, the y-component of

this force is −2mωẋ . Adding up all the forces, the equation of motion

of the small body is given by

ẍ = 2ω ẏ + ω2x − γ m1(x − x1)

s3
1

− γ m2(x − x2)

s3
2

, (9.1)

ÿ = −2ωẋ + ω2 y − γ m1 y

s3
1

− γ m2 y

s3
2

, (9.2)

and we note that mass m no longer appears.

1 This is the restricted, planar, circular three-body problem.
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x
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y

m1 m2

m

F1 F2

s1
s2

Fig. 9.1. Positions of the
three bodies in a
co-rotating frame.

The equations become simpler in a dimensionless form (see

Appendix A.2). Measuring length and time in units of r0 and 1/ω, re-

spectively, we obtain

ẍ = 2ẏ + x − μ1(x + μ2)

s3
1

− μ2(x − μ1)

s3
2

, (9.3)

ÿ = −2ẋ + y − μ1 y

s3
1

− μ2 y

s3
2

. (9.4)

Here, μi ≡ mi/(m1 + m2), and the distances given in terms of

the dimensionless co-ordinates are s1 =
√

(x + μ2)2 + y2 and s2 =√
(x − μ1)2 + y2 (Fig. 9.2). The only remaining parameters are thus the

reduced masses μi . Since μ1 + μ2 = 1, only one of these is independent.

Usually, the ratio μ2 = m2/(m1 + m2), i.e. the proportion of the lighter

large body’s mass to the total mass, is considered to be the parameter.

The position-dependent forces in the equations of motion (9.3) and

(9.4) can be written as the gradient of a potential V :

ẍ = 2ẏ − ∂V

∂x
, ÿ = −2ẋ − ∂V

∂y
, (9.5)

where

V (x, y) = −μ1

s1

− μ2

s2

− 1

2
(x2 + y2) − 1

2
μ1μ2. (9.6)

The first two terms represent the attracting gravitational potential; the

third term is the repelling potential of the centrifugal force (similar in

nature to a potential characterising an unstable state, see Fig. 3.5); and the

last one is a constant. Together these generate an interesting potential

landscape (Fig. 9.3). There exist five equilibrium states for the small

body in the co-rotating system: the Lagrange points denoted by Li . The

first three of these, L1 to L3, are always unstable, and they correspond to

saddle points of the potential function, V (x, y). The last two, L4 and L5,

are, for a sufficiently small mass ratio, μ2, stable, and are at the bottoms

of (rather shallow) local potential wells.
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m2
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L4

L1L3

L5

L2

m1
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Fig. 9.2. Co-ordinates of the
three bodies in dimensionless
units. The points denoted by
L i (i = 1, . . . , 5) are the
Lagrange points.

Fig. 9.3. Potential, V (x, y), of the three-body problem (μ2 = 10−1,
|x|, |y| ≤ 1.5 and the potential difference of the black and white bands is
�V = 0.05). The large celestial bodies are in the wells, which are of infinite
depth. The saddle points of the landscape corresponding to the unstable
Lagrange points L 1, L 2 and L 3 are marked by crosses. The Lagrange points L 4

and L 5 (black dots) are located in the ellipsoidal regions of the two hill-tops
(they would become stable for μ2 ≤ 0.039 only).
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Since the Coriolis force does not do any work, the total energy,

E = 1

2
(ẋ2 + ẏ2) + V (x, y), (9.7)

of the small body in the rotating frame is constant.2 The behaviour of the

restricted three-body system is therefore a planar conservative motion

in a potential V (x, y), in the presence of a Coriolis force.

An energy range E2 < E < E1 exists in which the motion is bounded

and the small body can approach both large celestial bodies (Ei are the

potential energies of the Lagrange points, Li , E3 is always larger than

E1, and E4 = E5 = −1.5 > E3). For energies higher than E1, the small

body may escape and run out into infinity, while, for energies smaller

than E2, it becomes bounded to one of the large celestial bodies. It is

interesting to note that in the Sun–Earth–Moon system (μ2 = 2.738 ×
10−6), the energy, E = −1.5006, of the Moon is only slightly less than

E2 = −1.5004; it is therefore only a matter of a tiny difference in energy

that our Moon cannot wander into the proximity of the Sun.

In the following, we investigate the case of the reduced mass

parameter μ2 = 10−3 corresponding to a Sun–Jupiter–asteroid system.

Here E1 = −1.5198, E2 = −1.5205, E3 = −1.5010, and in the energy

range −1.55 < E < E1 macroscopic chaos is present.

A Poincaré section is generated by recording the position, x , of the

asteroid and its velocity, v, along the x-direction when it intersects the

x-axis from below. In the map (xn, vn), it is clearly visible that, depending

n

m1 m2

xn

0

0 1

(a)

(d)

(f)

(c)

(b)

(e)

–1.5

1.5 Fig. 9.4. Poincaré portrait
of the three-body problem
with total energy
E = −1.525 (μ2 = 10−3).
The orbits of trajectories
(a)–(f) are given in fig 9.5.

2 In astronomy, the quantity C ≡ −2E is called the Jacobi constant.
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Fig. 9.5. Asteroid orbits in the (x, y)-plane corresponding to initial conditions
(a)–(f) of Fig. 9.4. The quasi-periodic orbits, (c) and (d), can be obtained
approximately by rotating the periodic orbits (a) and (b) to and fro around the
heavy mass (the Sun) periodically. The amplitude of this rotation is proportional
to the size of the quasi-periodic torus of the map which the orbit belongs to. In
chaotic cases, (e) and (f), different basic patterns are mixed, depending on
which elliptic island the corresponding trajectory has approached.

on the initial condition, periodic, quasi-periodic or chaotic motion occurs

(Fig. 9.4). In Fig. 9.5 we also present a few orbits in real space chosen

from different regimes of the map.

The complexity of the three-body problem, relevant from the points

of view of both the history of science and current research, is of the
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same degree as that of any chaotic conservative system; for example,

the spring pendulum or a ball moving in a vessel (see Section 7.4). In

the same sense in which the limited occurrence of the quasi-periodic

solutions of the three-body problem imply the instability of the Solar

System, we can also say that the dynamics of conservative systems is

usually unstable: any change in the energy or in the parameters may

cause a fundamental change in the character of the motion.

Problems recommended for further studies

(i) Investigate the dynamics around the Lagrange point L4 or L5.

(ii) Study the chaotic scattering appearing in the three-body problem forE > E1.

(iii) Investigate the effect of weak friction on the motion of an asteroid.

(iv) How is the motion of the small body modified under the occasional presence

of some weak external force (the engines of the spacecraft are switched

on)?

Box 9.1 Chaos in the Solar System

Recent space research observations and high performance computer simulations indicate that the Solar

System hosts a plethora of chaotic phenomena. The dynamics of the outermost planet, Pluto, has been

shown to be characterised by a positive average Lyapunov exponent of 1/(20 million years). The prediction

time is thus about 20 million years, which may seem very long on human scales, but is surprisingly short on

a time scale of several billion years, the lifetime of the Solar System. Due to Pluto’s small mass, its feedback

on the other planets is negligible. The entire system of the Sun and its nine planets has been found in

various studies to be chaotic, and the results indicate that, on a scale of several million years, this manifests

itself mostly in the motion of the inner planets: Mercury, Venus, Earth and Mars (the giant planets behave

regularly), whose average Lyapunov exponent is found to be 1/(5 million years). This implies that an initial

uncertainty of 1 km in the position of any of them increases to only 55 km in 20 million years, but it will be

5 × 108 km in 100 million years, which is larger than the Earth to Sun distance. The largest fluctuations are

expected in the orbits of Mercury and Mars, and much smaller ones in the orbits of Venus and Earth. For

Mercury, the fluctuation of the orbit’s eccentricity can be as large as the average value. Nevertheless, the

probability of the planets colliding with each other or escaping the Solar System is very small, even over a

very long time scale.

The first chaotic phenomenon discovered by a satellite was the irregular rotation of Hyperion, a moon of

Saturn. The moon is of elongated shape, and therefore a gravitational torque is acting on it while it is

moving along its orbit. Such moons can also be considered as spinning-tops (see Section 9.2). Spacecraft

Voyager-1 observed that the intensity of the reflected light from Hyperion did not show any regularity. The

rotation turned out to be chaotic, with a Lyapunov exponent of the order of 1/(10 days). A related

phenomenon has been found by simulating the time dependence of the orientation of the rotation axis (tilt

axis) of the planets. The inner planets seem to have gone through a period in which the dynamics of this

axis was chaotic. Mars appears to be in this phase even today: the uncertainty in the position of its rotation

axis can be ±30◦ over a few million years. These drastic changes led to the melting of the ice caps around

the poles in a seemingly random sequence: the presence of dried-out water beds scattered over the surface
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of Mars can therefore be viewed as fingerprints of the chaoticity of Mars’ dynamics. (Without the Moon’s

stabilising effect, even the Earth’s axis would exhibit large chaotic fluctuations, which could have had

catastrophic consequences for the development of life.)

The Solar System is full of small celestial bodies. Between Mars and Jupiter, several asteroids orbit the

Sun. Their distribution is, however, not uniform. The density is much smaller in the so-called ‘Kirkwood

gaps’ than outside them. The ratio of Jupiter’s orbital period to that of the asteroids in the gaps is close to

ratios of small integer numbers (resonances). The most significant Kirkwood gaps belong to the resonances

3/1, 2/1, 5/2 and 7/3 (the winding numbers are the reciprocals of these). The fact that very few asteroids

are found around these resonances suggests that the tori corresponding to these winding numbers have been

destroyed and that the respective asteroids moved away from the vicinity of Jupiter. This phenomenon

appears to be in harmony with the KAM theorem (Section 7.5.2). Around other resonances (for example,

3/2 and 1/1), however, many asteroids are present. In fact, the KAM theorem does not apply to the Solar

System since perturbations are too large due to the mutual gravitational interaction of all the constituents.

Numerical simulations nevertheless indicate that after long times even the currently occupied resonances

will become much less occupied.

Two groups of asteroids (the Trojans) are situated around the stable Lagrange points L4 and L5 of the Sun–

Jupiter system. In spite of the stability, the dynamics can be chaotic quite close to these Lagrange points.

Close encounters of two asteroids orbiting a larger body lead to chaotic scattering: while far away, they

hardly interact, but, upon approaching each other, a complicated motion may begin (due to an underlying

chaotic saddle) and lead ultimately to a strong separation. This phenomenon may also play a role in the

interaction of bodies constituting the rings of the giant planets.

Simulations of the observed asteroids that have a finite probability of a close encounter with the Earth

lead to the conclusion that the dynamics of some of them is chaotic. In such cases only probabilistic

predictions can be given concerning their future. A threat for our civilisation is not so much the chaoticity

of the Solar System as a whole, but rather a potential collision with a large asteroid.

9.2 Rotating rigid bodies: the spinning top
Machines and technical equipment contain rotating rigid bodies, such

as wheels and shafts. The rotation of these bodies can be regular only

if they are exactly symmetric; otherwise a knocking motion develops

that leads to the rapid abrasion and deterioration of the equipment. It is

therefore important to inhibit chaos. How rare regular rotation is among

asymmetric bodies is illustrated via the example of the heavy spinning

top.

A rigid body with one fixed point is called a top. The mass distribu-

tion of a rigid body of arbitrary shape can be described by means of just

three data, the principal moments of inertia (�1, �2, �3). Figure 9.6(a)

presents a general top of simple, rectangular, shape. In such a case, the

principal moments of inertia are the moments taken with respect to axes
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Fig. 9.6. Tops. (a) Asymmetric top. The principal moments of inertia with
respect to the x1-, x2- and x3-axes of the body frame are �1, �2 and �3,
respectively, and they are all different. (b) Symmetric top: �1 = �2 �= �3. The
grid represents a horizontal plane (not identical to the plane of x1, x2) and γ is a
vertical unit vector. A massless rod is also part of the top: its end on the
horizontal plane is the top’s point of fixation.

parallel to the symmetry axes of the body. The co-ordinate system fixed

to the body is oriented in such a way that the centre of gravity falls on

the x3-axis. The point of fixation is also on the x3-axis, but in the case of

a heavy top does not coincide with the centre of gravity. Gravitational

force therefore exerts a torque about the point of fixation, chosen to be the

origin.

A top is called symmetric if the moments of inertia with respect

to the x1- and x2-axes are identical. These bodies are usually (but

not necessarily) rotationally symmetric (everyday usage of the word

‘top’ implies that the top is symmetric, for example the humming-top).

Figure 9.6(b) shows a pencil-shaped symmetric top.

We take a unit vector, γ, pointing vertically in a standing frame

(see Fig. 9.6) and we define the positions of the x1-, x2- and x3-axes of

the body frame relative to this. The position of the centre of gravity is

determined by vector d. For a complete description of the motion, the

angular velocity vector, ω, of the body of total mass m must be known.

In the absence of any dissipation, the equations of motion in a frame

fixed to the body are given by:

⎛
⎜⎝

γ̇1

γ̇2

γ̇3

⎞
⎟⎠ =

⎛
⎜⎝

ω3γ2 − ω2γ3

ω1γ3 − ω3γ1

ω2γ1 − ω1γ2

⎞
⎟⎠ (9.8)
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and
⎛
⎜⎝

�1ω̇1

�2ω̇2

�3ω̇3

⎞
⎟⎠ =

⎛
⎜⎝

(�2 − �3)ω2ω3

(�3 − �1)ω3ω1

(�1 − �2)ω1ω2

⎞
⎟⎠ + mg

⎛
⎜⎝

d3γ2 − d2γ3

d1γ3 − d3γ1

d2γ1 − d1γ2

⎞
⎟⎠ . (9.9)

The first group of equations, (9.8), yields the velocity of vector γ viewed

from the body frame, while the second group, (9.9), is the equation of

rotation describing the change of the angular momentum due to the

gravitational torque M = d × (−mg γ), in the same frame.3 In the body

frame, the components of the angular velocity vector, ω, of the fixed unit

vector, γ, and of d are ω1, ω2, ω3, γ1, γ2, γ3 and d1 = 0, d2 = 0, d3 ≡ d,

respectively.

Equations (9.8) and (9.9) constitute a set of six first-order non-linear

differential equations determining the dynamics of a top. The state of

the system is characterised by variables γ1, γ2, γ3 and ω1, ω2, ω3.

In the course of the top’s motion there exist, in general, three con-

served quantities: the energy,

E = 1

2
(�1ω

2
1 + �2ω

2
2 + �3ω

2
3) + mgdγ3; (9.10)

the vertical component of the angular momentum in the standing

frame,

P = γ1�1ω1 + γ2�2ω2 + γ3�3ω3; (9.11)

and the length of vector γ ,

|γ| =
√

γ 2
1 + γ 2

2 + γ 2
3 ≡ 1. (9.12)

In a general case, therefore, the phase space is three-dimensional; con-

sequently, there is a possibility that the motion is chaotic. The aperiodic

time dependence of ω3(t) is illustrated in Fig. 9.7. The real-space motion

of a top can be represented by the orbit traced out by the x3-axis on the

surface of an imagined sphere, as shown in Fig. 9.8.

We can again obtain a global overview of the flow by constructing a

Poincaré map. We record ω3 and γ3 when γ1 = 0 (the x1-axis is exactly

3 The derivation of these equations is part of standard courses and textbooks on

rigid-body mechanics; therefore we do not give details. For the interested reader we

briefly mention, however, the basic ideas. An arbitrary vector, a, fixed in a frame that

rotates at angular velocity ω is seen from a standing frame to move at velocity

ȧ′ = ω × a. The respective derivatives, ȧ′ and ȧ, of vector a in a standing frame and in

a frame rotating with ω are therefore related as ȧ′ = ȧ + ω × a. Since γ̇ ′ = 0,

γ̇ = −ω × γ (see (9.8)), and since, in a standing frame, the time derivative of the

angular momentum, N = (�1ω1, �2ω2, �3ω3), is the torque M, thus

Ṅ = (�1ω̇1, �2ω̇2, �3ω̇3) = M − ω × N, as in (9.9).
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Fig. 9.7. Asymmetric heavy top: time dependence of the angular velocity
component, ω3, for moments of inertia �1 = 2.5, �2 = 1.5 and �3 = 2
(E = 1.7, P = 1.2) and initial conditions γ1 = 0, γ3 = −0.5, ω3 = 0. The
remaining variables, γ2, ω1 and ω2, follow from the conservation laws. In all our
examples, moments of inertia, energy and time are measured in units of md2,
mgd and

√
d/g, respectively.

(a) (b)

Fig. 9.8. Real-space motion of one point of the x3-axis of the body frame traced
out on the surface of a (non-transparent) sphere viewed from the side. The
length of the simulations is t = 200 units. (a) Weak chaos: �1 = 2.55, �2 = 2,
�3 = 3, E = 3, P = 2.5, with initial conditions γ1 = 0, γ3 = 0.5, ω3 = 1.1.
(b) Strong chaos with the same parameters and initial conditions as in Fig. 9.7.
Note that in this latter case the centre of mass is often below the point of fixation.

horizontal) and when γ̇1 > 0. The phase portrait obtained in this manner

(Fig. 9.9) exhibits the chaos of conservative systems.

Only two special cases are known with one more conserved quan-

tity. The phase space dimension is then reduced to two, and the motion

becomes regular.4

4 For the sake of completeness, we also mention the special case of a free top, when the

centre of gravity falls on the point of fixation. The resultant torque is then zero, and the

angular momentum vector is constant. This implies two more conserved quantities, in

total: the three components of the angular momentum, the energy and the length of

vector γ.



290 Investigation of chaotic motion

0

0

(a) (b)

g3

w3

1–1
–2

2

0

0 g3

w3

1–1
–2

2

Fig. 9.9. Poincaré portraits γ3, ω3 of two chaotic tops. The moments of inertia,
the energy and the angular momentum, P , in (a) and (b) are the same as in
(a) and (b) of Fig. 9.8, respectively. The number of different initial conditions is
(a) 18, (b) 10. The arrows point towards the chaotic bands from which the initial
conditions of Fig. 9.8 are taken.

One of these cases is that of symmetric tops, where �1 = �2 �= �3.

The new conserved quantity is the projection of the angular momentum

vector on the x3-axis of the body frame, i.e.

P3 = �3ω3. (9.13)

The symmetric top precesses in a quasi-periodic manner, during which

the x3-axis rotates at a constant angular velocity around the vertical axis

γ, while it also oscillates in the vertical plane around some finite angle.

The trajectories in the map (ω3, γ3) are correspondingly straight line

segments (Fig. 9.10(a)). In the real-space representation (Fig. 9.11(a)),

this corresponds to an orbit of wavy shape which does not close into

itself. From our everyday experience, we take for granted that tops spin

in a regular fashion. It is obvious from the consideration above that by

fixing a weight onto the side of a symmetric humming top, its spinning

may become chaotic.

The other case was discovered by Sonia Kovalevskaia in 1889. The

principal moments of inertia are then �2 = �3 = 2�1. Although two

moments are equal, this is not a symmetric case, since it is not the

moments perpendicular to the axis of the centre of gravity that are

identical. The dynamics appears to be more complicated than in the

symmetric case, but is, nevertheless, quasi-periodic (see Figs. 9.10(b)

and 9.11(b)). The new conserved quantity is called the Kovalevskaia

constant (K ):

K = (�1(ω2
3 − ω2

2) − mgdγ3)2 + (�2ω2ω3 − mgdγ2)2, (9.14)
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Fig. 9.10. Poincaré portraits γ3, ω3 of two integrable cases. (a) Symmetric top:
�1 = �2 = 2, �3 = 3, E = 3, P = 2.5, 15 different initial conditions. (b) The
Kovalevskaia top: �1 = 1, �2 = 2, �3 = 2, E = 1.7, P = 1.2, 15 different initial
conditions. For an explanation of the arrows, see Fig. 9.11.

(a) (b)

Fig. 9.11. Real-space motion of the (a) symmetric and (b) Kovalevskaia tops of
Fig. 9.10. (Side views as in Fig. 9.8.) (a) γ1 = 0, γ3 = 0.5, ω3 = 1.1 (P3 = 3.3),
t = 150; (b) γ1 = 0, γ3 = −0.1, ω3 = 0.7 (the dimensionless Kovaleskaia
constant K /(mgd)2 = 0.021), t = 500. The arrows shown in Fig. 9.10 point
towards the tori from which these initial conditions are taken.

whose constancy can be verified via substitution. This quantity has no

direct physical meaning, in contrast to energy or the components of the

angular momentum, and this is exactly what makes the Kovalevskaia’s

discovery so peculiar. It is remarkable that we are aware of no further

moment of inertia ratios �1/�3, �1/�2 for which an asymmetric top’s

dynamics would be regular.

Problems recommended for further studies

(i) Investigate the dynamics of heavy tops that differ slightly from the symmetric

case or the Kovalevskaia case.

(ii) Study the effect of air drag on asymmetric heavy tops.
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Box 9.2 Chaos in engineering practice

Machines and equipment are designed (with a ‘linear’ mindset) to operate as linearly as possible. Outside

the desired operational regime, where non-linear effects play an essential role, chaos is, however, quite

common. Chaotic oscillations appear in a realm of motion ranging from polishing machines, through metal

cutters and centrifuges, to moored vessels driven by steady waves.

An interesting phenomenon of vehicle dynamics, having attracted attention for decades, is that of

shimmying wheels. (The original meaning of ‘shimmy’ is a dance dating back to the 1930s.) Shimmy is a

lateral vibration of towed wheels which leads to unstable rolling. When pushing a shopping trolley we

sometimes find that the front wheel starts dancing and the cart becomes difficult to manoeuvre. The same

phenomenon can also be observed on the front wheels of bicycles and motorcycles, and on aircraft

nose-wheels, and has led to serious accidents. Vehicle manufacturers therefore take precautions to avoid

shimmy by utilising special equipment. Theoretical investigations show that the dynamics of shimmying

wheels is chaotic. The chaos is of transient type, but the lifetime can be rather long. Vehicles designed to be

immune against shimmy nevertheless remain quite sensitive: for example, fixing a small bag to the rear seat

may make a motorcycle susceptible to shimmying.

A related problem is that of trailers. Even a single trailer can exhibit irregular lateral motion.

Perturbations arising due to sudden severe side winds or sudden steering constraints (resulting, for example,

from the appearance of a dog in the road) may result in lateral oscillations of truck trailers, which resembles

shimmying (see Fig. 9.12). Such oscillations may develop to the point of overturning: accidents like this are

commonplace with private caravans. In most countries the use of a second trailer is prohibited because it

may drift into the neighbouring traffic lane due to non-linear oscillations.

The dynamics preceding the capsize of a vessel subjected to periodic sea waves or, more generally,

escaping from metastable states (potential wells) is often (transiently) chaotic.

A wide range of control methods is available to keep machines within the desired operational modes.

Small-scale chaos, however, often proves inevitable in control devices, which assure large-scale periodicity.

One example is the balancing of our own bodies.

The buckling of long elastic rods or cables has long been a central problem of engineering. Although

this is basically a static problem, an interesting analogy relates it to dynamics. The shape of such systems is

described by ordinary differential equations, in which derivatives are taken with respect to the arc length

Fig. 9.12. A truck trailer combination on the stability limit, by Knorr Bremse.
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(a) (b)

Fig. 9.13. Coiled elastic structures are spatial analogues of chaotic trajectories. (a) Telephone cord
(photograph by G. Károlyi). (b) Unfolded serpentine.

along the rod. If we identify arc length with time, the static problem can be mapped onto a dynamical one.

In particular, the equation for a stretched and twisted anisotropic rod turns out to be equivalent to that of an

asymmetric spinning top. The case of a rod with a periodically varying cross-section corresponds, for

example, to that of a torque-free asymmetric top with one of the principal moments of inertia changing

periodically in time. The possible spatial shapes of such a rod can thus be qualitatively as complicated as the

trajectories of a chaotic top. This is quite understandable by recalling a telephone cord or a vine tendril, not

to mention a stretched electric wire that has been stored in a coil. These studies are relevant in fields ranging

from macromolecular structures, such as, for example, DNA coils, to marine pipelines and communication

cables, and they provide the opportunity to define purely spatial chaos in the context of buckling rods

(Fig. 9.13).

9.3 Climate variability and climatic change:
Lorenz’s model of global atmospheric circulation
In order to describe accurately the instantaneous state of the Earth’s en-

tire atmosphere, a very large number (nearly 107) of variables has to be

used. Predicting the future of the system (i.e. forecasting the weather)

is based on the integration of the governing hydrodynamical equations

using modern numerical codes. Special techniques have been developed

to facilitate the handling and interpretation of so many variables. A con-

ceptual understanding of the essential behaviour of the atmosphere is,

however, often supported by models with few variables. Naturally, these

are only suitable for reflecting a few general features, and, contrary to

the problems studied so far, they are of heuristic nature. One of the

simplest models, which nevertheless provides considerable insight into

the subject, is Edward Lorenz’s model of general circulation. It mimics

the behaviour of the Earth’s atmosphere averaged over mid latitudes on

one (for example the northern) hemisphere, with just three variables. The

model formulates the balance between the energy of the prevailing west

wind and the energy transported polewards by large-scale atmospheric



294 Investigation of chaotic motion

vortices: the cyclones and anti-cyclones. The basic mechanism is that,

in the case of a significant heat transfer to the north, the average tem-

perature difference across the hemisphere decreases and the west wind

weakens.

The dimensionless variable, x , of the model is the velocity of the west

wind averaged over the mid latitudes. Its magnitude is proportional to

the north–south temperature gradient, i.e. to the temperature difference

between the Equator and the North Pole. The two other, also dimen-

sionless, variables are y and z, the amplitudes of the two modes5 of the

poleward heat-transport, which takes place via the large vortices, and the

energies transported by them are taken to be y2/2 and z2/2, respectively.

The time evolution of these variables is determined by the differential

equations6

ẋ = −y2 − z2 − ax + aF, (9.15a)

ẏ = xy − bxz − y + G, (9.15b)

ż = xz + bxy − z + G ′, (9.15c)

where all the parameters are positive and a < 1, b > 1.

The terms in the first ‘column’ on the right-hand side of equations

(9.15) express that the energy, (y2 + z2)/2, transported polewards de-

creases the kinetic energy, x2/2, of the west wind7 (and, consequently,

the temperature difference). If the model consisted of these terms only,

the total energy, E = (x2 + y2 + z2)/2, would be constant. This en-

ergy is not modified by the terms in the second ‘column’ either; these

characterise the energy exchange between the modes y and z. Para-

meter values b greater than unity express that this exchange is faster

than that between the vortices and the west wind.

The terms in the third ‘column’ describe damping due to atmospheric

dissipation. In (9.15a), the choice a < 1 reflects that the damping of the

west wind is weaker than that of the vortices. The coefficient of y and

z is −1, indicating that time is also dimensionless. The time unit is the

damping time of the vortices, which can be considered to be five days in

the atmosphere. The terms in the final ‘column’ correspond to constant

driving due to the temperature differences originating from the uneven

warming of the Earth by the Sun. In a stationary case, without non-linear

5 Modes are basically different spatial forms of energy transport; y and z are similar to

variables A and B in the water-wheel dynamics, the respective coefficients of the sine

and cosine terms of the angle dependence in equation (5.94).
6 In their mathematical structure, these are similar to the equations for the water-wheel

(Section 5.7) or of the Lorenz model of Box 5.6, although the phenomenon is

completely different.
7 To see this, multiply the first equation by x .
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Fig. 9.14. The two limit cycle attractors (component z is not shown) of
permanent summer, F = 6. (a) Inactive summer (small amplitude, nearly
sinusoidal limit cycle). (b) Active summer (large amplitude, non-trivial limit
cycle). The signals are shown over 73 time units corresponding to one year
(6 units ≈ 1 month).

interactions, variables x , y and z would take the values F , G and G ′,
respectively. Therefore, F can be considered as the average value of

the west wind’s velocity or of the temperature difference between the

Equator and the North Pole. Similarly, G and G ′ are the driving forces

of the poleward transport. Since the temperature difference between the

Equator and the Pole is larger in winter than in summer, larger values of

F can be assigned to winter situations. The standard parameters of the

model are F = 6 (summer), F = 8 (winter), a = 0.25, b = 4, G = 1 and

G ′ = 0. In the full model, equations (9.15), energy E is not constant. For

small values it grows due to the driving, while for large ones it decreases

due to damping. There may therefore exist non-trivial stationary states,

i.e. attractors.8

8 The phase space contraction rate is σ = a + 2 − 2x , which is negative for x > 1 + a/2.

For x > 1 + a/2, repellors may thus also exist.
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Fig. 9.15. Basins of attraction of the active (white) and inactive summer (black)
in the plane of initial conditions with z = 0 (F = 6). The active summer attractor
is represented on this plane by four points marked by black dots (cf. Fig.
9.14(b), y vs. t). The inactive summer attractor appears as a white dot. Note that
the inactive basin is much smaller than the active one and that it does not
extend towards large values of the variables.

Fig. 9.16. Signals on the chaotic attractor of permanent winter at F = 8.
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Fig. 9.17. The winter attractor in phase space. The attractor is projected on
planes (a) (x, y), (b) (x, z), (c) (y, z) and (d) in a stereoscopic view.

For F = 6 (permanent summer) two simple attractors (limit cycles)

co-exist (see Fig. 9.14), the system is therefore bistable. One of the limit

cycles has a smaller amplitude and is nearly sinusoidal, while the other

is less regular. They can be considered to characterise two different types

of summer: inactive and active summers, respectively.

Although permanent chaos cannot be found, the convergence towards

the simple attractors is preceded by transient chaos. Accordingly, the

basin boundary between the two attractors is a fractal (Fig. 9.15).

For F = 8 (permanent winter), a single attractor exists, and it is

chaotic: the climate exhibits strong internal variability. Figures 9.16 and

9.17 present the chaotic time series of the three variables and the chaotic

attractor in different views, respectively. The small loop on the attractor
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Fig. 9.18. The chaotic
attractor (F = 8) of
permanent winter on the
Poincaré map (xn, yn).
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x

Fig. 9.19. Natural
distribution on the chaotic
attractor of permanent winter.
A single trajectory of 107

intersection points is
generated and the points are
plotted on a grid of size
ε = 1/500.

is of special interest since it is in a region with x-values falling around

the origin. This corresponds to a situation in which the prevailing wind

might change direction.

We also represent the chaotic attractor on a Poincaré section, which

can be chosen to be the z = 0 plane (ż > 0) as shown in Fig. 9.18. The

small loop of Fig. 9.17 appears here as a small isolated block around

xn = 0, yn ≈ 2. From a single long run, the natural distribution can also

be determined (Fig. 9.19 and Plate XXII). It is clearly visible that the
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distribution is rather irregular. Huge spikes appear nearly everywhere

indicating that the probability of two slightly different weather conditions

can differ drastically. Furthermore, extreme events, such as, for example,

very strong winds or east winds (large positive or very small negative

xn-values, respectively), carry very low probabilities only, but being parts

of the attractor, they definitely occur in a sufficiently long observation

period.

The cases treated so far indicate that the variability of the global

circulation may be chaotic without any change of the parameters (the

system is autonomous). It is, however, natural to take into account the

annual periodicity of the heating.9 This is, to a good approximation, a

sinusoidal driving that can be written as

F(t) = F0 + A cos (ωt). (9.16)

Here ω = 2π/73 is the annual frequency according to the five-day time

unit and A is the amplitude of the temperature gradient’s oscillation.

With the values F0 = 7, A = 2, the averages of the three winter and

summer months are just around F = 8 and F = 6, respectively. In this

continuously driven system, no periodic behaviour can be observed at all.

Active and inactive summers follow each other, separated by winters, in

an irregular sequence (Fig. 9.20). The variability of the climate becomes

stronger. This can be interpreted as a consequence of the wandering

on the attractor of permanent winter during the winter months. When

summer sets in, the system is left at random in the basin of one of the per-

manent summer’s limit cycles. Naturally, due to the time dependence of

F , none of these attractors is present in an exact sense. In fact, the

chaotic attractor of the driven system lives in a four-dimensional phase

space (three-dimensional map) and contains, with certain probabili-

ties, behaviour similar to that represented by the constant-F attrac-

tors. The model reflects the general feature that periodic (seasonal)

variation of temperature gradients makes long-term weather periodicity

impossible.

Problems recommended for further studies

(i) What would the general circulation be like for weak solar radiation? Does a

steady west wind always exist?

(ii) Is there a climatic change if – by modelling anthropogenic effects – param-

eters F0 and G become shifted, or more extreme temperature fluctuations

appear (A increases)?

9 Daily fluctuations are not taken into account by the model since the time unit is longer

than a day.
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Fig. 9.20. Chaotic attractor of the seasonally driven model: active and inactive
summers appear in a random sequence (F 0 = 7, A = 2). The signal is shown over
a period of six years. The dashed lines indicate the winter/summer boundaries.

Box 9.3 Chaos in different sciences

Meteorology: The detailed analysis of meteorological data does not indicate that the atmosphere is

chaotic in the sense used throughout the book; i.e., the atmosphere does not possess a low-dimensional

chaotic attractor. The dynamics of the atmosphere is, nevertheless, unpredictable. This is utilised by the

so-called ‘ensemble forecasts’, operational at all leading weather services. In this framework, numerical

runs of the prognostic codes are carried out for the same time interval of a few days with about 50 equally

possible different initial atmospheric conditions (in very much the same way as we follow the evolution of

droplets in phase space (see, for example, Fig. 6.18). The divergence of different trajectories can be used
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to indicate situations of better or worse predictability. In the latter case, probabilities can, and should, be

associated with the different possible atmospheric events (rainfall or sunshine, for example). The maximum

average prediction time proves to be of the order of a week. According to a recent observation, at certain

geographical locations and at certain times the atmosphere may, however, behave as if it were a system

composed of only a few elements. The identification of the locations of low-dimensional behaviour

and of the local positive Lyapunov exponents can lead to improved forecasting. Another method is

based on data obtained from different observation platforms (for example aeroplanes) sent to these

geographical locations of pure predictability (‘targeted’ observations) with the aim of providing precise

initial conditions for a further forecast. In this way, the prediction of certain storms, for example, has

considerably improved.

Geophysics: Chaotic processes also occur in geophysical phenomena, typically on the same long time

scale as those found in astronomy (see Box 9.1). A notable example is the Earth’s magnetic field, which is

known to have repeatedly changed polarity over geophysical times. The dynamics resembles that of the

water-wheel or the Lorenz model. The motion of the Earth’s crust (lithospheric plates) driven by the

convection in the Earth’s mantle can be considered to be chaotic, which explains in part why earthquakes

break out so unpredictably.

Plasmas and lasers: The dynamics of charged particles in electric and magnetic fields is typically

chaotic, as can be observed in particle accelerators, in fusion equipment or in interstellar plasma. Even the

amplitude of magnetohydrodynamic waves may change chaotically due to non-linear interactions among

different wave components. A somewhat similar phenomenon is the chaotic light emission of lasers.

Electronic circuits: Any electronic circuit containing non-linear elements may produce a voltage of

chaotic time dependence. Some of these circuits are surprisingly simple. More generally, the auto-excitation

of electronic circuits often corresponds to the signal becoming chaotic. Although auto-excited systems were

once considered to be noisy, in view of chaos science, this behaviour is now believed to be of deterministic

origin.

Nanotechnology: The technological progress made since the mid 1990s has made possible the

manufacture of mesoscopic semiconductor samples of a few microns in size. To these samples, within

which electrons can move freely, channels are connected. Electrons coming in through one channel and

leaving through another experience chaotic scattering. The whole problem is thus analogous to that of open

billiards. On this micro-scale, the laws of quantum mechanics are valid. Nevertheless, in certain quantum

features, parameters of classical dynamics do show up; for example, the width of the conductance

correlation function is determined by the average lifetime of transient chaos. Another recent development is

the need for miniaturistion of flow devices used in biotechnology, which led to the fabrication of channels of

a few hundred microns in cross-section. In these micromixers efficient mixing of materials is only possible

with chaotic particle dynamics (see Section 9.4).

Acoustics: A basic law of room acoustics states that sound intensity decays exponentially in time. In

view of the phenomenon of transient chaos and chaotic scattering, this can be interpreted as the

consequence of an escaping process: some of the chaotically bouncing sound rays escape the room by

entering small holes in the wall (where their energy is attenuated), in very much the same way as if a

window or door were left open. A concert hall is, from this point of view, an open billiard. Most musical

instruments are intended to produce clear sounds containing the fundamental notes and their harmonics. At

strong sound intensities, however, non-linear effects generate unpleasant sounds: playing fortissimo on

wind instruments, for example, is therefore a continuous fight against chaos. Some other instruments, such
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as gongs, always generate a broadband sound spectrum, a sign of chaos. Many acoustic phenomena, among

other vocal instabilities, can be analysed by means of dynamical system techniques (bifurcation diagrams,

Poincaré maps, etc.).

Chemical reactions: (see also Box. 8.1): A class of macroscopical chemical and biochemical reactions

exhibits time periodic behaviour, for example in the form of a periodic change of colour. With different

parameters, these have been shown experimentally to exhibit chaotic oscillations (changes of colour)

occurring irregularly in time. To obtain permanent chaos, a permanent flux of fresh material is needed.

Without this, reactions go towards a state of thermal equilibrium, which is only compatible with a

time-independent chemical state (no change of colour). It has been found, however, that, with initial

conditions very different from those of the asymptotic state, non-trivial temporal behaviour can set in,

which can even be chaotic. Thus, transient chaos can be a precursor of thermal equilibrium .

Medicine, physiology: Chemical chaos might be the basis of the fact that some physiological

phenomena are also related to chaotic behaviour. One of the best known examples is the electric activity of

the heart. The ECG signal measuring this appears to be periodic for a healthy person, but its detailed

analysis reveals chaotic deviations from exact periodicity. It is generally true that healthy physiological

functions exhibit small chaotic fluctuations about the normal values (similar to chaos in engineering

control; see also Box. 9.2), and chaotic components disappear in the case of illness only. The evolution of

certain epidemics in large cities is also a chaotic process. For example, New York measles epidemics have

been shown to be a transiently chaotic phenomenon.

Biology, ecology: The change in the number of living organisms in a given area may also be chaotic. A

thoroughly investigated example is that of a kind of flour beetle whose population appears in either a larval,

pupal or adult form. The interaction between the populations of these life stages is non-linear due to

cannibalism (eggs are eaten by larvae and adults and pupae are eaten by adults), and can be described by a

three-variable map (one iteration step corresponding to two weeks, the average duration of all the life

stages). Laboratory cultures of these beetles can be utilised, and some parameters, such as, for example,

the rate of mortality and cannibalism can be set precisely. The experimental observations have been shown

to be in perfect agreement with the model predictions. This biological system produces several

phenomena of non-linear dynamics, for example chaotic attractors, co-existence of several attractors, fractal

basin boundaries and chaotic transients. In population dynamics, the number of individuals is an integer.

When this number is small (the population is close to extinction), and environmental or demographic

noise is weak, integer-valued maps appear to be more adequate tools to describe the dynamics than

traditional maps or differential equations. Chaotic phenomena may accompany numerous other

biological processes, such as the dynamics of food chains, animal behaviour and competition between

species.

Internet: The competition between different internet applications (for example e-mail) being

transmitted over the same network may lead to a chaotic time dependence of the transfer protocol. This

might be an explanation for the occasionally very long waiting times.

Economy: Economy as a whole is a very complex system. In the spirit of the book, it cannot be

considered therefore to be chaotic: it is more complicated than that. Nevertheless, certain elementary

economical processes can be described by simple, non-linear mathematical models, and these can exhibit

chaotic behaviour.



9 Applications of chaos 303

Box 9.4 Controlling chaos

The chaotic behaviour of equipment is, in certain cases, undesirable from the point of view of the user, and

is thus to be avoided. It is therefore worth knowing that chaos is controllable; i.e., chaotic dynamics can be

converted into regular, periodic motion. One of the most often used control method, the OGY algorithm,

developed in 1990 by Ott, Grebogi and Yorke, utilises exactly the chaotic character of the dynamics to be

controlled. The two essential facts on which the algorithm is based are as follows:

� that chaotic sets (attractors, bands or saddles) contain an infinite number of hyperbolic periodic orbits,
� and that, due to the existence of a natural distribution, the state of the system visits arbitrarily small

neighbourhoods of any periodic orbit sooner or later (ergodicity, cf. Box 7.4).

An important feature of the algorithm is that it only applies small controlling effects. Such a control is

economical, since tiny external perturbations are sufficient to allow the system to reach the desired

behaviour.

The first step of the OGY algorithm is to choose a desired periodic orbit on the chaotic set, with the aim

of directing the system’s dynamics towards the dynamics of this orbit. Next, a small neighbourhood of the

orbit, for example a circle around one of the cycle points, is taken, and control is applied only if the state

point enters this neighbourhood. Within this region, the linearised dynamics must be known, in particular

the eigenvalues and the stable and unstable manifolds of the hyperbolic cycle should be determined. The

control itself is maintained by changing one of the system parameters proportionally to the distance of the

state point from the closest point of the pre-selected cycle. Instead of the original map rn+1 = M(rn, μ), a

modified map, rn+1 = M(rn, μ + δμn) ≡ Mn(rn, μ), is applied with a parameter perturbation δμn

proportional to the distance rn from the cycle point. Note that the originally autonomous system is thus

converted into a non-autonomous one,

M → Mn,

whose form thus also depends on the time instant. A feedback has been created between the instantaneous

state of the system and its parameter. The parameter perturbation is chosen so that the image under the

action of Mn falls on the stable manifold of the pre-selected cycle in the linearised dynamics (see Fig. 9.21).

Knowing the map M and its linearised version, the required δμn can be explicitly determined. In a

piece-wise linear system, control would be maintained by such a single control step since the iterated point

then approaches the cycle along the straight line of the stable manifold. In general, however, the algorithm

should be kept active in later steps also, since the linear approximation is not exact and therefore the image

point falls somewhat off the exact manifold. The controlled dynamics converges towards the pre-selected

cycle quite quickly, and remains in its vicinity over a long time. By means of a parameter perturbation, we

can thus convert an unstable cycle into an attracting limit cycle.

The OGY algorithm has been applied widely. In several cases, successful experimental chaos controls

have been implemented in, among others, electronic circuits, chemical reactions, lasers and biological

systems (like the heart).

Other ways of manipulating chaos makes it possible to direct the dynamics to certain regions of the

chaotic set, to synchronise the performance of chaotic systems and to carry out secret communication with

coded chaotic signals. All these extend the possible applications of chaos.
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Fig. 9.21. The OGY control (schematic diagram). The pre-selected periodic orbit is a hyperbolic fixed point,
r∗, of the two-dimensional map, M. Point rn falls within the control region. (a) The map without applying
control. The curve is a hyperbola; the straight lines represent the manifolds in a linear approximation. (b) The
map in the presence of control: the image point falls on the straight-line approximant of the stable manifold.
The applied parameter perturbation, δμn, proves to be proportional to the deviation of rn from the straight
line of the stable manifold.

9.4 Vortices, advection and pollution: chaos in
fluid flows
The description of a fluid10 flow implies knowledge of the velocity field,

i.e. knowledge of the velocity, v, in any point, r, of space and at any

instant, t , of time. The velocity field, v(r, t), can be obtained via exper-

imental observations and/or by solving numerically the basic equations

of hydrodynamics. In the following we assume that velocity changes

smoothly both in time and in space, i.e. the flow is not turbulent (cf. Box.

10.1).

One possibility for the hydrodynamical appearance of chaos is that

the velocity at any fixed position changes chaotically in time. We em-

phasise that this only implies that at the specified position the veloc-

ity is not periodic or quasi-periodic: the velocity field does not repeat

itself.

The other possibility is more surprising. It is related to the phe-

nomenon of advection, i.e. to the issue of the motion of a dye particle or

a pollution grain in the flow. Before the appearance of chaos science, it

was believed that in simple, for example in time-periodic flows, advec-

tion was also simple. The fact that this is usually not true can be read off

from the equation of motion.

Let r(t) denote the position of the particle at time instant t . Our aim is

to determine the complete function, r(t), i.e. the orbit of the particle in a

10 Gases are also considered to be fluids.
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given velocity field, v(r, t). In a wide range of the practical applications,

the advecting particle can be assumed to be small and light; consequently,

it adopts the velocity of the surrounding medium instantaneously. The

velocity, ṙ, must therefore equal the velocity, v, of the fluid at position

r(t) and time instant t . The equation of motion11 of advection is therefore

ṙ = v(r, t). (9.17)

Since v(r, t) is given, solving the advection problem implies solving

an ordinary differential equation that is usually non-linear. The condition

for the appearance of chaos is that the phase space be at least three-

dimensional. Consequently, the motion of advected particles is usually

chaotic both in three-dimensional (even in stationary fluid flows) and

in two-dimensional time-dependent fluid flows. In the latter case, chaos

already appears for the simplest, periodic time dependence.

A special feature of the advection problem (9.17) is that its variables

are the space co-ordinates themselves, thus (see Section 3.5.1) the phase

space coincides with the configurational space (which is to be augmented

with the phase axis for time-periodic flows). Therefore, fractal structures

usually appearing only in phase space can be observed with the naked

eye or on photographs in the context of advection!

The phase space contraction rate, according to (3.55), is σ =div v.

It is known from hydrodynamics that the divergence of the velocity field

is proportional to the density change. In compressible media, advec-

tion may lead to the appearance of attractors, i.e. to the accumulation

of the particles at certain positions. The typical velocity of fluids in ad-

vection problems is, however, much lower than the speed of sound in

the medium; the fluid can therefore be considered to be incompress-
ible: div v = 0. Accordingly, advection dynamics exhibits the chaos of

conservative systems (open or closed, depending on the nature of the

flow).

In connection with the mixing of dyes and the spreading of pollu-

tants, it is usually not the motion of a single particle that is of interest,

rather it is that of an ensemble of particles, of a dye droplet. We call this

the droplet dynamics. We have seen that a droplet slowly flowing out of a

given domain always traces out the unstable manifold of a hyperbolic set,

which, for chaotic dynamics, possesses a fractal structure. An important

consequence of this is that droplets or pollutant stains spread, in general,

by forming fractal-like patterns. In the advection problem, the abstract

concept of unstable manifold materialises in a visible object. The fol-

lowing sections illustrate different facets of chaotic advection dynamics.

11 Note that this is not a Newtonian equation, since force and acceleration do not appear

in it.
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9.4.1 Tank with two outlets (advection in open flows)

First, let us examine the effect of a single outlet in a large, flat container,

located at the origin. The velocity of the flow towards the outlet at distance

r is vr = −Q/r , where Q > 0 is a constant, the strength of the outflow.

From everyday experience, it is known that a rotational flow accompanies

drainage. Consequently, a flow of velocity, vϕ , perpendicular to the radius

is also present, and it is assumed to have the form vϕ = K/r , where

K > 0 is the strength of the circulation. In the velocity field given by

the above two relations, the equation of advection, (9.17), implies that

the respective radial and peripheral velocities, ṙ and r ϕ̇, of the particle

equal vr and vϕ :

ṙ = vr = − Q

r
, ϕ̇ = vϕ

r
= K

r 2
. (9.18)

The solution with initial condition (r0, ϕ0) at t = 0 is given by

r (t) = (r 2
0 − 2Qt)1/2, ϕ(t) = ϕ0 − K

Q
ln

r (t)

r0

. (9.19)

A particle starting from distance r0 reaches the outlet in time r2
0 /(2Q),

along a spiralling orbit.

At this point, it is useful to turn to a representation in terms of

complex numbers: z = r exp (iϕ). The complex form of solution (9.19)

(with initial condition z0 = r0 exp (iϕ0)) is given by

z(t) = z0

(
1 − 2Qt

|z0|2
)(1−i K/Q)/2

. (9.20)

In the tank with two outlets (see Fig. 1.23 and Section 1.2.5) the out-

lets are located at points −a, and a on the x-axis, and they are alternately

open for a period of T/2. At time instant t = 0, the left outlet is opened.

The flow is thus periodic with period T .

The position of the particle after time T/2 is obtained from (9.20)

by placing the outlet at point −a:

z(T/2) = (z0 + a)

(
1 − QT

|z0 + a|2
)(1−i K Q)/2

− a. (9.21)

After the next half-period (the origin corresponds now to point +a), the

position is given by

z(T ) = (z(T/2) − a)

(
1 − QT

|z(T/2) − a|2
)(1−i K/Q)/2

+ a. (9.22)

Thus, we have obtained the map relating the initial point to the position

taken after time T .

It is useful to choose the length unit to be a (the outlets are then at

points z = ±1). Clearly, the advection dynamics is determined by two
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dimensionless parameters, given by

η = QT/a2 and ξ = K/Q, (9.23)

i.e. the dimensionless strengths of outflow and circulation, respectively.

Since the flow is periodic, the positions at instants t = nT and t =
(n + 1)T are related by the same rule. With the notation zn ≡ z(nT ), the

stroboscopic map of an advected particle is given by

zn+1 = (
z′

n − 1
)
(

1 − η
∣∣z′

n − 1
∣∣2

)1/2−iξ/2

+ 1,

z′
n = (zn + 1)

(
1 − η

|zn + 1|2
)1/2−iξ/2

− 1,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.24)

where the auxiliary variable, z′
n , denotes the position of the particle at

instant t = (n + 1/2)T .

The advection map, (9.24), yields the position of the particle at the

instants when the left outlet is opened. Particles within a circle of radius

R = √
η around the outlet leave the system in half a period, and an

identical sink core is formed around the other outlet in the next half

period. The advection map possesses therefore two extended, but non-

chaotic, attractors (although in the continuous-time dynamics, only the

centres of the outlets are attractors). Outside the outlets, velocity is

divergence-free; consequently, the map is area preserving outside of

the sink cores. The flow is open, i.e. fluid flows across the observational

domain, and never returns after leaving it (through one of the outlets).

The advection dynamics therefore exhibits the properties of the transient

chaos of open conservative systems (chaotic scattering).

Figure 9.22 presents the chaotic saddle of the map and its manifolds

for parameters η = 0.5, ξ = 10 (the ones also used in Figs. 1.24 and 1.25,

and in Plate XI). These figures clearly illustrate our previous statement

that a spreading dye droplet traces out the unstable manifold: the last

colour plate, taken after four periods, is practically identical to the image

of Fig. 1.25 taken one period later (even though the initial droplets are

not identical), and in the given resolution both agree with the unstable

manifold seen in Fig. 9.22(c).

The stable manifold of Fig. 9.22(b) can, in principle, also be traced

out by dye. The map is invertible outside the sink core, and the inverted

map describes advection due to a fluid being injected alternately every

half period at the positions of the initial outlets and flowing circularly. An

impurity droplet placed into this flow spreads along the stable manifold

of the original problem.

Because attractors are present, the basin boundaries can be defined.

Particles coming close to the chaotic saddle or its stable manifold are

trapped: for a long time they cannot decide which outlet to take. The
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Fig. 9.22. Invariant sets of the advection dynamics in a tank with two outlets
(η = 0.5, ξ = 10). (a) Chaotic saddle, (b) stable manifold, (c) unstable manifold
obtained by plotting the points n = 8, n = 0 and n = 15 of trajectories not
escaping the region shown in 15 periods (see Box 6.1). The outlets are marked
by black dots.
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2.2Fig. 9.23. Basins of attraction
of the two outlets (initial
positions corresponding to
flowing out through the left
outlet are marked in black;
η = 0.5, ξ = 10). The frame
within the figure indicates the
size of Fig. 9.22.
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Fig. 9.24. The shear-flow model (9.25), (9.26): sinusoidal velocity profiles
alternate each half period.

fractal boundary therefore coincides with the stable manifold of the

saddle (Fig. 9.23).

9.4.2 Advection in closed flows

In order to model a spatially extended flow, we consider a square region

of linear size L and repeat it periodically in the plane. Within each

square, the flow is assumed to be shear-like: the velocities are opposite

in opposite halves of the square. Let the flow be periodic in time in such a

way that, in the first and second half periods of length T/2, the velocities

are parallel to the x- and y-directions, respectively. Possibly the simplest

shear form is given in terms of a sine function of the co-ordinates. The

chosen velocity field is therefore

vx = U sin (2πy/L), vy = 0, if 0 ≤ t < T/2, (9.25)

vx = 0, vy = U sin (2πx/L), if T/2 ≤ t < T, (9.26)

where U is the maximum velocity (Fig. 9.24).

The displacement of a particle situated at position (xn, yn) after n
periods occurs in the x-direction during the first half period and is of

magnitude (U T/2)sin (2πyn/L). After reaching the end-point with co-

ordinate xn+1, the y-displacement is (U T/2) sin (2πxn+1/L). Measuring

length in units of L , the advection map is of the following form:

xn+1 = xn + a sin (2πyn), yn+1 = yn + a sin (2πxn+1), (9.27)

where

a = U T

2L
(9.28)
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Fig. 9.25. Phase portrait of map (9.27) for parameters (a) a = 0.3 and (b)
a = 0.5. (The number of initial conditions is 11 and 7, respectively.) The
transport barriers (KAM tori) are much more extended in (a) than in (b).

is the only dimensionless parameter. Since the velocity field is periodic

with a period of unity in both x and y, neighbouring squares are equiv-

alent. The position of a particle can thus also be represented within the

unit square, i.e. map (9.27) can be applied with periodic boundary con-

ditions at x and at y = 1. The flow is then closed and the exiting fluid

returns to the observed domain. (When a selected particle leaves the unit

square, it is considered to be advected back immediately at the opposite

side.) Map (9.27) is a prototype of the advection dynamics in general

closed flows.

The advection map is area preserving because of the incompress-

ibility of the fluid. The phase portrait of advection dynamics is therefore

similar to that of closed conservative systems. Nested in the chaotic do-

main, KAM tori appear (Fig. 9.25). In the context of advection, these

regular islands correspond to the appearance of what are called trans-
port barriers. These are domains that no particle coming from outside

can enter and no particle within can leave. In real flows, these are often

formed by long-lived vortices.

In the course of spreading, fractal-like objects seem to appear for

some time as the drop starts to follow the unstable manifold. Since,

however, the latter is two-dimensional is an area preserving map, the

particles constituting the drop become uniformly distributed after a long

time. They cannot cover the entire fluid surface, however, since KAM tori

are impermeable (see Figs. 9.26 and 9.27). In a closed fluid, therefore, the

smaller the total area of regular islands, the more effective the stirring.

Consequently, when designing a good mixer, the aim is to find parameters

for which chaos is most extended (in our case, for example, for a = 0.8).
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Fig. 9.26. Droplet dynamics in the shear flow model (a = 0.3). (a) Initial
droplet of 90 000 points. The shape of the droplet is shown after (b) 4, (c) 5 and
(d) 12 time units.
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Fig. 9.27. Droplet dynamics in the case of more efficient stirring (a = 0.5). The
shape of the same droplet as in Fig. 9.26 is shown after (a) 4 and (b) 12 time
units.
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9.4.3 Vortex dynamics

Long-lived vortices often develop in fluids. The flow around them is

circular, and the velocity increases towards the vortex centre. In inviscid

shallow fluids,12 the absolute value of the velocity depends on the dis-

tance, r , from the centre as K/r (as in the case of the outlets, except that

there is no radial flow). The velocity components around a single vortex

centred at the origin are given by

vx = −K
y

r 2
, vy = K

x

r 2
, (9.29)

where r =
√

x2 + y2. If there is more than one vortex, none of them

remains in place, since each vortex is advected by the flow generated

by the others. The motion of the vortex centres can only be determined

from the solution of a differential equation.

In the presence of N vortices, let (xi , yi ) and Ki denote the po-

sitions of the vortex centres and the vortex strengths, respectively. In

order to derive the differential equation, note that, at the position of a

vortex centre, the x-component of the fluid’s velocity is the sum of the

contributions, vx , of all the other vortices. For example, for vortex 1 at po-

sition (x1, y1), this resultant velocity is given by (cf. (9.29))
∑N

j=2 vx,i =
− ∑N

j=2 K j (y1 − y j )/r2
1, j , where ri, j = √

(xi − x j )2 + (yi − y j )2 is the

distance between vortices i and j . The vortex centres take on the fluid

velocity instantaneously, just like the advected particles considered so

far. The equation of motion of the N -vortex problem is therefore given by

ẋi = −
N∑

j �=i

K j
yi − y j

r 2
i, j

, ẏi =
N∑

j �=i

K j
xi − x j

r 2
i, j

. (9.30)

The phase space of the N -vortex problem is 2N -dimensional. There

exist, however, conserved quantities. One of these is the vortex interac-

tion energy

E = −
N∑

j �=i

Ki K j ln ri, j , (9.31)

but the quantities

N∑

i

Ki xi ,

N∑

i

Ki yi ,

N∑

i

Ki (x
2
i + y2

i ),
N∑

i

Ki (xi ẏi − yi ẋi ) (9.32)

are also conserved, as can be verified via direct substitution. In the four-

vortex problem, the number of independent equations is thus 8 − 5 = 3;

consequently, four or more vortices usually move chaotically in each

12 Or in three-dimensional flows where velocity does not depend on the third co-ordinate.
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Fig. 9.28. Chaotic dynamics of four vortices: orbits of the vortex centres are
obtained by solving (9.30) in a dimensionless form (K 1 = K 2 = K 3 = K 4 = 1).
The initial positions are marked by black dots. (a) Orbits of all four vortices over
10 time units. (b) Orbits of vortex 1 over 100 time units.

other’s flow field (Fig. 9.28). The dynamics of the two- and three-vortex

problem is always regular, i.e. periodic and quasi-periodic

Knowing the orbits (xi (t), yi (t)), the velocity field of the fluid is

obtained from (9.29) at an arbitrary point (x, y) (outside of the vortex

centres) as follows:

vx (x, y, t) = −
N∑

i=1

Ki
y − yi (t)

r 2
i

, vy(x, y, t) =
N∑

i=1

Ki
x − xi (t)

r 2
i

, (9.33)

where ri =
√

(x − xi )2 + (y − yi )2 is the distance from vortex i . The

time dependence of the velocity field is therefore of the same character

as the dynamics of the vortex centres. Thus, in general, the velocity

field generated by four vortices changes chaotically at any point of the

fluid.

The equation of an advected particle in the velocity field of N vortices

is, according to (9.17), given by

ẋ = −
N∑

i=1

Ki
y − yi (t)

r 2
i

, ẏ =
N∑

i=1

Ki
x − xi (t)

r 2
i

. (9.34)

This is a two-dimensional motion driven by the dynamics of the vortex

centres.

An advected particle has no feedback on the vortices. It moves as

a vorticity-free vortex centre. If one of the vorticities, Ki , of an N -

vortex problem is zero, then we speak of a restricted N -vortex problem

(in terminology analogous to that of the gravitational N -body problem;

see Section 9.1). Particle advection in the field of N − 1 vortices is there-

fore a special case of the N -vortex problem. Chaoticity is not affected by
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Fig. 9.29. Dynamics of three
vortices
(K 1 = K 2 = 1, K 3 = −0.5).
From the initial positions
(shown by open circles), an
isosceles-triangle
configuration is reached after
3.4 time units. The same
shape (but of opposite
orientation) appears after an
additional 13.2 time units. The
period is thus T = 26.4. The
origin is the centre of vorticity,
T0 (marked with a cross).

xn

yn

–7

7

0

–7 0 7

K2

K3

K1

Fig. 9.30. Advection
dynamics in the field of three
vortices on a stroboscopic
map corresponding to the
isosceles-triangle
configurations of the vortices
(K 1 = K 2 = 1, K 3 = −0.5);
13 trajectories are plotted.

this restriction; consequently, advection is typically chaotic in the field

of three vortices.

In order to characterise advection properly, we have to know how

the three vortices move. Starting from any initial condition (provided∑3
i=1 Ki �= 0), the vortices sooner or later reach an isosceles-triangle-

shaped configuration. This same configuration is then repeated with some
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Fig. 9.31. Droplet dynamics. The shape of a 106 point droplet shown as a small
black square in (a) after (a) 1 and (b) 2 periods, T . Stroboscopic map and
parameters are as in Fig. 9.30.

period T , but not at the same location (Fig. 9.29). In a reference frame

whose origin is fixed to the centre of vorticity r0 = ∑3
i=1 Ki ri/

∑3
i=1 Ki ,

and whose y-axis goes through vortex 3, the vortex dynamics appears

to be periodic with period T .

It is this frame of reference in which the advection dynamics is easiest

to follow in the form of a stroboscopic map. Chaos is present among

the vortices, but not in the immediate vicinity of the vortex centres,

where rotation is very strong (Fig. 9.30). The droplet dynamics can also

conveniently be investigated in this frame (Fig. 9.31).

Problems recommended for further studies

(i) Study the chaotic scattering of vortex pairs (K2 = −K1, K4 = −K3, . . .).

(ii) Investigate chaotic advection in the velocity field of four arbitrary vortices.

(iii) Model advection dynamics in chaotically time-dependent flows by replacing

one of the fixed parameters, μ, of advection maps (for example (9.24)

and (9.27)) with parameters changing randomly from iteration to iteration,

μ → μn ≡ μ + δμn , where δμn is a random number over a finite short

interval.

Box 9.5 Environmental significance of chaotic advection

When material is mixed in fluids, the flow of the medium plays a much more important role than diffusion.

In a medium perfectly at rest, it would take days for it to spread over a few metres by means of pure

diffusion. (Typical orders of magnitude of diffusion coefficients in water and air are 10−9 and 10−5 m2/s,
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Fig. 9.32. Mountain acting as a skyscraper. Behind a high mountain on Alexander Selkirk Island (Chile) in
the Southern Pacific Ocean, the wind generates vortices on September 15, 1999 (NASA archive,
http://visibleearth.nasa.gov/cgi-bin/viewrecord?617). In this nearly periodic open flow, advection is chaotic
and a saddle develops in the wake. In the cloud layer, the unstable manifold of this saddle is traced out, which
surrounds large isolated vortices, similar to the dye in Fig. 9.31.

respectively, and, since the average distance between two originally adjacent particles grows in time as

�x(t) = √
2Dt , this yields, for the two respective cases, centimetres and metres over a day.) Thus, if upon

entering a home we immediately smell what is being prepared in the kitchen, this is due not to diffusion, but

to the advection generated by the slight, ever-present, air currents. Advection is, however, usually chaotic. It

occurs in everyday phenomena (for example, the stirring of milk into coffee, the rising smoke of cigarettes

and the mixing of dyes) in much the same way as on larger scales.

Advected materials spread in our environment via chaotic advection. Consequently, in time-dependent

smooth flows, all materials, including pollutants, spread along filamentary, fractal-like patterns. As we have

seen, these are related to unstable manifolds; therefore, we can say that numerous environmental

phenomena exhibit the marks of unstable manifolds. Figure 9.32 presents the pattern developing in the

wake of an obstacle, in the so-called ‘von Kármán vortex street’. In this practically time-periodic open flow,

advection is chaotic and a saddle exists in the wake. Particles may be trapped and may spend quite long

times behind obstacles. This chaotic scattering process explains that pollutants may accumulate in the wake

of bridge pillars, piers or islands.

Plate XXIII exhibits fractal-like patterns in a less regular flow, traced out by drifting ice-plates on the sea

surface.

In many environmental problems, advected particles are not passive but rather undergo some reactions.

As a consequence of chaotic advection, chemical or biological reactions taking place in fluid flows are

basically different in character from those occurring in non-moving media. Plates XXIV and XXV–XXVI

illustrate by examples taken from the ocean and the atmosphere, respectively, that the distribution of the

product (plankton and ozone) is fractal-like in such cases, and is expected to be bound to some kind of

unstable manifold.

The naive idea that pollutants have a compact distribution is therefore not realistic. The typical

Lyapunov exponent of large scale advection in the atmosphere is of the order 1/(a few days) (in the ocean it
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is 1/(4 weeks)), which implies that a pollutant with an initial radius of 1 km may wind around the Earth

along a given latitude in about one month (e10 = 22 026). Moreover, its distribution is filamentary;

therefore, an accurate prediction of whether a certain geographical site will be affected is very

difficult.

In summary, chaotic advection sheds new light on many environmental phenomena and the problem

of pollution, and can be considered as one of the most appealing fields of application of chaos

science.



Chapter 10

Epilogue: outlook

In this concluding chapter, we present a brief overview of some phe-

nomena and concepts, the detailed investigation of which is beyond the

scope of this introductory book, but whose inclusion may provide (along

with the bibliography) further understanding.

First and foremost, we emphasise that chaotic behaviour can be

observed in laboratory experiments. The validity of the physical laws

determining the motion of macroscopic systems is beyond doubt; conse-

quently, the phenomena found in numerical simulations are also present

in the real world. The chaotic feature of many of our examples (magnetic

pendulum, ball bouncing on a double slope or on a vibrating plate, or

the mixing of dyes) can be demonstrated by relatively simple equipment.

In the cases of the periodically driven pendulum, the spring pendulum,

the driven bistable system or chaotic advection, the chaos characteris-

tics have been determined by precise laboratory measurements, and the

transitions towards chaos have also been investigated. In other branches

of science, numerous processes are also known whose chaoticity is sup-

ported by observational or experimental evidence (see Box 9.3).

In this book we have presented the simplest forms of chaos and inter-

preted them as the consequence of hyperbolic periodic orbits. In general,

however, non-hyperbolic effects also play a role due to the existence of

orbits whose local Lyapunov exponents are zero. One example of this

is the algebraic (non-exponential) decay of the lifetime distribution in

chaotic scattering due to the existence of KAM tori (see equation (8.10)).

Another manifestation of non-hyperbolic behaviour is intermittency in

dissipative systems: the interruption of long-lasting, apparently periodic,

318
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motions by chaotic ‘bursts’ of large amplitudes. This also provides a pos-

sible route towards chaos.

An information-theoretic approach to chaos and the related concept

of symbolic dynamics and dynamical entropies (generalisations of the

topological entropy) make possible a very detailed characterisation of

chaos and deepen the link between temporal disorder and fractal order

in phase space.

We have restricted ourselves to chaos in three-dimensional flows

(two-dimensional maps). In systems with higher-dimensional phase

spaces (three or more dimensional stroboscopic or Poincaré maps) chaos

has further novelties in store. The unstable manifolds of the hyperbolic or-

bits can then be surfaces, implying the positivity of at least two Lyapunov

exponents. In high-dimensional systems quasi-periodic motion can also

be attracting, and torus attractors might appear as new types of regular

attractors. The transition to chaos may also occur via the destruction of

torus attractors. In conservative cases, with more than three-dimensional

phase spaces, the tori do not act as barriers of transport. Therefore, a mo-

tion spreading over large distances of phase space, the so-called Arnold
diffusion, might be present, even for very weak perturbations.

Deterministic chaos is the temporal behaviour of simple sys-

tems made up of few components. The temporal behaviour of many-

component systems, systems of high degrees of freedom, is necessarily

more complicated than chaos. The origin of the random behaviour lies in

the huge number of components, which would be impossible to examine

individually. Random motion of this origin, perceived by macroscopic

observers, is called noise, and the underlying microscopic dynamics is

sometimes referred to (using the terminology of the kinetic theory of

gases) as molecular chaos. Molecular and deterministic chaos are, how-

ever, different in several aspects. The concepts of deterministic chaos

can, nevertheless, also be useful elements in the description of systems

of high degrees of freedom (and of molecular chaos). Thus, for example,

positive average Lyapunov exponents might exist. Their number often

increases with the number of the components, together with the dimen-

sion of characteristic phase space structures. Even though the dynamics

of both types of chaos is unpredictable, low-dimensional fractal phase

space structures, so characteristic of deterministic chaos, are typically

not present in high degree of freedom systems.

In investigating deterministic chaos, we study the simplest form of

irregular temporal behaviour originating only from the non-linearity

of the internal dynamics. In systems with high degrees of freedom,

this is supplemented by the complexity arising from the large num-

ber of variables. The complicated behaviour of systems consisting of
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many components therefore inevitably possesses features that cannot be

understood on the basis of deterministic chaos alone. As far as the be-

haviour of such systems is concerned, the knowledge of deterministic

chaos is only a first step.

Understanding deterministic chaos requires us to make a fundamen-

tal change in our entire scientific view of Nature. We have to accept that

motion described by simple non-linear equations is usually complicated,

and also that the solution can only be obtained using computers. The sci-

ence of mechanics, which appeared a short while ago to be closed, has

to be extended by the concepts discussed in the book. The same holds

for all branches of science whose basic phenomena can be described

Box 10.1 Turbulence and spatio-temporal chaos

Turbulence of fluids is the most complicated form of fluid motion, irregular not only in time but also in

space. At the time when ‘chaos theory’ was beginning to take shape (in the 1970s and 1980s), it was widely

accepted that the understanding of chaos would lead to the understanding of turbulence as well. This

expectation has proved to be an exaggeration, and, even though the most important features of chaos are

understood, turbulence still requires further exploration.

The temporal and spatial behaviour of fluid motion is described by partial differential equations. By

approximating the space co-ordinates with a finite grid, these can be replaced by a set of ordinary

differential equations, but their number is still extremely large. Fluid dynamics is therefore a problem of

high degrees of freedom.

At a not too strong energy input to fluid flows, or, more generally, to any spatio-temporal process

described by partial differential equations (for example, chemical reactions or excitation waves in living

tissues) it might occur that only certain groups of the degrees of freedom are active. In such special cases

the motion is effectively low-dimensional. For the observer this might appear as more or less regular spatial

patterns (waves) passing through the system, whose repetition is not exactly periodic in time. Such

spatio-temporal chaos thus manifests itself in the random-like occurrence of certain local spatial structures,

and might possess an underlying low-dimensional chaotic attractor. These structures are related to novel

phenomena, such as non-linear waves, spikes, fronts, boundary effects, coherent behaviour. As for

deterministic chaos, the presence of spatio-temporal chaos cannot be detected by just looking at the

equations and parameters. Instead, its presence can only be shown through measurement and/or simulation.

Some phenomena that appeared in first approximation to be purely temporally chaotic (for example the

behaviour of certain populations or epidemics) have turned out, on closer inspection, to exhibit

spatio-temporal chaos.

In the general case of strong energy input, many degrees of freedom are active both in fluids and in other

spatio-temporal processes. In particular, in the extreme situation of turbulence, it is evident that nearly all

the degrees of freedom take part in the entire dynamics. Several other phenomena (certain dysfunction of

the heart, electric activity of the brain, price fluctuations of markets and stock markets, for example) that

were once suspected to be chaotic have turned out (in view of accurate recent investigations) to be high

degree of freedom problems with noisy or turbulence-like dynamics.
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by ordinary differential equations. In all of these, the problem of un-

predictability, attached so far to meteorology only, appears, and the use

of probabilistic concepts becomes unavoidable. Chaos requires a novel

way of thinking, one imposed upon us by the phenomenon itself. Thus,

in understanding chaos, we act – eventually, without being conscious of

it – in the spirit of Aristotle:1

For it is the mark of an educated man to look for precision in each class of

things just so far as the nature of subject admits.

1 Barnes, J. (ed.) The Complete Works of Aristotle (Nicomachean Ethics): The Revised

Oxford Translation. Bollingen Series vol. LXXI, no. 2. Princeton: Princeton University

Press, 1991, p. 1730.



Appendix

A.1 Deriving stroboscopic maps
A.1.1 Harmonically driven motion around a stable state

Continuous-time dynamics
A particular solution of the linear, inhomogeneous equation (4.9) can be checked to

be given by

xP(t) = A cos (�t + ϕ0 − δ); (A.1)

the amplitude, A, and the phase, δ, are given by

A = f0√
(ω2

0 − �2)2 + α2�2

(A.2)

and

δ = arctan

(
α�

ω2
0 − �2

)
, (A.3)

respectively. The sharp maximum of the amplitude around ω0 ≈ � represents the

well known phenomenon of resonance. Note that the particular solution does not

depend on the initial conditions.

The complete solution also contains the general solution of the homogeneous

part, so

x(t) = A cos (�t + ϕ0 − δ) + A1e−(α/2) t cos (ωα t) + A2e−(α/2) t sin (ωα t). (A.4)

The last two terms coincide with the solution for the damped harmonic oscillator

(see equation (3.34)) and describe a decaying component; therefore the first term

yields the long-term behaviour. Taking into account that damping is very weak

(α/2 � ω0), the velocity is found to be

v(t) = −A � sin (�t + ϕ0 − δ) − A1ω0e−(α/2) t sin (ω0t)

+A2ω0e−(α/2) t cos (ω0t). (A.5)

322
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Terms proportional to α have been neglected, and ωα in (3.33) has been substituted

by the natural frequency, ω0, in the arguments of the trigonometric functions. The

asymptotic motion,

x∗(t) = A cos (�t + ϕ0 − δ), v∗(t) = −A� sin (�t + ϕ0 − δ), (A.6)

represents a limit cycle attractor.

According to (A.4) and (A.5), the arbitrarily chosen initial conditions (x0, v0)

uniquely determine the amplitudes A1 and A2 :

x0 = A cos δ + A1, v0 = A� sin δ + A2ω0. (A.7)

The stroboscopic map
In a map taken at instants t = nT (�t = 2nπ ) with ϕ0 = 0, the limit cycle appears

with co-ordinates

x∗ = A cos δ, v∗ = A� sin δ, (A.8)

since the trigonometric functions in (A.6) take on the same values, independent of

n, at these times. The amplitudes A1, A2 expressed in terms of the limit cycle

co-ordinates are thus given by

A1 = x0 − x∗, A2 = v0 − v∗

ω0

. (A.9)

The position x1 = x(T ) and velocity v1 = v(T ) of the state arising after one

period are given by (A.4) and (A.5) at t = T . Along with (A.9), which brings in the

initial conditions, equations (A.4) and (A.5) yield the stroboscopic map relating the

instants n = 0 and n = 1:

x1 = x∗ + E

(
C(x0 − x∗) + S

ω0

(v0 − v∗)

)
, (A.10)

v1 = v∗ + E (−Sω0(x0 − x∗) + C(v0 − v∗)) , (A.11)

where the shorthand notations given in (4.12) have been used. Since x0 and v0 are

arbitrary, they can also represent the co-ordinates at the nth stroboscopic level. The

above rule then yields the co-ordinates at the (n + 1)st snapshot: with substitutions

0 → n and 1 → n + 1, we obtain equations (4.10) and (4.11).

A.1.2 Harmonically driven motion around an
unstable state

Continuous-time dynamics
The equation of motion is now given by

ẍ = s2
0 x − α ẋ + f0 cos (�t + ϕ0), (A.12)

which is valid for small displacements, x , around the original equilibrium state

(x = 0), where s0 is the repulsion parameter, f0 is the driving amplitude assumed to

be constant and, for very weak damping, α/2 � s0. Thus the solution of the

problem can be obtained from that presented in Section A.1.1 via the substitution



324 Appendix

ω0 → is0. The particular solution of equation (4.9) is still a limit cycle of the form

of (A.6) but now

A = − f0√
(s2

0 + �2)2 + α2�2

, δ = arctan

(
α�

s2
0 + �2

)
. (A.13)

Since the denominator contains the sum of the squares of the repulsion parameter

and the driving frequency, resonance cannot be present. In the general solution,

trigonometric functions are replaced by hyperbolic functions, which describe an

exponential increase of the deviation: the limit cycle is therefore unstable.

The stroboscopic map
For the stroboscopic map taken at instants t = nT (ϕ0 = 0) we obtain from (4.10)

and (4.11), by means of the aforementioned substitution,

xn+1 ≡ M1(xn, vn) = x∗ + EC ′(xn − x∗) + E S′

s0

(vn − v∗), (A.14)

vn+1 ≡ M2(xn, vn) = v∗ + E S′s0(xn − x∗) + EC ′(vn − v∗). (A.15)

The co-ordinates of the fixed point corresponding to the limit cycle are still given by

(A.8), with A and δ given by (A.13), and the shorthand notation given in (4.22) has

been used.

A.1.3 Kicked harmonic oscillator

The map can be decomposed into two steps. In the first step we monitor the motion

from the values (xn, vn) taken right after the nth kick to the instant just before the

next kick at time (n + 1)T , when the co-ordinates are (xn+1, ṽn+1). The notation

already expresses the fact that the kick itself does not influence the position

co-ordinate, so xn+1 is the position immediately after the (n + 1)st kick. The same

argument does not hold for the velocity; therefore the second step is to find out the

velocity, vn+1, after the kick in terms of the velocity, ṽn+1, before it.

In order to determine the relation (xn, vn) → (xn+1, ṽn+1), we note that no

external driving force acts on the body in the open interval between two kicks. The

time evolution within this interval of length T can be obtained from the non-driven

oscillator result, (3.34), and its derivative. Alternatively, we can take formulae

(4.10) and (4.11) of the sinusoidally driven oscillator in the limit of vanishing

driving amplitude, x∗ = v∗ = 0. In any case, we obtain

xn+1 = ECxn + E S

ω0

vn, ṽn+1 = −E Sω0xn + ECvn, (A.16)

where the notation given in (4.12) has been used. The co-ordinates (xn, vn) after the

nth kick and the parameters of the oscillator thus uniquely determine the parameters

before the next kick. Naturally, (A.16) is a linear relation, since it does not yet

include the kick, which is the source of non-linearity in the problem.

The effect of the kick is that it simply shifts the velocity by uI (xn+1)

instantaneously. Thus, the velocity after the kick is given by

vn+1 = ṽn+1 + uI (xn+1). (A.17)

By using (A.16), we thus arrive at the kicked oscillator map, (4.28).
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A.1.4 Kicked frictionless harmonic oscillator

For negligible friction, α → 0, E → 1 and the stroboscopic map is given by

xn+1 = Cxn + S

ω0

vn, vn+1 = −Sω0xn + Cvn + uI (xn+1). (A.18)

A.1.5 Kicked free motion

The stroboscopic map for kicked free motion is obtained from (A.18) by taking the

limit ω0 → 0 (C → 1, S/ω0 → T ), and it appears in the following form:

xn+1 = xn + vn T, vn+1 = vn + uI (xn+1) (A.19)

(which is easily derivable directly from the equation ẍ = 0, which is valid between

kicks).

A.2 Writing equations in dimensionless forms
Equations describing physical phenomena usually contain dimensional quantities.

Writing such equations in dimensionless forms, in which neither the variables nor

the parameters carry units (i.e. they are dimensionless) is important for two reasons.

� The dimensionless forms clearly indicate the independent parameters of the prob-

lem. The number of independent parameters is usually smaller than those of the

original dimensional equation. A full solution always contains the exploration of

the parameter space, which is practically impossible in the dimensional forms.
� Computers work with dimensionless numbers. The numerical solution of equa-

tions is therefore only possible in dimensionless forms. One could of course choose

some set of the parameters and omit the units of all the dimensional quantities.

This is, however, conceptually unclear, and excludes the numerical exploration of

the parameter space.

For the sake of simplicity, we present the method for a second-order differential

equation. Consider the problem

ẍ ≡ d2x

dt2
= a(x, ẋ, t ; μ). (A.20)

The right-hand side shows us that acceleration, a, is known as a function of

position, velocity and time. Symbol μ represents the parameter set. Eliminating the

dimensions means that instead of position x and time t , dimensionless variables x ′

and t ′ are introduced via

x = Lx ′, t = T t ′, (A.21)

where L and T are some (as yet unknown) length and time parameters of the

system, respectively. The length and time units are thus chosen to be L and T ,

respectively, and the primed quantities represent unitless values. Accordingly, the

dimensional velocity can be written as follows:

ẋ ≡ dx

dt
= L

T

dx ′

dt ′ = L

T
ẋ ′, (A.22)
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where ẋ ′ denotes the dimensionless velocity. The original differential equation then

takes the following form:

d2x ′

dt ′2 ≡ ẍ ′ = T 2

L
a

(
Lx ′,

L

T
ẋ ′, T t ′; μ

)
. (A.23)

We now choose parameters L and T in such a way that the parameter dependence is

simplest; i.e. wherever possible, the pre-factor is unity. Since there are two

quantities to choose, the number of the parameters can be decreased by two. Thus, a

new parameter set, μ′, is obtained based on a natural length and time scale (L and

T ) of the system.

The right-hand side of (A.23) can then be written as a′(x ′, ẋ ′, t ′; μ′), i.e.

ẍ ′ = a′(x ′, ẋ ′, t ′; μ′). (A.24)

This is the required dimensionless equation. All the systems with different μ but

identical dimensionless μ′ can be considered to be equivalent, since their motion

only appears different because of the difference between their natural length and

time units. These types of motion are called dynamically similar.

Note that it is sufficient to solve the dimensionless problem, since this

automatically provides the solution to the original problem. Let the solution of

(A.24) with the dimensionless initial condition x ′
0, v

′
0 be x ′(t ′) = f (x ′

0, v
′
0, t ′; μ′).

The dimensionless velocity is then v′(t ′) = dx ′(t ′)/dt ′ ≡ g(x ′
0, v

′
0, t ′; μ′). From

(A.21), we obtain, for the original problem,

x(t) = L f

(
x0

L
,
v0T

L
,

t

T
; μ′

)
, v(t) = L

T
g

(
x0

L
,
v0T

L
,

t

T
; μ′

)
, (A.25)

where x0 = Lx ′
0 and v0 = v′

0 L/T . The dimensional solution can be expressed in

terms of functions f and g, and the basic parameter dependence is thus via the

dimensionless parameter μ′. We make the following remarks.

� In systems with more variables, all position co-ordinates have to be re-scaled by

the same factor, xi = Lx ′
i . If different masses are involved, they also have to be

written into a dimensionless form as m j = Mm ′
j , where M is some characteristic

mass of the system. In this case the number of the parameters can be decreased

by three. (It is impossible to have more than three because there are only three

independent fundamental dimensions: length, time and mass.)
� The dimensionless forms are not unique in systems where more than one char-

acteristic length, time or mass parameter is present. If, for example, there are

two characteristic times, T1 and T2, both choices T = T1 and T = T2 are accept-

able, and T1/T2 then appears among the dimensionless parameters. Fortunately,

it does not matter which choice is made as the dimensionless forms are basically

equivalent.
� The method is conceptually similar to that used in the theory of hydrodynamical

similarity of fluid flows, in which often a stationary, but spatially extended,

problem is considered and therefore the boundary conditions of the corresponding

partial differential equations would also have to be taken into account.

We illustrate the general procedure with examples.
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A.2.1 Example 1: simple pendulum

The equation of motion for the angle of deflection ϕ, ϕ̈ = −(g/ l) sin ϕ, contains

one parameter (g/ l). The angle variable is dimensionless; it is therefore

meaningless to re-scale it. With the dimensionless time, t ′ = t/T ,

ϕ̈ ≡ d2ϕ

dt ′2 = − T 2g

l
sin ϕ. (A.26)

Making the choice T = √
l/g, this becomes

ϕ̈ = − sin ϕ. (A.27)

Thus, the problem does not possess any dimensionless parameter. It is useless, for

example, to solve the original problem for different lengths l, since l only plays a

role in the re-scaling of time. The motion of all pendulums is similar. The natural

time unit, T , is proportional to the period, 2π
√

l/g, of the small-amplitude swings

of the pendulum.

A.2.2 Example 2: spring pendulum

Consider a pendulum whose thread is a spring of rest length l0 and natural frequency

ω0. Let the point of suspension be the origin. The instantaneous thread length, l, and

the angular deflection, ϕ, fulfil the dimensional equations derived in Section 7.4.2:

l̈ = lϕ̇2 − ω2
0(l − l0) + g cos ϕ, lϕ̈ = −2l̇ϕ̇ − g sin ϕ, (A.28)

which include three parameters, g, ω0 and l0. With the dimensionless variables

l = Ll ′, t = T t ′,

l̈ ′ = l ′ϕ̇2 − ω2
0T 2

(
l ′ − l0

L

)
+ gT 2

L
cos ϕ, l ′ϕ̈ = −2l̇ ′ϕ̇ − gT 2

L
sin ϕ. (A.29)

A simple form is obtained by choosing

L = l0, T = 1

ω0

. (A.30)

The length is then measured in units of the rest length, l0, and the time unit is

proportional to the natural period of the spring. Thus,

l̈ ′ = l ′ϕ̇2 − (l ′ − 1) + q cos ϕ, l ′ϕ̈ = −2l̇ ′ϕ̇ − q sin ϕ, (A.31)

where

q = g

ω2
0l0

. (A.32)

The problem thus has a single dimensionless parameter, q, which is the ratio of the

squares of the two characteristic times, T1 = 1/ω0 and T2 = √
l0/g. This faithfully

represents the fact that our system contains the dynamics of both a harmonic

oscillator and a simple pendulum (being nevertheless much richer than any of these,

since it displays chaotic motion). All systems with the same q are equivalent from

the point of view of dynamics.
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Since two characteristic times exist, we can also choose T = T2 = √
l0/g. In

this case, we obtain the dimensionless form

l̈ ′ = l ′ϕ̇2 − 1

q
(l ′ − 1) + cos ϕ, l ′ϕ̈ = −2l̇ ′ϕ̇ − sin ϕ. (A.33)

These are formally different from, but equivalent to, (A.31), and the dimensionless

parameter is again given by q.

A.2.3 Example 3: driven non-linear oscillator

Consider a non-linear spring characterised by the force law F(x) = −ω2
0x − ε0x3

(ε0 > 0). The equation of motion of a body fixed to the spring, driven harmonically

with amplitude, f0, and angular frequency, �, in the presence of a linear friction, is

given by

ẍ = −α ẋ − ω2
0x − ε0x3 + f0 cos (�t). (A.34)

In this equation for an anharmonic oscillation there are five parameters. Using

(A.21), the dimensionless equation is given by

ẍ ′ = −αT ẋ ′ − ω2
0T 2x ′ − ε0 L2T 2x ′3 + f0T 2

L
cos (�T t ′). (A.35)

The force law itself defines a characteristic length by the displacement beyond

which the non-linear term dominates. Let x̃ denote the displacement at which the

linear contribution equals the cubic one, i.e. ω2
0 x̃ = ε0 x̃3. This yields x̃ = ω0/

√
ε0.

Choosing this as the length unit (L1 = x̃), and taking the period

T = T0 = 2π/� of the driving as the time unit, we obtain

ẍ ′ = −Bẋ ′ − C2(x ′ + x ′3) + I cos (2π t ′), (A.36)

with

B = αT0, C = ω0T0, I = f0T 2
0

√
ε0

ω0.
. (A.37)

The system is characterised by three independent parameters: the

dimensionless friction coefficient, B, the dimensionless natural frequency, C , and

the dimensionless driving amplitude, I . Our choice of length scale implies that the

dimensionless force contains the linear and the cubic terms with equal weight.

Several different dimensionless forms exist that are equivalent to the above. By

measuring time in units of 1/ω0, we obtain, for example,

ẍ ′ = − B

C
ẋ ′ − (x ′ + x ′3) + I

C2
cos

(
2π

C
t ′
)

. (A.38)

Another length scale, L2, is determined by choosing f0T 2/L = 1 in (A.35).

With T = T0 = 2π/�, L2 = (2π )2 f0/�2,

ẍ ′ = −Bẋ ′ − C2(x ′ + I 2x ′3) + cos 2π t ′. (A.39)

The independent dimensionless parameters are unchanged.
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A.3 Numerical solution of ordinary
differential equations
Most ordinary differential equations possess unique solutions for given initial

conditions. Numerical methods make use of this property: starting from the initial

condition and proceeding with finite, but small, time steps, the solution is rolled up,

i.e. becomes approximated by an iterated sequence. Due to the finiteness of the time

step, numerical errors are generated in each step. A reliable estimation of these

errors is an important part of the numerical procedure. When choosing the

algorithm, one seeks some kind of optimum to reduce both the run-time and the

error. In the following, we briefly summarise the principle of the numerical solution

and present the most important algorithms.

A.3.1 First-order equations

The solution, x(t), of the dimensionless equation,

ẋ ≡ dx

dt
= f (x, t), (A.40)

is to be determined for initial condition x(t0) = x0 at the time instant t = t0 and

with f as a given bivariate function. The numerical solution provides the function

x(t) at some discrete instants tn . In the simplest case, these are equi-distant with a

dimensionless time step h: tn = t0 + nh. Our task is to determine xn+1 ≡ x(tn + h)

in terms of xn ≡ x(tn) of the previous instant and the function f . The Taylor

expansion of x(tn + h) yields

xn+1 = xn +
∞∑

j=1

1

j!

d j x(tn)

dt j
h j . (A.41)

Knowing the differential equation (A.40), the time derivatives, x(t), can be

expressed in terms of function f . The first two derivatives are, for example,

dx

dt
(tn) = f (xn, tn),

d2x

dt2
(tn) = ft (xn, tn) + fx (xn, tn)

dx

dt
(tn), (A.42)

where the subscripts indicate partial derivatives of f with respect to x or t .

In any numerical procedure, one has to truncate the Taylor expansion. Keeping

the first N terms, we can write, with an error of order hN+1, that

xn+1 = xn +
N∑

j=1

1

j!

d j x(tn)

dt j
h j . (A.43)

We then say that an algorithm of order N is applied. Since higher-order partial

derivatives of f are complicated to determine in analytic forms, we express the

right-hand side of (A.43) in terms of function f itself. In certain well chosen points

near (xn, tn), the f -values are evaluated and sum (A.43) then appears as a suitably

weighted average. Depending on the choice of the points, different methods exist.

Euler method (a first-order method, N = 1)

xn+1 = xn + h f (xn, tn). (A.44)



330 Appendix

The error in one step is of the order of h2.

Second-order Runge–Kutta method

The algorithm is given by

xn+1 = xn + 1

2
(k1 + k2),

k1 ≡ h f (xn, tn), k2 ≡ h f (xn + k1, tn + h).

⎫
⎬
⎭ (A.45)

Using (A.42), the series expansion, (A.43), of xn+1 up to second order in h (N = 2)

can be checked to be consistent with (A.45). The error in one step is proportional

to h3.

Third-order Runge–Kutta method

The algorithm is given by

xn+1 = xn + 1

6
(k1 + 4k2 + k3),

k1 ≡ h f (xn, tn), k2 ≡ h f

(
xn + k1

2
, tn + h

2

)
,

k3 ≡ h f (xn + 2k2 − k1, tn + h) .

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(A.46)

Expanding this up to order h3, form (A.43) with N = 3 is recovered. The error in

one step is thus of the order of h4.

Fourth-order Runge–Kutta method

The algorithm is given by

xn+1 = xn + 1

6
(k1 + 2k2 + 2k3 + k4),

k1 ≡ h f (xn, tn), k2 ≡ h f

(
xn + k1

2
, tn + h

2

)
,

k3 ≡ h f

(
xn + k2

2
, tn + h

2

)
, k4 ≡ h f (xn + k3, tn + h).

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.47)

A direct verification is again possible, although somewhat lengthy. The error per

time step is of the order of h5.

In practice, the fourth-order Runge–Kutta method is a good compromise: the

algorithm is not too long, and the accuracy is typically good enough to allow us to

choose (dimensionless) time steps h >∼10−2. The method is suitable for the

simulation of most chaotic problems.

A.3.2 Sets of first-order equations

By using the vector notation x = (x1, x2, . . . , xr ), the solution, x(t), of the equation

ẋ = f(x, t) (A.48)
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is to be found with initial conditions x(t0) = x0. The basic idea of the numerical

solution is the same as for a single equation. Here, we only present the formulae of

the fourth-order Runge–Kutta method:

xn+1 = xn + 1

6
(k1 + 2k2 + 2k3 + k4),

k1 ≡ hf(xn, tn), k2 ≡ hf

(
xn + k1

2
, tn + h

2

)
,

k3 ≡ hf

(
xn + k2

2
, tn + h

2

)
, k4 ≡ hf(xn + k3, tn + h).

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.49)

The error of one step is again proportional to h5.

A.3.3 Accumulation of errors

So far, we have dealt with the error made in one step. Since dimensionless forms

have been used, this corresponds to a kind of relative error in the original problem.

In an algorithm of order N , this error is of order hN+1. The errors accumulate in

time, but this accumulation is not necessarily linear. The estimate hN+1 yields the

absolute value of the error, but errors occur with different signs. Their number

therefore increases in a similar way to the average displacement in a random walk.

If the consecutive signs are completely independent, the total error increases with

the square root of the number, n, of the steps. If the signs are somewhat correlated,

the increase can be more rapid. In a simple estimate, we therefore assume that the

error grows with some power, σ , of the number, n, of steps (σ ≤ 1). Let the

program run until the accumulated error reaches a threshold value, 
 (for example

10−2 (1 %)). The number, n0, of steps required for this can be estimated from

nσ
0 hN+1 = 
, which yields n0 = (

h−(N+1)

)1/σ

. Since one time step is of

dimensionless length, h, the run-time is approximately

t0 = 
1/σ h−(N+1)/σ+1 (A.50)

dimensionless physical time units. With a 1% total accumulated error and a time

step of one-hundredth (
 = h = 10−2), a fourth-order method (N = 4) can run up

to 106 or 1014 time units with a linear (σ = 1) or a square root (σ = 1/2) error

growth, respectively. Since chaotic sets (attractors, bands or saddles) are typically

well traced out within 104–105 time units, numerical methods can determine the

chaotic sets to a very good accuracy.

Besides the error originating from the truncation of the Taylor series, another

source of error is the round-off error. Its total contribution increases with the

number of steps. It is therefore not advisable to choose the time step, h, to be too

small. On the other hand, it cannot be too large since the algorithm may become

unstable (see Box 7.2). In an intermediate range, numerical solutions are effective

even for long runs. In autonomous conservative systems, energy conservation can,

for example, be used to estimate the accuracy of the solution: if the numerically

determined total energy remains around the initial energy value over the run, the

method is reliable. In chaotic systems, the aforementioned errors become

exponentially magnified along the unstable direction, in spite of the reliability of the

method. Consequently, numerical solutions cannot provide accurate individual
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trajectories on chaotic sets. They are, however, well suited for determining the

shape of the chaotic set and its natural distribution (see Box 5.4).

A.4 Sample programs
The following two sample programs are to help readers with elementary

programming skills and having yet no experience with numerical simulations of

dynamical systems. The programs are written in Pascal since both the structure of

the codes and the handling of the graphical display is particularly simple there.

Having understood the logic, rewriting to other programming languages or other

environments is easy. These examples also illustrate that the numerical investigation

of deterministic chaos is not at all a demanding task from the point of view of

programming.

A.4.1 The Pascal program map

program map;

{Simulation of the dimensionless map}

{x’1=M1(x1,x2), x’2=M2(x1,x2) with parameters a and b.}

{The points of the map are displayed on a}

{screen of 640x480 pixels, the origin of the}

{co-ordinate system is the centre of the screen.}

{Turbo Pascal program to run under DOS}

{or in the DOS prompt of Windows.}

uses Graph,crt; {For the use of graphics.}

{Variables and their meaning:}

const

x10=0.1; {Choice of the initial point.}

x20=0.1;

Niter=20000; {Setting the number of iterations.}

xmax=5; {Determining the area to be plotted on the

screen.}

ymax=4;

var

a,b : real; {Parameters of the map.}

m : longint; {Counter of the iterations.}
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x1,x2,xx1,xx2 : real; {Phase plane co-ordinates.}

px,py : integer; {Pixel co-ordinates on the screen.}

ox,oy : integer; {Pixel co-ordinates of the origin}

{on the screen.}

sx,sy : real; {Scale factors for the plot.}

grDriver,grMode: integer; {Variables needed to set}

{the graphics.}

label finish;

procedure wait; {Waiting for a key to be hit.}

var ch:char;

begin

repeat until keypressed;

while keypressed do ch:=readkey;

end;

{Program body:}

begin

clrscr;

{Parameter input:}

write(’a? ’);

readln(a);

write(’b? ’);

readln(b);

{Opening the graphics window:}

grDriver := Detect;

InitGraph(grDriver,grMode,’c:\tp\bgi’); {At }

{’c:\tp\bgi’, the path to folder bgi}

{of Turbo Pascal (here c:\tp) should be given.}

{Determining the scale factors to plot the desired}

{area on screen:}

ox:=320;

oy:=240;

sx:=ox/xmax;

sy:=oy/ymax;

{Initial values:}

x1:=x10;

x2:=x20;
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{Plotting the initial point on the screen:}

px:=ox+round(x1*sx);

py:=oy-round(x2*sy);

PutPixel(px,py,11); {The value 11 of the last argument}

{corresponds to a light blue colour.}

{Iteration of the map up to step number Niter:}

for m:=1 to Niter

do

begin

xx1:=x1;

xx2:=x2;

x1:=M1(xx1,xx2); {Here, in place of M1 and M2 the forms of the mapping}

{functions should be specified.}

x2:=M2(xx1,xx2);

if (abs(x1)>xmax) or (abs(x2)>ymax) then goto finish;

{Plotting the point if it has not left the screen:}

px:=ox+Round(x1*sx);

py:=oy-Round(x2*sy);

PutPixel(px,py,14); {The value 14 of the last argument}

{corresponds to a yellow colour.}

end;

finish:

{Waiting until a key is hit (meanwhile the plot}

{remains visible on the screen):}

if not(m<Niter) then wait;

CloseGraph; {Closing the graphich window.}

if m<Niter then begin

writeln(’The iterated point left the screen after ’,m,’ steps!’);

wait; end;

end.

A.4.2 The Pascal program diffeq

program diffeq;

{Solution of the dimensionless set of equations}

{dx1/dt=F1(x1,...,x4), dx2/dt=F2(x1,...,x4),}

{dx3/dt=F3(x1,...,x4), dx4/dt=F4(x1,...,x4)}

{with parameters a and b}

{by means of the fourth order Runge-Kutta method.}

{The flow is displayed on the (x1,x3) plane,}

{on a screen consisting of 640x480 pixels. The origin of}
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{the co-ordinate system is the centre of the screen.}

{Turbo Pascal program to run under DOS}

{or in the DOS prompt of Windows.}

uses Graph,crt; {For the use of graphics.}

{Variables and their meaning:}

const

nmax=4; {Dimension of the phase space.}

a=1; {Setting the parameters.}

b=2;

x10=0.1; {Initial conditions: xi0 (i=1,...4).}

x20=0.1;

x30=0.1;

x40=0.1;

h=0.01; {Dimensionless time step of the numerical algorithm.}

cntmax=10000; {Maximum number of time steps.}

xmax=5; {Size of the area to be plotted on the screen.}

ymax=4;

type vector=array[1..nmax] of double;

var

x : vector;

t : real;

cnt : longint;

ox,oy : integer; {Pixel co-ordinates of the origin}

{on the screen.}

sx,sy : real; {Scale factors for the plot.}

grDriver,grMode: integer; {Variables needed to set the graphics.}

procedure wait; {Waiting for a key to be hit.}

var ch:char;

begin

repeat until keypressed;

while keypressed do ch:=readkey;

end;

procedure derivative(x:vector; var xp: vector);

{Output xp yields the time derivative dx/dt in the phase space point x}

{(a vector of dimension nmax=4).}
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begin

xp[1]:=F1(x[1],x[2],x[3],x[4]); {Here, in place of F1,...,F4,}

xp[2]:=F2(x[1],x[2],x[3],x[4]); {the forms of the right-hand}

xp[3]:=F3(x[1],x[2],x[3],x[4]); {sides should be specified.}

xp[4]:=F4(x[1],x[2],x[3],x[4]);

end;

procedure RungeKutta4(var x:vector; h:real);

{Vector x is evolved by a time step h}

{according to the fourth order Runge--Kutta method.}

{Procedure derivative is used to evaluate the increments of x.}

var

k1,k2,k3,k4,y: vector;

i : integer;

begin

derivative(x,k1);

for i:=1 to nmax do y[i]:=x[i]+h*k1[i]/2;

derivative(y,k2);

for i:=1 to nmax do y[i]:=x[i]+h*k2[i]/2;

derivative(y,k3);

for i:=1 to nmax do y[i]:=x[i]+h*k3[i];

derivative(y,k4);

for i:=1 to nmax do x[i]:=x[i]+h*(k1[i]+2*(k2[i]+k3[i])+k4[i])/6;

end;

{Program body:}

begin

{Opening the graphics window:}

grDriver := Detect;

InitGraph(grDriver,grMode,’c:\tp\bgi’); {At }

{’c:\tp\bgi’, the path to folder bgi}

{of Turbo Pascal (here c:\tp) should be given.}

{Determining the scale factors to plot the desired area}

{on the screen:}

ox:=320;

oy:=240;

sx:=ox/xmax;

sy:=oy/ymax;

{Initial values:}

x[1]:=x10;

x[2]:=x20;

x[3]:=x30;

x[4]:=x40;
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{Plotting the initial point on the (x1,x3) plane:}

PutPixel(ox+round(x[1]*sx),oy-round(x[3]*sy),11);

{Value 11 corresponds to a light blue colour.}

{Carrying out a Runge-Kutta step and}

{plotting the new state on the (x1,x3) plane:}

cnt:=1; {Setting the time counter.}

repeat

t:=cnt*h; {If time t is needed for some purpose.}

RungeKutta4(x,h);

PutPixel(ox+round(x[1]*sx),oy-round(x[3]*sy),14);

{Value 14 corresponds to a yellow colour.}

cnt:=cnt+1;

until cnt>cntmax;

wait; {Waiting for a key to be hit.}

CloseGraph; {Closing the graphics window.}

end.

A.5 Numerical determination of chaos parameters
We present simple methods for determining the chaos parameters, the application of

which does not require any special numerical expertise. As particular examples, we

choose the roof attractor (E = 0.7, a = 1.77, cf. Fig. 5.28) and the roof saddle

(E = 0.7, a = 2.3, cf. Fig. 6.18), but the algorithms can successfully be applied to

any two-dimensional maps.

A.5.1 Topological entropy

For numerical measurements, monitoring a line segment in phase space is the most

suitable (see (5.52) and (6.15)). Since the line becomes stretched and multiply

folded, its length, L(n), can best be determined by prescribing a small threshold and

inserting additional points whenever the distance between neighbouring points

grows beyond this value in order to keep the distance of neighbours under the

threshold.

In the case of the roof attractor, the stretching is followed over 12 iterates

(Fig. A.1). The initial straight line segment connects points (2, −1) and (0, 1) and

consists of 20 000 points. (The choice of the segment is arbitrary; it does not affect

the outcome of the measurement.) The threshold is taken to be twice the initial

distance,1 
r = 0.14 × 10−5.

The topological entropy of a saddle can be determined in a similar way, except

that the length of the line segment has to be determined in a fixed region containing

1 The piecewise linearity of the map also makes an exact determination of the

instantaneous length possible. The accuracy of the numerical method can thus be

estimated: a deviation shows up in the fourth digit of the topological entropy only.
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Fig. A.1. Measuring
topological entropy.
Logarithm of the length, L n,
of a line segment vs.
number, n, of iterates on the
roof attractor (black dots)
and around the roof saddle
(grey dots). The dashed lines
represent fitted straight lines
of slope h with h = 0.556
and h = 0.692, respectively,
for the roof attractor and the
roof saddle.

the saddle. We choose the region above the basic branch and below the topmost

branch of H−’s stable manifold (see Fig. 6.24). The saddle proves to be more

chaotic than the attractor (its h is found to be larger; see also Table A.1).

A.5.2 Average Lyapunov exponents

The positive local and average Lyapunov exponents can be determined from the

growth rate of the distance, 
rn = 
r0 exp (λ(x, y)n), between point pairs chosen

arbitrarily on a chaotic set. Since the initial distance, 
r0, is finite in practice, two

points quickly become separated, due to exponential divergence, to distances

comparable to the size of the chaotic attractor or saddle. An exponential growth can

thus be observed over finite times only (in our particular example, up to about 60

and 40 iterates on the attractor and saddle, respectively; see Fig. A.2). The local

Lyapunov exponent characterising the point of the initial condition can be read off

from the slope of the curves ln 
r (n) vs. n over the first iterates (Fig. A.2). Later,

the curves start oscillating around a straight line (dashed), the slope of which

corresponds to the average Lyapunov exponent. In order to determine the average

Lyapunov exponent accurately, several point pairs have to be investigated.

On attractors, this can be achieved by using a long reference trajectory (a

simulated trajectory xn, vn , n = 0, 1, . . .); each time the distance between a test and

a reference trajectory exceeds a certain threshold, say 
rth, the point of the test

trajectory is pushed back to the corresponding reference trajectory point so that its

new co-ordinates are xn + 
x0 and vn + 
v0. Let 
rn(i) denote the distance of the

two points at iteration n after the i th push-back. Index n grows until 
rn(i) reaches

the threshold value. After M push-backs, let Mn denote how many point pairs are

present below the threshold (
rn(i) < 
rth) at the nth iterate. Consequently,
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Fig. A.2. Measuring the positive average Lyapunov exponents. Black (grey)
symbols represent the distances of point pairs on the attractor (saddle). Circles
and squares mark the distances of trajectory pairs starting around (0, 0) and
(−1, −1), respectively. The initial differences are 
x0 = 
v0 = 10−15

(
r0 = √
2 × 10−15). The slopes of the dashed lines are the average Lyapunov

exponents. The inset shows results obtained by the reference trajectory method
on the attractor and by using 104 trajectory pairs around the saddle. The
threshold is 
rth = 0.5 and the number of push-backs is M = 104 on the
attractor. Around the saddle, trajectories with lifetimes of at least 50 have been
selected. In both cases, 
x0 = 
v0 = 10−15. The slopes of the straight lines
fitted to ln 
rn (dashed lines) are λ̄ = 0.540 and λ̄ = 0.819 for the attractor and
saddle, respectively.

Mn ≤ M . The average of the logarithm of the distances is given by ln 
rn ≡
(1/Mn)

∑Mn
i=1 ln 
rn(i). For M, Mn � 1 this quantity grows to a good

approximation linearly in n, with a slope corresponding to the average Lyapunov

exponent, λ̄ (see the inset of Fig. A.2).2

For transient chaos, it is impossible to find a single long reference trajectory,

and one therefore chooses M � 1 initial conditions with a lifetime of at least 50

around the saddle, and does not apply any push-backs. Trajectories are started from

these points and from points at a distance of 
x0 = 
v0 = 10−15 away. An average

is taken over trajectory pairs which do not escape for a sufficiently long time (see

the inset of Fig. A.2).

2 In this same measurement, the topological entropy can also be obtained by taking the

logarithm of the average distance: the quantity ln ((1/Mn)
∑Mn

i=1 
rn(i)) grows linearly

with n, with slope h.
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Table A.1. Chaos parameters of the roof
attractor and roof saddle.

The escape rate is measured as indicated in

Fig. 6.2 (see also Fig. 6.17). Note that all the data

are consistent with the general relations (5.68),

(6.19), (5.74) and (6.29).

Roof attractora Roof saddleb

h 0.556 0.692

λ̄ 0.540 0.819

λ̄
′ −1.253 −1.532

D1 1.429 1.293

κ 0 0.132

a E = 0.7, a = 1.77.
b E = 0.7, a = 2.3.
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Fig. A.3. Measuring dimensions. The information content, I (ε), of the natural
distributions on the attractor (black dots) and on the saddle (grey dots) vs.
resolution ε. The slopes of the straight lines fitted to the dots are the information
dimensions D1 = 1.429 and D1 = 1.293, respectively. Empty circles mark the
values of ln N(ε), where N(ε) is the number of non-empty boxes in a coverage.
The slope of a straight line fitted to these data for small ε yields the fractal
dimension; in our case, D0 ≈ D1.
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The negative average Lyapunov exponent can be determined in a similar way

from the contraction rates (the growth rate of the distances in the time-reversed

dynamics). In the case of constant Jacobians, however, no extra simulation is needed,

since λ̄′ = ln J − λ̄ (see (5.58)), and, in the roof map, J = E2 (see Table A.1).

A.5.3 Fractal properties

Fractal and information dimensions can be measured in similar ways. A chaotic set

containing, in a numerical simulation, Ntot points, distributed according to the

natural distribution, is covered by grids whose resolution is refined. For the fractal

dimension, the number, N (ε), of boxes containing at least one point is to be

recorded at each resolution, ε. The slope of ln N (ε) vs. ln (1/ε) is, for small ε, the

fractal dimension, D0 (see Section 2.1.2). For the information dimension, the

box probabilities, Pi (ε) are required, which can be given approximately as ni/Ntot,

where ni is the number of points falling in box i . The information dimension

follows from the scaling of the information content,

I (ε) = − ∑
i Pi (ε) ln Pi (ε) ≈ − ∑

i (ni/Ntot) ln (ni/Ntot), with ε (see 2.18).

Under identical conditions (number of points, resolution), the information

dimension is easier to measure. This is because the natural distribution is, in

general, strongly inhomogeneous: the probabilities are very small around many

points of the chaotic set. In the course of a simulation, only a few points fall in these

regions, which are therefore difficult to plot satisfactorily. Fortunately, in the

determination of the information dimension, these regions have a negligible weight.

For the roof attractor, the natural distribution is determined from Ntot = 107

points. The sides of a 6 × 6 square centred at the origin are divided into 2k

(k = 0, 1, . . . , 14) parts; the ε-values are thus 6 × 2−k (see Fig. A.3). The empty

circles represent the quantity ln N (ε). They form a slightly bent curve, the

asymptotic (ε � 1) slope of which, however, is close to that of I (ε). We therefore

conclude that the fractal dimension is approximately equal to the information

dimension.

For the saddle, the natural distribution is determined from points started at

random in a 3 × 3 square centred at the origin, and the co-ordinates of those points

that do not leave the square within 20 iterates are marked at the tenth iterate (see Box

6.1). The resolution is refined up to the level k = 12 (ε = 3 × 2−k ) (see Table A.1).
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Solution 2.1 The perimeter of a regular n-sided polygon of side length

ε = 2 sin (π/n) is P = nε. In terms of the resolution, ε, P = πε/arcsin(ε/2). For

fine resolutions (small ε), the inverse sine function can be expanded as arcsin x

≈ x + x3/6, and P = 2π (1 − ε2/24). Thus, the perimeter converges to the well

known value 2π with the square of the resolution. (For less regular curves or less

regular approximations, the correction is typically proportional to ε.)

Solution 2.3 In a coverage of the unit interval with segments of length ε, the

number of segments is, in general, [1/ε] + 1, where [x] denotes the integer part of

x . For a small resolution, this is proportional to 1/ε, the dimension given by

equation (2.3) of a straight line segment is therefore indeed D0 = 1.

In the case of the right-angled isosceles triangle, divide, for the sake of

simplicity, one of the legs of unit length into n equal parts: ε = 1/n. Cover the

triangle with boxes of width ε. There are n boxes in the column exactly at the other

leg, n − 1 boxes in the next one, etc. The total number of boxes in the coverage is∑n
i=0(n − i) = n(n + 1)/2. Expressing this in terms of the resolution,

N (ε) = ε−2(1 + ε)/2 ∼ ε−2, consequently D0 = 2.

Solution 2.6 With resolution ε = rn corresponding to the nth step of the

construction, P = 4n+1 × rn , A = 4n × r2n . The ratio P/A is always proportional

to 1/ε; it therefore always increases with refining resolution. The perimeter itself

diverges, however, for r > 1/4 only, i.e. for D0 > 1. For r = 1/4, the dimension of

the Cantor cloud is exactly 1! The set is, of course, not a smooth curve in this case

either, but it possesses one property in common with usual smooth curves: its

observed perimeter does not depend on the resolution.

Solution 2.10 β = (D0 − 1)/(2 − D0). An essential new property of fractals

appears here: the relation P ∼ A1/2 valid for traditional objects is not recovered for

any value of D0 (not even the signs of the exponents agree!).

Solution 2.11 Remove the centre of the unit cube in such a way that eight identical

cubes of size 1/3 remain at the corners. Repeat this for each small cube. The

volume observed at resolution ε = 3−n is (8/27)n . In the Menger sponge, on the

contrary, 20 cubes remain, and the observed volume is therefore (20/27)n , which

decreases much more slowly than (8/27)n .

1 Password-protected solutions which do not appear in the book are available online at

www.cambridge.org/9780521839129.
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Solution 2.12 In the nth step, the total length (volume) is Vn = �n
j=1(1 − λ j ).

There are N (ε) = 2n intervals of length ε = Vn/2n . Based on (2.4), the fractal

dimension is the limit of

D0 = ln 2 / (ln 2 − (ln Vn)/n)

for large n. The dimension is unity if (ln Vn)/n converges to zero. This is always the

case with fat fractals whose Vn tends to a finite value.

Solution 2.13 In general, in the nth step, the length (volume) of the preserved

intervals is Vn = �n
j=1(1 − 3− j ). The total length, V , is obtained in the limit

n → ∞ as V = �∞
j=1(1 − 3− j ). Since the factors tend rapidly to unity, the product

is finite. Its numerical value is V = 0.560.

Consider now the difference Vn − V and take the logarithm

ln (Vn − V ) = ln Vn + ln (1 − �∞
j=n+1(1 − 3− j )). The first term is finite since Vn

possesses a limit. In the second term, for sufficiently large n, �∞
j=n+1(1 − 3− j ) ≈

1 − ∑∞
j=n+1 3− j , which is, according to the summation rule for geometric series,

1 − 3−n/2. The smallest distance occurring in the nth step is the size of the holes:

ε = 3−n2−n+1�n−1
j=1(1 − 3− j ) in between the intervals of length 2−n�n

j=1(1 − 3− j ).

We therefore cover the set with intervals of this size. For large n, the infinite product

tends to the total length V , and it is true, to a good approximation, that

ln ε ≈ −n ln 6. The exponent of the fat fractal is therefore given by

α = ln (Vn − V )

ln ε
= ln Vn − n ln 3 − ln 2

n ln 1/6
= ln 3

ln 6
= 0.613.

Solution 2.15 The total probability of the boxes of content pm is, in the nth step,

Nm pm . According to Stirling’s formula, the logarithm of this quantity is given by

ln (Nm pm) = n ln n − m ln m − (n − m) ln (n − m) + m ln p1 + (n − m) ln p2.

The extremum is located at a value m∗, where the derivative of ln (Nm pm ) with

respect to m vanishes. The condition for this is ln (n/m∗ − 1) = ln (p2/p1), which

yields m∗ = p1n. The number of boxes belonging to m∗ is N ∗ ≡ Nm∗ , for which

ln N ∗ = −n(p1 ln p1 + p2 ln p2). Simultaneously, ln pm∗ = n(p1 ln p1 + p2 ln p2),

and thus ln (N ∗ pm∗ ) = 0. At the accuracy of Stirling’s formula, the total probability

of the typical boxes is unity! As the resolution at level n is ε = 3−n , from equation

(2.16) D1 = ln N ∗/(n ln 3), and thus

D1 = − p1 ln p1 + p2 ln p2

ln 3
.

For p1 �= 1/2, the information −(p1 ln p1 + p2 ln p2) is always smaller than ln 2,

the information content of the homogeneous case. Consequently, D1 is always less

than the fractal dimension, D0 = ln 2/ ln 3, of the support, and it is smaller, the

smaller p1 is.

Solution 3.2 From (3.15), the velocity is v = λ+c+ exp (λ+t)+ λ−c− exp (λ−t).

The combination v − λ∓x is therefore proportional to exp (λ±t), and consequently

both (v − λ−x)λ− and (v − λ+x)λ+ depend on time as exp (λ−λ+t), from which

(3.17) follows.
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Solution 3.5 The velocity from (3.35) is given by

dx

dt
= v(t) = −α

2
x(t) + ωα Ae−(α/2)t cos (ωα t + δ).

In the polar co-ordinates 
 =
√

x2 + [v + (α/2)x]2/ω2
α , φ = ωα t , this leads to the

equation,


 = Ae−α/(2ωα )φ,

of a logarithmic spiral.

Solution 3.8 Going up to second-order terms in the Taylor expansion:2

F(x) ≈ F ′(x∗)(x − x∗) + F ′′(x∗)

2
(x − x∗)2. (P.1)

The force resulting from the second term is negligible compared with the first if

|x − x∗| �
∣∣∣∣
2F ′(x∗)

F ′′(x∗)

∣∣∣∣ =
∣∣∣∣

2s2
0

F ′′(x∗)

∣∣∣∣. (P.2)

The displacement must therefore be much less than
∣∣2F ′(x∗)/F ′′(x∗)

∣∣ in order that

equation (3.39) be a good approximation.

If (P.2) holds for the initial position, and the initial speed is not too high, this

condition is usually fulfilled around stable fixed points during the entire motion.

This is not the case around unstable fixed points. Along the unstable direction,

where the distance �x(t) ≡ x(t) − x∗ from the fixed point increases according to

�x(t) = �x0 exp (λ+t), the range of validity of the linear approximation is, from

(P.2), given by

t � 1

λ+
ln

∣∣∣∣
2s2

0

�x0 F ′′(x∗)

∣∣∣∣. (P.3)

The length of this time interval can be increased by choosing the initial position

closer to the origin, but this increase is logarithmically slow. The dominant

dependence is the inverse proportionality to the instability exponent, λ+; for

identical initial distances, the particle remains in the vicinity of the less unstable

points for a longer period of time.

Solution 3.10 The fixed points (x∗, 0), (−x∗, 0) are elliptic, while the origin is

hyperbolic. The equation of trajectories follows from the law of energy

conservation, v2/2 + V (x) ≡ E = constant. This yields

v(x) = ±
√

2(E + bx2 − dx4).

For negative energies the trajectories are closed curves bound to the right or left

well, which become, of course, ellipses upon approaching the well bottoms

(Fig. P.1). At zero energy, the trajectory is v(x) = ±x
√

s2
0 − 2dx2, where s0 is the

repulsion parameter given in (3.43). In the vicinity of the origin, this equation takes

2 If the force law is centrally symmetric, i.e. if the derivative, F ′′(x∗), of the force also

vanishes (the potential curve is axially symmetric in the fixed point), the Taylor

expansion has to be extended up to third-order.
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the motion of negative
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hill.

the linearised form v(x) = ±s0x , in accordance with the general behaviour around

hyperbolic points. The curve defined by the non-linear equation is also valid for

points far from the origin and yields there the continuation of the local stable and

unstable curves, the stable and unstable manifolds. The two manifolds (contrary to

the frictional case) coincide and form a separatrix.

Solution 3.12 In the frictionless case, the point (x∗
− = c, 0) is elliptic and the

origin is hyperbolic. The equation of the trajectories is given by

v(x) = ±
√

2(E − acx2/2 + ax3/3).

The curve E = 0 is a separatrix, which separates three types of motion: periodic

behaviour in the well, approaching the potential hill from the right and, for positive

energies, winding around the well and running out into infinity (Fig. P.2).

In the presence of friction, the left branches of the stable and unstable

manifolds of the origin no longer coincide: the unstable manifold leads into the

fixed point attractor, while the stable manifold extends to minus infinity. The two

stable manifold branches surround the basin of attraction of the fixed point.

Trajectories starting outside of this domain all run out into infinity and the ship

capsizes. The state (x∗ = ∞, v∗ = ∞) can be considered as a second (simple)

attractor.

Solution 3.13 As long as h is greater than the unstretched length of each spring,

h > l0, the position x = 0 obviously represents a stable equilibrium state. If the
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Fig. P.2. ‘Ship capsizing’: potential and phase portrait in the (a) frictionless and
(b) frictional cases (a = 1, c = −1, α = 0.2).

springs’ end-points are moved closer to the x-axis than the unstretched length, then

the equilibrium state of the body will be at ±
√

l2
0 − h2, corresponding to

unstretched springs. For a general displacement x , the length of the springs is√
h2 + x2, and the absolute value of the forces is therefore k(

√
h2 + x2 − l0), and

their x-component (Fig. 3.14(a)) is −k(
√

h2 + x2 − l0) x/
√

h2 + x2. Consequently,

the resultant force is horizontal and of magnitude

F(x) = −2kx

(
1 − l0√

h2 + x2

)
. (P.4)

For equilibrium points x∗, F(x∗) = 0. For h < l0, there exist three solutions,

x∗ =
√

l2
0 − h2, 0 and −x∗, and the origin is obviously unstable. At the value

hc = l0, a pitchfork bifurcation occurs (Fig. P.3). The general parameter μ can be

chosen, for example, as the difference μ = l0 − h.

In the neighbourhood of the bifurcation point, h hardly differs from l0;

therefore, the possible x-values are small and h can be replaced by l0, except for

expressions containing (h − l0). Using the approximate relation
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Fig. P.3. Pitchfork bifurcation of the system presented in Fig. 3.14(a) in terms of
the parameter h.

1/
√

1 + (x/h)2 ≈ 1 − (1/2)(x/h)2, the force given in (P.4) becomes

F(x) ≈ −2k

(
1 − l0

h

)
x − k

l2
0

x3 ≈ − k

l2
0

x
[
x2 − 2l0(l0 − h)

]

≈ − k

l2
0

x(x − x∗)(x + x∗). (P.5)

This corresponds to force (3.41) with the fixed point x∗ ≈ √
2l0(l0 − h).

Solution 3.17 With a horizontal rod of length d � l, the centrifugal acceleration is

(d + l sin ϕ)�2. The resultant force perpendicular to the rod is given by

F(ϕ) = �2(d + l sin ϕ) cos ϕ − g sin ϕ.

Bifurcation occurs at small angular deviations; we therefore expand the force in

powers of ϕ:

F(ϕ) ≈ �2d

(
1 − ϕ2

2

)
+

[
ϕ(�2l − g) − �2l

2
ϕ3

] (
1 − ϕ2

6

)
.

The terms in the round brackets proportional to ϕ2 are negligible compared to

unity,3 and we obtain

F(ϕ) ≈ �2l

(
d

l
+ ϕ

(
1 − g

�2l

)
− ϕ3

2

)
. (P.6)

For small angular velocities, there is a single equilibrium state. This can only

occur if the graph of F(ϕ) does not intersect the ϕ-axis again; i.e., if the minimum

of F(ϕ) is beyond the ϕ-axis (Fig. P.4). An extremum corresponds to a value ϕ0, for

which F ′(ϕ0) = 0. Consequently, the minimum is taken at

ϕ0 = −
√

2

3

(
1 − g

�2l

)
.

3 The final result indicates that ϕ is of the order of (d/ l)1/3.
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Ω > ΩcΩ < Ωc

Ω = Ωc

d l/

F( )/( )2l
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j Ω

Fig. P.4. Graph of the force law around the critical angular velocity, �c. The
dotted, continuous and dashed lines correspond to the cases � < �c, � = �c

and � > �c, respectively.
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1 = Ω2l/g
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∗/ d/l( )1/3

c

j j j

m

m

Fig. P.5. Distorted pitchfork bifurcation of the merry-go-round model. The
potential corresponding to the force law is also plotted at three different angular
velocities.

The corresponding force is F(ϕ0) = �2l(ϕ3
0 + d/ l). At a certain critical angular

velocity, �c, this value is exactly zero, which yields

�c =
√

g

l

1√
1 − (3/2)(d/ l)2/3

≈
√

g

l

(
1 + 3

4

(
d

l

)2/3
)

.

At the critical angular velocity a new equilibrium state appears at the angular

deviation ϕ∗ = −(d/ l)1/3 (when the positive equilibrium state is at 2(d/ l)1/3). The

complete bifurcation diagram is sketched in Fig. P.5.
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1                                              1

Fig. P.6. Potential and
phase portrait of the
weakly damped motion on
a bumpy road. The basins
of every second attractor
are shaded. The phase
portrait repeats itself
periodically. The
parameters are A = 1,
α = 0.3.

Solution 3.19 For weak friction, the points x∗
+ = 2πn (n is an integer),

corresponding to the bottoms of the holes, are spiral attractors. According to the

relation F ′(x∗
+) = ω2

0, the natural frequency around the stable equilibrium points is

ω0 = √
A. On the other hand, the points x∗

− = π + 2πn, the local maxima of the

potential, are hyperbolic with repulsion parameter s0 = √
A. A body starting from

the top of a bump with a negligible initial speed is not able to get over the next

bump; it therefore comes to a standstill at the bottom of one of the neighbouring

holes after a few oscillations. Accordingly, the unstable manifold branches of the

hyperbolic points go into the neighbouring spiral attractors, while the stable

manifolds separate the basins of attraction (Fig. P.6).

Solution 3.22 As friction increases, the stationary motion slows down and the

limit cycle comes closer to the x-axis. The basin of attraction of the fixed points

broadens. At a critical friction coefficient, the limit cycle reaches the hyperbolic

points from above (Fig. P.7). This situation arises when a body starting from one of

the bumps with zero initial velocity can just reach the top of the next bump to its

right. At this critical value the top branches of the stable and unstable manifolds

coincide (Fig. P.7). For stronger friction no sliding down is possible: all bodies come

to a halt in one of the holes, depending on the initial velocity (the snow is too soft

for skiing). In this case both branches of the unstable manifold lead into a fixed

point attractor (Fig. P.8).

Solution 3.26 From (3.64) with Tr A ≡ −σ ,

λ± = −σ ± √
σ 2 − 4 det A

2
.

The hyperbolic points fall in the domain of negative determinants (Fig. P.9). The

stability of the system is thus determined by the sign of det A. For det A > 0, both

eigenvalues are real for σ > 2
√

det A. Consequently, above (below) the parabola
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Fig. P.7. Phase portrait of the
motion on a bumpy slope at
the critical friction coefficient.
The bottom branches of the
stable manifolds again provide
the basin boundaries of the
spiral attractors (A = 1,
F 0 = 0.25, α = αc = 0.198).
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Fig. P.8. Phase portrait of the
motion on a bumpy slope
with strong friction. The limit
cycle has disappeared, and all
initial conditions lead to
motion coming to rest in the
holes (A = 1, F 0 = 0.25,
α = 0.3).
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2√det

1

1

2

0 A

A

Fig. P.9. Character of the
fixed points of a
two-dimensional flow in
different regions of the
parameter plane σ ≥ 0, det A.

σ = 2
√

det A a node (spiral) attractor exists (see Fig. P.9). (In an expanding phase

space, σ < 0, the time-reversed version of the above behaviour appears.)

Solution 3.27 The character of the phase portraits depends on parameter α (see

Fig. P.10). The origin is always a hyperbolic fixed point. The phase space

contraction rate is σ = α − x1; point (1, 0) is therefore a repellor for α < 1 and an

attractor otherwise. For α < 0.865, the repellor is so strong that it spins the

trajectories out into infinity. For 0.865 < α < 1, the repellor is surrounded by a
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(a) (b) (c)
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Fig. P.10. Three characteristic phase portraits obtained numerically: (a) α = 0.8,
(b) α = 0.9, (c) α = 1.1. In (b) the limit cycle is plotted with a thick line.

limit cycle attractor, whose basin of attraction is bounded by the stable manifolds of

the origin. In the range α > 1, the fixed point (1, 0) is the only attractor.

Solution 4.2 From (4.20), the polar co-ordinate 
n =
√

(�x2
n + �v2

n/ω
2
0) and the

polar angle φn = ω0nT are found to be related by


n = Ae−α/(2ω0)φn , (P.7)

where A = 
0. The iterations jump on a logarithmic spiral.

Solution 4.3 The map is linear; its matrix is given by

L =

⎛
⎜⎜⎜⎝

E

(
C + S

α

2ωα

)
E S

ωα

−E Sωα

(
1 +

(
α

2ωα

)2
)

E

(
C − S

α

2ωα

)

⎞
⎟⎟⎟⎠ .

The abbreviations S and C now contain ωα =
√

[ω2
0 − (α/2)2] replacing ω0. The

eigenvalues are �± = E(C ± i S) = e(−α/2±iωα )T .

Solution 4.7 The stroboscopic map of the kicked oscillator, for an arbitrary

driving period T and friction coefficient α, is given by

xn+1 = E

(
C + α

2ωα

S

)
xn + E S

ωα

vn, (P.8)

vn+1 = −E S

(
ωα + α2

4ωα

)
xn + E

(
C − α

2ωα

S

)
vn + uI (xn+1),

(cf. the solution to Problem 4.3), where abbreviations (4.12) are used with

ωα =
√

ω2
0 − (α/2)2 replacing ω0. The inverse of the map is given by

xn+1 = 1

E

(
C − α

2ωα

S

)
xn − S

ωα E
(vn − uI (xn)), (P.9)

vn+1 = S

E

(
ωα + α2

4ωα

)
xn + 1

E

(
C + α

2ωα

S

)
(vn − uI (xn)).

Solution 4.11 The eigenvalues of a general two-dimensional linear map, L , are

given by

�± = Tr L ±
√

(Tr L)2 − 4J

2
.
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Tr L

J0 1

1

2

–1

–2

Fig. P.11. Character of the fixed points of a two-dimensional map on the
parameter plane ( J , TrL ) (0 < J ≤ 1).

n n n n

xn xn xn xn

c 0.30= c 0.35= c 0.40= c 0.45= 

Fig. P.12. Baker attractors for different contraction parameters c (0.30, 0.35,
0.4, and 0.45). As the parameter increases, dissipation decreases and the
attractor appears to be more and more extended, although its area is always
zero. The respective fractal dimensions are D0 = 1.576, 1.660, 1.756 and
1.868.

This is real for |Tr L| > 2
√

J . Within the parabola arc, ±2
√

J , there exist spiral

attractors. Outside of the parabola, the eigenvalues are real. Above the line 1 + J or

below −1 − J the fixed points are hyperbolic; within these lines, outside the

parabola, the fixed points are nodes (see Fig. P.11).

Solution 5.1 See Fig. P.12

Solution 5.3 Lay a vertical segment of unit length, the basic branch, onto each

two-cycle point and apply the twice iterated map B2(xn, vn) to them. Since the

two-cycle is on the attractor, the unstable manifold emanating from the cycle

elements is also part of the attractor (Fig. P.13). By means of further iterations, we

would obtain the entire unstable manifold of the two-cycle more and more

accurately, and the same curve would trace out the chaotic attractor with increasing

accuracy.

Solution 5.5 In the m-fold iterated map, the velocity axis can be divided into 2m

identical intervals, with different functional dependences determining the new
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n

xn
H−

H+

P1

n

xn
H−

H+

P2

Fig. P.13. Unstable manifolds of the two-cycle: first step of the construction.
Map B 2(xn, vn) has been applied once to the vertical segment of unit length
crossing points P1, P2 of the two-cycle. The dotted lines mark the connections
(c = 1/3).

Table P.1. Stability characteristics of the kicked oscillators

for different values of the derivative f ′∗ of the amplitude function

at the fixed point.

| f ′∗| < 2E 2E < | f ′∗| < 1 + E2 1 + E2 < | f ′∗|
Spiral attractor node attractor hyperbolic point

velocity values. The map expresses the fact that each velocity interval of length 2−m

is stretched by a factor of 2m and mapped onto the entire length (0, 1). Accordingly,

in the first interval vn ≤ 2−m , vn+m = 2mvn , in the next, vn+m = 2m (vn − 2−m ), and

in the kth interval vn+m = 2m (vn − k2−m ), where k = 1, 2, . . . , 2m . The velocity

co-ordinate of the fixed point of the m-fold iterated map is therefore the solution of

the equation v∗ = 2mv∗ − k. This leads to v∗ = k/(2m − 1). (For the twice iterated

map, see Problem 5.2.) Since k goes up to 2m , there exist 2m different fixed points

altogether.

Solution 5.6 The construction rule of the asymmetric baker map of Fig. 5.16

projected on the x-axis corresponds to the construction of the two-scale Cantor set

of Fig. 2.7 with r1 = c1, r2 = c2. The entire chaotic attractor is a set of Cantor

filaments with one of the partial dimensions equal to unity (see Section 2.2.2). The

other partial dimension is therefore D0 − 1, which satisfies Eq. (2.9). The full

fractal dimension, D0, is therefore the solution to the equation cD0−1
1 + cD0−1

2 = 1.

Solution 5.9 The condition for a node attractor is 2E < | f ′∗| < 1 + E2. If the

eigenvalues given in (5.29) are complex (| f ′∗| < 2E), spiral attractors are obtained.

The classification of the kicked oscillator’s fixed points is presented in Table P.1.
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Fig. P.14. Contraction of the phase space volume onto the sawtooth attractor.
The chosen phase space domain is a square of size 0.5 concentrated around the
point (−3.5, −2.5) (a = 1.95, E = 0.8).

Solution 5.14 See Fig. P.14.

Solution 5.15 See Fig. P.15.

Solution 5.17 The equation for the unstable basic branch of point P1 is given by

vn = v1+(xn) = �+(xn − x∗
1 ) − x∗

1 , (P.10)

where �+ is given by (5.29) with f ′∗ = a. The equation of the basic branch of P2 is

the same, except that x∗
1 is replaced by x∗

1 . The intersection of this basic branch with

the vn-axis is the point (0, x∗
1 (�+ + 1)), which is mapped into (x∗

1 (�+ + 1),

ax∗
1 (�+ + 1) − 1). Substituting �+ and x∗

1 , we can verify that the image point
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1

1

n

xn
H−

H+
Fig. P.15. Baker attractor
with expansion factor
a = 1.8 (c = 1/3). Note
the similarity with the
sawtooth attractor of Fig.
5.22, but in this case all the
straight segments are
vertical.
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Fig. P.16. The roof attractor around H+. (a) Rectangle in Fig. 5.28 magnified
×30. (b) Rectangle in part (a) magnified by a further factor of 10.

satisfies equation (P.10). The end points of the basic branch of P1 are therefore

given by

(
0, −x∗

1 (1 + �+)
)
,

(
x∗

1 (1 + �+), ax∗
1 (1 + �+) − 1

)
,

and the end-points of the basic branches of P2 are mirror images of these points

with respect to the origin.

Solution 5.19 See Fig. P.16.

Solution 5.21 See Fig. P.17.

Solution 5.23 See Fig. P.18.

Solution 5.24 See Fig. P.19.

Solution 5.25 See Fig. P.20.

Solution 5.26 See Fig. P.21.

Solution 5.28 The values of P0 fall in the interval (1 − γ /2, 1 + γ /2) . In one

step, the x-intervals are reduced by a factor of c and the values of the functions are

increased by a factor 1/(2c) in both phase space columns of width c: P1 takes on
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Fig. P.17. Images of the unstable basic branch of H+ over three successive
iterates. The mappings of a few characteristic points are marked with dashed
lines.

values between (1 − γ /2)/(2c) and (1 + γ /2)/(2c) (it changes linearly in between).

On the columns of width cn obtained in n steps, function Pn takes on values

between (1 − γ /2)/(2c)n and (1 + γ /2)/(2c)n . For a very large n, the columns are

so narrow that the distribution within one column cannot be resolved. Then only the

total weight of each column, the integral of the distribution within one column

counts. This is the product of the mean value 1/(2c)n and the width, 2−n , just like

when starting from a homogeneous initial distribution.

Solution 5.31 Since the mapping function, f (x), possesses two branches, the same

image point can be reached from two points, i.e. each point can have two

pre-images (this is why the map cannot be inverted). Let the two pre-images of a

point x ′, chosen in the (n + 1)th step, be x1 and x2 (Fig. P.22). The number

Pn+1(x ′) dx ′ of particles on a short interval of length dx ′ around the image point

must be identical to the total number Pn(x1) dx1 + Pn(x2) dx2 of the particles on the

intervals of lengths dx1 and dx2 around x1 and x2. Here, dx1 and dx2 are the

lengths of the two pre-images of the interval of length dx ′; dx ′/dx1 and dx ′/dx2

are therefore the magnitudes of the derivatives of the mapping function at positions
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Fig. P.18. Stretching of a short piece of the unstable manifold emanating from
point H+ in five successive iterates. The unstable manifold is continuous and
does not contain straight line segments. An enlargement of the point appearing
to be a break-point in n = 4 shows that the unstable manifold does not break
(a = 1.8, E = 0.25.)
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Fig. P.19. Chaotic attractor
of an oscillator kicked with the
bell amplitude function
f (x) = a(e−4x2 − 1) + 1
(a = 2, E = 0.7).
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Fig. P.20. Chaotic attractor
of an oscillator kicked with the
sine amplitude function
f (x) = a sin x (a = 5,
E = 0.7).

x1 and x2, respectively. Thus, Pn(x1) dx ′/ | f ′(x1)| + Pn(x2) dx ′/ | f ′(x2)| =
Pn+1(x ′) dx ′, from which the probability distribution after the (n + 1)th step is

given by

Pn+1(x ′) =
∑

x= f −1(x ′)

Pn(x)

| f ′(x)| .

The summation is carried out over all the values x that are pre-images of x ′. In this

form, the equation is valid for mapping functions with any number of branches. For

the natural distribution, Pn = Pn+1 ≡ P∗. In the sawtooth map, (a), and roof map,

(b), of constant slope, the density of the natural distribution is P∗ = constant; the

distribution is uniform. In the parabola map, (c), assuming the symmetry of the

distribution, we obtain the relation

P∗(x ′) = 2
P∗

(√
(1 − x ′)/2

)

4
√

(1 − x ′)/2
.



Solutions to the problems 359

a∞

0

1

–1

–2

–3

x*

a

ac

1.4 1.5 1.6 1.7 1.79

ac2

Fig. P.21. Bifurcation diagram of the roof map (E = 0.7). At the value
a∞ = 1.490 chaos appears abruptly (as if a period-doubling cascade were
compressed into a single point). The chaotic domain is not interrupted by
periodic windows. At a = ac2 = 1.632 the attractor suddenly widens; for values
a > ac = 1.7898 there exist no finite attractors.

xn+1

xn

x´dx´

f x( )

dx1 dx2

x1 x2

Fig. P.22. A one-
dimensional map, f (x),
in the neighbourhood of
point x ′ and of its two
pre-images.

One can check via substitution that the solution of this equation is

P∗(x ′) ∼ 1/
√

1 − x ′2. The natural distribution is position-dependent in this case.

One-dimensional maps model the behaviour developing along the unstable

manifolds of the chaotic attractors of two-dimensional invertible maps. The

examples illustrate that the natural distribution is continuous along the unstable

direction.

Solution 5.32 See Fig. P.23.
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(a) (b)

x

x

Fig. P.23. Natural distributions of the chaotic attractor of the oscillator kicked
with (a) a bell and (b) a sine amplitude. The respective parameters are the same
as in Problems 5.24 and 5.25. These distributions can be seen from different
viewpoints in Plates XV and XVI.

Fig. P.24. Asymmetric baker attractor with parameters c1 = 1 − b, c2 = b,
b = 2/3. The fractal dimension is D0 = 2, but the natural distribution is highly
inhomogeneous. The filaments are visited with different probabilities. Observing
the dynamics for even longer times, the white regions would also become black.

Solution 5.38 With the notation b = 1/2 − δ, we obtain, for |δ| � 1,

−ln J = −b ln ((1 − b)/b) − (1 − b) ln (b/(1 − b)) ≈ 8δ2,

D(2)
1 = b ln b + (1 − b) ln (1 − b)

b ln (1 − b) + (1 − b) ln b
≈ 1 − 8δ2

ln 2
.

Irrespective of the sign of the asymmetry parameter, δ, on average the phase space

volume decreases. The system is therefore dissipative, and the partial information

dimension is always less than unity (the full information dimension is less than 2),

even though the attractor fills the entire phase space: D0 = 2 (see the solution to

Problem 5.6, with c1 = 1 − b, c2 = b). See Fig. P.24
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Fig. P.25. The first
segments of the unstable
(continuous line) and
stable (dashed line)
manifolds of the fixed
points. Both manifolds
extend beyond the unit
square.

Solution 5.40 The equations linearised around the origin are given by

� ẋ = σ (� y − � x), � ẏ = r� x − � y, � ż = −� z.

The stability matrix is therefore given by

A =

⎛
⎜⎝

−σ σ 0

r −1 0

0 0 −1

⎞
⎟⎠ .

The eigenvalue equation is (λ + 1)(λ2 + λ(σ + 1) + σ (1 − r )) = 0, with solutions

λ3 = −1 and

λ1,2 = −1 − σ ±
√

(σ + 1)2 + 4σ (r − 1)

2
.

All the eigenvalues are negative for r < 1. Since for r > 1 one of the eigenvalues is

positive, the origin is hyperbolic in this range.

Solution 6.3 See Fig. P.25.

Solution 6.4 Under iteration of the map, a two-scale Cantor set with parameters c1

and c2 is formed along the xn-axis (see Section 2.2.1). Its dimension, the partial

dimension D(2)
0 of the saddle, is the solution of (cf. equation (2.9))

c
D(2)

0

1 + c
D(2)

0

2 = 1.

Points that will never escape lie on horizontal line segments (the stable manifold)

which constitute, along the vn-axis, a two-scale Cantor set with parameters 1/a1 and

1/a2. The partial dimension, D(1)
0 , of the unstable direction therefore fulfils the

following equation:

a
−D(1)

0

1 + a
−D(1)

0

2 = 1.

Solution 6.5 The image of the upper rectangle containing ‘A’ in Fig. P.26 is not

only stretched and compressed in this map but is also rotated by 180◦. The fixed

points are H− = (0, 0), H+ = (1/(1 + c2), a2/(1 + a2)); the two-cycle is
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Fig. P.26. Action of the
asymmetric baker map,
(6.14), on the unit square
(a1 = 3, a2 = 2.5, c1 =
0.25, c2 = 0.45). Capital
letters A and B illustrate the
different orientations of the
two rectangles after one
iteration.
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Fig. P.27. Saddle of the
asymmetric baker map (6.14)
(a1 = 3, a2 = 2.5, c1 = 0.25,

c2 = 0.45).

P1 = (1/(1 + c1c2), a2/(1 + a1a2)), P2 = (c1/(1 + c1c2), a1a2/(1 + a1a2)). Owing

to the rotation by 180◦, the fixed point H+ is now not at the upper right corner of the

saddle (see Fig. P.27).

Even though the positions of the cycle points have changed, their stability

eigenvalues are the same as in (6.13); consequently, all the chaos parameters,

including the partial fractal dimensions, are the same as in map (6.13). The saddles

of the two maps shown in Fig. 6.9 and Fig. P.27 are, however, not identical.

Solution 6.6 Introducing the new variables x ′ = (a2 − (1 + E2)2)/(2a)(x − x∗
−),

v′ = (a2 − (1 + E2)2)/(2a)(v − x∗
−), where x∗

− = v∗
− = 1/(1 + E2 − a), the map

becomes x ′
n+1 = v′

n , and

v′
n+1 = −E2x ′

n + av′
n, for v′

n < (1 + E2 + a)/(2a),

v′
n+1 − 1 = −E2(x ′

n − 1) − a(v′
n − 1), otherwise.
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Fig. P.28. Condition for
transient chaos in
one-dimensional maps:
function f (x) stretches
beyond the square of side
length 2|x∗−| centred at the
origin. Below the square,
intervals are plotted with
lifetimes of at least n. For
n → ∞, these intervals
approach the chaotic set, a
repellor. Here,
f (x) = 1 − 3x2.

The eigenvalues in the lower and upper half-planes are (a ± √
a2 − 4E2)/2 and

(−a ± √
a2 − 4E2)/2, respectively

In the limit a � 1, the switching between the two formulae happens precisely

along the line v′
n = 1/2. The eigenvalue with absolute value larger (smaller) than

unity is a (E2/a) in both half-planes. Since these are the respective slopes of the

unstable and stable manifolds (see Fig. 5.21), these manifolds consist in practice of

vertical and horizontal lines, as for map (6.3). Accordingly, the non-linearity

parameter, a, plays the role of the stretching rate, a, of the baker map, and E2/a

corresponds to c. According to equations (6.5)–(6.9), the escape rate and the

Lyapunov exponent are, in leading order, proportional to ln a, and the fractal

dimension is proportional to the reciprocal of ln a.

Solution 6.8 The fixed points of a one-dimensional map, xn+1 = f (xn), are the

solutions of the equation x∗ = f (x∗). Transient chaos emerges if both fixed points

are unstable and the maximum of the function is f (0) > |x∗
−|. In the first iteration

step every point escapes from the interval I in which f (x) > |x∗
−|. Points escaping

after n steps are in the nth pre-image of I . The sequence of the pre-images shows

that on an ever-growing portion of interval (−x∗
−, x∗

−), is removed similar to the

construction of a Cantor set. Points that never escape perform chaotic dynamics,

and form a chaotic repellor. See Fig. P.28.

Solution 6.13 The equation of the unstable manifold emanating from H− is

v+(xn) = x∗
− + �+(xn − x∗

−), where �± = (a ± √
a2 − 4E2)/2, and the fixed

point co-ordinates are given by (5.35). The upper end-point of this branch is located

on the vn-axis (see Fig. 5.22), namely, it is (0, x∗
−(1 − �+)). This falls on the stable
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Fig. P.29. Sawtooth attractor in crisis (ac = 2, E = 0.8).

manifold of H+, on v−(xn) = x∗
+ + �−(xn − x∗

+), if x∗
−(1 − �+) = x∗

+(1 − �−).

This yields �− + �+ = 2, from which ac = 2 (irrespective of the value of E).

Solution 6.14 See Fig. P.29.

Solution 6.19 See Fig. P.30.

Solution 6.20 See Fig. P.31.

Solution 6.21 See Fig. P.32.

Solution 7.3 Below the line vn = b, the vertical (or horizontal) distance of point

pairs increases (or decreases) in one step by a factor of 1/b (or b). For point pairs

above the line, this factor is 1/(1 − b) (or (1 − b)). Due to the uniform natural

distribution, deformation of the first and second type occurs in proportions b and

(1 − b) of all the cases, respectively. Thus, the average of the logarithm of the

stretching factors, i.e. the average of the Lyapunov exponents, is given by

λ̄ = −b ln b − (1 − b) ln (1 − b). Similarly, the negative average exponent is given

by λ̄′ = b ln b + (1 − b) ln (1 − b) = −λ̄.

The inverse map is given by

(xn+1, vn+1) =
( xn

b
, bvn

)
, for xn ≤ b,

(xn+1, vn+1) =
(

1 + xn − 1

1 − b
, 1 + (1 − b)(vn − 1)

)
, for xn > b.
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Fig. P.30. The basins of attraction (black: parabola attractor, white: attractor at
infinity) at (a) a = 1.74 and (b) a = 1.80 (E = 0.32). Manifolds of the fixed
point, H−, on the boundary for (c) a = 1.74 and (d) a = 1.80 indicate that, in
the first case, there are no homoclinic points (no horseshoe) formed.
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Fig. P.31. Basins of attraction (black and white) of the two fixed point
attractors (white and black dots) for r = 14, σ = 10 (z = r − 1). The fractal basin
boundary is the stable manifold of the saddle in Fig. 6.27. The right-hand panel
is a magnification of the small rectangle in the left-hand panel.
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Fig. P.32. Basin of attraction of (a) the stable cycle (white dot) in black and
(b) the unstable manifold on the stroboscopic map at α = 0.6, f0 = 3.8, A = 55.

By exchanging x and v, this map becomes equivalent to the original map, (7.5) and

(7.6), and, as a consequence, the average Lyapunov exponents of the two maps are

identical.

Solution 7.10 The velocity components, (un, wn), can be expressed in terms of the

horizontal and vertical components as follows (see Fig. 7.11):

un = vxn cos α + vyn sin α, wn = −vxn sin α + vyn cos α, (P.11)

and vice versa as

vxn = un cos α − wn sin α, vyn = un sin α + wn cos α. (P.12)

The flight time, (7.16), is thus

gtn = 2
wn

cos α
. (P.13)

The velocity components before the next collision are, according to (7.15), given by

ũn+1 = un − gtn sin α = un − 2wn tg α,

w̃n+1 = wn − gtn cos α = −wn .

}
(P.14)

Since w changes sign at the collision, whereas u does not, the velocity immediately

after the collision is given by equations (7.17).

Solution 7.11 With the initial velocities un, wn , the combination vxn tan α + vyn

occurring in the expression of the flight time is (un sin (2α) + wn cos (2α))/ cos α in

view of (P.11). The impact velocity should be given in terms of the components

perpendicular and parallel to the slope (which corresponds to taking −α instead of

α in (P.11) and then changing the sign of component u). Thus, from (7.15), the

velocity before the collision is given by

ũn+1 = −vxn cos α + (vyn − gtn) sin α,

w̃n+1 = vxn sin α + (vyn − gtn) cos α.

}
(P.15)
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Fig. P.33. (a) Particle orbit starting from x0 = 1, E = 5. (b) Poincaré portrait
defined by y = 0, ẏ > 0, E = 5 generated from three different initial conditions.
The majority of the phase space belongs to a single chaotic band.

Expressing vxn and vyn in terms of the decomposition (P.12), corresponding to the

original slope, and substituting the flight time yields

ũn+1 = −un + wn tg α − √
Dn sin α,

w̃n+1 = −√
Dn cos α.

}
(P.16)

After the collision, un+1 = ũn+1, wn+1 = −w̃n+1, and (7.22) is recovered.

Solution 7.12 All this follows from the energy conservation, (7.21). Taking into

account that the potential energy can only be positive, in the dimensionless form

u2
n + w2

n ≡ u2
n + zn ≤ 1.

Solution 7.15 See Fig. P.33.

Solution 8.1 In terms of the variable x ≡ sin φ, map (8.3) is of the form

xn+1 = xn − a

R
sgn(θn+1) cos θn+1, θn+1 = θn − 2 arcsin xn + π.

Its derivative matrix is given by
⎛
⎝

1 − sgn(θn+1) sin θn+1
2a

R
√

1−x2
n

a
R sgn(θn+1) sin θn+1

− 2√
1−x2

n

1

⎞
⎠ , (P.17)

whose Jacobian is unity.

Solution 8.2 The two-cycle of map (8.3) is given by the points

(xn, θn+1) = (0, π/2) and (0, −π/2). The derivative matrix (P.17) is in both points

(
1 − 2 a

R
a
R

−2 1

)
,

with eigenvalues

�± = 1 − a

R
∓ a

R

√
1 − 2

R

a
.
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Fig. P.35. Distribution of the number of survivors, N(n) vs n. (a) The short time
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Fig. P.36. (a) Points of the saddle (obtained as the n = 20 points of trajectories
not escaping up to n = 30 steps) accumulate around the outermost KAM torus
surrounding the elliptic origin, and it is this dense accumulation which leads to a
deviation from the exponential decay to a much slower power law decay shown
in Fig. P.35(b). The part of the saddle which appears to be a Cantor cloud is
responsible for the short time exponential behaviour of Fig. P.35(a). (b) The
unstable manifold (obtained as the n = 30 points) is accordingly a Cantor
filament away from the KAM torus, but is space filling around the torus.
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The eigenvalues of the two-fold iterated map are �2
± in the points of the two-cycle.

Since a > 2R, |�+| > 1 and |�−| < 1; the two-cycle is therefore hyperbolic.

Solution 8.3 The bounce of the (counter-clockwise running) triangular orbit with

the bottom disk is characterized as a point (xn, θn+1) = (−1/2, π/2) of map (8.3).

The derivative matrix (P.17) is in this point
(

1 − 4a√
3R

a
R

− 4√
3

1

)
. (P.18)

After rotating the reference frame by ±120◦, the same derivative matrices are found

at the points of the other two bounces. The eigenvalues

�± = 1 − 2a√
3R

∓ 2a√
3R

√

1 −
√

3R

a

of (P.18) are thus the eigenvalues of the three-cycle for one iteration. Note that |�+|
> 1, |�−| < 1; the triangular orbit is therefore hyperbolic.

Solution 8.6 See Fig. P.34.

Solution 8.7 See Figs. P.35 and P.36.
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Károlyi, G. and Domokos, G. ‘Symbolic dynamics of infinite depth: finding

invariants for BVPs’, Physica D 134, 316 (1999).



382 Bibliography

Goriely, A. and Tabor, M. ‘Spontaneous helix hand reversal and tendril perversion

in climbing plants’, Phys. Rev. Lett. 80, 1564 (1998).

Tobias, I., Swignon, D. and Coleman, B. D. ‘Elastic stability of DNA

configurations, I. General theory’, Phys. Rev. E 61, 759 (2000).

Box 9.3 Chaos in different sciences

Meteorology
Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability.

Cambridge: Cambridge University Press, 2002.

Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A. and Ott, E. ‘Local low

dimensionality of atmospheric dynamics’, Phys. Rev. Lett. 86, 5878 (2001).

Szunyogh, I., Toth, Z., Zimin, A. V., Majumdar, S. J. and Persson, A. ‘Propagation

of the effect of targeted observations: the 2000 winter storms reconaissance

program’, Monthly Weather Rev. 130, 1144 (2002).

Geophysics
Turcotte, D. L. Fractals and Chaos in Geology and Geophysics. Cambridge:

Cambridge University Press, 1997.

Perugini, D., Poli, G. and Gatta, G. D. ‘Analysis and simulation of magma mixing

processes in 3D’, Lithos 65, 313 (2002).

Keken, P. E. van, Hauri, E. and Ballentine, C. J. ‘Mantle mixing: the generation,

preservation and destruction of mantle heterogeneity’, Ann. Rev. Earth Planet.

Sci. 30, 493 (2002).

Plasmas and lasers
Infeld, E. and Rowlands, G. Nonlinear Waves, Solitons and Chaos. Cambridge:

Cambridge University Press, 1990.

Arecchi, F. T. and Harrison, R. G. (eds.) Selected Papers on Optical Chaos. Society

of Photo Optical, 1993.

Electronic circuits
Ogorzalek, M. J. Chaos and Complexity in Nonlinear Electronic Circuits.

Singapore: World Scientific, 1997.

Chen, G. and Ueta, T. (eds.) Chaos in Circuits and Systems. Singapore: World

Scientific, 2002.

Nanotechnology
Ferry, D. K. and Goodnick, S. M. Transport in Nanostructures. Cambridge:

Cambridge University Press, 1997.

Heinzel, T. Mesoscopic Electronics in Solid State Nanostructures. Weinheim:

Wiley-VCH, 2003.
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Tél, T., de Moura, A., Grebogi, C. and Károlyi, G. ‘Chemical and biological activity

in open flows: a dynamical system approach’, Phys. Rep. 413, 91 (2005).

d’Ovidio, F., Fernandez, V., Hernandez-Garcia, E. and Lopez, C. ‘Mixing structures

in the Mediterranean Sea from finite-size Lyapunov exponents’, Geophys. Res.

Lett. 31, L17203 (2004).

Box 10.1 Turbulence and spatio-temporal chaos

Frish, U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge

University Press, 1995.

Bohr, T. and Jensen, M. H. Dynamical Systems Approach to Turbulence.

Cambridge: Cambridge University Press, 1998.
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area contraction rate, 105

Arnold, A., 23

Arnold diffusion, 319

asteroid, 283, 284, 286

atmosphere, 18, 293, 316

attractor, 51

chaotic, 8

limit cycle, 78, 323

node, 64, 86, 104

point, 61

simple, 7, 9, 71, 78, 297
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autonomous system, 80, 299
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baker map, 113, 200, 213, 233

area preserving, 230
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baker saddle, 200, 204
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214, 225, 307
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197, 221, 225, 296, 308

Bernoulli map, 150

bifurcation, 73

crisis, 217
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bifurcation point, 73

billiard, 260

concave, 260

open, 265, 301

Sinai, 260
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biochemical reactions, 302

Birkhoff, G., 23

bistability, 67

bistable system, 67, 70, 297
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on a double slope, 14, 242, 318

on a vibrating plate, 174, 318

boundary crisis, 219

Brownian motion, 21, 168, 240

buckling rod, 292

butterfly effect, 159

Cantor, G., 47

Cantor cloud, 32, 196

asymmetric, 36, 46, 199, 200

Cantor filament, 35, 121, 160, 197
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fat, 39

Cantor set, 32, 41, 196, 221
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fat, 39

two-scale, 34

cat map, 232
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catastrophe, 75

centrifugal force, 248, 280

chaos, 3, 58, 254

conservative, 22, 46, 227, 259, 264

definition of, 27

deterministic, 168

dissipative, 22, 46, 113, 171, 191

macroscopic, 258

microscopic, 256, 258

molecular, 319

permanent, 22, 113, 191, 227

transient, 9, 22, 191, 210, 264

chaotic advection, 17, 18, 306, 318

environmental significance of, 315

chaotic attractor, 8, 22, 45, 121, 139, 171, 178, 180, 214, 221,

259, 302
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chaotic band, 12, 13, 15, 22, 46, 234, 239, 241, 258, 260, 278
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climate variability, 293, 297
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telephone cord, 293

concert hall acoustics, 301

conservative system, 12, 15, 19, 22, 46, 83, 227

autonomous, 242

continued fraction, 253

continuity equation, 183

continuous dynamics, 94

control, 302

OGY algorithm, 303

controlling chaos, 225, 303

Coriolis force, 248, 280
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crisis, 214, 216, 217, 218, 222

boundary, 219, 222

internal, 219, 222
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crisis bifurcation, 218
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deterministic chaos, 168

deterministic system, 168, 240
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differential equation, 106

diffusion, 225, 239, 315
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diffusion coefficient, 240

dimensionless equation, 326

dimensionless form, 325

direct product, 35, 39, 46

discrete dynamics, 94

dissipation, extremely strong, 149

dissipative system, 7, 19, 22, 46, 56, 61, 82, 194

driven harmonic oscillator, 95, 177, 251

driven non-linear oscillator, 178, 328

driven oscillator, 4

driven pendulum, 7, 8, 9, 10, 179, 180

driven system, 90

driving, 7, 95, 299

driving force, 4

droplet dynamics, 305, 311, 315
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dynamical entropies, 319

dynamical instability, 156
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eigenvalue, 85, 97, 103, 134
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ergodic system, 261

ergodicity, 261

error, 172

escape from potential well, 226
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KAM theorem, 23, 253, 255, 258, 260, 286
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kicked free motion, 275, 325

kicked oscillator, 100, 131, 199, 221, 222, 324

kicked oscillator map, 102
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kicked system, 95

Kirkwood gap, 285
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Koch curve, 26, 30, 46

Kolmogorov, A., 23, 47

Kovalevskaia, S., 23, 290
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Lagrange point, 283, 286

laser, 275, 301, 303
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of chaos, 192, 301

of transition complex, 276

lifetime distribution, 209, 268, 272

limit cycle, 88, 92, 100, 175, 295, 303, 323
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unstable, 99, 218, 324
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linear approximation, 51
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local Lyapunov exponent, 156, 167, 203, 301, 338
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Lorentz gas, 260

Lorenz E., 23, 47, 159, 187, 293
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Lorenz’s model of global circulation, 293
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Lozi map, 148
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average, 156, 168, 170, 205, 338

local, 156, 203, 338

magnetic pendulum, 8, 224
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Mandelbrot set, 108

manifold

numerical determination of, 73
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unstable, 71, 107

map, 20, 93, 94, 106, 322

advection, 307, 309

area preserving, 230

baker, 129

Hénon, 148

Hénon-type, 148

invertible, 98, 109

kicked free motion, 325

kicked oscillator, 102, 131, 324

kicked rotator, 235

Lozi, 148

non-autonomous, 303

non-invertible, 109

one-dimensional, 109, 164

parabola, 145

Poincaré, 21, 22, 189, 229

roof, 140

sawtooth, 135

scattering, 269

standard, 235

stroboscopic, 21, 22, 93, 324

two-dimensional, 103, 104, 105, 109, 169,

171, 175

marginal fixed point, 86, 104

Mars, see under, planets

Menger sponge, 33

mirroring balls, 16

mixing, 233, 261, 305, 316, 318

mixing system, 261

molecular chaos, 319

Moon, 26, 280, 283, 286

surface of, 26, 30

Moser, J., 23

motion on a relief, 58, 66

multi-fratal, 43

multi-scale fractal, 33

musical instrument, 301

nanotechnology, 301

natural distribution, 46, 161, 164, 167,

172, 214

of the baker attractor, 162, 166

of chaotic attractor, 161

of kicked oscillators, 165

of permanent winter, 298

of saddle, 203

of the water-wheel attractor, 190

of the water-wheel saddle, 219

natural frequency, 60, 86

natural measure, 161
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node attractor, 64, 86, 104

node repellor, 86, 104

noise, 21, 119, 240, 262, 319

noise-induced chaos, 225

non-attracting set, 191

non-autonomous system, 91

non-hyperbolic effects, 318

non-invertible map, 108

non-linear behaviour, 51

non-linear force law, 5, 66

non-linear oscillator

driven, 5

non-linear system, 109

non-linearity parameter, 132, 150

numerical error, 329

numerical simulation, 4, 172, 236, 332

numerical solution, 325, 329
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observed surface, 25, 29, 37

observed volume, 37

ocean, 316

one-dimensional map, 149, 164, 201, 217

one-disc problem, 266

one-scale fractal, 32

open baker map, 193

open flow, 307, 316

oscillation

driven, 4

harmonic, 60

parabola amplitude, 101, 132

parabola attractor, 146, 214, 220, 223

parabola map, 145, 152, 220

parabola saddle, 204

parameter dependence, 150, 214

partial dimension, 37

partial fractal dimension, 37, 196, 197

partial information dimension, 165, 204

pendulum, 327

clock, 3

driven, 7, 9, 179, 224, 318

magnetic, 8, 224, 318

spring, 246, 318, 327

period-doubling cascade, 150, 151, 218

periodic orbit, 92, 125, 129, 154, 172, 210, 229, 259, 268,

271, 274, 276, 303, 318

periodic window, 153, 219

permanent chaos, 22, 46, 113, 191

perturbation, 255, 257

phase portrait, 71, 78, 79, 87, 141, 145, 147, 171, 216, 229,

234, 238, 246, 269, 310

phase space, 19, 45, 53, 55, 60, 66, 69, 79, 80, 91,

184, 262, 305

at least three-dimensional, 109

phase space contraction rate, 81, 86, 177, 228

phase space volume, 81, 83

pinball machine, 15

planets, 228, 280

Jupiter, 280, 283, 285

Mars, 285

Pluto, 285

Saturn, 284

plasma, 301

Pluto, see under, planets

Poincaré, H., 23, 280

Poincaré map, 21, 219, 229, 268

Poincaré portrait, 229, 248, 249, 283, 289

Poincaré section, 229

Poincaré–Bendixson theorem, 88

Poincaré–Birkhoff theorem, 257

point attractor, 61

pollution, 16, 304, 316

potential, 58, 65, 76, 281

double-welled, 68

pre-image, 102

prediction time, 158, 160, 205, 262

principal moment of inertia, 286, 293

probabilistic concepts, 21, 23

probability distribution, 40, 160, 203

program, 332

diffeq, 334

map, 332

quasi-periodic motion, 237, 252, 254, 258, 284, 313

rain, 181

random motion, 58

random walk, 168, 239, 331

rational torus, 253

reaction in flow, 316

reduced mass, 281

regular island, 13

regular motion, 3, 45, 51, 313

repellor, 108

node, 86, 104

spiral, 86, 104

resolution, 25, 29

resonance, 5, 286, 322
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resonant torus, 254, 256, 258

Rössler model, 190

roof amplitude, 132

roof attractor, 141, 337

roof map, 140, 215, 216

roof saddle, 204, 337

round-off error, 262, 331

Runge-Kutta method, 330, 334

saddle

chaotic, 10, 191

parabola, 200

roof, 200, 337

sawtooth, 200

water-wheel, 219

saddle point, 53

Saturn, see under planets

sawtooth amplitude, 132

sawtooth attractor, 136

sawtooth map, 135, 215

sawtooth saddle, 204

scattering, 16, 264

scattering function, 265, 268, 272

scattering map, 269, 275

scattering region, 265, 273

self-similarity, 26, 27

sensitivity to initial conditions, 4, 6, 14, 56,

156, 262

separatrix, 71, 88, 254

set of measure zero, 38, 121, 196

shear flow model, 309

shimmying wheel, 292

ship capsizing, 72, 226

Sierpinski gasket, 32

Sierpinski tower, 32

simple attractor, 7, 9, 11

simple system, 80

skiing on a slope, 76

Solar System, 23, 228, 280, 285

see also under planets

spacecraft, 228, 279

spatial patterns, 320

spatio-temporal chaos, 320

spinning-top, 23, 286, 289, 293

spiral attractor, 62, 86, 98, 104

spiral repellor, 86, 104

spreading of pollutants, 16, 17, 304

spring pendulum, 246

stability, 66

of fixed points, 85, 103, 133, 134, 184, 236

stability analysis, 65

stability matrix, 85, 103, 116, 133, 144, 145, 236

stable curve, 55

stable equilibrium point, 59

stable manifold, 70, 79, 88, 99, 100, 105, 107, 128, 140, 144,

146, 175, 198, 209, 212, 221, 222, 242, 259, 271, 273,

277, 303, 308

stable state, 59, 66, 95

standard map, 234, 236

state of a system, 19

strange attractor, 8

stroboscopic map, 21, 93, 315

structural stability, 57

Sun, 3, 280, 283, 286, 294

swinging on a pulley, 12, 248

tank with two outlets, 17, 306

tent map, 150

thermal convection, 187

thermal equilibrium, 302

thin fractal, 38

three-body problem, 279, 283

three-cycle, 125, 270

three-disc problem, 15, 270, 271, 272

time reversal invariance, 84, 259, 277

time step, 329

time-reversed dynamics, 71, 84, 102

top

asymmetric, 287

Kovalevskaia, 291

spinning, 286

symmetric, 287, 290

topological entropy, 127, 155, 167, 173, 177, 197, 202, 205,

214, 221, 231, 337

torus, 250, 251

irrational, 253

rational, 253

resonant, 254, 256, 257

torus attractor, 319

trailer, lateral motion in, 292

trajectory, 19, 53, 60, 62, 69, 80, 92, 94

transient chaos, 9, 11, 16, 22, 46, 191, 210, 264, 277, 297,

301, 302, 307

transition complex, 276

transport barrier, 310

transport processes, 225

turbulence, 320

two-cycle, 124, 136, 137, 197, 238, 269

two-disc problem, 266

two-scale Cantor set, 34
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universality, 151

unpredictability, 4, 6, 12, 21, 117, 158, 173, 260

unstable curve, 55

unstable manifold, 71, 77, 88, 99, 100, 105, 107, 122, 123,

139, 142, 146, 172, 176, 198, 211, 212, 231, 242, 273,

277, 305, 307, 316

unstable state, 7, 65, 98, 323

van der Pol oscillator, 83, 89

von Kármán vortex street, 316

vortex

blinking, 18

street, 316

vortex dynamics, 312

chaotic, 313

water-wheel, 181, 192, 217, 225

water-wheel attractor, 188, 189

water-wheel saddle, 219

west wind, 294

winding number, 250, 255

Yorke, J., 23
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