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Dedicated in memory of the children
who died in the Kumbakonam Fire tragedy.

Oh dear little ones! Oh dear little ones!

For you, we had glorious dreams!

And you were all immersed in your own dreams

Usually, departed old parents are buried by sons

Whereas, Kumbakonam, saw a sad scene!

Crying parents and weeping elders burying the tender ones!!
Oh Almighty! Show your grace on those little ones, and

Bless those parents to have strength to bear this great loss
And bring down their pain and wipe away the burning tears
Oh Almighty! Show your grace on those little ones.

PresIDENT A.PJ. ABDUL KaLAM
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A healthy academic experience, and some views and reviews of the fifth edition of the main book of
Dr. S.O. Pillai on Solid State Physics.

Prof. A.P.J. Abdul Kalam, Hon’ble President of India received a copy of the riain
book on Solid State Physics sent by the author in January 2003. Dr. Pillai's surprise
was that Prof. Kalam contacted him over phone and congratulated Dr. S.O. Pillaj for
the untired efforts, hard work and perseverance in bringing out a fine text book on
Condensed Materials using the accumulated lecture notes over a period of forty years
providing his own models to expedite the learning process. It was also noted that the
copy of the said book has been kept in the Home library of the President. Pillai was
also suggested to get the book reviewed by a panel of experts. Dr. Pillai thanks the
President through these columns for the kind words and gesture. The review reports
from a few outstanding academicians are presented here for the use of the readefrs and
faculty members aspiring for bringing out text-books in many vital areas through
reputed publishing houses.

From

Dr. M.G.K. Menon
Distinguished Professor

Indian Space Organization
E-mail: mgkmenon@ren02.nic.in

Dear Dr. Pillai,

Thank you for your recent letter with a copy of the book you have written on Solid State Physics. | am
deeply sorry that it will be very difficult for me to go through the book to give comments and suggestions
for improving it. This would require a fair amount of work. All | can say is that | am glad that you have
written it and it certainly contains the spirit of your approach to teaching of which you have very
extensive experience; it is my view that every teacher should impart a sense of excitement and curiosity
to the students through their own style of teaching. The book is comprehensive dealing extensively with
even newer topic on Superconductivity, Magnetic Properties of Materials, Physics of Semiconductors,
Dielectrics and Related Properties, and Optical Properties of Solids. It would have been good for you to
have also covered the broad interface of physics and chemistry e.g., Solid State Chemistry, and also the
properties of surfaces which have assumed great significance with very new experimental capabilities.

Yours sincerely,
M.G.K. Menon

Formerly
(i) Director of Tata Institute of Fundamental Research
(i) Science-Advisor to the Prime Minister of India
(i) Minister for Science and Technology
(iv) Recipient of Padma Shriin 1961 and Padma Bhushan in 1968.



Dr. B.C. Pai

Senior Deputy Director

Regional Research Laboratory (C.S.1.R)
Thiruvananthapuram 675 019

Dear Prof. Pillai

Thank you for the kind letter enclosing with a copy of your book on Solid State Physics. | am extremely
sorry that I may not be able to offer specific comments on your book since | am not an expert in the area
of Solid State Physics. But all the topics covered in your book have been directly or indirectly relevant
in our R and D activities. In this background | have no hesitation in congratulating and complementing
you for bringing out an excellent text book presenting the relevant information aptly and precisely. The
objective, short and review questions given at the end of each chapter are addressed to the point. Once
again let me compliment you for bringing out a nice text book in Solid State Physics, and expect a few
more books in the years to come.

Yours sincerely

Dr. B.C. Pai

Dr. B.C. Pai is a Recipient
of many R and D awards

from Government of India,
and from other institutions
and industries.



A Memorable communication from Hon’ble President A.P.J. Abdul Kalam.

President A.P.J. Abdul Kalam added a prologue to the address to the joint sitting of both Houses of
Parliament on 7th June 2004 by reciting a few lines from his poem, an idea struck him while on his
morning walk.

“I climbed and climbed, where is the peak, my Lord?
| ploughed and ploughed, where is the knowledge treasure, my Lord?
| sailed and sailed, where is the island of peace, my Lord?”

Dr. S.O. Pillai made a soft analysis of this thought provoking poem and found a partial explanation.

“Itis: You and in You
Itis: in your imparting the knowledge to the illiterates with faith and confidence
It is: in your beneficial contribution to mankind with utmost care and sincerity”.

Dr. S.O. Pillai is extremely grateful to the Hon’ble President for his inspiring encouragement and
abundant best wishes which helped Pillai to continue his academic activities with almost all perfectness
even at this age.

Rashtrapati Bhavan
New Delhi-110004
June 21, 2004

Dear Dr Pillai,
Thank you for your analysis of my poems. My greetings and best wishes to you and your family.

Yours sincerely,

A.P.J. Abdul Kalam
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Preface

Materials Science is one of the subjects in which considerable advances have been made, both in
theoretical understanding and in experimental work, over the last few decades. To teach this subject for
undergraduate students whose background is spotty, the major stumbling block proved to be the lack of
suitable text books to supplement the lectures. Most of the available books, excellent though they are,
rely heavily on the use of concepts completely alien to first or second year science and engineering
students, and are largely aimed to cater the needs of post graduate students and research scholars. The
main book of the first author on Solid State Physics also belongs to the above said category. The author
had the privilege of going through the recent changes introduced in the curriculum and syllabi of
undergraduate courses in colleges affiliated to different universities spread all over the county. The
inclusion of the fascinating subject Materials Science as a core paper for the undergraduate courses in
physics, chemistry, applied sciences, engineering and technology in recent years by a number of
universities in India inspired Dr. Pillai to bring out a small book in the present form and format to cater
the present day needs, and thereby to improve the workaholic culture and also to enhance the grip of the
undergraduate students whose background or pre-requisite in this vital area is not in abundance. It is for
this purpose this book is written.

The first author reviewed the accumulated teaching materials prepared for his lecture classes over
a period of 35 years. The second author strained in preparing the script in the form of questions and
answers providing tables giving physical properties of materials at the end of each chapter. Inclusion of
objective questions, problems with solutions under each chapter is the other salient feature of this book.
The authors feel that the book now in your hands is handy; and they are prevalently hopeful that it will
just serve the purpose.

S.O. RLral
MRs. Svakami  PiLLAl

‘Pentium Manor’, Karat Road
Kozhikode 673 011

Phone: 0495-2765461, 2374023
e-mail: beljith_p@yahoo.co.in
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1.1 INTRODUCTION

We in the beginning turn to a description of the bonding in solids considering the electronic structure in
atoms. Some solids consist of molecules bound together by very weak forces. We shall not be concerned
with these because their properties are essentially those of the molecules. Nor shall we be much concerned
with purely ionic solids alone bound by electrostatic forces between ions. The solids considered here are
those in which all the atoms can be regarded as bound together. To illustrate how the bonding is reflected
in the properties of the solids, we explore the electronic properties of various types of solids. Solids
display a wide variety of interesting and useful electronic properties. Good electronic conductivity is
one of the characteristic properties of metals; semiconductors are the foundatioBiéttrerevolution

But why is tin a metal, silicon a semiconductor and diamond an insulator? Many solid state devices
(transistors, photocells, light emitting diodes (LEDs), solid state lasers, solar cells) are based on
semiconductors containing carefully controlled amounts of impurity. How do these impurity affect the
conductivity? These are some of the basic questions to be addressed; but a basic knowledge of bonding
theory and the different mechanisms involved is absolutely essential to extend the study.

Q 1.1 What you understand by bonds in solids? What are the main causes and conditions for bond
formation?

Answer.  The forces which keep or hold together the atoms or molecules of a substance in the form of
groups are callebdonds The atoms or molecules in the gaseous and liquid states are loosely-packed and
a very little binding force exists among them. Therefore, gases and liquids do not possess any definite
shape. If a gas (or liquid) is heated, it expands out indefinitely, showing that little binding force exists
among its various atoms. However, atoms and molecules in a solid are closely-packed and are held
together by strong mutuédrces of attractionTherefore, solids have definite shape and occupy well
defined space. If a solid is heated, it does not change its shape easily, showing that a very big force exists
that binds the various atoms and molecules. In other words the bonds in solids are very strong compared
with that in gases and liquids. The law of nature is to make every system to attain a stable state by
acquiringminimum potential energ¥Vhen two atoms come closer and unite to form molecules, their
electrons rearrange themselves in such a way so as to form a stable state.

Inference

The formation of bonds between atoms is mainly due to their tendency to attain minimum potential
energy. When two atoms tend to form a bond, theience electronsearrange themselves so as to
reach a stable state by acquiring minimum potential energy. In the process, the two atoms lose some
energy. The strength of the bond between two atoms would obviously depend upon the energy lost in
the process.

Q 1.2 Describe ionic or electrovalent bonds in solids with suitable examples.

Answer.  The bond formed between two atoms by the total transfer of valence electrons from one atom
to the other is called aonic or electrovalent bondHere one or more electrons from an atom may
transfer to the other atom and the resulting positive and negative ions attract each other. A typical
example of an ionic bond is sodium chloride (NaCl) where the bond exists betweandNat ions.

When sodium is burnt in an atmosphere of chlorine, the sodium gives up its valence electron to the
chlorine, each of the resulting ions then has a stable filled shell of outer electrons, ancedestirastatic
attractionis set up that bonds the Naation and the Clanion into a very stable molecule NaCl at the
equilibriumspacing The relevant equation is:
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2Na+ Cl, -~ 2Na" + 2CI = 2NaCl (Q1.2.1)

Magnesium oxide and magnesium chloride are two more examples of ionic crystals and the relevant
equations are

2Mg + O, - 2Mg** + 207" - 2MgO

(Q1.2.2)
Mg + Cl, - Mg*™* + 2CI~ ~ MgCl,

NaCl is one of the best examples of ionic crystal and let the sodium and chlorine atoms be free at
infinite distance of separation. The energy required to remove the outer electron from the Na atom
(ionization energy of sodium atynheaving it a Naion is 5.1 eV. i.e.,

Na+5.1eV., Na+e

The electron affinity of chlorine is 3.6 eV; thus, when the removed electron from sodium atom is
added to chlorine atom, 3.6 eV of energy is released and the chlorine atom becomes negatively charged
ion. Hence

Cl+e . Cl-+3.6eV

(a) atoms

r
Na' § cr

(b) lons

(c) lonic molecule

Fig. Q 1.2.1  Schematic representation of the formation of sodium chloride
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Table Q1.2.1 £nergy absorbed and energy released in the formation of NaCl

S. No Energy absorbed in the S.No  Energy released in the
formation of NaCl formation of NaCl
1 Separation of chlorine atoms 1 Completion of M-shell of
of the diatomic CJmolecule chlorine atom
2 Separation of sodium atoms 2 Lattice energy of sodium
from sodium solid chloride
3 Separation of electron from

sodium atom

Thus a net energy of (5.1 — 3.6) = 1.5 eV is spent for creating a positive sodium ion and a negative
chlorine ion at infinity. Now

Na + Cl + 1.5 eV = Na+ CI
What happens when the electrostatic attraction betweemmMhCt ions brings them together to
theequilibrium spacing y= 0.24 nm? At the equilibrium position, thetential energyvill be minimum
and the energy released in the formation of NaCl molecule is calledridesnergyf the molecule and
it is obtained as follows:

e’ e
V = ———— joule = ————— electron volt
4 rg Aty rg
1.2.3
Vo 16x 10 - 6y Q )
47 x 885% 10%%x 24x 10

This is the energy released. Thus the entire process evolves an energy of 6 — 1.5 = 4.5 eV. This
means that to dissociate a NaCl molecule into Na and Cl ions, an amount of 4.5 eV of energy will be
required. Schematically

Na'+ClI° -> Na+Cl - NaCl

00

0.24 nm

Q 1.3 Discuss the variation of interatomic force between atoms with spacing between them with a
suitable graph. Compute the cohesive energy of this system by drawing a similar curve between potential
energy and spacing.

Answer. We assume here that in a solid material the following two types of forces act between the
atoms:

(i) attractive forceswvhich keep the atoms together forcing them to form a solid.
(ii) repulsive forcesvhich come into play when a solid is compressed.

Such forces, however, act in the case of liquids also and even in single molecule. But mere existence
of these forces between atoms does not guarantee the formation of a stable chemical bond. This may be
established by considering two atoms say A and B exerting attractive and repulsive forces on each other
such that the bonding forée between the atoms may be represented as:
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A B
F(r)=r—M r_N (Q 1.3.1)

The first term represents tlatractive forceand the second term thepulsive force Near the

equilibrium position the second term must increase more rapidly for diminishing valtleaof does
the first, andN is necessarily greater thish

F
I “~.__w Attractive force
A B
. FO)=m-w
—— hHh—Mn \\\
0 ) SR r
R

Fig. Q 1.3.1  Variation of interatomic force with interatomic spacing

At the equilibrium spacing,
F(r) =0 whenr =r

A
M

—_
Ozw

(Q1.3.2)

=

—
o
1
1

>|w

Cohesion and Cohesive Energy

The potential energy representing the interaction between the atoms varies greatly inignetcemic
spacingand the same is obtained as follows:

U(r):JF(r)dr :J[r_ﬁ_%} dr

r

:_{MA-JLMI‘J{NB—JLN{J%
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a b
— 4+ =
m n

r r

ie., u(r)=- +C

SettingU = 0, whenr =«  we get C = 0 and hence

_a b
U(r)= T (Q 1.3.3)
wheren is therepulsive exponent
U )
I \__y repulsive energy, U, = -

IR

/I/y attractive energy, U, = -
1

Fig. Q 1.3.2 Variation of potential energy with spacing

Whenr =r (the equilibrium spacing), ) exhibits a minimum. Thus

[du} —o= am _ bn
r=r,

m+1 n+1
dr o o

. ]

{dzu} :_am(m+1) bn(n+1)>O

+
2 m+2 n+2
dr fo o

-'o

ie., e 2bn(n+1) - am(m+ 1) &% >0
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bn(n+1) > an{m+ 1) £
Substituting forr | and simplifying, one gets,
n>m (Q 1.34)

Computation of Cohesive Energy

The energy corresponding to the equilibrium position I(;), symboled byJ(r ) is called thebonding
energyor theenergy of cohesioof the molecule. This is the energy required to dissociate the two atoms
of the molecules (AB) into an infinite separation. The energy is also thereforesredhggt of dissociation

Thus

_a b
Unin =~ + (Q 1.3.5)
o To
[d_U} _ma nb _ 0
o[ M A
Thus
deani
0 ° 51l 'm (Q 1.3.6)
Substituting this in Eqgn. (1.3.5)
a m
Unin =~ [1— —} (Q 1.3.7)
ro n

As an example, 4.4 eV of energy is required to break one (H — CI) bond, or 4203%tbl. The
total energy of one ion due to the presence of all others is given by:

Z,Z,A¢| B
U(r)=- /=27 + —
(r) [ e } . (Q 1.3.8)
For the univalenalkali halides
A€ B
ur)=- 4 —
TeEylr

The total energy per kmol of the crystal is:

U(r):NA{En_ as }

r 4y r
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The potential energy will be zeroratr and

%—l: = 0 and the final equation for thegjuilibrium energypecomes

U. = | A€ Ny [n—l}
e | I (Q 1.3.9)

with N, the Avogadro’s number. Thegjuilibrium energy, is also called thiattice energy A is called
Madelung constant.

Q 1.4 Write a note on the properties of ionic crystals.

Answer. (i) Crystal structure Most of the ionic solids have fine crystalline structure. It has been
found byx-ray diffractionthat the constituents of these crystals are ions and not atoms. For instance, in
the case of NaCl, each Nsn is surrounded by six Cions at equal distances. Similarly, eachi€l
surrounded by six Ndons. The result is, we getystal latticeof NaCl.

(i) Melting and boiling pointslonic solids have high melting and boiling points. It is because
considerable external energy is required to overcome the electrostatic forces existing between the ions
in such a solid.

(iii) Electricalconductivity Pure and dry ionic solids are good insulators because all the electrons are
tightly bound with the ions involved in the bond formation. However, such solids show electrical
conductivity when;

(a) the temperature is raised. At high temperature, the electrostatic forces between the ions are
greatly reduced so that some of the ions themselves transport the charge in the material.

(b) dissolve easily in solvents like water. When an ionic solid is dissolved easily in water, the
electrostatic forces are considerably weakened (by 80 times) due to high permittivity of water.
The result is that the ions become free and wander about in the solution. If now a field is
applied, these ions will themselves carry the charge in the solwleotrolysi3. The
permittivity of water is about 80.

(iv) Solubility. lonic compounds easily dissolve in solvents like watgO{HIt is because molecules

of water strongly interact with the crystal ions to destroy the forces of attraction between the ions. lonic
compounds are insoluble in non-polar solvents like benze#k)(Carbon tetrachloride (CJJ) because

their dielectric constantsire very low.

(v) Other properties Reaction between ionic compounds in solution state is always fast. This is because

in a solution, ionic substances exist as ions and chemical reactions take place between the ions. lonic
crystals are transparent for all frequencies up to the value called the fundabsoiption frequency

At frequencies higher than this, they are opaque. High hardness and low conductivity are typical properties
of these solids. When subjected to stresses, ionic crystals tend to cleave (break) along certain planes of
atoms rather than to deform in a ductile fashion as metals do.

Below are given, some important relations used in the study of other properties of ionic crystals.

(a) The expressions for bulk modulus and compressibility are respectively listed now:
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A€ (n-1)
K = ——
72, rg

_1_72myrg
and =y~ A (n-1) (Q 1.4.1)

whereA is Madelung constant and, & Avogadro’s number.

(b) The Born-Haber cycle for NaCl crystal

(i) Initially we start with solid sodium and chlorine molecules. Solid sodium is vaporized by
subjecting thsublimation energyg) while chlorine molecule is dissociated into its constituent

D
atoms by supplyindissociation energ{D). HenceE is the dissociation energy per chlorine

atom.

(i) The outer electron of Na gaseous atom is removed by applying the ionisation énengg (
this electron is added to Cl atom. As the chlorine atom has the electron &fiaityenergy
E is given out.

(i) The two ions (Na+ CI) are arranged in the lattice and henceldtce energy(U ) is

released.
(iv) We again reach to the starting point by supplying an eneggy X known asheat of

dissociation.

Thus

D
S+E+I -E+AH -Uy,=0
D
UO:S+E+I—E+AH (Q1.4.2)
Na (Solid) S » Na (Gas)

Cl (molecule) ——— » Cl (atom
( ) 00 (atom) |

AH -E

v

NaCl < CI (ion) Na' (ion)
_U0

Fig. Q 1.3.3  Born-Haber cycle for NaCl crystal

Q 1.5 Discuss briefly the binding mechanism in covalently bonded crystals with suitable sketches.

Answer.  The bond formed between two atoms by sharing of valence electrons is cailelemtor
non-polar bondSuch bonds are mainly found in organic molecules and in non-electrolytes. e.g. chlorine,
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fluorine, methane, hydrogen, etc. In the formation of this bond between two atoms, each atom contributes
electrons in equal number and the contributed electrons are shared by both the atoms. In this process, the
atoms involved usually acquire tbenfigurationof a noble gas. It may be noted in this bond, the shared
outer electrons (valence electrons) belong to both the atoms and not to this one or the other. Therefore,
both the atoms are neutral even after the formation of bond. It is due to this reason that solids formed by
such bond are usually calledn-polar substances

Below are discussed a few substances formed by this binding mechanism.

When two isolated H atoms, each with its electron in the ground state 1s orbital approach each
other, the 1s clouds begin to overlap. Each electron is attracted to the other nucleus and the overlap
increases (provided the electrons have opposite spin). The two atomic orbitals mergeadldoutar
orbital. Within the molecular orbital, the two electrons are attracted to both nuclei. When the repulsive
forces have been balanced by the attractive forces a molecule results, having stability greater than that
of the two isolated atoms. The covalent bonding is also knovanraspolaror electron-pair bonding
and it is common both in organic molecules and in many inorganic molecules. The balance between the
attractive and repulsive force in hydrogen molecule occurs at a separation ohi.dHénce some
energy must be spent to break the covalent bond in a hydrogen molecule into hydrogen atoms. About
4.5 eV is required to break one bond between the hydrogen atoms. i.e.,

H,+45eV- H+ H

If N represents the number of electrons present in the valence shell of an electrically neutral atom,
then (8 — N) is the number of electrons which are required to obtain a stable octet. i.e., it is the maximum
number of covalent bonds which an atom can form with the adjacent atoms. Thus (8 — N) is the
co-ordination numbem normal covalent bonding.

The covalent bond between the two hydrogen atoms in a hydrogen molecule is represented as:
HIH

It is desired to make clear that one electron has come from each atom, it is now indicated as:
H % H

The total equation is represented as:

H +H - HIH - HXH - HeHorH,

Fig. Q 1.5.1 Covalent bond in hydrogen molecule

Other examples are discussed below:
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0.0, —>0=0,0r0,
i i
A B

Q 1.6 Briefly explain the properties of covalent compounds.

Answer.

(i)
(i
(i)

(iv)
(v)

Covalent compounds may be solids, liquids or gases. Generally those substances which have
high molecular weights exist as solids. Covalent solidhare as well adrittle.

Covalent solids have crystalline structure i.e., atoms or molecules are arranged in some
regular repeatable pattern in the three dimensions.

Pure covalent solids are good insulators. The reason is that all the valence electrons are tightly
held in the covalent bonds. However, when certain impurities are added to such solids, they
become reasonably good conductors and are termssh@sonductors

Since covalent bonds are comparatively weak, therefore, covalent solids have low melting
and boiling points

Covalent solids are not readily soluble in water. However, they are easily soluble in organic
solvents like benzene.

(vi) A very interesting property of covalent compounds is the apparent lack of sensitivity of their

physical properties to their bonding type. For example, carbon in the diamond structure is the
hardest substance and has a very high melting point of 3280 K. The hardness and melting
point then decrease as we proceed to other elements in column IV of the periodic table from
silicon to lead. Tin, for example, is very soft and has a low melting point. The variation in the
electrical properties is also pronounced. Diamond is a very good insulator. Silicon and
germanium are well known semiconductors while tin is a good conductor. Depending on the
number of electrons shared, the bond length and bond energy vary. When the number of
electrons shared is more, the bond length between the atoms is decreased and bond energy is
increased.

Diamond, silicon, germanium, silicon carbide, tin and rutile are some examples of covalent
crystals.
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Q 1.7 Explain the nature of the bonds that exist in metals. Discuss the important physical properties of
metals.

Answer. Metallic elements have low ionisation energies and hence, in this bonding, atoms of the same
element or different elements give their valance electrons to foeteetnon cloudr say &lectron gas
throughout the space occupied by the atoms. Having given up their valence electrons, the atoms are in
reality positive ions. These ions are held together by forces that are similar to those of ionic bond in that
they are primarily electrostatic, but are between the ions and the electrons. Most of the atoms in metals
have one or two valence electrons. These electrons are loosely held by their atoms and therefore can be
easily released to the common pool to fornekectroncloud. The electrostatic interaction between the
positive ions and the electron gas holds the metal together. The high electrical and thermal conductivities
of metals follow from the ability of the free electrons to migrate through their crystal lattices while all of
the electrons in ionic and covalent crystals are bound to particular atoms.

Unlike other crystals, metals may be deformed without fracture, because the electron gas permits
atoms to slide fast one another by actinglabacant As we have seen carbon can exist in the covalent
form and so it is an extremely poor conductor. However, it may also exist in an alternate form as
graphite. In this case, bonds are formed in which covalency is not fully achieved and these bonds can
break and reform fairly easily as in metallic bond. For this reason graphite is a conductor. If a potential
difference is applied between any two points in a metal piece, the electron gas flows from negatively
charged part to the positively charged part, constituting electric current.

(Positive) Metal ion 7

B = = = =

\— (Negative) Electron cloud
Fig. Q 1.7.1  Bonding in metals

Properties of Metallic Crystals

(i) Bonding energies and melting temperatures for some metals are given in Table 1.A. Bonding
energies may be weaker or stronger, energies range from 64«¥/Krol (0.7 eV/atom) for
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mercury to 850 x 1{kJ/kmol (8.8 eV/atom) for tungsten. Their respective melting points are
—39C and 341CC.

(i) Due to the symmetrical arrangements of the positive ions in a space lattice, metals are highly
crystalline.

(iif) Metallic bonds being weak, metals have a melting point moderate to high. i.e., the melting
points of metallic crystals are lower than those of the electrovalent crystals.

(iv) Since a large number of free electrons are available, metallic crystals have high electrical
conductivity.

(v) Metallic crystals have higher thermal conductivity because of the availability of large number
of free electrons which act as carriers of heat.

(vi) They are mechanically strong.
Copper, sodium, aluminum and silver are some examples.

Q 1.8 Discuss briefly molecular bonds. Also write a short note on hydrogen bonding.

Answer.  The bonds between atoms of those substances whose electrons have little transferability are
known asmolecular bonds

Molecular bonds are formed for those elements or compounds whose electronic configuration is
such that there is little transfer of electrons between their atoms. (e.g. noble gases like argon, neon, etc.).
Unlike the three bonds considered above, in which electrons are either exchanged or shared, molecular
bonds involve no transfer or exchange of charge. Rather the bond arises fuam dee Waals forces
of attraction which exist between various atoms as explained below:

All noble gases (neon, argon, etc.) have their last orbits complete. Obviously, they cannot form
bonds by exchange or sharing of electrons. Hence, atoms of noble gases have little attraction for each
other and consequently they remain in atomic state under ordinary conditions of temperature and pressure.
However, at very low temperaturegndensatiorof these gases takes place. This condensation would
not have been possible if there are no interatomic forces, however weak. These interatomic forces of
attraction are calledan der Waals forces

van der Waals Forces

An atom is neutral from a distance only. However, close to it, there is always a net charge at any time as
seen by a neighbouring atom. This is because all the electrons are not concentrated at one end in an
atom. Thus there exists forces of electrostatic attraction between the nucleus of one atom and the electrons
of the other. These forces are calleh der Waaldorces. i.e., the forces of attraction between two
neighbouring atoms due to the resultant charge are calfeder Waals force§ hese forces are very

weak and were first discovered bgn der Waals

Characteristics of Molecular Solids

(i) They exist in crystalline form as well as non-crystalline solids

(i) They have no melting point as the binding arises fvam der Waaldorces which are quite
weak

(i) They are good insulators as free electrons are not available
(iv) They are insoluable in water.
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Hydrogen Bonding

Covalently bonded atoms some times produce molecules that behave as permanent dipoles. For example
in water molecule, the oxygen atom shares two half filledhitals with two hydrogen atoms. A simple

way of describing the situation is, the electrons shared between these atoms spend more “time” in
between the two atoms so that the oxygen atom tends to act as +ve end of the dipole. So in the formation
of ice the bonding tends to become more ionic by the +ve and the —ve ions being arranged alternately
forming long chains as shown below:

H"-O-H" -0-H

TABLES
Table 1.A Bonding energies and melting temperatures of some selected substances
Bonding type Substance Bonding energy Melting
kJ/kmol eV/atom, ion temperatur€
in 1G or molecule
lonic NaCl 640 33 801
MgO 1000 5.2 2800
Covalent Si 450 47 1410
C (diamond) 713 74 3600
Metallic Hg 68 0.7 -39
Al 324 34 660
Fe 406 42 1538
w 849 8.8 3410
van der Waals Ar 7.7 0.08 -189
Cl, 30.8 0.32 -101
Hydrogen NH 35 0.36 -72
H,0 51 0.52 0

Table 1.B  Bond lengths and bond energy of some diatomic molecules

Molecule Bond length Bond energy
(nm) (eV)

NaCl 0.236 44

LiH 0.160 25

NaBr 0.250 38

KCl 0.267 43

Nal 0.271 32
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Table 1.C  /onization energy and electron affinity of some elements

Element lonization energy (eV) Electron affinity
To remove To remove eV
one electron two electron
H 13.595 0.7542
Na 514 52.43 0.55
C 11.26 35.64 127
Si 8.15 24.49 1.39
d 13.01 36.81 361
Br 11.84 33.40 3.36
| 10.45 2941 3.06
Table 1.D  Physical properties of some ionic solids
lonic Nearest Bulk Repulsive Lattice energy in Mlting
solids neighbour| modulus,| exponent kJ/kmol (in®L0 temperatureC
separation| Kin 18 n Experimental Calculated
r, (nm) N/m
NaCl 0.2820 2.40 8 788 747 800
NaBr 0.2989 1.99 85 736 708 742
KCl 0.3147 1.74 9 717 676 770
Kl 0.3533 117 105 617 605 682
LiCl 0.2570 2.98 7.0 862 807 614
Ll 0.3000 171 85 732 695 440
RbClI 0.3291 156 95 687 650 717
Table 1.E  Covalent bond lengths and associated binding energies
Bond Bond Binding Bond Bond| Biding energy
length energy in length in kJ/kmol
(nm) kJ/kmol in nm (in 10°)
(in10®)
H—H 0.074 436 Gc= O 0.121 498
O—H 0.097 463 N—N 0.100 390
c—cC 0.154 348 H—CI 0.128 431
c=20C 0.134 615 Si—O 0.183 368
c—dcl 0.177 327 C—H 0.108 414
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Table 1.F  Comparison between ionic bonds and metallic bond's

Properties lonic Bonds Metallic Bonds
Bonding force The bonds exist due to electrostatig The bonds exist due to electro stTic
force of attraction between positive force of attraction between the electron

and negative ions of different elements  cloud of valence electrons and positive
ions of the same or different metallic

elements
Bond formation| lonic bonds are most easily formed This type of bond is characteristic pf
when one of the atoms has smaller the elements having smaller number of
number of valence electrons, such as valence electrons, which are loosely
the alkali metals and alkali earths held, so that they can be released to the
common pool
Conductivity Low conductivity is the property of the  Good thermal and electrical conductjvity
solids formed by ionic bonding is the property of most of the solids
formed by metallic bonding
Mechanical Solids formed have high hardness. Solids formed mostly have good ductility
properties lonic crystals tend to cleave (break)

along certain planes of atoms rather
than to deform in a ductile fashion
when subjected to stresses

Bond strength These bonds are generally stronger These bonds are generally less stronger
than the metallic bonds than ionic bonds

OBJECTIVE QUESTIONS

1. lonization energy of sodium atom is

(a) Sjoule (b) 8 x 10 joule
(c) 200 x 1& joule (d) 1420 joule
2. The net energy required for creating a positive sodium ion and a negative chlorine ion is
(8 5.1eVv (b) 3.6 eV
(c) 15eVv (d) 2.2 eV
3. Which of the following classes is most likely to produce a semiconductor?
(a) ionic (b) covalent
(c) metallic (d) vander Waals

4. At high temperature, some of the ions in an ionic crystal transport charge because of interaction
(a) true (b) false
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10.

11.

12.

13.
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. When an ionic solid is dissolved in water the ions are free and wander in the solution. This is

because
(a) high dielectric constant of water (b) low dielectric constant of water
(c) low density of water
(d) none of these

lonic compounds are insoluble in carbon tetrachloride because
(a) itis a polar solvent (b) itis a non-polar solvent
(c) itis an organic solvent (d) none of these

Which of the following solids are always opaque to visible radiation?
(a) covalent (b) metallic
(c) ionic (d) none of these

. Which of the following has the hydrogen bonding?

(@) CH, (b) CsCl
(c) NaCl (d) HF

. . : . e .
If the expression for bond energy of an ionic molecule in electron VGI{Z'W’ then it is
0

expressed in joule as

4, r 2e
@ -2 ) -
arr
~ eZ ~ 2
© @ “antyr,
The total number of Cions in a unit cell of NaCl crystal is
(a) 4 (b) 2
(c) 8 (d) 10

If the distance between a Na ion and a chlorine ion in NaCl crystal is 0.28 nm, then the lattice

parameter of the crystal is

(@) 0.14 nm (b) 0.8 nm

(c) 56/ (d) 0.56 nm

At the equilibrium spacing of a diatomic molecule, the resultant force is
(a) zero (b) minimum

(c) maximum (d) unity

The potential energy in the above said spacing is
(a) zero (b) minimum
(c) maximum (d) unity
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The maximum number of covalent bonds that can be formed by a carbon atom is

(@) 2 (b) 8
(c) 4 (d) 1

Which of the interatomic bonds are directional?

(a) covalent (b) metallic

(c) ionic (d) vander Waals

The energy required to break the bond (H — CI) is 4 eV. This is equal to
(a) 420 x 16 J/kmol (b) 420 x 10 kJ/kmol
(c) 120 J/kmol (d) 420 kJ/kmol

The number of unshared electrons by each oxygen atom with the carbon atom to fasm CO
(@) 2 (b) 3

(c) 4 (d) 5
Covalent crystals are hard and brittle
(@) true (b) false

The properties of covalent crystals are not sensitive to the nature of the bonding that exist

(a) true (b) false
The absence of electrostatic interaction between the electron gas and positive ions holds the metal
together

(a) true (b) false
The endless symmetrical arrangements of positive ions in metals in three dimension is the main
cause for the formation of a metal to be single crystal

(@) true (b) false

The electrostatic attraction between the nucleus of one atom and the electrons of the other is called
(a) coulomb forces (b) gravitational
(c) van der Waals forces (d) none of these

Cohesive energy in the case of van der Waals bonding lies in the range

(a) 8—10eV (b) 6-8eV

(c) 0.1-05eV (d) 0.002 -0.1eV
The co-ordination number of Nand Ct in the rock salt structure is respectively
(@) 8and 6 (b) 6 and 8

(c) 6and 6 (d) 4 and 4

PROBLEMS AND SOLUTIONS

1.1 Assuming an overlap interaction between nearest neighbours of theptype B exp(-r/p),
whereB and p are constants, calculate the equilibrium spacjng terms of8 and o .
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Solution:

@(r) = B exp(-r/p)
At the equilibrium spacing,=r,
i.e.,

B exp(-1y/p) =

IogeB—r—O:O
P

ro = ploge B | Answer

1.2 The following figure shows the arrangements of lithium and iodine ions in lithium chloride. If the
distance between the lithium and iodine nuclei in lithium iodide is 300 pm, compute the radius of the
iodide ion.

o, (=

=< o

5O O

Fig. Q 1.2 (a) Anions packed around a cation on a horizontal plane (b) Anion-Anion
contact on a horizontal plane through an octahedron

Solution:

cos 48 = %
OA
OC=0Acos 453=300 x 16*x 0.707

OC=1 =212 pm

; =212 pm |Answer

1.3 Given that the compressibility of NaCl is 3.3 x@v/newton. The Madelung constamt = 1.75,
and the equilibrium nearest neighbour spacing is 0.28 nm, determine the repulsive potential exponent

in the total expression fol\2ions using the basic equatio_n(r) ==N [ae - E}
r r
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Solution: A lengthy discussion of the above equation yields,

No14 /21
AE B with A = 1.75 the Madelung constant
4
721, x (028 10°)
=1+

176><(16>< 1019)2>< 33 10

=1+83=93

n= 9.3 | Answer

1.4 What is the equilibrium nearest-neighbour separatjcat whichU(r ) in the above problem is
unchanged by replacingE% by C exp(-r/p)?

r
Solution:

B=r"Cexp(-r/p) withr =r,
Differentiating the equation,

AL S ne gets
Cexp(-r/p)’ °"¢ 9
a1z B/p
Cexp(-r/p)

Substituting forB

nq_ I"Cexp(-r/p)
Cexp(-t/p) p

1.5 The potential energy of a diatomic molecule is given in terms of the interatomic distantiee
expression

a b
U(r)=-—=+—
=-5+%

Calculate the equilibrium spacing of the two atoms and the dissociation energy.a&Givemt4 x
103%°J nt and b= 2.19 x 16**>J mi®.
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Solution:
a + b
r2 r10

P.E. of a diatomic molecule 19 (r) = -

] =,
r=r

- .3 11
dr h 1o

g _ B _[5x219x 10

or 144x 10%°
ie., r, = 0.408 nm Answer (a)
a|(n-m
U... =Ugee=——
min diss rom |: n :|

= -433eV

_ 144x 10% {(10— 2)}
(0.408x 1019)2 10

U, _=4.33 eV |Answer (b)

diss

1.6 If the repulsive energy is of the form C exgg), determine C and for NaCl if the cohesive
energy per ion pair is 6.61 eV, and the interatomic separation is 0.282 nm. Given that the ionisation
energy of Na is 5.138 eV and the electron affinity ofi€B.61 eV.

Solution:
(i) cohesive energy/ion paiE
(ii) ionisation energy of Nak,
(iii) electron affinity of Cl,E,
(iv) coulomb energyk:_is calculated as follows:

= joule
¢ Amyr :
__Ae oV
ar Gy r
with the Madelung constait= 1.75 for NaCl
Thus
Ax16x 101 _ 144A

© 4mx885x 102 xr x 10° T
Now cohesive energy per ion pair is
-E=E -E,-E_+E



wherek, is the repulsive energy,
Thus

144A

-661=(5138- 36)- =

+ C exp(-r/a)

But

rm z

[du} :Ozﬁ—gexp(—r/a)
r=rqg r a

Taker = r,=0.282 nm and A = 1.75, one gets

144x 175_Cexp(-r/a)
(02827

Cexp (+/a) = 31.6%
Substituting this in Eqn. (1), we get

=3169

- 6.61=1528- 144A + 316%
0.282

a = 0.025 nm Answer (a)

144x 17
C exp(-r/a) = 661 158+ 24X 175_ 4746
0282

Now equation (1) becomes

C = 0.746 x exp(a) = 0.746 x exp(0.282/0.025)

C=63.22 eV| Answer (b)
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(1)

(2)

1.1 Calculate the value of the Madelung constant for the structure shown in the following figure. All
bond lengths are equal and all bond angles &&\86ume that there are no ions other than those shown

in figure and that the charges on the cations and anions are +1 and —1.

o

’ O/r //O °
O Cation

S O Anion

(Ans: 3.99)
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1.2 For NaCl, the Na atom has an ionisation energy 8 jbille and Cl atom has an electron affinity
3.6 eV. The equilibrium separation between the ion-pair is 0.282 nm. What is the energy required to
transfer an electron from Na to CI? Madelung constant is 1.75. (Ans 7.53 eV)

1.3 The ionic radii of Cs and Cl are 0.165 nm and 1.81 nm and their atomic weights are 133 and 35.5
respectively. Calculate the density of CsCl. (Ans. 4.37 x 16 kg/n)

1.4 How many kg-atom of potassium will be required to treat with 709.1 kg of chlorine to form KCI.
(Ans: 20 kg-atom)
1.5 Assume that the energy of the two particles in the field of each other is given by

a B

ufry=—-——+-=

") ror8
where a and 3 are constants ards the distance between the centres of the particles, form a stable
compound forr =1y = [8[3/0]%

times the energy of repulsion.

. Show that in the stable configuration, the energy of attraction is 8
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2.1 INTRODUCTION

By far the most important fact about materials in general and metals in particular is that thgstaie
All their mechanical and physical properties are closely related to this fact. We start by neglecting the
nature of the ions of the crystal and simply consider a reguiay of pointsin space. This array is the
lattice and we are concerned with its geometric properties. Because it is a periodic structure, it can be
described very simply by defininguait cellas a volume containing one or more points, which may be
repeated by unit translations so thaegiodic latticeis generated. The solids of primary interest for us
have an arrangement of atoms (or molecules) in which the atoms are arranged in some regular repetitions
pattern in three dimensions. The arrangement of atoms is termedy#it@ structure The internal
regularity of atoms - placement in solids often leads to a symmetry of their externalRbelpsalt
crystals for example, are rectangular parrlellopiped with faces which are identical when viewed from
many different directions; these crystals havégh degree of symmetry

Prior to the discovery of x-rays, there was no tool to investigate the internal structure of a crystalline

solid. However, after the discovery of x-rays in 1895, a systematic study of crystal structure was
started—science of crystallography was born.

Q 2.1 Give a brief historical account of the basic terms frequently used in the study of the structure of
crystals.

Answer. The study of theegular and periodiarrangement®f atoms or molecules in space is called
crystal structure The crystal structure may be described in terms of an idealized geometrical concept
called aspace latticelt may be defined as an array of points in space such that the environment about
each point is the same. Ttimeedimensional space lattiamay be defined as an infinite array of points
in three dimensions in which every point has an identical environment as any other point in the array.

Example
Let us now consider the caseteb dimensional array of poines shown in Fig. Q 2.1.1. It is obvious

from the figure that the environment about any two points is the same; hence it represents a space
lattice. In a mathematical form, the space lattice may be defined as follows:

a

Fig. Q 2.1.1 Two dimensional array of points
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We choose any arbitrary point 0 as origin and considepdkgion vectorr; and r, of any two

lattice points by joining them to 0. If the distariteof the two vectors; andf, satisfies the following
relation,

T=na+nb

wheren, andn, are integers and and b arefundamental translation vectoxharacteristic of the
array, then the array of points idveo dimensional latticeForthree dimensional lattice

T=na+nb+nc
Hence it should be remembered that a crystal lattice refers to the geometry of a set of points in

space whereas the structure of the crystal refers to the actual ordering of its constituent ions, atoms and
molecules in the space.

The Basis and Crystal Structure

For lattice to represent a crystal structure, we associate every lattice point with one or more atoms (i.e.,
a unit assembly of atoms or molecules identical in composition) calldza#isor pattern When the

basis is repeated with correct periodicity in all directions, gives the actual crystaly$tee structure

is real, while the lattice is imaginary.

Fig. Q 2.1.2 Basis or Pattern

Thus
lattice + basis = crystal structure
Fig. Q 2.1.2 shows thbkasisor patternrepresenting eaclattice point It is observed from the
figure that the basis consists of three different atoms. It can also be observed that basis is identical in
composition, arrangement and orientation. In crystals like aluminium and sodium the basis is a single
atom; in NaCl, KCl, etc. the basis is diatomic whereas in crystals liket@abasis is triatomic.
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Unit Cell and Crystal Lattice

For discussing the unit cell, let us consider a two dimensional crystal in which the atoms are arranged as
in Fig. Q 2.1.3. If we consider a parallelogram such as ABCD with sidesa&&nd AD =b, then by

rotating the parallelogram by any integral multiple of vectbrandb , the whole crystal lattice may be
obtained. In this way the fundamental unit ABCD is called a unit Thlis a unit cell is the smallest
geometric figure, the repetition of which gives the actual crystal structure. The unit cell may also be
defined as théundamental elementary patteaf minimum number of atoms, molecules or group of
molecules—which represent fully all the characteristics of the crystal. It should be noted that the choice
of a unit cell is not unique but it can be constructed into a number of ways as EFGH or PQRS shown in
Fig. Q 2.1.3. The unit cell should be chosen in such a way that it conveys the symmetry of crystal lattice
and makes the mathematical calculations easier.

2 30 A A
ST

[ 7)
I /e
I

Fig. Q 2.1.3 Two dimensional arrangement of atoms

AZ

(@) (b)

Fig. Q 2.1.4 Three dimensional unit cell
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For a three dimensional case, the same procedure may be adopted. A three dimensional unit cell is
shown in Fig. Q 2.1.4). The unit cell is a parallelepiped formed by the basis vediots, ¢ as
concurrent edges and including angtesB , ¥ betweerb and¢ ,¢ andd anda andb respectively
as shown in Fig. Q 2.1H). Thus in general, a unit cell may be defined as that volume of a solid from

which the entire crystal may be constructedryslational repetitionn three dimensions. The entire
lattice structure of a crystal is found to consisideitical blocksor unit cells.

Q 2.2 Discuss the seven systems of crystals and the fourteen types of Bravais lattices with tables and
figures.

Answer.  On the basis of lengths and directions of the axes of symmetry, crystals may be classified into
the following systems.

Table Q2.2.1 T7he seven crystal systems

S. No Name of the Relation of Iengllh Relation of angle Examples

crystal system of axes of unit cell between axes
1 Cubic a=b=c a=B=y=9C Cu, NaCl, Cak
2 Tetragonal a=b#c a=B=y=9C SnQ, NiSQ,
3 Orthorhombic azb#c a=B=y=9C¢ KNO,,BasSQ,
4 Monoclinic a=b#c a=p=90Czy Na SO, FeSQ
5 Triclinic azb#c azBz£I9CF £y CuSQ,K.Cr,0
6 Trigonal

(Rhombohedral) a=b=c a=B=yz90 CasqQ, As
7 Hexagonal a=b#c a=pB=9C¢ and Zn, Cd, SiQ

y =12C
° L] ° °
sc bcc fcc hexagonal

tetragonal Orthorhombic
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Rhombohedral monoclinic triclinic

Bravais in 1848 theoretically proved that there are precisely 14 possible ways of arrangement of
points in a regular three dimensional pattern. Therefore, 14 types of space lattices possible. These are
calledBravais latticesafter the name of their discoverer. Since the atoms in a crystal are also arranged
in a regular and definite pattern as in a space lattice, therefore, there can be only 14 possible types of
crystals. Any other type of crystal (or arrangement of atoms) except these 14 is just theoretically
impossible.

Table Q 2.2.2 Fourteen Bravaris lattices in three dimensions and conventional unit cells

S. No.| System Number of Space lattices Lattice Nature of unit cell
lattices in the or symbol [Axial length and
system Bravais lattices interaxial angles]
1 Cube 3 Simple P a=b=c
Body centred I a=pB=y=9C
Face centred F
2 Tetragonal 2 Simple P a=b#c
Body centred I a=B=y=9C¢
3 Orthogonal 4 Simple P azb#zc
Base centred C a=B=y=9C¢
Body centred I
Face centred F
4 Monoclinic 2 Simple P azb#zc
Base centred C a=B=9C £y
5 Triclinic 1 Simple P azb#zc
azpBzy 90
6 Trigonal 1 Simple P a=b=c
a=B=y£90
7 Hexagonal 1 Simple P a=b#c
a=p=9C¢
andy =120
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Q 2.3 Explain the following symmetry elements with suitable diagrams for a cubic crystal.
(i) Centre of symmetry (i) Plane of symmetry (iii) Axis of symmetry
Answer. (i) Centre of symmetry

This is a point in the cubic crystal such that any line passing through it meets the surfaces of the crystal
at equal distances in both directions is knowresgre of symmetigr centre of inversiorfig. Q 2.3.14).

(i) Plane of symmetry

A crystal is said to possesflection symmetrgbout a plane if it is left unchanged in every respect after
being reflected by the plane. Highly regular crystals may be bilaterally symmetrical about several planes
cutting them in different directions. They may have several planes of symmetry. However a plane of
symmetry is different from a plane of geometrical symmetry in that a plane of symmetry cuts the crystal
into two halves such that one is the mirror image of the other (i.e., one is identical to the other in all
respects). A cube has three straight planes of symmetry and six diagonal planes of symmetry. Ref. Fig.

Q 2.3.14), Q 2.3.1p) and Q 2.3.X).

Fig. Q 2.3.1 (a)

Fig. Q 2.3.1 (b)
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Fig. Q 2.3.1 (c)

(iii) Axis of symmetry

The third kind of symmetry element is the axis of symmetry. Let a cube be rotated anti-clock wise about
a line passing through the top face centre, centre of symmetry and bottom face centre. For every
rotation of 90, the cube comes to a new position indistinguishable from the previous position. This
means that rotation of a cube about this perpendicular axis throubhrifs it into self-coincidence or
congruentposition. The line is then called th&is of symmetrySee Fig. Q 2.3.2.

@ (b) ()

Fig. Q 2.3.2 Axis of symmetry (a) The three tetrad axes
(b) One of the triad axes (c) One of the diad axes

In generabxis of symmetrig defined as a line such that the crystal comesnigruent positioror

every rotation of[@} . The value o decides the degree twid of the axisA cube possesses 3
n

tetrad axis, 4 triad axis and 6 diad axis. The total number of crystallographic symmetry elements of the
cubic system are:
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— centre of symmetry 1 1 point of symmetry
— straight planes % 9 planes of symmetry
—diagonal planes

— tetrad axes

— triad axes 4
— diad axes 6 13 axes of symmetry
Total 23 symmetry elements

Q 2.4 Wirite a small note on the combinations of symmetry elements. Also show that 5 fold or any axis
of symmetry fom > 6 is not permissible in a single crystal.

Answer The different symmetry elements discussed above can be combined if tloeynaaible.

The different combinations give rise to different symmetry points in the crystal. It must be noted that all
the crystals do not possess all the symmetries enumerated above. The different crystal systems exhibit
different symmetries. It is found that there are 32 compatible combinations of the above three point
group-symmetry elements, called simplgint groups Crystals belonging to different crystal systems

can be classified on the basis of point groups.

1. Rotation-Inversion Axis
A crystal structure is said to possess a rotation-inversion axis if it is broughgeifito
coincidenceby rotation followed by amnversionabout alattice pointthrough which the
rotation axis passes.

2. Translation Symmetry Elements
Glide plane and screw axis are the two symmetry elements discussed here.
() Glide plane When a mirror plane is combined with a simultaneous translation operation in
a crystal, one gets a glide plane.
(i) Screw axisJust as it is possible to combine a proper rotation with an inversion to produce
a hybrid rotation inversion axis, it is possible to combine a proper rotation with a translation
parallel to the rotation axis, i.e., the rotation axis coupled with a translation parallel to the
rotation axis will give rise to new symmetry element calledstinew axis
(i) Space groupdn a crystal, point group symmetry operations can also be combined with
translation symmetry elements, provided they are compatible. Such combinations are called
(iv) space groupsThere are 230 space groups exhibited by crystals. The study of symmetry
elements of the different crystals enables one to classify the crystals and their properties
based on different symmetries.

Five-fold Rotation Axis is not Compatible with a Lattice
Let us explain this with reference to Fig. Q 2.4.1. Let us rotate the vectors PX and QY through an angle

360]
Oy = [T} in the clock-wise and anti clock-wise directions respectively. The tips of vectarslP

Q, in the two positions must be lattice points if the lattice were to possedd rotation axis of
symmetry. As per the definition, rotation operation must leave the laiagant. Clearly PQ, must be
parallel to PQ and must be equal to an integral multiple of the transtatiy@, = mawherem is an
integer.
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X

R L CEEEERPPY I

Q Y

Fig. Q 2.4.1 The possible rotation axes in a single crystal

n PPl

P,R= PR cosp, = aco®,
Similarly,

SQ = acosp,
Therefore,

RQ = BR+ SQ+ RS

R,Q, = 2acosp, + a= ma
Thus

1+ 2cosp, =m

2cosp, =(m=-1) = N where Nis an integer

m-1 N
om (7572

Table 2.4.1 Absence of five-fold rotation axis

N : : 360
N - cosp, O Possible fold of axish=| —
2 On
-2 -1 -1 180 2
-1 - Y 120 3
0 0 0 90 4
+1 +% +Y 60 6
+2 +1 +1 360 1
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Q 2.5 What you understand by packing fraction? Compute the packing factor for simple cubic structure
and body-centred cubic structure explaining the various terms used with suitable diagrams.

Answer. Packing fractionor density of packings defined as the volume occupied by massive atoms

in unit volume. Or, itis the ratio of volume occupied by atoms in a unit cell to the total volume of the unit
cell. If vandV are the volume occupied by atoms in a unit cell and the volume of the unit cell respectively,
then

The packing fraction tells us how closely the atoms are stacked or packed together in the unit cell
and hence the name assigned. A high vallfetells that the atoms are very closely packed in the unit
cell or crystal and there is little unoccupied space. A low valuefofs the reverse of the above
statement. The very interesting part of it is that the properties of many metals and materials depending
on the way in which the atoms are arranged in the unit cell or in the crystal as a whole.

1. Simple cubic structurgsc)

In this space lattice, the lattice points are situated only at the corners of the unit cells constituting the
three dimensional structure. Each cell has eight corners, and eight cells meet at each corner. Thus only

1
one-eight of the lattice point belongs to each cell. That is, there is onlgtboe point(g x 8) or one

atom per unit cell. A unit cell containing only one lattice is callpdraitive cell Since the simple cubic

lattice is built ofprimitive cells it is also known as cubie lattice. The number of nearest neighbours
around an atom (or lattice point) is calmbrdination numbein this structure each atom is coordinating

6 atoms one in the front, another at the back and then one at the left and the other at the right. Finally one
set of atoms at the top and the other at the bottom. All the atoms touch each other along the edges. Thus
thenearest neighbour distancg = a; and thecoordination numbeis defined as the number of nearest
neighbours around any lattice point (or atom) indtystalline lattice Let us now compute the packing

factor of this structure.

1. the nearest neighbour distance=2
2. the lattice parametes,= 2r
3. number of atoms in the unit cell, 1

4. volume of all the atoms in a cell,= 1 x :ﬂ;nr3

5. volume of the unit celly = a3 = (2r)3
6. coordination number, CN = 6
Thus the packing fraction or density of packing of this structure is,

3 3
P_F:\%:[Llnr }(i):L:E:O52

3 as

P.F= 0.52 or 52% (Q 2.5.1)




Crystalline State 37

Fig. Q 2.5.1 Simple cubic structure

2. Body-centred cubigbcc) lattice

Here the lattice points (or atoms) are situated at each corner of the unit cell. Also one more atom is
located at the body centre (centre of symmetry) where the three body diagonals intersect along which

, L 1.
the atoms touch each other. Thus the total number of lattice points in a unl(%eﬂ 8+ 1) =2 and

(4r)2 = 3. The atom at the body centre is in contact with the 8 corner atoms. Hence the coordination
number of bcc structure is 8.

Pk

Fig. Q 2.5.2 Body centred cubic

The packing fraction of this lattice or structure is computed using the following data:

a3

1. the nearest neighbour distan@e,= Y

N

the lattice parameteg, = ﬂ
3. number of atoms in the unit cell, 2

. ) 4
4. volume of all the atoms in the unit cell,= 2 x §Hr3
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3
5. volume of unit celly = a3 = 8%
3J3

6. coordination numbe€N = 8

Thus packing fraction,

v _8xmrix3/3

PF=—=2"""""_
v 3x oy =068

| P.E0.68 or 68% | (Q 2.5.2)

Sodium, iron, chromium and CsCI are some examples of bcc structure; sc and bcc structures are
commonly known as loosely packed (respectively) structure and closely packed structure.

Q 2.6 Explain what is meant by closest packing in crystals? Describe face centred cubic lattice and
hcp structure which are the two illustrations of closest packing structures.

Answer. 1. Closest packing

For crystals in which all the atoms are identical, there are two forms of closest packing: face centred
cubic (fcc) space lattice and hexagonal close packed structure (hcp). It is a way of arranging equi-
dimensional objects in space such that the available space is filled very efficiently. This is achieved only
when each object is in contact with the maximum number of like objects as shown in Fig. Q 2.6.1.

(@) (b)

Fig. Q 2.6.1 Closest packing of spheres in two-dimension and in three-dimension

Let us now discuss the two well known closest structures, fcc and hcp.

2. Face centred cubic structuréfcc)

Here the lattice points (or atoms) are situated at all the eight corners as in the previous two cases, but
also at the centres of the six faces. The face centre atom shares with two unit cells. Hence the number

1 . . .
of atoms in a unit cell iE§ x 8+ 3) = 4. This lattice is also known as cubic F lattice. The atoms touch

along the face diagonals. The packing fraction is now calculated.
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e ——p

Fig. Q 2.6.2 Face centred cubic structure

. . av2
1. the nearest neighbour distance, 2 = TJ_
2. the lattice parametea i
. p , 7z
3. number of atoms in the unit cell, =4
4. volume of all the atoms in the unit call, =4 x %nr3
5. volume of unit cellvV =ad
6. coordination numbe€;N =8
Thus density of packing fraction,
T
bV _|lemr 242 :32nJ_2:0_74
\Y 3 l(ar)®| 3x64

P.F=0.74 or 74%

3. Hexagonal close packed structui@cp)

(Q 2.6.1)

Hexagonal close packed structure is a closest packing one and its packing fraction is almost as that of
fcc space lattice. The unit cell contains one atom at each corner, one atom each at the centre of the
hexagonal faces and three more atoms within the body of the cell. Each atom touches three atoms in the
layer below its plane, six atoms in its own plane, and three atoms in the layer above.

Hence the coordination number of this structure is 12. Further the atoms touch each other along the

edge of the hexagon.
Thus 2 = a.
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Fig. Q 2.6.3 /deal hexagonal close packed structure

The top layer contains seven atoms. Each corner atom is shared by surrounding hexagon cells and

the centre atom is shared by 2 surrounding cells. The three atoms within the body of the cell are fully
contributing to the cell.

. . . 3
Thus the total number of atoms in a unit cell;sk E +3=6

€ ratio for an ideal hexagonal packed structure
a

Let c anda be respectively the height and edge of the unit cell. The 3 atoms at the bottom and top face

: . c . .
in a horizontal plane ati from the orthocentres of alternate equilateral triangles at the top or base of the

hexagonal cell. These 3 atoms just rest on the three atoms at the corners of the triangles.

®H---

Fig. 2.6.3 (a) Skefch of the bottom layer

In the triangle ABY

COQO":A—Y ,AY:a'_\/:_3
AB

2 (Q 2.6.2)
and(AZ)% = (AX)+(ZX)°




In the triangle AXZ,

2 2av/3 a

AX = = AY= ==
3 6 V3
Substituting this value in Egn. (Q 2.6.2), we get
2 2 2 2
a2:a_+c_;i:a2—a_:ga2
3 4 4 3 3
a? 3 3

Volume of the unit cell

1
Area of the triangle, AOB :E (BO) (AY)

2
Hence area of the basg,x"jl—‘/?3 - :_23\/:_3(a2)

Volume of the unit celly = :—23\/:_3(a2 X c)

2

{V _3x \/éaZC}

Packing fraction calculation
1. the nearest neighbour distance, 2 =a
2. the lattice parametes, =2
3. number of atoms in the unit cell, =

4

4. volume of all the atoms in the unit cedl, =6 x §m
2

5. volume of unit celly _ 3\/5261 c

6. coordination numbef;N =12

Crystalline State 41

(Q 2.6.3)

(Q 2.6.4)
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7. < 8
" a 3

Thus density of packing fraction,
pp= Y o T&x2 21 [E}: 2 FTZ
vV  3/3a’c |3/3]lc] [3/3]l8

Thus PF = {l = 0.740r 740/% (Q 2.6.5)

3J2

Q 2.7 Copper belongs to fcc space latticeMifand o are respectively its atomic weight and density,

find an equation connecting the lattice parameter and the said physical quantities. Also briefly discuss
diamond cubic structure and the structure of sodium chloride crystal.

Answer. LetN, be theAvogadro’s numbeandn = 4 is the number of atoms in a unit cell arloe the

lattice parameter

Now M ,/p is theatomic volumevhich will containN, copper atoms. Hen@ (volume of the

3

. . . pa N . o
unit cell) will contain P A atoms. This must be equalnd= 4 in this case).
A
3
a’pN
ie., ——A=n
MA
nM
or a’=—~
PN A
%
a:[”MA} Q 2.7.1)
PN

Diamond Cubic Structure

The space lattice of diamond is face-centred cubic (fcc) with a basis of two carbon atoms associated
with each lattice point. The figures show the position of atoms in the cubic cell of the diamond structure
projected on a cubic face. The fractions denote height above the base in units of a cube edge. The points
at 0 and ¥z are on the face lattice, those at ¥ and ¥ are on a similar lattice displaced along the body
diagonal by one-fourth of its length. Thus the diamond lattice is composed of two interleaved fcc
sublattices, one of which is shifted relative to the other by one-fourth of a body diagonal. In a diamond
crystal the carbon atoms are linked by directional covalent bonds. Each carbon atom forms covalent
bonds with four other carbon atoms that occupy four corners of a cube in a tetrahedral structure. The
length of each bond is 0.154 nm and the angle between the bonds 15 G08y5tin, silicon and
germanium crystallize in the dc structure. In this structure each atom has four neighbours. The number
of atoms per unit cell is 8.



Fig. Q 2.7.1 Diamond structure

Computation of Packing Fraction

2 2 2

(XY)? = a,a_a
16 16 8
2 2 2
2 2 2 a a 3a
X2 '=(XVN"+(Y4'=—+ —=——
(x2)= (9 +(v3%= 2+ 5= 22
> 3a? J3
i 2r) =——;or2r=a|—
(= S orar=a| 7|
. . av3
1. the nearest neighbour distance, 2 = e
2. the lattice parametea = i
. p , 7
3. number of atoms in the unit cell, =8
4
4. volume of all the atoms in the unit call, =8 x §7TI’3
5. volume of unit cellvV =ad

6. coordination numbeGN =4

Crystalline State
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Thus the packing fraction is,

3
oo Vv _ 32 xs;\/_s
VT e
3
_32x ><3\/_3:71\/§:0_34
3x8xr3 2x8
P.F = 0.34 or 34% Q 2.7.2)

Sodium Chloride Structure

NaCl and KCI crystallize in this structure. Fig. Q 2.7.2 shows NacCl structure.

—
P~

—o
<‘\<.<3

&

.

[L A

>>a

A/

+
O Na

@cl

Fig. Q 2.7.2 Sodium chloride structure

Here the Na and Cl atoms (strictly ions) occupy alternately the corners of an elementary cube. Let
d be the distance between adjacent atoms and laen@el is the lattice parameter or edge of the unit

cell. Thus the number of ions in unit volumeag and number of NaCl molecules in unit volume is

1 L. L
E; where d is interionic distance.

Q 2.8 What are Miller indices? How are they obtained? Sketch the (01 0), (1 10) and (1 1 1) planes
in a cubic crystal.

Answer. A crystal lattice may be considered as an aggregate of a set of parallel, equally spaced planes
passing through the lattice points. The planes are daliigcke planes, and the perpendicular distance
between adjacent planes is calileigrplanar spacingA given space lattice may have an infinite sets of
lattice planes, each having its characterisiierplanarspacing Out of these, only those, which have

high density of lattice points are significant and show diffraction of x-rays. They are kn®vagas
planesor Cleavage planesihen a crystal is struck, it breaks most easily across its cleavage planes.
Hence it is essential to evolve a method to designate these planes in a crystal. Miller evolved a method to
designate a set of parallel planes in a crystal by three nunfibleds Known asMiller indices
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The steps in the determination of Miller indices of a set of parallel planes are illustrated with the aid
of Fig. Q 2.8.1.

-+ 2c

c

Nb%
al | | ! >y

2a

3a
X

Fig. Q 2.8.1  Miller indices of an important plane

Determine the coordinates of the intercepts made by the plane along the three crystallographic
axes .V, 2).

X y z

2a 3b c

pa gb rc (p=2,9=3,r=1)
Express the intercepts as multiples of the unit cell dimensions, or lattice parameters along the
axes, i.e.,

2a Kol c
a b ¢
2 3 1
Get the reciprocals of these numbers.
1 1 1
2 3 1
Reduce these reciprocals to the smallest set of integral numbers and enclose them in brackets:

6x> 6x 6x-
2 3 1

3 2 6
(32 6)
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ThusMiller indicesmay be defined as the reciprocals of the intercepts made by the plane on
the crystallographic axes when reduced to smallest numbers.

Conclusions
i. Allthe parallel equidistant planes have the ssfiller indices Thus theMiller indicesdefine
a set of parallel planes.

i. A plane parallel to one of the coordinate axes has been intercept of infinity.

i. If theMiller indicesof two planes have the same ratio; i.e., (844 )and (422)or(211),
then the planes are parallel to each other.

iv. If (h k) are the Miller indices of a plane, then the plane cuts the axek, iktandl equal
segments respectively.

4 Z

(110)

(010)

X (@ (b) (110)
Direction

X

N

(111) | Direction

0

X (©
Fig. Q 2.8.2 Sketch of important planes in a cube

Q 2.9 Show that in a cubic crystal the spacing between consecutive parallel planes of Miller imdices (
k 1) is given by:

a

dth =
Jh2+ K2+ |2
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Answer. ( h k1) represents thkliller indices of the plane A B C. This plane belongs to a family of
planes whose Miller indices are K |) because Miller indices represent a set of planes. See Fig. Q 2.9.1.

A

X

Fig. Q 2.9.1 /Interplanar Spacing

Let a’, B’ andy' (different from the interfacial angles, 3 and Y ) be the angles between
coordinates axes X Y Z respectively and ON.

oa=2 oB=2andoc=2
h k I
From Fig. Q 2.9.14),
cosn’ = —% cosB':i andcqs:ﬂ (Q 2.9.1)
OA’ OB oC e

From Fig. Q 2.9.1(b),
(ON)?= ¥+ y*+ Z withON=d,

d2 = {df (cosza') + df(co§/3') + dlz( COZSV')}
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or
— I I T }é
d, = dl[cofa + cod B + co%y]
In the cartesian system obordinates the sum of the squares of the direction cosines is equal to 1.
So
cofa'+ codf'+ cosy' =1 (Q 2.9.2)
Substituting this in equation (Q 2.9.1), we get
2T 2 -2
ﬂ + i + & =1
|OA|] | OB OC|
i.e.,

N

[dih]”, d_ﬂ .\ [ﬂ' 4
C -

d2
a_lz(h2 + k% + I2) =1 for cubic system

a.2

d2:—
L R k2 12

a
'h2+ k2+ |2 (Q 293)

LetOM =d, be the perpendicular of the next plane P Q R parallel to the plane A B C. The intercepts
of this plane on the three crystallographic axes are:

d, =

2
on =22 op =2 gngoc =22
h K |
and
cosa’' = —=, co’ =—= andcogs = —= 2.9.4
on % =g ®= o0 (Q 2.9.4)
(OM)?= d3cosa’+ d codB'+ & cody' with OH =d,
i.e.,

cosa' + coéf + cody’ =1
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Substituting this in equation (Q 2.9.4), and simplifying one gets

BEGEEE
2a 2 e
@

e (h?+ K2+ 1%) =1

2a
’h2+ k2+ |2 (Q 295)

Thus the interplanar spacing between two adjacent parallel planes of Miller ifckdgsn(a cubic
lattice is given by:

d, =

a

{h2+ k2+ |2 (Q 296)

Q 2.10 Explain how crystal lattice is conveniently representecebiprocal lattice

Answer. The crystal lattice is conveniently represented by what is knowecgzocal lattice The
concept of reciprocal lattice is useful in the study-odly diffraction ancelectron diffractionproduced
by a crystal. The reciprocal lattice of a real crystal is constructed as follows:

1. choose a point as origin.
2. draw normals to every set of planes from this origin.

3. make the length of the normal equal to the reciprocal of the inter planer spacing of that set of
planes.

4. place a point at the end of the normal.

d=dy- =

OB OC
Have alook at Fig. Q 2.10.1. Consider a plane represented by the line (3 2). Itis CIST: Fhal—c

(by similarity of triangles).

d alk
o T (Q 2.10.1)
b J(@2/k?+ b h?)
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[ ) [ ]
[ ) [ ]
c
o [ ]
alk|4\ B
5
® e O bhA

(b)

Fig. Q 2.10.1 (a) A square lattice showing the unit cell and a (h, k) plane,
(b) the imagined unit cell

1
If o= a , this will give,

[2.2, 1,212
o :M (Q 2.10.2)

ab

The direction ofg is

b/h

tand = 7K (Q 2.10.3)

The point representing the (3 2) plane in the reciprocal lattice is shown in Fig. Q 2.10.2. The planes
of asquare latticeare represented bysguare reciprocal latticend so on. It can be shown that the
diffraction of x-rays or of an electron beam by a real crystal lattice will give an array of points identical
with its reciprocal lattice

The Ewald Construction

Let us take &wo dimensional square reciprocal lattifeig. Q 2.10.3). Let an x-ray beam of wavelength

A strike the surface. The radiation represented by a wave vector k whose ldhgtiar its direction

is the direction of the beam. Take a point O in the reciprocal lattice as the origin. Let one end of the wave
vector be at O and draw circle of radii/2 with the centre at the other end A of the vector.

k/a

h/b

Fig. Q 2.10.2 The recjprocal lattice point
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Let the circle pass through another point B in the reciprocal lattice. Construct a triangle AOB. Since
OB joins origin O to a reciprocal lattice point, it is perpendicular to a set of planes in the real lattice whose

interplanar distance = OB’ Since AC is perpendicular to OB, it is a lattice plane. The afgtethe

angle of incidence of the beam on the lattice plane since it is the angle between AC that is a lattice plane
and AO (directions of the beam).

Fig. Q 2.10.3 T7he reciprocal lattice point

For the triangle AOC

sinH:% :%; but k . andOB:—1
k 2k A d
: A .
Hence sin@ = 2 ;i.e,2d si=A (Q 2.10.4)

This is same as thBragg’s condition of reflectianSo, the reciprocal lattice is the diffraction
pattern of the real lattice. This understanding makes it possible to construct the real lattice based on its
diffraction pattern.

Q 2.11 Wirite a note an crystal defects.
Answer. One hundred percent of ideal crystals do not—cannot exist.

1. Thermal vibrations

The temperature of a solid is a measure of the amplitude of the random vibration of its atoms and these
vibrations cause the displacement of the atoms from their ideal positions. This displacement is an

important cause of electrical resistance in metals: without it pure metals would have very much less
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resistance than they do have. At room temperature, for example, copper has about a hundred times the
resistivity it has at liquid helium temperature (4.2 K), where thermal vibrations have almost ceased.
Other crystal defects may be classified by their dimensionality.

2. Zero-dimensional (point) defects
There are three kinds of point defects in crystalline solids
(i) Vacancies, the sites where atoms are missing
(i) Substitutional impurities, which are foreign atoms that replace host atoms.

(i) Interstitial atoms, or interstitialcies, are atoms located in the holes between atoms of the host
lattice. They may be foreign atoms or host atoms that have become misplaced.

(a) Vacancies When a crystal forms, usually at high temperatures, many vacancies are present.
As the crystal cools, the equilibrium number of vacancies falls too, by diffusion process.
Eventually the rate of diffusion becomes so slow that the vacancies are frozen into the
structure. Thus at room temperature, the vacancies in a solid are at equilibrium, but are in
concentrations characteristic of some higher temperatures. Vacancies are important because
they are responsible for diffusion and void reduction in solids. They play a minor role in the
electrical resistivity of pure metals.

Suppose the energy required to form a vacandy,.iShen the equilibrium number of
vacanciesnp, at an absolute temperatufejs given by the Bolizmann distribution

n= Nexp(-E/k T) (Q 2.11.5)

whereN is a constant arkl, is Boltzmann’s constant. A plot bf(n) against IT will give a straight line
of slope (€ /k;), sometimes known asrhenius plotNow n can be measured by indirect means fairly
simply: For example, by measuring the thermal expangih) of a sample as the temperature rises

and comparing it with the change in lattice parameter found by x(@/a) . The x-rays do not take

any notice of the odd vacant site, so the change in volume that they record is smaller than the actual
change in volume. Alternately, the sample can be quenched (cooled rapidly) from high temperature to
freeze in the vacancies, and the density at room temperature of the quenched sample can be compared
to that of the slowly cooled sample. For aluminium,

E
k—V =9700 E, = 9700x 13% 13°J
B

or E, = 0.84 eV for convenience, energies in atoms are given in eV.

(b) Substitutional and interstitial atoms

When an impurity atom is dissolved in a solid it can take up a normal lattice by displacing a host atom,
or it can squeeze into the spaces between host atoms: which it does depend largely on the relative sizes
of host and impurity atoms. In the case of ionic solids the position is complicated by the requirement for
charge neutrality. If CaCls dissolved in KCI, for example, the Tins replace the Kons, but because

there must be charge neutrality in the solid, a vacasit& must be formed at the same time. InGZu

there is small fraction of Ctions each requiring a Cion vacancy to maintain charge neutrality. The

extra positive charge on the cations is mobile and is responsilgéyipe conductivity in the material:

Cu,0O is termed a defect semiconductor.
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Q 2.12 Describe powder method of crystal structure study using x-rays.
Answer. Bragg’s method of crystal analysis can be carried out only if large crystals are available.
Hence it is not always possible to adopt this method. Debye and Scherrer adopted a method by means of
which analysis can be done using a small amount of powdered crystal. The particles of the powder
contain a large number of micro crystals. If a monochromatic x-ray beam falls on a single crystal, then
for a Bragg diffraction, it is necessary to provide a range of values of éltter A . The various
experimental ways to provide such arrangements is the basis of the different x-ray diffraction methods.
In the powder method and the rotation crystal mettfods variable while the powdered crystal and a
single crystal is placed in a beam of monochromatic x-rays respectively. In the Laue miettsod,
variable as the x-rays of many wavelengths are being used of a single angle of incidence.

In the powder method, the monochromatic x-rays are falling on a finely powdered or a finally
grained polycrystalline specimen as shown in Fig. Q 2.apR.1(

If we consider the diffracted beam from a large number of crystallites which are randomly oriented,
then any crystallite giving the reflection will produce a diffracted beam making an 26hghgth the
incident beam and, therefore, the locus of all such diffracted beams is a cone of seP6lanigfeapex
at the specimen. When the film is made flat, the powder diffraction pattern looks like as shown in Fig.
Q 2.12.1(b), the cones making a series of concentric rings around the centralSjzsothdéf maximum
diameter of a ring and R is the radial distance from specimen to the film, then the Bragg &ngle

S : :
radian will beﬁ, as can be seen from Fig. Q 2.12.1(b). From the Bragg #hgike interplaner

distanced can be determined with the useBvagg diffraction equationThese distances are related to

the lattice parametersand theMiller indices for any crystal. The observed interplaner spacings are
compared with the spacings that would exist in unit cells of various dimensions and angles. In the less
symmetrical crystal systems, this trial procedure is quite complicated. However, in highly symmetrical
crystal system like cubic, the procedure is quite simple. Therefore, the structure of the simpler crystals
can be completely determined by the powder method alone.

Exit for X-rays

Collimator
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vIncident beam

26|26

-~
“«——S—»

((:)

Fig. Q 2.12.1 (a) X-ray powder diffraction arrangement (b) Typical powder diffraction
pattern (c) Conversion of linear distance on the film into Bragg angle

X-ray exit

— Specimen

Collimator

Photographic
film

o mnn
| | OFr N
N =

(b)

Fig. Q 2.12.2 (a) X-ray rolating crystal camera (b) Typical rotating crystal
diffraction pattern indicating various layer lines
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In order to overcome the difficulties faced in the powder methodrotaéing crystal methods
used whenever single crystals are available. In this method, the single crystal is rotated continuously
about an axis that is perpendicular to the x-ray beam as shown in Fig. Q&.h2(diffracted beams
emerge out when the angle of incidence on a certain plane is according to Bragg equation for the
monochromatic x-ray radiation. A cylindrical film from such method will give a pattern in Fig. Q ®)12.2(
The characteristic feature of a rotation photograph is the occurrence of diffraction spots along a set of
parallel straight lines, known as layer lines. The spots on the central layer line are reflections from planes
whose normals are in a horizontal plane whereas the spots on any other layer line are from planes that
have the same intercept on the axis of rotation. From the distance between these straight lines, one can
find the dimension of the unit cell along the axis of the mounting of the crystal.

The separation of diffraction data into layer line in case of rotating crystal method is somewhat
better than the powder diffraction pattern but still there is always some overlap of diffraction spots.
Therefore, rotation photographs are rarely used for collection of intensity data. They are more often
used for preliminary determination of unit cell dimensions and crystal system. In modern techniques,
the photographic film is also replaced with a sensitive counter and a trace is taken of the count rate
recorded while the crystal rotates slowly and the computer programmes are used to simplify the problem
of crystal structure determination.

In Laue methoda narrow beam of non-monochromatic x-rays falls on a single crystal as shown in
Fig. Q 2.12.34). There are two photographic films in this method, film A to record the diffraction
pattern and film B to record the back-reflected pattern from the surface of the crystal specimen. On the
photographic film A, one obtains a large number of diffraction spots as in Fig. Q B)1B&(e pattern
exhibits the symmetry of a crystal; when the x-ray beam is directed parallel to a six-fold axis of symmetry,
the pattern will have the six-fold symmetry about the central point anttarQvill bring coincidence
of all the spots. Therefore, thaue patterrhas been widely used in determining symmetry axes if the
non-monochromatic x-ray beam is incident along or very close to the symmetry axis.

The diffraction pattern on a photographic plate is a two-dimensional representation of the reflection
from the three-dimensional crystal planes. Theregieggographigrojection has to be used to determine
the relation betweehaue spotsand the actual distribution of lattice points in real space. It will be
interesting to mention at this stage that Laue spots correspond to poimeipracal lattice

Film B Film A

Specimen

—Pp( ) L 1
Beam @
(a)
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Table 2. A Comparison of cell properties of some crystal lattices

v 2
"

Fig. Q 2.12.3 (a) Laue camera (b) Laue pattern

5
ture

S.Ng. Properties Diamond Simple Body centred Face centred Hexagonal clo
cube (dc) cube (sc) cube (bcg) cube (fgc) packed struc
(hcp)
; 3 /3(a2¢
1 | Volume of unit cell as as as as 2 ( )
2 | Number of atoms 8 1 2 4 6
per cell
8 1 2 4 4
3 Numbgrof atoms 2 22 22 a2 \/§(a2 c)
per unit volume
4 | Number of nearest 4 6 8 12 12
neighbours
av3 a\/I_B a\/z
5 | Nearest neighbour TJ_ a o 5 a
distance (2)
e a3 a a3 a2 a
6 | Atomic radius 8 2 4 4 2

Contd.
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5
ture

S.Na. Properties Diamond Simple Body centred Face centred Hexagonal clo
cube (dc) cube (sc) cube (bcg) cube (fgc) packed struc
(hep)
w2 w2
7 | Atomic packing M3 _ 34| 3 _sp| T3 _es| W2 Z074| ™2 -g7s
16 6 8 6 6
factor
8 | Examples Germanium,| Polonium | Sodium, Iron,  Aluimium Magnesium
Silicon and Chromium | Copper, Lead Zinc and
Diamond Cadminum

Table 2. B Crystal structure and selected properties of representative elements

Element | Symbol Atomic Density CrysteJI Lattice | Approximate Melting
weight in 10 structure | constant atomic point
(kg/n) (20°C) radius °C
(nm)

Aluminium Al 26.97 27 fcc 0.4049 0.1428 660.2
Cadmium Cd 11241 8.65 hcp | a=0.2979

c=0.5617] 0.1489 3209
Carbon C 12.01 222 dc 0.3564 0.0770 | 3700
Chromium Cr 52.01 7.19 bcc 0.2885 0.1249 | 1890
Copper Cu 63.54 8.96 fcc 0.3615 0.1278 1083
Germanium|  Ge 7259 5.36 dc 0.5658 0.1224 937
Iron (a) Fe 55.85 7.87 bcc 0.2866 0.1238 | 1539
Lead Pb 207.21 11.34 fcc 0.4949 0.1750 327
Magnesium Mg 24.32 1.74 hcp a=0.3209

c=0.5210, 0.1594 650
Potassium K 39.10 0.86 bcc 0.5339 0.2312 63.7
Silicon Si 28.09 234 dc 0.5428 0.1176 | 1430
Silver Ag 107.88 10.49 fcc 0.4086 0.1444 960.5
Sodium Na 22.99 0.97 bcc 0.4281 0.1857 97.8
Zinc Zn 65.38 7.13 hcp | a=0.2664

c=0.4945  0.1332 4195
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Table 2.C  Enthalpy of formation of vacancies in some crystals

Crystal E, (kJ/kmol) E in eV/vacancy
in 1C¢°
Zn 49.0 0.51
Al 68.0 0.70
Mg 56.0 0.58
Kr 77 0.08
Cd 38.0 0.39
Pb 48.0 0.50
Ag 106.0 110
Cu 120.0 124
Ni 168.0 174

Table 2. D  Equilibrium vacancies in a metal

Temperature Approximate fraction of vacalnt
°C lattice sites
500 1x10%
1000 1x10°
1500 1x10*
2000 1x10°

OBJECTIVE QUESTIONS

1. Which of the following has the least packing fraction
(a) diamond cubic structure (b) face centred cubic structure
(c) body centred cubic structure  (d) simple cubic structure
2. The number of triad axes of symmetry elements in a cubic system
(@ 2 (b) 3 (c)6 (d) 4
3. The volume of the primitive unit cell of a fcc structure with lattice constant

a® a® , a®
(a) ry (b) ) (c) & (d) >

4. The nearest neighbour distance in the case of bcc structure is
V3 2
X2 a /
(a) > a (b) 2a (c) 3 (d) v3a

wherea is the lattice parameter
5. The number of atoms present in the unit cell of hcp structure is
(@) 2 (b) 4 (c) 6 (d) 7
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11.

12.

13.

14.

15.

16.

17.
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. The packing factor of diamond cubic structure is

(a) 60% (b) 56% (c) 74% (d) none of these

. Which of the following metals crystallizes in fcc structure?

(a) zinc (b) sodium (c) aluminium (d) CsCI

. The ideak/a ratio for the hexagonal structure is

8
@107 0L o

Magnesium crystallizes in hcp structure. If the lattice constant is 0.32 nm, the nearest neighbour
distance in magnesium is

(@) 0.32 nm (b) 0.16 nm (c) 0.64 nm (d) none of these

If nis the number of atoms in the unit cell of the cubic syst¢pand M, are the Avogadro’s
number and atomic weight respectively apdis the density of the element, then the lattice
constant is given by

% % Y %
Map NN Na MA} nMa
(a) [—nNA} (b) {MAP} (c) [ = (d) [pNJ

The number of ions in the unit cell of NaCl crystal is

(@) 8 (b) 6 (c) 2 (d) 4

The Miller indices of the plane parallel to the x and y axes are

(@ (010)(b)(001)(c)(111)(d)y(100)

If (3 2 6) are the Miller indices of a plane, the intercepts made by the plane on the three crystallographic
axes are

(@) (Za3bc) (b) @abc) (c) &2b 3c) (d) none of these
In a simple cubic lattice, g: d, :d,,is

(a)6:3:2 (b)6:3:4/2 (c) V6:4/3:42 (d) V6:4/3:/4

A plane parallel to one of the co-ordinate axes has an intercept of infinity

(a) yes (b) no

A plane intercepts at b/2, 3c in a simple cubic unit cell. The Miller indices of the plane are
(@ (261) (0)(132)(c)(123) (d((361)

If (h k) are the Miller indices of a plane, then the plane cuts the axds kndmdl equal segments
(a) yes (b) no

PROBLEMS AND SOLUTIONS

2.1 Silicon crystallizes in the diamond cubic structure. The radius of silicon atom is 0.1176 nm. The
atomic weight and density of silicon are 28.09 and 2.3 xg§*. Give me the number of atoms
present in a unit cell.
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Solution:

4

2r

oo 8 _8x01176
1732 1732

a= 0.5432 nm

M . . .
TA will contain N, silicon atoms

pNpa’ _

a m will contain
Ma

n

i.e.,

3
23x 18 x 602x 166><( 0543% I@)
n=
28.9

_ 23x 602x 05433x 19 _
289

Answer

2.2 Lead is a face centred cubic with an atomic radius of 0.1746 nm. Find the spacing (i) (2 0 0) planes
and (ii) (2 2 0) planes

Solution:

8

a

dhy) = —F———=
Jh2+ K2+ |2

For fcc structure,

For 2 0 0 plane

0493

dypo= 2 0.2465nm and for the other plane

dyyo= %3: 0174nm

d,,, = 0.2465 nnT

d220 =0.174 nm|Answer
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2.3 The Bragg angle corresponding to the first order reflection from (1 1 1) plane in a crystal is 30
when x-rays of wave length 0.175 nm are used. Calculate the iteratomic spacing.

Solution:
We know that

a
dpy| = F—e
Jh2+ K2+ |2
a
dlnzﬁ
and
2d sin@ = nM

2x—2_ &in30=1x 0175« 10°
1732

2—; =1732x 0175« 10°=a

a 0.3031 nm| Answer

2.4 A certain orthorhombic crystal has a ratio of a : b : ¢ 0f 0.429 : 1 : 0.377. Find the Miller indices of
the faces whose intercepts are:

0.214:1:0.183

0.858:1:0.754

0429: 0 : Q126
Solution:
The intercepts in terms of the unit axial dimensions are as below:
0214 1 0188
0429 1 0377
0858 1 0754
0429 1 0377
0429 o 0126
0429 1 0377
1

E .
2

- . H
Wik & Nk
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Taking the reciprocals of these numbers and reducing them to the smallest whole numbers, the
Miller indices come out as follows:

(212
(121 | Answer

(103

2.5 Find the Miller indices of a set of parallel planes which makes intercepts in the ratio (3a : 4b) on the
x-axis and y-axis and parallel to the z-axis; a, b, ¢ being primitive vectors of the lattice.

Solution:

pa: gb: rc=3a:4b:o ¢
p:g:r=3:4:m

==

:1:4:3:0
00

AR

1
3

Sl

1
s
The Miller indices of the given set of planes are (4 3 0)

(4 3 0)| Answer

2.6 Calculate the ratio of the number of vacancies in equilibrium at 300 K in aluminium to that produced
by rapid quenching at 800 K. Enthalpy of formation of vacancies in aluminium is 68 kJ/mol.

Solution:
The general expression for the number of vacancies is given by,
n, =N exp(-E/R T, andn, =N exp(-E/RT,)
n, =N [exp(- 68 x 188.314 x 300)] =N exp(- 27.3)
n, =N [exp(- 68 x 188.314 x 800)] =N exp(- 10.2)

mno_ exp(-27.3

= =375x 108
n, exp(-10.2)

n
—+=375x 10°| Answer
N

2.7 A diffraction pattern of a cubic crystal of lattice parameier 0.316 nm is obtained with a
monochromatic x-ray beam of wavelength 0.154 nm. The first four lines on this pattern were observed
to have the following values:

Line: 1 2 3 4
6°: 20.3 29.2 36.7 43.6
Determine the interplanar spacings and Miller indices of reflecting planes.

A A
Solution; d =——,0r sinf = —
olution Snd r
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2
a
Line 6 sind d (nm) el h?+ k?+ 12
1 20.3 0.3460 0.2240 2
2 29.2 0.4886 0.1570 4
3 36.7 0.5980 0.1290 6
4 43.0 0.6990 0.1150 8

For determination of, k, | one has to resort to trial and error method
h2+ k2+1222=12+ 12+ O hk 1=(110
h?+ k?+1?=4=22+ 0+ Qhk1=(200
h?+ k?+ 1°=6=22+ 12+ 15 hkI=(21)

h?+ k?+12=8=22+ 22+ Qhkl=(220

2.1 Metallic iron changes from bcc to fcc form at 9COAt this temperature, the atomic radii of the
iron atom in the two structures are 0.1258 nm and 0.1292 nm respectively. Calculate the volume change
in percentage during this structural change. Also calculate the percentage change in density.
(Ans. 0.493%, 0.4968%)
2.2 Compare the densities of lattice points in (1 1 1) and (1 1 0) planes in a simple cubic lattice.
(Ans: P111° P110= V2! \/?3)
2.3 Cadmium crystallizes in hcp structure. The radius of cadmium atom is 0.1489. What is the height
of the unit cell? Ans. 0.4862 nm).
2.4 X-ray powder photograph of a cubic material with a wavelength of 0.1542 nm is taken. In the
photograph, lines are observed at angles 292538, 32.58, 39.15, 41.26, 49.59, 56.08 and
58.36. Determine the lattice constant and the nature of the cubic material Ans: f¢c, 0.405 nm)
2.5 The unit cell of aluminium is face centred with lattice cons&@nt,0.405 nm (a) How many unit
cells are there in an aluminium foil 0.005 cm thick and side 25 cm square? (b) It weighs 0.0085
kilogram. How many atoms are present? (c) How many atoms are in each unit cell?
(Ans 4.7 x 16%, 1.9 x 1@, 4)
2.6 The fraction of vacancy sites in a metal is 1 X%#t 500C. What will be the fraction of vacancy

sites at 100@C? (Ans: % = 88452x 107) _
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Matter Waves and Wave Mechanics of Free Electror’

3.1 INTRODUCTION

The discovery of particle/wave duality stemmed from a suggestion made by a French ndbberisan,

de Broglie. It sounds so simple, yet it struck to the heart of the matter. “If light waves also behave like
particles, “we can imagine de Broglie musing “why shouldn’t electrons also behave like waves?” If he
had stopped there, of course, he would not have been remembered as one of the fogndetsrof
theory,nor would he have been received a Nobel Prize in 1929. As an idle speculation the idea does not
amount to much, and similar speculations had been aired about—x-rays longloshmien’s workat

least as early as 1912, when the great phyai¢idt. Braggsaid of the state of x-ray physics at the

time, “The problem becomes, it seems to me, not to decide between two theories of x-rays, but to
find... one theory which possesses the capacity of both”. De Broglie’s great achievement was to take
the idea of particle/wave duality and carry it through mathematically, describing how matter waves
ought to behave and suggesting ways in which they might be observed. He had one great advantage as
a relatively junior member of the theoretical physics community, an elder brigtherice, who was a
respected experimental physicist who steered him towards the discovery. Louis de Broglie said later that
Maurice stressed to him in conversations the “importance and undeniable reality of the dual aspects of
particle and wave”.

Q. 3.1 Discuss de Broglie’s hypothesis of matter waves. If an electron is acceler&#gd'dﬂy get

the equation connecting de Broglie’s wave length and the accelerating potential.

Answer. In his thesis, de Broglie started out from the two equations that Einstein had derived for light
guanta,

L _hu
E—hU,and p—? (Q 311)

In both the equations, properties that belong to particles (energy and momentum) appear on the left
side and properties that belong to waves (say frequency) appear on the right side of the equations. De
Broglie argued that the failure of experiments to settle once and for all whether light is wave or particle
must therefore be because the two kinds of behavior are inextricably tangled-even to measure the
particle property of momentum you have to know the wave property called frequency. ‘deiatitis
did not apply only to photons. Electrons were thought at the time to be good, well-behaved particles,
except for the curious way they occupied distinct energy levels inside atoms. But de Broglie realized that
the fact that electrons only existed orbits’ defined by whole numbegitegers) also looked in some
ways like a wave property. The only phenomena involving integers in physics were those of interference
and of normal modes of vibration. This fact suggested that electrons too could not be regarded simply
as corpuscles, but that periodicity must be assigned to them. De Broglie called the waves associated
with a particle asrhatter waves The momentum associated with photon is:

p=—=—=— (Q 3113)

He showed that in an analogous manner the momemtfra material particle and the wavelength
A of the associated matter waves are related by:

lo—h'or/\—D (Q 3.1.2)
3 . 1.
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If we assume that the velociyof the matter waves is given by:
V=UA
Substituting the value o and A from Egns. Q 3.1.1 and Q 3.1.2,

V=

=>|m
S|z

E
p

(Q 3.1.3)

or \'

According to thespecial theory of relativitywe have, for a particle of magsnoving with velocity
V'I

E=m¢ p=mV (Q 3.1.4)
Therefore, the velocity of the associated matter waves is given by:
mé
mv Vv

Since we hav# not greater than or equal ¢pwe find thatv = c. Thus the velocity of the matter

waves is greater than the velocity of light in vacuum which concludes that the phase velocity of matter
waves is not physically meaningful quantity. When an electron is accelerated by a\f).uolof the

kinetic energy acquired by it (whose rest mags (1/2) m, VZ = eV
_ 2eV, V= 2eV,

My My

VZ

Thus the momentum is:

p=,2meVv,

Thus the ddBroglie wavelength associated with the electron is given by:

yoh_ 6.62x 10
P /meY, \/9_1>< 10%x 16x 10"xV,
ie.
_ 1227
A= ﬁ nm (Q 3.1.5)

If the electron is accelerated through very high potential difference, it is necessary to take into
account of the relativistic increase in mass of the electron.
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The equation to be used in such a case is:

1.227[ eV }
1- (Q 3.1.6)

\/Vp 4rrbc2

Q 3.2 Describe the experiment of Davisson and Germer on electron diffraction. i.e., how de Broglie’s
hypothesis has been verified.

Answer.  The first experimental evidence of the wave nature of atomic particles was provided in 1927
by C.J. Davisson and L.H. Germar. They were studying scattering of electrons by a metal target and
measuring the intensity of electrons scattered in different directions. The entire arrangement to produce
a fine beam of electrons accelerated to a desired velocity is elddtbn gunThe fast moving beam

of electrons is made to strike the target (say nickel crystal) capable of rotating about an axis perpendicular
to the plane of the diagram. The electrons are now scattered in all directions by the atomic planes of the
crystal. The intensity of the electron beam scattered in a direction can be measuree|égtribre
collector which can be rotated about the same axis as the target. The collector is connected to a
sensitive galvanometer whose deflection is proportional to the intensity of the electron beam entering the
collector. The whole unit is kept in an evacuated chamber.

To Galvanometer™ Movable collector

Fig. Q 3.2.1 Davission-Germer electron diffraction apparatus

In an investigation, the electron beam accelerated by 54 volt was directed to strike the given nickel
crystal and a sharp maximum in the electron distribution occurred at an angfenath5e incident
beam. The incident beam and the diffracted beam in this experiment make an arfyléiotied family
of Bragg’s planesThe spacing of planes in this family as determined by x-ray diffraction was 0.091
nm.



70 Rudiments of Materials Science

Bragg’s planes

(%]

c
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3]

Q

(]
B i
g :
[S] 1
o |
54 volt O !
Electron S i
beam , ) !

, Single Nickle 0 t ——t

crystal 50

Fig. Q 3.2.2 Flectron diffraction

Q 3.3 State Heisenberg’s uncertainty principle. Discuss its significance and importance.
Answer. In 1927,Heisenbergoroposed a very useful principle, which is a direct consequence of the
dual property of matter, known ascertainty principle In classical mechanics, a moving particle at
any instant has a fixed position in space and a definite momentum which can be determined if the initial
values are known. However, in wave mechanics the particle is described in termaépacket
According toBorn’s probability interpretation, the particle may be found any where within the wavepacket.
When the wavepacké small, the position of the particle may be fixed but the particle will spread
rapidly and hence the velocity becomes indeterminate. On the other hand, when the wave packet is
large, the velocity can be fixed but there is large indefiniteness in position. In this way certainty in
position involves uncertainly in momentum or velocity and certainty of momentum involves the uncertainty
in position. This shows that it is impossible to know where within the wavepacket the particle is and
what is its exact momentum.

According toHeisenberg uncertaingrinciple, “itis impossible to specify precisely and simultaneously
the values of both members which are particular pairs of physical variables that describe the behavior of
an atomic system”. Qualitatively this principle states that “the order of magnitude of the product of the
uncertainties in the knowledge of two variables must be at least Planck’s cbois@msidering the
pair of physical variables as position and momentum, we have

(8p)(Ax) = h
where Ap is uncertainties in determining the momentum amdis the uncertainty in determining the
position of the particle. Similarly, we have:
(AE) (At) = hand (AJ) (A6) = h

The exact statement of uncertainty principle is as follows: the product of uncertainties in determining

the position and momentum of the particle can never be smaller than the oz%«_{er 8 we have:

(08) (82 1 (AE) (1) > 2* and (4.9) (26) > -
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Applications of Uncertainty Principle

1. Presence of protons and neutrons and non-existence of electrons in nucleus

The approximate radius of the nucleus of any atom &h0If an electron is confined inside the
nucleus, then the uncertainty in the positifaa of the electron is equal to the diameter of the nucleus.
e, Ax=2x10%m. Using the Heisenberg’s uncertainty relation, the uncertainty in momentum of
electron is given by:

__h _ 662x 103
2IMAX  2mx 2x 10

Apy

ie., Ap, 2 0527x 10° Ns
Since the mass of the electron is 9.1 x*g, the order of magnitude of momentum (0.527 x
102°kg m s?) is relativistic. Using theelativistic formulafor the energye of the electron, we have:
E2: p2 C2+ ng él
As the rest energy), ¢* of the electron is of the order of 0.511 MeV, which is much smaller than the
value of first term, it can be neglected. Thus:

B=p*c?, E=pc
Now
E = (0.527 x 16 x (3 x 10) joule

_ 0527x 3x 10%
16x 10*°

=10 MeV

This means that if the electrons exist inside the nucleus, their energy must be of the order of 10
MeV. However, we know that the electrons emittedréglioactive nucleiduring beta decayhave
energies only 3 to 4 MeV. Hence, in general electrons cannot exist in the nucleus.

Forprotonsandneutronsm = 1.67 x 1&7kg. This is a non-relativistic problem. Hence khet. in
this case is,

02 (0527 1020)2

2my, 2 x167x 107 Joule

i.e. K.E 52 keV

Since this energy is smaller than the energy carried by the particles emitted by nuclei, both these
particles can exist inside the nuclei.

2. Calculation of the radius of Bohr’s first orbit

If (Ax) and (Ap) are the uncertainties in position and momentum of the electron in the first orbit,
then according to uncertainty principle,

(%)(89) > ;-
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Ap = using(Ax)(Ap) = 21
s

(Ax) 2r

The uncertainty in the kinetic ener@T) of the electron may be written as:

m (AY° _ (4p)°

2m 2n

v

AT 2 %m(A\oz >

sra[ 2]
2m] 4r? (ax)?

The uncertainty in the potential energyy of the same electron is given by:

2
V-2
4m [, (AX)
Hence the uncertainty in the total enemgg is given by:
h? ze

AE > AT + AV > > -
4 x 2m(ax)®  (Ax)4mly

The uncertainty in the energy will be minimum, if

AE d?(AE
d(2E) =0 and 2( ) is positive
d(Ax) d“ (Ax)
Now
_9Rn2
d(AE) L z&  _ 0

d(8x)  gmm(nx)°®  4nC, (Ax)?

h? ze

a?m(ax® 4oy (ox)°

h? [,
AX =
mmzée

Thus the radius of the first orbit of hydrogen is:

2
r=/Ax= h” G withZ=1andn=1
mm

(Q 3. 3.1)
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[ h°

r =
mme

(Q 3.3.2)

Q 3.4 Set up the time-dependent form of Schrédinger's wave equation for matter waves. What is the
physical significance of the wave function?
Answer. In classical mechanics, a wave equation is a second order differential equation in space and
time. Solutions of this equation represent wave disturbances in a medium. Therefore, a wave equation is
the usual basis of mathematical theory of wave equation.

For example arklectro-magnetic wayetravelling in thex-direction, is described by the wave
equation,

0°E, 1 0°E,
2

y =
ax> ¢ oat?

whereE is they-component of thelectric intensity
A differential equation for the wave associated with a particle in motion cannot be derived from first
principles. The equation may be developed by any one of the following procedures.

1. The equations of motion of classical mechanics are transformed into a wave equation in
accordance with wave properties of matter based on de Broglie’s hypothesis.

2. A complex variablguantity, called the wave functias assumed to represerglanesimple
harmonicwave associated with a free particle, and the classical expression for the total
energy is used.

3. A particle at a given position and at a given time is represented by a wave packet which is
obtained by superposition of a group of plane waves of nearly the same wavelength, which
interfere destructively every where except at the wave packet, and the classical expression
for the total energy is used.

4. In the classical expression for the total energy of a particle, the dynamical quantities are
replaced by their corresponding operators. These operators are allowed to operate upon the
wave function.

We will follow procedure (2) to develop the Schrddinger equationidfthe velocity of the given
transverse wave ang the displacement, is a function of bathndx, the total derivatives must be
replaced by partial derivatives.

i.e.,

<

2 2
9y 22 Q. 3.4.1)

at NG

Q

This wave equation is valid for many other types of waves also. In practice, sound waves in air and
light waves in vacuum are two of the important types of waves that obey Eqgn. (Q 3. 4. 1). Of the
numerous possible solutions for the above equation, the solution corresponding to the case of undamped,
monochromatic harmonic waves in the positive x-direction, is of particular interest. The general solution
in this case has the form:
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]

y = Acosw[t - 5} -i A sinw[t - 5}
v v

(Q 3.4.2)

Only the real part of equation (Q 3. 4. 2) has some significance in the case of waves in stretched
string, where y represents the displacement of the string from its normal position; in this case the
imaginary part is discarded as irrelevant. This, however, cannot be directly followed in the case of

material particles, because the wave functignof de Broglie, unlikey, is not itself a measurable
guantity and may, therefore, be complex.

Thus
W(x,t)= A exp{—iw[t - éﬂ

oo ]|

E
Using E = mv = tu and knowingu = ™ and% = E one gets

Y(x,t)= Aexp[—% (Et - px)}

(Q 3.4.3)
From this one can obtain, the differential equation as:
2
{by knowingE = 1mv2+ V(¥ BY = p~¥ +VL[J}
2 2m
how | n?* | o*w
T?F"[E%H5X2}_Vw (Q 3.4.5)

This is the one dimensional Schrodinger’s time- dependent wave equation. In three dimensions the
time- dependent form of Schrédinger’s equation is:

2 2 2 2
.z%%:{ﬁ_ﬂa v Py 9 w}—vw
|

+ +
2m|| ax®>  9y? 97
i.e.,
oy | n?|_,
2 1AW -V =0 3.4.6
e @349
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Physical significance of the wave function:
The quantity

P=Y wdxdydz
wherey" is thecomplex conjugatef W, gives the probability of finding the particle within the volume
elementdx dy dz atime t. If the particle has a definite ener§ywe can write
W(x,t) = ¢ (x) exp(-iEt/n)
W (x,t) =@ (x) exp(iEVR)
wy = yy

The probability of findingthe particle within a given volume element is independent of time.
Now

P=y¢ (X @ (X dxdy dz
gives the probability of findings the particle in the given volume element (at all times).

The meaning of the probability is as follows: suppose we conduct an experiment to find the position
of the particle at some instant of time. Let the position (assuming one-dimensional motion along the x-

axis) be within an intervaf\x, . Let the particle be brought back to its original state (since the process of
measurement might have disturbed its previous state). Let its position be again measured. Let this
process be repeated a large number of times. Let us assume that thisxyadfi¢he position occurs

times when the total number of trials is Then the probability of finding the position of the particle
within an intervalAx, (around a particular value gj) is:

P=y (X))@ (X A%
If Axg=1 ¢ (X) @(X) is calledprobability density

Q 3. 5 Arrive at the time-independent form of Schrddinger’s equation for free electrons in a metal.
Write a note on the physical significance of the wave function.

Answer.  The one dimensional time-dependent Schrédinger wave equation is:

2 2
.ﬁa—“’:{h “d w}—vw (Q 3.5.1)

i gt |2m| ax2

This equation can be further simplified for a great variety of problems in which the potential energy
of a particle does not dependent on time but only on the position of the particle.

Refer Egn. (Q. 3. 4. 3):

W(x, 1) = AeXp(_% Et) exp(i%x)
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= o(t) (). This ¥ (X) is a function of alone

ow iEt iE
— = Aexp — || — X
Now T p( > ) ( 5 ) @ (x)
PR iEtj d?y
= Aexp — | —5
and %2 P( 7 )
Substituting these values in Egn. (Q 3.5.1) and simplifying one gets,
YL =0 (Q 3.5.2)
dx*  n? 0 "

This ¢ is independent of time. This is tlséeady statdorm of Schrodinger equation. In three
dimensions, the corresponding equation is:

%W 9% 9%y 2m _
PP * 5z [E-Ve]y=0

2
or D%y + h—T[E - Voly =0 (Q 3.5.3)

Here ¢ is a function ok, y, z
The physical interpretation of the wave functi@nis now discussed

Born in 1926 postulated that the square of the magnitude of the furigfiqon Y assumingy/
is acomplex quantiy evaluated at a particular point represents the probability of finding the particle at
that point. {'[? is called thgrobability densityand ¢ is called probability amplitude. Thus the probability
of finding the particle within an element of voludeis |[¢/|* dv. Thus

9]

[lof av=1 (Q 3.5.4)

—00

A wave function that obeys this equation is said todmenalized Besides being normalizable, an
acceptable wave functio must fullfill the requirements given below:

(i) The wave function must be finite everywhere. For exampl@, is infinite at a particular
point, it would mean an infinitely large probability of finding the particle at that point. Hence
the wave function/ must have a finite or zero value at any point.

(i) 1t must be single-valued. I has more than one value it would mean more than one value of
probability of finding the particle at that point which is obviously ridiculous.
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(i) 1t must be continuous and have a continuous first derivative everywhere. This is necessary

2
from the Schrddinger equation itself which shows t%ag must be finite everywhere.
X
This can be so only i dx has no discontinuity at any boundary where potential energy

. d . L ,
changes. Furthermore, the emstencealeiff as a continuous function implies that too is

continuous across a boundary.

Q 3.6 You are given a one dimensional potential box of infinite heightadththe parameter. Solve the
Schrddinger wave equation for a particle in the box and obtain its eign values.

Answer. Let us now consider a particle of massnoving along the-axis between the two rigid walls

of the well withx = 0 and x= a. Since the force acting on the particle between the walls is zero, its
potential energy is constant in this region and it is conveniently taken to be zero. Since the walls are
assumed to be rigid, the force acting on the particle abruptly increases from zero to finite value at the
boundaries and hence the potential energy of the particle becomes infinitely bargé ahdx = a.

4
(oo} T (oo}
em
V(x)=Vy=wfor0>x>a
V(x)=V,=0for 0< x< a
» X
0 a

Fig. Q 3.6.1 Particle in a one dimensional potential box

As the particle can be found only inside the biéix W~ must be zero foo > x > a and for zero
potential the Schrédinger equation can be written as:

d’y 2
— T +k =0
dx? v
with k2= 2ME
n

The general solution is of the form:

W (x) = Asinkx+ Bcos kx

Applying the conditions,ll(x) =0 atx=aandx =0, one getk = %T wheren=1, 2, 3, ... and

hence B = 0.



78 Rudiments of Materials Science

Thus the wave function associated with the electrons is:

.| niTx
Y= Asin [T} (Q 3.6.1)
kZhZ n2 h2
Also E, = = 3.6.2
" o T ama? Q )

This equation gives the energy of the particle inrthenergy state. This gives the energy eigen
values of the particle; no other values are permitted. We may now evaluate the constant A in Eqn. (Q
3.6.1) bynormalization The total probability that the particle is some where in the box must be unity.

a a
i.e., IPX dx= j|¢’n|2 dx=1
0 0
f 1 2rmnx
or [ sint| | ax=1i &3]0 cos™M | a1
a 2 a
0
2 a
ie., A x - 2 sin 27X =1;or A:\/Z
2 2rn a | a
The normalized wave function,
y,= 2 sin nix
n a a (Q 3.6.3)

Q 3.7 Sketch the graphs for the first two or three wave functions, energy distribution and probability
of finding the electrons at various regions in the box. The results of applications of Pauli exclusion
principle to the present system may be solicitated.

Answer.  The permitted energy values, wave functions and probability of finding the particle in the
potential box of lengtla are graphically represented in Fig. Q 3.7.1.

E,
n=3 (»US \/ W%
2 w3
E. n=2
2
(/7% X Y1 X
a a
E, pr=) 0 0
0 X a

Fig. Q 3.7.1 \Variation of Y and |L,U|2 with position
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Conclusions
(i) The electrons can have only discrete energy values and the permitted values are shown in
Fig. Q 3.7.1
_ E - h? _ 4h? _ 9n?
ie., =——,Eb=—— ,E3 =
Yema®' Y sma® ° smad

(i) The wave functions associated with the electrons can have positive values as well as negative
values including zero.

(i) The probability function|¢1|2 can have only zero and positive values as shown in the last
figure.

Pauli exclusion principle

A metallic crystal can be considered to be a three dimensional infinite potential well whose boundaries
are the crystal’s surface and to which the free electrons are confined. The electrons may occupy a set
of energy states, but only two electrons are allowed in a given state, because of the Pauli exclusion
principle. In the allowed states each electron is characterized by a unique set of quantum numbers,
including spin, so that the energy level witkr 2, say, can only contain two electrons: one spin up and

one spin down.

For simplicity, let us consider a one dimensional crystal comprising a line of length 10 mm with
atoms of 0.2 nm diameter, so that there are 5athdn in the line, and suppose that each contributes
one free electron. Since two electrons can occupy each level, 27®Rrety states are filled, and the
maximum energy is calculated as follows:

N (25% 10 x (6626 10%)° N

Emax

8ma’  gx 91x 1031x(102)2x 16¢ 10°

=2.4 eV or 10R,T at 300 K

2
N
This equation shows thgt  is proportional tc(;j , that is, it depends only on the linear density
of free electrons. We also see that

dE - h2 (ZN) - 2Emax

AE = 23—/ —max (Q 3.7.1)

Now the maximum gap between adjacent energy leyAN,=1) whenN is 2.5 x 10is 8 x 10°

E , or 0.2 uev.

max’
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Q 3.8 Solve the Schrédinger wave equation for a particle in a rectangular potential box. Hence obtain
the expression for the wave functions and permitted energy values.

Answer.  The Schrodinger wave equation for particles (say electrons) in a rectangular potential box of
dimensions, b, andc is:

Dzw+z—T(E—Vo)w =0

whenV, = 0, the said equation becomes

%W d% Jd*W 2mE
=0 3.8.1
0"X2+07y2+0‘?22+h2w Q )

Y

Fig. Q 3.8.1 PFarticle in a three dimensional potential box with potential V, = 0 and
moving freely within the region 0 < x <a, 0 <y <band0 < z<c

The above partial differential equation in three independent variables and may be showed by the
method of separation of variables. The solution of the Egn. (Q 3.8.1) is of the form:

wix.y. 9= X3 Xy Zp

ie.,
Ww=XYZ
whereX-is a function ofx alone,Y-is a function ofy alone and is a function oz alone.
2 2 2 2 52 dZZ
Nowd g _d XYZandd w:ﬂxz and lél=—XY
ax?  dx ay? dy? 072 d7

Substituting these values in Egn. (Q 3.8.1) and simplifying and dividing each term pw&Xyet,

2 2 2
ldX+EdY+_le+2mE:0 (Q 3.8.2)

Xd¢ Yd2 ZdZ 7l
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The first term in this equation is a functionxainly and the second term is a function of y only, and
the third is a function of z only, while the sum of the three terms is a constant. This can only be so,
infact, if each term is equal to a constant. Hence we can write,

1d°x o, 1d’Y 5, 1d*Z
X dx? Y dy? Y'Z d7 ’
with
ki+ ki+ kZ = ZLZE

h

- hz(kx2 + Kk + kzz)
2m
The first equation can be written as:
d’X .o
12 +ky X=0

This is similar to the one dimensional case and hence the solution will be of the form:

X = Uz} sin /1%
a a
2| . nJry n, 1T

Y =|,—]sin i -y

{\/;:I b with ky b

Ny 7T

with k, =

Similarly

2| . nmz
and z {\E} st with k, = N1t
wheren,, n andn,_ are integers
_ _ 8 | . nJtx . Mty . n,mmz
Thus wnx,ny,nz— XYZ—{ 2be sin 2 sin b sin . (Q 3.8.3)
h2 1| n2 nf, n2
—_ X y4
and En,nyon, = [B—m 2 ete (Q 3.8.4)
For particles in a cubical box
8| . nax . nyJry . n,mmz
TR XYZ:{ 3 [sin Xa sin ya sin Za (Q 3.8.5)
h? n” h?
and - {8ma2}(n§+ nj+n) = o (Q 3.8.6)




82 Rudiments of Materials Science

2_ 2, 2, 2
where n®=ng+ ng+ ny

Q 3.9 List out the possible energy levels of a particle in a cubical box preferably with a chart. What are
degenerate and non-degenerate energy states?

Answer.  Some useful results
() The three integers,, n, andn, called quantum numbers, are required to specify a given
energy state. No quantum number can be zero; because if any one of them is zero, then
L,U(X, Yy, 2 =0, which would mean that the particle does not exist in the box.
(i) 1t should be noted, however, that the endiggepends only upon the sum of the squares of
the quantum numbers, n,n, and not on their individual values.

(i) Several combinations of the same set of quantum numbers may give different energy states
or different wave functions, but of the same energy value. Such states and energy levels are
said to balegenerate

_ 6h? : :
Thus for the level for which the energy valuegs—z, there are three independent states with
ma

guantum numbers (1 1 2), (2 1 1) and (1 2 1). The level is, therefore, ttefledold degenerater

triply degeneratelt will be noted that the ground state (1 1 1), as also several other states like (2 2 2),
(3 3 3) are non-degenerate energy stalée following table gives the various degenerate and non-
degenerate energy states.

Table Q 3.9.1 £nergy levels of a particle in a cubical box

Energy Quantum numbers Degree of
Levels (n,, n,, n;) Degeneracy
21 (421) (142) (214) (412) (241) (124) | Six-f 1d degene ate
19 (331) (133) (313) Th ee-f 1d degene ate
" 18 (411) (141)  (114) Th ee-f 1d degene ate
17 (322) (232) (223) Th ee-f 1d degene ate
14 (123) (312) (231) (132) (213) (321) | Six-f 1d degene ate
nlh? 12 (222) N n-degene ate
Sma> 311) 131 (113) Th ee-f 1d degene ate
9 221)  (122) (212) Th ee-f 1d degene ate
6 211) (12D (112) Th ee-f 1d degene ate
83,::2 (Tl) N n degene ate
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TABLES

Table 3.A  Wavelengths of electrons under selected voltages

\oltage applied (volt) Wavelength, (hm)
44 0.18
5 0.17
74 0.14
100 0.1227

Table 3.B  Wavelengths of protons accelerated by some selected voltages

Voltage applied (volt) Wavelength, (nm)
25 0.008
36 0.0066
49 0.0057
100 0.0004

Table 3.C  Magnitude of the wave functions and probability of finding the particles at well known
positions of electrons in a one dimensional box of side a for

n=2 v jwl®
x=0 0 0
a \/5 2
X =— — —
4 a a
x:E 0 0
2
3a 2 2
X=— - = —
4 a a
X=a 0 0

OBJECTIVE QUESTIONS

1. The wavelength associated with a moving particle
(a) depends upon the charge associated with it
(b) does not depend upon the charge associated with it
(c) depends upon the medium in which the particles travel
(d) none of these

2. Davisson and Germer were the first to demonstrate
(a) the straight line propagation of light
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(b) the diffraction of photons
(c) the diffraction of electrons
(d) none of these

. Two particles of chargesand 2 and masses, and % respectively are accelerated by the
same p.d. Their de Broglie’s wavelengths are related as
AL _ AL _
@ 5= ®) 3
Al AL _
c) —= d)y—=4
© 3 @
. The wavelength associated with an electron of measd kinetic energ¥ is given by
2mE
(@) A == ®) S
h h?
c d
(c) omE (d) e

. An electron, neutron and a proton have the same wavelength; which particle has greater velocity?

(a) neutron (b) proton (c) electron

. A proton and amx -particle has the same kinetic energy. If the mass ofrtparticle is four times

that of a proton, how do their de Broglie wavelength compare?

A
(@) AP:T" (b) A, =24,
(c) Ap, =62, (d) A, =025,
. If an electron is accelerated by 74 volt, the wavelength associated with the electron is
(& 0.14 nm (b) 1.4 nm
(c) 14 nm (d) 114 nm

. If the kinetic energy of an electron is reduced to half of its original value, then the new de Broglie

wavelength is

(a) unchanged (b) ﬁ
h 2mE
© Tame @ %

. If Ax is the error in determining the position of an electron &Apdn determining its momentum,

then (Ax)(Ap) is equal to

h
(@) Y (b) P



10.

11.

12.

13.

14.

15.

16.
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(c) (2m-h) (d) (h-2n)

A proton and amr -particle have the same kinetic energy. If the mass obthparticle is four
times that of a proton, how do their frequency compare?

(@) Uq :Zup (b) Ugq :O.a)p
(c) Uq =4.5Jp (d) Uq =151p

The wave function associated with an electron in a rectangular box of dimensions a, b and c is

. nrx . Nty Ntz . .
@(ne ny, n,) = Asin . Sin—— sin—— The normalization constant A is:

2 abc
R b _
@ abc (b) 2
4
(c) |— (d) none of these
abc

An electron moving in a one dimensional box of lerzgikh now considered. 1¥1 is the wave

. a . . Y,
function atx = Z withn =1 and¥> is that ax =a forn = 2, then—2 is

¥,
2
(@ 0 (b) \/g
a
(c) \/; (d)

If E, is the energy of the lowest state in a one dimensional potential box of éeagdt, is the
energy of the lowest state when the length of the box is halved, then

(a) E,=E, (b) E, = 2E,

(c) E, =3, (d) E, = 4E,

If n,, n, andn, have either values out of 4 2 1; then the degree of degeneracy of this energy level
is

(@ 2 (b) 3 (c) 6 (d) 8

The spacing between th& energy level and the next higher level in a one dimensional potential
box increases by

(@ (h-1) (b) 2n-1)

(c) 2n+1) (d) (n+1)
The energy of free electrons in the state (1 2 1) in a rectangular box of paranebetsc is

hz[s 1} h2[ 3 1
a) — | —+— bh) —|— + —
@ o5+ ()Zm[az ZCZ}



86 Rudiments of Materials Science

2

h> [1 3 h
© o |7 " ) @) et (%7

17. E, is the lowest energy value of the electron in a one dimensional box ofaidiEgis the lowest

. . . E, .
energy value in a cubical side a, th%ﬁ is
1

(a) 2 (b) 3 (c) 14 (d) 12

27h*
18. The energy Ieveiﬁ has a degeneracy of
ma

(&1 (b) 3 (c) 4 (d) 6

PROBLEMS AND SOLUTIONS

3.1 Using the relationm = ™ wherem_is the rest mass of a particle moving with a
1- (vzlcz)

velocityv, show that the de Broglie wavelength of the particle is equal to its Compton wavelength when
its velocity is 0.70€ where ds the velocity of light.
Solution: The de Broglie wavelength associated with the particle is

h h[l— (vzlcz)]y2
T T Ty

The Compton wavelength of the particle with rest nmsis given by

The two wavelengths are equal when

%
V2
hil-—
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\"
or 2—=1
CZ
Y 1
—=—=0.707
J2

v=0.70C | Answer

This shows that the de Broglie wavelength of the particle is the same as its Compton wavelength if
the particle is moving with a velocity= 0.70¢.

3.2 Show that the average kinetic energy of neutrons, atoms and molecules through equipartition law

, 3 , , , . ,
is K= 2 kg T . Write down the de Broglie formula for such particleE @égree kelvin. Hence determine

the wavelength of thermal neutrons if the rest mass is 1.672%kgj0
Solution: The pressure exerted by a gas of unit volume is

1
P==pC
3P
For molar volume,

M

P= }pﬁz = }_AEZ

3 3 Vq
5 MmN, T
3

3
T kg T
or m)‘cZ:BR” =3kgTandtc = 3Ke
Na My
i.e., the kinetic energy associated with each neutron is
1 5 3KkgT
— ctc==———
2rTb 2
or momentum, p=nyc=,3mlg T
According to de Broglie
a=h- b
P Bmykg T
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34
662x 10 = 0146x 10°m

A=
J3x167x 107 x 138 10%3x 300

A =0146x 10°m | Answer

3.3 A charged particle such as electron, proton, etc. is accelerated to a particular velocity by subjecting
to a potential difference. The uncertaingyy in the value of applied voltage leads to an uncertainty

principle (Ax)(Ap) = an and using the relativistic values, get an expression for the uncertainty in the

value of corresponding position coordinate. Hence evaluate the uncertainty in position of an electron
accelerated from rest by a potential difference of 50000800 volt.

Solution:  When a charged particle of rest magsvith chargeeis accelerated by a potential difference,

its kinetic energK is given by eV. The total energy of the particle would be sum of its kinetic eikergy
plus the rest energy c?, hence

E=mc+eV
or E’=nfct+ €VP+ 21y teV (3.3)
From special theory of relativity, the energys given by
E’=nfcd+ p°& (3.4)

Subtracting one from the other,
p?c?= e?V?+ 2y é eV

2\ /2
pZ:e\z/ +2m, eV
c

2\ /2 72
eV
p= l: 2 +2m, eV} (3.5)
Thus
2\ /2 % 2
pp=HEY vomev| | Zvav+omav (3.6)
2| c? c?

1( 2’V
2| ¢2 +2%EJAV e(eV+ rg&)AV
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For uncertainty principle, we have

AX =

cezV2+2naée}/2
> ( \) [h} (3.7)

ar(op) ~ e(ev+ rg &)(ay Lam

In non-relativistic case whesV << m, &, Eqn. (3.7) yields

h c eV %

%
h c eV
VP L | P
# 2n[e(AV)J [anczl Answer

This is the required expression fox
For electron,
e= 1.6 x 10" coulomb
mc?=9.1 x 16° x 9 x 10°joule = 0.511 MeV
and AV =500 volt,V = 0.5 MeV
Substituting these values one gets,

Ax>17x 10°m | Answer

3.4 Anparticle is moving in a one dimensional box of infinite height of 3 nm. Calculate the probability of
finding the particle within an interval of 0.45 nm at the centre of the box when it is in the state of least
energy.

Solution:

a a

W(x)= { E:I sinX

The probability of finding the particle at the centre of the box is

The probability ofP in the intervalAx is

2(A
|2AX: (Ax) _ 2 x 045_ 4

PZW(X) a 3

Answer
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3.5 The wave functiony of a particle is given by =y exp(—lea) for —eo < X< o, Find the

value of V.
Solution:

T|¢l|2dx:1

Y]

2y? jexp(—xz /a) dx=1

I
y = [_} Answer

3.6 Calculate the value of the difference between the energy of a hydrogen molecule bouncing back
and forth on a path of 1 cm long whers 2 andn = 3 at 29&.

Solution:
2 26
Mass of the hydrogen molecul®] = ———— =0.33x 10°°k
yered 6.02x 10° J
4h? 9h?
E, = and =E
2" 8ma? 8ma’ 3
h? 5h?
Es-Ep=——(9-4=—"—
8ma 8ma

5 (6.626x 10%)’
8x 0.33x 10%x (0 0F
=52 x 18 eV
E,-E,=52x10%eV Answer

=831x 10°® joule
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3.7 Find the expectation value (most probable value) of the pogitiba particle in a one-dimensional
potential box of infinite height and wid#nin the lowest state of energy.

Solution: The wave function of the particle is given by

w:|: z:|s|nm
a a

In the lowest state of energy,= 1
Hence

The expectation value afis

Tw* Xy dx Oj:ww* x dx

-0

Tww* dx
0

<x>=2

1

X

a

a a 2
0 0

2TTX
a a| X|1-cos——
2 .o TIX 2 a
= Xxsin = d

Q|

h h 21X
[J.xdx - J. XCOS—— dx]
a
0 0
2 a a
a a { . ZHX} 21X
— - — {Xsin——; - jsm— dx
2 21T a Jy 5 a

2 a
a a 21T X( a a
— + —<JCc0s—| — ==
2 27'[{ a (27‘[)} 2

<X>=_— | Answer

Q|

Q| =
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3.8 Get the probability of finding an electron in a cubical box of paranagi®m 0.4% to 0.55
Solution:

Hence,

2
P= [|¢n|* dx
X1
2’¢
:—jsinzﬂdx
a a

a a
X
=055
1 a 2mrx ]’
== |X—-—sin—-
a 2n a ]y -04m

-1 (0.5551 -2 sin 1.1011) - (0451 - isinOQOrr)
a 21 217

= o.55—isin1980 - o45—isin162°
217 217

1 . .
= (055- 045 - o (S|n198O - smlGé’)

= 0.10—7—17(coSL8d3 sin1€) = 010+ ( 0307) = 0198

Answer
EXERCISE

3.1 Find the uncertainty in the momentum of a particle when its position is determined within 0.01 cm.
Find also the uncertainty in the velocity of an electron and grarticle when they are located within
50 nm (Ans 1.05 x 16% kg—m/s, 2.33 x TOm/s, 31.4 m/s)
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3.2 Ifthe electron having de Broglie wavelength as 1.21%10s confined in a one dimensional box,
how far apart must be the walls of the box when five loops of the de Broglie wave span are formed from
one wall to the other. (Ans: 0.303 nm)
3.3 A particle is confined to one dimensional infinite potential well of width 0.2 nm. It is found that
when the energy of the particle is 230 eV, its eign function has 5 antinodes. Find the mass of the particle
and show that it can never have energy equal to 1 keV.
(Ans: m=9.3 x 16° kg, n = 10.4. Sincen is
not an integer; = 1 keV is not allowed)

h
3.4 For a particle show that the Schrodinger wave equation leads to the de Broglie Wavéleﬁggh,

3.5 Find the lowest energy of a neutron confined to a nucleus of sizeniétre. Given mass of
neutron as 1.6 x 0 kg. (Ans: 2.1 MeV)
3.6 Consider a grain dust(= 1 4 gm) confined to move between two right walls separated by 0.1
mm. It requires 100 sec to cross the gap. What quantum number describes this motion?

(Ans: 3 x 109
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4.1 INTRODUCTION

Metals are to be considered as an important class of solids on account of their favourable electrical,
thermal and mechanical properties at normal temperature and pressure. The other interesting point is the
electrical resistivities of materials at room temperature vary over a wide range of values than any
physical property—fromi.5 x 10° Q m for silver to about 20Q m for polytetrafluoro ethylen(PTFE).

This range over 24 orders of magnitude may be compared with the ratio of the earth’s orbit (1.5 x 10
m) to the Bohr radius of hydrogen atom (5 x*1@n). Because of the special features of metals, it has

to be assumed that the outer electrons (valance electrons) of atoms of metals are free to move randomly,
just as the molecules of a gas. These electrons are dedle@lectron’s and their aggregate in a given

metal is called anelectron gas These electrons are free to move throughout the lattice and do not
belong to any particular atom. For a monovalent metal, the number of free electrons in a given volume
is equal to the number of atoms in the same volume. In the absence of an electric field, the random
velocity due to theig-zag motions determined by the absolute temperature with defovelocityin

a particular direction.

Q 4.1 Discuss classical free electron theory of metals and obtain the expression for electrical
conductivity.

Answer. The free electron theory of metals using classical laws was develo@rddsyandLorentz

in the beginning of the last century where the valance electrons in metals were regarded as the non-
interacting particles of an ideal gas. The only difference is that electrons are charged. If we assume that
the kinetic theory of gases can be applied to the free-electron gas, thaot thean square velocitf

the electron is

KT

=\ (Q 4.1.1)

wherek, is Boltzmann's constardandT is absolute temperature. Refer Fig. Q. 4.1.1(a).

Thus Dﬁ

Let us now sound the system with an external electric field. i.e., the given copper rod of uniform
cross-section (say 1 sqg. m) is subjected to a field of strength E applied in the direction as shown in Fig.
Q 4.1.1(b). The possessive nature of the electrons is now suppressed. The random motion is discouraged
and the charged electrons prefer to hausidirectional motiorin a direction opposite to the direction
of the applied electric field as sketched in Fig. Q 4.1.1(c).

@
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Fig. Q 4.1.1 (a) zig-zag motion (b) Drift in a field

Now it appears reasonable to expect that the free electrons will bump into a cation of the lattice
from time to time. Let the average time between such collisionts $&c. Immediately after a collision
we further suppose that the velocity of the electron averages to zero; that is to say, the electron has no
memoryof the momentum acquired from the field and thatheymal velocityaverages to zero. In a
time T sec the electron will attain a velocity given by:

Vy = ar
. . . . eE
Herev, is calleddrift velocityand the magnitude of = —
m
Thus
Vy = —e_ET 4 l 2
d - (Q 4.1.2)

Usually the termg is replaced byu called themobility of charge carriers, or defined as tht
m

velocity in unit field
Thus

Vg = —HE (Q 4.1.3)

If nis the density of electron anck4s the charge of the electron, then charge flowing through unit
area for one sec (or tl@rrent densityJ (in A/m?) is

J=—-ney
Substituting forv, from Eqgn. (Q 4.1.2), we get,

:nezEr

Jx - (Q 4.1.4)

Thus theelectric conductivity o = — is:



Theories of Metals and their Limitations 99

Jx _neT
E m
. ner m
ie., o=——orp=—s
m ne’t
1
Also 0 =neu andp = — (Q 4.1.5)
neu

In a metal, when temperature increasessmains constant, byt decreases dattice scattering
increases and therefore conductivity decreases.

Q 4.2 Discuss with a simple theory, the temperature dependence of the electrical resistivity of a metal
(say copper).

Answer. Let us consider a copper rod of uniform cross-sedisq. m and length (say 1 m) and

totally free from the influence of the external electric field. The free electrons have now the liberty of
receiving thermal energy (of the ordeT ) from the atmosphere in all possible directions. The result is
the zig-zag motiorfor the electrons and will be in thermal equilibrium. Kigetic energyassociated

with the electron is:

—mc —l;’ kT (Q 4.2.1)

When an electric field is applied, the electron will acquire a drift velaniythe resulting acceleration

is, a = eE . The drift velocityis small compared to thrandom velocity € . Further the drift velocity
m

is not retained after a collision with an atom because of the relatively large mass of the atom. Hence just
after a collision the drift velocity is reduced to zero. Ifithesan free patls A , then the time that elapses

before the next collision takes placeérs Hence the drift velocity acquired just before the next collision
c
takes place is,
i . eE( A
u = acceleration x time interval =1z

The average drift velocitys:

Vad (Q 4.2.2)

If nis the number of electrons per unit volume and hence the current flowing through unit area for
unit time is
3kgT
2 2mc m
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of °TE Tome fiamigT
_J2mig T
pri (Q 4.2.3)

It was assumed by Drude and Lorentz thats independent of temperature and that it is of the

order of interatomic distance. Alsp [ ﬁ. This means that the specific resistance of an electric
conductor is directly proportional to the square root of the absolute temperature. This is not in agreement

with the experimental observation that T .

Q 4.3 Outline the important drawbacks of the classical free electron theory of metals bringing out the
bad assumptions made while explaining them.
Answer. (i) Molar electronic specific heat

In many solids the most important types of internal energy are (a) the vibrational energy of the
atoms about their mean lattice positiarzd (b) the kinetic energy of the free electrons. The kinetic
energy with one kmol of a monovalent metal is:

1 MN 4 3
U==-mc"Np= KgT/m==—RT
> A= (3kgT/m) 2 R
The molar electronic specific heat is:
du
Cie =7 = 15R, = 125 16 J/kmol/K (Q 4.3.1)

This value of 1.8 is about hundred times greater than the experimentally predicated value. Our
assumption that all the free electrons make contribution to the specific heat may be wrong and hence to
be corrected.

(i) Computation of mean free path
The microscopic relation for the resistivity of a metal is:

m
p=—5—;0rT7=

ne’r ne’p

For coppern = 8.5 x 16%/m?® and p = 169x 10°Qm
Thus
9.1x 103

T = X =247x 10 sec
85 x 1028><(16>< 1019) x 16X 18

A=TC=247x 10%x 1154« 10= 285 IBmetre
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(Q 4.3.2)

The experimentally found value far is about ten times greater than this value of 2.85 nm. Probably
the application of Fermi-Dirac statistics (instead of classical statistics) to the free electrons in metals

may help us to explain the difference in the valueg of

Q 4.4 Obtain the expression for the thermal conductivity of a metal in terms of well known microscopic
parameters. Get Wiedemann-Franz law and Lorentz number.

Answer. The following figure shows the view of a copper rod of an appreciable length in the steady
state with a cross-section 1 sq. m.

T+ (ﬂ—]/\ - d—T A
ax ax
Steam ——»p
—> A B C
Heat
flow

U‘E + (3_5)/\ £ E- (Z—f)/\

Fig. Q 4.4.1 Flow of heat through a copper rod at the steady state

. d
The excess of energy carried by an electron from A to ﬁ?,a%})\ . Hence the excess of energy

transported by the process of conduction through unit area in unit time at the middle Iafyj%éB{lsj—E} .
X

Similarly the deficit of energy transported through B in the opposite direct%n&s& [3—'1 assuming
X

(—Sné is the number of free electrons flowing in a given direction through unit area in unit time.

Thus the net energy transported through unit area in unit time from A to B is:

1 _.|dE 1 _|dE ncA ( dE\( dT
—NCA|— |——=nCA|— |} = —| —= || —
6 dx 6 dx 3 \dT /L dx

dT) ncA dT
or (&j = % [c.], (&j (Q 4.4.1)
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E / .
Knowing [SI_T} = [C\,]eI = g kg (with respect to one electron) aigd= 3knB1T and equating the

above value with the general expressiontifi@rmal conductivityone gets

[dT} _nA [BkB}[ /3kBT](de
or|—|=—|—= —
dx 31 2 m dx
A
or o; = (” 2"5) ,/iniT (Q 4.4.2)

The general expression for electrical conductivity is:

_ néA

J12mkg T

k 2
e. I - 3(_3) T (Q 4.4.3)

o e

2
This is known a®Viedemann—Franlaw and the multiplying constam(ﬁj is calledLorentz
e

number(L).

Example For copper at 20°C, the thermal conductivity and electrical resistivity are respectively 386 W
nK-tand 1.7 x 1& Q m. Computation of Lorentz number is done as follows:

_ o; _ogp _386x17x 108

- =226x 10°8
oxT T 293

L=226x 10°WQ K™ (Q 4.4.4)

This value ofL does not match with the one calculated using the RHS of Eqn. (Q 4.4.3). This is
another failure of classical theory.

Q 4.5 Get the standard expression for the density of energy states using Fermi-Dirac statistics.
Answer.  Some of the results of wave mechanics discussed earlier combinégmitiiDirac statistics
may help us to over come the difficulties arised in the classical treatment of free electron theory of
metals. In order to account for the unexpectedly low specific heat compared with the one predicted by
classical theory and also the unacceptable values of mean free path of electianmemmanumberit
was assumed that the free electrons obey Fermi-Dirac statistics and not the classical one. Such particles
are then calleétermions

If N(E) is the number of electrons in a system that have eg@ydZ(E) is the number of energy
states have enerdy then the number of electrons having energy values lying betvaedE + dE or
in the energy intervalE is:
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N (E) dE = Z(E)dE F (E) (Q 4.5.1)

: 1
with F(E) =
(E) 1+ exp[(E - E)/kgT]
This Fermi functionis unity at 0 K.

The number of energy states with a particular energiegends on the number of combinations of
the three quantum numbers n, n,to give the same-value.

n,
A

E+dE

Fig. Q 4.5.1 Density of energy states calculation

Let us now draw a radius vecto(from the origin) to a poim,, n andn, such that all the points

on the surface of the sphere with | nﬁ + nf, + nz2 will have the same energy value. This reveals that

a unit cube will have only one energy state. Hence the number of energy states in any volume is just
equal to the volume. Hence the number of energy states having energy values lying Betnger
dE, or in the energy intervaE with respect to the sphere is:

_1(4m 3 _n
Z(E)dE = g(?j[(n +dn)’ - | = it (Q 45.2)

1 . .
The termé indicates that only in ongctantof a sphere, all thguantum numbers will be positive.

The general expression for thscrete energy values from Eqgn. (Q 3.8.6) is:
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E =

n’h?
‘n

2_ 8ma2 E

8ma
and

2
2ndn= |:8ma

2!

h2

h2

}dE; (or) dn= >

;andn =

(Q 4.5.3)

Substituting these values in the expression (Q 4.5.2)
for Z(E)dE and then simplifying, one gets

[ ema? |*
Z(E)dE=Z|: = } E” dE

Effecting Pauli's exclusion principlehe effective number of states available is:

7 [ema? |*
Z(E)dE:ZXZ[ e } E” dE

or Z(E)dE:g

» 1%
[Bma } E% dE (Q 4.5.4)

h2

Now the number of energy states in one cubic metre having energy values lying ietveeg
+ dE) (or in the energy interval Jis calleddensity of energy statesd it is given by:

%
Z(E)dE= g [%"} E% dE

(Q 4.5.5)

Q 4.6 Bring out the general equation for computing the Fermi energy of electrons in solids at zero
degree kelvin. Show that the mean energy at 0 K ist{&5he Fermi energy.

Answer.  The actual number of electroNgE)dE in the given energy intervdE is:
N(E)dE = Z(E)dE F(E)
AtOK,FE)=1

Thus

2% Ee
{B:Za} J'E%dE
0

8m %
ie. N :g[ a } E-% (23 (Q 4.6.1)
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Now the number of electrons in unit volume is:

%
n=—=> [—} Ep’2 (Q 4.6.2)

3n 1%
or Er= > [8_7'[} = 0.584 x 167 x n?® joule

_ n®%x0584x 10%

eV
16x 10%°

ie., Er =365x 10%x n% eV (Q 4.6.3)

Mean energy of the electron gas @tk
To do thisproposition, one must get the total energy using the equation,

Uo = [Z(E) F(E) E with F(E) = 1

3
Bo =2 Er (Q 4.6.4)

Example Aluminium is atrivalaent metalith 6 x 168 atoms in a cubic metre. Find the mean energy
of the electron.

Formula usedE_ = 3.65 x 10" x n??
3= (18 x 168?° = 3.19 x 1&
E =3.65x10°x 3.19 x 1€ eV
E =1leV

The mean energy of the electron in this metal is:

_ 3 3
E,=2E. =2x11
°"5F 5
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Q 4.7 Discuss Fermi distribution with the help of suitable graphs and arrive at the expression for the
heat capacity of the electron gas and compare it with the classical results.
Answer. The probabilityF(E) of an electron occupying particular energy level is given by:

1
[l+ exp(E - E,:)/kBT]

F(E) = (Q 4.7.1)

Conclusions

1. At 0 K and forE < E, the functionF(E) attains the value 1.

2. At 0 K and forkE > E_, F(E) becomes zero. This means at absolute zero, all the quantum
states abovE,_ are unoccupied while the quantum states belpar& occupied. This means
the Fermi level is the highest energy level for the free electron to stay at 0 K.

F (E) T=0K F(E)
! ! T =0k
T T > 0K
T T 5 o
0 —» E E. 0 E. —» E
Fig. Q 4.7.1 Variation of Fermi distribution at different temperatures
3. TheFermi functionplot at a temperature greater than zero (say 300 K) shows very little
change from the Fermi plot at O K. It is now very clear that Bgdf(E) begins to fall and
F(E) :% atE = E.. So Fermi level is also known as the level at whichptiedability of
o1
occupation |sE .
4. Fermi temperatureand Fermi velocity(T_ andv,) are two familiar terms referred in the

literature. They can be easily computed for any monovalent metal. Here it is done for copper
with one valence electron. The given data is the Fermi energy of cépper7(eV).

2E, _\/2>< 7x 16x 10%°

1
)y — \/2: : =
O 3Me =B =y 91x 107"

ie., Vg =157 10 ms
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(i) kg T = Ep

19
_Be _7x16x107 _g1000k

or T. =
F 7 ks 138x 1023

T, = 81000K

Heat Capacity of Electrons

The difference here is that the electrons very near to the Fermi level alone are agitated at 300 K (unlike
in classical theory) and then move to the excited empty states and make their contribution to the specific
heat. Thus the fraction of electrons that will be excited at 300 K is given by,

kgT _ 0.025
Er

=0.005= 05%

This result tells us that at ordinary temperatures, less than 1% of the valence electrons alone contribute
to the heat capacity. This result is sharply in contrast to the classical inferences where it was assumed
that all the electrons would absorb energy, and contribute to the heat capacity. Each of the electron may
absorb a kinetic energy of the order (8/Z) Hence the energy associated with 1 kmol of the metal will

’ oouf e

[C], = Z—g = 3R, {%} = 3R, (0.005 with E. = 5 eV andk,T= 0.025 eV
F

Thus

[C/],, = 0.015R, (Q 4.7.2)

This value of 0.018, well agrees with the experimental value. However, at low temperatures, the
lattice contributionis small and falls a§ ® and theelectronic contributiorbecomes significant.

N: B Can you discuss the above problem at higher temper&tures

Yes. The mean energy of the electron at higher temperatures is given by the equation,

E =E 1+5—7T2 keT 2
=E 12 | E, (Q 4.7.3)

JE _ E,5m°2T

Thus [CV]eI = ﬁ_T 12

(k8/Ek) with E = g’ Er



108 Rudiments of Materials Science

Thus for a monovalent metal, theat capacity per kmol of the metal due to free electron is:

[C],= {g} (kg Na) {%} with E, =k T,

F

_RIP| kT |_m?| T |, _
[C].= T {ﬁ} = 7{?} R,= AT (Q 4.7.4)
ForE. =5 eV andl = 300 K
_ 1 [0025
[Cla=7% [T} R
ie., [C.],, = 0.025R, (Q 4.7.5)

This value is much higher than that at 0 K, but fairly agrees with the experimental values.

Q 4.8 Onthe basis of guantum mechanical considerations, obtain the expression for electrical conductivity
and then compute the value of mean free path.

Answer. Inthermal equilibriumthe valence electrons obeying classical free electron theory do random
motion with no preferential velocity in any direction. It is now conveniently plotted the velocities of
these free electrons in velocity space wijtlas the maximum velocity that an electron can assume. i.e.,

v, is the actual value of the velocity of the electron at the Fermi level. The shape\haasng radius
represents, theermi surfaceUnder normal conditions the origin and the centre of the sphere coincide

so that the net momentum is zero. When the electrons are accelerated by an electric field, motion in the
direction of the force is favoured. The wh&lermi spherds then moved from the origin and move
steadily further as time proceeds. See Fig. Q 4.8.1.

_ | nk -
For a free electron, V= y rmv=nk (Q 4.8.1)
Now % = h% =e E
dt dt

This is the equation of motion of each electron inReemi surfaceunder the influence of the field

i.e., dIZ:GIEdt

Integrating
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T Displaced Fermi sphere
immediately after electric
field is turned off

Fermi sphere in
thermal equilibrium

Fig. Q 4.8.1 Fermi sphere in (a) absence (b) presence of electric field

Thus if the electric field is applied at a titne 0 to a filledFermi spherecentred at the origin of —
space in the characteristic time,

A
T=Tg = —VF the sphere might have moved to a new centre at
F

p
e EAE ith 7, = 2F Q 4.8.2)
VE VE

AK =

A steady current is ultimately reached with,

- | nennk -
J=neAv=|—-—|=0E [Refer Eqn. Q 4.8.1]
m
with m* is the effective mass of the electron
EA -
or neh | < Fl=0gE
AVEM

2 2
_ A
ie., o=1C" NIk (Q 4.8.3)
m Vg m

Example If the effectivemassof electron in copper iBT = 1.01m and the electric conductivity of
copper is 5.76 x T@hnr*nr*with E_= 7 eV, the Fermi mean free path is now calculated as given below.
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or

Formula usedTr = >

m xo _101x 91x 10%x 576« 10

5 =24 x10%sec
ne 85x 10°x (16x 10"

%mv,%: E-=7x16x 10%
v =155x% 16 s
TF = —

F

Ap=VpTp =24%x 10 x 155« 16= 378m

A =37.8nm (Q 4.8.4)

This value agrees with the experimental value fairly well.

Q 4.9 What are the sources of resistances in metals? Explain Matthiessen’s rule.
Answer. The special features of metals with regard to their conductivities are summarized below:

1. The current density in the steady state is proportional to the electric field str@hgtfs (

law)

. For pure specimens, the electric conductiyity and the thermal conductivityo ) vary

with temperature as follows:

o 0Tt ando; = constant forT > 6

or .. ,
so that TT is independent of temperature (Wiedemann-Franz law); and

g %

o O0T™ and o; O T2 for T < 0, Where 8, is the characteristiDebye temperature

The relationp 0 T° is known asBloch-Gruneisen law

. The resistivity of some metals becomes zero at very low temperatures near absolute zero (e-

g) mercury, aluminium, lead, etc. These metals are csillpdrconductors.

. The resistivity of metals having trace of impurities, the total electrical resistivity is given by

the equation,

p=po+ pp(T) (Q 4.9.1)

where p, is a constant that increases with increasing impurity content%rﬁﬁ) is the
temperature dependent part of the resistivity. This is knoviviadthiessen’s rule

5. For most metals electrical resistivity decreases with increase of pressure.
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6. The resistivity of alloys that exhibit order-disorder transitions shows pronounced minima
corresponding to order phases.

Impure
metal Pure
metal
P p=po+ pp(T)
pp U T
Py (Scattering
by phonons)
Residual
Po ‘
resistivity
Po (Scattering by
impurities)
y
0 —> T

Fig. Q 4.9.1 Sketch showing the variation of electrical resistivity with temperature

Q 4.10 Study Wiedemann-Franz law using quantum mechanical principles. What is the corresponding
equation for computingorentz numbér

Answer Refer Egn (Q 4.4.1)
ncA

Ir =75 e

Remembering quantum mechanical approach and substituting forffom Eqn. (Q 4.7.4), we

get,
CnVeAe | [k T _ 1
o = — kg | with Ep ==
T3 { 2 { Er | ° Py

The expression for electrical conductivity from Egn. (Q 4.8.3)

_neéfAr _ née’rg

m Ve m
i.e.,
Thus the quantum mechanical formifedemann-Franz lavs:

or (kg Y
- [?](?) T (Q 4.10.1)
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andLorentz number

T oxT 3

2
—j =245x 108 WQK ™2 (Q 4.10.2)
e

or _ nz(kB

This is an acceptable result compared with the one predicted by classical theory; also well agrees
with experimental values.

Q 4.11 What are the drawbacks of quantum free electron theory of metals proposed by Sommerfeld.
Author a small note on anomalous expansion of water.

Answer. Sommerfeld theory assuming the free electrons as a Fermi gas provides amazingly good
predictions of the properties of alkali metals and some monovalent metals such as copper, silver and
gold.Richardson-Dushmagquation othermionic emissiois obeyed well. The reasons for the unexpected
value of specific heats of the said metals predicted by classical theory are explained very well here. But
the interactions between electrons and the ion cores are of transcendent importance for a qualitative
understanding of other metals and of alloys. This theory also failed to explain why some solids are
metals and others are semiconductors and insulators. Another interesting feature is that the electronic
contribution to magnetic susceptibility is about 1% of the predicted value. The other major shortcomings
of the free electron theory are its contradiction of results from experiments which determine the sign of
the conductors or shape of thermi surface Many metals give results which suggest positive charge
carriers-a result in flat contradiction with free electron theory. In addition the Fermi surface turns out to
be non-spherical even in the case of arachetypal metals like copper and aluminium.

The other plus point of this theory is that it provides a basis for the understanding of the effects of
the uncertainty and exclusion principles in metals. Indeed the system which describes electron behaviour
in terms of wave number space (the Fermi space) is essential to study the more advanced theories on
free electrons.

Anomalous Expansion of Water

In majority of liquids, the increase in temperature produces an increase in volume of the liquids but
water is anotableexception. The expansion of water is so markedly irregular that even ordinary laboratory
methods can detect the anomaly. In the case of water, fi@MOQGPC, instead of expanding, actually,
contracts, from % upwards it expands, far from uniformity. In the rang@ & 10C, thecoefficient

of expansions only 0.53 x 18, where as in the range of®Dto 40C it is 3.02 x 10 * and between

60°C and 80C, it is 5.87 x 1&. Hence for a given mass of water, the volume is minimum or density is

, _ . .dv .
maximum at &C. In other words, in the expression for the volume coefﬁu%ﬁt, is negative for

temperature less thafCland positive for temperature greater tha@. 4

\Y
At 4°C, o7 = 0. This means that the specific volume decreases first, reaching a minimum value at

4°C and then increases; it is evident that the density curve will follow an inverse path, increasing from
0°C to £C where it reaches a maximum and then decreases. It may be noted that the curve is not linear
and hence the expansion is not uniform even beytdihisanomalous behaviowf water has been
explained on the assumption that the three types of water molecy@&s(HO), and (HO), which

have different specific volumes and mixed in different proporations at different temperatures, so that the
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maximum density at°€ is probably due to greater proportions of the higher types of molecules. The
result is, water at°€ sinks to the bottom. A clodeokismof this wonderful behaviour of water on
either side of 4C reveals thdilaturehas bestowed this special property to water to enable aquatic life to
survive even during severe winter.

1000

999.9

999.8

Density of water in kg/m®

999.7
0 2 4 6 8 10

Temperature in °C

Fig. Q 4.11.1  Anomalous expansion of water

Q 4.12 Discuss the potential experienced by electron in a perfectly periodic lattice. Explain Kronig-
Penney model to assess the behaviour of an electron in a periodic potential.

Answer While discussing free electron theory of metals, it was assumed that the conduction electron
in a metallic crystal experiences a constant (zero) potential, i.e., it is completely free to move about in the
crystal. This assumption does not seem to be reasonable.

Potential

/\ energy

AN

lons

Fig. Q 4.12.1 Potential experienced by electron in a perfectly periodic potential

Even though botDrude andSommerfeld theories explain many important properties of metals, it
fails to explain a number of other properties such as the presence of energy band, effective mass of
electrons, etc. Further the working of semiconductors do not find any explanation from this theory. The
shortcomings of the Sommerfeld quantum theory are on account of the over simplified potential. A
more reasonable approximation of the potential experienced by an electron in passing through the crystal
is one which is perfectlperiodic with the period of the lattice. This is shown in Fig. Q 4.12.1. At
smaller distances from the nuclei, the potential energy of the valence electron will be low while the
kinetic energy will be high. As the distance of the electron from the ion increases, its potential energy
increases while kinetic energy decreases. Between neighbouring ions, the potential energy variation of
valence electron is also shown in Fig. Q 4.12.1. gdéwiodicity characterof the potential extends to
infinity in all directions inside the crystal. At the surface of the crystal, the potential is interrupted and
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look some what as shown at the edges of the above figure. This is because there are no ions to reduce
the potential again.

Kronig-Penney Model

With the sinusoidal type of potential inside the crystal as shown in Fig. Q 4.12.1, the Schrédinger
equation is not easily tractable. So Kronig and Penney introduced a simpler model for the shape of the
potential variation. The potential inside the crystal is approximated to the shape of rectangular step as
shown in Fig. Q 4.12.2. The potentials in the different regions are defined by
V=0 when0O<«<a

and V=V, when-b<x<0

Electrons moving in a crystal are not really free, but must be influenced to some degree by the
periodic potential of the atoms in the lattice. In this model, the potential energy of electron moving in a
one dimensional crystal lattice, is represented in the form of rectangular weNgxyithO for 0 <x<a
andV(x) =V, for — b <x < 0. Although this model is highly artificial yet it illustrates many of the
characteristics features of the behaviour of electronpariadic lattice. The wave functions related to
this model may be obtained by solving Schrédinger equation for the following two regions:

5 _
d_‘é’+ Z_T}szofor0<x<awithV(x):0
dx L7
and
d? 2m]| .
d_xLéIJr[h_z (E—Vo)ll/=0 for — b <x < 0 withV(x) =V,

Let us now define the real quantities;

2 2m
= hz

E and,BZ:i—rzn[Vo— E]

Thus the two equations with the conditions said above are:

2
IY a2y =0 (Q 4.12.1)
dx
2
and ZT%' -B*Y=0 (Q 4.12.2)

Bloch has shown that the solutions are of the form:

W = uy (x) exp(ikx) (Q 4.12.3)
whereu,(X) has the periodicity of the lattice, so that
u(X) =u(x+a) =u(x +na) wheren is an integer anil the wave number is:

2m_p

A h
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-b 0 a a+b
Fig. Q 4.12.2 Kronig-Penney model of potential

The common solution applicable to both the equations (Q 4.12.1) and (Q 4.12.2) suggested by
Blochis:

Y (x) = uc (%) exp(iky
whereu,(X) is a periodic function ix such that
u(x) =u(x +a) =u_(x+na) wheren is an integer.

It turns out after some tedious manipulation with the wave equation, that only those vélaes of
allowed which satisfy the following equation:

ﬁZ_ aZ

sinhfb sinca+ coslfb co8b= cdg a+ b (Q 4.12.4)

A fruitful discussion of this equation and arriving at useful results is not very easy. Hence Kronig-
Penney suggested that whéntends to infinityb approaches zero in such a way that the prodyrct

remains finite. Under such a situati@nhf — Bb andcoshBb - 1 asb - 0. Now Eqgn. (Q 4.12.4)
becomes

BZ_ aZ
b| ——— | sinaa + cosra= coda 2.
B[ 205 } (Q 4.12.5)
2 2 2m
But B -a :h—[VO—E+E]
2mV, sinaa
ab + coso a = coka

[ e }( ) 1a (Q 4.12.6)

m\pab|( sina a
> + cosaa = coka
h aa

sina a
aa

or P + cosma = coka (Q 4.12.7)
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m\, ab
hz

where P =

Since V tends to infinity, the quantity is a measure &f b which is the area of the potential barrier.
The physical significance &f is that as it increases, the area of the potential barrier increases. i.e., the
electron is bound more strongly to a particular potential well. Viftends to zero, the potential barrier
becomes very weak. i.e., the electron becomes free. Equation (Q 4.12.7) will be satisfied only for those
values ofga for which the left hand side lies between + 1 and —1. Such valugs afone will give a

. . . . Psina a .
solution for the equation obtained by Bloch (Eqn 4.12.7). In Fig. (Q 4'1_2'_?a_ +coxra is

plotted againstra for P = g . The part of the vertical axis lying between horizontal lines represents the

_sinaa _ .
range acceptable to the left hand s{d%w + cosa aJ . The abscissara is a measure of energy,

2mE
becausex? = 2 By finding the value otra at any point, the energy represented by the function at

that point is calculated. The following interesting conclusions are being drawn:

4 Psinaa
aa

+ cosaa

— » aa

. Psina a
Fig. Q 4.12.3 Plot OfT + cosya versus aa

1. It is very clear from Fig. (Q 4.12.3) that the energy spectrum of the electron consists of
alternate regions of allowed energy which are drawn heavily and unallowed energy which are
shown by white portion in between. These regions are called allamgeébrbidden energy

bands The boundaries of allowed rangesaa corresponds to the values ebska = =1 or

n
ka= nm, k= _r[.
a
2. As the value ofo a increases, the width of allowed energy band also increases while the

width of forbidden band decreases.
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3. Itis known that P is a measure of phetential barrier strengthlf P is large, the function
described by the left hand side of the Egn. (Q 4.12.7) crosses + 1 and —1 region at a steeper
angle; hence the allowed bands are narrower and the forbidden bands are wider. Also in
equation (Q 4.12.7), whemra = +nm, cosa a= coka with again ka=+nm, or

nit
k= i? . These values & arepoints of discontinuityn the € —k ) curve for electron in
the crystal.
4. The energy spectrum in the two extreme cases using Eqn. (Q 4.12.7) can now be discussed.
(i) When P - o, Eqgn. (4.12.7) will have a solution only when gan = 0.
or

o a = = nm wheren is an integer.

Now
nm ,_ n’m? _2mE
a=x—ora°= > = 7
a a /i
2. 232 21.2
n“mh n<h
or E = ;or 4.12.8
2ma’ 8ma’ Q )

The conclusion is that the energy is independerit dthe energy levels in this case are
discrete and the electron is completely bound. It will be well within the potential well and
moves only in the cell of width.

(i) When P - 0, we have

coska = cosaa

2mE
or a®=k?= 52
21,2 2 2
e, e=tlc . I (27") Q 4.12.9)
Y1 _h?(p?)_p®> _1
E = [%J? = [F == Emv2 (Q 4.12.10)

This energy corresponds to a completely free particle. No energy level in this case exist. i.e.,
all energies are allowed to the electrons.

Q 4.13 Discuss the features of (— k) curve. What are Brillouin zones? lllustrate your answer by
constructing two Brillouin zones for a square lattice.

Answer. Equation (Q 4.12.9) gives ak (k) curve which is parabolic one, as shown by the dotted
line in Fig. Q 4.13.1 while an electron acted on by the lattice potential of a crystal tias lgnc(rve
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shown by the solid lines. Near the energy gagsaat + nrr, the solid lines deviate markedly from the

parabola

When k = + 27 , Egn. (Q 4.12.10) gives the free electron energy.
a

_ h2n27_[2 _ n2h2

E -
2ma’  8ma’®

i.e.,

(Q 4.12.1)

which is exactly the same as the equation for a free particle in the potential well problem. If the size of
the well is replaced by the distance between the atoms, say 0.3 nm, then the Eqn. (4.13.1) becomes

AKE
E~K
\ Bands and gaps
1
1,
v,
N N N N N
o [a] m o 7 o
2 17, % g2 |/ =z Eg.
N — — N 4 ™ A4
II
V.
Eg,
N =7 y
,
-3 -21 - 0 m 2 3
a a a — P>k a a a

Fig. Q 4.13.1  The (F - k) curve for nearly fee electron

E = 4n’eV

(Q 4.13.2)

The inference is that beyond few discontinuities in Ehe K) curve, the electrons energy becomes
very large and we are not usually concerned with them. The regions between the energy discontinuities
are calledBrillouin zonedabelled 1 Brillouin zone, 29 Brillouin zone, etc. as shown in Fig. Q 4.13.2.
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1st zone
| | | | | | |
Sm 2m om0 mo2m sm
a a a K a a a
N N
2nd zone

Fig. Q 4.13.2 The first two Brillouin zones in a one dimensional case

Brillouin zones in two dimensions
In general, the condition for any energy discontinuity is

nrt
k=t (Q 4.13.3)

The corresponding condition for the two dimensional case is:

m
ke + kynp = " (nf+ nzz)
wheren, andn, are integers referring to each of the axes. To sketch the firstrzcaedn, are made

equal in turn to+1, or 0. The equations giving the borders of the first zone are:

n, =+1, n,= 0giving k = i%

m =0, n,=x1giving k, = ig

i.e., a square passing through the points A, B, C and D givefirsh@®rillouin zone The second
Brillouin zoneshould naturally pass through the points P, Q, R and S. To get the sketch of the second
zone, we must use the next set of integers above those used for the first zone.

- 2
ie., n =+1,n,=+1giving k, + Kk, = n
a

n =-1,n,=+1giving - k + ky:%'[

m =+1,n,=-1giving k- k = 2n
a

m =-1,n,=-1giving -k, - k= 2n
a
The above four equations describe a set of four lines’# 4i5ek andk axes passing through the
points P, Q, R and S. This means the second Brillouin zone is the area or region between P, Q, R, S and
A, B, C, D. Similarly the third Brillouin zone may be obtained by givp@ndn, values of 0,+1,
and +2.
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3 3
2
Bl
a
3 3 |2m
i_z - 1st — 2 — a K,
=13 2
a -
a|D
2
3 3
=21 | S

a

Fig. Q 4.13.3  Brillouin zone for a square lattice

Q 4.14 Write a note on effective mass approximation of electrons.
2

h
Answer. For a completely free electron, the kinetic enekgy. = Zp_ with P = 5 or nk . The
m

2,2

(E—K) curve is the parabola witk = . Obviously the latter equation does not apply to the heavy

curve of Fig. Q 4.13.1. This problem may be discussed introducing the coneffectiffe masan'.
The concept of effective mass is freely and widely used in physics of condensed materials. When a free

. . e . ___eE
electron is subjected to an electric fieid, it experiences an acceleratian= - — . However, when
m

the external electric field is applied to solids say a metallic crystal, only completely free electrons, if any,

have an acceleratioﬂe—E . For example a copp#&relectron is so tightly bound to its atom that it is not
m

accelerated at all; iteeffective masss infinite. For an electron which is not bound to any single atom,

Newton’s second lawives ma = - eE + forces due to neighbouring ion cores and electrons. These

latter forces we do not know quantitatively, but we can transfer our ignorance to the left side of the
equation by writing,

ma=-eE (Q 4.14.1)

wherem' is the effective mass.
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Q 4.15 Explain the variation of electrical resistivity with necessary equations under mechanical stress.

Answer. The application of mechanical loading produces changes which play a vital role in
electromechanicatansducersWe know that

|
R=p—
Pa

R _do di_dA

R-p T A (Q 4.15.1)

i.e.,

However, the resistivity itself is also affected by changes in dimensions. We know that

[ {2Jere

do _dc dA dn
i (Q 4.15.2)

If N is the total number of electrons in the specimen of lehgtid area of cross-section A, then

N
n=—
Al
dn_dN _dA_dl 4153
or = N A I (Q 4.15.3)

Thus Eqgn. (Q.4.15.2) becomes

do_dc_dr _dN dA_dl 4154
p ¢ A N A | (Q 4.154)

This total relative change in resistivity is partly due to a change in intrinsic resisévjtyssociated

with changes in the average electron velo@tythe mean free path and the total number of electrons
N; and partly due to changes in dimensioné&aind | Thus Egn. (Q 4.15.1) becomes

d_R:%-}-Zﬂ

R p | (Q 4.15.5)

Thus an increase in the length of the conductor, not only increases the distance to be travelled by the
electrons but also decreases the number of electrons per unit length. This is the double effect of a

changein Iengthqll—I is the tensile strain in the direction of the flow of current and it is usually represented

by &.
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, dR o _ .
It has been found experimentally thapt!— varies linearly withé, over a considerable range of
strains, an indication that if it varies at afl, varies linearly with&,

dR
Thus R = eyt E4= £4(C+2)

dR . .
or — = G¢&, whereG_= (c + 2), a constant calleghuge factorandc is calledBridgeman constant
R S

dr
ie., G = gﬂ (Q 4.15.6)

X

Electrical Strainometer

The bonded electrical resistance wire gauge is commonly used for measuring strains. The strain gauge
is either a grill of fine wire attached to thin sheet of paper or a maze of fine material deposited on a thin
plastic sheet. These gauges have the materials of high electrical resistance. These strain gauges show
variation of resistivity when subjected to a varying force or mechanical stress. The sensitivity of the
strain gauge is determined by the gauge fa€fowhich is a measurement of the amount of change of
resistance for a given strain.

_ . _dRR
l.e., X dl/l

The features of a good strain gauge are:
(i) high gauge factor to get more resolution
(i) high resistance material
(i) low temperature coefficient
(iv) linear relationship between strain and resistance
(v) no hysteresis

V]

Fig. Q 4.15.1 A strain gauge
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Nickel and Chromium in the ratio 8 : 2 known as nichrome is the popular strain gauge material. The

resistivity of nichrome is of the order a0 °Q m; the temperature coefficient of resistance is 1. The

Bridgeman constar(t) and Poisson’s ratito) are 1.13 and 0.3 respectively. The gauge factor is 2.05.

|||:V

)
Signal voltage

v

S

Fig. Q 4.15.2  Circuit of a strain gauge

Fig. Q 4.15.2 shows the circuit of a strain gauge bridge to measure stress directly. The strain gauge
is firmly attached to the body on which the stress is to be determined. The strain gauge forms one arm
of the Wheatstone’s bridge PQ. To compensate temperature variations, an identical strain gauge should
be attached to the same body where opposite strain occurs. This forms the arm QR. Two identical
resistors are used in the other two arms. When no force is applied to the bodgetitstone bridges
balanced and hence there will be no signal voltage: when the body is subjected to stress, resistance SG
changes resulting in unbalanced condition. This produces signal voltage. This voltage is a measure of
the stress in the body. These voltages can be calibrated in terms of stress. Then one can measure stress
directly using this bridge circuit.

Q 4.16 Write a note on selection of electrical engineering materials.

Answer,

0O ~NO O WN P

The choice of conducting materials depends on the following factors:

. resistivity of the material

. temperature coefficient of resistance
. resistiance against corrosion

. oxidation characteristics

. easy in soldering and welding

. drawability/rollability

. mechanical strength

. flexibility and abundance
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9. durability and low cost
10. resistivity to chemicals and weathers

Conducting materials are broadly classified into:
1. Low resistivity materials-copper, aluminium, steel, etc.
2. High resistivity materials-tungsten, platinum, etc.
3. Metals with zero resistivity are called superconductors

Low Resistivity Materials

A low resistivity material such as copp(ep =12x10'Q m) must possess low temperature coefficient

resistance to avoid variation in voltage drop and power loss with changes in temperature. These types of
conducting material should possess sufficient mechanical strength to withstand the stresses in transmission
lines. Mechanical stresses are common in generators and transformers when loaded. Over head
transmission is another area where stress is common. Ductility is another preferred property as they
have to be drawn into different sizes and shapes. Conducting materials should be such that they are not
easily corroded or rusted without insulation. Conductors are required to be jointed very often. The joint
should offer minimum contact resistance. The two metals aluminium and copper possess the above said
properties though the degree of the properties of aluminium are different from that of copper. Cost wise
aluminium is much cheaper than copper.

High Resistivity Materials

The materials should have high resistivity. They should have high melting point and low temperature
coefficient of resistance. They must not undergo oxidation even at high temperatures. High resistivity
materials are used as heating elements, resistance thermometers and for manufacturing precision resistors.
Tungsten, Platinum and Nichrome are some examples.

Q 4.17 Discuss high frequency conduction in metals and show that the frequency dependence of the
conductivity is given by:

- astatic

O-(A)
1+ w?T?

Answer Alternating electric fields differ from static fields in that they do not penetrate uniformly
through a conductor, but decay in magnitude exponentially from the surface inward. Let an alternating

field of strengthE, coswr be applied in the— direction,w being the angular frequency. The force on

the electron cloud resulting from the field is £, coswr and the equation of motion in the a.c field is:

d
m% + M = _ eEcoswt (Q 4.17.1)
T

To solve this equation far, it is convenient to use the complex notation.
Ecoswt = E, Real exgiat)

and we shall assume the solution to be of the form
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V(1) = Re[ A" exlicot)]
whereA’ is in general a complex amplitude.

dv, * C
Thus il Re[A exp(lwt)lw]

Now Eqgn. (Q 4.17.1) becomes

Re[mﬁf i exp(iwt)] + R{Af ? exﬁwt)} + ek, Re[exp(iwt)] =0

ReaIHA* iTw+ A + e_'fnoT} exp(iwt)} =0

But exp(iwt) cannot be zero

eEOT_0
m

Hence Aldtw+ A +

m
- eElm
A= (1+itw)
Thus vy (t) = Real{—(eEOT/ m -exp( ) t)}
(1+ itw)
- | 5 A-itw
- [ m }ReaILJr 20? exp(lwt)}
vX(t) = _( 'rEnO )ReaILJr 0212 - l+'TT&2Jw2} (coswt +i sinwt)

_ _(eBr) | coswt , T simwt
m |[1+w’r? 1+w??

jx = —nev (1)

_ne’t B | coswt , T siwt
m |1+w’r? 1+w’?
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. _ nét . Ny
In this equation—— represents the static conductivity,
m

cosut N wWT Sinwt
1+ wr? (1+ wzrz)

jix = 04(Ep) (Q 4.17.2)

Fig. Q 4.17.1 Variation of conductivity with angular frequency

Thus the current density, according to Eqn. (Q 4.17.2), dependsaupate relaxation time of

the electron distribution, and the angular frequency of the (@)d Eqn. (Q 4.17.2) further indicates
that the current density consists of two parts, one in phase with the applied field and the other shifted by

w
5 from the applied field. Also we notice that as longuas<< 1

jx= 0sEycosut

Ix  _

Eocosat 00~ s (Q 4.17.3)

: . . L . net
i.e; metal behaves as a pure resistance with conductivity given by the statlca/@hae? . The

variation of o ¢ with the angular frequency of the applied field is shown in Fig. Q 4.17.1. In the region

of wt =1, the conductivity drops sharply and reaches zero.

For wt =1, equation (4.17.2) becomes

_ 0gEycosut
Ix A
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__dx _o0osg

. O' _—_— =
€., “  Ejcoswt 2

(Q 4.17.4)

This occurs at approximately a frequency*Hr rememberingr for electrons in metal is
approximately 184 sec. For the conductivity to decrease sharply, the frequency of the applied field
must be in the region of ultraviolet light. The loss of conductivity under such conductions is reasoned by
the fact that the electrons cannot move fast enough with the field and hence lag behind.

TABLES

Table 4.A Root mean square velocities of molecules of some well known gases at 0°C

Gas Velocity (€) in 1¢ m/s

Oxygen 422

Hydrogen 16.92

Helium 1201

Carbon dioxide 361

Chlorine 2.86

Nitrogen 452

Argon 381

Table 4.B  Physical properties of some selected metals
Name of Atomic Atomic Density  ohg's Linear Poisson's
metal number weight P modulus| expansivity  ratio
z M, kg/mt in 10 a
(N/n¥) in 10

Aluminium 13 27 2700 70 24 0.34
Chromium 24 52 7100 25 0.85 -
Copper 29 63.5 8930 120 16 0.29
Iron 26 55.8 7860 220 12 0.30
Lead 82 207.2 11301 149 29 0.44
Nickel 28 58.7 8900 2 13 0.30
Platinum 78 39.1 21400 16.6 0.92 -
Silver a7 107.9 10500 79 19 0.38
Tin 50 118.7 7300 55 27 0.33
Tungsten 74 183.9| 19300 36 0.43 -
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Table 4.C  Thermal properties of some metals

Metal Specific Thermal Méting Specific Temperature
heat conductivity| point (T ) | latent heat | coefficient of
capacity, C o K in 10° resistancd Q)
J kg' K7 W nrt K J kg in 1038 K
Aluminium 900 200 933 39 42
Cobalt 420 70 1769 26 6.2
Copper 410 390 1335 21 43
Iron 450 75 1810 2.75 6.5
Mercury 140 104 234 0.12 0.92
Nickel 450 70 1730 3 6.52
Molybdenum 260 140 2890 29 431
Silver 230 422 1234 1.05 39
Tin 220 65 505 0.59 43
Zinc 390 110 692 112 41

Table 4.D Classical velocity of free electrons at different temperatures

Temperature Root mean square
°C velocity, (C) (m/s)
0 1.11x106
27 1.17 %10
40 1.19x16
55 1.22x10
75 1.26x106
100 1.30x 106




Table 4.E  Familiar alloys and their properties

Name of Composition | Density,P | Young's Linear Thermal Melting | Specifici,  Electricall Temperature
alloy % kg/h | modulus| expansivity conductivity point heat resistivity| coefficient
in 10% a Oq T, capacity| P of resistance
N/m in 10° K! (W/mK) K C, in 108 a
(JI/kg K Qm in 102 K
Constantan  58u, 41 Ni, 8900 1 15x106° 2 1540 410 45x 19 0.05
(Eureka) 1Mn
Bronze 90 Cu, 10 Sn 8850 10 19x10° 45 1280 381 - -
Brass 50-70Cu
30-452Zn 8500 10 2.1x10° 120 1170 380 6 x 10 2
Softiron 0.04-0.4C 7600 2 12x10° 60 1800 460 14x 19 -
Steel 0.85C 7800 20 12x10° 50 1630 480 18 x 19 -
Stainless 0.1C,12Cr 7200 2 1.0x106° 50 1780 460 - -
steel
Castiron 3-4Q.5Si 7300 10 1.1x106° 60 1450 500 - -
Invar 64Fe, 36 Ni 8100 145 | 0.21x1€° 16 1720 505 10x 19 2
Manganin 34Cu, 12 Mn, 8500 131 | 1.7x16° 2 1270 412 43x 19 0.02
4Ni

62T SUOIENWIT JI9Y) PUE S[EIS JO SBLI03Y L
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Table 4.F Selected electrical properties of some familiar metals

Metal Resistivity | Number Debye Hall Crystal Lattice
at0°C of temperaturg  coefficient  structure  parameters
Qm atoms/rh | 65 (K) at 293 K (a, c)
in 108 in 108 R,in 10 (nm)
m¥/C®
Cu 155 85 330 9.55 fcc 0.3615
Ag 149 5.8 224 +0.85 fcc 0.4086
Au 2.04 5.9 175 9.722 fcc 0.4078
Zn 5.52 6.6 213 9.33 hex 0.2659,0.5936
Pb 192 33 85 +0.085 fcc 0.4949
Fe 89 85 419 +0.244 | bcc, fcc | 0.2867
Co 6.25 9.0 400 4.340 fce,hex | 0.2507,0.4070
Ni 6.7 9.0 476 -0.612 fcc 0.3524
w 5.0 6.3 334 +1.18 bcc 0.3150
Al 25 6.0 395 -0.30 fcc 0.4041
Table 4.G  Fermi energy and other related parameters of some selected elements
Valency Metal Electron Fermi Fermi Fermi
concentration| energy at0 K velocity at 0 K temperature
nin 16%m? E. (eV) vin 10 m/s Tin 10°K
1 L 4.72 471 129 548
Na 2.66 324 107 3.75
Ag 5.86 5.48 139 6.37
Au 5.90 551 139 6.39
Cu 8.50 7.05 157 8.12
2 Mg 8.61 713 1.58 8.28
Ca 4.60 4.68 1.28 5.43
Ba 3.16 3.65 113 423
3 Al 18.06 11.63 2.02 13.49
In 11.49 8.60 174 9.98
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Table 4.H Flectrical conductivity and other transport properties of some selected metals

Metal Electrical Concentration| Tg in v in Ae %
Conductivity of free 10 m/s (innm
o inlC electrons 164s
ohnt? ot nin 1068/mé
Li 1.07x10 4.62 0.90 121 10.8 12
Na 2.09x10 2.65 3.20 111 A 12
Cu 5.76 x 10 8.50 2.70 1.60 53 101
Al 3.64x10 18.06 0.71 202 141 0.97
Ag 6.14x 10 59 411 141 571 0.99
Zn 1.69x10 131 0411 198 78 0.85
Table 4.1 Lorentz number of some useful metals
Metal Electrical Thermal Lorentz number (L)
resistivity conductivity aR73 Kin 108 at 373 Kin 108
pPin10®*Q m| o WnmtK? WQ K? WQ K?

Al 274 422 201 2.06

Cu 172 388 223 233

Ag 1.60 231 231 2.37

Zn 5.92 129 231 233

Pb 2.08 36 247 2.56

Cd 7.69 101 242 244

Au 223 295 235 240

OBJECTIVE QUESTIONS

1. The electrical resistivity of metal is of the order of
(@ 168 Q m (b) 16 Q m (c) 100Q (d) 102 Q m
2. If candT are the root mean square velocity and absolute temperature respectively, the dependence
of them during the zig-zag motion is

@)cD% (b) cONT

(c) cOT (d) cOT?
3. Metallic bond in the formation of metals is

(a) due to the transference of electrons

(b) due to sharing of electron
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(c) due to interaction between the electron gas and ions
(d) none of these

If n, v, ande are density of electrons, the electron’s drift velocity and its charge respectively, then
the current density is

@ J =ny (b) J=ney
ne 1
c =— d) Jy=—
(© 3= @ %=
Drift velocity for unit electric field is
(a) thermal conductivity (b) electric conductivity
(c) electric polarization (d) mobility of charge carriers
. The kinetic energy associated with the electron is
2 3
SkeT ZkgT
(8) 3ks (b) ~ke
(c) 2T (d) k,T
. The relation between resistivity and absolute temperature is
(@ pOT (b) pONT
5 1
(c) pUT (d)y pU T
. When temperature increases lattice scattering increases and hence mobility
(a) decreases (b) increases
(c) remains unaltered (d) none of these
. The classical value of molar electronic specific heat of metal is
(&) 12.5 kJ/kmol/K (b) 12.5 x 16 kJ/kmol/K
(c) 1000 J/kg/K (d) 14200 J/kg/K

The experimental value of mean free path of electrons in metals is
(a) ten times greater than the classical value
(b) hundred times greater than the classical value
(c) ten times lower than the classical value
(d) hundred times lower than the classical value

The Widemann-Franz law as per Drude-Lorentz theory is given by the following expression,
wherek, Boltzmann constang is the charge of the electron ahds absolute tempertaure

2
(a) 15(&)T (b) lS(k—ij

e

kg kg ’
(c) 3(7j (d) 3[?j T
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12. Fermi energy level is the highest energy state for an electron to occupy at 0 K in a metal
(a) true (b) false

13. If E. is Fermi energy of the metal at O K, the mean energy of the electron in the metal at the said
temperature is

@ ZEr (b) Er

Ee
(©) 2E, @

14. If the mean energy of the electron in sodium is 3 eV, the Fermi energy of the metal is
(a) 10eVv (b) 7 eV (c) 1ev (d) 5ev
15. The Fermi energy of the electron at 0 K is proportional to

1
(a) s (b) n? (c) n @ 7

wheren is the density of free electrons
16. The relation between Fermi energy and Fermi temperature is

E

@) Te :_k; (b) Te = kg Er
Ke _

(c) Te £ (d) T = Er

F
wherek; is Boltzmann constant

17. The quantum mechanical value of molar electronic specific heat at high temperatures is about
(@ 0.1R, (b) 0.025R, (c) 0.5R, (d) 10R,
whereR  is universal gas constant
18. The quantum mechanical expression for electrical conductivity

*

m
(a) . (b) né’ 1
1 ne’ T
(c) T, (d) -

wherem’ ande are the effective mass and charge of the electrpnis the relaxation time of the
electron in the Fermi surface.
19. The experimental value of mean free path of the electron in copper is about
(a) 38 nm (b) 380 nm (cR.8 nm (d) 0.1 nm
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20. For temperatures greater thay the Debye temperature [J T° is known as Bloch-Gruneisen
law:
(a) true (b) false

21. If Po and pp(T) where Pq is the residual resistivity anQp(T) is resistivity due to scattering

phonons, then the total resistivity= po + P (T) is

(a) Bloch-Gruneisen law (b) Wiedemann-Franz law
(c) Matthiessen’s law (d) none of these
22. The quantum mechanical form of Wiedemann-Franz law is
2 2
or _ _2(kg UT_nz[kBj
a) — =1 | — b) —=—|—| T
@ o ( ej (b) o 3 e
2 2
or _ 1 (kg or _
C) —=—|— d) — =kgT
() ~—F= [ ej (d) =k

23. Anomalous expansion of water is due to the smaller proportions of the higher types water molecules
H,0O, (H,0), and (HO),.
(a) true (b) false
24. In the E —K) curve, the condition for energy discontinuity is

N7t a
a) k=+— b) k=+—
(@) k=x— (b) k=2—
2a nrmt
C) — d) —
©) nrmt () 2a
25. Since the Kelectron of copper is so tightly bound to the nucleus, its effective mass is infinite.
(a) true (b) false

7, 2 2
26. The energy Ievezhpg has a degeneracy of
ma

(&)1 (b) 3 (c) 4 (d) 6

27. The density of energy states having energy values between E and E + dE is proportional to
1
(a) E (b) E (c) E* @ =

28. Which of the following increases when copper is hard drawn into wires?
(a) diameter (b) cross sectional area
(c) specific gravity (d) resistivity
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At very high temperatures, the mean free path and collision time in a conductor are proportional to

1 1
(@ T (b) =
(c) T (d) independent of temperature
On increasing the impurity concentration in the metal, the residual part of the resistivity
(a) decreases (b) increases
(c) remains constant (d) none of these
Which of the following group of elements are added to iron to improve its oxidation effect
(a) magnesium and copper (b) silver and copper
(¢) chromium and aluminium (d) none of these
Which of the following metals has the lowest temperature coefficient of resistance?
(a) copper (b) aluminium
(c) silver (d) gold
Temperature coefficient of resistance is given by
1dR dR
(a) RdT (b) aT
1dT dT
©) Rar (d) Rﬁ

We have copper wires of 18 gauge, 20 gauge and 24 gauge. Which of the following will be lower
for 18 gauge wire?

(a) strength (b) cost

(c) weight (d) resistance
Lead and copper is used in soldering

(a) true (b) false

When temperature increases, scattering of free electrons increases and hence mobility decreases;

thus resistivity

(a) increases (b) decreases (c) remains constant

60% of copper and 40% nickel gives constantan

(a) true (b) false
Which of the following is used for making heating elements?

(a) phosphor bronze (b) lithium

(c) nichrome (d) none of these
Which of the following combination gives brass

(a) 50% copper 50% aluminium (b) 70% copper 30% zinc

(c) 30% zinc 70% copper (d) equal proportion of iron and copper

Nickel and chromium in the ratio 2:8 known as invar is used for fabricating a strain gauge
(a) true (b) false
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PROBLEMS AND SOLUTIONS

4.1 If Widemann-Franz law is valid under quantum mechanical treatment, compute the electrical
resistivity of copper at 2 if the thermal conductivity at this temperature is 380 WK

Solution:
Formula used:

2
ﬁ:f(&jT
o 3 e

(kg )
X = | = T
Or xp 3(ej

2
Px k2 xT _TCx(138x 10%) x 293

- 2
3xe"xor

_ P x138x 10%x 293

3x (16x 107°) x 380

~ 48x 380x 16x 10%®

ie., p=189x 10°Qm

=189x 10°Q

Answer

4.2 The Fermi energy of silver is 5 eV. Calculate the number of energy states for the free electrons in
a cubical box of side 0.02 lying below an energy of 3 eV.

Solution:
Formula used:

v [ 8m1”
2

F} E”dE= Z(E dE

_[z(E)dE: %[B—m}% _(B[E% dE

h2

%
=Sl L

3

3
_mx002|8x91x 10% & x 16x 109\
- 662 x 10 @ )

3 6.62°

_ mx 002 [72.8>< 1@7}% [(48x 1019)%
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=84 x10%x6.77 x 166 x 3.3 x 1026=1.89 x 16

[2(E)dE=189x 16" | Answer

4.3 An alloy of a metal is found to have a resistivity of the order of 0 m at 2?7C. When it is heated
to a temperature of 1000 K, the resistivity increases by 6.5%. Using Matthiessen'’s rule, determine the
resistivity of the alloy.

Solution:

pP=potaT

p + 00650 =py+aT,
_ 00650 _ 0065 10° - 09x 10900 mK-1
(T,- T) 700

Po=p-aT,=10°- 09x 10"x 300

po=10°-27x 10%= 10°( + 00027
ie., Po=0973x 10°Q m| Answer

4.4 Compute the average kinetic energy of a gas molecule @t Express the result in electron volt.
If the gas is hydrogen, what is the order of magnitude of the velocity of the molecut€at 27

Solution:
The equation used is

1 -, 3
E=—mC==1IgT
2 2KB

ie., E =1.5x 1.38 x 183 x 300 joule

_ 15x 300x 138 107
16x 10

electron volt

E = 0.039eV| Answer

s |¥eT _ | 3x138x 10%x 300
My 2x1008x 167x 107’

= \/900>< 138« 10 =1920metre/sec

Also

2x1008%x 167
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€ =1920 m/s | Answer

4.5 The relaxation time of conduction electron in copper is 2.5% 4€c. Find the thermal conductivity
of copper at 8. Assume density of electrons to be 8.5 #¥/h@.
Solution:

The general expression for thermal conductivity is

kgnNCTA
or = '32
and A=T1C
—\2
Thus o1 = ket (d)
2
_ _ [3KgT
with C=
m
kont |[3ks T
o o[t
2 m
2
1.5><(138>< 1023) x 25« 10%4x 278 8%

91x 103

or =182Wm?t K | Answer

4.6 In the Kronig-Penney model, determine the energy of the lowest band for P << 1.
Solution:

We infer from Egn. (Q 4.12.7) the energy of the lowest band corresporids te7—T as
a

P .
—singa + comma==1
aa

. . . P
Considering only the magnitude afl, we can write,—sinaa = (L — cosra )
aa

P . aa aa o aa
— | 2sin— x cos— | = (1 - coszra) = 2 sirf —
aa 2 2 2
,aa
P 2sin -

i.e.,
aa .aa aa
2Sin— X cOS—
( 2 2 )
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tan@ = _P
or 2  aa
when 1 >> P, then
a0 5 22 P [Refer Egn. Q 4.12.2]
hZ h2
or E = P = P
ma’ 4’ma’
hz
ie., E=—=P | Answer
ma

4.7 (a) Show that the wave length associated with an electron having an energy equal to the Fermi
energy is given by

%
I
H
(b) If this wave length is 0.68 nm, identify the metal with the following table giving Fermi temperatures:
Metal Li A Na Cu
T.(K) 548 x 10 | 1352 x 16| 3.75x 10| 8.18 x 10
Solution:
1
(& SMf=E
m’V¢ = 2mE
mve = g =.2mgk
A = h _ h
F mve L /2mE:

U Substituting the value d_ from Eqn. (Q 4.6.2), one gets,

or

(b) A3

o

7T

n

|

h

J2m

I

2m
h

%
T
AFZZM

I

8

3

T/s

Answer (a)

8

;n=

3 x (0.68>< 109)

5 =266x 167
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Refer Eqn. (Q 4.6.2):
E =0.584 x 10%* (26.6 x 1¢)** J
or k,T. =E_=0.584 x 8.91 x 10°J

_ 0584x 891x 10™
138x 102

T =377x 1d

T =3.77x 16K | Answer

The metal is therefore sodium.

4.8 A copper wire of length 0.5 metre and diameter 0.3 mm has a resistanc@ (al20C. If the
thermal conductivity of copper at ZDis 390 W m*K-, calculate Lorentz number. Compare this value
with the value predicted by classical free electron theory.
Solution:

The resistance,

o= | 05 > =589x 10 ohmit m?t

(r[rz)R nx(o_15>< 103) x 012

o k)2 15 (138x 10%)
Or _ | = 1_5(_Bj = —— =1116x 10°
o e (16x 10™)

ie., L =1116x 10°WQK™ | Answer (a)

The experimental value afis obtained as follows:

L=_91 _ 390 = 226x 10°WQ K2
oxT 589x 10 x 293

L =226x 10°WQK™| Answer (b)

4.9 A copper wire has a resistivity of 1.7 x88t room temperature of 300 K. If copper is highly pure,
find the resistivity at 700 K.
Solution:
The equation used is
p=potpp(T)=po+taT
Since copper is highly pure,
Po =0
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Thus p=aT
17x 108 = 30@mx
17 x 10°
a=——-

300
Resistivity at 700C is given by,

_17x10%x 973
3

p=aT =552x 10°

p = 552 x 10_8 Qm Answer

4.1 The resistivity of aluminium at room temperature is 2.62 ® ® m. Calculate (i) the drift
velocity of the conduction electrons in a field of 50 V/m, (ii) their mobility, (iii) their relaxation time and
mean free path on the basis of classical free electron theory. Density of aluminium is 27700 kg/m

(Ans: 0.666 m/s, 1.32 x 1@0m? V-1s? 0.75 x 16%* s and 0.88 nm)
4.2 The resistivity of aluminium at room temperature is 2.62 ® g0 m. Calculate the incremental
velocity acquired by the free electrons in a field gradient of 100 volt/metre. Ans: 0.13 m/s)
4.3 Find the difference in energy between the neighbouring levels at the highest energy state in a
cubical box of sodium of side 1 cm. The Fermi energy of sodium is 3 eV. Giyem =n,.

(Ans 1.2 x 107 eV)

4.4 Evaluate the Fermi function for an eneigy above Fermi energy. Afs 0.269)
4.5 Given that the Fermi energy of copper is 7 eV at room temperature, what is the number of
electrons per unit volume with energy greater than 8 electron volt. (Ans. 9.8 x 19/m®)

4.6 Calculate the heat capacity of the electron gas at room temperature in copper assuming one free
electron per atom. Compare this with the lattice specific heat value of 2:4J&a®I/kelvin. Fermi
energy of copper is 7 eV. (Ans: 1.45 x 16 J kmot* K, 0.608%)
4.7 A sample of pure copper has resistivity of 1.5 ®1® m at OC. If nickel is added to copper, the
resistivity increases by 1.2 x10¢ m per added atomic percent silver. If the alloy consists of 0.25
atomic percent copper and 0.2 atomic percent silver, calculate the theoretical resistivity of the alloy at
300 K and 4 K. (Ans: 1.945 x 108 9 m, 0.42 x 1¢ Q m)
4.8 Show that for a simple square lattice (two dimensions), the kinetic energy of a free electron at a
corner of the first zone is higher than that of an electron at mid point of a side face of the zone by a
factor of 2.
4.9 Assuming that a current density of*Einp/n# flows through a sample of standard metal &nd
102 sec, calculate the electric field to derive this current. What is the average drift velocity of the
electrons? Compare it with the Fermi velocity.

(Ans: 5.9 x 10°V/m, v, = 1.04 x 16° m/s,v_ = 10? V)
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4.10 If the size of the one dimensional potential well is replaced by interatomic distance 0.3 nm, show
that the energy of the particle becomes approximatélgV

4.11 If the fermi energy of a metal is 0.365 eV at O K with a concentration?faidm/ni, compute

the constant of proportionality. (Ans: 3.65 x 10Y9)
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5.1 INTRODUCTION

The electrical resistivity of many metals and alloys at low temperatures is nearly constant. For a perfectly
pure metal, where the electron motion is impeded only by the thermal vibrations of the lattice, the
resistivity should approach zero as the temperature is reduced to 0 K. Any real specimen of a metal
cannot be perfectly pure and will contain some impurities. Therefore the electrons, in addition to being
scattered byhermal vibrationsof thelattice atoms are scattered by thepurities, and thismpurity
scattering is more or less independent of temperature. As a result, there is a =gl resistivity

(po) which remains even at the lowest temperatures. The more impure the metal, the larger will be its
residual resistivity.

z &
= N 3
@ & %y
7 N N
° N &
] N
g q
% Superconductor
w
Po

0 T. —> TK

Fig. 5.1.1  Variation of resistance of a metal and a superconductor with temperature

However a good number of metals and alloys behave differently at low temperatures near absolute
zero. As the temperature decreases, the resistivity at first decreases regularly, like that of any metal. At
a particular temperaturé&rfown as critical temperatuyea phase transition occurs and the resistivity
suddenly drops to zero as shown in Fig. 5.1.1. The transition from normal conductivity occurring over
a very narrow range of temperature of the order of 0.05 K (presence of small trace of impurity may be
the cause for the range of temperature over which it drops to zero). This phenomenon was first observed
by Kamerlingh Onne 1911 while studying the behaviour of mercury at liquid helium temperature. He
observed that at 4.2 K, the resistance of mercury suddenly vanished. This phenomenon of disappearance
of electrical resistancéelow a certain temperature is calegberconductivityThis zero resistivity was
observed in other metals such as Al, Pb, Sn, Nb, etc.

Refrigerationis cheap when the difference between the working temperature and thaheathe
sinkis not too great. A domestic refrigerator requires about 0.2 J to remove 1 J of heat from its interior.
However, liquid helium boils at 4.2 K and 300 J must be expended to remove 1 J from a body at 4.2 K
to be rejected to a heat sink at 300 K, whereffieiencyof the cooling plant is taken into account. So
using liquid helium means keeping down heat leaks as much as possible: usually liquid nitrogen is used
to cool radiation shields surrounding the liquid helium, andyestatic apparatuss bulky and costly-
so much so that superconducting magnets are the only large-scale application of superconductivity.
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Though some bubble chamber and accelerator magnets are enormous, there are not many of them and
the tonnage of superconducting material used word-wide is relatively small. The economic picture will

be vastly changed, however, when superconducting materials capable of carrying reasonable current
densities are able to operate at 77 K. In such a casg&rgeators, motorsransformerandiransmission

lineswill be a practical.

Q 5.1 Give an elementary account of superconductivity.

Certain substances completely lose their electrical resistance beknaia critical temperature
This critical temperatureis different for different substances. When a substance loses its electrical
resistance, a current set up in it unaltered for ever. This phenomenon is knswgeg®nductivity
Thecharacteristic transition temperatufievariesform 0.15 K to 20 K for pure metals. Howegeramic
materialshave transition temperature around 90 K. Superconducting elements have at room temperature,
greater electrical resistivity than others. When impurities are added to superconducting elements, the
superconducting properties are not lost, but the transition temperature is lowered. The transition
temperature of an element differs for differesatopes

Below the transition temperature, when a substance is a superconductor, the superconducting
property may be destroyed by the application of a sufficiently strong magnetic field. At any given
temperature below , there is ecritical magnetic fieldH_such that the superconducting property is

destroyed by the application of a magnetic field of intenbitg H.. The value oH_ decreases as the
temperature (which is less thap) increases. See Fig. Q 5.2&).(

Fig. Q 5.1.1  The Meissner effect (a) Normal T > T_or H > H.
(b) Superconducting T < T_or H < H.

If a superconducting substance is placed in a magneticHjeddch thaH < H, at a temperature
T< T, it is found that no lines of magnetic induction exist inside the substance. The substance,
therefore, pushes out the lines,noégnetic inductionso that B = 0 inside the substance. See Fig. Q
5.1.1. This is known ableissner effectThe thermal properties such ggecific heatandthermal
conductivityof a substance change abruptly when it passes over into the superconducting state. The
phenomenon of superconductivity can be explained satisfactorily on the basis of wave mechanics. In
ordinary metal, the electrical resistance is the result of the collisions of the conduction electrons with the
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vibrating ions in the crystal lattice. In the superconducting state, the electrons tend to scatter in pairs
rather than individually. This gives rise to an exchange force (similar to the force between the atoms in
a hydrogen molecule and the forces betwaaieansn a nucleus) between the electrons. The force is
attractive, and is very strong if the electrons have opposite spins and momenta.

In the superconducting state, the forces of attraction between the conduction electrons exceed the
forces of electrostatic repulsion. The entire system of conduction electrons then bedoooesl a
system No transfer of energy takes place from this system to the lattice ions. If an electric field is
established inside the substance, the electrons gain additional kinetic energy and give rise to a current.
But they do not transfer this energy to the lattice, so that they do not get slowed down. As a consequence
of this, substance does not possess any electrical resistivity.

Q 5.2 Discuss the important experimental results in the study of superconductivity using simple
models and suitable diagrams.

Answer. 1. Infinite conductivity

When a superconducting specimen is cooled to a temperature below the transition temperature, the
resistivity of the sample becomes zero, and not just small. Experimental measurements conclude that the
resistance of a superconductor is about fithes smaller than that of a metal; or it is zero for all
practical purposes. Other conclusions are: there is no change in crystal structure at this temperature;
similarly, the transition is notraagnetic transitionas can be inferred froneutron scatteringxperiments.

The state that is produced is clearly a completely new thermodynamic state associated with an electronic
transition. Assuming that the relationship between current and electric field is gi@misy law

J=0E (Q 5.2.1)
in order that the current density is infinite, the electric fleidside a superconductor must be zero.

2. Meissnereffect

Although the infinite conductivity characterizes a superconducting state, the truly different nature of the
superconducting state is manifested in its magnetic property. Let us first consider a normal metal say
aluminium or lead in a uniform magnetic field.

Refer Fig. Q 5.2.4 The given metal is first cooled to a temperature, belowrthieal temperature
making it superconducting. This cooled sample is now placed under the influence of a uniform external
field. The flux lines will not penetrate into the specimen or they are excluded. This is because (according
to Faraday's law of inductio)) currents induced in the sample will oppose any change of flux through
the specimen. Since the sample is a superconductor, such currents, once induced, will persist in the
absence of any resistance will keep thagneticflux out. The worth mentioning point is that, not only
does a superconductor oppose the entflurfinto a superconducting specimen, it expels any flux that
might be there in the specimen before it became a superconductor. This behaviour is best illustrated in
Fig. Q 5.2.1 (b), where a normal metal in a magnetic field is shown. Since the metal is in a normal state,
magnetic flux lines will penetrate the sample. When such a sample is cooled to a temperature below its
transition temperature, the magnetic flux, which is already inside the specimen, will be expelled. This is
contrary to the expectation frofaraday’s lawwhich would tend to trap the flux which is already
inside the specimen. Thus, a superconductor is not just a perfect conductor, itpeHisct diamagnetic
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(b)

Fig. Q 5.2.1 Meissner effect. In Fig. Q 5.2.7 (a), the sample is first cooled and then
subjected to the field, while in (b) a normal metal is first subjected to a
magnetic field and then cooled below critical temperature

3. Critical field

Prof. Onnes important finding is that the application of suitable magnetic fields destroy superconductivity.
The minimum magnetic field necessary to destroy superconductivity is catiedl field (generally
denoted a$l ). It is also observed that this critical magnetic field is a function of temperature. Fig. Q
5.2.2 shows that the critical magnetic fielgri¢ar absolute zero falls to zero at superconducting
transition temperature. This figure can also be catledse diagram of a superconductor. The metal will

be a superconducting one for any combination of the applied magnetic field and temperature. This
combination gives a point P. The arrows indicate, the metal can be driven into the normal state by
increasing either the field or temperature.

Metallic elements withow transition temperaturelsave low electric fields at zero degree kelvin.
Hence every superconductor has a diffeRdrdse diagramSee Fig. Q 5.2.2 (b). As the magnetic field
strength is increased, flux lines start penetrating the sample, destroying superconductivity.

If H,(T) is the strength of the magnetic field required to destroy the superconductivity in a specimen
at a temperature T, the difference in fie® energyper unit volume between the superconducting state
and the normal state at this temperature is given by the energy density of the magnetic field.

H (T)

AT - A=

(Q 5.2.1)

This energy difference is called tbendensation energixperimental results guide that the critical
fields fall almost as the square of the absolute temperature, so the curves can be closely approximated
by the parabola of the form:

2
T
He=Hol1- [?C] (Q 5.2.2)
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Fig. Q 5.2.2 (a) Phase diagram of a superconductor (b) Critical fields of superconductors
HereH_ andT_ are the critical field at 0 K and the critical temperature respectively for a given
specimen. Thus the critical field at any temperature can be computed using this equation.

Q 5.3 Explain Type | and Il superconductors. Also briefly discuss the important property changes
during the transition.
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Answer. Both type | and type Il materials up to_Hexhibit perfect diamagnetismsince

M
M=-H,B=py,H +M)=0,andx = Ho —1. But on reducing the magnetic field frdtnor H ,

we find that it does not trace the same path in reverse as when we increase the field from zero. In fact,
in type Il superconductors, the magnetization follows the path shown in Fig. Q 5.3.1 (c) below the field
axis, while in type | materials it follows a path a little below the perfectly diamagnetic plot. Thus both
samples show hysteresis, but it is much more pronounced for the type Il material. Indeed, if a type |
superconductor is made from very pure material, and it is well annealed so that it contains very few
dislocations, then thhysteresigs slight. The hysteresis indicates that the flux which penetrated the
sample while the field was increasing is not all expelled when the field is reduced. Cold working a type

I material increases theysteresisconsiderably, so that dislocations and other defects must ttaxise
pinning: this is a clue to making hard superconductors that will keep their magnetic flux in place-make
them ‘dirty’. Movement of magnetic flux (known as flux-jumpimgnot desirable in a superconducting

wire because it causes heating and reversion of superconducting regions to normal conduction, leading
sometimes to a runway condition known agianchin which the whole solenoid may revert suddenly

to normal conduction.
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Fig. Q 5.3.1 (a) Magnetization curve for type | superconductors
(b) Magnetization curve for type Il superconductors
(c) Hysteresis in a type Il superconductors

The critical fields are found to be highly dependent on the temperature, and in type | materials we
can write,

He(T) = He(0) [1— [le] (Q 5.3.1)

whereH (T) is thecritical field at T K andT_is thetransition temperatureFor lead,H_ (4.2) =
42 kA/m, T.= 7.2 K, soH (0) 64kA/m. This relation is approximately true for upper critical field of
type Il materials.
It was believed that Maxwell’'s equations be supplemented in the case of superconductors as per F.
London and H. London around the year 1935. This leads to

g
HxJd=-7 (Q 5.3.2)
L

where A is theLondon penetration depttNow [ x H =J by Maxwell’s equations, whei&is the

H
current density, sq1xx H = g x J, which is _)\_2 from Eqgn. (Q 5.3.2). It can be shown that
L

H

OxOxH=-02 H, so that2H = — Considering a superconductor with the field parallel to its

. L
surface, whose normal is the x—axis, we can see that

H(x) = Hyexp(=x/A ) (Q 5.3.3)
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is a solution for the equationxf= 0 is the surface artd] is the field at the surface. The applied field thus
penetrates into the superconductor with exponential decaghanalcteristic lengtht | . For thin films

with thicknesst << A , the field penetrates uniformly, there is no Meissner effect and the critical field
becomes very large. For lead, = 37 nm, so the films have to be very thin Frto be increased
much.

Another characteristic length, which arose fromGliresberg-Landau theotig known as thatrinsic
coherence lengthly, . i.e., [}, is the distance (apparently) over which the superconducting electron
concentration remains constant in a varying applied magnetic field. The B C S theory showed that

hve

Lh S TA wherev_ is the speed of electrons at the Fermi surface and a difference in

superconducting energy states. In type Il superconductorsphiggence lengtdepends on thmean
free pathof normal conduction electronk , as do th@enetration depthA , and [, . Within a factor of

J2:

O=Jl,andA = A L[ IE] (Q 5.3.4)
m
A A o _ H
Thus —=Kk=-—, and it is found from Ginsberg-Landau theory thaf = —% and
O I, k2

He = (kﬁ) He, so thatH  H_=H_? The superconductor is type | wher<kl, while it is type Il if

k>1.

In a type Il superconductor, the magnetic flux penetrates the material so that there are alternate
regions of normal and superconducting material. In the normal region the field strergtthessame
as the applied field, and in the superconducting layer the field strength falls exponentially. The flux in the

normal material is quantized in multiples @f called a fluxoidwhich is given by:

o= 21 =207x 10° T n?. At the lower critical field H_, the flux h, from afluxiod penetrates a
e

distance A into the surrounding superconducting material, so the area normal to the flux is roughly

A%, and the flux istg A He in T n?, which must be equal tg,, so

h
Ho MA* Hgy = Po :2_e
or h 7 (Q 5.3.5)

cl

D 2mepg A epg A2

SupposéH = 10 KA/m, then we findA =230nm At the upper critical fieldimit, thefluxoidsare
packed together as closely as possibleldnsithe smallest possible depth of penetration of the flux into
the surrounding superconducting material, giving
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h
nDZ Hc2 = (p0:2_e

leading to

oo b
2~ EHODZ (Q536)

Given thatH ,= 1 MA/m, we find U = 23nm k = 10 andH_= 100 kA/m.

Specific Heat

Fig. Q 5.3.2 shows that at temperatures well below the transition temperatspetifec heabf the
superconducting metal falls to a very small value, becoming even less than that of the normal metal. The
difference in the values of the specific heats of the superconducting and normal states is the result of a
change in the electronic specific heat. In order to understand the difference in specific heats we need,
therefore, to be able to deduce the value of the electronic specific heat from the experimentally measured
values of the total specific heat. This may be done as follows:rformaal metal at low temperatures,

the total specific heat has the form:

3
Co=Cat(Cu),= A{HLJ +AT (Q 5.3.7)

D

where A is a constant with the same value for all metalsDEfge temperaturef the latticed , and

the Sommerfeld constarit , which is a measure of the density of the electron states &tetinai
surface both vary from metal to metal. We can evaluatdattee contribution C as follows:

C [ A2
—=|=|T +vV,
T [e%] '

so a plot of the experimentally determined values(_zl_@)f againstT 2 should give a straight line whose

slope is and whose intercept i¥ . Hence, from measurements on the superconductor in the

3
Op _ o _ _ -
normal state, i.e., by applying a magnetic field greater thamwe can determine tHattice specific

T
03

3
J . The lattice specific heat is the same in both the superconducting state and normal
D

heat, Ciat = A[

states, so, by subtracting the value€gffrom the total specific hea_ of the superconducting state,
we can obtain the electronic contributidd), )

It is difficult to obtain accurate experimental values of the specific heats of superconductors,
because at very low temperatures the specific heats become very small. However, careful measurements
have revealed that at temperatures well below the transition temperature the electronic specific heat of a
metal in the superconducting state varies with temperature in an exponential way,
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(Cel)s = aexp(-b'kg T)

wherea andb are constants. Such an exponential variation suggests that as the temperature is raised
electrons are excited across an energy gap above their ground state. The number of electrons excited
across such a gap would vary exponentially as the temperature. BCS theory of superconductivity also
predicts such a gap in the energy levels of the electrons. Because, of the energy gap, the number of

electrons excited across the gap is given by the Boltzmann facto(-gxtk;T) with 2A as the
energy gap:

(Cer) = aexp(-A/kg T) (Q 5.3.8)

EE— [Cv]e

v

Fig. Q 5.3.2 Temperature dependence of the electronic specific
heat in normal and superconducting states

Isotope Effect

The other distinct property of the superconductors is the isotopic effect. For the same material, the
transition temperature is found to depend onidh& masdy a relationship of the form:

1

T.O —F[or T, MP = a constant

with :% for all metals. As an example, for mercuryvaries from 4.185 K to 4.146 K as the

isotopic mass varies from 199.5 to 203.4. The argument was that isotopic mass can enter in the process
of the formation of the superconducting phase of the electron states only through the electron-phonon
interaction. i.e., the lattice plays an important role in what is basically an electronic process. This
provides a sound evidence for the phonon mediated attratgisteon-electron interactioleading to the
formation ofcooper-pairs.

Q 5.4 Discuss with suitable theory the thermodynamical behaviour of superconductors. List out some
of the thermodynamically related properties of superconductors.
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Answer. Here we discuss a fethermodynami@spectsof superconductors. The transition from the
normal to the superconducting state is thermodynamiealbrsible transition. Though the free energy
densityg of a metal in the normal state is independent of the strength of the applied magnetic field say
H, the application of a magnetic field raisesftee energylensityg, of the metal in the superconducting

H 2
state by an amoun(tloz—a. The critical fieldH_ is that field strength which would be required to raise

the free energy of the superconducting state above that of the normal state. Hence the difference in free
energy between the normal and superconducting states, in an applied field of stresgth

1
0~ Gs(Ha) = 2 Ho(HE ~ H3) (Q 5.4.1)

Thefree energy of a magnetic bodgn be written,

G=U-TS+ pV- iy H M (Q 5.4.2)

whereU is theinternal energyStheentropy p thepressureV thevolume H_the appliednagnetic field
andM themagnetic momenit.the pressure and applied field strength are kept constant but the temperature
is varied by an amounlT there will be a change of free energy,

dG=dU- TdS- Sd¥ d¥ u, H d™m
By thefirst law of thermodynamics
dUu=TdS- pdV+ u, H dMm
Thus dG=-SdT

s:—(d—Gj 5.4.3
or dT b H, (Q B )

The general equation for entropy per unit volume is:

.- _{@}
oT o H,

Substituting Q 5.4.1 into this equation assuminglées not depend on temperature, one gets

dH,
S1- 8= fo Hc( dT) @ 5.4.4)

. " I . dH. . .
Since the critical magnetic field decreases with increase of temperaée_tf_ﬁﬁewlll be negative and

hence the R.H.S of the above equation must be positive. Thus we have been able to deduce that the
entropyof the superconducting state is less than that of the normal state. i.e. the degree of order in a

superconducting state is much higher than that in the normal state. This conclusion is in total agreement

with BCS microscopitheoryof superconductivity where in a superconductandenseinto a highly
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correlated systerof electron pairs. The critical field falls to zero as the temperature is raised towards
T.. The entropy difference between the normal and superconducting states vanishes at this transition
temperature. Again by the third law of thermodynarsjcaust also be equal ®at T= 0. From the
observation that the entropies of the superconducting and normal states must be thd safhenet

: " dH .
can deduce from Eqn. Q 5.4.4 that, since the critical figid not zero,d—_l_C must be zero at 0 K. This

is in accordance with the experimental observation that, for all superconductors, the slopi of the
versusT curve (Fig. Q 5.2.2) appears to become zero as the temperature approaches 0 K.

Specific Heat-Once Again

Many physical properties of superconductors have been understood from a study and the measurement
of their specific heat. The solid curve in Fig. Q 5.3.2 shows how the specific heat of a typical type 1
superconductor varies with temperature in the absence of any applied magnetic field. The corresponding
curve for the normal state can be obtained by making measurements in an applied field strong enough to
derive the superconductor into a normal state. The general expression for entropy is:

o= _[@}
0T o.H,

Hence for the superconducting-normal transitiom at

991 _[99
[aTJn [aTJs (Q 5.4.5)
ass =s.atT,

A phase transitiorwhich satisfies this condition is known sscond order phase transitioA.
second order transition has two important characteristics: at the transition there is no latent heat, and
there is a jump in the specific heat. The first characteristic follows immediately from td€fadids
and we have seen that at the transition tempergtarg. Hence when the transition occurs there is no
change in entropy and therefore no latent heat, and there is a jump in the latent heat. The second
condition follows from the fact that the specific heat of a material is given by:

C= vTE
oT

with v-the volume per unit mass, so the difference in the specific heats of the superconducting and
normal states may be obtained from Eqn. Q 5. 4. 4

dT

2H He
Cs— C, = VT, HC% + vTuO(d C] (Q 5.4.6)

Since at the transition temperature, /D and so we have for the transition in the absence of an
applied field:
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dH, \?
Cs— Ch= VIl (d_TC] (Q 5.4.7)
TC

This is the famoufutger’s formulaand it predicts the value of the discontinuity in the specific
heat of a superconductor at the transition temperatwes Iif, then equation Q 5.4.7 can be presented
as:

(Q 5.4.8)

dH, )’
dT

Cs— Ch=Telo (
T

Cc

Mechanical Pressure

It is experimentally found that both the transition temperature and the critical magnetic field of a
superconductor are slightly altered if the material is mechanically stressed. Many of the mechanical
properties of the superconducting and normal states are thermodynamically related to the free energies
of these states, and we have seen that the critical magnetic field strength depends on the difference in
the free energies of the two states. Hence, once it is known that the critical field changes slightly when
the material is under stress, thermodynamic arguments show thaedanical propertiesust be

slightly different in the normal and superconducting states. The noted examples are: there is an extremely
small change in volume when a normal material becomes superconducting, and the coefficient of thermal
expansion and bulk modulus are also slightly different in the superconducting and normal states.

Thermal Conductivity

The changes in the magnitudes of thermal conductivity from normal state to the superconducting state
is significant. In a normal metal heat flow in the steady state is totally by the conduction electrons.
However, thesuperelectronsn the superconducting state no longer interact with the lattice in such a
way that they caexchange energynd so they cannot pick up heat from one part of the specimen and
deliver it to another. Or, if a metal goes into the superconducting statberitsal conductivityis
reduced. This reduction is very marked at temperatures well below the critical temperature as very few
normal electrons are available to transport thermal energy. If, however, the superconductor is driven
normal by the application of a magnetic field, the thermal conductivity is restored to the higher value of
the normal state. Hence the thermal conductivity of superconductor can be controlled by means of a
magnetic field, and this effect has been usedhertnal switchésat low temperatures to make and
break heat contact between specimens connected by a link of superconducting materials. The thermal
conductivity of tin at 2 K is 34 W crhK-*for the normal phase and 60 W crK-*for the superconducting

phase. At 4 K, it is 55 W criK™* (at 4 K there is no superconducting phase for tifi &s3.73 K).

Thermoelectric Effects

Itis found, both from theory and experiment, that thermoelectric effects do not occur in a superconducting
metal. For example, no current is set up around a circuit consisting of two superconductors, if the two
junctions are held at different temperatures below their transition temperatures. If a thermo e.m.f were
produced there would be a strange situation in which the current would increase to the critical value, no
matter how small the temperature difference is. It follows from the Thomson relations that, if there is no

thermo e.m.f in superconducting circuits, the Peltier and Thomson coefficients must be the same for all
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superconducting metals, and they are in fact zero. Hence they can be used as a standard to measure that
of others.

Q 5.5 Arrive at London’s equation and explain coherence length.

Answer. According toLondon’s theoryt is assumed that there are two types of conduction electrons

in a superconductor, namely, teeperelectronsand thenormal electronsAt 0 K a superconductor
contains only superconducting electrons, but as temperature increases the ratio of normal electrons to
superconducting electrons increases, until at the transition temperature all the electrons are normal. At
any temperature the sum of the superconducting electrons and the normal electrons is equal to the
conduction electron density thenormal state The superconducting electrons are not subjected to any
lattice scatteringand therefore are merely accelerated in an electric field.

Expulsion of flux from a superconductor is one of the important features of superconductors
(Meissner effect). Actually in a microscopic scale, the flux does not abruptly become zero at the surface
of a superconductor. Typically, the flux penetrates a surface layer of thickness 25 nm. The origin of
Meissner effect may, therefore, lie in the electronic wave functions of macroscopic extent not getting
perturbed in a magnetic field. We shall now discuss the phenomenological theory suggested. Unlike an
ordinary conductor, the charge carriers in a perfect conductor or superconductor are not subjected to
forces ofscattering fromlattice vibrations defects etc. Thus the acceleration due to the fieldand
hence the force is given by:

dv _ - dv _eE
m— =eE, — = —
dt d m
If n_is thedensity ofchargecarriers in the superconductor, then the current density,
Jo=ngev (Q 5.5.1)
Th d—js—ne(ﬁ)— e | g 5.5.2
us, dt S \dt m (@55.2)

This equation replacgshm’s lawand gives the relationship between therent densityand the
electric field applicable for a superconductor. One can obtain a differential equation fieaghetic
induction vectorB , by using this equation in conjunction with Maxwell's equations of electromagnetism.
Taking curl of both sides of Egn. (Q 5.5.2), one gets

%(curl Jg) = [nsmez} curl E (Q 5.5.3)

Combining this withFaraday’s law of induction

curlE = _dB
dt
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Eqn. Q 5.3.3 becomes

d s n€ 5l
a{curl JS+{ - }B]—O (Q 5.5.4)

Assuming the fields to vary slowly, the displacement current can be neglected, so that the current
density is given by:

- _curlB. =
Js= f ; Ug Js= curl B (Q 5.5.5)
0

Equation (Q 5.5.4) together with (Q 5.5.5) determines the magnetic field and the current density
which can exist within a superconductor.

London and London proposed that a special solution for Egn. (Q 5.5.4) characterizes a
superconductor. The solution consists of equating the quantity inside the bracket in this equation to
zero, instead of an arbitrary constant. The resulting equation is:

curl 3, + {”Smez} B=0 (Q 5.5.6)

Equation (Q 5.5.6) is calledondon equationTo see how this yields Meissner effect, substitute
Egn. (Q 5.5.5) in Egn. (5.5.6) and use the identity,

curl curl B = grad(divB - 0° B

together withB = 0

curl culB=-0%8B

Thus pocurl 3, = ~ (7 B (Q 5.5.7)
Referring Eqn. (Q 5.5.6), we get
_HoMs€ 5 2
m
or 2B = [M} B (Q 5.5.8)
m

The significance of the equation (Q 5.5.8) may be well understood by considering a semifinite
perfect conductor bound by the plare 0 and extending in the positizedirection. Let the applied field

B be parallel to the surface. Equation (Q 5.5.8) for a one dimensional case can be written as:
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dZB(Z) — [uonsez} B(2)

2 - (Q 5.5.9)
| LC
l.e., de AZL

with A= " nms 7 (Q 5.5.10)

A | is calledLondon’s penetration deptiThe physical solution to Eqn. (Q 5.5.10) is:

B(2) = B(0) exp(~21,)

Now penetration depth can be defined as the distance at which the field is r%dotem initial
value at the surface.

Coherence Length

In deriving London equation, it was assumed that the current density (or electron velocity) varies slowly
in space. In theondensed statehe velocities of a pair of electron are correlated only if the distance
between them is less than a certain coherence ldngtithis is a measure of the size of the cooper-

pair. The electrons which participate in the condensation process, have an energy within/a oinge

the Fermi energy. The resulting spread momentypm= 24 with v_the velocity at the Fermi level. By
v
uncertainty principle F

== (Q 5.5.11)

where 2A is theenergy gap

Q 5.6 Briefly outline B C S theory of superconductivity.

Answer  Themicroscopic theorgf superconductivitgredicts that under certain conditions, the attraction
between two conduction electrons due to a successiphooion interactiongan slightly exceed the
repulsion that they exert directly on one another due to the Coulomb interaction of their like charges.
The two electrons are thus weakly bound together forming a so-calbger pair It is these cooper

pairs that are responsible for superconductivity. This was proposed by Bardeen, Cooper and Schrieffer
in 1957. B C S theory also showed there are several conditions that have to be met for a sufficient
number of cooper pairs to be formed and superconductivity to be achieved.

In normal metalsplane electron waveslso calledde Broglie wavesare assumed to travel or
propagate in the direction of the motion of the electrons. Hence the electron gas in a metal can thus be
considered as a superposition of several, de Broglie waves. These waves are reflected randomly by the
surface of the crystal and there is no net electric current in the absence of an external field. But in the
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presence of an external electric field, an additional wave component in the direction of the field arises
and a finite current starts flowing. For an ideal crystal devoid of any imperfections, there x@tbbe
electrical resistivityorinfinite conductivity. However, in real metalphononglattice waveévibrationg
anddefectssuch asmpurities andvacanciesact asscattering centrefor the de Broglie waves, giving

rise to a finite resistance. At high temperatures, phonon scattering plays a major role, while at low
temperatures, scattering from static defects predominates.

Bardeen, Cooper and Schriffer showed that the mechanism of superconductivity is entirely different
from that ofconductivityin normal, pure metals in several respects and is associated with the pairing of
conduction electrons into what are known as cooper-pairs. To recapitulate, any successful microscopic
theory of superconductivity must be able to explain the following:

() Superconductivity is essentially bound up with some profound change in the behaviour of the
conduction electrons which is marked by the appearance of long range order and a gap in
their energy spectrum of the order of“1éV.

(i) The crystal lattice does not show any change of properties, but must nevertheless play a very
important part in establishing superconductivity becauseritieal temperaturedepends on
the atomic masgthe isotope effegt

(i) The superconducting - to normal transition is a phase change of the second order.

The long-range order noted in (i) clearly means that the electrons must interact with each other. It
has, of course, been appreciated for a long time that the conduction electrons in a metal interact very
strongly through theicoulomb repulsionand it is surprising that the ordinary free-electron theory of
metals and semiconductors, which neglects this interaction, works as well as it does. It is difficult,
however, to believe that the coulomb repulsion is the interaction responsible for superconductivity
because there is no known way in which a repulsive interaction can give an energy gap. Furthermore,
because the energy gap is very small, the interaction responsible for it must be very weak, much weaker
than the coulomb interaction. The apparent lack of any mechanism for a weak attractive interaction was
for some time the stumbling block in the way of any microscopic theory of superconductivity.

An early step forward in the search for a microscopic theory came in 1950 when Frohlich pointed
out that theelectron-phonon interactiowas able to couple two electrons together in such a way that
they behaved as if there was a direct interaction between them. In the interaction postulated by Frohlich,
one electron emits a phonon which is then immediately absorbed by another, and he was able to show
that in certain circumstances this emission and subsequent absorption of a phonon could give rise to a
weak attraction between the electrons of the short which might produce an energy gap of the right order
of magnitude. We may think of the interaction between the electrons as being transmitted by a phonon.

Normally electrons are scattered by lattice vibrations giving rise to electrical resistance, butin B C
S theory an electron of wave veckocauses a slight distortion in the neighbouring lattice which forms
an attractive potential for an electron of wave vek&torhe suggestion is that superconduction might
occur through an electron-lattice interaction. In quantum-mechanical terms, the first electron creates a
virtual phononand loses momentum, but the second electron then comes along and is colliding with the
virtual phononacquires all the momentum lost by the first electron. The overall momentum change is
zero and the paired electrons are superconducting. Tageer pairs are bound together by a very
small energy,A, forming a new ground state which is superconducting and is separated by an energy

gap, 2A, from the lowest (excited) state above it. The Fermi level is in the middle of th& gegm be
found by measuring the specific heat in both superconducting state and normal state (the material is
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normal belowT_whenH > H ) and making arArrhenius plotof the difference [that is, a plot of

1 A : -
In(AC) against?]. The slope of the plot |sk— .A is found to be aboukZT_at 0 K, so for niobium
B

A = 1.5 meV. Though this energy is very small, so that cooper pairs are continuously being split up,
many other electrons are available to form fresh ones, and superconductivity is maintained. B C S theory
predicts that thed — T graph follows,

d = tan(d/t)

~—

whereg = —~ 2 t =

A(T) and A (T) is the gap aT K. Thus A disappears ak_ and is roughlyA (0)
A0

s

for T < % The experimental data are in complete accord with B C S theory. B C S theory is too

complicated for discussion here, but it explains all the phenomena described above and makes quantitative
predictions which are borne out by experiment; for example, it predicts that the superconducting transition
temperature will be:

T,=1146, exp[— YUD (E; )]

where 6, is the Debye temperatute,is theelectron-lattice interaction energgndD(E)) is theelectron

densityof statesat theFermi level U is higher when the electrical resistivity at 300 K is high, soTthat
is higher for the more resistive elements among those of similar electronic structures and Debye
temperatures.

Conclusions

B C S theory presses for several conditions that have to be met for the generation of a sufficient number
of Cooper pairs and then superconductivity is to be achieved. Though a lengthy discussion is not
possible it is clear that the electron-phonon interaction must be strong and that low temperatures favour
pair formation, hence high temperature superconductors are not predicted by B C S theory.

Cooper pairs are weakly bound with typical separation bpfrdfor the two electrons. They are
also constantly breaking up and reforming (usually with other partners). There is thus enormous overlap
between different pairs and the pairing is a complicaftygtamic process. The ground state of a
superconductor therefore igallective statedescribing the ordered motion of large numbers of Cooper
pairs. When an external electric field is applied, the Cooper pairs move through the lattice under its
influence. However, they do so in such a way that the ordering of the pairs is maintained. The motion of
each pair is locked to the motion of all the others, and none of them can be individually scattered by the
lattice. Because the pairs cannot be scattered by the lattice, the resistance is zero and the system is a
superconductor.

Q 5.7 List out some of the characteristic features of superconductors comparing with that of normal
conductors (where ever possible).

Answer.  Some of the common properties observed in superconductors are now summarized as follows:
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. The current in a superconductor once set up continues for a very long time waiitowdtion

. The permeability of a superconductor is 0. A superconductor is thus a perfect diamagnetic.
Hence the magnetic field does not penetrate the superconductor. ThiMsisheer effect
However when the magnetic field exceeds a certain critical vd|ude superconductor
becomes a normal conductor.

. When the current through a superconductor is increased beyond a critical value the super
conductor becomes normal.

. At 0 K all conduction electrons, behave like superelectrons, but if the temperature is raised, a
few begin to behave as normal electrons, and on further heating the proportion of normal
electrons increases. Eventually, at the transition temperature, all the electrons become normal
electrons and the metal loses its superconducting properties.

. Frohlich suggestion that the interaction responsible for superconductivity is one which involves
lattice vibrations (or phonons) enabled him to predict the isotope effect before it had been
discovered experimentally. The fact that an electron-phonon interaction is responsible for
superconductivity also explains why superconductors are bad normal conductors. For example,
lead, which has one of the highest critical temperatures, must have a fairly strong electron-
phonon interaction and as a result is a poor conductor at room temperature, whereas the
noble metals gold and silver are very good conductors at room temperature, must be
characterized by a weak electron-phonon interaction and do not become superconducting
even at the lowest temperatures attained.

. Specific heat and energy gap

The right hand side of Egns. (Q 5.4.6) and (Q 5.4.7) should be a finite quantity, hence there
must be a discontinuity at the transition temperature. This has been experimentally found to
be so. Just at the transition there is no latent heat, and there is a jump in the specific heat. At
the transition temperature, = s. Refer Fig. Q 5.3.2. Near absolute zero temperature the
specific heat is smaller in the superconducting state compared to that in the normal state. It
increases exponentially andTat it is three times the value in a normal state. This behaviour

of the specific heat in the superconducting state is the strong indication of the existence of an
energy gap in the excitation spectrum of the electrons in the conduction band. At very low
temperatures, very few electrons in the conduction band can get excited because of the
energy gap A. As the temperature is increased the magnitude of the energy gap decreases
and hence more electrons get excited to the available states above the Gamarehses
exponentially.

. Coherence length

The paired electrons are not scattered as they smoothly ride over the lattice imperfections
without exchanging energy with them. They can maintain their coupled motion up to a certain
distance calledoherence lengthnd it is found to be of the order of-4fetre.

. The B C S theory makes the following predictions which have been compared with experiments
for a number of oxides superconductors:

(a) The transition temperatufe and energy gap2& are related to the Debye temperature
0, . the electron-electron attractive potentihbnd density of electrons at the Fermi
level as:
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T,=1146, exp[—IUD (E )]
with D(E) the electron density of states at the Fermi level, and

20 = E, = 4kBeDexp[—JIUD( E )]

E
(b) The energy gag, is proportional to the transition temperature throulgh?l_— =35
B'c

except for gapless superconductors.

(c) The London equation is a consequence of the B C S theory and hence one expects the
state of perfect diamagnetism to exist belbwith X = -1

(d) The transition temperature depends upon the average isotopillitiesgh the relation

1
T = —
¢ JMm
which gives a clear guide to the theory that electron-electron interactions exist via lattice

ions.
(e) There is discontinuity in the electronic contribution to the specific heat at the transition
temperature given by:
GC-Gh_ 143

n

where subscripts andn denote the superconducting and normal states respectively.

Q 5.8 Write short notes an
(a) Josephson effects
(b) SQUIDs
(c) High temperature superconductors

Answer.

(a) In 1962, Josephson predicted that if two superconducting metals are placed next to each
other separated by a thin insulating layer (such as oxide coating) then a current would flow in
the absence of any voltage. This effect is indeed observed because if the barrier is not too
thick then electron pairs can cross the junction from one superconductor to the other without
dissociating. This is known as the d.c Josepson effect. He further predicted that the application
of a d.c potential to such a junction would produce a small alternating current, the a.c Josephson.
These two properties are of great interest to the electronics and computer industries where
they can be exploited for fast-switching purposes.

(b) The persistent of a current in a superconducting loop produces a magnetic field which never
decays. This makes it possible to use the loop as a memory element in a computer. Josephson
junctions are used Buperconducting Quantum Interference De\i8€3UIDs). These consist
of a loop of superconductive wire with either one built-in Josephson junction (RF SQUID) or
two (DC SQUID). The device is extremely sensitive to changes in a magnetic field, and can
measure voltages as small as'®¥, currents of 188 A and magnetic fields of 18 T.
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(c) The discovery of high_superconductivity icopper oxide perorskitds BednorzandMuller
in 1986 brought greater interests for the workers in this area. The first group of_high
superconductor discovered wdra, M CuQ, (where M = Ba, Sr, Ca) witli_ values in
the range 25 to 40 K. These crystals posselisH( structure with orthorhombic distortion.
The discovery of superconductivity wilh around 90 K have a general formula:

L.Ba Cu O, [x=0.95L =Y, Nd, Eu, Yb] with orthorhombic structures. These
intermediate higi_ superconductors aceramic oxidesnot metals have mechanical properties

of ceramics. The systems said above are brittle and not ductile as metals. They also exhibit
antiferromagnetism. Around 1990 several new non-rare based copper systems involving the
elements bismuth and thallium exhibiting superconductivity between 60 K and 125 K were
made available. Mostly high temperature superconductors are not metals or inter-metallic
compounds, they are oxides. Of the high temperature superconductors, a representative
examples is 1 — 2 — 3 compound of YBCO having a formyayCu, O, with the critical
temperature around 90 K. A direct consequence of fiighthat the coherence lengthis

very small. A typical value ofl in YBCO is 1 nm which is of the order of unit cell dimensions.

0 is the length scale which determines the extent over which cooper-pairs are correlated. A
small value of] therefore indicates that the superconductivity in these materials is much
more affected by structural changes than in conventional superconductors. Small coherence
length also leads to a high value of the upper critical field.

Q 5.9 Bring out the potential applications of superconductors.

Answer. If the core of an electromagnet is wound with a coil of superconducting material, large
currents can be maintained withgoile heating. Thus very intense magnetic fields can be produced.
Magnetic field of the order of 2@auss can be produced by this method. Superconductors are used for
amplifying very small direct currents and voltages. If an alternating magnetic field with a mean value of
H_ is applied to the superconductor, the substance alternates between its normal and superconducting
states. Its electrical resistance varies periodically between zero and a finite value. If a small direct
voltage is applied across the superconductor, the current fluctuates periodically with the same frequency
as that of the magnetic field. The periodically varying current can then be amplified using cadinary
amplifiers. An amplified direct voltage can be recovered from the amplified periodically varying current.

Since the superconducting property of a substance can be quickly destroyed by the application of a
magnetic field, superconductors are employesiiiching devicesSince currents can be maintained
without change for very long durations in a superconductor, superconductors are stedges of
‘memory in computers. The persistent current in a superconducting loop produces a magnetic field
which never decays. This makes it possible to use the loap@anary element in a computdosephson
effect has also been used to practical advantage by combining two Josephson junctions in parallel to
produce a device known asperconducting quantum interference dewic&QUID. This can be used
as an extremely sensitive magnetometer to detect fluxes smaller tfah i@ Such devices can be
used to detect small changes in earth’s magnetic field.

Superconductors are used for producing very strong magnetic field of about 20 — 30 tesla,
which is much larger than the field obtained from an electromagnet and such high magnetic fields are
required in power generators. Magnetic energy can be stored in large superconductors and drawn as
required to counter the voltage fluctuations during peak loading. As there is no heat losses in a
superconductor (i.el?R = 0), so power can be transmitted through the superconducting cables without
any losses. In view of the wide applications of superconductors, it is obviously desirable to have higher
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critical temperatures so that the cost of refrigeration can be cut down drastically. However, this by itself
is not the only property which makes a material suitable for practical use. The high temperature
superconductors, for instance, have rather low critical current density compared to the conventional
superconductors, which is an obvious practical disadvantage. Similarly, the mechanical property like
ductility of the material plays an important role in whether the material can be used in the form of coils.
Efforts to synthesize HTSCs with improved performance are still underway.

Flash News:

In December 2003, Japan tested the run of the fastest train at 510 km/hour using superconducting
magnets. The regular service is expected in May 2004. The distance between Kannya Kumari and
Kashmir can be covered in 8 hour—though it is a hypothetical one in India.

Q5.10 Superconducting state is a collective one, in which all the conduction electrons act co-operatively.
Explain

Answer. In a semiconductor there is a separation in energy between the top of the (full) valence band
and the bottom of the (empty) conduction band. If the energy of the photon exg;emielEctron may

excite from the valence band to the conduction band. It is natural to postulate that some thing similar
occurs in the case of a superconductor, and that radiation is heavily absorbed when the photon energy
is sufficient to excite electrons across an energy gap of some sort. Since in a superconductor absorption
occurs for frequencies greater that*He, the energy gap must be of the order of 4€V. It may be
observed that if we express this energy gap in the fokylothen Tis about K, which is of the order

of magnitude of superconducting critical temperatures.

More evidence for the existence of some sort of energy gap is the electron levels comes from
specific heat data. As we have already pointed out, at very low temperatures the contribution to the
specific heat due to the conduction electrons in the superconducting state is proportioned bbTgxp (—

This is precisely the form to be expected if there is a gap in the range of energies available to an electron.
As the temperature is raised, electrons are thermally excited across the gap and for each of these electrons
an amount of energy equal to the eneEgyis absorbed in the process. It follows from a simple
application of statistical mechanics that at a temperature T the number of electrons in energy levels
above the gap is proportional to exp (g+ZEB T) wherek, is the Botzmann constant, and the thermal
energy absorbed in exciting these conduction electrons is therefore proportiﬁgnc-)i(m(—Eg/ZkB T).

The specific heat associated with this process is proportional to the derivative of the energy with respect

_ 1 - .
to temperature, i.e., te_)l_—2 exp (- I?ZkB T). TheT=2 term vairies much more slowly with T than the

exponential term, so the variation of specific heat with temperature should be very nearly expontential.
Tunneling experiments tells the existence of an energy gap. It should be stated, however, that under
certain special circumstances a super conducting metal may not posses an energy ggpplEssse
superconductors are not typical, and under normal circumstances all elemental superconductors and
most alloys exhibit a well defined energy gap.

Two electrons usually repel each other because of coulomb interaction. Let for some reasons,
the two electrons could then form a bound state. In a bound state, electrons are paired to form a single
system, and their motions are correlated. The pairing can be broken only if an amount of energy equal
to the binding energy is applied to the system. This pair of electrons is known as a cooper pair. At a
temperaturd <T, the lattice-electron interaction is stronger than the electron-electron force of coulomb.
At this stage, the cooper pairs of electrons will have a peculiar property of smoothly sailing over the
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lattice point without any energy exchange (i.e the cooper-pairs are free from scattering by the ions in the
lattice points). Hence no transfer of energy takes place from the electron pair to the lattice ions. If an

electric field is established inside the substance, the electrons gain additional kinetic energy and give rise
to a current. But they do not transfer this energy to the lattice, so that they do not get slowed down.

Because of this, the material does not possess any electrical resistivity. Thus B C S theory explains the
zero resistivity of a superconductor. The cooper pair of electrons can maintain the coupled motion up to

a certain distance among the lattice points in a superconductoramile@nce lengttvhich is found to

be of the order of 108 cm.

E, Ey(10°1010™ V) =24

Fig. Q 5.10.1 £nergy bands of a superconductor

Superconductivity state is a collective state, in which are the conduction electrons act co-operatively.
The wave function associated with the superconducting state extends coherently over the entire volume
of the superconductor. Thus, the electrons in superconductors display quantum effects on a macroscopic
scale, in contrast to the electrons in individual atoms or molecules, which display quantum effects only
on a microscopic scale.

Some of the peculiar properties of the superconducting materials such as diamagnetism, zero
resistance may be explained in terms of the energy spectrum assuming the conduction electrons in
superconductors are condensed into a singlectomoleculewhich spreads over the whole volume
and is capable of motion as a whole. The energy spectrum has a gap of the ordér01Q0 eV
between the higher occupied state and the first excited state. This gap reminds us the gap in an insulator.
The difference is : in insulators the fully occupied band below the gap cannot conduct current, in
superconductors this band does conduct. The gap width is proportioned to T
e, E, =3.52k T.

Essentially, the gap represents the energy needed to break up one of the cooper pairs.
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TABLES

Table 5. A Critical temperature T_and critical field H_(at 0 K) of some superconducting materials

Material T.(K) H, Type
(Amp/m) (gauss)
Hg 412 33x10 413 |
Sn 3.72 24 %10 306 I
Al 1.196 7.9x10 9 |
Zn 0.79 3.8x10 45 I
Pb 7.175 6.4x10 803 |
\% 51 105x 10 1300 |
Ga 1.09 0.41x10 51 |
Ta 448 67 x 10 829 I
Nb 9.25 156 x 10 1950 Il
Nb—44% Ti 105 9.5x10 120 I
Nb3AI 18 3.2x10 400x 10 I
V,Ga 165 2.8x10 350x 10 I
Nb3Sn 185 1.6x10 200x 10 I

Table 5. B Superconducting transition temperatures of some alloys and metallic compounds
compared with their constituent elements

Ta—Nb| Pb-Bji 3Nb-Zr NBn| NbGe
T.(K) 6.3 8 1 18 PA]
Nb Pb Ta Sn Zr Bi Ge
T.(K) 9.3 72 45 37 08 not s/t not s/c

Table 5. C  £nergy gap at O K for some superconductors

Element E (0) T 5 ©
¢ ¢ kg Tc
[2A(0)] in 10%eV (K)
Aluminium 3.4x10* 12 33
Tin 11.6x10* 3.72 36

Contd
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By (9)
Element & (0) T, ke T,
[24(0)] in 10%V (K)
Niobium 30.5x 104 95 37
Tantalum 14.0x10* 448 36
Lead 27.3x10* 7.18 44
Mercury 16.5x10* 416 46
Zinc 2.4x10* 09 31
Gallium 3.3x10* 1.09 35
Table 5. D  Some properties of 12 3 compounds
Superconducting London Lattice constant
Coherence length penetration depth
(T=0K) (T=0K)
In plane 1.2-1.6nm 150 nm 0.4nm
Along c-axis 0.13-0.3nm 700 nm 1nm

Material A [
(nm) (nm)
Sn A 23
Al 16 1600
Nb 39 33
Pb 37 83
Cd 110 760
Nb —Ti 300 40
V,Ga Q0 20
Nb, Sn 65 30
Nb, Ge Q0 30

Table 5. E  Penetration depth A and the coherence length Ly, of some selected superconductors
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OBJECTIVE QUESTIONS

1. The susceptibility of a superconductor
(a) becomes quite small as the temperature approaches the transition temperature
(b) has a positive value
(c) becomes quite large as the temperature approaches the transition temperature
(d) has a negative value
2. A superconducting material on being subjected to the critical field changes to
(a) superconducting state which is independent of temperature
(b) zero conductivity
(c) normal state
(d) remains uninfluenced
3. Critical magnetic field
(a) does not depend on temperature (b) increases if temperature decreases
(c) increases if temperature increases (d) none of these
4. The specific heat of a superconducting material shows an abrupt changél agjumping to a
large value for:
(@ T<T, (b) T>T, () T=T, (d) T=T, 6p
where 6, is the Debye temperature

5. Superconductivity results due to
(a) crystal structure having infinite atomic vibrations at 0 K
(b) crystal structure having no atomic vibrations at 0 K
(c) all electrons interacting in the superconducting state
(d) all electrons having Fermi energy at 0 K
6. The electron density in a superconductor is
(a) finite at absolute zero (b) infinite at absolute zero
(c) zero at absolute zero (d) none of these
7. In superconducting state
(a) entropy and thermal conductivity decrease
(b) entropy decreases and thermal conductivity increases
(c) entropy and thermal conductivity increase
(d) entropy increases and thermal conductivity decreases
8. The transition temperature of most superconducting elements is in the range
(a) above 50 K (b) 20 Kto 50 K
(c) 10Kto 20K (d) zeroto 10 K
9. Pippard coherence length
(a) increases by the presence of impurities in a superconductor
(b) is independent of mean free path
(c) depends on mean free path
(d) is independent of penetration depth
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A superconducting material when placed in a magnetic field will

(a) attract the magnetic field toward its centre

(b) repel all the magnetic lines of forces passing through it

(c) attract the magnetic field but transfer it into a concentrated zone
(d) not influence the magnetic field
Value of critical densityj § in a superconductor depends upon

(a) temperature (b) magnetic field strength
(c) Silsbee effect (d) both (a) and (b)
Which of the following is type Il superconductor

(&) Hg (b) Pb (c) Al (d) Nb
The isotope effect coefficient is

(a) zero (b) generally in the range 0.2 — 0.6
(c) generally in the range 0.5 -1 (»
The width of the energy gap of a superconductor is zero at

(a) OK (b) the room temperature
(c) the transition temperature (d) 100C
The critical current in a Josephson junction is in the range

(&) 0- 100uA (b) 100pA - ImA

(c) ImA-1A (d) greater than 1 A

As the isotopic mass of mercury decreases

(a) the critical temperature increases slightly

(b) the critical temperature decreases slightly

(c) remains constant (d) none of these
Cooper pairs are formed

(a) at very low temperatures the thermal energy is not sufficient to disrupt the binding
(b) at high temperatures as the thermal energy is sufficient to form the cooper-pair
(c) none of these
The favourable condition both for superconductivity and low resistance is

(a) a weak electron-phonon interaction (b) a strong electron-phonon interaction
(c) a weak phonon-phonon interaction (d) none of these
The coherence length of the paired electrons is

(&) 0.001 nm (b) 0.25 nm

(c) 0.01 nm (d) 250 nm

Superconducting state is more ordered than the normal state for type | superconductors
(@) true (b) false

The energy gap in a superconductor is of the order of
(@) 1eVv (b) 10teV (c) 10%eV (d) 16*°eV
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22. Lead which has one of the highest critical temperatures, must have a weak electron-phonon
interaction and as a result is a poor conductor at room temperature (compared with silver).
(@) true (b) false
23. The noble metal gold is a very good conductor atk3@dit not a superconductor at very low
temperatures because of strong electron-phonon interaction.

(a) true (b) false

24. Penetration depth is the distance at which the field is reduced to
(a) 7% of the initial value (b) 17% of the initial value
(c) 27% of the initial value (d) 37% of the initial value

PROBLEMS AND SOLUTIONS

5.1 For a specimen of ¥5a, the critical fields are respectively 1.4 ® a@d 4.2 x 10A/m for 14 K
and 13 K. Calculate the transition temperature and critical fields at 0 K and 4.2 K.
Solution:

Hc = Ho [l - (Tl/Tc)z] (l)
He =H, [1 - (T/T) 2

He _(-T) 14 _(¥-T) _(12-147)
He (2-17) 42 (12-1) (12-13

or 4272 - 42x 1£= 14x T2- 14 13
T (42-14 = 42x 14— 14 13

2= 586.6
28
J=14.5 K| Answer (a)

SubstitutingT, = 14.5 K and 1.4 x 2Gor H_in equation (1), one gets,

H
[1 - (14145 ]
with H, = 1.4 x 10 amp/metre
Thus
_ 1l4x10
° [1-0932]

H, = 20.7 x 10 A/m
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Now critical fields at 0 K and 4.2 K are calculated as follows:

AtOK
H, = Ho[l— (T/TC)Z]
=H,[1-0]=H,
=20.7 x 10 A/m
H,=20.7 x 18 A/m Answer (b)
At4.2 K

H, = Ho[l_ (T/T)?| =207 x 101 - (4.2114.5)
H, = 18.9 x 10 A/m
H,=18.9 x 18 A/m | Answer (c)

5.2 Estimate the London penetration depth for tin from the following data at Z.343.7 K, density
7.3 x 10 kg/n?®, M, = 118.7 and m= 1.9 m.

Solution:
London penetration depth,

*

m
A(0) =
(0) o
ﬂm3 will contain 2 x 6.02 x 190 electron
73x 10°
1 1 will have /-3 10x 1204x 18
1187
i.e., N= 7.4 x 16°
19 x 91x 103
Thus A(0) = 2
4T x 107 x 7.4x 168( 16x 1019)
A(0) = 27nm| Answer (a)
A0
Also A(T) = (0)

with T=2.3 K andTC =3.7
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27 x 10°
471%
L
37

A(T) =291nm| Answer (b)

or A(T) = =29.1 nm

5.3 For a superconducting specimen, the superconducting transition temperature and critical magnetic
field at O K are 1.18 K and 99 x 20 respectively. If the specific heat constants 1.35 x 18J/n?
K2, then determine the ratio of the specific heat discontinuity to the normal state specific heat.
Solution:

Formula used:

AC _ 4ugy __4Bg

Ch VT2 oyTE

_ 4 x 9% x 10°
4% 107 x 135x 16( 118

=0.17

AC
— =017| Answer
C,

5.4 Using the parabolic temperature dependence of the critical magnetic curve, show that

Sn_gzwo_Hé[l_[le]

Te T \Te

2uH2 | T T\

and q—q:liim——{—J
Te Te Te

for the entropy and heat capacity differences per unit volaraads respectively refer to the normal
state and superconducting state.
Solution:

The general equations are

[ e
Si- 8= No[H:dT} ®

d?H dH, T
Cn - Cs =—HUy THCdTZC - {.UOT |: c:| } (2)

dT
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2
T
and He.= Holl_[fj ]

dH, 2T d?H, _ 2H,
=-Hy— and =
dT 012

dT? T2

Now

Substituting these values in equations (1) and (2) and simplifying we get

_2UHg [T, T
—g=SFoo J -1
S-S T T. 12 Answer (a)

4H§T2}

2H
Similarly, Ch—Cs=-Ug T[— T20 He + T4
C

[

2H T?| _4HST?
= U, T| =—2H, {1-—t - —2
Ho [ T02 0{ Tcz} Tél

_ 2pg H3 [T T ZTT

TOT oW

3
2uHE | T T
Cn—Cs=%[?—3[—” Answer (b)
C C

5.5 The critical temperaturd, for mercury with isotopic mass 199.5 is 4.18 K. Calculate its critical
temperature when its isotopic mass changes to 203.4
Solution:

We know that

T.0 M;”
and T.0 M;”
TC — [ MZ_B
T [ M
— _B %
o= [Ms < a0 2598 1
M, | 2034
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T¢ =4.139K | Answer

5.6 The superconducting transition temperature is 7.22 K. The Debye temperature is 96 K. Determine
N(0)¢ from these values and then the energy 040) .
Solution:

Formula used:

1 1146, 114x 96
=1In =In
N (0)(p T 7.22

N (0)¢ = 0.3678| Answer (a)

Further

ksOp  _ 138x 10%x 96,
) 1 7546
sinh| ———
N(0)¢

_ 96x 138x 102
7546x 16x 10%°

A(0) = oule

=1097x 10%eV

A(0) =1097x 10%eV | Answer (b)

5.1 Calculate the critical current density for 1 mm diameter wire of lead at (a) 4.2 K (b) 7 K. Given:
for lead = 7.18 K andll_ for lead = 6.5 x 10A/m.

(Ans: 1.71 x 16 A/m?, 1.285 x 10 A/m?)
5.2 Calculate the value of the London penetration depth at O K for lead whose density is £kg/x 10
m?® and atomic weight 207.19. Given;7.22 K. Calculate the increase in penetration depth at 3.61 K
from its value at O K. (Ans: 1 nm)

5.3 A superconducting Nb solenoid requires a current of 20 A in order to produce a magnetic field of
6 x 10 A/m. If the solenoid is immersed in liquid helium (4.2 K) &ydor Nb 1.56 x 10A/m, estimate

the minimum diameter of the wire that may be uedor Nb is 9.5 K. (Ans: 1.16 mm)
5.4 The penetration depth of Hg at 3.5 K is about 75 nm. Estimate the values @ind nasT - 0.
T.=4.12K. (Ans: 51.9 nm, 18/m3)

5.5 The resitivity of a superconductor becomes zero. Consequently the flux density is zero due to this
abrupt change. Prove that the superconductor behaves as perfect diamagnetic.
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6.1 INTRODUCTION

Magnetism has a very ancient history: it is one of the topics in which considerable advances have been
made, both in theoretical understanding and in experimental work, over the last few decades. It is
perhaps that aspect of solid state physics which has been familiar to man as early as 800 BC. Infact,
almost every thing known about the magnetic properties has been derived from experimental work and
from a few stimulated guesses.

Some of the important features of magnetic materials are listed below:

(i) Some materials are magnetic even with out the application of any magnetic field and become
more magnetic when a weak magnetic field is applied to such materials.
(i) Several other materials lose their initially strong magnetism when heated above certain critical
temperature and become comparatively weakly magnetized.
(i) Some materials show a magnetic response in a direction opposite to that of any externally
applied field.

The source of magnetism in solids is mainly due taribgon of the electrorend in the permanent
magnetic moments of the atoms and electrons. The application of a magnetic field induces a change in
theatomicorbital statescausing thaliamagnetic phenomenahich is quite weak. On the other hand
paramagnetisnis the result of the presencepmgrmanent atomior electronic magnetiecnomentsin
this case the magnetic moments line up with the magnetic field to decrease the total energy. In
diamagnetism, there is slight repulsion of a material by the magnetic field, where as in paramagnetism,
there is a slight attraction of a material by the magnetic field. Howexemagnetisnoccurs when
guantum mechanical exchange interactign adjacent magnetic moments in the same direction in the
absence of a magnetic field belowréical temperaturecalled thecurie temperatureAbove the curie
temperature, the ferromagnetic materials become paramagnetic. If the exchange interaction aligns the
moments in opposite directions, cancellation takes place and the material is knoantdsrammagnetic
material. The total moment over a finite volume is zero. The antiferromagnetism vanishes above a
critical temperature, called tiNeel temperaturdn ferromagnetism, the number of atoms with opposite
spins are unequal and hence there is anaginetic momenkig. 6.1.1 shows thmagnetic orderingf
the different kinds of the said magnetic materials. The interesting information is that ferro and ferrimagnetic
materials consist alomainsof completely magnetized regions, separated by boundaries.

I .
R
I .

(@) (b)



180 Rudiments of Materials Science

(©

Fig. 6.1.1 Various types of magnetic ordering. Fach arrow indicates a
magnetic moment and its orientation (a) Ferromagnetic
(b) Anti Ferromagnetic (c) Ferrimagnetic

Q 6.1 Discuss the origin of magnetism and also the magnetic quantities and their units.
Answer. In the simplest case, i.e., hydrogen atom, the motion of the electron is governed by three
guantum numbers;
(i) principal quantum numben, wheren =1, 2, 3........ ;
(i) angular momentur(or orbital momentumnquantum numbet, wherel =0, 1, 2 ... (n- 1)
and
(i) magnetic quantum number, wherem =0,+1 +2...+1.

While n determines the energy of the electrodenotes the magnitude of the angular momentum
vector L ; the magnitude and orientation in space of the vettare determined byandm. In other
words, for a fixed value af, different values of andm describe the same energy state. If an external
magnetic field is applied, however, ttiegeneracy of the energy staitetifted and each set of | and
m quantum numbers corresponds to a different energy state. The magnitude of the orbital angular
momentum I() of the electron is quantized in termsf i.e.,

L =I(1 +1)(n)

Forl =0, 1, 2, 3, etc., the electrons are designed s, p, d, f, etc. In the presence of a magnetic field,
the z-component oL is quantized such that

L, =mh (Q 6.1.1)

If 6 is the angle betweeh and the magnetic field direction, which may be conveniently taken as
the z-axis, then

h

L
cos9 = =% =
L

m _ m
e+ o+ (Q 6.1.2)
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Egns (Q 6.1.1) and (Q 6.1.2) indicate thatan have (2+ 1)orientationsin space corresponding

to the number of permissible valuesngf
In addition to the orbital motion an electron possespasangular momentualiso, represented by

the vectorS, whose magnitude is quantized in termsiosuch that:
S=,$s+1(n)

1 .
where s = — is thespin quantum numbeln the presence of an external magnetic fieléomponent

of S is also quantized such that:

S, = mi
1. . .
wherem, = iE is thespin magnetic quantum number

The orientations in space &, with respect to the z-axis (magnetic field direction), are determined

by the relation,

m# _ Mg

cosﬂ:i: =
S Jas+)(n) (Hs+9

Sincem, = il, there are only two permissible values6ofif J is the total angular momentum

vector, then
J=L+S

J=Ji(i +1(n)

wherej is thetotal angular momentumuantum number. The z-componentbfs also quantized such

that
‘JZ = m]h
A .
and cosy = 2 = _ .mj = -r.nj
I Jii+ym) i+

Herem is thetotal magnetic quantum numbenda is the angle betweed and the magnetic field
direction. Further, if is the angle between the directionslofand S, then

+Y-1+Y-s(s+1

cos =
211 +)s(s+ 1)
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Magnetic Quantities and Related Units

Magnetism is bedevilled by the different units used for magnetic field stratd®l, unit: A/m) and
magnetic inductionB (SI unit, T for tesla) and by the fact most publications still use the old c.g.s units
of oersted Qe) and gauss (Gor these respective quantities. In addition, there are two rival subsystems
of magnetic units within the SI. One of these, $tenmerfeld systersays that when a magnetic field,

H, is applied to a material may be considered to give rise to a magnetic indBctidrich is related to

H by

B = po(H + M) (Q 6.1.3)

M is themagnetizatioror the magnetic moment per unit volume of the material (and has also units
of A/m). B, H andM are all vector quantitiesiy is the permeability of vacuumir x 107 H/m,
though it is better to call it the magnetic constant. Becd&iseu, H in vacuum, a magnetic field is

: _ 05 o . :
often said to be, say OTsinstead Ofll_ (=39800 A/m). Some say this is incorrect, but it is convenient,
0

because a good many equations then do not require a fagtgt wihile conversion from tesla to gauss
or oersted is simple (1tesla = 10000 G, 1G@G€). In theKennelly systeprequation (Q 6.1.3) may be

written in terms of the magnetic polarizatiogy= HoM):

B=pH+3J (Q 6.1.4)

J is in tesla. Using just magnitudes, dividing Eqn. (Q 6.1.3by

B M
— = 1+ —
H llo( H)
ie. B=po (1+ X) = HoHy
M
or X = (ur - ]_) :F (Q 6.1.5)

where U is the magnetic permeability of the materixl,is its (magnetic) susceptibility and, is its
relative permeabilityX and U, are dimensionless in the Sl system. The permeability of a material is not
a constant, except under specific conditions of measurement. B is also referred toagnitec flux

density % where @ is the magnetic flux in webewl) andA is the area normal to the flux.

Q 6.2 Discuss the classical theory of diamagnetism bringing out the salient features of Langevin’s
work on diamagnetism.

Answer. Diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism are the chief types
of magnetic ordering in solids. Diamagnetism is a small effect caused by the reaction of the orbiting
electrons to an applied magnetic field in accordancelvetts law so that the magnetization and hence

the susceptibility are both negative. The magnetic induction is less in the material than it would be in a
vacuum with the same field. Typical susceptibilities are abodt(fll@ example for water —9 x 10
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graphite —8 x 18). Most every day materials are diamagnetic, but the phenomenon has few uses.
Elements like Bi, Cu, Ag and compounds of Fe and Ni are the other examples. Let us now consider the
simplest case.

An electron of charge is moving in a circular orbit of radium The frequency of revolutiois

(v/2mr) and hence the electron with a chaggevolving in a circle with the said frequency is equivalent
to a current.
%
| =e—
2
This gives rise to the magnetic moment of the orbiting electron as:

1
M = mr?| = Sevr (Q 6.2.1)

Let a magnetic field of inductio8 be applied normal to the orbit. Then thex in the circuit will

be r?B. If the magnetic field varies with time, then an induced e.m.f will be generated in the circuit
equal to

d P ,dB
emf.=—-——mnr*B=-mr-—
at at (Q 6.2.2)

This induced e.m.f. is equivalent to an electrostatic feisl given by

21 1E = —7TrZE
dt
- r dB

This field exerts a forceEon the electron and in turn produces change in velocity resulting in,

eE:md—V

dt
dv_eE_ _fer]dB
dt m 2m| dt

Consequently, in the time th& changes byAB, v changes byAv , where

- __[erl.a
AV = [Zm}AB (Q 6.2.4)

According to equation (Q 6.2.1), this produces a corresponding change in the magnetic moment of
the orbit:
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AN = E}M (Q 6.2.5)

Now equations (Q 6.2.4) and (Q 6.2.5), yield

2 .2
AN =S - A= —E T AR
2 m

2m

Since AB = y AH |, the above equation becomes,

2.2
o = -Ho® T Af
4m
By definiti M Mo 6.2.6
y definition, X A am (Q 6.2.6)

If N is the number of atoms per cubic metre, the volume susceptibility is

Nuoe®y r?

X=- 4m

The summation extends over all therbital electronsn the atom. Since the core electrons have
different radii, we may write:
z r2=7<r?>

where [<r2>]'2 js theaverage radiu®f the electron from the field axis (z-axis). If the orbit lies in the
X y-plane, then
<> =<X>+<y>
If the atom has spherical symmetry, then
<> = <YP>=<2>

Thus <r2>=2<x>
<R>=3< x>
and <r2>:%<R2>

Equation (Q 6.2.6) becomes,

_ZNuoez< R)

6m

x = (Q 6.2.7)

Conclusion: All materials have diamagnetic properly, although it may be superposed by other magnetic
effect. Since x4, 0 Z, the bigger the atom, the larger is the magnitude of the diamagnetism. The
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negative sign indicates that diamagnetism is an induced opposing effect that disappears as soon as the
field is removed. Equation (Q 6.2.7) indicates that the susceptibility is not a function of temperature, but
depends on the structure of the atom.

Q 6.3 Discuss the features of paramagnetic materials and obtain the expression for susceptibility of
the paramagnetic substance using classical laws.

Answer. Paramagnetisns a relatively weak effect akin to diamagnetism, but the susceptibility is small

and positive: application of a magnetic field to a paramagnet increases the induction beyond what it
would be in a vacuum. Paramagnetism is strongly dependent on the temperature, being reduced as the
temperature rises. In certain atoms there is a net magnetic moment arising from a particular combination
of the orbital magnetic moments and the spin magnetic moments of the electrons. The interactions
between the atoms are ignored, so that the only force on each dipole is that due to the applied magnetic
field H. The atoms are subject to thermal agitation and Langevin assumed that their energy distribution
could be described by classical Maxwell-Boltzmann statistics, so that the number ofiatbensng

energies betweef® and ¢ + d¢ is given by:

dn O exp(-@/ kg T) dp

dn= Cexp(-¢/ ks T) dp (Q 6.3.1)

The potential energy of a dipole whose axis makes an &hgligh a field or magnetic inductioB
is

@=—UynBcosB with Up,, the dipole moment

de =y, Bsing do (Q 6.3.2)

Substituting the values dP and d¢ in Egn. (Q 6.3.1), one gets

dn= Cexp(ly, Bcod/ kg Ty, sifd x B (Q 6.3.3)

Now the total number of atoms, is just Idn over all angles between 0 amd. The total

magnetization may be described ds= ngi,, where fi,, is the average dipole moment per atom in the

direction of H is,,cos9 and the sum of thes{,umcosﬂ dn, will give the total magnetization, thus
M=nl,=Hn jcosﬁdn

ie., TJmJ.dn:umJ.cosedn
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o T (Q 6.3.4)

Substituting the value an from Eqn. (Q 6.3.3)

T
B jcos@ exfi, B co8/kgT) i, Bsing &
% =0 (Q 6.3.43)
" jexp(um B co®/ kgT) u,, Bsind b
0
Let a:uLBandxzcosﬂ
kg T
+1
B Jx exp(ax) dx
Thus e = (cotha - 1)
Hm a
jexp(ax) dx
-1
Hm 1
i —/ =|cotha-—=|=L(a
ie., e ( a) (@) (Q 6.3.5)

L(a) is known as theangevin functiorand is plotted as a function afas in Fig. Q 6.3.1. Wheais

large the value df(a) tends to unity, which correspondsfig, = U, and all the dipoles are aligned with

the field. For 4y, equal to 10?8 weber-metre (60000 oersted)= 300K andH = 10°A/m, a is only of

the order of 0.25, from which it may be seen that it is impossible to magnetize the assembly to saturation
at room temperature in fields normally available. More uswaltyay be treated so small so that the

a
Langevin function approximates fg and

Hm _ 2 B _
Lo 3 HeT T

from which the susceptibility is given by
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_ NEo Moy _C

KT T (Q 6.3.6)

wheren is the number of atoms permnd C is curie constant.

P

—» L

Fig. Q 6.3.1 Langevin function

Paramagnetism of free electronsThe Langevin theory discussed earlier is found to have fair applicability

in the case of gases where the interaction between neighbowlagular magnets negligible. It is

well known that several metallic conductors exhibit paramagnetism. This paramagnetism is attributed to
the spins of free electrons. AccordingDoude-Lorentz theorpf metals, the free electrons in a metal
behave exactly like gas molecules and hence the magnetic contribution of the spins of the free electrons
can be calculated in the same way as is done for paramagnetic gases. Of course there is this difference,
that the paramagnetic gas molecules can orient in any direction, where as the paramagnetic free electrons
can orient only in two directions, either along the magnetic field or against the field. Here also the
interactions of the neighbouring spin magnets is neglected and the assembly of free electrons in a metal

is called theslectron gas
The intrinsic magnetic moment of each electron due to spin i8ohe magneton(S or ug).

Suppose the electron gas in a metal is subjected to a magnetit fieldagnetic inductioB. Out ofn
electrons per unit volume of the electron gas letectrons have their spins oriented parallel to the field
andn, electrons have their spins oriented antiparallel to the field. Since the orientation effect of the
applied field is opposed by the randomizing effect of the thermal energy, the number of eteetnoins

n, aligned parallel and anti-parallel is proportional to the Boltzmann factor,

exp (Bug H) and exp (Buy H) respectively.
Thus
N =Cnexp Buy H kg T) andn, = C n(—Lu, H kg T)

The net magnetization per unit voluideis given by:

M = B(ny— n,) = B C r{exp (Bo Hl ke T) = exp (~Buo H ke 7]
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The mean magnetic moment per dipole is equal to the net magnetization divided by the number of
moments per unit volume.

i.e u= M = L
- Hoh (n+ ny)
o _ BC n[exp(Buo HI ks T) — exp(=fuo H/kgT)]
C n[exp(Buo HI kg T) + exp(=Bo H/ kg T)]
- _ Ho BH
= [ tarh
p=pta [ keT j
Since BH << kg T at all temperatures, we get
- _ Ho HB?
U= F (Q 6.3.7)

The paramagnetic susceptibility for free electrons works out to be

_ M _nu_ nﬂoﬁz
X0 0 ket (Q 6.3.8)

Conclusions: The only difference from the Langevin’s expression forRheamagnetic Susceptibility

for a gas is that the factor 3 is missing in the expression (Q 6.3.8). The vafueaitulated from the

above formula is approximately 100 times greater than the experimental value. Further the experiments
show that the paramagnetic susceptibility of free electrons is practically independent of temperature,
whereas the above expression gives an inversion temperature dependence. Obviously the electron gas is
not that much free as the molecules of a gas. It is clear that the application of classical statistics to the
electron gas leads to contradictory experimental results. This discrepancy represents an outstanding
failure of the classical free electron model of a metal. This difficulty is solved by applgmg-Dirac

statistics andvave mechanic$o the free electrons. The corresponding quantum expression for the
paramagnetic susceptibility is,

¥ = HonB’ T
keT |Te
whereT, is the Fermi temperature of the metal.
- _ [ Mo
ie, X kg To (Q 6.3.9)

The value of X calculated from the above equation is of the order GftdQL0%, which is of the
same order as obtained from experiments. Because of the order of 10K, the valueX is very
small. Equation (Q 6.3.9) also shows the temperature independeicebwever a more rigorous
treatment of this proposition gives
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(Q 6.3.9a)

x = 3 MHoB®
2| kg Tr

Quantum Theory of Paramagnetism

According to quantum theory, the permanent magnetic moment of a given atom, ion or molecule is not
freely rotating but limited to a finite set of orientations with respect to the applied field. The quantum
mechanics gives that the magnetic moment associated with a particular ¥eetogular momentum

= h /J(J + 1) ] cannot have just any projection upon the direction of the magnetic field. The magnetic

dipole moment quantum number of each atbi® [-g B,/ J(J + 1)] whereg is known ad.ande ‘g-

factor’ and 8 is Bohr magnetonQuantum theorsuggests that the magnet has only«2) allowed
orientations relative to the magnetic field. These orientations are those in which the component of the
magnetic moment parallel to the magnetic field is given by

M;=-9gpBJ,-9gB(J-1...0... +9B(J-1, gBJ (Q 6.3.9b)
The corresponding 2+ 1) energy values are:
-M; B=gBJB gBR J-1)..... 0..... -gBJ-1)B- g3 JB (Q 6.3.10)

Since the atomic dipole moments of a substance are distributet+rijairections, one may use
statistical mechanics to obtain the net magnetic moment of the system. Assuming the magnetic system
to be in thermal equilibrium with the crystal lattice at a temperature T, the average magnetic moment can
be calculated by assigning a statistical weight of Maxwell Boltzmann statistics to obtain the magnetization as

J
z M, exp(—M; B/kgT)
M =N =1 (Q 6.3.11)
z exp(—M; B/kgT)
-J

The coefficients N ( the number of atoms per unit volume) on the R.H.S of Eqgn. (Q 6.3.11) is the
statistical average of the magnetic moment component per atom along B. Using Eqgns. (Q 6.3.9 b and Q
6.3.10) and some consequent algebraic manipulation, one obtains the expression

M = Ng ug B; (¥ (Q 6.3.12)

where X = andB, (x) the Brillowin functiondefined by

2 +1 2J + 1
B, (%) :( 2; jcoth{%} -3 cotr(z—’f]j (Q 6.3.13)

gug J B
kg T
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WhenJ becomes very large, it approaches as a limit the Langevin function

L(x) = (cothx - %) (Q 6.3.14)

as we should expect from the fact that a summation over a large number of terms can be replaced by an
integration.

At ordinary field strengths and normal temperatures, the valkésofery small, say 0.002. In
this limit, Eqn. (Q 6.3.11), becomes

J

> —gugJexp(-gug JB/ g T
M=N =3

J
> exp(-gug JB/kgT)
=3

J
z—guBJ exp(—X)
M=N="—
zexp(—x
-J

whene == (1 —x),

i( 3+ 3%y)

M:NQNB -y

where y= X<
J

The summation ovel is zero, because the values run from t6 —J, and since the sum of the
squares of the first natural numbers is (1/@)(J + 1) (2J + 1) [which becomes (1/3)(J + 1) (2J + 1)
for summation from Jto J].

Thus
_NgugyJ(J+1)(23+17

323 + 1)

N Qug I3+ (23+)B
M = 320+ D) kT (Q 6.3.15)
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The susceptibility per unit volume is thus givenQuyrie lawi.e.,

_ M _poN @®pg 33+
X~ KeT
c (Q 6.3.16)
ATT
N g° o g I(JI+1
with c= NG HoHs I+ Y

3Kg

Conclusion: The magnetic susceptibility of a paramagnetic substance is inversely proportional to the
absolute temperature. We can understancCtiréee lawby observing that the thermal agitation, which
tends to give a random orientation to dipoles is less at low temperatures resulting in a bigger proportion
of the dipoles to be able to align themselves parallel to the field. Hence, at low temperatures, for a given
field, the magnetization and, therefore, the susceptibility is greater.

Q 6.4 Write a note on adiabatic demagnetization.

Answer Temperature below 1 degree kelvin can be obtained with the h&pramagnetic salts
Fig. Q 6.4.1 gives thentropyof the working substance as a function of temperature.

s A
H=0
i
v
c H, Hz/_
. B
i i
: :
: i
e e
d |
i i
1 1
i i
1 1
| |
0 ¢ T T—»

Fig. Q 6.4.1 \Variation of entropy with temperature without and with magnetic field

The first line OCA represents the variation of entropy with temperature in the absence of a field. Let
at an initial temperaturg, the magnetic field be applied isothermally, then the magnetic dipoles will tend
to line along the direction of the field. The spin system will become more orderly decreasing the entropy
of the system from A to B. If now the paramagnetic specimen is isolated from its surroundings and the
magnetic field is removed, then we go from B to C alongdaabatic transformationvith no change in
entropy. By successive steps of this kind, temperatures of the order of 0.001 K have been obtained.
Thermodynamically with the help Maxwell’s relations one obtains the entropy as



192 Rudiments of Materials Science

H
s=5 +j[%} dH (Q 6.4.1)
H

0

wheres§; is theentropywithout magnetic field. According to Cureie’s law, from equation (Q 6.3.16),

_HNB I3+ | IM  MUoNB®G I+ D)

M
3kg T oT 2kg T2

equation (Q 6.4.1) becomes

N B I+ H

S=
? Bkg T2

(Q 6.4.2)

This shows that entropy with magnetic field at T. will be lower thar§ atT =T, and will actually
correspond t& atT =T, whereT, is a lower temperature than The last step is obtained by adiabatically
moving alongBC (dS =0) removing the magnetic field, thus the naaugabatic demagnetization
bringing the temperature below 1K by successive steps of the kind described above.

Q 6.5 Give an account of the different theories of ferromagnetism with a brief introduction.

Answer Ferromagnetismferrimagnetism and antiferromagnetism are all properties of materials
possessing magnetic order, even in the absence of an applied field. If we think of each atom acting like
a tiny bar magnet, then in a ferromagnet they are all aligned parallel to each other as in Fig.aR 6.5.1 (

In an antiferromagnet alternate atoms align their magnetic moments antiparallel, so that the net magnetization

is zero, as in Fig. Q 6.5.1 (b). l l l /< /< /
.

M,J#0 M,J=0 M,J#0 M,J#0
@ (b) © (d)

Fig. Q 6.5.1 Alignment of atomic moments in (a) a ferromagnet, (b) an
antiferromagnet, (c) a ferrimagnet and (d) a canted spin ferrimagnet.

In a ferrimagnet the magnetic moments on some atoms is less than on others, so that when the two
moments align antiparallel, as in an antiferromagnet, there is incomplete cancellation and a net magnetization
results as in Fig. Q 6.5.1 (c). A ferrimagnet behaves much like a ferromagnet, and the commonest and
cheapest magnets are made from ferromagnetic materials such as the hexaferrite cer@rbi¢sgBa
O, and Sr Fg O,,. Ferrite inductor and transformer cores are also made from ferrimagnets, such as
nickel ferrite, NiFgO, (which can be written as NiO.[t). The alignment of magnetic moments need
not be so simple as in Figs. 6.53),(6.5.1 (h, 6.5.1 €) but can be at other, constant angles as in Fig.

Q 6.5.1 (d), which shows @anted spin systenThe magnetic order in ferrimagnetic compounds
disappears above their Curie points and the magnetic order in antiferromagnets disappears above a
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characteristic temperature called theel temperaturgT,): in both cases the material then becomes
paramagnetic. Little use is made of antiferromagnetism. Nearly all the technically important magnetic
materials are ferromagnetic or ferromagnetic.

The core electrons contribute a diamagnetic term tmtgnetic susceptibilifyut the valence
electrons can give rise to paramagnetism or other cooperative effects. In filling the conduction band, we
have implicitly put electrons into energy levels with paired spins. Even in the ground state of simple
molecules such as,Chowever; it can be more favourable to have electrons in different orbitals with
parallel spins than in the same orbital with paired spins. This occurs when trgggemerater nearly
degenerate leveldn an energy band, there are many degenerate levels and many levels very close in
energy to the highest occupied level. It might well be favourable then to reduce electron repulsion by
having electrons with parallel spin singly occupying levels near the Fermi level. To obtain a measurable
effect, however, the number of parallel spins would have to be comparable with the number of atoms;
10° unpaired spins would not be noticed in a sample &fdtdms. Unless the density of states is very
high near the Fermi level, a large number of electrons would have to be promoted to high energy levels
in the band in order to achieve a measurable number of unpaired spins. The resulting promotion energy
would be too great to be compensated for by the loss in electron repulsion. In the wide bands of the
simple metals, the density of states is comparatively low, so that in the absence of a magnetic field, few
electrons are promoted.

When a magnetic field is applied, the electrons will acquire an extra energy term due to interaction
of their spins with the field. If the spin is parallel to the field, then its magnetic energy is negative, i.e. the
electrons are at lower energy than they were in the absence of a field. For an electron with spin
antiparallel to the field, it is now worthwhile to go to a higher energy state and change spin so long as the
promotion energy is not more than the gaimagneticenergy. This will produce a measurable imbalance
of electron spins aligned with and against the field and hence the solid will exhibit paramagnetism. This
type of paramagnetism is knownRauli paramagnetisnand is a very weak effect givingh@agnetic
susceptibilitymuch less than that dueismlated spin@nd comparable in magnitude to diamagnetism.

For a very few metals, however, the unpaired electrons in the conduction band can lead to
ferromagnetism. In the whole of the periodic table, only iron, cobalt, nickel and a fewanittienides
(Gd, Tbh) posses this property. So, what is so special about these elements that confers this uniqueness
on them? It is not their crystal structure; they each have different structures and the structures are
similar to those of other non-ferromagnetic metals. Iron, cobalt and nickel, however, do all have a nearly
full, narrow 3 band.

The 3d orbitals are less diffuse than the 4s and 4p, i.e. they are concentrated nearer the atomic
nuclei. This leads to less overlap so that the 3d band is a lot narrower than the 4s/4p band. Further more,
there are five 3d orbitals so that for a crystal of N atoms, 5N levels must be accommodated. With more
electrons and a narrower band, the average density of states must be much higher than that in other
bands. In particular the density of states near the Fermi level is high. In this case it is energetically
favourable to have substantial numbersiopaired electronst the cost of populating higher energy
levels. Thus these elements have large number of unpaired electrons even in the absence of a magnetic
field. For iron, for example, in a crystal of N atoms there are up to 2.2 N unpaired electrons all with their
spins aligned parallel. Note the contrast with a paramagnetic solid containing transition metal complex
ions where each ion may have as many as five unpaired electrons but in the absence of a magnetic field,
electrons on different ions are aligned randomly.
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Ferromagnetism thus arises from the alignment of electron spins throughout the solid, and this
occurs for partially filled bands with a high density of states nedreahmai level 4d and 5d orbitals are
more diffuse than 3d and produce wider bands so that ferromagnetism is not observed in the second and
third row transition elements. The 3d orbitals themselves become less diffuse across the transition
series and lower in energy. In titanium the valence electrons are in the 4s/4p band with low density of
states and, at the other end of the row in copper, the 3d band has dropped in energy so that the Fermi
level is in the 4s/4p band. Thus it is only at the middle of the series that the Fermi level is in a region by
high density of states.

Many ferromagnetic alloys were produced for special uses. Some of these contain one or more
ferromagnetic elements and among these alloys of iron, cobalt and nickel with the lanthanides, e.g. Sm
Co,, Nd, Fe B, have produced some of the most powerful permanent magnets known. In the lanthanide
alloys,f electrons contribute to the magnetism. Potentially this could lead to a very high magnetization
because there are sevieorbitals and so a maximum possible magnetization corresponding to seven
electrons per atom. The theoretical maximum magnetization for the transition metals is five electrons
per atom, as there are only fideorbitals. In practice this maximum is never reached. In the pure
lanthanide metals, the overlap fobrbitals is so small that they can be regarded as localized. In the
ferromagnetic lanthanides, the magnetism is produced by delocdéiesirons. The interaction between
thesed electrons and the localizécelectrons causes alignment of thendf electrons in order to
reduce electron repulsion. Thuslectrons on different atoms are aligned through the intermediary of
thed electrons. In alloys, thieelectrons can align via the transition met&lectrons and although not
all thed andf electrons are aligned, it can be seen that high values of the magnetization could be
achieved. It is not surprising, then, that it is these transition metal/lanthanide alloys that are the most
powerful magnets. Other alloys can be made from non-magnetic elements such as manganese and in
these the overlap af orbitals is brought into the range necessary for ferromagnetism by altering the
interatomic distance from that in the element. The usefulness of a particular ferromagnetic substance
depends on factors such as the size of the magnetization produced, how easily the solid can be magnetized
and demagnetized and how readily it responds to an applied field. The number of unpaired electrons will
determine the maximum field, but the other factors depend on the structure of the solid and the impurities
it contains.

Ferromagnetic materialkave their properties divided into two distinct and separate temperature
ranges in such a way that the properties above a particular temperature are quite different from the
properties below that temperature. This temperature is callddrtbenagnetic curie temperatur@ .

Both the cases are discussed below:

Casel T >0..Atatemperature abov; , a ferromagnetic material has properties similar to those of

paramagnetic materials. Thus abofg, a ferromagnetic material has very small susceptibility and
hence very small magnetization. In this temperature region, the susceptibility depends upon temperature
according to a law calle@urie-Weissaw and the susceptibility is expected to decrease with increase of
temperature. This law states

C
X:(ur—):_l_ 9forT>GC (Q 6.5.1)
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whereC is theCurie constantof the material and® is the paramagnetic Curie temperatur@he
interesting information is that Eqn. (Q 6.5.1) is untrue for temperafuvesy close tof. as (T - 6)
maybecome negative which is not possible in the case of ferromagnetic materials.

—» x|~

Fig. Q 6.5.2 /nverse susceptibility versus temperature curve for a
ferromagnetic material (6, or @, /s used)

1
In Fig. Q 6.5.2, the plot betwee)r(r andT is a straight line, starting frorfl; on the temperature

1
axis. In the vicinity off, the variation of} is non-linear. Th@aramagnetic curie temperatug of

the material may be got by extrapolation. A ferromagnetic material differs from a paramagnetic material
in the fact that for the latte? = 0. Also we see thafl > 6,.. However(6 — 68,) is small. For example

6 =1093 and 6, = 1043K for iron.

Case2 T <6.. The most important technological property of a ferromagnet (or ferrimagnet) is

hysteresis. In Fig. (Q 6.5.3) plotted a typiBat+ H diagram for a ferromagnet as the applied field is
increased to a large positive value good enough to saturate the polarinsdigmetizatioh of the
material,B then reduced to a negative value large enough to produce saturation in the reverse direction,
then increased back to zero once more. A symmetrical closed loop knowysasrasisoop is formed.

The magnetic induction remaining when the applied field is reduced from saturation to zero is called the
remanenceB, . The magnitude of the negative field required to reduce the induction to zero is known as
the coercivityor coercive forceH . Remanence and coercivity are some of the properties with highest
practical significance.
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Fig. Q 6.5.3 Hysteresis curve for ferromagnetic material

Weiss Molecular Field Theory of Ferromagnetism

P. Weiss assumed phenomenologically that the strong interaction, which tends to align the atomic or
ionic moments parallel in ferromagnets, could be assumed as equivalent to some magnedic-field,
called Weiss field molecular fieldor exchange fieldThe strength of the field may be estimated as
follows:

Beyond the curie temperature, a ferromagnet becomes a paramagnet and follOursetivgeiss
law. Hence the thermal energy just balances the magnetic potential endrgy@. i.e.,

Mo Hi g = Kg 6, or B ig= kg8 (with 1 g= 3)
For iron 8, = 1000 K

ks, _  138x 10%x 1000
HgHo 9.27x 10%* x 4rx 10’

H =10 A/m (10e = 79.6 A/m)

As mentioned earlier transition metals Fe, Co, Ni; rare earth metals Gd and oxideSrOréxhibit
very large magnetizations; their magnetization is not reversible and remains even if the magnetic field is
recovered. In order to explain the sources of this large magnetization, Weiss in 1907, postulated the
existence of an internal field proportional to the magnetization in the material. Here the field seen by an
atomic dipole is the sum of the applied fi@ldand the internal fiel@ , i.e.,

B =
and B = SOI\; i (Q6.5.2)

Hi:




B
Where A is known asMeiss constantf B is such thath

be used to give
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kg T

X _ HoM _ HoNgB®J(J+D) [ AM
"B ke T Bo
Cl,, AX M
or sz?{l+ “Of}as)(f =l1;0
) Ho

is small, then equation (6.3.15) can

(Q 6.5.3)

6 is thecurie temperaturat which the susceptibility tends to infinity from equation (Q 6.5.3). This
means thaM has a finite value when Bs zero which is an evidence of spontaneous magnetization.
From equation (Q 6.3.12), we get

M =Ny BJ BJ[:ngﬁ_i(Bo+ AM)}
(Q 6.5.4)
_ M ()
M—MJQ&{M%4%+AW}

where M(0) = NgB J represents the maximum value of magnetization at 0 K. When there is no

magnetic fieldB, = 0.

M, (0
= 08| 1w = w08,y Q655
B
wherey is given by Egn. (Q 6.3.16); in case of ferromagnetic materials, as
98I, _9BJ
= B = + AM
Y = T BT 7 (Bt AM) (Q 6.5.6)
In case of no magnetic fiel, = 0 and hence

ks Ty

M=—8_7
9B I (Q 6.5.7)
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M a

T>0

T<6

»
»

0 y
Fig. Q 6.5.4 Graphical solution of equations Q 6.5.5 and Q 6.5.7

SinceM must satisfy both Eqgns. (Q 6.5.5) and (Q 6.5.7), theMwersusy curves are plotted in
Fig. Q 6.5.4. Equation (Q 6.5.7) is a straight line betwdeandy and for various temperatures. i.e
T<0, T=0andT>8 are shown in Fig (Q 6.5.4). The equation (Q 6.5.5) represents a curve which
intersects the straight line foF < @ at point A. This gives a nonvanishing valueMfeven if the
external field B is zero.This spontaneous magnetizatioglow the curie temperature is shown in Fig.
(Q 6.5.5) where the magnetization decreases from a saturatedaud = 0 to zero afl = 6. At
T =8, the straight line given by equation (Q 6.5.7) is the tangent to the curve (Q 6.5.5) at the origin.

Thus, there is no spontaneous magnetizationTferg .

M A

M, (0)

0 T=6 T

Fig. Q 6.5.5 Spontaneous magnetization below the curie temperature

A rough estimate of the internal fieltlis made as follows. The energy of a given atomic dipole in
its field should be of the order &f 6. i.e.
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BB =kg 6
For sayg = 1500 K,B, needs to be about iesla. This value is enormously larger than 0.1 tesla
due to thalipole — dipole interaction, which therefore, can not be the origin of the internal field.

Origin of Weiss Field on the Basis of Heisenberg's Theory

Gyromagnetic experiments conducted by Einstein de Hass and Barnett have conclusively established
that the magnetization in ferromagnetics is due to the spin moments and not orbital moments. In 1928
Heisenberg showed that this large Weiss field can be explained in terms of the s@xaikuge
interaction between the electron spins. He developed his theory on the analogieitlreLondon

model of the hydrogen molecule. Exchange interaction between electrons in different quantum states
can be shown to lead to a decrease in energy when the spins are parallel. When two atoms approach
each other the spins of unpaired electrons in each atom assume parallel orientations. Exchange interaction
is purely a quantum mechanical phenomenon. The interaction energy between such spins is derived
from gquantum mechanics as

Vi = -k S0
wherekis a constant, & called theexchange integral andS are the spin angular momenta associated
with theit" and thg'" state anc\l/ij the corresponding interaction energy. In general this exchange integral

is negative and it is a function of the interatomic distance. The Fig. Q 6.5.6 shows the plot of the
exchange integral value versus the interatomic distance. It appears that in a few cases it becomes

positive. The positive value dfis found to be obtained when the ratfy for the atom is greater than

0
3 but not very much larger, whergis the interatomic distance ands the 3d orbital radius. Incidentally

. . . - r .

it is the 3d orbit which contains unbalanced spins due to incomplete filling. The values of thré'lratlo

for different atoms are °
Fe Co Ni Cr Mn Gd

3.26 364 394 26 2.9 3.1

Co

Exchange integral J

Fe Ni

G{Mn Tob

To

I
Fig. Q 6.5.6 Variation of exchange integral with rib
0
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When the] value is positive the exchange energy is negative and hence becomes a minimum for
parallel orientation and so that the atom is found to exhibit ferromagnetic properties. From the above
criteria we find that Fe, Co, Ni and Gd are ferromagnetic. It is found that Cr and Mn are not ferromagnetic

. CTap o ,
since the ratio® is less than 3. Thus we get the criteria for ferromagnetism as, that the atom must
r

0
have unbalanced spins and the exchange inté;jgshbuld be positive]ij is found to be positive when

the ratio22 is slightly greater than 3. The question arises whether an element with unpaired spins but
o

. r _ . : .
with unfavourable-22 ratio can be combined with another nonferrmagnetic element to form a compound
r
0

for which the ratio-®2 becomes greater than 3 will be suitable for ferromagnetism. In fact this is so and
r

0
is amply proved by the fact that Mn — As, Cu — Mn and Mn — Sb alloys become ferromagnetic because

of the favourable-®2 ratio obtainable. This is the greatest triumph of the solid state theory, which
o

enables us to find the criteria for a certain phenomenon from the microscopic point of view. Once the

criteria is known it is only a matter of proper cooking of the molecules to fabricate materials of any

desired characteristics.

Q 6.6 Explain the different contributions for the formation of domains in a ferromagnetic material and
show how the hysteresis curve is explained.

Answer The concept of internal magnetic field to explain the spontaneous magnetizégroonmagnetic
materialswas first introduced by Weiss. Though the origin of Wedss fieldvas not clear at that time
when Weiss proposed in 1907, the modern quantum theory has clearly established that the so called
exchange interaction is responsible for this large internal molecular field in ferromagnetic materials.
Again when he was confronted with the problem of explaining the phenorhgsi@nesisexhibited by
the ferromagnetic materials he made a bold and noval suggestion that a ferromagnetic solid is divided
into a large number of small regions calldaimainseach of which is spontaneously magnetized to
saturation. The domairize may vary I(°to the entire volume of the crystal. The spin magnetic
moments of all the atoms in each domain are all aligned in a particular direction, but the direction of
magnetization of the different domain are so oriented, as to make the net magnetization of the specimen
zero. The process of magnetization consists in rotating the different domains in the direction of the
applied external field so that the specimen exhibits a net magnetization externally. The existence of
domains was not very much clear until Bitter successfully demonstratddrttenstructure25 years
later. The present quantum mechanical explanation of the phenomenon also confirms domain structure
idea. It is indeed a very ingenious guess which Weiss made at so early a period. We will follow the
present day reasoning about the formation of domains and their roles in ferromagnetic materials.

The first question we must set ourselves is, why the entire crystal of iron does not organize itself as
a single domain? In that case the specimen will be spontaneously magnetized even without any external
magnetic field. But this does not happen. We know from thermodynamics that every solid structure will
take up that configuration for which the free enefgy-TS is a minimum. Due to high degree of order
in magnetic system we can neglect the entropy term and concentrate only on the internal energy term.
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The total internal energy of domain structure in a ferromagnetic material is made up from the contributions
summarized below:

(a) magnetostatic energy or the magnetic field energy or the exchange energy
(b) crystalline energy or anisotropy energy

(c) domain wall energy or the Bloch wall energy

(d) magnetostriction energy

The domain structure is usually determined by the minimization of the different types of energy
mentioned above. We have to now discuss how these different energies arise and what are the essential
conditions to be satisfied for minimizing them.

Magnetostatic Energy

The interaction energy which makes the adjacent dipoles align themselves is the exchange energy or the
magnetic field energy. Let us consider the case when all the dipoles in the crystal are aligned so as to
form a single domain as shown in Fig. Q 6.8)1Because of the free magnetic poles formed on the

surface of the crystal, this configuration will have high magnetic en(efgy)"- H2dv. In fact this is

the energy required in assembling the atomic magnets into a single domain and this work done is stored

as potential energy in the field outside. In Fig. Q 6.6)1tle magnetic energy has been reduced by one
half as a result of dividing the crystal into two domains magnetized in opposite directions. The sub
division can be continued until the reduction in magnetic energy is less than the increase in energy to
form another domain and its boundary caldch wall. A domain structure as in Fig. Q 6.6.1(c) and

Fig. Q 6.6.1(d) hagero magnetic energyiere the boundaries of triangular prism domainsl@sure
domainsnear the end faces of the crystal, make equal angle? ofithsthe magnetization direction.

Hence the normal component of the magnetization in crossing such a wall is continuous, i.e., there are
no free poles and there is field energy The energy required to produce a closure domain is essentially
determined by thanisotropyof the crystal, i.e., by the fact that ferromagnetic materials le@sy and

‘hard directions of magnetization. Summarizing the ideas discussed above we may say that domain
structure will depend to a large extent on the shape and size of the crystal under consideration. The size
of the domains for a particular domain structure may also be obtained form the principle of minimum
energy. The volume of the domains may vary between s&ytol00® cn?.

Anisotropy Energy

It is found that the ferromagnetic crystals have easy and hard directions of magnetization i.e., higher
fields are required to magnetize a crystal in a particular direction than others. Forlecgiron the

easy directioris (1 0 0), themedium directionis (1 1 0) and theard directionis (1 1 1). In nickel the

easy direction is (1 1 1), the medium direction is (1 1 0) and the hard direction is (1 0 0). In cobalt the
hexagonal axis is the only direction and all other directions are hard directions. The difference between
the easy and the hard directions is, that for producing the same saturation magnetization, stronger fields
are required in the hard direction than in the easy direction. The excess of energy required to magnetize
a specimen in a particular direction over that required to magnetize it along the easy direction is called the
crystalline anisotropy energyt can be enormous if FEpand Ni are magnetized in hard directions. The
exact origin of this crystalline energy is not quite clear.
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Fig. Q 6.6.1  The origin of domains

Magnetostrictive Energy

When a specimen is magnetized it is found that it suffers a change of dimensions and this phenomenon
in known asmagnetostrictionThis deformation is different along different crystal directions. So if the
domains are magnetized in different directions they will either expand or shrink. This means that work
must be done against the elastic restoring forces. The work done by the magnetic field against these
elastic restoring forces is the energy due to magnetostriction oratpeeto-elastic energyg zero. But

usually the lattice is strained along the different directions of magnetization of the domains.

Bloch Wall or the Domain Wall Energy

We know that the spin moments in any two adjacent domains are differently oriented so as to create the
boundary between two such domains some energy, like the surface tension energy in liquids, must be
spent. The boundary between two adjacent domains is callethiin@in wallor Bloch walland the
construction of the Bloch wall involves expenditure of energy. Work has to be done against exchange
interaction E,) which has a tendency to align the spins in the same direction. CreaBtwcbfwalls
demarcates regions with misaligned spins. Again some spins may have to point along hard directions as
well. So the anisotropy energy also increaggk E, is less if the spins change directions gradually. i.e.,

if the Bloch wall is thick. BUE, is less if the spins change directions abruptly. i.e., if the Bloch wall is
thin. So the thickness of the Bloch walls is a compromise. Usually Bloch walls are about 200 to 300
lattice constant thickness. In summary we can say that the equilibrium domain structure is that which
gives the lowest total energy due to all the above four contributions.

Bitter in 1931 gave a visual demonstration of the domain strubjudepositing colloidal iron oxide
particles of very small size into an etched surface of a ferromagnetic solid. The iron particles concentrate
at the places where the domain walls intersect since there is a strong local magnetic field in these places.
The pattern is known as tlgitter Pattern
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Explanation of Hysteresis

The domain concept is very well suited to explain the phenomenon of hysteresis. In the absence of an
external applied field the domains are oriented such as to form closed magnetic paths some what as
shown in Fig. Q 6.6.2.
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Fig. Q 6.6.2 Hysteresis loop of a ferromagnetic material

There are two ways by which the specimen can be magnetized, one by rotating the domains in the
direction of the applied magnetizing field and other is to permit the growth of the domain which is
initially in the direction of the field. In fact the magnetization takes place by both the processes. When a
weak magnetic field is applied it is found that the domains which are oriented parallel to the field and in
the easy direction of magnetization grows in size at the expense of less favorably oriented ones. This
means less energy is required for the domain growth in the early stages than is required for the domain
rotation. The domain growth requires the Bloch wall movement which involves expenditure of energy.
The wall movements have been actually observe8itigr patterns This movement of the domain
walls are mostly reversible and is indicated by the portion of OA of the magnetization curve in the Fig.
Q 6.6.2. When the field becomes stronger the Bloch wall movement continues rather sharply and they
are mostly irreversible movements. This is indicated by the portion AB of the magnetization curve. This
irreversibility explains the existence of thgsteresis phenomenoft B each domain is magnetized
along their easy directions. Application of still higher fields rotates the domains into the field direction
and this may be away from the easy direction, thereby stanilsgtropy energyFig. Q 6.6.2 shows the
position of the domains at the position C of the magnetization curve. At C the specimen is saturated
when all the domains are aligned in the field direction. On removing the magnetizing field the specimen
tends to attain the original configuration. This requires the movement of the Bloch walls. But this
movement is impeded by impurities, lattice defects, etc., and so more energy must be supplied to over
come the opposing forces. This means that a coercive field is required to bring the specimen to zero
magnetization. The energy which is spent in over coming the forces opposing the Bloch wall maotion is
not recoverable and it is this loss of energy which is identified dsy8teresis loss.
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Q 6.7 Give an account of Neel's theory of antiferromagnetism with a brief introduction.

Answer. A ferromagnetic material is distinguished by a large, positive exchange energy between
neighbouring dipoles, such that the lowest energy state is that in which the dipoles are aligned with their
magnetic moments parallel. In the antiferromagnetic material the exchange energy is large and negative
so that the lowest energy state is that in which neighbouring dipoles have antiparallel alignment. This
means that the material would not show any spontaneous magnetization. The actual spin arrangement
can be deduced from neutron diffraction experiments. The neutron, having no charge, is not affected by
the electrostatic charge on ions in the lattice, but since it has a magnetic moment it can be scattered by
the electron spins. By using a beam of polarized neutrons, i.e., with their magnetic moments all lying in
one direction, and studying their diffraction by the crystal lattice, the spin directions of the atoms from
which they are scattered can be deduced. This technique was pioneered by Shull and Smart in 1949 and
has since been applied to a wide range of materials. The distinguishing features of the temperature
dependence of the magnetic susceptibility in para, ferro and antiferromagnetic substances are shown in
Fig. Q 6.7.1.

In the case of ferromagnetic materials there is what is called magnetzattistropheat the curie
temperature. Below the curie temperature the material exhibits ferromagnetism and above the curie
temperature the material behaves like a paramagnetic. Similarly in the case of antiferromagnetic materials
there is a pronounced kink in the susceptibility versus temperature gurigcreases at first with
temperature and reaches a maximum at a certain temperature called the Neel tempgranaeH@n
decreases as for any other paramagnetic materials as shown in Fig. Q 6.7.1. The Neel temperature plays
the same part in antiferromagnetics as curie temperature in ferromagnetic materials. The susceptibility is

found to follow the relationX = whereC is the curie constant argl is the paramagnetic curie

T+86
temperature, or treesymptotic curietemperature. It must be noted that the transitioraftofarromagnetic
to paramagnetic behaviourccurs at a different temperature Y&nd not at the curie temperaty@ .
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Fig. Q 6.7.1 Temperature dependence of X in para, ferro and antiferromagnetic materials
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The interpretation of this behaviour was suggested by Neel, Bitter and van V lack as given below:

Antiferromagnetism arises when the lattice of paramagnetic ions are distributedhiretpenetrating
sub latticesA and B where all the nearest neighbours of an ion in the sub lattice A lie in the sub lattice B
and vice versa.

A A h
4 4 A
B
X X 3
v v
4 A A
A
X h ¢ 3
v v
4 A A

Fig. Q 6.7.2 Distribution of jons

Let us consider a bcc lattice where we distinguish two sites A and B as shown in Fig. Q 6.7.2. Each
A site is surrounded by eight B sites and each B site is surrounded by eight A sites. Let us assume that
all sites are occupied by identical atoms and that the atom in the A site tends to align its spin opposite to
the spin of the neighbouring atoms in the B sites. Ledridl H be the internal fields on the two sites
respectively. Following the same lines as adopted for writing the Eqgn. (Q 6.5.2) we have

Ha=H -y M,
and Hy, =H -y M,

whereM_ andM, represent the magnetizations of the A and B sub lattices respectively. The negative
signs follow from the assumption that the atoms in A sites have their moments antiparallel to the atoms
in the B sitesy is a constant which determines the strength of the exchange interaction. If there are N

atoms per unit volume in each of the two lattices sites we can write for the high temperature region,

N ug
= H-yM
a 3|(BT( y b)
and M _N_ué(H -vM )
b ke T yMa

Total magnetisnM = M, + M,
2
M = NHE (o _ )
kg T

The above equation is similar to Eqn. (Q 6.5.4)
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kg T | 3KgT
2N pd
=M T
or =i 6.7.1
Ho(, yNug Q67D
g T
2
Let c=NHg
3Kg
2 _
X (T+yC) (T+6) Q6.7.2)

The above equation gives the susceptibility variation acquired by the experimental curve. It is observed
that the antiferromagnetic case contdfis+ 6) instead of(T — 6) and the curie constant is twice that

in the ferromagnetic case. The variation6fwith T is shown in Fig. Q 6.7.1 for the three classes of
magnetic materials.

Q 6.8 Explain Neel's model of ferrimagnetism. Write a note on ferrites.
Answer. A ferrimagnetic material may be defined as an antiferromagnetic in which the sub-lattice
moments are unequal. This means that there will be a net spontaneous magnetization in the direction of
the larger sub-lattice moment, for the case of a siamiéerromagnetic materiakith strictly antiparallel
sub-lattice moments. The wofdrrimagnetismwas coined by L. Neel to describe those materials
which exhibit spontaneous magnetization due to antiparallel alignment between two magnetic sub-lattices.
The non-vanishing, net magnetization could arise due to several reasons; however, the two principal
reasons are: (a) the two sub-lattice are occupied by different types and numbers of magnetic ions and
(b) the two sub-lattices correspond to two different crystallographic sites, which may also be occupied
either by the same type or different types and number of magnetic ions. Above a certain critical temperature
called thelerromagnetic Neel temperatyig. — a ferrimagnet becomes a paramagnet. The paramagnetic
susceptibility follows éyperbolic curvewhich becomes linear at higher temperatures, stimulating the
Curie-Weiss behavior exhibited by antiferromagnets.
In the ordered region,

M, =M, (0)B, (@)

and M, =M, (0) B, (b")
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where B,=(a") = Jgug Hy 0 Sgug Hy
AM AM
with Hia = -—=andH;, = - [Refer Eqn. 6.5.2]

Ho Ho

In many of the ferromagnetic compounds such addfrges and thegarnets the crystal field
guenches the orbital contribution to magnetization and, therdfoas, be replaced & Further, in the
simplest case, the presence of only angferromagnetic exchange interactioperating between the
two sub-lattice magnetizatiooould be assumed to exist which might be represented by the molecular
field constantA . Strictly speaking, the sub-lattice magnetizations should be represented by,

Ma = Nig pg 3 B(q)

My =D N;gj e J; B(Y)
]

(Q6.8.1)

Where, ai”: ‘Ji g NB Ha
kg T
J; 9; g Hp
and b= — =
! kg T

since each sub-lattice may be occupied by different types and numbers of magnetic ions. Moreover, the
orbital contribution may not be negligible and, in addition, exchange interactions may exist within each
of the two sublattices, necessitating the introduction of more thamoleeular field constants

Ferrites

One special class of antiferromagnetic substances which merit attentionfanétéser theferrimagnets
Generally the net magnetization due todhé&ferromagnetic interactiomwill be zero since the spins in

the A sites and B sites are equal and antiparallel. Sometimes the spins in the two sites may not neutralize
exactly in which case we get a class of substances taitedagnets or ferrites/hich exhibitspontaneous
magnetizatiorbelow Neel temperature. These ferrimagnetic materials are of great industrial importance
because ferrimagnetism has been found to occur is materials with chemical formula O M-e
corresponds to divalent cations like Mn, Fe, Co, Ni, Cu or Zn. The particular material with M = Fe; i.e.,
Fe O. Fe O, occurs naturally as theon ore magnetiteTwo kinds of iron are in this material, doubly
charged ferrous ions and triply charged ferric ions i.e (Fe¢~-) and (Fg¢'** O, ). The unit cell of
magnetite contains altogether 32 oxygen atoms and 24 iron atoms. Out of these 24 iron atoms, 8 are
Fe *and 16 are Fe*. X — ray studies further inform that the iron ions occupy two types of positions

in the unit cell. In one type, the iron ion has 4 oxygen ions about it in tetrahedral coordination, whereas
in the other type, the iron ion has 6 oxygen atoms arranged about it in octahedral symmetry. Out of the
16 Fe**ions, 8 are in the tetrahedral sites whereas the rest*8 ibas are in the octahedral sites.
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Let us now concentrate on the spins of these iron ions. The spin moments of thei8rfseon the
tetrahedral sites are directed opposite to the'8*Hens on the octahedral sites. Hence these moments
cancel each other, thus 16*Feions contribute no net moment to the solid. The contribution to the net
magnetic moment comes from 8*F@ns, which are all aligned in the same directions for their spins.
This contribution to the magnetic momen#j8 per molecule, in good agreement with the experimental
measurement o413 per FeO. F©, molecule. Extending the same argument for other ferrites, MO.
Fe, O,, the total magnetic moment will correspond to the magnetic moment of thie Hence, the
magnetic moment per molecule will &8 for Mn, 383 for Co, 8 for Cu and zero for Zn. Another
important characteristic of ferrites is that in addition to their ferrimagnetic property, they are insulators
with very high resistivity (18 Q m) and hence do not have eddy-current loss problems as in iron,
specially at high frequencies. Another application of ferrites is microwave devices based on Faraday
effect in a ferromagnetic medium. i.e. the rotation of the plane of polarization of a linearly polarized
electromagnetic wave propagating through the ferromagnet. One important application of ferrites is as
core computer memories because these have a low coerciveafidlé short switching time. The
gyromagnetic propertiesf ferrites are used in developing devices like isolatorscaadlators which
have applications in radar communication.

Q 6.9 Describe the structure of ferrites. How is the magnetic moment of ferrite molecule calculated?

Answer. Ferrites are said to havespinel structurethe same as the structure exhibited by the natural
mineral My Al, O,. In this spinel structure the oxygen atoms are closely packed in face centred lattices,
into the interstice®f which the metal ions are distributed. A unit cell of magnetite, which is a natural
ferrite contains 8 molecules. There are 32 divalent oxygen ions, 16 trivalent iron ions and 8 divalent iron
ions per unit cell. When the oxygen atoms arrange themselves in fcc structures there are formed 8
tetrahedral voidscalled the A sites and 16 octahedral voids called the B sites. In the rspimel
structureas exhibited by i Al, O,, the divalent ions occupy the A sites and the trivalent ions occupy the
B sites. Magnetite is said to exhibit an inverse spinel structure. In this structure the BR®occupy
all the A sites and the other 8*Féions occupy half the number of B sites. The remaining B sites are
occupied by the Fe ions. In the case of nickel ferrite the divalent nickel ions occupy half of the B sites.
The remaining B sites and the A sites are occupied by the trivalent iron ions. There are infinitely many
possible ferrites, since there are several ion combinations possible in A and B sites. A wide range of ions
may be used, such as Ni, Co, Mg, Mn, Cu, etc. A combination of two or more can also be used in which
case we get mixed ferrites.

The magnetic moment of a ferrite material is found to be equal to the difference in the moments of
ions in A and B sites. For example in the case of magnetite if we attribute 5 Bohr magneton andre
4 Bohr magneton to Feé the net moment between the A and the B sites works out to be 4 Bohr
magneton (5 + 4 — 5 = 4). The experimental value is 4.1 Bohr magneton. If we assume 2 Bohr magneton
per Ni**ion, we get 2 Bohr magneton per formula weight of nickel ferrite. The experimental value is 2.3
Bohr magneton. The difference is attributed to the difference in the ‘g’ factors for the free electron.

Q 6.10 Explain the classification of magnetic materials into hard and soft. What are the chief magnetic
characteristics and mention their applications?

Answer Hard Magnetic Materials

The descriptiorhard as applied to magnetic materials is an indication that the cohersive force is high-
generally above *0A/m. If, in addition the remanent flux density is high the material is suitable as a
permanent magnet. In a polycrystalline material the grains are randomly oriented. In a randomly array
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only few grains will be favourably oriented in the direction of easy magnetization and so the process of
magnetization is slowed down. Further magnetostriction effects prevent the easy movement of the
grains thereby affecting magnetization in a complicated way. When a permanent magnet is required you
must look for materials with the highest possible saturation magnetization, remnance and coercive
force. This means that the hysteresis loop must have a large area. When the area of the hysteresis loop
is large there is little loss of induced magnetism when the applied field is removed. Again you must look
for a material of large magnetostrictive coefficient, since large magnetostriction gives rise to large
coercive force. When magnetostriction is large, it is more difficult to change the direction of magnetization
once it has reached saturation in a particular direction, since any further rotation involves expenditure of
work against elastic restoring forces. Another useful criterion is the energy product given by BH, since
the useful energy which a permanent magnet can deliver is determined by the BH product. Larger area
for the hysteresis loop takes care of this criterion. The most important commercial hard materials are
the Alnico type alloys. A steady improvement in fabrication has been achieved in Alnico alloys and
Alnico V introduced in the year 1940 has very many interesting properties. Its composition is 8% Al,
14% Ni, 24% Co, 51% Fe and 3% Cu. It has a coercive field 50000 ampere turn and a BH product of
45000 J/m The alloy is cast and solidified directionally along the direction of easy magnetization (100).
The alloy is annealed at an elevated temperature oPC3060a prolonged period during which a new
phase precipitates out of the grains and the material is mechanically hardened. This process is called
precipitation hardeningnd it increases the coercive force.

Soft Magnetic Materials

For transformer cores a ferromagnetic material having a small hysteresis loop is required. This means
that the material must have very low magnetostrictive coefficient so that the material is practically stress
free. The following materials are found to be suitable for the different frequencies.

1. Fe — Si alloys for low frequency high power applications.
2. Fe — Ni alloys for high quality audio transformers.
3. Ferrites for high frequency low power applications.

The addition of Si to Fe improves its magnetic quality in two ways (1) by increasing the resistivity
and thereby reducing tleeldy currentosses and (2) by decreasing the hysteresis losses. An alloy with
2% Si is used for ordinary quality induction motors. Another alloy with high quality performance contains
4% Si. The rolling and annealing are carefully controlled so that the crystallites get oriented in the
preferred direction. In that case the domains are large and regular in shape. The direction of easy
magnetization also lies in the direction of rolling. The Ni—Fe alloy which goes under the commercial
nameHypernikis made of two different compositions. One grade contains 50% Ni and 50% Fe.
Another grade called theermalloy contains 78% Ni and 32% Fe. Both have high permeabilities and low
hysteresis losses. The 78% permalloy has in additiormzagmetostrictive coefficierBuppermalloys
made of 78% Ni, 5% Mo and 17% Fe. This alloy has higher resistivity and hence lower eddy current
losses.
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Fig. Q 6.10.1
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force and small B, and (c) large coercive force and large B.

TABLES

Table 6.A  Characteristics of the types of magnetism

Typical hysteresis (a) small coercive force and large B (b) large coercive

Type Sign ofX Typical X value Dependence Change ¥f | Origin
(calculated using oX onH with increasing
S| units) temperature

Diamagne - —(1600) x 10° Independent Nehange Electron charge

-tism

Paramagn + (0-0.2) tlependent Decreases| Spin and

-etism orbital motion
of electrons on
individual atoms

Ferromag + 0.1-10 Dependent Decreases| Cooperative

-netism interaction
between

Antiferro + 0-0.1 May be Increases magnetic

-magnetism dependent moments of
individual
atoms

Pauli + 10-° Independent Nehange Spin and

paramagn orbital motion

-etism of delocalized
electrons
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Table 6.B  Diamagnetic volume susceptibilities of some materials

Table 6.C  The susceptibility of some paramagnetic materials at room temperature

Table 6.D Saturation magnetization and paramagnetic (9

temperatures for ferromagnetic materials

Material X
Cu -0.95x 16
Si -04x16°
He -05x1@
A —-11x106°
Kr -16x10°
Xe —-25x10°
Au —-3.7x16°
Ge -0.8x 16

Material X = -1
Oxygen 0.19x10°
Platinum 355x10°

Air 0.035 x 10°

Nitrogen 0.0012 x 10°
Tungsten 75%x10°
CoO 585 % 10°°
Mn SO, 360 x 10°°
Fe O, 142 x 10°°
FeCl 372x10°
Ni SO, 122 x10°®

p

) and ferromagnetic (Gf) curie

Material M_at 300 K M,at 0K 6, (K) 0 (K) Bohr magneton
(amp/m) (amp/m) per atom

Nickel 0.475x10 0.5x10 630 646 0.612

Iron 1.710x 10 1.763x 10 1044 1047 221

Cobalt 1.45x 10 1.446 %10 1400 1503 1.70

Gadolinium 1.0x19 1.970x10 228 - 7.10
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Table 6.E  Classification of magnetic materials

Interaction between neighboring dipole

£S

Classification Permanent dipoles
Diamagnetic No
Paramagnetic Yes
Ferromagnetic Yes
Antiferromagnetic Yes
Ferrimagnetic Yes

Negligible
Parallel orientation

Antiparallel orientation of equal moments
Antiparallel orientation of unequal moment

[

Table 6.F  Nee/ and curie temperatures for anti-ferromagnetic materials

Crystal Paramagnetic ion lattice TK) T (K) Tn x(Te)
" ¢ T X(To)
MnO fcc 610 122 5.0 2/3
FeCl hcp 48 235 20 <0.2
FeO fcc 570 198 29 0.7
CoO fcc - 291 - -
NiO fcc - 523 - -

Table 6.G  Saturation magnetization and the curie temperature of some selected ferrites

Material Maximum magnetization Curie temperature
Fe 1750 1043
Mn O Fg O, 358 783
Ni O Fe O, 240 893
CuOFgO, 290 728
Mg O Fg O, 143 523
Table 6.H Magnetic characteristics of some typical hard materials
Name and composition Coercive field Remnance BH (Fm
(ampereturn/m) (weberfn
Fe 75 15 100
Tungsten Steel
(6% W, 1%C and 93% Fe) 5000 10 3000
Remalloy
(12% Co, 17% Mo and 71% Fe 20000 10 12000
Alnico 11 (10% Al, 17% Ni,
12% Co, 6% Cu and 55% F) 50000 17 17000

Contd
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Name and composition Coercive field Resistivity BH{I/m
(ampereturn/m) (weberfn

Alnico V

(8% Al, 14% Ni, 24% Co,

3% Cu and 51% Fe) 50000 12 45000

Index 1 (BaFgO,,) 140000 0.22 8000

Table 6.1  The magnetic characteristics of some of the soft materials

Name and Composition|  Saturation M, p Hysteresis|  Uses
magnetization in10-8 loss
in 10¢° Qm Jikg/cycle
(Ampere
(turn/m)
Fe 175 5000 10 0.03 Motors, High
98% Fe and 2% Si 16.7 7500 3H 0.02 Quiality
98% Fe and 4% Si 155 30000 55 0.005 | Transformers
Hipernik (50% Niand 12.7 60000 45 0.003 | and Audio
50% Fe) transformers
78— Permalloy (78% Ni 8.7 100000 16 0.0005
and 32% Fe)
Supermalloy (79% Ni, 5% 7.0 1000000 60 0.0001
Mo and 16% Fe)
Mn — Zn Ferrite
(Mn,,Zn _FeO,) 31 2500 | 20x10°° 0.001
Table 6.) Carbon free non — machinable alloys (Alnico)
Alnico 2 Alnico 5 Alnico 6 Alnico 7
10Al 8Al 8Al 8.5Al
17Ni 14Ni 15Ni 18 Ni
12.5Co 24Co 24Co 24Co
6 Cu 3Cu 3Cu 3.25Cu

OBJECTIVE QUESTIONS
1. Allmaterials have
(a) paramagnetic property (b) ferrimagnetic property
(c) ferromagnetic property (d) diamagnetic property
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2. The susceptibility of a diamagnetic material is essentially independent of temperature
(a) under all circumstances
(b) as long as the electronic structure is independent of temperature
(c) at very low temperatures of the order of 10 K
(d) at very high temperature
3. Bohrmagneton is
(a) magnetic moment of an electron spin
(b) magnetic moment of a nucleus spin
(c) magnetic moment of an electron orbital motion
(d) none of these

4. The magnetic material in which permanent magnet dipoles (due to electron spin) are already
aligned due to bonding forces are known as

(a) paramagnetic materials (b) diamagnetic materials

(c) ferromagnetic materials (d) ferromagnetic materials
5. In ferrimagnetism

(a) the number of atoms with opposite spins are equal

(b) the number of atoms with opposite spins are unequal

(c) the number of atoms with opposite spins are zero

(d) there is zero magnetic moment
6. In a ferromagnetic material, susceptibility is

(a) very small and positive (b) very small and negative
(c) very large and positive (d) very large and negative
7. For paramagnetic materials, relative permeability at room temperature is nearly
(@ o0 (b) 0.1 (c) 1 (d) 10
8. Interaction between the neighbouring dipoles is negligible in the case of
(a) diamagnetic material (b) paramagnetic material
(c) antiferromagnetic material (d) ferrimagnetic material

9. Curie’s law predicts that
(a) the susceptibility depends on the applied field
(b) the susceptibility is linearly proportional to the absolute temperature
(c) the susceptibility is unversely proportional to the absolute temperature
(d) none of these
10. Which of the following materials is used for making permanent magnet

(a) platinum cobalt (b) alnico Vv

(c) carbon steel (d) all the above
11. Ferromagnetic materials or ferrites are obtained from

(a) copper (b) zinc

(c) aluminium (d) mercury
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Magnetically saturated ferrites can

(a) cause large hysteresius (b) produce low eddy current

(c) interact with ultrasonic heat radiation (d) interact with electromagnetic waves
At Neel temperature

(a) susceptibility is maximum (b) susceptibility is minimum
(c) permeability is minimum (d) permeability is maximum
Bloch walls are an example of

(a) magnon (b) polaron

(c) soliton (d) exciton

The diamagnetic susceptibility is

(a) positive always (b) negative always

(c) zero always (d) all are false

If 8; is the curie temperature amgdis the paramagnetic temperature. Then the relation relating
susceptibility X with curie constan€ and for T >0 is

c _

(a) (G—T)_X (b) x=C(6-T)
_C

(C)X_(T_g) (d) x=C(6+T)

The susceptibility of a diamagnetic material is about

(a) 10 (b) 10-° (c) 107 (d) 0.1

The ferromagnetic curie temperature of iron is

(a) 630K (b) 926 K (c) 1428 K (d) 1043 K

The magnetization of a solid is related to its magnetic induction B and the field strength H by the
eguation

(@ M =(B/uy)-H (b) B=pgH+ M

(C) B=H+pyM (d) B=po(H- M)
The relative permeability for iron is

(a) 1000 (b)3000 (c) 5000 (d) 7000

Below 300 K, Xm(did) > X (para)

(a) true (b) false

Permanent dipole moment consists of the following angular momentum
(a) orbital angular momentum (b) electron spin angular momentum
(c) nuclear spin angular momentum (d) all the above

Chemical formula of a simple ferrite is

(@ me** Fg" @ (b) me* Fe"* @

(c) mMe* Fet G (d) None of these
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24. In antiferromagnetic materials, the susceptibility
(a) increases with increase in temperature (b) decreases with increase in temperature
(c) is independent of temperature (d) all are true

PROBLEMS AND SOLUTIONS

6.1 A magnetic material has a magnetization of 3200 A/m and flux density 0.005 weltealoulate
the magnetizing force and the relative permeability of the material

Solution:
B=py(M + H)
Substituting the values,

0.005= 47 x 107 ( 3200- H)

H=_0005 _ 595
411 x 1077

H =7809 A/m| Answer

But M

H (i, - 1) = 3200
3200= 7809y, - 1

3200 _

-1=—=

Hr 7809

U, =55| Answer

6.2 Although manganese is not ferromagnetic, certain alloys such_a¥IiCAl are ferromagnetic.
The Mn — Mn distance in these alloys is greater than in manganese metal. What effect would this have
on the 8 band of manganese? Why would this cause the alloy to be ferromagnetic?

Answer. Because the manganese atoms are further apart, the overlap dbtbeas3will be less. The

3d band will therefore be narrower than in manganese metal. With a narrower band, there is a larger inter
electron repulsion and a state with a number of unpaired spins comparable to the number of atoms
becomes favourable. The alloy is thus ferromagnetic.

6.3 The curie temperature of ferromagnetic europium oxide is 70 K. The europium igr=tfaand

J= g Assume molecular field model. Determine the ratio of magnetization at 300 K in a field at 0.01
T to that at O K.
Solution:

M _ M _ C _ poNg®B®I(I+1)
H B T-6 3k (T - 6)
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_Ng®B*J(3+1) B

M
or 3kg (T - 0)

At very low temperatures, the saturation magnetization is equal to that with all the dipoles aligned
parallel

M (0) = NgB J
Hence

M(300 _gB(I+ 1B
M (0) kg (T - 6)

2x927x 10%*x 45« 001
3x 138x 10%°x (300~ 7P

2x927x 45x 001

=876x 10°
3x 138x 2300
M(309 _ 876x 10°
M (0) . Answer

This indicates that paramagnetism is quite small as compared to ferromagnetism.

6.4 Consider an atom with L = 2 and 0 spin angular momentum placed in a uniform magnetic field of
induction 2 weber/f Calculate the rate of precession of the resultant magnetic moment.
Solution:
S=0,L=2,B=2wb/fh
The rate of precession in given by Larmor frequency,

_ eB
W, =9 (ﬁ)

gJ:[J(J+1)+S(S+1)— l(L+])]+l

2J(3+1))

and

BecauseL =2 andS=0,J=L+S=2

_2x3+0-2x% 3+
2x2x 3

Therefore g; =09, 1=1

_1x16x 10%¥x 2

W, = =176x 10' rad/s
Thus - 2x91x 103
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The linear frequency is given by

1
p, = QL - 176x 107 10° _ 5gx 109
om  2x 314

v, =28x 13%ev/s| Answer

6.5 Zn Fg O, has the inverse spinel structure at low temperatures. What type of magnetism would you
expect it to exhibit?

Answer.  The Zr#* and half the F&ions are on octahedral sites with spins aligned antiparallel. The net
moment of the Fe ions is zero. As all the electron spins are paired #i ions, there is no over all
magnetic moment and hence the compound is antiferromagnetic.

6.6 A paramagnetic system of electronic spin magnetic dipole moment is placed in an external field of
10 ampre/metre. Calculate the average magnetic moment per dipole at 300 K. Also calculate the fractional
number of spins which are parallel to the field.

Solution:
— _M _pHp?
"N kg T
2
M _A4mx107x 10x(927x 107)
Hm =N~ 138x 10%x 300
ie., Oy =26x 10%" Am? | Answer
N, exp|(to BH)/Kg T]

N [{EXP(IJO BH)/kg T + exf—HoBH/kg T)}]

N, exp(2.8>< 10'4) o5
N [exp(2.8 x 10‘4) + exp(— 2 8x 104)] o

Np
EYE =50%| Answer

6.7 For iron the temperatur@_ at which the mutual interaction of the dipoles is just strong enough to

overcome the thermal agitation, is about 1000 K. Assuming that each dipole has a strength of 1 Bohr
magneton, calculate the internal field at the curie temperature.
Solution:

Equating the magnetic and thermal energies, one gets

Hg B = kg O,
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i.e., the corresponding field at the curie temperature is

kg8, _138x 10%°x 10

537 % 107 = 1488webel nf
Hp Ll X

B

B =1488webel nf| Answer

This is a fantastic field; a large electromagnet can only produce fields of the order 10niveber/
Hence we see that the internal field due to domains will have a profound effect of magnetic properties of
the material, by affecting the domain structure, has such as enormous effect on the total polarization.

6.8 Derive the relation between the ‘internal field’ of a ferromagnet and curie temperature. Calculate
this field for iron which has a curie temperature of 1043 K and an effective moment of 2.2 Bohr

magneton.
Solution:
The proportionality of the internal fiel to the magnetizatioh! is of the form
B=AM
M =N up,
with A = Hobe
C

where 6, is curie temperature arfdis curie constant

_ Ho 9> NB®S(s+1)

Also C
kg
withg =2
Since the average magnetic moment of an iron atom is giveh2py; and hence the magnetic
moment,
V2
Hm = gHp[S( S+ 1]
V2
2245 = gup[S( S+ 1)
1.14S S+ 1)}
S(S+1)=1.%
Thus

- uoec M - uoec M x 3|(B
C Ho9® NB? §( S+ 1)

B
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SubstitutingM = NU

g = HmBc3Kg _ 3p0.228
9°B?S(S+1) g®S(S+1)p?
Bi__3><138><1023>< 22x 92% 104

4x (927 10“)2x 12

B, = 2117 teslg Answer

6.9 Atwhat initial temperature should gadolinium sulphate be in order that an adiabatic demagnetization
from an initial field of 6200 gauss to zero field should yield a final temperature of 0.346 K? Curie
constant and specific heat constant for gadolinium sulphate are 7.88gigm ion) and 0.32 R
respectively.
Solution:

For adiabatic magnetization,

2
LN HZ x Curie constant_ 1+ 6200 x 785
T Specific Constant 138x 10%°x 602x 1&x 032
_ 6200° x 7.82 _ _+GZO§X 785:ll3+1
138x 602x 032 10 265x% 10
Tiz
=123
0.346

T2 =12.3x 0346
T=1213K
iT: 1.213 K| Answer

6.10 Domains are pinned in a material by inhomogeneities having an average spdgitty .af the
domain wall energyy is ImJ/n? and saturation polarization fieldis 2 tesla at 300 K, what will be the
initial susceptibility, Xi ?. The curie temperature of the materialis 700 K andy —proportional to
JT.— T ; what will be Xi at 600 K. If the interactomic spacing is 015, estimate the first magneto
crystalline anisotropy constant and the wall thickness at 300 K. Gfrjéeﬁ: 0.6 at 600 K andj—S =0.98
0
at 300 K. 0
Solution:
Formula used,
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with
(i) J,=2tesla
(i) y=10-*m
(i) Mo =4mx 107 H/m
(v) y=1x10°Jm’
2
Now Xi = Js ¥
Y Ho
_ 4*x10°
103x 47 x 107

X; =3185| Answer

Again y OJT.-T

Yeoo _ « 1c— 600 _ (700~ 60Q
Yao T.-300 (700~ 30Q

100 3
= ——— |=10"°x 4/ 025
Y600 Vsoo{ 400}

Veoo = 05% 107 Jin?

T _ 600
—=——=086
At 600 K T~ 700
and Js - 0.6,0r Js = 0.6J,
‘JO
T 300
—=——=043
At 300 K T, ~ 700
520981 ‘JO :&:i:2041
Jo 098 098
At 600 K J =063, =06 x 2.041
=122
_diy 122 x 10°
Xi = =

HoY 05x 103x 47x 10’
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Xi =2370 Answer

}Zk T. K;

Now K, is the first anisotropy constant

2
. y‘a
i.e., =
L2k T
10%(015x 10°
.= ( = ) =78x 10 J/n?
2 x138x 10-°x 700
K, =78x 10 J/m°
Wall thickness is
—3
5=V 10 = 644x% 10°m

2K, 2x78x 16

0 =64.4nm Answer

6.1 Estimate the paramagnetic contribution to the magnetic susceptibility®pafr potassium, for
which the Fermi energy is 2.1 eV. Given= 1.33 x 1&/m®. (Ans 6.4 x 1079

6.2 Given that

Uo =41 x 107 H/m
e=16x10*C
h=6.625x 10%J s
m=91x10%*C
Compute Bohr magneton (Ans: 9.27 x 10-2*amp )
6.3 Determine the magnetization in a magnetic field B in terms of Bohr maggesoml the number of
ions per unit volume N. A paramagnetic material is subjected to a homogeneous fildbohia 310
K. Determine the average magnetic moment along the direction per spin in Bohr magneton.
(Ans: 2.72 x 10* Bohr magneton/spin)
6.4 The ions in the molecule of magnetite &€, K> and O;, the subscripts, giving the number

of ions per molecule. In the conventional unit cell, which is cubic oneawitB.837 nm, there are eight
molecules. The F&émagnetic moments cancel and the magnetization is that produced by?tloa$-e
alone. If the saturation magnetite is 5.2 X Aln, calculate the moment per‘Fe@®n is Bohrmagneton.

(Ans: 4 Bohr magneton)



Magnetism and Magnetic Materials 223

6.5 The curie temperature of iron is 1043 K. Assume that iron atoms have moments of two Bohr
magneton per atom. Determine the saturation magnetization. Curie constant, Weiss field constant, and
the magnitude of internal field. The radius of iron atom is 0.123 nm.

(Ans. 15.8 x 16 A/m, 0.699, 1559, 3.1 weberim

6.6 Consider an atom, placed in a magnetic field of 1 weBewith | = 2. Calculated) rate of
precessionk) the torque on the atom, given that the magnetic moment makes an &ngle 45

(Ans: 8.8 x 1@° revolution/s, 1.3 x IG3J)
6.7 Atypical magnetic field achievable with an electromagnet with iron core is about 1 tesla. Compare
the magnetic interaction energyg B of an electron spin magnetic dipole moment Wtfi at room

. kg T .
temperature and show that at ordinary temperatures the approxm??ﬂgn» 1 is valued.
B

6.8 The saturation magnetic induction of nickel is 0.65 M#blf the density of nickel is 8906 kgfm
and its atomic weight 58.7, calculate the magnetic moment of nickel in Bohr magneton.

(Ans: 0.61 Hg)
6.9 Calculate the frequency of the radiation which must be incident on a substance placed in a magnetic
field of strength[s X 105/711 amp/m, so that the electron can absorb energy.
(Ans 5.6 x 10° s?)
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Theory of Semiconductors 227

7.1 INTRODUCTION

At room temperature (say 300 K), the materials classifisdmsconductorbaveresistivitysome where
between that of a good conductor such as a metal and that of a typical insulator. This becomes obvious
from the study of Table 7.1.

Table 7.1  Flectrical resistivity of typical materials at 300 K in ohm-metre
Metal Resistivity Semiconductor  Resistivity Insulatoy Resistivity
Cu 1.7x10® Pure Ge 047 Qass 10°to 10*
Al 2.8x10° Pure Si 3000 Diamond &
Fe 10x108 FeQ 0.01 Mica 9x10
Constantan 49 x 10 Sn (Gray) 2x10°
Nichrome 100 x 10°®

The fundamental difference between these three classes of materials can be easily explained on the
basis of energy band theory.

The resistivity of semiconductors greatly depends on the following factors, remembering

p=—
neu
(i) As the temperature (in metals) increases,stteteringof electronsby phonons increases
and hence thmobility decreases. Hence in copper the resistivity increases as the temperature
increases assuming (concentration or density of free electrons) remains fairly constant
over normal range obperating temperaturesThus metals have positive temperature
coefficient

(i But the temperature edficient of resistance is negative in semiconductors. Here as the
temperature increases the number of charge carriers increases exponentially which masks
the decreasing effect of mobility. Hence in semiconducssistivitydecreases as temperature
increases. i.e. they havenagative temperature coefficient

Resistivity in semiconductors decreases in brighter surroundings.

Current in semiconductors does not obey Ohm’s law and increases rapidly than voltage. i.e.
semiconductors are non-linear resistors.

Even a small trace of suitaldbemical impurityadded into pure semiconductors may change
the electrical properties many fold; even a change of mechanism of conduction is possible.

(i)
(iv)

(V)

The elemental semiconductors are germanium (Ge), silicon (Si), selenium (Se), grey (crystalline)
tin, tellurium (Te), boron, etc. A large number of compounds are also semiconductors, like cuprous
oxide (CyO), indium antimonide, bismuth telluride, etc. Semiconductor materials and fabiricated devices
are used in many vital areas mainly because of their small size and low operating voltage. They are used
asrectifiers andtransistors Semiconductors, whose resistance is temperature dependent are employed
asthermistors if it is voltage dependent, the semiconductors may be usedasstor, and if light
dependent, as photoelectric deviceSemiconductors are used in heating appliances, photo cells,
refrigerators, measuring instruments, automatic and remote control systems, etc. Devices made out of
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p-njunction helped to replace the bulky valves operated at high voltages. New devices coming up every
year using semiconductors make significant contributions right from animation work in computer
engineering to reduction of weight in space ships.

Q 7.1 Discuss the energy band model of a semiconductor with a diagram connecting energy values
and spacing between atoms of the semiconductor.
Answer. When two atoms of the same element are very far apart their electronic levels do not influence
each other. The two atoms may be considered to be isolated. If the atoms are of sodium the 3s electron
of each atom will have a single energy level with respect to its respective nucleus. If the two atoms
approach each other the wave functions of the two 3s electrons will start overlapping. As a result of the
interaction of the two atoms two different 3s levels will be formed. But our present interest is to study
this problem by considering a semiconductor.

The electronic configuration of silicon (14) ig18% 2, 3% 3p? 3d*. The outermost shell contains
4 electrons of which 2 in the 3s level and the other 2 in the 3p though it can accommodate 6 in total.
When the silicon atoms come close together strong interaction starts and the sharp 3s and 3p levels
widen into bands. At one patrticular distance of separation (@tisd over point), the bands merge and
split again. What is actually happening at degiilibrium distance, where stability is reached? The
unoccupied stategut together form the uppeonduction bands separated by the occupied states put
together form the loweralence bangdby aforbidden energgap. Thidband gap [(Eg) is 0.67eVfor Ge
and 1.106V for Siat 300 K.

Cross over point

>
>
(0]

g Conduction band ] 3p

C ‘ ‘
Eg leV T n=3
v /
Valence band A // //l/ll‘ 3s
. Interatomic
0 |r Equilibrium r=o  spacing

°  spacing

Fig. Q 7.1.1  The bands arising for the 3s and 3p states of silicon
as a function of interatomic distance

This band gap is 0 for metals (over lapping of conduction band and valence band) arey ifois 6
the insulator carbon in the diamond structure. Pure germanium and pure silicon where electrons and
holes are produced by phonons (thermal activation) or by photons of suitable frequency are called
intrinsic semiconductordn the other type theharge carriersare produced by the addition of suitable
chemical impuritiesSuch semiconductors are cakedrinsic semiconductom impurity semiconductors
The impurities injected are calleidpants
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4 Conduction band

N\
\ Conduction band Conduction band
M

I,
/ Valence band Valence band
W//

Valence band

Electron energy

(a) Insulator (b) Semiconductor (c) Metal
Fig. Q 7.1.2  Typical energy bands

Q 7.2 Whatis meant by a ‘*hole’ in a semiconductor? How does the existence of a hole lead to electrical
conductivity?

Answer. The valence band and the conduction band in a semiconductor are separated by a small
energy gap of the order of 1 eV. At 0 K the valence band is completely filled and the conduction band is
empty provided the semiconductor is pure and free from defects or imperfections. Even if an electric
field is established at this low temperature (0 K), the electrons in the valence band cannot acquire
additional energy as there are no unoccupied energy states in the valence band to which the electrons
can be raised. Thus there will be no electric current and the solid will be an insulator.

At high temperatures (can be even lower than 300 K), a reasonable number of electrons in the
valence band may acquire sufficient energy and get excited into the conduction band (as the energy gap
is small). They may also acquire additional energy in an applied electric field. This gives rise to an
electric current and such solids are intrinsic semiconductors. If an electron in the completely filled
valence band of a semiconductor is removed from that band, a vacancy is left behind in that band which
is called a ‘hole’. Removal of electrons from the valence band is possible eittharimal excitation
(intrinsic ong or by addingdopants(impurity semiconductor).

When avacancyis created in the valence band, a lower energy electron in the band may be excited
to the higher energy vacant level by an applied electric field. The hole then moves down to the lower
energy level. Since the hole moves in a direction opposite to that of the electron, we can treat the hole as
a positively charged particle. The energy of the hole increases when it moves from a higher electronic
level to a lower electronic level. Thus we conclude that the hole gains energy in an applied electric field
and to cause a current.

Q 7.3 Deduce the expression for electron density in the conduction band of an intrinsic semiconductor
atT K by applying Fermi-Dirac distribution law. What will be the density of holes in the valence band at
that temperature?

Answer. We may write the general expression for the number of electrons (in a vaiynrethe
conduction band having energy values lying betweamd E + dE) [referring Egn. (Q 4.6.1)] as

2

2 3/2
N(E) 0e= 7 0| - ) e Q731
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Integrating
3/2
| 8ma? V2 1
N_E|: h2 :| J.(E_EC) dE E-Ef
[1+ekg
E Conduction band
AN/,
£ w . A
’ T Conduction
E electrons
N A E. ¢
’ Fermi level
l Holes
v 1
T+ + + +|B E, /¢/ /¢/ /y
Valence band
Fig. Q 7.3.1 Thermal excitation of electrons

Even at 300 K,E - E_) >>k.T, hence

nlemaz 122 % V2
N :E h2 J.(E - Ec)
E

EfF -E

e kg T

dE

Letx= (E-E)

2
N = H{Bma
2

3/2
ST
The solution of the integral using gamma function is

Jr

J.x"”e_kB¢T dx
0

le’z e dx=
0

%witha: !
2 ol kg T

For unit volume and using effective maisin place ofm, we get

o T

EF - Ec

m e kg T

a2
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Thus

y 82 (EF -Ec)
"= [2”% kg T} o it
h2

(Q 7.3.2)

(EF-Ec)
n=Nge '’

Calculation of Holes

[1-F (E)] is the probability of missing the electron in the valence band which gives the probability of
finding a hole there.

(Ek-ETF)
1 e e
1- F(E) =1- EF -Ef = _(EE-E)
l+e '8’ l+e FeT
: (Ef - E) . , :
Since- " is a large negative quantity,
B

E-Ep
1-F(E)=e®’

Refer equation (Q 7.3.1): proceeding in the same way, one will get,

H{Bm*p 3-2] (EV _ E)1/2 dE[l— F( E)]

P(E)dE=—
() 2| h?

A simplification on the same line yields [Refer Eqn. Q 7.3.2]

. 3/2
Z{ZHmp kg T] <Evk;$r)
P=4——F €
h2

(Ev—EF)

p=Nye ©

(Q 7.3.3)

Q 7.4 Discuss the special features of the above two equations for electrons and holes bringing out
their important uses and then the conclusions.

Answer In an intrinsic semiconductor both the electrons and holes are equal in a given volume. Their
charges are also having the same value thougéffietivemassof hole is usually greater than that of
electron. These important physical properties help one to arrive at the following conclusions.

(i) Position of Fermi level Sincen andp are the same in an intrinsic semiconductor, we may
write,

( *)3/2 (EF-&) \3/2 (BEF)

e kgT :<n«b ekBT
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x 13/2
2EF (Ec*E) | M,
gkeT = @ kBT P

me

26, _(E.+E,) +§Ir{m*p]
2

If m,=m
E. - E
Eer = % or Fermi level lies mid-way between the conduction band and valence

band. Ifm:, > m,, it will be slightly shifted from this position towards conduction band.

(i) Calculation of intrinsic charge carriersThe density of electrons equals that of holes, and
they are both called thetrinsic densityn, where

Ev-Ec

¥ =np=(N N) e

Substituting foN, N and introducing -& —E) = —-E ,
one gets,

If m, = m, is equal to the rest mass, then

r 3/2 E, 3/2 E,
n =2 ZKe T (q2) gaer = o) 2K T | o (Q74.1)
' h? h?

r 3/2
2 x 138x 91x 10°%

(6.62 x 1634)2

E,
x T2 26T (Q 7.4.2)
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(iv)
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E,
n = 483x 10%x TY 2¢ 7"
or

(Q 7.4.3)

E
n| - CT3/2 e 2kg T

Electrical conductivity of intrinsic semiconductorShe conductivity of a semiconductor is
different from a metal in the respect that in a semiconductahtrge carriersare electrons
as well as holes. On the basis of free electron theory the condugtiwfya metal is

O =neu,
In the case of the semiconductor it is,

g; :O-n+o-p:neue+ pa'lp

ie., o =n (i, + U (Q 7.4.4)
. . L : 1
Evaluation of the energy ga(Eg): The mobility of charge carriers is proportlonal—_?_%
: 1 _ a __B
e, “eDT:s/z K andpp = /2
a +
Hence g, =n M

Substituting the value af from Eqn. (Q 7.4.3), one gets

a + __Bg
g, =Ce T3’2( T3’2B)e et
__Eg
o, = Be *T
ie., , (Q 7.4.5)
p = AeeT
=
Inp, = T +In A (Q 7.4.6)
B

Now measure the resistivity of the intrinsic semiconductor at various temperatures; draw a

1 E
graph betweetn o; and —. The slope of the graph will bsi from whichE_ can be

estimated.
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—» Inp,
2]
o
k]
[43]
1
[l=}

1
Fig. Q 7.4.1 /nPi versus T

(v) lllustration and conclusionFor siliconE, =1 eV. Let the operating temperature beC27

-
n = 4.83x 1¢'x 30F%x e 2 * %
n=5.02 x 1¢
i.e., the number of free charge carriers in a semiconductor like Si is abbtimn&d smaller
than that of Si atoms. Because of this, the conductivity of intrinsic semiconductors is low.

Hence for an appreciable current to flow, the applied field must be large and therefore this
type of semiconductors is usually of interest only from a theoretical point of view.

Q 7.5 What is meant by extrinsic (or impurity) semiconductor? In what way does it differ from an
intrinsic semiconductor? Discuss the effect of doping arsenic atoms in germanium.

Answer. In crystalline semiconductors such as germanium or silicon the valence band is completely
filled and the conduction band is fully empty at zero degree kelvin assuming the energy gap is small. If
a trace of suitable foreign atoms from selected elements, havaigrecydifferent from Ge (or Si) is
incorporated as impurity in the crystal lattice of the given semiconductor, the impurity atoms either add
electrons to the conduction band or remove electrons from the valence band (or add ‘holes’ to the
valence band). The presence of electrons in the conduction band, or the presence of holes in the valence
band, makes the solid a conductor. This type of germanium is eatl&usic semiconductarimpurity
semiconductarThe presence ampurities causes electrical conduction even at low temperatures. At
higher temperatures some electrons invlilenceband are excited to theonduction band, causing
electrical conduction. This is due iwrinsic charge carriers At very low temperatures the intrinsic
conductivity will be absent, but there will be extrinsic conductivity due to impurities. At higher temperatures,
the conductivity is due both totrinsic activityand to extrinsic activity. Here the intrinsic conductivity
varies more rapidly with temperature than extrinsic conductivity.

An impurity semiconductor is said to be donor type-type, if the impurity material or dopant has
valency of five, i.e. one more than trelencyof germanium or silicon. Typical donor materials used are
phosphorusantimony arsenicandbismuth These impurity atoms have size of the order of as that of
germanium atoms and, therefore, dislodge some of the germanium atoms in the crystal lattice as shown
in Fig. Q 7.5.1.
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Free

@

Fig. Q 7.5.1 Crystal lattice with one germanium atom replaced by arsenic atom

Since the percentage of impurity atoms is very small, normally every impurity atom is surrounded
by Ge atoms. There are thus four germanium atoms at equal distances from the impurity atom. Out of
five valence electrons of the donor atom, four electrons form regular covalent bonds with the valence
electrons of the four adjoining germanium atoms and are tied down by covalent bonds. The remaining
fifth valence electron remains loosely bound to the parent impurity atom and is available as a carrier
current. The amount of energy needed to detach this fifth valence electron from the impurity is of the
order 0.01 eV for Ge when arsenic is used. Tdnigation energys small in comparison with 0.75 eV
needed to break a regular covalent bond.

Q 7.6 Point out the standard symbols used in the discussion of impurity semiconductors. Also get the
required information of the position of Fermi levelnitype andp-type semiconductors

Answer  The following symbols are used in the theory of impurity semiconductors.
() N, is density of donor atoms
(i) Ng is density of donor atoms ionized
(i) N, is density of acceptor atoms
(iv) N, is density of ionized acceptor atoms
(v) nis the general symbol for the electrons in the conduction band

(vi) pis the general symbol for the holes in the valence band
(vii) n density of intrinsic holes and electrons or intrinsic charge carriers

Letp_represent the concentration of holes imdype material; since all the holes present inthe
type material are as a result of threak ofcovalent bondswe have

n=p,
If N, andNg be the concentrations of donor impurities and ionized donor amrapresents the
free electron density due to impurity atoms.

ie., n= Ny
Thus (n+n)p, =1f

(Pn + N&)py=rf
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or pﬁ + Pn Ng = r‘z
ph=r - N§
P, <N (Q 7.6.1)

This tells that as a result of the doping, the hole concentration has decreased from its intrinsic value;
the net effect of doping a semiconductor witm-gype impurity is to increase the free electron
concentration and to decrease the hole concentration. Similariy-iype semiconductor

Np <n (Q 7.6.2)

Fermi Level in Impurity Semiconductors

The general equations for the concentrations of electrons and holes in an extrinsic semiconductor are
given by

Ef - Ec
n= CT3/2 ekBT

Ey - Ef

and p:CT3/2ekBT

wherek, is the Fermi level in the extrinsic semiconductor.
For n-type material,n > p

Hence -(Ec - E¢)>~(E - E))

(Ec - E¢)<(Ef - E) (Q 7.6.3)

This shows that the Fermi level shifts upward, closer to the conduction band-iynpa
semiconductor. The magnitude of the shift is proportional to the doping level. Similarly in the case
type semiconductor, the Fermi level shifts downward, closer to the valence band. Hence

(Ec - E¢)>(Ef - E) (Q 7.6.4)

Q 7.7 Derive the general expression to speak of a semiconductor doped with donor and acceptor types
of impurities. What are the teachings that can be made with the expressions?

Answer. Let us consider unit volume of a semiconductor. This is dopedNyittonor impurities and
N, acceptor impurities. Letandp be the density of electrons and holes respectiMglyandN are
the ionized atoms.

For charge neutrality,

(ne+ Ny g=(per N P

or n+ Ny =p+ N} (Q7.7.1)
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Referring Egns. (Q 7.3.2 and Q 7.3.3) and using common sense we write

(Er -Ec)
() n=Nge ™

@) N =Ny F(Ej)=—2
l+ e kT
(Bv-Et)
m — kBT
(i) p= N, e
(V) Ng = Ng[1- F(Eq)]
e
_ 1 _ e e’
1-F(Eq)=141- CEnR e o=
1+e ' 1+e 'ef
_ 1
[1- F(Eq)] R
l+e ‘o'

Substituting these values in Eqn. (Q 7.7.1), we get

(Ef -Ec (Bv-Ef
Nee kE‘T)+—Na =N,e kBT)+ N

e ] P (¢ -Ea)
-Ef Ef —Eq
[1+e ke T ] [1+e ke T ] Q7.7.2)

E, is used instead d_ as this is the case of an impurity semiconductor and the Fermi level in this
case may not coincide with that in an intrinsic semiconductor for a wide range of temperature.

Conduction band

» » poooe

Ll e e e s

d

EaZ:Z:ZlZlZlQQQNa

© b O o 0o O

E Valence band

Fig. Q 7.7.1 A semiconductor with both type of impurities
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() Fermilevel in an n-type semiconductor at very low temperaturesus consideN, donor
levelsin® having energ¥, as shown in Fig. Q 7.7.2. At 0 K all the donor levels are filled and
the number of electrons in the conduction band is zero. When the temperature is slightly
increased such that only a small fractioonors is ionizedwe expect the Fermi level to lie
only half way between the donor level and the bottom of the conduction band. At very low

temperatures,
n=N,F (E)
= Na -y E-E)/
n= e dexp[( ) kBT]
l+e '®f

1 - HE) means an electron missikg state

1 o o

Ed—Ef) = . = -
[mw] {He%?)} e

At very low temperatures

1- F(Eq)=1-

(Fa-Er)
1-F(Eq)=e€ ™7

Now Ng = Ng[1- F(Eg)] = Nge ™’
But n= Ng with n= N, exp[( Ef - EC)/ '3 1}
(Ea-Et)

Ng eXp[<Ef - Ec)/kBT]: Ny e’

(Er - Eo)=(Ea - E)

_Ec+Ed

E; >

(Q 7.7.3)

i.e., at very low temperaturéslies mid way betweel_andE,. As the temperature increases
E, begins to fall and coincide with .
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Conduction band

E & e o o o o o o
d f

Valence band

Fig. Q 7.7.2  Fermi level in an n-type semiconductor at very low
temperatures and its variation with temperature

(i) Theory of n-type semiconductorRewrite the general equation (Q 7.7.2) by assuming that
n>>p andN_ is absent: i.e.,

(Bt -Ee) N
. keT  — d
N.e —|: (Ef_Ed)]
l+e 7
(Ef -Eo) 2B ~(Ec-Eg)
or N.e " + Noee" e'e’ - N, =0
2Ef ~(Ec~Ea) Er “E¢
e e e T e e N e |- o
This is of the form &+ bx + ¢ = 0. A final simplification gives
V2
4Ny
o -1+ {1+ N, exp[(EC - Eqg)/kg T]}
ele’ = == (Q 7.7.4)
2e'eT

The two possible limiting cases are now discussed:

Casel:

4|\'T|d exp[(E; — Eq)/kg T <<1

e

This means\,is small andr is high. This is a bad approximation; becausg, i too small and’
is too high the fact hole suppression becomes untrue. However if the said quantities are kept with in the

limit, then Eqgn. (Q 7.7.4) becom%slsing(h x)ﬂz: 1+ ﬂ
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or

(Ef ~Ec)

(Ec~Ed)
-1+ {1+ 4Ny ekBT}
Et 2N

ekBT = e = ekBT
~Eg
2 efeT Ne
(Er - &)
Ng = Noe ‘e’
Ng =n

sinceN. e *®7 s the general expression foy.
e

(Q 7.7.5)

(Q 7.7.6)

Table Q7.7.1 /onization energy from donor and acceptor states in silicon and germanium (in eV)
Doping Element Silicon (14) Germanium (32)
Donor Acceptor Donor Acceptor
(E.-E) (E.-E) (E.-E) (E.-E)
Phosphorus (15) 0.045 - 0.0120
Arsenic (33) 0.049-0.056 - 0.0127
Antimony (51) 0.039 - 0.0096
Boron (5) - 0.045 - 0.0104
Aluminium (13) - 0.057-0.067 - 0.0102
Gallium (32) - 0.065-0.071 - 0.0108
Indium (49) - 0.16 - 0.0112
lllustration

(i) Temperature 2C

(i) N,=109n?

(i) Donor level lies at 0.015 eV below the conduction band
(iv) k,T=1.38x10%x 293 /1.6x 10" eV
ork, T =0.0253 eV

Refer Egn. (Q 7.7.5)

(Ec-Er)

e

(Ec - E¢) = 0.0253x In[

kT =

Ne
Ng

Ne
Ng
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483x 10*x 45x 18
107

= 0.0253x% In

(Ec - E) =0136eV

Now (Eq - E¢)=(E - Ef) - (E - E)=10136- 0015 012&V
If Ng andN/, are the ionized and unionized donor atoms, then

Ng =(Ng = Ng) = Ny F( Eg) with Ng= n

3 3
Thus Ng = 10 = 10
(Ed-Ef) 0121
1+e %7 [1 + e0.0253]
N4 =83x 1G°
But Ng + Ny = Ny

Ny =Ng- Ny=n

83x 10°x 10
ie. n=10°%-22"~— " -~
10°

= 1023{1— 83x 103}

n=10"
But at 293 K, nin an intrinsic semiconductor is only*18harge carriers. i.e., 1bmes smaller than
the extrinsic value.

Case2:

(Ec-Ed)
Let 4Ng e BT >>1
Ne

This implies largeN, and lowT. As this conduction has no limiting problem as in case 1, it is more
important than the first case. The general equation (Q 7.7.4) becomes

(Ec-Ea) (Ec+Ea)
J2e e (Ng/Ng)Ze
= 1 (Q 7.7.7)

o 2(Ng/Ng

ekBT

—Ed
zekBT
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. Ef _ (EC + Ed) Nd
ie., T kT +(V2)In {N—J (Q 7.7.8)
g, = (Ee ; Ea) _ kBZT n {%} (Q7.7.9)

d

At 0 K, E lies half way between the donor level and bottom of the conduction bafdné=ases,
Fermi level drops. Also for a given temperature the Fermi level shifts upward as the concentration
increases. This is shown in Fig. Q (7.7.3).

" TS
E,
N, = 10*/m®
N, = 10%/m’
E
R
E,

I
—» T 500k

Fig. Q 7.7.3 Variation of Fermi level with temperature for different
concentrations in an n-type semiconductor

The general equation for density of electrons is

(Er ~Ec)
n=N.e ‘e’

Ef

Substituting foe*®™ from Eqgn. Q (7.7.7),

v2
n=N ekTE% [MJ e(EZCkBETd)
e

. ~(Ec—Ed)
ie., n=(N, Ny e oot (Q 7.7.10)

Conclusions

Equation (Q 7.7.10) says that the density of electrons in the conduction band is proportional to square
root of the donor concentration. Another important conclusion is that as the temperature increases, the
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Fermi level falls below the donor level and it approaches the centre of the forbidden gap which makes
the semiconductor an intrinsic one.

Q 7.8 Give the required guide lines to discysty/pe semiconductors. The important results may be
summarized.

Answer.  Assumingn is small and\, is absent, Eqn. (Q 7.7.2) fprtype semiconductor becomes

(Ev‘Ef) Na

N,e™ =_— —a
P (= &)
l+ e kgT

A simplification of this equation as in the casenrdype, yields many interesting conclusions
summarized below:
(i) The number holes and the number acceptor atoms are equal at higher temperature and at
lower concentration, i.e.,

N,=p
(i) The expression for Fermi level is

Ny
E;: =E, + kg T In—
Na
i.e., At 0 K, this is not valid as it is obtained by assuniingjlargeT — oo is also untrue as
electron suppressiomay become untrue. The only facGsmoves upward & increases.

(i) The other interesting conclusion is the general expressidi) &ilow temperature and high
concentration of\_ is

e _EatE [keT] Np
f 2 2 N,

i.e., atT = O, E lies exactly half way betwee andE,. As the temperature increases,
moves upwards. How the variation Nf affects the Fermi curve is also shown in the

Fig. (Q 7.8.1).

Fig. Q 7.8.1  The variation of Fermi level with temperature for
different concentrations in p-type semiconductors
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(iv) The equation for the density of holes in the valence band is proportional to the square root of
the acceptor concentration. The corresponding equation is,

12
p=(NaNy) “exp[-(E - E)/2k 1]
An interesting illustration
(a) Sample usedr-type germanium
(b) Donor impurities used: ¥dgermanium atoms#
(b) Temperature: 2T
(d) Forbidden energy gaf, = 0.67 eV
Discussion
The number of electrons reaching the conduction band from the donor level is,

n=Nj = Ny - Ny

n=Ng - Ny F(Ey)
The general expression foris,

(Er -&0)

CT3/2 e KgT

a2 ECE
e, CT e ™ =N - N AN

_(EC_Ef) 1
n=48x 10¢'x 306'2e *7 =10%|1- T ) | 107
l+e 7

ie., exp[(Ec - Eq)/ks T] = 24,96x 16

(Ec - Ef) = 0196eV

S

0.196 eV

; I

L=0.67—-0.196 =0.474 eV

: '

Fig. Q 7.8.2 Impurity and intrinsic carriers in an n-type semiconductor
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Now the number of electrons coming from the valence band to the conduction band is

n=np, =N, é—o.474/0025 - {25>< 1024/e1896}

n' = p, =15x 10’
Hence
n'p, =15x 107x 16 with n = Ny = 10%
n' p, =15x 10% (A)
The density of charge carriers if it is an intrinsic semiconductor will be

0.6

- .67
n =2496x 1G%e 2"

nx p=rf =143x 10° (B)
Equations (A) and (B) are the same wntt+ 3.8 x 1¢°

N.B.: Now the interesting question is that when A and B are the same, why the conductivity of an
type semiconductor is much higher than that of an intrinsic one. This question is now answered:

In an intrinsic semiconductor,
o =n (e + i)

o; =37x10%x 16x 10°x( 039 019

0, =37x 16x 058 3%hm* i’

In an ntype semiconductorg o, = e{nue + p U p}

e =€{039% 16°+ 019 15 16}

10°

=039x 16x 109x 16

—ex 1022[0394.&)(15]

0o = 62x 1F = 6200hm™* m*t

i.e., the conductivity in an-type semiconductor is about 200 times greater than that of an intrinsic one

at a given temperature. This result tells that any device with extrinsic semiconductors can be operated at
low voltages over a wide range of temperatures. i.e., large flow of current densitypatdeasily

possible unlike valves-an astonishing character of impurity semiconductors with greater applications.
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Q 7.9 Discuss briefly the current flow in a biasedype semiconductor. Also discuss the variation of
electric conductivity with temperature using a suitable graph.

Answer.  An n-type semiconductor has (i) electrons as majority carriers, (ii) an (almost) equal number
of immobile positiveons, and (iii) holes as minority carriers. Assume hole contribution is negligible.

Electrode Electron lonised donor atom
ot -6
®» @ o
_ ® _
®-"-0
Electrons —»
e e

Fig. Q 7.9.1 Biased n-type semiconductor

Let us now consider amtype semiconductor placed between a pair of electrodes across which a
voltage is applied. Due to the field produced by the voltage, there will be a steady drift of the free
electrons towards the positive electrode. The electrons reaching the positive terminal disappear at the
metal electrodand themmaobile positive iong the vicinity of the negative electrode remaimeutralised
due to the drift of the free electrons. These ions immediately attract electrons. Thus a continuous flow
of electrons from one terminal of the voltage source to the other terminal via the semiconductor takes
place. The rate of flow of electrons from the negative electrode to the semiconductor and from the
semiconductor to the positive electrodes is determined by the applied voltage and the conductivity of the
semiconductor which accounts for the current flow.

Variation of Conductivity with Temperature

In a metal, the density of charge carriers is essentially electrons. This number remains constant for a
wide range of operating temperatures; consequently any variation of resistivity in a metal with temperature
is due to mobility variation. In most metals, the main type of scattering is lattice scattering which
increases with increasing temperature and hence mobility decreases and hence resistivity of metal increases
with increasing temperature.

However a semiconductor is characterized by the activation of current carriers, either intrinsically
or from impurities, or both. This activation is an exponential function of temperature. As the temperature
increases, lattice scattering becomes more effective and it reduces the mobility of charge carriers in a
semiconductor; but its effect is masked by the exponential addition of new carriers to the conduction
process. Consequently, even though the mobility decreases, the many fold increase of charge carries
decrease the resistivity on the whole.

The general expression for electrical conductivity is

o =neu
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Fig. Q 7.9.2 Variation of conductivity in an n-type semiconductor with
the reciprocal of the absolute temperature

In a metalhis constant and decreases with increase of temperature because of the reduction of
the value of!; while in a semiconductor, howevearincreases witd faster thal decreases, henfe
decreases with increasing temperature. The graph shows qualitatively the temperature dependence of
the conductivityg of a semiconducting crystal containing a moderate number of impurities. In the
region A, the impurity atoms alone are ionized and heneelow. As the temperature is increasing the
number of atoms ionized will be increasing andncreases. The slow increaseginis due to large
impurity scatteringand small amount of carriers. Usually the impurities are completely ionized at 200 K.

The slope ofn vs? in the region A is related to the ionization energy of the impurity.

In the region B, there is no increas@irdue to impurity conduction and the temperature is not high
enough to allow very many electrons to jump directly from the valence band to the conduction band;
here g remains relatively constant. In factshows a slight downward trend in this region. (since the
mobility decreases slightly due to the predominanckttite scatteringwhen all the impurities are
ionized). In the region C, the temperature is high enough to allow carriers arising from the valance band
to the conduction band generation to dominate. Now the semiconductor behaves as an intrinsic material.
The slope of the curve of the portion C can be related to the ener@é.gétps on set of C in Ge is at
100 K while for a Si it is about 200 K.

Q 7.10 Discuss the various relations used to study carrier transport in semiconductors.

Answer.  The net current that flows across a semiconducting crystal has two componebisft (1)

current(2) Diffusion current.

1. Drift Current: When an electric field is applied across a semiconductor, the charge carriers,

such as free electrons and holes attain a certain drift velocity which is the product of
(mobility of charge carriers) and the applied electric fieldr E. This movement of the
charge carriers constitutes a current which is cadiéd current. Thus the drift current
density for holes is given by

Jod = PeV,= p@, E (Q 7.10.1)
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Similarly thedrift currentdensity for electrons,

Jog = ney,= nel, E (Q 7.10.2)

Thus the total drift current is:

Jg =Jngt Jg=ngi, E+ pp E

Jg

or 0 =L =ngi. + i, (Q 7.10.3)

and o =n (ke +1p)e

for intrinsic semiconductors.

For extrinsic semiconductors with typical dopant levels, the minority carrier component is
negligible at normal operating temperatures.

. Diffusion Current The phenomenon diffusionplays an important role in transistor operation.

An electron current may flow in a semiconductor even in the absence of an electric field, if
there exist gradient of the electron densi#lthough the mobility of the charge carriers in a
semiconductor is greater than that of the electrons in a metal, the conductivity in the former
is much less than that in the latter because of the too few current carriers. The conductivity
is so less that the random movements of the carriers due to unequal carrier densities plays a
greater part in conduction than the drift due to the applied field. Diffusion arises essentially
from density differences and the resulting current is calitfdsion current

Since diffusion process is analogous to the heat condunt#orod, we can write the diffusion
of electrons in semiconductors by the equation,

N D@

dx
N:—q@
dx

dn
whereN is the number of electrons diffusing through unit area in unittal;(ﬁésconcentration

gradient D_ is diffusion coefficientThe diffusion current density,

dn
Jp = eb,—
nD Dn dx
Similarly the diffusion current density due to holes is:
_ dp
JpD - er&

Thus total current density due to holes is:

d
Jp = Jpa + Jpo = PR E- eQ)d_f:
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Similarly the total current density due to electrons is:
dn
Je = ‘]nd + ‘JnD: net E+ eDwd_
X

Thus the total current density is

d d
J=J.+ Jp: e{( e E+ Qar:) + (pﬂ pE - Dpd—f())} (Q 7.10.4)

Einstein Relation

There exists a definite relationship between the mobility andiffiusion constandf a particular type of

charge carrier. The higher the value of the mobility of the charge carrier, the greater will be its tendency
. . e dn e . . .

to diffuse. The electron current density due to dlffu3|oaD§&. Such diffusion will result in an

electronic field E. When the steady state is reached the conduction dumeist be equal and opposite
to the diffusion current. i.e.,

Je == Jp
dn
E=- -
o eb, ix
dn
or neu, E=- ED]& (Q 7105)

The presence of the electric field produces a potential differépgeover a distance say The
variation ofn with x is given by the Boltzmann relation,

_ ev _eEx

dn _eEx nekE
_ = C kgT (— H e —
dx © ( © I/B -U kBT
dn_ neE
or dx _kB T (Q 7.10.6)

dn
Substituting this value of- in Eqn. (Q 7.10.5), we get

dx
_[en,
neu, E= {m} (neE)

(Q 7.10.7)
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Equation (Q 7.10.7) is known &instein’s diffusiorequation.The corresponding equation for
holes is

_ Hpkg T

. (Q 7.10.8)

p

Life Time and Diffusion Length

In a semiconductor which is thermal equilibriumthough the concentration of electrons and holes are
steady, the equilibrium is a dynamic one. That means the generation of the electron hole pairs is exactly
equal to the recombination of such electron hole pairs at any instant. It is possible to change such
equilibrium concentration of electrons and holes by several processes. These carriers do not remain
indefinitely and take part in the diffusion process but recombine to form neutral particles. It is found that
the excess carrier density decreases exponentially with time and the carrier density at anyigime *

found to be proportional to ez@pt/r) wheret is the life time of the carrierdhe life timer can be

defined as the time taken for the carrier density to f%l & its initial value. The average distaricef

a carrier diffuses before recombination, is related to the diffusion coefficient and the life time by the
equations.

L
] (Q 7.10.9)

Q 7.11 Discuss the theory of generation and recombination of charge carriers bringing out the related
equations.

Answer. In a semiconductor, thermal agitation produces charge carriers. The addition of impurity
atoms will increase one type of charge carriers at a given temperature keeping an equilibrium concentration
of charges.

It is therefore clear that the addition of donor impurities increase the density of electrons could lead
to a reduction of hole density unless some mechanisms exist for the removal of holes, as well as for their
generation.

Indeed the fact the produgpis a constant of the material and independent of added impurities even
though the generation is occurring implies that both holes and electrons must be removed also. This
process is called recombinatiofhis means an electron which escapes from a bond might also be
capable of falling back in it again. Such a process is cdltedt recombinationThe direct transition
can be explained as follows:

We assume that for a particular semiconductor (in the absence of the fighltrthal generation
rate g is a function of temperature alone (the valug,of an empirical quantity of the material and
varies with impurity density, imperfection in the crystal, deformation, etc). In other words, it is not a
unique property of germanium, but is only a unique quantity for a particular sample of germanium.
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But the recombination rat® depends upon how frequently an electron in the conduction band
encounters a vacant state (hole) in the valence band. i.e., the[rate ihe concentration of holes and
electrons. The more holes there are, the sooner an electron will encounter. Similarly, the more electrons
there are, the sooner will encounter an electron.

Thus RO np
i.e., R=rnp
wherer is therecombination coefficientn equilibrium state the two processes must be precisely equal.

g=R=rnp=rrf
ie., 9 2 (Q 7.11.1)

?:nopo:

If the electron density, say is increased by doping with donors, this enhances the recombination
rate, but does not alter the generation rate, so that thieengity of minority carriergalls. If now the
crystal slightly disturbed from equilibrium by a few excess hdips(by light falling on it) an equal
number of electronsAn are generated, then the rate of excess of hole-carrier recombination at any
instant is given by

d(Ap)
- — -R
at Or
=r[(n, + An)(p, + AP = 10y py
= r[(no Po + NoAP+ pAnt AnA 9] -y B
=rp(n, + o)
. d(Ap
I'e" (dt ) = _r(nO + pO)Ap
M:—(%jwnh T :;
dt T (No+ Po) T
d(A dt
Thus —( p) =
Ap T

t
Integrating In Ap = - +InC

ie., Ap=Cer (Q 7.11.2)
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Fig. Q 7.11.1 The decay of excess hole concentration with time

Whent = 0, (4p) = (4p), = C

. -t
ie., (&p) = (&p), "
where (Ap), is the initially injected number of holestat 0 andAp is the number of injected holes left

at the instant. It is apparent that the excess of holes injected decay exponentially with time.
Whent =1,

(2p),
e
Therefore the mean life time of the carrier can be defined as the time in which carrier value falls to

Ap =

1
_e or 37% of its initial value.

Q 7.12 What is Hall effect? Show that for a p-type semiconductor the Hall coeffiRigistgiven by

Ry = 1 . Describe an experimental set-up for the measurement of Hall effect. Arrive at the important
pe

uses of the study of Hall effect.

Answer When a semiconductor is placed in a magnetic f@ldalong the z-direction) and a current

density J (along x-direction) passed through it, a transverse electric fieldlong y-direction) is set
up given by

m

= Ry BJ whereR, is the Hallcoefficient or Hall constant.
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The Hall effect may be explained with the help of Fig. Q 7.12.1

Y Probe attached to face 2

s

— Direction of conventional
current flow

L

\
/ Probe attached to face 1

Face .1

Fig. Q 7.12.1 Hall effect and motion of electrons in an n-type semiconductor

Assuming that the material is artype semiconductor, the current flow consists almost entirely of
electrons moving from right to left just opposite to the conventional flow of currewnis the velocity
of electrons at right angles to the magnetic field, there is downward force on each electron of magnitude
Bev. This causes the electron to be deflected in a downward direction and causes a negative charge to
accumulate on the bottom face of the slab. A potential difference is therefore established from top to
bottom of the specimen with bottom face negative. This potential difference causest frekthe
negative of ydirection, and so there is a force oEgacting in the upward direction on the electron.

Equilibrium occurs when
eE, = eBv
Ey = Bv
If J is the current density in thedirection, then
Jy = nev

wheren is the concentration of current carriers. Thus

The Hall effectis described by means of the Hall coeffici€qt defined in terms of the current
densityJ by the relation
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En =Ry & B
Ry = " 7.12.1
or HE3 B (Q 7.12.1)
1
R, = —
"7 he
. 1
In this case Ry =—
ne

Negative sign is used because the electronic field developed is in the ngglitection

ie., Ry=—H -1 Q 7.12.2)

All'the quantitiesE , B andJ can be measured, and so the Hall coefficient and carrier dermsity
be found out.

Fig. Q 7.12.2 shows the conditions that exist patgpe semiconductor under identical conditions
as that ofn-type specimen described above.

Face .2

Direction
of hole —
motion

Face .1

Fig. Q 7.12.2 Hall effect in p-type semiconductor

Experiment

Theory The Hall coefficient is determined by measuring the Hall voltage that generates the Hall field. If
V,, is the Hall voltage across the sample of thicknetwen

Vy = Egt
Substituting forkE,, for Eqn. (7.12.1),

V,, = BtR, 1 (Q 7.12.3)

If b-is the width of the sample, then its cross-section willthe ) and the current density,

I
JX:_X

t



Note the polarity o¥,, will be opposite fon andp-type

Vy =

Ry =

BtR, Iy

bt
Vi b
1, B
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(Q 7.12.4)

A rectangular slab of the given material having a thickbessl widthb is taken and a curreht
ampere is allowed to pass through this sample by connecting it to a battery. The slab is then placed
between two pole pieces of an electromagnet such that if the current direction coincides with the x-axis,
the magnetic flux densit coincides with the-axis, as shown in Fig. Q 7.12.3.

O— 1l

A

Fig. Q 7.12.3 Set up for the measurement of Hall voltage

The Hall voltagev,, is then measured by placing two probes at the centres of the bottom and top
faces of the sample. If the magnetic flux density iseber/m and the Hall voltage is Wolt, then R
is obtained from Eqn. Q 7.12.4 irtlcoulomb. The analysis is given above applies only when the charge
carriers are free of attractive forces in the energy bands and when they move with a steady drift velocity
v,. This is not the case in a semiconductor, and a computation of the average speed leads to the

conclusion that

R, =
H 8ne

3 118 1 ,
= o =~ instead of-— as seen in Eqn. (Q 7.12.2)
ne ne

For n-type of material, the conductivity is given by

For p-type material

O, =nely
=0 - _%nRy
Hn = e 118
PRI
P pe 118

(Q 7.12.5)
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There is another interesting quantity called itz angle (6,,) defined by the equation,

tang,, = En
X
But (Refer Eqn. 7.12.2 E, =22 -Ne%B 7.12.6
ut (Refer Eqn. 7.12.2) H e e (Q 7.12.6)
i.e., Ey = Vx BEx
EX
E v, B
Hence —H =tang, = X—=uB (Q 7.12.7)
EX EX
where U is the mobility of the charge carriers.
Ey
Thus tand,, = (Q 7.12.8)
X

Applications of Hall Effect

(i) Determination of type of semiconductdfor ann-type semiconductor the Hall coefficient is

(if)

(iif)

(iv)

negative where as foipatype semiconductor it is positive. Thus, the sign of the Hall coefficient
can be used to determine whether a given semicondugctdy® orp-type.

Calculation of carrier concentrationThe Hall voltagev,, is measured as usual by placing

the two probes at the centres of the top and bottom faces of the sample. If the magnetic flux
density isB wb/n?, then

1

n=——

eRy
where Ry = 1
ne

Determination of mobility If the conduction is due to one type of carriers, e g., electrons,
we have

Uy =0Vl 1 B)

i.e., knowingo , the mobility 4, can be determined.

Measurement of magnetic flux densi§ince Hall voltagé&/, is proportional to the magnetic
flux densityB for a given currenl through a sample, the Hall effect can be used as the basis
for the design of a magnetic flux density meter.
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(v) Measurement of power in an electromagnetic wdaeanelectromagnetiavave in free space
the magnetic fieldH and the electric fieldE are at right angles. Thus, if a semiconductor
sample is placed parallelEit will derive a currentin the semiconductor. The semiconductor
is subjected simultaneously to a transverse magneticHipleducing a Hall voltage across
the sample. The Hall voltage will be proportional to the proBactdH. i.e., to the magnitude
of the poynting vectorof the electromagnetic wave. Thus, the Hall effect can be used to
determine the power flow in the electromagnetic wave.

(vi) Hall effect multiplier If the magnetic flux densit is produced by passing a currerit
through an air core coiB will be proportional tol '. The Hall voltage is thus proportional to
the product of land |I' . This forms the basis of multiplier.

Q 7.13 Write a note on thermistors. What are the advantages of semiconductor devices?
Answer.  The wordthermistorsis the abbreviation of ‘thermallsensitive resistorsThey are intrinsic
semi-conductors prepared by embedding the oxides of manganese, iron, cobalt and nickel in ceramic
binders and then heating them to a high temperature. The resulting hard mass is in the form of beads,
discs or rods. A pair of platinum wires is attached to the thermistor to enable electrical connections to be
made. The electrical conductivity of thermistor varies almost linearly with temperature over a wide
range of temperatures. They can, therefore, be used as thermometers. The rate of change of conductivity
with temperature is very high. Thus thensitiveness of a thermistor is very hagid it can be used to
measure temperature changes of the order of 2@ A thermistor, whose electrical conductivity
increases with temperature, may be connected in series with metallic conductors, whose electrical
conductivity decreases with temperature, such that the resistance of an electrical circuit remains unaffected
by temperature changes.

The electrical resistance of a thermistor varies with temperature in a manner similar to a semiconductor.
The resistanc® of a thermistor at the kelvin temperatdrés given by

b
R= aexp(?j (Q 7.13.1)

wherea andb are constants for a givéinermistor Differentiating the above equation with respect to

we have,
vl 22
dT T 72

1dR b
ROT = _F = a, thetemperature coefficient of resistance

Thus thetemperature coefficient of resistanoka thermistor is negative. Its value is dependent on
temperature. Its numerical value is large compared to that of a metal.

Consider two temperaturd$ andT, which are close to each other. Thus we have from Eqgn. (Q
7.13.1),

b
In =lna+—
Ry T
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b
Ina+ —
2

R ) P L Bl 1
L L

If T, and T are close to each other we can wiit&, = T 2 where Tis the mean of, and T. Hence
we get

and In R,

nNR-INhRKR

b
a = _F
ie., (MR -hR) (Q 7.13.2)
- (L-T)

Thus if the resistance of a thermistor is measured at two close temperatures its temperature coefficient
can be calculated using Eqn. (Q 7.13.2). It must be noted that the temperature coefficient is not a
constant. It varies with temperature. The important features of a thermistor are ithénigial
sensitivenesand compactnessThermistors find a number of uses. Here are some of them. They are
used:

(i) to measure low temperatures of the order of 10 K or less,
(i) to protect electronic circuits agairgirges of current
(i) to measure varying temperatures,
(iv) involtage stabilizers,
(v) in temperature control units,
(vi) to protect the windings in transformers, motors and generators from surges of heavy currents
and
(vii) to measure wind velocity and altitude

Most of the devices in the field of electronics today are built from semiconductors. The vacuum
devices like diode, triode, etc. have been replaced by semiconductor devigen Jikection diodes,
transistors, etc. The advantages of semiconductor devices over vacuum tubes are the following:

(a) As the name indicates, vacuum tubes require vacuum, but semiconductors do not require
vacuum.

(b) Vacuum tubes have filaments, and so require supply for heating the filament. Semiconductors
do not have filaments.

(c) Semiconductor devices are smaller in size, lighter in weight, and are mechanically very rugged.

(d) Operation of semiconductor devices requires low-voltage power supply, the power
consumption is also smaller than that of the corresponding vacuum tubes.

(e) The semiconductor devices require very small warm-up time and, therefore, operate
immediately after the supply voltages are switched on.

(f) The performance of semiconductor devices is more reliable than that of vacuum devices.
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(g) The operating life of a semiconductor device is appreciably longer than that of its equivalent
vacuum tube.

Q. 7.14 Draw the energy-band diagram of an unbigsagunction. Explain the terms: barrier potential

and depletion region as applied to-a junction.

Answer A junction diodds a combination of amtype and g@-type semiconductor in intimate contact.

For example, if a small pellet of indium (having valency three) is placed wityge germanium piece,

and if they are allowed to melt, the molten indium diffuses into the molten germanium. If the germanium
is now allowed to cool, it recrystallises, with a large concentration of indium in its upper parts. The
lower part continues to be of timetype. But the larger concentration of thetype imputity, namely
indium, makes the upper part of the germaniupatygpe semiconductor. Thus timetype germanium
andp-type germanium have been brought into intimate contact, forpamgnction. See Fig. Q 7.14.1.
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Fig. Q 7.14.1 Barrier potential

The p-type regionhas (positive) holes as majority charge-carriers, and an equal number of fixed
negatively-charged acceptor ions to keep the material as a whole in neutral. Similartypleegion
has electrons as majority charge carriers, and an equal number of fixed positively-charged donor ions.
In addition to these majority charge carriers, there are a few minority charge-carriers in each region.
The p-region contains a few electrons while tiké/pe contains a few holes.

Thus, when the junction is formed, there isharge-density gradienfThis causes diffusion of
charge-carriers across the junction. Holes diffuse from {tegipn into then-region, and electrons
from then-region into thep-region. Theadiffused charge carriersombine with their counter parts in the
vicinity of the junction and neutralize each other. The diffusion of holes lemces/ered negative
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acceptor ion®on the left of the junction and the diffusion of electrons leawesvered (positive) donor
ionson the right. Thus, there is net negative charge op-thae of the junction and net positive charge
on then-side. This sets up a potential difference across the junction, and hence an internal electrical field
E directed from the (positive)-side to the (negativey-side. Equilibrium is established when the field
becomes large enough to stop further diffusion ofiagority chargecarriers. The fieldE, however
helps theminority carriers (electrons in the-region and holes in the-region) to move across the
junction.

The region on either side of the junction which becomes depleted (free) of the mobile charge
carriers is called thdepletion regior(or transition regior). The thickness of this region is of the order
of 10-®m. The potential difference across the depletion region is callgzbtbatial barrier It is of the
order of 0.1 to 0.5 volt depending on the temperature. The general shapes of the charge distribution, the
internal electric field and the potential barrier in the depletion-region are shown in Fig. Q 7.14.1.

Theory of p-n Junction

It has already been established that the Fermi level will be different in the two types of semiconductor,
and yet the Fermi energy was originally defined as a chemical potential and hence must be constant
through out the specimen. In two separate pieces of semiconductor it is acceptable that the electrons in
one should have higher energy than in the other. When the two are joined this is no longer possible since
the high energy electrons will move to the region with lower energy and hence equalize the Fermi level.
The number of electrons required to move is rather smaikekdistribution of energys important.

As all the energies we measure in the semiconductor are relative to the Fermi level the re-adjustment
when two different types of semiconductor are joined is equivalent to moving the whole band structure
of one relative to the other, to equalize the Fermi level. See Fig. Q 7.14.2.

k Conduction band

EnergyT y

Valence band

p-type Interface n-type

Fig. Q 7.14.2 The band gap at the p-n junction

This bodily movement of band structure up or down the energy scale is just a matter of changing
the potential and a re-distribution of electrons does just that. In the region where the material goes from
n-type top-type the band gap changes position as shown in Fig. Q 7.14.2 and in constryeting a
junction, one of the aims is to get this interface as narrow as possible. It is the properties of the junction
which govern those of the device.

We now calculate the equilibrium flow, i.e., after the initial redistribution of electrons from one side
of the junction to the other has taken place. The number of electrons in the conduction bame of the
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type material is proportional to eXp-AE,/ kg T} as usual, wherdE, is the difference between the
Fermi leveland the bottom of the conduction band inphgpe. Similarly the number of electrons in
the conduction band in timetype is proportional to exp-AE,/ kg T) whereAE, in the energy difference
betweerE_ and the bottom of the conduction band inrtkgpe. It is clear from the figure that

AE, = AE, - AE;

where AE,, is the width of the gap andE; is the energy difference between the Fermi energy and

bottom of the energy gap on thaype side.

Now any electron in the conduction band ingkgpe will simply flow down hill into the conduction
band of then-type giving an electron current to the right.

AE
lq O exp{—k—_ll_} (Q 7.14.1)
B

(This electron current is of course equivalent to the reverse conventional current flow).

There is a finite probability that electrons will flow uphill in the conduction band tp-tiyge side
by thermal fluctuations. The probability that such a fluctuation will occur is just:

exp{—(AE1 - AEy + AE: )/ kg 1} (Q 7.14.2)

The energy term in the exponent here is the energy difference between the bottom of the band on
then-type side and that on thetype side. However to obtain the number of electrons flowing in this
direction, we need to know the number in the conduction band orsttle. As usual this is proportioned
to

exp{-AE, /ky T} = exp{~ OE, - AE:)/ kg T} (Q 7.14.3)

The electron flow is proportional to the number of electrons moving uphill, which is equal to the
number in the conduction band multiplied by the probability of a thermal fluctuation lifting them up. The
uphill electron flow is then:

I, O exp{—(AE1 - AE, + AE; )/ kg T} exp{—(AEg -AR) Kk 1}

ie., I, O exp{-AE, /kg T} (Q 7.14.4)

From Eqgn. (Q 7.14.1), we then haye |, so that zero electron current flows at equilibrium when
the Fermi level is equalized on both sides. All this analysis can be repeated for positive holes and a similar
result obtained for hole conduction.

Q 7.15 Explain the working of @-n junction diode under forward and reverse biasing.

Answer In an unbiased junction, the net current is zero. Let us now consider the simple circuit shown
in Fig. Q 7.15.1 in which an external potential is applied sowhiale is positive. Recalling that conventional
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current flow is in the reverse direction to electron movement, this impig@aa@val of electronfrom
then-side and so the Fermi level is decreased there by an amount eV (Fig. Q 7.15.1bY ishbee
external potential. Application of an external potential in this way is cedlexise bias

- +
L p [ n

@

A
P
N

E:

(b)
Fig. Q 7.15.1 (a) A reverse bias p-n junction and (b) the resulting band gap
The electron flow uphill is reduced by this procedure since the energy which has to be overcome by

thermal fluctuation has been increased by eV. The probability that an electron will in fact overcome it, is
reduced from Egn. (Q 7.14.2) to give a current flow:

I, Oexp{-(QE, + eV )/kg T} (Q 7.15.1)

instead of Eqn. (Q 7.14.4). The opposing, current flow [Eqn. (Q 7.14.1)] is unchanged since it depends

only on the number of electrons in the band and as the energy diffekeficeas not been changed, it
remains constant.

Therefore
lqg Oexp(-AE,/kgT)

The net current flow is then

I =(l, ~14) Dexp[~(2E, +eV)/ksT] - exp(-AE /K T (Q 7.15.2)

Therefore | Oexp{-AE,/kg T} {exp(-eV/ kg T) -1} (Q 7.15.3)

which constitutes an electron flow from left to right in Fig. Q 7.15.1(b) and a conventional current from
right to left, i.e., from high to low applied potential. However, it is very small current. The applied
voltage occurs in the term in parentheses in a negative exponential which approaches zero asymptotically.
This long flat exponential tail gives little variation of current with applied potential. The small current in
reverse biagherefore stays almost constant even for large applied voltages so that the resistance (or
more properly, the impedance) is large in this mode.
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If the circuit is altered so that the positive potential is applied tp-8ide we havéorward bias
(Fig. Q 7.15.2). The effect is to reduce the height of the energy hill which the electrons traverse by an
amounteV (Fig. Q 7.15.2 b).

\ _
[ p [ n |

@)

Fig. Q 7.15.2 (a) A forward bias p-n junction and (b) the resulting band gap

Once again the flow downhill from left to right is unchanged, depending onyepr{Eqn. Q 7.14.4).

The electron flow uphill is now strongly affected because the height of the energy step has been
reduced.

Therefore l, Oexp{-@E, - eV )/ kg T} (Q 7.15.4)

which combines with Eqn. (Q 7.14.4) to give a net electron flow to the left:
I =(1,—14) < exp{—(AE, —eV)/kg T} —exp(-AE/lkg T)

Therefore | Oexp[-AE, /kg T] {exp(eV/ k T -1} (Q 7.15.5)

which is equivalent to a conventional current to the right. Since the furgttiarcreases dramatically
with x, the electron flow increases strongly with applied voltage. In other words the forward biased
junction has a low impedance.

Now these current characteristics in both modes are plotted in Fig. (Q 7.15.3). The total effect is to
produce areffective rectifiewhich can often resist reverse voltages up to several hundred volt. The
device has low impedance in forward bias so that such voltages produce high currents as required in a
rectifier. The uses gb-n junctions as rectifiers is now general.
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Fig. Q 7.15.3 The current-voltage characteristics of a p-n junction

Avalanche Breakdown

If the reverse bias is made very high (20 volt), the covalent bonds near the junction break down and a
large number of electron-hole pairs are liberated. The reverse current then increases abruptly to a
relatively large value. This is known asvalanche breakdovnand may damage the junction by the
excessive heat generated unless the current is limited by external circuit.

Q 7.16 What is a junction transistor? Describe the actiop-nfp andn-p-n transistors.
Answer A thin layer of am-type semi-conductor sandwiched between pagpe semi-conductors
or a thin layer ofp-type semiconductor sandwiched between bagpe semiconductors, is called a
transistor. The transistor is by far the best known semiconductor device. It is freely used for three main
reasons: cheap to make and reliable compared with vacuum tubes, it is small, and it is extremely efficient,
demanding very small power for its operation.

In the transistor we enter a stage of further complication for it consists @ktvjanctions back-
to-back. The arrangement is therefore eithgmap or ann-p-n transistor: we shall consider the latter.

The arrangement of the energy levels in the unbiased condition is obvious by extension of the ideas
of the last section. The conduction band in the cepttgpe region is now an energy hillith lower
energy conduction bands on either side. See Fig. (Q 7.16.1). We have already noted that zero current
flows when no bias is applied to a junction and the uniting of two junctions does not change this.

Fig. Q 7.16.1  An n-p-n transistor-un biased
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In order to bias the two junctions independently we have two biasing circuits both connected to the
centralp-type part which is called thiease. We shall consider the left-hand junction to be forward
biased and the right-hand junction to be reverse biased as shown in Fig. Q 7.16.2 and the bias voltage is
made larger for the reverse bias side.

Output
amplified
signal

Fig. Q 7.16.2  The circuit for using an n-p-n transistor as an amplifier

The resulting displacement of the energy gap is shown in Fig. Q 7.16.3 which should be familiar
since it is merely a back-to back combination of Figs. Q 7.15.1b and Q 7.15.2b. The electron flow
through the forward biased junction on the left is the same as in the rectifier diode of the last section. A
substantial flow occurs which is strongly dependent upon the biasing voltage.

Now suppose that some varying signal voltage is applied across the terminals laimliteic Fig.

Q 7.16.2. The strong dependence of the electron flow upon the applied voltage will give corresponding
variations in the former and the left hamtlype portion is naturally called tleenitterof this signal flow.

Fig. Q 7.16.3 The effect on the band gap of the potential in Fig. Q 7.16.2

In the manufacture of the transistor it is essential that the base is very thin, it shoydype a
material about a tenth of a millimetre thick. We can now see why this is important, for if the base were,
say, a few millimetre thick the current in the forward bias side would flow without influence on the
much smaller current on the reverse bias side.

However if the base is thin, electrons flowing into the base from the emitter are caught up in the
flow through the reverse bias side. Although this flow is small the biasing voltage is large and it is this
which constrains a large proportion of the electrons to continue through the second junction to the right
handn-type region (called the collector). For a suitably thin base, well over nine tenths of the electrons
travel this way rather than going back to the emitter via its external circuit. The efficiency of the whole
operation is therefore dependent upon the thinness of the base.
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Now this extra flow of electrons through the reverse Ipias junction is equivalent to a large extra
voltage across it, since even a small current flows in the reverse bias mode correspond to large applied
voltages {re-call Fig. (Q 7.15.3)}. The result is that relatively, small changes in electron flow through
the emitter caused by the signal voltage changes create large voltage changes across the output terminals
in Fig. Q. 7.16.2. In other words the signal has been amplified; the gain can be quickly calculated.
Suppose that the signd] generated across the signal resi®goroduces a forward curreht asR_ is
much larger than the impedance of the forward biased junction we have a signal current flowing through
this:

I S

PUES

Suppose that all the electrons in this current flow pass through the base towards the collector then
the voltage across the output residtpis

VO = RO IS
_VsR,
Rs
Vo _ R
Therefore v
Vs R

Note that this gain does not include the large resistance of the reverse bias junction and that the
signal current flow is superimposed upon the steady flow which occurs for zero signal.

Note also the key place occupied by the collector applied voltage, it is this which forces the extra
electron flow toward the collector and hence supplies the power for the applied signal. The gain is
dependent upon the efficiency with which the electrons in the base are persuaded to pass from the
emitter circuit to the collector circuit.

All the discussion above could have been developed using positive holes as charge carriers. These
flow in the opposite direction to the electrons, i.e., the conventional current direction. Since we measure
energies for holes in the reverse direction they flow up the energy barrier and require thermal activation
to diffuse down. The final results are similar to those for electrons and in reality both types of carriers
are flowing at once. This presents a possibility that holes and electrons may unite, annihilating both (i.e.,
the electron is scattered back into the valence band). The extra energy is absorbed by the lattice. This is
far more likely in regions where the potential is low and random thermal motion is dominant. In a
transistor this situation is present in the base except close to the collector junction. It is therefore very
important that scattering centres, such as point defects and dislocations, should be avoided in the base.
The acceptor atoms also act as scattering centres which promote annihilation and hence these are
minimsed by making the base lgst/pe and increasing thetype nature of the collector and emitter.

The surface of the base is also treated to reduce scattering and recombination there. All this gives a
longer mean scattering time and hence an increased average time before an electron recombines with a
hole. The base thickness must be much smaller than the mean distance travelled by an electron or hole
in this recombination timelf it is, almost all electrons and holes will pass out of the base without
recombination and the efficiency will remain high.
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Q 7.17 The author is on the hope that at least a few readers will go through this chapter in depth

and derive some inspiration as a large number of devices made from semiconductors such as transistors,
photo cells, light emitting diodes, solid state lasers, solar cells, thermistors, photovoltac cells in space
ships are widely used in electronic industries. The present question is whether you can prepare a
review report of 2 to 4 pages on the principle, design, working mechanism and uses and applications

of important semiconductor-devices?

Answer.  The author will be greatly disappointed if your answer is No. If it is yes, you are suggested to
read selected standard text-books on semiconductor devices and prepare a short essay on the said topic.
The best contribution will be incorporated in the next edition under Q 7.17 and will be gratefully
acknowledged.

TABLES

Table 7.A  Flectrical and mechanical characteristics of Ge, Si and Ga As

S.No | Property Ge Si GaAs Units
1 Melting point 937 1415 1240 °C
2 Density at 28C 5320 2330 5310 kg/m?
3 Thermal expansion 6.1x10° 4.2 x104 5.9x104 /kelvin
4 Thermal conductivity 630 840 520 WAK-?
5 Specific heat 310 760 361 JkgtK -1
6 Atomic weight 72.66 B.09 144.6 number
7 Lattice constant 0.5657 0.5431 0.5654 nm
8 Atoms/nit 4.42x1%° 4.99x13 4.34x1%° number
9 Dielectric constant 16 118 111 number
10 Band gap energy 0.67 1.106 14 ev
1 Intrinsic resistivity (300 K) 46 2300 3.7x10 Qm
12 Electron mobility 0.39 0.15 1 my-ts-1
13 Hole mobility 0.19 0.05 0.045 fAv-1s-?
14 Intrinsic charge density 2.4x10° 1.5x10¢ 1.4x10 fm?
15 Electron diffusion constant at 300 0.01 0.0038 0.031 -1
16 Hole diffusion constant at 300 K 0.0049 0.0013 0.00115 -1
Table 7.B  Room temperature resistivity and energy gap of elements of the fourth group
Element C (diamond) Si Ge Sn (gray) Pb
p(Qm) 104 3000 047 2x10-6 2x10°7
E,(ineV) 52 121 0.75 0.08 0
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Table 7.C  Classes of semiconductors

Material Crystal structure Lattice spacing (nm Fundamental energy
gap, £ (ineV)
Si Diamond 0.542 1.08
Ge Diamond 0.562 0.65
Sn (gray) Diamond 0.646 -

GaP Zinc blende 0.545 224
GaAs Zinc blende 0.565 1.38
SiC Wurtzite 0.435 2.86
Cds Zinc blende 0.583 240
ZnS Zinc blende 0.541 3.70
Pb Te Rock salt 0.645 0.32

Table 7.0  Dopants fonization energy

Semiconductor

Dopant (type)

lonisation energy (in eV)

Ge B(p) 0.010
Al (p) 0.010
Gap) 0.011
P () 0.012
As (n) 0.013
Sb () 0.0096
Si B (p) 0.045
Al (p) 0.057
Gap) 0.065
P (n) 0.044
As (n) 0.055
Sb () 0.039
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Given: u, =036m*V~'st u, =017nf V''standn = 2.5 x 169

Majority and minority concentrations for n-type and p-type samples of germanium

p-type samples n-type samples
o o
ohnm* nr? n(nr3) p (nT3) ohm?* nr? n(nr3) p (nT3)
10 1.70x 1 3.68 x 16° 10 1.75x 1 3.57x 1%
1¢ 1.70 x 1¢ 3.68x 16 1¢ 1.75x 16 3.57 x 167
10 1.70x 16 3.68x 1@ 10 1.75x1®& 3.57 x 16
Table 7.F  Physical properties of Si and Ge and some compound's
Material | Lattice E at Electron Hole Dielectric ma m
constant| 300 K mobility at| mobility constant . L
(nm) (eV) 300 K (Mt | at 300 K (r 0 Mo me
V-isl) V-ist)
In Sb 0.648 0.168 7.8 0.074 17 0.0115 05
Ge 0.566 0.660 0.39 0.181 16 - -
Si 0.543 1.120 0.15 0.062 118 - -
Al Sb 0.614 16 0.02 0.042 114 0.39 0.8
GaP 0.545 224 0.01 7.5x10° 10 0.34 05
GaAs 0.565 135 0.85 0.044 124 0.070 05
GasShb 0.610 0.67 041 0.140 15 0.048 0.38

OBJECTIVE QUESTIONS

. Semiconductors have positive temperature of coefficient while it is the other way in metals
(a) true (b) false
. The mobility of charge carriers in an intrinsic semiconductor is proportional to

1

/.
@ T e

(b) T (d)

. The constant of proportionality in the calculation of intrinsic charge carriers is of the order
(a) 10* (b) 10% (c) 10 (d) 10

. The Fermi level lies exactly at the middle of the forbidden gag) it m,

(a) true (b) false

1
(c) F
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10.

11.

12.

13.

14.
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. The intrinsic charge carriers pef at 27°C in silicon is about 1@mes greater than that 8i

atoms in a volume of 1

(a) true (b) false
In an impurity semiconductor, donor impurity atoms
(a) add electrons to the valence band (b) remove electrons from the valence band
(c) add holes to the valence band (d) add electrons to the conduction band
. The energy needed to ionize the indium impurity atoms in germanium is approximately
(&) 0.001 eV (b) 0.02 eV
(c) 0.01eVv (d) 0.1 eV

In ap-type semiconductor, the concentration of holes is proportional to the square root of
(a) the concentration of donor impurities

(b) the concentration of acceptor impurities

(c) the concentration of intrinsic impurities

(d) none of these

. The energy gap of germainium is 0.67 eV and at 300 K the Fermi level lies at 0.195 eV below the

conduction band. The concentration of electrons due to intrinsic semiconduction is
(a) C é.861/0.025 (b) C e—0.861/0.05
(C) C é).672/0.05 (d) C e—0.475/0.025

The incremental temperaturel, necessary to double the conductivity or more accurately to

. T .
double the number of carrlers+A§|_— and it is

@ —=— (0) (T In 2
9
(2kg T) In2 Eq
© e D 2T

When a trace of indium is added to germanium, onepgigtse semiconductor
(a) true (b) false
In ap-type semiconductor at 0 K, the Fermi level lies midway between the acceptor level and top
level of the valence band
(a) true (b) false
If the concentration of the donor impurities is increased, the Fermi level shifts towards the conduction
band
(a) true (b) false
At low temperature and higher concentration of acceptor impurities, the density qf hates
as

(@ pON, (b) pDNia
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16.

17.

18.

19.

20.

21.

22.

23.

24.

Theory of Semiconductors 271

© pOyN, (d) p N2
Even though in the donor exhaustion range the charge carriers remain the same, we find a small
fall in conductivity as the temperature increases, because

(a) mobility increases (b) mobility decreases

(c) charge of the carriers affect the scattering

(d) lattice scattering decreases

An electron current can flow in a semiconductor even in the absence of an electric field, if there
exist a gradient of the electron density

(a) true (b) false

Since diffusion process in a semiconductor is analogous to the heat conduction in a rod, the
number of electrons diffusing through unit area for unit time is proportional to carrier density
gradient

(a) true (b) false

The average distance an electron diffuses before recombination is related to the diffusion coefficient
and the life time by the equation

(@ L,=D,1, ® L,=D,1,
1
(c) L, = b1, (d) none of these

The mean life time of the carrier injected in to a semiconductor is the time in which the carrier
value falls to

(&) 17 % of its initial value (b) 27 % of its initial value
(c) 37 % of its initial value (d) none of these

The voltage developed across a current carrying conductor in the absence of any magnetic field is
called Hall voltage

(a) true (b) false
The diffusion current is proportional to
(a) square of the applied electric field (b) applied electric field

(c) concentration gradient of charge carriers
The ratio of the diffusion constant for hole to the mobility for hole is proportional to

(a) temperaturd (b) T?

(c) % (d) independent of temperature
The depletion region in an open circuiped junction contains

(a) electrons (b) holes

(c) uncovered immobile impurity ions (d) neutralized impurity atoms
The reverse saturation current ip-a diode

(a) increases (b) decreases

(c) remain constant (d) when the reverse bias increases
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25. The Einstein relationship between the diffusion confaarid mobility 1 for electron is

(a) &:ZkBT (b &:i
Hn e Hn I(BT
D kg T D

(c) —t=—"— (d) —2=kgT-E
Hn e Hn

PROBLEMS AND SOLUTIONS

7.1 Calculate the current produced in a small germanium crystal of aréaddnof thickness 0.3 mm
when a potential difference of 2 volt is applied across the faces. Given: concentration of free electrons
inGe is 2 x 10/, Hg = 0.36n7V-tstand U, = 0.17n?V s,
Solution:
The basic formula is,

(of :i;JZUi E
E

| =JA=0; EA= n qu, +up)¥

-4
ie., | =2x10°x 16x 10%( 036+ OD{M]

03x 10°

I=1.13A| Answer

7.2 Show that the ratio of maximum resistivity to intrinsic resistivity is expressed as

pmax:<ue+up)

Pi Z\Iueup

Solution:
Intrinsic conductivity,

o =1 ek + 1)
The conductivity at any other doping level is expressed as
o =e(n e+ Nph

Since n, n, = n,2

2
W Uy
O=e i+



Theory of Semiconductors 273

For resistivity to be maximum, conductivity has to be minimum for which

2
n:
do :Oze{ue_ i up

dn, ne
2
ie., e:n, l:p;orne:ni He
ne /'le
and N, =N He
Hp
Hence
V2 nlzl'lp He
Umax € ﬂ (ueup) + q IJ_
p
U2 U2
=n e{(ueup) + (Mot y) }
U2
Umax = ni e{z(ueup) }
O _ Pmax _ " e(lle + llp)
O max P; 2ni e(ueup)ﬂz
, +
ie., i - (Ile llp) Answer

O max Zﬁllell p

7.3 All the 1(*° donor impurities is an-type semiconductor are ionized at 200 K. If the conductivity at

300 K is 26 Q! n1, find the conductivity at 200 K. Mobility of electrons at 300 K and 200 K are
respectively 0.39 and 0.4 V' s

Solution:

In o
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0200 = Ng elle
0300 = Ng g
O00 _ He _ 039

O30 HMe 041

T 200 = T 300 % 0.95
=26 x0.95 =247
For 26 Q™% nt the decrease in conductivity is 1.3; for 100 unit, it is

13x 100
26

=5%

5% | Answer

7.4 The resistivity of pure silicon is 2300 m and the mobilities of electrons and holes in it are 0.135
and 0.048m¢/ V —s respectively. Find the electron and hole concentrations, and the resistivity of a

specimen of silicon doped with #Gtoms of phosphorus.

Solution:
po L
I ni e(ue + IJ p)
1 1
n;

o (ke + 1) 2300 16x 10'°( 0048 0135

9
n = 10 =148x 16°/m?
0183x 2300x 16

If n, is the electron from donor level, then

The conductivity of doped semiconductor is
Og = e(%ue-'_ npu p)

As n,>> n,
Oy =€UeNg
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The resistivity

1 1

= = =463
eleNe 16x 10°x 0135« 18

Py

Py =4.63Qm| Answer

7.5 At O sec, holes were injected in a bar of germanium. 12 micro second later, the density decreased
to 10%/m3. The lifetime of the hole in the bar is 4tbs. Compute the density of holes injected at0

sec.

Solution:

Ap = (Ap)0 et

12

10" = (Ap), € ** = (Ap, €*”

(p), =10 x e*'= 14x 16°

(Ap), =14x 10° | Answer

7.6 Get the equation for Hall coefficient when both holes and electrons are presentdf show that
the Hall coefficient has its maximum value whens 18.1n and its minimum value whem= 1.75n,,

0.036

wheren, is the intrinsic carrier concentratiot = £ . Show that R, (max) = and
Hp
. 0.966
Ry (min) = .
« (in) = 2%
Solution:

Formula used:

Hn

R, = -2

H g
Hp
R = ——
H g

(o =) (mp - b)
- o _e<nun+ pup)

(1p —bp) _ (1p —bpy)
e(nn + pup) e(bnuy + puy)
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R = (1-b) :(1—b)(nb+ o)
" " e(nb+ p e(nb+ p’

nb+ p- nif - bp_ (p_an)
e(nb+ p° e(p+ nb’

Ry

2
assuming in a compensated materibl= bp and n = LI this casep = 18.1 n and hence
p

2

N n__
n=—=——=0055X
p 181n

Thus

11](181x n,— 100x 0055
R (may = 2 L820 [ 1111259 _ g,
€|(181x n; + 10x 00552 ) ne) [ 347.9

Similarly R, (min) can be calculated in a similar way

. 0.966
R, (min) =
" ( ) e Answer
R, (max) _ 0.036
ne

7.7 A germanium rod 10 mm long by 1 mm square in cross-section has been doped with a total of 5 x

10" donor atoms at room temperature. Calculate the electron and hole densities and the conductivity.
Also calculate the resistance between the square ends of the rod. The intrinsic carrier density in Ge is
2.4 x 10%m? and electron mobility is 0.38%/ V —sec.

Solution:
() 1=102m
(i) a=10-n?
(i) V=10"°n?
3
g = 5:0%51 =5x 10" atom/ nt

The intrinsic concentration is
n =24 x 16 atom/ n
n=N,=5x16Y m
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Now

np=1rf

P2 (24x 1019)2
p= o

n Ny  5x10%
p=115x 16" /m?
Oex =N€Ue+ peU
=neu, =5x 10" x 16x 10 x 039neglecting the second term
0oy = 3120hm ™t mit

1 3
=— =32x 10° ohm metre
Pex 312

R= peXI—A =32x 10°%x 10%/10°
= 32 ohm
n=5x 10°Ym?3

p=115x 16'/m?
0oy = 3120hm ™t mit
R =320ohm

Answer

7.8 The constanta of a transistor is 0.95. What would be the charge in the collector-current
corresponding to a change of @A in the base-current in a common-emitter arrangement?

Solution: The current-gain of a transistor in common-emitter arrangemghtvehich is related to its
current-gaina in common-base arrangement by

_ a
P - a)
Here a =0.95
0.95
. = =19
€., A 1- 095



278 Rudiments of Materials Science

Now g is the ratio of change in collector-current to the change in base-current, that is

_ Qi
Aiy,

Ai, = BxA,=19%x Q4

Ai, =76 mA | Answer

7.1 Calculate the energy gap in silicon: given that it is transparent to radiation up to a wave length of

1100 nm (Ans: 1.1 eV)
7.2 The energy gap in germanium is 0.47 eV. Compare the intrinsic conductivities of germanium at
27°C and at 47°C. (Ans: 2.27)

7.3 The density of atoms in pure silicon is 5 *¢10f the density of charge carriers at@7s about

10" times smaller than that of the atoms, compute the energy gap. Gl\ﬁemﬁp: m

(Ans: 0.72 eV)
7.4 The band gap of some materials are given below. Which substance would be photoconductors over
the entire range of visible wave length?
Substance Si Ge Cds
Band gap 1.9 x 10°J 1.3 x 106*°J 3.8 x10%J
(Ans: Si and Ge)
7.5 Determine the position of Fermi energy level imatgpe germanium at 300 K if the impurity atom
content in one part is 10The forbidden gap is 0.72 eV and ionization energy of donor atom is 0.01 eV.
There are 4.4 x 29germanium atom/fn (Ans: (E,.-E)=16¢eV)
7.6 Get the ratio of diffusion coefficient of electrons and holes of a silicon single crystéCatzven:
mobilities of electrons and holes af@7are 0.1#7 Vs~ and 0.025:7 V * s respectively.
(Ans: D =0.68D)
7.7 A rod of semiconductor 2 cm long, 2 mm wide and 1mm thick has contacts at each end to which
20 volt d.c is supplied. The rod is exposed to a uniform beam of radiation, the absorption of which
increases the current by 2.5 m A. When the beam of radiation is suddenly cut off, the current decreases
initially at the rate of 21.5 A/s. Iff, = 0.39 andu, = 0.19n? Vs, find (a) the minimum frequency
of the electromagnetic radiation (b) the equilibrium density of electron-hole pairs due to exposure to
radiation (c) the minority carrier life time and (d) the excess density of electrons and holes remaining 0.5
millisecond after the radiation is cut oF,. for the semiconductor is 0.72 eV.
(Ans 1.74 x 1& s 1.34 x 1&/m?, 116 x 108 s, 1.73 x 16/m°)
7.8 The alternating current-gain of a transistor in a common base arrangement is 0.98. Find the change
in collector-current corresponding to a change oA in emitter-current. What would be the change
in the base-current? (Ans 0.1 mA)
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Dielectrics

8.1 INTRODUCTION

Q 8.1 Fundamental equations and relations

Q 8.2 Dipoles and electric polarization

Q 8.3 Langevin theory of polarization in polar dielectrics

Q 8.4 Interaction of atoms in solid dielectrics and internal field

Q 8.5 Clausis—Mosotti relation and Debye equation and evaluation of permanent
dipole moment

Q 8.6 Frequency dependence of polarization and energy dissipation in capacitors

Q 8.7 Ferroelectric materials and their uses

Q 8.8 Dielectrics and their dependence on temperature, permittivity....
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KEY WORDS

insulating materials and dielectrics, specific resistance, leakage of current, negative temperature
coefficient of resistance, dielectric constant (or specific inductive capacitance), flux density, (or
electric displacement or electric induction), Gauss theorem, unit vector, total electric flux, polarization,
induced dipoles, dipole moment, electric susceptibility, electronic polarization, molar or ionic
polarization, orientation polarization, polar and non—polar molecules, centre of gravity of the electron
cloud and that of protons, induced dipoles, restoring force, charge configuration, monoatomic gas,
Lorentz force and coulomb force, electronic polarization and polarizability, Langevin function,
molecular polarization, local or internal field, Lorentz proposal, polarizing field, Clausius—Mosotti
equation, Debye’s equation, refractive index, Lorentz-Lorentz relation, frequency dependence of
polarization, frequency domain, complex permittivity, resonant frequency, relaxation time, frequency
domain, Fourier transform, static permittivity, complex permittivity, imaginary part of permittivity,
relaxation processes, absorption peak, micro wave frequencies, loss tangent, Maxwell’s equations,
dissipation factor, power factor, loss tangent, power dissipation, dielectric break down, avalanche
effect, ferroelectric material, spontaneous polarization, perovskite, saturation polarization, catastrophe,
resting forces, paraelectric state, coefficient of linear thermal expansion, remannet polarization,
coercive field, ferroelectric and piezoelectric, pyroelectric materials, pyroelectric coefficient, surface
density, pyroelectric devices, thermal-imaging devices. Temperature coefficient of permittivity.
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8.1 INTRODUCTION

Insulating materials are also termedresilatorsor dielectrican the wider sense. They are non—-metallic
materials with higlspecific resistanc& hey are used to prevent thakage of currerfrom one conductor

to another or to earth. Almost all insulating materials haxepative temperature coefficient of resistance

i.e., their resistivity is reduced as the temperature increases. The function of any insulator is to prevent
the flow of electricity through it when a difference of potential is applied across its ends. Insulating
materials obstruct the flow of current without any appreciable power loss.

Dielectric materialsare those which are used in condensers to store electrical energy. e.g for power
factor correction in single phase motors, in tube lights, etc. Dielectric materials are essentially insulating
materials. The function of an insulating material is to obstruct the flow of electric current while that of
a dielectric material is to store electrical energy. Thus, insulating materials and dielectric materials differ
in their functions. The theory of dielectric was begunHayaday and subsequently developed by
Maxwell. From Farady’s experiment we see that if in a charged condenser the air space between the
plates is filled with a solid or liquid insulator the potential difference between the plates is lowered and
thus the capacitance of the condenser is increased by alfacidnich is greater than one. This factor
is known aglielectric constant or specific inductive capacitaaoel is independent of the shape or size
of the capacitor, but varies widely for different materials (or medium). The valli¢ dér some
selected materials is given in the following table.

Material 0 Material 0
Vaccum 1 Germanium at 20°C 16
Air (1 atm) at 20C 1.006 Glycerin at 20°C 425
Air (100 atm) at 2€C 1.0548 Mica at 25°C 3-6
Benzene at 2C 2284 Backelite at 27°C and at 88°C 5-10
Polystyrene at 2C 26
Paraffin at 26C 21 Liquid ammonia (—78°C) 25
Petroleum oil at 2C 22 Water at 25°C 785
Ice at—8C 29 Metal 00
Rubber at 27T 294
Paper at 2% 35

The comparatively high value ¢f of water suggests that water is a poor insulator; water is in fact
a semiconductor.

Q 8.1 List out the formulae, equations and relations that are used in the study of electrical properties of
dielectric materials.

Answer. 1. Flux density

In the rationalizeankssystem of units, one line of force or flux line originate on each unit
charge. Hence a chargewill sendq, lines of forces and this will be received by an area
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4mr?. The number of lines of forces received by unit area is chillzdiensityor electric
displacementD . D is also known aslectric induction

Oh
4ri?

Thus D=

We know that the force experienced by a chagge a field g created by a chargg is

F=q,E
- F
or E=—
a2
Substituting forE = ql_qZ2 we get
4mr
E— %qaz
A er
. =_ O
E =
e 4 OF2
Eo=—2_=pD
4rr
or E qu _ (Q 8.1.1)
D=E[,with(} =1

The unit of electric flux density is coulonniw/

2. Gauss theorem
Gauss theorem states that tb&al normal electricinductionthrough a closed surface is
equal to the charge enclosed by the surface. The electric flux passing through a differential
areais:

dp=D- dA (Q 8.1.2)

- 9 = %
= i, dA
amr? "

_ - _ . _ _ r
Theunit vectori, may be written as the vector divided by its magnitude; of- .
r
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q |FedA
do=—"
Thus @ 47_[{ 3 }

The term in the parenthesis is the differential solid andge, subtended at the chargdy
the differential arealA.

q
dp=—d
Thus ® an w

Thus thetotal electric fluxthat emanates from the chages found by integrating over the
enclosed surfaceh

¢=f%£dw=q

Comparing this equation with Eqgn. (Q 8.1.2), one gets

<P=_|.5'd7i=q (Q 8.1.3)

Equation (Q 8.1.3) is often referred to @auss law KnowingD = E [, Eqn. (Q 8.1.3)
becomes

DIE - dA=q (Q 8.1.3a)

. Dielectrics and Gauss theorem

Let us apply Gauss theorem to a parallel plate condenser without a dielectric and then with a
dielectric. In the first case, when no dielectric present, the electri&jeltdany point on the
gaussian surface is given by

Gaussian surface £ E,

—-q

Fig. Q 8.1.1 A paralle/ plate condenser with no dielectric

IEoodA:%

ie. Ey= - (Q 8.1.4)
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In the second case, when dielectric is present, the net charge within the guassian surface is

d -4, whereq' is the induced surface charge, and the fiélds given by

=, a_@-d)
IE dA o

Ea=d 9 8.15

T Q )
-9 _ 9
ALy, AL

Equation (Q 1.8.5) indicates that the induced ch&fgéends to weaken the original field

(i.e., E < E) which reveals itself a reduction in the potential difference when dielectric is
present and not present respectively, then

£V, (Q 8.1.6)

AAARARRRAANAANANAN ¢— +q°
- - - ~—4+—q

Fig. Q 8.1.2 A paralle/ plate condenser with dielectric
The corresponding expressions for capacitances are:

C :A_Eb:g

Thus Eqgn. (Q 8.1.6) becomes
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Substituting for £ from Eqn. (Q 8.1.4), one gets

=
0 A0 (Q 8.1.7)
Comparing equation (Q 8.1.7) with (Q 8.1.5), we get
a _a _¢
or Al Al Al (Q 8.1.8)
- = 1
a-q 0

This shows that the induced chargé is less than the free chargeand is zero when
Lb =1 or the dielectric is absent.

Thus Eqgn. (Q 8.1.5) is

IE'dA:%:%q [see Eqn. Q 8.1.8]

EbELIE . dA= q (Q 8.1.9)

This is nothing but the Gauss law in the presence of the dielectric

. Electric flux density and polarization

Owing to thepolarizationof the medium, charges are induced at the surfaces of the dielectric,
the charge due to electric polarization at the boundary near the positive plate of the capacitor
being negative and vice-verseg|is the charge on the plate afidis the induced charge on

the boundary of the dielectric, then we can write Eqn. (Q 8.1.8) as

a__a 9

A A0 A

__Eb[ }Jrq—' (Q 8.1.10)
AnD | A 1.

The last term of this equation gives induced surface charge per unit areaetzdteid
polarization P. It is also equal to thimduced dipolement for unit volume

SubstitutingE = AE(:)EL from Egn. (Q 8.1.7) in to Egn. (Q 8.1.10), one gets

+ P with

>
)>x|-Q

Ep+
O} + (Q 8.1.11)

@
II
m
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In free space, where there is no dielectric and tAus0, we have

= = . _q
D = E [ with D_Z
Thus D:%:%:ED@ =EO {Refer Eqn. (Q 8.1.7)}
Thus equation Q 8.1.11 becomes,
EO=E[,+ P
P=EQ - Efy = EDy(G - )
- __P
ie., (0 -9-= EO
(q—l):i:x 8.1.12
o (Q 8.1.12)

where X is electric susceptibilityf thedielectric medium.

Q 8.2 What is meant by dipole and dipolemoment in dielectrics? Discuss the phenomenon of electric
polarization. Write a note on electronic polarization.

Answer.  An ideal insulator contains no free electrons so that an electric field applied to it there is no
macroscopic movement of charge; instead, it suffers displacement of its electrons with respect to their
parental nuclei, creating thakectric dipolesThe electric field is said to polarize the material electrically.

See Fig. Q 8.2.1.

The dipolemoment of the polarized atom is giventby 9d, whered is the displacement of the
charge cloud i is directed from negative charge centre to positive charge centre. The units of dipole
moment are thus coulomb-metre in Sl units, but frequently used is the more conveniently sized unit, the

Debye (D), which is 3.33 x 1 C m. The polarizatioyP, is the dipole moment per unit volume &y
or the induced charge for unit area:

= - E
E=0 < E
9 —q
d
- «—
u=0 [

Fig. Q 8.2.1 The electric djpole moment induced on an atom by an applied electric field

P = Nu
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whereN is the number of dipoles?.
There are three principal classes of polarization in materials.

1. Electronic polarization the displacement of orbiting electrons about an atom by an electric
field.

2. Molecular or ionic polarization the displacement of ions by the electric field.

3. Orientational polarization the partial alignment of polar molecules free to rotate in the electric
field.

The molecules of a dielectric are classifieghalsr and non-polar. In any molecule there will be a
distribution of protons and a distribution of electrons. The protons can be considered to act as the
equivalent positive electric charge at some specific point in the moleculeeritre of gravity of the
protons Similarly there is a point, at which a negative charge is equivalent to the distributed electrons,
the centre of gravity of electron$f these two points coincide then the moleculeas polarand if they
are separated by short distance then the molecptdas molecule Symmetrical molecules such ag H
N., and Q are non polar. On the other hand moleculg3,i\,0, etc., are polar, as both hydrogen atoms
or both nitrogen atoms lie on the same side of the oxygen atom. Thus the polar molecules work as
dipoles and have dipole moments. If the dielectric is placed in an electric field, the charges of a non-polar
molecule become displaced. The molecules are then said to beclameedby the field and are called
induced dipolesThedisplacements however limited by strongstoring force produceby the charge
configuration in the molecule. When a dielectric consists of polar molecules (permanent dipoles), these
dipoles are oriented at random in the absence of an external electric field. When an electric field is
applied, the forces on a dipole give rise to a couple, whose effect is to orient the dipole along the
direction of the electric field. The stronger the field, the greater is the aligning effect. Thus non-polar
molecules become induced dipoles, where as polar molecules are orientated by the field and therefore
have their dipole moments increased. The orientation of the induced dipoles or of the permanent dipoles
in an external electrostatic field is such as to set the axis of the dipole along the field. This is electric
polarization as stated earlier.

Electronic Polarization

Consider a monoatomic gas such as helium or argon in an electric field. Since the spacing between the
gas molecules is much greater than the size of the molecule, the interaction between the molecules may
be neglected. Hence the effect of the field on any molecule is essentially uninfluenced by the presence of
other molecules. A simple discussion equatind threntz forcevith coulomb forceand as simplification

gives an expression for the displacement of the electron cloud as

AmL R3E
X= D;—e (Q 8.2.1)

i.e., the displacement is proportional to the field. Thustéetric dipole momeris
U =Zex=4n}, R E
He UE

or Uo =0 E (Q 8.2.2)
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wherea, = 4, R® is calledelectronic polarizability

Thus P.= Nue= Na . E
Referring Eqn. Q 8.1.12, we get

R = E-[b([]r_ ) = Nag E

(Q 8.2.3)

In a similar way the theory of ionic polarization may be discussed. However ionic polarization is
much less for many materials.

Example In hydrogen atont, = 0.05nm so thata,, = 471, R®= 14 x 10** Fm?. Thus for a field

of ImV/m, u.=a, E =14x 10% Cm. In solid, the density of hydrogen atoms might be aboiit 10
m?, giving a (relatively small) polarization of 1.4x®@/n?. Eqn. Q 8.2.2 indicates that larger atoms are
polarized much more than the smaller ones.

Q 8.2 Give an analytical discussion of Langevin’s theory of polarization in polar dielectrics.

Answer. Debyein 1927 conceived the idea tipatiar moleculesn liquids or gases such ag® CH, Cl

or NH,, have a permanent dipole moment which can be partially aligned with an applied field. The
measurement of the dipole moment of a molecule, allied with knowledge of its size, gives a measure of
the charge separation in it which can be related to the atomic electro negativities (an index of how readily
atoms will donate or accept electrons). Alignment of polar molecules in an electric field is upset by
random thermal motion, so that Maxwell-Boltzman statistics can be used to find the average polarization,
just as for a paramagnet. The expression for the polarization can be obtained from Langevin-Debye
theory, which is as under:

o__

105°

+ +

H H

Consider a dipole whose momerit, makes an angl@ with the applied fielcE. Its potential
energy is given by

W=-pue E=-u Ecodd (Q 8.3.1)

In a solid angledw, there areN dw dipoles, where N is the number of dipole¥/given by

N = Aexp(-W ks ) (Q 8.3.2)

where A is a constant. The component of the dipole moment aligned with the fiet®h& so that the
net dipole moment due to solid angtly, is Nu cosf dw
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T
Nu cosf dw ju N cosf 2t sirf df

-0

O *——

T T
j Ndw j N 27 sin6 d@
0 0

E
with dw = 27 sin@ dO . Substituting foN and making use ot = % and x = cosf leads to
B

N
uj x exp(ax) dx

(k) = - 4] coth(a) - |

j.:exp(ax) dx

1 _ :
The integrals are standard forrr[s:oth(a) - 5} is theLangevin functionL (a), which has been
widely used in the chapter on Magnetic Properties of Materials.

p’E
ke T

a 1
When the argumend, of L (a) is small, L(a) = 3 and then<p> =2 and the polarization

1|Np?E
P:N<u>=§{ k’;T } (Q 8.3.3)

E
To check if% is small, consider water, which has a dipole moment of 1.8 Debye unit or 6 x
B

10* C m to which a field of IM V/Im s applied at 300 K. Thept E =6 x 10**J andk, T = 4 x
1021 J, so Egn. (Q 8.3.3) holds under normal circumstances.
The total polarization of a material is the sum of electronic, molecular and orientational polarizations:
I:)T = IDel + I:)mol + IDdiploe

The first two terms are almost independent of temperature. U3ingNu and 4 = a E

I:’T =N EL (ae + Omole + Pdip)

12
N EL{ae+amole+3k—BT}

Pr
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E, i_s the field acting locally on the dipole, and is in general different from the applied=isldstly in
solids.
Again taking water as an example, the dipolar polarizability is about 3*%F.6¢ at 300 K and the

electronic polarizability(4r[ 0 r3) is about 10“°F n?, takingr = 0.1nm The dipolar term dominates
and there is no molecular polarizability.

Q 8.4 Discuss the nature of interaction between atoms in solids and obtain the expression for internal
field is solid dielectrics.
Answer.  Solids and liquids have same types of polarizing phenomenon as that of gases but the main
difference lies in the fact, that in solids and liquids the interaction between the atoms cannot be neglected
as the density of atoms is very high in solids. Hence the field experienced by a given atom is determined
in part by the dipoles possessed by the surrounding particles; in general, tHerefdie the internal
field is not equal to the applied field. Hence a study of the polarization in such materials becomes more
complicated as the calculations of interaction are difficult, and can generally be taken into account only
approximately.

Lorentz suggestea method to calculate th®cal fieldas given below:

The dipole is imagined to be surrounded by a spherical cavity of nadin centreA, such that
radiusr is large compared with the intermolecular distance so that the sphere contains many molecules
but small compared with the dimensions of the whole dielectric. If this dielectric is placed between two
charged plates, the electric field experienced by a molecule of the dielectric, if assumed to be placed at
the centre of the cavity, is given by

E,L=E +E+E+FE
where

0] El is the field intensity due to charge density on the plates of the capacitor (i.e., with no
dielectric)

(i) EZ is the field at the atom due to the polarized charges (induced charge on the plane surfaces
of the dielectric (i.e., depolarizing field))

(iii) E4 is the field due to the polarized charges on the surface of the spherical cavity.
(iv) E3 is the field due to all the dipoles inside the spherical cavity.

Now

|:|O
P (Q 8.4.1)
o

(Q 8.4.2)

taking E =0 in Eqn. Q 8.4.1
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Eg is the field intensity af due to other atoms contained in the cavity. We are assuming a cubic

structure, soE; = 0 because of symmetry

++ + |[++ ++

2
I

Fig. Q 8.4.1 Calculation of Local field

Computation of E
The magnified view of the cavity is shown in Fig. Q 8.4.2

Fig. Q 8.4.2 Cavity magnified

The enlarged view of the cavity is shown in Fig. Q 8.4.8Alfs the surface area of the sphere of
radiusr lying betweeng and @ + d@, whereg is the direction with reference to the direction of the
applied field, then

dA=2m(PQ (QR

and Gzpr—QanddG:%2

or dA = 2rrr?sin6 do
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The charge dgn the surfacdAis equal to the normal component of the polarization multiplied by
the surface area
Therefore,

dg = Pcos® dA= P2 P sirf cof &
The field due to this charge Atdenoted bydE4 in the directiong = 0 is:

g, = dax1xcosh _ P2mr?sing cos 6 do
YT amgye? Ay r2

Thus the total fieldE, due to charges on the surface of the entire cavity is obtained by integrating

— g . T
[, == [cog 6 siade =~ [cod 6 d(-cos)
20 4 20, 4
__ P cos39n__ P[__]]:i
20,| 3 |, 60 30,
- o= - - P P P
N E, =E+E+ E;+ E,2= E+ — - — +0+ —
ow L 1t B+ B+ Ky T a0,
ie., E = L (Q 8.4.3)
3e,

Q 8.5 Using the equation for local field, obtain Clausius-Mosotti relation and hence suggest a method

to evaluate permanent dipole moment
Answer. If there areN atoms in a cubic metre of the dielectric, then the electric moment for unit

volume is:

P=NaFE
or P=EL(0-12)=Na g
NaE_
0 =1+ L E (Q 8.5.1)

NaE Na P
Also electric susceptibilityX = G-19-= ) EL = —E(E + 3_DJ
0

_ Na BP _
If 'B_BEb then x =3B + Eb—w+l3X
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i.e X(B-1)=33
__3B
ie X= (B-1) (Q 8.5.h)

Referring Egns. 8.4.3 and 8.5.1, one can write

g =g+ NE EL[l—M}: E
30b 30
= 1
— s 8.5.2
or Ty (Q 85.2)
30
Substituting this value in Egn. (Q 8.5.1),
Na 1
=1+ —
G| e
30 )
Na 1
=1+ — | —
L =1+ 0 Na (Q 8.5.3)
30 )

Eb[l‘NaJ* Na O,

5
Na
%P_3%}

or
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A calculation and simplification will yield

-1] N
{_Et - 2} - ﬁ (Q 8.5.4)

This isClausiusMosottirelation connecting macroscopic dielectric constant with the microscopic

M
polarizabilities. IfTA is the molar volume, then the molar polarization is:

{q—l}MA:Na(MAJ
O+2] p 3G p

. -1
ie., & Ma = Na (ac+a;+ay)
Og+2| p 3l
in the presence of orientational polarization.
-1 Ma Na (.
. = +
ie., LL 2| p 3 (a'+ ay) (Q 8.5.7)

This equation is calle®ebye’'sequationwhich suggests a method to determine the permanent
dipole moment:

-1 MA:NAU'+ HaN A a4+
0+2| p 30, O9ChkgT T

Conduct an experiment using a dipolemeter and determine the dielectric constant at different

-1\ M 1
temperatures. Draw a graph betw{%ﬁ} TA and T and get the slopm.
2
Thus m= Nabm
90 ke

Uy = [,/m,';';mo] @ 85.8)
A

Thus the magnitude of the slopehelps to determing,.

Refractive Index

The refractive index of a materiai)(is the ratio of the speed of light) (to the speed of light in the
material.
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1 1
We know thatc = andVv = —
VHo Lo Vu G
1 c
ie., VE ————=;n=—=Ju, 4j
WG v

n=,/0 asin most optical materials and dielectrigs,= 1.

_ n’-1 _ Na
Now referring Eqn. 8.5.4, nZ+2 30 (Q 8.5.9)

This is knows asorentz-Lorentz relation.

Q 8.6 Discuss frequency dependence of polarization with suitable graphs. Write a note on loss tangent
and energy dissipation in capacitors.

Answer. At low frequencies, in the radio-frequency region ofdleetromagnetic spectryrie dipolar
molecules in some media may be capable of rotation in response to the oscillations of an alternating
electric field. This rotation will be opposed by damping forces, such as viscous drag, which results in a
characteristic relaxation time for the dipoles, which is given by

T=—
)

where w, is the frequency of maximum power absorption, the resonant frequency. 8/f€id,

the dipoles are in phase with the field and no energy is absorbed anduwxe, , the dipoles cannot
respond to the field at all and again no energy is absorbed. At low frequencies the dipoles make maximum
contribution to the permittivity and at high frequencies they make no contribution.

We can write the time dependence of the polarizatidP(te}s= P, exp (~t/T)

where 1 is therelaxation time To obtain the corresponding functioR(w) , in thefrequency domain
we perform &ourier transformin the positive frequency domain only:

P(w) = ]3 R exp(-t/1) exp(-iwt) dt

P
ie., P(w) = m (Q 8.6.1)

. . 1
where we have substitute®,, the resonant frequency of the relaxation process,?forNow P

depends directly on the permittivity, so instead of a complex polarization we shall use a complex permittivity
of the same form:
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_ A Lol A
D(w)_(woﬂw) ° wo {1+ i (w/wo)}

+B (Q 8.6.2)

A andB are constants which can be found by considering what happens 8tandw = « . The
permittivity at zero frequency is the static permittivity,, so puttingw = 0 in Eqn. (Q 8.6.2) leads to

0(0)=0=—+B (Q 8.6.3)

At frequencies for above resonance, the permittivity,jswhich is less than the static permittivity.
Substitutingw = « in Egn. (Q 8.6.2) gived = [, , so that {Refer Eqn. Q 8.6.3}

- A
B=
ie., A=wo (- )
and Eqgn. (Q 8.6.2) becomes
_ (B-00)
D(w) = m + ELO (Q 8.6.4)

(-0 - (@)
T pewer) @69

The complex permittivity can be expressed as
O=0-i0
which can be compared to Egn. Q 8.6.4 and Q 8.6.5, yielding
(-0)
2
{1+ (wlwg) }

O(w)

O=0, + (Q 8.6.6)

and

W/wo) (05~ )
{1+ (w/wo)z}

The imaginary part of the permittivity,I’ , causes energy to be absorbed and is a maximum at the
resonant frequencyp,, and zero far above and below it. The real part of the permittivity starts off at
low frequencies at the static value, falls as the resonant frequency is approached to reach halfway
betweenl], and [, at w = w,, then drops td], as the frequency increases further.

L

(Q 8.6.7)
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Fig. Q 8.6.1 shows the graphs @ and ' against logv .

(O) wWq
logw logw

Fig. Q8.6.1 [ and ' against logw

If there are several absorption mechanisms in the material, such as orientational molecular and
electronic relaxation processes, then there are corresponding pddksird reductions iy as the
frequency goes up. As electrons can respond very quickly to electric field changes, the absorption peak
for electronic polarization occurs at very high frequencies — in the ultra — violet or optical region. lonic
motion is several thousand times slower and so ionic polarization leads to peaks in the infra—red region,
while orientational polarization gives rise to peaks at UHF and microwave frequencies. Fig. Q 8.6.2
shows a plot of I' and I againstw for a hypothetical solid exhibiting all three types of absorption.

dipolar

=

£
&
we —_—— -

log w

Fig. Q8.6.2 U and ' against logw for a material with three absorption peaks
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The Loss Tangent

T

: O : ,
Theloss tangenttand, is equal tOE' Maxwell’s equations were used to find the energy absorbed

from electromagnetic waves by conducting media and a dispersion relation was derived and the important
equation obtained for wave vectors:

k?= pOw’+iuow

In this equation,J is real (= 0y [}, ). The phase df is identical so that

tand = — = — (Q 8.6.8)

: L . e o )
Since thisO is real, we can identify it witH] and then’ = o Now power losses per unit

volume in a conducting medium are given by
W, = o E?
. o
Since ' = —, we get
w
W, = 0'w E?

Since [I' = J tand so the power lossesfrare

W, = w E*[J tand (Q 8.6.9)

Thedissipation factoiis the same agand , theloss tangentThe loss factor i§1’ and is therefore
equal to[T tand . The power factois sind = tand , a very good approximation for capacitor materials.
Because dielectric losses are proportiondttcthey are an important consideration in the design of
capacitors and high-voltage cables. Though the frequency of the National Grid is only 50Hz, the fields

in the dielectric of a 300 kV cable may be 15 MV/m, so if éams 0.01, the losses will B& = 2.3 x

8.85 x 10*2x (15 x 16§ x 251 x 50 x 0.01 = 14 kW/fa The loss is significant, though much less than

the conductor losses. In practice, solid dielectrics cannot be used above 33 kV because of the large
thickness required and consequent problems in dissipating heat. The field in solid dielectrics for power
cables is limited to about 5 MV/m to lessen the risk of breakdown. One advantage of dielectric heating
is that heat is produced uniformly through out the material, rather than just within skin depth as in RF-
heated, metallic bodies.

An example of capacitor losses

The following table gives some relative permitivities and loss tangents for a variety of dielectrics used in
making capacitors. The properties of dielectrics, espediatlyy , are very dependent on the preparation

of the material, as well as temperatutand tends to increase with temperature rise) and frequency, so
the values given in the table should be treated as guide lines only.
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Table 8.5.1 Properties of dielectrics at 300 K and at 1 M Hz

Material 0 tand in 10~
Alumina 10 5-20
Porcelain 5 75
Ba TiQ, 500 150
Nylon 610 31 220
Polycarbonate 31 10
Silica (Quartz) 38 150
PZT4 1000 40
Perspex 26 145
Polyethylene 23 2
Polystyrene 26 0.7
PTFE 21 2
PVC 3 160

PZ T4 Lead Zirconate — titanate, Pb(ZrTi,)O
Suppose we want to make a capacitor with a capacit@noé, 1y F working at arrmsvoltage of

50 volt at 1 MHz with a dielectric of thicknesk,of 50 um. The electric field is therefore 1 MV/m and
if we choose polycarbonate as the dielectric its area can be found from

C= ATD with 0= 310,

A= C_d = C_d
O 310,
_1x10°x 50x 10°
885x 102 x 31
ie., A=1.8nt

Now the volume of the polycarbonat& x d) is 9 x 10°m®. Use Eqn. Q 8.6.9 to calculate power
loss.

ie., W, = w E? 0 tand
=2 x 10x 10°x 3.1 x 8.85 x 10'?x 10 x 10
W= 172 kW

Power dissipatioriV, x volume of the dielectric
P=172 x 10x 9 x 10°°
P= 15 watt
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Repeating the calculation usiRgZ T4 leads to a volume of 2.8 x T0n®* and a power dissipation of
62 W. The power dissipation is proportional only tand, as the product of capacitor volume and
power loss per unit volume is independentloPZT4 is therefore useless for high frequency capacitors,
while polycarbonate will just do at 1 MHz. Polystyrene would be a better choice.

Dielectric Breakdown

The breakdown of dielectrics in high fields is bedevilled by particular circumstances rather than being
illuminated by general scientific principles-though these have their place-because breakdown often
accompanies a flow in the material rather than being dependent on its inherent properties. Three types of
dielectric breakdown are distinguishable.

m Intrinsic

m Thermal

m Discharge

Intrinsic breakdown It is caused by the acceleration of free electrons in high fields which can ionize
other atoms to cause avalanche effectThe original electron must acquire roughly the band-gap
energy in order to promote electrons from valence band to conduction band. Now the electron has to
gain energy between collisions, so that if its mean freelpathis energy i€ e |, while the energy

E
required i E, WhereEg is the band gap ieV. Equating the two energies, gives= I—g NowE, will

m
be about 5 eMvhilel =50 nm, giving the intrinsic breakdown field as 100 MV/m. In some cases, such
as amorphous silicon nitride films, whdreis small, this figure can be exceeded by a factor of five,

giving intrinsic breakdown fields as high as 500 MV/nb00 V/ u m. Breakdown fields of this magnitude
cannot be achieved in practical components because of imperfections in the dielectric.

Thermal breakdownThis occurs whenand losses cause heating which lowers the breakdown field.

Each dielectric will have a temperature limit which cannot be exceeded without risking thermal break
down.

Discharge breakdownThis occurs when the gas is small pockets in the dielectric becomes ionized by
the field. The gaseous ions are accelerated by the field and impact the side of the cavity causing damage
and more ionization. Because gases are more readily ionized than solids, voids in dielectrics must be
avoided at all costs. In high-voltage power cables the problem can be reduced by permeating the insulation
with a difficult-to-ionize, high pressure gas.

Q 8.7 Describe the behaviour of ferroelectric materials bringing out their important uses.

Answer. A ferroelectric materialpossesses spontaneous polarizatiowhich can be aligned by an
external field. Hysteresis occurs so thaP a Eloop may be drawn for a ferroelectric as in Fig.

Q 8.7.1, exactly like theM — H loop of a ferromagnet. The spontaneous polarization — temperature
graph is like a ferromagnet’s one [Fig. Q 8.7.1b] and the spontaneous polarization vanishes at the Curie
temperature also, above which the material is said feabeelectric[Fig. Q 8.7.1c]. These are two
classes of ferroelectric; the order — disorder type involving the movement of hydrogen atoms, for
example KHPO,, and the displacive type such asjeeovskitestypified by BaTiQ. Only the latter will

be discussed as they are by far the most important. These materials or derivatives from them have been
found to be superconductive at extraordinarily high temperatures.
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v

(@) (b) ©

Fig. Q 8.7.1 (a) Polarization against F for a ferroelectric (b) spontaneous polarization
against T for a ferroelectric (c) electric susceptibility against T for a ferroelectric

Perovskite is a mineral with the formula CaJi®hose structure is shown in Fig. Q 8.7.2. Essentially
the structure consists of a close-packed anion lattice in which every fourth anion is replaced by a
divalent cation (the face centres in Fig. Q 8.7.2), with a quadravalent cation in the octahedral site at the
centre of the unit cell. The first importapérovskite ferroelectrisvas BaTiQ, but its relatively low
curie temperature (400 K) led to the development of superior materials, especially Pb{Zwiyd
has T = 650 K. The magnitude of the ionic displacements in the unit cell can be calculated from the
saturation polarizatiork_ (which is the dipole momentAn The unit cell of BaTiQis cubic above the
curie temperature and the lattice parameter is about 0.4 nm. At 300 K the saturation polarization is 0.26
C/n?, so the dipole moment per unit cell,,, is 0.2 x (4 x 10%°)3 which is 1.7 x 16%° C m. The
charge on th@i* andB&* ions is & (= 9.6 x 16'° coulomb) per unit cell, so their displacement with

. u 17x10% o
respect to th&*ions,d | = = | mustbe——————, or 1.8 x 16"m (0.018 nm). This displacement
q 96x 10

causes the structure to become tetragonal bgldtwugh the axial ratio is close to unity.

Fig. Q 8.7.2 The Perovskite unit cell
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The Catastrophe Theory

Displacive ferroelectircgan be interpreted in terms of a polarization catastrophe in which the local field
produced by the displacement of the ions is larger tharetftering forcesso that displacement, and
hence the polarization, tends to infinity. The non-linearity of the restoring forces results in a finite,
though very large polarization. While deriving the Clausius-Mosotti equation, we found that

_(1+2p

- (1-p)

aN I . . o
where 8 = ﬁ the sum of the contribution of all the ions in the structure to the polarization. Thus

when g = 1, the relative permittivity becomes infinite. Since the derivation of Eqn. (Qef/&les on

an isotropic or cubic, ionic environment, the structural distortio e@pproaches unity restricts the
value of [} . Nevertheless, the relative permittivity reaches extraordinarily high values (over 10000) is
some perovaskites.

It may be shown that in thgaraelectic statg€T > T ), the relative permittivity is given by
1
y(T-T)
where Y -is thecoefficient of linear thermal expansiohhus the susceptibility sufferes a rapid fall just
above the curie temperature as in Fig. Q 8.7.1c.

EL:

Uses and Applications of Ferroelectric Materials

Ferroelectrics, some what surprisingly, find wide use as sound transducers (1 kHz to 10 MHz, for both
sonar and ultrasonic applications), accelerometers, delay lines, positional transducers, strain gauges, in
spark ignition (domestic gas appliances) and pressure gauges, besides the more obvious application as a
capacitor material. Most of these applications are the consequence of their large electrosctrictive
coefficients.

When an electric field is applied to an electrostrictive material it contracts or expands, depending on
the sign of the coefficient, along the polarization direction. The polarity of the field is immaterial, unlike
a piezoelectric material such as quartz (once used in sound transducers, until superseded by
magnetostrictive nickel transducers and then by ferroelectrics). Thus, if an alternating field is applied to
an electrostrictor, it responds well, there is frequency-doubling, which can be removed by applying a
bias field. The advantage of ferroelectric materials lies in the possibility of their having a built-in biasing
field, which can be produced by a process calldthg. The ceramics is heated to a little beldvand
large field (1 — 9VIV/m) is applied for a few minutes. The ferroelectric then hasn@nent polarization
which can only be destroyed by heating near employing fields in excess of theercive fieldabout
1 MV/m). After poling, theferroelectric materialbehaves just like piezoelectricmaterial though
strictly it is a polarized, electrostrictive material.

Ferroelectric materials are also gguydoelectic materialsThepyroelectric coefficiens defined by

1=
dt
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A change in temperature of the material causes a change in polarization and hence a change in
surface chargeln a good material, such as barium niobates 3 x 10 C/n¥/K, and as a charge of
10-%C is detectable, it can be seen habelectricdevices can register temperature changes of the order
of 1uK . Extensive use is made of this in military hardware responding to infrared radiation (heat).
Thermal-imaginglevices are also made from pyroelectic materials.

Q 8.8 Discuss the dependence of permittivity of dielectrics on different well known factors.

Answer. Dependence of permittivity on frequen@s we know from the theory of polarization that
time of setting of electronic polarization and ionic polarization is very little in comparison with the time
of variation of the sign of voltage that is one half period of alternating voltage even for the highest
frequency which are used practically in electrical and communication engineering. Therefore the
polarization of dielectrics having only deformational mechanism of polarization is completely set for the
time, which is very little in comparison with half period of voltage and permittivity will be independent
of frequency. We may say that neutral dielectrics have the permittivity independent of frequency with in
a very wide range of frequency see Fig. Q 8.8.1.

0 Ug v—>r
Fig. Q 8.8.1 Ffrequency dependence of permittivity

The case is somewhat different with dipole polarization. If we increase the frequancyolftage
the permittivity of a dipole material at first is constant but decreases with the increase of frequency
starting from critical frequency.., when the polarization already does not have time completely set for
one half period. The critical frequency, is given by the relation,

ke T 1 _ kgT
8mfR® 21, 8mfR®

3
i.e., Tg = amiRs _ StV wheref = restoring force constant and = molecule volume. The
kg T kg T
phenomenon of dependence of permittivity on frequency is called somedispession opermittivity
which is analogous to the dispersion of lighg.is time of relaxation and R is the radius of the molecule.

Dependence of permittivity on temperatuife@mperature does not affect the electronic polarization.
Hence electronic polarization in separate molecules is independent of temperature. But thanks to thermal
expansion of the material, the quantity of molecules which can be polarized per unit of dielectric volume
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decreases if temperature increases and therefore the valudenfreases. If liquids are heated they will
form gas and] will be nearer to unity. Solid ionic dielectrics have different dependence of permittivity
on temperature. Generally ionic polarization increases the permittivityinlikganic glassesnd in
ceramic materialsPermittivity decreases with increase of temperature for ruitle, @il perovskite
(CaTio).
In polar dielectricsin the range of low temperatures, molecular orientation is impossible in majority
of cases. With the increase of temperatures at high value, dipole orientation is possible that rises permittivity,
but further rise of temperatures reduces their orientation and after a peak valug will be down.

Let us assume th astemperature coefficient of permittivity
cO)

21
Thus T(cD) G (Q 8.8.1)

_1dcC
T(ce) “Ccar (Q 8.8.2)
T = 1 d_p
and (cp) o dT (Q 8.8.3)

where T(Cp) is temperature coefficient of resistivit@imilarly the temperature coefficient of linear

expansion,
_1dL
= ar
Now Teer= Too ™ o= Ty + 01
1de 1(e-¢)
T ==——==-212 "1
and @7 dT e (L)
|:| —
Hence ao_ —(Dz 5)
ar (- 1)
For highlypolar liquidsthe temperature coefficient of permittivity is given by
1
T(cD) - ?

Dependence of permittivity on pressuta certain dielectrics the permittivity increases with increase of
pressure. For the case of gases we have

O=1+ AP
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whereA is a constant and is pressure.

de (e-1) de
—=A =—.
Thus P and henceT P
In non-polar gases the permittivity increases linerarly with the increase of pressure
_1d0O
9 "0 dp
. _(O-y
Thus 0 = " pQ
For the normal conditions of pressure, temperature and humidity, permittivity of air is:
0, =100053
and Flep = 0.00058atmosphere

For pressures the variation of permittivity is givenAyR. Volpert's formula
0=1 + (688 — 93 H) x 10°f (summer seasons)
0= 1 + (648 — 81 H) x 1€° (winter seasons)
H = sea level of H km

Dependence of permittivity on humiditidygroscopic dielectrics have higher permittivity. At any rate
as we are considering dielectric permittivity which is smaller than water. The permittivity grows
considerably with humidification, and

1. Resistivity decreases

2. Losses increases

3. Electric strength is lowered

However in a great majority of important cases, it is difficult to calculate the value of permittivity of
humidified dielectric. Water has permittivity of aboli, = 80 greater than other materials.

Dependence of permittivity on voltag€learly expressed dependence of permittivity upon voltage
applied to dielectrics is the character of ferroelectrics. For linear dielectrics the permittivity is independent
of voltage.

For polar dielectric is especially liquids and gases one may expect effect of saturation. For example,
water, the ratio is

Ab. 0.0011
U

A= [0x 0.0011

Due to saturation the dielectric constant falls down. In some cases effect of saturation may increase
permittivity called the positive effect by B. Piekara, and permittivity increases in strong fields.
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TABLES

Table 8.A Dipole moment of some selected molecules

Molecule Dipole moment Molecule Dipole moment
(Debye unit) (Debye unit)
NO 01 CQ 0
HCl 104 Cs 0
co 0.11 H,0 1.84
HBr 0.79 H,S 0.93
HI 0.38 CH, 0
NO, 0.40 CH,CI 115
Table 8.B  Dielectric constant of gas molecules at 0°C
Gas (0 -1) x 10 Dipole moment Gas | (0 -1)x10° | Dipole moment
(Debye unit) (Debye unit)
He 0.071 0 C,H, 1.38 0
H, 0.270 0 CoO 0.692 0.10
o, 0.531 0 N,O 1.08 0.17
N, 0.588 0 NH, 8.34 145
Co, 0.998 0 SQ 9.93 150
CH, 0.948 0
Table 8.C  Properties of some widely used dielectrics
Material Dielectric Dielectric strength Density Resistivity
constant[] (kV / mm) (kg / /) (ohm metre)
Glass 4-10 20-32 2200-4000 19-10°
Mica 4-56 60—-125 2500-2700 19-10°
Asbestos - 2 2300-2600 2x 10
Bakelite 4-45 10-40 12 -
Ebonite 4-4.6 25 13 1x16°
Polystyrene 22-28 25-50 1.05-1.65 5 »%305 x 10°
Polyvinyl chloride 3.1-35 50 1.38 -
(PVC) (resin)
Rubber (soft) 26-3.0 15-25 1.7-29 4x19
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Application

Insulating material used

Heating element of an oven
Fuse holder

Switch for domestic purpose
Commutator

Cable joint box

Electriciron

Low voltage cable

Flexible wire

Distribution board
Laminated insulating boards

Nichrome
Porcelain
Bakelite

Mica

Bitumen compound
Mica

Rubber

Rastic

Wood

Epoxy Resins

Table 8.E  Relative permittivity of some selected substances

Dielectric 0
Vacuum / Air 1 (by definition) 1.0006
Benzene 2.284
Glass 5-10
Paraffin 22
ice at—58C 29
Quartz 38
Bakelite 5
Mica 3-6
Marble 10-15
Porcelain 56
Polyethylene 225
Polyvinyl chloride (PVC) 6
Epoxy resign 3511
Water 81
Calcite 6.1
Bee wax 2.7
Barium titanate 1200
Transformer oll 2.2
Viscous Vaseline 24
Polystyrene 26
Toluene 2.39
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Table 8.F Physical properties of important dielectrics

Material Dielectric | Dielectric| Maximum Density Thermal | Tand
constant strength | working tem-| kg/n? | conductivity
(kVImm) | perature °C (milli watt/m K)
Air 1 3 - 14 0.25 -
Alcohol 26 - - 794 180 -
Asbestos 2 2 400 3000 80 -
Paraffin wax 22 12 35 882 270 0.0003
Dry paper 22 5 0 822 132 0.007
(Impregnated 32 15 0 1100 142 0.060
paper)
Porcelain 57 15 1000 2400 1000 0.008
Mica 6 40 750 2880 600 0.02
Quartz fused 35 13 1000 2200 1200 0.002
Ebonite 28 50 80 1402 155 0.005
Rubber 4 10 70 1520 260 0.01
(vulcanized)
Flint glass 6.6 6 - 4555 1100 -
Grown glass 48 6 - 2200 602 0.02
Resin 30 - - 1100 - -
Table 8.G  Properties of some ferroelectric materials
Material Chemical formula Qrie Spontaneous polari-
temperatureC zation in 102 C/nt
Rochelle salt NaKC,H,0,. 4H0O Upper + 23 0.25
lower — 18

KDP (dihydrogen KHPO, -150 4.95
phosphate)
Barium titanate BaTiO, +120 26.0
Trighylene sulphate (NHCH,COOH). H, SO, +4 28
Sodium nitrate NaNQ, +160 7.0

Table 8.H [ and tand of some dielectrics at 300 K

Material O tand
Alumina 10 (5-20) x 16*
Porcelain 5 75%x10*

Contd
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Material 0 tand in 104
Silica (Quartz) 38 2
Mica 54 3
BaTiQ, 500 150
PZT 1000 40
Nylon 31 220
Perspex 26 145
Polyethylene 23 2
Polystyrene 26 0.8
PTFE 21 20
Polycarbonate 31 10
PvVC 3 162

Table 8.1  Dielectric properties of Ba Ti O,

Temperature| Permittivityl] Frequency | Permittivityl | TemperatureC tand
at1.5 MHz

20°C 400 1000Hz 1500 0 0.24
60°C 500 1Hz 1490 40 0.20
100°C 600 10Hz 1375 80 0.16
115°C 2000 10Hz 1000 120 0.06
120°C

(Curie point) 4900 10'Hz 200 160 0.04
140°C 2800

145°C 2000

180°C 1500

OBJECTIVE QUESTIONS

1. The function of a dielectric material is to obstruct the flow of electric current while the function of
an insulating material is to store electric energy.

(a) true (b) false

2. The electronic polarizability, at moderate temperature is
(a) linearly depending on absolute temperature
(b) independent of temperature
(c) inversely depending on temperature
(d) linearly depending on square of temperature

3. Line integral of electric field around a closed path is zero
(a) true (b) false
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4. The induced dipole moment for unit volume is called
(a) Debye’s temperature (b) flux density
(c) electric polarization (d) none of these

5. The high value of the dielectric constant of water indicates that water is infact a semiconductor
than a dielectric

(a) true (b) false
6. At low frequencies
(a) acrystal is unpolarized (b) the crystal is less polarizable
(c) the crystal is more polarizable (d) none of these
7. The unit of dipole moment per unit volume is
(a) coulomb (b) coulomb-metre
(c) metre/coulomb (d) coulomb/metre

8. When a monoatomic gas atom is placed is a uniform electricHjeflde displacement of the
nucleus is proportional to

(& E (b) E? (c) % (d) independent oE

9. When a monoatomic gas atom is placed in a uniform electridjéfe induced dipole moment is
proportional to

@ R (b) R (c) R? (d R
where R is the radius of the atom
10. At optical frequencies, the dielectric constant is
(a) linearly proportional to the refractive index
(b) linearly proportional to the square of the refractive index
(c) inversely proportional to the refractive index
(d) inversely proportional to the square of the refractive index

11. The electronic polarizabilityr , of a monoatomic gas is related to the radius as
(@) 4m,R? (b) 4m R
(c) 4m,/R (d) 4m, R®

12. For fixed number of atoms per unit volume, the dielectric constant of monoatomic gas is essentially
independent of temperature.

(a) true (b) false
13. The orientational polarizability per molecule in a polyatomic gas is given by

2

Ho Ho
@ 3, T ®) 3, T
g 3k T

(©) 3kg T2 (d) Ho
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14. In a solid, with the external applied electric field, as the electronic polarizabjlitycreases, the
internal fieldg,

(a) increases (b) reduces (c) remains unaltered
15. For given dielectric, as the temperature increases, the ionic polarizability
(a) increases (b) decreases
(c) remains unaltered (d) may increase or decrease with temperature
16. In a dielectric, the dipoles aligned in the absence of a field
(a) true (b) false
g7 Mo G-
3 (B+2)
(a) Lorentz relation (b) Clausius-Mosotti relation
(c) Einstein relation (d) none of these
18. Fibrous insulating materials have high hygroscopicity
(a) true (b) false

19. Condition under which spontaneous polarization in a dielectric occurs is

2
@ NIE 0 "2 =1
O Co
2
© =P =1 @ "2 =1
o Ch
20. In aferroelectric material, as the applied field is gradually reduced to zero, the polarization still left
is knows as:
(a) coercive polarization (b) remanent polarization
(c) zero polarization (d) positive polarization
21. The factor responsible for spontaneous polarization is
(a) free electrons (b) atoms
(c) permanentdipoles (d) none of these

22. The losses in a dielectric subjected to an alternating field are determined by
(a) real part of the complex dielectric constant
(b) imaginary part of the complex dielectric constant
(c) both real and imaginary parts of the complex dielectric constant

23. In a dielectric power loss is proportional to

1 1
@) w (b) & (¢) w? d =7
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PROBLEMS AND SOLUTIONS

8.1 NaClis a cube with lattice parameter 0.584and four formula units per unit cell. The polarizabilities
of Naand Cl are 0.16 x T3 and 3.30 x 10* F/n?. Calculate the refractive index of NaCl.

Solution:
The number of formula ions perfns

4

5 =22 % 10°m°
(0.564>< 109)

Now
> aN=(33+019x 10¥x 22« 18
= 7.7 x 16® F/m
E a _0-1
30 0+2
_ 12
0-1_ 77x10% _ g
[}+2 3x88x 10"
029(0 + 2=(5 - 3
0290} + 058=0} - 1
158= 71}
0} =223
But n=,0 =+223= 149

n=1.49 Answer

8.2 Determine the percentage of ionic polarizability in the sodium chloride crystal which has the optical
index of refraction and the static dielectric constant 1.5 and 5.6 respectively.

Solution:
According to Clausius — Mosotti equation,

0-1_ N(ae+aj)
O+1 30 (1)

At optical frequencies,

n+2 30 (2)
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wheren is the refractive index

ai — ae
100=| 1- x 100
Hence {%*ai} { ae+ai} 3)

Dividing equation (2) by equation (1)

a, |_|[n*-1][0+2
a.+a,| |n?+2||0-1

Now equation (3) becomes

- 1)
{ 100— E“z} 100
ae+ a; n +2 -1
125 (7.6
22215050 100 = 51.4 %
{ 42 {46} S1.4 %

51 4% | Answer

8.3 The polarizability of ammonia molecule is found approximately by the measurement of dielectric
constant as 2.42 x 1 C>m/Nand 1.74 x 16°C>m/ N at 309 K and 448 K respectively. Calculate
for each temperature the orientation polarizability.

Solution:
The total molecular polarizability of a polar gas is

a=a,+a;+a, wherea, = uz/3kg T

2
242% 10¥=q +a;+ Hn__
3x 138x 10%x 309

2
174x 10¥=qa +a;+ Hm =
3x 138x 10°°x 448

242x 10%° - (a.+a;) _ 448
174x 10%° - (a.+a;) 309

or a.+a, =0228x 10°C?m/N |Answer

Now orientational polarizability at 309 K is 2.42 x¥9 0.228 x 16*° = 2.192 x 103°C? m/N
Similarly the orientational polarizability at 448 K is 1.74 x 18 0.228 x 103°=1.512 x 163%*C2m/N
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(309 = 2192x 10*C?m/N
(448 = 1512x 10 C*m/N

Thus Answer

8.4 Make a capacitor with a capacitancelgfF working at rmsvoltage of 50 volt at 1 MHz with a
dielectric of thicknes0 pm. The electric field therefore is 4@olt/m. Given: =310}, and

tand = 10%. Calculate power loss and dissipation.

Solution:
c=AD
d
A= Cd 10°x 50% 10°
0 31x885x 10%
A =182n7

Volume,v=1.82 x 50 x 165=9.1 x 10°m?

Power loss,P =W = w E*J tand = w E°[} [} tand
P=2m x 10 x 10? x 8.85 x 102 x 3.1 x 10° k watt

P=172 kW| Answer

Power dissipation,
P,=P xv=172 x 9.1 x 1€ x 1C watt

Pd =15.7 W Answer

8.5 If a dielectric is introduced between the plates of a parallel plate capacitor, show that the induced

-1
1
charge varies with the dielectric & = [1 - 0—j . Also show that-} — o for a metal dielectric

o
Solution:
The induced charge
' q _ 1
Q=4-—=—=49 1‘—J
0 [ 0
q_,:ﬂ l—i
A A 0
0':0(1—ij
O
g:l—i;_l:l—il
o g g o
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-1
0 = {1 - 1} Answer
o

In the metal dielectric, the induced charge is same as that of the free charge, but opposite in sign.
e, 0' =0 or[] =ow.
8.6 What s the temperature coefficient of permittivity? How will you determine the temperature coefficient

of permittivity for highly polar liquid insulating materials?
Find the temperature coefficient of permittivity of a highly polar liquid &25

Solution:
The general formula for temperature coefficient of permittivity,
1d0O
Tp=——
o odr @)
Here 00 means[]
Clausius — Mosotti relation is
0-1_Na
o+2 30
Differentiating this equation assuming thatandN are depending on temperature.
Thus
S (80)- o ()
(O+2)> \dT) 30 \dT (2)
We know that
1d0O
Tp=———
° o odT
1 dN
- == =-3a
and N dT By t

wherea, and 3, are the coefficient of linear expansion and volume expansion and linear expansion
respectively.
Eqn. (2) can be written as
30_1d0_Na 10N
(O0+2)° DdT 30 N dT (3)
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1d0O . . I dN
Here — — is T_, the temperature coefficient of permittivity ané — = -, the volume
adT ° N dT

Na _ 0O-1
30, 0O+2

coefficient. Also

Thus referring Eqgn. (3)

3¢, e -1 (1-¢) . ) . . .
—— T, == -B,) =3¢ .
(€x 2)2 cp [Er n ZJ( B.) | 2+e) with a, is coefficient of linear expansion

+2 -1a
Now Tep = G )(E? )a Answer

For highly polar liquid
1 1

T, = S —
cp T 25+ 273

Tcp = 0.0034 Answer

8.1 The polarizability of N5 molecule in gaseous state, from the measurement of dielectric constant, is
found to be 2.5 x 18°coulomB m /N and 2 x 16 coulomB3 m /N at temperatures 300 K and 400 K
respectively. Calculate the contribution to the polarizability because of deformation of molecules and the
contribution because of permanent dipole moment at each temperatures.

(Ans. 0.5 x10%®C>m/ N, 1.5 x 10 C>m/ N)
8.2 The dielectric constant of helium, measureda€CGnd at one atmosphere is 1.0000684; under
these conditions the gas contains 2.7 ® &m /ni. Calculate the radius of the electron clould (atomic
radius). Also calculate the displaceme&nivhen a helium atom is subjected to a field dof @@t /m
(0.0587 nm, 7.03 x 10'm).
8.3 The energy stored in a capacitor per unit volume is given by

_1 2
U=_00E

whereE = % . If the maximum permissible field is 5 M\, what volume of capacitor with, = 1000

is required to store one kW? (Ans: 33 n¥)
8.4 Draw a graph for a ferroelectric material from the following readings obtained by J. Halbutzel.
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Absolute temperature 225 270 280 290 298
Spontaneous polarization 0 1200 2600 2400 0
(coulomb/nd)

Mark on it the curie temperature

8.5 The bakelite is found to have the real part of its complex relative dielectric constant as 4.36 with a
loss tangent of 2.8 x I®at frequency 1 MHz. Calculate the complex polarizability of the material
assuming Lorentz field Given: N = 4 x 2n3. [Ans: (3.5 —i 0.06) x 1049
8.6 The electronic polarizability of helium is 0.18 x1OF n¥. Calculate the value of the radius of
electron orbit and hence the permittivity for 2.7 ¥*Hloms in one cubic metre.

(Ans: 5.46 x 10 *'m , 1.000057776)
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Optoelectronics and Lasers

9.1 INTRODUCTION

Q 9.1 Optoelectronics and interaction of light with atoms

Q 9.2 Cohesive description of laser action and some unique properties
Q 9.3 Spontaneous and stimulated emissions

Q 9.4 Construction and working of different types of lasers

Q 9.5 Special properties of laser radiations and their industrial applications

m Problems
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9.1 INTRODUCTION

Here we are concerned with the propagation of electromagnetic waves into and through solids. While
some solids are transparent, others are opaque. Some solid surfaces are strongly reflecting, while others
tend to absorb the radiation that falls on them. These effects depend on the frequency of radiation that
falls on them. This necessiates the inclusion of the whole electromagnetic spectrum for studying the
response of the solid surfaces to the incident radiation.

The difference between wave propagation in free space and the propagation in the solid is expressed
by the two coefficients—thdielectric constant] andconductivityo. These in turn may be correlated
with the real §) and imaginaryr() parts of the refractive index. A calculationnoéindn would lead to
the determination akflection and absorption coefficients fact, theoptical propertiesare concerned
with absorption, reflection, emission or anything that one can do to a solid to influence optical behaviour.
Imperfect crystals contain many types of lattice defects, which trap electrons forming colour centres
giving rise to electronic energy levels spaced at optical frequencies. Typical experiments that yield
information about colour centres are optical absorption experiments, which tell us about the transition
energies and other properties of transitions.
Q 9.1 Write a note on optoelectronics, quantum electronics and interaction of light with atoms.

Answer.  Optical electronics will embrace devices which convert electrical signals into optical ones and

vice versa, as well as the medium of transmission. Though it can be argued convincingly that
optoelectronicshas existed in practice for some considerable time, it was the remarkable advances in
materials for optical fibers-especially for telecommunications-occurring in the 1970s that led to the

current wealth of activity in the field. Of course, significant developments in solid-state devices for the

production and detection of light would have taken place without the advent of the near-lossless fiber,
but not to the same degree. Hererefers to the wave length of light in vacuum only. In any other

A o S
medium it will be— wheren is the refractive index (RI). Vissible light has wave length fromr8@@o
n

400nm or about an octave in frequency.

A laser is an oscillator that operates at very high frequencies range to values several orders of
magnitude higher than that can be achieved by the conventional approasblessiate electronicsr
electron tube technologyn common with electronic circuit oscillators, a laser is constructed from an
amplifier with an appropriate amount of positive feed back. The acronym LASER, which stands for
light amplification bystimulated emission of radiation, is in reality therefore a slight misnomer.

It is essential to consider the fundamental process whereby amplification at optical properties is
obtained. These processes involve the fundamental atomic nature of matter. At the atomic level, matter
is not a continuum, it is composed of discrete particles-atoms, molecules or ions. These particles have
energies that can have only certain discrete values. di$tsetenes®r quantization, of energy is
intimately connected with the duality that exists in nature. Light some times behaves as if it were a wave
and in other circumstances it behaves as if it were composed of particles. These patrticles, called
photons, carry the discrete packets of energy associated with the wave. For light of wave frequency
the energy of each photon fw. At the microscopic level the amplification of light within a laser
involves the emission of these quanta. Thus the ¢erantum electronics often used to describe the
branch of science that has grown from the development of the maser in 1954 and the laser in 1960.
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The wide spread practical use of lasers@ptital devicesn applications such as communications,
and increasingly in areas suchsggnal processingndimage analyzindnas lead to the use of the term
photonics Whereas, electronics uses electrons in various devices to perform analog and digital functions,
photonics aims to replace the electrons with photons. Because photons have zero mass, do not interact
with each other to any significant extent, and travel at the speed of light, photonic devices promise small
size and high speed.

In conventionalelectronics where by the word conventional for the present proposes we mean
frequencies where solid-state devices sudnaasistorsor diodeswill operate, say below 1Hz, an
oscillator is conveniently constructed by applying an appropriate amount of positive feedback to an
amplifier.

A laser (or maser) is an optical (microwave) frequency oscillator constructed framptiaal
(microwave) frequency amplifienith positive feedback. Light waves which become amplified on
traversing the amplifier are returned through the amplifier byeflextorsand grow in intensity, but this
intensity growth does not continue indefinitely because the amplifier saturates. The arrangement of
mirrors (and some times other components) that provides the feed back is generally referred to as the
laser cavity or resonator.

When an atom absorbs a photon of light of the correct wave length, it undergoes a transition to a
higher energy level. To a first approximation in many cases, we can think of one electron in the atom
absorbing the photon and being excited. The electron will only absorb the photon if the photon’s energy
matches that of the energy difference between the initial and final electronic energy level, and if certain
rules, known aselection rulesare obeyed. In light atoms, the electron cannot change its spin and its
orbital angular momentum must change by one unit; in terms of quantum nufsoer®, Al =+ 1
(One way of thinking about this is that the photon has zero spin and one unit of angular momentum.
Conservation of spin and angular momentum then produces these rules). For a sodium atom, for example,
the 3s electron can absorb one photon and go to the 3p level (there is no restriction on changes of the
principal quantum number). The 3s electron will not, however, go to the 3d or 4s level. However, the
spin and orbital angular momenta are not entirely independent and coupling between theforbitines
transitionto occur; however, the probability of an electron absorbing a photon and being excited to a
forbidden levels much smaller than the probability of it being excited to an allowed level. Consequently
spectral lines correspondingftobidden transitiongre less intense than those corresponding to allowed
transitions.

An electron that has been excited to a higher energy level will sooner or later return to the ground
state. It can do this in several ways. The electron may simply emit a photon of the correct wave length
at random some time after it has been excited. This is knospoaganeous emissioAlternatively a
second photon may come along and instead of being absorbed may induce the electron to emit. This is
known asnduced or stimulated emissiand plays an important role in the action of lasers. The emitted
photon in this case is in phase with and travelling in the same direction as the photon inducing the
emission; the resulting beam of light is said to be coherent. Finally the atom may collide with another
atom, losing energy in the process, or give energy to its surroundings in the fobmatbnal energy.

These are examples of non-radiativ@nsitions Spontaneous and stimulated emission obey the same
selection rules as absorption. Non-radiative transitions have different rules. In a crystal (or of course a
molecule), the atomic energy levels and the selection rules are modified.

Q 9.2 Give a clearer and more cohesive description of the requirements for laser action, working and
the unique properties.
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Answer. Electromagnetic radiation anywhere in the spectrum from the ultraviolet region through the
infrared, which includes wave lengths from roughly 0.1.@90um plays a vital role in laser optics.
The term MASER was originally coined to describe a similar device (using ammonia molecular transitions
and a microwave cavity) that operates in the microwave region of the electromagnetic spectrum at say
a wavelength 1.25 cm.

The key words used agenplificationand stimulated emissioit is the ability of light to stimulate
the emission of light that creates the situation in which light can be amplified. It may not be helpful to
point out at this time that a very important feature of most lasers is an optical resonator, usually consisting
of two precisely aligned mirrors, one of which is partially transmitting, to allow an output. This mirror
arrangement provides positive feedback. So the laser is basipabitiae feedback oscillatoAs such,
it is analogous to electrical positive feedback oscillators where a certain amount of the output is fed back
in phase with the input, resulting in oscillation at some frequency characteristic of the circuit. In effect,
the oscillator selects a frequency component from the noise always present from biasing, amplifies it,
and oscillates at that frequency. The laser does essentially the same thing except that an optical oscillator
can operate in many allowed modes (natural resonator frequ@ncies

Unique Properties of Laser Light

The laser is basically a light source. The radiation that it emits is not fundamentally different than any
other form of electromagnetic radiation. The nature of the device, however, is such that some remarkable
properties of light are realized. These unique properties, taken as a whole, are not available from any
other light source to the extent that they are obtained from a laser. The unique properties referred to are
1. High monochromaticity (small wave length spread)
2. High degree of bothpatial and temporal coheren¢strong correlation in phase)
3. High brightness (primarily due to small beam divergence)
4

. Capability of very low (microwatt) to very high (kilowatt) continuous power output for
different types of lasers

5. High peak powe(terawatt) and large energy (hundreds of joule) per pulse in pulsed output
lasers

6. Capability of being focused to a small diffraction limited spot size (of the order of the wave
length of light).

These properties are by no means independent of each other and, in fact, some may be inferred
directly from others.

Requirements for Laser Action
A number of conditions must be satisfied to achieve lasing action. They are listed below:
1. Population inversion
2. Optical resonator, except in extremely high gain systems.
3. Lasing medium
4. Means of excitation
5. Host medium

The notion of a population inversion refers to a condition in which a certain ensemble of atoms or
molecules is in a non equilibrium situation where more of these atoms or molecules are in some specified
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excited energy state (electronic or vibrational) than are in a lower energy state. These atoms or molecules
undergo a transition to a lower state in which the probability of emission of a photon is extremely high,
so-calledradiative transition The optical resonator refers to the technique for providing positive feed
back into the system to produce oscillation. This process usually consists of two parallel mirrors placed
some distance apart; one is as nearly totally reflecting as possible and the other is partially transmitting
to obtain a useful output from the system. Tlaasmittanceof the output mirror, which is the ratio of
transmitted power to incident power, ranges roughly from 1 to 60%, depending on the power level and
type of laser. The lasing medium (called kagan) refers to the atoms or molecules that actually emit

the light, such as Ne atoms in a He—Ne laserréri@hs is a ruby laser.

Some means of excitation is required to achieve the population inversion. This step is usually
accomplished by the electric discharge or high intensity light from gas—discharge lamps, such as xenon
or krypton gas—discharge lamps. Many other important techniques for excitation exist, such as chemical
reaction, electron beam preionisation and nuclear. A host medium is one in which the lasant is dispersed.
In the ruby laser AD, is thehostand serves a matrix to hold the'Qons. Helium is the host in the He—

Ne laser and is essential to the process of exciting the lasant, Ne. Some laser types have no host;
examples are the semiconductor diode laser and ion lasers like argon and krypton.

How the Laser Works

All laser action begins with the establishment of a population inversion by the excitation process. Photons
are spontaneously emitted in all directions. Photons travelling through the active medium can stimulate
excited atoms or molecules to undergo radiative transitions when the photons pass near the atoms or
molecules. This factor in itself is unimportant except that the stimulated and stimulating photons are in
phase, travel in the same direction, and have the same polarization. This phenomenon provides for the
possibility of gain or amplification Only those photons travelling nearly parallel to the axis of the
resonator will pass through a substantial portion of the active medium. A percentage of these photons
will be fed back(reflected) into the active region, thus ensuring a large build of stimulated radiation,
much more than the spontaneous radiation a the same frequency. Lasing will continue as long as the
population inversion is maintained above sdahteshold level

Q 9.3 Discuss spontaneous and stimulated (induced) emission with suitable transition figures.

Answer.  An atom has a number of quantized energy states characterized by integral numbers.
Electromagnetic radiation can interact with atomic energy levels in three different ways. There are two
methods to excite an atom. The first method is the collision of the atom with certain energetic particles.
During this process part of the kinetic energy of the incident particle is absorbed by the atom. The atom
excited by this method will return to its ground state irfd@ith the emission of a photon. The energy
in electron volt necessary to raise an atom from its normal state to the excited iexailiaton
potentialfor the state.

However the excitation process differs when an atom absorbs a photon of energy equal to the
energy required to raise the atom to higher energy level aakehance potentialt is also a well
known fact that discrete amounts of energy are required to excite the atom to its different quantized
states. The existence of discrete energy states within an atom was confirmed by experiments of Franck,
Hertz and others on critical potentials. The critical potential is defined as the accelerating potential:

(i) Below which the colliding electron cannot excite the atom. i.e., the internal energy of the
atom remains unchanged. Such collisions of the electrons with atoms areetadic
collisions
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(i) Above which the colliding electron can excite or even ionize the atom. i.e., the atom suffers
change in its internal energy. Such collisions of the electrons with atoms ardrezlstic
collision.

Spontaneous and Stimulated Emission

We know that light is absorbed or emitted by particles (atoms, molecules or ions) during their transition
from one energy state to another. The process of particle transfer from normal state corresponding to
minimum energy of the system to a higher energy state is termed as excitation and the particle itself is
excited as shown in Fig. Q 9.3.1. In this process the absorption of energy from the external field takes
place. Usually the number of excited particles in a system is smaller than the non-excited particles. The
time during which the particle can exist in the ground state is unlimited. On the other hand, the particle
can remain in the excited state for a limited time knowlifadme The life time of the excited atom is

of the order of 10°%. However, there exist such excited states in which the life time is greater than
10-%. The states are calletetastable statelThe two points to be considered are:
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Fig. Q 9.3.1 Excitation and emission of a particle

(1) only certain transition are possible which are allowed by selection rules (2) the transition of a
particle from one energy to another can be non-radiative. In such cases the energy is transmitted to
other particles which is converted into heat now.

After being in the excited state, the particle returns to the ground state. The probability of transition
to the ground state with emission of radiation is made up of two factors, one constant and the other
variable. The constant factor of probability is knowspentaneous emissioRig. Q 9.3.1 (b). In this
process a particle passes from higher energy state to lower energy state spontaneously emitting a
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photon hu . The spontaneous emission depends on the type of the particle and type of transition but is
independent of outside circumstances. The spontaneous emission is random in character. The radiation
in this case is a random mixture of quanta having various wave lengths. The waves coincide neither in
wavelength nor in phase. Thus the radiativieé®herentand has &#road spectrum

We should also know that the variable factor of probability of transition from a higher to a lower
energy state with emission of radiation depends on the presence of the radiation of the same frequency.
This implies that a particle can pass from an excited state to a normal state emitting a light photon not
only spontaneously but also when forced to it, under the effect of another external quantum photon.
This means that the incidence of a radiation on the particle which is in excited state, stimulates the
emission of a similar radiation by the particle by transition to lower energy state. This type of emission
is called stimulated emission as shown in Fig. Q 9.3.1 (c). The remarkable feature of the stimulated
emission is that it is coherent with the stimulated incident radiation. Amazingly enough this stimulated
photon has exactly the same frequency, direction and polarization as the primary incidensphattin (
coherencgand exactly the same phase and spesdporal coherenge

Both of these photons may now be considered primary waves and, upon passing close to other
atoms in their metastable states, they stimulate them to emit photons in the same direction with the same
phase. However, transitions from the ground state to the excited state can also be stimulated, thereby
absorbing the primary wave. An excess of stimulated emission, therefore, reqopetation inversion
This means more atoms in the metastable state than the ground state. Thus if the conditions in the laser
material are right, a chain reaction can be developed, resultimghnntensity coherent radiation

Spontaneous and Stimulated Emission Probabilities

Let us consider an assembly of atoms in thermal equilibrium at temperature T with radiation of frequency
v and energy densiti;'t(u) . This energy density indicates the total energy in the radiation field per unit
volume and per unit frequency due to photons with enaugyi.e., energy difference between excited

and unexcited states. Lt andN, be the number of atoms in the lower energy state 1 and higher energy
state 2 respectively at any instant. The probability that the number of atoms in state 1 absorb a photon
and rise to state 2 per unit time is

N, B, = N; By, E(U) (Q 9.3.1)

because the probability , is directly proportional to energy densif(v) . Here B,, is called the
Einstein’s coefficient of absorptiomhe probability of emission is sum of two parts, one which is
independent of the radiation density and the other proportional to it. The probability that the number of
atoms in state 2 that drop to state 1, either spontaneously or under stimulation, emitting a photon per unit
time is

N, Py = No[ Ay + By E))| (Q 9.3.2)

whereA,  is theEinstein’s coefficient of spontaneous emissiodB,, is theEinstein’s coefficient of
induced emissioandA,, N, is the rate of spontaneous emissionldpB,, E(v) is the rate of stimulated
emission. In thermal equilibrium, emission and absorption must balance,

ie., N, By, E(v) = Nz[ At By E(U)]
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or E(U)[Nl Bo- N %1] = Ny Ay
_ Ny Ay
o E(U)_{Nl B, = Ny le}
o (ParB) @239

BEeE

Thermodynamically, it was proved by Einstein thatgtabability of stimulated absorptiamust be
equal to theprobability of stimulated emission

i.e., Blz = B21
Thus Eqgn. (Q 9.3.3) becomes

_ A21/ BZl
B Ny -1

The equilibrium distribution of atoms among different energy states is given by Boltzmann’s law.
According to this law

(Q 9.3.4)

N=N,exp[E -E)/kT]

N
N—l =exp(hu/kg T) (Q 9.3.5)
2

where E and E are the lower and higher energy stateslarid the Boltzmann constant.

E(U) A21/ BZl

) {exp(hu/kg T) - 1} (Q936)

which relates energy density of photons of frequencin equilibrium with atoms in energy states 1
and 2 at temperature T degree kelvin. If we relate this relation with Planck’s radiation law, then

E(U):[

grrhu’® 1
¢ | {exp(hu/kg T) - 1} (Q9.3.7)

Comparing this equation with (Q 9.3.6), we find that

8rrhu®
Ay 1By = 3 (Q 9.3.8)

wherec is the velocity of light.
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This is the relation for the ratio between the spontaneous emission and induced emission coefficients
and shows that probability of spontaneous emission increases rapidly with the energy difference between
the two states. It is instructive to calculate the value of the ratio of spontaneous emission and stimulated
emission

namely — 2721
N, By, E(v)
Now puttingB,, =B, in Eqn. (Q 9.3.3)
E(v)=— o
Ba1 {Nl - 1}
N
or (Refer Eqn. Q 3.9.5) P {exp(hu/kg T) - 1} (Q 9.3.83)
By, E(v)

Population Inversion

Usually the number of particles Ne.; population of higher energy level is less than the populatioh N
lower energy level. Makinty,> N,. i.e.; the number of particlés more in higher level than the number
of particlesN, in lower energy level is callggbpulation inversion or inversed populatiofhe states of
system, in which the population of higher energy state is more in comparison of the population of lower
energy state are calleggative temperature staté$ere it should be clearly understood that the negative
temperature is not a physical quantity but it is a convenient mathematical expression, signifying the
equilibrium state of the system. When the system has a number of states, then one of them may have a
negative temperature with respect to other states. A system in which population inversion is achieved is
called an active systemhe method of raising a particle from lower energy states to higher energy state
is calledpumping This can be done by a number of waves. Let us consider the pumping of ammonia
gas. It has two states with separation correspondirig $01.27 cm. Ammonia is first heated and then
passed through a non-uniform electric field. The field deflects the excited and unexcited molecules to
different regions. This causég > N, in one region. A more common method of pumpingpscal
pumping which is discussed below:

Consider a three level system as in Fig. Q 9.3.2. Let us allow all transitions between these levels. If
v is the frequency of the external source on the system, then

E,-F
h

corresponding to the transition from level 1 to 3, some of the particles will pass to the level 3. If the life
time of particles in level 3 is sufficiently long, their number in this level will exceed that in level 2. In this
way level 3 will be inversely populated with respect to level 2. Thus by pumping, the conditidd,N

is obtained. Now for a light of frequenay,; the system acts as laser. The stimulated radiation,
together with the original incident radiation, both coherent, can stimulate the emission of more coherent
radiation of other particles in the higher energy state. This process can go on, steadily amplifying as it
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proceeds, provided enough molecules are in higher energy state. Fig. Q 9.3.2 (b) shows that population
inversion N > N, is achieved. The main condition for this is that the state 2 must be a metastable state.
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Fig. Q 9.3.2 Fnergy levels in a three-level laser system

Optical pumping rises the particles to level 3, from where most of them return to state 1 but some
go to state 2. The probability of transition from state 2 to state 1 is very low, hence in due course of time
N, exceeds I if pumping power is sufficient to keep level 2 fed at faster level than depleti2n-byl
transition.

Similar to the three-level laser system, there exists a four-level laser system as shown in Fig. Q
9.3.3. Level 1 is ground level and levels 2, 3 and 4 are excited levels of the system. Atoms from level 1
are excited by a pump light to level 4, from which the atoms decay very rapidly through some non
radiative transition to level 3. Level 3 is a meta stable level having a long life tinig)(Ilhis level
forms the upper laser level and level 2 forms the lower laser level. The lower laser level must have a very
short life time so that the incoming atoms from level 3 relax down immediately from level 2 to level 1,
ready for being pumped to level 4. If the rate of relaxation of atoms from level 2 to level 1 is faster than
the rate of arrival of atoms into level 2. One can obtain population inversion between levels 3 and 2 even
for very small pump powers.
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Fig. Q 9.3.3 The energy levels in a four level laser system
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Q 9.4 Describe the construction and working of a ruby laser (three-level laser) with necessary diagrams.

Answer. Laser action was first reported in ruby by Maimam in 1960, and both technique and theory
have since been extensively developed. Ruby laser rods are growsdappimire(Al,O,) doped with

0.01 to 0.05 % chromium (by weight) to form a synthetic ruby crystal coloured red or pink. Rods are
up to 20 cm long 3 to 2.5 mm in diameter. Ruby resists optical damage at normal power level if its
surface is clean, and conducts heat better than glass. The ends of the ruby rod are optically flat and
parallel. The rod is surrounded by a glass tube. Upon the rod is wound a coiled flash lamp filled with
xenon gas which acts as the optical pumping system.

Flash lamp Reflector
; afa Laser
Mirror

A-/beam/:ﬂ
Ruby T
crystal

Target
Cooling

Fig. Q 9.4.1 Sketch of ruby laser

Working As mentioned earlier the ruby rod is a crystal of aluminium oxidg®Iso that some of
the Al***ions are replaced by Cr*ions. These impurity chromium ions give pink colour to the ruby
and give rise to the laser action. The energy-level diagram of chromium ions is shown in Fig. Q 9.4.2.
It consists of upper short-lived energy level (rather energy banal)dve its ground state energy
level E, the energy difference (E E) = hu corresponding to a wave length of 550 nm. There is an
intermediate excited state leve|\hich ismetastablga state relatively long — lived one) having a life
time of 10-% about 1Btimes greater than the life time of E

E, Short-lived state
A
5 Radiationless transition
Metastable state
550 nm E, v
M» W
694.3 nm
Pumping By AVAVAV S IEAVAVAV S
transition 694.3 nm 694.3 nm

Laser transition

Ground state
Fig. Q 9.4.2 FEnergy level diagram of chromium ion
Usually, most of the chromium ions are in the ground staté/gen the flash of light (which lasts

only for about a milli second) falls upon thévy rod the 550 nm radiation photons are absorbed by the
chromium ions which are pumped (raised) to the excited stat€he transition 1 is the (optical)
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pumping transitionThe excited ions give up, by collision, part of their energy to the crystal lattice and
makes a transition or decay to the metastable staléh& transition from Fto E, (transition 2) is thus

a radiation less transition. As the life time of the stgtis BEauch longer, the number of ions in this state
goes on increasing while that in the ground staigoés on decreasing. By timispulation inversions
achieved between the excited metastable staéa@&the ground state.E

When an excited ion passes spontaneously from the meta stablg sidke§round state (transition
3), it emits a photon of wave length 694.3 nm. This photon travels through the ruby rod and, if it is
moving parallel to the axis of the crystal, is reflected back and forth by the silvered ends until it stimulates
an excited ion and causes it to emit a fresh photon in phase with the stimulated photon. This stimulated
transition 4 is the laser transition. (The photons emitted spontaneously which do not move axially escape
through the side of the crystal). The process is repeated again and again because the photons repeatedly
move along the crystal being reflected from its ends. The photons thus multiply. When the photon-beam
becomes sufficiently intense, part of it emerges through the partially-silvered end of the crystal. The
drawbacks of the ruby laser are:

The laser requires high pumping power because the laser transition terminates at the ground state
and more than one- half of the ground state atoms must be pumped up to the higher state to achieve
population inversion. Moreover, ions which happens to be in their ground state absorbs the 649.3 nm
photons from the beam as it builds up. The ruby laser is pulsed laser. The active mediuno((s)
is excited in pulses, and it emits laser light in pulses. While the xenon pulse is of several millisecond
duration; the laser pulse is much shorter, less than a millisecond duration. It means enhanced instantaneous
power.

Helium-Neon Laser

In gas lasers, the atoms are characterized by sharp energy levels compared with that is solids, the
electric discharge method is usually employed to pump the atoms to the higher energy states. He — Ne
laser was the first one to be operated successfully. It is a four level laser and population inversion is
achieved by electric discharge. The laser tube is approximately 5 mm in diameter and 0.5 m long. It
contains a helium-neon mixture, in the radio 5:1 at a total pressure of about 1 torr (=1mm of mercury).
The ends of the tube are plane and parallel. One end of the tube is heavily silvered. The other end is
partially silvered.

beam
. He + Ne . . . . . .
Partially
Fully silvered mirror silvered

mirror

Fig. Q 9.4.3 Helium-Neon Laser

An electric discharge is produced in the gas mixture by electrodes connected to a high frequency
electric source. The collision of the helium and neon atoms with the electrons from the discharge excite
(or pump) the helium and neon atoms to metastable states. The metastable state in helium is 20.61 eV
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above the ground state. That in neon is 20.66 eV above the ground state. Some of the excited He atoms
transfer their energy to ground state. Ne atoms by collisions, with the 0.05eV of additional energy being
provided by the kinetic energy of atoms [the advantage of this collision process is that the lighter He
atoms can easily be pumped up to their excited states; the much heavier neon atoms could not be raised
efficiently without them]. Thus He atoms help in achieving a population inversion in the Ne atoms.
When a Ne atom passes spontaneously from the metastable state at 20.66 eV to state at 18.70 eV, it
emits 632.8 nm photon. This photon travels through the gas mixture, and if it is moving parallel to the
axis of the tube, is reflected back and forth by the mirror ends until it stimulates an excited Ne atom and
causes it to emit a fresh 632.8 nm photon in phase with the stimulating photon. This stimulated transition
from 20.66 eV level to 18.70 eV level is the laser transition. This process is continued and a beam of
coherent radiation builds up in the tube. When the beam becomes sufficiently intense, a portion of it
escapes through the partially-silvered end.

From the 18.7 eV level the Ne atom passes down spontaneously to a lower metastable state emitting
incoherent light, and finally to the ground state through collision with the tube walls. The final transition
is thus radiation less. Obviously, the Ne atom in its ground state cannot absorb 632.8 nm photons from
the laser beam, as happens in the three level ruby laser. Also, because the electron impacts that excite the
He and Ne atoms occur all the time, unlike the pulsed excitation from the xenon flash lamp in the ruby
laser; the He — Ne laser operates continuously. Further, since the laser transition does not terminate at the
ground state, the power needed for excitation is less than that in a three-level laser.
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Fig. Q 9.4.4 A four-level laser

Semiconductor Lasers

A semiconductor laser consists of a flat junction of two pieces of semiconductors materials, each of
which has been treated with a different type of impurity. On passing an electrical current through such
a device, laser light emerges from the junction region. Low cost, small size and relatively high efficiency
make these lasers well suited foicroelectronic adaptationand applications are almost unlimited in

high-technological uses, for example, fiber optics communication though power output is limited. These
lasers are similar in construction to a transistor or a semiconductor diode. They are usually infra red
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pulses with power on the order of watts and can be produced with good efficiency, especially at low
temperatures, liquid nitrogen or lower. The activation mechanism can be voice or television current
signal, there by producing laser beams modulated with these signals. Silicon and germanium conduct
electricity better than insulators but not so well as true conductors. These semiconductor materials
allow construction of complexicroelectroniccircuits by carefully controlling the composition making
possible to build many useful structures to accommodate the desired use. Advances made in this field
since 1975 have resulted at room temperature life time of 100 years for continuously emitting
semiconductor lasers. It is now possible producing beams of high quality and low diversion angles with
millions of years of useful time. Using of materials such as indium and phosphorus in addition to the
standard gallium, arsenic and aluminium (which emit wave ler@@hs 0.9 um in the infrared region),

has resulted in longer wavelengthd — 16 um, which increases efficiency of light transmission in
optical fibers. Also being developed are shorter wave lengths, such as in the visible (red, particularly)
and, even in the ultraviold0.4 um) region.

@
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Fig. Q 9.4.5 Diagrammatic sketch showing (a) excitation of gaseous
laser medium (i.e., electrical discharge), (b) reflection of photons
during stimulated emission, and (c) exiting photons in a laser beam
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Gas Lasers

Gas lasers produamherent lightbeams by an electric discharge in thger cavityor gas chamber.
Several types of gas laser have gained popularity because of (a) the simplicity of the lasing function, (b)
the wide variety of wave lengths available (c) they are less expensive, (d) some, for examplg the CO
are very efficient (30 %), and (e) very high power outputs are available from relatively small units. Gas
lasers can be explained by the following parts: the gas cavity, excitation of the gas by electrical charge
and stimulated emission of the laser light on discharge of the electric pulse. A variety of pumping
methods are used in gas laser technology where by the atoms or molecules of the lasing gas are excited.
In some gas mixtures, such as the most popular of all, helium — neon, the electrical discharge excites the
helium atoms which transfer the energy to the neon atoms which emits red light: other gas mixtures,
such as carbon dioxide, nitrogen, and argon, are energized by jinec®0ules absorbing the electrical
energy and vibrating at high energy level. The helium — neon laser cannot produce much power, typically
only a few miliwatt, but this versatile laser can emit laser continuously for many thousands of hours and
has aplethoraof uses.

The CQ laser can be used to produce tetra watt’(¥¥) in pulses of ultra short pulse widths
(10*2s). Amplification is possible by making multiple passes of the beam through the huge cavities
developed to produce clusters of beams of several feet is diameter. Continuous bearlasHrE Of
high intensity are also available in such applicationelgingor cutting metals. Other popular gas
lasers are the argon and krypton lasers which emit in the green and red portions of the spectrum
respectively. Mixed together, the resulting emissions can be controlled to provide for individual and
separate wavelengths in the visible range. One application popular with this combination is in the
entertainment field-light shows, movies, etc.

Q 9.5 Discuss the important properties of laser light. Also bring out some of the industrial applications
of lasers.

Answer.

Properties

One must know that not all of the different types of lasers exhibit the following properties to the same
degree and, this may generally restrict the choice of laser for a given application.

1. Directionality: Apart from semiconductor junction lasers, lasers emit radiation in a highly
directional, collimated beam with a low angle of divergence. This is important because it
means that the energy carried by laser beam can be collected easily and focused onto a small
area.

2. Line width: Laser beam is potentially extremely monochromatic but the spectral content of
the laser radiation may extend over almost as wide a range as the florescent line width of the
laser medium. In other words, although the line width of an individual cavity mode may be
extremely small there may be many modes present in the laser output.

3. Beam coherenceOne of the characteristics of stimulated emission in that the stimulated
wave is in phase with the stimulating wave, spatialandtemporal variatiorof the electric
field of the two waves are the same. Thus for a perfect laser we would expect the electric
field to vary with time in an identical fashion for every point on the beam cross-section.

4. Brightness The primary characteristic of laser radiation is that lasers have a higher brightness
than any other light source. We define brightness as the power emitted per unit area per unit
solid angle.
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5. Focusing The minimum spot size to which a laser beam can be focused is determined by
diffraction. A single mode beam can be focused into a spot which has dimensions of the
order of the wavelength of the light, though the imperfections in the optical system may mean
that we cannot achieve this in practice.

6. Tuning Some lasers can be tuned to emit radiation over a range of wavelengths. Laser
tunability leads to applications photochemistryhigh resolution Raman spectroscopy.

Applications

Lasers are being used in many areas because of the two special features which are not available in light
from ordinary sources

(i) Narrow band width Which is the same thing as highonochromacityor high temporal
coherence

(i) Narrow angular spread Which is the same thing as high directionality (hence high intensity)
or large spatial coherence.

Where lasers are used?

1. Communication Modulated laser beams are being used for transmitting messages. Due to
high degree of coherence, the loss of transmitted energy is comparatively much less. The
narrow band width of laser beam has increased the simultaneous transmission of large number
of channels. In computers, the storage capacity for information similarly improves with the
narrowness of the band width. In any information processing system, which uses radiation
signals, the capacity to distinguish between smaller difference increases the quality of
performance. Lasers provide this through high monochromaticity of their beam.

2. Surgery Laser has also bean used extensively for bloodless surgery. e.g. lasers can be used
to weld the detached retinas. The laser beams can be used for drilling the teeth, removal of
tumors and removal of infected cells, etc. It can also be used for preventing the tooth decay
by depositing hard materials on the surface of the tooth.

3. Measurement of long distancels enabled us to determine the distance of the moon from the
earth with an error within 0.6 m.

4. Nuclear fusion The laser beams can be used to induce the nuclear fusion. By concentrating
the laser beam to a very very narrow spot, temperature may rise to abKuarid nuclear
fussion can occur at this temperature.

5. Scientific research A modified version of the Michelson Morley experiment was conducted
to test for the ether drift. Here the beams of two infrared lasers of slightly different frequencies
were combined by means of a beam splitter and the beam frequency was determined. Lasers
can be focused into a very very fine beam, resulting in rising the temperature to about 1000
K and can be used for drilling holes and fusing or melting of metals.

6. Weather forecastingPictures of the clouds, wind movements, etc., can be obtained with
laser beam and the data so obtained can be used in weather forecasting.

7. National defencelLasers can be used for guiding in missiles and satellites.

8. Other uses The other uses of lasers are: in holography, the production of three dimensional
images, cutting amnicroelectronic circuitscutting and sealing nerves and to raise the temperature
of the localized area of tissue, i.e., physiotherapy. Laser can be used for unblocking the heart
valves, breaking kidney stones, etc.
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Industrial Applications

Material Processing

For mechanical and metallurgical engineers, a knowledge of laser technology relating to metal working
techniques is a pre requisite. Laser can cut, drill, weld, remove metal from surfaces, and perform these
operations ever at surfaces in accessible by mechanical methods. It is not necessary that users of lasers
for these operations understand all the technical details of the laser system, but knowledge of the beam
characteristics and material absorption qualities is essential in proper adaptation of the beam to obtain the
desired result.

Cutting and Drilling

Because of CQasers, which product0.6 um wave length beam, can be manufactured with extremely

high continuous wave power densities, this laser system is the most commonly used one in industrial
cutting and drilling operations not only with metals but also such non metals as ceramics, plastics, cloth,
paper, glass and so on. Gas jetting is usually associated with industrial metal cutting either to enhance
removal with a reactive gas, such as oxygen, or with a protective (inert) gas to protect flammables.
Typical metals that are efficiently cut or drilled with the 3@stems are steel, aluminium and titanium;,

cutting speeds reach rates from 20 inch per minute for one-inch carbon steel sheets to 100 inch per
minute for one-half inch aluminium alloys. Laser energy supplies all the energy needed to cut or drill
non-metals, but often coaxial gas sets serve to protect the treated surfaces and coaxial vacuum can be
included to direct toxic fumes away from the operation.

Welding

Several advantages over gas or arc welding are possible with laser-welding techniques; (a) purity of the
materials involved is not altered, (b) localized heating by the small spot size can be accurately controlled,
even programmed, by computers to reproduce exact characteristics, and the laser beam can be transmitted
through windows of a closed container to permit welding ( or other operations) in a controlled atmosphere.

Heat Treatment

Although induction heating has served the metal processing operations for many years in providing
surface treatments, for hardening steel particularly, the versatility of the laser beam has proven very
useful in the treatment of many metal surfaces. Cost saving is one consideration, because less energy is
required, heat losses are reduced, and the time involved is considerably lessend. Steel and aluminium
surfaces can be hardened or alloyed by methods established for production line applications. A less
expensive substrate can be used in some applications so that metal powder layers can be coated and then
processed thermally by the laser beam is precise locations.

Astronomer’s Measurements

By bouncing light from a newly developed laser off reflectors left by astronomers on the moon,
astronomers have taken new measurements of the constantly changing distance between earth and
moon. It is believed that the measurements made across 230000 miles of space, were accurate to within
an inch, ten times more accurate than by the other methods in the past. The new measures provide
detailed records of day-to-day changes in the rotation of the earth and slight wobbles it makes as it spins
on its axis. They are also recording lunar motions causexlliije gravitationaleffects arising from

the influences of relativity. Analysis of the new data helped the scientists to have a better understanding
of the forces deep within the earth that set off great earthquakes, as well as the variations in the earth’s
rotation that have been linked with the effect that causes of cyclic warm-water ocean current that is
believed to cause weather anomalies.
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PROBLEMS AND SOLUTIONS

9.1 Get the units of energy densify(v) and Einstein’s coefficient& andB.

Answer. Since energy density is the energy of the radiation field per unit volume and per unit frequency,

therefore, unit of energy densify(v) must be J/fs—% Again, the quantitil, A represents the rate of
spontaneous emission, therefore, unifafill be s™. Also, N, B E(v) represents the rate of induced
emission, therefore, unit & is m® J-1s=2

9.2 A laser beam has a power of 50 mi\has an aperature of 5 x £0n and wave length 700 nm. A

beam is focused with the lens of focal length 0.2 m. Calculate the areal spread and intensity of the image.

Solution:

Area spread= (df x f)? = (14 % 10* x 02)2: 04x 10°

A,=048x 10°m* | Answer

Also

power  50x 103

26 107 =125x 16 watt/n?
area , X

Intensity =

125x 160 W/m? | Answer

9.3 A laser beam of wave length 7dhhas coherence time 4 x $8 Deduce the order of magnitude
of its coherence length and spectral half-width.

Solution:
(i) the coherence length
| =7Cc =4x10°x3x10=12x10m
| =12 km Answer (a)
(i) The spectral half width

2
m =2

AX = (740 x 10° %12 x 10° m

M =045x 10®m  Answer (b)
(i) The purity factor,

_ A _ 740x 10° _
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Q=1.6 x 1& | Answer (c)

9.4 A laser source of wave length 6 x-10n, coherence width 8 x ¥®m and power 10 mW shines
on a surface 100 m away. Deduce the illumination. Compare it with that due to a collimated beam from
a torch filament of diameter 0.1 cm, lens of focal length 10 cm and power 10 W.

Solution:
The semi angle of cone of laser beams,

7
g=2 :6x—10_3 = 75x 10° radian
a 8x10
As 7'[(r9)2 2
Solid angle Aw = — = ——— =16

=71 x (7.5 x 10%)2 = 176.6 x 101

Areal spreadA A = r? (Aw) = 100 x 176.6 x 10%°= 176.6 x 16°

Illumination,

1766x 16

= = 56.6
AA

I, =56.6W/m® | Answer (a)
For the torch, the angle subtended by the filament size at the lens

01 )
0 =—=10 i
10 radian

Areal spread, AA' = 7T(r9')2 =314x 106 x 10*= 314

lllumination,
|2 :i :1_0 = 32W/[‘n2
AA 314
I, =32 W/m?
- 17.7
1, " | Answer (b)

9.5 Calculate the ratio of spontaneous emission to stimulated emission by an incandescent bulb at
2500 K. The frequency in the optical region is 5.9 ¥ H@
Solution:

The ratioR is

T YR _
R—m—{exp(hulks T) -1
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34
ie., R=exp 06X 10" x 59 164}—1:ex

138 x 2500

66x 59x 16|
138x 10%x 2500

R=79x 10" | Answer

9.6 If a laser is pulsed for one nanosecond, and contains 40 kJ energy, do the power calculation. Also
compute the intensity of the beam.

Solution:
4
w=3 - OZ?O: 40 x 102 watt
S 10
or W = 40 tara watt Answer

For the simple calculation of the length of light ‘bullet’ for a-2@ec pulse, use the formula,
_ speed of light_ 3x 1¢°
time 10°

so that all the energy of that pulse would be considered in one foot of the laser radiation. If all that energy
(40 kJ) could be focused on a 10N spot, the spot will receive (par), an energy (or intensity) as

[ =0.3m = 1foot

Intensity= — o9 — 40x10 __ 509 x 132 J/nf

space area 47-[(1oo>< 106)

Intensity = 5 tera joule/m Answer

9.7 (a) What is the diffraction-limited beam divergence @-awitchedNd: glass lasefA =106 um)
having an output apertute= 1" ?
Solution:
The calculation would be
244x A _ 244x 106x 10
d  254x 102

ediff -

B4 = 1.02 x 10*radian  Answer

9.7 (b) What is the diffraction-limited spot-size diameter if the beam is focused by a lens of focal
length,f = 1.5?
Solution:

kL)

2
Ay, =244 : /.415’< 25x 10%2x 106¢x 10°

=2 >
25x 10

d,y = 3.9 x 10-°m

dgir =39 um | Answer
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9.1 In a material at 300 K two energy levels have a wave length separatgraf Tompute

(i) the ratio of upper to lower level occupation densities when the material is in thermal equilibrium
(i) the effective temperature when the levels are equally populated

(i) the effective temperature when the upper level is twice as densely populated as the lower
(Assume unit degeneracy for each level).

[Ans % =102, T - +wand T = -2100 KJ
1

9.2 Calculate the coherent length of He — Ne I{@a&5 m) if coherence time is 2679).

(Ans: 8 metre)

9.3 What is the critical angle for a ray in a step — index fribre for whjch 1.53 and which has a
cladding whos&r 1 is 2.5 % less.

(Ans 77.2)
9.4 At what temperature are the rates of spontaneous and stimulated emissiomegual® nm
(Ans: 41532 K)
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Q 10.1 Discuss the properties of a few important insulating/dielectric materials with their special
features
Answer.  Gaseous insulating material®\ir, nitrogen, hydrogen, neon and argon are some important
insulating materials available in nature. Electro-negative gases such as freon and sulphur hexafluoride
are also used. They are cheap and are easily available. Nonflammable and non-explosive. Air is the most
commonly used dielectric and is used as insulator in the following applications:

(i) Overhead transmission lines

(i) Air condensers

(i) Plugs, switches and various electrical machines and apparatus

Liquid insulating materials Insulating liquidsare generally used as an insulating and heat transfer
medium or purely dielectric purpose in order to eliminate air or other gases and there by obtaining
improved dielectric strength. Generally, insulating liquids are used in conjunction with solid insulation.
Broadly, the liquid insulating materials may be classified as
1. Mineral oils (petroleum oils)
Askarels
Silicon liquids
Fluorinated liquids
Synthetic Hydrocarbon Liquids
Organic esters
7. Vegetable oils

o oA wN

—20°C to 150°C is the temperature range under which the above liquids are used as insulating
materials.

Mineral oils are derived from crude petroleum. After distilling off the lighter fractions (gasolin,
petroleum, naptha, kerosene) in the process of crude oil distillatiasuit, a petroleum residue is
obtained, which renders various oils after further distillation. Thus mineral oil is the final product of
refining a certain oil fraction. Among the important electrical insulating products derived from the crude
petroleum are the insulating oils (used in cables, capacitor, transformer and switch-gear application),
electrical grade impregnatingaxes andetroleumand asphaltic compoundsarnishes and sealing
compounds. The said oil in transformers is some times knownaraformer oil

Transformer oil The transformer oil in the transformer has a vital role in the performance and life of the
unit. Some requirements of the oil are as follows:

(i) to provide high dielectric strength

(i) to permit good transfer of heat i.e., heat dissipating media

(iii) to be of low viscosity

(iv) to have high flash point

(v) to prevent corrosion of insulating material of the transformer

(vi) to ensure long life and chemical stability

Transformer oil is a special mineral oil with high dielectric strength. This oil is used for insulation

and cooling of transformer. The oil should be perfectly free from moisture because presence of even a
trace of water in it reduces its insulation strength considerably. The oil is undergone the process of
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dehydration periodically to remove moisture contents fro8luidge formatiomakes place in the oil due
to moisture, dirt or some foreign matter in the oil which is harmful. So the oil is to be tested at regular
intervals to know its qualities.

The transformer oil serves the following two main purposes:
(a) It transfers heat by convection from the windings and core to the cooling surfaces.
(b) It maintains the insulation of the windings

While the oil is in service in the transformersladgeis formed which is an oxidation product.
Sludge formation is accelerated by the contact with air and temperature. Sludge is also caused by the
presence of acids and alcohols. Sludge formation produces the following effects:

(a) Rate of heat transfer is reduced
(b) Ducts are clogged
(c) Operating temperature increases

Properties of transformer oil
(i) Dielectric strength 40 kV per mm when applied for one minute
(i) Flash point 169C
(i) Sludge value percent 1.2 (the percentage of insoluble matter formed when the oil is heated
and oxidized)
(iv) Pour point 40C
(v) Specific gravity 0.88
(vi) Dielectric constant 2.2
(vii) Acidity after oxidation 0.5

The transformer oil should possess the following properties:
(i) Non-inflammable
(i) Non-sludging
(i) Highinsulation resistance
(iv) Low evaporation
(v) Better mobility and penetrating quality
(vi) Easily available in sufficient quantity
(vii) Low cost
(viii) High thermal conductivity

The following laboratory tests may be carried out on the transformer oil for determination of its
properties

(i) Moisture test

(i) Acidity test

(i) Dielectric strength test
(iv) Sludge resistance test

When insulating oil is in circuit breakers it serves two purposes. i.e., it prongldating property
and helps iquenchingthe arc produced when the contacts are opened or closed. i.e. it acts as a fire
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extinguishing media. Now a days synthetic oil is used as an insulator in transformers in place of transformer
oil (mineral oil) because synthetic oils are very much resistaotitationandfire hazards

Fibrous insulating materialsThese materials are having alongated particles called fibers in their structure.
They are mechanically very strong and cheap. They are textile materials. They are having high
hygroscopicity and this is the drawback. Some examples are: wood, papers, card boards, cotton, jute,
silk, rayon, nylon, adhesive tapes, asbestos, fiber glass. Some of them are discussed here.

Wood Density of wood is 10kg/n? and its tensile strength is 800 to 1300 X KdJne. It is frequently

used for low voltage installation. It is very hygroscopic and after absorbing moisture tends to lose
markedly its mechanical properties. Because of the above limitations wood in rarely used as such.
Whenever it has to be used as an insulating material it is impregnated in oil. Because the wood is cheap,
easily available and easily fabricated, it is used as structural material for transmission and distribution
poles. It is also used for switch boards, round blocks, casing and capping and handles of tools.

Paper and card-boardThe paper is manufactured from coniferous wood. The organic contamination

like lignin and pantosans must be properly removed. Some alkaline reagents are added in the crushed
wood which is then boiled. The material is then formed in to papers. The process isuplede
processUnimpregnated paper is used in telephone cables and capacitors. Cardboards are sheets of short
fibers. They are either resilient or stiff. They are used for slot liners in electrical machines, coil frames
and as insulation in oil immersed transformers.

Asbestos It is a mineral (naturally occurring) material of fiberous structure. The larger the fiber, the
higher is the grade of asbestos and greater is its cost. These fibers are strong and flexible and some
varieties are even suited for spinning into different textiles. Asbestos finds extensive use in electrical
machines because of its ability to withstand very high temperature. It can bear a temperature of about
400°C without any considerable change. Asbestos is also used for making cloth types, paper boards for
insulation purposes. Asbestos materials are impregnated because it absorbs moisture. Its dielectric
strength is 3 — 5 kWwim The main applications of asbestos:

(i) In low voltage work as insulation in the form of rope, tape, cloth and board. For these
purposes asbestos is properly impregnated with a liquid or solid like resin. Proper impregnation
improves the mechanical and electric properties.

(i) Itis used as insulation in wires and cables under high temperature conditions, in coil winding
and in end-turn insulation in motors and generators, as conductor insulation and layer insulation
in transformers.

(i) Itis used as arcing barrier in switches and circuit breakers, etc.
(iv) It is used for covering wire for electric heating devices, ovens, electric iron, etc.

Cotton and silk Cotton is combustible and chars when heated, even without the presence of sufficient
air or oxygen. It is a porous material and soaks water rapidly. Moisture or humid air can also make it
moist. Hence it is not a good insulator. However it is used where flexibility is an important factor, very
high temperature are not reached and the atmosphere is not humid. Cotton covered wire is extensively
used for winding of small magnet coils, armature windings of small and medium sized machined,
chokes.

Silk is more expensive then cotton but takes up less space and is, therefore, used for covering
windings in fractional horse power machines. Silk is less hygroscopic and has a higher dielectric strength
than cotton, but like cotton it requires impregnation.
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Fiber glass Fiber glass products are less hygroscopic, possess good electrical and mechanical properties
and sufficient flexibility to get moulded into required shapes. For many applications fiber glass is
impregnated with materials like synthetic resin.

Adhesive tapesThese tapes are widely used in wiring systems to cover the conductor where its
original insulation is cut out. They must bear a temperature°@ffos 24 hours. They should not have
sulphur content otherwise it will react with the copper conductor.

Impregnated fiberous insulating material&lmost all the fibrous materials used insulation are impregnated.
Impregnation reduces hygrosocopicity, chemical and thermal degradation by which the fiberous materials
become more useful for insulation. Usually oils are used for the purpose of impregnation. Resins, drying
oils, varnishes are also used for impregnation of insulating materials. Oils used for this purpose are
selected carefully depending on requirements.

Insulating resins or plastic insulating material®lastic is an organic material and is found in many
varieties. It can be easily moulded into any shape through application of heat and pressure. Resin is the
substitute word normally used in insulation technology in place of plastic. The most common definition
for plastics is that they are natural or synthetic resins or their compounds. Most of the plastics are of
organic nature composed of hydrogen, oxygen, carbon and nitrogen. Natural resins are derived from
plant and animal sources. The use of plastic insulating materials is so common that probably it amounts
to more than that of the use of all other insulating materials combined together. Standard forms in which
plastics are available include moulding powers, sheets, rods, tubes, films and liquids. The properties
common to most of the plastics are: low price, a wide range of colours, toughness, water resistance,
low thermal conductivity, low electrical conductivity, light weight.

Plastics or resins can be of two types

1. Natural resins
2. Synthetic resins

Natural resins They are available in nature and are derived from plant and animal sources. Simple
purification or sometimes a little chemical modification is all that is required to make use of natural resins
in electrical insulations. Examples of natural resins are lac, cosein, amber, shellac, wood resin, etc.

Synthetic resinsThe resins which are prepared artificially by tkeeurring chemicalreaction of a

simple organic compound are called synthetic resins. During the reaction the molecules of the simple
organic compound combine together to form a high molecular weight composition. This reaction is
calledpolymerisation

Classification of synthetic resirfRlastics): Resins are divided into two main groups:

1. Thermosetting resingt is hard, rigid and does not soften when heated)
2. Thermoplastic resingt is soft and melts easily when heated)

1. Thermosetting resins

The thermosetting resins are formed by the intermedia products which under the influence of heat,
pressure, etc. undergo chemical changesndlensatiomndpolymerizatiorto form a rigid final shape.

They require heat and pressure to mould them into shape. When heat is applied, they first become soft
and plastic and on further heating they undergo change and set hard. The processheiratisdtting

or thermohardeningwhen a material is thermoset, it is permanently set and does not soften to any
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appreciable extent when being heated. However, intense heating will being about the breakdown of the
material by burning.

The thermosetting materials under a chemical change when moulded and cannot be resoftened by
heating to reshape them. Compared to thermoplastics, thermosetting materials are harder, mechanically
stronger and are suitable for use at higher temperatures. These materials are less flexible and have heat
resisting properties. The moulding temperature for the thermosetting are usually considerably higher
than for thermoplastics. They are widely used for telephone receivers, radio and television cabinets,
switch boxes and electrical outlets. Proper fillers and reinforcing materials are added to thermosetting to
improve various properties. Commonly used fillers and reinforcing materials are wood, flour, rag fibres,
chopped glass fibre, mica, clay, magnesium oxide, aluminium oxide, etc.

2. Thermoplastic resins

These materials are those resins or plastics which soften on the application of heat, with or without
pressure but they require cooling to set them to shape. When heated thermoplastics begin to soften at
temperatures as low at P40and then can be moulded without any change in chemical structure.

Plastic materials which soften and melt retain certain flexibility and are called thermoplasts. They
are produced artificially from organic substances like oil and coal products. Fillers like soot, mica,
textile, wood, glass fibres are often added to achieve certain desired properties. They are widely used
for floor tiles, walls, fluorescent light reflection, lenses, etc.

Q 10.2 Write a note on the special properties of laser beams comparing with that of the radiation from
sodium lamp. Discuss briefly the medical applications of lasers.

Answer Laser is a device for the generation of coherent, nearly monochromakighhyddirectional
electromagneticadiation emitted somewhere in the range from submillimetere through ultraviolet and
x-ray wavelengths. More than hundred types of lasers have been fabricated which range in power, size,
performance, use and cost.

A laser differs from ordinary radiations in several aspects. Laser is highly intense as compared to
radiations from conventional sources. This makes laser a valuable tool in coherent applications such as
welding cutting and drilling operations. A laser beam is highly coherentcdherencdength for
sodium light is about a few centimetre, where as it is of the order of kilometre for laser. This makes laser
an ideal source fdrolographic applicationgnter ferometric measuremenggpectroscopic applications,
etc. High coherence of laser leads to narrow line width. Hence laser beam is highly monochromatic.
Light from a conventional source is inferior in this respect because it is not sharply peaked at a wavelength.
A laser beam is highly directional. It is therefore possible to focus a laser beam to a very fine spot. Hence
it is liberally used byophthalmic surgeons focus the laser to a narrow part of théna without
affecting the neighbour hood unlike other radiations.

Medical Applications

The developments of the free-electron laser by John M.J. Madey in 1971 excited research groups
throughout the world who have recognized the potential of the concept especially with respect to
medical applications. The free-electron laser is considered to be the most exciting medical machine of
the next several years. It was considered as a major break through in the treatment of diseases such as
cancer, without the liability of harming healing tissue. frae electron-electron lasés relatively young

device that differs sharply from any other laser type. It requires access to a high-energy electron
accelerator. Indeed, medicine is just one of a gaggle of applications cited as promising fields for the free
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electron laser; others include spectroscopy, IR imaging, chemical processing, welding and metal working,
laser fusion, communications, and directed energy weapons. The medical applications of lasers in some
of the important areas are now discussed briefly.

Surgery

In medicine as in science fiction, lasers are mostly regarded for their ability to vapourize matter with a
concentrated blast of energy. Surgeons use them to burn up brain tumors and remove tattoos. Experiments
with lasers to weld tissue, hoping to bring a new delicacy to surgical techniques were successful.
Rejoining blood vessels with severed nerves by lasddingis much quicker for the surgeons than

using traditionakutures The key difference between using a laser to blast away tissue and using it to
rejoin or mould it lies in the amount of energy used. Laser welding will result in fewer post operative
infections than sutures because the laser introduces no foreign materials into the body.

Another technique involving the use of lasers is the treatment of paralysis where an He — Ne laser is
used to stimulate the nerves in the wrists and ankles. Apparently this procedure has the unique ability to
stimulate the part of the brain that contralstor responsand cause dramatic changes in nerve reactions.
Success has been achieved in restoring hand movement after spinal cord injury, reduction of stiffness
and spasms in paralyzed limbs, and a major recovery of body movement in some patients previously
classified as permanently paralyzed. Relief of pain by this technique has also been reported.

Lasercoronary angioplastythe term for removal of unwanted plaque in coronary arteries, is a
technique that is available but needs to be modified for clinical applications. Those patients have had
their blood flow rerouted around original cloggaderies but in most cases, artery disease continues
and may narrow the replacement artérya good percentage of cases. Repeat by-pass surgery is not
feasible. Such patients could be helpedaser angioplastywhich could be probably be repeated as
needed. Such patients could be helped by laser angioplasty, which could probably repeated as needed.
The laser that offers a wave length of ultraviolet light that may be just right for the delicate work of
clearing our arteries. Called axcimer laserthe energy comes from halide gases made from krypton
and fluoride or from xenon and chloride. An advantage of the energy beam produced by the excimer
appears to be its ability to break apart all materials clogging arteries without producing heat. The term
excimer comes fromeciteddimer’ and refers to atomic particles formed by a pulsed electrical discharge,
which emit ultraviolet radiation as the excited particles relax.

Ophthalmology

The four most common sight-destroying diseases among people over the age of Macaiar
degenerationglaucomadiabetic retinopathyandcataract and states that new therapies have simplified
much eye surgery so that many operations can be performed on an out patient basis. Millions of people
suffer fromglaucoma a potentially blinding disease in which pressure builds up inside the eye and
pinches the optic nerve. The pressure comes from a backup in the flow of fluid. Watery fluid normally
enters and exists the eye at all times, but it gets backed up when something clogs up the “drains” called
the trabecular meshworkWith too much inflow and too little out flow, pressure mounts. A good
percentage of glaucoma patients can control this pressure with special eye drops. For others, an
opthamologist might suggest 80 to 100 bursamgbn laser There is a rare form of glaucoma, called
angle<losureglaucoma for which the laser has also been used. While open angle glaucoma progresses
without symptoms, angle-closure glaucoma causes blurry vision, red eyes and pain. To treat it,
ophthalmologists use the laser to puncture the iris-the coloured part of the eye-so that fluid flows freely
between two chambers in the front of the eye and pressure drops.
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Dermatology

Dr Leon Goldman, a dermatologist, was a pioneer in developing removal of skin irregularities at the
University of Cincinnati Medical School Laser Laboratory. The treatment of portwine stains and deep-
red birthmarks on Caucasian skias become a clinical procedure. Also, removal of unwanted growths,
including carcinomas (skin cancerous cells), have become routine laser tredtasartacupuncture

is becoming a popular treatment for some disorders and for the relief of pain. Being painless, fast and
hygienic, laser treatment is becoming more popular in China and Western Europe than needle techniques.

Conclusion

About from its inception the laser has found applications in medicine. Sometimes the laser has emerged
as a means for carrying out a new surgical procedure, in other cases the laser presents an alternative
means for carrying out an existing procedure. Perhaps the best known of these surgical applications of
the laser has been in the reattachment of detached retinas. If the detached retina will settle back into the
coherent position it can literally be welded back into place by focusing a CW (continuous wave
propagation) argon ion or a pulsed or CW Nd: YAG laser through the lens of the eye onto the back of the
eye. Bleeding inside the eye can also be stopped by laser heating the site of bleeding-a process called
photocoagulation. The same lasers that present a serious eye-hazard, because they can penetrate to the
back of the eye, can be used for these surgical procedures inside the eye. The ability of lasers to burn or
cut, the outer surfaces of the cornea has led to new, and still controversial, procedures in which a laser
is used sculpt theorneato correct the vision defects. This procedure is calielihlkeratotomyand is

generally carried out with excimer lasers.

Ultraviolet, visible and infrared lasers are readily absorbed by body tissue so they have an ability to
act as scalpels in specialized treatments. For treatment of certain skin conditions including some cancers,
the ability of the laser to burn and selectively remove thin layers near the surface without damaging
underlying tissue is very valuable. Much of the ability of the laser to burn locally, and selectively, is based
on the absorption of the laser wavelength by water. Consequenflia€&ds are more effective than
argon ion or Nd: YAG lasers in these scalpel-like applications. However, the absorption of water in the
body is largest near [8m, so lasers near this wave length such as erbium: YAG, are attracting great
interest.

A clearly beneficial application of pulsed blue-green dye lasers is in the fragmentation of kidney
stones that have left the kidney and become trapped in the urinary tract. Pulses of intense visible light
directed along an optical fiber at the kidney stone successively break the stone into several pieces that
are then able to leave the body. It is preferable to useable dye lasefor this treatment so as to
maximize the energy absorption by the offending stones while at the same time not heating up any blood
that is in the vicinity of the stone. For general applications as scalpels lasers are attractive when used to
cut veryvascular tissugwhich bleeds a great deal when cut. The laser cuts and cauterizes at the same
time, the result being an incision with a layer of burnt tissue on both sides of the cut. Lasers are even
finding application in painlessdentistry. Lasers have many additional non-surgical uses in diagnostics
and monitoring, for example in analytical procedures, and as optical sources in various types of sensors
for temperature and pressure, and blood flow.

For performing surgery inside the body the laser beam must be directed inside an optical fiber
system that at the same time provides the surgeon with a TV image of the region at the end of the fiber.
An exciting application of lasers in this way involves the burning awaplation, of the plague inside
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blocked arteries, thereby opening them up once again to blood flow. This procedure is called laser
angioplastyand is worthy of further discussion.

Laser Angioplasty Arteriosclerosis is the constriction, or blocking, of blood flow through arteries.
The material that leads to this problem is called plaque, a composite material containing layers of fat,
fiberous tissue, muscle tissue, and varying amounts of calcium4d®©)).}. There has been great
interest, and some success, in using both CW and pulsed lasers to ablate plaque away. A laser beam is
directed at the blockage in an artery along an optical fiber inserted through a catheter into the artery. The
catheter is threaded over a previously placed guide wire. The use of lasers in this away is called laser
angioplasty, in contrast with the earlier (and still more widely used and successfully) technique of
balloon angioplasty. In this technique a small balloon is threaded into the occluded region of the artery
and then filled with fluid, thereby compressing the plaque against the wall of the artery. The problems
that have been faced in the use of lasers to remove plague have involved:

(i) Avoidance of damage to the wall of the artery, which is only abaunthick. This problem
has been alleviated to a large extent by placing a ball lens on the end of the fiber.

(i) The opened region can reocclude within a few months.

(i) Thermal damage to healthy tissue can occur. The use of pulsed lasers seams to avoid the
thermal damage problem while short intense pulses are effective in photoablating the plaque.
Sub-microsecond ultraviolet pulses fromC{éasers at 308mare being investigated in this
application as is the use of holmium lasers operating at/211 These lasers are used in a
long pulse mode delivering a few joule per pulse iff $&c long pulses at 1 — 10 pulses per
second. Their wave length of 2[Am is strongly absorbed by water. Both these ultraviolet
and near-infrared wavelengths can be delivered to the occluded site along silica fibers. The
treatment of the occluded artery is frequently followed up by an application of balloon
angioplasty.

Q 10.3 Discuss briefly light-emitting diodes and also one or two photon devices.
Answer. Light-emitting diodegLEDSs)

They are effectively the reverse of photovoltaic cells. In photovoltaic cells, light is used to produce
an electric voltage; in LEDs, a voltage is applied acrgss gunction to produce light. A-n junction
diode when forward biased can be made to emit visible light and is known as a LED, which is extensively
used inpocket calculators. The radiation has a broad spectrum and is spontaneous and non-coherent. It
is due to the recombination of electrons and holes which occur when conduction band electrons are
captured by valence band holes. By using suitable materials such as GaAs or GaP, the emission of red,
green or yellow light can occur at low current densities. The phenomenon is therefore different from
that of the laser diode, which requires much higher current densities and emits stimulated, coherent
radiation.

LED operates by the emission of photons produced by the transition of electrons from conduction
band to valence band. This transition occurs in the material peajusction which is supplied with an
excess of minority carriers by a forward-biasing current. The material for a visible LED must have a
band gap of at least 1.7 eV so that the transition causes the emission of visible light. A glance of the table:
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Table 10.3.1  Some band energies at 300 K

Material Energy gap Group in periodic Ag(nm)
(eV) table
C 54 (Y4 230
Si 111 v 1110
Ge 0.66 v 1880
Al Sb 1.60 n-v 776
Al As 217 n-v 573
GaP 2.24 n-v 555
GaSb 0.70 n-v 1775
GaAs 142 n-v 875
InP 135 n-v 978
Cd Se 1.74 I-Vi 714
Cds 242 I-Vi 513

Table 10.3.1 shows that Ill-V compounds such as GAP and II-VI compounds such as CdS are
suitable materials, and in fact the majority of LEDs for displays are made from I1I-V compounds which
can cover the band gap 1.42 to 2.24 eV (880 — 558nm), that is, red to yellow green. Some devices made
from SiC have been made whiemit blue light, but at low efficiency II-VI compounds do not find
favour as they are hard to drpgype. However, as can be seen from table 10.3.1, while GaAs has a
direct gap, both AlAs and GaP have indirect gaps. Because the emission of photon in an indirect-gap
material also requires a phonon to participate during the electron’s interband transition, the photon
probability (or quantum efficiency) is low and the light intensity is low too. This fall in efficiency is
compensated to some extent by the increase in the human eye’s response at wavelength around 555nm.
Doping the material with nitrogen introduces an electron-trapping level aboeMBelow the conduction
band, which enhances the efficiency.

Photon Devices

Three important devices using the photoelectric effect are the photomultiplier, photoconductive cell and
solar cell.

Photomultiplier

When light falls on a photocathode, the emitted electrons may be only few in number. To increase the
number several times, each primary electron is made to emit several secondary electrons by impact on
another electrode at a higher potential.

In Fig. Q 10.3.1, K is a photocathode coated with a material such,@bk.®hotons falling on K
emit one or more electrons which are accelerated in turn to a series of dynpéesec...held at
successively higher potentials. Each dynode is coated with a low work function material emits as many
as secondary electrons for every primary electron. The dynodes are suitably positioned and typically ten
may be employed, giving an overall amplification factor o Hectron per primary electron. The
emitted electrons are collected at the final anode C to produce a large photoelectric current through an
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external circuit. An important application of such a device is the scintillation counter which is used for
recording radioactive particles.

Dynode
A
C
mm
K A,
Photocathode Final anode

Fig. Q 10.3.1 Photomultiplier

Photoconductive Cell

The photoconductive cell is a device for detecting the amount of light radiation present. Typical applications
are in photography and as infra-red detectors. For photographic purposes, the conductive cell consists
of a pair of electrodes embedded in a CdS surface and connected externally to a small voltage. The
spectral response of CdS corresponds to that of the normal eye and so it records the amount of daylight
falling on it. It can be calibrated to indicate the amount of exposure required for a certain film. As an
infra-red detector CdS has too slow a response and so a commonly used material is PbS, which is very
sensitive to infra-red radiation and can be usefully employed in military applications such as missiles for
destroying jet aircraft.

A semiconductop-n junction when exposed to light can also be made to change its conductivity.
Such a device is known as a photodiade consists of p-n junction which is reverse biased. Photo
detection occurs in th@epletion regiorwhere the high electric field separates the electron-hole pairs
which are excited on the absorption of radiation. For sufficiently high fields, secondary electron-hole
pairs are produced by impact ionization, resulting in internal gain, as in the case of avalanche photodiode.
Such a silicon photodiode is best suited to use as a detector in an optical fiber system, employing wave
lengths up to 1m.

Solar Cell

The direct conversion of solar energy into electrical energy has been of considerable interest, especially
in satellite communicatiorfer recharging conventional batteries. Hence, in recent years, much research
and development has been done to produce a cheaper and more efficient device generally known as a
solar cell

The solar cell is basicallymn junction diode that converts sunlight directly to electricity with large
conversion efficiency. The action of the solar cell is explained as follows:

When p-n junction diode is exposed to light, photons are absorbed and electron-hole pairs are
generated in both theside andiside of the junction, as shown in Fig Q.10.3.2. The electrons and the
holes that are produced over a small distance from the function reach the space-charge region X by
diffusion. See Fig. Q 10.5.2 (b).

The electron-hole pairs are then separated by the strong barrier field that exists across the region X.

The electrons in thp-side slide down the barrier potential to move tortkade while the holes in the
n—side move towards theside Fig. Q 10.3.2 (c).
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Fig. Q.10.3.2 (a) p-n junction with load resistance, R, (b) Diffusion of
lectrons and holes (c) Energy band diagram corresponding to (b)
(d) Formation of the open circuit voltage, V,,

When thep—njunction diode is open circuited, the accumulation of electrons and holes on the two
sides of the junction gives rise to an open-circuit voltagef\d load resistance is connected across the
diode, a current will flow in the circuit [Fig. Q 10.3.2 a]. The maximum current, called the short circuit
current is obtained when an electric short is connected across the diode terminals. Note that the current
flows as long as the diode is exposed to sun light and the magnitude of the current is proportional to the
light intensity.

Solar cells are used extensively in satellites and space vehicles as most important long-duration
power supply. Solar cells are constructed with silicon, gallium, cadmium sulphide and with many other
semiconductors, and in various device configurations.

Q 10.4 Write notes on Fiber optics and Holography.

Answer. 1. Fiber optics Alexander Graham Bell, the inventor of telephone was the pioneer in this
field. He successfully transmitted a telephone signal over a distance greater thams@iplight as the

signal carrier (1880). The field became active after the invention of lasers (1960), highly monochromatic,
intense coherent and directional beam. In 1966 it was proposed that fibers with high purity core surrounded
by acladdingof lower refractive index could be used for transmitting light over long distances: Robert
Maurer was able to produce a fiber with a loss oflB&m. To day we have fibers having a fraction of
dB/km for attenuation Tremendous information carrying capacity is the special feature of fiber optic
cables. Fiber optic cables are light weight, inexpensive and they are immune to electromagnetic interference.
Reliability is very high. It is believed thahotonicsystenmay replace electronic system of communications

cent percent in another decade.
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Optical fibers may be either glass or plastic. When low losses are important, glass fibers are superior,
having losses less than 1 dB/km. The operation of simple optical fibers is based on the phenomenon of
total internal reflection. If a fiber core is clad with a material of lower refractive index than the core,
there will always be a critical angle such that rays striking the interface of core and cladding at an angle
greater than this angle will be totally reflected. Thus the fiber becomes a light guide or dielectric wave
guide. This phenomenon is illustrated in Fig. Q 10.4.1

”3

Vi s
N

Fig. Q 10.4.1 Optical fiber showing entering ray striking cladding at critical angle

Core Cladding

In this Fig. Q 10.4.1, a ray shown entering the face of the fiber at the maximum possible angle that
will result in total internal reflection of the ray inside the fiber. Applying Snell’s law at the fiber face
assuming the ray strikes the core-cladding interface at the critical angle we can show that the numerical
aperature,

NA= nsing, = {rj - rf}z (Q 10.4.1)

Heren,, n, andn, are the refractive indices of the external medium, core and cladding, respectively;
0, is the half angle of the entrance cone, BiAdstands for numerical aperature. The cladding in glass
fibers is also glass but doped differently than the core to give it a slightly lower refractive index. For
example, if the core and cladding indices are 1.55 and 1.50 respectively, for a fibéXA=ar,39 and
0,= 23°. The type of fiber just discussed is a step index fiber. Another type commonly used is the
graded index fiber. Here the refractive index decreases radially from the centre in a parabolic fashion.
Rays launched at some angles to the axis of the fiber continuously change direction toward the axis
without ever striking cladding. The path is a zig-zag combination of straight-line segments between
reflections in astep index fibewhereas the path in a graded index fiber is essentially sinusoidal. Losses
in glass fibers are primarily due to scattering by impurities and defects. Losses in plastic fibers are
chiefly due to absorption.

Short delay times in optical communications are described to minimize pulse spreading and the
resultant degradation of information. There are two causes of delay in optical fibers, referred to as
model dispersiondwavelength dispersioModel delay is caused by the different distances traveled
by different rays within the fiber. The maximum value for this type of delay in a step index fiber can be
deduced by considering a ray travelling parallel to the axis and a ray reflecting from the cladding at the
critical angle. The time delay per unit of fiber length is then given by
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At:&{ ! —1}:&{&—1} (Q 10.4.2)

c |sinf, c |ng

This amounts to 0.1i7s/mfor many fibers. Actual delay times are less because the losses are higher
for the rays traveling grater distances.

Optical fibers are waveguides and, as such, not every imaginable geometrical path for a ray is an
allowable mode. In fact, if the fiber is made sufficiently thin, typically a few micrometers in diameter,
only one allowed mode exists. Such single-mode fibers effectively eliminate model delay, and picosecond
delay times are possible. Graded index fibers minimize modal dispersion because the farther a ray
wanders from the axis, the more time it spends in a region of lower refractive index (higher speed).
Thus the time delay between axial an non axial rays is reduced. Wave length, is minimized by proper
material design to reduce this variation and by the use of narrow band width light emitters, chiefly diode
lasers.

It must be recognized that losses also occur due to reflection at entrance and exist surfaces and
coupling of light from emitters into fibers and the coupling of light out of fibers to detectors. Highly
efficient techniques and devices have been developed, however, for coupling light in and out of fibers
and for coupling light from one fiber or several other fibers.

Features of Fiber Optics Communication Systems

Very large information transmission capacity and large repeater spacing are the main features of fiber
optic communication systems. They also offer many advantages compared with the usual metallic
transmission process. Since the fibers are composed of dielectric materials they are totally immune to
extraneous interfering electromagnetic signals. There is virtually no signal leakage from the fibers and
therefore cross — talks between neighbouring fibers are almost absent while this is very common in the
conventional systems. Since signals do not leak away from the fibers they are resistant to intrusion and
are accordingly highly suited to secure good results in defence communication networks. Since these
fibers are immune to electromagnetic interference and do not pick up line currents, they can be safely
used in a power station, and can be laid along side metallic power cables. They are also much smaller in
size than an electric line of equivalent band width and thus would occupy much legsadedtiso the

raw material used in the fabrication of low loss fibers is silica, which is abundantly available in nature (of
course in an impure form), where as copper or aluminium constitutes the basic raw material in co axial
cables. Cost surveys indicate tiatxial cableprice will continue to rise due to an almost continuous
increase in the price of copper or aluminium but the prices of fibers will come down as the production
volume increases.

Holography

Holographyis lensless three-dimensional photography. A conventional photograph is only a flat record
of real image projected on to a photographic film. Information about the three-dimensional character of
the object is almost entirely lost during the photographic recording process. Only the blurring of the
images of objects that are not within the depth of field of the camera preserves any record of the
location of the object relative to the camekaologramon the other hand is a spegélotographof an

object that retains information about the phase of waves coming from the object. Holography has a
much longer history than that of the laser, although it was the invention of the laser that made the
production of high quality holograms a reality.
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In 1947, Denis Gabor was looking for a way to improve the quality of images that could be obtained
with anelectron microscopéAlthough the electron microscope of that day should have been capable of
resolving down to the atomic scale, aberrations of the electron optics prevented them from doing so.
Gabor conceived the idea of recording an electron hologram, which would contain amplitude and phase
information, and then reconstructing a corrected image of the object by optical means. He did succeed
in producing holograms and performing image reconstruction, but the optical sources available to him
were not sufficiently temporally coherent allow high quality images to be achieved. For his pioneering
work he was awarded the 1971 Nobel prize for physics. The high degree of coherence obtainable

Mirror
Beam
shutter

Reference

Mirror

Fig. Q 10.4.2 Diagramatic sketch illustrating technique
with a laser to produce a hologram on film

with a laser has made the production of holograms and applications of holography into a large subject in
its own right. The principles underlying holography share much is common with the phenomena of
interference and diffraction.

In conventional photography the photographic emulsion becomes dark according to the local intensity
of the real image falling on it. The emulsion is a mixture of silver halide crystals of different sizes,
predominantly silver bromide, in a gelatin matrix. Incident light frees electrons from the halide, but the
electrons become trapped. Addition of developer reduces the silver ions in an exposed crystal to silver
atoms, leading to a strongly absorbing region where exposure levels were high. This is how a photographic
negative is produced. We make a hologram, and preserve phase information in the photographic record,
by allowing temporally and spatially coherent light to illuminate the object. Light reflected and scattered
from the object falls on a photographic film together with a reference wave supplied directly to the film
with the same laser as is used to illuminate the object. The schematic way in which this is done is shown
in Fig. Q 10.4.2.

Light emitted by a laser splits into two paths, one to create an object beam and the other to serve as
a reference beam. It is intersecting, or interference, of the two beams and the resultant beam projected
on a photographic film that forms thelographic imageBecause every location on the object is
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illuminated by the object beam, the reflection of these waves intersects the reference pattern and the
resulting image appears suspended in space so that as the viewer around the image a three dimensional
object is visualized. The developed hologram does not contain a recognizable image of the object as a
conventional photograph does. The hologram generally appears as a collection of bright and dark lines
with bright and dark patterns of concentric circles. The stored image can be regarded as a representation
of the diffraction pattern of the object. The hologram formed by exposure of a film and the production

of a complex pattern of transmission is calkedplitude hologramHowever, it is possible to process

the film chemically bybleachingso that the dark silver atoms are converted into silver salts that are
transparent but have a different refractive index than the surrounding film. This converts the recorded
hologram into pattern of phase information and is callpdase hologram

Volume Holograms

The holograms that we have been considering so far are pllleglhologram$ecause we have been

tacitly assuming that interference of object and reference waves writes the hologram in a particular
plane. We are neglecting the thickness of the photographic emulsion. However, since actual emulsions
can be up ta20 um thick it is possible, and in many cases desirable, to write a volume hologram in
which interference fringes are written through out the emulsion. The hologram can be thought of as a
continuous distribution of plane holograms at different valuestiofough th@mulsion thicknesgust

as the sample plane hologram produced by the interference of two plane waves was a planar diffraction
grating the volume hologram produced in this way will have a structure where the regions of bright and
dark are distributed in a series of parallel planes is the recording medium.

Industrial applications of holography includendestructive testingNDT) techniques to find flaws
in structural parts. Called holographic interferometry, this method of examining materials for flaws,
dimensional exactness, effect of heat or vibration, or other physical aspects has revolutionized NDT,
replacingradiographyin many instances and supporting other methods of quality control to accuracies
not available until the laser was adapted to holography and developed to its present state of the art.

Other applications include data storage, whereby written information can be reduced to small dimension
that one source claims that all the material in a library could be stored on a medium about the size of a
regular—sugar cube. In the operation of a robot, recognition of patterns stored in a memory bank could
help in a robotic decision-making. Holographic logos are being used to foil credit card counterfeits.
Holography gives doctors a 3D view of the inner working of the body organs without side effects. The
beating heart, thietusof a pregnant woman, flowing blood are now available frootion holography

An instrument called aaphthalmic laser interferometédras been developed by eye researches so
that the results of certain eye surgery can be predicted. “The pre-surgical prediction of the potential
retinal visual acuityallows the clinician to make a more confident qualitative and quantitative determination
as to the cost/benefit ratio for the patient” as reported in the journal “Laser Optics”. This instrument is
therefore valuable for patients with optical media problems suemtisular cataractor aberration or
cloudy vitreousvhich cloud or degrade images. The laser interferometer can also serve as a predictor of
multiple sclerosisby determining if the eye being examined maintains the same decimal acuity through
out constant monitoring during a five minute period as a healthy eye wound. A suspected acuity would
decrease with time. Holography helps to visualize subatomic particles. It is reported that scientists are
looking with holograms to find the elusive fundamental particle of méteiquark
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Laser Plasma

Short pulse, high energy laser pulses when focused produce extremely high energy flux, electric and
magnetic fields. For example, a 1kistectangular laser pulse focused to spot sizé @i produces
an energy flux of 6.4 x 29W 2, an electric field of 2.2 x 20V n1?, and a magnetic flux density in
free space of 73 KkT. Fields substantially smaller than this can strip outer and inner shell electrons from
the atoms of a target material. Consequently, intense focused lasers have found wide spread use in the
production of plasmas from the surface of target materials. These laser produced plasmas can be
copious producers of x-rays, which can be relatively coherent. Such x-rays have significant potential
for high resolutiorholographyandlithography. Because diffraction limits resolvable feature size in a
microscopic or lithographic system, the shorter the wave length being used the finer the resolution.
Most laser — induced generated x-radiation is coherent because of amplitude spontaneous emission
(ASE) effects. The rapid ionization of a target material, frequently a thin metal foil, irradiated with an
intense laser pulse, can lead to a short lived population inversion on energy levels of the resultant
multiply ionized ions. In many ways the process is an energetic analog of the excitation process is self-
terminating pulsed gas lasers such as copper vapour and nitrogen.

The irradiation of various materials at very high laser fluengdesq) has, in and of itself, provided
a fruitful means for studying matter at very high temperatures and pressures. However, much of the
impetusfor such studies has been provided by the desire to demonstrate laser — driven, inertial
confinement, nuclear fusioMuclear fusionoccurs in stars and hydrogen bomb explosions, and there
has been work for several decades on the controlled production ahgugionucleareactionson a
laboratory scale fonuclear power generation

Q.10.5 Write short notes on

(i) Ceramic materials

(i) Polymers
Answer. (i) Ceramic materials

The word ceramic is derived from the Greek word “Keramos” which means Potter'soeaithy,

The word ceramics, to-day, includes not only clay but also a wide variety of substances. In short,
ceramics are inorganic, non metallic materials. Since there are many possible combinations of metallic
and non-metallic atoms, there may be several structural arrangements of each combination, a wide
range of ceramic materials are found to occur and used as very useful engineering materials. Generally
ceramic materials can be in three groups: Glays, Glasses and Refractories.

Glays The mixtures of various minerals which posses kaolinitgA2Si0,.2H,0) or similar hydrous-
alumino silicates as their basic constituents are known as clays. The important clay prodwicissare
terro-cottaware, roofing tiles wall tiles, sewer pipegndsanitary waresetc.

Glasses A product formed by the fusion of one or more of the oxides of silicon, boron or phosphorus
with certain basic oxides (e.g sodium, magnesium, calcium, potassium) which normally is hard, brittle
and amorphous is called glass.

Refractories Those non-metallic materials which are used to with stand high temperature in different
industrial processes and operations, are known as refractdhiesmain properties of refractories are
refractoriness, low porosity, ability to resist chemical action of environment to thermal shocks, low
shrinkage and expansion. Fire clay bricks and silica bricks are some examples.
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Electrical Properties of Ceramic Materials

Ceramics do not have high electric conductivity like metals because they generally do not have free
electrons. There are ceramic materials with some ionic conductivity. The conductivity in them is because
of ionic bonds. But ionic conductivity requires the diffusion of ions and hence is quite low. However,
ionic diffusion is very much increased at higher temperatures. Glass is commercially used as an insulator
in ordinary electrical applications, but in the glass melting furnace the conductivity is very high because
of higher mobility of ions at the high temperature.

Dielectric Properties

Many ceramic materials possess the dielectric property. Not only does a dielectric material act as an
insulator, but it also interacts with the electric field. The dielectric constant is an electric property which

is direct consequence of electrical dipoles in the internal structure of a material. When the ions, or
electrons with in the atoms, or both can align themselves with the external field, more electrons can be
collected on the negative electrode and more electrons can be removed from the positive electrode. As
most capacitors (and hence dielectric materials) are used with alternating currents, the dielectric constant
of a material depends mainly upon the ability of the electric dipoles to reverse their alignment with the
reversal of the current. This reversal can take place very quickly for the dipoles resulting from the
dispersion effects of electron distribution around the atom. The electrons are accelerated to the side of
the atom which is adjacent to the positive electrode and can be shifted quickly (frequehy tdthe

other side of the atom when the polarity of the electrode is reversed.

Clay. Clay possesses a very high dielectric constant under static conditions, but its dipoles cannot
change direction with alternating currents. Consequently, in clay the dielectric constant for alternating
current arises totally because of ion and electron movements. Some crystals within their unit cell possesses
two or more positions when an ion can exist with equal energy. In these crystals high dielectric constants
are developed because of the shifting to and fro of the ions as the electric field is reversed. The capability
of shifting of the ions because of such crystal arrangement makes the dielectric constant higher. Maximum
frequency in such cases is limited to a few billions per second. This value of frequency is of course
much lower than the frequencies mentioned earlier. This value of frequency is amply high for many
engineering applications, such as television and radio. These materials may be nearly permanently polarized.
Permanent polarization is advantageous in engineering applications of the type of memory unit in an
electronic calculator. Such dielectric materials are namtsiraglectric materials(e.g) barium titanate
(BaTiQ,). Of the many different compositions of ceramics, those suitable for electric use are made from
the combination involving silica (Sifd alumina (ALO,), magnesia (MgO); boron oxide (B)); titania

(TiO,); or zirconia (ZrQ). Ceramic materials are commonly classified into two ways and the details are
presented in the following table:

Table 10. 5.A  Functional classification of ceramics

Group Examples
1. Abrasives Alumina, carborundum
2. Pure oxide ceramics MgO, &, SiQ,
3. Fired-clay products Bricks, tiles, porcelain, etc.
4.  Inorganic glasses Window glass, lead glass, etc.

Contd
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Group Examples
5. Cementing materials Portland cement, lime, etc.
6. Rocks Granites, sand stone, etc.
7. Minerals Quiartz, calcite, etc.
8. Refractories Silica, bricks, magnesite, etc.

Table 10.5.B  Structural classification of ceramics

Group Examples

1. Crystalline ceramics Single-phase like MgO or multi- phase from the
MgO to ALO, binary system

2. Non crystalline ceramics Natural and synthetic inorganic glasses
(e.g. window glass)

3. Glass—bonded ceramics Fired clay products—crystalline phases are held
in glassy matrix

4. Cements Crystalline or crystalline and non crystalline
phases

(i) Polymers The term polymer is derived from the Greek words poly, meaning “many”, and meros,
meaning “parts” or “units”. Thus polymers are composed of large number of repeating units (small
molecules) callechonomersThe monomers are joined together end—to—end in a polarization reaction. A
polymer is, therefore, made up of thousands of monomers joined together to form a large molecule of
collidal dimension, callethacromoleculeThe unique feature of a polymer is that each molecule is either

a long chain or a net work of repeating units all covalently bonded together. In some cases, molecules
are held together bgecondary bondsuch as van der Waals or hydrogen bond. Polymers, however, are
molecular materials and are generally non crystalline solids at ordinary temperatures, but pass through a
viscous stage in course of their formation when shaping is readily carried out.

The most common polymers are those made from compounds of carbon, but polymers can also be
made from inorganic chemicals such as silicates, and silicates and silicons. The naturally occurring
polymers include protein, cellulose, resins, starch, shellac and ligmin. There are also synthetic polymers
such apolyethylengpolystyrenenylon, terylenedecron etc. termed under plastics, fibers atastomers
which possess properties superior to those found in their naturally-occurring counterparts.

Size of a Polymer

A very important parameter that is to designate the size of a moleculeegtee of polymerizatioor

D.P. It refers to the number of repeat units in the chain. At D.P values of about 10-20 per molecule, the
substance formed is a light oil-a paraffin if formed from ethylene. As the D.P increases the substance
becomes greasy, then waxy, and finally at a value of D.P of about 1000 the substance becomes a solid
and is then a true polymer. Naturally the D.P is almost unlimited—it may increase around 100,000 or so.
In commercial plastics the D.P normally falls in the range of 75 to 750 per molecule. The molecular
weight is another measure of chain length and is equal to the D.P multiplied by the molecular weight of
the monomers. In fact, it represents the cumulative weight of all elements forming the gaint molecule.
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This may range between 10000 and 1000000. Polyethwlighe D.P of 1000 has a molecular weight
of 280,000.

Mechanism of Polymerization

The process of linking togethermibnomerss calledoolymerization The need to start with the process

of polymerization lies on the necessity of breaking the double bonds (C = C) of monomers. This requires
considerable energy and is equal to 612 kJ/6.02xidhds. However, 348 kJ/6.02 x#10Bonds are
released every time a single C — C is formed. Since two new single C — C bonds are formed from each
former double C = C bond, external energy is required to start the polymerization reaction rather than to
continue it.

Theoretically, it might be possible to link all the monomers into a long continuous chain, but in
practice this does not take place. The reason is that the molecules must be available in the immediate
ends of the chains, and if they are not found available there, it is necessary to diffuse them to the ends
of the chains. The diffusion process by which the molecules of the monomer move to the ends of the
growing long-chain molecules or macro molecules being a very slow one, the chain formation must
ultimately cease due to non availability of further simple molecules as soon as they are required to
continue polymerization.

Elastomers

Natural rubber is aslastomera polymer whose limit of elastic extension is very much greater than that

of other solids. We have described earlier in the chapter how this property depends upon the fact that
contorted molecular chains may be uncoiled by a tensile stress. From the discussion of thermo plastic
materials it should be obvious that a small degree of cross-linking is necessary to prevent plastic flow. In
natural rubber this is achieved by the process knowvuksnization The raw material is latex, a
viscous fluid which contains a linear polymerisgprene The double C — C bond prevents rotation of

the monomer units and does not allow the cis form to turn into the transform or vice - versa. Trans-
polyisopreneknown asgutta-perchg exhibits a very limited extension under stress because the CH side
groups lying on both sides of the chain interfere with one another more than if they were all on the same
side. The liquid form of cis-polyisoprene is cross-linked by heating in the presence of sulphur atoms to
form a vulcanized rubber with a sulphur content of about 1-2% by weight. If more sulphur is used, a
rigid plastic called ebonite is made.

Electrical Behaviour

Polymers do not display marked magnetic properties, nor do they conduct electricity unless combined
with a conducting filler. Indeed, some of the polymers are very good insulators. This is due to the fact

that all the electrons are strongly bound in the covalent bonds and none is free to conduct electricity. But
to select a good insulator one should know which polymers do not absorb water since this can conduct
electricity.Polyvinylchloride polyethylengandpolytetrafluorethyleng PTFE), are all notable examples

of flexible insulatorsPerspexLucite) andtufnol are much used where a rigid insulator is required.

Some polymers which contain polar groups such as chloride atoms, hydroxyl groups, or sulphur
atoms readily become electrically polarized when subjected to an electric field. This results in a high
dielectric constant gpermittivity. Since many plastics contain fillersplasticzerstheirpermittivity is
artificially increased by what is called interfacial polarization.
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Q 10.6 Explain electro-chemical corrosion with the help of an electro-chemical cell. Briefly discuss
the common types of corrosion that are encounted on metals in different situations and indicate the
nature of mechanism involved in each case.

Answer. Metals usually occur in nature in combination with the elements oxygen or sulphur as oxides,
carbonates, sulphides, etc. They are reduced to the metallic state by the expenditure of energy during
melting operations which involve the removal of the bulk of the combining elements. Such extracted
metals are inherently unstable and show a general tendency to revert to the natural or oxidized condition
by combining with the constitutents of their environment. This reverse process requires no supply of
energy so it occurs readily and spontaneously; the results are seeroa®n Unfortunately, the more
corrodible metal include those of the greatest importance to industry, namely the ferrous metals. The
extent to which the corrosion of iron and steel takes place can be realized by the fact that in India alone
the cost to industry of corrosion including means adopted for its prevention, has been estimated at
millions of rupees per year. Corrosion of metals is liable to disfigure the finished products, lose their
strength, ductility and other physical properties.

® @
Photocathode

Fig. Q 10.6.1 [Llectro-chemical cell

In a nut-shell, the deterioration of metals by chemical or electrochemical reactions. It converts
useful structures, machines and vehicles into scrap. The common types of corrosion reactions involve
either direct chemical reaction or electrochemical reaction involving an electrolyte. Dissolution of steel
in dilute hydrochloric acid is a good example of chemical reaction. Electro chemical reactions are of
great importance in corrosion. In this case, we have to identify an anodic reaction at the positive pole or
anode, and the cathodic reaction at the cathode. The anodic reaction leads to dissolution of the anode
which is the part undergoing corrosion e.g. {Fe+ 2e). The cathodic reaction involves liberation of
hydrogen gas at the cathode, or if oxygen is present in the electrolyte, the formation ofofGH

2H" + 2e - H, (gas)
O, (gas) + 2HO + 4e . 4 (OH)y
In the case of iron, corroding in the presence of aerated water Fgr{@idform, i.e. rusting takes
place. From this discussion it follows that corrosion can be prevented by deaeration of water.

Although corrosion is commonly an undesirable process, there are also commercial processes
which utilize corrosion in a beneficial manner such as electroplating, electrochemical machining, etc.
Note that the anodic and cathodic areas for electrochemical corrosion may be found in the same metal
piece, in contact with an electrolyte. For example, a highly stressed region of the same component. The
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cold headed part of a nail corrodes faster than the rest of the nail. Similarly, the grain boundary regions
of a metal are anodic to the grain interiors. Therefore corrosion along the boundaries occurs in certain
media. The third case would be the oxygen starved regions of a metal which are anodic to oxygen rich
regions.

Corrosion occurs in many ways depending on the corrosive environment and as such there may be
different types of corrosion. They may be broadly be classifiddyasorrosionin which a metal or non-
metal is chemically attacked by a corrosive liquid or a gaswectorrosionwhich occurs in moist
conditions and is primarilglectrochemicaln nature. Almost all corrosions fall under these two broad
groups. It is customary, however, to classify the multitudes of possible corrosion reaction into many
general types and they are:

uniform corrosive attack, galvanic corrosive attack, crevice corrosion, pitting, integranular corrosion,
selective leaching, erosion corrosion and stress corrosion.

1. Uniform attack This is a form of corrosion which is easier to control because the average rate of
corrosion can be determined and a corrective step can be taken. Usually the rate of corrosion after
exposure to certain atmospheres is expressed as loss of thickness, e.g., inch per year or the loss in
milligram per decimeter per day. The usual methods of prevention include painting, enamelling and
metallic coatings.

2. Galvanic corrosion This form depends on contact between two different metals in an electrolyte
such as sea water. Of the two metals, the less noble one becomes the anode and undergoes corrosion.
The electrochemical series or galvanic series lists the metals in the order of electro chemical potential or
galvanic potential in the electrolytic medium. The galvanic series in sea water is given in the following
table:

Less noble: Magnesium, zinc, steel, lead, tin, nickel, copper, silver, titanium and gold
More noble: platinum

If we consider zinc with respect to steel, zinc is more anodic to steel and thus protects steel parts.
Note that zinc undergoes dissolution. This is the principle behind galvanizing of steel. As another example,
ship hulls made of steel are protected from corrosion in sea water by attacking magnesium or zinc plates
to the hull. Galvanic action can be used beneficially by a method calleddic protectionMagnesium
cathodes are buried near steel pipes and connected to the pipes electrically.

3. Crevice corrosion This form of corrosion results from oxygen starved areas undergoing dissolution.
This may happen under crevices, for example, under bolts or rivets attached to plates. Protection can be
afforded by better design and by deaeration of water.

4, Pitting corrosion This is considered a serious form since formation of pits or holes results in leakage
from pipes or vessels. Certain alloys are prone to pitting form of corrosion. Pits may form due to
presence of inclusions or intermetallic compounds in the microstructure. Generally, pitting can be reduced
by alloy additions, for example, addition of 2% molybdenum to stainless steels. Anodising and reduction
of inclusions can reduce pitting of aluminium.

5. Intergranular corrosion This results from grain boundaries acting as anodic areas. A specific example
is “sensitisatioh of austeniticstainlesssteelsdue to formation of chromium carbides near the grain
boundaries. This occurs when the steels are heated in the range 50C-in866rvice or during
welding. This can be avoided by choosing stainless steels with titanium or niobium additions called
“stabilized” stainless steels or stainless steels with low carbon (less than 0.03%).
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6. Selective leasingThis form of corrosion is due to the dissolution of one of the alloying elements
from the alloy, leaving the material spongy and weak. For exampldemiricification” of brass, zinc

leaves the material, resulting in failure of brass components.

7.Erosion corrosion This type occurs mainly due to mechanical action or impingement attack, particularly

in rotating parts in liquids. For example, pump impellers are subjected to erosion corrosion due to solid
particles or formation of bubbles and cavitation. The attack can also occur at the corners of bent pipes
where a change in velocity occurs. Proper design and selection of alloys, filtering of liquids, deaeration,
etc., can reduce erosion corrosion.

8. Stress corrosionThis is a form of corrosion due to the presence of stress (residual or applied tensile
stress) in combination with specific environment. The classic examplessadben crackingf brass in
ammoniacal atmosphere or humid atmosphere. The other important example is the caustic embrittlement
of steel due to sodium carbonate and hydroxide. Another well known example is the stress corrosion
cracking of Al-Zn—Mg alloys in chloride temperature. The most important method of preventing stress
corrosion is to remove the stress. Therefore the components are stress relief annealed after fabrication
to prevent this. In many cases, addition of certain chemicals called “inhibitors” can control stress
corrosion.

To summarise, corrosion can be controlled by the following means and methods
(a) Coatings (oils, grease, tar, bitumin, paints, electrodeposited platings, enamels)
(b) Treatment of medium by addition of inhibitors (e.g potassium dichromatic for aluminium
alloys); deaeration of water
(c) Use of sacrificial anodes (galvanising, protecting ship hulls, etc.)
(d) Better design to avoid crevices, bimetal contacts, stagnant water, etc.

Oxidation of Metals
Deterioration of metals by oxidation (i.e formation of scales) can be severe at high temperatures. A list
of common metals arranged in the order of increasing resistance for oxidation is as follows;

Mg, Al, Ti, Cr, Fe, Co, Ni, Cu, Ag, Au. The noble metalCu, Ag and Al are most resistant to
oxidation. The rate of oxidation can be reduced after sometime if the oxide formed is non-porous and
protective enough. This can be examined from the following criterion

The ratio of volume of oxide and volume of metal (called Pilling — Bed worth ratio) should be close
to one.

Problem Compute the P. B ratio for the oxidation of magnesium?
Specific gravity of magnesium = 1.74 x31@/m?
Specific gravity of magnesium oxide is 3.58 xk@/n?

Solution:
Assume that 100gm of magnesium alone is available
Molecular weight of Mg O = 40.32
Molecular weight of Mg = 24.32
24.3 kg is oxidized as 40.32 Mg O

100x10%kg will be oxidized as%oz 167 x 10°kg
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3
Volume of Mg = M =575% 10 m*=\,
174x 10°
167x 103
Volume of Mg 0= ————— =466x 10 m°= \,
358x 10°
P.B ratio= \Q = M =081 Answer
V, 575x 10

Q 10.7 Write a note on composite materials.

Answer. A composite is an admixture of two or more materials to achieve a combination of properties
not otherwise possible by using any of the materials alone. For example the properties needed in most
structural materials are high strength or high modulus and low weight along with good toughness. High
strength or high modulus and light weight are attained in glass, silica, carbon, boron, etc., in the form of
fibers. But they may not possess high toughness or ductility. They easily undergo fracture which is
caused by a rapid progress of a small crack. If, however, high quality fibers of these materials are
produced and embedded in a ductile matrix (like a metal or plastic matrix) the composite has a combination
of high toughness with high strength and low weight. The soft and ductile matrix protects the surface
of the fibers from acquiring cracks and also arrests the propagation of cracks already present. Such
composite materials are called fiber reinforced composites. In addition, composites can be developed by
dispersing particles in a matrix (particulate composites) or by constructing a structure with layers or
sheets of different materials (lamellar composites or laminates). There are many natural or organic
materials which can be classified as composites. Wood, bamboo, bone and tooth are typical examples.

Fiber Reinforced Composites

In these, fibers usually of length, 1 1® um, are the load bearing component. The matrix mainly
transmits the load to fibers. It further protects the fibers from formation of cracks on the surface. The
matrix being soft prevents the spreading of the crack from one fiber to the next. The interfacial bond
between fiber and matrix must be strong.

The volume fraction of the fibers can be as high as 90%. The streggihd Young's modulug,
of a composite can be calculated from the following formulae:

ac:Ufo +0mvm
Ec=E¢ Vi + BEn Vi
Vm:l_Vf

where the subscripfsandm refer to fiber and matrix respectively. It is assumed that the fibers are
aligned in the direction of loading.
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Fig. Q 10.7.1 Alignment of fibers in a Composite

Fibrous composites can retain their strength up to very high temperatures, usually 0.9 times the
melting point of the matrix in degree kelvin. The combinations of fiber and matrix are: glass and epoxy;
boron and epoxy, carbon and aluminium, boron and aluminium. Important applications of glass fiber
reinforced plastics (GFRP) are used in boats, helmets, rifle tubes and helicopter rotor blades.

Particulate Composites

Here the matrix is the load bearing constituent. The hard or stiff phase that is dispersed strengthens the
matrix and makes plastic deformation difficult. Typically the particle size would be 0.Q0%¢/m.

The volume fraction of the hard patrticles is low, usually about 2 to 5%. The dispersion increases the
recrystallisation temperature of the matrix. Particulate composites or dispersion hardened materials can
withstand very high temperatures (0.7 — 0.8 times the melting point of the matrix). Typical examples of
such composites are sintered aluminium powder (SAP) with dispersidiOgfparticles in aluminium

and thoria — dispersed nickel (T D nickel).

Problem Calculate the Young’s modulus of a composite with glass fibers reinforced in phenol
formaldehyde plastics. The volume fraction of fraction of plastics is 33.3%. The modulus of glass
fibers is 6.9 x 1OM Pa and that of polymers 6.9 x AWM Pa

Solution:
Ec :Vf Ef + Vm Em

:§x6.9>< 104+§><6.9><102z4.6><10M Pa

Laminated Composites

Laminates are thin sheets of one material bonded to a second material to form a layer composite. Such
composites have good mechanical properties in all directions of the plane. For instance in plywood
layers of wood are stacked so that grain direction of one layer is at right angles to the directions in
adjacent layers. The layers are then bonded with epoxy &soe wood has greater strength along the
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grain compared to the strength across the grain, wood does not have uniform properties in a plane. By
forming plywood we are able to achieve a product of uniform or non directional strength. Another
example is laminated plastics where woven mats of fiber glass are bonded by a resin.

Undirectionally Solidified Eutectics

Certain alloys of eutectic composition on solidification in a slow manner can develop a structure in
which one of the phases get aligned in a direction in the form of rods or plates. For instance it is possible
to produce rods with particles of a phase aligned along the length of the rod. Such composites can attain
high strength in certain directions. A typical example is an alloy of aluminium with 33% copper in which
CuAl, particle is aligned in a particular direction.

Wood

Wood is a natural composite. It consists of numerous cells with cell sap and cell walls. The cell walls
contain basically cellulose and lignin. Both cellulose and lignin are organic polymers with high molecular
weight. During the growth process, the cells are elongated in the longitudinal direction of the wood.
Further wood can absorb moisture. The important characteristics of wood amisbiopy or

directional nature of its properties such as Young’s modules and dimensional change due to absorption
of moisture and tensile strength. The properties are usually measured in the directions: longitudinal, radial
and tangential. As an example, Young’s modulus along these directions are approximately as follows:

Eong = 7000 — 14000/ Pa

E_, =550 - 100M Pa

rad
E., = 400 — 700V Pa
The result is wood undergoes wraping and splitting due to absorption of moisture or drying, or
during cultting.
The properties of wood can be improved by several methods. One method is the formation of
plywood. Another method is to fill the pores in cells with a polymer resulting in impregnated wood.

TABLES

Table 10.A  Temperature coefficient of Permittivity of some substances

Material Temperature of permittivity]
Methylalcohol —0.0059/K

Ethylalcohol —0.0057/K

Chloroform -0.0041/K

Na ClI +8.4x104/K

Ka CI +3.03x10°%/K




Table 10.B  Flectronic polarizability of some selected atoms
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Sl. No. Material Electronic polarizability, o in 10-4°
1 He 0.12
2. Ne 0.35
3. A 1.43
4, Kr 212
5. Xe 354

Table 10.C  T7he electric strength of some materials

Material Electric strength k V/metre
Air 3000
Mineral oil 15000
Impregnated paper 15000
Polysterene 20000
Hard rubber 21000
Bakelite 25000
Glass 30000
Fused quartz 30000
Mica 200000
Table 10.D  Properties of some ferroelectric materials
Sl. No.| Material Curie Spontaneous
temperature (C/f) polarization (K)
1 NaK(C,H,0,).4H,0 290 8000
2. KH,PQ, 123 16000
3. BaT, O, 380 78000
4, KNb Q, 708 80000
5. WO, 220 -
6. CdNR O, 185 5400
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Table 10.E  General properties of mineral insulating oils

Property Oils used in paper Oil used in Oil used in
insulated cables capacitors transformers
switches circuit
breakers
Specific gravity 0.93 0.885 0.885
Flash point 235°C 165°C 135°C
Pour point —5°C —45°C —45°C
Resistivity (Q cm) (1to 10) x 18 (50t0 100) x 18 (1-10)x 1&
Dielectric strength
(KV/imm) 30kV 30kV 30kv
Power factor at
100°C at 50 Hz 0.001 0.001 0.001
Specific heat - 0412 0.4252
Table 10.F  Properties of polyethylene
Properties Low density High density
polyethylene polyethylene
Dielectric constant (at 10 Hz) 2.28-2.32 2.25-2.32
Dielectric strength (kV/mm) 20-160 20-160
Power factor (at 60 Hz) (1to5)x10* (2to6) x 104
Tensile strength ( kg /ctx 10-3) 0.09-0.16 0.16-0.365
Surface strengthd ) 10%-107 104-10°
Volume resistivity Q cm) 107 -10° 10*°-10¢
Water absorption (% ) Lessthan 0.01 Lessthan 0.01
Elongation (%) 110-160 40-300
Softening temperatureC ) 94-110 -
Specific heat 0.55 -
Relative density 0.91-0.925 0.95-0.97
Crystalline melting pointiC) 110-1160 126-136




Table 10.G  Properties of polystyrene resin
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Properties dlue
Dielectric strength (kV/mm) 20-28
Power factor ( 60 Hg 10to 30 x 10°
Dielectric constant (60 Hz) 255
Insulation resistance 16-10°
Tensile strength ( kg /chx 10-2) 0.35-0.65
Compressive strength (kg /&ém10-2) 0.78-1.12
Elongation % 1-35
Maximum temperature for continuous U$€ { 65-80
Molecular weight 6x10-50x 160
Water absorption % 0.03-0.06
Specific heat 0.32
Specific gravity 1.06
Table 10.H  Properties of polyvinyl chloride
Properties Value

Specific gravity 1.03
Temperature of useC ) 60—-90
Insulation resistancecg cm) 102-102

Britlle temperature{C) 30

Softening temperatureC ) 120

Dielectric constant 5-6

Dielectric strength ( kV/m) 30

Table 10.1  Properties of polyamide resins
Properties Value

Tensile strength (kg /cth 0.5x10°3
Dielectric strength (kV/mm) 2

Dielectric constant (60 Hz ) 4-6

Maximum continuous strength 132-150

Melting point (°C ) 200—-255
Specific gravity 1.09
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Table 10.) General properties of two main types of mica
Property Muscovity mica Phylogopite mica
Specific gravity 27-32 26-28
Tensile strength ( kg /chx 1073) 0.35-0.7 -
Maximum operating temperature 500-600 800-900
Moisture absorption Low Low
Resistivity at 28C (Q —cm) 10"°-108 10¢?-104
Dielectric strength (kV /mm at 28) 80 60
Power factor at 27C 1x104-3x%x10* 10x 104-50 x 104

Table 10.K  /nsulating materials for different applications

Application

Insulating material used

Heating element of an oven
Fuse holder

Switch for domestic purpose
Commutator

Cable joint box

Electric iron

Low voltage cable

Flexible wire

Distribution board
Laminating insulating boards

© 0o N WDNPRE

=
©

Nichrome
Porcelains
Backelite
Mica
Bitumen compound
Mica
Rubber
Plastic
Wood
Epoxy Resins

Table 10.L  Questions with answers in Yes or No

Question Answer

1. Brass can stand more mechanical abuse than copper and is used for No
making flexible wire

2. Steel is not used as conducting materials in domestic switches Yes

3. Nichrome is preferred for winding chokes in tube lights No

4. P.V.C. insulation does not absorb moisture Yes

5. Hydrogen is used mainly as a coolant No

6. Mumetal is an alloy of iron and copper used as magnetic material for No
small electric motors

7. Lead is an alloy used as filament in bulbs No

8. Aluminium can be soldered more easily than copper No

9. Afuse material should have low melting point No




Table 10.M  Properties of some types rubbers

Property Natural rubber | Hard rubber| Butyl rubber Neoprene Nitrile Silicon Hypalon
Butadiene

1. Maximum service 16 60 80-90 0 - 175-200 150
temperature°C )

2. Water absorption % 1-2 0.2-1.0 0.3-0.5 3-4 - 05-24 -

3. Specific gravity 0.93-1.6 11-14 09-13 1.09-16 1 0.5-24 -

4. Tensile strength 0.21-0.32 0.28-1.12 0.05-0.21 0.14-0.26 0.19-0.32 0.09-0.12 0.11-0

5. Dielectric strength
(kV/mm) 18-24 12-28 16-32 4-20 16-20 12-28 16-24

6. Dielectric constant 2.7-5 2-16 21-4 75-14 3.9-10 28-7.0 5-11

7. Power factor 0.05-2x10| 05-2x10?| 0.3-8x 167 |1.0-6x10* | 3—-5x10% | 0.1-1x10? | 2—9x 10?

8. \blume 10 10v 104 10— 10 10t-10% 101210 1010 10110
resistancegy cm)

9. Surface 10*-10% - 1010 10t-10% 101210 108 104
resistance( )

.26

T.€ soido] snosue||@osIN
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Table 10.N  Properties of important Ceramics

Property Alumina | High voltage| Low voltage| Steatite Ziroon
porcelain porcelain
1. Specific gravity 3.1-3.9 235-51 27-24 25-29 3.1-38
2. Water absorption 0.0-0.2 0.0-0.5 0.5-2.7 0.0-0.03 0.0-0.02
3. Dielectric constant
(60 Hz, 25C) 8-95 5.7 55-7.0 5.7-6.5 71-9.1
4. Power factor (x 1D
25C, 60 Hz) 05-15 8-25 7-20 1.2-2.0 1.5-36.0
5. Tensile strength
(kg/entx 1G) 0.56-3.5 0.2-0.56 - 0.52-1.0% 0.49-1.04
6. Compressive
strength (kg/crix1®) 56-3.0 1.75-5.6 1.75-4.2 42-305 5.6-7.0
7. Volume resistivity
(©Q cm, at 25C) 104-10¢ 102-104 101-104 10-10° 10%-10°
8. Softening
temperatureC 1450-2000 1300-1335 1300-1335 1300-1450  1390-1550
9. Structure limiting
temperatureC 1400-1802 1000-1200 1000-1100 1000-1180  1000-1300
10. Heat conductivity 7-50 2-8 3.4-4 5-8 1-15




Answers to Objective Questions

CHAPTER 1
1. (b) 2. (¢) 3. (b) 4. (a) 5. (a)
6. (b) 7. (b) 8. (d) 9. (d) 10. (a)
11. (d) 12. (a) 13. (b) 14. (c) 15. (d)
16. (a) 17. (¢) 18. (a) 19. (a) 20. (b)
21. (a) 22. (¢) 23. (d) 24. (c)

CHAPTER 2
1. (b) 2. (d) 3. (b) 4. (a) 5. (¢)
6. (d) 7. (¢) 8. (d) 9. (¢) 10. (d)
11. (a) 12. (b) 13. (a) 14. (c) 15. (a)
16. (d) 17. (a)

CHAPTER 3
1. (b) 2. (¢) 3. (¢) 4. (c) 5. (¢)
6. (b) 7. (d) 8. (b) 9. (¢) 10. (a)
11. (d) 12. (d) 13. (d) 14. (c) 15. (¢)
16. (a) 17. (d) 18. (b)

CHAPTER 4
1. (@ 2. (b) 3. (¢) 4. (b) 5. (d)

6. (b) 7. (b) 8. (a) 9. (b) 10. (a)
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11. (a) 12. (a) 13. (a) 14. (d) 15. (d)
16. (a) 17. (b) 18. (d) 19. (a) 20. (b)
21. (¢) 22. (b) 23. (d) 24. (a) 25. (a)
26. (b) 27. (a) 28. (d) 29. (a) 30. (b)
31. (¢) 32. (d) 33. (a) 34. (d) 35. (b)
36. (a) 37. (a) 38. (¢) 39. (b)

CHAPTER 5
1. (d) 2. () 3. (b) 4. (a) 5. (b)
6. (a) 7. (a) 8. (d) 9. () 10. (b)
11. (d) 12. (d) 13. (b) 14. (c¢) 15. (b)
16. (a) 17. (a) 18. (b) 19. (a) 20. (a)
21. (¢) 22. (a) 23. (b) 24. (d)

CHAPTER 6
1. (d) 2. (b) 3. (@ 4. (d) 5. (b)
6. (c) 7. () 8. (b) 9. () 10. (d)
11. (¢) 12. (d) 13. (a) 14. (c) 15. (b)
16. (c) 17. (b) 18. (d) 19. (a) 20. (¢)
21. (b) 22. (d) 23. (a) 24. (a)

CHAPTER 7
1. (b) 2. (d) 3. (@ 4. (b) 5. (b)
6. (d) 7. () 8. (b) 9. (d) 10. (¢)
11. (a) 12. (a) 13. (a) 14. (c) 15. (b)
16. (a) 17. (a) 18. (b) 19. (c¢) 20. (b)
21. (c) 22. (a) 23. (¢) 24. (c) 25. (c)

CHAPTER 8
1. (b) 2. (b) 3. (@ 4. (c) 5. (@)
6. (c) 7. (d) 8. (a) 9. () 10. (b)
11. (d) 12. (a) 13. (b) 14. (a) 15. (¢)
16. (b) 17. (b) 18. (a) 19. (d) 20. (b)

21. () 22. (b) 23. (a)
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APPENDIX A1

Fundamental Constants

Constant Symbol Value
Speed of light in a vacuum c 2.997925 x 1om s
Charge of proton 1.602189 x 16°C
Charge of electron -e
Avogadro constant N, 6.022045 x 18 gmol?
Boltzmann constant K 1.380662 x 16°JK?
Gas constant R =Nk 8.31441 J K gmol*
Faraday constant F=N, 9.648456 x 10C gmot*
Planck constant h 6.626176 x 1%*J s
h
h=— 1.05457 x 164J s
2

Vacuum permittivity 0 8.854 x 10*2Fnt?
Vacuum permeability o 4px107J8C2m?
Bohr magneton Ug 9.27402 x 1643 T
Electron g value g, 2.00232
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APPENDIX A2

Metric Prefixes

Prefix Symbol Factor
ultra u 10%
tetra T 10°
giga G 10
mega M 10
kilo k 1C¢
hecto h 1¢
deka d 10
- - (0
deci d 10t
centi c 102
mill m 103
micro u 10°
nano n 10°
pico p 1012
femto f 101
atto a 10°%
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APPENDIX A3

Derived SI Units Having Special Names and Symbols

Physical quantity
(and symbol)

Name of Sl unit

Symbol for Sl derived unit and
definition of unit

Frequency ()

Energy U)

Enthalpy H)
Force

Power
PressureR)
Electric charge@)
Electric potential
differenceVY)
CapacitanceQ)
ResistanceR)
Conductance®)
Magnetic flux
density B)

Hertz
Joule

newton
waltt
pascal
coulomb

volt
farad
ohm
siemen
tesla

Hz (=s?)
J(=kgnis?)

N (=kg m s2=J n1?)

W (=kg n? s=3=Js 1)
Pa(=kgm!s2)=Nnr2=Jm?)
C(=As)

V(=kgnfsiA-i=J Als 1)
F(EASkgInm2=AsVi=A2gJ1)
Q (FVAY)

S(=AV1)

T(=Vsm?=JClsm?)
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APPENDIX A4

Commercial Laser Types

Wave length (tm) Type Out put type and power
0.192 Ar Fexcimer Pulsed, tens of watt
0.266 Quadrupled Nd Pulsed, watt
0.275-0.31 Argon ion Continuous — wave (CW)
0.32-1.0 Pulsed dye Pulsed, tens of watt
0.325 He-Cd CW, tens of milli watt
0.33-0.36 Ar or Krion CW, several watt
0.33-0.38 Neon CW, 1-watt range
0.337 Nitrogen Pulsed, under 1 watt
0.347 Doubled ruby Pulsed, under 1 watt
0.442 He-Cd CW,over 0.1 watt
0.5435 He —Ne Cw, ImwW
0.48-0.54 Xenon ion Pulsed, low power
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APPENDIX A5

Advantages of Sl Units

(i) It is comprehensive in the sense that its seven base cover all disciplines of science and
technology.

(i) The system is coherent as the unit of a derived quantity can be obtained as the product or
guotient of two or more fundamentals.

(i) Itis internationally accepted.
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