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Preface

Condensed matter physics is one of the most important, as well as most fertile, branches of
contemporary physics. It is characterized by a multitude of research workers, a bewildering variety
of research results, widespread influences on technical developments and rapid infiltrations into in-
terdisciplinary areas. Historically, condensed matter physics has gradually evolved from solid state
physics. However, due to the lack of a clear recognition of their inter-relationship (and the unfa-
miliarity with the new conceptual systems within the unifying theoretical framework introduced by
condensed matter physics), though there are numerous excellent textbooks on solid state physics, a
comprehensive introductory textbook on condensed matter physics is still waiting to appear. This
unsatisfactory state of affairs is most clearly shown by the enormous gap between traditional text-
books on solid state physics and the frontier of present day research in condensed matter physics.
It is a familiar sight to see students who have already taken courses in solid state physics (and
even solid state theory) on approaching the frontier of condensed matter physics, for instance when
browsing current issues of journals such as Physical Review Letters, who generally feel perplexed and
alienated: They find the literature hard to understand. These difficulties in understanding do not
stem principally from the derivation of the formulas or things related to experimental situations, the
crux of the matter is that the mind is unprepared, so it is hard to comprehend why certain topics
are chosen and whence the fundamental ideas descend. This situation has been realized by many
eminent physicists who expressed the need to establish a graduate course to bridge the gap between
traditional solid state physics and the research frontier. This course should be situated between
two extremes: on the one hand, a traditional course which includes such long-standing subjects
as the periodic structure, energy bands, and lattice dynamics, etc., comprehending these subjects
and mastering their language prove to be indispensable to the students who wish to communicate
scientifically. On the other hand, there are current topics, such as high Tc superconductivity, lo-
calization, quantum Hall effect, giant and colossal magnetoresistance, quantum dots, fullerenes and
carbon nanotubes, photonic bandgap crystals, etc. Without touching these latter subjects they can
hardly begin their research. Our book is just such an attempt to fill the gap between traditional solid
state physics texts and the research frontier, and bears the name Introduction to Condensed Matter

Physics to stress its introductory approach. There is bewildering variety and apparent complexity
in contemporary condensed matter physics. However, due to the conceptual unity in the structure
of matter, condensed matter physics can be organized into a coherent logical structure which is ripe
for a systematic exposition in textbook form.

The basic concepts of condensed matter physics have been already penetratingly analyzed by
P. W. Anderson in his monograph, “Basic Notions of Condensed Matter Physics”, however, this
book is for cognoscenti, perhaps too difficult for uninitiated graduate students. We acknowledge
our indebtedness to this inspiring book, full of creative ideas, and try to make concrete some of
these basic ideas, illustrating them with examples and placing them into suitable contexts. We were
faced with the formidable task of assimilating and arranging this enormous mass of material into a
satisfactory logical framework guided by a unifying conceptual framework, and finally incorporating
it into a readable text. This text was originally intended for first year students of our graduate school,
and some previous exposure to an undergraduate course in solid state physics is desirable but not
necessary. In our institution, there is another course on condensed matter theory or solid state theory
after this one, so in this course the physical concepts are stressed, simplified theoretical derivations
are given to facilitate understanding, while cumbersome details of mathematics are avoided. Since
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condensed matter physics is closely linked to technological developments and interdisciplinary fields,
we hope this book may also serve as a reference book for researchers in condensed matter physics,
materials science, chemistry and engineering.

This book is organized into eight parts.

Part I gives the structural foundation of condensed matter physics. It starts from a brief resumé
of classical crystallography. Its basic concepts such as symmetry and lattice are introduced and
prepared for later generalization. Although the importance of symmetry is emphasized, complemen-
tary notions stemming from differential geometry and topology are also introduced to give a more
rounded picture of structural crystallography and related topics. What follows may be called gener-
alized crystallography; it means that the basic concepts of crystallography are generalized to cases
in which the strict periodicity is absent, such as quasiperiodic structures, homogeneously disordered
structures, supramolecular structures and inhomogeneous structures. Of course, statistical concepts
such as order parameter, distribution functions and correlation functions are introduced to facili-
tate the treatment of various types of disordered structure. Mathematical aspects are introduced
through Fourier transforms and other topics. Liquid crystals, self-assembled membranes, polymers
and biopolymers are also discussed in order to help readers to explore the new field of soft condensed
matter physics.

Part II embodies the results of carrying out the program based on the enlargement of the origi-
nal paradigm of solid state physics. Starting from wave propagation in a periodic structure, besides
briefly summarizing the basics of energy bands and lattice dynamics, an introduction of the pho-
tonic bandgaps is added; and wave behavior in quasiperiodic structures is also introduced. Then
the dynamics of Bloch electrons and elementary treatment of transport properties including spin
transport are given. It further leads to wave scattering by impurities and alloys, and after that, to
wave localization due to disorder. More recent topics of quantum transport in mesoscopic systems
have also been introduced. The unity of wave behaviors of different types of waves are emphasized
through parallel treatments.

Part III may be taken as a duet between bond approach and band approach as well as a step
towards many-body physics. These are based on the paradigms of quantum chemistry and solid state
physics respectively. It is found that these two approaches are complementary to one another. Topics
on electron correlation are introduced gradually, starting from Heitler and London’s treatment of
H2 molecule, and finally reaching strongly correlated electronic systems with anomalous physical
properties. This shows there are many important problems which lie beyond these two conventional
approaches, some of them are still waiting to be solved. Finally current topics such as quantum
confined nanostructures are discussed to illustrate the usefulness of these approaches in present day
investigations. These first three parts may be regarded as the stage of transition from solid state
physics to condensed matter physics.

Part IV deals with phase transitions and ordered phases. The Landau theory of second order
phase transitions is introduced concurrently with the concepts of broken symmetry and order param-
eter. Then a lot of systems are discussed within this framework, such as crystals, quasicrystals and
liquid crystals, which are the results of broken translational or rotational symmetry; ferromagnets
or antiferromagnets, which are results of broken time reversal (or spin rotation) symmetry; and su-
perfluids and superconductors, which are results of broken gauge symmetry. Finally, the concept of
broken symmetry is generalized to include broken ergodicity for introducing the gas-liquid, wetting,
glass, spin glass and metal-insulator transitions.

Part V deals with critical phenomena. After an introduction on fluctuations and related topics
such as correlation and dissipation, the concepts of scaling and universality are formulated, and
the renormalization group method is used to elucidate critical behaviors. Then the renormalization
group method is applied to various other phenomena, such as percolation, localization of electrons,
etc. Quantum critical phenomena are also discussed.

Part VI deals with elementary excitations. A general introduction, together with the scheme
for classification of elementary excitations, is given. Then, more detailed discussions on vibrational
excitations, magnetic excitations and electronic excitations follow, emphasizing those aspects which
lie beyond conventional treatments. The theories of Fermi liquids, quantum Hall effect and Luttinger
liquids are introduced and discussed.
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Part VII deals with topological defects. These are nonlinear or topological excitations. Beginning
from generalized elasticity and hydrodynamics, topological properties of defects are followed, then the
structure and the energetics of defects, as well as the phases and the phase transitions associated with
the defect assemblies, are described. Furthermore, the concept of generalized rigidity is introduced
and used to elucidate those physical properties that are structure-sensitive.

It is reasonable to consider that the material from Part IV to Part VII forms the main body of
condensed matter physics, unified by the concepts of broken symmetry and order parameter, and
stratified according to the energy scale into different levels i.e., the ground states, the elementary
excitations, the topological defects and the critical phenomena near Tc.

Part VIII may be regarded as an extension of condensed matter physics. It deals with physical
kinetics and nonlinear phenomena in nonequilibrium states. The kinetics of phase transitions are
introduced first, covering both second-order and first-order phase transitions; then the growth and
form of crystalline materials follows, treating various facets of crystal growth; these provide the
theoretical foundation for some crucial topics of materials science as well as an introduction to
nonlinear phenomena. Then we treat nonlinear phenomena far from equilibrium in more detail:
thermal convection is used as a classical example to illustrate the onset of hydrodynamic instability;
then strange attractors and the routes to chaos are explained; finally, diverse phenomena involving
spatio-temporal instabilities and pattern formation, such as avalanche and turbulence as well as some
problems related to biology and technology are discussed. It shows that there is still a large number
of problems in the neighborhood of condensed matter physics related to complexity, waiting to be
explored and solved; it testifies that condensed matter physics today is still a flourishing subject.

This book will be published in two volumes: Vol. 1 contains Part I to Part IV, while Vol. 2
contains Part V to Part VIII. In general we assume that readers are already familiar with the basics
of quantum mechanics and statistical physics. However different parts have different prerequisites,
for instance, Part I, VI, VII and VIII as well as the first two chapters of Part IV can be read through
even by those without any training in quantum mechanics. It is expected that this book may be
used at different levels and for people with different areas of major interest. Each part may be read
quite independently despite their interconnectedness. The whole book is intended as a text for a
course in two semesters, while a sequence of selected parts may serve for a one semester course.

We would like to make some comparisons with existing textbooks in this field. Since the pub-
lication of Modern Theory of Solids by F. Seitz in 1940, many excellent textbooks on solid state
physics have appeared. Among them: Kittel’s Introduction to Solid State Physics is most popular,
it has run into numerous editions; while Ashcroft and Mermin’s Solid State Physics is noted for
its painstaking effort in clarifying basic concepts. However, due to the limitation of the conceptual
framework, these texts do not communicate many important basic concepts as well as as catch up
to the flowering richness of contemporary condensed matter physics. In recent years, a few grad-
uate texts bearing the title condensed matter physics have appeared. We admire these pioneering
attempts and have read them with much interest and profit. However, in our opinion or prejudice,
they are not entirely satisfactory because they are either not comprehensive enough to cover this
broad field, or not systematic enough to give a precise idea about basic concepts threading through
them. In this book we try to give a pedagogically understandable exposition on the basic concepts
of condensed matter physics illustrated with many concrete physical problems, as well as to give a
comprehensive and coherent picture of the contemporary scene, thereby bridging the gap between
the traditional texts of solid state physics and the current literature scattered throughout physics
journals. Condensed matter physics gradually unfolds in this book from more traditional parts of
solid state physics, its basic concepts are emphasized and carefully explained, most equations are de-
rived with not too complicated mathematics, in order to be accessible to first year graduate students
and research workers, especially for experimental workers.

Since 1983, one of the authors, Duan Feng, had been seriously concerned with the clarification
of the conceptual framework of condensed matter physics and had written a number of articles
to expound it. Since 1989, this new approach had been thoroughly discussed and illustrated with
various current topics at the frontier of this field in a series of lectures. Then, in collaboration with the
other author, Guojun Jin, a book “New Perspective on Condensed Matter Physics” (in Chinese) was
written and published in 1992. Beginning in 1990 a graduate course called Introduction to Condensed
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Matter Physics was established in the Physics Department of Nanjing University jointly by the
authors. More recently, the teaching of this course in Nanjing University has been done singly by
Guojun Jin. Courses for the Summer School on Condensed Matter Physics in 1996 (organized by
Tsinhua and Peking University, Beijing) and in 1998 (organized by Nanjing University, Nanjing)
have been jointly given by the authors. Based on the lecture notes for these courses used over
many years, the manuscript for this book gradually evolved. Everyone recognizes that the field of
condensed matter physics has exploded in recent years and we have chosen an impossible task: New
and significant research results emerge every day. Thus, we can only apologize for overlooking some
topics and trust that the reader will understand the difficult task we have set for ourselves. We
invite criticism and advice on how to improve this book.

The authors thank the National Laboratory of Solid State Microstructures and Department of
Physics of Nanjing University for the encouragement, help and support for this course and the
writing of this book. We thank the Education Reform Project of Nanjing University, National
Science Foundation of China, and Nanjing University-Grinnell College Exchange Program for their
financial support. We are much indebted to various colleagues, friends and graduate students for
their discussion, criticism and help. We thank Profs. Changde Gong, Hongru Zhe, Zhengzhong
Li, Yuansheng Jiang, Dingyu Xing, Jinming Dong, Weijiang Yeh and Brian Borovksy for reading
through some chapters or sections of our earlier manuscript and giving their valuable comments and
suggestions for improvement. We especially thank Prof. Charles Cunningham for his painstaking
efforts to read through our whole book just before its publication, detecting and correcting the errors
and mistakes in it page by page, and improving the English conspicuously, making this book more
readable and comprehensible. One of the authors (Guojun Jin) would like to express his thanks to
Mr. Jiaoyu Hu for providing a personal computer at the beginning of writing this book; Prof. Zidan
Wang for inviting him twice (1996, 1998) to visit the University of Hong Kong, besides to engage
in cooperative researches, also to get the opportunity to collect useful materials; Mr. Dafei Jin for
solving some technical difficulties in editing the book in LATEX format. Finally we wish to express
our sincere thanks to Prof. K. K. Phua for his persistent concern for the publication of book, to the
editors of this book for the patience and carefulness in their editing.

Duan Feng and Guojun Jin
Mar. 2005
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Overview

The accumulation of so enormous a mass of substantial truth is not possible without

organization. The faculty for order is just as much a creative one as the faculty for

representation. Or they are simply different aspects of one and the same faculty. Out of

the truth of countless isolated phenomena there arise the truth of the relationship existing

among them: in this way a world is produced.

—– Hugo von Hofmannstahl

In this age of increasing specification it is comforting to realize that basic physical

concepts apply to a wide range of seemingly diverse problems. Progress made in under-

standing one area may often be applied in many other fields. This is true not only for

various fields of materials science but for structure of matter in general. As examples

we illustrate how concepts to develop to understand magnetism, superfluid helium and

superconductivity have been extended and applied to such diverse fields as nuclear mat-

ter, weak and electromagnetic interactions, quark structure of the particles of high energy

physics and phases of liquid crystals.

—– John Bardeen

In this introductory chapter, we shall give a brief overview of condensed matter physics. It
begins with a brief résumé of the development of physics in the 20th century, so that we may
view condensed matter physics in the context of other branches of physics, and note the important
consequences due to the stratification of the physical world into its different layers, each with its
quasistable constituent particles and elementary interactions. These make us realize why condensed
matter physics is still a subject so full of vitality even though the interactions of the constituent
particles (nuclei and electrons) are thoroughly known in principle as a result of the formulation
of quantum mechanics. Next, we shall outline the scope of research on condensed matter physics,
involving theoretical treatment by quantum mechanics and classical physics, and the fertile and
multitudinous phenomena brought about by condensation and ordering. Then we will discuss the
relationship between solid state physics and condensed matter physics, noting the enlarged range of
phenomena studied and analyzing the change in their respective unifying conceptual framework.

§0.1 Stratification of the Physical World

0.1.1 Physics of the 20th Century

Here we briefly outline the development of physics in the 20th century. Two outstanding theo-
retical breakthroughs occurred at the beginning of that century: relativity and quantum theory.
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Relativity may be regarded as the crowning achievement of classical physics, for special relativity
was found to be a continuation and extension of classical electrodynamics and brought with it a
new mechanics for fast moving bodies and the revision of our basic concepts of space-time and
matter-energy. Meanwhile general relativity extended classical mechanics into the realm of strong
gravitational fields and also constructed the geometrical theory of gravitation, which profoundly
influenced modern astronomy. Quantum theory heralded the new era of microscopic physics, culmi-
nating in the formulation of quantum mechanics in 1925–1928. With the establishment of quantum
mechanics, the enigmatic microscopic dynamics of atomic systems was elucidated at one stroke, to
the delight of physicists. What next?

One route is from atomic physics downwards, physicists pushed forward to probe more and more
microscopically, penetrating into the new worlds of nuclear physics and the physics of subnuclear
particles. In quest of elusive ‘elementary’ particles, several generations of high energy accelera-
tors were built, and leptons, quarks, gluons and intermediate bosons were discovered or inferred,
advancing the frontier of physics on the microscopic side.

Obviously, there is another frontier of physics on the cosmic scale: the exploration of the universe.
General relativity gave a curved space description of the universe, which marked the birth of modern
cosmology. Modern astrophysics brought forth its tremendous observational data with far-reaching
consequences, these pose intellectually challenging problems for theorists.

It is surprising that the twin frontiers of physics, apparently lying in opposite directions, the
one facing the world at smallest scale, the other facing the world at largest scale, are actually not
disparate, but miraculously brought together by a circuitous route and merged into one frontier
with Janus-like faces confronting the smallest as well as the biggest, i.e., the microscopic-cosmic.
Nowadays high-energy physics provides archaeological information for the early stage of the universe,
while stars and the cosmos serve as gigantic laboratories to test various theories of fundamental
physics. There are two ‘standard models’, one for particle physics, the other for cosmology. They
stand side by side and interpenetrate each other, as two landmarks for microscopic physics and
cosmic physics in the latter half of the 20th century.

There was another route for development of physics after the establishment of quantum me-
chanics, i.e., from atomic physics upward, applying quantum mechanics to molecules, quantum
chemistry was born; applying quantum mechanics in conjunction with statistical physics to the
crystalline solids, the foundation of solid state physics was laid. Later confronted with various coop-
erative phenomena as well as more complicated condensed matter, the scope of solid state physics
was enormously enlarged. At the same time, its basic concepts were thoroughly revised and deep-
ened, and gradually and almost imperceptibly it was transformed into condensed matter physics in
the 1970s. Moreover, linking the microscopic world described by quantum mechanics and macro-
scopic world of complicated condensed matter is by no means a easy task. It poses unforeseen
intellectual challenges, though it reaps unexpected practical rewards, as exemplified by discoveries
of high temperature superconductivity, quantum transport in mesoscopic systems, C60 molecules
and solids, giant and colossal magnetoresistance, and the realization of Bose–Einstein condensation.
The exciting thing is that there are immense possibilities waiting to be explored and utilized. So
the physics of condensed matter bordering with complexity naturally forms another frontier for the
development of physics. This new frontier for physics, besides its own interests, is closely linked with
development of high technology and is profusely penetrating into interdisciplinary fields. Therefore
it is attracting more attention and assuming more importance with the opening of the 21th century.a

Figure 0.1.1 shows the stratification of the physical world according to length scale and energy scale,
while Fig. 0.1.2 shows the different branches of physics coordinated according to the length scales
of the objects studied.

Formerly physicists were accustomed to deal with simple matter. The initial successes of solid
state physics were achieved in the realm of simple solids, such as copper, silicon, etc. However,
when solid state physics was transformed into condensed matter physics, its scope was enlarged to
include various types of soft matter, such as liquid crystals, self-assembled membranes, granular

aFor problems connected with the development of physics of the 20th century, one may consult L. M. Brown, A. Pais,
and B. Pippard (eds.), Twentieth Century Physics, Vols. I–III, Bristol and Philadelphia, Institute of Physics Publishing
Ltd. (1995).
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Figure 0.1.1 The stratification of physical world according to length scale and energy scale.
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Figure 0.1.2 Different branches of physics coordinated according to their length scales.

materials, polymers and biopolymers. Thus, matter with increasing complexity became the object
of study for condensed matter physicists. The concept of broken symmetry which emerged from the
study of cooperative phenomena became the key to uncover the properties of complicated matter.
The development of nonlinear science fashioned new theoretical tools for dealing with complexity,
and the development of materials science and technology provided the multitudes of new techniques
for fabrication and characterization of complicated matter. Chemists devised ever-new ways to
synthesize and organize new materials. Advances in computational techniques brought with them
ab initio calculations of the electronic structure of matter as well as simulations of various trans-
formation processes. So with this changed climate of research, condensed matter physicists have
become more familiar with either simple materials within the contexts of added complexity, such
as artificial microstructures and nanostructures, or chemically complex materials, such as complex
oxides, organic materials, polymers and biopolymers. The cooperation between physicists, materials
scientists, chemists and biologists in interdisciplinary fields has become more frequent and fruitful.
So, associated with physicists of other branches, as well as scientists of other disciplines, condensed
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matter physicists are well prepared for this crusade against complexity, to explore the real material
world around us, to decipher its mystery and to harness its immense possibilities to the service of
human kind.

0.1.2 Simplicity versus Complexity and Unity versus Diversity

Traditionally speaking, physicists, especially theoretical physicists, are accustomed to the so-
called reductionist approach: to reduce complexity into simplicity, then to reconstruct complexity
from simplicity. Einstein stated it succinctly, “The supreme test of the physicist is to arrive at those
universal elementary laws from which the cosmos can be built up by deduction.”

This reductionist approach may be traced in the development of atomic physics, then nuclear
physics and finally particle physics. Gases, liquids and solids are decomposed into aggregates of
molecules or atoms; then atoms are decomposed into nuclei and electrons; nuclei are decomposed
into protons and neutrons; these are further reduced to quarks and gluons. Each stage of reduction is
marked by the appearance of quasistable particles which had been mistakenly identified as ‘elemen-
tary’ particles. With each stage of reduction, the length scale drastically decreases, while the energy
scale drastically increases (see Fig. 0.1.1). This coupling between nearby strata in structure of mat-
ter proved to be an important motive force in promoting the progress of science in the 20th century.
The elucidation of atomic structure led to a revolution in chemistry, while the determination of the
molecular structure of nucleic acids and proteins led to a revolution in biology. In our field of con-
densed matter physics, similar things happened: microscopic investigation of the structure of matter
revealed the immense possibilities of condensed matter with extraordinary physical properties, e.g.,
semiconductors, ferromagnets, ferroelectrics, superconductors, superfluids, etc. These tremendous
achievements testify to the immense success of reductionist approach, within certain limits.

Reduction is accompanied by the unification. In the 19th century the electric and magnetic
forces were unified into the electromagnetic force by the Maxwell equations. Optical waves were in-
corporated into the spectrum of electromagnetic waves, which also includes radio waves, microwaves,
millimeter waves, infrared and ultraviolet waves, X-rays and γ rays. Various interactions between
atoms or molecules were reduced to electromagnetic interactions. Thus, by the middle of the 20th
century, only four fundamental forces were recognized: the gravitational, electromagnetic, weak and
strong forces. Among them, the weakest is the gravitational force, but it is long-ranged, decreasing
with distance according to the inverse square law and not subject to neutralization or shielding, so
it is of extreme importance to the large-scale phenomena of massive objects observed in astronomy.
The electromagnetic force is ubiquitous, the sole fundamental force responsible for various compli-
cated phenomena in condensed matter physics. The strong force and the weak force are extremely
short-ranged and are only important for the interactions between nucleons and subnuclear particles.
Further unification of fundamental forces was an important ingredient of 20th century theoretical
physics. The later years of Einstein were spent in an unsuccessful endeavor to unify the gravitational
force and the electromagnetic force through classical field theory. A more fruitful pursuit of unifi-
cation, based on quantum field theory, was taken up later by other scientists. The electromagnetic
interaction was incorporated into quantum field theory with the foundation of quantum electrody-
namics in the 1930s and 1940s. Further, quantum field theory, treating strong interactions, was
realized as quantum chromodynamics. In the 1960s, Glashow, Weinberg and Salam succeeded in
unifying the weak force and the electromagnetic force into the electro-weak force. Together with the
quark model of nucleons, these are the main ingredients of the standard model for particle physics,
which has been thoroughly verified in detail by experiments. Furthermore, grand unified theories
have attempted to enlarge the unifying scheme to include the strong force, and further attempts at
unification to include the gravitational force at ultramicroscopic level are on the way, for example
the superstring theory or other theories related to supersymmetry. These are sometimes misnamed
as ‘theory of everything’ in particle theorist circles, indicating that the tantalizing hope that the
supreme unification at an ultramicroscopic level may be attained.b Further progress in this direction
certainly will cause a profound impact on particle physics and cosmology; however, its value for the
rest of the physical sciences should be regarded with healthy skepticism for the reason that there is

bS. Weinberg, Dreams of a Final Theory, Random House, New York (1972).
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decoupling as well as coupling between different strata in the physical world. This decoupling will
interrupt the influence of high energy physics on other branches of physics with much lower energy.

In order to realize why the decoupling occurs, we may take the renormalization group theory
for critical phenomena as an example.c In the 1960s Widom and Kadanoff found evidence for
scaling and universality of critical phenomena, indicating that the structural details have no influence
on the critical phenomena. The renormalization technique was previously used with enormous
success to eliminate the divergences in quantum field theory, leading to the flowering of quantum
electrodynamics in the late 1940s. In the early 1970s K. G. Wilson had the insight to perceive that
the renormalization was not only a technical trick to eliminate the divergence, but also a very useful
expression for the variation of the rule of interactions with change in scale of the phenomena studied.
So he developed the renormalization group method which took seriously the energy cut-off Λ, i.e., in
formulating an ‘effective’ field theory for a phenomenon observed at accessible energies (of the order
E), the terms of the order (E/Λ)2 may be safely neglected. It explained nicely why the physics of
matter at microscopic length scale and high energy are irrelevant to critical phenomena. It may be
extended to explain why the important recent advance of particle physics such as the discovery of
top quark has practically no effect on condensed matter physics at all. So, in spite of the immense
success it achieved, the reductionist approach has its limitations as well; it cannot be pushed too far.

0.1.3 Emergent Phenomena

The structure of matter is stratified into a hierarchy of layers, each with its own quasistable
constituent particles and distinctive length and energy scales. Consequently, there is decoupling
between different levels, which makes the construction from simplicity and unity to complexity and
diversity not so easy as the reductionists once thought. P. W. Anderson in 1972 questioned the
validity of the pure reductionist approach: “The ability to reduce everything to simple fundamental
laws does not imply the ability to start from those laws and reconstruct the universe. . . . The
constructionist hypothesis breaks down when confronted by the twin difficulties of scale and com-
plexity. The behavior of large and complex aggregates of elementary particles, it turns out, is not
to be understood in terms of a simple extrapolation of the properties of a few particles. Instead, at
each level of complexity entirely new properties appear, and the understanding of the new behaviors
require research which I think is as fundamental in its nature as any other.” So with each stage
of aggregation, entirely new properties emerge. These are called emergent properties, and they lie
outside the realm of the physics of their constituent particles. The reductionist approach is being
gradually superseded by the study of emergent phenomena. As an apology for this viewpoint, we
may further quote an eloquent passage due to Kadanoff: “Here I wish to argue against the reduc-
tionist prejudice. It seems to me that considerable experience has been developed to show that there
are levels of aggregation that represent natural subject areas of different groups of scientists. Thus,
one group may study quarks (a variety of subnuclear particle), another, atomic nuclei, another,
atoms, another, molecular biology, and another, genetics. In this list, each succeeding part is made
up of objects from the preceding levels. Each level may be considered to be less fundamental than
the one preceding it in the list. But at each level there are new and exciting valid generalizations
which could not in any natural way have been deduced from any more ‘basic’ sciences. Starting
from the ‘least fundamental’ and going backward on the list, we can enumerate, in succession, rep-
resentative and important conclusions from each of these sciences, as Mendelian inheritance, the
double helix, quantum mechanics, and nuclear fission. Which is the most fundamental, the most
basic? Which was derived from which? From this example, it seems rather foolish to think about a
hierarchy of scientific knowledge. Rather, it would appear that grand ideas appear at any levels of
generalization.”

It is by no means an accident that these advocates for the study of emergent properties are
prominent condensed matter theorists, for the study of emergent properties occupies a foremost
place in condensed matter physics. Dirac declared, immediately after quantum mechanics achieved
enormous successes: “the general theory of quantum mechanics is now almost complete. . . . The
underlying physical laws necessary for a large part of physics and the whole of chemistry are thus

cS. S. Schweber, Phys. Today 46, 34 (1993).
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completely known, and the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble.” Surely condensed matter physics is found among ‘a large part
of physics’ in above quotation, and though Dirac’s statement is correct, i.e., condensed matter
physicists have already ‘the theory of everything’ in their hands, he certainly underestimated the
difficulties, as well as the intellectual challenges and the creative opportunities, associated with the
subtle interplay of experimental discoveries, theoretical insights and practical realizations in the
study of emergent properties of condensed matter. It should be noted that the argument against
the reductionist approach as a philosophical doctrine is for its abuse, certainly it is not to deny
the importance and effectiveness of its legitimate use. Otherwise, we would fall into the trap of
another dubious philosophical doctrine at the opposite pole, i.e., the so-called positivist approach
advocated by E. Mach and his associates in the late 19th century, to limit scientific investigations to
phenomenology. Actually, it is in the subtle interplay of the coupling and the decoupling of different
strata in structure of matter that the gist of emergent phenomena lies. Genetics has its roots in
the molecular structure of DNA without bothering about the shell structure of atomic nucleus; the
electrical conductivity of semiconductors has its roots in the energy bands of the electronic structure
of solids without bothering about the quark structure of nucleons.d

Here we may take superconductivity as an example to illustrate some peculiarities associated
with the study of emergent properties of condensed matter. Superconductivity was first discovered
in 1911 by K. Onnes. Previously he had already liquefied helium, then a laboratory was set up to
study physical properties of matter at low temperatures. He found experimentally that mercury lost
all trace of electrical resistance below a well-defined critical temperature Tc = 4.15 K. Subsequently,
it was found that a large number of metallic elements and alloys are superconductors at low temper-
ature. However, superconductivity remained a mystery to physicists for many decades. After the
successful application of quantum mechanics to explain the electrical conductivity in metals by F.
Bloch in his seminal paper in 1928. Pauli, the famous theoretical physicist, thought the time was
ripe for a similar attack on superconductivity, and entrusted Bloch, his assistant then, to carry it
out. Bloch failed in this mission, to the annoyance of Pauli, who underestimated the difficulty of
this problem. However, as a by-product of this research, Bloch proved a theorem showing that a
current-carrying state cannot be the ground state of the system, which later became a criterion for
identifying wrong theories of superconductivity. In 1933, the Meissner effect was discovered, showing
that the superconducting state is a thermodynamic equilibrium state and that superconductors are
perfect diamagnets which expel all magnetic flux from their interiors. This may be taken as a firm
experimental basis for the construction of a theory, so, in 1934, the London brothers developed a
phenomenological theory of electrodynamic properties of superconductors. The first intuitive recog-
nition of its real nature was recorded in F. London’s monograph “Superfluids”, published in 1950,
in which he regarded superconductivity as a manifestation of macroscopic quantum phenomena to
be described by a macroscopic wavefunction, whose gauge symmetry (the arbitrariness of phase in
its wave function) is broken. In the same year V. I. Ginzburg and L. D. Landau identified a macro-
scopic wavefunction-like order parameter to construct a comprehensive phenomenological theory for
superconductors, based on an effective field approach. Prior to 1950, there had been many attempts
to construct microscopic theories of superconductivity by physicists, among them, some eminent
theoretical physicists. Most of these attempts were complete failures. The first approach that ap-
peared hopeful was due to H. Fröhlich in 1950, who proposed a mechanism for superconductivity
based on the interaction of electrons as a result of their coupling to lattice vibrations. The concur-
rent experimental discovery of the isotope effects on Tc of superconductors gave plausibility to this
mechanism. However Fröhlich’s treatment, based on perturbation methods; was found inadequate.
It remained for J. Bardeen and his young associates to persevere in this direction and to borrow
some theoretical techniques from quantum field theory to treat this intricate many-body problem,
until finally in 1957 Bardeen, Cooper and Schrieffer proposed the famous Bardeen–Cooper–Schrieffer
(BCS) theory which is able to account for many key properties of superconductors, in particular the
existence of an energy gap with the right order of magnitude, BCS theory and it passed the scrutiny
of experimental tests. Later Bogoliubov, Eliashberg, Nambu and others improved the theoretical

dFor discussions about emergent phenomena one may consult P. W. Anderson, Science 177, 393 (1972); L. P. Kadanoff,
From Order to Chaos, World Scientific, Singapore (1993), p. 339; and P. Coleman, Ann. Henri Poincaré 4, 1 (2003).
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techniques, facilitating the applications of Bardeen–Cooper–Schrieffer (BCS) theory; while Gor’kov
derived Ginzburg–Landau equations from BCS theory, linking together two levels of description for
superconductivity. In the late 1930s L. V. Shubnikov had discovered experimentally the type II
superconductors in which the Meissner effect is not complete. In 1957 A. A. Abrikosov derived a
vortex lattice model from the Ginzburg–Landau equations to account for the magnetic properties
of the type II kind superconductors theoretically. In 1965 neutron diffraction experiment verified
the existence of the flux-line lattice. Since the 1960s practical superconducting cables for solenoids
producing strong magnetic field have been developed. In 1962 B. Josephson predicted the tunneling
of paired electrons through an insulating barrier based on the concept of broken symmetry; later it
was verified in the laboratory and known as the Josephson effect. Further, it was used to fabricate
Josephson junctions which became key devices for the new technical field known as superconducting
electronics. These facts demonstrate clearly the close connection between theoretical conception,
experimental verification and practical utilization in the study of emergent phenomena.

Into the 1980s, some exotic superconductors such as organic and heavy fermionic superconductors
were discovered. Then a breakthrough occurred in 1986 with Bednorz and Müller’s discovery of high
temperature superconductivity in doped lanthanum cuprate; it broke the Tc barrier which had stood
for decades. It triggered a unprecedented worldwide research activity in this field. Within a few
years the record of Tc soared to 134 K at ambient pressure and 163 K under high pressure. Even
after intense research for more than 15 years, no consensus was reached for the explanation of
its anomalous properties and pairing mechanism and it is still a hot topic alive with possibilities.
Early in 1964, high Tc organic superconductors were conjectured theoretically by W. Little with
pairing mechanism of excitons in polymers with side branches. In 1980, Jerome first discovered
superconductivity in charge-transfer salt with Tc less than 1 K, then Tc was pushed to 11.2 K
in (BEDT-TTF)2Cu(NCS)2 in 1987. In 1990–1991, the superconductivity in solid C60 chemically
doped with alkali metals was discovered, the highest Tc reached 30 K at ambient pressure. In 2000 a
superconductor of metallic alloy MgB2 with Tc = 39 K was discovered, and its practical importance
demonstrated. On the fundamental side, evidence for exotic pairing states involving the coexistence
of superconductivity and weak ferromagnetism is accumulating. So a new wave of research on
superconductivity begins. Ten scientists engaged in research on superconductors have already been
Nobel prize winners. More is to be expected. This demonstrates the complexity, unpredictability
and fertility of research on emergent properties in condensed matter.

There is another aspect of emergent phenomena that should be noted: the emergence of diverse
complex structures out of very simple interactions. Since the details of elementary interactions are
generally irrelevant to the complex structures they produce, so extremely simplified models for these
interactions may be devised to account for these complex structures. Just as Kadanoff noted,“all
richness of structure observed in the natural world is not a consequence of the complexity of physical
laws, but instead arises from the many-times repeated application of quite simple laws.” Here we
take the Ising model for cooperative phenomena as an example of a simple model that can go very
far to account for complexity.

The Ising model was first proposed in a doctorate thesis in 1920 as a simplified model for a
ferromagnetic phase transition. It considers a collection of classical spins on lattice sites, each spin
pointing either upward or downward. Thus the value of σi at arbitrary lattice point i is a constant
with a plus or a minus sign, and Jij is the interaction energy between i and j spins, which may be
further simplified by setting Jij �= 0 only for nearest neighbors. Then the Hamiltonian for the Ising
model may be expressed by the following equation,

H = −
∑

i<j

Jσiσj . (0.1.1)

This model can be used to illustrate the ferromagnetic transition, although it is not very realistic for
it is extremely anisotropic, and it completely ignores the quantum nature of magnetic interaction.
It may be used also to describe the atomic configuration of binary alloys and the lattice gas. It is
an extremely useful model for the second order phase transition despite its apparent simplicity. In
the mean-field approximation, it may be easily solved, showing there is a critical temperature Tc.
Below Tc is the ordered phase with lower symmetry, while above Tc is the disordered phase with
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higher symmetry, in agreement with the phenomenological Landau theory of the second-order phase
transition.

However, the Ising model with extreme simplicity permits more precise handling. The exact
solution for the one-dimensional case was preserved in Ising’s original thesis, showing no phase
transition to occur down to T = 0 K. The exact solution for the two-dimensional case is more difficult
but in 1944 Onsager published his famous result; it is regarded as a landmark for the development of
statistical physics in the 20th century. The exact solution for the two-dimensional Ising model shows
its behavior in the critical region (specific heat at Tc with a logarithmic singularity, the critical indices
different from mean-field values, etc.), to be quite different from that of Landau theory. It raised the
question: Which theory is the correct one for the treatment of critical phenomena? Though the exact
solution of the three-dimensional Ising model is still missing, numerical methods of series expansion
have yielded quite accurate results. In the 1960s accurate experimental results for the determination
of critical indices became available and discrimination between rival theories became possible, with
the verdict in favor of the Ising model. Kadanoff examined the theoretical consequences of the
exact solution of Ising model and formulated the basic ideas of scaling and universality for the
modern theory of critical phenomena. So the complex structure of domain droplets with scaling
invariance observed in the critical region may be understood as the direct consequence of the Ising
model. Besides, the complex structure of spin glasses may be understood in the framework of a
modified Ising model, with the interaction is extended to a long-range oscillatory type, while spins
are distributed on the sites of a lattice gas. Further traces of the Ising model have also been found
in some problems in biophysics, e.g., the theory for helix-coil transition of biopolymers and the
modeling of neural networks. The Ising model in a magnetic field was among the first ventures into
the theory of quantum phase transitions, i.e., the phase transition at T = 0 K by changing pressure,
magnetic field, composition, or other parameters.

§0.2 The Terrain of Condensed Matter Physics

We shall cut out a slice from the hierarchy of strictures in physical world to be the object of
our study and focus our attention on condensed matter, which lies in the middle span of the whole
hierarchy. Its length scale is in the range from several meters to several 0.1 nanometers; the time
scale is in the range from several tens of years to several femtoseconds; the energy scale expressed
in thermodynamic temperature in the range from several thousands of kelvins to nanokelvins; the
number of particles is generally in the range from 1027 to 1021, which may be considered as ap-
proaching the thermodynamic limit N → ∞; however, cases of much smaller number of particles
are also encountered. Some parts of this slice of the physical world are directly accessible to our
senses, while the details may be observed with the help of various types of microscopy. So it is no
wonder that this branch of physics has proved to be most relevant to our daily life as well as high
technology. In our study, nuclei and electrons are mostly regarded as ‘elementary’ particles in the
sense that they could not be further decomposed in the energy range we are interested. Interactions
between them are governed by quantum mechanics. By common sense, condensed matter means
solids and liquids, as well as some mesophases between them. Now we shall examine the range and
the substance of condensed matter physics in more details from a fundamental viewpoint.

0.2.1 Theoretical Descriptions: Quantum versus Classical

Here we consider systems of many identical particles. According to quantum mechanics, all
particles manifest wave-particle duality, so all material particles have wave character as well, this
is what makes quantum mechanics different from classical physics. The de Broglie wavelength λ is
inversely proportional to its momentum p, λ = h/p = h/mv, where h is Planck’s constant, m is the
mass and v the speed of the particle. In thermal equilibrium, v ∼ T 1/2 and the thermal de Broglie
wavelength is inversely proportional to the square root of temperature.

We may imagine a swarm of flying particles with tentacles about one-half wavelength long
stretched out. When the chance of these tentacles touching each other amounts to certainty, the
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wave character of these particles will manifest itself conspicuously. So we may use the condition of
the thermal de Broglie wavelength λ of the particle equal, to or larger than, the average inter-particle
spacing a as a criterion for the employment of a quantum description. Let the mean kinetic energy
of particles mv2/2 be equal to thermal energy 3kBT2 (here kB is the Boltzmann constant), setting
λ = a, we obtain the quantum degeneracy temperature,

T0 =
h2

3mkBa2
. (0.2.1)

At T ≫ T0, the wave aspect can be neglected and we may safely treat these problems with classical
physics, while at T ≤ T0, the wave aspect predominates and we must treat these problems with
quantum mechanics and quantum statistics. Thus T0 or kBT0 sets the temperature (or energy) scale
for a system that requires quantum description. For a collection of particles, (0.2.1) may serve as
the criterion which determines what type of theory, quantum vs. classical, is the right one for the
problem in question.

In solids and liquids, the value of a is about 0.2–0.3 nm. For electrons, m ≈ 10−27 g, T0 ≈ 105 K,
so the quantum degeneracy condition is always fulfilled for electrons in solids or liquids. For atoms, m
is about A (the atomic mass number) times the proton mass (1.6×10−24 g), so roughly T0 ≃ (50/A) K
in solids or liquids. So systems of atoms or ions in condensed matter will show quantum mechanical
effects only in the low temperature region, and apparently only with very light atoms such as
H or He. However, the case for H is often complicated by associating into molecules H2 and it
cannot maintain the liquid state to low temperatures, so only He liquids under 5 K display their
quantum nature most conspicuously. Generally speaking, for solids, delocalized electrons must be
treated as waves, while heavier particles such as atoms or ions are usually treated as particles.
This dichotomy is quite justified in view of the enormous difference in the degeneracy temperatures
for these two kinds of particles. So in condensed matter physics, the classical picture of particles
and quantum mechanical picture of waves are generally used simultaneously for the description of
various phenomena. For example, in the explanation of the electrical conductivity of metals, ions
arranged in the lattice are regarded as classical particles, while electrons must be treated as de
Broglie waves. However, in treating lattice vibrations a classical description is usually adopted,
supplemented by quantization of the vibrational energy. Full quantum mechanical treatment is
required for the theory of liquid He, so these liquids are known as quantum liquids. It should be
noted that most interactions between atoms and ions are mediated by electrons, or speaking more
figuratively, electrons serve as the glue between atoms or ions. To treat these interactions adequately
and in detail, quantum mechanics is indispensable, though sometimes classical approximations such
as empirical or semi-empirical potentials (e.g., Lennard–Jones, Morse, Stilliner–Weber, etc.) may be
effective for some approximate estimates. For instance, in the Car–Parrinello method, the electronic
structure is calculated quantum mechanically, while the behavior of atoms is described by classical
molecular dynamics. The above statements are also valid for the case of molecules, which are mixed
systems of atoms (or ions) and electrons.

Inter-particle spacing also plays an important role in T0 for its inverse square relationship in
(0.2.1). In the case of gases, due to the large values of a, the values of T0 are extremely low; in the
submicrokelvin range. To reach there is a challenge for experimentalists. Experimental difficulties
were surmounted only with laser cooling by the end of the 20th century. On the other hand, the
estimated T0 for protons and neutrons in atomic nuclei is about 1010 K due to the fact that the
inter-particle spacing is extremely small (∼ 1012 cm); neutron stars are in the same situation.

0.2.2 Condensation Phenomena

Condensation phenomena are typical collective phenomena which are well-known in everyday
experience. Gases condense into liquids or solids. Liquid differs from solid by its fluidity which is
shown macroscopically by the fact that its shear modulus is equal to zero, while microscopically
their atoms or ions may readily change places within the liquid. Liquids differ from gases by the
fact that there is a free surface dividing the substance into two parts with different densities. At
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the critical point, the density difference and the free surface disappear together, so liquid and gas
phases merge into one.

For organic substances, sometimes it is hard to determine the demarcation line between liquids
and solids and a plethora of mesophases such as liquid crystals, self-assembled membranes or gels
may be formed. Polymers and biopolymers also may exist in the solid state or the liquid state, as
well as some of the mesophases between these.

From the viewpoint of statistical physics, the gist of condensation phenomena lies in the com-
partmentalization of phase space. First we shall consider the case of position space. When gases
condense into liquids, compartmentalization of position space is realized through the appearance of
the liquid surface, which divides the configuration space into two parts. Near the surface there is
a potential barrier that maintains the density difference on the two sides by making the net flux of
particles zero at thermal equilibrium. When liquids are frozen into solids, further compartmental-
ization of position space occurs by subdivision of position space into a huge number of cells so that
each particle is nearly confined within its cell, as exemplified by atoms or ions in crystals or glasses.

However, position space is only one part of the phase space for a collection of particles envisaged
by statistical physics. We may anticipate that there are some phenomena related to compartmen-
talization in momentum space as well. These may be called condensation phenomena in momentum
space and will be important especially for systems of particles in which the wave aspect dominates,
i.e., at temperatures below the quantum degeneracy temperature T0.

Indistinguishibility is a characteristic of identical particles in quantum mechanics. There are
two types of particles: particles with integer (including zero) spin, which have symmetric wave
functions and particles with half integer spin, which have antisymmetric wave functions. The former
are bosons, which obey Bose–Einstein statistics; the latter are fermions, which obey Fermi–Dirac
statistics. The electron, proton and neutron all have spin 1/2 and are therefore fermions, while the
photon has spin 1 and is a boson. A complex particle is made up of many elementary particles; their
spins are added together to form the total spin, which determines the nature of the complex particle.
Two isotopes of He may be taken as examples: the 3He atom has two protons; one neutron and two
electrons, so it is a fermion; while a 4He atom has two protons, two neutrons and two electrons and
so it is a boson.

For a system of bosons, in which more than one particle may occupy the same quantum state, at
T = 0 K all particles occupy the state with lowest energy as well as momentum, i.e. the ground state.
This is a condensate in momentum (or wavevector k) space. In 1924 Einstein predicted that, for a
system of ideal bosons, when decreasing the temperature to a definite value, a macroscopic number
of particles will occupy the ground state, i.e. a Bose–Einstein condensation (BEC) occurs. In 1950
F. London conjectured that the transition to superfluidity at 2.17 K in 4He is the Bose–Einstein
condensation of a system of interacting bosons. In 1995 the Bose–Einstein condensation of 87Rb gas
in a magnetic trap at a temperature of about 200 nK was first demonstrated with laser cooling plus
evaporation cooling. Since then, similar condensation of gases of 23Na, 7Li as well as spin-polarized
1H have been reported. Due to the very weak interactions between atoms, it is commonly said that
these experiments verify the Bose–Einstein condensation as predicted by Einstein’s theory; however,
some reservations should be noted: the small number of atoms (103–106) in the trap deviates from
the thermodynamic limit, the trap exerts a force field on the atoms, and the influence of weak
interactions between atoms in some cases are non-negligible.

For a system of fermions, the Pauli exclusion principle prevents more than one particle from
occupying the same quantum state. So, for an ideal gas of fermions at T = 0 K, the particles
will occupy all momentum states up to some maximum value, the Fermi momentum. The locus of
the Fermi momentum is called the Fermi surface, which divides occupied states from unoccupied
ones in momentum space. This is a close analog for a liquid drop in position space, so it may be
understood also as Fermi condensate versus Bose condensate in momentum space, although no sharp
critical temperature like Bose–Einstein condensation temperature is found for a system of fermions.
Nearly free electrons in metals are the most commonly encountered case of a Fermi gas. In 1999
the dilute atomic gas of 40K in a magnetic trap was found to be quantum degenerate at microkelvin
temperatures, providing another example of a Fermi gas. 3He liquid below 5 K and electrons in
metals with moderate interactions are Fermi liquids. If there are suitable interactions between a
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pair of fermions, then pairs of fermions may be formed and condensed into macroscopic quantum
states. Examples include superconductors with paired electrons and 3He superfluids with paired
3He atoms. Whether there are superfluids with paired fermionic atoms in dilute gases at extremely
low temperature is a hot topic of contemporary research.e

0.2.3 Ordering

According to thermodynamics, each equilibrium phase is situated at the minimum of the
Helmholtz free energy F = U − TS or the Gibbs free energy G = U − TS + PV , in which, U
is the internal energy, T is the thermodynamic temperature, S is the entropy, P is the pressure, V is
the volume. Different phases appearing in phase diagrams are due to the competition of the internal
energy term U and the entropy term TS; usually the former term favors order, while the latter term
favors disorder.f In general, condensation phenomena are closely connected with ordering processes,
various condensates are phases with some kind of ordered structures.

For atoms considered as classical particles, the order is most conspicuously manifested as the
positional order which signifies the correlations of atomic positions at different places. If the range
of correlations tends to infinity, the system has long-range order; if the range of correlations is lim-
ited to nearby atoms, then the system has short-range order; if there is no correlation at all, the
distribution of atoms is fully random, so the system is in perfect disorder. Crystalline solids and
substitutionally-ordered alloys are examples of long-range order with periodicity; incommensurate
phases and quasicrystals are examples of long-range order with quasiperiodicity; glasses and liquids
are examples of short-range order without periodicity; while gases are phases with nearly perfect
disorder. For the phases consisting of anisotropic molecules, the orientational order becomes impor-
tant; for instance, liquid crystals and plastic crystals. Both the positional order and the orientational
order are shown clearly only in configuration space; these may be identified as order in configuration
space or particle order. It should be noticed that order in position space is not limited to a system
of classical particles; degenerate electron gases or liquids may manifest order in position space due
to interactions as exemplified by charge density waves (CDW), spin density waves (SDW) and the
Wigner crystal, i.e., electrons periodically arranged in space.

For a system of particles in the quantum regime, i.e., below T0, the important thing is ordering
in momentum space. Order in momentum space, or wave order, is manifested by the occupation
of states in momentum space. For a system of bosons, perfect order is achieved when all particles
occupy the ground state or a state with definite momentum. For a system of fermions, perfect order
means every state below the Fermi surface has been occupied. This is quite analogous to the liquid
state limited by a sharp surface in configuration space. These are wave orders for large systems,
i.e., where the number of particles, N → ∞. Wave order will also manifest in a system composed
of a finite number of fermions, especially in a central field or a spherical trap. This kind of order is
most clearly shown by the display of a shell structure: in the case of electrons in atoms it provides
the scientific basis of the periodic table of chemical elements; in the case of atomic nuclei (mixed
fermions) magic numbers and shell structure occur; in the case of electrons in metallic clusters or
quantum dots, magic numbers and shell structure also occur. Wave order in a system of fermions is
a direct consequence of the Pauli exclusion principle.

The physical origin of ordering for a system of classical particles is mostly due to the interactions
between particles though, for a system of hard spheres, ordering of entropic origin is sometimes
found. However wave order is a purely quantum mechanical effect; perfect order may develop even
in a system of particles without any interactions at all, i.e., an ideal gas. Interactions actually
may diminish, instead of enhancing wave order as indicated by the lowering of the Bose–Einstein
condensation temperature for a system of interacting bosons. The same situation holds for a system

eIt has been demonstrated that the dilute gas of fermionic 40K atoms, after cooling under T0 to form quantum Fermi
gas, then further cooling will form weakly bound localized atom pairs, in which the Bose–Einstein condensate has
been detected, see M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).
fThere are exceptional cases, such as entropy-driven ordering. For instance, in systems composed of hard rods or
hard balls, when internal energy or temperature is kept constant, increase of entropy may promote ordering. This
mechanism was first proposed by L. Onsager for phase transition in liquid crystal in the 1940s. Recently it has been
widely used in the self-assembly of soft matter in which the change of internal energy may be neglected.
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of fermions. Perfect order is shown by the non-interacting Fermi gas. By switching on interactions
between particles adiabatically, the Fermi gas is changed into a Fermi liquid; its wave order is some-
what diminished, though it still retains the sharp Fermi surface and its elementary excitations are still
analogous to the Fermi gas. Increasing the interactions between particles further, the Fermi liquid
may be changed into a strongly-correlated fermionic system displaying many anomalous properties
which are still perplexing topics for current investigations. On the further end, strong interactions
may induce Wigner crystallization in an electronic system, as well as ordinary crystallization in an
atomic system.

Uncertainties in position and momentum of a particle in quantum mechanics are coupled together
by the Heisenberg uncertainty principle. So it is expected that positional order and momentum order
in a quantum system appear to be mutually exclusive: Bose–Einstein condensation (BEC) does not
occur in crystalline solids and Wigner crystallization develops at the expense of momentum order of
electrons.

It may be mentioned in passing that the concept of momentum order is not necessarily limited
to quantum systems. We may extend this concept to nonequilibrium classical systems such as
hydrodynamic systems. In hydrodynamic flow, the highly correlative velocity field is analogous to a
kind of momentum order in classical system. So it is no wonder that some hydrodynamic problems,
such as thermal convection, pattern formation and turbulence, have been studied with profit by the
methods of condensed matter physics.

There is also another sort of condensation (or ordering) phenomenon associated with particles
with spins. For localized particles with spins, we may imagine spins attached to each lattice site.
Ordering of spins occurs when the disordered spin state (paramagnet) transforms into the ordered
spin state (ferromagnet or antiferromagnet). This is analogous to the classical description of crys-
tallization in position space, while transition into a spin glass is analogous to glass transition from
the liquid state. For spins of itinerant electrons, the quantum description of ordering in momentum
space is more appropriate: The Fermi energy EF may be different for up and down spins in the spin-
ordered phase. Also there may be two kinds of pair formation for fermions: Pairs in configuration
space are known as Schafroth pairs, while pairs in momentum space are Cooper pairs.

From the above discussions, we may conclude that condensed matter means condensates in phase
space which, in general, can be subdivided into position space and momentum space. Hence what
is known as condensed matter should enlarge its scope by including both condensates in position
space and momentum space, some of these even may be gases, so compared with solid state physics
condensed matter physics surely has a more rich and variegated collection of objects for its study.

The phase transitions discussed above are all thermodynamic ones. Phase transition tempera-
tures are always higher than 0 K. Even if the interactions responsible for a phase transition are of
quantum nature, the appearance of the phase transition is induced by a classical thermal fluctuation.
There is another kind of transition, the so-called quantum phase transition which appears at 0 K,
through adjustment of pressure or composition or by application of a magnetic field. At 0 K, thermal
fluctuation is absent, so the quantum fluctuation implied by Heisenberg uncertainty principle plays
the dominant role. Because the 0 K condition cannot be realized in a laboratory, what happens at
0 K can only be inferred from experimental results near 0 K. However, exact theoretical results may
be obtained to compare with experimental results near 0 K. Such results even may be valid in quite
a wide range of temperature. The study of quantum phase transitions may help us to understand
some puzzling problems in condensed matter physics, such as strongly correlated electronic states.g

§0.3 Historical Perspective and Conceptual Framework

0.3.1 From Solid State Physics to Condensed Matter Physics

The foundation of solid state physics was laid in the 1930s, and by 1940 substantial parts of solid
state physics had been established and the field was ready for a comprehensive survey: Structural
crystallography was established by X-ray and electron diffraction; lattice dynamics was formulated

gOne may consult S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge (1999).
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by the application of quantum theory and statistical physics to the study of thermal properties of
solids; electron band theory arose from the application of quantum mechanics and statistical physics
to the study of electrical conductivity of solids; the theory of magnetic properties of solids was
based on the quantum mechanical treatment of exchange interactions. Thus the publication of the
influential monograph “Modern Theory of Solids” by F. Seitz in 1940 marked the coming-of-age of
solid state physics. Subsequently many textbooks on solid state physics have been published.

By the end of the 1940s, explosive growth of solid state physics occurred in the wake of the
invention of the transistor, so the stage for theoretical treatments was set and the practical utility of
the research activities had been demonstrated. The range of research topics was much enlarged, so in
the mid-1950s, Seitz and Turnbull found that the field had become too wide to be included in a single
monograph, so the multi-volumed Solid State Physics—Advances in Research and Applications,
which published comprehensive review articles on recent progress in some subfields at the rate of
about one volume per year, was launched and has continued to this day. It testifies to the diversity
and the fertility of this field and remains an excellent set of reference books for many topics developed
since the 1950s.

After the 1970s and the 1980s, the term ‘solid state physics’ has often been superseded by
‘condensed matter physics’: Why this change? What are the meanings hidden behind these two
different terms? In this section, we shall try to answer these questions. In our analysis, the reasons
for this change are twofold: One is more obvious, it concerns the enlarged scope of objects studied;
the other is more subtle, it concerns a change or shift in conceptual frameworks.

Besides the enlargement of scope, there is also the change or the shift in conceptual framework
associated with the transformation from solid state physics to condensed matter physics. A noted
historian of science, T. S. Kuhn emphasized the important role played by the paradigm in the
development of science. Before the establishment of the paradigm, a given branch of science was
still immature. Although much knowledge had been amassed, divergent viewpoints may be raised,
but a coherent conceptual framework was still lacking, so it remained in the stage of pre-science.
After the paradigm was established, it went into the stage of normal science, and quick and stable
growth resulted. At this stage the discipline became mature, many monographs and textbooks
were written to expound it. After quite a number of anomalies appeared leading to a crisis, a
scientific revolution took place, forming a new paradigm to replace the old one. Although the
actual development of science is too complex to be fitted into such simple pigeonholes, undeniably
the paradigm can be seen to play a substantial role in the history of science. In this and later
sections we shall try to decipher the paradigms involved in solid state physics and condensed matter
physics.h

0.3.2 The Paradigm for Solid State Physics and Its Extension

In retrospect, although solid state physics was characterized by variety of subject matter and
diversity of theoretical treatments, we may still recognize a common conceptual framework unifying
a large part of this branch of science, i.e., a paradigm in Kuhnian sense. As a paradigm for solid
state physics, we may take the title of a book by L. Brillouin, “Wave Propagation in Periodic

Structures”. In this book, fundamental problems of solid state physics were illustrated by a unifying
viewpoint. He began his discussions with a historical perspective, starting from Newton’s derivation
of the formula for sound speed with a lattice model, then discussing the mechanical model of the
dispersion of light as envisaged by Cauchy, Kelvin and others in the 19th century, finally emphasizing
the importance of the concept of pass-bands and cut-off frequencies, widely used by engineers in
their treatment of electric filters with one-dimensional periodic structures. Brillouin emphasized
that there are common characteristics of wave propagation for different types of waves: It does
not matter whether the wave is de Broglie or classical, elastic or electromagnetic, transverse or
longitudinal. Solid state physics is mainly concerned with structures and properties of the crystalline
state which is characterized by the existence of periodic structures. Propagation of elastic waves or

hT. Kuhn, The Structure of Scientific Revolution, 2nd ed., The University of Chicago Press, Chicago (1971). Although
we acknowledge the importance of the concept of ‘paradigm’ introduced by Kuhn, however, it does not imply that we
endorse without reservation all the ramifications of the Kuhnian philosophy of science.
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lattice waves in periodic structures lead to lattice dynamics mainly formulated by M. Born and his
school; propagation of short wavelength electromagnetic waves led to the theory of X-ray diffraction
in crystals, the dynamical theory of which was formulated by P. P. Ewald, C. G. Darwin, and
M. von Laue; propagation of de Broglie waves (electrons) in crystals led to the band theory of the
electronic structure of solids, formulated by F. Bloch, A. C. Wilson, L. Brillouin and others. There
are common features of these theories: In the treatment of wave propagation, Bloch formalism is
adopted to take advantage of simplicity introduced by translational symmetry (periodicity), and the
crucial role played by dispersion and its visualization in wavevector (or reciprocal) space. Subsequent
consolidations and applications of these fields became the main tasks accomplished by solid state
physicists, both experimentalists and theorists. It should be noted that, even today, the vitality of
this paradigm is by no means exhausted, a new lease on life was obtained through investigations of
photonic crystals with band gaps in the late 1980s and after.

The paradigm once established faced extension and modification with the progress of science.
After the immense success achieved by band theory and lattice dynamics in the treatment of periodic
systems, the challenge of aperiodic systems became acute. For crystals with dilute impurities, the
case of Bloch waves scattered by a single impurity atom is of prime importance. This lead to the for-
mulation of Friedel oscillations and related topics. For concentrated alloys, multiple scattering from
different sites becomes important and some averaging schemes such as average t-matrix (ATM),
coherent potential approximation (CPA), and effective medium approximation (EMA) have been
proposed to give a picture of the average band. These methods were also extended to the cases of
classical waves. In addition, these approximations have been applied to weakly disordered systems
with considerable success. For more strongly disordered systems, P. W. Anderson, in his seminal
paper in 1958, introduced the concept of localization of de Broglie waves due to strong disorder.
About 10 years later, Mott gave a physical interpretation of Anderson localization to explain the
behavior of amorphous semiconductors and the metal-insulator transition induced by disorder with
considerable success. Thus, the physical picture for localization of electrons was accepted by the
scientific community. Just as Brillouin emphasized that there is a common trait for all type of waves,
so localization phenomena are not limited to de Broglie waves; classical waves also show its manifes-
tations. There has been a flurry of research activity concerned with the localization of classical waves
both theoretically and experimentally in recent years. Wave behaviors in quasiperiodic structures,
such as incommensurate phases and quasicrystals, situated midway between periodic structure and
a homogeneously-disordered one, is another topic worthy of attention. The energy spectra of these
structures are shown to be characteristic of a critical state which is intermediate between delocalized
and localized states, displaying a self-similar structure. Inhomogeneous structures are another type
of disordered system. The traditional method of obtaining physical properties of phase mixtures is
to use EMA, but with the development of percolation theory, we may go beyond it. Fractal structure
with scale invariance has been transformed from mathematical curiosity to a model applicable to
many real problems studied by physicists. The concept of fracton emerged from the study of its
vibrational and electronic spectra.

Periodic potentials that satisfy translational invariance should be infinite in extent and without
any boundaries, but actual crystals have surfaces on which the periodicities of atomic arrays are in-
terrupted. A new subfield called surface physics, which studies crystallography, lattice dynamics and
the electronic structure of surfaces, has been established. Low-dimensional physics is another new
subfield full of vitality. Although theoretical physicists rigorously proved that fluctuations should
destroy the long-range periodicity in one-dimensional (1D) and two-dimensional (2D) structures, it
is found that the existence of inter-chain or inter-sheet coupling, as well as its finite extent, may
stabilize the periodic structure in certain quasi-2D or quasi-1D materials. It should be noted that
effects due to disorder are particularly conspicuous in these low-dimensional materials. The scaling
theory of localization shows that electrons in 1D and 2D metals are generally localized. Not only
low-dimensional structures are related to disorder, but structures with dimensions higher than 3 are
also related to disorder. 1D incommensurately modulated structure corresponds to the projection
from periodic structure in a four-dimensional (4D) hyperspace; three-dimensional (3D) quasicrystal
corresponds to the projections from periodic structures in six-dimensional (6D) hyperspace; while
structure of amorphous materials may be modeled as the projections from periodic structure in a 4D
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curved space. Fractal structures may have fractional dimensions. Thus, the study of wave behavior
in these aperiodic and non-3D structures becomes an important extension of the original paradigm
and is found in active areas of contemporary research.

Another active field is related to coherence effects of de Broglie waves. Anderson localization
and the subsequently-discovered weak localization of electrons are really due to interference effects.
With the fabrication of artificial nanostructures, such as superlattices, quantum wells, quantum
wires, quantum dots and small rings, in which transport phenomena with interference of coherent de
Broglie waves are studied, ballistic transport as well as tunneling transport may be readily observed,
especially at low temperatures. This has given birth to a new exciting subfield, mesoscopic physics.

Electrons have spins as well as charges, but to incorporate spins into this paradigm is not an
easy task. One may introduce spin-dependent scattering or one may consider propagation of spin
waves in a periodic array of localized spins phenomenologically modelled on that of lattice waves.
Only partial success has been achieved, for the subject of ferromagnetism is at heart a many-body
problem which lies outside this paradigm. This also applies to superconductivity.

0.3.3 Bond Approach versus Band Approach

When band theory was first proposed and theoretical treatments of the hydrogen molecule based
on quantum mechanics appeared, this marked the first success of quantum chemistry. So a paradigm
for quantum chemistry was established alongside that of solid state physics. Although both band
theory and quantum chemistry are based on quantum mechanics, the difference in viewpoints should
be noted. Band theory adopts a global view, stressing the delocalized valence electrons and the
dispersion relation in k space, while quantum chemistry, in general, adopts a local view, stressing
the atomic configurations, bond formation and charge transfers in real space. Of course, both band
theory and quantum chemistry have their merits as well as their disadvantages: Band theory is most
successful for transport properties of solids; however, in the treatment of binding of solids, it is not
so intuitively transparent as quantum chemistry. It should be noted that quantum chemistry also
has its shortcomings; the calculations are done by summing up contributions by different atoms, the
difficulty in calculation scales up drastically with the addition of more atoms and the results cannot
extrapolated to the case of infinite number of atoms, which is the most interesting case for solid
state physics. However, since each theory has its limitations, actually the band approach and the
bond approach are complementary to each other, so it is unwise to see things only from one point
of view. Formerly physicists have been too partial on the side of the band approach but nowadays
condensed matter physics is increasingly concerned with complex oxides and organic materials and
it is quite desirable for condensed matter physicists to be familiar with the language of quantum
chemistry.

Even in the heyday of solid state physics, the shortcomings of band theory became apparent when
confronted with the fact that NiO, CoO, MnO etc., are transparent insulators, whereas, according
to band theory, they should be metals. These oxides were later called Mott insulators, in recognition
of Mott’s contributions to this problem. Taking NiO as an example, the current passing through
it depends on configurations Ni3+ and Ni+ which could move, and on-site correlation energy which
could prevent their formation. The energy required to create these configurations, if the ions are a
long way from each other, is called the Hubbard energy U equal to

U = I − E , (0.3.1)

where I is the energy required to remove an electron from Ni2+ to form Ni3+ and E is the energy
gained when a free electron at rest is added to Ni+. This distinction between a metal and a insulator
has more ‘chemical’ flavor compared with Wilson’s formulation in band theory. Later Hubbard
incorporated this idea in combination with band theory into the Hubbard model to treat the Mott
transition, i.e., the metal-insulator transitions due to electron correlation. It should be noted that
the on-site correlation effect has been already considered in Heitler and London’s treatment of the
valence bond in hydrogen molecule, and its generalization to the case of magnetic interactions is
the starting point of the Heisenberg model for ferromagnetism. Parenthetically, the mainstream of
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quantum chemistry, the molecular orbital approach, neglected the on-site correlations just like band
theory does.

In the 1950s Anderson proposed a theory of superexchange for antiferromagnetic or ferrimagnetic
oxides; the on-site correlation energy also plays an important role in this subject. About the same
time Zener developed a theory of double exchange to account for the ferromagnetic metallic state of
certain calcium manganites. About 40 years later in the 1990s, it was found that these oxides show
colossal magnetoresistance (CMR), i.e., with application of magnetic field there is about a 102-fold
to 106-fold change of resistance.

In the study of dilute magnetic impurities in normal nonmagnetic metals, a series of interesting
physical effects was discovered showing anomalous resistivity versus temperature as well as anoma-
lies in magnetic properties. It is certainly related to the mixing and interaction of s and d electrons.
Anderson in his theoretical treatment gave a simplified Hamiltonian in which the on-site correlation
energy appeared, this was later called Anderson model. The Anderson Hamiltonian may be trans-
formed into the Kondo Hamiltonian which is crucial for the elucidation of the Kondo effect, i.e.,
the appearance of a resistance minimum in alloys of noble metals with magnetic impurities. The
Anderson model may be generalized to the periodic Anderson model just as the Kondo model can be
generalized into the Kondo lattice model for the treatment of more complex problems such as heavy
electrons and Kondo insulators. After 1986, a series of high Tc superconductors were discovered.
The prototypes of these superconducting oxides are mostly Mott insulators, so it is expected that
strong correlations between electrons also play a decisive role in the mechanism of the normal state
conductivity as well as superconductivity in these doped Mott insulators. Surely these problems
indicate that the development of theories going beyond a simple band approach or simple bond
approach, with appropriate treatment of electron correlation, is much needed.

0.3.4 The Paradigm for Condensed Matter Physics

Cooperative phenomena such as phase transitions are important examples of many-body physics.
Historically, mean-field theories have been repeatedly proposed for various physical systems by dif-
ferent scientists. The first one was van der Waals theory of gas-liquid transitions in 1873, then Weiss
theory for paramagnetic-ferromagnetic transition in 1907, later still the Bragg and Williams theory
for order-disorder transition in alloys in 1934. In 1937 Landau formulated a phenomenological the-
ory of second-order phase transitions with sufficient generality that it contained all the essence of
these mean-field theories. Heisenberg’s theory of ferromagnetism and the Bardeen–Cooper–Schrieffer
(BCS) theory of superconductivity were highlights of the quantum theory of cooperative phenom-
ena. The discovery of antiferromagnetism by Néel, the discovery of superfluidity in 4He by Kapitza
and Allen and its explanation by Landau and London; the discovery of superfluidity in 3He by
Lee, Richardson, and Osheroff, explained theoretically by Legget, all added new members to the
repertoire of ordered phases with broken symmetry.

Researches were extended to the excited states of ordered phases. First among them was the
Debye theory of phonons which gives a rough idea of elementary excitations. Bloch introduced the
idea of spin waves or magnons. The Bohm and Pines theory of plasmons and the Landau theory of
Fermi liquids marked important advances in many-body theory.

In 1934 the theory of dislocations was proposed by Taylor, Orowan , and Polanyi, independently,
to explain why metallic crystals are easily plastically deformed; about the same time, the domain
theory for ferromagnets was proposed by Landau and Lifshitz. While the latter was immediately
verified by experiments, the former had to wait 20 years for clear-cut experimental verifications.
In 1957 Abrikosov predicted the vortex lattice in type II superconductors, which also waited many
years to be verified. In the 1970s defects (including disclinations) in liquid crystals were intensively
studied. In 1976 Toulouse and Klémen proposed a scheme of topological classification of defects
and gave a unified treatment of defects for the first time. Topological defects are recognized as
singularities in ordered media, in which topological stability is related to the dimensions of media
and the number of components of the order parameters.

Though critical phenomena in the region near Tc were observed very early in the 19th century by
T. Andrews, precise experimental measurements of critical indices in the 1950s and 1960s found that
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the Landau theory was not valid in the critical region, so the modern theory of critical phenomena,
with strong and long-range fluctuations, was born. Its basic concepts and theoretical methods
incorporating scaling, universality, and the renormalization group technique not only neatly solved
the problem of critical phenomena, but also found important applications in other fields.

In the 1970s and after, these concepts of cooperative phenomena were used fruitfully by P. G. de
Gennes, S. F. Edwards and others to explore new territories, such as the physics of liquid crystals
and polymers.

In 1976 J. A. Hertz extended the theory of critical phenomena from the classical regime to
the quantum one by treating time as a new dimension, and so broke the ground for the study of
quantum critical phenomena. The importance of this kind of study for condensed matter physics
was fully recognized only in the 1990s. From the works discussed above, condensed matter physics
acquired a new physiognomy compared with more traditional solid state physics. The shortcomings
of the original paradigm, due to its inadequate treatment of interactions between particles, became
apparent and the time was ripe for the formulation of a new paradigm for condensed matter physics.

During the transformation from solid state physics to condensed matter physics, two outstanding
scientists, Landau and Anderson played important roles in it not only by their creative theoretical
contributions but also by distilling and clarifying some basic concepts that serve as the founda-
tion for the edifice of condensed matter physics. Landau in his theory of the second-order phase
transitions formulated the concepts of broken symmetry and generalized the concept of the order
parameter. In his theories of superfluidity of 4He and Fermi liquids, he introduced the general idea
of elementary excitations. Anderson in his book “Concepts in Solids” recognized the importance
of broken symmetry and elementary excitations; in his later book “Basic Notions of Condensed

Matter Physics”, he made systematic and insightful expositions on basic concepts, such as broken
symmetry, elementary excitations, generalized rigidity, topological defects, adiabatic continuity and
renormalization groups.

Based on the endeavors of Landau, Anderson and others, we shall try to formulate explicitly a
new paradigm for condensed matter physics. In contrast with the former one, this new paradigm
emphasizes many-body effects and its central place is reserved for broken symmetry.

Landau’s idea of broken symmetry may be summarized as follows: The presence or the absence
of a certain symmetry element in a certain state of matter is never ambiguous, it is either there or
not there. The sudden disappearance of a certain symmetry element in the high-symmetry phase
corresponds to the occurrence of a phase transition with the concurrent appearance of the low-
symmetry phase. Broken symmetry signifies the appearance of an ordered phase with the value of
certain order parameter to be different from zero. The order parameter is the average value of a
certain physical quantity; it may be a scalar, a vector, a complex number or a more complicated
quantity with many components. It is zero in the high temperature phase, it has a finite value
in the low temperature phase. The critical temperature Tc marks the temperature at which the
second-order phase transition occurs. This order parameter is used to describe the qualitative as
well as the quantitative aspects of the loss of symmetry in the low symmetry phase.

As we know, matter at sufficiently high temperatures is in the gaseous state. It is homogeneous
and isotropic, and maintains full translational and rotational symmetry, which are compatible with
the symmetry of the controlling equations. Few spectacular physical properties are manifested by
matter in the gaseous state, while matter in the solid state is entirely different: Solids have rigidity,
can conduct electricity, and can manifest a full spectrum of interesting properties. The difference
may be traced to the different symmetries that characterize the gaseous state and the solid state.
Most solids are crystalline materials in which full translational symmetry and rotational symmetry
are broken. The only remaining symmetries are invariance with the displacement of lattice vectors
and a specific set of discrete rotations. So broken symmetry is closely connected with a change in
structure and the emergence of new physical properties.

Though Landau theory was precisely formulated only for second-order phase transitions, its basic
concepts may be extended to some first-order phase transitions as well.

The importance of the Landau theory of broken symmetry can never be overestimated. It gives
insight into how the important events in condensed matter happen, and it is very comprehensive in
scope and very flexible in handling, so it may be utilized as a new framework for various theoretical
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Table 0.3.1 Symmetry in condensed matter physics.

Transformations Unobservables Conservation laws
and selection rules

Translation in space Absolute position in space Momentum
r→r + ∆

Translation in time Absolute time Energy
t→t + τ

Rotation Absolute direction in space Angular momentum
r→r′

Space inversion Absolute left or right Parity
r→− r

Time reversal Absolute sign of time Kramers degeneracy
t→− t

Sign reversion of charge Absolute sign of electric charge Charge conjugation
e→− e

Particle substitution Distinguishibility of Bose or Fermi
identical particles statistics

Gauge transformation Relative phase between Particle number
ψ→eiNθψ different normal states

treatments. Strictly speaking, Landau’s original formulation of broken symmetry is only valid within
classical systems, but it was successfully extended to quantum mechanical many-body systems by
Heisenberg in the 1950s.

Symmetry is of prime importance for the whole realm of physics, for it is closely connected with
the hypothesis that certain physical quantities are unobservable, and its direct consequences are
the conservation laws or selection rules. We are going to examine a few examples: The invariance
for arbitrary translation in space implies that the absolute position in space is unobservable, and
its direct consequence is the conservation of momentum. The invariance of arbitrary translation in
time implies that the absolute time is unobservable and its direct consequence is the conservation
of energy. The invariance for arbitrary rotation implies that the absolute direction in space is
unobservable, it leads to the conservation of angular momentum. The invariance for inversion
in space is connected with parity conservation, and that inversion in time, i.e., time reversal, is
connected with the energy degeneracy for reversed spins, while reversion of the sign of electric
charge is connected with charge conjugation. There is a more subtle symmetry, i.e., the gauge
symmetry which implies that the relative phase between different normal states is unobservable,
with conservation of particle number as its direct consequence. The different symmetries discussed
above are tabulated in Table 0.3.1. These symmetries may be divided into two classes according to
the locality of the symmetry operations: Global symmetry which means that the symmetry operation
in question affects every point in space or time in the same manner indiscriminately; while local
symmetry, whose symmetry operations affect each point in question independently. For instance,
gauge symmetry may be either a global or a local symmetry, the latter is exemplified by gauge field
theory. However, in condensed matter physics we shall meet both cases. According to the continuity
of symmetry operations, the symmetries may be also divided into two classes, the continuous vs.
the discrete. In Table 0.3.1 we can find discrete as well as continuous symmetries.

Now we shall discuss some typical cases of broken symmetry in condensed matter. The liquid
state and the crystalline state differ in translational symmetry and rotational symmetry, the former
retains full translational and rotational symmetry in the statistical sense, while the latter adopts a
periodically ordered structure with the symmetry described by one of 230 space groups. This is a
case of broken translational as well as rotational symmetry, though liquid-solid transitions are always
first-order. Another case of broken translational symmetry is the quasicrystals with its symmetry
described by quasiperiodical space groups. Nematic liquid crystals are examples of pure broken orien-
tational symmetry, while a smectic liquid crystal is superposed with broken translational symmetry
in one dimension. Broken space inversion symmetry is related to ferroelectrics and antiferroelectrics;
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while broken time reversal symmetry is related to ferromagnets and antiferromagnets. Broken global
gauge symmetry leads to macroscopic wave functions in which phase coherence is maintained at the
macroscopic length scale, leading to superfluids or superconductors. It is no exaggeration to say
that the infinite variety of condensed matter is just the manifestation of broken symmetry.

A fundamental problem for various ordered phases is what are their ground states, i.e., the states
at T = 0 K? For an ideal gas of fermions and bosons, this problem but has been answered. Now we
are going to examine this problem for some real systems. To do this, we must take account of the
interactions between particles, so, in general, it is a complicated many-body problem of quantum
mechanics. We shall take the magnetic ordered phase as the simplest example. For a generalization
of the Ising model, let us start from the Heisenberg Hamiltonian

H = −
∑

i<j

Jsi · sj . (0.3.2)

If J > 0, it is easy to prove that the state of lowest energy has all spins aligned parallel; this is
the ferromagnetic ground state. If J < 0, it is expected that neighboring spins will be arranged
antiparallel. However, the situation is not so simple as it seems, and the determination of the
antiferromagnetic ground state proved to be a rather difficult problem. In the 1D case, this problem
was exactly solved by the Bethe ansatz, and it is found that it is not a fully ordered phase. Anderson
treated the 2D case, obtained the resonant valence bond (RVB) state, somewhat akin to a spin liquid.
The Heisenberg Hamiltonian is for localized spins, so the ferromagnetic ground state of itinerant
electrons is also a quite difficult problem.

Moreover, there is a problem about the compatibility of the different types of order, for instance,
spin order and lattice order. Ferromagnetic spin order is always compatible with lattice order, while
the situation is different for antiferromagnetic spin order, e.g., antiferromagnetic spin order is not
compatible with a triangular lattice. Incompatibility of these two different types of order may lead to
frustration, the inability to satisfy simultaneously the decrees issued by different ordering schemes.

Small attractive interactions between electrons may lead to the formation of Cooper pairs, so a
Fermi liquid can be transformed into the superconducting ground state, which breaks gauge sym-
metry. For conventional superconductors, the pairing mechanism is due to the electron-phonon
interaction, which has been superbly described by the Bardeen–Cooper–Schrieffer (BCS) theory.
For unconventional superconductors the situation is quite different: There may be different symme-
tries for the order parameters of different superconductors, s-wave, p-wave and d-wave; also there
may be different mechanisms, the electron-phonon interaction, electron-electron interaction and oth-
ers. So after more than 15 years of intense research on high Tc superconductivity, even though the
symmetry of the order parameter has been identified as d-wave, the mechanism for it still has not
been uniquely identified. The pairing of 3He superfluid is found to be in the triplet state and is
associated with magnetic effects, the mechanism being identified as p-wave pairing.

To find the ground state of a certain ordered phase is a quite intricate problem of many body
theory; to find corresponding excited states is certainly a tremendously laborious task. However,
some schemes to simplify the theoretical treatment have been devised and found to be very effective.

For low lying excited states, which are responsible for a number of interesting physical properties
such as specific heat, magnetic susceptibility, electrical and thermal conductivities, Landau’s con-
cept of elementary excitations plays the crucial role. Theories of phonons, magnons, quasi-electrons,
plasmons, excitons, polarons and polaritons were developed and form an important branch of con-
densed matter theory. Utilizing the concept of elementary excitations, we may regard the low lying
excited states of an ordered phase as a collection of quasi-particles in which the interactions between
the particles may be neglected in most cases. So, statistics for the ideal gas may be used in deriving
the relevant physical properties, and thus a great simplification is achieved.

Anderson emphasized that broken symmetry is related to the appearance of generalized rigidity,
just as a crystal breaks the translational symmetry, so that each atom is locked to a particular posi-
tion, from which it acquires rigidity and can transmit force without dissipation. This phenomenon
can be generalized to other cases of broken symmetry. For instance, in a superconductor, the ‘rigid-
ity’ is the phase coherence of Cooper pairs, it may transmit persistent current without dissipation.
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Figure 0.3.1 Schematic diagram for the energy states of a typical many particle system, as an illustration
of broken symmetry in condensed matter.

In general, elementary excitations are too gentle to have much influence on generalized rigidity, how-
ever, the presence of topological defects may partially break the ‘rigidity’ of broken-symmetry phases.
This is precisely the role played by topological defects in certain physical properties, for instances
dislocations in crystal plasticity, magnetic domain walls in magnetic coercivity, and Abrikosov vortex
lattice in critical currents of type II superconductors.

Both elementary excitations and topological defects show a tendency to regain the symmetry
that has been broken, so it is quite natural that these may play important roles in phase transitions.
The influence of the former ones is most clearly shown by some modes going soft in certain phase
transitions, while the influence of the latter is exemplified by some defect-mediated phase transitions.
For 3D systems the difference between elementary excitations and topological defects is clear-cut,
while for the low-dimensional case the demarcation is somewhat blurred.

We have already mentioned that the interactions between electrons changes the Fermi gas into
Fermi liquid. Other ground states may be formed due to the electron-electron and electron-phonon
interactions. In general there is Coulomb repulsion between electrons. For an electronic system at
high density, the Coulomb interaction between electrons is strongly shielded, and the ground state
is the ordinary Fermi liquid. On the other hand, for a system in the low density limit, where the
potential energy due to the Coulomb interaction dominates, it is predicted that a lattice of electrons,
known as a Wigner crystal will be formed. In low-dimensional systems the effects of interactions
become particularly striking. For 1D or quasi-1D metals, electron-lattice interaction may lead to
new ground states, the charge density wave (CDW) and the spin density wave; interactions between
electrons may lead to a Luttinger liquid. Exact solutions are available for these 1D problems. Many
interesting phenomena are observed in systems with intermediate density and dimensionality, known
as systems of strongly correlated electrons. These include the fractional quantum Hall effect, anoma-
lous properties of heavy electrons, anomalous transport properties and exotic superconducting state
of high Tc superconductors, colossal magnetoresistance (CMR), etc. What are the ground states,
elementary excitations and topological defects of these systems? These are hot topics for current
research. Full elucidation of these problems is a major challenge for present day investigations, and
the answers are expected to be further breakthroughs for condensed matter physics.

Near the Tc of second-order phase transitions there are critical regions in which critical phenom-
ena are manifested. Due to strong fluctuations, it is found that mean-field theory (in consequence,
Landau theory) is not valid in this region. There are empirical relationships such as scaling laws



· 21 ·§0.3 Historical Perspective and Conceptual Framework

Table 0.3.2 Systems in condensed matter showing broken symmetry phenomena.

Phenomena Broken Ordered Order Elementary Topological

Symmetry Phase Parameter Excitations Defects

Ferro- Ferro- P

electricity Space electric Optical Domain

Antiferro- Inversion Antiferro- Psublattice phonon wall

electricity electric

Ferro- Ferromagnet M Spin wave

magnetism Time Domain

Antiferro- Reversal Antiferro- Msublattice Spin wave wall

magnetism magnet

Supercon- Gauge Supercon- 〈ψ〉 = Electron Vortex line

ductivity Invariance ductor ρ1/2 exp(−iθ)

Gauge 4He 〈ψ〉 = Phonon, Vortex line

Super- Invariance Superfluid ρ1/2 exp(−iθ) Roton

fluidity Gauge 3He dij = Vortex line,

Invariance Superfluid 〈ψψ〉
ML,MS

Disgyration

+ Time Singular

Reversal point

Liquid- Rotation Nematics n̄ Disclination

Crystalline Rotation+ Cholesterics n̄+1D ρ(Q) Disclination,

Phenomena Translation Smetics n̄+1D ρ
G

Dislocation

Crystal- Translation Crystal ρ
G

Phonon Dislocation

lization Translation Quasicrystal ρ
G′ Phonon

Phason Dislocation

Translation Wigner crystal 3D (2D) ρ
G

Ripplon

Electronic Translation Charge den- 1D ρ
G

Phason, Discommen-

crystal- sity wave Amplitudon suration

lization Translation Spin den- 1D ρ+
G

Phason, Discommen-

sity wave Amplitudon suration

and universality in the critical region; these are signs that the correlation length of the fluctuations
reaches a macroscopic scale, so that the microscopic details of physical interactions do not matter.
Renormalization group theory plays a crucial role in this regime. By changing the chemical consti-
tution or applying pressure or a magnetic field, Tc may be suppressed all the way to absolute zero.
At 0 K classical thermal fluctuations are also fully suppressed, so instead quantum fluctuations due
to the uncertainty principle play the decisive role, leading to quantum critical phenomena.

Now we are ready for a graphical display of the paradigm for condensed matter physics. The
central role is played by the concept of broken symmetry. Broken symmetry leads to the ordered
phase. The ground state is the fully ordered phase. The excited states show tendencies to regain
the original symmetry, so various types of elementary excitations and topological defects appear. In
the critical region, the correlation length of fluctuations reaches a macroscopic scale until, at Tc, the
ordered phase merges with the disordered phase. These relationships are displayed diagrammatically
in Fig. 0.3.1. In Table 0.3.2 are listed some important systems in condensed matter that show broken
symmetry phenomena.

However, it should be noted that some important phase transitions are not related directly
to broken symmetry, for instance, gas-liquid and metal-nonmetal transitions, as well as liquid-
glass and paramagnet-spin glass transitions. Ergodicity was introduced by Boltzmann in the 19th
century as the foundation for statistical mechanics. Ergodicity in a system may be broken by
the compartmentalization of phase space, which includes configuration space as well as momentum
space, so that some parts of these spaces are inaccessible or hardly accessible to constituent particles.
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Liquids, glasses and spin glasses are examples of broken ergodic phases in configuration space; while
metal-insulator transitions are related to ergodicity-breaking in momentum space. Though broken
symmetry is always accompanied by broken ergodicity, the reverse is not always true. We can find
in the above-cited cases in which the ergodicity is broken while the symmetry still remains intact.
Moreover, the concept of broken symmetry may be generalized to include that of broken ergodicity,
i.e., the asymmetric distribution of particles in phase space. Spin glass is the most intensively studied
system which exhibits broken ergodicity. Its theory may be applied to wide-ranging problems such as
neural networks and protein folding. However, compared with more conventional broken symmetry,
broken ergodicity is still in a more primitive stage of research.

In some systems, far from equilibrium, phase-transition-like behavior may be observed, for in-
stance, the onset of thermal convection at the critical Rayleigh number. Sometimes, an analogy to
broken symmetry may be used to illustrate these transitions to some advantage. Both Prigogine,
in his theory of dissipative structure, and Haken, in his synergy ingenuously used this analogy to
construct some far-reaching generalizations to embrace a variety of topics drawn from different disci-
plines. Thom in his theory of catastrophe found some mathematical links between phase transitions
and transitions in nonequilibrium states. These theories are mostly based on analogies and simil-
itudes. However, there are other alternatives to these. Take the onset of a convection state as
an example: It may be interpreted as a transition into the ordered state from a disordered state.
However, the state with Benard cells lacks the rigidity which characterizes the conventional broken
symmetry phase in equilibrium; it is also much influenced by the boundary conditions. Further,
with increasing Rayleigh number (or other characteristic number), the system may undergo a series
of bifurcations, and finally reach some spatio-temporal chaotic state or turbulence. The situation is
made clearer if we take an alternative interpretation: The quiescent state, or the state with laminar
flow, is like the ground state of perfect order in momentum space, while the convection state is
like one of the excited states with defect-assemblies. With the development of nonlinear science for
dynamical systems, systems with few degrees of freedom have been thoroughly analyzed, and the
theory of chaos emerges as a shining example. However, nonlinear phenomena in condensed matter
far from equilibrium are generally accompanied by a large number of degrees of freedom. Some
simplified dynamic models for dissipative many-body systems such as the sand-pile model for self-
organized criticality proposed by P. Bak, et al. have found wide applications in different branches
of science. Turbulence containing a large number of degrees of freedom remains a hard problem for
physicists. So there are still a lot of problems to present challenges to condensed matter physicists
confronting complexity.

It should be noted that the validity of many basic concepts of this new paradigm is not limited
to the realm of condensed matter physics; it may be extended and generalized to other branches
of physics. For instance, broken symmetry has already played outstanding roles in particle physics
and cosmology: scientists envisaged that there are superfluidity in the interior of neutron stars and
liquid metallic hydrogen in the interior of Jupiter, the supershell structure was first proposed as a
possible structure for nuclei of super-heavy elements and subsequently was actually found in some
metallic clusters. These substantiate the truth of a statement by Bardeen in 1980: there is an unity
of concepts in the structure of matter.
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Part I

Structure of Condensed Matter



Countless laws of construction and constitution penetrate

matter like secret flashes of mathematical lightning. To equal

nature it is necessary to be mathematically and geometrically

exact. Number and fantasy, law and quantity, these are living

creative strengths of nature; not to sit under a green tree, but

to create crystals and to form ideas, that is what it means to be

one with nature.

— Karel Ĉapek (1924)

One of the great lessons of condensed matter physics is na-

ture is more fertile than human imagination in devising ways

for matter to organize itself into coherent structures. Yet given

the initial clue from nature, the human imagination has proved

to be remarkably adept at eventually inventing simple theoret-

ical models that display and illuminate strange new kinds of

behavior.

— D. C. Wright and N. D. Mermin (1989)



Chapter 1

Symmetry of Structure

For aeons humans have been fascinated by the striking symmetry of many natural objects such as
flowers, snowflakes and mineral crystals, and embodied the idea of symmetry in numerous artificial
objects such as decoration patterns, handiworks, buildings and monuments. Here is a quote from a
passage in a text of ancient China, Peripheral Notes on Poetry by Han Scholars (circa 200 B. C.),
“while flowers from plants are mostly fivefold, only snowflakes are sixfold.” Perhaps it indicated the
first glimmering of consciousness of the subtle difference in symmetry between ordinary flowers and
snowflakes. In 1952, Hermann Weyl, a mathematician, expressed this idea in more accurate modern
scientific language: “While pentagonal symmetry is frequent in the organic world, one does not find
it among the most perfectly symmetrical creations of inorganic nature, among the crystals.” In
1611, J. Kepler, in his booklet On a Hexagonal Snowflake, speculated that hexagonal symmetry of a
snowflake is a manifestation of the internal periodic structure of closed-packed particles postulated
as identical balls. Later developments substantiated this bold hypothesis, so it stands in history of
science as the first successful venture into the realm of condensed matter physics.

Scientific investigations about symmetry of the external shapes of mineral crystals flourished
in the 17th and the 18th centuries and marked the beginning of the science of crystallography. It
culminated in the 19th century with the formulation of the theory of crystal lattices and space
groups, making crystallography an exact science, methodical just like astronomy, and it also stands
as the first successful theory in condensed matter physics which is still valid today. This chapter
is intended to give a brief introduction to this subject, emphasizing those aspects which are more
closely associated with recent developments: since this book has been written after the discovery of
the C60 molecule and quasicrystals, in discussing point groups, besides the crystalline point groups,
we also introduce icosahedral groups as well as other groups incompatible with periodic structure; in
discussing the space groups, we also treat space groups with dimension higher than 3 and complex
groups in both real and reciprocal space.

§1.1 Basic Concepts of Symmetry

Symmetry is certainly one of the most important concepts in physics, especially in condensed
matter physics. Different states and phases of matter have their characteristic symmetries, and phase
transitions are mostly related to a change in symmetry. In its original sense, symmetry was used to
describe the geometrical property of certain figures or patterns and found important applications in
the science of crystallography. Later it was extended and deepened to cover the invariant aspects
of physical properties, physical interactions and physical laws under certain transformations, and it
played important roles in the physics of the 20th century. In this chapter we are mainly concerned
with symmetry in the original and restricted sense, i.e. the symmetry of geometrical figures or
structures, whether their extent is finite or infinite.
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1.1.1 Symmetry and Symmetry Operations

Symmetry here means the invariance of a certain figure or structure with respect to coordinate
transformations. Consider a certain physical quantity such as the density as a function of the position
vector r, i.e., ρ(r). Define an operator g which leads to the transformation of coordinates,

r → gr = r′, (1.1.1)

if
ρ(r′) = ρ(gr) = ρ(r), (1.1.2)

then g is a symmetry operation. Here symmetry means invariance of an object under certain
transformation in space, while the corresponding coordinate transformation is called a symmetry
operation for this object.

x

y

z

ρϕ

z

r

O

Figure 1.1.1 The Cartesian coordinate system (x, y, z) and cylindrical coordinate system (ρ, ϕ, z).

In the 3D Cartesian coordinate system (see Fig. 1.1.1), the transformation of coordinates may
be expressed as

r(x, y, z) → r′(x′, y′, z′). (1.1.3)

In general, the transformation of coordinates may be decomposed into two parts: a matrix M

denoting an operation without translation such as a rotation about a fixed axis or reflection by
mirror, plus a translation vector t, i.e.,

r′ = gr = Mr + t, M = (aij) =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 , (1.1.4)

or, expressed in components,

x′
i =

∑

j

aijxj + ti. (1.1.5)

A restricted set of symmetry operations satisfies the condition for isometry, i.e., the constancy of
the distance between any two points in the body under the symmetry transformation

|r − r′| =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2, (1.1.6)

and the preservation of the angles between lines and planes during the transformation. In this
chapter we mainly deal with the symmetry operations that satisfy the condition of isometry, while
in §1.5.3 we shall mention those symmetry operations that violate this condition, e.g., inflation or
deflation related to the scale invariance, which will be treated more fully in Chap. 4.

For point symmetry, the determinant of the transformation is

|M | = |aij | = ±1. (1.1.7)
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Consider a rotation about the z-axis from ϕ to ϕ′. If we let θ = ϕ′ − ϕ, the matrix of the transfor-
mation is

M =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 , (1.1.8)

which satisfies |M | = +1. And the mirror reflection corresponding to the xy plane can be
expressed by

M =





1 0 0
0 1 0
0 0 −1



 , (1.1.9)

where |M | = −1. For inversion through the origin O,

M =





−1 0 0
0 −1 0
0 0 −1



 , (1.1.10)

where also |M | = −1.

So symmetry operations are divided into two kinds: gI and gII depending on whether the deter-
minant of the transformation equals +1 or −1. We shall get the following rule easily

|M(gt)| = |M(gI
1g

I
2. . .g

I
q)| = (+1)q = +1. (1.1.11)

It indicates that the successive operations of gI for q times is still gI; while successive operations of
gII for q times may be gII or gI depending on q is odd or even,

|M(gt)| = |M(gII
1 gII

2 . . .gII
q )| = (−1)q =

{

+1, when q = even, equal to gI,

−1, when q = odd, equal to gII.
(1.1.12)

It should be noted that the transformations for the symmetry operations of the I kind can be
realized by the actual motion of the object, while that of the II kind, such as mirror reflection and
space inversion, can never be realized by the actual motion of the original object, just as the mirror
world is inaccessible by displacements from the ordinary world. For instance, a right-handed screw
can be transformed into a left-handed screw by mirror-reflection, but this transformation cannot be
realized by any actual motion of a screw in real space. So right-handed and left-handed screws are
different objects with different chirality, i.e., handedness; examples for chiral molecules are shown
in Fig. 1.1.2. In the 19th century, L. Pasteur discovered chiral molecules by observing the optical
activity (rotation of the plane of polarization of plane-polarized light) of certain solutions. Chirality
of molecules is an important topic for biology, for biologically important molecules are mostly chiral;
for instance, proteins are mostly left-handed, while DNA is right-handed. The problem of life in
living organism is closely connected with the chirality of these molecules.

However, successive operations of the II kind for even number of times is equivalent to an oper-
ation of the I kind. It reminds us of an episode in Lewis Carroll’s fairy tale “Through the Looking

Glass”: Alice found in the mirror world a book containing some queer verse entitled “Jabberwocky”
with mirror-inverted characters, she had the wit to reflect the book a second time, so restoring the
original text of this ‘nonsense poem’ for reading (see Fig. 1.1.3). This nicely illustrates that two
successive operations of a symmetry operation of the II kind is equivalent to a symmetry operation
of the I kind.

1.1.2 Some Theorems for the Combinations of Symmetry Elements

Here we shall state some theorems for the combinations of symmetry elements; the readers may
prove these by inspecting the figures accompanying the text.
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(a)

Br

H

CH3

CH3CH2

(b)

Br

H

CH3

CH3CH2

Figure 1.1.2 The schematic diagram of
handedness. (a) The left hand and the right
hand; (b) the mirror reflection of a chiral
molecule.

JABBERWOCKY

'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe

(a)

(b)

JABBERWOCKY

'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe

Figure 1.1.3 The mirror-reflected text of
Jabberwocky and the restored text from a
second mirror reflection.

(1) The equivalence of a mirror rotation and an inversion rotation

The mirror rotation Ñα and the inversion rotation N̄β (β = α−π) are equivalent (see Fig. 1.1.4),

i.e., Ñα = N̄α−π.

(2) Kaleidoscope theorem

The line of intersection of two mirror planes m and m′ at an angle α/2 is equivalent to a rotation
axis Nα (see Fig. 1.1.5). This is the theoretical foundation of the toy kaleidoscope. If the space
between two mirrors at an angle of 30◦ is filled with multi-colored fragments of glass, various patterns
of hexagonal symmetry are shown after two mirror reflections.

(3) Euler theorem

Successive rotations about two intersecting axes Nα1
and Nα2

are equivalent to a rotation about
a third axis Nα3

(see Fig. 1.1.6), i.e., Nα1
+ Nα2

= Nα3
.

These theorems put severe restrictions on the possible combinations of symmetry elements,
making the study of the geometrical theory of symmetry easier than one might otherwise expect.

1.1.3 Symmetry Group

Group theory is a necessary mathematical tool to understand the symmetry of crystals and
related problems; here we briefly introduce some basic concepts of this theory. All distinct symmetry
operations of a definite figure form the set of the elements of a symmetry group, G{g1, g2, . . .}.
Mathematically speaking, a set of elements (g1, g2, . . .) forming a group should fulfill following 4
rules, known as group axioms:

(1) Closure rule

The multiplication of group elements, i.e., the successive operation of elements, gi ∈ G and gj ∈ G
satisfies gigj = gk ∈ G, it means the elements of a symmetry group form a closed set.

(2) Associativity rule

The multiplication satisfies the associative law gi(gjgl) = (gigj)gl.
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Figure 1.1.4 The demonstration of equivalence of mirror rotation Ñα and inversion rotation N̄β (β = α−π).
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Figure 1.1.5 The demonstration of the
kaleidoscope theorem.
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α3/2
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Figure 1.1.6 The demonstration of
the Euler theorem.

(3) Identity element

There is an identity element e ∈ G, such that for any gi ∈ G, egi = gi.

(4) Inverse element

There is an inverse element g−1
i for any gi ∈ G, such that gig

−1
i = e.

From the axioms above, we shall get the uniqueness of the identity element and the inverse
element, i.e., egi = gie, gig

−1
i = g−1

i gi. In general, gigj �= gjgi, i.e., group elements are non-
commutative; only in the special case of Abelian groups are every pair of elements commutative,
i.e., gigj = gjgi. The number of distinct elements of the group is called the order of the group. If
the order of a group is finite, it is a finite or discrete group; if the order of a group is infinite, it
is an infinite or continuous group. We may easily verify that symmetry elements of a figure satisfy
these group axioms. Since successive rotations along axes pointing to different directions are non-
commutative, so symmetry groups are in general non-Abelian; however, successive rotations along
the same axis are commutative, i.e., the result does not depend on the sequence of rotations, so
some symmetry groups may be Abelian. From the elements gi (i = i, . . . , n) of group G, we may
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Figure 1.1.7 A NH3 molecule with its
rotation axis and mirror planes.

(a) (b)

Figure 1.1.8 The symmetry of circles.
(a) With arrowhead; (b) without arrowhead.

choose a subset of elements gk (k = 1, . . . , m, m < n), which itself forms a group G′, i.e., it satisfies
all group axioms, so it is called a subgroup of G. The order of the subgroup G′ is certainly less than
that of G.

Now we shall give two examples of a symmetry group. First consider the NH3 molecule shown
in Fig. 1.1.7. It includes following elements of symmetry: e, the identity element; 3-fold rotation
elements C1

3 , C2
3 with rotation angles 2π/3, 4π/3 respectively; and 3 mirror planes σa, σb, σc

situated in the planes containing the rotation axis and a hydrogen atom. So the order of this group
is 6, a finite group. These are tabulated in Table 1.1.1, the multiplication table for point group
C3v(3m). Inspecting this table we shall clearly seen four group axioms are fulfilled. If we eliminate
all symmetry elements related to mirror reflections, then the subgroup C3(3) with the order 3 is
obtained. Now we shall examine the second example: A continuous group, the 2D rotation group
O(2). The rotation of an arbitrary angle along a fixed axis is an element of this group. Surely
this set of elements fulfills four group axioms listed above. This group may be used to describe the
symmetry of a circle with a arrowhead Fig. 1.1.8 (either clockwise or counterclockwise) attached
to its circumference. In order to describe the symmetry of a simple circle without an arrowhead,
besides the rotation elements of R, a center of symmetry (or equivalently, a set of mirror planes
along arbitrary diameters) should be added, making the opposite points on any diameter identical.

Table 1.1.1 The multiplication table for a C3v(3m) group.

C3v(3m) E(1) C1
3 (31) C2

3(32) σa(ma) σb(mb) σc(mc)

E(1) E(1) C1
3 (31) C2

3(32) σa(ma) σb(mb) σc(mc)

C1
3(31) C1

3(31) C2
3 (32) E(1) σc(mc) σa(ma) σb(mb)

C2
3(32) C2

3(32) E(1) C1
3(31) σb(mb) σc(mc) σa(ma)

σa(ma) σa(ma) σb(mb) σc(mc) E(1) C1
3(31) C2

3 (32)

σb(mb) σb(mb) σc(mc) σa(ma) C2
3 (32) E(1) C1

3 (31)

σc(mc) σc(mc) σa(ma) σb(mb) C1
3 (31) C2

3(32) E(1)

1.1.4 Representations of Symmetry Groups

Each group has a characteristic multiplication table of its elements. These elements may be
expressed as numbers, symbols and functions with the same multiplication table. In the group G,
the elements of the subgroup G′ can be expressed as e, g2, g3, . . . , gn′ , and the products of all of
them and some symmetry element g′x in G but not belonging to G′ are called the coset. The one
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that g′x multiplied from right side is called the right coset, while from left is called the left coset.

G′g′x = eg′x, g2g
′
x, . . . , gn′g′x, (right coset);

g′xG′ = g′xe, g′xg2, . . . , g′xgn′ , (left coset).
(1.1.13)

According to the concept of the coset, we shall get the group table which is called the exact (or
isomorphic) representation of the original group G. Usually we take the square matrix

M(G) =











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann











= (aij) (1.1.14)

to represent the symmetry operation of some vector, while the vector is the basis of the represen-
tation. So the symmetry operation as introduced in §1.1.1 can be expressed by these operation
matrices as the representation of a group G. Here the aij may be either a real number or a complex
one. So we may use multiplication of matrices to represent the multiplication of symmetry elements
of G. It may be easily seen that these representations fulfill 4 group axioms introduced above, with
the identity matrix aij = 1 (i = j), aij = 0 (i �= j). Any square matrix may be expressed in the
form

(

M1(A) M2(B)
M1(B) M2(A)

)

, (1.1.15)

where M1(A), M1(B), . . . are submatrices. If we can find a transformation which makes M1(B) =
M2(B) = 0, then the original matrix can be reduced to matrices with lower rank, and it is called a
reducible representation; on the other hand, if it is impossible to find a transformation which makes
M1(B) = M2(B) = 0, then the original matrix is called an irreducible representation. Generally,
we should reduce the group to its simplest form, i.e., the irreducible representation.

These rather abstract reasonings may be illustrated by some concrete examples: Take the group
C3v(3m) as an example of a finite group; take the 3D matrix introduced in §1.1.1 as 3D represen-
tations, and r(x, y, z) as a basic vector. Select certain basis functions to simplify representations
into irreducible ones. Here we select z, (x, y) and Rz as basis functions, Rz indicates right-handed
(or left-handed) screw along the z axis. We obtain two 1D representations for z and Rz, one 2D
representation for (x, y) and they are all irreducible; they are tabulated in Table 1.1.2.

Table 1.1.2 The irreducible representation of C3v(3m).

C3v(3m) E(1) C1
3(31) C2

3 (32) σa(ma) σb(mb) σc(mc) Base

Γ1 (1) (1) (1) (1) (1) (1) z

Γ2 (1) (1) (1) (−1) (−1) (−1) Rz

Γ3

(

1 0

0 1

) (

− 1
2

−
√

3
2√

3
2

1
2

) (

− 1
2

√
3

2

−
√

3
2

1
2

) (

1 0

0 −1

) (

− 1
2

√
3

2√
3

2
1
2

) (

− 1
2

−
√

3
2

−
√

3
2

1
2

)

(x, y)

Now take group R(2) as an example of a continuous group. The matrix for the rotation can be
changed from 3D to 2D, so the original group may be replaced by its representations O(2) group,
i.e., the 2D group of orthogonal transformations with determinants equal to +1. It may be further
reduced to the 1D unitary group U(1), which has matrix M = exp(iθ) = cos θ + i sin θ. A matrix
is unitary if its Hermitian conjugate, M †, equals its inverse, i.e., M † = M−1. If M is a matrix in
1D (i.e., with only one row and one column), then it is just a single number. This number must be
a complex number of the form exp(iθ) and its complex conjugate is exp(−iθ). It should be noted
that the irreducible representation plays an important part in dealing with the electronic structure
of molecules and crystals using symmetry groups.
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§1.2 Finite Structures and Point Groups

Point groups describe the symmetry of finite figures, excluding translation as a symmetry element.
So all symmetry elements of a point group pass through a definite point, and the symmetries of most
molecules belong to this kind.

1.2.1 Combination Rules for Symmetry Axes

We now discuss the combination rules for symmetry axes along dif-
N1

N4

N2

N3

α1

α3
α2

Figure 1.2.1 The combina-
tion of the symmetry axes
at different directions (emer-
gences of symmetry axes at
the sphere surface form a
spherical triangle).

ferent directions. If there are two axes N1 and N2, then a third axis
N3 is expected according to the Euler theorem. Their emergent points
on a sphere will form a spherical triangle, and the entire sphere will be
divided into such triangles (see Fig. 1.2.1). The angles at the vertices of
these triangles are denoted by αi equal to one half of the rotation angle
of the corresponding axis, i.e., 2π/2Ni. The sum of the inner angles of
a spherical triangle must exceed π, therefore
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Figure 1.2.2 The schematic diagram of point groups (showing the special arrangement of symmetry
elements by stereograms).
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From this inequality we may enumerate all the possible cases of combinations of rotation axes: (1)
only one axis of high order N3 = N � 3 then N1 = N2 = 2, and all the combinations [N22] are
possible; where N may be any integer; (2) two or more axes of high order, the only possibilities
for [N1, N2, N3] are [233], [234], and [235]. This seemingly formidable problem of crystallography
(including quasicrystallography) is resolved at one stroke with a little geometry. N-fold axes with
N = 5 and N � 6, though excluded from ordinary crystallography, are basic ingredients of qua-
sicrystallography. Thus, the consequences of these combination rules can help us understand why
3D quasicrystals only have icosahedral symmetry [235], and there is no restriction on the order of
2D quasicrystals from the theory of symmetry.

1.2.2 Cyclic and Dihedral Groups

We have already mastered enough knowledge to derive all kinds of point groups. We have shown
that point symmetry elements may be divided into two types, type I contains only proper rotations
(including the identity), while type II contains improper rotations as well as mirror reflections and
inversion. Now we are only concerned with point groups with only one N -fold rotation axis. We begin
with simple cyclic groups with N -fold axis without any type II symmetry elements, in International
notation, denoted by N ; in Schönflies notation, denoted by Cn. Next we should consider point
groups related to the combinations of axes [N22], i.e., dihedral groups. Further, the addition of
type II symmetry elements may lead to more complex groups: groups (Sn) with a simple improper
rotation axis N̄ ; groups with an additional mirror plane perpendicular to the proper rotation axis,
i.e., N/m or Cnh; groups with additional mirror planes bisecting two intersecting axes Nm and N̄m,
or Cnv; similar operations may be acting on dihedral groups, making Dn → Dnh and Dn → Dnd.
These results are all tabulated in Fig. 1.2.2. Groups with more than one high order rotational axes
will be discussed in the next subsection.

1.2.3 Platonic Solids and Cubic Groups

To discuss point groups with more than one high order rotational axis, we shall review the
problems of the solid geometry of the regular polyhedra. There are five regular polyhedra called
Platonic solids, from the era of Plato. A regular polyhedron, since all its faces are identical, is
characterized by a polygon with p faces; all vertices are also identical, each is connected to q polygons.
So we may use the Schläffli notation {p, q} to denote a regular polyhedron. Thus five Platonic
solids are (see Fig. 1.2.3) tetrahedron (4 regular equilateral triangular faces), {3, 3}; cube (6 square
faces), {4, 3}; octahedron (8 equilateral triangular faces), {3, 4}; dodecahedron (12 regular pentagon
faces), {5, 3}; icosahedron (20 regular triangular faces), {3, 5}. It should be noted that some pairs
of different regular polyhedra (for example octahedron and cube, icosahedron and dodecahedron)
belong to the same symmetry group. These pairs are related by dualities, which means the exchange
of the numbers of faces and vertices, i.e., the exchange of p, q values; the exchange of {3, 4} and

{3,3} {3,4} {4,3}

{5,3} {3,5}

Figure 1.2.3 Five kinds of regular polyhedron.
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{4, 3} or {3, 5} and {5, 3}. Theatatus, a mathematician of ancient Greece, proved that there are
only 5 regular polyhedra in existence. The proof may be stated simply: A regular polygon can be
regarded as p vectors joined in a sequence but having the sum 0, and the angle between the two
joined vectors is the external angle of a polygon, so the sum of all the angles equals to 2π. Every
external angle is 2π/p, while the internal angle of a polygon is equal to (1−2/p)π. Now we consider
at each vertices of a polyhedron, the sum of internal angles of polygons connected to it must be less
than 2π, since the polyhedron is convex, so an inequality is obtained

1

p
+

1

q
>

1

2
, (1.2.2)

or
(p − 2)(q − 2) < 4. (1.2.3)

It can be easily found that p and q have only combinations of {3, 3}, {3, 4} and {3, 5}, which
correspond to {3, 3}, {3, 4}, {4, 3}, {3, 5}, and {5, 3} of the Platonic solids. This purely geometrical
conclusion obtained 2000 years ago, was a prelude to the Euler theorem about the combination of
high order rotational axes of the modern theory of symmetry.

To enumerate the symmetry groups of Platonic solids, we shall begin with their rotational sub-
groups T (23), O(432) and Y (235). For a tetrahedron, there are 4 three-fold rotation axes passing
through the center to vertices, and 3 two-fold rotation axes passing through the center to the cen-
ters of the edges; for a regular octahedron, there are 3 four-fold rotation axes passing through the
center to the vertices, 4 three-fold rotation axes passing through the centers of the triangular faces,
and 6 two-fold rotation axes passing through the center to the centers of the edges; for a regular
icosahedron, there are 6 five-fold axes passing through the center to the vertices, 10 three-fold axes
passing through the center to the centers of triangular faces, and 15 two-fold axes passing through
the center to the centers of the edges. These rotational subgroups are all composed of the I kind
of symmetry element. We shall introduce the II kind of symmetry element, reflection, to obtain
higher order symmetry groups. For example from the T -group, 3 mirror planes perpendicular to
the 2-fold axes may be added, thus T (23) → Th( 2

m 3̄), and mirror planes bisecting the 2-fold axes
normal to each other may be added, thus T (23) → Td(4̄3 2

m ); for the octahedral group O(432), mirror
planes perpendicular to 3 4-fold axes and 6 2-fold ones may be added, thus O(432) → Oh( 4

m 3̄ 2
m ); for

Y (235), mirror planes perpendicular to 15 2-fold axes may be added, making Y (235) → Yh( 2
m 3̄5̄).

All vertices of a regular polyhedron are situated on the same sphere, so the angles extended by
different axes (or faces) may be determined from the stereogram (see Fig. 1.2.4).

79.2
�

58.29
�

37.37
�

63.43
�

31.72
�

Figure 1.2.4 The stereogram showing
the relation of the axial (face) angles be-
tween the cube and icosahedron symmetry
groups.

(a)

(b)

Figure 1.2.5 Two kinds of semi-regular poly-
hedra with icosahedral symmetry. (a) Truncated
icosahedron and its dual, a polyhedron with 60
faces; (b) a dodeca-icosahedron and its dual, the
rhombic triacontahedron.
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Now we would like to explain the notation for point groups. Actually there are two systems
in use: One is Schönflies notation, the other is the International notation.a In Schönflies notation,
cyclic groups are denoted as C, dihedral groups are denoted as D, while tetrahedral, octahedral and
icosahedral groups are denoted by T , O, and Y respectively. These may be further differentiated
by the indices indicating the main order of rotation and the manner of adding mirror planes, such
as Dnd, Th, Td, Oh and Yh. In the International notation system, the order for the numerals are
very important, for it gives a rough indication of the spatial arrangement of symmetry elements. If
there is only one high order rotation axis, the first place numeral is reserved for this principal axis,
while the other places are for two sets of axes perpendicular to it, e.g., 32, 4

m
2
m

2
m ; for the case of

several high order axes, the first place is reserved for symmetry axes along cubic axes, while the
second place is reserved for those symmetry axes along the body diagonals of the cube, while the
third place is reserved for symmetry axes along the the other directions, e.g., 23, 432, 4

m 3̄ 2
m , 2

m 3̄5̄.
It should be noted that the appearance of 3 or 3̄ in the second place is the criterion for cubic or
icosahedral symmetry. International notation may be written in abbreviated form, e.g., 2

m → m, or
4
m → m in cubic symmetry, then 6

m
2
m

2
m → 6

mmm, 4
m 3̄ 2

m → m3̄m. The abbreviated notation is used
in Fig. 1.2.2.

We may extend the notion of regular polyhedron to that of semi-regular polyhedron. Starting
from regular polyhedra, through truncation, we may obtain 13 semi-regular polyhedra with iden-
tical vertices, but with faces which composed of two different types of polygons. These are called
Archimedean solids (or polyhedra). For instance, starting from an icosahedron, by cutting out all
vertices along the points at 1/3 of the edges, we obtain a truncated icosahedron with 32 faces (20
are regular hexagons, 12 are regular pentagons) and 60 vertices. Making the duality operation on
this equi-vertex semi-regular polyhedron, i.e., exchanging vertices into faces and vice versa, a dual
equi-face polyhedron is obtained. In the case of the truncated icosahedron, its dual is a polyhedron
with 60 faces (each is an identical isosceles triangle); while the dual for the dodeca-icosahedron is a
rhombic triacontahedron (in which each face is a rhombus with acute angle equal to 63.43◦, obtuse
angle equal to 116.57◦) (see Fig. 1.2.5). Some of these polyhedra preserve icosahedral symmetry,
though their faces are not regular polygons.

Icosahedral symmetry is important for the structure of molecules. The CH groups in C20H20

molecule are situated on the 20 vertices of the dodecahedron, while a cluster of 20 H2O molecules has
the same structure. In 1985, Kroto, Smalley and Curl studied the mass spectra of laser-evaporized
carbon clusters, and detected a high peak of abundance at C60, indicating its extreme stability.
They conjectured that the existence of a cage-shaped carbon molecule with 60 atoms all occupying
the positions of the vertices of a truncated icosahedron, and ultimately obtained the Nobel prize
for chemistry of 1996. C60 is called buckminsterfullerene, later abbreviated to fullerene, in com-
memoration of the architect Buckminster Fuller who designed geodesic domes with a mixture of
regular hexagons and pentagons. On the other side, in 1984 Shechtman et al. obtained the electron
diffraction pattern of rapidly-quenched Al-Mn alloy showing icosahedral symmetry, discovered the
quasicrystal with quasiperiodic structure and so enlarged the range of crystallography to include
quasicrystallography. In the study of quasicrystals, icosahedral symmetry plays an important role,
as will be shown in §2.3.

§1.3 Periodic Structures and Space Groups

The crystal, in which atoms are arranged periodically, is the major object for study in solid state
physics, and it still maintains an important place in condensed matter physics.

1.3.1 Periodic Structure and Lattice

We start from any periodic structure, e.g., certain wallpaper (see Fig. 1.3.1), to deduce a lattice
from it as the idealization of its periodicity. First we pick any point O (or O′) of the structure as the

aAt present both of the two notations are used. The Schönflies notation is used in electronic structure calculations
(both the band theory of solids and quantum chemistry); while the International notation is used in crystallography
and structure analysis. So, readers studying condensed matter physics should be familiar with both notations.
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Figure 1.3.1 A 2D periodical figure and its lattice.
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Figure 1.3.2 The different choices of
unit cells in 2D lattice (P = primitive,
NP = nonprimitive).
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Figure 1.3.3 The compati-
bility of the N-fold rotation
with periodicity.

origin, then we may find a series of points in the structure with the same environment as O. The
full set of these points constitutes a lattice. We shall get the same figure by translation along any
lattice vector. From the point of view of symmetry, the lattice stands for the translation symmetry
of a figure; however the figure of translation symmetry cannot have any boundary and must extend
to infinity. For 3D periodic structures, the lattice vector can be expressed as

l = ua + vb + wc, (1.3.1)

where a, b, c are basic vectors, while u, v, w are integers, i.e., 0, ±1, ±2, . . . , ±∞.
It should be noted that for a given lattice the origin, the basic vectors and the unit cells are

not unique. The primitive unit cell is defined as a unit cell that contains only one lattice point,
while nonprimitive ones contain more than one lattice point (Fig. 1.3.2). Usually the chosen unit
cell is highly symmetrical, but not always primitive. It should be also noted that the lattice is not
equivalent to the original periodic structure. Something (the figure surrounding each lattice point
or the content of the unit cell) is lost in the process of idealization. Only when the lost information
(known as the decoration or basis) is added to the lattice, can we fully recover the original crystal
structure, i.e.,

Crystal Structure = Lattice + Decoration.

In fact, as can be easily proven, the rotational symmetry is completely restricted by the peri-
odicity. First we choose a lattice point A in the lattice (see Fig. 1.3.3), and let a N -order rotation
axis, which is perpendicular to any lattice plane, pass through it. Then choose another lattice point

A′ next to point A, and make a vector
−−→
AA′ from A to A′. This vector has the minimum modulus

of any other lattice vectors parallel to it, we then make an N -fold rotational operation on
−−→
AA′ to

bring A′ to B; then make the same operation along an axis passing through A′ to
−−→
A′A, bring A′ to

B′ (α is the rotational angle). The modulus of vector
−−→
BB′ should be an integer multiple of that of
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−−→
AA′, i.e.,

a + 2a sin(α − π

2
) = a − 2a cosα = pa, (1.3.2)

then

cosα =
(1 − p)

2
. (1.3.3)

Satisfying −1 � cosα � 1, we get p = 3, 2, 1, 0; and α = 2π/N , where N = 2, 3, 4, 6. It is clear that
only rotation axes 1, 2, 3, 4, 6 (including true and improper ones) are compatible with periodic
structure. In other words, the point groups of crystal can only contain the compatible rotation axes
derived above. Crystalline point groups only include the rotation axes compatible with periodicity,
so there are 10 2D point groups, 32 3D point groups. Icosahedral point groups and other group
containing 5-fold or more than 6-fold rotation axes are incompatible with the periodic structure, so
these are excluded in traditional crystallography; they belong in quasicrystallography.

1.3.2 Bravais Lattices

Traditionally all the lattices in crystallography are called Bravais lattices. In 2D (Fig. 1.3.6), these
are: The oblique, rectangular, centered rectangular (rhombic), square, and hexagonal (triangular).
According to the different types of symmetry, it is easy to demonstrate that there are only five 2D
Bravais lattices (translation groups), but for 3D, there are fourteen Bravais lattices. It should be
noted that, for periodic structures, besides operations of point symmetry, other symmetry operations
involving translations should be considered, they include: Pure translations, glide reflections and
screw axes (rotations and inversion-rotations). Pure translations can be easily understood, while
the other two, equivalent to a point symmetry operation plus some fractional lattice translation,
are more complex. Glide reflections are usually related to translations of t/2, or t/4, where t is
the lattice vector along the glide plane; while N -fold screw rotation is related to translation vectors
t′ = pl/N , where p is an integer number smaller than N , and l is the translation vector along the
rotation axis (see Figs. 1.3.4 and 1.3.5).

g

t

t'

Figure 1.3.4 The schematic diagram of a glide
reflecting plane.

t'

l

α=2π/n

0

N

t

Figure 1.3.5 The schematic
diagram of a screw axis.

Centered lattices are associated with added symmetry operations, such as glide reflections, screw
axis operations, etc. In 2D space, the additional operation of the centered lattices is obvious: When
compared with the noncentered rectangular lattice, the 2D centered one adds a set of parallel glide
reflection lines (a plane changes into a line in the case of 2D), and the translation vector l equals
a/2, b/2, so its symmetry is different from the noncentered lattice (see Fig. 1.3.6). Although in 3D
space the symmetry of lattice is more complex than that of 2D space, the situation is quite similar.
14 Bravais lattices are divided into the 7 crystal systems: Triclinic, monoclinic, orthorhombic,
tetragonal, rhombohedral, hexagonal and cubic. The rhombohedral point group can be considered
as a special type of centered hexagonal lattice. If we choose this viewpoint, the 7 crystal systems
are reduced to 6 (see Fig. 1.3.7). It should be noted that the classification of the Bravais lattices is
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Figure 1.3.6 The 2D Bravais lattices: (a) Oblique; (b) rectangular; (c) rhombic; (d) square; (e) hexagonal.
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Figure 1.3.7 14 kinds of Bravais lattices.
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carried out by the differences in symmetry, so the types of the lattices coincide with the translation
groups, i.e., the groups of pure translations.

1.3.3 Space Groups

In the early 1890s, Fedorov and Schönflies independently enumerated 230 space groups as a
crowning achievement of classical crystallography. Fedorov’s approach was more geometrical and
intuitive, while Schönflies’ approach was more mathematical and exact. However it is too tedious
to repeat all these arguments leading to the final result. Here we shall take a far simpler case, 2D
space groups or plane groups for a brief discussion.

As we know, there are 5 Bravais lattices. We may generate 13 symmorphic groups by combining
each Bravais lattice with compatible point groups. The only nonsymmorphic operation permitted in
2D is the glide with reflection across a line in the ab plane, and a further 4 nonsymmorphic groups
are generated, making a total of 17 in all. These may be used to classify surface structures (see
Fig. 1.3.8).

Figure 1.3.8 17 kinds of 2D space groups. (a) The arrangement of symmetry elements; (b) the typical
patterns for these group.

In the case of 3D, the situation is the same, although more complicated. The nonsymmorphic
symmetry operations include glide-reflections and screw-rotations, both involving suitable fractions
of lattice translations. 73 symmorphic groups may be generated by combining Bravais lattices
with compatible point groups, while 157 nonsymmorphic groups may be generated involving the
nonsymmorphic symmetry operations. In fact, the nonsymmorphic symmetry operations play a
more important role in 3D space, which makes the theory of space groups quite complex. Among
space groups, there are 11 pairs of enantiomorphic space groups, i.e., one of them can be obtained
by a mirror image of another, like left and right hands. For instance, P6222 is the space group for
right hand quartz, and while P6422 is that for left hand quartz. Determination of the space group is
a primary step in a full structure determination. Centered lattices and nonsymmorphic symmetry
elements may be recognized by systematic extinctions in X-ray diffraction patterns. Whether an
inversion center exists or not should be determined by supplementary physical tests, for instance,
second harmonic generation of laser light, piezoelectricity or the anomalous dispersion of X-ray
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diffraction. The last method is based on the breakdown of the Friedel rule for the X-ray diffraction
intensity of a pair of reflections, i.e., I(h, k, l) �= I(h̄, k̄, l̄).

1.3.4 The Description of Crystal Structure

In the study of specific substances, scientists usually need knowledge of the crystal structure. A
complete description of the crystal structure includes lattice parameters and the type and coordinates
of each atom in the unit cell. Often, familiar crystal structures can be found in reference books,
but usually the data given in the literature are in shorthand form (such as the Wyckoff symbol).
The space group table in the “International Tables for Crystallography” should be consulted for the
full elucidation of the structure. Here we give an example of the use of the International Tables for
Crystallography, Vol. I for LiNbO3.

Chemical formula: LiNbO3;
Lattice: Rhombohedrally-centered hexagonal with a = 5.448 Å, c = 13.863 Å;
Number of chemical formula in a unit cell: 6;
Space group: R3c (No.161);
Atomic coordinates: Nb in 6(a): 0, 0, w1 (w1 = 0.0186); Li in 6(a): 0, 0, 1

3 − w2 (w2 = −0.0318);
O in 18(b): x, y, z (x = 0.0492, y = 0.3446, z = 0.0833).

With the information provided by the original paper on the determination of the crystal structure
of LiNbO3, we shall find all the atomic positions by choosing the hexagonal coordinate on the page
containing the R3c space group in the International Tables.

Position of the lattice point: (0, 0, 0; 1
3 , 2

3 , 2
3 ; 2

3 , 1
3 , 1

3 )

Wyckoff symbol: (a) 6 positions: 0, 0, z; 0, 0, 1
2 + z;

(b) 18 positions: x, y, z; ȳ, x − y, z; y − x, x̄, z; ȳ, x̄, 1
2 + z;

x, x − y, 1
2 + z; y − x, y, 1

2 + z.

From the positions of (a), (b) and its extention by the three lattice points, we shall derive all the
atomic positions: Nb, Li atoms occupying positions (a), and atoms O occupying positions (b), the
resulted crystal structure is shown schematically in Fig. 1.3.9.
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Figure 1.3.9 The structure of LiNbO3. (a) Nb, Li atoms are placed on (112̄0) cross section; (b) the
projection of O atoms on (0001) plane, and the numbers are given in unit of c/12; (c) oxygen octahedra
near the plane of z = 0, with the filled circles z = c/12 and the open circles z = −c/12.

§1.4 Structures and Their Fourier Transforms

1.4.1 The General Case

Structures may be determined by scattering, diffraction and imaging of waves such as X-rays,
electrons, neutrons and visible light. The diffraction pattern, i.e., the distribution of scattering
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intensity of waves, is related to the distribution of scattering matter by way of its Fourier trans-
form. For any well-behaved functions f(x) we may define its Fourier transform by the following
mathematical operation,

ϕ(k) =

∫

f(x) exp(ikx)dx . (1.4.1)

There is also an inverse Fourier transform to convert the Fourier transform back into the original
function,

ϕ−1[ϕ(k)] =
1

2π

∫

ϕ(k) exp(−ikx)dk = f(x) . (1.4.2)

It may be readily extended to functions in 3D space, for example, the distribution of density of
scattering centers in ordinary space,

ϕ(k) =

∫

ρ(r) exp(ik · r)dr . (1.4.3)

From the inverse transform we may recover the original

ϕ−1[ϕ(k)] =
1

(2π)3

∫

ψ(k)exp(−ik · r)dk = ρ(r) . (1.4.4)

Here k is an arbitrary vector with dimension [length]−1 called the reciprocal lattice vector. Let
vectors r and k be decomposed into their Cartesian components x, y, z and kx, ky, kz , so the inner
product of them is

k · r = kxx + kyy + kzz . (1.4.5)

So, every structure has its reciprocal, i.e., its Fourier transform, which contains the full information
of the original structure. If the Fourier transform is thoroughly known, then the original structure
may be recovered easily by the inverse transform through calculation. The Fourier transform of a
structure is connected to the experimental results of wave scattering through the following relations.
We define the incident wave vector K0 and the scattering wave vector K with directions along the
beams and with magnitudes equal to the reciprocal wavelength λ−1, then

k = K − K0 , (1.4.6)

so the scattering amplitude is proportional to the Fourier transform associated with k. In order to
observe different regions of reciprocal space, the incident and scattering directions, as well as the
wavelength of the incident radiation, may be changed. So the Fourier transform of a structure and
its inverse are closely related to the physical process of observation and determination of structure.
However, it should be noted that our knowledge of the Fourier transform of a structure is never
complete, for the wavelength of radiation used has finite value, there are always regions in reciprocal
space inaccessible to experimental probing, and most detectors cannot register the phase of radia-
tion, so usually only the intensities instead of the amplitudes are recorded. These are fundamental
difficulties for structure determination.

1.4.2 The Reciprocal Lattice

Next we shall show that the Fourier transform of a lattice gives the reciprocal lattice. Firstly let
consider the simplest case, the 1D lattice with period a defined by Dirac’s delta function δ(x − ua),
u = 0, ±1, ±2, . . ., ±∞, satisfying

δ(x − ua) =

{

∞, if x = ua,
0, otherwise,

(1.4.7)

and
∫

δ(x − ua)dx = 1 . (1.4.8)
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The Fourier transform of this delta function is also a delta function
∫

δ(x − ua) exp(ikx)dx = δ

(

k − 2πu

a

)

. (1.4.9)

This delta function may be visualized as a series of planes perpendicular to the x axis with spacings
equal to 2π/a (u = 0, ±1, ±2, . . . , ±∞).

For a 3D lattice with basic vectors a, b and c,

l = ua + vb + wc, u, v, w = 0, ±1, ±2, . . . , ±∞ . (1.4.10)

This may be written as a 3D delta function δ(r− l), and its Fourier transform is readily found to be

ϕ(G) = δ(k − G) . (1.4.11)

This 3D delta function define a lattice, the reciprocal lattice, which may be visualized as the in-
tersection points of 3 families of parallel planes which are parallel to the bc-plane, ac-plane and
ab-plane with spacings equal to 2π/a, 2π/b and 2π/c respectively. Mathematically the reciprocal
vector G is

G = ha∗ + kb∗ + lc∗ , (1.4.12)

where h, k, l = 0, ± 1, ± 2, . . . , ±∞, and

a∗ · a = 2π, b∗ · b = 2π, c∗ · c = 2π . (1.4.13)

It can be also rewritten as

a∗ = 2πb × c/Ω0, b∗ = 2πc × a/Ω0, c∗ = 2πa × b/Ω0 , (1.4.14)

where Ω0 is the volume of a unit cell,
Ω0 = a · b × c . (1.4.15)

If the basic vectors of the direct lattice are orthogonal to each other, then the directions of the
basis vectors of the reciprocal lattice coincide with those of the direct lattice. In general, a∗ may
deviate from a but is always perpendicular to the plane defined by b × c. It should be noted that
the definition of the reciprocal lattice vector introduced here follows the convention adopted in texts
on solid state physics; it is slightly different from that commonly used in texts on crystallography,
in which the factors of 2π in (1.4.13) and (1.4.14) are replaced by unity, i.e., the relation appears to
be more symmetrical.

Now we shall examine whether Fourier transformation has an effect on this. We know that
there are 14 Bravais lattices and, besides primitive lattices, there are centered lattices, such as base-
centered, body-centered and face-centered. The reciprocal lattices of primitive lattices retain the
original lattice symmetry, but, the situation is different for centered lattices. It is easy to verify that
a face-centered direct lattice is transformed into a body-centered reciprocal lattice and vice versa,
while base-centered lattices remain unchanged. The reciprocal lattice is an important concept in
condensed matter physics; it has played crucial roles in the physics of diffraction as well as condensed
matter theories dealing with wave propagation in periodic structures.

1.4.3 Fourier Transform of Periodic Structure

The crystal structure may be understood as the content of the unit cell repeated by the lattice,
i.e., each lattice point is associated with a unit cell. Let the density distribution of a unit cell be
f(r), it is repeated at each lattice point, in the language of Fourier transform this act is called
convolution, denoted by f(r)δ(r − l). According to the convolution theorem, the Fourier transform
of the convoluted function is simply the product of their respective transforms, i.e.,

∫

f(r)δ(r − l)exp(ikr)dr = F (k)δ(k − G) , (1.4.16)
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here F (k) is the Fourier transform of f(r) and is usually called the structure factor in diffraction
physics; it is a continuous function in reciprocal space. In an actual diffraction experiment, the
absolute values of F (G) are sampled at the reciprocal lattice points G. We also define the incident
wave vector K0 and the scattering wave vector K (|K| = |K0| = 2πλ−1), where λ is the wavelength
of the radiation), then

K − K0 = k = G . (1.4.17)

Because G = 2πd−1
hkl, the equation above is the generalized form of the Bragg equation (2dhkl sin θ =

λ). Now F (k) can be expressed by the reciprocal lattice points h, k, l, in the form F (h, k, l).
Here we use the kinematical theory of diffraction, and ignore the interaction of the incident and the
scattering wave (see Fig. 1.4.1). We shall discuss the dynamical theory of diffraction in §5.4.2.

Using the full spectrum of F (hkl) values (complex num-

dhkl

K0 K

    K0

k

G

--

Figure 1.4.1 Bragg equation and recip-
rocal vector.

bers) we may reach the goal of crystal structure analy-
sis, i.e., the distribution of density of scattering matter
within the unit cell, by means of the inverse transform.
Let (ξ, η, ζ) be the fractional coordinates of a point in an
unit cell so that x = ξa, y = ηb, z = ζc, then

ρ(ξ, η, ζ) =
1

Ω0

∑

hkl

F (h, k, l) exp[2πi(ξh + ηk + ζl)] .

(1.4.18)
The problem is reduced to the summation of Fourier se-
ries, which can be done in a straightforward fashion. How-
ever, due to the fact that the phase of F (hkl) cannot be
determined directly from experiment, the phase problem
still remains a crucial question in crystal structure analysis.
Many ingenious methods have been developed to overcome
this difficulty; in conjunction with enormous advances in
the calculating capability of modern electronic computers,
crystal structures of moderate complexity can be solved routinely. For problems related to crystal
structure analysis, readers should consult the texts on this special subject, such as Bibs. [5, 6].

§1.5 Generalized Symmetry

Ordinary space has 3 dimensions and space groups give a complete description of its possible
symmetries. In this section we shall discuss the generalized symmetries beyond ordinary space
groups.

1.5.1 High-Dimensional Space Groups

Mathematically it is not difficult to generalize the symmetry of 3D Euclidean space to Euclidean
spaces with dimensions higher than 3, the motivation for this generalization is to extract real physical
consequences from some of these nD symmetries. For instance, 4D space groups are used in the
study of incommensurate structures, while 6D space groups are used in the study of quasicrystals.
These, together with the problems related to the projections from the high-dimensional spaces into
lower-dimensional ones, will be treated in §2.3.

1.5.2 Color Groups

Another dimension with discrete values may be added into an ordinary 3D space. These discrete
values may be expressed as different colors, so the symmetry groups of these spaces are called color
groups. The simplest color group is the black-white group. The idea of black-white symmetry or
antisymmetry may be introduced by inspecting Fig. 1.5.1 which shows a series of orthogonal mirror
planes with which black patterns are transformed into white ones, and vice versa.
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Figure 1.5.1 A figure of black-white symmetry.

The black or white color may acquire different physical meanings in actual crystal structure,
such as up and down spin, positive and negative charges, etc., so the black-white group is equivalent
to the magnetic group, the symmetry groups of magnetically ordered structures. Obviously black-
white groups are much complicated than ordinary space groups, the number of symmetry groups is
much larger (see Table 1.5.1). Black-white groups have only two colors, when the number of colors
is larger than 2, these are multi-colored groups. Ions in crystals may have different orbitals with
nearly the same energy so in order to describe detailed distribution of these orbitals on a crystalline
lattice, multi-colored groups are required.

Table 1.5.1 Comparison of ordinary symmetry and black-white symmetry for fully periodic symmetry.

Kind of sym- Number of Number of groups

metry group dimensions ordinary 1-color gray 2-color total

1 1 1 1 2

Transition group 2 5 5 5 10

3 14 14 22 36

1 2 2 2 1 5

Point group 2 10 10 10 11 31

3 32 32 32 58 122

1 2 2 2 3 7

Space group 2 17 17 17 46 80

3 230 230 230 1191 1651

We may introduce complex symmetry elements to represent color groups. A complex symmetry
element Σ is a combination of an ordinary 3D symmetry element g and a compatible symmetry
element on a complex plane σ, i.e., Σ = (g, σ). If a complex symmetry element is to operate on a
point r(x, y, z), then F (r) will multiplied by a phase factor i.e.,

F (gr) = F (r) exp[2πiξ(r)], (1.5.1)

where ξ(r) is the phase factor, and is the function of r.

Color groups with µ colors correspond to µ-fold rotation, i.e.,

ξ = ± 1

µ
. (1.5.2)
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When µ = 2, σ = ±1, these are the black-white groups as a special example; when µ = 1, σ = 1,
they become the ordinary space groups. Thus, the introduction of complex symmetry elements gives
a general way to derive color groups.

1.5.3 Symmetry of Reciprocal Space

Introduction of complex symmetry elements is indispensable to the study of the symmetry of
reciprocal space. Consider the case of periodic structure in direct space: The distribution of its
Fourier coefficients, i.e., the structure factor F (h, k, l) = |F (h, k, l)| exp(2πiξ), is limited to the
reciprocal lattice points (h, k, l). The distribution of matter in direct space is continuous, while
the distribution of Fourier coefficients in reciprocal space is discontinuous, i.e., each lattice point is
weighted with its corresponding structure factor. Due to the weighed structure factor, reciprocal
space is no longer periodic. Thus, the space groups of direct space correspond to the complex point
groups of index space. So it gives another way to derive 230 space groups, i.e., to derive it from
complex point groups of index space.

In this case, symmetry operations of point group G will make ρ(k) → ρ(gk), and

ρ(gk) = ρ(k) exp[2πiϕg(k)] , (1.5.3)

where exp[2πiϕg(k)] is called the phase function of the point group operation. With the introduction
of the phase function, the point group is enlarged. Actually the nonsymmorphic symmetric elements
of space group are implicitly contained in the phase function, for instance systematic extinction in
centered lattices. It is customary to prepare tables showing the effects due to the symmetric elements
of space group, now the way is reversed to derive space groups from complex point groups.

It should be noted that the δ-function-like Fourier transform is not limited to periodic structures.
The study of symmetry in reciprocal space may be extended to derive space groups of quasiperiodic
structure without invoking unphysical high-dimensional space.b

1.5.4 Other Extensions of Symmetry

According to the symmetry mentioned above, the structure should be the same after the sym-
metry operation. Another generalization of the concept of symmetry is to replace identity by ap-
proximate or statistical equality, i.e.,

F (gr) = F (r′) ≈ F (r). (1.5.4)

In this way we shall describe the statistical distribution of different kinds of atoms in alloy structure,
atomic positions in glasses and liquids, or the orientation distribution of rod-like molecules along a
given direction. This concept of statistical symmetry will be further discussed in Chap. 3.

Previously we have only considered symmetry operations that do not violate the condition of
isometry, i.e., the lengths, angles, areas, and volumes are preserved in the symmetry operations.
If we introduce a transformation by change of scale, such as deflation or inflation, a new type of
symmetry, i.e., scale invariance is introduced. This will be discussed more fully in Chap. 4.
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Chapter 2

Organization of the Crystalline

State

The organization of the crystalline state is concerned with the aggregation of atoms, ions, and
molecules into various structures. So it is expected that interactions, as well as entropy, will play
outstanding roles in the structure of condensed matter. In the case of hard matter, interactions de-
termine the main aspect of the structure of matter; while in soft matter, entropy plays the dominant
role. We shall discuss packing and linkage structures that include most crystalline and quasiperi-
odic structures, as well as more exotic materials such as fullerenes and carbon nanotubes. Then
the crystalline state will be generalized to include the quasiperiodic structures which also have long
range order. These structures, which embody the organization of points, lines and faces, are subject
to various geometrical constraints. So we shall begin with some mathematical preliminaries about
topology and differential geometry of curves and surfaces.

§2.1 Geometrical Constraints

2.1.1 Topological Constraints

Topology is a kind of geometry that permits deformation of figures, while the metric aspects of
geometry are totally ignored. A sphere, a cube, a dodecahedron and a cylinder have quite different
metrical properties; however, intuitively we may imagine that by some rubber-like deformation
process one object may be transformed into another. So from topological point of view, these
objects are equivalent; however, this kind of object is inequivalent to a torus or a cup with a handle.
The difference lies in their connectivity. On the surface of a sphere (or other objects which are
equivalent to it topologically, e.g., a polyhedron) every closed loop on its surface can be shrunk
continuously into a point, so it is called singly-connected. It is quite different in a torus, because
there are some closed loops on its surface that cannot be shrunk to a point without meeting a
insurmountable barrier, so it is called multiply-connected.

We may quantify the connectivity of a figure by the minimum number of cuts required for
dissecting the figure into singly-connected regions, and this number of cuts is called the genus,
denoted by gt. For example, in a 1D topological space, such as a line or a loop, the minimum
number of cuts required to make it singly-connected may be 0, 1 or gt > 1. As to 2D topological
space: On the surface of a sphere, any closed curve may shrink to a point, but it is not so for a
torus, as in Fig. 2.1.1, the corresponding number of cuts is 0, 1 or 4.

The topological properties of geometrical figures may be characterized by topological invariants.
The topological dimension is one such invariant, and the connectivity (or genus) is another.
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(a) g
 t = 0 (b) g

 t = 1    (c) g
 t = 4 

Figure 2.1.1 2D surfaces with different genus.

Another important topological invariant for geometric figures is the Euler–Poincaré characteristic
χ, which is defined as

χ =

n
∑

p=0

(−1)pNp, (2.1.1)

where N0 is the number of vertices, N1 the number of branches (or edges), N2 the number of faces,
N3 the number of chambers (or cells). For any closed 2D surface of genus gt, the Euler–Poincaré
characteristic is found to be

χ = 2(1 − gt). (2.1.2)

For gt = 0, we get the Euler formula for any polyhedron,

χ = N0 −N1 +N2 = 2. (2.1.3)

2.1.2 Curvature Curves and Surfaces

Now we shall turn to another aspect of geometrical constraints, i.e., the differential geometry
of curves and surfaces. First let us define curvature in the simplest case, a curve on a plane. As
shown in Fig. 2.1.2, at any point P on the curve we can make a circle of best fit with radius r. The
curvature at any point on the curve is defined by the ratio of the change in tangent vector ∆ψ to
that of arc length ∆s, i.e.,

κ =
dψ

ds
= lim

∆ψ

∆s
=

1

r
. (2.1.4)

This shows that the reciprocal of the radius of the circle of best fit may serve as a measure of
curvature. This definition of curvature may be readily extended to any curve in space. For a
straight line, r = ∞, κ = 0; for a circle or helix, r = const., κ = const.

R

Figure 2.1.2 The curva-
ture of a planar curve.

Pn

Pt

n

t

S

p

Figure 2.1.3 Definition of the
normal curvature at a point P on a
surface.



· 51 ·§2.1 Geometrical Constraints

Many lines can be pleated into a thick line, like a pig tail; a long line may be folded back and
forward into a sheet or a segment of lattice, or be rolled back and forward randomly to fill the space,
or tightly bound together into a ball like woollen yarn. These possibilities are fully utilized in the
organization of polymers and biopolymers.

The curvature of a curve may be readily extended to that of a surface. Imagine a point P on a
surface with the normal vector n (see Fig. 2.1.3). Any plane containing n is normal to the surface at
P and it intersects the surface on a curve with the normal curvature κn. Varying the orientation of
the plane by rotating along n may give various values of κn, while its maximum and minimum values
define the principal curvatures κ1 and κ2 corresponding to the principal directions. In general, the
principal directions are mutually orthogonal. We define the mean curvature κm and the Gaussian
curvature κ

G
as

κm =
1

2
[κ−1

1 + κ−1
2 ], κ

G
=

1

κ1κ2
. (2.1.5)

Differential geometry gives a local description of the surfaces, while topology gives a global
description. Now we shall give some rules connecting these two descriptions. First we may define
the integral curvature as the area-weighted integral of the Gaussian curvature over the entire surface,
i.e.,

∮

κ
G
dS. The quantitative relationship is summarized by the Gauss–Bonnet formula

2πχ =

∮

κ
G
dS, (2.1.6)

where χ is the Euler–Poincaré characteristic which is related to the the genus gt by χ = 2(1− gt). It
means that all surfaces with the same genus are characterized by the same value of integral curvature.

In the 19th century, the absolute validity of the “parallel postulate” of Euclid had been ques-
tioned, so non-Euclidean geometries were formulated. Three different types of geometry may be
distinguished by local values of the Gaussian curvature: κ

G
= 0, for Euclidean shapes; κ

G
> 0, for

elliptic ones; κ
G

< 0, for hyperbolic ones (see Fig. 2.1.4). The sphere has constant positive Gaussian
curvature, while the cylinder always has zero. In general, a surface may contain elliptic, Euclidean
and hyperbolic regions, the ‘average geometry’ of a surface is characterized by the average value of
its Gaussian curvature, i.e., 〈κ

G
〉. This is equal to the integrated curvature divided by the surface

area S:

〈κ
G
〉 =

∮

κ
G
dS

∮

dS
=

2(1 − gt)

S
. (2.1.7)

(a) (b) (c)

Figure 2.1.4 Curved surfaces of different types. (a) κ1 and κ2 with the same sign, κ
G

> 0; (b) κ1 =
0, κ2 �= 0, κ

G
= 0; (c) κ1 and κ2 with different signs, κ

G
< 0.

Obviously it is impossible here to give a general survey of all curved surfaces. We can only give
a rough introduction to some curved surfaces which may help us understand the organization of
condensed matter.

Any curved surface is characterized by its intrinsic (metric and curvature) as well as extrinsic
(embedded space) geometrical properties. Here we are concerned with 2D surfaces embedded in
3D space. 3D space is Euclidean, while a local region on 2D surface may be Euclidean (parabolic),
or non-Euclidean, such as elliptic or hyperbolic. Near an elliptic point, the surface approximates
an ellipsoid of the same curvature on the same side of the tangent plane, with principal curvatures
of the same sign; near a parabolic point, the surface approximates a cylinder with radius equal
to the reciprocal of the only non-zero principal curvature; near a hyperbolic point, the surface
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approximates a saddle surface, convex in one direction, concave in another direction and planar in
a definite direction, with some part of the surface higher than the tangent plane, another part lower
than it.

Surfaces with which we are mostly familiar are surfaces with identical Gaussian curvature (in
value or sign), especially elliptic or parabolic, i.e., sphere, ellipsoid or cylinder. As to the hyperbolic
case, it is impossible to form surfaces with identical curvature without introducing regions of sin-
gularity, so in general, hyperbolic surfaces contain regions of positive, negative and zero Gaussian
curvature.

Surface tension induces a liquid film bounded by metallic frames to assume a shape with minimum
surface area. One example of a minimum surface is a catenoid-shaped soap film extended between two
identical metallic rings. This kind of minimum surface is characterized by two principal curvatures
which have the same value but are opposite in sign, so that everywhere the mean curvature is zero,
the Gaussian curvature is negative and it is a hyperbolic surface. Further, we are concerned with the
minimum surfaces characterized by their curvature properties, not their minimum surface properties,
for the latter is only significant for a finite region bounded by some definite boundaries.

(a) (b)

Figure 2.1.5 A schematic diagram for some IPMS. (a) P surface; (b) D surface.

For the study of structure of condensed matter, the infinite periodic minimum surfaces (IPMS) are
the most significant. The two simplest examples of IPMS, P surface and D surface, were discovered
by the 19th century mathematician H. Schwarz (see Fig. 2.1.5). These two surfaces may be visualized:
P surfaces are formed by expanding rubber tubes connected as a simple cubic lattice, and D surfaces
are formed by the corresponding diamond structure. The genus gt of a single cell for these structures
is 3, while in global sense, gt = ∞. We may transform a P surface into a D surface or other IPMS
with an isometric transformation. It should be noted that the space of these structures is divided
into two regions, inside and outside the surface, so a bicontinuous space partition is formed.

2.1.3 Tiling of Space

In Fig. 2.1.6, we have shown that a 2D lattice is related to the tiling of identical parallelograms.
Now we shall focus our attention on tiling by regular polygons without fissures or overlaps. Using
Schläffli notation {p, q} to characterize regular polygons, let α denote the angle between two adjacent
sides. Since the external angle of the regular polygon (π − α)p = 2π, we have

α = π

(

1 − 2

p

)

=
2π

q
, (2.1.8)

or

(p − 2)(q − 2) = 4. (2.1.9)

This equation determines the possible ways for the regular tiling of a plane: {3, 6}, {4, 4}, {6, 3},
(see Fig. 2.1.6). Duality for these tilings should be noted, i.e., to interchange the number of sides
with that of vertices, {3, 6} ↔ {6, 3}; while self-duality occurs for {4, 4}. The impossibility of tiling
an infinite plane by identical regular pentagons excludes the 5-fold symmetry in periodic structures.
With a spherical surface there are increased possibilities for regular tilings. For tiling of S2, at first
we can use the Euler formula

N0 − N1 + N2 = 2, (2.1.10)
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(a) triangular (b) square (c) honeycomb

Figure 2.1.6 Regular tiling of plane.

then we calculate the number of edges, to get the equalities

qN0 = 2N1 = pN2. (2.1.11)

From (2.1.10) and (2.1.11), we find that

N0 =
4p

4 − (p − 2)(q − 2)
,

N1 =
2pq

4 − (p − 2)(q − 2)
, (2.1.12)

N2 =
4q

4 − (p − 2)(q − 2)
.

Noting that the angle around a point is less than 2π on a spherical surface, i.e., qα < 2π, we have

(p − 2)(q − 2) < 4. (2.1.13)

Therefore, only spherical polygons satisfy the regular tiling condition,

{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3},
tetrahedron octahedron cube icosahedron dodecahedron

which correspond to Platonic polyhedra.
Tiling of the hyperbolic plane H2 requires

(p − 2)(q − 2) > 4, (2.1.14)

and infinite sets of {p, q} are possible.
Now, let us discuss the tiling of 3D Euclidean space. For tiling of 3D space with regular polyhedra,

the Schläffli notation is enlarged to include r, which is the number of polyhedra around an edge, i.e.,
{p, q, r}. Since the dihedral angle of a Platonic solid may be expressed as 2 arcsin [cos(π/q)/ sin(π/p)],
it should be equal to 2π/r for a regular tiling, i.e.,

cos
π

q
= sin

π

p
sin

π

r
. (2.1.15)

The only solution with integer > 2 for this equation, is {4, 3, 4}, i.e., a regular stacking of cubes.
It should be noted that with tetrahedra or octahedra only, one cannot tile the 3D space, we have
recourse to mixed tiling called semiregular polyhedra.

If two types of regular polyhedra are allowed, then we have semiregular tiling. There are semireg-
ular tilings, e.g., mixed tilings of tetrahedra and octahedra, which fill the 3D space. It is expected
that for regular tiling of curved spaces S3 and H3, the equality of (2.1.15) will be changed into
inequalities and that certainly will enlarge the possibilities for regular tiling.

§2.2 Packing Structures and Linkage Structures

In this section we shall be concerned with some geometrical principles for the architecture of
hard condensed matter, which include most inorganic crystals and glasses. In principle, the actual
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structure is determined by the minimum free energy (absolute or relative) requirement dictated by
the interactions between the atoms, ions or molecules. An accurate ab initio calculation of electronic
band structure (see Chap. 12) will get the right answer. This is somewhat like an operation in a
black-box — very useful but unilluminating. Here we shall use more intuitive approaches to treat
this problem: The efficient packing of spheres, the linking of a definite number of chemical bonds
between atoms and sometimes a mixture of both approaches may be found useful.

2.2.1 Sphere Packings and Coverings

In general, the efficiency of sphere packing in space is measured by the packing density fp, which
is defined as the ratio of the volume occupied by the spheres to the volume of space. For lattice-
packing, i.e., the spheres occupy the sites of a lattice, fp may be defined as the volume of one sphere
to the volume of one primitive unit cell.

We may divide the whole of space into nearest neighbor regions around the center of every
sphere, i.e., Wigner–Seitz (WS) cells. Each face of a WS cell is formed by perpendicular planes
bisecting the straight lines linking neighboring sphere centers. The number of faces of a WS cell is
equal to coordination number z, which is another important characteristic for sphere packing; it is
equal to the number of spheres in contact with the central one, also called the kissing number by
mathematicians.

Let Pi be the vertices of a WS cell, the distance from Pi to the center is a local maximum Ri.
If we draw a series of spheres with radius equals to largest Ri from each center, these spheres just
cover the space completely. We may define the covering density fc as the ratio of the volume of the
sphere (radius equals to largest Ri) to that of one primitive unit cell (or WS cell).

A A

A A

A A

B B

BB

BB

C

C

C

C

Figure 2.2.1 2D hexagonal close-packing
(showing Wigner–Seitz cells).

(a) (b)

Figure 2.2.2 The lattice packing of
a 2D plane. (a) Cubic; (b) hcp.

For the case of 2D space, the spheres degenerate into circular disks, and the lattice packing of
the 2D plane is related to the packing of identical circular disks. Disks are placed at the vertices
of triangular tiling with sides equal to a. Let the radii of the disks be equal to a/2. Then the
corresponding WS cells are hexagonal honeycombs and the packing density fp in this case, is

fp =
π√
12

= 0.9069 . . . , (2.2.1)

so closest packing for a plane is achieved; in this case, z = 6, the highest one for 2D packing; while
all Ri are identical, so the covering density

fc =
2π

3
√

3
= 1.2092 . . . , (2.2.2)

the thinnest one, i.e., the least overlap between the disks, is achieved. It should be noted that
fc > 1 > fp. We may apply the same procedures to examine the other types of packing, the disks
sitting on vertices of other polygons, such as squares and hexagons: For square packing and covering,
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fp = π/4 = 0.7854 . . . , z = 4, fc = π/2 = 1.5708 . . . ; in the case of disks sitting on the vertices of a
honeycomb, which is the dual for close-packing, with low packing density and definite coordination
number z = 3. In this case, the formation of a definite number of bonds or links between neighboring
disks will play the dominant role in structure-building (see Table 2.2.1).

Table 2.2.1 Coordination number, packing and covering density for some 2D structure.

Structure type Coordination number Packing Covering
density density

hcp 6 0.9069. . . 1.2092. . .
square 4 0.7854. . . 1.5708. . .

honeycomb 3 0.6046. . .

It should be noted that in 2D structure there is an outstanding structure, i.e., hexagonal close-
packing, in which the highest packing density, highest coordination number and least covering density
are simultaneously achieved.

Kepler (1611) in his booklet “On Hexagonal Snow” gave the first scientific conjecture about
closest sphere packings in 2D and 3D space.

For 3D packing, first hexagonal close-packed layers of spheres are formed, then the upper layer
stacks on the voids of the lower layer, and so ad infinitum. Two main types of close-packed structures
are formed:

(a) abcabc. . . →fcc, (b) ababab. . . →hcp.

(a) (c)(b)

Figure 2.2.3 Unit cells of three kinds of packings. (a) fcc; (b) bcc; (c) hcp.

(a) (b) (c)

Figure 2.2.4 Wigner–Seitz cells of three kinds of packings. (a) fcc; (b) bcc; (c) hcp.

In the fcc (face-centered-cubic) structure, every sphere is situated on a lattice point, i.e., lattice
packing; while in the hexagonal close-packed (hcp) structure, only one half of the spheres are situated
on lattice points; besides hcp structure there are an infinite set of stacking sequences to fulfill
the closed-packed condition. All these closed-packed structures have identical packing densities
fp = 0.74048 . . . , and the coordination number for closed packed structures is z = 12. The WS cell
for the fcc structure is the rhombic dodecahedron, and the reciprocal lattice of fcc is bcc, whose
WS cell is the truncated octahedron. Though bcc has lower packing density, it has thinner covering
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Table 2.2.2 Coordination number, packing and covering density of some 3D structures.

Structure Coordination Packing Covering
number density density

fcc 12 0.74048 2.0944
hcp 12 0.74048
bcc 8 0.68017 1.4635
diamond 4 0.3401

density due to the fact that the WS cell for bcc is more sphere-like. For a system composed of hard
(rigid) spheres, high packing density is the premium requirement for lowest energy; however, for a
system of soft spheres which are deformable, low covering density may be more important.

Some types of crystal structures may be understood by sphere packing (or covering) requirements,
these are called packing structures. In crystals, the structural units are atoms, ions and molecules
and they are glued together by different kinds of chemical bonds. In Fig. 2.2.3 and Fig. 2.2.4, the
unit cells and WS cells for fcc, bcc and hcp are shown respectively.

Van der Waals, metallic and ionic bonds favor densely packed structures with high packing
density or low covering density. Now, let us examine the crystal structure of the elements: All
crystalline structure of inert elements are fcc: Ne, Ar, Kr, Xe,. . . ; many crystalline structure of
metallic elements have closed-packed structures: Cu, Ag, Au, Al, Pd, Pt, Ir, Pb,. . . (fcc); Co, Ru,
Os, Sc, Y, La, Ti, Zr, Hf,. . . (hcp); as well as bcc structure Li, Na, K, Rb, Cs, Fr, V, Nb, Ta, Cr,
Mo, W, Fe,. . . ; some exceptions are found to have more complicated structure such as Mn and U.

Structures of some ionic crystals may be understood as close-packing of unequal spheres: In the
NaCl structure, the Cl− ions occupy the atomic sites of the fcc structure, while the Na+ occupy the
octahedral voids. The CsI structure is related to the bcc structure: I− occupy the cubic corners,
Cs+ occupy the cubic centers.

2.2.2 The Voids in Packing Structures

There are two kinds of voids in a closed packed structure, as shown in Fig. 2.2.5, one is a
tetrahedral void, with hole diameter of 0.225 D (D is diameter of the sphere), the other is an
octahedral void with diameter equal to 0.414 D. The number of tetrahedral voids is equal to twice
the number of spheres, while the number of octahedral voids is equal to the number of spheres.

Whether there is any realization of 3D sphere packing with a packing density larger than 0.7405
is a problem that has puzzled many mathematicians and physicists since Kepler’s conjecture. This
problem was solved by a mathematician in 1997, proving the truth of Kepler conjecture, i.e. there
is no possible packing with density higher than that of fcc in 3D space.a Since the tetrahedral void
is smaller than the octahedral one, it is speculated that if we can eliminate all octahedral voids,
i.e., the entire structure is only composed of tetrahedrally coordinated spheres, the packing density
could be higher than that of fcc or hcp.

This concept inspires scientists to seek another route to achieve close packing. The starting unit
is 4 spheres that touch each other to form a tetrahedron. We may imagine that the infinite tiling of
these tetrahedra will produce an ideal structure with extraordinary high packing density since the
larger octahedral voids will be absent. However, it can be easily demonstrated that this attempt is
doomed to failure due to the impossibility of tiling 3D space with only regular tetrahedra. In a closed
packed structure, every sphere is surrounded by 12 other spheres in contact with it, Fig. 2.2.6 shows
the situation for fcc and hcp structure, note that the spheres are arranged in squares on surface
layers, implying the half octahedra. We may imagine the 12 spheres are situated on the vertices of
an icosahedron, forming 20 tetrahedra sharing a central sphere, with small gaps between spheres

aT. C. Hales, Discr. Comput. Geom. 17, 1 (1997). Since this proof is extremely complicated, the validity of this
proof is still under scrutiny.
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on surface layer, forming the Mackay icosahedron. The existence of 5-fold symmetry excludes the
possibility of building up of a periodic structure based solely on Mackay icosahedra. However, it
does not hinder us from building up larger Mackay icosahedra shell by shell, with slightly deformed
tetrahedra. The number of balls in the nth shell is found to be 10n2 + 2.

(a) (b) (c)

Figure 2.2.5 Two types of voids in close-packed structure. (a) The positions of the voids; (b) the octahedral
void; (c) the tetrahedral void.

Figure 2.2.6 Mackay icosahedra.

Let d be the distance between the central ball and its neighbor, and l the distance between
neighbors in the shell.

l

d
=

1

3
(
√

15 −
√

3) = 1.05146 . . . . (2.2.3)

Though the packing density for the first shell of Mackay icosahedra is slightly lower than fcc structure,
the corresponding Voronoi cell is a regular dodecahedron which is certainly more sphere-like than
the semiregular dodecahedron in the case of the fcc structure. So it is expected that the Mackay
icosahedron has lower covering density compared with that of the fcc structure. Computer simulation
using the Lenard-Jones potential confirmed that Mackay icosahedra are more stable than small fcc
or hcp clusters. Experimental data on inert element clusters confirmed this, showing that Mackay
icosahedra may persist to clusters with more than 1000 atoms, and it is also found experimentally
that there are some magic numbers related to Mackay icosahedra, such as 13, 55, 145,. . . b (see
Table 2.2.3 and Fig. 2.2.7).

Although it is impossible to fill space by a periodic close-packing of regular tetrahedra, it is
possible to circumvent the difficulty if some distortion of tetrahedra is allowed. For example, a
class of complex alloys have structures known as the tetrahedrally close-packed (tcp) structure (also
known as Frank–Kaspar phase) in which local icosahedra, as well as other clusters dominated by
tetrahedra, play important roles. In a basic Mackay icosahedron, the ratio of the length of edge to
the distance from the center to vertex, i.e., l/d = 1.05146 . . . , about 5% larger than 1.

If the central atom is slightly smaller than the surrounding ones, a more efficient packing may
be realized. This is the cases of certain precipitation-hardened Al and Ni alloys, an outstanding
example of which is Mg32(Al,Zn)49. According to L. Pauling, its unit cell may be decomposed into
several shells of atoms with icosahedral symmetry, fitting one over the other, with the final shell
slightly distorted to lower its symmetry from m3̄5̄ to m3̄, suitable for building up a periodic structure
(see Fig. 2.2.8). This structure is later found to be the crystalline approximant for a quasicrystal.

bIn special cases, the length scale of Mackay icosahedra may reach several microns. For example, large clusters of
BeO, see H. Hubert et al., Nature 391, 376 (1998). This kind of structure is certainly not a crystal, nor a quasicrystal,
but may be regarded as an enormously large molecule, due to close-packing.
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Table 2.2.3 Packing density of Mackay icosahedra.

No. of shells No. of spheres in nth shell No. of sphere in a cluster Packing density
0 1 1
1 12 13 0.72585
2 42 55 0.69760
3 92 147 0.69237
4 162 309 0.69053
5 252 561 0.68969
6 . . . . . . . . .
∞ 0.68818
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Figure 2.2.7 Mass spectrum of xenon clusters (showing high abundance peaks corresponding to closed
shells of Mackay icosahedra). From O. Echt et al., Phys. Rev. Lett. 47, 1121 (1981).

The main characteristics of this type of structure are: (1) all interstices are tetrahedral, though
the related atomic tetrahedra are somewhat distorted; (2) besides icosahedra X (with coordination
number z = 12), the coordination types are limited to a set including P(z = 14), Q(z = 15) and
R(z = 16); these are shown in Fig. 2.2.9 and tabulated in Table 2.2.4. These 4 coordination types
may be present in various combinations for different tcp structures. We may use some empirical
combination formulas such as XxPpQqRr or (PX2)i (Q2R2X3)j(R3X)k to designate tcp structures;
here x, p, q, r are integers or rational fractions, while i, j, k are always integers. Some tcp structures
are tabulated in Table 2.2.4. These are mostly alloys of transition metals with different atomic sizes.
It will be shown later that these tcp structures have close relationships with some metallic glasses
and quasicrystals.

2.2.3 Linkage Structures

Covalent bonding favors linkage structures, in which the premier structural requirement is the
formation of definite number of bonds between each atom and its neighbors. So, here the importance
of bonds is stressed.

We may take the diamond structure as the first example of a linkage structure, z = 4, all atoms
are tetrahedrally bonded, see Fig. 2.2.10. Elemental semiconductors such as Si and Ge assume
the diamond structure, as well as the namesake, the metastable phase of carbon. A variant of
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Figure 2.2.8 Pauling’s model for tcp structure of Mg32(Al,Zn)49. (a) Icosahedron (icosahedra); (b) dodec-
ahedron; (c) rhombic tricontahedron; (d) truncated icosahedron; (e) large rhombic tricontahedron.

Table 2.2.4 Structural parameters of tcp.

Type Coordination Ideal point No. of vertices No. of vertices No. of faces
number (CN) symmetry (5-fold) (6-fold)

P 16 Td (4̄3m) 12 4 28

Q 15 D3h (6̄m2) 12 3 26
R 14 D6h (6/mmm) 12 2 24

X 12 Yh (m3̄5̄) 12 0 20

the diamond structure is the zinblende structure, in which the two sites in the diamond structure
are occupied by different atoms. Most compound semiconductors, such as GaAs, InP,. . . have this
structure.

There is another variant of the diamond structure which is hexagonal diamond, also known as
lonsdalite. It retains the tetrahedral coordination of each atom, while the symmetry is changed from
cubic to hexagonal. A further variant of lonsdalite is wurzite with 2 types of atomic sites occupied
by different atoms, just like the zincblende structure.

The graphite structure is composed of hexagonal sheets in which all atoms are triangularly
bonded, among them 1/3 may be double bonds, while there are van der Waals bonds between
hexagonal sheets. Since van der Waals bonds are much weaker than other types of bonds, the
mixture of weak bonds with strong bonds may lead to structures with sheets or chains displaying
quasi-low-dimensionality in physical properties.

Now we shall examine the crystal structure of ice at atmosphere pressure, i.e., the Ih phase of
ice (see Fig. 2.2.12). The larger O atoms occupy the sites of hexagonal diamond, while the H atoms
lie between them. If the H atoms lie midway between them, then a perfect crystal will be formed.
Actually the situation is quite different. Each proton is strongly bonded to one O atom with a
covalent bond and bonded to another O atom with a weaker hydrogen bond, so the position of the
proton lies closer to one O atom, but farther from another. This creates a local configuration very
close to a free H2O molecule, but makes each unit cell of the crystal not identical. A special type of
disorder, the so-called ice disorder, exists in the structure of ice even at zero temperature.

Figure 2.2.9 Kasper polyhedra. (a) X(CN = 12); (b) R(CN = 14); (c) Q(CN = 15); (d) P(CN = 16).
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(a) (b)

Figure 2.2.10 The structure of diamond (a) Cubic
diamond; (b) hexagonal diamond (lonsdalite).

Figure 2.2.11 The structure
of graphite.

In a crystal of ice with 2N bonds, there are 22N possible

Figure 2.2.12 The structure of ice
(Ih).

ways for arranging the protons. But not all these will satisfy
the rules for making H2O molecules. In fact, out of 24 = 16
ways of arranging the H atoms on a tetrahedrally bounded O
atom, only 6 satisfy the ice condition, i.e., 2 H atoms are near
a O atom, similar to a H2O molecule. The total number of
allowed configurations in the whole crystal is about

(

6

16

)N

22N =

(

3

2

)N

, (2.2.4)

so the residual entropy (i.e., the entropy at 0 K) is

S0 = NkB ln
3

2
. (2.2.5)

This is known as the Pauling formula and has been verified experimentally. The Pauling model for
ice may be extended to other crystals with hydrogen bonds, such as the ionic compound KH2PO4

(potassium dihydrogen phosphate, ‘KDP’).

2.2.4 Fullerenes and Carbon Nanotubes

Let us start from a graphite sheet, i.e., graphene, in which carbon atoms occupy the vertices of
a plane tiled by regular hexagons, this is a Euclidean plane with κ

G
= 0. When we add pentagons

to it, the sheet will curve up into an elliptic surface with 〈κ
G
〉 > 0; if we add heptagons into it, it

will curve up into a hyperbolic surface with 〈κ
G
〉 < 0.

Fullerenes are closed cages of carbon atoms composed of hexagons and pentagons. Let N0, N1

and N2 be the number of vertices, edges and faces respectively. According to the Euler formula,
since each vertex has 3 branches, we have

N0 − N1 + N2 = 2, 3N0 = 2N1. (2.2.6)

Let nx be the number of x-sided polygons, then
∑

x

xnx = 2N1,
∑

x

nx = N2. (2.2.7)

For x = 5 or 6, for closed cages n5 = 12, so 5 × 12 + 6n6 = 2N1, i.e., N1 = 30 + 3n6. From this we
may derive the values of N0 and n6 for a series of fullerenes:

n6 = 0, 1, 4, 6, 12, 15, 19, 20, 25, 28, 31, 32, 37, 110, 260, . . . ,

N0 = 20, 22, 28, 32, 44, 50, 58, 60, 70, 81, 82, 84, 240, 560, . . . .
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(a) (b)

Figure 2.2.13 Typical fullerenes. (a) C60; (b) C70.

Graphene sheets may be rolled into carbon nanotubes, usually multiple-walled, in special cases,
single-walled. Here we only consider the simplest case, single-walled nanotubes. For its main body,
κ

G
= 0; for its closed ends, κ

G
> 0.

Figure 2.2.14 A single-walled carbon nanotube.

Carbon nanotubes may be indexed by a chiral vector c = ma1 +na2 with two integers m and n,
where a1 and a2 are the unit vectors of graphite sheet. The geometrical nature of the chiral vector
may be identified by inspecting Fig. 2.2.14. For m = 0, the configuration is called zigzag type; for
m = n, armchair type; for m 6= n, chiral with the chiral angle θ < 30◦,

θ = arctan

[

(3)1/2n

2m+ n

]

, (2.2.8)

and the diameter

dt =
√

3a
C-C

m2 +mn+ n2

π
. (2.2.9)

The fullerites are periodic structures with fullerenes as building blocks. C60 solid is a crystalline
substance formed of carbon atoms not arranged as diamond and graphite but rather as a close-
packed structure built by C60 molecules; its structure and properties have been intensely studied.
Another fullerite formed by C70 has been reported. Whether there are other types of periodic
structure besides the fullerites is a problem still to be solved. There has been speculation about the
possibility of the existence of a hyperbolic surface formed by carbon atoms. The graphene sheet
may be modified by inserting heptagons periodically so that an IPMS with 〈κ

G
〉 < 0 is produced, it

is tentatively called ‘schwarzite’; however, it is still waiting for experimental confirmation.

2.2.5 The Structure of Perovskites

Many crystal structures may be understood as mixture of packing and linkage structures. We
can take perovskites as an example. A large family of oxides is known as the perovskites. The name
originally came from a mineral CaTiO3, which itself actually is a distorted perovskite structure.
The chemical formula for the perovskites is ABO3 where A stands for metal with valence 1 or 2
such as K, Na, Ba, Sr, Ca, La,. . . ; and B stands for a transition metal with valence 4 or 5, such
as Ti, Nb, Zr, V,. . . . The structure of perovskite with the highest symmetry is cubic, with space
group Pm3m, as shown in Fig. 2.2.16(a). The origin may be chosen at the site of a B atom [as
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Figure 2.2.15 Chiral vector and chiral angle of a carbon nanotube. (a) The relationship of chiral vector
ch and chiral angle θh with basic vectors a1, a2; (b) the chiral vector in terms of coordinates h1 and h2.

shown in Fig. 2.2.16(b)] or an A atom. An easily visualized picture for the perovskite follows: A
set of BO6 octahedra are linked together by corner-shared oxygen atoms, with A atoms occupying
the space in between. Starting from cubic perovskite, a large number of variants may be derived by
some distortion of octahedra, substitutions and displacements of atoms, while the symmetry of these
variants may range from cubic to tetragonal, rhombohedral, orthorhombic or monoclinic, though
the topological backbone still stands intact.

(a) (b)

Figure 2.2.16 Structure of cubic perovskite. (a) Atomic
positions, open circles — O atoms, shaded circles — B
atoms, small full circles — A atoms; (b) showing BO6

octahedra.

Figure 2.2.17 Structure of a
distorted perovskites.

The oxides with perovskite structures are model materials for the study of structural phase tran-
sitions of the displacement type. A cubic-tetragonal phase transition occurs in SrTiO3 at 103K by
tilting of neighboring TiO6 octahedra in opposite directions. The tilt angle ϕ/ϕ0 varies continuously,
from zero starting at Tc.

In BaTiO3, deviation of the axial ratio (c/a) − 1 starts from zero at Tc, and jumps to a finite
value, i.e., it various discontinuously at the phase transition. In the ferroelectric regime, a further
tetragonal-orthorhombic phase transition occurs at 273K, while a orthorhomic-rhombohedral one
occurs at 183K. A similar series of structural phase transitions occurs in isostructural KNbO3, with
transition temperatures at 683K, 480K and 233K.

LaMnO3 is a orthorhombic perovskite with tilted MnO6 octahedra. It attracts attention because
of the discovery of colossal magnetoresistance (CMR) in doped LaMnO3.

The perovskite family may be further enlarged to include the K2NiF4 structure, which may be
regarded as a layered perovskite. Starting from the BaTiO3 structure, we may stack 3 unit cells
one over the other, interchanging the positions of Ti and Ba atoms in the middle one, yielding a
tetragonal structure of the K2NiF4 type, shown in Fig. 2.2.18. The first high Tc superconductor
La2−xBaxCuO4 discovered by Bednorz and Müller has a distorted K2NiF4 structure, which may be
regarded as a variant of layered perovskite by substitution, stacking and distortion. Variants of this
structure are found for other cuprate high Tc superconductors that were subsequently discovered.
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La
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Cu

Figure 2.2.18 Structure of La2CuO4 (K2NiF4 type or layered perovskite).

§2.3 Quasiperiodic Structures

The discovery by Shechtman et al. (1984) of electron diffraction patterns showing the crystallo-
graphically forbidden icosahedral symmetry, and immediately interpreted by Levine and Steinhardt
(1984) as a new state of matter called a quasicrystal, which lies between periodic crystals and amor-
phous glasses, startled the academic community of condensed matter physics. After a decade of
intense research, quasicrystallography, as a new branch of generalized crystallography, has reached
maturity. In this section we shall not follow strictly the historical sequence of the discoveries, but
consider a wider perspective, starting from the simplest case, 1D structure, then going to more
complicated cases, 2D and 3D structures, prefaced by some mathematical discussion on irrational
numbers, and some discussion of the basic questions of quasicrystals following as a postscript.

As we know, there are two types of atomic structures for solids, one is crystal and the other
glass. Crystal structures are highly ordered: (1) Long-range translational order characterized by a
periodic repetition of unit cells; (2) long-range orientational order with a symmetry corresponding
to specific crystallographic discrete subgroups of the rotation, as represented by the 5 2D and 14 3D
Bravais lattices; (3) rotational point symmetry, also restricted to specific crystallographic discrete
subgroups. Glass structures, by contrast, have no long-range correlation. For example, metallic
glass can be modelled by spheres that are densely random-packed. However, there is another class
of long-range ordered structure forbidden by traditional crystallography. They are quasicrystals,
which have long-range quasiperiodic translational order and long-range orientational order.

2.3.1 Irrational Numbers and Quasiperiodic Functions

Real numbers are classified into two kinds: the rationals, which can be expressed as P/Q, where
P, Q are integers, and the irrationals, which can be expressed as the the limit of a continued fraction,

x = n0 +
1

n1 +
1

n2 +
1

n3 + . . .

. (2.3.1)

When one terminates the fraction at the nth stage, we shall get the nth approximation of the
irrational number x, and the deviation of the nth approximation from its true value is bounded by
the inequality

∣

∣

∣

∣

Pn

Qn
− x

∣

∣

∣

∣

≤ 1

Q2
n

. (2.3.2)
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According to the nature of the sequence (n0, n1, n2, . . .), these are algebraic numbers, if the
sequence is periodic, they are solution of polynomials with integral coefficients, set to zero. For
instance,

x2 − x − 1 = 0, x =
1 +

√
5

2
, (2.3.3)

this corresponds to a special sequence ni = (1, 1, 1, . . .).
Now we may introduce the mathematical definition of quasiperiodic functions. Let f(x) denote

the summation of two sinusoidal functions,

f(x) = A1 sin
2π

λ1
x + A2 sin

2π

λ2
x. (2.3.4)

If the ratio of λ1 and λ2 is a rational number, they are commensurate and f(x) is periodic in x
with a longer period. On the other hand, if the ratio of λ1 and λ2 is an irrational number, they are
incommensurate, and f(x) is quasiperiodic in x with a period ∼ ∞.

This may be further extended to the summation of n periodic functions

f(x) =
∑

n

An exp(2πix/λn). (2.3.5)

λ1/λ2, . . . , λn−1/λn, . . . are all irrational numbers, then f(x) is called almost periodic functions.
H. Bohr (1935) proved mathematically that almost-periodic functions have δ function-like Fourier
transforms.

2.3.2 1D Quasiperiodic Structure

Consider the problem of rabbit breeding which was first treated by the mathematician Fibonacci
in 1202: The pairs of large and small rabbits, corresponding to A and B. After a generation, a pair
of large rabbits give birth to a pair of small rabbits while a pair of small rabbits grow up to two
large ones, according to the substitution rule

A → AB, B → A, (2.3.6)

we can write down the matrix form as

Mij =

(

1, 1
1, 0

)

, Mij

(

A
B

)

=

(

A, B
A

)

→ ABA. (2.3.7)

For the next generation

Mij

(

AB
A

)

=

(

AB, A
AB

)

→ ABAAB . . . , (2.3.8)

thus we have a sequence

B → A → AB → ABA → ABAAB → ABAABABA → ABAABABAABAAB . . . . (2.3.9)

The total number of As and Bs for a generation is defined as the Fibonacci numbers: 1, 1, 2, 3,
5, 8, 13, 21, 34, . . . Their recursion relation is

un+1 = un + un−1, (2.3.10)

so

un+1

un
=

un + un−1

un
= 1 +

un−1

un
= 1 +

1
un

un−1

= 1 +
1

1 +
un−2

un−1

= 1 +
1

1 +
1

1 +
1

1 + · · ·

. (2.3.11)
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A irrational number may be expressed by a infinite sequence of rational numbers. The limit of the
above sequence can be written as the form

τ = lim
n→∞

un+1

un
= 1 +

1

1 + τ
, τ2 − τ − 1 = 0, (2.3.12)

we shall get the limit, the so-called golden number

τ =
1 +

√
5

2
= 1.618 . . . . (2.3.13)

Consider a set of atomic sites at distances from the origin according to the Fibonacci sequence

xn = n +
1

τ

⌊

n + 1

τ

⌋

, (2.3.14)

here ⌊y⌋ means to take the integer part of y. The interval between neighboring sites

∆x ≡ xn − xn−1, (2.3.15)

so

∆x =



















1, if

⌊

n + 1

τ

⌋

−
⌊n

τ

⌋

= 0,

1 +
1

τ
, if

⌊

n + 1

τ

⌋

−
⌊n

τ

⌋

= 1.

(2.3.16)

Thus there are two possible intervals between sites, the long one L and the short one S

L = 1 +
1

τ
, S = 1, (2.3.17)

which appear in a quasiperiodic sequence, where the ratio of the numbers of L’s to that of S’s is
equal to τ . This is the Fibonacci lattice in which the parameter τ plays a crucial role.

The Fibonacci lattice shows a self-similar structure: The self-similarity implies that there are
deflation and inflation rules to transform one Fibonacci lattice into another with a different scale.
We may use the substitution rule: L → LS and S → L for the realization of deflation (see Fig. 2.3.1).

L L L L L

LLLLLLLL

S S S

S S S S S

Figure 2.3.1 The self-similarity of a Fibonacci lattice.

2.3.3 The Cut and Projection from a 2D Periodic Lattice

We may generate the 1D quasiperiodic lattice from a 2D periodic lattice. As shown in Fig. 2.3.2,
starting from a 2D square lattice with lattice spacing a,

ρ(x, y) =
∑

n,m

δ(x − na)δ(y − ma), (2.3.18)

where n, m are integers.
We draw a straight line R‖ for projection at an inclination angle α. If the slope of this line is

irrational, then this line will not touch any lattice points of the square lattice. Then lattice points
projected on line R‖ will form a quasiperiodic lattice, provided that the projected lattice points are
limited within a strip of certain width ∆ along R⊥ that is perpendicular to R‖. Otherwise, the line
R‖ will be densely populated by the projected lattice points. Now we shall consider the special case
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∆
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a

Figure 2.3.2 The cut and projection
of 2D square lattice (projection line
tan α = 1/τ , stipe width ∆).

Q

Q

Q hh
'

R*

R*

Figure 2.3.3 The cut and projection of 2D
reciprocal lattice (showing the distribution
of diffraction amplitude).

tan α = τ . In this case the interval between neighboring projected points will be either L = a cosα
or S = a sin α, while the cut-out strip has the width ∆ = a(cosα + sin α), so a Fibonacci lattice
along R‖ is generated by the cut and projection method.

Using the cut and projection method we can easily derive the Fourier transform of a Fibonacci
lattice. For 2D lattice defined by (2.3.18), its Fourier transform is δ-functions centered on the
reciprocal lattice, which is also a square lattice with lattice spacing 2π/a parallel to the original one,
i.e.,

Fhh′ =
∑

h,h′

δ(Q − Qhh′), (2.3.19)

where h and h′ are integers (Miller indices).
Actually the Fourier components centered about the reciprocal lattice points have extensions

in the reciprocal space as denoted by Fig. 2.3.3. Because we only consider a strip in 2D space, a
window function W (x⊥) for this strip is introduced, i.e.,

W (x⊥) =

{

1, x⊥ ≤ ∆,

0, x⊥ > ∆.
(2.3.20)

The Fourier transform of the strip is the convolution product of the Fourier transform of the
infinite 2D square lattice with the Fourier transform of the window function. The latter turns out
to be

G(Q⊥) ∼ ∆

[

sin Q⊥∆

2

] [

Q⊥∆

2

]−1

, (2.3.21)

where

Q⊥ =
2π

a

h − h′τ

(2 + τ)1/2
. (2.3.22)

In the 2D reciprocal space, though all the Fourier transforms are centered on the reciprocal
lattice, only those touched on the irrational slope R∗

‖ that is parallel to R‖ can be observed in the
diffraction pattern corresponding to positions on R∗

‖ given by

Q‖ =
2π

a

h − h′τ

(2 + τ)1/2
. (2.3.23)

In Fig. 2.3.4 the electron diffraction pattern of an artificial Fibonacci superlattice is shown.
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(3,3)

(5,1)

(2,3)
(3,1)

(1,2)

(1,1)

(2,6)

(0,12)

(3,2)

(4,1)
(0,4)

(2,1)

(0,1)0

Figure 2.3.4 Electron micrograph and electron diffraction pattern of an artificial Fibonacci superlattice of
a-SiH/SiN:H. Provided by Prof. K. J. Chen. Related paper: Chen Kunji et al., J. Noncrys. Solid. 97 &
98, 341 (1987).
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Figure 2.3.5 The sections of equal interval parallel lines perpendicular to symmetry axis. (a) regular
hexagon; (b) regular pentagon.

2.3.4 2D Quasiperiodic Structures

In Chap. 1, we have already demonstrated that the rotational symmetries compatible with pe-
riodicity are limited to 2, 3, 4, 6; and 5-fold and all n-fold (n > 6) are forbidden symmetries in
classical crystallography. We draw a star of unit vectors with n-fold forbidden symmetry in a plane,
then a system of equidistant parallel lines with spacing a perpendicular to these vectors, forming
an n-grid. We may then compare the case where n is crystallographic with the case where n is
noncrystallographic, take the hexagrid and the pentagrid as example. In the case of the hexagrid,
consider the intersections of sets 1 and 2 with set 3 (see Fig. 2.3.5), the spacing of intersections for
each set is the same, so that a periodic lattice may be built up; while for a pentagrid, the spacings
of intersections are different for sets 1 and 2 with set 3, the ratio of long and short sections equal to
τ , an irrational number, the golden number

a cscπ/5

a csc 3π/5
= τ =

1 +
√

5

2
= 1.618 . . . , (2.3.24)

for other noncrystallographic symmetries, corresponding irrational numbers are different, e.g., for
the octagrid, the ratio is equal to

√
2,

a cscπ/5

a
=

√
2 = 1.414 . . . . (2.3.25)

The foregoing statement may be summarized as follows: The quasiperiodicity is directly related
to irrational numbers while the orientational symmetry constrains the quasiperiodicity (i.e., the
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(a) (b)

Figure 2.3.6 The pentagrids. (a) Periodic; (b) quasiperiodic.

irrational length ratio). Thus, quasicrystals may be characterized by the corresponding irrational
length ratios which determine the orientational symmetry and quasiperiodicity.

Consider a periodic pentagrid fully drawn: Since the 5-fold symmetry is incompatible with
periodicity, infinite numbers of cells with different shapes are generated, some of the cells may be
too small to satisfy the requirement for the minimum separation for an ordinary lattice. If the
parallel lines are arranged quasiperiodically with the long and short spacings L and S (L/S = τ)
according to the Fibonacci sequence, the position of the Nth line of the grid from the origin is
given by

xN = N + α +
1

τ

⌊

N

τ
+ β

⌋

, (2.3.26)

where α and β are arbitrary real numbers and, as mentioned above, ⌊ ⌋represents the greatest integer
function. Thus, we get a 5-fold quasiperiodic lattice such that each line in the ith grid intersects
each line in the jth grid at exactly one point for each i �= j and there is a finite number (8 actually)
of cell shapes so that the requirement of the minimum separation is satisfied. This is called the
Ammann quasilattice. We may generate the dual lattice by placing the points at the mass centers
of these cells. The resulting space-filling of 2 unit cells of the fat and the thin rhombs is called
a Penrose tiling. Historically Penrose tilings were first realized by the nonperiodic tiling of space
by two rhombs associated with the matching rule. A special decoration of rhombs with some line
sections may produce the Ammann quasilattice. Deflation rules for rescaling are shown in Fig. 2.3.9;
from this it may be demonstrated that the ratio of the numbers of the fat and the thin rhombs in a
Penrose tiling is τ .

Penrose and related tilings are geometrical figures with quasiperiodicity. Similarly, atoms or ions
may be packed together to form 2D quasicrystals. Various 2D quasicrystals (consisting of atoms and
ions) that are quasiperiodic (with 8, 10 and 12-fold symmetries) in 2D and periodic in the direction
normal to the plane have been discovered. Historically, the discovery of 2D quasicrystals followed
that of 3D quasicrystal.

The arrangement of atoms for a decagonal phase is much like the Penrose tiling. However,
Penrose tiling with its matching rules appears to be too artificial a model for a real quasicrystal.
An alterative model for a 2D quasicrystal, the covering model, was proposed. This uses black-white
decagons to cover the plane with overlaps, only requiring that overlapping parts should have the
same structure (see Fig. 2.3.10). The covering model has proved to be geometrically equivalent to
the Penrose tiling.c However, Penrose tiling is a purely geometrical theory, while the covering is
somewhat connected to some energy consideration, high covering density means larger overlapping
atomic clusters, and this may stabilize the quasicrystalline structure.

2.3.5 3D Quasicrystals

The signature for a 3D quasicrystal is the icosahedral symmetry shown in its diffraction patterns.
The quasilattice displaying such a diffraction pattern may be deduced as follows: Starting from the

cP. Gummelt, Geometric Dedicata 62, 1 (1996).
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36o72o

Figure 2.3.7 The Penrose
tiling.

Figure 2.3.8 Penrose tiling
with decoration forming Am-
mann quasilattice.

Figure 2.3.9 Inflation and deflation rules for Penrose tiles.

origin, a star of unit vectors ei (i = 1, 2, 3, 4, 5, 6) may be drawn parallel to the 5-fold symmetry
axes of a regular icosahedron; a series of planes perpendicular to these vectors may be drawn at
points whose distance from the origin is given by (2.3.16), as we have done in the 2D case: By the
intersections of these planes, a quasilattice may be formed, provided that any triplet of planes in the
ith, jth and kth grids does not intersect exactly at one point. A finite number of cells is found in
this quasilattice, so the minimum separation requirement is satisfied. The duals for this quasilattice
have 2 unit cells, the prolate and oblate rhombohedral, which are 3D analogs of the fat and the
skinny rhombs of Penrose tiling. Larger rhombic dodecahedron, rhombic icosahedron and rhombic
tricontahedron may be formed by tiling these 2 unit cells. These composite structural units (some
of them displaying icosahedral symmetry) are frequently found in 3D quasicrystals.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.3.10 Schematic diagram for the covering of black-white decagons.
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Figure 2.3.11 Electron diffraction patterns of Al-Mn quasicrystal. From D. Shechtman et al., Phys. Rev.

Lett. 53, 1951 (1984).
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Figure 2.3.12 Regular icosahedron with
Cartesian coordinates and 6 vertices which
determine the directions of 5-fold axes.
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(τ,0,1)

(-τ,0,1)

(0,0,0)

(τ,0,-1)

(0,1,τ)

(b)

Figure 2.3.13 Unit cells for
3D Penrose tiling. (a) Oblate;
(b) prolate.

Just as a 1D quasilattice may be formed by the cut and projection of a 2D periodic lattice, a 3D
quasilattice may be formed by the cut and projection from a periodic lattice in 6D hyperspace, and
3D space may be divided into the parallel space and the perpendicular space just as we have done
in §2.3.2.

2.3.6 Discussions about Some Basic Notions

After the discovery of quasicrystals in 1984, a quite different approach on icosahedral quasicrystal
structure was proposed by the famous chemist and crystallographer, L. Pauling. Then a controversy
over this proposal ensued.d He denied the existence of the quasiperiodic structure, and constructed
a cubic crystal with large unit cell (a = 26.74 Å), containing more than 2000 atoms to fit the
diffraction pattern of a quasicrystal. According to Pauling, the apparent icosahedral symmetry
was due to multiple twins of cubic crystallites. Pauling’s proposal was refuted by a number of
experimentalists in quasicrystallography showing that presence or absence of multiple twinning may
be experimentally determined by high resolution electron micrography. However, even without

dL. Pauling, Nature 317, 512 (1985), Phys. Rev. Lett. 58, 365 (1985); J. W. Cahn et al., Nature 319, 102 (1986).
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multiple twinning, it cannot be denied that a sufficiently large unit cell may account for the diffraction
pattern of quasicrystals to desired degree of precision.

It is found that though in some cases, 5-fold twins actually appear; while in most cases, no trace
of multiple twin boundaries is found. Disregarding some details which proved to be questionable
in Pauling’s scheme, the controversy introduced by Pauling may be resolved in such a viewpoint
that the quasicrystalline structures are an interpolation between two crystalline structures, just
as an irrational number is an interpolation between two rational numbers. True quasicrystalline
structures can be approached by a series of periodic structures (periodic approximants), the same
way that irrational numbers are the limit of a series of rational numbers. For icosahedral phase or
decagonal phase, replace τ by its rational approximants,

1,
2

1
,
3

2
,
5

3
, . . . ,

611

377
, . . . .

Pauling’s unit cell corresponds to the 5th approximant, which departs from the exact symmetry by
1/400.

Before the discovery of quasicrystals there were already many accounts of incommensurate phases,
i.e., crystalline phases in which displacement of atomic sites, chemical concentration or spin are
modulated by perturbations with independent incommensurate periodicity λ. The modulations were
mostly 1D, e.g., NaNO3, Na2CO3, Ba2NaNb5O15, but sometimes they were 2D, e.g., quartz, or 3D,
e.g., wüstite Fe1−xO. This is another kind of quasiperiodic structure. In general, the modulation
depths are small compared with the underlying crystalline structures, so the average structures
characterized by crystalline symmetry are still discernable. We may take a 2D periodic structure with
1D incommensurate modulation as an example. Let the unmodulated atomic sites be determined
by vectors

r = a(n1e1 + n2e2), (2.3.27)

where e1, e2 are orthogonal unit vectors.

a

λ

a

Figure 2.3.14 Schematic diagram showing incommensurately modulated structure (with modulated
displacement wavelength λ).

A modulation along x axis is introduced to transform r into r′, i.e.,

r′ = a[(n1 + ǫ sin qn1a)e1 + n2e2] (2.3.28)

for such 1D modulation, diffraction peaks occur at vector Q in the reciprocal space,

Q = ha∗
1 + ka∗

2 + mq. (2.3.29)

where a∗
1, a∗

2 are reciprocal basic vectors of the unmodulated lattice, and h, k, m are integers. If q

is incommensurate with a∗
1, then three indices are required for indexing the diffraction pattern. The

spots with m = 0 are called fundamental reflections, related to basic periodic structure, while the
m �= 0 spots are called mth order satellites. These may be easily extended to cases of n modulations
(n > 1).
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So the main distinction between quasicrystals and incommensurate phases lies in that the latter
is unconnected with forbidden symmetry in classical crystallography. Surely, this is only conspicuous
for the cases in which the modulation occurs in more than 1D; while for the 1D case, this distinction
is somewhat blurred, a Fibonacci lattice may be considered to be equivalent to a periodic lattice
with the spacing a modulated by a function with the period τa.
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Chapter 3

Beyond the Crystalline State

In the crystalline state, long-range order for positions of atoms and orientations of atomic rows is
apparent; in alloys, the positional order for atomic sites remains, but the occupation of atomic sites
by different species of atoms is somewhat random. In liquids, both the long-range positional order
and orientational order are lost; atomic positions show randomness as well as delocalization. If the
liquid is rapidly quenched, then atomic sites are localized into a special noncrystalline state, i.e.,
glass. Thus, glasses are super-cooled liquids, characterized by short range order without long-range
order. In addition, liquid crystal shows orientational order; polymers and biopolymers show more
complex supramolecular structures. These mostly belong to the realm of soft condensed matter.

§3.1 Alloys and Substitutional Disorder

The simplest disordered system maintains the order of atomic sites but lets various species of
atoms somewhat randomly occupy the sites, so the translational symmetry of the crystal lattice is
destroyed. This is the structural characteristic of alloys with substitutional disorder.

3.1.1 Ordered and Disordered Alloys

Though substitutional disorder is prevalent in the structure of alloys, this characteristic is most
spectacularly displayed in the order-disorder transitions in alloys. For instance, β-CuZn alloy has
a critical temperature Tc = 743 K: It is in an ordered phase below Tc and a disordered bcc phase
above Tc. The Tc of Cu3Au is 665 K: Its high-temperature phase is a disordered fcc phase. The basic
difference between the high and low temperature phases of this type of transition can be illustrated
by the distribution of black and white pieces on the lattice shown in Fig. 3.1.1. The black and white
pieces in the figure stand for two different kinds of atoms with identical concentrations, i.e., 50%.
In figure (a) the two kinds of atomic sites a and b can be easily distinguished, where the a sites
are occupied by white pieces and the b sites are occupied by black pieces, and the system stays in
ordered state. On the other hand, in figure (b), the white and black pieces are distributed on the
sites statistically, i.e., the a and b sites can be occupied by either kind of piece, so the system stays
in a disordered state. Strictly speaking, in a disordered state the translation symmetry vanishes, but
if the symmetry condition is relaxed by using the concept of statistical symmetry, the system may
be regarded as a disordered square lattice as shown in figure (c). It should be noted that from (a)
to (c), the transition from the ordered phase to a disordered one involves a change of lattice type:
the former is a tilted and enlarged square, containing two kinds of lattice sites; while the latter is
the primitive square cell with only one kind of lattice site. Also there is another way of ordering (or
reversed ordering), as shown in figure (d): segregation into two distinct phases (white and black).

The perfectly ordered state shown in Fig. 3.1.1(a) is an ideal one (T = 0 K); in fact, there must
be some wrong occupations at finite temperatures because of thermal fluctuations. The two kinds
of sites a and b can be distinguished: It is right for a sites to be occupied by A atoms and wrong
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(a) (b)

(c) (d)

Figure 3.1.1 The illustration of 2D ordered and disordered
phases: the distribution of black and white pieces. (a) the
ordered phase; (b) the disordered phase; (c) the statistical
description for disordered phase; (d) the reversed ordering:
the separation into two distinct phases.
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Figure 3.1.2 The powder
diffraction patterns of Cu3Au.
(a) disordered phase; (b) ordered
phase.

for them to be occupied by B atoms; conversely, it is right for b sites to be occupied by B atoms
and wrong for them to be occupied by A atoms. Further, we can define the probability of proper
occupation of a sites as ra and the wrong occupation of them as wa; similarly rb and wb can be
defined. The order parameter η may be defined as

η = ra − wb = rb − wa = ra + rb − 1. (3.1.1)

For the perfectly disordered state, the sites are occupied randomly, and the probabilities that the
a sites are occupied by A atoms and b sites occupied by B atoms are cA and cB, which are the
concentrations of A and B atoms respectively. Since cA + cB = 1, η may be also expressed as

η =
ra − cA

1 − cA
=

rb − cB

1 − cB
. (3.1.2)

If ra = rb = 1, η = 1 indicating perfect order and if ra = cA, rb = cB, η = 0 indicating perfect
disorder. The order parameter defined in this way can show the existence of an ordered lattice, so
η �= 0 is the condition for the presence of long-range order. The structure factor for X-ray or electron
diffraction is

F =
∑

a

(rafA + wafB)e2πi(hxn+kyn+lzn) +
∑

b

(rbfB + wbfA)e2πi(hxn+kyn+lzn), (3.1.3)

where fA and fB are the structure factors of A and B atoms respectively, and xn, yn, zn are the
coordinates of the nth atom. In the ordered structure (based on the bcc) of the β-CuZn type:
b = 000; a = 1

2
1
2

1
2 ; cA = cB = 1

2 . If h+k+ l = even, F = 2(cBfB + cafA), is the structure amplitude
of the main diffraction peaks shown in both the ordered and disordered phases; if h + k + l = odd,
F = η(fB − fA) is the structure amplitude of the superstructure diffraction peaks, which are shown
only in the ordered phase. In the ordered structure (based on fcc) of the Cu3Au type: b = 000;
a = 1

2
1
20, 0 1

2
1
2 , 1

20 1
2 ; cA = 3

4 , cB = 1
4 ; if the values of hkl are all even or all odd, F = 4(cBfB + cafA)

for the main diffraction spots; if the values of hkl are even mixed with odd, F = η(fB − fA) for the
superstructure diffraction spots, only in the ordered phase. Figure 3.1.2 is the powder diffraction
pattern of Cu3Au, from which the difference between the ordered and disordered phase can be
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found: The lattice type of the disordered phase is fcc, and it has the systematic extinctions shown
by this kind of lattice type. When it is ordered, the lattice type is changed into simple cubic, and
the systematic extinctions for the fcc lattice are absent.

3.1.2 Distribution Functions and Correlation Functions

There are two extreme situations in binary alloys: Perfect order and perfect disorder. However
the real situation will lie between these extremes, so the statistical problem of the occupation of the
atomic sites should be considered more meticulously. For instance, in binary alloys, if the energy for
an A-A bond or B-B bond is different from that of an A-B bond, the short-range order parameter
for atomic distributions will appear in a disordered phase.

To describe this problem quantitatively, let the total number of closest A-B neighbors be NAB.
If one atomic site has z closest neighbors, the total number of closest neighbors in the system with
N atoms is (1/2)zN , so the probability of A-B as closest neighbors is

PAB = lim
NAB

(1/2)zN
. (3.1.4)

If the probability of a single site occupation is cA or cB, and the probability for perfectly random
occupation of sites is 2cAcB, then the short-range order parameter that describes the closest neighbors
is defined as

ΓAB =
1

2
PAB − cAcB, (3.1.5)

ΓAB �= 0 means the system has short-range order even if the system itself stays in the disordered
state.

By the way, the short range order is not limited to closest neighbors; it can be extended to an
arbitrary pair of sites. Suppose the distance between the two sites is R, and 〈αab

AB〉 expresses the
average probability of a and b sites with distance R between A and B, we get the pair correlation
function

Γab
AB = 〈αab

AB〉 − 〈αA〉〈αB〉, (3.1.6)

where 〈αA〉 is the average probability of an A atom occupying any site, obviously 〈αA〉 = cA,
similarly we shall get 〈αB〉 = cB. Generally, the correlation of a pair of atomic sites is defined for
a definite RAB. In the disordered state, atomic correlation attenuates rapidly with increasing RAB,
so take any lattice site as the origin, the correlation function can be expressed as

Γ(R) ∼ R−n exp(−R/ξ), (3.1.7)

where ξ is the correlation length and when R ≫ ξ, Γ(R) → 0. At a temperature near Tc, ξ → ∞ and
the system enters into the critical region. Here n is a constant determined by the lattice dimension
and the type of interaction; this problem will be discussed in Part V. At temperatures below Tc,
there will be long-range order. Since the sign of Γ(R) alternates with the change of R, the definition
of order parameter should use the absolute value of Γ(R) and so the long-range parameter can be
defined as

|Γ∞| = lim
R→∞

|ΓR|. (3.1.8)

This agrees with the definition of the long-range order parameter given in the previous subsection,
however, long range and short range order parameters are unified by means of the correlation func-
tion. At some temperature above Tc, |Γ∞| = 0, but Γ(R) �= 0, so we could get the distribution of the
intensity of diffuse scattering of X-rays (not concentrating on reciprocal lattice points) by Fourier
transforming to Γ(R). Figure 3.1.3 shows the measured values of the correlation function of Cu3Au,
which indicates that even above Tc, |Γ(R)| can extend about 10 atom layers.a

aThe introduction to the experimental method and the result of X-ray diffraction and scattering studies on the ordered
and disordered phase of binary alloys, see B. E. Warren, X-Ray Diffraction, Addison-Wesley, Reading (1969).
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Figure 3.1.3 The measured values of the correlation function of Cu3Au above Tc.

§3.2 Liquids and Glasses

3.2.1 Overview

First we give the basic physical picture for the melting of crystals: Below the melting temperature
Tm, the thermal vibrations of atoms only causes irregular motion of atoms near lattice sites. When
the temperature is raised above Tm, thermal fluctuations lead to the complete destruction of the
lattice. This process can be simulated by computer, shown in Fig. 3.2.1. Figure 3.2.1(a) gives a
vivid picture of the crystal at high temperature: Although there are anomalous thermal motions, the
atoms stay near the sites of the lattice. For Fig. 3.2.1(b), the lattice is destroyed, and the positions
of atoms are delocalized and no longer stay near any given lattice sites. Figure 3.2.1 shows the clear
distinction between the structures of crystal and liquid indicating the disorder and delocalization of
the atomic sites in the liquid state.

(a) (b)

Figure 3.2.1 The computer simulation of the moving trajectories of 32 solid ball (by using periodic bound-
ary condition): (a) a crystal at high temperature; (b) liquid state.

When the liquid is cooled to its melting point, it does not freeze or crystallize at once but exists as
a supercooled liquid below the melting point. If the liquid is cooled quickly enough, the supercooled
liquid does not crystallize, and a glass is formed. Ordinary glasses are mostly oxide glasses based on
SiO2. These oxides have complex crystal structures and exhibit strong viscosity in the liquid state,
which makes the diffusion of atoms very difficult. Thus the formation and growth of the crystal
nuclei is very slow, and the usual cooling speed (10−4 − 10−1 K/s) is enough to prevent these liquid
oxides from crystallizing so they instead form glasses.

The situation is quite different for metals or alloys. The diffusivity of atoms is very large,
so a glass is not formed with the usual cooling speeds. In 1959, Duwez developed a kind of splat
quenching technology, i.e., splashing the liquid drip onto a cool plate with a high thermal conductivity
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thus raising the cooling speed to 106 K/s. In this way he quenched an Au3Si alloy into the glass
state for the first time, and started the era of metallic glasses. Later people developed the melt
spinning technique which made possible the production of metal glass on an industrial scale. In
addition, a laser vitrification technology was developed, with a cooling speed of 1010−1012 K/s, but
amorphous Si could not be formed even with this speed of cooling. At present, almost all elements
and compounds can be quenched at high speed to the glass state from the melt, with the exception
of only a few metallic elements. It can be assumed that with increasing cooling speed, eventually all
materials can be prepared in the glass state. This assumption is shown to be viable by simulating
quenching experiments with computers.

What is the essential feature of the glass transition? We have discussed the difference between
crystal and liquid above. In a crystal atoms are both ordered and localized at lattice sites; whereas
the liquid has fluidity, its structure is disordered, and the atoms are delocalized. The localization
of atoms is the characteristic of a solid. The glass transition corresponds to the localization of
atoms into a disordered structure. There are two types of transitions: Localization and ordering are
coupled together in the crystallization of liquids; but in the glass transition, these two are decoupled,
i.e., in this transition atomic localization is realized without concurrent ordering of structure.

3.2.2 Statistical Description

Because glass and liquid states are characterized by long-range

Figure 3.2.2 The 2D
schematic diagram of Voronoi
polyhedra with disordered
system.

disorder, a statistical description must be introduced to describe
these two states.

In crystals we may form Wigner-Seitz cells by drawing perpen-
dicular planes bisecting the lines linking atomic centers of nearest
neighbors; the size and shape of these cells are identical for simple
crystals; the same procedure may be applied to a glass, but we can
get cells which are no longer identical. These are called Voronoi
cells or Voronoi polyhedra (see Fig. 3.2.2). The number of faces
of the Voronoi polyhedra corresponds to the coordination number
z of the atom. In the topologically disordered system, z is not a
constant, and the average value of z is a significant parameter with
which to describe the structure.

To describe the disordered structure quantitatively, we intro-
duce the atomic distribution function: Define n(r1), n(r1, r2),
n(r1, r2, r3), . . . , as the statistical density of one-body, two-body,
three-body, etc. Then the density distribution function

dP (r1, r2, . . . , rs) = n(r1, r2, . . . , rs)dr1dr2 . . . drs (3.2.1)

is the probability of finding an atom at position dr1 near r1, dr2 near r2, etc. The normalized
distributed function is

g(r1, r2, . . . , rs) = n(r1, r2, . . . , rs)/ns, (3.2.2)

where n is the average density. If s = 2, this is the two-body (or pair) distribution function, and if
s = 3, it is the three-body distribution function, etc. The two-body distribution function is the one
most commonly used. Now, introduce a vector R12, and the probability of finding an atom in the
unit volume in the tiny region around the end of the vector g(r1, r2) ≡ g(R12). Since liquids and
glasses are isotropic, R12 may also be chosen in any direction, and the direction of the vector can
be ignored, so we can rewrite the atomic distribution function as

g (R) =
1

〈ρ〉
dn (R, R + dR)

dv (R, R + dR)
. (3.2.3)

This form of two-body distributed function is called as the radial distribution function (RDF).
But, what is the physical meaning of g(R)? We may illustrate this problem with a series of examples.
Starting from the central atom shown in Fig. 3.2.3, the average number of atoms in the spherical
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shell with radius from R to R + dR is g(R)4πR2dR. Obviously, in the area of R < R0 (R0 is the
radius of the atom), g(R) = 0. From R0, g(R) increases until the first peak value (R = R1) and then
begin to decrease. The first peak of g(R) corresponds to the first coordination shell of the central
atom, and the area under the first peak equals the coordination number z of this structure. Because
of the existence of disorder, z is not always an integer. Analogously we can define the second nearest
spherical shell but with wider peak width and lower peak value, and combined with other peaks
gradually. Finally when R → ∞, g(R) = 1. Here we introduce the correlation function

Γ (R) = g (R) − 1, (3.2.4)

which can be used to express the deviation of the local region from statistical uniformity. We could
also define the range of long-range order as L, i.e., if R > L, Γ(R) ≈ 0. While crystal structures
have long range order L → ∞, the structures of liquid and glass have only short range order, i.e.,
L is limited to several atomic spacings. In order to compare with experimental results of X-ray,
electron or neutron scattering, we may use J(R) = 4πR2

g(R) as another expression of the RDF and
measure the relation between the scattering intensity I(θ) and scattering angle 2θ to get J(R) or
g(R) through a Fourier transform.

1

0
R

g(R)

Figure 3.2.3 The 2D schematic
diagram explaining the meaning of
radial distribution function.
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Figure 3.2.4 The RDF g(R) and corresponding atom dis-
tributing state at some time of matter in four different
states: (a) gas, (b) liquid, (c) glass, (d) crystal.

Figure 3.2.4 shows the RDF and the corresponding atomic distribution in gases, liquids, glasses
and crystals schematically. We may conclude that the effect of the RDF in the description of
structure comes from the the oscillating part of 4πR2

g(R). By the measurement of the RDF, we
shall have information about liquid and glass structures, such as short range order and chemical
bonding; these are key points to test and distinguish different models. It is valuable to compare the
g(R) for the liquid and glass states. The liquid state has somewhat lower peak value, larger width
and smoother variation, i.e., some details of the glass state are smoothed out.

The RDF is the average statistical result of all atoms and gives an average description of the
surroundings of one atom in the solid. It cannot give the whole picture of the distribution of atoms
in an amorphous structure, i.e., it ignores much information lost in the statistical procedure. For
example, in a glass composed of different atoms, valuable information about chemical correlation
and bonding properties may be missed. Therefore, there are some limitations in the description of
amorphous structure by using RDF. In order to get more detailed description of the structure, we
may use specific structure models. Some famous models will be introduced in the next subsection.
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For liquids, the positions of atoms change with time. Unlike thermal vibrations in a crystal,
atoms in a liquid are delocalized from lattice sites. Since the dynamic nature of liquid structure is
more prominent, besides the space parameter R, the time parameter t should be introduced for a
more complete statistical description of structure. The density function in terms of the space and
time parameters can be written as

n(R, t) =
1

V

∑

i

δ{R − Ri(t)}, (3.2.5)

where V is the volume and δ is the Dirac δ function which has the value 1 if the atom stays at the
point Ri(t), and 0 otherwise. Then we introduce the van Hove correlation function

Γ(R, t) = 〈n∗(R′, t′)n(R′ + R, t′ + t)〉. (3.2.6)

In principle, the van Hove correlation function gives a full description of the dynamic structure of
condensed matter. Neutron inelastic scattering is the major experimental tool to probe the dynamic
structure of condensed matter, and the Fourier transform of the van Hove correlation function is
equal to the dynamic structure factor S(k, ω) of neutron inelastic scattering, where k is the wave
vector and ω is the frequency. So the static structure factor can be expressed as

S(k) =

∫ ∞

−∞
S(k, ω)dω. (3.2.7)

However, in order to determine dynamic structure from neutron scattering data, the construction of
a suitable theoretical model is also required.

3.2.3 Structural Models for the Amorphous State

The random close packing model was originally introduced by British crystallographer J. D.
Bernal in 1959 as a model of liquid structure, so perhaps it is an adequate model for glasses in
which packing plays a prominent role, such as metallic glasses. The basic idea of the model is
as follows: Consider a liquid as a homogeneous, coherent and essentially irregular assemblage of
molecules containing no crystalline regions or holes large enough to admit another molecule. To
avoid the complexity brought by the shape of the molecule, we only consider the packing problem
of a monoatomic liquid. To develop the random close packing model, Bernal adopted an empirical
approach, building models with plasticine balls, ball-bearings, as well as ball-and-spoke. He put
many plasticine balls into a rubber container, at various pressures, and found that these balls
became polyhedra of various shapes corresponding to Vororoi polyhedra in liquids and glasses. Some
dodecahedra were found, while the majority were polyhedra containing many pentagons. Further he
designed the experiments with a large assemblage of ball-bearings as well as computer simulation of
the ball-and-spoke model. Based on these observations, Bernal proposed the random close-packing
model for liquids and glasses. In this model, the space occupancy of balls is 63.66±0.004%, which
is obviously lower than the corresponding value of crystalline closest packing 74.05%; the average
number of faces on one Voronoi polyhedron is 14.251, and the average number of edges on one face
is 5.158, approaching the number of a pentagon. Later the model had been further refined by other
scientists and became more exact. If the interaction potential is introduced (so-called soft balls) to
replace the initial hard balls, the model became more realistic, for instance, structure relaxation, a
common behavior of glasses was also observed in this model, see Fig. 3.2.5(b).

The random close packing model can also be characterized by the distribution of void polyhedra
(see Fig. 3.2.6). In the initial work of Bernal, the distribution of voids is continuous one with a high
peak centered at tetrahedra then extended to octahedra and beyond. The shapes of the voids are
not regular. However, with the addition of an interaction potential, structure relaxation results and
the shapes of pores are adjusted so that only tetrahedra and octahedra are left.

The structure of metallic glass is close to the Bernal’s random close packing model, and experi-
mental results for the RDF by X-ray scattering match the theoretical calculation approximately.
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(a) (b)

Figure 3.2.5 Ball-and-spoke model for random close packing (100 atoms). (a) hard balls; (b) soft balls
(using the Lennard–Jones potential). From J. A. Barker et al., Nature 257, 120 (1975).

Figure 3.2.6 The distribution of voids in the random close packing model, R0 is the radius of the sphere, T
is the tetrahedral void, and O is the octahedral void. (a) hard balls; (b) soft balls (introducing the interaction
potential) (using the Lennard–Jones potential). From J. L. Finney and J. Wallace, J. Non-Cryst. Solids 43,
165 (1981).

The continuous random network model was proposed by W. H. Zachariasen in 1932 for the
elucidation of the structure of SiO2 glass. The basic idea is: A unit of the structure is a tetrahedron
composed of 4 O atoms which are bonded with the central Si atom by four valence bonds. The
adjacent tetrahedra share a common vertex, so with an infinite extension, they form SiO2 glass.
In this way, a random network is formed; however, the introduction of randomness may allow the
Si-O-Si bond angle to deviate from the average value, and the bond length to be stretched. Even the
azimuth of the tetrahedron can be varied by a small amount by rotation along the Si-O bond (see
Fig. 3.2.7). Just like the random close packing model, we can deduce the coordinates of an atom,
the density and the statistical number of the members forming a closed loop from the continuous
random network model. Figure 3.2.8 shows the comparison of RDF derived from the continuous
random network model and experimental results on Ge.

This model can describe not only the structure of glasses, but also qualitatively the structure
of liquids with tetrahedral coordination, such as liquid Ge, Si, and even water. In Chap. 2, we
discussed the crystal structure of ice, which also has tetrahedral coordination. The pair correlation
function of O-O observed in water is shown in Fig. 3.2.9, and by taking the integral to the first shell
we can get

n = 4πρ

∫

goo(r)r
2dr = 4. (3.2.8)

By the way, after the second shell, goo tends to one asymptotically.
The statistical honeycomb model was proposed by mathematician H. S. M. Coxeter in 1958. The

Voronoi polyhedron is denoted by Schläffli symbol {p, q, r}, where p is the number edges of polygons,
q is the number of faces sharing a vertex, r is the number of polyhedra sharing an edge. For the
random close packing model, the statistical distribution shows that q = r = 3, 5 � p � 6. We also
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Figure 3.2.7 (a) Si-O tetrahedrons joined at common O atoms; (b) 2D schematic diagram of the continuous
random network model proposed by Zachariasen. From A. C. Wright et al., J. Non-Cryst. Solids 49, 63
(1982).
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Figure 3.2.8 The RDF of Ge, the solid line is the experimental result while the dotted line is the calculated
result according to the continuous random network model. From A. C. Wright et al., J. Non-Cryst. Solids

49, 63 (1982).

know that stacking regular polyhedra in 3D must satisfy the condition (see §2.1.3)

cos
π

q
= sin

π

p
sin

π

r
. (3.2.9)

In (3.2.8), no integer p satisfies q = r = 3, and the number p is a non-integer in {p, 3, 3}, which
means the honeycomb can only exist in a statistical sense. In a Voronoi polyhedron, atoms stay at
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1

g
OO
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Figure 3.2.9 The pair correlation function of O-O in water.
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the center, and the dihedral angle of the tetrahedron formed by neighboring atoms is arccos(1/3), so

p̄ =
2π

arccos(1/3)
= 5.1043 . . . (3.2.10)

The average coordination number is z̄ = 12/(6− p̄) = 13.398 . . . , and the average number of vertices
is N0 = 4/[(6/p̄) − 1] = 22.796 . . . . With this model the packing density is about 0.7071, which lies
between the crystalline closest packing and random close packing.

§3.3 The Liquid-Crystalline State

3.3.1 Overview

Up to now we have only considered spheres as the building blocks for structures; this is quite
natural since nearly all atoms and ions have spherical symmetry. However, molecules may have
shapes that deviate from spherical symmetry, and some of these may be quite extended in 1D or
2D. These molecules pose new problems for the study of the structure of matter: Supramolecular
structures. These are mostly partly ordered and partly disordered structures with 1D and 2D
structural elements as building blocks. To identify the structural building blocks and to elucidate
their roles in structure-building is of crucial importance for the understanding of these complex
structures of organic materials.

We shall begin our examination of supramolecular structures with liquid crystals in which the
building blocks are shaped like short rods or small disks, then we shall be concerned with structures
with building blocks consist of more extended 1D and 2D objects such as polymers and self-assembled
membranes. If structural building blocks are all identical or randomly mixed, statistics will be
important for their structures, while several alternative building blocks are coded into sequence,
then informatics shall play a crucial role in such structures, as exemplified by biopolymers.

Some of their properties are strongly anisotropic and exhibit a certain degree of fluidity. They
may be called mesophases, i.e., phases with symmetries of structures as well as physical properties ly-
ing intermediate between that of crystals and liquids. Crystals have both long-range positional order
and orientational order; common liquids have neither long-range positional order nor orientational
order; while liquid crystals have long-range orientational order but lack positional order.

The transition into the mesophase may be simply made by lowering the temperature; the liquid
crystals thus formed are called the thermotropics. Another way to form a liquid crystal is dissolving
the organic molecules in a suitable solvent at a suitable concentration; these are called lyotropics.
The building blocks forming the liquid crystalline state may be divided into four kinds: (a) rod-like
molecules; (b) disc-like molecules; (c) (flexible) long chain polymers connected by rod-like or disc-like
molecules; and (d) membrane composed by amphiphilic molecules. All these structural units and
some representative compounds are shown in Fig. 3.3.1.

According to the symmetry and order of liquid crystal, thermotropics can be further divided
into three phases: nematic, cholesteric and smectic (see Fig. 3.3.2). These will be discussed in the
following subsection.

3.3.2 Nematic Phase and Cholesteric Phase

The nematic liquid crystal is a typical one, which has rather large fluidity. The basic characteris-
tics of the nematic liquid crystals are the existence of long-range orientational order and the absence
of long-range translation order for the mass-centers of molecules. The molecules are arranged along
a special direction n̄ (director), while the molecular mass-centers are randomly distributed in space.
These account for the absence of long-range translational order, so the system shows the character-
istics of liquid. Furthermore, even the molecular orientations have some variation. For a rod-like
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Figure 3.3.2 The schematic diagram of structures
of liquid crystals. (a) nematic phase; (b) cholesteric
phase; (c) smectic phase.

x

y

z

ψ

φ

θ

n

Figure 3.3.3 The Euler angles
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molecule, we introduce three Euler angles θ, φ and ψ to describe the nematic liquid crystal (see
Fig. 3.3.3), and the key point is the distribution with θ around the director n̄. So we shall introduce
the distribution function

f(cos θ) =
∑

l=0,even

2l + 1

2
〈Pl(cos θ)〉Pl(cos θ), (3.3.1)
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where Pl(cos θ) is the lth even-order Legendre polynomial in which f(cos θ) is an even function of
cos θ. We take the average of Pl(cos θ) in (3.3.1) to get

〈Pl(cos θ)〉 =

∫ 1

−1

Pl(cos θ)f(cos θ)d(cos θ),

〈P0(cos θ)〉 = 1, 〈P2(cos θ)〉 =
1

2
(3

〈

cos2 θ
〉

− 1), (3.3.2)

〈P4(cos θ)〉 =
1

8
(35

〈

cos4 θ
〉

− 30
〈

cos2 θ
〉

+ 3),

where the symbol 〈· · · 〉 denotes averaging of the bracketed quantity. The director n̄ has direction
without specifying the sense of the arrowhead, thus n̄ is indistinguishable from −n̄, so it is quite
different from a usual vector.

Now we introduce the long-range orientational order parameter η satisfying

η = 〈P2〉 =
1

2

(

3
〈

cos2 θ
〉

− 1
)

. (3.3.3)

If the system is perfectly ordered,
〈

cos2 θ
〉

= 1, i.e., η = 1; contrarily if the system is perfectly

disordered,
〈

cos2 θ
〉

= 1/3, and η = 0.

The cholesteric phase is similar to the nematic phase in lacking long-range positional order, so
it also has certain fluidity. In the cholesteric phase, long molecules are usually flat and arranged
into lamellar layers due to the interaction between the bases at their ends. However, their long axes
are lined up along the plane inside the layers, and the orientation of molecules inside a particular
layer is similar to the situation in the nematic phase. Because of the left-right asymmetry of the
molecular structure, the orientation of the director rotates at a steady rate as one moves normal to
the layers, as shown in Fig. 3.3.2(b).

The screw axes superimposed on the director n̄ can be written as

nx = cos(qcz + φ), ny = sin(qcz + φ), nz = 0, (3.3.4)

with a period of

L =
π

|qc|
. (3.3.5)

When L = ∞ or qc = 0, it changes into the nematic phase, so the nematic phase is a special
cholesteric phase. In many cholesterics, the value of L is about 3000Å and is a function of tempera-
ture, which may satisfy Bragg law for diffraction of visible light. Thus a change of temperature may
change the color of cholesterics.

It is interesting to note that there is special type of cholesteric liquid crystal which is called the
liquid crystalline blue phase with a special complicated organization.b

3.3.3 Smectic Phase and Columnar Phase

In the common smectic phase, the mass-centers of rod-like molecules are arranged in parallel
periodic layers with a definite spacing. Inside the layers, the molecules line up along a certain
director n̄ which may coincide with the normal to the layer or at a definite angle to it, while the
positions of the mass centers are disordered. The molecules can only move within the layers, while
the layers may slip by each other. The smectic phase can be divided to two kinds, smectic A and C
phases. In smectic A, the molecules are upright in each layer — see Fig. 3.3.2(c); while in smectic C,
the molecules are inclined with respect to the layer normal.

bAbout the blue phase, see D. C. Wright and N. D. Mermin, Rev. Mod. Phys. 61, 385 (1989); T. Seideman, Rep.
Prog. Phys. 53, 657 (1990).
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The smectic phase is more ordered than the the nematic mentioned above, for it has not only
2D molecular orientational order but also 1D translational symmetry along the layer normal. Its
distribution function

f(cos θ, z) =
∑

l=0,even

∑

n=0

AlnPl(cos θ) cos

(

2πnz

d

)

, (3.3.6)

satisfies the normalization condition
∫ 1

−1

∫ d

0

f(cos θ, z)dzd(cos θ) = 1. (3.3.7)

The results are

A00 =
1

2d
,

A0n =
1

d

〈

cos

(

2πnz

d

)〉

, (n �= 0)

Al0 =
2l + 1

2d
〈Pl(cos θ)〉 , (l �= 0) (3.3.8)

Aln =
2l + 1

2d

〈

Pl(cos θ) cos

(

2πnz

d

)〉

, (l, n �= 0).

The order parameters are

η = 〈P2(cos θ)〉 , τ = 〈cos(2πz/d)〉 , σ = 〈P2(cos θ) cos(2πz/d)〉 , (3.3.9)

where z is the coordinate of the molecular mass-center. It can be easily found that for the isotropic
liquid phase η = τ = σ = 0, for the nematic phase η �= 0, τ = σ = 0, and for the smectic phase
η �= 0, τ �= 0, σ �= 0. Therefore, to describe the smectic phase, besides the orientational order
parameter η, the translational order parameter τ should be introduced. If all of the molecular mass-
centers are at z = 0, τ = 1; if the mass-centers are uniformly distributed, τ = 0. In the columnar
liquid crystalline phase, dissimilar molecules are stacked into columns with a hexagonal structure,
so it has 2D translational order as shown in Fig. 3.3.4.

Figure 3.3.4 Columnar phase
liquid crystal.
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Figure 3.3.5 The phase diagram
of soap-water.

When the temperature is increased, the translational order of the columnar phase disappears first,
then the orientational order vanishes. With the disappearance of translational order, the smectic
phase is first changed into the nematic phase, then the nematic phase is changed into an isotropic
liquid. If the building blocks are disk-like molecules, this is called discotics. There are two distinct
types of discotics: Columnar and nematic. For the columnar phase, discs are stacked one over the
other aperiodically to form liquid-like columns, while different columns constitute a 2D lattice.
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3.3.4 Lyotropics

The molecular order of lyotropic liquid crystals is quite different from that of the thermotropics
in both structure and interaction.

Soap-water is a typical lyotropic liquid crystal, which shows birefringence. The constitution of
this sort of liquid crystal is rather complex, and the interaction is very tortuous. The soap (lauric
acid) molecule is a typical amphiphile characterized by the fact that the head and the tail have quite
different affinities. Its head is a polar group –CO2–K+, which is soluble in water and is hydrophilic;
while the tail of hydrocarbon chain –(CH2)7CH3 is hardly soluble in water, and is hydrophobic. The
amphiphilic molecules or the surfactant, i.e., in water solution they are inclined to swarm on the
interface with the hydrophilic group touching the water, and the hydrophobic one pointing away
from the water. So a layer of amphiphilic molecules at the interface constitute a membrane within
liquid mixtures.

The building block of an ordinary crystal is the 0D (zero dimension) atom or ion, that of the
thermotropic liquid crystal is the 1D rod-like molecule, while that of the lyotropic liquid crystal
is the 2D liquid membrane. The structure of the liquid membrane itself does not have long-range
order, however the lyotropic liquid crystal made up of these building blocks may acquire long range
order. Figure 3.3.5 shows the phase diagram of soap-water, from which we can find that with the
increasing concentration of soap, there are a series of lyotropic liquid crystalline phases with different
structures.

In soap-water at low concentration, the liquid phase is isotropic, in which the amphiphilic
molecules for sphere-like closed membranes, called micelles, are shown in Fig. 3.3.6. The sizes and
the shapes of micelles are currently uncertain, but only keep statistical equilibrium with amphiphilic
molecules dispersed in the liquid around them. If the solution is diluted by water, the micelles
disappear rapidly; on the other hand, with increasing concentration, micelles with larger areas are
formed and thus a series of lyotropic liquid crystalline phases would appear finally at different values
of concentration.

Polar Head

Hydrophobic Tail

4 nm

Figure 3.3.6 Schematic dia-
gram of a micelle.

(a)

(b)(c)

Figure 3.3.7 Lyotropic liquid crystal phases
with different structures. (a) lamellar phase; (b)
‘bicontinuous’ cubic phase; (c) hexagonal phase.

Three types of lyotropic phases shown in Fig. 3.3.7 were obtained by X-ray diffraction experi-
ments. The sharp diffraction lines in the small angle range indicate a clearly periodic structure in
the range of several dozen Angstroms; but the diffraction peaks are fuzzy in the large angle range,
which indicates that the liquid membranes themselves (in the range of several angstroms) have no
long-range order. Hexagonal and lamellar phases are simple, while the cubic phase is complex. In
the cubic phase, the membrane becomes bicontinuous, separating space into two distinct regions.
The interface has minus Gaussian curvature κG and the genus gt is infinite. This is just the IPMS
mentioned in §2.1.2.
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The study of lyotropics belongs to the growing field of self-assembly of soft condensed matter.
This self-assembling process is also utilized in materials science to synthesize structural patterns
on the mesoscale, i.e., midway between microscopic and macroscopic scale, e.g., to fabricate meso-
porous materials, and templates for photonic crystals. This kind of structure is also encountered in
biomembranes. Thus research on lyotropic liquid crystal not only helps us understand the physical
phenomenon of surfactants but also has extensive applications in many fields, such as the food and
pharmaceutical industry, cosmetics, petroleum reclamation, mineral separation, etc., and it is also
important for biology.

§3.4 Polymers

3.4.1 Structure and Constitution

Polymers consisting of long chain molecules are also called macromolecules. The structural unit
of a polymer molecule is the monomer, and the total number of monomers in a macromolecule
ranges between 102 and 105. In Fig. 3.4.1, many structures of macromolecular monomers are shown.
Figure 3.4.2(a) gives the space structure of –CH2– in polyethylene, and Fig. 3.4.2(b) gives the
bonding configuration of a series of C–C bonds.
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Figure 3.4.2 (a) CH2 in the
polyethylene (the upper figure is
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side view); (b) the bonding con-
figuration of 5 C atoms.



· 88 · Chapter 3. Beyond the Crystalline State

Monomers can be repeated simply to constitute the macromolecule. For instance, let A stand
for the repeated unit, then we will get

X–A–A–A–A– · · · –A–A–A–Y,

where X and Y are the initial and the terminal bases. In polyethylene, X=Y=H. The structures
and types of monomers may be not completely the same in a polymer, and usually different variants
may be formed. The arrangement of monomers in a polymer is also multifarious. For example,

—A—B—B—A—B—A—A—A—B—A—,

where A and B are different monomers.
The copolymer is made up of two or more different monomers according to some modes of

arrangement. According to different modes of arrangement, it has many types including random
copolymer, block copolymer and so on, as shown in Fig. 3.4.3. In biopolymers, the monomers are
no longer the same and this has important consequence for biological properties. However, besides
the specific structures of the macromolecular chains, the configurations of polymers are also very
complex.

(a) Rondom Copoly mer

(b) Triblock Copoly mer

(c) Branch-Connected Copoly mer

(d) Tetra-Branch Star Uniform-Chain Copoly mer 

Figure 3.4.3 Different kinds of
copolymer.

(a) Rigid Chain

(b) Flexible Chain

Figure 3.4.4 The long-chain
structures of two typical polymers.
(a) rigid chain; (b) flexible chain.

In general, the macromolecular chains can be divided into three kinds: Flexible, rigid and helical
chains. Macromolecules with benzene rings or heterocyclic rings in the main chain are usually the
rigid ones and have the rod-like shape shown in Fig. 3.4.4(a). For macromolecules like polyethylene,
the main chain is made up of C–C bonds, and several conformations with similar energy value
may attach to each other by rotations of bonds. This makes the molecular chain multifarious, like
flexible coils, as shown in Fig. 3.3.4(b). There is another kind of chain shape which, in essence is a
flexible one, and the potential barrier for internal rotation of the main chain is not high, with the
interactions between different parts of the molecule, the stable helix conformation is formed. The
α-helix in proteins and the double helix of DNA in nucleic acids belong to this type.

3.4.2 Random Coils and Swollen Coils

In this subsection we will introduce the structural model of disordered polymers with flexible
long-chain molecules as the basic units — the random walk model. This model was proposed by
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Figure 3.4.5 The loci of particles in Brownian motion (Perrin’s result).

P. T. Flory in 1949 based on loci of the particle in Brownian motion. Figure 3.4.5 shows the
observed result for the loci of particles in Brownian motion by J. Perrin in 1909. Following the
random movement of the particles in the liquid, Flory divided the macromolecular long chain into
many segments each with length a, which corresponds to a segment of the moving locus of a particle
in Brownian motion. Starting from the origin, a flexible polymer changes its direction randomly and
continuously in space, and moves randomly from the origin. After N steps (a1, a2, . . . , aN), the
distance away from the origin is

r = a1 + a2 + · · · + aN =

N
∑

i=1

ai. (3.4.1)

Since every step is arbitrary, the average of r is zero. More significant is the average value of r2

〈r2〉 =

N
∑

i=1

(a1 + a2 + · · · + aN)2 =
∑

i=j

ai · aj +
∑

i�=j

ai · aj = Na2 = R2
0. (3.4.2)

There are two sorts of terms in the formula above: One is the products of ai and ai with the same
subscripts, which equal a2 ; the other sort is the products of ai and aj which equal a2 cos θij , where
θij stands for the deviation angle between ai and aj . Since the directions of ai and aj are random,
so

∑

i,j a2 cos θij = 0 and we will get

R0 = N1/2a. (3.4.3)

From (3.4.3) above, we find that the size R0 of the random chain is proportional to N1/2. The
result is the same for any dimension of the system, so it is valid for 1D, 2D, 3D and even higher
dimensions.

Let the probability by which the distance between the head and the tail of a flexible polymer is
R be P (R). For liquid phase, N is large, and the Gaussian distribution is a good approximation,
i.e.,

P (R) = A exp(−BR2), (3.4.4)

where A = (2π/3)−3/2R−3
0 , B = (3/2)R−2

0 .
The random coil model of flexible macromolecules is the simplest one. However, the random coil

can have many intersections with itself, which is impossible for real macromolecules because of steric
repulsive interactions between intersecting monomers, making different parts of a flexible polymer
avoid each other. So the self-avoiding walk (SAW) model is proposed. This model is based on the self-
avoiding of different parts in a macromolecular chain and embodies the so-called impenetrability of
the chain, as shown in Fig. 3.4.6. The areas inside the circles indicate the self-avoiding effect between
the molecular monomers.
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Figure 3.4.6 The self-avoiding walk in 2D square lattice (the areas inside the circles indicate the self-
avoiding effect).

The self-avoiding walk is a difficult mathematical problem that has not been analytically solved
yet. Of course, a computer simulation method can be used to solve the problem, and many different
conformations are created, after which we can do an assembly average. The correlation between R
and N can be expressed as

R0 = aNν . (3.4.5)

Define
µN =

〈

R2
N+1

〉

/
〈

R2
N

〉

, N = 1, 2, . . . . (3.4.6)

When N → ∞, µN → 1, and

lim
N→∞

Nt(µN − 1) = lim
N→∞

N

[

(

1 +
1

N

)2ν

− 1

]

= 2ν. (3.4.7)

For a d-dimensional self-avoiding walk, the result by computer simulation is

ν =
3

d + 2
. (3.4.8)

This formula indicates that the value of ν is related to the dimension of space d. If d = 1, since the
long-chain molecule cannot intersect with itself and only move forward, ν = 1; for a macromolecular
chain in 3D space, ν = 3/5. This result was first derived by Flory using a mean field approximation.
Because 3/5 > 1/2, for same N monomers the calculated size of the coil by self-avoiding walk is
larger than that by random-walk as the coil expands or swells for the self-avoiding walk due to steric
interaction.

The distribution of the distance R between the head and the tail can be expressed as

P (R) = R−d
0 fp

(

R

R0

)

= R−d
0 fp(x). (3.4.9)

The specific result for d = 3 is shown in Fig. 3.4.7. For large value of x, fp(x) decreases rapidly and
can be expressed as

lim
x→∞

fp(x) = xk exp(−xδ). (3.4.10)

On the other hand, for small x, fp drastically decreases to zero, which greatly reduces the probability
of returning to the origin. Thus we have

lim
x→0

fp(x) = C0 exp(−xθ), (3.4.11)

where C0 is a constant, and the exponentials of the two formulas k, δ, θ are constants related to the
dimension d.
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Figure 3.4.7 The distribution of the head-tail distance by self-avoiding chain (x = R/R0).

3.4.3 The Correlation Function of Single Chain and Experimental Results

We introduce the correlation function Γ(R) to express the distribution of polymer in space. Set
a typical monomer as the origin O, and let the monomer density at a distance R from the origin be
c(R), then

Γ(R) = 〈c(R)c(O)〉 − 〈c(R)〉〈c(O)〉. (3.4.12)

Γ(R) stands for the correlation of the local density fluctuation between two points separated by a
distance R. Generally, Γ(R) decays with increasing R. In the following we shall estimate the specific
forms of Γ(R) for models of random and self-avoiding walks.

Obviously, the integral of Γ(R) over the whole space is equal to the total number N of monomers
in a chain, i.e.,

∫

Γ(R)d3R = N. (3.4.13)

The power law of Γ(R) can be deduced by the random walk or self-avoiding walk model. Assuming
the number of monomers is n in a sphere with radius R and by using the random walk relation
R2 = na2, we get the corresponding

Γr(R) ∼ n

R3
=

1

a2R
. (3.4.14)

If the self-avoiding walk relation R ∼ anν is used, and ν = 3/5 in 3D space, we obtain

Γs(R) ∼ n

R3
=

1

R4/3a5/3
. (3.4.15)

Γ(R) can be determined by the scattering of X-rays, neutrons or light, and its Fourier transform is

ϕ(k) =

∫

Γ(R) exp(ikR)d3R. (3.4.16)

The Fourier transforms of the correlation functions of random walk and self-avoiding walk are
respectively

ϕr(k) ∼ 1/a2k2, (kR0 ≫ 1);

ϕs(k) ∼ 1/(ka)5/3, (kR0 ≫ 1).
(3.4.17)

If a deuterium doped long-chain molecule is introduced in the sample, the correlation functions
of the polymer-chain can be measured by neutron scattering. For dilute solutions of the polymer,
the experimental result agrees with the self-avoiding walk; whereas for a dense solution and even
the melt, the result favors the random walk. The self-avoiding walk leads to a swollen chain because
of the effect of the self-avoiding repulsive force, which makes the energy lower when the system is
extended. In a dense solution of long-chain molecules, the macromolecule is excluded not only by
the other monomers like itself, but also the monomers of other macromolecules. Thus the repulsive
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forces are compensated and the extension of coils does not lead to the lowering of energy, so the
experimental result here favors the random walk model.

In general, these two extreme cases, i.e., the dilute solution and the dense one (including the
melt) of macromolecules, can be explained by the two models mentioned above. For the intermediate
case such as semi-dilute solutions, the situation is much more complex. P. G. de Gennes considered
the long-chain molecular coil as a disordered system with long-range correlation, somewhat similar
to fluctuations in the critical region near a phase transition point. He treated this problem by the
renormalization group method of critical phenomena.

A macromolecular material with flexible long-chain molecules mentioned above is called thermo-
plastic, and such materials are widely used in everyday life. They are heated to the glass transition
temperature Tg or the melting point Tm (for semicrystalline material) for processing.

3.4.4 Ordered and Partially Ordered Structure

Many macromolecules have structures with preferred orientation. The orientation of a polymer
can be preferentially arranged so that the molecular chains and other structural units lie along some
direction by some external action. The process of orientation is the ordering of molecules, and
generally the model for preferred orientation of the macromolecules is proportional to its degree of
crystallization. Molecular chain folding is one of the crystallization methods, and Fig. 3.4.8 shows
the chain-folding model of a macromolecular monocrystalline thin film with a thickness of several
microns. In large blocks of polymers, crystallized and amorphous zones are mixed together, but the
ratio of the crystallized zone cannot exceed 40% (see Fig. 3.4.9).

Figure 3.4.8 The chain-folding model for
polymer crystallization of macromolecular
monocrystalline thin film.

Highly Crystalline Zone Amorphous Zone

Figure 3.4.9 Schematic diagram of the
structure for partially crystallized poly-
ethylene.

Applying an external force can also make macromolecules with pronounced preferred orientation,
such as directional crystallization, directional processing, precipitation from a macromolecular solu-
tion, etc. With the application of an external force, random macromolecules coils are preferentially
oriented and arranged directionally as bundles of fibres along the long axis, crystallizing partly as in
Fig. 3.4.10. After this kind of treatment, the macromolecular material acquires excellent mechanical
and physical properties.

(a) (b) (c) (d) (e)

Figure 3.4.10 The schematic diagram of directional extrusion.

Another approach is to form the polymeric liquid crystals by precipitation from solution. It is
an effective method of preparation of high-strength polymeric material. In the liquid crystalline
state, the macromolecular chain basically arranges along a given direction. The C–C bonds in
macromolecules are strong ones, and if the C–C bonds are arranged directionally, the material
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has high strength in this specific direction. For example, the solution of polyaramide molecules
in concentrated sulfuric acid has orientational order, and the fibres precipitated from concentrated
sulfuric acid (so-called Kevlar fibres) have extremely high strength, even exceeding that of the highest
strength metal, i.e., piano wire; its strength density ratio is eight times higher than steel wire, and
it is the material used in bullet-proof vests.

In §3.4.1, we mentioned block copolymers, which are composed of several blocks with different
properties. Now let us consider the simplest situation, i.e., the di-block copolymer made up of A
and B blocks. The chain blocks made up of homogeneous molecules form an ordered structure
of mesoscopic dimension, as in Fig. 3.4.11. These structures are similar to the aforementioned
lyotropics, but here the interface between A and B acts as the amphiphilic interface. The basic
parameters controlling the structures are the relative lengths of A and B. With more kinds of
blocks, the ordered structure becomes rich and colorful. The block copolymer provides the materials
scientist with a new route of preparation for ordered structures with sizes ranging from microns to
nanometers.

A Block B Block

Increase the Length of A Block

Spheroidal Phase

Column Phase

 Ordered Bicontinuous 

Double-Diamond Phase

Lamellar Phase

Increase the Length of B Block

Figure 3.4.11 Different kinds of ordered structures of di-block copolymer. From P. Ball, Made to Measure,
Princeton University Press (1997).

In §3.4.1, we also mentioned the branch-connected copolymer and the star copolymer; such
dendrimers have been further developed, as shown in Fig. 3.4.12. Beginning from the center, the
multiple-branched structure is formed. The composition and application of dendrimers is still in
development.

(a) (b) (c)

Figure 3.4.12 different kinds of the dendrimers. (a) a dendrimer with distinct concentric shells (b) a
segmented dendrimer; (c) amphiphilic dendrimer (with the hydrophilicity and hydrophobicity in each two
hemispheres). From P. Ball, Made to Measure, Princeton University Press (1997).

Although macromolecular materials have been widely used, studies of block copolymers and
dendrimers indicate that tailoring of the mesoscopic structure of macromolecular materials may
provide a new route to design and fabrication of new types of high performance macromolecular
materials.
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§3.5 Biopolymers

3.5.1 The Structure of Nucleic Acid

There are two important kinds of biopolymers: nucleic acids and proteins. Among nucleic acids,
deoxyribonucleic acid (DNA) is the carrier which controls genetic processes. DNA in the nuclei of
cells is the physical foundation of genetic matter, and the genetic information is contained in the
structure of the DNA molecule.

In 1953, J. D. Watson and F. H. C. Crick established the double helix structure of the DNA
molecules (see Fig. 3.5.1), and indicated that the genetic information, as well as the rule for its
replication is encoded in its structure. The basic structural unit of DNA consists of a backbone of
phosphate and deoxyribose molecular groups. Four different bases, i.e., adenine (A), guanine (G),
cytosine (C) and thymine (T), are attached to it. The double helix structure of DNA is maintained
by the matching of base pairs. The matching rule of the base groups is fixed: A matches T and G
matches C (see Fig. 3.5.2), so the number of A and T, or G and C are the same. The sequence of
the bases composes the genetic information and its arrangements constitute the genetic code.

A...T

A.T

C.G

A...T

T...A

C.G

C.G

C...G

A...T

T.A

C.G

T...A

C...G

T.A

Figure 3.5.1 The schematic dia-
gram of the double helix structure
of DNA.
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Figure 3.5.2 Two kinds of base pairing (dotted
lines are the hydrogen bonds).

The heredity of biological substances is maintained by duplication of DNA at the molecular
scale: The double chains of DNA are loosened, then each chain connects with a new one by the
principle of base pairing, and the final result is that two identical double-helices derived from the
initial one. Since the final molecular arrangement is the same as the initial one, this process realizes
the duplication of biological information from parent to child (see Fig. 3.5.3), which indicates that
this information sequence plays an important role in biology.

3.5.2 The Structure of Protein

Other important molecules in the living organism are proteins. Most of the biotic functions are
realized by protein, and it has much a more complex structure than DNA molecule. The simplest
protein molecule is myoglobin, in which strands of amino-acid chains fold to a globular shape (see
Fig. 3.5.4). It is the tertiary structure of the protein, which is made up of α-helix chains or laminar
β-sheets (secondary structure). By the way, these secondary structures are formed by lots of
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Figure 3.5.3 The schematic diagram of DNA
duplicating mode with the precondition of com-
plementarity of the base groups.

H24

CO2

NH3

+

 

F9
F6

HC5

H16

EF3 EF1

NA1

NA2 H5

A1 H1

FG2

C3
C35F8

M

P

p CD1

CD7

D7

E5

D1
E1

E20

GH4
c

G15

G19
AB1

A16 B1

B5

G1

G5F1

V
M

B16
B14

E7
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molecules (primary structure). Different amino-acid chains lead to different folding states by which
different protein functions are achieved.

The functions of proteins are controlled by 20 kinds of amino acids, while only 4 kinds of nucleic
acids compose DNA. Since DNA should control the arrangement of amino acids, we must find the
specific method of controlling the arrangement of 20 kinds of amino acids by 4 kinds of nucleic acids,
i.e., encoding. If we use one nucleic acid as the code, we can only get 4 kinds of amino acids with
each of the 4 kinds of nucleic acid; if we use two nucleic acids as the code, we will get 16 coden,
which is still less than 20; and if we use so-called triplet code, and we shall get 64 coden, which
is larger than 20. Shortly after the double helix structure of DNA was discovered, physicist R. I.
Gamov first proposed this triplet code. In the 64 kinds of coden, 3 of them are termination coden
and the other 61 kinds stand for 20 kinds of amino acids. So most of the amino acids have more
than one coden, and this shows the degeneracy of the coden. Almost all life-forms use the same
coden, and this indicates the universality of the coden. Table 3.5.1 shows the universal coden.

The first step of the expression of genetic information is transferring them onto messenger
RNA (mRNA), but in mRNA base T is replaced by U (uracil). This process is called transcrip-
tion. Information is further transcripted into transfer RNA (tRNA) and ribosomal RNA(rRNA).
Then the information is translated into codens of amino acids of the proteins in the cytoplasm.
The two catalytic functions of DNA and the flow direction of the genetic information is shown in
Fig. 3.5.5.

RNADNA

Self-Catalysis                               Allo-Catalysis

Transcription

Duplication Caryon                                 Cytoplasm

Translation
Protein

Figure 3.5.5 Two catalytic functions of DNA and the flow direction of genetic information.
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Table 3.5.1 The table of universal coden.

The molecules carrying information play a key role in the development of life. By the transcription
of the genetic codes, forming the functional protein molecules, so information can be translated into
function, this is the foundation of modern biology.

3.5.3 Information and the Structure

The structure of matter contains information at every level, such as the atomic level, the molec-
ular level and even levels at larger scales. We have already discussed the order-disorder transition.
In the ordered phase, the exact information about the positions of a small group of atoms suffices
for the description of the whole structure. This is impossible for a disordered phase, because to
specify at every atomic site needs too many figures (∼ 1024), so the statistical method should be
used. In early 1943, the famous physicist Schrödinger in his book What is life? indicated that the
secret of life lies in the existence of genetic codes in an aperiodic crystal, and, if we wish to treat
the information of aperiodic molecules in earnest, a quantitative theory for information is required.

How can we define information scientifically? In 1948, C. Shannon proposed his statistical theory
of information: First consider there are P possible choices with the same probability, for instance,
for Morse code, P = 2; for Latin letters, P = 27 (26 letters and one blank). If one in P is chosen,
we get information. With larger P , there would be much more information from the choice. So the
information content I is defined as

I = K ln P, (3.5.1)

where K is a proportionality constant.

Because mutually independent choice probabilities satisfy the multiplication theorem, the corre-
sponding information content has additivity. Consider an information content as a series of mutually
independent choices, and every choice is between 0 and 1. The total value of P = 2n, so

I = K lnP = nK ln 2, (3.5.2)

and let I equal n, then

K =
1

ln 2
= log2 e. (3.5.3)
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In this way we define the unit of information content, the bit, universally used in computer science.
And if K is defined as the Boltzmann constant kB, the information content can be measured in units
of entropy. In Brillouin’s theory, information is equated to the negative entropy.

There are A, T, G and C — 4 kinds of bases in the list of DNA structure. If we arrange by
choosing two bases, there are 42 = 16 kinds of different arrangements; if we choose 3, there are
43 = 64 kinds. If there are 100 bases in a nucleic acid chain, there are 4100 kinds of arrangements,
which is a huge number, larger than the total number of species in history (about 4 × 109), and
larger than the total number of atoms in the solar system. The sequence of base-pairs in a human
body is about 2.9 × 109. To identify all of them is an enormous task but an international program
for the human genome project was undertaken between 1991 to 2001 and successfully completed.
Thus, an enormous data bank of biological information is available to scientists for the construction
of theoretical biology. It should be noted that there is abundant information stored in nucleic
acids and proteins, these play a key role for understanding biology. Research on polymer structure
with information is underway, and further clarification of the relationship between information and
function will be an important topic for current research.
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Chapter 4

Inhomogeneous Structure

In reality, condensed matter is both inhomogeneous and hierarchical, forming a world full of
multiplicity and complexity. This chapter begins with a description of hierarchical systems with
multi-phases, then introduces the basic concepts of percolation and fractal, which play important
roles in inhomogeneous systems.

§4.1 Multi-Phased Structure

4.1.1 Structural Hierarchies

In physics, there are structures at various length scales. Roughly, they are divided into micro-
scopic, the length scale at atomic dimension or less (∼ 0.1 nm), and macroscopic, the length scale
of every day life (0.1 mm ∼ 1 nm) and between these extremes there is the mesoscopic scale (10 µm
∼ 1 nm). Physical properties of condensed matter depend on the structural characteristics at these
different length scales. Figure 4.1.1 gives a schematic diagram for length scales of various structures
in condensed matter.

Figure 4.1.1 Length scales for various structures of condensed matters.

The structures discussed in previous chapters mostly appear to be homogeneous at the macro-
scopic scale, but, with the help of optical microscopy, electron microscopy as well as STEM, the
inhomogeneity of materials, such as crystals, ceramics, glasses and polymers at the mesoscopic or
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microscopic scale are shown. We can divide inhomogeneities of materials roughly into the following
three types:

1. Macroscopic inhomogeneities — these include mixtures of different phases as well some arti-
ficial composite materials.

2. Mesoscopic inhomogeneities — these include inhomogeneities due to some natural processes
such as crystal growth, spinodal decomposition, co-precipitation as well some artificial fab-
rication process, such as sputtering, vapor deposition, etc. These static inhomogeneities are
also known as microstructures, super-microstructures or nanostructures. In inorganic mate-
rials with multi-phases, the existence of these microstructures is the rule and may influence
profoundly the physical properties of these materials. A big challenge for contemporary ma-
terials science lies in the design of various inhomogeneous materials at suitable length scales
and to produce them by fabrication or self-assembly.

3. Microscopic inhomogeneities — the inhomogeneous distribution of different atomic species at
lattice sites may produce microscopic inhomogeneities such as clustering or short range order
in alloys.

Next we shall mainly concern ourselves with inhomogeneities at the mesoscopic scale. Cer-
tainly, there are some natural structures at this length scale, and with development of condensed
matter physics, many mesoscopic structures are produced artificially. If the scale (or period) of
the multi-phased structure is matched to some characteristic length in condensed matter physics,
spectacular physical effects may appear. This becames the driving force which developed artifi-
cial meso-structures in the latter part of the 20th century. We shall give a brief sketch about the
structures at micron and nanometer scales.

Figure 4.1.2 The SEM photos of the synthetic opal crystal with different magnification. Nearly isometrical
colloidal SiO2 balls compose the 3D close-packed structure (the fcc structure) autonomically. The average
diameter of the balls is 300 nm with the error 5%. Provided by Prof. B. Y. Cheng. Related paper: B. Y.
Cheng et al., Opt. Commun. 170, 41 (1999).

1. Structures at the micron scale
Natural opals are precious stones with brilliant colors. X-ray analysis shows that they are com-

posed of SiO2 balls with amorphous structure, but this is insufficient to explain why this precious
stone has such spectacular color effects. In the 1970s, scientists using SEM showed that opal had
a periodic structure of identical SiO2 balls (see Fig. 4.1.2). The period of this structure is about a
wavelength of visible light, so it is amorphous at a length scale of several tenths of a micron, but
periodic at the 0.1 µm level. The brilliant colors are due to diffraction of visible light by this peri-
odic structure. After the deciphering of the secret of natural opals, artificial opals were successfully
fabricated by self-assembly of nearly identical SiO2 colloid balls.

In the late 1990s, photonic crystals in the optical wavelength range were fabricated with a periodic
structure in this length scale for their diffraction effect. Materials with high indices of refraction,
such as C, Si, TiO2 are substituted for SiO2 in opals, or using opals as templates; the interstitial
space is filled with material with a high index of refraction, then the SiO2 ball etched out, forming
inverted opal structures, shown in Fig. 4.1.3. The woodpile structure shown in Fig. 4.1.4 is also used
for photonic crystals.
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δ

Figure 4.1.3 The inverted
opal structure.

Figure 4.1.4 The woodpile
structure.

Certainly, spectacular physical effects may be also achieved by fabricating micron structure 1D
periodic multi-layers or 2D periodic multi-columns.

2. Nanostructures

Another class of artificial mesostructure is the nanostructure (1 nm to 100 nm). Nanometers
are just at the scale of the de Broglie wavelength at the Fermi level for most solid state materials:
For instance, it is about 50 nm for semiconductors; about 1 nm for metals. So it is expected
that nanostructures will play outstanding roles in tailor-made electronic properties (see Chaps. 5
and 14). Especially as contemporary techniques for microelectronics are nearly approaching their
physical limits, alternatives will be certainly derived from nanotechnology.

The self-assembling nanocrystal superlattices of metals, semiconductors and oxides (see
Fig. 4.1.5) have long-range translational and orientational order.a The building blocks for the self-
assembling unit are nanoscopic grains, spherical oxide grains or polyhedral crystal grains, and these
nano-grains are coupled by a surfactant such as thiolate (this is different from the coupling of atoms
by chemical bonds) with an adjustable structural period. This provides another route to the forma-
tion of 3D superlattices.

(a) (b)

Figure 4.1.5 Self-assembling of nanocrystal superlattices with (a) spherical grains and (b) faceted grains.

4.1.2 Microstructural Characteristics of Heterogeneous Material

The multi-phased structures discussed above are mostly regular, and their geometrical relation-
ship can be easily characterized; however, the irregular ones need further discussion.

aZ. L. Wang, Adv. Mater. 10, 13 (1998).
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Heterogeneous materials such as polycrystalline ceramics and multi-phased composites, etc. are
composed of mixtures of single-phase microcrystalline grains of different sizes and characters. Know-
ing their microstructural characters is important for the quantitative treatment of correlations be-
tween the microstructure and the macroscopic properties. We shall begin with a discussion of the
correlation between the microstructure and properties. For multi-phased material, we are usually
interested in the following two points: (1) to identify various phases in the material; (2) to identify
the microstructure of each phase, such as the size, shape, orientation and distribution of the grains.

Different kinds of multi-phased heterogeneous material include the crystalline state (isotropic or
anisotropic), the amorphous or glassy state, and the pore space (regarded as the second phase). The
ratio of each phase can be expressed as a mole, mass or volume ratio.

The mean size of the crystal grains is an important parameter to characterize the microstructure
of a multi-phased heterogeneous material. The shape and orientation of the crystalline grains are
correlated with the preparation method. We usually use the radius R to characterize spherical, near-
spherical and square-shaped grains. The radius R is usually expressed as the logarithmic normal
distribution

n(R) =
1

R
√

2πδ
exp

{

−
[

ln(R/R0)√
2δ

]2
}

, (4.1.1)

where R0 is the geometric mean radius and δ is the deviation. For different materials, the effec-
tive radius R0 ranges from several nanometers to tens of millimeter. For nonspherical (ellipsoidal)
crystalline grains, the radii of main axes (a, b, c) can be used as parameters; the shape can be
characterized by the eccentricity ep(0) and three geometrical parameters — depolarization factors
Lx, Ly and Lz which satisfy the condition Lx + Ly + Lz = 1.

For the prolate spheroid, a > b = c, and the depolarization factors are

Lx =
1 − ep

2

2ep
3

(

ln
1 + ep

1 − ep
− 2ep

)

, Ly = Lz =
1

2
(1 − Lx), (4.1.2)

and the eccentricity

ep =
√

1 − (b/a)2. (4.1.3)

If the crystal grain approaches spherical shape, i.e., ep ≪ 1, approximately

Lx =
1

3
− 2

15
ep
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3
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15
ep

2. (4.1.4)

For the oblate spheroid crystalline grain, a = b > c, then

Lx = Ly, Lz =
1 − e0

2

e0
3

(e0 − arctan e0), (4.1.5)

for e0 =
√

(a/b)2 − 1, and if e0
2 ≪ 1, approximately

Lz =
1

3
+

2

15
e2
0, Lx = Ly =

1

3
− 1

15
e2
0. (4.1.6)

The microstructural parameters mentioned above, such as the size of the crystalline grains, the
distribution of the size, the shape factor and the volume ratio, can be obtained quantitatively from
the experimental 2D samplings.b

Another microstructural characteristic of heterogeneous material is the distribution of single-
phase grains. The microstructure of multi-phased material would vary with the change of the volume
ratio and three types of geometrical patterns may be distinguished — (1) isolated grains dispersed

bThe depolarization factors indicate the influence of the geometrical shape on the polarization of the dielectric ellipsoid
in an electric field and the magnetization of the magnetic ellipsoid in a magnetic field. The simplest case of a conducting
ellipsoid in an electric field has been treated in L. D. Landau, E. I. Lifshitz, Electrodynamics of Continuous Media,
2nd ed. Pergamon Press (1984), §4.
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in the matrix; (2) an aggregated grain structure; and (3) different grains connected together forming
a large cluster. Consider the simpler two-phase systems, which can represent two-phase alloys,
composite ceramics and porous materials (in which the pores may be considered as the second
phase) in practical problems. With increasing percentage of the second phase, Fig. 4.1.6(a)–(d)
shows the corresponding microstructures.

(a) (b)

(c) (d)

Figure 4.1.6 The schematic diagram of the microstructure of the two-phase alloy (the volume percentage
of the second phase increases from (a) to (d) gradually).

(1) Dispersed grain structure. If the volume ratio of the minor phase is very small, the grains
are dispersed in the matrix randomly [see in Fig. 4.1.6(a)]; if the volume ratio of the minor phase
is somewhat larger, the grains of this phase become dispersed in the matrix quite uniformly [see
Fig. 4.1.6(b)], and this situation corresponds to some granular metal films and the glass-ceramic
controlled by nucleation and growth.

(2) Aggregated grain structure. With a bigger volume ratio, the minor-phase grains aggregate
into grain clusters of a certain size [see Fig. 4.1.6(c)].

(3) Grains are connected into a network of large clusters. If the volume ratio exceeds some critical
value, i.e., the percolation-like threshold value, most of the minor-phase grains are connected into a
continuous network [see Fig. 4.1.6(d)].

The microstructures shown in Fig. 4.1.6 are basically isotropic, the shapes of the minor-phase
grains in the material are spherical or sphere-like with random orientation and uniformly distributed
in the matrix phase. For more complex cases, we can consider the obviously anisotropic shape of
the minor phase grains, such as the rod-like, the plate-like or ellipsoidal. These are realized in some
composite materials and the eutectic or eutectoid alloys. Also ellipsoidal grains may be oriented in
their microstructures (as in Fig. 4.1.7).

(a) (b) (c)

Figure 4.1.7 The schematic diagram of the distribution of oriented ellipsoidal grains is in a two-phase
materials.
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In the following, we shall discuss connectivity among the grains. We might as well use cubic
grains instead of spherical ones as the building blocks of multi-phased materials, to show the different
connectivity patterns. For the two-phase alloy, there are 10 kinds of connectivity patterns: 0-0, 0-1,
0-2, 0-3, 1-1, 1-2, 1-3, 2-2, 2-3 and 3-3, as shown in Fig. 4.1.8. Now we will give a brief explanation
of these patterns:

Figure 4.1.8 10 kinds of connectivity patterns for two-phase alloys, the last two are 3-3 mode seen from
two different direction. From R. E. Newnham et al., Mat. Res. Bull. 13, 525 (1978).

1. The 0-0, 0-1, 0-2 and 0-3 patterns correspond to dispersed grain structures. The 0-0 pattern
corresponds to the structure shown in Fig. 4.1.6(b); the 0-1, 0-2 and 0-3 ones are related to
Fig. 4.1.6(a) and Fig. 4.1.7(a).

2. The 1-2, 2-3 and 1-3 patterns correspond to aggregated grain structures. In 1-3, the minor
phase grains are aggregated into the single-chain cluster; in 1-2 and 2-3 the minor phase grains
aggregate into a close-packed cluster.

3. The 1-1 and 2-2 patterns are special situations of the aggregated grain structures, in which
the minor grains aggregate into the laminated structures along certain directions.

4. The 3-3 pattern corresponds to the structure with a large interconnected cluster as in
Fig. 4.1.6(d) and Fig. 4.1.7(c), in which the two-phase material forms the interpenetrating
3D network (i.e., the percolation cluster).
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From Figs. 4.1.6–4.1.8, we can find that the phase distribution of heterogeneous material is ex-
tremely complex. However, the phase distribution plays an important role in the correlation of
microstructure and physical properties. The problems of completely dispersed laminated structures
[Figs. 4.1.6(a) and (b), Fig. 4.1.7(a) and the 0-0, 0-1 and 0-3 patterns in Fig. 4.1.8] and the flaky
aggregated structures (1-1 and 2-2 patterns in Fig. 4.1.8) have been solved. But, for most aggre-
gated grain structures [Figs. 4.1.6(c) and (d), Figs. 4.1.7(b) and (c), 1-2, 1-3, 2-3 and 3-3 patterns
in Fig. 4.1.8], such a complete description is almost impossible, for it requires the s-point grain
correlation functions of all the grains (of all sizes). This is only available for high-ordered cases
whereas the required experimental information is generally limited to the pair-correlation function
of phase distribution, which can be expressed as

g2(r) =
1

N

∑

r1,r2

P2(r1, r2)δ(r1 − r2 − r). (4.1.7)

In this equation g2(r) is the probability of finding a grain at the position r and Ps(r1, r2) is the
probability of finding the s grains at the positions r1, r2, . . . , rs in the same grain cluster. g2(r)
can be measured directly by light scattering, small angle neutron scattering or X-ray scattering.
Generally, the pair correlation function g2(r) is in common use, while the high-order correlation
function gs (s > 2) is rarely used, apart from model building.

Figure 4.1.9 Micrograph of a multi-phased alloy.

4.1.3 Effective Medium Approximation: The Microstructure and

Physical Properties of Two-Phase Alloys

Figure 4.1.9 shows a micrograph of a multi-phased alloy. We marvel at such complex structure
with a somewhat frustrated feeling. In the past, physicists were accustomed to dealing with simple
systems, but advanced research on condensed matter physics is leading to more complex systems.
However, building models may somewhat simplify these problems.

Returning to the cases in which the minor phase grains are mainly isotropic (see Fig. 4.1.6), if
the parameters of the two phases are known, what are the physical properties of the mixture of two
phases? J. C. Maxwell gave a part of the answer in the 19th century; and now let us see how he
solved this problem.

Assume the percentages of the two phase are c and (1 − c), and their dielectric constants are ǫ1
and ǫ2, then idealize a part of minor phase into a ball embedded in the uniform medium by a simple
assumption that the effective dielectric constant is ǫm; this is the effective medium theory. If an
external field is added to the effective medium in order to generate an electric-field Em, according
to electrostatics, we find that the dipole moment is proportional to Em(ǫ1 − ǫm)/(ǫ1 + 2ǫm). Then
we do a similar treatment for every volume in the original structure, and the total dipole moment
per unit of volume (i.e., the polarization P ) can be obtained:

P ∝ cEm
ǫ1 − ǫm
ǫ1 + 2ǫm

+ (1 − c)Em
ǫ2 − ǫm
ǫ2 + 2ǫm

. (4.1.8)
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This equals the result of embedding a ball of a mixture into the effective medium with electric
field Em.

The effective medium and the embedded ball with a mixture are indistinguishable in electrostat-
ics, i.e., P = 0. According to this condition, we can get the dielectric constant of the effective medium
ǫm. Because the steady-state current density and electrostatic field have the same form, similarly
we can get the conductivity of the effective medium for the two-phase medium with conductivities
σ1 and σ2,

σm =
1

4

{

(3c − 1)σ1 − (3c − 2)σ2 +
√

[(3c − 1)σ1 − (3c − 2)σ2]2 + 8σ1σ2

}

. (4.1.9)

For a mixture of metallic and insulating grains, let σ2 = 0, then

σm =

(

3

2
c − 1

2

)

σ1, c >
1

3
. (4.1.10)

This result indicates that σm depends on c linearly. If c � 1/3, σm = 0. It is a reasonable result
if the proportion of the conducting phases (the minor phases) is low because they cannot form an
interconnecting path to conduct electricity. This also indicates the existence of the percolation-
like threshold to be discussed in the next section. Obviously here we only give a rough sketch
of the effective medium approximation (EMA). For more detail on later work where others made
improvements please see Bib. [1]. Although this approximation gives useful results in certain areas,
it also raises many new problems. This discussion would fail if the nonuniform area is very minute
and the difference in electric conductivities between the two phases is very sharp. The validity of
many conclusions near the conducting threshold value is doubtful. In a word, the effective medium
approximation is the result of the averaging of properties of the heterogeneous material, and in the
process of averaging, some characteristics of disordered systems may be averaged out; this is a fault
of the method itself.

§4.2 Geometric Phase Transition: Percolation

4.2.1 Bond Percolation and Site Percolation

The percolation problem in condensed matter can be deduced from consideration of the conduc-
tivity of mixtures of metal and insulator grains. The electrical conductivity of the mixture changes
with the proportion of metal, and the mixture conducts electricity only if the volume ratio of metal is
larger than a certain threshold value, at which point the conductivity has a rapid increase from zero,
as will be shown. This indicates that percolation in the metal-insulator transition in a disordered
mixture is very complex. Aggregation, or the increase of concentration of metallic grains, would lead
to a sudden increase in conductivity and a sudden appearance of long range connectivity of metallic
grains. This process is a geometrical phase transition. Percolation in a lattice can be divided into
two types: bond percolation and site percolation.

Consider the bond percolation problem in Fig. 4.2.1(a). In the network, the solid lines stand
for the channels and the dashed lines stand for the blockages. Let the probability of blocking one

(a) (b)

Figure 4.2.1 The schematic diagram of the percolation. (a) bond percolation; (b) site percolation.



· 107 ·§4.2 Geometric Phase Transition: Percolation

channel be p, and if we imagine these form a conduit system for liquids, we would like to know
whether the liquid can pass through from one side to another. Obviously, the basic condition is the
existence of infinite penetrable channels, and the critical concentration of this channel is pc, i.e., the
percolation threshold value. This is bond percolation.

This randomness can be transformed from bonds to sites. Figure 4.2.1(b) shows a lattice whose
sites are occupied by white or black pieces with occupation probabilities p and q respectively, which
satisfy the condition p+q = 1. Nearest neighbors with the same color are considered to be connected
and the others disconnected; the critical concentration for the first appearance of an infinite cluster
composed of black pieces is also defined as the percolation threshold value pc.

(a) (b)

Figure 4.2.2 The transformation from bond percolation to site one. (a) the square lattice and its covering
lattice; (b) honeycomb lattice and its covering lattice (the Kagomé lattice).

Bond percolation can be transformed to site percolation in another lattice (the so-called covering
lattice). This is constructed by placing a site on each bond of the original lattice, and drawing
connecting lines between the sites which are closest neighbors. A 2D square bond-percolation lattice
is transformed into a covering lattice which is still a square one, but with half unit cell area and
inclined at 45◦ to the original one. A similar example is provided by the honeycomb lattice for which
the covering lattice, is the Kagomé lattice [Fig. 4.2.2(b)]. We can always convert bond percolation
into site percolation, but the reverse is not always true, i.e., some site percolation lattices cannot be
transformed into bond ones. So site percolation is a more fundamental problem.

4.2.2 Overview of Percolation Theory

The basic purpose of percolation theory is to calculate p∞, the critical probability for the appear-
ance of an infinite cluster, and P , the probability that each site (or channel) belongs to the infinite
cluster. These are expressed as a function of p, i.e., they can be written as p∞(p) and P (p). It is
difficult to calculate P (p) accurately, and so far there are only some approximate results generally,
while the percolation threshold values p∞ have exact results.

First consider site percolation in a square lattice [see Fig. 4.2.2(a)]. Let p stand for the probability
of a black piece occupying a lattice site; the corresponding probability for white one is q = 1 − p,
and the total number of lattice sites N → ∞. Now we shall discuss the probabilities of the existence
of a singlet, a doublet and a triplet of black pieces denoted by n1(p), n2(p) and n3(p) respectively.
If a single black piece occupies a site, there must be 4 white ones surrounding it, so

n1(p) = pq4; (4.2.1)

so there must be 6 white pieces surrounding a doublet, however a doublet can have 2 orientations,
one vertical and the other horizontal, so a weight factor 2 must be included, i.e.,

n2(p) = 2p2q6; (4.2.2)

for a triplet, it can be either collinear or rectangular with the corresponding weight factors 2 and
4, so

n3(p) = 2p3q8 + 4p3q7. (4.2.3)
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In calculating ns(p), we must enumerate all different configurations of the s-connected sites,
which is called the s-lattice animal. The key parameter is the number t of perimeter sites needed to
isolate it, and the number of independent ways g(s, t) to put it on the lattice. Then

ns(p) =
∑

t

g(s, t)psqt = psDs(q), (4.2.4)

where Ds(q) =
∑

t g(s, t)q
t and is called the perimeter polynomial.

For small p, infinite clusters do not exist, and according to the definition of s-cluster probability
ns,

∑

sns(p) = p. (4.2.5)

For large p, there may be infinite clusters, and (4.2.5) can be rewritten as

∑

s

sns + p∞ = p, (4.2.6)

where Np∞ is the number of lattice sites in the infinite clusters. From the above equation we can get

p∞ = 1 − q − q4 + q5 − 4q6 − 4q7 · · · . (4.2.7)

The percolation probability P (p) for a black piece belonging to an infinite cluster can be defined as

P (p) =
p∞
p

= 1 − 1

p

∑

s

sns(p), (4.2.8)

here we shall get
P (p) = 1 − q4 − 4q6 − 8q7 · · · . (4.2.9)

If we begin from the situation of low density, then with increasing p, the size of the cluster would
grow, and diverge at the point pc.

According to the theoretical treatment by Domb and Sykes,c the mean cluster size in this region
is defined as

S(p) =
1

p

∑

s

s2ns(p). (4.2.10)

From the first few polynomials they derived the following series expansion

S(p) = 1 + 4p+ 12p2 + 24p3 + 52p4 + 108p5

+ 224p6 + 412p7 + 844p8 + 1528p9 + · · · .
(4.2.11)

1

0.5

0
0 pc (=1/2) 1.0

p
∞

Figure 4.2.3 The probability for the appearance of infinite clusters versus percentage of occupation (inset
shows the computer simulation figure of the infinite cluster (the result of triangular lattice).

cC. Domb and M. F. Sykes, Phys. Rev. 22, 77 (1961).
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Domb and Sykes defined the radius of convergence as the percolation threshold value pc. It
indicates that when s → ∞, ns(p) has a dramatic discontinuity at pc: When p < pc, p∞ = 0, and
p∞ has a sudden increase after pc, as shown in Fig. 4.2.3.

The percolation threshold values of different lattices are shown in Fig. 4.2.1. It should be noted
that 2D and 3D percolation threshold values have obvious differences, but if the threshold values
are multiplied by the coordination number z or the packing ratio fp, we shall get almost the same
values for different 2D (or 3D) lattices. In this way the results of the lattice model may be extended
to the continuum one.

Table 4.2.1 The threshold values of different lattices.

Dimension Lattice Bond Site Coordination Packing zpb
c fpp

s
c

threshold threshold number z density fp

value pb
c value ps

c

2 triangle 0.347 0.500 6 0.9069 2.08 0.45
2 square 0.500 0.593 4 0.7854 2.00 0.47
2 honeycomb 0.653 0.698 3 0.6046 1.96 0.42
3 fcc 0.119 0.198 12 0.7405 1.43 0.147
3 bcc 0.179 0.245 8 0.6802 1.43 0.167
3 sc 0.247 0.311 6 0.5236 1.48 0.164
3 diamond 0.388 0.428 4 0.3401 1.55 0.146

4.2.3 Examples of Percolation

When some small molecules are dissolved in a solvent, multiple reactions may take place with
the appearance of giant molecules. If s monomers are combined together, a s-polymer is formed.
When s → ∞, the infinite macromolecule is called the gel; if s is finite, the s-polymer is called the
sol. When sodium silicate (Na2SiO3) is dissolved in water, we get so-called water-glass, which is an
example of the sol-gel transition. In 1941 (10 years before percolation was discovered), the chemist
P. T. Flory proposed a theory of gelation. He analyzed it with a branching number z formed by
bonds of the s-polymer and assumed that the branches were all tree-like without any closed path,
which is called the Cayley tree. We can begin from a branch shown in Fig. 4.2.4, and reach the
neighboring one, at which there are further z−1 branches starting from it. Assuming the probability
of each channel is p, the tree-like branches could extend to infinity only if the condition p(z−1) � 1 is
satisfied. The critical value for gelation pc = 1/(z−1), which is the bond percolation threshold value
for the Bethe lattice (the infinite Cayley tree); this is actually the first theory of bond percolation
on a Bethe lattice. This example shows that using simple and intuitive mathematical methods can
get results that can be confirmed by more general theoretical methods.

Figure 4.2.5 shows an experimental set-up for a demonstration on percolation in the disordered
structure. In the beaker there is a mixture of glass and metal balls of identical sizes, with aluminum
foil used as electrodes at the bottom and the top, which are connected to a circuit. The percola-
tion threshold value can be obtained by observing the first appearance of current by changing the
percentage of the metal balls. Since the topologically random close-packed structure does not form
a lattice, the threshold value for this disordered structure φc depends on the percentage (it equals
to the product of pc and the fp packing density). Thus, percolation of the lattice is extended into
percolation of the continuum (see Table 4.2.1)

To illustrate this, Fig. 4.2.6 is a map for a water reservoir with contours showing gravitational
equipotentials, the white area is the region above the water surface, while the dark ones are the region
below it. Figures 4.2.6(a)–(c) show different stages as the water level is raised: Fig. 4.2.6(a) is before
the reservoir is constructed, the ground is connected and there are many mountains with ponds
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Figure 4.2.4 The schematic
diagram of gelatinization (from
Flory’s original paper).

Glass Al

Figure 4.2.5 The percolation of the random
close-packed two-phase mixture of Al balls and
glass ones. From R. Zallen, The Physics of

Amorphous Solids, John-Wiley & Sons, New
York (1983).

(a) (b) (c)

Figure 4.2.6 The percolation of continuum. From R. Zallen, The Physics of Amorphous Solids, John-Wiley
& Sons, New York (1983).

dispersed in it; Fig. 4.2.6(b) corresponds with the situation when the ponds become interconnected
into continuous channels; Fig. 4.2.6(c) is after the reservoir is constructed, most of the ground is
submerged and only a few high peaks are left as isolated islands.

The percolation threshold value is approached in Fig. 4.2.6(b), for the inversion of shaded areas
into unshaded ones just looks the same statistically as the initial pattern. The area of shaded areas
just equals to that of unshaded ones. Figure 4.2.6(c) looks like the inversion of Fig. 4.2.6(a), so we
conclude that the corresponding area at the percolation threshold value is about 1/2. This model can
be used to mimic the behavior of a particle system in a random potential field, where the percolation
threshold value corresponds to the transition from localized states to delocalized ones (see §9.3.1).

§4.3 Fractal Structures

B. Mandelbrot proposed the geometric concept of the fractal structure with self-similarity which
can be used to describe certain fragmentary structures found in nature. After several decades of
research, the importance of the concept of fractals is widely recognized in condensed matter physics.

4.3.1 Regular Fractals and Fractal Dimension

In 1883 the German mathematician G. Cantor conceived the following: Divide a bar into 3
equal parts and remove the middle one, and then apply the same procedure to the remainder,
and so on ad infinitum; the imagined final figure is called Cantor bar (or set) (Fig. 4.3.1). The
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reason why Cantor thought about such an outlandish set is to illustrate the existence of some
functions which are hard to treat with traditional methods. It is infinitely dividable on the one
hand, while it is discontinuous on the other hand. Besides the the Cantor set, there are other similar
structures with different rules, such as the Sierpinski carpet as shown in Fig. 4.3.2. These figures
show self similarity and complex fine structure; their geometric properties cannot be characterized
by traditional geometry, and they are named fractal figures.

Figure 4.3.1 Construction of
the Cantor bar.

Figure 4.3.2 Construction of the Sierpinski carpet.

The clue to explain these pathological figures can be obtained by consideration of their dimension-
ality. Spaces and figures have dimensions that are defined mathematically. According to Euclidean
geometry, there are one-dimensional lines, two-dimensional planes, three-dimensional spaces, and
even n-dimensional (n > 3) superspaces. We shall express the Euclidean dimension as d. According
to topology, any figure can undergo a rubber-like deformation into another figure without rupture;
their topological properties are invariant; and the topological dimension dt can be introduced. We
may take a line as an example: No matter how it is bent into any strange curve or folded back and
forth, its topological dimension dt = 1 and does not change. Analogously, for any curved surface,
dt = 2; these cases are not hard to explain. Besides, there is another dimension derived from self
similarity. If the linear size is magnified L times, then for a D-dimensional geometric object, K
original objects should be obtained, and

K = LD. (4.3.1)

For a square, if L = 3 and K = 9, we can get D = 2; for the cubic, if L = 3 and K = 27, then
D = 3. These are the same as the intuitive Euclidean dimensions.

In 1919, the mathematician F. Hausdorff defined the dimension of a geometric object as

D =
ln K

lnL
, (4.3.2)

which is called the Hausdorff dimension, D. From another viewpoint, if a D-dimensional object is
divided into N units with volume rD, then rDN = 1. And we find an equivalent expression for D,
i.e.,

D =
ln N

ln
1

r

. (4.3.3)

As defined by (4.3.2) or (4.3.3), D is not necessarily an integer. For the Cantor bar in Fig. 4.3.1, if
the linear size is enlarged 3 times, the number of the units is twice as large as the initial value, so

D =
ln 2

ln 3
≈ 0.6309. (4.3.4)

For the Sierpinski carpet in Fig. 4.3.2, if the linear size is increased 3 times, the number of units
increases 8 times, and so

D =
ln 8

ln 3
≈ 1.8628. (4.3.5)
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Since B. Mandellbrot proposed the concept of the fractal, the Hausdorff dimension D is usually called
the fractal dimension. It should be noted that, although many of these fractals have non-integer
fractal dimension, some fractal objects may show integer dimension while the condition D > dt is
satisfied, for D is usually less than d, thus, D � d.

The examples mentioned above are disordered, fragmentary, and have obvious discontinuity;
but on the other hand, they are ordered with particular symmetries: the self similarity or scale
invariance; the figure remains the same after inflation or deflation. This infinitely hierachical and
self-similar structure is no stranger to scientists. For example the domain structure appearing in the
critical region of a phase transition has this characteristic, and in problems about the formation of
polymers as well as infinite clusters near the percolation threshold, self-similar figures can be found.
However, fractal objects found in nature are somewhat different from regular fractals; these will be
discussed in next subsection.

4.3.2 Irregular Fractal Objects

The regular fractal objects discussed above are described by infinite iterative processes according
to mathematical rules, and these conditions can hardly be all satisfied in natural objects. First, the
process cannot proceed infinitely. At some microscopic size ξ1, there is a lower cut-off radius for the
fractal due to the graininess of the object (either the atoms or colloid particles), while the maximum
length of the figure ξ2 gives the upper limit on the fractal. So self similarity can only be found in
the region between the upper and lower limits (ξ1 < L < ξ2). Secondly, any physical process will be
subject to fluctuations and perturbations; these may lead to randomness and stochasticity, leading
to self-similarity only in the statistical sense.

We may introduce the density-density or pair correlation function

g(r) =
1

V

∑

r′

ρ(r + r′)ρ(r′) (4.3.6)

to describe fractal structures. The pair correlation function g(r) gives the probability of finding a
particle at position (r + r′) if there is one at r. In (4.3.6) ρ is the local density, i.e., ρ(r) = 1 if
the point r belongs to the object, otherwise ρ(r) = 0. Ordinary fractals are usually isotropic, which
means that the density correlation depends only on the distance r; that is g(r) = g(r). An object
is non-trivially scale-invariant if its correlation function determined by (4.3.6) is unchanged up to a
constant under rescaling of length by an arbitrary factor b

g(br) ∼ b−α
g(r), (4.3.7)

and the object has the scale-invariant with at least one nonzero variable, where α is number larger
than zero and less than d. It can be shown that the only function that satisfies (4.3.7) is a power-law
dependence of g(r) on r

g(r) ∼ r−α, (4.3.8)

and we can find the fractal dimension through the exponent α. We calculate the number of particles
N(L) within a sphere of radius L from their radial density distribution

N(L) ∼
∫ L

0

g(r)ddr ∼ Ld−α. (4.3.9)

Comparing (4.3.1) with (4.3.9), we arrive at the desired relation

D = d − α. (4.3.10)

This equation is widely used for the determination of D from density correlations in a random
fractal. The actual method is to determine the Fourier transform of the correlation function from
small-angle scattering experiments using X-rays or neutrons.
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Let us consider the locus of a particle undergoing ran-

50 nm

Figure 4.3.3 The schematic diagram
for fractal structure of the silica aerogel.
From P. Ball, Made to Measure, Prince-
ton University Press, Princeton (1997).

dom Brownian motion. Although the locus is very complex,
it is a line, so the topological dimension dt = l while the
fractal dimension D = 2 which indicates that it would fill
the plane finally. This result can also be used to describe
the molecular configuration of the polymer melt. As for
dilute solution of the polymer, self-avoiding walk provides
a more realistic model. When d = 3, R5/3 ∝ N , D = 5/3,
and dt = l (see §3.4.2).

Fractal geometry also provides an effective description
of porous material, e.g., determination of a gel structure.
Let us consider the case of silica aerogel (see Fig. 4.3.3), in
which the solvent is replaced by air, thus forming a solid
material with a large percentage of pore space. In this ma-
terial, glassy SiO2 takes up 1% of the space while the rest
is air, so its density is extremely low (0.02 g/cm3). On the
nanometer scale, the system consists of glassy SiO2 parti-
cles. In the range from nanometers to millimeters, these
SiO2 particles form a porous aggregation, and the pores have a fractal structure. It presents the
appearance of a continuous solid when observed at a millimeter scale. The fractal dimension, deter-
mined by small-angle scattering of X-rays is found to be D = 1.8.

The fractal dimensions of common solid materials with pores such as rock and coal are between
2 and 3, the values of D for chemical catalysts with rough surfaces are always larger than 2; and the
ones of the main trunks of protein molecules are between 1.2 to 1.8.

In the percolation model, the infinite clusters formed at the percolation threshold also have
a fractal structure. In order to decipher the concept of fractal dimension in the context of the
percolation model, we have to introduce another exponent τ , which describes the behavior at p = pc

of the cluster-size distribution ns(pc) in the asymptotic limit of large cluster size

ns(pc) ∼ s−τ . (4.3.11)

It can be demonstrated from (4.3.11) that the exponent τ must be a number between 2 and 3.
Computer experiments for large clusters show

s(pc) ∼ LD(pc), (4.3.12)

which presents a relation between volume and linear size L of the large clusters. In two-dimensional
space, D ≈ 1.9, while in the three-dimensional space, D ≈ 2.6.

4.3.3 Self-Affine Fractals

The scale invariance embodied by the self-similarity mentioned above is isotropic, i.e., it uses only
one fractal dimension to describe the scale transformation in any direction. It can be anisotropic in
other cases. Let us compare the scaling rules of the two dotted circles shown in Fig. 4.3.4. The scaling

(a) (b)

Figure 4.3.4 The scaling transformation to a circle. (a) self-similar transformation; (b) self-affine trans-
formation.
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is isotropic in (a), a series of self-similar circles is formed by inflation or deflation of the original one;
in (b), the scaling is anisotropic, i.e., the scaling ratios are different for the vertical direction and
for the horizontal direction, and the circle changes into ellipses. The second transformation is called
the self-affine, and the corresponding fractal invariance is the self-affine one.

The regular self-affine fractal can be explained by the example shown in Fig. 4.3.5. The basic
pattern is shown in figure (a). Using it as a template, (b) and (c) are generated. After n steps, the
figure expands 4n times at the horizontal direction and 2n at the vertical direction. It should be
noted that (b) and (c) are not drawn to scale, but on the axes the scales are indicated.

L

2L 8L

4L

32L

2L

(a) (b) (c)

Figure 4.3.5 The regular self-affine fractal with Hurst exponent H = 1/2.

Just as in the case of the self-similar fractal, the irregular self-affine fractals are actually more
important in natural processes. So we need statistical rescaling: Assume the transformation factor
of the horizontal coordinate is b. The corresponding factor for the vertical coordinate is bH , where
H is the Hurst exponent. The result is the typical self-affine fractal, which can be expressed by the
function F (x) satisfying

F (x) ≈ b−HF (bx). (4.3.13)

An important example of the random self-affine fractal is the distance B(t) traversed by a particle
in Brownian motion at the time interval t, for

〈B(t)〉 ≈ t1/2,

b1/2B(t) ≈ B(bt), 〈B(t)〉 ≈ b−1/2B(bt),
(4.3.14)

this situation is shown in Fig. 4.3.6.

Figure 4.3.6 The patterns for particles in Brownian motion with different scales, while the scale of the
vertical direction is the square root of that of the horizontal direction. From P. Meakin, Fractal, Scaling and

Growth Far from Equilibrium, Cambridge University Press, Cambridge (1998).

The self-affine fractal is important for research on growth morphology of surfaces and it will be
discussed in Part VIII.

4.3.4 The Basic Concept of the Multifractal

The concept of the multifractal was first proposed by Masndelbrot in 1972 in his research on
turbulence. It is related to the distribution of physical quantities (such as density, intensity, flow
velocity, growth probability, etc.) on its geometric support. All previous treatment of fractals
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was purely geometrical but now we introduce the distribution of physical quantities in fractal or
non-fractal structures.

In order to explain the concept of the multifractal, we start with the simplest example, which
involves the distribution of density on the Cantor set. We can imagine the process generating the
Cantor set: Divide the original bar with unit length and mass into two equal parts, each with the
mass µ1 = 1/2, then compress them into a length 1/3 of the initial one; obviously the density
increases. Repeat this process n times and get N = 2n short bars each with length ln = (1/3)n and
mass µn = (1/2)n. Since the mass of the original bar is constant:

n
∑

i=1

µi = 1, (4.3.15)

then we will get

µi = lαi . (4.3.16)

The exponent α here is defined as

α =
ln 2

ln 3
, (4.3.17)

with the corresponding density

ρi =
µi

li
= lα−1

i . (4.3.18)

For α < 1, if li → 0, the ρi → ∞, and this scale exponent is named as the Hölder exponent which
indicates the singularity of the physical quantity (the density here). Figure 4.3.7 shows the density
change (expressed by the thicknesses of the bar) of the Cantor set and gives a physical explanation
for the quantity α.

Figure 4.3.7 The density change of
Cantor set.
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Figure 4.3.8 M(x) versus x figure of Cantor set
(showing the devils staircase).

From the above result of the Cantor set, we can get the total mass in the area of [0, x]

M(x) =

x
∫

0

ρ(x′)dx′ =

x
∫

0

dµ(x′). (4.3.19)

There are infinitely many points on the Cantor set, and ρ(x′) = ∞. The total mass does not vary
in the area corresponding to a gap, and with infinite recurrence, the total length of the gaps is 1 (in
mathematical language, the Lesbeque measure of the Cantor set is 0) which equals the initial length
of the bar. In these ranges, the value of M(x) remains invariant, and it has a jump at a point of
the Cantor set. Finally the total mass M(1) = 1. Figure 4.3.8 shows the relation between M and x,
and the figure is named the devil’s staircase.d Scientists have observed a lot of phenomena similar

dA popular introduction to the devil’s staircase was written by P. Bak in Phys. Today 39, Dec., 39 (1986).
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to the devil’s staircase, which are usually the result of competition among different periods in space
or among different frequencies in the time domain; see §5.5.1.

The theory of measure can give a more complete description of multifractal objects. A set S
consisting of N points will have Ni points in the ith cell. These points are sample points of an
underlying measure. Let us use the mass or probability µi = Ni/N in the ith cell to construct the
measure with q-moment

Mδ(q, l) =

n
∑

i=1

µq
i l

δ = N(q, l)lδ
l→0−→

{

0, δ > τ(q),
∞, δ < τ(q).

(4.3.20)

For mass exponent δ = τ(q), the measure neither vanishes nor diverges as l → 0. The measure is
characterized by a whole sequence of exponents τ(q). The weighted number of boxes N(q, l) has the
form

N(q, l) =
∑

i

µq
i ∼ l−τ(q), (4.3.21)

and the mass exponent is given by

τ(q) = − lim
l→0

ln N(q, l)

ln l
. (4.3.22)

We first note that if we choose q = 0, then N(q = 0, l) = N(l) is simply the number of boxes
needed to cover the set, and τ(0) = D equals the fractal dimension of the set. The probabilities are
normalized, i.e.,

∑

i µi = 1, and it follows from (4.3.21) that τ(1) = 0.
The Hölder exponent describes local singularity,
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Figure 4.3.9 f [α(q)] ∼ α(q).

but it is easy to think that there are lots of boxes µi

with same exponent α spreading out over the whole
range of the set S. It may be helpful to consider that
set S is the union of fractal subsets Sα with α chosen
from the continuum of allowed values

S =
⋃

α

Sα, (4.3.23)

The exponent α can take values from the interval
[α+∞, α−∞], f(α) is usually a single humped function
with a maximum fmax(α) = D. When the complete
set S is a fractal with fractal dimension D, the subsets
have fractal dimensions f(α) � D. For fractal sub-
sets with fractal dimension f(α), the number N(α, l)
of segments of length l need to cover the sets Sα is

N(α, l) = l−f(α). (4.3.24)

For these sets, we may write the measure µα = lα in a cell of size l, and therefore the measure M
for the set S may be written

Mδ(q, l) =

∫

ρ(α)l−f(α)lαqlδdα =

∫

ρ(α)lqα−f(α)+δdα, (4.3.25)

here the ρ(α)dα is the number of sets from Sα to Sα+dα. The integral in the equation above is
dominated by terms where the integrand has its maximum value, so

d

dα
(fα − f(α) + δ) = 0, (4.3.26)

in other words
df(α)

dα

∣

∣

∣

∣

α=α(q)

= q. (4.3.27)
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The integral in (4.3.26) is therefore asymptotically given by

Mδ(q, l) ∼ lqα(q)−f(α)+δ. (4.3.28)

In the limit l → 0, Mδ remains finite if δ equals the mass exponent τ(q) and

τ(q) = f(α(q)) − qα(q), (4.3.29)

where α(q) is the solution of (4.3.27). Thus the mass exponent is given in terms of the Hölder
exponent α(q) for the mass, and the fractal dimension f(α(q)) of the set that supports this exponent.
The relation between the both the above is shown in Fig. 4.3.9.

Multifractal analysis has been applied to a wide range of physical phenomena, including the dis-
tribution of dissipation in turbulent flows, nonequilibrium growth phenomena and electronic wave-
functions in disordered systems.
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Part II

Wave Behavior in Various

Structures



Like as the waves make towards the pebbled shore

So do our minutes hasten to their end,

Each changing place with that which goes before,

In sequent toil all forward to contend.

— William Shakespeare

Waves always behave in a similar way, whether they are

longitudinal or transverse, elastic or electric. Scientists of

last century always kept this idea in mind. . .. This general

philosophy of wave propagation, forgotten for a time, has been

strongly revived in the last decade. . .

— L. Brillouin (1946)



Chapter 5

Wave Propagation in Periodic and

Quasiperiodic Structures

Since Newton deduced the formula for the speed of sound using a one-dimensional lattice model,
wave propagation in periodic structures has been a topic of study by physicists. In the 19th century
Kelvin et al. investigated the problem of dispersion of light also using a one-dimensional mechanical
lattice model. At the beginning of the 20th century engineers considered a periodic structure com-
posed of LC circuits, developed a theory of filters for electric waves and proposed such important
concepts as the cut-off frequency, pass band and forbidden band. The behavior of electrons and lat-
tice vibrations in periodic structures form the basis of solid state physics. In recent years, the study
of classical waves, including electromagnetic and elastic waves, in periodic materials has expanded
the domain of solid state physics. Since the discovery of quasicrystals in 1980s, wave propagation
in quasiperiodic structures attracted much attention. Propagation of different kinds of waves in
periodic and quasi-periodic structures can be treated in a unified manner.

§5.1 Unity of Concepts for Wave Propagation

In this section we shall discuss a unified picture for wave propagation in periodic structures.
The formal analogy and similarity between three types of waves, i.e., electrons, lattice waves and
electromagnetic waves, will be emphasized.

5.1.1 Wave Equations and Periodic Potentials

There are three types of wave equations, i.e., the Schrödinger equation for de Broglie waves;
Newton’s equation for lattice waves; and Maxwell equations for electromagnetic waves, with corre-
sponding periodic potentials which influence their propagation.

As a scalar wave in a crystalline solid, an electron has a de Broglie wavelength λ = 2π/k and
hence momentum p = �k, which is in fact the crystal momentum (or quasimomentum). Here k is
the wavevector. The state of the electron is described by the Schrödinger equation

i�
∂

∂t
ψ =

[

− �
2

2m
∇2 + V (r)

]

ψ. (5.1.1)

The first term on the right hand side is the kinetic energy, the second term the potential provided
by the periodic array of atoms, such that

V (r + l) = V (r), (5.1.2)

where l is any lattice vector. After 1992, this treatment has been extended to the ultracold atoms
as de Broglie waves in a periodic potential (See Bib. [11]).
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The electron considered above is assumed to be moving in a rigid array of atoms. In reality,
atoms vibrate about their equilibrium positions because of zero-point fluctuations and thermal fluc-
tuations at finite temperature. Here we ignore the former, and consider only the thermal motion,
which gives rise to lattice waves in periodic structures. Lattice waves have one longitudinal branch
and two transverse branches for each wavevector. Let u be the atomic displacement and V the
potential energy of the whole crystal, a function of the position of all atoms. Then in the harmonic
approximation, one obtains the Newton equation

Ms
∂2

∂t2
ulsα = −

∑

l′s′β

Vlsα,l′s′βul′s′β , (5.1.3)

where α, β = x, y, z; l and s denote the unit cell and the atom in the unit cell, respectively. Vlsα,l′s′β ≡
∂2V/∂ulsα∂ul′s′β |0 is the force constant defined at the atomic equilibrium positions. The force
constant has periodicity

Vlsα,l′s′β = V0sα,l̄s′β , (5.1.4)

with l̄ = l′ − l.
The theory of propagation of electromagnetic waves was perfectly summarized by the Maxwell

equations

∇× E = −1

c

∂B

∂t
, ∇ · D = 4πρ,

∇× H =
1

c

∂D

∂t
+

4π

c
j, ∇ · B = 0,

where E and H are the electric and magnetic fields, respectively, while D and B are the electric
displacement and magnetic induction, respectively, and ρ is the charge density. In addition, there
are several basic equations which describe the electromagnetic properties of linear media

D = ǫE = E + 4πP = (1 + 4πχ)E,

B = µH = H + 4πM = (1 + 4πχm)H ,

where ǫ and µ denote the dielectric constant and magnetic permeability; χ and χm represent the
electric and magnetic susceptibility. In general, ǫ, µ, χ and χm are all second-rank tensors. Under
strong fields, there are nonlinear polarizations, and nonlinear polarization is a higher order tensor.
In this chapter, inhomogeneous media are considered, and so ǫ, µ, χ and χm can all be expressed as
functions of position.

Electromagnetic radiation passing through a solid will polarize the medium. For example, an
external electromagnetic wave will cause a displacement of the negative charge with respect to the
nuclei in a crystal, and there is an electric displacement vector D, described by a wave equation

1

c2

∂2D

∂t2
+ ∇×

(

1

µ(r)
∇× D

ǫ(r)

)

= 0. (5.1.5)

Generally, µ(r) and ǫ(r) are tensors, but in many cases they can be taken as scalar quantities. In
periodic structures with lattice vector l,

µ(r + l) = µ(r), ǫ(r + l) = ǫ(r), (5.1.6)

i.e., they have the lattice periodicity. It is noted that there are three other field quantities, E, B

and H and each of them can be used equivalently to write down a wave equation.

5.1.2 Bloch Waves

There are some common properties of wave propagation in periodic structures, although electrons
are scalar waves, while lattice vibrations and electromagnetic radiation are vector waves. Before
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discussing these properties, it is important to notice that there is a tuning condition between periodic
potentials and the wavelength of the propagating waves. The de Broglie wavelength of an electron in
a solid can be obtained from λ = (�2/2mE)1/2, which ranges from lattice spacing to the size of bulk
materials, if the appropriate eigenenergy E is chosen. The lattice vibrations include both acoustic
and optical branches. In general, their wavelengths also range from lattice spacing to macroscopic
size. It is only for those waves which have a wavelength near the period of these structures that
substantial effects in wave behavior will be expected. So, in the discussion of wave propagation
in periodic structures, the tuning condition must be considered. It is implicitly fulfilled for most
problems in solid state physics. On the other hand, the range of wavelengths of electromagnetic
radiation may vary from γ-ray (< 0.4 Å), X-ray (0.4 ∼ 50 Å), ultraviolet (50 ∼ 4000 Å), visible light
(4000 ∼ 7000 Å), infrared (0.76 ∼ 600 µm), to microwave and radio waves (> 0.1 mm), so that the
lattice spacings of periodic structures for electromagnetic wave should be chosen correspondingly.

The waves propagating in periodic structures are not perfectly free. They are constrained to form
Bloch waves. Take an electron in a crystalline solid as an example. The time-dependent equation
(5.1.1) can be transformed into the stationary equation

[

− �
2

2m
∇2 + V (r)

]

ψ(r) = Eψ(r). (5.1.7)

The electron will experience the periodic potential described by (5.1.2), so its wavefunction ψ(r)
and energy E determined by (5.1.7) will reflect the characteristics of the periodic potential.

It can be understood that the solution of (5.1.7) should be characterized by a wavevector k, and
it will be always possible to take the form

ψk(r) = uk(r)fk(r), (5.1.8)

where the function uk(r) is assumed to have the same translational symmetry as the lattice, that is,

uk(r + l) = uk(r). (5.1.9)

We now have to determine the function fk(r). Due to the periodic potential, one requires that the
quantity |ψk(r)|2, which gives the electron probability, must also be periodic. This imposes the
following condition on fk(r):

|fk(r + l)|2 = |fk(r)|2.
The choice which satisfies this requirement for all l is the exponential form exp(ik · r). Then we
write the solution of (5.1.7) with periodic potential (5.1.2) in the form

ψk(r) = uk(r)eik·r. (5.1.10)

This is the Bloch function from which we can establish the Bloch theorem

ψk(r + l) = ψk(r)eik·l. (5.1.11)

The physical meaning of the Bloch theorem is that the wavefunctions at positions r + l and r are
almost the same, except for a phase factor exp(ik · l).

The Bloch theorem discussed above may be generalized to other cases of wave equations with pe-
riodic potentials. As stated in Chap. 1, if there is perfect periodicity in a direct lattice, Fourier trans-
formation gives rise to a reciprocal lattice. Now each of the states is characterized by a wavevector
to which an eigenenergy or eigenfrequency is related. We shall see later that a profound consequence
of periodicity is that there are some ranges of energy or frequency, known as bandgaps, within which
wave propagation is forbidden. Then, the dispersion relation can be divided into separated bands. A
useful concept is the Brillouin zone (BZ), i.e., the Wigner–Seitz (WS) cell of the reciprocal lattice. A
BZ may be regarded as a unit cell in k space including all the modes for propagating waves. All real
solids are finite, but, if the solid is large enough, the Born–von Karman cyclic boundary conditions
may be used to extend the solid to infinity in order to simplify the theoretical treatment.
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5.1.3 Revival of the Study of Classical Waves

The propagation of classical waves, including elastic and electromagnetic waves, in media is
an old scientific problem. Historically, X-ray diffraction in crystals demonstrated both the wave
property of the X-rays and the periodic structures of crystals at one stroke. The Bragg equation

2d sin θ = nλ, (5.1.12)

which combines the wavelength of X-ray λ and the lattice parameter d, is the cornerstone of the
theory of diffraction of X-rays, as well as electrons and neutrons, in crystals. The elementary
theory of X-ray diffraction, i.e., kinematical theory, in which the single-scattering approximation
is adopted, is very useful and has reasonable validity for a wide range of diffraction experiments.
More refined theory, like the dynamical theory of diffraction, takes into account the coherence of
multiply scattered waves and proceeds by solving Maxwell equations to give a more correct picture
of diffraction phenomena, especially in large and nearly perfect crystals.

To study the frequency-wavevector relation for electromagnetic waves in periodic structures, we
at first transform (5.1.5) into a stationary equation for the electric displacement vector D as

−∇2D −∇×∇× [χ(r)D] =
ω2

c2
D, (5.1.13)

where

χ(r) = 1 − 1

ǫ(r)
, (5.1.14)

the electric susceptibility, is also a periodic function of position.
According to the general characteristics of wave propagation in periodic structures, it is expected

that electromagnetic waves can show bands and gaps as electrons do; these are known as photonic
bandgaps. This is simply a window of frequencies, with finite width, in which electromagnetic
wave propagation through a periodic structure cannot occur. From this point of view, we may
expect there are bandgaps for X-rays in crystals. However, although the diffraction of X-rays has
played a spectacular role in revealing the structure of crystalline solids, it is unfortunate that the
perturbation of X-rays by the crystalline lattice is extremely small, so the energy gaps are too narrow
to be generally noticed. On the other hand, diffraction of light waves by artificial structures, such
as gratings, has a much longer history. Still, in most cases, the modulation depths are too low to
show clear-cut energy gaps.

The crucial step in establishing propagation gaps lies in achieving a sufficiently large dielectric
contrast for different media. These were first demonstrated with microwaves for three-dimensional
dielectric structures which are called photonic crystals by Yablonovitch in 1989, and have been
pursued in the late 1990s to light waves, which are crucial for application to photonics. The photonic
crystals with photonic bandgaps for photonics are therefore the natural analog of semiconductors
with electronic energy gaps for solid state electronics. The technological importance of this is much
anticipated.

In the 1980s and the 1990s, there was renewed interest in the study of the propagation of classical
waves in both periodic and aperiodic structures. It should be noted that the study of electronic wave
started from band structure (Bloch, 1928) and then led to localization (Anderson, 1958; Edwards,
1958); however, the study of classical waves shows a reverse process, i.e., from localization (John,
1984; Anderson, 1985) to band structure (Yabolonovitch, 1987; John, 1987). Yabolonovitch and
John studied the propagation of electromagnetic waves in a fcc structure by different methods. The
former considered “inhibited spontaneous emission in solid-state physics and electronics”; while the
latter investigated the band tail states, mobility edges and Anderson localization by introducing a
known degree of disorder.

We should point out here that although electrons and photons both have characteristics of waves,
there are some basic differences which influence their band structures. As a matter of fact, the
underlying dispersion relation for electrons is parabolic, while for photons it is linear; the angular
momentum of electrons is 1/2, so scalar wave treatment is always sufficient, while photons have spin
1, and vector-wave character plays a major role. In addition, the band theory of electrons is only an
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approximation due to the fact that there are always interactions among electrons, while photonic
band theory is exact since interactions between photons are negligible. Thus the structure-property
relationship for photonic crystals is essentially independent of length scale.

§5.2 Electrons in Crystals

There are a large number of electrons moving in a solid. If the interaction between electrons can
be ignored, we arrive at the independent electron model, in which only the periodic ionic potential
is felt by the electrons.

5.2.1 Free Electron Gas Model

If the potential is weak enough, we might take V (r) = 0, then (5.1.7) has the plane wave solution

ψk(r) = Ω−1/2eik·r, (5.2.1)

where Ω is the volume of the crystal. The dispersion relation now takes the simplest form

E(k) = �
2k2/2m. (5.2.2)

For a system with N electrons characterized by wavevectors k, we can introduce the concept of
the Fermi surface, which is the surface in k space within which all the states are occupied. We can
define the Fermi energy at the Fermi surface

EF = E(kF), (5.2.3)

where kF is the Fermi wavevector. It is strictly valid only at T = 0 K, but the effect of finite
temperature on the Fermi surface is very small. It remains sharp even at room temperature. For
alkali metals, such as Li, Na and K, with bcc structure, the reciprocal lattices are fcc, and the
Brillouin zone (BZ) is a rhombic dodecahedron; their Fermi surfaces are almost spherical. For the
noble metals Cu, Ag, and Au, having an fcc structure, the reciprocal lattice is bcc, the Brillouin
zone is a truncated octahedron, so their Fermi surfaces are also almost spherical but distorted a
little along the 〈111〉 direction. For these solids, the free electron gas model is a good starting point.

It is easy to find the Fermi wavevector and Fermi energy in free-electron approximation by writing

N =
∑

k

=
2Ω

(2π)3

∫

dk, (5.2.4)

where the factor 2 comes from spin degeneracy. Noting that
∫

dk = 4πk3
F/3, we get

kF =

(

3π2 N

Ω

)1/3

, (5.2.5)

and

EF =
�

2

2m

(

3π2 N

Ω

)2/3

. (5.2.6)

Equation (5.2.2) tells us that the electron energy depends on the wavevector k. In fact, as
periodicity exists, any state may be characterized by its reduced wavevector. Taking the empty
lattice approach, Fig. 5.2.1 shows the energy as the function of wavevector for the one-dimensional
free electron gas in the extended-zone scheme and the reduced-zone scheme. It is obvious that in
the extended-zone scheme each state is represented by its real wavevector, but in the reduced-zone
scheme there are many states with different energies corresponding to the same wavevector. To
eliminate this uncertainty, the band index n is introduced to denote the electron energy as En(k)
and wavefunction as ψnk(r). It is shown that the number of states in each band inside the first zone
−(π/a) < k < (π/a) is equal to the number of unit cells in the crystal.
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0 π/a 2π/a 3π/a-π/a-2π/a-3π/a k k

EE

π/a-π/a

Figure 5.2.1 Dispersion curves of one-dimensional free electron gas for (a) extended-zone scheme, and
(b) reduced-zone scheme.

5.2.2 Nearly-Free Electron Model

Strictly speaking, the crystal potential V (r) cannot be ignored. However, it may be assumed
that it is relatively weak and can be treated as a perturbation, so we can replace the free electron
gas model by the nearly-free electron model. This model works well for simple metals such as Na, K,
Al, and for narrow-gap semiconductors. The starting point for the nearly-free electron model are the

wavefunctions ψ
(0)
nk and the eigenenergies E

(0)
n (k) for the free electron model. By using perturbation

theory, the dispersion relation and wavefunction can be obtained:

En(k) = E(0)
n (k) +

〈

ψ
(0)
nk |V |ψ(0)

nk

〉

+
∑

n′k′

′

∣

∣

∣

〈

ψ
(0)
n′k′ |V |ψ(0)

nk

〉∣

∣

∣

2

E
(0)
n (k) − E

(0)
n′ (k′)

, (5.2.7)

and

ψnk = ψ
(0)
nk +

∑

n′k′

′

〈

ψ
(0)
n′k′ |V |ψ(0)

nk

〉

E
(0)
n (k) − E

(0)
n′ (k′)

ψ
(0)
n′k′ . (5.2.8)

For simplicity and still without loss of generality, we take the one-dimensional case as example.
In (5.2.7), the second term on the right hand side is a constant, and merely corresponds to a shift
of the zero of energy. When we consider the lowest energy band n = 1, we see that the energy

difference E
(0)
1 (k) − E

(0)
n′ (k′) rises rapidly for n′ ≥ 3, and so we only consider n′ = 2:

E1(k) ≃ E
(0)
1 (k) +

|V−2π/a|2

E
(0)
1 (k) − E

(0)
2 (k)

, (5.2.9)

with

V−2π/a =
1

L

∫

V (x)ei2πx/adx.

There is only a slight modification for the eigenenergy of (5.2.9) from the parabolic dispersion

curve of Fig. 5.2.1, if k is not at the Brillouin zone boundary. However, when k ≃ π/a, E
(0)
1 =

�
2k2/2m, E

(0)
2 = �

2(k−2π/a)2/2m, then E
(0)
1 ≃ E

(0)
2 and degenerate perturbation theory is needed.

The result of applying this is:

E±(k) =
1

2

{

E
(0)
1 (k) + E

(0)
2 (k) ±

[

(

E
(0)
2 (k) − E

(0)
1 (k)

)2

+ 4|V−2π/a|2
]1/2

}

, (5.2.10)

and there is a energy gap
Eg = E+(k) − E−(k) = 2|V−2π/a| (5.2.11)

at the boundary of the first Brillouin zone. The same procedure can be used to get the whole energy
spectrum for the one-dimensional nearly-free electron model as shown in Fig. 5.2.2 where (a) is for
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the extended zone scheme and (b) for the reduced zone scheme. Thus, a periodic potential brings in
energy bands and gaps. It should be noted that the value of the perturbation potential at the BZ
boundary is crucial for the opening up of band gaps.

0 π/a 2π/a 3π/a-π/a-2π/a-3π/a k 0 π/a-π/a k

E E

 (a)                                                       (b)

Figure 5.2.2 Bands and gaps in one-dimensional nearly-free electron model for (a) the extended-zone
scheme, and (b) the reduced zone scheme.

The energy gap is related to the Bragg diffraction of electron waves. We can see this by observing
that the first-order modified wavefunction of the first band for −π/a < k < π/a is

ψ1k = ψ
(0)
1k +

V−2π/a

E
(0)
1 (k) − E

(0)
2 (k)

ψ
(0)
2k , (5.2.12)

where the summation only involves the wavefunction of the second band. Here ψ
(0)
1k = L−1/2 exp(ikx)

represents a wave travelling in the positive direction, whereas ψ
(0)
2k = L−1/2 exp[i(k − 2π/a)x] a left-

travelling wave. Near the zone edge, degenerate perturbation theory is still needed. The wavefunc-

tions ψ
(0)
1k and ψ

(0)
2k are treated on an equal footing, then the wavefunctions at the BZ boundaries

are

ψ±(x) =
1√
2L

[

ψ
(0)
1,π/a(x) ± ψ

(0)
2,π/a(x)

]

=
1√
2L

(

eiπx/a ± e−iπx/a
)

. (5.2.13)

These two state functions ψ+ = (2/L)1/2 cos(πx/a) and ψ− = (2/L)1/2 sin(πx/a) represent standing
waves. Their squared moduli are the electron probability distribution as shown in Fig. 5.2.3.

V (x)

|  |
2

ψ−| |
2

ψ+

x

Figure 5.2.3 Bragg reflection of electron in a periodic structure.

From the viewpoint of scattering, at the zone edge k = π/a, the scattering is strong and the
reflected wave has the same amplitude as the incident wave. This leads to Bragg diffraction at
λ = 2π/k = 2a. This strong scattering is caused by the periodic potential. Bragg scattering at
the zone boundary opens up energy gaps, that is, the interaction of electron waves with the atomic
lattice results in destructive interference at certain wavelengths.

It is clear that Fig. 5.2.1 was changed into Fig. 5.2.2, when the crystalline potential was added.
The continuous energy-wavevector dispersion relation characteristic of free space is therefore mod-
ified; this energy spectrum is referred to as the electronic band structure of the system. It is not
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only in one dimension that energy gaps are created at the BZ boundaries. In higher dimensional
lattices, the Bragg condition is satisfied along all boundaries of the BZ, so energy gaps along those
boundaries are also created. The quantitative details of a given electronic band structure depend
on the specific form of the periodical potential. As a result, substances with different crystalline
structures may have quite different electronic band structures.

5.2.3 Tight-Binding Electron Model

When atomic potentials are very strong, and electrons move essentially around a single atom,
with only a small probability of being found near neighboring atoms, then the tight-binding model
is more effective. This is a rough approximation for narrow, inner bands, such as the 3d bands in
transition metals.

We begin with the Wannier function, which is the Fourier expansion of the Bloch functions, as

wn(r − l) = N−1/2
∑

k

e−ik·lψnk(r), (5.2.14)

and conversely

ψnk(r) = N−1/2
∑

l

eik·lwn(r − l). (5.2.15)

The Wannier functions have orthogonality for different n and l, so wn(r − l) is a localized function.
To illustrate the localized feature of the Wannier functions, we take a Bloch function

ψk(r) = N−1/2u(r)eik·r, (5.2.16)

with the assumption that the modulated amplitude u(r) is independent of the wavevectors k in
a band. We substitute (5.2.16) into (5.2.14), for a cubic lattice with lattice constant a, and the
Wannier function at the origin is

w(r) =
sin(πx/a) sin(πy/a) sin(πz/a)

(πx/a)(πy/a)(πz/a)
u(r). (5.2.17)

This looks like u(r) in the center of the cell, but it spreads out a long way with gradually decreasing
oscillations.

When the separation a between atoms in solids is not small, it is reasonable to use the atomic
wavefunction φa(r − l) instead of Wannier function w(r − l) to describe the behavior of electrons,
that is

w(r − l) ≃ φa(r − l).

Here φa(r) is a strongly localized atomic wavefunction which can be used to construct the Bloch
function

ψk(r) = N−1/2
∑

l

eik·lφa(r − l). (5.2.18)

This function is composed of a series of localized atomic wavefunctions multiplied by phase factors
exp(ik · l). The expectation value of the energy can be calculated from this wavefunction

E(k) =

∫

ψ∗
k

{

− �
2

2m∇2 + V (r)
}

ψkdr
∫

ψ∗
kψkdr

≃
∑

h

eik·hEh, (5.2.19)

where

Eh =
1

Ωc

∫

φ∗
a(r + h)

{

− �
2

2m
∇2 + V (r)

}

φa(r)dr, (5.2.20)

with Ωc being the volume of a unit cell and h = l− l′ as the relative position of the sites upon which
the orbitals are centered.
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The atomic wavefunctions φa can be obtained by solving the Schrödinger equation

[

− �
2

2m
∇2 + va(r)

]

φa(r) = Eaφa(r), (5.2.21)

with va(r) being the potential of an isolated atom. For a simple cubic lattice with h = (a, 0, 0),
(0, a, 0) and (0, 0, a), the dispersion relation is

E(k) ≃ Ea + 2E100(cos akx + cos aky + cos akz). (5.2.22)

The BZ in this case is a cube, and the width of the band is 12|E100|, the lowest energy being
Ea + 6E100.

The tight-binding model demonstrates an important principle: If there are N atoms far apart
and a is large, a single electron has N -fold degenerate states with a single energy. When a decreases,
wavefunction overlap leads to delocalized states with energy bands, as shown in Fig. 5.2.4.

atom solid

E

1/a

Figure 5.2.4 Atomic levels spread-
ing into bands as lattice separation
decreases.

V(z)

V0

0-d2

z

d1 d1+d2

Figure 5.2.5 One-dimensional
superlattice potential.

5.2.4 Kronig Penney Model for Superlattices

We consider a semiconductor superlattice GaAs-Ga1−xAlxAs. The longitudinal motion of an
electron in the direction of the superlattice can be simplified as in the one-dimensional periodic
rectangular potential well with lattice spacing d = d1 + d2, as shown in Fig. 5.2.5. The Kronig–
Penney model gives energy solutions which form a series of minibands within the original conduction
and valence bands.

The equation of motion for an electron can be written as

d2

dz2
ψ +

2m

�2
Eψ = 0, for 0 < z < d1, (5.2.23)

and
d2

dz2
ψ +

2m

�2
[E − V0]ψ = 0, for − d2 < z < 0. (5.2.24)
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Consider bound states, i.e., E < V0, and define

α2 =
2mE

�2
, β2 =

2m(V0 − E)

�2
,

where α, β are real. Equations (5.2.23) and (5.2.24) can be written as

d2

dz2
ψ + α2ψ = 0, for 0 < z < d1, (5.2.25)

d2

dz2
ψ − β2ψ = 0, for − d2 < z < 0. (5.2.26)

To solve (5.2.25) and (5.2.26), we use the Bloch theorem

ψ(z) = uk(z)eikz , (5.2.27)

where uk(z) is the periodic function in z direction with period (d1 + d2). Substituting (5.2.27) into
(5.2.25) and (5.2.26), we have

d2

dz2
u + 2ik

d

dz
u + (α2 − k2)u = 0, for 0 < z < d1, (5.2.28)

d2

dz2
u + 2ik

d

dz
u − (β2 + k2)u = 0, for − d2 < z < 0. (5.2.29)

If we assume u = emz as a special solution, we get the general solutions

u1 = Aei(α−k)z + Be−i(α+k)z , (5.2.30)

u2 = Ce(β−ik)z + De−(β+ik)z , (5.2.31)

where A, B, C and D are constants which must be so chosen that they satisfy the boundary
conditions, for example,

u1(z)|0 = u2(z)|0 ,
du1(z)

dz

∣

∣

∣

∣

0

=
du2(z)

dz

∣

∣

∣

∣

0

,

u1(z)|d1
= u2(z)|−d2

,
du1(z)

dz

∣

∣

∣

∣

d1

=
du2(z)

dz

∣

∣

∣

∣

−d2

.

These lead to a 4 × 4 determinant, which gives a relation between the energy and the parameters

β2 − α2

2αβ
sinh βd2 sin αd1 + coshβd2 cosαd1 = cos k(d1 + d2). (5.2.32)

The allowed energy bands in the superlattice can be calculated from the following expression

−1 ≤
(

V0

2E
− 1

)(

V0

E
− 1

)−1/2

sin

(

d1(2mE)1/2

�

)

sinh

(

d2[2m(V0 − E)]1/2

�

)

+ cos

(

d1(2mE)1/2

�

)

cosh

(

d2[2m(V0 − E)]1/2

�

)

≤ 1. (5.2.33)

E is the electron energy in the superlattice direction. If, in the case of GaAs-AlxGa1−xAs, where
V0 ≃ 0.4 eV, m∗ = 0.1m0 we assume d1 = d2, the lowest four allowed bands E1, . . . , E4 calculated
as a function of the width, are as shown in Fig. 5.2.6.a

aL. Esaki, in Synthetic Modulated Structures, eds. L. L. Chang and B. C. Giessen, Academic Press, Oriando (1985).
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Figure 5.2.6 The subbands of
a GaAs-AlxGa1−xAs semiconductor
superlattice.

E

-π/a -π/d π/d π/a k

Figure 5.2.7 Folding of the Brillouin
zone in a superlattice.

The superlattice period is usually much greater than the original lattice constant. The superlat-
tice potential perturbs the band structure of the host materials and leads to the original Brillouin
zone being divided into a series of minizones. These are narrow sub-bands separated by forbidden
regions in the conduction band of the host crystal. For a periodic superlattice potential of period d,
we shall find d/a sub-bands, as shown in Fig. 5.2.5. It may be said that the Brillouin zone is folded.

5.2.5 Density of States and Dimensionality

The density of states is the number of states per unit energy per unit volume. Consider a
d-dimensional box with length L. Under periodic boundary conditions, the volume of each wavevec-
tor point is

∆k =

(

2π

L

)d

. (5.2.34)

Then in reciprocal space, the number of states in the shell from k to k + dk is

dN = 2

(

L

2π

)d ∫ k+dk

k

dk. (5.2.35)

For the parabolic dispersion relation E(k) = �
2k2/2m, we can get the density of states (DOS)

g(E) =
1

Ld

dN

dE
=



























1
2π2

(

2m
�

2

)3/2

E1/2, for d = 3;

m
π�

2 , for d = 2;

(

2m
π2

�
2

)1/2

E−1/2, for d = 1.

(5.2.36)

The results are displayed in Fig. 5.2.8. It is obvious that the density of states is closely related
to the dimensionality. The difference of the density of states for various dimensions will have a
substantial influence on the behavior of the system.

We see that for a two-dimensional (2D) electron gas, the density of states is a constant g(Exy) =
m/π�

2. However, a real system may often be quasi-two-dimensional (quasi-2D), which combines
motion in the xy plane with a small but non-zero amount in the z direction, we can consider that
for nth level, electrons could fill into n sub-bands, so that

g(E) = nm/π�
2. (5.2.37)
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Figure 5.2.8 The densities of states of one-, two- and three-dimensional (3D) electron systems with that
of a superlattice in the energy range including first three subbands, such as E1 between (a) and (b); E2

between (c) and (d); E3 between (e) and (f).

The density of states of the superlattice is neither the parabolic curve of the three-dimensional
crystal nor the step curve of the two-dimensional electron gas. It is the results of both effects, as also
shown in Fig. 5.2.8. Here the electronic energy in the perpendicular direction is again not a discrete
level, but extends into a narrow band. This certainly comes from the overlapping of electronic wave
functions belonging to different wells. So we can write

g(E) =
( m

π�2

) 1

2π
kz(E) × 2. (5.2.38)

where kz(E) comes from miniband in the dispersion curve, and the factor of 2 comes from the fact
that for every Ez there are two values, corresponding to ±kz.

§5.3 Lattice Waves and Elastic Waves

The vibrations of atoms about their equilibrium positions due to thermal motion will form lattice
waves in periodic structures. Many thermodynamic properties of crystals are a result of lattice waves.
When the wavelength of the vibration is very long, the atomic details of the structure cannot be seen
by the wave, and the medium may be regarded as an elastic continuum. However, in recent years,
there is much interest in the study of elastic wave propagation in artificial periodic composites.

5.3.1 Dispersion Relation of Lattice Waves

From the time-dependent equation (5.1.3), we get an algebraic equation describing the stationary
states of lattice vibrations

Msω
2ulsα =

∑

l′s′β

Vlsα,l′s′βul′s′β , (5.3.1)

from which the dispersion relation of lattice waves can be obtained.
Now let us consider the solution of (5.3.1). Periodicity suggests that the solution must be such

that the displacements of equivalent atoms in different cells satisfy the Bloch theorem. Thus we try
a special solution

ulsα = M−1/2
s Usα(k)eik·l, (5.3.2)

where k represents the wavevector, and s = 1, . . . , n if there are n atoms in a unit cell. Substitution
of (5.3.2) into (5.3.1) leads to the following 3n simultaneous equations of wave amplitudes Usα(k)

ω2(k)Usα(k) =
∑

s′β

Dsα,s′β(k)Us′β(k), (5.3.3)
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where

Dsα,s′β(k) = (MsMs′)−1/2
∑

l

V0sα,l′s′βeik·l. (5.3.4)

Equation (5.3.3) may be expressed in a matrix form

ω2(k)U(k) = D(k)U(k), (5.3.5)

where D(k) is a 3n × 3n square matrix called the dynamic matrix, and U(k) is a 3n × 1 column
matrix representing the eigenvector of the vibrational state.

As usual, the eigenfrequencies in (5.3.5) are determined by the secular equation

‖D(k) − ω2(k)I‖ = 0, (5.3.6)

where I is a 3n × 3n unit matrix. There are 3n eigenfrequencies ω2
j (k), for j = 1, . . . , 3n. Because

the dynamic matrix D(k) is Hermitian, i.e.,

Dsα,s′β(k) = D∗
s′β,sα(k),

and because there are some symmetric properties, such as D(k) = D(k + G), D(k) = D(−k),
D(k) = D(gk) (here g is a element of point group in real space) all the frequencies are real and
satisfy the corresponding symmetric properties. After the eigenfrequencies ω2

j (k) are known, the
corresponding eigenvectors Usα,j(k) can be extracted from (5.3.3).

Furthermore, taking into account that there are 3n wavelike solutions for each k, and 3nN
independent solutions in total, we can write the general solution of the atomic displacement as a
superposition of the independent special solutions

ulsα = (NMs)
−1/2

∑

kj

Usα,j(k) exp{i[k · l − ωj(k)t]}. (5.3.7)

This is the Fourier expansion for the displacement, where the time-dependent factor exp[−iωj(k)t]
is added for completeness.

In general, N is a large number and (5.3.1) is actually the infinite set of coupled equations which
were reduced to 3n equations (5.3.3) by the periodicity. 3nN eigenfrequencies form continuous
curves as a function of k and for ω = ωj(k) (j = 1, . . . , 3n) there are 3n branches of the dispersion
curve.

To understand the physical properties of lattice waves, it is convenient to study a simple example:
A linear diatomic chain. Two kinds of atoms with different masses, M1 and M2, are arranged
alternately to compose a one-dimensional periodic lattice with the same atomic spacing a. There
are two atoms in each primitive cell and the size of the cell is 2a. It is assumed that there are only
nearest-neighbor forces with a same force constant. The potential energy is of the form

V =
1

2

∑

m

β(um − um+1)
2, (5.3.8)

where β represents the force constant.
The equation of motion become

M1
d2

dt2
u2m+1 = −β(2u2m+1 − u2m − u2m+2),

M2
d2

dt2
u2m+2 = −β(2u2m+2 − u2m+1 − u2m+3). (5.3.9)

We substitute a set of trial solutions

u2m+1 = U1e
i[k(2m+1)−ωt], u2m+2 = U2e

i[k(2m+2)−ωt] (5.3.10)
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into (5.3.9) and get the secular equations

−ω2M1U1 = −2βU1 + 2β cos(ka)U2,

−ω2M2U2 = −2βU2 + 2β cos(ka)U1. (5.3.11)

The eigenfrequencies can be obtained from the determinant

∣

∣

∣

∣

∣

2β − M1ω
2 −2β cos(ka)

−2β cos(ka) 2β − M2ω
2

∣

∣

∣

∣

∣

= 0. (5.3.12)

There are two eigenfrequencies as functions of wavevector k

ω2
± = β

(

1

M1
+

1

M2

)

± β

{

(

1

M1
+

1

M2

)2

− 4 sin2(ka)

M1M2

}
1
2

. (5.3.13)

The results of (5.3.13) are shown in Fig. 5.3.1. There are two branches, one is called the acoustic
mode and the other the optical mode. These are two pass-bands. There are also two stop-bands,
one lies between these two branches, the other lies above the optical branch. Within the pass-bands,
k is real, and the lattice wave propagates without attenuation; within the stop-bands, k = α + iβ, is
complex, and its imaginary part introduces attenuation. The frequency gap between acoustic and
optical modes is surely due to the difference between M1 and M2: When the difference is reduced,
the width of the gap decreases, disappearing when M1 = M2. However, the optical branch may
remain in the case where the unit cell contains more than one atom of the same species at different
positions. The high frequency cutoff is due to the discrete structure of crystal lattice.

k0 π/2a-π/2a

ω

Figure 5.3.1 Pass-band and stop-band for a linear diatomic lattice.

5.3.2 Frequency Spectrum of Lattice Waves

In discussing the physical properties involved in the vibration of crystals, it is always necessary
to know the frequency distribution function g(ω), which is defined as the fraction of vibrational
frequencies ω per unit frequency interval. It can be written formally as

g(ω) = lim
∆ω→0

1

∆ω

ω≤ωj(k)≤ω+∆ω
∑

j

∑

k

=
∑

j

∑

k

δ(ω − ωj(k)). (5.3.14)

Because there are 3nN eigenfrequencies in total, g(ω) satisfies the condition

∫ ∞

0

g(ω)dω = 3nN. (5.3.15)
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As the allowed wavevectors k are closely spaced, the summation over k in (5.3.14) may be
replaced by an integration using the well-known relation

∑

k

→ Ω

(2π)3

∫

BZ

dk, (5.3.16)

where Ω is the volume of the crystal, and then (5.3.14) becomes

g(ω) = lim
∆ω→0

1

∆ω

Ω

(2π)3

∑

j

∫

ω≤ωj(k)≤ω+∆ω

dk. (5.3.17)

The volume integral over k may be converted to a surface integral. Let dS be an elementary area
on a constant frequency surface S corresponding to frequency ω. Considering that ∇kωj(k) is the
gradient of the frequency function in k-space, we may write

∆k = ∆ω/|∇ωj(k)|,

thus
∫

ω≤ωj(k)≤ω+∆ω

dk =

∫

S

dS∆k = ∆ω

∫

S

dS

|∇ωj(k)| . (5.3.18)

With this result, (5.3.17) becomes

g(ω) =
∑

j

gj(ω) =
Ω

(2π)3

∑

j

∫

S

dS

|∇ωj(k)| . (5.3.19)

This formula is useful in the theory of spectra of lattice modes, as well as of electron states. At
|∇ωj(k)| = 0, the integrand is divergent; g(ω) becomes singular at this point, which is known as a
van Hove singularity.

The frequency distribution g(ω) is an important quantity, especially as it is related to several
thermodynamic properties. However, it is difficult to get a general expression for the frequency
distribution function, and many results are based upon numerical calculations. To do this we solve
(5.3.5) for a suitably chosen mesh of values of k, and find how many values of ω(k) fall into each
range, ∆ω.

There are two approximate approaches which have proved to be effective in some contexts. The
first is the Einstein model. Before the theory of lattice dynamics, one of the most elementary ideas
to discuss the motion of atoms in a solid is the Einstein model. In this model each atom vibrates like
a simple harmonic oscillator in the potential well of the force fields of its neighbors. The excitation
spectrum of the crystal then consists of levels spaced a distance �ωE apart, where ωE is the Einstein
frequency, i.e., the frequency of oscillation of each atom in its potential well. Then its frequency
spectrum is

g(ω) = 3nNδ(ω − ωE). (5.3.20)

This model is useful only in a few cases especially at relatively high temperature, when the assump-
tion that the various atoms vibrate independently is justified.

The second is the Debye model for the specific heat of solids. To study this we shall go from
a discrete lattice to a continuum. We may note that, of the 3n branches of the dispersion curves,
the three acoustic branches approach zero frequency as k approaches zero. This corresponds to the
case where the wavelength is very long and one may disregard the atomic details and treat the solid
as an isotropic continuum. Such vibrations are referred to as elastic waves, which have dispersion
relations:

ωl = vlk, ωt = vtk, (5.3.21)

where subscripts l and t distinguish the longitudinal from the transversal modes. From (5.3.16), we
can write for each mode

g(ω)dω =
Ω

(2π)3
4πk2dk =

Ω

(2π)3
4π

(ω

v

)2 dω

v
,
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and get the frequency distribution function

g(ω) =
Ω

2π2

ω2

v3
. (5.3.22)

Because there exist three different modes simultaneously, one longitudinal and two transverse,
(5.3.22) must be modified into

g(ω) =
Ω

2π2

(

1

v3
l

+
2

v3
t

)

ω2. (5.3.23)

The Debye model is effective for thermodynamic properties at low temperature, especially the T 3

temperature dependence of the low temperature specific heats of solids. In the model calculation,
we need to know the range of frequency. The lower limit is evidently ω = 0. The upper cut-off
frequency can be determined by requiring that the total number of modes be equal to the number
of degrees of freedom for the solid. From

∫ ωD

0

g(ω)dω = 3nN, (5.3.24)

where the cutoff frequency, denoted by ωD, is called the Debye frequency, which can be determined
by substituting (5.3.23) into (5.3.24). The result is

ωD =

(

6π2nN

Ω

)1/3

va, (5.3.25)

where va is defined as 3/v3
a = (1/v3

l +2/v3
t ). The Debye characteristic temperature θD is determined

by the relation θD = �ωD/kB. The physical interpretation of θD is as follows: For T > θD, all lattice
waves are excited, while for T < θD, only the low frequency lattice waves are excited. This explains
the T 3 law for specific heats of solids at low temperatures.

5.3.3 Elastic Waves in Periodic Composites: Phononic Crystals

The propagation of elastic or acoustic waves in inhomogeneous media is an important problem
in both geophysics and solid state physics. Attention is directed to the question of possible gaps
(i.e., stop-bands) for elastic wave propagation in periodic media. It is difficult for elastic waves to
have transmission gaps in inhomogeneous media, because there are both transverse and longitudinal
modes, each of which must develop stop-bands overlapping with each other in order for a total
spectral gap to appear. The overlapping of the different characteristic stop-bands is complicated by
the different velocities for longitudinal and transverse waves. Thus it is a challenging problem to try
to find spectral gaps for elastic waves.

The elastic wave equation for a medium that is locally isotropic is

ρ(r)
∂2uα

∂t2
=

∂

∂xα

(

λ(r)
∂uβ

∂xβ

)

+
∂

∂xβ

[

µ(r)

(

∂uα

∂xβ
+

∂uβ

∂xα

)]

, α, β = 1, 2, 3, (5.3.26)

where uα are the Cartesian components of the displacement vector u(r), and xα are the Cartesian
components of the position vector r; λ(r) and µ(r) are the Lamé coefficients, and ρ(r) is the
density; summation over repeated indices is implied. The coefficients λ(r), µ(r), and ρ(r) are
periodic functions of r, such as

λ(r + l) = λ(r), µ(r + l) = µ(r), ρ(r + l) = ρ(r), (5.3.27)

and they can all be expanded in a Fourier series. As a result of the common periodicity of all the
coefficients in (5.3.26), its eigensolutions, according to the Bloch theorem, can always be chosen so
as to satisfy the relation u(r) = Uk(r) exp(k · r), where k is restricted to the first BZ and Uk(r) is
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also a periodic function of r, so it can be expanded in Fourier series. We then obtain

ω2cuα,k+G =
∑

G′







∑

β,G′′

ρ−1
G−G′′ [λG′′−G′(k + G′)β(k + G′′)α

+ µG′′−G′(k + G′)α(k + G′′)β ]uβ,k+G′

+
∑

G′′



ρ−1
G−G′′µG′′−G′

∑

β

(k + G′)β(k + G′′)β



uα,k+G′







,

(5.3.28)

where c is the acoustic velocity and G are vectors of the reciprocal lattice. If the infinite series in
(5.3.28) are approximated by a sum of N reciprocal vectors, (5.3.28) is reduced to a 3N ×3N matrix
eigenvalue equation for the 3N unknown coefficients uα,k+G. The number N is increased until the
desired convergence is achieved.
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Figure 5.3.2 shows the theoretically calculated bandgaps for the propagation of elastic waves in
a three-dimensional periodic composite, Fig. 5.3.3 shows the bandgaps found experimentally in a
two-dimensional periodic composite. These artificial structures with bandgaps for the propagation
of acoustic waves are called phononic crystals.

§5.4 Electromagnetic Waves in Periodic Structures

We now consider electromagnetic waves propagating in a medium characterized by a spatially
dependent dielectric constant ǫ(r). For simplicity, ǫ(r) is assumed to be a scalar function of position.
Here we are only concerned with nonmagnetic media, so µ is a constant, simply µ = 1. We shall
also assume that there is a periodic variation in the dielectric constant satisfying equation (5.1.6).

5.4.1 Photonic Bandgaps in Layered Periodic Media

Before considering more complicated artificial periodic dielectric structures, it is instructive to
investigate layered periodic media. We consider a situation where there are two kinds of slabs with
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thicknesses d1 and d2 arranged alternatively with dielectric constants ǫ1 and ǫ2, respectively as
shown in Fig. 5.4.1(a). We assume that the stacking direction is z, and the x-y plane is infinite and
homogeneous. Electromagnetic wave propagation in this system can be treated as a one-dimensional
problem, because it is trivial for waves along the x and y directions.

k

d1 d2

n1 n2

d

π/d 2π/d

(a) (b)

ω

l l+1

Figure 5.4.1 (a) Layered periodic medium composed with two kinds of slabs with thicknesses d1 and d2;
(b) The dispersion relation for a one-dimensional periodic dielectric structure.

Let E = eE , where e is the unit vector, then wave equation (5.1.13) can be reduced to

d2

dz2
E(z) +

ω2

c2
ǫ(z)E(z) = 0. (5.4.1)

The unit cell is composed of slab 1 and slab 2, so that the lattice spacing is d = d1 + d2. Then the
periodicity of the dielectric constant can be written as

ǫ(z + d) = ǫ(z), (5.4.2)

which will lead the solution of (5.4.1) to have the Bloch form

E(z + d) = E(z)eikd. (5.4.3)

Further, we write the solutions in slabs 1 and 2 of the lth unit cell and slab 1 of the (l + 1)th
unit cell as follows:

E(1)
l (z) = Ale

iq1z + Ble
−iq1z,

E(2)
l (z) = Cle

iq2z + Dle
−iq2z, (5.4.4)

E(1)
l+1(z) = Al+1e

iq1z + Bl+1e
−iq1z,

where we define q1 =
√

ǫ1ω/c = n1ω/c, q2 =
√

ǫ2ω/c = n2ω/c, with n1 and n2 the indices of
refraction. Al, Bl Cl and Dl are the oscillation amplitudes of the electric field.

For convenience, we take the interface at the left hand side of each slab as its local coordinate
origin z = 0, then using the continuity conditions of E and dE/dz at boundaries, we can find that

(

Al+1

Bl+1

)

= T

(

Al

Bl

)

, (5.4.5)

where T is a unimodular 2 × 2 transfer matrix with elements

T11 = eiq1d1

[

cos(q2d2) +
i

2

(

n1

n2
+

n2

n1

)

sin(q2d2)

]

,

T12 = eiq1d1
i

2

(

n1

n2
− n2

n1

)

sin(q2d2)

T21 = T ∗
12, (5.4.6)

T22 = T ∗
11.
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Thus (5.4.3) is transformed into
(

Al+1

Bl+1

)

= eikd

(

Al

Bl

)

. (5.4.7)

Substituting this into (5.4.5), we have

(T − eikdI)

(

Al

Bl

)

= 0, (5.4.8)

where I is the unit matrix. If we consider the reverse process to get Al−1, Bl−1 from Al, Bl, we can
obtain

(T−1 − e−ikdI) =

(

Al

Bl

)

. (5.4.9)

Combining these two expressions, we obtain

cos kd =
1

2
(T + T−1) =

1

2
TrT . (5.4.10)

Finally, we have the transcendental equation

cos k(d1 + d2) = cos
n1ωd1

c
cos

n2ωd2

c
− 1

2

(

n1

n2
+

n2

n1

)

sin
n1ωd1

c
sin

n2ωd2

c
, (5.4.11)

from which the dispersion relation for electromagnetic wave propagation in the one-dimensional
periodic dielectric structure is determined. The numerical result is shown in Fig. 5.4.1(b). It is clear
that there are pass-bands and stop-bands for certain frequencies ω: The stop bands appear at the
boundaries of the Brillouin zones.

5.4.2 Dynamical Theory of X-Ray Diffraction

As we have stated in §5.1.3, an early, systematic investigation of electromagnetic waves in periodic
structures was the study of X-ray diffraction in three-dimensional crystals. A simple theory, known
as kinematical theory, is often used. This theory is correct for small or imperfect crystals. For
large and perfect crystals, multiple scattering cannot be neglected, because the crystal lattice is very
regular over a large volume, the interaction between the incident and scattered waves is enhanced.
The consequences of the interaction between the incident and the scattered waves depend mainly on
the dynamical equilibrium between the resultant X-ray wavefield and the scattering atoms within
the crystal. Therefore a dynamical theory of X-ray diffraction has been developed to account more
precisely for this mechanism of diffraction. In contrast, the kinematical theory is not self-consistent
and violates the principle of conservation of energy.

To describe the wavefield in a crystal, (5.1.13) is written in the form of conventional diffraction
physics as

∇2D + K2D + ∇×∇× [χ(r)D] = 0, (5.4.12)

where ω and K are the frequency and wavevector, respectively, of the electromagnetic wave in
vacuum, with K = |K| = ω/c. It is noted that χ(r) is the most important factor that determines
the behavior of electromagnetic waves in a crystal. The crystal is now considered as a continuous
distribution of electrons around the atomic sites. The scattering of an incident electromagnetic
wave from any nucleus is negligibly small, due to its larger mass. Only scattering from the electronic
distribution contributes to the resultant X-ray wavefield. Using a simple model, it can be shown
that

χ(r) = − e2

mω2
ρ(r), (5.4.13)

where ρ(r) is the electron density, about 1023–1025 cm−3, so in the range of X-ray frequencies, we
find that χ ≈ 10−6–10−4. This gives a dielectric constant ǫ ≈ 1. For such a small χ, or nearly
spatially homogeneous dielectric constant, it is difficult to show the frequency gaps clearly. But we
still expect that there is something arising from the periodicity of χ(r).
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The quantity χ(r) is a three-dimensional periodic function with the same periods as those of the
crystal lattice and can be be expressed as a Fourier series

χ(r) =
∑

G

χGe−iG·r, (5.4.14)

with

χG = Ω−1
c

∫

Ωc

χ(r)eiG·rdr = − 4πe2

mω2Ωc
FG, (5.4.15)

where Ωc is the volume of a unit cell, FG the structure factor defined as

FG =
∑

j

fje
iG·rj , (5.4.16)

and fj is the atomic scattering factor of the atom at rj .
The solution of (5.4.12) is a Bloch function, which can be expressed as a superposition of plane

waves
D(r) =

∑

G

DGeikG·r, (5.4.17)

where kG is the wavevector of the G reflection satisfying the Bragg equation, i.e.,

kG = k0 + G, (5.4.18)

where k0 is the incident wavevector on the crystal. The coefficients DG are complex vectors. In
this case, the Bloch wave describes an infinite number of plane waves with wavevector kG. D0

is the electric displacement of the incident beam. In other words the DG represent the electric
displacements of the diffracting beams. Substituting (5.4.14) and (5.4.17) into (5.4.12), we obtain
the fundamental equation

(

K2 − k2
G

)

DG −
∑

G′

χG−G′ [kG × (kG × DG′)] = 0. (5.4.19)

As G can be an infinite number of reciprocal lattice vectors, (5.4.19) represents an infinite set of
equations.

Usually, in X-ray diffraction, the two-wave approximation is adopted, because only in the case
of kG very near to K, does the amplitude DG have a large contribution. Thus, in addition to the
incident beam D0, there is only one diffracted wave DG to be taken into account, so

(k2
0 − K2)D0 = k2

0(χ0D0 + χ−GDG),

(k2
G − K2)DG = k2

G(χGD0 + χ0DG). (5.4.20)

It is noted that χ−G also appears in the expression. This is easy to understand, because we should
consider the interaction between the incident beam and the diffracted beam by dynamic diffraction
theory, and the effect of the crystalline plane −G is also involved due to multiple scattering.

In general, there are two polarization states for an electric displacement vector D: σ polarization
is perpendicular to the plane of incidence, while π polarization is in the incident plane. Consequently
equations (5.4.20) are transformed into scalar equations

(k2
0 − K2)D0 = k2

0(χ0D0 + Cχ−GDG),

(k2
G − K2)DG = k2

G(CχGD0 + χ0DG), (5.4.21)

where C = 1 for σ polarization, C = cos 2θ for π polarization and 2θ is the angle between Dπ
0 and

Dπ
G.
We now introduce the index of refraction n, which equals the ratio of the wavenumber in the

crystal to that in vacuo, i.e.,

n =
k

K
= 1 +

1

2
χ0 =

(

1 − e2〈ρ(r)〉
mω2

)

< 1. (5.4.22)
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Again we introduce the approximations

k2
0 − K2 − k2

0χ0 ≃ k2
0 − K2

(

1 +
1

2
χ0

)2

= k2
0 − k2,

k2
G − K2 − k2

Gχ0 ≃ k2
G − k2, (5.4.23)

k0 + k ≃ kG + k ≃ 2K.

The condition for (5.4.21) having nonzero solution is the coefficient determinant takes zero, i.e.,

∣

∣

∣

∣

∣

k0 − k − 1
2CKχ

−G

− 1
2CKχ

G
kG − k

∣

∣

∣

∣

∣

= 0. (5.4.24)

Then we obtain

(k0 − k)(kG − k) − 1

4
C2K2χ

−G
χ

G
= 0. (5.4.25)

This gives the important dispersion relation in X-ray dynamical diffraction theory and is a hyperbolic
equation for the two variables k0 and kG. If the wavevectors are all real, i.e., the absorption of
waves by the media is ignored, we can get the equal energy surface, called the dispersion surface,
in reciprocal space. Figure 5.4.2 shows the dispersion surface in the two-wave approximation. In
Fig. 5.4.2(a) the reciprocal wavevector points from O to G, where O and G are the end points of k0

and kG respectively, so kG = k0 + G is satisfied. k0 and kG have a common starting point called
the tie point. The locus of the tie point, such as P in Fig. 5.4.2(b), is composed of two hyperbolic
surfaces of rotation labelled as S(1) and S(2). Due to the difference of polarization factor C, each of
these two dispersion surfaces is further divided into two branches, which are denoted by dashed line
(σ polarization) and solid line (π polarization). After knowing the location of the tie point P on a
dispersion surface, the directions and the amplitude ratio of k0 and kG can be determined under
dynamical diffraction. We must emphasize that the travelling waves under dynamical diffraction
conditions are not plane waves, but Bloch waves modulated by periodic atomic planes, also the
wavevector directions of incident waves and diffraction waves can deviate a little from the condition
given by the Bragg equation. It should be noted that the dispersion surface in k space is divided
into two parts, the gap between these two corresponds to the gap in the electronic energy band.

We are concerned with whether the gap can be tested by experiment. Because measurements for
X-ray diffraction on crystals are always performed outside crystals, the properties of the crystal sur-
faces must influence the experimental results. We shall discuss surface-related problems in Chap. 7.
Here we consider only the situation where the waves continuously penetrate through the surfaces,
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and we discuss the continuity of wavevectors. If τ is an any unit vector at a surface, the continuity
condition at the interface for the waves on both sides can be expressed as

exp(−iK · τ ) = exp(−ik0 · τ ) = exp(−ikG · τ ). (5.4.26)

That is, the tangential component of a wavevector is required to be continuous across the boundary,
but the normal component permits a discontinuity, i.e.,

K − k0 = K − kG = δkn, (5.4.27)

where n is the unit vector along the normal direction of the surface across the boundary, and δkn

represents the difference of surface wavevectors outside and inside the surface.
If the normal to the crystal surface is parallel to the reciprocal lattice vector G, it is called the

symmetric Bragg case in diffraction physics. We can imagine that the end point of an incident
wavevector K in vacuum moves along the curve AB in Fig. 5.4.2(b), corresponding to the variation
of incident angle. When it enters the dynamical diffraction regime, we draw a straight line from a
representative point on AB, such as I, parallel to the surface normal n. There are two intersecting
points, P ′ and P ′′, with one piece of dispersion surface, which are the two tie points connecting
the initial points k0 and kG in the crystal, while the segments IP ′ and IP ′′ correspond to the two
values of δkn satisfying (5.4.27). It is noted that as the Bragg condition is approached, this straight
line may fall into the gap, and not intersect with any piece of the dispersion surface. Then there
will be no excitation for k0 and KG in the crystal, so there is total reflection. The appearance of
total reflection in the Bragg case verifies the existence of an energy gap, although this gap is very
small and can be shown only under stringent experimental conditions.

5.4.3 Bandgaps in Three-Dimensional Photonic Crystals

As we have shown, it is very difficult for X-rays to show clear-cut bandgaps in real crystals. The
problem arises from the fact that the variation of their dielectric constants for X-rays in all mate-
rials is very small. However, there may be some three-dimensional systems which can show bands
and gaps for electromagnetic waves. These are artificial periodic structures. Due to the common
characteristics of waves, there may be ranges of frequencies in which no allowed modes exist for
electromagnetic wave propagation in these periodic structures. This type of frequency-wavevector
relation for electromagnetic wave propagation is referred to as the photonic band structure. This
relation depends on the details of lattice structure, i.e., the lattice constant, the shape of the embed-
ded dielectric object, the dielectric constants of the constituent materials, and the filling fraction,
which is the percentage of total crystal volume occupied by any one of the materials.

On the experimental side, artificial three-dimensional fcc dielectric structures, consisting of a reg-
ular array of spheres of one dielectric material embedded in a second one with a different dielectric
constant, were first used to create gaps in the photon density of states for microwaves. Measure-
ment of phases and amplitudes of electromagnetic waves through this photonic crystal map out the
frequency-wavevector dispersion relations, as shown in Fig. 5.4.3.b Real photonic band gaps must
display gaps for all directions in k space and in both polarizations.

Theoretically, photonic dispersion relations can be calculated equivalently by using the electric
displacement D, or the electric field E, or the magnetic field H , to establish the wave equations.
For consistency with the dynamical X-ray diffraction theory, we shall discuss the bandgaps in three-
dimensional (3D) photonic crystal using D. We begin again from (5.1.13). According to the Bloch
theorem, the electric displacement vector D(r) can be written in the form of a Bloch function

Dk(r) = uk(r)eik·r. (5.4.28)

The functions uk(r) are periodic in r with the same periodicity as χ(r). The corresponding eigen-
values are ω2(k), yielding the dispersion relation with band structure. The Bloch functions form
the basis set for the crystal momentum representation. Since uk(r) is periodic, it can be expanded

bE. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).
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in terms of plane waves with wavevectors G being reciprocal lattice vectors. Thus, Dk(r) can be
expanded as

Dk(r) =
∑

G

DGei(k+G)·r, (5.4.29)

where k is the Bloch momentum and lies within the first Brillouin zone (BZ). From ∇ · D = 0,
(5.4.29) gives

DG · (k + G) = 0. (5.4.30)

Substituting (5.4.29) into (5.1.13), yields matrix equations for the Fourier coefficient DG,

QGDG +
∑

G′

χG−G′

[

(k + G) · DG′(k + G) − |k + G|2DG′

]

= 0, (5.4.31)

where
QG = |k + G|2 − ω2/c2. (5.4.32)

Expressing DG in terms of Cartesian component, we get a secular determinant

∣

∣

∣

∣QGδG,G′δα,βχG′−G

[

(k + G′)α(k + G′)β − |k + G′|2δα,β

]∣

∣

∣

∣ = 0, (5.4.33)

α, β = x, y, z. Equation (5.4.33) can be solved numerically, if we prescribe the dielectric constants ǫa

inside the spheres and ǫb in the background. Taking N plane waves (N ≥ 300 gives good convergence)
it is a 3N × 3N order determinant, which will give 3N eigenmodes. Because electromagnetic waves
are transverse, there are two distinct helicity modes for each plane wave, i.e., 2N modes in total, so
N unphysical solutions should be discarded.

Figure 5.4.4 shows the numerical results for the entire photonic band structure for k along the
symmetry directions in the Brillouin zone.c This calculation was carried out with ǫa = 1, ǫb = 12.25.
Comparing this to Fig. 5.4.3, we see that they are very similar. But in Fig. 5.4.4, we cannot find
a true gap throughout the Brillouinn zone. Also, some discrepancies are found near the symmetry
points W and U: At W, the second and third bands are degenerate, and at U, a crossing of the
second and third band structures takes place. The reason for this discrepancy is simple: The
higher symmetry of the unit cells assumed by the theoretical calculation leads to the degeneracy of
the eigenfrequencies at W and U, but there are always imperfections in artificial photonic crystals
measured in experiments. Based on these considerations, it is natural to change the degeneracy by

cK. M. Leung and Y. E. Liu, Phys. Rev. Lett. 65, 2646 (1990).
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decreasing the symmetry of the unit cells in the fcc lattice, such as creating nonspherical “atoms”
by drilling holes. Then, a complete photonic bandgap can be found. It is understood that photonic
crystals are artificially fabricated structures; full bandgaps may be achieved and enhanced by some
fabrication techniques. However, for dielectric diamond structures, full photonic bandgaps can be
obtained easily even with spherical balls as the building blocks.

We have used the electric displacement D to deal with wave propagation in photonic crystals.
However, it is found that there are special advantages in using the magnetic field H to treat related
problems. The wave equation for H can be expressed as

∇×
[

1

ǫ(r)
∇× H(r)

]

=
(ω

c

)2

H(r). (5.4.34)

Introducing the operator Θ,

Θ ≡ ∇×
[

1

ǫ(r)
∇×

]

,

ΘH(r) =
(ω

c

)2

H(r). (5.4.35)

It is easy to verify that the operator Θ is Hermitian, so equation (5.4.35) is an eigenvalue problem
for H . To satisfy the series of operations to H(r) for the operator Θ, if H(r) is to really represent
permitted electromagnetic modes, it must simply equals the original H(r) times a constant. It is
not so simple when D(r) is used, so in theories for photonic crystals, it is more profitable to compute
H(r) at first, then by using the relation

E(r) =

[

− ic

ωǫ(r)

]

∇× H(r), (5.4.36)

one can obtain E(r). If ǫ(r) is periodically distributed, then H(r) has a Bloch form like

Hk(r) = H0e
i(k·r). (5.4.37)

Furthermore, E(r) or D(r) can be obtained. As an eigenvalue problem, the study of photonic
crystals is similar to band theory for electrons, except the Hamiltonian operator is replaced by Θ,
i.e.,

H ≡ − �
2

2m
∇2 + V (r) → Θ ≡ ∇×

[

1

ǫ(r)
∇×

]

.

The experimental study of photonic crystals began within the range of microwave frequencies,
because the wavelengths of microwaves are longer, so the unit cell size of photonic crystals can
be larger and easier to fabricate. In the 1990s, investigations were concentrated on the infrared
and visible range. Due to the possibility of photonic crystals to manipulate light propagation, and
applications in laser technology, especially optical communications, much is expected. From electro-
magnetic theory, there are no wavelength limitations in Maxwell equations to waves, so the behavior
of photonic crystals has scale invariance, ranging from the size of centimeters for microwaves to the
size of microns or submicrons for light waves, although the dispersion relations may be different for
electromagnetic waves with various wavelengths propagating in media. The difficulty in studying
photonic crystals lies in the experimental sample preparation. There are several preparation tech-
niques, among which two methods are often adopted: One is microlithography in planar technology;
the other is self assembly of equal spheres with small variance. The former is more suitable for two-
dimensional (2D) structures, but the latter can be used both for two- or three dimensions. There is
a colorful, natural precious stone, opal, formed in three dimensions by periodically arranged amor-
phous SiO2 spheres with the size of microns. As introduced in §4.1.1, in recent years the photonic
crystals fabricated by self-assembly are composed of either opal structure (micro spheres are the
medium with a high index of refraction), or the inverse opal structure (micro spheres are the voids
in a matrix with a high index of refraction).
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Figure 5.4.5 Amplitude of second harmonic waves versus optical path for a modulated structure satisfying
the quasi phase matching.

5.4.4 Quasi-Phase-Matching in Nonlinear Optical Crystals

Photonic crystals are artificially modulated by the indices of refraction in linear optics, but with
the advent of laser technology, a new era for nonlinear optics began. Under the strong electric field
of lasers, the electric polarization in crystals has not only a linear term, but also nonlinear terms,
such as

P = χE + χ(2)EE + χ(3)EEE + · · · , (5.4.38)

where χ(2) is a second-order nonlinear susceptibility, a third-order tensor. χ(3) is third-order non-
linear susceptibility, a fourth-order tensor. Because the value of χ(3) is smaller than that of χ(2) by
about five order of magnitudes, the term χ(3) is ignored in the following discussion.

The existence of the nonlinear polarization term leads to frequency conversion of laser light,
such as frequency doubling, sum frequency and difference frequency conversion. We will limit our
discussion to the frequency doubling of laser light, that is the production of light wave with frequency
2ω from light wave with frequency ω. It is not difficult to extend the discussion to sum frequency
and difference frequency conversion.

Consider a beam of monochromatic plane waves propagating in the x direction in a nonlinear
optical crystal,

E1 = e1E0E1 sin(ω1t − k1x),

where e1 is the unit vector of wave polarization, k1 = n1ω1/c = 2πn1/λ1. k1, n1, and λ1 are the
wavenumber, index of refraction, and wavelength of light waves at frequency ω1. This kind of light
will induce nonlinear polarization waves with frequency 2ω1 in the crystal

P (2ω1) = −1

2
χ(2)e1e1E2

1 cos(2ω1t − 2k1x).

The propagation velocity of the polarization waves in the crystal is

vP = 2ω1/2k1 = ω1/k1 = v1,

which is the same as the incident fundamental waves. The radiation of the induced dipoles at
frequency 2ω gives second harmonics, with strength proportional to root χ(2) as well as the square
of the intensity of the incident waves.

The second harmonic is actually the result of the superposition of two waves. One of them is the
forced wave

E′
2 = e′

2E ′
2 cos(2ω1t − 2k1x),

which is synchronized with the nonlinear polarization wave. The other is the free wave radiated by
these dipoles with the wave number k2,

E2ω = e2E2 cos(2ω1t − 2k2x),
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where k2 = 2ω1n2/c, and n2 is the index of refraction of the light wave with frequency ω2 = 2ω1

in the crystal. Due to dispersion in the medium, i.e., n2 �= n1), the forced wave and the free wave
propagate with different velocities, although they have same frequency, and so phase mismatching,
∆ = k2−2k1 results. The wave interference leads to a beat effect in space, so the wave amplitude will
be zero periodically. The spatial period for the beat is 2lc = 2π/∆k. It is obvious that the output of
the second harmonic will not increase with increasing size of crystal, and, in order to obtain a highly
efficient output, the problem of phase mismatching should be solved first. One effective method uses
the difference in indices of refraction for ordinary and extraordinary light in birefringent crystals to
compensate for the dispersion and realize phase-matching, i.e., ∆k = 0. The other, proposed by
Bloembergen in 1962, is to use artificial periodic structures composed of alternating positive and
negative nonlinear susceptibilities to realize quasi-phase-matching, i.e., the reciprocal lattice vector
G of a periodic structure can be used to compensate phase-mismatching ∆k, so

∆k = k2 − 2k1 = |G| =
π

lc
,

or more generally written in vector form
∆k = G.

Here 2lc is the spatial period for positive and negative layers with alternating nonlinear susceptibil-
ities, and lc is called coherence length for nonlinear optical media satisfying

lc =
λ

4(n2 − n1)
,

which is about a micron for normal nonlinear optical crystals.
Figure 5.4.5 shows the variation of the amplitude of frequency-doubled light as a function of

optical path in quasi-phase-matched and phase mismatched nonlinear optical crystals. The latter
shows the spatial beat effect and the former increases monotonically with crystal size. The output
of the second harmonic in the case of quasi-phase-matching can have the same order of magnitude
as in the case of phase matching, or even stronger, because the large nonlinear optical coefficients
of some crystals cannot be phase-matched at all. To realize quasi-phase matching, it is needed
to fabricate the crystal with a periodically alternating positive and negative ferroelectric domain
structure. The domain thickness is adjusted to lc, or an odd multiple of lc. The fabrication technique
may involve using impurity striation in crystal growth to induce alternating positive and negative
domain structures, or patterned electrodes to polarize a crystal.d

§5.5 Waves in Quasiperiodic Structures

Just as discussed above, electron waves, lattice waves and electromagnetic waves in periodic
structures are all Bloch waves, characterized by an extended state. On the other hand, we shall
see in Chap. 9 that waves in disordered structures exponentially decrease and are characterized by
localized states. In this section we will discuss wave propagation in quasicrystal structures. It is
clear that the structural features of a system will severely affect its physical properties. Because
quasiperiodicity is intermediate between periodicity and disorder, it is somewhat more difficult to
study. Loss of translation invariance means that the Bloch theory is ineffective, and the states may
not be extended. On the other hand, long-range order in quasiperiodic structures leads the waves
to be not strictly localized.

5.5.1 Electronic Spectra in a One-Dimensional Quasilattice

As a simple example, we investigate an electron moving in a Fibonacci lattice which is the
prototype of one-dimensional quasicrystals.e To study the electronic properties of one-dimensional

dFor the theoretical proposition for quasi-phase matching in nonlinear optical crystals, see J. A. Armstrong, N. Bloem-
bergen et al., Phys. Rev. 127, 1918 (1962); The experimental verification is discussed in D. Feng, N. B. Ming et al.,
Appl. Phys. Lett. 37, 609 (1980); and recent progress is found in N. B. Ming, Adv. Mater. 11, 1079 (1999).
eM. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020 (1987).
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quasilattices, the tight-binding model is used. The basic equation is

tiψi−1 + εiψi + ti+1ψi+1 = Eψi, (5.5.1)

where ψi and εi are, respectively, the probability amplitude and site potential of an electron being
on the site i, while ti is the transfer energy between sites i and i− 1. Usually, one lets either ti or εi

take two values in the quasiperiodic lattice, and lets the other be independent of i. Here we consider
the so called transfer model, in which the site potential εi = 0 for all i and two transfer energies tA
and tB are arranged in Fibonacci sequence.

To obtain the solution of (5.1.1), we adopt the periodic boundary condition. Then the structure
corresponds to a periodic chain whose unit cell is just the Fibonacci chain of the lth generation with
the number of sites is N = Fl. The ideal Fibonacci chain can be understood as the limit of infinite
l. Thus our treatment is based on (5.5.1) with εi = 0. If we define a transfer matrix

T (ti+1, ti) =

(

E/ti+1 −ti/ti+1

1 0

)

, (5.5.2)

and a column vector

Ψi =

(

ψi

ψi−1

)

, (5.5.3)

then equation (5.5.1) might be written in the form of a matrix

Ψi+1 = T (ti+1, ti)Ψi. (5.5.4)

By using sequential products of the matrices, (5.5.4) is written as

Ψi+1 = T (i)Ψ1, (5.5.5)

where

T (i) =

i
∏

j=1

T (tj+1, tj). (5.5.6)

To solve the problem, the key point is therefore to calculate the transfer matrix T (i). The Fibonacci
lattice permits an extremely effective method for doing this. When i is a Fibonacci number, T (i)
can be obtained recursively. Define Tl ≡ T (Fl), then

Tl+1 = Tl−1Tl, (5.5.7)

with T1 = T (tA, tA) and T2 = T (tA, tB)T (tB , tA). The transfer matrix for a general value i is
given by

T (i) = Tlj · · · Tl2Tl1 , (5.5.8)

where i = Fl1 + Fl2 + · · · + Flj and l1 > l2 > · · · > lj .
The recursion relation (5.5.10) gives a powerful calculational scheme. However, the essential

importance, rather, lies in the fact that it defines a nonlinear dynamical map and we can therefore
use the theories and concepts of dynamical systems. By defining χl = (1/2)trTl, one can show that

χl+1 = 2χlχl−1 − χl−2, (5.5.9)

which on successive iterations leads to a constant of the motion

I = χ2
l+1 + χ2

l + χ2
l−1 − 2χl+1χlχl−1 − 1, (5.5.10)

which is independent of l. It should be understood that a large I implies strong quasiperiodicity. It
is easy to show for the transfer model that

I =
1

4

(

tB
tA

− tA
tB

)2

.
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For one-dimensional quasicrystals, the electronic energy spectra in general have the character-
istics of the Cantor set with three branches, and the wavefunctions often display the self-similar
amplitude distributions. It reminds us of the devil’s staircase shown in Fig. 4.3.8. Figure 5.5.1(a)
gives the integrated density of states (IDOS) of a Fibonacci lattice, the platforms corresponding
to the energy gaps. Figure 5.5.1(b) shows the self-similar wavefunction at the center of the energy
spectrum. This wavefunction is neither an extended state, nor a localized state, but a critical state.
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Figure 5.5.1 IDOS for one-dimensional Fibonacci lattice (a); a self-similar wave function (b).

In general,f there are three different types of energy spectrum: Absolute continuous, point-like
and singular continuous. The absolute continuous spectrum is characterized by a smooth density of
states g(E), while the point-like spectrum is a set of δ functions defined on a countable number of
points {Ei}. However, in the singular continuous spectrum the number of states whose energies are
less than a specified energy E is continuously increasing but non-differentiable at any E, just like the
Cantor set. Therefore, the density of states is not well-defined in the singular continuous spectrum.
Nevertheless, the total number of states with energies less than E, i.e., the integrated density of
states (IDOS), is always well-defined just as in the absolutely continuous spectrum. Wavefunctions
are also classified into three kinds: Extended, localized, and critical. An extended state is defined
by a wavefunction with asymptotical uniform amplitude as

∫

|r|<L

|ψ(r)|2dr ∼ Ld,

where L is the size of the sample and d the spatial dimension. A localized state is characterized by
a square integrable wavefunction, i.e.,

∫

|r|<∞
|ψ(r)|2dr ∼ L0.

A critical state is, however, different from the former two kinds, a typical example of which is a
power-law function ψ(r) ∼ |r|−ν , with ν ≤ d/2, so

∫

|r|<L

|ψ(r)|2dr ∼ L−2ν+d, (0 < 2ν < d).

These three different kinds of wavefunctions, namely extended state, localized state and critical
state, may correspond to three different energy spectra, absolute continuous spectrum, point-like
spectrum and singular continuous spectrum, respectively.

The transfer matrix method used here is not limited to the treatment of electronic structure, but
can also be applied to that of lattice vibrations in one-dimensional quasiperiodic structures.

fH. Hiramoto and M. Kohmoto, Int. J. Mod. Phys. B 6, 281 (1992).
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5.5.2 Wave Transmission Through Artificial Fibonacci Structures

By molecular-beam epitaxy and lithography techniques, artificial Fibonacci structures can be
fabricated.g These finite structures can be used to study the wave behavior in them experimentally
as well as theoretically.h

Now we consider electromagnetic wave passing through a dielectric Fibonacci superlattice which
is composed of two types of layers A and B with different dielectric constants. Consider an interface
between two layers. The electric field for the light in layer A is given by

EA = E
(1)
A exp[i(k

(1)
A · r − ωt)] + E

(2)
A exp[i(k

(2)
A · r − ωt)]. (5.5.11)

The electric field in layer B is simply the same expression with subscript A replaced by B. Consider
a polarization which is perpendicular to the plane of the light path (TE wave): The appropriate
boundary conditions at the interface gives

E(1)
A + E(2)

A = E(1)
B + E(2)

B ,

nA cos θA

(

E(1)
A − E(2)

A

)

= nB cos θB

(

E(1)
B − E(2)

B

)

, (5.5.12)

where nA and nB are the indices of refraction of layers A and B, respectively, and the angles θA and
θB are the incident and reflected angles.

It is convenient to choose two independent variables as

E+ = E(1) + E(2), E− = (E(1) − E(2))/i, (5.5.13)

then from (5.5.17), we have the matrix equation

(

E+

E−

)

B

= TBA

(

E+

E−

)

A

, (5.5.14)

where TBA is

TBA =

(

1 0
0 nA cos θA/nB cos θB

)

. (5.5.15)

Now we show that TAB = T−1
BA.

The matrices TBA and TAB represent light propagation across interfaces B ← A and A ← B,
respectively. The propagation within one layer of type A is represented by

TA =

(

cos δA − sin δA

sin δA cos δA

)

, (5.5.16)

and the same expression for TB in which δA is replaced by δB. The phases are given by

δA = nAkdA/ cos θA, δB = nBkdB/ cos θB, (5.5.17)

where k is the wave number in vacuum, and dA and dB are the thicknesses of the layers.
For one layer A, and two layers BA, the light propagation are given by

T1 = TA, T2 = TABTBTBATA, (5.5.18)

gOne-dimensional quasiperiodic semiconductor superlattices were fabricated experimentally: Two units A and B
composed of GaAs/AlAs were arranged in the Fibonacci lattice, X-ray and Raman scattering spectra show the
structural features of this kind of quasiperiodic multilayers, as in R. Merlin, et al. Phys. Rev. Lett. 55, 1768 (1985);
quasiperiodic metallic superlattices can also be fabricated by sputtering technique, and even extended to k-component
case, see A. Hu, S. S. Jiang et al., SPIE. 22, 2364 (1994).
hFor wave transmission through Fibonacci structures, there are many theoretical studies, for electromagnetic wave
transmission, see M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev. Lett. 58, 2436 (1987); phonon transmission,
see S. Tamura, J. P. Wolfe, Phys. Rev. B 36, 3491 (1987); electron transmission, see G. Jin, Z. Wang, et al. J Phys.
Soc. Jpn. 67, 49 (1998).
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and the recursion relation (5.5.10) is applicable. We can also get a constant of motion, defined in
(5.5.13), as

I =
1

4
sin2 δA sin2 δB

(

nA cos θA

nB cos θB
− nB cos θB

nA cos θA

)2

. (5.5.19)

For the case nA = nB there is no quasiperiodicity and one has I = 0 as expected.
The transmission coefficient T̃ is given in terms of the matrix Tl as

T̃ = 4/(|Tl|2 + 2), (5.5.20)

where |Tl|2 is the sum of the squares of the four elements of Tl. T̃ is a quantity that can be
measured experimentally. Consider the simplest experimental setting: Taking the incident light to
be normal, i.e., θA = θB = 0, and also choosing the thickness of the layers to give δA = δB = δ,
i.e., nAdA = nBdB . For δ = mπ, corresponding to a 1/2 wavelength layer, we have I = 0 and the
transmission is perfect, while for δ = (m + 1

2 )π, corresponding to a 1/4 wavelength layer, I is a
maximum and the quasiperiodicity is most effective. These cases are shown in Fig. 5.5.5. These
characteristics have been verified experimentally.i
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Figure 5.5.2 The transmission coefficient T̃ versus the optical phase length of a layer δ for a Fibonacci
multilayer F9 (55 layers). The indices of refraction are chosen as nA = 2 and nB = 3. From M. Kohmoto
et al., Phys. Rev. Lett. 58, 2436 (1987).

As noted, there are different quasi-reciprocal vectors in a Fibonacci structure composed of posi-
tive and negative ferroelectric domains, so this can be used to extend the quasi-phase-matching of
nonlinear optical crystals to the case of more than one reciprocal lattice vector, to compensate the
phase mismatching in two nonlinear optical processes, to give rise to multi-wavelength frequency
doubling and high efficiency third-order harmonic generation of light.j

5.5.3 Pseudogaps in Real Quasicrystals

In §5.5.1, we discussed the energy spectrum and wavefunctions of one-dimensional quasilattices
in the tight-binding approximation and with the transfer matrix method. This approach can be
extended to artificially layered quasiperiodic structures, the theoretical predictions can be in good
agreement with experimental results, as is exemplified in §5.5.2. It is a pity that the approach which
is so efficient in the treatment of one-dimensional quasiperiodic lattices cannot be applied to the
study of the electronic behavior of real three- or two-dimensional quasicrystals. The tight-binding
approximation has also been used in the treatment of the two- or three-dimensional Penrose lattice,
but it is necessary to adopt the crystalline approximation to fulfill periodic boundary conditions,

iW. Gellermann et al., Phys. Rev. Lett. 72, 633 (1994).
jS. Zhu, Y. Zhu, et al., Phys. Rev. Lett. 78, 2752 (1997); S. Zhu, et al. Science 278, 843 (1997).
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then solve the wave equations by numerical methods. Theoretical results from these calculations
still cannot be expected to illuminate experimental measurements. It is noted that real quasicrystals
are all alloys, so if another approach, i.e., the nearly-free electron model, is adopted, we may get
some intuitive insights which may help us to elucidate the electronic structures and properties of
quasicrystals.

We have already seen that electrons in a perfect crystal will contribute strong Bragg diffraction
peaks when the tuning condition is satisfied. This is the physical reason for the appearance of the
energy gaps, and the peaks and valleys in the curves of g(E) versus E. In a three-dimensional
quasicrystal, the reciprocal lattice, as well as the Brillouin zone (BZ), are absent. However, sharp
diffraction spots with icosahedral symmetry appear in the diffraction pattern. From these strong
diffraction spots, a series of quasi-reciprocal vectors may be deduced and from the perpendicular
bisecting planes of these quasi reciprocal vectors, a nearly spherical polyhedron can be constructed
and taken as the quasi-Brillouin zone (QBZ).k Figure 5.5.3 shows QBZs for two icosahedral phases.

(a) (b)

Figure 5.5.3 QBZ for two i phases. (a) Al-Mn alloys; (b)Al-Cu-Li alloys.

Why quasiperiodic order is stable is an interesting problem. There is sufficient evidence to
indicate that the stability of quasicrystals is intimately related to their electronic structure. This
means that the icosahedral structure may be established through energy considerations when the
Fermi surface (FS) intersects the quasi Brillouin zone boundaries, where a pseudogap is produced in
the DOS. The Fermi level situated near the minimum of the pseudogap tends to lower the electron
energy. The results of theoretical calculation of the DOS curves are shown in Fig. 5.5.4 which
exhibits very pronounced deviations from the free electron parabola and the singularities are much
stronger than those found in the fcc Al calculation. The presence of peaks and valleys in the density
of states suggest the stability of the quasicrystal relative to various competing crystalline phases
varies rapidly with the average s-p electron concentration. For concentration at which the Fermi
level is close to a minimum in the density of states, as observed in Fig. 5.5.4, the quasicrystal should
be the most stable.

The origin of the pseudogap is attributed to strong electron scattering by the quasi-lattice and
the touching of the FS with the QBZ boundaries, and the pseudogap causes an enhancement of
cohesive energies. The existence of the pseudogap at the Fermi energy is generic in a system of
alloys as crystalline approximants for quasicrystals. The pseudogap at the Fermi energy suggests
the gap-opening mechanism by a touching of the Fermi surface at the effective Brillouin zone, which
increases the cohesive energy. This band mechanism of enhancing the stability is known as the
Hume–Rothery mechanism for alloys. It works more efficiently in quasicrystals because the effective
Brillouin zone is almost spherical in a polyhedron shape.

The electronic structures of quasicrystals Al-Cu-Li is shown in Fig. 5.5.5. There is a small dip
of the pseudogap at the Fermi surface. However, low values of the density of states at the Fermi
level are observed in the crystalline as well as in the quasicrystalline phases. Hence, we conclude
that although the pseudogap is a generic property of the quasicrystal, it is not a specific property
distinguishing the quasiperiodic from the periodic or aperiodic phases. Crystalline, quasicrystalline,
and amorphous alloys have to be considered as Hume–Rothery phases with a varying degree of
bandgap stabilization.

The ordered icosahedral phase is the typical three-dimensional quasicrystal, which was discovered
first. After this several two-dimensional quasicrystals were discovered in sequence, including the d

kIn crystalline alloys, effective BZ known as Jones zone can be shown to be different from BZ. Refer to H. Jones, The
Theory of Brillouin Zones and Electronic States in Crystals, North Holland, Amsterdam, 1960.
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phase quasicrystal with tenfold symmetry. For a two-dimensional quasicrystal, there is a two-
dimensional quasiperiodic plane, but periodic direction perpendicular to it. It is clear that the QBZ
can be constructed from the strong diffraction points, and then the Hume–Rothery mechanism can
be used to demonstrate the stability of the two-dimensional quasicrystal in the same way.

Another major problem related to the electronic properties of quasicrystals concerns their un-
usual transport properties. Experimental measurements have shown that stable quasicrystals have
semimetallic transport properties characterized by a high resistivity, a negative temperature coef-
ficient of resistivity, and strong temperature and composition dependence of the Hall coefficient
and thermopower. On the other hand, the experimental measurements of angular resolved photo-
electronic spectra of two-dimensional Al-Ni-Co verified the NFE approximation;l some electronic
properties of two-dimensional d phase quasicrystals, such as resistivity, Hall coefficient and ther-
mopower are strongly anisotropic due to the presence of quasiperiodic order and periodic order in
different directions.m
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Chapter 6

Dynamics of Bloch Electrons

The motion of Bloch electrons in periodic structures is an important topic in traditional solid
state physics, especially in either electric or magnetic fields. This process is really a dynamical
problem and it has brought about plentiful technical applications. In discussing this topic, wave-
particle duality is stressed and semiclassical approach is mostly used.

§6.1 Basic Properties of Electrons in Bands

An electron has energy, momentum and mass, which are characteristics of a particle. However,
in a crystal it behaves as Bloch wave with a dispersion relation that displays a band structure. The
momentum becomes crystal momentum, or quasi-momentum, and its mass becomes the effective
mass.

6.1.1 Electronic Velocity and Effective Mass

An electron in a Bloch state ψk(r) is characterized by its wavevector k, so we may expect that
its velocity moving through a periodic structure is a function of k. To derive this function, it is
useful to consider the electron as a wave packet of the Bloch state. The group velocity of the wave
packet is given by v = ∇kω(k), where ω is the frequency. Using de Broglie relation ω = E/�, we
obtain the velocity of the Bloch electron

v =
1

�
∇kE(k), (6.1.1)

which states that the velocity of an electron in the state k is proportional to the gradient of the
energy in k-space. It follows that the velocity at every point in k-space is normal to the energy
contour passing through that point. In general, the contours are nonspherical, so the velocity is not
necessary parallel to the wavevector k, except the case of a free electron, whose velocity is given by
v = �k/m, which is obtained by combining (5.2.2) and (6.1.1). This velocity is proportional to and
parallel to the wavevector k.

It is known that in many cases near the center of the Brillouin zone, the parabolic dispersion
relation E = �

2k2/2m∗ is almost satisfied and thus the velocity is

v =
�k

m∗ , (6.1.2)

which is of the same form as for a free electron, except using an effective mass m∗ to replace the
mass of the free electron m. This approximation is often very useful. It follows that near the center
of the zone v is parallel to k, and points radially outward. However, near the zone boundaries at
which the energy contours are distorted as gaps arise, this simple relationship between v and k is
not satisfied, and one must resort to the general result (6.1.1), which is quite different from that of
a free electron.
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When a force F is exerted on a Bloch electron in the crystal, the rate of energy absorption by
the electron is

dE(k)

dt
= F · v, (6.1.3)

where the term on the right is clearly the expression for the power absorbed by a moving object.
The left hand side of (6.1.3) can be written as

dE(k)

dt
= ∇kE(k) · dk

dt
= �v · dk

dt
,

and so we obtain the simple relation

�
dk

dt
= F , (6.1.4)

where the vector �k behaves like the momentum of the Bloch electron. Equation (6.1.4) simply
states that the rate of the momentum change is equal to the force, which is Newton’s second law.

When the wavevector k varies as (6.1.4), the electron undergoes an acceleration

a =
dv

dt
, (6.1.5)

which can be combined with (6.1.1) and rewritten as

a = ∇kv · dk

dt
=

1

�2
∇k∇kE(k) · F . (6.1.6)

If we write this in Cartesian coordinates, we find its component are

ai =
∑

j

1

�2

∂2E

∂ki∂kj
Fj , i, j = x, y, z, (6.1.7)

which leads to the definition of dynamic effective mass as

(

1

m∗

)

i,j

=
1

�2

∂2E

∂ki∂kj
, i, j = x, y, z. (6.1.8)

The effective mass is now a second-order tensor, which has nine components. The concept of effective
mass is very useful, in that it often enables us to treat the Bloch electron in a manner analogous to a
free electron. Nevertheless, the Bloch electron exhibits many unusual properties which are different
from those of the free electron.

In semiconductors, e.g., Si and Ge, the dispersion relation can often be written as

E(k) = α1k
2
x + α2k

2
y + α3k

2
z , (6.1.9)

corresponding to an ellipsoidal contour, and the effective mass has three components: m∗
xx = �

2/2α1,
m∗

yy = �
2/2α2, m∗

zz = �
2/2α3. In this case the mass of the electron is anisotropic and depends on

the direction of the external force. For example, when the force is along the kx axis, the electron
responds with a mass m∗

xx. Only when α1 = α2 = α3, is (6.1.9) reduced to a parabolic dispersion
relation, and the free electron behavior is recovered.

As already stated, the quadratic dispersion relation is satisfied near the bottom of the band but
it is no longer valid as k increases. Strictly m∗ is not a constant, but a function of k. There may
exist an inflection point kc beyond which the mass becomes negative, as the region is close to the
top of the band. Negative mass means that the acceleration is negative, i.e., the velocity decreases
for k beyond kc. This effect comes from the fact that in this region of k-space the lattice exerts such
a large retarding force on the electron that it overcomes the applied force and produces a negative
acceleration. This picture is vastly different from the behavior of the free electron, and will bring in
Bloch oscillations to be discussed in §6.2.1.
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6.1.2 Metals and Nonmetals

One of the most successful applications of band theory is the treatment of the differences in the
conducting behaviors of materials. Solids are divided into two major classes: Metals and nonmetals,
the latter including insulators and semiconductors. A metal, or conductor, is a solid in which an
electric current flows under an applied electric field. By contrast, application of an electric field
produces no current in an insulator. There is a simple criterion for distinguishing between the two
classes on the basis of the band theory. This criterion rests on the following statement: A band
which is completely full of carriers gives no contribution to electric current, even in presence of an
electric field. It follows therefore that a solid behaves as a metal only when some of the bands are
partially occupied.

Take Na as an example: It has eleven electrons per atom. In an isolated atom these electrons
have the configuration [1s22s22p6]3s1; the ten inner electrons form closed shells in the isolated atom,
and form very narrow bands in the solid. Since the inner bands 1s, 2s, 2p are all fully occupied,
they do not contribute to the current. We may therefore concern ourselves only with the uppermost
occupied band, the valence band, which is the 3s band. This band can accommodate 2N electrons,
where N is the total number of unit cells. Now in Na, of bcc structure, each cell has one atom, which
contributes one valence electron, i.e., the 3s electron. Therefore the total number of valence electrons
is N , and as these electrons occupy the band, only half of it is filled, as shown in Fig. 6.1.1(a). Thus
sodium behaves like a metal. In a similar fashion, we conclude that the other alkalis, Li, K, etc., are
also metals because their valence bands, the 2s, 4s, etc., respectively, are only partially occupied.
The noble metals, Cu, Ag, Au, are likewise conductors for the same reason.

E EEE E

k k k k

Eg

(a) (d)(c)(b)

Figure 6.1.1 The distribution of electrons in the bands of (a) a metal, (b) an insulator, (c) a semiconductor,
and (d) a semimetal.

As an example of a good insulator, we mention diamond which is an elemental solid of carbon.
The electronic configuration of an isolated carbon atom is 1s22s22p2. For the diamond structure
there is hybridization of the 2s and 2p atomic states, which gives rise to two bands split by an energy
gap as shown in Fig. 6.1.1(b). Since these bands arise from 2s and 2p states and, since the unit cell
here contains two atoms, these bands can accomodate 8N electrons. Now in diamond each atom
contributes 4 electrons, resulting in 8 valence electrons per cell; thus the valence band is completely
full, and the substance is an insulator.

There are substances which are intermediate between metals and insulators. If the gap between
the valence band and the band immediately above it is small as shown in Fig. 6.1.1(c), then electrons
are readily excited thermally from the former to latter band. Both bands become only partially
filled and both contribute to the electric conduction; such a substance is known as a semiconductor.
Typical examples are Si and Ge, which also form diamond structure just like C, but their gaps are
narrower, about 1 and 0.7 eV, respectively; by contrast, the gap in diamond is about 7 eV. Roughly
speaking, a substance behaves as a semiconductor at room temperature whenever its gap is less than
2 eV. In some substances the gap vanishes entirely, or the two bands even overlap slightly, and we
call them semimetals as shown in Fig. 6.1.1(d). The best-known example is Bi; in addition, As, Sb,
and white Sn also belong to this class of substances.

An interesting problem is presented in connection with the divalent elements, for example,
Be, Mg, Ca, Zn, etc. For instance, the electronic configuration of the magnesium atom is
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[1s2, 2s2, 2p6]3s2. Mg crystallizes in the hcp structure, with one atom per primitive cell. Since
there are two valence electrons per cell, the 3s band should be completely filled up, resulting in an
insulator. In fact, however, Mg is a metal. The reason for the apparent paradox is that the 3s and
3p bands in Mg overlap somewhat, so that electrons are transferred from the former to the latter,
resulting in incompletely filled bands, and hence Mg is a metal. The same condition accounts for
the metallicity of Be, Ca, Zn, and other divalent metals. We can conclude that a substance in which
the number of valence electrons per unit cell is odd is necessarily a metal, since it takes an even
number of electrons to fill a band completely. But when the number is even, the substance may be
either an insulator or a metal, depending on whether the bands are separate or overlapping.

Metals and nonmetals show their characteristics in transport processes. We can derive the basic
properties that a fully filled band carries no electric current, but a partially filled band does carry
current, by noting that electrons with opposite Bloch wavevectors k and −k satisfy

v(−k) = −v(k), (6.1.10)

according to (6.1.1). This equation follows from the symmetry relation E(−k) = E(k). The current
density due to all electrons in the band is given by

j =
−e

Ω

∑

k

v(k), (6.1.11)

where Ω is the volume, −e the electronic charge, and the sum is over all states in the band. As
a consequence of (6.1.11), for any fully filled band, the sum over a whole band is seen to vanish,
that is, j = 0, with the velocities of electrons cancelling each other out in pairs; but for a partially
filled band, when an electric field applied, the one-to-one correspondence of wavevectors k and −k

will be destroyed, so the velocities of electrons cannot cancel out each other and the sum over this
band gives a non-zero value, and thus j �= 0. The fundamental reason why an actual metal or
semiconductor carries a current is the presence of relaxation effects which result in a distribution
which is slightly enhanced in the +v direction, slightly decreased in −v, and the end result is true
current. On the other hand, in an insulator there are no empty final states available for scattering
and the electrons are actually in the equilibrium distribution. There is no true current.

6.1.3 Hole

For a semiconductor, the forbidden gap between uppermost fully filled band and unfilled band
is narrower, so that thermal excitation could empty a small fraction of the states in the uppermost
occupied band, the valence band, simultaneously populating a few of the lower states in the next
band, the conduction band. This thermal process leads to the appearance of vacant states in the
valence band. Conduction by electrons in the conduction band and by the same number of positive
holes in the valence band is the situation in an intrinsic semiconductor, and the energy separation
between valence and conduction bands is the intrinsic gap. It is also suggested that at temperatures
that are too low for appreciable intrinsic electron-hole generation, localized electron states within
the forbidden gap associated with defects and impurities (to be discussed in §8.2.2) could still be
thermally ionized to generate either free electrons or free holes. This second form of semiconducting
behavior is termed extrinsic, since it depends on non-intrinsic properties of the conducting medium.

For further discussion, consider that a hole occurs in a band that is completely filled except for
one vacant state (see Fig. 6.1.2). When we consider the dynamics of a hole in an external field,
we find it far more convenient to focus on the motion of the vacant site than on the motion of the
enormous number of electrons filling the band and the concept of the hole is an important one in
band theory.

Suppose the hole is located at the wavevector k1, as shown in Fig. 6.1.2. The current density of
the whole system is

jh =
−e

Ω

∑

k

′
ve(k), (6.1.12)
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Figure 6.1.2 The hole and its motion in the presence of an electric field.

where the sum is over all the electrons in the band, with a prime over the summation indicating
that the state k1 is to be excluded, as that state is vacant. Since the sum over the filled band is
zero, the current density is equal to

jh =
e

Ω
ve(k1). (6.1.13)

That is, the current is the same as if the band were empty, except for an electron of positive charge
+e located at k1. In practice a band contains not a single hole but a large number of holes, and in the
absence of an electric field the net current of these holes is zero because of the mutual cancellation
of the contributions of the various holes. When an electric field is applied, however, nonvanishing
induced currents are created.

Assume the electric field is directed to the left in Fig. 6.1.2, so all the electrons move uniformly
to the right in kz-space at the same rate. Consequently the vacant site also moves to the right,
together with the rest of the system in one dimension. The change in the hole current in a time
interval δt can be found

δjh =
e

Ω

(

dve

dk

)

k1

dk

dt
δt =

e

Ω

1

m∗(k1)
Fδt =

−e2

Ω

1

m∗(k1)
Eδt, (6.1.14)

where m∗(k1) is the effective mass of an electron occupying state k1. For simplicity, we take m∗(k1)
as a scalar quantity. This equation gives the electric current of the hole induced by the electric
field, which is the observed current. Since the hole usually occurs near the top of the band, due to
thermal excitation of the electron to the next-higher band, where the mass m∗(k1) is negative, it is
convenient to define the mass of a hole as

m∗
h = −m∗(k1), (6.1.15)

which is a positive quantity, and (6.1.14) is now rewritten as

δjh =
1

Ω

e2

m∗
h

Eδt. (6.1.16)

Note that the hole current, unlike the electron current, is in the same direction as the electric field.
By examing (6.1.13) and (6.1.16), we can see that the motion of the hole, both with and without

an electric field, is the same as that of a particle with a positive charge e and a positive mass
m∗

h. Viewing the hole in this manner results in a great simplification, in that the motion of all the
electrons in the band has been reduced to that of a single “quasi-particle”.

6.1.4 Electronic Specific Heat in Metals

The energy of electron in a metal is quantized: The electrons in the metal obey the Pauli exclusion
principle and occupy each of the quantized levels with at most two electrons, one with spin up, and
the other with spin down. All the electrons in the metal are accommodated from the lowest state
up to the Fermi level. The distribution of electrons among the levels is usually described by the
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distribution function, f(E), which is defined as the probability that the level E is occupied by an
electron. In general, f(E) has a value between zero and unity and the distribution function for
electrons at T = 0 K has the form

f(E) =

{

1, E < EF,
0, E > EF.

(6.1.17)

This function is plotted in Fig. 6.1.3, which shows the discontinuity at the Fermi energy.
When the system is above 0 K, thermal energy may ex-

f(E)

T = 0 K

T > 0 K

EEF
0

1

Figure 6.1.3 Fermi distribution
function.

cite the electrons to higher energy states. But this energy
is not shared equally by all the electrons, as would be the
case in the classical treatment. It arises from the exclusion
principle, because the energy which an electron may absorb
thermally is of the order kBT (0.025 eV at room tempera-
ture) which is much smaller than EF (which is of the order
of 5 eV). If we use EF = kBTF to define a Fermi tempera-
ture, TF ≈ 60000 K. Therefore only those electrons close to
the Fermi level can be excited, because the levels above EF

are empty, and hence when those electrons move to a higher
level there is no violation of the exclusion principle. Thus only
these electrons, a small fraction of the total number, are capable of being thermally excited, and
this explains the low electronic specific heat.

The distribution function f(E) at temperature T �= 0 K is given by

f(E) =
1

e(E−EF)/kBT + 1
. (6.1.18)

This is the Fermi-Dirac distribution which is also plotted in Fig. 6.1.3. It is substantially the same
as the distribution at T = 0 K, except within kBT of the Fermi level, where some of the electrons
are thermally excited from below EF to above it.

One can use the distribution function to evaluate the thermal energy and hence the heat capacity
of the electrons, but this is a fairly tedious undertaking, so instead we shall attempt to obtain a
good approximation with a minimum of mathematical effort. Since only electrons within the range
kBT of the Fermi level are excited, we conclude that only a fraction kBT/EF of the electrons is
affected. Therefore the number of electrons excited per mole is about N(kBT/EF), and since each
electron absorbs an energy kBT , on the average, it follows that the thermal energy per mole is given
approximately by

U =
N(kBT )2

EF
, (6.1.19)

and the specific heat is

Ce = ∂U/∂T = 2R
kBT

EF
, (6.1.20)

where R = NkB. We see that the specific heat of the electrons is reduced from its classical value (of
the order of R) by the factor kBT/EF. For EF = 5 eV and T = 300 K, this factor is equal to 1/200.
This great reduction is in agreement with experiment. An more exact evaluation of the electronic
specific heat yields the value

Ce =
π2

2
R

kBT

EF
, (6.1.21)

which is clearly of the same order of magnitude as the approximate expression (6.1.20), and both
show the common feature that the electronic specific heat is linear in temperature.

§6.2 Electronic Motion in Electric Fields

Electronic states of motion will be changed when there is an applied electric field. These changes
will take place in momentum space as well as in position space. The impurities or defects in otherwise
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perfect periodic structures affect the electronic transport substantially. The discussion below is based
on the one-band model.

6.2.1 Bloch Oscillations

Figure 6.2.1(a) and (b) show a typical one-dimensional band structure and the corresponding
velocity, respectively. As stated before, the dispersion curve is almost parabolic near the center of
the zone, but distorted a lot near the boundaries. Now (6.1.1) is reduced to

v =
1

�

∂E

∂k
, (6.2.1)

which says that the velocity is proportional to the slope of the energy curve. We see as k varies
from the origin to the boundary of the Brillouin zone (BZ), the velocity increases at first, reaches a
maximum, and then decreases to zero at the boundary. There is a inflection point corresponding to
a maximum velocity.

When a static electric field E is applied to a crystalline solid, the electrons in the solid are
accelerated. In absence of any scattering for a perfect periodic structure, their motions can be
described in k-space,

�
dk

dt
= F = −eE . (6.2.2)

This shows that the rate of change of k is proportional to, and lies in the same direction as, the electric
force F , i.e., opposite to the field E , so we can now consider the consequences of the acceleration of
the electron in one dimension. Equation (6.2.2) shows that the wavevector k increases uniformly with
time. Thus, as t increases, the electron traverses k-space at a uniform rate, as shown in Fig. 6.2.1(a).
The electron, starting from k = 0, for example, moves up the band until reaches the top point A.
Once the electron passes the zone edge at A, it immediately reappears at the equivalent point A′,
then continues to descend along the path A′B′C′. Note that the motion in k-space is periodic in
the reduced-zone scheme, since after traversing the zone once, the electron repeats the motion. This
process is known as Bloch oscillation. The period of the motion is readily found, on the basis of
(6.2.2), to be

τB =
2π�

eEd
, (6.2.3)

which corresponds to a frequency of the oscillation

ωB = eEd/�. (6.2.4)

Figure 6.2.1(b) shows the velocity of the electron as it traverses the k axis. Starting from k = 0,
the velocity increases as time passes. After reaching a maximum, it decreases and then vanishes at
the zone edge. Thus the electron turns around and acquires a negative velocity, and so on. The
velocity we are discussing is the velocity in real space, i.e., the usual physical velocity. It follows
that a Bloch electron, in the presence of a static electric field also executes an oscillatory periodic
motion in real space.

The net displacement of the wave packet of a Bloch electron can be obtained by integrating the
velocity with respect to time

z =

∫ t

0

v(t)dt =
1

�

∫ t

0

∂E

∂k
dt

=
1

�

∫ t

0

∂E

∂k

dt

dk
dk = − 1

eE {E[k(t)] − E(0))}, (6.2.5)

from which it is evident that the maximum displacement in the z direction is zmax = B/eE , where
B is the bandwidth, and after one cycle t = τB, the net displacement is z = 0. Thus after each
period the electron returns to the original position.
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Figure 6.2.2 Spatially electronic oscilla-
tion. V. G. Lyssenko et al., Phys. Rev. Lett.

79, 301 (1997).

Although the description is reasonable for electron dynamics, the oscillatory motion is hard to
observe in real crystals. The reason is simple: The crystal cannot be expected to be perfect. The
period τB of (6.2.3) is about 10−5 s for usual values of the parameters, while a typical electron
collision time τ = 10−14 s at room temperatures. Thus the electron undergoes an enormous number
of collisions, about 109, in the time of one cycle. Consequently the oscillatory motion may be
suppressed with the development of semiconductor superlattices, it is now possible to achieve τB ≤ τ
by growing superlattices of high purity.

For more perfect superlattices, on the other hand, the scattering time τ can be long enough so
that the Bloch oscillations may be observed. Recently, Bloch oscillations have been observed in the
time domain by using the four-wave mixing method. Figure 6.2.2 shows four-wave mixing peak shift
(right scale) as a function of delay time for heavy-hole transition under an applied field. The peak
shift can be related to the displacement shown on the left scale. The electron wave packet performs
a sinusoidal oscillation with a total amplitude of about 140 Å, and the experimental results are in
agreement with model calculations.

6.2.2 Negative Differential Resistance

Speaking of superlattices, an early successful application is the investigation of negative differen-
tial resistance, which is an interesting current transport phenomenon closely related to the scattering
time τ . As in Fig. 6.2.1, under an external electric field E , we can calculate the velocity increment
of an electron in a time interval dt according to (6.1.6)

dv =
eE
~2

∂2E

∂k2
dt. (6.2.6)

The average drift velocity, taking into account the scattering time τ , is written as

vd =

∫

∞

0

e−t/τdv =
eE
~2

∫

∞

0

∂2E

∂k2
e−t/τdt. (6.2.7)

The factor exp(−t/τ) represents the probability of free acceleration for a time t by the electric field.
If a sinusoidal approximation is used for the E-k relation, for example, E = α− 2β cos kd, then

vd =
eEτ
m∗(0)

[

1 +

(

eEτd
~

)2
]

−1

, (6.2.8)
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and the current-field variation is given by

j = envd, (6.2.9)

where m∗(0) is determined by the curvature of E(k) at k = 0 and n is the electron concentration.
The current j, plotted as a function of E in Fig. 6.2.3(a), has a maximum at eEτd/� = 1 and
thereafter decreases, giving rise to a negative differential resistance. This result indicates that, in
an applied electric field, conduction electrons may gain enough energy to go beyond the inflection
point in Fig. 6.2.1, whereupon they will be decelerated rather than accelerated by such an electric
field.
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Figure 6.2.3 Current-voltage characteristic for negative differential resistance. (a) theoretical curve;
(b) experimental result. From L. Esaki, in Synthetic Modulated Structures (eds. L. L. Chang and B. C.
Giessen), Academic Press, Orlando (1985).

The obstacle for observing negative differential resistance in typical crystals arises from the fact
that τ ≪ τB, so electrons have no chance to surmount the velocity inflection point. However, L.
Esaki et al. (1972) found that the superlattice can be used to exhibit a negative differential resistance
in its transport properties, which was, for the first time, interpreted on the basis of the predicted
quantum effect. Figure 6.2.3(b) shows the current-voltage characteristic at room temperature for
such a superlattice having 100 periods, with each period consisting of a GaAs well 60 Å thick and
Ga0.5Al0.5As barrier 10 Å thick.

6.2.3 Wannier Stark Ladders

In addition to Bloch oscillations and negative differential resistance, there exists another way
of describing electron motion in periodic structures in the presence of an applied electric field. It
is evident that the periodic structure is actually destroyed by the static electric field, so electronic
states are no longer given by Bloch-like solutions but instead are given by levels localized in space
within a few periods of the lattice, and the energy spectrum is discrete with a level separation of
eEd. In this picture, localization occurs whenever the level broadening (�/τ) due to scattering is
less than eEd. These equally spaced energy levels are called Wannier–Stark ladders. The reason for
this energy is obvious: A wavefunction displaced by just d still satisfies the same wave equation, but
the energy displacement is eEd.

Unfortunately, this effect is also impossible to observe in real crystals, but it may be observable
in superlattices, because the larger lattice-modulated period leads to a larger energy splitting. For
example, a semiconductor with d ∼ 2 Å at E ∼ 104 V/cm will have eEd ∼ 0.2 meV. This splitting
is extremely small; whereas for a superlattice with d ≃ 100 Å, eEd = 10 meV, and this should
make it easier to detect the Wannier–Stark levels in a superlattice. Evidence of this break-up of a
superlattice miniband from extended Bloch states into discrete Stark levels has been observed by
optical experiments.a

Here we will give an illuminated discussion on Wannier–Stark ladders in superlattices.b Begin-
ning with the energy spectra of a superlattice, instead of the Kronig–Penney model in §7.2.4, we

aE. E. Mendez et al., Phys. Rev. Lett. 60, 2426 (1988).
bG. Bastard et al., Phys. Rev. Lett. 60, 220 (1988); Superl & Micros. 6, 77 (1989).
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(a) (b)

Figure 6.2.4 A Wannier–Stark ladder in a superlattice, (a) the perpendicular energies corresponding to
the resonant transmission miniband states; (b) the miniband breaks up into discrete Wannier–Stark levels
when a large electric field is applied.

consider a tight-binding picture of localized states in wells coupled to each other by the overlapping
of wavefunctions through the barriers. The coupling between every two neighboring wells through
the barrier will lead to the appearance of minibands, separated by minigaps. Assuming that a super-
lattice is composed of 2N + 1 quantum wells separated by 2N barriers, the level and wavefunction
of each isolated quantum well is E0 and φ(z), and the interaction between two neighboring quantum
wells is −λ. When there is no external field, the wavefunction of the superlattice is

ψk(z) =

N
∑

l=−N

ck(l)φ(z − ld), ck(l) =
1√

2N + 1
eikld, (6.2.10)

where l labels the quantum wells and k is the wavevector along z direction. The dispersion relation is

E(k) = E0 − 2λ cos kd. (6.2.11)

These expressions describe the extended state and energy band. Figure 6.2.4(a) shows a miniband
in the absence of an electric field.

When an electric field is applied in the modulated direction of the superlattice, the static electric
energy is −eEz, so the energy of lth quantum well is changed by −eEld. If the energy shift of
neighboring wells eEd is larger than the half width λ of the miniband, the energy levels of the
superlattice are determined by the levels of all quantum wells,

El = E0 − eEld, (6.2.12)

and a Wannier–Stark ladder appears in Fig. 6.2.4(b). In order to obtain the wavefunctions and
energies of the system in the tight-binding approximation, we can write the coefficient equations
recursively as

−λc(l − 1) + (E0 − eEld − E)c(l) − λc(l + 1) = 0, (6.2.13)

and the boundary conditions are assumed to be

c(−N − 1) = c(N + 1) = 0.

If eEd > λ, in zeroth-order approximation, the eigenenergies can be written as

E = E0 − νeEd, −N ≤ ν < N. (6.2.14)

For any eigenenergy, (6.2.13) is transformed to

c(l − 1) + c(l + 1) =
2(l − ν)

(2λ/eEd)
c(l). (6.2.15)

This is the recursion relation of a Bessel function, so

cν(l) = Jl−ν

(

2λ

eEd

)

. (6.2.16)
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Figure 6.2.5 Schematic probability density of the Wannier–Stark ladder states in semiconductor
superlattice.

To give insight into the wavefunction, we take eEd = 2λ, then Jl−ν(1) = −0.0199, 0.1150,
−0.4401, 0.7652, 0.1150 and 0.0199 for l−ν = −3,−2,−1, 0, 1, 2, 3. It is clear that the amplitude at
the center (l− ν = 0) is the largest, and decreases away from the center, so the Wannier–Stark state
is basically localized. The absolute values of the wavefunction neighboring the center symmetrically
decay. In the positive direction, the wavefunctions are always positive, but in the negative direction,
they decay in an oscillatory fashion (see Fig. 6.2.5).

Very recently, theoretical and experimental studies on the quantum motion of ultracold atoms in
an accelerating optical lattice have exhibited the same quantum behaviors as electrons, such as Bloch
oscillations and Wannier–Stark ladders. This is easy to understand from the viewpoint of matter
waves: The optical potential is spatially periodic yielding an energy spectrum of Bloch bands for
the atoms, and the acceleration provides an inertial force in the moving frame, emulating an electric
force on Bloch electrons.c

§6.3 Electronic Motion in Magnetic Fields

The investigation of electron dynamics in magnetic fields is fruitful: These have provided us with
many results about the symmetries of electronic states in the Brillouin zone (BZ), carrier masses at
band edges, and the shapes of the Fermi surfaces of crystalline solids, etc.

6.3.1 Cyclotron Resonance

In the presence of a magnetic field H , it is assumed that the underlying picture of the electronic
band structure remains intact and electrons are described by a wavevector k. For nonmagnetic solids
in a semiclassical treatment, the basic equation of motion describing an electron in a magnetic field
is

�
dk

dt
= −e

c
v × H , (6.3.1)

where the left hand side is the time derivative of the crystal momentum, and the right side is the
well-known Lorentz force due to the magnetic field. According to this equation, the change in k in
a time interval dt is given by

dk = − e

c�
v × Hdt, (6.3.2)

which shows that the electron moves in k-space in such a manner that its displacement dk is
perpendicular to the plane defined by v and H . Since dk is perpendicular to H , this means that
the electron trajectory lies in a plane normal to the magnetic field. In addition, dk is perpendicular
to the velocity v, which is described by (6.1.1). As v is normal to the energy contour in k-space, it

cFor Bloch oscillations and Wannier–Stark ladders for ultracold atoms in optical potentials, see theoretical studies by
Q. Niu, X. G. Zhao et al., Phys. Rev. Lett. 76, 4504 (1996). Experimental verifications can be seen at M. B. Daham,
E. Peik et al., Phys. Rev. Lett. 76, 4508 (1996), and also S. R. Wilkinson, C. F. Bharucha et al., ibid., 4512.
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means that dk lies along such a contour. Putting these two points together, we conclude that the
electron rotates along an energy contour normal to the magnetic field, as shown in Fig. 6.3.1, and
in a counterclockwise fashion.

The magnetic field thus alters k along the intersection of the constant energy surface and the
plane perpendicular to the magnetic field. The constant energy surface can be quite simple as for
the conduction band of direct semiconductors, or quite complex as for the valence bands. If k⊥ and
v⊥ are the two component vectors perpendicular to H in the plane of the intersection, we have

dk⊥ = − e

c�
v⊥ × Hdt, (6.3.3)

which means that dk has only a component dk⊥, perpendicular to H . On the other hand, v‖ is
a constant if it is nonzero: The electron moves in a helical trajectory under the application of a
magnetic field.

ky

  Electron 

Trajectory υ
dk

H

kx

Figure 6.3.1 Trajectory of
an electron in k-space in the
presence of a magnetic field
H .

dk
υ

E

E+dE

δk⊥

Figure 6.3.2 Two orbits of an elec-
tron at energies E and E + dE in a
magnetic field.

Let us now consider the frequency of the electron around the constant energy surface. We
examine two orbits in the same k⊥-space with energies E and E + dE as shown in Fig. 6.3.2. The
k⊥-space separation of the orbits is

δk⊥ =
dE

|∇k⊥
E| =

dE

�|v⊥|
. (6.3.4)

The rate at which an electron moving along one of the orbits sweeps out the annular area is given by
∣

∣

∣

∣

dk⊥
dt

∣

∣

∣

∣

δk⊥ =
e

c�2
|v⊥ × H | dE

|v⊥|
=

eH

c�2
dE. (6.3.5)

This rate is constant for constant dE, and if we define the time period of the orbit by Tc, then the
annular area is

dS = Tc ·
eH

c�2
dE, (6.3.6)

where S is the area in k-space of the electronic orbit with energy less than E. Thus

Tc =
c�2

eH

dS

dE
. (6.3.7)

We can now introduce a cyclotron resonance frequency

ωc =
2π

Tc
=

2πeH

c�2

1

dS/dE
=

eH

mcc
, (6.3.8)

where

mc =
�

2

2π

dS

dE
(6.3.9)
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is defined as the cyclotron resonance mass, which is a property of the entire orbit and is not the
same as the effective mass in general. However, for a parabolic band E = �

2k2/2m∗ and we have
S = πk2 = 2m∗πE/�

2, then mc = m∗.
For a more complex band this relation will be appropriately modified. For example, the conduc-

tion band of indirect gap materials, such as Ge and Si, can be represented by an ellipsoidal constant
energy surface coming from (6.1.9)

E(k) = �
2

(

k2
x + k2

y

2mt
+

k2
z

2ml

)

, (6.3.10)

where mt and ml are the transverse and longitudinal effective masses, respectively. The velocity
components are now

vx =
�kx

mt
, vy =

�ky

mt
, vz =

�kz

ml
. (6.3.11)

If we assume that the magnetic field lies in the equatorial plane of the spheroid, and is parallel
to the kx axis, we get from the equation of motion

dkx

dt
= 0,

dky

dt
= −ωlkz,

dkz

dt
= ωtky, (6.3.12)

with ωl = eH/cml and ωt = eH/cmt Then from (6.3.11) and (6.3.12), we have

d2ky

dt2
+ ωlωtky = 0, (6.3.13)

which is the equation of motion of a classical harmonic oscillator with frequency

ωc = (ωlωt)
1/2 =

eH

c(mlmt)1/2
. (6.3.14)

It can be shown that if H is parallel to kz , then the frequency is simply

ωc = ωt =
eH

cmt
. (6.3.15)

In general, if the magnetic field makes an angle θ with respect to the kz direction, the cyclotron
resonance mass

(

1

mc

)2

=
cos2 θ

m2
t

+
sin2 θ

mtml
. (6.3.16)

Thus, by altering the magnetic field direction, one can probe various combinations of ml and mt. In
a cyclotron resonance experiment, the cyclotron frequency can be measured directly and the carrier
masses can be obtained.

In the above discussion of cyclotron motion, we have disregarded the effects of collisions. Of
course, if this cyclotron motion is to be observed at all, the electron must complete a substantial
fraction of its orbit during between two collisions, i.e., ωcτ ≥ 1. This necessitates the use of very
pure samples at low temperatures under very strong magnetic fields.

6.3.2 Landau Quantization

In the quantum mechanical description of an electron in a magnetic field, the Hamiltonian of the
system is

H =
1

2m

(

p +
e

c
A
)2

+ V (r), (6.3.17)

where A is the vector potential and V (r) is periodic potential. We will use the effective mass
approximation to absorb the effect of the background crystal potential. This approach will be
used in §7.2.2 when we addressed the problem of shallow impurities. The approach is general, and
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(6.3.17) is now written as an effective mass equation for a band with effective mass m∗. The resulting
Schrödinger equation is

1

2m∗

(

�

i
∇ +

e

c
A

)2

ψ = Eψ, (6.3.18)

where ψ(r) is now to be considered as the envelope wavefunction which can reflect the main aspect
of the magnetic field to the electron. It is noted that the interaction between the spin of the electron
and the magnetic field is ignored at present: This interaction is gLµBσ · H , where σ is the spin
operator, µB = e�/2cm the Bohr magneton and gL the Lande factor is related to the details of the
state; for a free electron gL = 2.

We write the vector potential in the gauge A = (0, Hx, 0), which gives a magnetic field in the
z direction, i.e., H = Hz. The equation to be solved is

− �
2

2m∗

[

∂2

∂x2
+

(

∂

∂y
+

ieHx

�c

)2

+
∂2

∂z2

]

ψ = Eψ, (6.3.19)

where all energies are to be measured from the band edges. Since the Hamiltonian does not involve
the coordinates y and z explicitly, the wavefunction can be written as

ψ(x, y, z) = ei(kyy+kzz)φ(x). (6.3.20)

Denoting

E′ = E − �
2

2m∗ k2
z , (6.3.21)

we get the equation for φ(x) as

[

− �
2

2m∗
d2

dx2
+

1

2
m∗ω2

c (x + l2cky)2
]

φ(x) = E′φ(x). (6.3.22)

From (6.3.20) and (6.3.22), we can see that the motion of the electron along the magnetic field is
unaffected, and the motion in the xy plane is given by a one-dimensional harmonic equation with
frequency ωc = eH/cm∗ and centered around the point

x0 = −l2cky, (6.3.23)

where

lc =

(

c�

eH

)1/2

(6.3.24)

is called the cyclotron radius or magnetic length which is about 100 Å for H = 105 Oe. The
eigenfunctions of (6.3.22) are

φ(x) ∝ Hν(x − x0)e
−(x−x0)

2/2l2c , (6.3.25)

where Hν(x) are the Hermitian polynomials, and the eigenvalues

E′
ν =

(

ν +
1

2

)

�ωc, ν = 0, 1, . . . . (6.3.26)

These discrete energies labelled by ν are called Landau levels. It is obvious that the states ψ are
extended in the y and z directions, but localized in the x direction. The total energy is

Eν =

(

ν +
1

2

)

�ωc +
�

2

2m∗ k2
z . (6.3.27)

The electron energy is quantized in the x-y plane and has continuous translational energy along
the direction of the magnetic field. In (6.3.27), only the orbital quantization due to the magnetic
field was accounted for. If the spin of electron is included, each Landau level will be split into
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two sublevels with additional energy ±gLµBσH . For semiconductors the contribution of gLµBσH is
small if the magnetic field is not high.

Since the energy arising from the x-y plane motion is so drastically affected, it is important to
ask what happens to the density of states of the system. Consider a box of sides Lx, Ly, and Lz.
From the form of the wavefunction given by (6.3.20), it is clear that both kz and ky are quantized
in units of 2π/Lz and 2π/Ly respectively, and in addition, the center x0 in (6.3.23) must be inside
the dimension of the system, i.e.,

0 ≤ x0 ≤ Lx. (6.3.28)

By using ∆ky = 2π/Ly, we have
∆x0 = 2πl2c/Ly, (6.3.29)

and the degeneracy of a level in two dimensions is

D =
Lx

∆x0
=

LxLy

2πl2c
. (6.3.30)

This degeneracy comes from linear oscillations with the same energy but different central positions.
Equivalently, we note that the total magnetic flux through the x-y plane is Φ = HLxLy, and the
flux quantum φ0 = hc/e, (6.3.30) can also be expressed in the form D = Φ/φ0, which addresses that
the number of states equals the number of flux quanta.

One way to physically show the effect of magnetic field is to examine the distribution of states
in k-space as drawn in Fig. 6.3.3. Focusing on the kx-ky plane first, we can understand that, in
absence of magnetic field, the kx and ky points are good quantum numbers and the points of allowed
states are homogeneously distributed. However, after a magnetic field is applied, various (kx, ky)
points condense into a series of circles which represent constant energy surfaces with energies �ωc/2,
3�ωc/2, etc., as shown in Fig. 6.3.3(a). This rearrangement of states does not alter the total number
of states in a macroscopic volume. It can be understood by examing the number of states in the
presence of the magnetic field, per unit area, per unit energy, when the electron spin is not taken
into account. This is the same as the two-dimensional density of states in the x-y plane without
magnetic field

g2D(E) =
1

LxLy

D

�ωc
=

m∗

2π�2
. (6.3.31)

Extended to three dimensions by taking into account the kz continuous component, each circle in
Fig. 6.3.3(a) is transformed into a cylinder in Fig. 6.3.3(b).

H

kx

ky

kz

(a) (b)

Figure 6.3.3 Quantization scheme for electrons when a magnetic field is applied. (a) In the kx-ky plane;
(b) In whole k-space.

The density of states of the three-dimensional system is essentially given by the one-dimensional
density of states, weighted by the degeneracy factor D. Since kz is still a good quantum number,
the E-kz relation gives the band structure, called Landau subbands. The various Landau levels are
shown in Fig. 6.3.4(a). In the one-dimensional kz-space the density of states for a particular Landau
level with energy Eν is

g1D(E) =
1

4π

(

2m∗

�2

)1/2

(E − Eν)−1/2. (6.3.32)
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Then by taking into account the two-dimensional density of states (6.3.31) and running over the
contribution from all Landau levels with starting energies less than E, the total density of states is

g3D(E) =
1

(4π)2

(

2m∗

�2

)3/2

�ωc

∑

ν

[

E −
(

ν +
1

2

)

�ωc

]−1/2

, (6.3.33)

which is shown in Fig. 6.3.4(b), where we see the van Hove singularities from the quantization of the
states. In real systems, broadening due to impurities and thermal disturbance will wipe out these
divergences, but the periodic variation of the density of states with magnetic field is retained. This
variation has important effects on the physical properties of the system. It is obvious that as the
magnetic field is altered, the separation of the Landau levels as well as the density of states (DOS)
changes, and the Fermi level will gradually pass through the various sharp structures in the density
of states. This leads to very interesting effects such as the de Haas–van Alphen (dHvA) effect and
Shubnikov–de Haas (SdH) effect.

E
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1 2
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E

kz
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ν=3

g(E)

(a) (b)

g3D(E)

4

Figure 6.3.4 Effects of magnetic field in a three-dimensional electronic system on (a) the band structure;
and (b) the density of states.

The treatment for electrons in three-dimensions can be easily extended to two-dimensions where
the effect of the magnetic field becomes even more interesting. It is assumed that a two-dimensional
electron gas is confined in z direction and a magnetic field is along the z axis. Now kz is not a
good quantum number, so that not only x-y energies, but also the z energies, are quantized. This
leads to the remarkable result that the density of states becomes a series of δ-functions as shown
in Fig. 6.3.5(a), and electronic motion can be described as a series of circles with cyclotron radius
lc covering the system, as shown in Fig. 6.3.5(b). In addition, if an electric field is applied along
x direction, the Landau quantization still exists, and a more interesting effect, the quantum Hall
effect may appear under strong magnetic field and at low temperature.

l
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ℏωc
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2
ℏωc
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ℏωc

7

2
ℏωc
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Figure 6.3.5 In a two-dimensional electronic system with a magnetic field perpendicular to it, (a) the
density of states (DOS); (b) schematic trajectories of electronic cyclotron motion.
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6.3.3 de Haas van Alphen Effect

There are many magnetic oscillatory behaviors related to Landau quantization. The key point
is the position of the Landau levels with respect to the Fermi energy. For a three-dimensional
electron gas, the occupied states within the Fermi energy EF are contained in a sphere of radius
kF = (2mEF/�

2)1/2, if no magnetic field is applied. When a quantizing field exists, all the states
situated within the sphere on the allowed cylinders in Fig. 6.3.3(b) are occupied. As H increases,
the separation between the levels also increases, and hence the highest filled Landau level moves up
in energy. Once this level is above the Fermi energy, it will start to be emptied into lower energy
levels. This process repeats itself whenever

E′
F/�ωc = m∗cE′

F/�eH = ν + 1/2, (6.3.34)

where E′
F = EF − �

2k2
z/2m∗. Thus, any physical quantities that can sense this oscillation should

have a constant period in H−1 given by

∆(H−1) =
e�

m∗cE′
F

. (6.3.35)

This kind of oscillation with the period in H−1 can be seen in a variety of magnetic and galvano-
magnetic properties of metals and semiconductors.

The de Haas–van Alphen (dHvA) effect is the oscillation of magnetic moment in solids as a
function of the static magnetic field intensity. The effect can be observed in pure specimens at low
temperatures, in strong magnetic fields satisfying �ωc > kBT , and ωcτ > 1. A thermodynamic
calculation including temperature is sophisticated. So for clarity, in the following we shall consider
the behavior at zero temperature, where all states below the Fermi energy EF are filled, and all states
above it are empty. It is reasonable to assume that the Fermi energy is unaltered by the application
of a magnetic field parallel to the z axis. For simplicity, the electron spin is still neglected.

We imagine a planar slice cut in k-space around kz , of thickness δkz (see Fig. 6.3.4(a)). Because
there are Lzδkz/2π states in the kz-space, the number of electronic states in this slice for a particular
Landau level is

δN = D
Lzδkz

2π
= ΩβH, (6.3.36)

where Ω = LxLyLz, and β = eδkz/4π2c� is defined as the degeneracy per unit magnetic field per
unit volume.

In the slice all Landau levels with energies less than E′
F = EF−�

2k2
z/2m∗ are filled and all above

are empty. If the highest filled level is ν, the total number of allowed electrons in the slice per unit
volume, δn, is given by the expression

δn = (ν + 1)βH, (6.3.37)

which is proportional to H , so long as ν is constant. As H increases, δn also increases until the
permitted level ν crosses the Fermi level E′

F, and empties itself suddenly. Thus an infinitesimal
change in magnetic field will spill electrons out of the ν level and put them into other regions on the
Fermi surface. The movement of the levels is shown in Fig. 6.3.6, while the upper part of Fig. 6.3.7
shows the resulting variation of δn with H . In the latter, the magnetic field is designated by the
quantum number ν + 1/2 = E′

F/�ωc = m∗cE′
F/e�H , which coincides with the Fermi level. This is

equivalent to plotting against H−1, and so the lines of the saw-tooth should not be quite straight;
however in most real metals under experimental conditions ν is about 1000, and the difference is
not noticeable. It is observable that δn oscillates about a mean value δn0 which is the same as the
electron content of the slice in zero field.

As a result of the change in δn the energy of the electrons contained in the slice also changes.
The excess number, δn− δn0, must be supplied by the rest of the Fermi surface, and these electrons
are raised to a slightly higher energy to be put into the slice. Thus, the excess number would occupy
an annulus of width δk′ satisfying

δn − δn0 = 2πk′
Fδk′δkz/(2π)3, (6.3.38)
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Figure 6.3.6 The spectrum of
the Landau levels as a function
of magnetic field H .
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Figure 6.3.7 Variation of ex-
cess number δn, excess energy
δE, and excess magnetic mo-
ment δM of slice δkz, as the
magnetic field is increased.

where k′
F is the radius of the Fermi surface in this slice, and a mean excess energy �

2k′
Fδk′/2m∗ can

be obtained. The excess energy of the whole assembly due to the slice may thus be written

δE =
µ

β
(δn − δn0)

2, (6.3.39)

where µ ≡ e�/2m∗c is the effective number of Bohr magnetons. It is evident that δE is always
positive and has a maximum at the point where a permitted orbit crosses the Fermi surface, as
shown in the middle part of Fig. 6.3.7.

From this result, it is easy to derive the contribution of the slice to the magnetic moment by
dE/dH = −M at 0 K. Hence, from (6.3.39) and (6.3.37)

δM = − d

dH

[

µ

β
(δn − δn0)

2

]

= −E′
F

H
(δn − δn0). (6.3.40)

Since (δn − δn0) oscillates between ±βH/2, δM oscillates between ∓βE′
F/2, as shown in the down

part of Fig. 6.3.7.
To determine the response, M , of the entire system as a function of the magnetic field H , we

have to add up the contributions δM from all slices of the electron distribution, having different E′
F

and δn. Because δM is a periodic saw-tooth function of 1/H with period in (6.3.35) and overall
amplitude βE′

F, it may be expressed as a Fourier series

δM = β
∞
∑

p=1

Ap sin px, (6.3.41)

where

x =
πE′

F

µH
. (6.3.42)

Since for −π < x < π,

δM = −βE′
F

2π
x, (6.3.43)

therefore

Ap = (−1)p E′
F

pπ
. (6.3.44)
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To sum over all slices, remembering that E′
F = EF − �

2k2
z/2m∗ and β = eδkz/4π2c�, the total

magnetization is

M =
e

4π3c�

∞
∑

p=1

(−1)p

p

∫ kF

−kF

E′
F sin

[

pπ

µH

(

EF − �
2k2

z

2m∗

)]

dkz . (6.3.45)

For a degenerate electron gas, in general, EF ≫ µH , the integrand oscillates very rapidly as a
function of kz and gives zero contribution unless it is at the stationary point kz ≈ 0. We thus replace
E′

F by EF and take it out of the integral. Then, by using the trigonometric function formula, we
can expand the sin-expression and finish the integral for kz, and finally obtain

M =
eEF(2mµH)1/2

4π3c�

∞
∑

p=1

(−1)p

p3/2
sin

(

pπEF

µH
− π

4

)

, (6.3.46)

with the approximation kF → ∞. In (6.3.46), the p = 1 term has the dominant contribution, and
the periodic variation of M with 1/H is clearly obtained. This kind of oscillation with magnetic
field is called the de Haas–van Alphen (dHvA) effect. In fact, many other physical properties, such
as specific heat and thermoelectric power, which are all associated with the electronic density of
states, also display the de Haas–van Alphen effect. The oscillation period in (6.3.46) is related to
the Fermi energy EF in the plane perpendicular to the magnetic field, and the measurement of the
period can be used to determine the Fermi energy. However, there are a number of different periods
if the Fermi surface is not spherical. By varying the crystal orientation with the field, the topological
structure of a complex Fermi surface can thus be obtained.

6.3.4 Susceptibility of Conduction Electrons

There are many metals, such as the alkali metals, Li, Na,
E

EF

1
2
g(EF) µBH

g↑(E) g↓(E)

Figure 6.3.8 Energy distribution of
electrons in the presence of a magnetic
field.

K, Rb and Cs, in which the atoms do not contain incomplete
inner electron shells. There are weakly paramagnetic and
show a susceptibility that varies little with temperature. We
can give a simple explanation of this based upon the free-
electron model in which the conduction electrons are assumed
to move freely in metals.

At T = 0 K and when no field is applied there are two
electrons per state at all energies up to Fermi energy EF.
When a uniform external field H is applied to the metal, the
energy of electrons with spin direction parallel to the mag-
netic field decreases by µBH , while the energy of electrons
with antiparallel spin increases by the same amount. Thus,
as shown in Fig. 6.3.8, a number g(EF)µBH of electrons with antiparallel spin near the Fermi sur-
face transfer to the parallel spin states; here g(EF) is the one-spin density of states at the Fermi
surface. This change destroys the balance between the numbers of conduction electrons with spins
parallel and antiparallel to the field so that the conduction electron system becomes magnetized.
The magnetization is then

M = µB

∫ EF

0

[g(E + µBH) − g(E − µBH)]dE = µB

∫ EF+µBH

EF−µBH

g(E)dE. (6.3.47)

Even in a very strong field, µBH/EF will only be of the order of 10−3, and the magnetization
becomes

M = 2µ2
Bg(EF)H. (6.3.48)

The susceptibility due to such a process is called the Pauli paramagnetic susceptibility and is given by

χp(0) = 2µ2
Bg(EF). (6.3.49)

It can be seen that the susceptibility is a measure of the electronic density of states (DOS) at the
Fermi surface.
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When the temperature is above zero, the distribution of electrons obeys the Fermi function
f(Ekσ) and the magnetization is

M(T ) = µB

∑

k

[f(Ek↑) − f(Ek↓)], (6.3.50)

where Ek± = EF ± µBH . We can transform the summation to an integral and expand the Fermi
function for weak field, then it becomes

M(T ) = 2µ2
BH

∫ ∞

0

[

−∂f(E)

∂E

]

g(E)dE, (6.3.51)

and the Pauli susceptibility at finite temperatures is

χp(T ) = 2µ2
B

∫ ∞

0

[

−∂f(E)

∂E

]

g(E)dE. (6.3.52)

Furthermore, the susceptibility for the free-electron gas is

χp(T ) = χp(0)

[

1 − π2

12

(

kBT

EF

)2

+ · · ·
]

. (6.3.53)

Since kBT is always very much less than EF, the susceptibility decreases a little with increasing
temperature. When T = 0 K, −∂f/∂E = δ(E − EF), (6.3.52) returns to (6.3.49).

In addition to the Pauli susceptibility related to electronic spin magnetic moments, a conduc-
tion electron system has a diamagnetic susceptibility; this originates from the change in the orbital
states caused by the applied magnetic field. This portion is usually called the Landau diamagnetic
susceptibility, the value of which is given by (6.3.52) multiplied by −(1/3) for free electron system.
For general Bloch electrons the expression for the diamagnetic susceptibility becomes rather compli-
cated, reflecting the shape of the Fermi surface and also because of the contribution from interband
transitions.

We can find that the spin polarization of electrons in Fig. 6.3.8 and the magnetization in (6.3.48)
and (6.3.51) are all dependent on applied fields. If the applied field is removed, then spin polarization
and magnetization will disappear. We can imagine that there exist interactions between electrons
with different spins. These interactions are equivalent to an internal field, and each electronic spin is
affected by the internal field. In this way, even there is no external field applied, spin polarization and
magnetization will appear in the system. The formation of macroscopic magnetizations in magnetic
materials like Fe, Co, and Ni is based on the existence of an internal field. The detailed discussion
of this will be presented in Chap. 17.

It is interesting to consider the electron gas in a spatially varying external field H(r). We can
decompose the field into Fourier components as

H(r) =
1

Ω

∑

q

Hqeiq·r, (6.3.54)

with Hq = H∗
−q, and define the susceptibility, χ(q), in response to one of the components,

Hq exp(iq · r). Then the magnetization is obtained as

M(r) =
1

Ω

∑

q

χqHqeiq·r. (6.3.55)

The key point is to get the susceptibility χq. For simplicity, the magnetic field is assumed to
be applied along the z axis, siz is the z component of the spin of the i-electron, then the Zeeman
energy is

H′ = −µB

∑

i

siz(Hqeiq·ri + H∗
qe−iq·ri), (6.3.56)
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Figure 6.3.9 Normalized χ(q) versus q in one, two, and three dimensions. χ(0) is identified as the Pauli
paramagnetic susceptibility at q = 0.

which will be taken as a perturbation. In first-order, the electron state described by a plane wave
with wavevector k and spin + or − is modified to

ψkq± =
1√
Ω

eik·r
[

1 ± 1

2
µB

(

Hqeiq·r

εk+q − εk

+
H∗

qe−iq·r

εk−q − εk

)]

. (6.3.57)

The square of the absolute value gives the number density of electrons with wavevector k and spin
+ or −,

ρkq± =
1

Ω

[

1 ± 1

2
µB

(

fk(1 − fk+q)

εk+q − εk

+
fk(1 − fk−q)

εk−q − εk

)

(Hqeiq·r + H∗
qe−iq·r)

]

, (6.3.58)

where the Fermi distribution functions are added for non-zero temperature. The spatial density of
the spin magnetic moment is obtained by multiplying (6.3.58) by ±µB, adding both expressions for
+ and − spins, and then summing over k within the Fermi sphere, one finds

Mq(r) = χq

1

2
(Hqeiq·r + H∗

qe−iq·r), (6.3.59)

where

χq = µ2
B

∑

k

fk − fk+q

εk+q − εk

. (6.3.60)

It is usual to define the important function

F (q) =
∑

k

fk − fk+q

εk+q − εk

, (6.3.61)

which is in fact dimension-dependent. Substituting the energy spectrum of the free electron gas into
(6.3.61), and replacing the summation over k by an integral, one finds the analytic expressions in
one and three dimensions

F1(q) =
2m

π�2q
ln

∣

∣

∣

∣

2kF + q

2kF − q

∣

∣

∣

∣

, (6.3.62)

F3(q) =
3N

4εF

[

1 +
4k2

F − q2

4kFq
ln

∣

∣

∣

∣

2kF + q

2kF − q

∣

∣

∣

∣

]

. (6.3.63)
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In the case of two dimensions, the expression is divided into two parts

F2(q) =

{

m/π�
2, for q < 2kF,

(m/π�
2){1 − [1 − (2kF/q)2]1/2}, for q > 2kF.

(6.3.64)

where the two parts are joined at q = 2kF.
The function F (q) depends only on scalar q in any dimension, so does the susceptibility from

(6.3.60). Plots of χ(q) versus q in one, two, and three dimensions are given in Fig. 6.3.9 in which we
see that there are different singularities at q = 2kF for χ(q) in one, two, and three dimensions. These
singularities reflect the existence of the Fermi surface, because 2kF is its diameter. The singularities
lead to peculiar behavior in electron gases, especially in lower dimensions.
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Chapter 7

Surface and Impurity Effects

The periodicity of perfect lattices has made it easy to study the propagation behavior of three
different kinds of waves. But there are always imperfections in crystals, such as surfaces and im-
purities, that must be taken into account in treating the problem of real crystals. For the case of
small imperfections, the band model is still effective, and only some slight modifications need to be
introduced into it due to deviation from perfect lattice periodicity. We shall investigate the effects
of surfaces and impurities on the band model in this chapter.

§7.1 Electronic Surface States

The surface of a solid obviously causes deviation from perfect periodicity. If the Born–von
Karman cyclic boundary condition is abandoned in the direction normal to the surface, the real
behavior of electrons will show some features not found in Chap. 5. The existence of the surface
surely will introduce some modifications into the electronic structure for an infinite crystal. In
general, the real structure of a solid surface is rather complex, involving rearrangements of atomic
configuration as well as the segregation of chemical impurities. To simplify the discussion, we will
adopt a model of an ideal surface in order to see the main effects that the surface brings.

7.1.1 Metal Surface

The work function and surface energy are two fundamental parameters that characterize a metal-
lic surface. The work function can be understood as the energy difference between an electron located
at the vacuum level outside a metal and at the Fermi level in the interior of the metal; in other
words, it equals the work needed for an electron to be moved out through the surface of the metal
to infinity (in practice 10 nm is enough). The surface energy is the energy needed to produce a
unit surface area, and it equals the increase of electronic energy for a metal when all bonds across
a planar surface are truncated. Both are involved in the electronic states related to the surface.

Here we use the nearly-free electron (NFE) approximation to study the electronic states for an
ideal surface. Let the half-space for z < 0 be vacuum with constant potential, and the other half-
space for z > 0 crystal with the periodic potential, as shown in Fig. 7.1.1. This can be simplified
to a one-dimensional problem with a boundary at z = 0. The surface thus represents an abrupt
transition at z = 0 between the vacuum and the periodic lattice. The problem now involves the
solution of the Schrödinger equation of a semi-infinite periodic chain

[

− �
2

2m

d2

dz2
+ V (z)

]

ψ(z) = Eψ(z), (7.1.1)

with the potential

V (z) =

{

V0, for z < 0,

V (z + la), for z > 0,
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where a is the lattice constant, and l an integer. The solutions can be obtained for z < 0 and z > 0,
respectively. For vacuum, the solutions of the Schrödinger equation must satisfy the requirement
that they decrease with decreasing z, while within the periodic part, wavefunctions are travelling
waves along the ±z directions, and so

ψ(z) =







A exp
[

1
�

√

2m(V0 − E)z
]

, for z < 0,

Bukeikz + Cu−ke−ikz , for z > 0,
(7.1.2)

where A, B, and C are constants. At z = 0 the wavefunctions and their derivatives must satisfy the
continuity conditions.

V0

a

V(z)

W= -EF+V0

EF

z

Figure 7.1.1 Schematic potential of an
electron in a semi-infinite lattice.

ψ

z0

Figure 7.1.2 Extended wavefunction
near metallic surface.

At the surfaces of metals, we are interested in the extended state for the energy bands which
are not fully filled. The wavefunction obtained for such a state, as shown in Fig. 7.1.2, must be
a Bloch wave in the crystal, and attenuate exponentially outside the surface. This shows that the
wavefunction for an extended state will not terminate at the surface but will spill over the surface
barrier into the vacuum like a tail, corresponding to a localized state near the surface. Thus, the one
or two unit cells near the surface in a crystal are positively charged due to the deficiency of electrons
that have spilled out, while the layer just outside the surface is negatively charged. Together these
form a dipolar double layer across the surface. The existence of this dipolar double layer affects
the potential profile across the crystal surface, which is changed from a step (from 0 to V0) to a
relatively smooth curve, like the dashed line in Fig. 7.1.1. The Fermi energy EF in metals has the
physical meaning of chemical potential, so the work function for an electron at a metallic surface is
equal to

W = V (−∞) − V (0) − EF ≈ V0 − EF.

The value of the electronic work function directly affects thermionic emission and field emission,
which are important in technology.

To calculate the surface energy and electron density variation near a surface, we can make a fur-
ther simplification from the nearly-free electron approximation, to the jellium model. In this model
the positive charges of ions which give rise to the periodic potential are distributed homogeneously
for a crystal, so in the interior of the crystal, the positive and negative charge densities cancel each
other, satisfying ρ+ + ρ− = 0; but near the surface things may be different, such as appearance of
a double layer as well as the oscillatory variation of the charge density, the so-called Friedel oscil-
lation near the surface. Then the term for periodic potential in (7.1.1) vanishes. The problem now
simplifies to solving the Schrödinger equation in a potential well of width L. Taking L → ∞ in one
direction gives the electronic surface state.

We consider first a one-dimensional potential well of width L. When the barriers are infinite,
electrons cannot run over the surface. In this confined system the eigenfunctions are

ψk(z) =

(

2

L

)1/2

sin kz, k =
nπ

L
, n = 1, 2, . . . , nF. (7.1.3)
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On the other hand, in an unconfined system, such as a normal crystal satisfying periodic boundary
conditions with repeat width L, we have

ψk′(z) =

(

1

L

)1/2

eik′z, k′ =
2n′π

L
, n′ = 0,±1,±2, . . . ,±n′

F. (7.1.4)

Comparing the two cases leads to some interesting conclusions: The energy level k = 0 can only
exist in the unconfined case and not in the confined case. In the confined case the separation of k
values is ∆k = π/L, while in the unconfined case it is ∆k′ = 2π/L, double the former. Also, in
the confined case, k is always positive, but in the unconfined case it can be positive or negative,
corresponding to waves travelling in opposite directions. Hence, for a definite energy level with |k|,
there is one pair of electrons with spin up and down in the confined case, while there are two pairs
of electrons in the unconfined case (see Fig. 7.1.3).

7

3
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1

2

0

n

2

3

1

0

|n'|

  Surface

Confinement
 No Surface

 Confinement

4

6

2

0

|n|=2|n'|

Figure 7.1.3 Filled energy levels of one-dimensional potential wells corresponding to the case with surface
confinement and the case without surface confinement.

It is clear from (7.1.3) and (7.1.4) that the energy eigenvalues in the cases with and without
confinement are

En =
�

2

2m

(nπ

L

)2

, n = 1, 2, . . . , nF;

and

En′ =
�

2

2m

(

2n′π

L

)2

, n′ = 0,±1,±2, . . . ,±n′
F. (7.1.5)

The difference of two adjacent energy levels for the former is smaller than that of the latter. In
the unconfined case the number of electrons accommodated in the state |k| is double that of the
confined case, so, using the same number of electrons to fill the energy level, the difference between
the highest filled levels for both cases, is very small, and the two numbers satisfy nF − 2n′

F = 1 or
0, the average is 1/2, corresponding to kF − k′

F = ∆kF = π/2L, as can be seen from Fig. 7.1.3.
If we fill these two systems with N electrons, taking N even, there is an energy difference of

∆E =

nF
∑

n=1

En −
n′

F
∑

|n′|=0

En′ . (7.1.6)

This difference arises from surface confinement. Compared to the unconfined system, surface con-
finement leads one half of the (1/2)(N/2) levels to rise an energy (�2/2m)(π/L)2, and so the total
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increment is

∆E =
�

2k2
F

2m
. (7.1.7)

If we let L → ∞, with N/L a constant, the difference between odd and even electron that are needed
to fill levels will disappear, so the conclusion is independent of whether the number is odd or even.
∆E is equal to the energy to take an electron from k = 0 to the Fermi level k = kF. This is the
principal origin of the metallic surface energy.

It is more exact to calculate the surface energy by using the jellium model for the surface of a
three-dimensional solid. Assuming the surface energy is ∆E∞

s , which has arisen from cutting the
bonds to form two surfaces, then

2L2∆E∞
s =

∫

k≤kF+δkF, kz≥π/2L

E(k)2

(

L

2π

)2
L

π
dk −

∫

k≤kF

E(k)2

(

L

2π

)3

dk, (7.1.8)

where δkF = π/4L is the quantity that the Fermi surface raised due to the surface in the three-
dimensional jellium model. For a wavevector k, to introduce its component k‖ parallel to the
truncated plane, we can obtain

2L2∆E∞
s =

∫

k≤kF+δkF, kz≥0

E(k)4

(

L

2π

)3

dk −
∫

k‖≤kF+δkF

d2k‖

π/2L
∫

0

E(k)4

(

L

2π

)3

dkz

−
∫

k≤kF, kz≥0

E(k)4

(

L

2π

)3

dk

= EF
L3

2π3
2πk2

FδkF −
kF
∫

0

�
2k2

‖L
3

2m
k‖dk‖

=

kF
∫

0

(

EF −
�

2k2
‖

2m

)

L2

4π2
2πk‖dk‖. (7.1.9)

The last term in (7.1.9) shows that the physical reason for the surface energy is the energy increase
for a half of electrons moved from the level k = 0 to the Fermi surface. To finish the integral, the
result is

E∞
s =

�
2k4

F

32πm
. (7.1.10)

In the one-dimensional jellium model, for a system with two confined surfaces, it is easy for us
to write the electron density distribution

ρ(z) =
N
∑

n=1

ψ∗
n(z)ψn(z) =

2

L

N
∑

n=1

sin2 nπz

L
. (7.1.11)

For finite L, we carry out the summation of (7.1.11) associated with (7.1.4), the result is

ρ(z) =
N + 1/2

L
− sin[2π(N + 1/2)z/L]

2L sin(πz/L)
. (7.1.12)

In order to examine the effect of surface on the electron density near z = 0, we let L tend to infinity,
and replace the summation by an integral

ρ(z) =
2

L

∫ N

0

sin2 nπz

L
dn. (7.1.13)
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It can be found that

ρ(z) = ρ0 − ρ0
sin(2kFz)

2kFz
, (7.1.14)

where ρ0 = N/L is the average density, and kF the Fermi momentum. Figure 7.1.4(a) displays the
form of this distribution which is characterized by a density oscillation deep into the interior of the
metal with wavelength π/kF. This Friedel oscillation comes from a localized perturbation due to
the wall at z = 0 in a free electron gas. The density rises from zero at the surface to its value ρ0

when sin(2kFz) = 0, i.e., over a distance π/2kF which is one half of the de Broglie wavelength for
an electron at the Fermi surface.

It should be pointed out that the calculated result for a one-dimensional system is somewhat
different from the actual situation. One should use the three-dimensional jellium model with trun-
cated surface using a finite barrier instead of an infinite one. Figure 7.1.4(b) shows a more correctly
calculated result. The spilling of surface electrons and the density oscillation will decrease the sur-
face energy a little. Certainly, a real calculation must take into account the modification due to the
many-body effect from electronic interactions.a

1
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z

Figure 7.1.4 Electronic density oscillation near metal surface. (a) Infinite surface barrier, (b) finite surface
barrier.

7.1.2 Semiconductor Surface States

For semiconductor surface states, we return to the nearly-free electron approximation, and con-
cern ourselves with what happens in energy gaps. The half-infinite periodic chain with weak lattice
potential is still used, and it is expected that the band structure will be almost the same as in
Fig. 5.2.2. The first Brillouin zone extends from k = −π/a to +π/a and the E(k) parabola for free
electrons is distorted near the boundaries of the Brillouin zone (BZ) where an energy gap occurs.
The solutions in the vicinity of k = ±π/a may be more interesting and we can write, for example,
for k near +π/a

ψk(z) = αeikz + βei(k−2π/a)z , (7.1.15)

α and β can be found from
[

�
2

2m
k2 − E(k)

]

α + V1β = 0, (7.1.16)

V ∗
1 α +

[

�
2

2m

(

k − 2π

a

)2

− E(k)

]

β = 0, (7.1.17)

where V1 = V2π/a is the Fourier coefficient of the periodic potential.

aExperimental tests of Friedel oscillations are in general indirect, however, in recent years, Friedel oscillations on Be
surfaces due to steps and defects have been observed directly by scanning tunnelling microscopy, see P. H. Hofmann
et al., Phys. Rev. Lett. 79, 265 (1997); P. T. Sprunger et al., Science 275, 1764 (1997).
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k µ|ε|

(a) (b)

E E

π/a

Figure 7.1.5 Dispersion relations when surface exists. (a) A little modified energy spectra for a nearly free
electron model. (b) In the energy gap between the two bands, solutions with imaginary k can appear.

z

ψ

0

Figure 7.1.6 A localized wavefunction near semiconductor surface.

Defining k = π/a + ε and γ = (�2π/ma|V1|)ε, we find that, for real ε, the energies and wave-
functions are

E± =
�

2

2m

(π

a
+ ε

)2

+ |V1|(−γ ±
√

1 + γ2), (7.1.18)

and

ψ±(z) = B

[

eiπz/a +
|V1|
V1

(−γ ±
√

1 + γ2)e−iπz/a

]

eiεz , for z > 0, (7.1.19)

with B being an another constant. Equation (7.1.18) gives the bands shown in Fig. 7.1.5(a). For
each energy, connecting the solutions in the vacuum and the periodic lattice, the two free parameters
A in (7.1.9) and B in (7.1.14) are determined by the continuity of the wavefunction and its derivative
at z = 0. In doing so, one needs to combine linearly the two solutions ψk(z) and ψ−k(z). The result
is the extended state shown in Fig. 7.1.2. The energy bands of an infinite lattice are only slightly
modified.

On the other hand, for ε = iµ with real positive µ, solutions, that decrease exponentially into the
crystal and are localized to the surface appear as shown in Fig. 7.1.5(b). Assuming γ = i sin(2δ) =
i(�2π/ma|V1|)µ we find that the energies are

E± =
�

2

2m

[

(π

a

)2

− µ2

]

± |V1|
[

1 −
(

�
2πµ

ma|V1|

)2
]1/2

, (7.1.20)

and the corresponding solutions

ψ±(z) = C

[

ei(πz/a±δ) ± |V1|
V1

e−i(πz/a±δ)

]

e−µz , (7.1.21)
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with C another constant. This represents a surface state. The energies in (7.1.20) are always real for
0 ≤ µ ≤ µmax = ma|V1|/�

2π. For µ = 0, (7.1.21) returns to the band edge resonant states (5.2.13).
The above result tells us that there are two kinds of solution of the Schrödinger equation (7.1.1).

One with real k corresponds to the usual band solutions with a little modification, and the other
with complex k decreases with increasing distance from the surface. The energy values associated
with the complex wavevector k, according to (7.1.20), lie in the energy gap between the bands, as
shown in Fig. 7.1.6. This solution represents a state in which the electron is localized to a narrow
region at the surface: It is just the surface state we are seeking.

In the one-dimensional model a surface state has a discrete energy level, denoted as E0, for
fixed µ in the energy gap. Extending the model to three dimensions, we can regard the results as
characterizing the component of k perpendicular to the surface. Since the crystal is still, presumably,
periodic in directions parallel to the surface, the Bloch theorem must hold for translations in this
plane. So the surface state is localized in one dimension, and may be delocalized in the other two
dimensions, such as

ψk = ψ0(z) exp[i(kxx + kyy)], (7.1.22)

where kx and ky are components of the wavevector k measured in the plane of the surface. In the
nearly-free electron case, for example, we should expect this band to behave like

E(k) = E0 +

(

�
2

2m

)

(k2
x + k2

y). (7.1.23)

Referring to §5.2.3, for transition metals, or covalent semiconductors like Si, Ge, and C, the tight-
binding model is more suitable for study of the surface states. We can still assume atoms to form a
one-dimensional semi-infinite periodic chain; an electron moves in the potential as shown in Fig. 7.1.1,
so satisfying (7.1.1), but the wavefunction now is better constructed by a linear combination of atomic
orbitals (LCAO) at various sites. Simple mathematical treatment shows that, when the transfer
matrix elements satisfy some conditions, there are also electronic surface states that oscillate and
are attenuated exponentially.

§7.2 Electronic Impurity States

The impurities in a solid also cause departures from perfect periodicity. In the case of dilute
impurities, we may frame the problem as a single impurity in metals or semiconductors. The basic
question is: What potential or interaction should be used to represent the effects of the impurity
center on the electronic states and energy band structure?

7.2.1 Shielding Effect of Charged Center

We shall first deal with the simplest case, i.e., a static impurity charge Ze embedded in a metal
described as a free electron gas. The original free electron gas has the plane wave solution Ω−1/2eik·r

in (5.2.1), where Ω is the volume of the crystal. If the impurity charge provides a spherically
symmetric scattering potential U(r), then the waves of the conduction electrons are distorted into
ψk(r), which is different from a plane wave. The wavevector k labels the unperturbed state before
Ze is introduced.

Now the Schrödinger equation is

− �
2

2m
∇2ψk + U(r)ψk = Ekψk, (7.2.1)

where Ek = �
2k2/2m. To obtain the distorted wavefunction, (7.2.1) is written as

∇2ψk + k2ψk =
2m

�2
U(r)ψk. (7.2.2)

To solve this equation, we introduce the Green’s function G(rr′) which satisfies

∇2G(rr′) + k2G(rr′) = −4πδ(r − r′), (7.2.3)
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then the formal solution of (7.2.2) can be written as

ψk(r) = Ω−1/2eik·r − m

2π�2

∫

dr′G(rr′)U(r′)ψk(r′). (7.2.4)

It should be noted that the Green’s function has been widely used both in classical and quantum me-
chanics.b The physical meaning of the Green’s function used here is just the well-known propagator,
the wavefunction at r excited by the potential and associated wavefunction at r′. In the mathe-
matical treatment, it gives a simplified method of solving Schrödinger equation. G(rr′) in (7.2.3)
is the so-called preliminary solution, provided (7.2.3) is satisfied. It is easy to verify that (7.2.4)
is the solution of (7.2.2). Now the problem is transformed into finding the solution of (7.2.3) first.
Actually the solution of (7.2.3) may be found simply by taking the Fourier transform of both sides
of the equation. After some algebraic calculations and finishing with an integration, the result is

G(rr′) =
eik|r−r′|

|r − r′| . (7.2.5)

Since the Green’s function is obtained, (7.2.4) is an integral equation related to the wavefunction,
and its solution can be found by recursion methods to different orders. In the first-order Born
approximation, we have

ψk(r) = Ω−1/2

[

eik·r − m

2π�2

∫

dr′G(rr′)U(r′)eik·r′

]

. (7.2.6)

The electron density ρ(r) can be obtained by summing ψ∗
k(r)ψk(r) over all k up to the Fermi

surface

ρ(r) =
∑

|k|<kF

ψ∗
k(r)ψk(r) = Ω−1







∑

|k|<kF

−
∑

|k|<kF

m

2π�2

∫

dr′U(r′)

× [G(rr′)eik·(r′−r) + G∗(rr′)e−ik·(r′−r)]







, (7.2.7)

in which the 2nd-order terms are ignored. We change the summation over k into an integration by
using (7.2.4), and so

ρ(r) = ρ0 −
2m

(2π)4�2

∫

dr′U(r′)

∫

|k|<kF

dk[G(rr′)eik·(r′−r)

+ G∗(rr′)e−ik·(r′−r)], (7.2.8)

where ρ0 = N/Ω is the average density. Now we substitute (7.2.5) into (7.2.8) and integrate over
the directions of k, we have

ρ(r) = ρ0 −
2m

(2π)4�2

∫

dr′U(r′)

∫ kF

0

dk4πk2

[

sin k|r − r′|
k|r − r′| · 2 cosk|r − r′|

|r − r′|

]

. (7.2.9)

After integrating over k, we get

ρ(r) − ρ0 = − mk2
F

2π3�2

∫

dr′U(r′)
j1(2kF|r − r′|)

|r − r′|2 , (7.2.10)

where j1(x) = (sinx − x cos x)/x2 is the first-order spherical Bessel function.

bSee, for example, F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Addison-Wesley
(1969).
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From (7.2.10), it is clear that the final form of the density ρ(r) depends on the impurity potential
chosen. However, because the integrand includes the first-order spherical Bessel function which has
the character of an oscillatory decay, we expect the density to be similar. For a simple example,
which is however not self-consistent, let U(r) = U0δ(r), corresponding to an external short-range
potential, the integral can be completed

ρ(r) − ρ0 = −mk2
FU0

2π3�2
· j1(2kFr)

r2
∼ sin 2kFr − 2kFr cos 2kFr

r4
, (7.2.11)

and at large distance

ρ(r) − ρ0 ∼ cos 2kFr

r3
. (7.2.12)

This shows the Friedel oscillation of electron density when an impurity atom is contained in the
metal.

Conversely, we can derive the Friedel oscillation of the potential. Using the Poisson equation,
(7.2.10) can be transformed into

∇2U =
2me2k2

F

π2�2

∫

dr′U(r′)
j1(2kF|r − r′|)

|r − r′|2 . (7.2.13)

This is a self-consistent equation from which the asymptotic behavior of the potential is

U(r) ∼ cos 2kFr

r3
, (7.2.14)

as shown in Fig. 7.2.1. This oscillation of screened potential can be experimentally confirmed by
the Knight shifts in dilute alloys. The electron density still retains the character of (7.2.12) in this
self-consistently oscillating screened potential.

U

r

Figure 7.2.1 Screened potentials round a point charge in a sea of free electron gas.

7.2.2 Localized Modes of Electrons

For a single impurity charge in a semiconductor, the nearly-free electron model can be used. We
shall only consider the effect of its electronic band structure. The Schrödinger equation (5.1.7) in a
periodic potential V (r), with Bloch solution ψk(r) and eigenenergy E(k), is now transformed into

[

− �
2

2m
∇2 + V (r) + U(r)

]

ψ = Eψ, (7.2.15)

where U(r) is the exotic potential introduced by the impurity charge which can be either negative
or positive. Electrons can thus be bound to the impurity or repelled by it.

For further discussion, we consider a covalently-bonded elemental semiconductor of Z-valent
atoms in which one of the original atoms was substituted by a (Z +1)-valent atom, a simple form of
impurity potential U(r) is provided by this donor atom. The donor atom introduces one electron and
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one additional positive charge to the nucleus. This electron is not required for the covalent bonds
to the nearest neighbors. U(r) in this case is the potential of the additional positive charge, in
which the additional electron moves. For large separations of the electron from the positive charge,
the crystal lattice screens the Coulomb potential just like a homogeneous medium with dielectric
constant ǫ, and thus in (7.2.15) the potential is

U(r) = −e2

ǫr
. (7.2.16)

We have reduced the perturbation potential to the form of an hydrogen atom in a medium of
dielectric constant ǫ.

For the motion of a conduction electron in the potential U(r), its wavefunction can be expanded
in terms of the Bloch functions

ψ =
∑

k

c(k)ψk(r). (7.2.17)

By substitution into (7.2.15), we find

[E(−i∇) + U(r)]ψ = Eψ, (7.2.18)

where E(k) has been formally replaced by E(−i∇). Because E(k) is a periodic function in k-space,
it can be expanded as a Fourier series E(k) =

∑

l El exp(il · k), and

E(−i∇) =
∑

l

Ele
l·∇, (7.2.19)

in which exp(l ·∇) is a translational operator, and its role is to make any spatial function f(r) equal
to f(r + l).

In the following, we consider a shallow impurity with relatively weak binding potential for an
electron; this condition is fulfilled for most donors. In this case, the orbital of the electron bound
to the impurity traverses many lattice cells. The extent of the wave packet in space is thus large
compared with the lattice constant. Consequently its extent in k-space is small compared with the
dimensions of the Brillouin zone (BZ). So only k-vectors from a narrow region around the band
minimum contribute to (7.2.17). In the simplest case of an isotropic parabolic minimum at k = 0,
the summation in (7.2.17) only runs over small values of k. Since the lattice periodic part uk(r)
in the Bloch function ψk(r) = uk(r) exp(ik · r) only changes slowly with k, we can replace uk(r)
directly by u0(r) = ψ0(r), and obtain

ψ = u0(r)
∑

k

c(k)eik·r = ψ0(r)F (r), (7.2.20)

where F (r) =
∑

k c(k) exp(ik · r).
If one puts (7.2.20) into (7.2.18) and notes that the function E(−i∇) appears like a function of

the translation operator, then

E(−i∇)ψ0(r)F (r) = ψ0(r)E(−i∇)F (r), (7.2.21)

it follows that
[E(−i∇) + U(r)]F (r) = EF (r). (7.2.22)

(7.2.22) differs from (7.2.18) in that the rapidly changing function ψ has been replaced by the slowly
changing envelope function F (r). Then the operator E(−i∇) can be expanded to the quadratic term

E(−i∇) = Ec −
�

2

2m∗∇
2, (7.2.23)

where Ec is the lower edge of the conduction band, and m∗ is the effective mass. This leads to
(

− �
2

2m∗∇
2 − e2

ǫr

)

F (r) = (E − Ec)F (r), (7.2.24)

where we have inserted the explicit form (7.2.16) for U(r).
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Equation (7.2.24) is the Schrödinger equation for an electron with effective mass m∗ in the
potential of a positive charge in a medium of dielectric constant ǫ. We know the solution to this
equation from the hydrogen atom. The eigenvalues are

En = Ec −
e4m∗

2�2ǫ2n2
, n = 1, 2, . . . (7.2.25)

which give discrete levels below the conduction band as shown in Fig. 7.2.2. The envelope function
for the ground state is

F (r) =
1

(πa∗3
0 )1/2

exp

(

− r

a∗
0

)

, a∗
0 =

�
2

me2

m

m∗ ǫ, (7.2.26)

which is known as a bound state.
In the case discussed so far, of a donor atom in a semiconductor with an isotropic, parabolic

conduction band minimum, it should be noted, first of all, that the bound states of the electron form
a hydrogen atom-like spectrum, which lies below the lower edge of the conduction band. The Bohr
radius for the orbital of the ground state is increased by a factor ǫm/m∗ relative to that of the free
H-atom (0.53 Å). For Si and Ge its value lies between 20 and 50 Å.

n=1

n=2
n=3
n=4

k

E

0

Figure 7.2.2 The E-k diagram for the localized impurity levels lie below the minimum of the conduction
band.

7.2.3 Electron Spin Density Oscillation around a Magnetic Impurity

So far we have ignored the spin of electrons. However, if there is a magnetic impurity in a metal,
the scattering of conduction electrons by the impurity moment can be spin-dependent. By taking
spin into account, in the free electron approximation, the eigenstate of a conduction electron is

ψkσ(r) = Ω−1/2eik·r|σ〉, (7.2.27)

where spin index σ = ↑, or ↓ is denoted. Consider a local moment with spin S located at the site
R, which affects the spins of conduction electrons sj described by a contact interaction

H′ = −J
∑

j

sj · Sδ(r − R). (7.2.28)

Then the spin of each conduction electron experiences an effective field coming from the impurity
moment

Heff(r) = − J

gLµB
Sδ(r − R), (7.2.29)

where gL and µB are the Landé factor and Bohr magneton, respectively.
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The response of an electron gas to such a field is determined by its susceptibility χ(q). Since the
Fourier transform of this field is

Heff(q) = − J

gLµB
S, (7.2.30)

we get the spin density at r

s(r) =
J

g
2
Lµ2

BΩ

∑

q

χ(q)eiq·rS, (7.2.31)

by assuming R = 0.
We have already derived the spin susceptibility of a free electron gas in §6.3.4, the result is

χ(q) =
3g

2
Lµ2

B

16EF

N

Ω

[

1 +
kF

q

(

1 − q2

4k2
F

)

ln

∣

∣

∣

∣

2kF + q

2kF − q

∣

∣

∣

∣

]

. (7.2.32)

The sum over q in (7.2.31) is evaluated by converting it into an integral, thus

1

Ω

∑

q

χ(q)eiq·r =
3g

2
Lµ2

BkF

128πEF

N

Ω

sin 2kFr − 2kF cos 2kFr

(kFr)4
. (7.2.33)

When this expression is substituted into (7.2.31), the spin density for kFr ≫ 1 is

s(r) = − 3πn2

64EF
JS

cos 2kFr

(kFr)3
. (7.2.34)

It is clear that when a localized impurity moment is introduced in a metal, the spins of the conduction
electrons develop an oscillating polarization in the vicinity of the moment, as shown in Fig. 7.2.3.
This is the Rudermann–Kittel–Kasuya–Yosida (RKKY) oscillation for electron spin density. It is
quite analogous to the Friedel oscillation of electron charge density.

A

B

C

Figure 7.2.3 Electron spin density oscillation arising from an impurity moment at A.

§7.3 Vibrations Related to Surface and Impurity

As in the case of electrons in real crystals, when there is a surface or an impurity in an otherwise
perfect periodic structure, the states related to the lattice waves or elastic waves will be slightly
modified. In addition, localized modes appear near these imperfections.
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7.3.1 Surface Vibrations

We consider a semi-infinite crystal in the z > 0 half space. There is a surface at z = 0 separating
it from the vacuum of the z < 0 half space. If there is two-dimensional periodicity in the x-y plane,
the Bloch theorem can still be applied. The problem of lattice vibrations may be formally reduced
to the determination of the modes of a semi-infinite linear chain in z-direction. From the equations
of motion, we can easily find two types of solutions: bulk modes, which can propagate to z → ∞;
and surface modes, which vanish rapidly as z increases.

0 z

Figure 7.3.1 A semi-infinite atomic chain used to surface vibrations.

Figure 7.3.1 shows a semi-infinite linear chain consisting of identical atoms of mass M with
spacing a, the nearest-neighbor coupling constant is taken as β, except that β0 �= β between the
first two atoms. This deviation comes from effects of the surface. The equations of motion are

Mü0 = −β0(u0 − u1), (7.3.1)

Mü1 = −β0(u1 − u0) − β(u1 − u2), (7.3.2)

Mül = −β(ul − ul−1) − β(ul − ul+1), for l ≥ 2. (7.3.3)

Since there are two boundary conditions (7.3.1) and (7.3.2), then the solutions can be written as

u0 = U0e
−iωt, (7.3.4)

and

ul = Ueikla−iωt, for l ≥ 1, (7.3.5)

where U0 and U are two amplitude variables.
Substituting (7.3.5) into (7.3.3), we find the bulk modes for the infinite periodic chain satisfy the

following dispersion relation

ωb =

(

4β

M

)1/2 ∣
∣

∣

∣

sin
ka

2

∣

∣

∣

∣

, (7.3.6)

where ka is real. However, ka may be complex due to the existence of a surface, which represents
a surface mode. To search for surface modes, we substitute (7.3.4), (7.3.5) into (7.3.1), (7.3.2), and
keep (7.3.6) in mind, obtaining

[β0 − 2β(1 − cos ka)]U0 − β0e
ikaU = 0,

−β0e
−ikaU0 + [β0 − β(1 − e−ika)]U = 0.

These two equations have non-trivial solutions when the coefficient determinant is zero, thus

[β0 − 2β(1 − cos ka)][β0 − β(1 − e−ika)] − β2
0 = 0, (7.3.7)

from it one solution is exp(ika) = 1, which corresponds to a rigid translation of the chain and has
no physical interest. The other two solutions are

eika = 1 ±
√

1 +
1

ε
, (7.3.8)

with

ε =
β0 − β

β
. (7.3.9)
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Let us discuss the solutions in (7.3.8). Since β0 and β are positive, we have ε > −1. Thus there
are two possibilities: (1) β0 < β, i.e., −1 < ε < 0, (1 + 1/ε) is negative, and

eika = 1 ± i

√

−1 − 1

ε
,

which are not exponentially decaying solutions; (2) when β0 > β, i.e., ε > 0, we have to consider
the two solutions of (7.3.8) separately. It is easy to see that the solution with the plus sign is larger
than 1 and thus corresponds to a negative imaginary k, which is contrary to the assumption, as can
be seen from (7.3.5). The solution with minus sign corresponds to ka = π + iµ, with

µ = ln(ε +
√

ε2 + ε).

In this expression, if µ is positive, then

ε +
√

ε2 + ε > 1,

or by using (7.3.9) it gives
β0

β
>

4

3
, (7.3.10)

that is to say, when β0 > 4β/3, we have a localized mode with a frequency

ωs =

(

2β

M

)1/2

(1 + coshµ) (7.3.11)

above the bulk mode. The displacement of the lth atom is

ul = U(−1)le−lµ, for l ≥ 1, (7.3.12)

which is an oscillatory damped solution in the z direction, very similar to (7.1.21). By the way, U0

can be expressed in terms of U from (7.3.1) and (7.3.11); however, if the condition (7.1.10) is not
satisfied, there is no surface mode because µ is not a positive real number.

Alternatively, if the mass at site 0, M0, also deviates from M (for sites l ≥ 1), the condition for
the existence of surface mode will be

β0

β
>

4M0

2M0 + M
. (7.3.13)

7.3.2 Impurity Vibration Modes

As discussed in surface vibrations, there may exist two kinds of impurities to influence lattice
vibrations: One introduces a mass difference, with the masses of a few atoms lighter or heavier
than the atoms of the matrix; the other introduces a force constant defect, with the force constants
changed between some atoms. In reality, these two kinds of defects may often be connected, but
their detailed form is difficult to find. However, we only need to consider the simplest case to give an
illustration. The most important results may be expected: slight influences of defects on the states
in the branches of the phonon spectrum, and appearance of localized states between the acoustic
and optical branches and above the optical branches.

For a perfect crystal with a single atom per primitive cell, the equations of motion (5.3.1) for
the vibrations reduces to

ω2ul −
1

M

∑

l′

Φll′ · ul′ = 0 (7.3.14)

in terms of the displacements ul and the force constant Φll′ . Correspondingly, (7.3.2) is transformed
into

ul = Ukeik·l, (7.3.15)
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where Uk is normalized. Because l runs from 1 to N , (7.3.14) represents a set of N vector equations.
We can define a 3N × 3N matrix

D(ω2) = ω2I − (1/M)Φ, (7.3.16)

where Φ is a 3N × 3N force constant matrix (not potential function as in Sec. 7.3.1). Then (7.3.14)
is rewritten as

D(ω2)u = 0, (7.3.17)

where u is a 1 × 3N column matrix standing for the set of displacements ul.
For simplicity, we will concentrate on the mass defect of a single atom, by supposing that the

mass at the site l = 0 is changed to M0, and we will ignore the possible variation of force constant.
Defining the mass difference δM = M0 − M , the dynamic equations (7.3.14) becomes

ω2ul −
1

M

∑

l′

Φll′ · ul′ +
δM

M
ω2u0δl0 = 0. (7.3.18)

This equation can be written as
D(ω2)u + δD(ω2)u = 0. (7.3.19)

The mass defect leads to a perturbation of the dynamic matrix of the originally perfect crystal.
We now use the classical Green’s function method and rewrite (7.3.18) in the algebraically equiv-

alent form
(1 + GδD)u = 0, (7.3.20)

where G, the Green function, is the matrix inverse of the dynamic matrix D satisfying

G(ω2)D(ω2) = 1. (7.3.21)

After (7.3.17) is solved, the eigenfrequencies ωk and eigenvectors uk are known, because they satisfy

ω2
kuk − 1

M
Φuk = 0. (7.3.22)

We can now write an expression

G−1uk = Duk = (ω2 − ω2
k)uk, (7.3.23)

or

Guk =
1

ω2 − ω2
k

uk. (7.3.24)

Multiplying by u∗
k on both sides, and then summing over the wavevectors k to include all the

vibrational modes, we have
∑

k

Guku∗
k =

∑

k

uku∗
k

ω2 − ω2
k

. (7.3.25)

Note the orthogonality of uk. It is found that the matrix G(ω2) can be expressed in the reduced
form

Gll′ (ω
2) =

1

N

∑

k

UkU∗
k

ω2 − ω2
k

eik·(l−l′). (7.3.26)

Because we assume that the mass defect at the site l = 0 provides only a highly localized
perturbation, substitution of (7.3.26) into (7.3.20) gives an equation involving only u0, the vector
displacement on this site. We only need to consider G00(ω

2), i.e.,

δM

NM

∑

k

UkU∗
k

ω2

ω2
k − ω2

= I. (7.3.27)

This is in the form of a 3 × 3 matrix expression. We must now deal with the vector notation we
have been using: The Uk is a unit vector in the direction of polarization for the mode k, Ukα is the
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component of Uk in the αth direction. UkU∗
k is a matrix with elements in Cartesian coordinates of

UkαU∗
kβ. Written in components, (7.3.27) becomes

δM

NM

∑

k

UkαU∗
kβ

ω2

ω2
k − ω2

= δαβ . (7.3.28)

Assuming that the frequency and polarization of each of the normal modes of the perfect lattice are
known, all frequencies of the normal modes of the crystal with the defect can be found from (7.3.28).

If there is a defect with cubic symmetry in a cubic crystal, for all ω we can write a simplified
relation UkαU∗

kβ = (1/3)δαβ, and (7.3.28) is reduced to

δM

3NM

∑

k

ω2

ω2
k − ω2

= 1. (7.3.29)

The normal mode frequencies are the roots of this equation. They can be found graphically, as
shown in Fig. 7.3.2. We look for points where the function

f(ω2) =
1

3N

∑

k

ω2

ω2 − ω2
k

(7.3.30)

intersects the horizontal line at (−M/δM ). If δM is positive, i.e. a heavy impurity, each root for
(7.3.29) must lie below a pole ω2

k of f(ω2), the normal modes of the perturbed system are interleaved
in frequency between those of the perfect crystal. Since the values of ωk form a dense band, whose
spacing tends to zero like 1/N , all of the new solutions are indistinguishable from the old. On the
other hand, if δM is negative for light impurity, each root for (7.3.29) must lie above a pole ω2

k of
f(ω2), the normal modes of the perturbed system are also interleaved in frequency between those
of the perfect crystal and form a dense band. However, we notice in Fig. 7.3.2 that the highest
root is not constrained, but can move away from the top of the band, ωmax, by a finite amount.
The frequency of the localized mode may be obtained from (7.3.29). The square amplitudes of the
localized mode can also be obtained. They decay exponentially with distance. Localized lattice
vibrations are often infrared active and thus can be detected in the absorption spectra of crystal.

1

0 ωmax ω

Localized Mode

-M/δM

f (ω
2
)

Figure 7.3.2 Graphical solution of lattice modes with a single mass defect.

§7.4 Defect Modes in Photonic Crystals

In Chap. 5 we introduced artificial periodic structures known as photonic crystals. These photonic
crystals have photonic bandgaps, in which electromagnetic waves are forbidden to propagate along
certain directions in space. As the result of the unified picture of wave propagation, we can also
investigate surface and impurity modes in photonic crystals.
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7.4.1 Electromagnetic Surface Modes in Layered Periodic Structures

In §5.4.1, we obtained the dispersion relation and band structure of electromagnetic waves in
layered periodic dielectric structures. To investigate the surface modes in this kind of system, we
consider a semi-infinite periodic dielectric medium consisting of alternating layers of different indices
of refraction for the z ≥ 0 half space, the parameters of structure are defined as in Fig. 7.4.1, and
the other half space z < 0 is homogeneous medium with index of refraction n0. There will be
evanescent Bloch surface waves guided by the boundary of a semi-infinite periodic dielectric layered
medium. These electromagnetic waves are propagating modes confined to the immediate vicinity of
the interface between the two semi-infinite systems. One surface wave will create an eigenfrequency
in the forbidden band.

For definiteness, we consider that the confined waves are propagating in the positive y direction
and are transverse electric (TE) modes, where the electric field is polarized in the x direction. The
electric field distribution for TE modes obeys the equation

d2E(y, z)

dy2
+

d2E(y, z)

dz2
+

ω2

c2
ǫ(z)E(y, z) = 0. (7.4.1)

We write the solution as
E(y, z) = E(z)e−ikyy,

and substitute it into (7.4.1), then

d2E(z)

dz2
+

(

ω2

c2
ǫ(z) − k2

y

)

E(z) = 0. (7.4.2)

The solution of this equation can be divided into two parts

E(z) =

{

Cek0z, z ≤ 0,

A1e
iq1z + B1e

−iq1z, 0 ≤ z < d1,
(7.4.3)

where C, A1, B1 are constants, and q1 = n1ω/c. The wavevector k0 is given by

k0 =

[

k2
y −

(n0ω

c

)2
]1/2

. (7.4.4)

Actually, the part of the solution for z > 0 can be approximated as a Bloch wave E(z) exp(ikz), as
investigated in §5.4.1.

For a localized mode to exist, the wavevector k must be complex, so that the field decays as z
deviates from z = 0. By using the continuity conditions of E(z) and dE(z)/dz at the interface z = 0,

C = A1 + B1,

k0C = iq1(A1 − B1). (7.4.5)

Eliminating C from (7.4.5) and replacing the ratio A1/B1 by the matrix elements in (5.4.6), we
obtain the mode condition for the surface waves

k0 = iq1
T11 + T12 − eikd

T11 − T12 − eikd
. (7.4.6)

Combined with (7.4.4), this is a complicated transcendental equation to determine the dispersion
relation ω(ky, k). There are a lot of propagating wave solutions for the z < 0 or z > 0 half-spaces.
To find a surface mode, we should first take ky > n0ω/c to assure that k0 is real and positive.
Because of the surface, k may become a complex number with a positive imaginary part, so the field
amplitude decays exponentially as z increases. Actually, both sides of (7.4.6) are functions of ky for
a given ω. Values of ky satisfying (7.4.6) for which k is complex, k = η + iµ, correspond to surface
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(b)(a)

Figure 7.4.1 Transverse field distribution for typical surface modes guided by the surface of a semi-infinite
periodic stratified media. (a) Theoretical result, (b) experimental measurement.

waves. The calculated transverse field distributions E(z) of some typical surface waves are shown
in Fig. 7.4.1.

It is evident that the energy is more or less concentrated in the first few periods of the semi-
infinite periodic medium. It can easily be shown that the ratio of the energy in the first period
to the energy in the whole semi-infinite periodic structure is 1 − exp(−2µd). The electromagnetic
surface wave can be observed experimentally by measuring its intensity distribution. The result is
shown in Fig. 7.4.1(b).

Generally speaking, the fundamental surface wave has the highest µ and hence the highest degree
of localization. The fundamental surface wave may happen to be in the zeroth or the first forbidden
gap, depending on the magnitude of the index of refraction n0.

7.4.2 Point Defect

A dielectric structure with defects can be described by the position-dependent dielectric function
ǫ(r) as

ǫ(r) = ǫ0(r) + δǫ(r), (7.4.7)

where ǫ0(r) is a periodic function in real space, while δǫ(r) represents the deviation at each site
from ǫ0(r). For a real defect, the deviation is actually concentrated in a certain region, for example,
a unit cell, corresponding to a point defect; or a tube constructed with a sequence of unit cells,
corresponding to a line defect. If defects are known, then the dielectric function (7.1.1) is determined
and we can substitute it into the following equation

∇×
[

1

ǫ(r)
∇× H(r)

]

=
ω2

c2
H(r), (7.4.8)

to obtain the eigenvalues and the localized eigenstates. The general method of solving the equation
is to perform numerical calculations for supercells.

We take a two-dimensional photonic crystal with a point defect as an example. Consider a
periodic structure composed of circular rods with same radius R and dielectric constant ǫ. Let
the lattice constant be a and R = 0.2a. We choose a 7 × 7 supercell. The simplest point defect
is obtained by inflating or deflating the radius of a dielectric rod in the middle of the structure.
Certainly the real case for defects can be more sophisticated, such as filling materials with different
ǫ, and involve more than one unit cell. We are concerned here about only the simplest case. Let the
magnitude of R decrease from 0.2a. In the beginning, the disturbance is not large enough to induce
even one localized state. When the radius is decreased to R = 0.15a, there is a localized mode that
appears not far from the top of the valence band. Afterwards it sweeps over the band gap until
the rod disappears at R = 0, ω = 0.38c/a. Conversely, we can let the radius increase gradually.
When R reaches 0.25a, there appears a pair of doubly degenerated localized modes, dipolar modes
with nodes on the midplane, near the bottom of the conduction band. Continuously increasing



· 195 ·§7.4 Defect Modes in Photonic Crystals

0.40

0.45

0.25

0.30

0.35

0 0.2 0.4 0.6 0.8

Double Degenerate Modes

ω
a

/2
πc

Defect Radius

Figure 7.4.2 The relation of frequency and stick radius for local state in two-dimensional photonic crystals.
From P. R. Villeneuve et al., Phys. Rev. B 54, 7837 (1996).

the radius causes the localized states with different symmetries sequentially to appear, and their
eigenfrequencies sweep over the gap, as shown in Fig. 7.4.2. These localized states due to point
defects correspond to the acceptor and donor states in doped semiconductors.

If there is an atom placed in an otherwise perfect photonic crystal, and the atomic transition
frequency is just in the gap of the photonic crystal, then its spontaneous transition for radiation
will be inhibited. But if this atom is placed in the point defect of a photonic crystal, the situation
is quite different. When the atomic transition frequency matches the energy level of local modes of
the point defect, the probability of the atomic spontaneous emission of radiation will be enhanced.
Therefore, a void (R = 0) in a photonic crystal is like an optical resonant cavity, called a microcavity,
surrounded by perfectly reflecting walls. The resonant frequency of this microcavity corresponds to
the local mode of the point defect.

Usually the quality factor Q is used to characterize a resonant system, i.e.,

Q =
ω0E

dE/dt
≃ ω0

∆ω
, (7.4.9)

where E is the energy stored by resonant cavity, ω0 is the eigenfrequency of resonant cavity, and ∆ω
is the half width of the Lorentz profile of this frequency. The physical meaning of Q is the number
of oscillating cycles in a resonant cavity after which its energy declines to a fraction e−2π (∼ 0.2%)
of its initial value. It is obvious that Q is closely related to the size of a photonic crystal. The more
the number of unit cells, the larger the Q value. For example, when the number of unit cells is
9 × 9 for a two-dimensional rod periodic structure, the photonic crystal composed of parallel rods
has Q ≃ 104.

Assume that the atom is coupled with a light field. Then the Einstein coefficient Af , characteriz-
ing the possibility of the atomic spontaneous radiation in free space, is proportional to the photonic
density of states (DOS) in a unit volume, that is

Af ≃ 1

ω0λ3
, (7.4.10)

while the corresponding coefficient in a microcavity is

Ac =
1

∆ωΩ
, (7.4.11)
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Figure 7.4.3 Energy structures for in a two-dimensional photonic crystal with a line defect. From
J. D. Joannopoulos et al., Photonic Crystals, Princeton Univ. Press (1995).

where Ω is the volume of a microcavity. Thus the enhancement factor in a microcavity for the
spontaneous radiation is about

Ac

Af
≃ ω0

∆ω

λ3

Ω
=

Q

(Ω/λ3)
. (7.4.12)

Since the size of a microcavity is Ω ∼ λ3, the enhancement factor of a microcavity is almost equal
to its Q value. A larger probability of spontaneous radiation is beneficial for the fabrication of
highly efficient luminescent diodes and lasers. It is expected that there will be a large potential in
application of point defects in photonic crystals as microcavities for lasers.

7.4.3 Line Defects

A point defect in a photonic crystal can be used to restrict electromagnetic waves in a local
region; and a line defect can be used as a waveguide for electromagnetic waves; that is, it can guide
electromagnetic waves from one place to other.

To illustrate this problem, we can still use the two-dimensional square array of dielectric circular
rods, as in the case of point defects. The corresponding defect modes form a band of conduction
waves, as shown in Fig. 7.4.3, just like the impurity band in a semiconductor. This band of conduction
waves allows electromagnetic waves propagate freely along a narrow channel of a waveguide. Because
it is impermissible for electromagnetic waves to penetrate the wall of a waveguide, even if the
waveguide bends 90◦, there is nearly no electromagnetic wave leaking out. Theoretical calculations
have verified this conclusion.

In traditional waveguide techniques, at the microwave frequency range, metallic walls and coax-
ial cables are used to guide electromagnetic waves; while in the optical frequency range dielectric
waveguides and optical fibres are used. The latter are based on the effects due to the gradient of
indices of refraction and total reflection at boundary. From the viewpoint of applications, there
are some shortfalls for optical fibre waveguides and dielectric waveguides, especially as the index
of refraction has dispersion, i.e., there are differences for the velocities of light with different fre-
quencies. The original very-short optical pulses (according to the uncertainty relation, very short in
time regime means very wide in frequency regime) propagating in the dispersive media will widen,
thus restricting the quality of information to be transmitted. In addition, if optical fibres are bent
with large angles, the energy loss is considerable. The existence of these disadvantages provides
opportunities for line defects of photonic crystals to be used as optical waveguides in applications
for optical techniques of information transmission.c

cFor line defects in photonic crystals as waveguides, see a review by J. C. Knight, Nature 428, 847 (2003).
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Chapter 8

Transport Properties

Carriers in metals and semiconductors will move in a definite direction under applied electric
fields and temperature gradients. At the same time, they will also be scattered by impurities, defects
and lattice vibrations. If these two factors compete each other and finally arrive at equilibrium, we
have stationary transport. In this chapter, we will at first use the semiclassical Boltzmann equation
and its relaxation time approximation as the basis of a treatment of transport properties of solids,
and we will illustrate this by looking at the conductivity of metals and semiconductors. Then we will
discuss electronic transport in magnetic fields, involving charge transport as well as spin transport.
Finally we will discuss electronic transport based on the tunneling effect, including the physical basis
for tunneling magnetoresistance (TMR) and scanning tunneling microscopy (STM).

§8.1 Normal Transport

In this section we begin from the theoretical basis for transport properties in solids, including
the Boltzmann equation and its relaxation time approximation, to discuss some problems in normal
transport (i.e., without magnetic field), mainly concentrating on transport under electric fields or
temperature gradients.

8.1.1 Boltzmann Equation

In a real solid, electrons are scattered by lattice imperfections and lattice vibrations. An electron
in the state labelled by wavevector k may be scattered into another state k′. Supposing the system
is inhomogeneous on a macroscopic scale, and the scattering is weak, we may describe the motion
of electrons by a semiclassical distribution function f(k, r, t) which depends not only on wavevector
k, but also on position r and time t.

We now consider the change of the distribution function with time in the presence of an applied
field. A particular state (k, r) may be occupied (f = 1) or not occupied (f = 0). If there is
no scattering at all, this state will move through phase space satisfying the transport equation
df/dt = 0. However, if there are scattering events, an electron will discontinuously change its
momentum and therefore will make a discontinuous jump in phase space. Thus the transport
equation is df/dt = ∂f/∂t|coll, where the term on the right hand side is the change in the distribution
function due to collisions. The result is

∂f

∂t
+ ∇kf · dk

dt
+ ∇f · dr

dt
=

∂f

∂t

∣

∣

∣

∣

coll

, (8.1.1)

in which dk/dt is the rate of momentum variation and is proportional to the applied force F by
(6.1.4); dr/dt is the rate of position variation and is equal to the velocity v. Thus the transport
equation is transformed into

∂f

∂t
+

1

�
F · ∇kf + v · ∇f =

∂f

∂t

∣

∣

∣

∣

coll

. (8.1.2)
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The rate of change of the distribution function contains three contributions: an acceleration term,
in which an applied force causes electrons to change momentum states; a drift term, to account for
the fact that electrons are leaving a region of space with velocity v if the distribution function varies
in space; a collision term, which represents the scattering rate by defects or impurities.

In transport calculations, a relaxation time approximation for the collision term is usually used.
The distribution function deviates from the equilibrium distribution function f0, and it is expected
that it will decay exponentially in time to the equilibrium value. It may be written as

∂f

∂t

∣

∣

∣

∣

coll

= −f − f0

τ
, (8.1.3)

where τ is the relaxation time, and f0 is the equilibrium distribution function. Using this relaxation
time approximation, the Boltzmann equation is

∂f

∂t
+

1

�
F · ∇kf + v · ∇f = −f − f0

τ
. (8.1.4)

Frequently, we will be interested in applying fields to the system and seeking only the linear
response, i.e., we can write the distribution function as f = f0 + f1, where f1 is the deviation from
the equilibrium distribution function f0. This may be substituted in the Boltzmann equation in the
collision approximation and only first-order terms in the applied fields retained. The result is the
linearized Boltzmann equation

∂f1

∂t
+

1

�
F · ∇kf0 + v · ∇f0 = −f1

τ
. (8.1.5)

The linearized Boltzmann equation can be used to study electric as well as heat transport, and the
external fields include electric field, magnetic field, or a temperature gradient.

It should be noted that we have used a semiclassical theoretical framework, i.e., Boltzmann
equation, to treat electronic transport which is in nature a behavior of a quantum many-particle
system. So its limitations are apparent, and it is more proper to treat this kind of problem by
quantum many-body theories, such as Kubo’s quantum transport theory. The starting point of
these theories is to take an external field as a perturbation for a many-particle system in equilibrium.
This leads to a linear response and gives corresponding transport coefficients. For example, Kubo
expresses the conductivity tensor σµν as the time correlation function of the components of the
current operators, and gives the formula for conductivity

σµν =
1

kBT

∫ ∞

0

〈jµ(t)jν(0)〉dt, (8.1.6)

where jν(0) is a component of current operator at t = 0; while jµ(t) is another component after time
interval t. In (8.1.6) an integral is taken over whole time range for their product in equilibrium.
Although the time average of j(t) is zero, the correlation of current fluctuations is in general nonzero
and determined by scattering processes, which also reflects the effect of external fields. These linear
response theories are the foundations of basic theorems involving various transport coefficients,
for example the Onsager symmetry relations in irreversible processes. These theories are more
complicated, generally begin from Green’s functions,a and have only been carried out in a few
simple standard cases. These confirm almost all the results obtained by the Boltzmann method.

8.1.2 DC and AC Conductivities

For a simple treatment, we consider the electrical conductivity under isothermal conditions.
First let us consider a uniform, static electric field: There is an applied force given by F = −eE for
electrons or +eE for holes and we have ∂f1/∂t = 0. It is convenient to rewrite the left hand side as

1

�
∇kf0 =

1

�

∂f0

∂E
∇kE = v

∂f0

∂E
,

aFor Kubo’s transport theory, one may consult any treatise of quantum many-body theory, such as G. D. Mahan,
Many-Particle Physics, 3rd ed., Plenum Press, New York (1995).
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and

∇f0 =
∂f0

∂E
∇EF,

then the first-order term in the distribution function is

f1 = eτ
∂f0

∂E
v · E′, (8.1.7)

where E′ = E − (1/e)∇EF is the electromotive force.
Because there would be no contributions from the equilibrium distribution function f0 to the

current, we may simply use the first-order term, and adding up all the occupied states we get

j = − 2e

(2π)3

∫

vf1dk = σE′, (8.1.8)

where

σ = − 2e2τ

(2π)3

∫

vv
∂f0

∂E
dk. (8.1.9)

In principle, σ is a tensor in crystals. For convenience, we now assume isotropic bands, and let the
electric field E lie in the z direction. When we integrate over angle, the only surviving component
of the current will lie in the z direction. We may therefore replace v by vz, and average over angle
to get 〈v2

z〉 = v2/3. Then the conductivity is in the scalar form

σ = − 2e2τ

3(2π)3

∫

dkv2 ∂f0

∂E
. (8.1.10)

For a simple case, we take a parabolic band with E = �
2k2/2m∗, and then v(−∂f0/∂E) =

−(1/�)∂f0/∂k. We can now perform a partial integration of (8.1.9)

σ = − 2e2τ

3(2π)3m∗

∫ ∞

0

dk4πk3 ∂f0

∂k
=

2e2τ

3(2π)3m∗

(

−4πk3f0

∣

∣

∞
0

+ 3

∫ ∞

0

dk4πk2f0

)

.

The first term vanishes at the lower limit where k = 0 and at the upper limit where f0 = 0. Thus
we may immediately identify the conductivity

σ =
ne2τ

m∗ , (8.1.11)

where n = [2/(2π)3]
∫

f0dk is the number density of electrons. This equation can be understood
intuitively: eE/m∗ is the rate of acceleration of a particle with a charge e and mass m∗ in a field E ;
it will acquire a velocity eτE/m∗ in the course of a scattering time τ and so it will carry a current
e2τE/m∗. Finally, the total current per unit volume is obtained by multiplying by the number of
electrons per unit volume.

In (8.1.8),

j = σE − 1

e
σ∇EF,

the first term is the current density due to the electric field, and the second term can be identified
as the current density −eD∇n due to diffusion, and by writing ∇n = ∇EF(dn/dEF), we obtain the
Einstein relation

σ = e2D
dn

dEF
= e2DgF, (8.1.12)

where gF = dn/dEF is the density of states (DOS) at the Fermi surface.
Now we extend Ohm’s law in the relaxation time approximation to an alternating electric field.

The magnitude of the electric field E is expressed in the complex form

E = E0e
−iωt (8.1.13)
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and the equation of motion for a quasi-free electron is

m∗v̇ = −eE − m∗ v

τ
. (8.1.14)

Consider that v and E have the same alternating frequency, then

−iωm∗v = −eE − m∗ v

τ
. (8.1.15)

The current density and conductivity can all be obtained. The results are

j = −nev =
ne2τ

m∗(1 − iωτ)
E , (8.1.16)

and

σ =
ne2τ

m∗(1 − iωτ)
=

ne2τ(1 + iωτ)

m∗(1 + ω2τ2)
. (8.1.17)

These formulas demonstrate that, under an alternating electric field, the conductivity becomes
complex, with real and imaginary parts. Its real part varies with the electric field in phase, while
the imaginary part is out of phase with a phase difference of π/2. Numerically, the conductivity
decreases with increasing frequency and when ωτ ≫ 1, τ disappears. Because τ is about 10−12 s,
this limit is located in the infrared range. Due to the disturbance from reactance and skin effect at
lower frequencies, this expression has been verified in the optical frequency range.

We can also get the displacement x from (8.1.14), and the electric polarization is

P = −nex = −
ω2

p

ω2 + iω/τ
E . (8.1.18)

Here we consider the damped plasma oscillation. There are positive and negative charges distributed
in a medium with equal densities, but only one of them can move. In metals, the density of conduc-
tion electrons is just equal to the density of positively charged ions. ωp represents the undamped
plasma oscillation frequency

ω2
p =

ne2

ǫ0m∗ . (8.1.19)

Therefore the dielectric function can be expressed as

ǫ(ω) = 1 −
ω2

p

ω(ω + i/τ)
= 1 −

ω2
p(ω − i/τ)

ω(ω2 + 1/τ2)
. (8.1.20)

Its real and imaginary parts are reversed in phase compared with those of conductivity: Reactance
contributes to the imaginary part of the dielectric function.

The frequency-dependent dielectric function (8.1.20) implies a specific physical meaning: When
ω is large enough, but smaller than ωp, the real part of the dielectric function is negative, so metals
will have negative dielectric constants in the optical frequency range. Negative dielectric constants
affect the optical properties of metals, making them opaque due to their strong reflection of optical
waves. This illustrates that using metals as the matrix of photonic crystals is obviously different
from using dielectric materials. It is well-known that the propagation velocity of electromagnetic
waves in a medium is c = (ǫµ)−1/2, while the index of refraction of a medium is n = (ǫµ)1/2. For
general dielectrics ǫ > 0, but for metals ǫ < 0 in the optical frequency range. It is different for
permeability of media: Although there is diamagnetism in matter and its permeability is negative,
its value is too small to transform µ from positive to negative, so all natural materials have positive
permeability. In recent years, a kind of new artificial materials, with periodic structures, have been
made; their basic units are split conducting rings of small size on a dielectric substrate. These
artificial materials can be used to realize negative permeability in the microwave frequency range.
We have already known that for frequencies near the plasma frequency ωp, the dielectric constants
of materials are negative. Scientists may design artificial materials to move the plasma frequency to
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the microwave range and then it will be possible to prepare materials with both ǫ and µ negative
at the same frequency. The characteristic of these materials is that their indices of refraction are
negative, i.e., n = −(ǫµ)1/2, and can show unusual propagation behavior for electromagnetic waves.
These effects have already been verified experimentally.b

8.1.3 Microscopic Mechanism of Metallic Conductivity

We can understand from the discussion in the last subsection that the circumstances in which
electrons are scattered in a material determines its conductivity or resistivity. One thing that should
first be made clear is that the Bloch solutions for the Schrödinger equation of a perfect crystal
correspond to the stationary state, so there are no contributions to the relaxation mechanism; only
when a lattice deviates from perfection can there be transitions between electronic states.

There are two irregularities for a lattice, one is due to impurities and defects where the transition
probability is independent of temperature; the other arises from lattice vibrations, which gives rise
to a temperature-dependent transition probability. These two transition probabilities correspond,
respectively, to the relaxation times from impurities and defects τd and from lattice vibrations τl.
If these two transitions are independent of each other, then the sum of their rates is just the total
transition rate. Therefore the total relaxation time in the formula of conductivity τ(k) satisfies

τ−1(k) = τ−1
d (k) + τ−1

l (k). (8.1.21)

If τd(k) and τl(k) are both isotropic, then due to ρ = σ−1, we find the Matthiesen rule for
resistivity as

ρ = ρd + ρl. (8.1.22)

This shows that resistivities due to impurities and defects (independent of temperatures) and to
lattice vibrations (dependent on temperatures) can be simply added together. When T → 0 K,
ρl → 0, only ρl is left, this is the residual resistivity. The resistivity of dilute solid solutions can be
calculated based on the electronic scattering by a single impurity as described in §7.2.

In the following we are mainly concerned with the influence of thermal vibrations of ions on
resistivity. As stated in §5.3, lattice vibrations can be decomposed into a set of normal modes ωi(q),
where ω is angular frequency, q is wavevector, and i denotes polarization. Because energy is quan-
tized, and expressed as �ωi(q), the normal modes of lattice vibration correspond to quasiparticles
with definite energies and momentums, i.e., phonons. Phonons, like electrons, have energy band
structures in wavevector space. If the Debye model is used, there exists a Debye cut-off frequency
ωD, related to the Debye temperature, �ωD = kBΘD, where kB is the Boltzmann constant. When
T ≫ ΘD, all the vibrational modes are excited; when T < ΘD, only long waves (low frequency)
vibrations are excited.

When an electron with wavevector k is scattered by a vibration mode q, and makes a transi-
tion from state k to state k′, the states before and after the transition must satisfy momentum
conservation

k + q = k′,

and energy conservation
E(k) + E(q) = E(k′).

This is normal scattering process, called N process; however, if lattices k′ is equivalent to k + G,
where G is a reciprocal lattice vector, so it is possible to have scattering where

k + q = k′ + G.

bIn 1968, Veselago theoretically studied the propagation behavior of electromagnetic waves in materials with different
combinations of negative and positive ǫ and µ, and pointed out that ǫ and µ are both positive for normal materials,
which are called right-handed materials. The Poynting vector is in the same direction as the wavevector. If ǫ and µ are
both negative, the material is called left-handed: the Poynting vector and the wavevector are in opposite directions,
so their indices of refraction are negative. Readers may consult to V. G. Veselago, Sov. Phys. Uspeshi. 10, 509
(1968) for earliest theoretical discussion; J. Pendry et al., IEEE 47, 11 (1999) for a detailed theoretical analysis; and
J. B. Pendry and D. R. Smith, Phys. Today. 47, 37 (2004) for a recent review of experimental results.
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This is the Umklapp (U) scattering process, also called U process. Both scattering processes are
shown in Fig. 8.1.1. Because the maximum value of a phonon is about kBΘD, the energy variation of
an electron due to electron-phonon scattering, corresponding to emission or absorption of a phonon,
is not large and E(q) can be neglected. It can be seen from the figure that the main effect of
collision of an electron and a phonon is to change the direction of the electron wavevector k. It
is more pronounced in a U process. But the value of phonon wavevector q is always smaller than
|G/2|, so only when the value of q is larger than PQ in the figure, can the U process be realized.
At low temperatures, the value of q is very small, and the U process is almost absent.

k

q

(a)

k

G

q k'

P Q

(b)

k'

k'

Figure 8.1.1 Electron-phonon
scattering. (a) Normal process
k+q = k′; (b) Umklapp-process
k + q = k′ + G.
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Figure 8.1.2 The relation between
reduced resistivity ρ(T )/ρ(ΘD) and
reduced temperature T/ΘD of several
metals. Curves show the theoretical
calculations.

During the scattering, the electronic wavevector is changed from k to k′. We assume that the
angle between them is θ and the scattering transition probability is P (θ) and then integrate the
latter over the Fermi surface to get the total transition probability, which is equal to the reciprocal
of the relaxation time τ , i.e.,

τ−1 = 2πk2

∫

P (θ)(1 − cos θ) sin θdθ, (8.1.23)

in which (1 − cos θ) represents the weighting factor due to large angle scattering. To average P (θ)
and take it outside the integral, according to the Debye model for the specific heat of solids, we have

〈P (θ)〉 ∝ kBT

Θ2
D

, (8.1.24)

then the integral can be transformed into

∫ x

0

(1 − cos θ) sin θdθ =

∫ x

0

8 sin3 θ

2
d

(

sin
θ

2

)

. (8.1.25)
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At high temperatures (T ≫ ΘD), and all lattice waves are excited. In the Einstein model, the
upper limit of the integral in (8.1.23) is x = π; but in the Debye model, the value of x is determined
by the Debye cut-off wavenumber qD, i.e., x = qD/2kF ∼ 79◦. In both cases, x is always independent
of T , so we obtain

ρ ∝ τ−1 ∝ T, (8.1.26)

which shows that the resistivity is proportional to T . At low temperatures (T < ΘD), only the
lattice waves with low frequencies are excited (qD is the cut-off wavenumber), the scattering angles
of the electrons are very small and the cut-off angle is approximately x = (qD/2kF)(T/ΘD), so

ρL ∝ τ−1 ∝ T 5,

which denotes the resistivity is proportional to the fifth power of temperature. The combination
of these relations for metallic resistivity with temperature at high and low temperatures is the
Bloch–Grüneisen law, shown in Fig. 8.1.2.

The above estimates have not taken into account the energy change in electronic scattering,
and are different from real situations. If the energy loss and addition from inelastic scattering are
considered, a more sophisticated theoretical treatment can give a more rigorous expression (see [5]
and [6] in the bibliography).

ρL = 4.225

(

T

ΘD

)5

J5

(

ΘD

T

)

ρ(ΘD), (8.1.27)

where ρ(ΘD) is the resistivity at T = ΘD and

J5(x) =

∫ x

0

z5dz

(ez − 1)(1 − e−z)
.

When T → 0, J5(x) → a constant; and when T is very large, J5 → (ΘD/T )4/4, consistent with the
Bloch–Grüneisen law.

It should be pointed out that these theories are not flawless, for example, the U process has not
been taken into account, and the influence of a nonspherical Fermi surface has been neglected. But
for alkali metals these factors give weak effects and experimental results have verified the Bloch–
Grüneisen law.c

8.1.4 Electric Transport in Semiconductors

In semiconductors, as shown in Fig. 8.1.3, the Fermi level sits in the gap; its separation from the
bottom of the conduction band or the top of the valence band is far larger than kBT , i.e.,

Ec − EF ≫ kBT, EF − Ev ≫ kBT.

1−f (E) ≪1

f (E) ≪1

EF

Ev

Ec

f (E)

E

Figure 8.1.3 The distribution of energy levels of conduction band and valence band in semiconductors.

cA review of experimental results for alkali metals can be found in J. Bass, W. P. Pratt and P. A. Schroeder, Rev. Mod.
Phys. 62, 645 (1990). But at very low temperatures (T < 2 K), experimental results have shown the relationship
ρ ∝ T 2, due to the scattering between electrons. We shall discuss this topic later.
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Although electrons are still distributed on conduction band levels, following the Fermi–Dirac
statistics

f(E) =
1

e(E−EF)/kBT + 1
,

the fact that
E − EF > Ec − EF ≫ kBT

leads the exponential term in the denominator of the distribution function to be much greater than
one, so the electronic distribution in the conduction band satisfies

f(E) ≈ e−(E−EF)/kBT .

In the same way, the hole distribution in valence band is

1 − f(E) ≈ e−(EF−E)/kBT .

Both are approximately like the classical Boltzmann distribution, obviously different from the de-
generate electronic gas in metals.

For intrinsic semiconductors, the thermal excitation of electrons from the valence band to the
conduction band makes the electron number ne and the hole number nh equal. But, usually, semi-
conductors acquire carriers through doping: in the n-type semiconductors (donor doping, impurity
levels near conduction band), the carriers are mainly electrons; while in the p-type semiconductors
(acceptor doping, impurity levels near valence band), the carriers are mainly holes. Therefore, in
general, the conductivity of semiconductors can be written as

σ = n|e|µt = ne|e|µe + nh|e|µh,

where µt is the mobility, µe and µh are the mobilities of electrons and holes, respectively.
The mobility of a semiconductor is determined by the scattering from ionized impurities and

lattice vibrations, with relaxation times τI and τL, respectively. Both of these are dependent on
temperature in accordance with

τI ∝ T 3/2, τL ∝ T−3/2,

so
τ−1 = aT−3/2 + bT 3/2.

This result was verified by experiment, see Fig. 8.1.4.

Figure 8.1.4 The relation of mobility and temperature in GaAs.
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Carriers transporting current between two electrodes will cause Joule heating due to emission of
phonons. The mean free path in the electron-phonon process in a metal is so short that specimen itself
would be vaporized before this mechanism broke down. But in semiconductors, a modest electric field
(≤ 1000 V/cm) can overload the energy transfer processes, so that the electronic energy distribution
and lattice temperature are no longer in equilibrium. The corresponding electronic transport is
called hot electron transport. The whole effect deviates from Ohm’s law and makes the current
of carriers tend to a saturated value irrespective of the electric field. Hot electron transport is a
complicated phenomenon.d

8.1.5 Other Transport Coefficients

Now we shall have a brief discussion of the other transport coefficients besides conductivity,
including the thermoelectric coefficient, thermal conductivity etc. The theoretical starting point is
still the Boltzmann equation in the relaxation time approximation, but in addition to electric field,
a temperature gradient ∇T is added. In this case, there is not only electric current density, but also
thermal current density jQ. According to thermodynamics, the free energy is F = U − TS, where
E is the internal energy and S is the entropy, the thermal transport quantities can be expressed as

dQ = TdS = dU − µdN, (8.1.28)

where µ is the chemical potential and N the particle number. A temperature gradient also causes
a chemical potential gradient ∇µ, so the electric field E acting on the electrons will be replaced by
the effective field

E′ = E +
∇µ

e
,

so the change of the Fermi distribution in (8.1.7) should be rewritten

f1 = −τ
∂f0

∂E
v

[

−e

(

E +
∇µ

e

)

+
E(k) − µ

T
(−∇T )

]

. (8.1.29)

Then from f1 we can obtain the electric current density and thermal current density, respectively, as

j = K11

(

E +
∇µ

e

)

+ K12(−∇T ), (8.1.30)

and

jQ = K21

(

E +
∇µ

e

)

+ K22(−∇T ). (8.1.31)

The coefficients Kij can be obtained through the following expression

Kα = e2

∫

dk

4π

(

−∂f0

∂E

)

τE(k)v(k)v(k)[E(k) − µ]α, (8.1.32)

where K11 = K0, K21 = TK12 = −(1/e)K1, K22 = (1/e2T )K2.
By using (8.1.9), we can establish a relation for Kα in terms of electrical conductivity, i.e.,

Kα =

∫

dE

(

−∂f0

∂E

)

(E − µ)ασ(E), (8.1.33)

where there are approximate expressions K11 ∼ σ(EF) ∼ σ, K21 = TK12 ∼ −(π2/3e)(kBT )2σ′,
K22 ∼ (πkBT/3e2)σ, here σ′ = ∂σ(E)/∂E|E=EF

. These expressions show how the influences of
electric field and temperature gradient on electronic transport and thermal transport, form the
physical basis of understanding the thermoelectric effect and thermal transport phenomena.

dThe transport theory for hot electrons in semiconductors is discussed in C. S. Ting (ed.), Physics of Hot Electron
Transport, World Scientific, Singapore (1992).



· 208 · Chapter 8. Transport Properties

Usually, thermal conductivity is measured where the electric current is zero, so we let j in (8.1.30)
be zero, then we have

E +
∇µ

e
=

K12

K11
∇T, (8.1.34)

then we substitute this into the second part of (8.1.31) and find a formula for the variation of thermal
current with the temperature gradient

jQ = κ(−∇T ), (8.1.35)

where κ is the thermal conductivity and can be expressed as

κ = K22 −
K21K12

K11
. (8.1.36)

Because σ′ ∼ σ/EF, the second term in (8.1.36) is about (kBT/EF)2 times larger than the first term,

κ = K22 + O(kBT/EF)2. (8.1.37)

Then we deduce

κ =
π2

3

(

kB

e

)2

Tσ. (8.1.38)

This is the well-known Wiedermann–Franz law, which relates thermal conductivity to electric con-
ductivity in metals. The ratio L = κ/σT = (1/3)(πkB/e)2 ≈ 2.45 × 10−8(V/K)2 is a universal
constant. Certainly the influence of lattice thermal vibrations will constrain this relation to be valid
only at T > ΘD.

The physical mechanism for thermal conductivity in nonmetals is thoroughly different. Because
there are no freely moving electrons, temperature differences will cause a difference in phonon den-
sities in different regions and cause phonon transport in these substances. This kind of thermal
transport, arising purely from lattice vibrations, will not be discussed here in detail.

§8.2 Charge Transport and Spin Transport in

Magnetic Fields

It has been discussed in §6.2 that an electron in a magnetic field moves cyclically. Here we will
have a further discussion of the influence of this cyclic motion on electron transport properties,
involving the classical Hall effect, Shubnikov–de Haas (SdH) effect, and normal magnetoresistance.
An electron has not only charge, but also spin. The importance of spin transport phenomena has
attracted much attention in recent years, so we will give a brief introduction to spin polarization
and spin transport and discuss resistivity and magnetoresistivity in transition metals.

8.2.1 Classical Hall Effect

Before discussing the quantum theory of electron transport, it is instructive to look at the classical
picture. Consider a solid with impurities in the presence of an electric field E and magnetic field
H . In the relaxation time approximation, the motion of an electron is determined by the Langevin
equation

dv

dt
= − e

m∗

(

E +
1

c
v × H

)

− v

τ
, (8.2.1)

where v is the average velocity and τ is the relaxation time. The current is given by j = −nev,
where n is the concentration of electrons. It is assumed that the magnetic field is always applied
in the z-direction, i.e., H = Hz; nevertheless, the electric field may be applied in any direction.
We would like to give two examples: The first is the electric field parallel to the magnetic field, i.e.,
E = Ez; the track of an electron in this case is helical, as shown in Fig. 8.2.1(a). The electron is
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Figure 8.2.1 Classical motion of an electron in electric and magnetic fields. (a) E ‖ H , (b) E ⊥ H .

accelerated by the electric field, but scattered by impurities which limit the electronic velocity to a
finite value. Its transverse motion in the x-y plane is attributed to the Lorentz force. The second is
where the electric field is perpendicular to the magnetic field, for example, E = Ex. It is found that
the trajectory of the electron is a series of arcs, as shown in Fig. 8.2.1(b). If there are no collisions,
the electron moves in the direction perpendicular to E as well as H , so the net current is zero
in the direction of the electric field. By contrast, collision with impurities will lead to a drift current
along the electric field. It is important to note the role of the relaxation term.

In general E = (Ex, Ey, Ez), we can define the conductivity σ and resistivity ρ tensors by

j = σ · E, (8.2.2)

and inversely

E = ρ · j. (8.2.3)

In the steady state, dv/dt = 0, which when combined with (8.2.1), (8.2.2) leads to

σ0Ex = jx + ωcτjy, σ0Ey = −ωcτjx + jy , σ0Ez = jz, (8.2.4)

where σ0 is the Drude conductivity given in (8.1.11), and ωc = eH/m∗c is the cyclotron resonance
frequency similar to (6.3.8). Because the third equality of (8.2.4) is a trivial result, we are now only
concerned with the x and y directions. Then σ and ρ become 2nd rank tensors expressed as

σ =

(

σxx σxy

σyx σyy

)

, ρ =

(

ρxx ρxy

ρyx ρyy

)

, (8.2.5)

where σxx and σxy are the longitudinal and the transverse components of the conductivity tensor,
respectively. We arrive at the following conductivity formulas

σxx = σyy =
σ0

1 + (ωcτ)2
, σxy = −σyx = − σ0ωcτ

1 + (ωcτ)2
, (8.2.6)

and resistivity formulas

ρxx = ρyy =
1

σ0
, ρxy = −ρyx =

ωcτ

σ0
. (8.2.7)

It is actually equivalent to describe electric transport by either conductivity or resistivity. Theo-
retical investigation prefers the former and experimental measurement the latter. We may use
either of them as is convenient. From (8.2.2) and (8.2.3), a general equation for conductivity and
resistivity is

σ · ρ = I, (8.2.8)

where I is a 2 × 2 unit matrix, so we have the relationship between the resistivity and conductivity
components as

ρxx =
σxx

σ2
xx + σ2

xy

, ρxy = − σxy

σ2
xx + σ2

xy

. (8.2.9)
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The first equality of (8.2.9) tells us that σxx = 0 implies that ρxx = 0 at the same time, which may
sound strange but is true as long as σxy �= 0. Another equality implies ρxy = −1/σxy where σxx or
ρxx vanishes. In fact, we can write the transverse conductivity component in the form

σxy = − σ0

ωcτ
+

1

ωcτ
σxx, (8.2.10)

which has been used to compare with experiment and is often a good approximation. When the
magnetic field is strong and temperature is low, correspondingly, ωcτ ≫ 1, then the longitudinal
conductivity approaches the limit σxx = 0, and we have the Hall conductivity

σH = σxy = −nec

H
, (8.2.11)

or the Hall resistivity

ρH = ρxy = − H

nec
, (8.2.12)

where −1/nec is called the Hall coefficient. We find that the Hall resistivity changes continuously
as the magnetic field and carrier density vary. This is purely a classical result. In fact, at low
temperatures and under strong magnetic field, the quantum Hall effect can be observed, as will be
discussed in Part VI.

8.2.2 Shubnikov de Haas Effect

The Shubnikov–de Haas (SdH) effect is the oscillation of longitudinal conductivity, or resistivity,
with magnetic fields, when the conditions �ωc > kBT and ωcτ > 1 are satisfied. This effect, just
like the de Haas–van Alphen (dHvA) effect, comes from Landau quantization in magnetic fields.
Although this effect has been observed in metals for many years, it has now become a very powerful
tool to characterize transport in heterostructures. We will limit ourselves to this case.

Consider a magnetic field perpendicular to a two-dimensional electron gas causing the formation
of discrete quantized orbits as shown in Fig. 6.3.5. The Landau levels increase in energy linearly
with magnetic field, due to the cyclotron resonance frequency, ωc = eH/cm∗. As the magnetic field
increases, these levels will sequentially pass through the Fermi surface. As we know, the conductivity
is determined by the carrier concentration and scattering probability; the density of states at the
Fermi surface influences both. The periodic variation of the Fermi surface with magnetic field must
cause an oscillation of the conductivity. From (6.3.31) and (6.3.34) one can deduce the carrier density
from the period of the SdH oscillations between two adjacent Landau levels ∆(1/H) as

n =
e/ch

∆(1/H)
. (8.2.13)

These measured values are usually in excellent agreement with those determined by Hall measure-
ments.

Alternatively, the oscillation can be realized by varying the carrier concentration in a constant
magnetic field. We can understand this from (6.3.34) by taking E′

F = EF, because the Fermi energy
EF is closely related to the electronic concentration. In a Si inversion layer (MOSFET), it was
shown that the oscillation observed with electron number by varying the gate voltage has a constant
period, which proves that each Landau level has the same number of states in two dimensions. This
would not be the case in three dimensions because of kz motion, and it can thus provide a signature
for the two-dimensional character of the electron system.

Another interesting characteristic is the directional dependence of the SdH effect. It was proved
that, for a magnetic field in any direction, only the perpendicular component of the field confines
the x-y motion of carriers and determines the conductivity oscillation period. An experimental
observation in a two-dimensional electron gas at a GaAs-AlGaAs:Si interface tested the theoretical
prediction of directional dependence of the magnetoresistance. In Fig. 8.2.2 there are oscillations of
magnetoresistance for perpendicular field before and after the sample was exposed to light. But for
a parallel field there are no oscillations in either case.
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Theoretical treatments of the Shubnikov–de Haas (SdH) effect may involve different levels of
sophistication. At finite temperatures, the typical analytic expression for magnetoconductivity can
be derived as

σxx =
ne2τ

m∗
1

1 + (ωcτ)2

[

1 − 2(ωcτc)
2

1 + (ωcτc)2
2π2kBT/�ωc

sinh(2π2kBT/�ωc)
exp

(

− π

ωcτc

)

cos

(

2πEF

�ωc

)]

, (8.2.14)

where τc is the cyclic relaxation time corresponding to the dephasing of the Landau state, which
is quite different from the relaxation time τ (τc may be an order of magnitude larger than τ).
The theoretical formula (8.2.14) gives the conductivity, but the measured quantity is always the
resistivity which can be transformed from (8.2.14) in an appropriate approximation

ρxx =
ρxx(H = 0)ne2τ

m∗

[

1 − 2(ωcτc)
2

1 + (ωcτc)2
2π2kBT/�ωc

sinh(2π2kBT/�ωc)
exp

(

− π

ωcτc

)

cos

(

2πEF

�ωc

)]

. (8.2.15)

It is clear that the oscillation effect is given by the cosine function in which EF/�ωc determines the
oscillation period as described in (6.3.34). From the temperature and magnetic field dependence of
the oscillation amplitude, it is thus possible to extract m∗ and τc.

Using typical values for the particle effective mass and scattering rates, we get ωcτc ≤ 10000.
Therefore, for magnetic fields of interest, which are usually above 3 kG, we can approximate the
oscillatory portion of the magnetoresistivity with sufficient accuracy as

ρxx ∝ 2π2m∗ckBT/�eH

sinh(2π2m∗ckBT/�eH)
exp

(

− π

ωcτc

)

cos

(

2π2c�n

eH

)

, (8.2.16)

where EF = �
2πn/m∗ and ωc = eH/cm∗ are substituted. From this equation we may view the

first factor as an amplitude that grows with increasing magnetic field and shrinks with increasing
temperature and effective mass. The second factor represents scattering, and the last is a cosine term
whose frequency is determined by the carrier concentration and the magnetic field. Figure 8.2.3 shows
the oscillatory portion of the resistivity as a function of effective mass at six different temperatures
between 1.7 K and 3.2 K. We can see that as the temperature increases, the amplitude of the
oscillations decreases. Then the expression ρxx in (8.2.16) can be used to obtain the effective mass
by examining its variation with temperature at fixed magnetic field.
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8.2.3 Ordinary Magnetoresistance and Its Anisotropy

Ordinary magnetoresistance (OMR) arises from the cyclic motion of electrons in a magnetic field.
All metals have positive ordinary magnetoresistance, i.e., ρH > ρ0. The longitudinal magnetoresis-
tance of magnetic field H parallel with current j does not vary obviously with magnetic field, but
the transverse magnetoresistance of H perpendicular to j varies remarkably with H ; however, there
is no unique law. In the following, we will concentrate on a discussion of the transverse resistance.

Kohler once pointed out that there is a rule for magnetoresistance. It says that the deviation of
resistivity from the zero field resistivity ρ0, i.e. ∆ρ = ρH − ρ0, satisfies the following formula

∆ρ/ρ0 = F (H/ρ0), (8.2.17)

where F represents a function related to metallic properties. It is also dependent on the relative
orientations of current, magnetic field and crystalline axes, but H/ρ0 appears as a combined quantity.
Kohler rule has been verified experimentally for many metals, its physical reason can be understood
qualitatively. A magnetic field causes electrons to move along a circular or helical orbit. The ratio
of magnetic field to resistance depends on how many times electrons go around the orbit between
collisions. This number is approximately the ratio of the electronic mean free path l to the orbit
radius. For a free electron

l = mv/e2nρ0, (8.2.18)

and
r = mv/eH, (8.2.19)

so
l

r
=

H

ρ0

1

ne
. (8.2.20)

It is obvious that H/ρ0 in the Kohler rule is actually the measurement of l/r. It should be noted
that Kohler’s rule has its restrictions.

The transverse magnetoresistance of crystals usually behaves in one of three ways. After a
magnetic field is applied, (1) the resistance becomes saturated, with a value that may be several
times the value at zero field, moreover the saturation appears along all measurement directions
relative to the crystalline axes; (2) the resistance increases continuously for all crystalline axes; (3)
the resistance saturates along some crystalline directions but not along others. That is there exists
obvious anisotropy. All known crystals belong to one of these three types. The first type includes
the crystals with closed Fermi surface, as In, Al, Na and Li; the second type includes crystals with
the same number of electrons and holes; as Bi, Sb, W and Mo; and the third type is mainly seen
in crystals with open orbits at the Fermi surface, as Cu, Ag, Au, Mg. Zn, Sn, Pb and Pt. For a
Sn sample, the magnetic field dependence of ∆ρ/ρ0 in the directions with minimum and maximum
magnetoresistance is shown in Fig. 8.2.4. Under high field, δρ0 in the minimum direction tends to
saturation, but in the maximum direction it varies with H2. Magnetoresistance can be used as a
tool to investigate the Fermi surface to see whether it is closed or includes open orbits, and it can
reveal the directions of those open orbits.

When we discussed cyclotron resonance in §6.3.1, only the situations in which the electron tra-
jectories on the Fermi surface formed closed orbits was considered. But a real Fermi surface often
has multi-connectivity, and taking one of its section, the boundary cannot be a closed curve; this
is called an open orbit. Figure 8.2.5 gives schematic diagrams for several two-dimensional Fermi
surfaces. When a Fermi surface does not contact with the Brillouin zone boundary, electrons move
along closed orbits and the magnetoresistance saturates under high magnetic field. But the situa-
tion will be different when a Fermi surface contacts the Brillouin zone boundary. In some directions
of magnetic fields, the orbits of electronic movement cross over the first Brillouin zone, even ap-
proach infinity. For these open orbits, irrespective of what value the magnetic field is, the cyclotron
frequency is always zero. When the direction of a magnetic field is given and open orbits exist,
saturation does not appear, the resistance will increase with the square of the applied field. There-
fore, the investigation of magnetoresistance in single crystals no doubt can provide information for
determining the topological structures of Fermi surfaces.
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When a perpendicular magnetic field is applied to determine the dc conductivity, it is necessary
to take into account all the contributions from the Fermi surface. This means we must take note of
all sections perpendicular to the field direction; maybe there are open orbits for some sections. It is
not important to differentiate open or closed orbits under low fields. For a closed orbit, ωcτ ≪ 1,
and electron scattering takes place before it finishes a cycle. So the magnetoresistance is only the
average of local curvatures of the Fermi surface, i.e., the average of electronic velocities, no matter
whether the trajectory of an electron before its scattering is a closed orbit or an open orbit, However,
when a high field is applied, there is an important difference between a closed orbit and an open
orbit. For a closed orbit, when ωcτ ≫ 1, an electron makes several orbits before its scattering. To
calculate the conductivity, the electronic velocity should be the average velocity around the whole
orbit. It can be seen that when H increases, the average velocity component perpendicular to H

approaches zero. For open orbits, although the dependence of ∆ρ/ρ0 on magnetic direction is weak
for low H , when H is high enough, the anisotropy of single crystals will be considerable.

The general characteristics of anisotropic magnetoresistance can be understood from considering
the symmetry of crystals. For cubic crystals, assuming n is an integer, rotations around the [100]
axis by nπ/2, around the [111] axis by 2nπ/3, and around the [110] axis by nπ, are all invariant.
Figure 8.2.6 gives the anisotropic magnetoresistance for a Cu single crystal, at applied field H = 18
kOe, temperature T = 4.2 K. In these measurements, H is rotated in the plane perpendicular to
j. In most directions, ∆ρ/ρ0 complies with the square law and shows large values, but in some
directions, it saturates under low fields.
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magnetoresistance of a single crystal saturates in
some directions, but seems to increase with H with-
out limit in others. It is obvious that the sat-
uration directions correspond to the closed orbits
on the Fermi surface, while the directions with
H2 correspond to some sections with open or-
bits. In this case the Fermi surface must be multi-
connected. Most interesting experiments were per-
formed on very pure samples at low temperatures,
under strong fields. For these experiments, the
product of cyclotron frequency and relaxation time
ωτ ≫ 1; collision processes were restrained, but
details of the Fermi surface were enhanced. As in
Fig. 8.2.7(a), when the direction of the magnetic
field is changed, the magnetoresistance of Au be-
haves in a very complicated fashion. One simple
and intuitive method is to plot all the unsatura-
tion directions of magnetoresistance into a stere-
ogram like Fig. 8.2.7(b). By investigating the shape
and size of the unsaturated regions in this stere-
ogram, the characteristics of the Fermi surface can
be obtained qualitatively. So high field magentore-
sistance is very useful, and can be applied to test
and analyze topological structures of Fermi surfaces
that have multi-connectivity.

The calculation of magnetoresistance is a lit-
tle more difficult than that for the Hall effect, be-
cause the magnetoresistance will be zero by using
the simple model for electron having the same ef-
fective mass, velocity and relaxation time. It can
be seen from Fig. 8.2.1 that metals have no mag-
netoresistance in the free electron model, i.e., ρxx

is independent of H , the reason for this is that the Hall electric field Ey cancels the Lorentz force
from magnetic field. In order to prevent such cancellation, we cannot expect to use only one drift
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velocity to describe the carrier’s movement. One simple but important model for drift velocity is to
introduce two kind of carriers. These two carriers can be electrons and holes, or s electrons and d
electrons, or open orbits and closed orbits. This is the two-band model for magnetoresistance. This
model gives a magnetoresistance is equal to zero under a longitudinal field, but under a transverse
field the change of resistance can be written as

∆ρ

ρ0
=

σ1σ2(σ1/n1 + σ2/n2)
2(H/e)2

(σ1 + σ2)2 + σ2
1σ2

2(1/n1 − 1/n2)2(H/e)2
, (8.2.21)

where σ1 and σ2 are the conductivities for each band, while n1 and n2 are the corresponding carrier
densities for each band. In general, this formula is not consistent with the Kohler rule, but when
σ1 = λσ2, and λ is a constant, the above formula reduces to

∆ρ

ρ0
=

A(H/ρ0)
2

1 + C(H/ρ0)2
. (8.2.22)

This represents a specific example satisfying the Kohler rule. It can be seen that the change of
resistance under low field is in accordance with H2; but approaches to saturation under high field
except when n1 = n2. The curve profile given by (8.2.22) is very consistent with the experimental
results of some metals, such as In. When n1 = n2, C is zero and the resistance increases with H2

continuously and without limit. This phenomenon was observed in some metals. On the other hand,
under high fields it was observed in polycrystalline Cu, Ag, Au, and many other metals that ∆ρ/ρ0

had a linear relation with H . Because under high fields there are only two possibilities for ∆ρ/ρ0 of
single crystals varying with applied field, i.e., approaching saturation or in accordance with H2. The
appropriate combination of these two possibilities can be used to elucidate the linear dependence of
magnetoresistance with H in polycrystalline samples.

One deficiency of the two band model is that it cannot be used to explain the anisotropy ob-
served in single crystals. Theoretical computations of anisotropic magnetoresistance should take
into account real shapes of Fermi surfaces, and the possible anisotropy of relaxation times.

Figure 8.2.8 shows the experimental data of several polycrystalline materials for their transverse
magnetoresistance with magnetic field. It can be seen that the materials like the semimetal Bi have
high ordinary magnetoresistances, and also for the single crystal Bi at low temperatures and under
1.2 T magnetic field, its OMR reaches as high as 102–103%. On the other hand, there are many
semiconductors that have relatively large OMR, for example, for InSb-NiSb, under magnetic field
0.3 T and at room temperature the OMR ≈ 200%.

8.2.4 Spin Polarization and Spin Transport

An electron has not only charge, but also spin. It is expected that spin should also play an
significant role in electron transport. The topic was involved for the first time in the study of
transport in ferromagnetic alloys. After 1980, due to the discovery of the giant magnetoresistance
effect, the transport problem of electrons with spins became the basis of a new discipline, spintronics.

The electrons of s and d bands in ferromagnetic metals and alloys all participate in conduction,
and are involved in many scattering processes. Figure 8.2.9 schematically gives the densities of states
of electronic spin subbands in ferromagnetic metals Fe, Co and Ni. The s bands are wide bands, but
the d bands are narrow bands. The exchange splitting of d bands, simplified to an effective internal
field, is the fundamental origin for spontaneous magnetization, causing a large difference between
g↑(EF) and g↓(EF). Because the d bands are narrow, electrons have a large effective mass, but s
bands are the opposite, so it is usually assumed that conduction is mainly due to the contribution
from s electrons. Spin polarization requires n↑ �= n↓, so the spin susceptibility (n↑ − n↓)/(n↑ + n↓)
is not zero. It is usual to name ↑ as the majority spin, and ↓ as the minority spin.

To illustrate the resistance in ferromagnetic metals, N. F. Mott proposed a two-current model,
i.e. electrons with different spins contributing to resistance correspond to two channels connected
in parallel.e The basic assumption of this model is that electrons with different spins have different

eN. F. Mott, Proc. Roy. Soc. London A153, 699; A156, 368 (1936).
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distribution functions and relaxation times. If we consider that there exists a spin-flip scattering
process, another relaxation time τ↑↓ can appear. Now the Boltzmann equation in §8.1.1 should be
extended to a system including electrons with two kind of spins, then

eE · v∂f0

∂E
= −f↑ − f0

τ↑
− f↑ − f↓

τ↑↓
, eE · v∂f0

∂E
= −f↓ − f0

τ↓
− f↓ − f↑

τ↑↓
. (8.2.23)

I. A. Campbell and A. Fert solved these coupled equations,f and obtained an expression for the total
resistance

ρ =
ρ↑ρ↓ + ρ↑↓(ρ↑ + ρ↓)

ρ↑ + ρ↓ + 4ρ↑↓
, (8.2.24)

where

ρ↑ =
m∗

ne2τ↑
, ρ↓ =

m∗
ne2τ↓

, ρ↑↓ =
m∗

ne2τ↑↓
.

If the effect of spin-flip scattering can be neglected, (8.2.4) will be reduced to the two-current model

ρ =
ρ↑ρ↓

ρ↑ + ρ↓
. (8.2.25)

The up and down spins form the current channels connected in parallel. The channel with small
resistivity corresponds to a short mean free path. In the 1990s, the experimentally measured values
of mean free path, proportional to relaxation time, of electrons with different spins are, cobalt:
l↑ = 5.5 nm, l↓ = 0.6 nm; permalloy: l↑ = 4.6 nm, l↓ = 0.6 nm.

It is known that even in s metals, the electronic mean free path is not large, the magnitude is only
about 10 nm. This means electrons in metals experience collisions very frequently, the momentum
relaxation determines the value of resistivity. It may be asked if these frequent collisions cause
an electron to lose its memory for previous spin orientation. Actually it does not, a spin flip can
occur only through the exchange interaction or scattering by an impurity or defect with spin-orbit
coupling. In nonmagnetic metals, where an electron experiences scattering many times, the original
spin orientation can still retained. A spin memory effect in such large range can be described in
thermodynamic language. If some spin-polarized electrons are injected into a nonmagnetic metal,
the average time experienced (or average distance passed) with the original spin orientation in a
transport process is the called spin mean time τs (or the spin diffusion length Ls =

√
2Dτs, D is

the diffusion coefficient). In fact, in nonmagnetic metals the probability of spin-flip scattering only
about 1/100 or 1/1000 that of scattering events, so the spin diffusion length is several hundred
times of the electronic mean free path. At room temperature, the magnitude of Ls in Ag, Au
and Cu is about 1–10 µm; at temperatures lower than 40 K, Ls in Al can even reach 0.1 mm,
so it is expected that the transport of spin polarized electrons in nonmagnetic metals can also
play a considerable role. Certainly one precondition is the injection of spin-polarized electrons

fI. A. Campbell et al., Phil. Mag. 15, 977 (1967); A. Fert et al., Phys. Rev. Lett. 21, 1190 (1968).
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from ferromagnetic substances. Moreover, it is expected that once the spin-polarized electrons are
injected, there may be spin accumulation within the spin diffusion length and this accumulation will
lead to nonequilibrium magnetization in nonmagnetic metals. The same situation can also appear
in nonmagnetic semiconductors. The long spin diffusion length in nonmagnetic metals provides the
physical basis for development of spintronics.

8.2.5 Resistivity and Magnetoresistance of Ferromagnetic Metals

We now return to discuss the resistance and magnetoresitance of ferromagnetic metals. There
are three sources of resistivity of ferromagnetic metals described by

ρ(T ) = ρd + ρl(T ) + ρm(T ), (8.2.26)

where ρd is the residual resistivity, i.e., the resistivity at T = 0 K, arising from impurities and
defects; ρl is from electronic scattering by lattice vibrations, which increases with temperature; ρm

is the resistivity due to scattering related to magnetic order, it is also a function of temperature and
limited to ferromagnetic metals. Take Ni as an example, its ρ-T relation is shown in Fig. 8.2.10.
At T ≫ Tc spins are all disordered, ρm approaches a temperature-independent saturated value; but
when T ≤ Tc, the spin order causes the spontaneous magnetization to appear; within this region the
variation of resistivity can be divided into lower and higher temperature parts for discussion.
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At lower temperatures, because ρ↓ > ρ↑ and ρ↑↓ can be neglected, according to the two-current
model, it is possible to explain why ρM is so small (that is due to the short-circuit role played by ρ↑).
As the temperature is raised, the spin-flip scattering gives rise to a spin mixing effect, and the short-
circuit role of low resistance is reduced, so ρM rises, in accordance with the modified expression in
the two-current model. In high temperatures, ρ↑ρ↓ ≫ ρ↑ (or ρ↓), and ρM approaches the saturation
value

ρs
M =

1

4
(ρ↑ + ρ↓).

In addition, below Tc, the resistivity of ferromagnetic metals shows clear anisotropy, i.e., it
varies with the relative orientation between current and spontaneous magnetization Ms. It can be
expressed as

ρ‖(I ‖ Ms) �= ρ⊥(I ⊥ Ms),

and schematically sketched in Fig. 8.2.11. In the majority of materials ρ‖ > ρ⊥. This is opposite
to OMR stated in §8.2.1 and indicates that the principal mechanism of resistivity anisotropy in
ferromagnetic metals cannot be ascribed to OMR arising from the internal field Ms. Usually the
structure of a ferromagnetic metal in the demagnetized state contains many domains, so the angles
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between Mss of various domains with current I have a certain distribution. If ρ0 is the average
value of resistivities of various domains, then in materials with ρ‖ > ρ⊥, we have ρ‖ > ρ0 > ρ⊥, it
is expected that ρ0 includes the contribution due to scattering of electrons by domain walls.

The total magnetoresistance (MR) in a ferromagnetic metal includes OMR induced directly
by magnetic fields, anisotropic magnetorisistance (AMR) due to the magnetization variation by
magnetic field, and also para-process magnetoresistance arise from the paramagnetic-like process. We
can give an illustration of going from A → B in Fig. 8.2.12. If the distribution of magnetic domains
in the demagnetized state is isotropic, by neglecting the small contribution to magnetoresistance
from domain scattering, and taking ρ0 as its average value, for large part of materials ρ‖ > ρ⊥, then
AMR is defined as

AMR =
ρ‖ − ρ0

ρ0
, or

ρ⊥ − ρ0

ρ0
. (8.2.27)

The process of an applied field causing (H + 4πM) to surpass Ms is called the para-process. When
H +4πM > Ms, the resistivity decreases further. The resistivity ρ⊥ located in the region above B in
Fig. 8.2.12(a) decreases in parallel with ρ‖ belongs to the paramagnetic-like process. OMR is almost
overshadowed. At low temperature, decreasing temperature leads to the reduction of resistivity, so
OMR increases. In Fig. 8.2.12(b) OMR is dominant and paramagnetic-like process is overshadowed.
ρ‖ and ρ⊥ all increase with H . For permalloy under weak fields (about several Oe), the AMR can
reach a high value of 3–5%, and can also become negative. It has been used in read-out magnetic
heads in computer magnetic disk drives.

§8.3 Tunneling Phenomena

Tunneling phenomena are based upon the wave nature of quantum particles. The study of them
began in the earliest period of quantum mechanics. Different from the classical concept, a particle
trapped in one region can tunnel through an energy barrier into another region. Two identical or
different materials separated by a barrier layer can form a primary tunneling junction. Because the
materials used to make a tunneling junction may be metals, semiconductors, or superconductors,
and may be magnetic or nonmagnetic, tunneling phenomena are very rich, and are also important
for modern nanoscience and technology.

8.3.1 Barrier Transmission

Consider a typical tunneling structure as shown in Fig. 8.3.1, where there is a potential barrier
V (z) in the region between z1 and z2, and the potential is zero outside this region. So outside the
barrier, (in the regions to the left of the left boundary and to the right of the right boundary) the
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Figure 8.3.1 A particle with wave property and energy E tunneling from left to right across a barrier.

electronic wavefunction with energy E = �
2k2/2m can be written as the linear combination of a

forward travelling wave and a backward travelling wave, as

ψ1(z) = A1e
ikz + B1e

−ikz , ψ2(z) = A2e
ikz + B2e

−ikz , (8.3.1)

the difference between them is that the coefficients may be different. We can also write the elec-
tronic wavefunction in the barrier, then using the continuity conditions for wavefunctions and their
derivatives, we can obtain a transfer matrix T

(

A2

B2

)

= T

(

A1

B1

)

=

(

T11 T12

T21 T22

)(

A1

B1

)

, (8.3.2)

or a scattering matrix S
(

A2

B1

)

= S

(

A1

B2

)

=

(

t1 r2

r1 t2

)(

A1

B2

)

, (8.3.3)

in which T̃ = |t1|2 represents the transmission probability of the particle from left-hand side of the
barrier to the right-hand side. and R̃ = |r1|2 is the reflection probability of the particle by the
barrier.

From the fact that the conjugate ψ∗ of one solution ψ of the Schrödinger equation is also a
solution, it is easy to show that there are relations for the matrix elements in the T matrix

T11 = T ∗
22, T12 = T ∗

21, (8.3.4)

and in the S matrix

t1t
∗
2 = 1 − |r1|2, |r1|2 = |r2|2 = |r̃|2, t1r

∗
2 = −r1t

∗
2, t2r

∗
1 = −r2t

∗
1. (8.3.5)

It will be useful to express the transfer matrix as

T =

(

t∗−1
2 r2t

−1
2

r∗2t∗−1 t−1
2

)

, (8.3.6)

its determinant is det T = t1/t2 = t∗1/t∗2. Finally using the conservation condition for probability
flow

|t1|2 + |r̃|2 = |t2|2 + |r̃|2 = 1, (8.3.7)

it is found that t1 = t2 = t̃, so det T=1.
For a square barrier with height V0, located between z1 = −a/2 and z2 = a/2, it can be shown

that for a particle with energy E < V0 the transmission amplitude is

t̃ = |t̃|eiφ, (8.3.8)

where φ satisfies

tan(φ + ka) =
1

2

(

k

κ
− κ

k

)

tanhκa, (8.3.9)
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Figure 8.3.2 The relation of transmission coefficient and particle energy for a square barrier. From J. H.
Davis, The Physics of Low-Dimensional Semiconductors, Cambridge University Press, Cambridge (1998).

in which E = �
2k2/2m and V0 − E = �

2κ2/2m. Then the transmission coefficient is

T̃ = |t̃|2 =
4k2κ2

4k2κ2 + (k2 + κ2)2 sinh2 κa
=

[

1 +
V 2

0

4E(V0 − E)
sinh2 κa

]−1

. (8.3.10)

Figure 8.3.2 shows the relation of the transmission coefficient as a function of energy with V0 = 0.3 eV
and a = 10 nm. In the classical picture, when E < V0, T̃ = 0; and when E > V0, T̃ = 1, but quantum
mechanics permits the particle to pass through the barrier when E < V0. When κa is very large,
(8.3.10) simplifies to

T̃ =
16E

V0
exp(−2κa). (8.3.11)

and the tunneling probability is mainly determined by the exponential term. Often just exp(−2κa)
is used to give a simple estimate of the tunneling probability.

If in (8.3.1) z is replaced by (z − d), which corresponds to the barrier being displaced by d, it is
easy to verify that original T matrix is becomes

Td =

(

e−ikd 0

0 eikd

)

T

(

eikd 0

0 e−ikd

)

. (8.3.12)

For a double barrier structure with one barrier at z = 0 and the other at z = d, the total transfer
matrix is

Tt = TdT . (8.3.13)

It is not difficult to get its four matrix elements, and the reciprocal of the fourth matrix element is
just the total transmission amplitude, the expression is

t̃t =
t̃2

1 + |r̃|2e2i(kd+φ)
. (8.3.14)

Therefore the total transmission probability is

T̃t = |t̃t|2 =
T̃ 2

|1 + |r̃|2e2i(kd+φ)|2 =
(1 − |r̃|2)2

|1 + |r̃|2e2i(kd+φ)|2 . (8.3.15)

The interesting result is that for almost all energies the total transmission probability is approxi-
mately the square of the transmission probability of a single barrier, but for some specific values,
which satisfy 2(kd + φ) = (2n + 1)π, the double barrier is transparent, corresponding to a filter,
which only permits the electrons with energies near the resonance values to be transmitted through
this double barrier. This effect can be applied to fabricate the double barrier diode.



· 221 ·§8.3 Tunneling Phenomena

Using a barrier as a spacer and two similar or different materials as electrodes, various tunneling
junctions can be constructed. When no voltage is applied, the Fermi surfaces for two electrodes
are equal, so no current passes through the tunneling junction. When a bias voltage is applied,
the Fermi surfaces of the two electrodes will have a relative displacement. Using the Fermi golden
rule we can compute the number of electrons passing through the tunneling junction with a definite
energy. This is proportional to the product of the density of states for an electron state to be
occupied at one electrode, the other density of states which is empty at the other electrode and the
tunneling probability. The total tunneling current is the sum of the various energy electrons which
pass through the tunneling junction, i.e.

J(V ) ∝
∫

|M |2g1(E − eV )g2(E){f(E − eV )[1 − f(E)] + [1 − f(E − eV )]f(E)}dE

∝
∫

|M |2g1(E − eV )g2(E)[f(E − eV ) − f(E)]dE, (8.3.16)

where g1 and g2 are the densities of states at the Fermi surfaces, and f(E) is the Fermi distribution
function.

8.3.2 Resonant Tunneling through Semiconductor Superlattices

The above discussion about the electron transmission through single and double barriers can be
extended to multi barrier, or even periodically repeated structures. In a periodic structure, a crystal
or superlattice, the wave packet of an electron that is initially localized in space will spread by
resonant tunneling, and eventually become delocalized. The quantized energy levels are broadened
into energy bands, due to the tunneling process known as Bloch tunneling. In the following, we will
be concerned with tunneling in artificial microstructures.

l

eV

EF

I T

R

(a)

(b)

ɶ

ɶ

Figure 8.3.3 A finite superlattice of length l, (a) in equilibrium state with incidence, reflection, and
transmission amplitudes, (b) after applying a voltage V .

We consider multiple barrier resonance tunneling.g In reality, the repetition period of a superlat-
tice is always finite, so electron transport is related to an electron moving in multi-wells and barriers,
as shown in Fig. 8.3.3. The energy of the incident electron includes two parts

E = El + �
2k2

t /2m∗, (8.3.17)

where El is the longitudinal energy, �
2k2

t /2m∗ is the transverse energy, and the wavefunction is a
product

ψ = ψlψt. (8.3.18)

At the left and right ends the wavefunctions are

ψl = ψt · (eik1z + re−ik1z), (8.3.19)

gR. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
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and

ψN = ψt · teikN z, (8.3.20)

respectively.

By matching the wavefunctions and their first derivatives at each interface, one can derive the
reflection and transmission amplitudes, r̃ and t̃ and the transmission coefficient |t̃|2 follows. In
Fig. 8.3.4, ln t̃∗t̃ is plotted as a function of electron energy for a double, a triple, and a quintuple
barrier structure. In the calculation, the parameters are m∗ = 0.067me, the height of barrier
V0 = 0.5 eV, the width of barriers d1 = 20 Å and the width of wells d2 = 50 Å. Note the splitting of
the resonances. Each of the resonance peaks for a system with N repetitive periods has been split
into (N − 1) small peaks. The resonance peaks represent the positions of electron energies. When
the energy of the incident electron equals one of these energies, there is the largest transmission
possibility. There is no doubt that, when N increases, the tunneling model is changing into band
model.
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The net tunneling current J can be found as follows. At first, we need to define two energies,
one is the energy of incident electron E, and the other is that of the transmitted electron E′.

J =
e

4π3�

∫ ∞

0

dkl

∫ ∞

0

dkt[f(E) − f(E′)]t̃∗t̃
∂E

∂kl
. (8.3.21)

Because of a separation of the variables, the transmission coefficient t̃∗t̃ is only a function of the lon-
gitudinal energy El. Together with the Fermi distribution function, the expression can be integrated
over the transverse direction

J =
em∗kBT

2π2�3

∫ ∞

0

t̃∗t̃ ln

(

1 + exp[(EF − El)/kBT ]

1 + exp[(EF − El − eV )/kBT ]

)

dEl. (8.3.22)
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In the low temperature limit T → 0, for V ≥ EF we have

J =
em∗

2π2�3

∫ EF

0

(EF − El)t
∗tdEl, (8.3.23)

and for V < EF,

J =
em∗

2π2�3

[

V

∫ EF−V

0

t̃∗t̃dEl +

∫ EF

EF−V

(EF − El)t̃
∗ t̃dEl

]

. (8.3.24)

We can see a resonant tunneling in double barriers in Fig. 8.3.5 where the well width of GaAs is
50 Å, the width of two barriers of Ga0.3Al0.7As is 80 Å.

8.3.3 Zener Electric Breakdown and Magnetic Breakdown

In §6.2.1 when Bloch oscillations were discussed, only electron movement in one band was con-
sidered. This is reasonable if the electric field is not too strong. As shown in Fig. 6.2.1, according
to the description for the Bloch oscillation, under a electric field, an electron moves from the point
O to the point A. The point A is equivalent to the point A′ with the difference of one reciprocal
lattice vector, so the electron returns to A′ to continue its movement. This is a repetitive process in
reciprocal space and real space with acceleration and deceleration.

When an electric field is increased to a high value, it is possible that this picture of a single band
needs modification. In contrast to Fig. 6.2.1, we see that, in Fig. 8.3.6, the second energy band is
added to the dispersion relation and there is a energy gap Eg between its lowest point A′′ and the
point A. There is now a probability for an electron to acquire enough energy to jump from A to
A′′ which is in a different band. This transition is called the Zener effect. We can also refer to the
energy diagram in real space (Fig. 8.3.7), where an electron acquires electric field energy eEz, and at
the point A it usually is reflected back to A′. However, if it can move a further distance d = Eg/eE
to reach A′′, then it acquires enough energy to cross the gap.

Eg

A

A''

B

E(k)

O k

Figure 8.3.6 Electron transition be-
tween energy bands moving in Brillouin
zone under electric fields.

O

d

A''A

eE

Figure 8.3.7 Tilted energy bands in real
space under strong electric fields.

This is essentially a tunneling problem, because an electron must penetrate through the forbidden
energy region and so, by combining the band theory in the near-free electron approximation and the
tunneling theory from §8.3.1, we obtain the probability of electric breakdown:

T̃ = exp

[

−π2

4

E2
g

E0eEa

]

, (8.3.25)

where a is the lattice constant, E0 = (�2/2m)(G/2)2 is the electronic kinetic energy (equal to the
Fermi energy) and (G/2) = π/a. For the energy gap Eg to ensure that there is electron tunneling,
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the electric field must satisfy
eEaE0

E2
g

> 1. (8.3.26)

Similar to electric breakdown, a strong enough magnetic field can also cause electrons to transfer
between different energy bands. This is magnetic breakdown which is also a tunneling problem.
According to §6.3.2, if we consider a strong magnetic field along the z direction, then an electron
describes a circular motion in the two-dimensional plane. We introduce a periodic potential for a
crystal

V (r) =
∑

G

VGeiG·r, (8.3.27)

and take it as a perturbation. When the electronic orbit passes through the boundaries of the
Brilbuin zone, i.e., its effective wavevector in the x direction kx is ±G/2, Bragg diffraction will take
place. As shown in Fig. 8.3.8, the electronic orbit may be transferred from AB to AC. This comes
from the possibility of orbit reconnection at the boundary of the Brillouin zone in a periodic lattice.

When the strength of perturbation is increased, the trajectory at point A will be split in energy,
and the path AC will be preferred. Now the electron moves in open orbits according to the con-
ventional scheme of repeat zones, so Sec. B in the original ring in Fig. 8.3.8(a) will be connected
to form a separate branch. However, in a very strong magnetic field, the orbit may jump back to
the free-electron path, i.e., electrons may return to circular motion. The electron does not move
along AC normally, but an energy gap breakdown takes place, that is to say that there is tunneling
between a region in reciprocal space to two separate orbits.
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Figure 8.3.8 Schematic magnetic breakdown. (a) Free-electron orbit in magnetic field. (b) Orbit connected
at the boundary of a Brillouin zone (BZ) when there is a periodic potential.

Theoretically, it is simple to use the electric breakdown formula (8.3.25) to estimate the transition
probability for magnetic breakdown. In the repeated zone scheme, the electronic velocity near point
A is about v ≃ �kF/m. The electron with this velocity moving through the magnetic field will feel
a Lorentz force, which is equivalent to a electric field force of strength E ≃ vH/c. Using (8.3.25),
this equivalent electric field causes a tunneling process, if the parameters satisfy the inequality

e�H

m

kFaE0

E2
g

> 1. (8.3.28)

By noting that kFa is of order unity, eH/m is the cyclotron resonance frequency ωc, and E0 ≈ EF,
the condition of magnetic breakdown simplifies to

�ωcEF

E2
g

> 1. (8.3.29)

8.3.4 Tunneling Magnetoresistance

Consider two ferromagnetic metals isolated by a thin nonmagnetic insulating layer. The elec-
tronic transport depends on the tunneling process through the insulating barrier and is related to
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the relative orientations of the magnetizations of the two metals; the latter depending mainly on
their parallel or antiparallel alignment. The magnetization in a metal is determined by the spin
polarization of its electrons, so this is a kind of spin-polarized transport.h

From this physical picture, only the electrons close to the Fermi level participate in the transport
process, which is dominated by the s, p electrons with their more extended wavefunctions. The
density of states of majority spins n↑ is higher than that of minority spins n↓. If the magnetization
orientations in two ferromagnetic metal electrodes are in parallel, then the electrons of the electrode
in the majority spin subband can enter the unoccupied states of the other electrode in the majority
spin subband; the same situation occurs for the electrons in the minority spin subband. But if
the magnetizations of two electrodes are in antiparallel, then the spin of electrons in the majority
subband of one electrode is parallel to the spin of electrons in the minority subband of the other
electrode. Consequently, in a tunneling process, the electrons in the majority subband of one elec-
trode must enter into the unoccupied states in minority subband of the other electrode; vice versa.
This is the reason why electrons with majority spin emitted into the junction meet a high density
of empty states when the magnetization orientations are parallel. Therefore, the resistance is low;
in the opposite case, the resistance is high.

In 1975, Julliêre studied the transport properties of a Fe-Ge-Co tunneling junction, experimen-
tally verifying that the resistance is related to the relative magnetization orientations of the two
ferromagnetic layers and proposed a simple model.i This is a very short paper, but cited frequently
in the literature of giant tunneling magnetoresistance (TMR). In this model, spin-flip is neglected in
the tunneling process and the total conductivity σ ∝ 1/R is the sum of the two spin channels, which
gives σ↑↑ ∼ n↑n↑ + n↓n↓ for parallel orientation and σ↑↓ ∝ n↑n↓ + n↓n↑ for antiparallel. Defining
the spin polarization as

P =
n↑ − n↓
n↑ + n↓

, (8.3.30)

and generalizing to two electrodes with different spin polarizations P1 and P2, one obtains a formula
for reduced resistance ∆R/R. At this point we have to mention that two definitions of ∆R/R exist
in the literature, one is ‘conservative’, i.e., (∆R/R)c; the other is ‘inflationary’, i.e., (∆R/R)i. So
we have

(

∆R

R

)

c

=
R↑↓ − R↑↑

R↑↓
,

(

∆R

R

)

i

=
R↑↓ − R↑↑

R↑↑
, (8.3.31)

while the former is always less than 100%, the latter can be infinite. Their relation is

(

∆R

R

)

i

=

(

∆R

R

)

c

/[

1 −
(

∆R

R

)

c

]

. (8.3.32)

The resulting expressions for magnetoresistance are

(

∆R

R

)

c

=
2P1P2

1 + P1P2
,

(

∆R

R

)

i

=
2P1P2

1 − P1P2
. (8.3.33)

The Jullière model shows that the existence of spin polarization (or in other words, the difference
of DOS at the Fermi level in spin subbands) in both electrodes is the dominant factor for TMR and
this has been borne out in many subsequent experiments. However, it wholly neglects the influence
of the momentum of tunneling electrons, as well as the physical characteristics of the barrier layer
on TMR, so it is unsuitable for a quantitative comparison with experimental results. Slonczewski

hThe earliest direct experimental verification of electronic spin polarization was by Tedrow and Meservery who mea-
sured the tunneling current of a superconductor-nonmagnetic isolating layer-ferromagnetic metal (S-I-FM) tunneling
junction under applied magnetic fields. Their measurements confirmed that currents of magnetic metals, like Fe, Co,
and Ni under applied electric fields, are spin-polarized. [P. M. Tedrow and R. Meservery, Phys. Rev. Lett. 26, 192
(1971)]. Afterwards, Slonczewski suggested (1975) in an unpublished work that the superconductor in the tunneling
junction could be replaced by another ferromagnetic metal, to form a tunneling junction composed of ferromagnetic
metal-nonmagnetic isolating layer-ferromagnetic metal (FM-I-FM) tunneling junction.
iM. Julliêre, Phys. Lett. 54A, 225 (1975).
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proposed an improved model for TMR based on a full quantum mechanical treatment of both
electrodes and the barrier layer. He introduced the effective spin polarization P ′ satisfying

P ′ =
(k↑ − k↓)(κ2 − k↑k↓)

(k↑ + k↓)(κ2 + k↑k↓)
, (8.3.34)

to replace the spin polarization P in (8.3.30). Here k↑ and k↓ are the Fermi wavenumbers in spin-up
and spin-down subbands, and κ is the wavenumber in the barrier. So the formula for TMR is

(

∆R

R

)

c

=
2P ′

1P
′
2

1 + P ′
1P

′
2

,

(

∆R

R

)

i

=
2P ′

1P
′
2

1 − P ′
1P

′
2

. (8.3.35)

The Slonczewski model, and the subsequent extension of this model from rectangular to trapezoidal
barrier, may explain more detailed experimental results of TMR showing the influence of bias voltage
and physical characteristics of the barrier layer on TMR.j

Many applications are based on magnetic tunneling junctions: For example, two ferromagnetic
layers with different coercivities. If at first the two ferromagnetic layers form a antiparallel con-
figuration, the tunneling junction is in the high resistance state. Application of a magnetic field
can transform it into the parallel configuration, and the tunneling junction is changed into a low
resistance state. When the magnetic field is further reduced until it becomes negative, the mag-
netization of the ferromagnetic layer with lower coercivity will be reversed first, so that the two
magnetic layers are antiparallel again, so on and so forth. It is clear that a magnetic field can be
used to control the change of resistance from high to low or from low to high. Figure 8.3.9 shows
the tunneling resistance of CoFe-Al2O3-Co at a temperature of 295 K under applied field, and also
shows the resistances of CoFe and Co layers for comparison.
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Figure 8.3.9 The relation of tunneling magnetoresistance (TMR) and magnetic field for CoFe-Al2O3-Co
three layer structure. Arrows represent the magnetization directions in two magnetic layers. From J. S.
Moodera et al., Phys. Rev. Lett. 74, 3273 (1995).

8.3.5 Scanning Tunneling Microscope

It has been known from §8.3.1 that a particle with mass m and energy E can penetrate a barrier
by tunneling. If the barrier is a rectangular barrier with height U and width a, then (8.3.1) gives
jFor theoretical models, see J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989); F. F. Li, Z. Z. Li et al., Phys. Rev.
B 69, 054410 (2004). For experimental results on the decrease of TMR with increasing voltage, see J. S. Moodera
and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999); for TMR turning negative at high enough voltage, see
M. Sarma et al., Phys. Rev. Lett. 82, 616 (1999).
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the transmission probability
T̃ ∝ exp(−2κa), (8.3.36)

where κ =
√

2m(U − E)/�2. In particular, this barrier structure can be considered as two metals
separated by a thin insulating layer; this insulating layer is just the barrier for an electron.

E

0 z

EF

E

z
0

eV

(a) (b)

Figure 8.3.10 Potential as a function of position in a metal-insulator-metal tunnel junction, (a) the equi-
librium state, (b) an applied potential V .

When the insulating layer is very thin, a tunneling current appears between the two metals.
When a bias voltage is applied on the metal-insulator-metal structure shown in Fig. 8.3.10, the
current contribution results from the tunneling probabilities of conduction electrons with energies
larger than the Fermi energy. In the free electron model, the current density j can be written as

j =
2e

h

∑

kz

∫

Ez

T̃ (Ez , V )[f(E) − f(E + eV )]dEz , (8.3.37)

where the tunneling probability T̃ (Ez , V ) is related to an electron’s total energy E, to its kinetic
energy perpendicular to the barrier Ez, and to the applied bias voltage V . Summing over kz gives
the total contribution of electrons with the same energy Ez . Finishing the integral over k space, the
total current density at 0 K is

j(V ) =
4πme2V

h3

∫ EF−eV

0

T̃ (Ez , V )dEz +
4πme

h3

∫ EF

EF−eV

(EF − Ez)T̃ (Ez , V )dEz . (8.3.38)

When the bias is very small, the above expression gives a linear relation for I-V and T̃ (Ez , V ) is taken
as a constant; however, when the bias is increased to a value having the same order of magnitude
as the barrier height U , the I-V relation becomes exponential. These theoretical predictions have
been verified by many experiments.

The tunneling effect in metal-insulator-metal trilayer structures has an important application in
the modern experimental technique known as the scanning tunneling microscope (STM), in which the
insulating layer is vacuum or air.k Its essential component is a metal tip sharpened to a point with
atomic dimensions, usually fabricated from narrow wires of W or Pt-Ir alloy. As shown in Fig. 8.3.11,
the location of this detecting tip is controlled by three piezoelectric elements perpendicular to each
other, the piezoelectric elements x and y lead the tip to scan in the xy plane, and the z piezoelectric
element can be used to modulate the distance between the tip and sample below 1 nm. At this point
the electronic wavefunction in the tip overlaps with the electronic wavefunction at the surface of a
sample. Taking the tip and the surface of a sample as two electrodes, with an applied bias voltage,
we see that current tunnels between the two electrodes.

Figure 8.3.11(a) shows the constant height mode of operation, where the tip scans over the surface
of a sample from a fixed distance. Variation in the tunneling current are recorded to form an image
of the surface. Due to the extreme sensitivity of the tunneling current to tip-surface separation
and electron density, STM images routinely achieve atomic resolution. The tunneling current often
changes by an order of magnitude even with the relatively small atomic scale variations across the

kThe scanning tunneling microscopy was designed by Binnig and Rohrer (1982), and finished by Binnig, Rohrer,
Gerber and Weibel (1982). G. Binnig and H. Rohrer, Helv. Phys. Acta. 55, 726 (1982); G. Binnig, H. Rohrer, et al.,
Appl. Phys. Lett. 40, 178 (1982); Phys. Rev. Lett. 49, 57 (1982).
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Figure 8.3.11 Two work modes for scanning tunneling microscope.

surface of a pure single crystal. The disadvantage of this mode is that if the fluctuations of the
surface reach the nanometer scale, the tip may collide with the surface and be damaged. The
constant current mode shown in Fig. 8.3.11(b) can avoid this problem. In the constant current
mode, the tip is controlled by the z piezoelectric element. The tip moves up and down according
to variations in the surface in order to maintain the same tunneling current. In this way, the
separation between the tip and surface is kept constant. Variations in the z piezo voltage reflect the
surface topography, although spatial variations in density of electron states must also be considered
when interpreting the images obtained using STM. The constant current mode is the most common
method of STM operation.

The tunneling current density j passing through the vacuum is a measure of the overlap of the
electronic wavefunctions. It is related to the work functions of the tip and sample, φ1 and φ2, and
also the separation between them. An approximate expression is

j =
2e2

h

( κ

4π2a

)

V exp(−2κa), (8.3.39)

where κ = �
−1[m(φ1 + φ2)]

1/2. The tunneling current is very sensitive to the separation a between
the tip and sample. If a is reduced by 1 nm, the tunneling current will increase by an order of
magnitude. This sensitivity makes STM especially effective at measuring the fluctuations across the
surface of a sample.

More detailed STM theories are mostly established on the basis of Bardeen’s tunneling current
theory. Its formula for tunneling current is

J =
2πe

�

∑

µν

f(Eµ)[1 − f(Eν + eV )]|Mµν |2δ(Eµ − Eν), (8.3.40)

where f(E) is the Fermi distribution function, V is the applied voltage, Mµν is the transition matrix
element between the tip state ψµ and the sample surface state ψν and Eµ is the energy of ψµ in the
absence of tunneling. Bardeen gave the expression for the matrix element

Mµν =
�

2

2m

∫

dS · (ψ∗
µ∇ψν − ψν∇ψ∗

µ), (8.3.41)

where the integral is over the surface of the electrode located in the vacuum barrier. The key point
to solving the last two expressions is to determine the eigenstates ψµ and ψν for the tip and sample
existing separately, to assume a reasonable barrier for the tunneling junction, and also to consider
the influences of temperature and bias voltage.
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STM is a very useful tool for condensed matter physics, chemistry, and biology. STM can be
applied to ascertain local electronic structures at the atomic scale on solid surfaces, to infer their
local atomic structures. It has been extended to other microscopic probes,l e.g., the atomic force
microscope (AFM), can even be used to image local atomic structures on insulator surfaces. The
imaging ability of STM and AFM in different environments, which involves very little disturbance to
samples, has allowed an enormous range of applications. One typical, and most successful, example
was the confirmation of the 7× 7 structure on the Si (111) surface (see §12.4.5). In an investigation
of organic molecular structures, monolayer absorption of benzene on the surface of Rh (111) was
observed, and the Kekule ring structure was clearly shown. In biology, STM has been used to
observe directly the structures of DNA, reconstructed DNA and HPI-protein by surface absorption
on carriers.
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Chapter 9

Wave Localization in Disordered

Systems

We have shown in Chaps. 5 and 7 the formal analogy between wave propagation in structures
with perfect or nearly perfect periodicity. Both de Broglie waves and classical waves have been
treated, the latter including electromagnetic waves and lattice or elastic waves. In perfect periodic
structures, wave behavior satisfies band theory, with all permitted modes belonging to extended
states; while for those structures containing slight imperfections, such as impurities and surfaces,
band theory needs to be modified a little. Almost all states are extended, but some localized modes
emerge. When we turn to disordered systems, the picture of energy bands breaks down, and the
wave behavior appears to be localized within finite regions. However, the formal analogy for three
kinds of waves can still be demonstrated.

§9.1 Physical Picture of Localization

In a seminal paper entitled “Absence of diffusion in certain random lattices”,a Anderson (1958)
formulated the concept of disorder-induced electron localization which formed the basis of further
investigations. In fact this concept may be applied to classical waves, as in John’s extension to
elastic waves and optical waves.b

9.1.1 A Simple Demonstration of Wave Localization

In Chap. 7, we introduced the wave equations for de Broglie waves, electromagnetic waves and
lattice or elastic waves in parallel, and emphasized that the wave behavior will be determined by
the spatially-dependent potential functions. It is expected that in disordered structures the random
distribution of potential functions will play a crucial role: If the degree of disorder is strong enough,
the wave will be localized. The eigenmodes of strongly disordered systems may be described by
exponentially localized functions in space, as exp(−|r − r0|/ξ), with r0 being a certain central
position and ξ the localization length.

As a first step in understanding wave localization, we shall discuss a pedagogical example. For
a general picture of wave behavior, the vector nature of electromagnetic or elastic waves, may be
ignored for the time being, and the wave equations for electrons, elastic vibrations, and electromag-
netic radiations can all be expressed in the same scalar form as

∇2ψ + [k2 − V (r)]ψ = 0. (9.1.1)

aP. W. Anderson, Phys. Rev. 109, 1492 (1958).
bS. John et al., Phys. Rev. B 27, 5592; 28, 6358 (1983); Phys. Rev. Lett. 53, 2169 (1984).
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Here

k2 =

{

2mE/�
2, for electrons;

ω2/c2, for classical waves,

and the potential V (r) was normalized with 2m/�
2 for electrons, or with the combination of a

stiffness coefficient and mass density for elastic waves, or with dielectric constant for electromagnetic
waves.

The advantage of (9.1.1) is evident: People have been more concerned with the problem of elec-
tron localization, but its clear indications are difficult to observe, because the Coulomb interaction
between electrons (and other inelastic scattering processes of electrons) will smear the coherence of
the eigenstates. In contrast, classical waves are cleaner systems, and it is easier to see wave localiza-
tion. So we can use the experimental demonstration of classical waves to give an intuitive picture
of the wave localization, for example with acoustic waves.

Consider a one-dimensional acoustic system made by a long steel wire in which a tension K is
maintained. The periodic, or disordered, potential field V for the wire is provided by small masses
along the wire, which may be equally separated or not. The masses are sufficiently small that the
potential may be approximated as a series of δ functions with strength mω2/K. The wave field ψ
consists of transverse waves in the wire, generated by an electromechanical actuator at one end of the
wire. Figure 9.1.1(a) and (b) show the frequency responses of both the periodic and the disordered
system. For the periodic case, the frequency response shows distinct edges separating the pass band
from the forbidden band on either side, while these features are lost in the random distribution
case. The frequency response of a static disordered configuration in Fig. 9.1.1(b) illustrates the
dramatic departure from the Bloch response in Fig. 9.1.1(a). On the other hand, some examples of
the eigenstate amplitude distributions along the wire are shown in Fig. 9.1.2, among which the first
two correspond to Bloch-wave-like eigenstates, and the other two to localized eigenstates.

(a)

(b)

Figure 9.1.1 Frequency response of
the wire as a one-dimensional acoustic
system for (a) periodic potential and
(b) random potential. From S. He and
J. D. Maynard, Phys. Rev. Lett. 57,
3171 (1987).

(a)

(b)

(c)

(d)

Figure 9.1.2 Eigenstate amplitude as a func-
tion of position along the wire, (a) and (b) are
Bloch states corresponding to two eigenfrequen-
cies in Fig. 9.1.1(a); (c) and (d) are eigenstates
of the disordered system with frequencies corre-
sponding to two peaks in Fig. 9.1.1(b). From S.
He and J. D. Maynard, ibid.

Recognizing the analogy of classical waves and de Broglie waves, we can draw two main con-
clusions from the acoustic simulation, i.e. when sufficient disorder is introduced into a system, the
bandgaps disappear and the wavefunctions are localized. In what follows, we shall mainly be con-
cerned with electron waves and electromagnetic waves, although the investigation on elastic waves
can also be generalized further.

9.1.2 Characteristic Lengths and Characteristic Times

From the above discussion, we have shown that the introduction of strong disorder will modify the
wave behavior from extended states to localized ones. Localization comes from scattering processes.
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Actually, in disordered systems, waves suffer multiple scattering among the randomly distributed
scatterers.

For the investigation of a wave propagating through a non-dissipative disordered medium, three
characteristic lengths need to be specified. The first is the wavelength λ, which is generally related
to the eigenwavevector or eigenenergy. The second is the elastic mean free path l, which is a
characteristic of the disorder, and can be estimated as ∼ (nσ∗)−1, where σ∗ is a typical elastic
scattering cross section of a scatterer, and n is the number of the scatterers per unit volume. The
third is the size of the sample L.

The relative values for these three characteristic lengths are important in the consideration of
wave localization. We can specify three regimes as follows:

(1) l > L, the medium acts as if it were homogeneous. It can be confirmed that in addition to
the incident wave there are only reflected and transmitted waves, so this is the propagating
case;

(2) λ < l < L, there is so much scattering that the wave loses memory of its initial direction and
this is the diffusive case, described by multiple scattering. However, there is an additional
coherent effect, weak localization, due to the interference of back-scattered waves;

(3) l ≤ λ < L, the system satisfies the Ioffe–Regel criterion l ≤ λ, and is strongly disordered:
Coherent effects become so important that they lead to the vanishing of the diffusive constant.
Nothing is transmitted through the system and all the energy is reflected, for large enough
L. This is the case of formation of the localized state known as Anderson localization.

Among the three characteristic lengths, the mean free path deserves further discussion. Strictly
speaking, non-dissipative media can be realized only at zero temperature. We can in turn define a
collision time τ by

l = vτ, (9.1.2)

where v is the characteristic velocity, e.g., the Fermi velocity vF in the case of electrons. τ denotes
the average time interval of two consecutive elastic scatterings that are involved in the transition
between eigenstates of different momenta and degenerate energy.

As the temperature rises, the medium may be thermally excited, so inelastic scattering arises and
there are transitions between eigenstates of different energies. We can introduce another character-
istic time τin, to denote the average time interval of two consecutive inelastic scatterings, where in
general, τin > τ . This means that there are several elastic scattering events between two consecutive
inelastic scatterings.

It should be noted that elastic scattering keeps phase coherence, while inelastic scattering breaks
it. The phase coherent length is a very important quantity which can be defined as lin ≡ vτin. The
inelastic scattering rate 1/τin increases with temperature T as a power law T p, where p is a constant.
We give an estimate of this for electrons as an example. At room temperature, inelastic scattering
by phonons occurs rapidly, 1/τin ∼ kBT/� ∼ 1013 s−1, so τin ≃ 10−13 s. Phase information is
always destroyed for a macroscopic sample, because vF ∼ 108 cm/s = 1016 Å/s and lin = vFτin ≈
1000 Å, while the typical distance at which an electron remains phase coherent is the elastic mean
free path ∼ 100 Å. So now the electrons may be treated as semiclassical particles in which wave
behavior is not very apparent. However, there are two approaches to display the effects of phase
coherence for electrons: One is to decrease sample size and temperature, whereupon we arrive at
the mesoscopic electronic system discussed in Chap. 10. The other is to analyze physical effects in
macroscopic samples that arise from multiple scattering at small scales, for example, the modification
of conductivity to be discussed in next section.

9.1.3 Particle Diffusion and Localization

The concept of diffusion is of central importance in the theory of localization. For simplicity, we
consider the classical diffusive behavior of a particle in d-dimensional disordered system first. At
t = 0 the particle is assumed to be at the origin and to begin its random walk. After a time t = τ ,
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r2

r1

r4

r3

Figure 9.1.3 Diffusion path of a moving particle in the disordered system.

it experiences an elastic scattering at a certain place, and its direction of motion is changed. This
process continues while it diffuses in the disordered medium from one impurity to another. The
concept of localization may be defined through this classical diffusion process.

We can say that particle is localized if there is a nonzero probability for it to be around the
origin as time approaches infinity; otherwise it is delocalized. The classical diffusion equation in
d-dimensions for the probability density distribution p(r, t) is

∂p

∂t
− D∇2p = 0, (9.1.3)

where D is the diffusion coefficient. Its solution gives probability of the particle being at position r

at time t
p(r, t) = (4πDt)−d/2 exp(−r2/4πDt), (9.1.4)

from which a diffusive volume Vdiff can be defined. Because only for r2 � 4πDt is p(r, t) of
significance

Vd ≈ (Dt)d/2. (9.1.5)

From (9.1.4), the chance of the particle returning to the origin at the time t is given by

p(0, t) = (4πDt)−d/2. (9.1.6)

In Fig. 9.1.3 a possible path is drawn for the diffusion of a particle which might return to the origin.
It is important to calculate the integrated probability for the diffusive particle to return to the

origin from its first scattering to some larger time t:

P (0, t) =

(

1

4πD

)d/2 ∫ t

τ

dt

td/2
∝















(t/τ)1/2, d = 1;

ln(t/τ), d = 2;

(t/τ)−1/2, d = 3.

(9.1.7)

It can be seen from this expression that the integrated probability is closely related to the dimension-
ality of the system. The probability of revisiting the origin increases with time in a one-dimensional
system, but decreases in a three-dimensional system. It is interesting to note that any disorder will
lead to localization for d = 1, but the particle is always delocalized for d = 3. The two-dimensional
system is the marginal case and shows a logarithmic dependence with time; the particle will be also
localized as t → ∞. A better discussion of localization as a function of dimensionality is to use
scaling theory, which will be given in Part V. Moreover, it should be noted that the interference of
scattered waves may modify this classical picture of diffusion, leading to enhanced backscattering as
well as a size-dependent diffusion coefficient, to be treated in the next section.

§9.2 Weak Localization

We shall consider the effects of weak disorder, which is intermediate between the scattering
from a single impurity and strong localization due to the scattering by a large number of random
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scatterers. Weak disorder means that the mean free path l is much greater than the characteristic
wavelength λ and less than the size of the sample L. There are still a great many energy eigenstates
that are extended although they are not periodic. However, we shall find that of weak localization
is a precursor for strong localization.

9.2.1 Enhanced Backscattering

In classical diffusion there is an identical probability for a particle to propagate on the same
path in the opposite direction. The two probabilities add up and contribute to the total probability.
In reality, a microscopic particle like an electron has a wave-like character, instead of the classical
random walk process, two partial waves can propagate in opposite directions on the same path. On
their return to the origin, it is their amplitudes, instead of their intensities, that must be added
together, and therefore the total probability or intensity is twice as large as in the classical diffusion
problem expressed in (9.1.6). In addition, it is more instructive to study the wave behavior for the
propagation of classical waves in disordered media, so we must examine wave diffusion in disordered
systems more closely.

To understand the diffusive behavior of waves, we should look at the path of a wave diffusing
from the origin O to some point O′ in the medium, as shown in Fig. 9.2.1. Since the transport from
O to O′ can take place along different trajectories, there is a probability amplitude Ai connected
to every path i. The total intensity I to reach point O′ from O is then given by the square of the
magnitude of the sum of all amplitudes

I = |
∑

i

Ai|2 =
∑

i

|Ai|2 +
∑

i�=j

AiA
∗
j . (9.2.1)

λF

O

O'

Figure 9.2.1 Various possible paths
for a wave diffusing from O to O′.

1

2

O=O'

Figure 9.2.2 Self-crossing path of a
diffusing particle.

The first term of the right hand of (9.2.1) describes the noninterference contribution correspond-
ing to the classical case, while the second term represents the contribution due to interference of the
paths, which comes from the nature of waves. In the conventional Boltzmann theory for electron
transport these interference terms are neglected. In most cases this is justified, since the trajecto-
ries have different lengths and the amplitudes Ai carry different phases. On average, this leads to
destructive interference. Hence, the quantum-mechanical interference terms suggested by Fig. 9.2.1
are generally unimportant.

There is, however, one important exception to this conclusion: namely, if the points O and O′

coincide as in Fig. 9.2.2, i.e., if the path crosses itself. In this case, the starting point and the endpoint
are identical, so that the path in between can be traversed in two opposite directions: forward and
backward. The probability p to go from O to O′ is thus the return probability to the starting point.
Since paths 1 and 2 in Fig. 9.2.2 are identical, the amplitudes A1 and A2 are coherent in phase.
This leads to constructive interference, so that the wave contribution to p becomes very important
and (9.2.1) tells us that for A1 = A2 = A, the classical return probability is given by 2|A|2, while
the wave character yields 2|A|2 + 2A1A

∗
2 = 4|A|2. The probability for a wave to return to some
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Figure 9.2.3 Schematic diagram of light backscattering.

starting point is thus seen to be twice that of a classical particle. One may therefore say that “wave
diffusion” is slower than classical diffusion, due to the existence of a more effective backscattering
effect in the former case. In other words, waves in a disordered medium are less mobile than classical
particles.

In the case of optical waves, the backscattering interference effect has been vividly demonstrated
in disordered dielectric media. This is well demonstrated by an experiment in which incident laser
light of frequency ω enters a disordered dielectric half space or a slab, and the angular dependence
of the backscattering intensity is measured. We consider the incident light with wavevector ki = k0

entering a dielectric half space, as shown in Fig. 9.2.3. The light wave will be scattered at points
r1, r2, . . . , rN into intermediate states with wavevectors k1, k2, . . . ,kN−1 and finally into the state
kN = kf . For scalar waves, the scattering amplitudes at the points r1, . . . , rN are the same for
the path γ and the time reversed path −γ. The nature of interference between the two paths is
determined by their relative optical path lengths and so the resulting relative phase factor is given by

A ∼ exp[i(ki + kf) · (rN − r1)]. (9.2.2)

In the exact backscattering direction
q = ki + kf = 0

there is constructive interference, and a consequent doubling of the intensity over the incoherent
background.

If the angle between −ki and kf is θ, the coherent condition for small θ is

q · (rN − r1) = 2πθ|rN − r1|/λ < 1. (9.2.3)

In the diffusion limit
|rN − r1|2 ≈ D(tN − t1) ≈ lL∗/3,

where D = lveff/3 is the photon diffusion coefficient, l is the elastic mean free path, veff the effective
velocity, and L∗ is the total length of path γ. Thus paths of lengths L∗ contribute to the coherent
intensity for angles less than

θm = λ/(2π
√

lL∗/3). (9.2.4)

The width and the enhancement factor of the contribution to the backscattering cone as a
function of the depth in the sample has been studied experimentally by using a difference technique;
the experimental results are depicted in Fig. 9.2.4(a), where the contribution of light that has seen the
deeper part of the slab is shown. As the thickness L of the sample increases, it is reasonable to assume
that L∗ ∝ L, so that the angle θ decreases in accordance with the theoretical analysis as θ ∼ L−1/2.
The theoretical intensity profiles, calculated from diffusion theory, are shown in Fig. 9.2.4(b). Both
are in good agreement for the shape, width and relative intensity of the calculated and experimental
cones. It is noted that the multi-scattering of light by fine particles can trap light which then moves
back and forth in a finite region. This is, in some sense, similar to the case in which light is reflected
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Figure 9.2.4 Light backscattering pattern, (a) experimental results; (b) calculated results. From M. B.
van der Mark et al., Phys. Rev. B 37, 3575 (1988).

back and forth in a laser cavity. If the medium used has the property of light gain, then a random
laser can be manufactured.c

9.2.2 Size-Dependent Diffusion Coefficient

It has been emphasized that in a disordered system, a diffusion process can be used to describe
the motion of an electron as well as a photon. If the length scale considered is longer than the
length of the elastic mean free path l, it is convenient to regard the particle going on a random
walk, with the diffusion coefficient given by D = vl/3, where v is the effective speed of the particle.
However, the classical random walk is not enough, because of the wave character of the electron and
the photon, and their diffusion process must be described by an amplitude rather than a probability.
Interference between all possible diffusion paths must be considered in evaluating the transport of
waves. In this situation, a more precise definition of the diffusion coefficient for wave propagation is
needed.

This new definition of diffusion coefficient is essential because the diffusion coefficient can no
longer be looked upon as a local variable, but is determined by coherent wave interference through-
out the entire disordered medium. When the scattering is very weak it can be reduced to the familiar
diffusion coefficient given by the product veff l/3 of the effective medium speed veff , of wave prop-
agation and the mean field path l. In the vicinity of incipient localization the diffusion coefficient
D depends on the size of the entire sample. For clarity, but without loss of generality, we take the
electromagnetic wave as an example.

The incorporation of wave interference and, in

L

ξc

Dielectric Slab

Mean Free Path

Incident Light Transmission
l

Figure 9.2.5 Physical picture of optical trans-
port at incipient localization.

particular, of coherent backscattering into the the-
ory of wave diffusion leads to a renormalized picture
of transport, as shown in Fig. 9.2.5. In a situation
where wave interference plays an important role in
determining transport, the spread of wave energy is
not diffusive at all, in the sense that a photon per-
forms a classical random walk. Fortunately, there
is a way of applying the concept of classical diffu-
sion here: In a random medium it is reasonable to
expect that scattering centers that are far apart do
not, on average, cause large interference corrections
to the classical diffusion picture. Because the fluc-
tuations are significant, it follows that there exists
a finite coherence length ξcoh � l which represents
a scale on which interference effects must be taken

cFor the theoretical suggestion of random lasers, see V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968); for experimental
verification see C. Gouedard et al., J. Opt. Soc. Am. B 10, 2358 (1993); N. M. Lawandy et al., Nature 368, 436
(1994); D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54, 4256 (1996).
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Figure 9.2.6 A schematic variation of the renormalized diffusion coefficient with sample size (which is
larger than the mean free path before diffusion can be observed). Weak scattering, strong scattering, and
localization are shown. DB denotes the classical Boltzmann value of the diffusion coefficient. L and l are the
sample size and mean free path, respectively. From P. Sheng, Introduction to Wave Scattering, Localization,

and Mesoscopic Phenomena, Academic Press, New York (1995).

into account to determine the effective diffusion coefficient at any point within the coherence volume.
In other words, the possible amplitudes for a wave to diffuse from O to O′ within a coherence volume
ξd
coh must interfere with each other. Depending on the distance between the point O at which the

photon is injected into the medium and the point O′ at which it is detected, the effective diffu-
sion coefficient of the photon is strongly renormalized by wave interference. As a specific example,
consider a finite size sample of linear size L. By changing the scale of the sample, the number of
diffusion paths that can interfere changes, giving rise to an effective diffusion coefficient D(L) at any
point within the sample, which depends on the macroscopic scale L of the sample.

There are many formal mathematical ways of describing this physical picture. In incipient
localization, there arises a new coherence length ξcoh ≥ l such that on a length scale L in the range
l < L < ξcoh the spread of the wave is sub-diffusive in nature as a result of coherent backscattering,
which gives a significant interference correction to classical diffusion. In this range, the spread of
wave energy may be interpreted in terms of a scale-dependent diffusion coefficient that behaves
roughly as D(L) ≈ (vl/3)(l/L). On length scales long compared to ξcoh, the photon resumes its
diffusive motion except with a lower, or renormalized, value (vl/3)(l/ξcoh) of the diffusive coefficient.
We may finally combine them as

D(L) ≈ vl

3

(

l

ξcoh
+

l

L

)

. (9.2.5)

Figure 9.2.6 shows the renormalized diffusion coefficient schematically as a function of sample
size for three cases. In the weak scattering limit, the diffusion coefficient is independent of the sample
size, as expected classically. When the scattering is strong, the diffusion coefficient is renormalized
downward as a function of the sample size, with an asymptotic value that can be significantly less
than its classical value, but is still observable at small sample sizes. When the asymptotic value of
the renormalized diffusion coefficient vanishes, then by definition a localized state is created. The
physical picture outlined is consistent with the scaling theory of electron localization which will be
discussed later.

9.2.3 Interference Correction to Conductivity

It is well known that conductivity σ is related to the diffusion coefficient D by the Einstein
relation

σ = e2DgF, (9.2.6)

where e is the electronic charge and gF the density of states (DOS) at the Fermi surface. Indeed,
scattering of particles in a weakly-disordered medium leads to a diffusive motion of the electrons,
and the semiclassical approach is applicable. In conventional Boltzmann transport theory, consec-
utive collisions of electrons are assumed to be uncorrelated; this implies that multiple scattering
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of an electron from a particular scattering center is not taken into account. However, if there is a
finite probability for repeated occurrence of such multiple scatterings, the basic assumption of the
independence of scattering events breaks down and the validity (9.2.6) for σ becomes questionable.

Actually, in contrast to conventional Boltzmann theory, we must take into account the inter-
ference between scattered waves. Then there is an effect called enhanced backscattering, which
is a kind of special coherent superposition of scattered waves. This backscattering causes a de-
crease in conductance, due to the quantum mechanical effect, i.e., regarding electrons as de Broglie
waves. As depicted in Fig. 9.2.7, we can consider that an electron with momentum k and wave-
function exp(ik · r) at t = 0 penetrates into the medium and is scattered by scatterer 1, . . . , N .
The momentum changes from k to k′

1, k
′
2, . . . , and finally k′

N = −k, the corresponding momentum
transfer are g1, . . . , gN . There is an equal probability for k to k′′

1 , k′′
2 , . . . ,k′′

N = −k; the momentum
transfers are gN , . . . , g1. These two complementary processes are time reversal symmetric, i.e., with
time-dependent phase changes (Et/�) are identical, so the final amplitudes of A′ and A′′ are phase
coherent and equal, |A′| = |A′′| = A. Thus the backscattering intensity is

I = |A′ + A′′|2 = |A′|2 + |A′′|2 + A′∗A′′ + A′A′′∗ = 4|A|2 = 2 × 2|A|2. (9.2.7)

This leads to the decrease of the conductance σ.
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Figure 9.2.7 Diffusion path of a conduction electron.

The electronic characteristic wavelength is the Fermi wavelength λF = 2π/kF, and weak disorder
means that the mean free path l satisfies l ≫ λF. Starting from the metallic regime, we shall examine
how the precursor effects of localization, i.e., backscattering, will give rise to a correction δσ to the
metallic conductivity σ. Because of the expected decrease in conductivity, the sign of δσ/σ must
be negative. This change is proportional to the probability of occurrence of a closed path during
diffusion. We consider a d-dimensional tube with diameter λF and cross section λd−1

F , as shown in
Fig. 9.2.8. During the time interval dt the particle moves a distance vFdt, so that the corresponding
volume element of the tube is given by dV = vFdtλd−1

F . On the other hand, the maximum possible
volume for the diffusing particle is given by Vdiff in (9.1.5). Thus, the probability for a particle to
be in a closed tube is therefore given by the integral over the ratio of these two volumes

P =

∫ τin

τ

dV

Vdiff
= vFλd−1

F

∫ τin

τ

dt

(Dt)d/2
. (9.2.8)

The integration is taken over all times τ < t < τin, where τ is the time for a single elastic collision and
τin is the inelastic relaxation time in the system. The latter determines the maximum time during
which coherent interference of the path amplitudes is possible. Then the correction for conductivity
can be expressed as

δσ

σ
∝ −κ ×















(τin/τ)1/2, d = 1,

� ln(τin/τ), d = 2,

�
2(τin/τ)−1/2, d = 3,

(9.2.9)
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Figure 9.2.8 Enlarged cross
section of a d-dimensional quan-
tum mechanical trajectory of di-
ameter λF = h/mvF.
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Figure 9.2.9 The dependence of re-
sistance and temperature in disordered
Au-Pd film. From G. J. Dolan and
D. D. Osheroff, Phys. Rev. Lett. 43,
721 (1979).

where κ is the disorder parameter. Assuming that the inelastic relaxation rate vanishes with some
power of temperature T as T → 0, i.e., 1/τin ∝ T p, where p is a positive constant, then (9.2.9)
becomes

δσ

σ
∝ −κ ×















T−p/2, d = 1,

�p ln(1/T ), d = 2,

�
2T p/2, d = 3.

(9.2.10)

This expression gives the temperature-dependent conductivity. It is evident that for the cases d = 2
and d = 3 the corrections are of quantum-mechanical origin, i.e., they disappear for � → 0. But the
case d = 1 is the same as the classical case, for only forward and backward scattering are allowed,
all paths are necessarily closed. Figure 9.2.9 shows the relationship of resistance and temperature
in a disordered alloy thin film measured experimentally. It confirms the result for two dimensions
in equation (9.2.10).

§9.3 Strong Localization

We have treated the localized electronic modes related to a single impurity in Chap. 7. Here
we would like to consider the localization of one-electron states that occur in strongly disordered
systems. In 1958 Anderson, for the first time, studied the diffusion of electrons in a random potential
and found localization of electron waves if the randomness of the potential was sufficiently strong.
Afterwards Mott applied Anderson’s idea to investigate impurity conductance in doped semiconduc-
tors in which a disordered-induced metal-nonmetal transition may occur. We shall also discuss the
strong localization of light.

9.3.1 Continuum Percolation Model

A very simple method to demonstrate the consequences of disorder for electrons is the percolation
model. The concept of percolation was introduced in Chap. 4. Here, instead of site or bond
percolation, we consider continuum percolation, which simulates the situation of an electron moving
in a random mixture of conductors and insulators.

The problem is now looked as a classical particle with energy E moving in a space that can
be divided in two parts, according to the irregular potential V (r). One is the allowed region with
E > V (r) and the other the forbidden region with E < V (r). A schematic diagram is described
in Fig. 9.3.1 in terms of the motion of a particle moving on a water surface, which is equivalent to
an energy surface of height E. At lower water levels, only lakes exist, so the particle is localized.
As the water level rises, some channels form and connect the lakes. Further increasing the water
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Figure 9.3.1 The motion of a classical particle in a random potential.

level, the particle becomes delocalized when an ocean has formed, i.e., when the channels extend to
infinity. The peaks penetrating the ocean surface remain as scattering centers for the particle in the
extended state.

Just like the occupation probability p for site percolation, there is a quantity p(E) for continuum
percolation. This quantity specifies the fraction of space allowed for particles of energy E; then
we have

p(E) ≡
∫

E>V (r)

dr

/∫

dr. (9.3.1)

It is clear that p(E) ≤ 1, and increases monotonically with E. There must exist a percolation
threshold pc, such that when the energy-dependent allowed-space fraction p(E) exceeds pc, an in-
finitely extended allowed region appears. Corresponding to pc, we can find a threshold energy Ec,
that satisfies

p(Ec) = pc. (9.3.2)

In two dimensions, for a broad class of random potentials, pc = 1/2, which comes from the fact
that the lakes-ocean transition is the topological mirror image of the continent- island transition. In
one dimension, it is evident that pc = 1, since there is no way to go around the energy barrier for
E < V (r) as can be done in higher dimensions. In three dimensions, no rigorous result is available,
but a reasonable estimate for many situations is pc ≈ 0.16.

Strictly speaking, electrons are not classical particles but obey quantum mechanics, so they can
tunnel through regions in which E < V (r). We can analyze some of the differences between classical
continuum percolation and the quantum mechanical approach. The first concerns the nature of
states with E > Ec. In the classical case, lakes can coexist with the infinite ocean. This suggests
the possibility that localized states persist in the presence of extended states at the same energy
but this is not correct in the quantum mechanical sense. A localized wavefunction cannot avoid
mixing with an enveloping extended state present at the same energy. Thus localized and extended
states are not cleanly separated by a threshold energy in the energy spectrum. The second concerns
the dimension-dependence of the two pictures. Both percolation and quantum treatments have all
states localized by disorder in one dimension. A percolation transition is present in two or higher
dimensions, while a quantized localized-delocalized transition may occur only in dimensions larger
than two, and so d = 2 is a borderline dimensionality. This problem will be discussed in Part V.
In addition to these two pronounced differences, there is a third difference between Bloch states
in a periodic structure and the extended state within the percolation model: In crystals, a Bloch
state is an extended state with the same probability for an electron at any equivalent sites; while
in a disordered system, an extended percolation state means that the wavefunction may extend to
infinity, but with a marked fluctuation of |ψ|2 in space.

The continuum percolation model gives us some intuitive ideas about extended states, localized
states, and localization-delocalization transition in disordered systems. This approach might be
applicable in certain situations, especially those in which the characteristic length of the topological
features of V (r) is much larger than a typical electron de Broglie wavelength, so its real usefulness
is somewhat limited for electrons. On the other hand, if we extend classical percolation to quantum
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percolation,d then the weak localization effect of waves should be added into the percolation processes
discussed above. It is easy to get an interesting conclusion from the physical picture that the
threshold of quantum percolation is higher than that of classical percolation, and theoretical research,
including numerical computation, confirms it. The giant Hall effect discovered experimentally in
metallic grainy films in recent years can be explained reasonably well by the quantum percolation
model.e

9.3.2 Anderson Model

Now we turn to the quantum model for further discussion. In 1958, for the first time Anderson
studied electronic diffusion in random potentials and found that electron waves become localized
when the random potentials are strong enough. Anderson’s quantum theory of electrons in disordered
solids is a tight-binding disordered one-electron model. We start with the Hamiltonian

H =
∑

i

εi|i〉〈i| +
∑

i�=j

tij |i〉〈j|, (9.3.3)

where |i〉 is the state vector of the i-site using the Dirac symbol, εi is the energy level of an electron
at site i, and tij is the transfer integral between sites i and j. In the Anderson model, nonzero
transfer integrals are only for nearest neighbor sites and are assumed to be equal, i.e. tij = t̃, due
to the fact that the separation for neighboring sites is almost the same, but εi is randomly chosen
for each site i forming a spatial distribution with width W , as in Fig. 9.3.2, (−W/2 ≤ ε ≤ W/2).
This model is referred to as the diagonal disorder model, since disorder appears in the diagonal
matrix elements. For further treatment, we need to know the probability distribution of energy. For
mathematical convenience we may choose the uniform distribution expressed as

p(E) =
1

W
. (9.3.4)

There are some other choices for the distribution of energy, for example a Lorentz distribution, but
the fundamental physical implication is the same.

E

W/2

-W/2

0

Figure 9.3.2 Disordered distribution of energy in the Anderson model.

The simplest way to discuss the model is in terms of a tight-binding expansion of the wavefunction

|ψ〉 =
∑

i

ai|i〉, (9.3.5)

where |i〉 is the atomic orbital centered at site i. If ψ is an eigenfunction that satisfies Hψ = Eψ,
we can get a matrix equation for the amplitudes ai

Eai = εiai +
∑

j

tijaj . (9.3.6)

dC. M. Soukoulis et al., Phys. Rev. B 36, 8649 (1987).
eX. X. Zhang et al., Phys. Rev. Lett. 86, 5562 (2001).
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This leads to a solution for the stationary state. If we consider the time-dependent equation of
motion, it is

�

i

dai

dt
= εiai +

∑

j

tijaj . (9.3.7)

We can give a definition for localized states. Suppose, at time t = 0, an electron is placed at site i,
so ai(t = 0) = 1, but aj = 0 for j �= i. In principle, these initial conditions determine the subsequent
evolution of the system by (9.3.7). We can examine ai(t) in the limit of t approaching infinity. If
ai(t → ∞) = 0, the electron is in an extended state. But if ai(t → ∞) is finite, the electron has only
spread in a region near the neighborhood of site i, so it is in a localized state.

In the nearest neighbor approximation, (9.3.6) is transformed into

Eai = εiai + t̃
z

∑

α=1

ai+α, (9.3.8)

where t̃ is the transfer integral between nearest neighbors and the sum extends over the z nearest
neighbors of site i. It is instructive to examine some limiting cases. One limiting case is W = 0,
which corresponds to all sites having the same energy, so there is no disorder. The bandwidth in
this crystalline tight-binding approximation is proportional to t̃ and for a simple cubic structure

B = 2zt̃. (9.3.9)

The opposite limit has the εi distribution in (9.3.4) left intact with W taking a finite value, and with
t̃ = 0. With the coupling removed, the bandwidth B = 0, the solutions are simply atomic orbitals
at each site and the initial situation will be kept invariant, i.e., ai = 1, and aj = 0 for j �= i.

Intermediate between these two limits, W and B are all finite values, it is evident that the
magnitude of the ratio

δ = W/B (9.3.10)

shows the competition between disorder and order. It is expected that there is a critical value δc to
determine the transition from delocalization to localization as the disorder increases, or vice versa.
To determine this critical value, Anderson’s full treatment with a Green’s function based upon the
perturbation method is rather difficult. We would like to give a qualitative discussionf here by
approaching it from the strong disorder limit, i.e., W ≫ B.

We begin with the localized limit B = 0, turn on the t̃, and take this coupling parameter as a
perturbation. Consider at first ai = 1, aj = 0 for all j �= i, first order perturbation mixes this state
with neighboring sites by an amplitude of order t̃/(εi − εj), higher orders of perturbation add terms
containing higher powers of this quantity. Then it can be written

|ψ〉 = |i〉 +
t̃

εi − εj
|j〉 + · · · . (9.3.11)

The question is: How big can t̃/(εi − εj) be before localization is destroyed and an extended state
arises? The site energies, εi and εj , are taken from a distribution of width W . Suppose εi is at the
center of the energy distribution, and assume that the εj of the z nearest-neighbor sites are uniformly
spaced over W/z. The smallest energy denominator in the perturbation parameter t̃/(εi − εj) is
|εi − εj | = W/2z, so the largest perturbation parameter is

t̃

εi − εj
=

2zt̃

W
=

B

W
. (9.3.12)

If the perturbation expansion converges, it is reasonable to require (B/W ) < 1. When the con-
vergence breaks down, delocalization appears and the localization-delocalization transition occurs

fD. J. Thouless, Phys. Rep. 13, 93 (1974).
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at B = W . When W > B, localization occurs at the center of the band, so we get the Anderson
localization criterion

δc = 1. (9.3.13)

This is smaller than the value Anderson got originally but consistent with the result from computer
simulation.

9.3.3 Mobility Edges

Based on the Anderson model, Mott put forward the useful idea of the mobility edge, which is
schematically shown in Fig. 9.3.3. The mobility edge is a critical energy value Ec to distinguish the
localized states from the delocalized ones. Its classical correspondence is the threshold energy of
the percolation model. The concept of the mobility edge can be used to study the conductance of
doped semiconductors when metal-insulator transitions takes place. Through changing the level of
disorder, especially the impurity concentration in doped semiconductors, delocalized states near the
Fermi surface can be localized. The conductance can be changed in this process, so there appears a
metal-insulator transition in the material, called the Anderson transition.

For a small degree of disorder only the states in the band tails are localized. The energies of
the localized states correspond to the tails at the top of the valence band and the bottom of the
conduction band. The tails themselves stretch into the energy gap only because the energy ranges of
additional states becomes available through the disordered potential distribution. Within the main
body of each band, the states are extended. For an intermediate degree of disorder less than the
critical value, there will be two energies which separate localized from extended states as shown in
Fig. 9.3.3. The demarcation energies separating regions of localized and extended states are referred
to as mobility edges. At either side of an energy gap in a disordered insulator or semiconductor, tails
of localized states penetrate into the gap, as shown in Fig. 9.3.3; they may or may not overlap. The
energy separation between two mobility edges is called the mobility gap. It is the direct extension
of the concept of energy gap in a crystalline semiconductor.

Mott (1974) also emphasized the possibility of a metal-nonmetal transition, called the Anderson
transition, if the degree of disorder is changed by doping, application of pressure, or electric field etc,
the Fermi level EF can be made to cross a mobility edge, then the delocalized states near the Fermi
energy become localized. This process leads to a change in electric conduction, and a metal-insulator
transition can occur. In Fig. 9.3.3, for example, if −Ec < EF < Ec the material is metallic and
conducts at T = 0. If EF < −Ec or EF > Ec it will not conduct unless, at T > 0, the electrons can
be thermally excited from one localized state to another or to an extended state. If g(EF) is high
enough for the electron gas to be degenerate, and EF lies in a mobility gap, the material is called a
Fermi glass.

When the energy of the individual atomic states varies randomly over a range greater than the
width of the band produced by overlap between adjacent atomic orbitals, the states at the center of

g(E)

-Ec Ec E

Figure 9.3.3 Mobility edges.

Band Width

Localized States
Extended States

δ

Figure 9.3.4 In the Anderson model,
localized states increase as disorder pa-
rameter δ increases.
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the band must be localized. Figure 9.3.4 shows how the effect of disorder produces localized states at
the edges of the original band. As the disorder increases, these tails become longer, until eventually,
the mobility edges move inward and coalesce at the center where all the states are localized.

The tail states are especially susceptible to localization, and Thouless (1974) provided a per-
colation argument for this. We may anticipate a specific feature of quantum transport among the
disordered sites: An electron may move with relative ease from one site to a nearby one only if the
energy levels of the two sites differ by an amount that is less than a small fraction of the bandwidth,
an amount roughly given by B/z. Sites differing in energy by a greater amount are effectively de-
coupled. Suppose we slice the distribution W into discrete energy ranges of width B/z, and label (or
“color”) each site of the same energetically specified type (i.e., of the same color). A site of one color
cannot communicate with any site of another type, and the situation now resembles a polychromatic
percolation process. For a species of site corresponding to an energy slice taken from the fat central
part of the density of states, there is an abundance of available sites; their spatial concentration is
high, and percolation is easy. But, for a color corresponding to a slice taken from a thin tail of the
distribution, the available sites are sparse and are spread far apart in space. Here a percolation path
is absent and localization is likely. This conveys the reason that disorder most readily localizes elec-
trons in the extremities of the density of states distribution and explains why Anderson localization
most readily appears in a low density regime (distribution tail = low concentration in space) due to
the random potential.

9.3.4 Edwards Model

Electrons in disordered materials with characteristic metallic behavior cannot be satisfactorily
described in terms of tight-binding wavefunctions. So, for metals, it may not be correct to write
the eigenstate as a linear combination of a small number of atomic orbitals as (9.3.5). In contrast
to the Anderson model, Edwards (1958) considered the disordered distribution of scatterers in a
nearly-free electron model.g We must now return to the one-electron Schrödinger equation

(

− �
2

2m
∇2 + V (r)

)

ψ(r) = Eψ (9.3.14)

to describe an electron in the conduction band of a disordered solid, where V (r) is the random
potential. This is called the Edwards model.

In this model, the random potential V (r) can be chosen to have zero mean value

〈V (r)〉 = 0, (9.3.15)

and a spatial autocorrelation function that satisfies

〈V (r)V (0)〉 = V 2
rmse

−r2/ξ2

, (9.3.16)

where 〈· · · 〉 is an ensemble average, Vrms a root-mean-square amplitude, and ξ a length scale on
which random fluctuations in the potential take place. The correlation length ξ for the disorder
defines an energy scale εξ = �

2/2mξ2.
The one-electron density of states (DOS) in three dimensions is depicted in Fig. 9.3.5. The weak

disorder corresponds to Vrms ≪ εξ. For weak disorder there is a tail of strongly localized states,
referred to as the Urbach tail, for E < 0 which is separated by a mobility edge E′

c ≃ −V 2
rms/εξ. As the

disorder parameter Vrms is increased, the mobility edge eventually moves into the positive continuum
denoted as Ec. Successive tunneling events allow an electron of energy greater than Ec to transverse
the entire solid by a slow diffusive process and thereby conduct electricity, whereas electrons of
energy lower than Ec are trapped and do not conduct electricity. The noteworthy point, however,
for present consideration, is that only in the limit of very strong disorder, such that Vrms ≫ εξ, do
the states with E > 0 exhibit localization. Electrons with sufficiently negative energy E may get
trapped in regions where the random potential is very deep. The rate for electrons tunneling out of

gS. F. Edwards, Phil. Mag. 3, 1020 (1958).
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Figure 9.3.5 One electron density of states (DOS) in a correlated Gaussian random potential. For weak
disorder, the mobility edge is denoted by E′

c below which states are localized. As the disorder is increased,
the mobility edge moves into the positive energy regime denoted by Ec.

the deep potentials depends on the probability of finding nearby potential fluctuations into which
the trapped electron can tunnel. This rate increases as the electron energy increases. For energy
much greater than Ec, the scale on which scattering takes place grows larger than the electron’s de
Broglie wavelength, and the electron transverses the solid with relative ease.

9.3.5 Hopping Conductivity

Although we can discuss localization and mobility edges for disordered metals in the Edwards
model, for real metallic materials, the most striking feature is the similarity between the phenomena
exhibited by both crystals and glasses. There is a lack of experimental evidence for strong localization
and the metal-nonmetal transition. In both the crystal and the glassy metals, conduction occurs
via extended state electrons and is limited by disorder-induced scattering processes. But there are
two significant differences of the electric properties of a metallic glass relative to the properties
of its corresponding crystal: much higher resistivity and much lower sensitivity to temperature.
The reason for both is the high degree of static disorder already present in the metallic glass; the
additional dynamic disorder introduced by the presence of thermal phonons has little influence on
the resistivity, which is already high as a result of the scattering caused by the intrinsic structural
disorder. So the resistivity is high and flat for the glass.

We now turn our attention to more interesting conduction properties of semiconductors and
insulators, which may be defined as materials whose conductivity vanishes at zero temperature.
Referring to the schematic electron density of states (DOS) in Fig. 9.3.3, the Fermi energy EF falls
between the valence band and the conduction band, lying within the bandgap of the crystal or within
the mobility gap of the glass. For the crystal, EF lies at an energy devoid of states; for the glass,
it lies within the region of localized states. In both cases, the conductivity is zero, since there is no
electron motion unless thermal energy is supplied.

A localized electron cannot contribute to dc conductivity at zero temperature. At finite tem-
perature, it may be thermally excited to an extended state, or to an empty localized state. For the
latter case, an applied field will bias the motion and create a current down the field; called hopping
conduction. The term “hopping” is an abbreviation for the phonon-assisted quantum mechanical
tunneling of an electron from one localized state to another. If it can be recognized by some charac-
teristic temperature dependence, it serves to reveal the presence of localized states. There is more
than one regime for temperature-dependent hopping. One example is the hopping of an electron
to sites with the smallest r and is therefore sometimes called nearest-neighboring hopping. The
assumption here is that T is high enough to make hopping through energy difference (εj − εi) to a
nearest neighbor the most likely event. In the following we would like to discuss another example in
which T is lower.

If T is lower enough, there is increased probability of a jump to a site j with energy nearer to εi

but greater spatial distance. The idea was first proposed by Mott in 1968h and the process is known
as ‘variable-range hopping’. He gave an intuitive argument proceeding from defining the transition

hN. F. Mott, Phil. Mag. 17, 1259 (1968).
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probability p, which is the function of the hopping distance r, the energy separation W of the final
and initial states, and the temperature T . For an upward energy hopping, we can write

p ∼ exp[−2αr − W/kBT ]. (9.3.17)

This expression is the product of two exponential factors. The first, exp(−2αr) represents the prob-
ability of finding the electron at distance r from its initial site. (Here α is the inverse localization
length that describes the exponential decay ψ(r) ∼ exp(−αr) of the electron wavefunction at large
distances.) From the viewpoint of multiple scattering, an electron of energy E is sufficiently scattered
by the disorder: The scattered wavelets interfere destructively at distances larger than a character-
istic length ξ and collectively reduce the amplitude ψE(r) beneath the exponential envelope. The
second factor, exp(−W/kBT ), denotes the contribution of phonon assistance in overcoming the en-
ergy mismatch W . In the low-temperature limit, the number of phonons of energy W is given by
the Boltzmann factor exp(−W/kBT ).

The essential point emphasized by Mott is that there exists a competition between hopping dis-
tance r and mismatch energy W which implies that the nature of the dominant hops necessarily
changes with temperature. There is an enhanced probability of encountering a smaller W by per-
mitting the electron to choose among the larger range of finite-state sites contained within a larger
neighborhood. A sphere of radius r surrounding the initial site is expressed by

(4π/3)r3W (r)g(EF) = 1. (9.3.18)

As is clear, W (r) is proportional to r−3, and is a reasonable measure of the minimum mismatch
available for a hop of range r. Combining this expression with (9.3.16), then maximizing p, yields,
for the most probable hopping distance

r = [αkBTg(EF)]−1/4. (9.3.19)

Assuming that the most probable transition rate dominate the hopping conductivity, we obtain

σ ∼ exp(−A/T 1/4), (9.3.20)

where
A = [α3/kBg(EF)]1/4. (9.3.21)

The T 1/4-law is characteristic of variable-range hopping and it can also be derived by perco-
lation arguments.i In d space dimension the 1/4 is replaced by 1/(d + 1). Mott’s prediction of
variable-range-hopping conductivity has been verified by experiments in a number of amorphous
semiconductors.

9.3.6 Strong Localization of Light

The remarkable phenomenon of electron localization was first discussed by Anderson in 1958,
but fully appreciated only in the 1980s. The reason is that the similarity of wave scattering and
interference to photons and electrons has been realized over that period. In appropriately-arranged
dielectric microstructures light can also be localized.

In the study of electron localization there is a complication due to the inevitable presence of
electron-electron and electron-phonon interactions. However, the propagation of optical waves in
nondissipative dielectric media provides the ideal realization of a single mode in a static random
medium, even at room temperature. Light localization is an effect that arises entirely from coherent
multiple scattering and interference and it may be understood purely from the point of view of
classical electromagnetism. In traditional studies of the propagation of electromagnetic wave in
dielectrics, scattering takes place on scales much longer than the wavelength of light. Localization
of light, just the same as that of electrons, occurs when the scale of coherent multiple scattering is
reduced to the wavelength itself.

iV. Ambegaokar, B. I. Halperin and J. S. Langer, Phys. Rev. 4, 2612 (1974).
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Consider monochromatic electromagnetic waves of frequency ω propagating in a disordered,
nondissipative dielectric microstructure. It is proper to begin with Maxwell equations to describe
the propagation of electromagnetic waves. The wave equation for the electric field E can be written as

−∇2E + ∇(∇ · E) − ω2

c2
ǫf(r)E = ǫ0

ω2

c2
E, (9.3.22)

where the dielectric constant ǫ(r) written as

ǫ(r) = ǫ0 + ǫf(r), (9.3.23)

including two parts, i.e., ǫ0 is an average value, and ǫf(r) the random fluctuation satisfying

〈ǫf(r)〉 = 0. (9.3.24)

In a nondissipative material, the dielectric constant ǫ(r) is everywhere real and positive.
There are several important observations based on the analogy between the Schrödinger equation

and Maxwell equations. First of all, the quantity ǫ0ω
2/c2 always positive, so the possibility of

electromagnetic bounded states in deep negative potential wells is precluded. It is noteworthy that,
unlike an electronic system, where localization is enhanced by lowering the electronic energy, lowering
the photon energy, i.e., letting ω → 0, leads to a complete disappearance of scattering; the opposite
limit, ω → ∞, geometric optics becomes operative and interference corrections to optical transport
become less and less effective. In both limits the normal electromagnetic modes are extended, not
localized. Therefore, unlike the familiar picture of electron localization, localized light must be in
an intermediate frequency window, within the positive energy continuum. This is in agreement with
the Ioffe–Regel rule, because the wavelength of electromagnetic waves ranges from γ-ray to radio
waves, so localization only appears in the intermediate frequency window, depending on the filling
ratio and arrangement of scatterers.

The propagation of electromagnetic waves in random nondissipative media exhibits three funda-
mentally different regimes. The underlying physics of the high and low frequency limits can be made
more precise by considering scattering from a single dielectric sphere. If the wavelength of incident
plane wave is λ, and the mean free path is l, then three different regimes can be distinguished.

The classical elastic mean free path l plays a central role in the physics of localization. Wave
interference effects lead to large spatial fluctuations in the light intensity in disordered media. If
l ≫ λ, however, these fluctuation tend to average out to give a physical picture of essentially
noninterfering, multiscattering paths for electromagnetic transport, it follows that the transport of
wave energy is diffusive in nature on very long length scale, but that all states are extended.

When λ ∼ l in a strongly disordered medium, interference between multiply scattered paths
drastically modifies the average transport properties, and a transition from extended to localized
normal modes takes place. The condition for localization can be written as the Ioffe–Regel rule

2πl/λ ≈ 1. (9.3.25)

Figure 9.3.6 shows how the behavior of the elastic mean free path l varies with the wavelength λ. It
follows that extended states are expected at both high and low frequencies: In the long wavelength
Rayleigh scattering limit, l ∼ λ4; in the short wavelength limit l ≥ a, where a is the correlation
length. Also depicted in Fig. 9.3.6, for a strongly disordered medium (solid curve), there may exist a
range of wavelengths for which 2πl/λ ≈ 1 where localization is exhibited, within a narrow frequency
window when λ/2π ≈ a. Our interest in light localization should be concentrated in this intermediate
frequency regime.

The above discussion on independent scatterers is about free photon states that undergo multiple
scattering. From the single scattering, or microscopic resonance, point of view, the free photon
criterion for localization is very difficult to achieve. The dashed curve (Fig. 9.3.6) for dilute scatterers
would not induce localization.

As described above, the free photon scattering among the independent scatterers may lead to
strong localization provided that (9.3.25) can be satisfied. There is another approach that can be
used to discuss light localization, i.e., beginning with the scatterers which are coherently arranged
in the matrix. The most familiar example is photonic crystals introduced in Chap. 5.
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Figure 9.3.6 Behavior of the elastic mean
free path l as a function of wavelength λ.
From S. John, Phys. Rev. Lett. 53, 2169
(1984).
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Figure 9.3.7 Photon density of states in
a disordered coherent structure exhibiting
low frequency Rayleigh scattering and high
frequency geometric optics extended states
separated by a pseudogap of strongly local-
ized photons. From S. John, Phys. Rev.

Lett. 58, 2486 (1987).

Now consider the the dielectric constant ǫfluc(r) in (9.3.23) which includes two parts

ǫf(r) = ǫ1(r) + V (r), (9.3.26)

where ǫ1(r) is the spatially periodic function just like (7.1.6), so it can be Fourier expanded as

ǫ1(r) = ǫ1
∑

G

UGeiG·r, (9.3.27)

while V (r) is a perturbation to the originally periodic dielectric constant. Here G runs over the
appropriate reciprocal lattice, and its value for the dominant Fourier component UG is chosen so
that the Bragg condition k · G = (1/2)G may be satisfied for a photon of wavevector k. Setting
V (r) = 0 for the time being, the effect of the periodic dielectric structure gives photonic bands and
gaps.

The existence of a gap in the photon density of states is of paramount importance in determining
the transport properties and localization of light. The free photon Ioffe–Regel condition, discussed
above, assumes an essential free photon density of states and completely overlooks the possibility of
this gap and the concomitant modification in the character of propagating states. The electric field
amplitude of a propagating wave of energy just below the edge of the forbidden gap is, to a good
approximation, a linear superposition of the free-photon field of wavevector k and its Bragg reflected
partner at k−G. As ω moves into the allowed band, this standing wave is modulated by an envelope
function whose wavelength is given by 2π/q, where q is the magnitude of the deviation of k from the
Bragg plane. Under these circumstances the wavelength that must enter the localization criterion is
that of the envelope. In the presence of even very weak disorder, the criterion 2π/λenv ∼ 1 is easily
satisfied as the photon frequency approaches the band edge frequency. In fact, near a band edge ωc,
λenv ∼ |ω − ωc|−1/2.

The perturbative introduction of disorder V (r) now gives rise to localized states in the gap
region, as depicted in Fig. 9.3.7. The existence of the band gap guarantees the existence of strongly
localized photonic band tail states, at a certain frequency regime, analogous to the Urbach tail in
the electron systems. This physical picture is entirely different from the free-photon Ioffe–Regel
condition in that it is not the wavelength of the envelope wavefunction, rather that of the carrier
wave which enters the localization criterion.

We have discussed in detail the two extreme limits: a structureless random medium for which
the criterion 2πl/λ ≈ 1 applies and a medium with nearly sharp Bragg peaks and a band gap
for which 2πl/λenv ≈ 1 yields localization. Invariably a continuous crossover occurs between these
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Figure 9.3.8 The experimental results for frequency dependence of diffusion coefficient D. The triangle,
dot and circle are, respectively, for filling fractions f = 0.20, 0.25, 0.35. From A. Z. Genack and N. Garcia,
Phys. Rev. Lett. 66, 2064 (1991).

conditions as the structure factor of a high dielectric material evolves from one limit to the other. In
real disordered systems it is likely that neither the band picture nor the single scattering approach
will provide a complete description. In the limit of dilute uncorrelated scatterers, the microscopic
resonance picture is entirely adequate, whereas in the high density limit of highly correlated scatterers
a macroscopic resonance is essential. To investigate the classical wave localization which occurs in
an intermediate regime of frequency, it might be more appropriate to take both of these conceptually
different approaches into account.

There have been a lot of efforts to investigate photon localization experimentally, and some
results have been reported. An experiment was performed in a random three-dimensional sample
by randomly mixing metallic (aluminium) and dielectric (teflon) spheres. Localization of microwave
radiation was found in a narrow frequency range. From the experimental results shown in Fig. 9.3.8,
the variation of the diffusion coefficient D with filling fraction and frequency shows that D → 0 at
a metallic filling fraction f = 0.35, and frequencies around ν = 19 GHz (f is the fraction of the
total sample volume from which the wave is excluded by metallic surface). In the experiment, the
filling fraction is associated with the sample length L. The results are consistent with the theoretical
equation (9.2.5) for localization.
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Chapter 10

Mesoscopic Quantum Transport

The electron dynamics of a bulk material composed of large ensembles of particles can be cal-
culated by averaging over many microscopic configurations. Although the quantum behavior of
individual constituents of a macroscopic object are important over some length scale, typically a
few lattice spacings, they are usually not correlated across the whole object. By contrast, electron
transport in mesoscopic systems is dominated by wave behavior and the semiclassical approach can
no longer be used. There are many quantum phenomena which are related to wave coherence.

§10.1 The Characteristics of Mesoscopic Systems

We can say that a mesoscopic system has a size between the microscopic and the macroscopic,
but this statement is rather vague. The main characteristic of a mesoscopic electronic system is that
an electron can keep its wavefunction phase-coherent throughout the sample. This puts a severe
restriction on the size as well as the temperature of the sample.

10.1.1 Prescription of the Mesoscopic Structures

In a system of microscopic size, such as an atom or a small molecule with a length scale of several
angstroms, the energy levels are all discrete, and so the physical properties are mainly controlled by
quantum behavior.

On the other hand, for a macroscopic sample, larger than 1 mm in size, often a classical or
semiclassical description can be used. For example, conductivity is determined by the average scat-
tering rate. In the isotropic approximation, Boltzmann transport theory gives the conductivity
σ0 = ne2τ(EF)/m∗ (§8.1.1). At room temperature, inelastic scattering by lattice vibrations occurs
at a very high rate because the inelastic scattering time τin satisfies 1/τin ≈ kBT/� ≈ 1013 s−1,
so τin ≃ 10−13 s. The phase information is always destroyed, because the Fermi velocity
vF ≈ 108 cm/s = 1016 Å/s, and the inelastic scattering mean free path lin = vFτin ≈ 1000 Å.
On the other hand, the typical distance at which an electron remains phase coherent is the elastic
mean free path, which is only about 100 Å. In this case the electrons can be treated as semiclassical
particles; wave aspects are smeared out, and only the local interference correction in the conductivity
needs to be considered, as discussed in §9.2.3.

With the development of microfabrication technology, such as molecular beam epitaxy and op-
tical and electron-beam lithography, metal and semiconductor samples with size L less than 1 µm
can be made. These are the so-called nanostructures; well-known examples include semiconductor
superlattices that are nanosize in one direction, as discussed previously. In the following, however,
we will be concerned with samples for which the size may be small in more than one direction. For
these, if the temperature is also lowered to T < 1 K, the coherent lengths of waves will be larger
than the sample size, and the Boltzmann equation is not appropriate to describe electronic transport.
Their physical behaviors lie between the familiar macroscopic semiclassical picture and an atomic
or molecular description. So it is obvious that there is a certain size range, which is intermediate



· 252 · Chapter 10. Mesoscopic Quantum Transport

between the microscopic and the macroscopic, at low temperatures where quantum coherence will
be important. This is the characteristic size of mesoscopic structures. The effective length scale
at low temperatures can be 102–104 times the characteristic microscopic scale, and correlations can
involve more than 1011 particles.

The most important quantity is the phase coherence length defined as Lφ ≡
√

Dτin, which
is actually equivalent to lin. The inelastic scattering rate 1/τin decreases with the temperature
T and, for a sample of size ∼ 1 µm, the mesoscopic regime is reached when T < 1 K. In this
situation, there is only elastic impurity scattering, which keeps the electron phase coherent. Then,
a lot of quantum phenomena including quantized conductance, Aharonov–Bohm (AB) effect, weak
localization, magneto-fingerprints, etc., become observable in these small metallic or semiconducting
samples.

In fact, in various disordered macroscopic systems there is strong, as well as weak, localization of
electronic systems caused by the coherence effect. It is reasonable to take these as mesoscopic effects
in bulk materials. On the other hand, for propagation of classical waves in disordered composites,
wave coherence may be easily achieved in conventional macroscopic samples, which can also be
recognized as mesoscopic-like structures.

10.1.2 Different Transport Regimes

For electron transport, there are two kinds of descriptions. One is local, j = σE, the conductivity
σ relates the local current density j to the electric field E; the other is global, I = GV , the
conductance G relates the total current I to the voltage drop V . For a large homogeneous conductor,
the difference between them is not important, and we can establish the relation

G = σLd−2. (10.1.1)

Moreover, it is noted that the conductance G and conductivity σ have the same units in two dimen-
sions. However, in mesoscopic structures, local quantities lose their meaning, so we will generally
discuss conductance instead of conductivity.

There are several characteristic lengths for mesoscopic properties, such as the elastic mean free
path l, the length L and width W of the sample, and the localization length ξ. Similar to the
discussion in Chap. 9, we can define several regimes for electron transport in mesoscopic structures.

The first is the ballistic regime for which W, L < l < ξ, as shown in Fig. 10.1.1(a). The canonical
example is the point contact; impurity scattering can be neglected, and electron scattering occurs
only at the boundaries. Note that any local quantity has lost its meaning, so now only conductance
plays a role, not conductivity.

The second case, W < l < L < ξ, for which boundary and internal impurity scatterings are of
equal importance, can be called the quasi-ballistic regime, as shown in Fig. 10.1.1(b).

The third is the diffusive regime, for which l < W, L < ξ, as shown in Fig. 10.1.1(c). Conducting
samples contain a significant amount of impurity atoms or structural disorder. The strength and
concentration of impurities lead to l ∼ 100 Å, which is the elastic scattering length, independent of
temperature. In this case a simplified physical picture for electron transport is the random walk,
with diffusion coefficient D = vFl/3 in three dimensions and D = vFl/2 in two dimensions.

L<<1

Ballistic

(a)

Quasi-Ballistic

(b)

Diffusion

W

l
f

(c)

Figure 10.1.1 Narrow constriction in two-dimensional electron gas with width W and length L.
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Finally, we may encounter the strongly localized case L > ξ, but we will not discuss that here.

10.1.3 Quantum Channels

Van Wees et al. (1988) presented a study on a two-dimensional electron gas in which a small
constriction connected two half planes, as shown by the inset of Fig. 10.1.2. They found that the
conductance, as a function of gate voltage, formed a ladder with step = 2e2/h, when the width of
the constriction varied between 0–360 nm. At T < 1 K, l ≥ 10 µm, the transport is ballistic. When
the width of the constriction was incremented by ∆W = λF/2, there was a new channel added for
an electron passing through the point contact.
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Figure 10.1.2 Experimental result for the quantum conductance as a function of gate voltage. Inset: Point
contact layout. From B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).

An elementary explanation for the quantum conductance may be made as follows:a We can view
the arrangement as two metals separated by an insulating barrier with a hole in it; at T = 0 K, the
electrons fill energy states up to EF. In classical thermodynamics, the number of particles which
arrive at the hole of area of W 2 each second is

Q =
1

4
nvW 2, (10.1.2)

where n is the number density. A difference of pressure can cause a difference of n, and like an
effusing gas, electrons can flow through the hole.

In equilibrium, the Fermi energies of both sides are equal, i.e., E0
F(L) = E0

F(R), so there is no
net flow. If an electric potential is applied which is −V at the left and zero at the right, then

EF(L) = E0
F(L) + eV, EF(R) = E0

F(R). (10.1.3)

The electrons near the Fermi energy can pass from the left to the right: For eV ≪ EF, the number
density is n = g(EF)eV , and the total number of electrons Q through the hole for each second is

Q =
1

4
g(EF)eV vFW 2. (10.1.4)

In the free electron approximation, we have the Fermi energy EF = �
2k2

F/2m, and density of states
at the Fermi surface g(EF) = 4mkF/h2, and the conductance is

G =
I

V
=

eQ

V
=

2e2

h

W 2

4π
k2
F. (10.1.5)

aS. Kobayashi, ASPAP News 4, 10 (1989).
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Figure 10.1.3 Fermi gas separated
by a insulating barrier with a hole.

N
N

(a)

N
N

(b)

Figure 10.1.4 Channels with a fi-
nite length. (a) Homogeneous channels,
(b) inhomogeneous channels.

For simplicity, we make the hole a two-dimensional infinite square well potential with width W
and so the solution of the Schödinger equation describing electronic motion is

ψ(x, y) =

√

4

W 2
sin

(nxπ

W
x
)

sin
(nyπ

W
y
)

; (10.1.6)

consequently the transverse quantized energies are

En =
�

2

2m

( π

W

)2

(n2
x + n2

y), (10.1.7)

where nx and ny are quantum numbers.
In a degenerate electron gas, the quantum states labelled by the pairs (nx, ny) are occupied up

to the Fermi wavenumber kF, and the corresponding occupied quantum states number is given by

N =
W 2

(2π)2

∫

dk =
W 2

4π
k2
F. (10.1.8)

By comparison of (10.1.5) and (10.1.8), we see

G =
2e2

h
N, (10.1.9)

where N is the channel number, the factor 2 coming from the electron spin, and e2/h is the conduc-
tance of a single channel. e2/h ≈(25.8 kΩ)−1 sets the natural scale of conductance for all quantum
transport. (10.1.9) thus interprets the experiments of van Wees et al.: The conductance is increased
with step 2e2/h, as N is increased by one, in accordance with the size of the hole controlled by the
gate voltage.

If the length of the hole is not zero, then it is like a tunnel, as schematically shown in Fig. 10.1.4.
There are two possibilities: One is that the diameter of the tunnel is uniform, there is no scatterer
within the tunnel, and the previous arguments still apply. The other is that the long tunnel is made
of real small metals, the diameter may not be uniform, and there exist scatterers, such as defects,
impurities etc. One to one correspondence of the channels is broken and channels may be mixed, so
we can define an effective channel number Neff satisfying

G =
2e2

h
Neff . (10.1.10)

It is evident that Neff ≤ N .
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§10.2 Landauer Büttiker Conductance

Mesoscopic systems display a lot of interesting conduction properties. Because the configurations
of these systems may be complex, it is not always easy to treat the problem by solving the Schrödinger
equation. However, the phenomenological method proposed by Landauer, Büttiker and others has
proved very powerful and can be used to study two-terminals with a single channel, two-terminals
with multi-channels, and also multi-terminals with multi-channels. We will limit ourselves to the
two-terminal cases.

10.2.1 Landauer Formula

L

I
R T

Figure 10.2.1 One-dimensional conductor and its barrier model.

Long ago, before the appearance of mesoscopic physics, Landauer proposed to study the conduc-
tance of a piece of one-dimensional disordered conductor,b as can be seen from Fig. 10.2.1. On the
one hand, we can treat this problem in the barrier tunneling picture, where an incident electronic
current comes into the sample with velocity v and density n. The net current density j for linear
transport is

j = nevT̃ = nev(1 − R̃), (10.2.1)

where T̃ and R̃ are transmission and reflection probabilities, respectively. On the other hand, we
may use the diffusion picture where the current density is related to the diffusion coefficient as

j = −eD∇n. (10.2.2)

For an electron incident from the left, the relative particle densities on the left and right sides of the
barrier will be (1 + R̃) and (1 − R̃), respectively. Then the densities at the two ends are given by
n(0) = (1 + R̃)n, n(L) = T̃ n = (1 − R̃)n, and the average density gradient can be written

∇n = −2R̃n/L. (10.2.3)

From (10.2.1) and (10.2.2), we get the diffusion coefficient

D =
vL

2

1 − R̃

R̃
. (10.2.4)

Now, we know the Einstein relation for conductivity is

σ = e2D
dn

dE
, (10.2.5)

bThe original papers are R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Phil. Mag. 21, 863 (1970). Landauer’s
approach is important in mesoscopic electronic transport, yet it is, in essence, a phenomenological theory. Recently,
Das and Green analyzed the Landauer formula microscopically and suggested a straightforward quantum kinetic
derivation for open systems. The details can be found in M. P. Das and F. Green, J. Phys: Condens. Matter 15,
L687 (2003).
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where dn/dE is the density of states (DOS) at the Fermi surface. For one-dimensional free electron
systems

dn

dE
=

2

π�v
, (10.2.6)

so

σ =
2e2

h
L

1 − R̃

R̃
. (10.2.7)

Combined with (10.1.1), we obtain the conductance

G =
2e2

h

T̃

R̃
. (10.2.8)

This is the well-known Landauer formula. When T̃ = 1, then R̃ = 0 and G → ∞ giving ideal
conductance.

In a standard approach, we can calculate the transmission or reflection coefficients from the
scattering matrix. From Fig. 10.2.2, it is clear that

(

ψr̃

ψt̃

)

=

(

r̃ t̃′

t̃ r̃′

)(

ψi

ψi′

)

= S

(

ψi

ψi′

)

, (10.2.9)

shows the relation between the initial (ψi, ψi′ ) and the final (ψt̃, ψr̃) states of scattering, where t̃, t̃′

are the transmission amplitudes, and r̃, r̃′ the reflection amplitudes. From current conservation and
time reversal symmetry, one can prove

t̃ = t̃′, |r̃| = |r̃′|, t̃/t̃′∗ = −r̃′/r̃∗,

obviously
T̃ = |t̃|2, R̃ = |r̃|2,

so the conductance can also be written as

G =

(

2e2

h

) |t̃|2
1 − |t̃|2 . (10.2.10)

10.2.2 Two-Terminal Single-Channel Conductance

The Landauer formula (10.2.8) is not very practical. A common way to drive current through
a system is to connect ideal leads on its two sides to electron reservoirs of chemical potentials µ1

and µ2, assuming µ1 > µ2 for convenience, as shown in Fig. 10.2.3. The quantum point contact is

R

I T   Bath Bath

Bath Bath

µ1 µA µB µ2

µA−µB = eV

Figure 10.2.2 Two types of conduc-
tance.

I

Rij Tij

S

ɶɶ

j

Figure 10.2.3 Transmission and reflec-
tion through a two terminal multichannel
system.
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an example of a short wire with a controllable width between zero and a few hundred nanometers.
In semiconductors, these widths are comparable to the wavelengths of electrons, making the wire
effectively one-dimensional. For a one channel system, we show in the following that, instead of the
Landauer formula, the measurable conductance isc

Gc =
eI

µ1 − µ2
=

2e2

h
T̃ . (10.2.11)

It is natural that even for T̃ = 1, Gc is still a finite conductance.
For one channel connected with the ith end electrode, the incident current

Ii =
2

2π
e

∫

dkf(k, µi)v =
2e

h

∫ µi

0

dEf(E, µi), (10.2.12)

where v = �
−1dE/dk is the electronic velocity, and f is the Fermi distribution function. At zero

temperature, (10.2.10) gives

Ii =
2e

h
µi. (10.2.13)

If the difference of chemical potential between the two end electrodes (µ1 − µ2) is very small, linear
transport is satisfied

I = (I1 − I2)T̃ =
2e

h
T̃ (µ1 − µ2), (10.2.14)

so (10.2.9) is proved.
Now we understand that the previously defined G in (10.2.8) is the conductance of the sample

itself given by

G =
eI

µA − µB
, (10.2.15)

where µA and µB are the chemical potentials on the left and right of the barrier. These two levels,
which arose after the system was connected to the reservoirs with chemical potentials µ1 and µ2,
are determined by making the number of occupied states (electrons) above µA (µB) equal to the
number of empty states (holes) below µA (µB). Below energy µ2 all states are fully occupied, so we
need to consider the energy range from µ2 to µ1. Based on the discussion above, we can write

T̃

(

∂n

∂E

)

(µ1 − µ2) = 2

(

∂n

∂E

)

(µB − µ2), (10.2.16)

and

T̃

(

∂n

∂E

)

(µ1 − µ2) = 2

(

∂n

∂E

)

(µ1 − µA), (10.2.17)

then
µA − µB = R̃(µ1 − µ2). (10.2.18)

Actually it is found from (10.2.8) and (10.2.11) that

G−1
c = G−1 + π�/e2. (10.2.19)

Here π�/e2 can be thought of as the two contact resistances, π�/2e2 each, i.e. the total resistance
between the reservoirs is the sum of the barrier resistance and the two contact resistances due to
the geometry of a narrow channel feeding into a large reservoir and to the electrons thermalizing in
the baths by inelastic scattering.

At finite temperatures, we assume (µ1 − µ2) is small, then

I =
2e

h

∫

dET̃ (E)[f(E − µ1) − f(E − µ2)]

=
2e

h

[∫

dET̃ (E)

(

− ∂f

∂E

)]

(µ1 − µ2), (10.2.20)

cM. Büttiker, Y. Imry, R. Landauer and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
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so

Gc =
2e2

h

∫

dET̃ (E)

(

− ∂f

∂E

)

. (10.2.21)

Similarly, we can determine the difference of chemical potentials (µA −µB) by multiplying (10.2.16)
and (10.2.17) with −∂f/∂E and integrating them over the energy to get

µA − µB =

∫

dE(−∂f/∂E)R̃(E)(∂n/∂E)
∫

dE(−∂f/∂E)(∂n/∂E)
(µ1 − µ2). (10.2.22)

Then the conductance of the sample is

G =
2e2

h

[∫

dET̃ (E)

(

− ∂f

∂E

)]
∫

dE(−∂f/∂E)v−1(E)
∫

dE(−∂f/∂E)R̃(E)v−1(E)
. (10.2.23)

10.2.3 Two-Terminal Multichannel Conductance

If the sample has a finite cross section A, then the Landauer–Büttiker formulation must be
generalized to the multichannel case, as illustrated in Fig. 10.2.3. There are discrete transverse
energies Ei due to quantization in the transverse direction. N⊥ conducting channels below the
Fermi energy EF, each at zero temperature characterized by longitudinal wavevectors ki , so

Ei + �
2k2

i /2m = EF, i = 1, . . . , N⊥, (10.2.24)

where N⊥ ∼ Akd−1
F .

We can construct a 2N⊥ × 2N⊥ S matrix

S =

(

r̃ t̃′

t̃ r̃′

)

, (10.2.25)

to describe the relationships between the incoming and the outgoing waves for these N⊥ channels.
We define T̃ij and R̃ij , which represent the probabilities of an incoming wave from the left jth
channel being transmitted into the right-hand side ith channel and reflected into the left-hand side
ith channel, respectively. We can also define T̃ ′

ij and R̃′
ij which represent the incoming waves from

the right. The total transmission and reflection probabilities for the ith channel are

T̃i =
∑

j

T̃ij , R̃i =
∑

j

R̃ij ,

T̃
′

i =
∑

j

T̃
′

ij , R̃
′

i =
∑

j

R̃
′

ij .
(10.2.26)

The current conservation condition implies

∑

i

T̃i =
∑

i

(1 − R̃i) = N⊥ −
∑

i

R̃i,

∑

i

T̃ ′
i =

∑

i

(1 − R̃′
i) = N⊥ −

∑

i

R̃′
i.

(10.2.27)

If all incident channels on both sides of the barrier are fully occupied, all outgoing channels will also
be fully occupied, and there are more detailed equations

R̃′
i + T̃i = 1, R̃i + T̃ ′

i = 1. (10.2.28)

The total current between two reservoirs is

I =
2e

h

∑

i

∫

dE[f1(E)T̃i(E)(E) + f2(E)R̃′
i(E)], (10.2.29)
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which is the extension of (10.2.14). Considering that (µ1 −µ2) is small, we expand f1(E) at µ = µ2,
to obtain

I = (µ1 − µ2)
2e

h

∫

dE(−∂f/∂E)
∑

i

T̃i(E), (10.2.30)

which gives the conductance between the outside reservoirs

Gc =
eI

µ1 − µ2
=

{

(2e2/h)
∫

dE(−∂f/∂E)
∑

i T̃i(E), for T �= 0 K

(2e2/h)
∑

i T̃i(EF), for T = 0 K.
(10.2.31)

We can also study the conductance of the sample itself, defined by eI/(µA−µB). As an extension
of (10.2.18) for the one channel case,

µA − µB =

∫

dE(−∂f/∂E)
∑

i(1 + R̃i − T̃i)v
−1
i

2
∫

dE(−∂f/∂E)
∑

i v−1
i

(µ1 − µ2). (10.2.32)

Finally by using (10.2.30) and (10.2.32), the conductance of the sample is

G =
eI

µA − µB
=























4e2

h

[
∫

dE(−∂f/∂E)
∑

i T̃i][
∫

dE(−∂f/∂E)
∑

i v−1
i ]

∫

dE(−∂f/∂E)
∑

i(1 + R̃i − T̃i)v
−1
i

, for T �= 0 K,

4e2

h

∑

i T̃i

∑

i v−1
i

∑

i(1 + R̃i − T̃i)v
−1
i

, for T = 0 K.

(10.2.33)

When all T̃i ≪ 1, 1 + R̃i ≃ 2, G ≃ Gc, that is, if the scattering is strong, the contact resistance may
be neglected. This should be applicable for large N⊥ whenever G ≪ 2e2N⊥/h, or the sample length
L ≫ l.

§10.3 Conductance Oscillation in Circuits

Application of electromagnetic potentials to mesoscopic loop structures will introduce a few
important effects in electron transport through the systems. The main characteristic of these effects
is conductance oscillation.

10.3.1 Gauge Transformation of Electronic Wavefunctions

There is one type of symmetry, called gauge transformation invariance, related to electronic
wavefunctions. To describe the electromagnetic field, there are two equivalent schemes, magnetic
field B and electric field E, or vector potential A and scalar potential ϕ. Both schemes are related by

B = ∇× A, E = −∇ϕ − 1

c

∂A

∂t
, (10.3.1)

but the relation is not a one to one correspondence. If an arbitrary scalar function Λ(r, t) is
introduced to satisfy

A′ = A + ∇Λ, ϕ′ = ϕ − 1

c

∂Λ

∂t
, (10.3.2)

then the new vector potential A′ and scalar potential ϕ′ give the same fields B and E. (10.3.2) is
called a gauge transformation. Any physical quantities must be invariant under a gauge transfor-
mation.

In classical electrodynamics, the fundamental equations of motion of charged particles can always
be expressed directly in terms of the fields alone. The vector and scalar potentials were introduced
as a convenient mathematical aid to obtain a classical canonical formalism. It is found that for the
same B and E, the potentials (A, ϕ) are not unique, so we can put an additional restriction on
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them; this restriction is called a gauge condition. There are two main gauges: The Coulomb gauge
where ∇ · A = 0, and the Lorentz gauge which has ∇ · A + ∂ϕ/∂t = 0.

In quantum theory, these potentials play a more significant role in the canonical formalism as
we have seen in the study of Landau levels. We can go ahead further to discuss the deep meaning
of electromagnetic potentials. The Hamiltonian for a single electron can be expressed in terms of A

and ϕ as

H =
1

2m

(

�

i
∇ +

e

c
A

)2

− eϕ + V (r), (10.3.3)

where V (r) is the other scattering potential in addition to the electromagnetic potential. The
concept of gauge invariance here comes from the fact that the wavefunction that characterizes the
state of a system comprises two parts: amplitude and phase. Let us examine the time-dependent
Schrödinger equation for an electron in external electromagnetic potentials

i�
∂

∂t
ψ =

[

1

2m

(

�

i
∇ +

e

c
A

)2

− eϕ + V (r)

]

ψ. (10.3.4)

When the external potentials are transformed as in (10.3.2) we find that the wavefunction ψ must
be correspondingly transformed as follows

ψ′ = ψe−ieΛ(r,t)/�c, (10.3.5)

and the Schrödinger equation (10.3.4) stays invariant in its form, except for an additional phase
factor in the wavefunction such as

e

�c
Λ(r, t) =

e

�

∫ (

ϕdt − A

c
· dr

)

. (10.3.6)

(10.3.5) is called the second, or local, gauge transformation, if Λ is a spatial function. When Λ is a
constant, it is called the first, or global, gauge transformation. The electromagnetic potential (A, ϕ)
is one of the gauge fields.

10.3.2 Aharonov Bohm Effect in Metal Rings

Let us first consider that there is only a vector potential A. It is straightforward to demonstrate
that the wavefunction ψ(r) of (10.3.4) with ϕ = V (r) = 0 can be related to the wavefunction ψ0(r)
with A = 0 as

ψ(r) = ψ0(r) exp

(

− ie

�c

∫

A · dr

)

. (10.3.7)

We can see when there is a vector potential A, it may affect electronic behavior, even though there
is no physical field B in the path electron passed. This is the well-known Aharonov–Bohm (AB)
effect.d

To test their idea, Aharonov and Bohm put forward an experimental scheme: Figure 10.3.1
shows the geometry of a double slit experiment for an electron beam, but in addition there is a long
solenoid enclosed by the electron paths. The wavefunctions for path γ1 and path γ2 are

ψ1(r) = ψ0(r) exp

(

ie

�c

∫

γ1

A · dr

)

, ψ2(r) = ψ0(r) exp

(

ie

�c

∫

γ2

A · dr

)

. (10.3.8)

The electron density on the screen is

|ψ1 + ψ2|2 = 2|ψ0|2 + 2|ψ0|2 cos
2πΦ

φ0
, (10.3.9)

where

Φ =

∫

γ1−γ2

A · dr =

∮

A · dl =

∫ ∫

B · dS

dY. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
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©
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Figure 10.3.1 Schematic picture for the Aharonov–Bohm effect.

is the magnetic flux of the solenoid, and φ0 = hc/e is a magnetic flux quantum for a system of
single-electrons. When there is no magnetic field, i.e. Φ = 0, (10.3.9) gives an electron interference
pattern, which verifies the wave nature of electrons. Now when the flux increases, the interference
fringes will move periodically, with a period of the magnetic flux quantum φ0. This is a quantum
effect arising from the modulation of the wavefunction phase factor by A, and it is clear that at
the quantum level A is a real entity. From the point of view of fundamental quantum mechanics,
the AB effect is a good example that displays the geometric phase that comes from adiabatic cyclic
evolution of microscopic particle.e The AB effect can be used to check that the frozen magnetic flux
in a superconducting hollow cylinder is quantized, but the basic magnetic flux quantum Φ0 is hc/2e,
because of Cooper pairs.

In the original experiments which verified the AB effect, the electron waves propagated in free
space.f What will happen in metals is a problem, for many people thought there would be no phase
coherence in diffusion motion of electrons in metallic samples, and so perhaps the AB effect would
not appear. However, as we have already discussed, elastic scattering does not destroy the phase
coherence, and only inelastic scattering destroys it, so, in small samples such as mesoscopic metal
rings, it is still possible to observe the AB effect.

Consider a metal ring: In classical mechanics, a particle entering such a ring must choose which
of the two possible paths to take. The quantum mechanical wave nature of an electron, however,
allows it to take both paths simultaneously. Part of the electron travels along one path, and part
travels along the other. At the opposite end of the ring, the recombination of the two parts gives rise
to interference. The resistance of the ring is low or high for constructive or destructive interference,
respectively.

Let us give a more detailed discussion about this problem: There are two coherent electron
beams in Fig. 10.3.1, but now in the medium they suffer multi-scatterings. In the beginning, the
wavefunctions for the incident beams at origin are

ψ1 = ψ2 = ψ0 exp

(

− i

�
Et

)

, (10.3.10)

where E is the eigenenergy. In the elastic scattering case, E does not change, but collision phase
shifts α1, α2 may appear, so the wavefunctions on the screen are

ψ1(r, t) = ψ0(r) exp

(

− i

�
Et + iα1

)

, ψ2(r, t) = ψ0(r) exp

(

− i

�
Et + iα2

)

, (10.3.11)

and the interference term becomes

ψ∗
1ψ2 + ψ1ψ

∗
2 = 2|ψ0|2 cos(α1 − α2), (10.3.12)

where (α1 − α2) is related to the distribution of elastic scatterers. In a mesoscopic system, these
scatterers will give a fixed contribution to the interference.

eM. V. Berry, Proc. Roy. Soc. London, Ser. A 392, 45 (1984).
fR. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); A. Tonomura et al., Phys. Rev. Lett. 48, 1443 (1982).
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However, if there is inelastic scattering, E will be changed, we may write

ψ1(r, t) = ψ0(r) exp

(

− i

�
E1t + iα1

)

, ψ2(r, t) = ψ0(r) exp

(

− i

�
E2t + iα2

)

, (10.3.13)

and the interference term is transformed into

ψ∗
1ψ2 + ψ1ψ

∗
2 = 2|ψ0|2 cos

(

α1 − α2 +
E1 − E2

�
t

)

. (10.3.14)

Because the measurement in a normal metal sample is in the duration of microscopically long and
macroscopically short times, averaging over microscopically long and macroscopically short times,
(10.3.13) yields zero.

It is now clear that only elastic scattering can keep phase coherence. In this case in small metal
samples, if there exists a flux Φ in the loop, (10.3.12) becomes

ψ∗
1ψ2 + ψ1ψ

∗
2 = 2|ψ0|2 cos

(

2πΦ

φ0
+ α1 − α2

)

. (10.3.15)

In the AB effect in metal rings, electrons retain “phase memory” during the period of transport
through the sample.

The inelastic scattering time in metal is typically around τin = 10−11 s at 1 K, vF = 108 cm s−1,
then lin = vF · τin ≈ 105 Å. But the elastic scattering length is l ≈ vFτ = 102 Å, so the distance that
an electron can cover without losing its phase memory is about 10 µm or 105 Å. For this reason,
the sample must be shorter than the phase coherence length of order 10 µm to enable us to observe
the interference effect in a metal. With the development of micro-fabrication technique, periodic
oscillation of resistance has been observed in a gold ring enclosing a magnetic flux, as shown in
Fig. 10.3.2. The inset shows a transmission electron photograph of the gold ring with an inside
diameter of ∼ 8000 Å and a width ∼ 400 Å.
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Figure 10.3.2 Aharonov–Bohm effect in a gold
ring. (a) The oscillation in the magnetoresis-
tance as a function of magnetic field. (b) The
Fourier transform of the data in (a). From R. A.
Webb et al., Phys. Rev. Lett. 54, 2696 (1985).
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Figure 10.3.3 Energy diagram
with dependence on flux in a
metallic ring. From M. Büttiker
et al., Phys. Lett. A 96, 365
(1983).
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10.3.3 Persistent Currents

It is worthwhile to note that in (10.3.9) the phase change due to the magnetic flux in a ring can
be written as

∆θ = 2π∆Φ/φ0, (10.3.16)

thus the cases for flux Φ and Φ + nφ0 are indistinguishable, where n is any integer. This issue
was considered by using the simple model of a one-dimensional disordered ring.g Assuming the
circumference is L, the boundary condition for (10.3.7) is similar to the case of the Bloch function
ψk in a periodic potential with the unit cell of size L. Thus it is easy to identify that 2πΦ/φ0 and
kL establish a one-to-one correspondence between the two problems. Here the circumference of the
ring plays the role of the unit cell.

It is possible to estimate the flux dependence of the total energy E at low temperature. We
rewrite (10.3.4) with ϕ = 0 as a stationary Schrödinger equation

1

2m

(

�

i

d

dx
+

e

c
Ax

)2

ψ + V (x)ψ = Eψ, (10.3.17)

where x denotes the direction along the ring and the magnetic field is in the direction z perpendicular
to the plane of the ring. Because

∮

Axdx =
∫ ∫

B · dS = Φ, so Ax = Φ/L. V (x) is the scattering
potential in the ring and has the period L. For an ideal ring, V (x) = 0, the Schrödinger equation is

1

2m

(

�

i

d

dx
+

eΦ

cL

)2

ψ = Eψ. (10.3.18)

By substituting a solution of plane wave form ψ(x) = C exp(ikx) into it, combining with a periodic
condition ψ(x + L) = ψ(x), the wavenumber is found to be k = 2πn/L, where n is any integer. The
eigenenergy in (10.3.18) is then

E =
�

2

2m

(

2π

L

)2 (

n +
Φ

φ0

)2

. (10.3.19)

It is obvious from the geometry of a ring that E should be a periodic function of Φ. Taking into
account V (x) as a weak scattering potential, just as in the nearly-free electron approximation,
we obtain a one-dimensional energy band structure with gaps. The first Brillouin zone satisfies
(−φ0/2) < Φ < φ0/2. In Fig. 10.3.3, the broken line is for V (x) = 0, and the solid line V (x) �= 0. A
scattering potential leads to the appearance of energy gaps at the center and edges of the Brillouin
zone.

Due to quantum coherence, there will exist persistent currents in mesoscopic rings; we can write
the flux-dependent currents as

I(Φ) = − e

L

∑

n

vn(Φ) = −c
∑

n

∂En(Φ)

∂Φ
. (10.3.20)

The sum is over energy bands below the Fermi energy at the same Φ. Because ∂En/∂Φ is larger
for larger n, the dominant contribution to the current comes from the bands near the Fermi level.
Stronger scattering leads to flatter bands, then smaller current. I(Φ) is also a periodic function of
Φ with period φ0.

The total current at T = 0 is obtained by adding all contributions from levels with energies less
than the Fermi energy.h For an isolated ring with a fixed number of electrons N , the Fermi energy is

EF = �
2(Nπ)2/2mL2.

The total persistent current is different for N odd and even. The result can be expressed as follows:
for odd N

I(Φ) = −I0
2Φ

φ0
, −0.5 ≤ Φ

φ0
< 0.5, (10.3.21)

gM. Büttiker, Y. Imry and R. Landauer, Phys. Lett. 96A, 365 (1983).
hH. F. Cheung et al., Phys. Rev. B 50, 6050 (1988).
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Figure 10.3.4 Persistent current over a period of the magnetic flux. The chemical potential is fixed such
that the number of electrons in the ring is (a) odd and (b) even. From H. F. Cheung et al., Phys. Rev. B

37, 6050 (1988).
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ring with an odd number of electrons. From
H. F. Cheung et al., Phys. Rev. B 37, 6050
(1988).
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Li cylinder. From Yu V. Sharvin,
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and for even N

I(Φ) =



















−I0

(

1 +
2Φ

φ0

)

, −0.5 ≤ Φ

φ0
< 0,

I0

(

1 − 2Φ

φ0

)

, 0 ≤ Φ

φ0
< 0.5,

(10.3.22)

where I0 = heN/2mL2. These two cases are shown in Fig. 10.3.4.
Impurity scattering will affect the persistent currents. For simplicity, we consider the free electron

model with an impurity characterized by a δ-potential, V (x) = γδ(x), in (10.3.17). We can choose
a reduced parameter

γ∗ =
�vF

π
=

�
2N

mL
, (10.3.23)

then cases γ ≪ γ∗ and γ ≫ γ∗ are the weak- and strong-coupling regimes, respectively. Figure 10.3.5
exhibits the results of impurity potential on the persistent current for the I-Φ characteristics at T = 0
for a system with N odd.
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Furthermore, if a time-dependent flux Φ is applied, there will be an induced electromotive force

U = −1

c

dΦ

dt
(10.3.24)

in the ring. For the case where U is pure d.c., this force will give rise to the Bloch oscillation for the
electrons occupying the bands in Fig. 10.3.3. The equation of motion for electrons across the first
Brillouin zone (BZ) is

−dΦ

dt
= cU, (10.3.25)

and the oscillation frequency is

ω =
2π

φ0

∣

∣

∣

∣

dΦ

dt

∣

∣

∣

∣

=
eU

�
. (10.3.26)

10.3.4 Altshuler Aronov Spivak Effect

In Fig. 10.3.2(b), besides the first peak representing the AB oscillation, there exists another
oscillation with period corresponding to magnetic flux hc/2e. This comes from the Altshuler–
Aronov–Spivak (AAS) effect, which is an interesting example confirming weak localization theory.i

We have already met weak localization, which decreases the conductance remarkably in §10.2.3.
Weak localization is an effect of the interference of electron waves. The physical picture here is very
simple: When a magnetic flux Φ is enclosed by a loop, the phase of an electronic wavefunction changes
by the vector potential along the path in the positive direction by −∆φ1, but the corresponding
phase change along the same path in the negative direction is ∆φ2, the phase difference of two
partial waves is ∆φ1 − ∆φ2. After the paths go round the loop twice, as the electronic waves meet
at the same point, ∆φ1 − ∆φ2 = 2Φ, then there is a term

ψ∗
1ψ2 + ψ1ψ

∗
2 = 2|ψ0|2 cos

4πΦ

φ0
, (10.3.27)

which is an interference effect with period hc/2e instead of hc/e.
The AAS effect was theoretically predicted, and then confirmed by experiment.j The resistance

of a hollow thin-walled metal cylinder, with a magnetic field in the cavity parallel to the cylindrical
axis, was measured. A typical result is shown in Fig. 10.3.6.

Generally, the total electrical resistance R(H) of a small two-lead metal loop threaded by a flux
Φ due to an imposed magnetic field can be written as

R(H) = Rc + R0 + R1 cos

(

2πΦ

φ0
+ α1

)

+ R2 cos

(

4πΦ

φ0
+ α2

)

+ · · · , (10.3.28)

where Rc is the classical resistance, which includes a magnetoresistance term proportional to H2.
Empirically, one finds that Rn and αn are random functions of H .

10.3.5 Electrostatic Aharonov Bohm Effect

So far we have not discussed the contribution of the scalar potential ϕ to the phase of the
electronic wavefunction. When an electrostatic potential is exerted on an electron wave, the wave
will accumulate a phase and this leads to the electrostatic Aharonov–Bohm effect. In this case the
electron phase is proportional to the electric potential ϕ according to

∆θ = (e/�)

∫

ϕdt. (10.3.29)

The potential difference required to change the relative phase of the electron by 2π is ∆ϕ = h/eτ .
Here τ is the upper bound of the integral and should be either the time the electron takes to travel
through the device or the phase coherence time, τin, whichever is shorter.
iB. L. Al’tshuler, A. G. Aronov and B. Z. Spivak, JETP Lett. 33, 94 (1981).
jD. Yu. Sharvin and Yu. V. Sharvin, JETP Lett. 34, 272 (1981).
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Figure 10.3.7 Electrostatic Aharonov–Bohm effect. (a) A square Sb loop placed between two metal
electrodes. (b) When an electric field is established between the electrodes the phase of the magnetoresistance
oscillations can be changed by 180◦. From S. Washburn et al., Phys. Rev. Lett. 59, 1791 (1987).

The usual approach to a study of the electrostatic Aharonov–Bohm effect in metal rings is to
explore the combined influence of electrostatic and magnetic potentials on electron waves. Washburn
et al. investigated the effect of a transverse electric field on the magnetic Aharonov–Bohm oscil-
lations. Their structure consisted of a metal Sb loop located between two electrodes of a parallel
plate capacitor as shown schematically in Fig. 10.3.7(a). The loop is 0.82 µm on a side, and the
capacitive probes are 0.16 µm from the arms of the loop. The Sb wires are approximately square
in cross section being d ≃ 0.075 µm thick and wide. The magnetoresistance of the loop displayed
Aharonov–Bohm oscillations which changed in phase by 180◦ when a bias of a 0.75 V was applied
to the capacitor. The electric field between the plates of the capacitor appears to change the phase
of the interfering electrons in much the same way as the magnetic vector potential. This can be
regarded as the electrostatic Aharonov–Bohm effect.

Unfortunately there exists a little doubt about this, due to the applied voltage being much larger
than that expected from the estimated phase coherence time of ∼ 10 ps, possibly because of screening
of the electric field within the metal. In practice the search for the electrostatic contribution to the
electron phase in the metal rings has been hindered by the high conductance of metals, which makes
it difficult to apply a well-defined voltage difference across the ring. Later, there was a measurement
of quantum interference in a metal ring, that was interrupted by two small tunnel junctions, and
this confirmed the electrostatic effect more convincingly.k It can be discerned that there are two
periods in the measurement of transport properties: One is the period of the magnetic Aharonov–
Bohm effect which is given by the ratio of the magnetic flux through the ring to the magnetic flux
quantum hc/e. The other is related to the electrostatic Aharonov–Bohm effect which is given by the
ratio of the so-called electrostatic flux V L2/D to h/e, where V and L are the potential difference
and the distance between the two tunnel barriers, and D is the diffusion coefficient.

§10.4 Conductance Fluctuations

We consider mesoscopic disordered metallic systems that contain a significant amount of impurity
atoms. It has been shown both theoretically and experimentally that the mesoscopic conductance is
sensitive to impurity. At low temperatures, they display interesting conductance fluctuation effects
due to the coherence of electron waves transmitted through these systems.

kA. van Oudenaarden et al., Nature 391, 768 (1998).



· 267 ·§10.4 Conductance Fluctuations

10.4.1 Nonlocality of Conductance

Ohm’s law, which is so successful in describing a linear current-voltage curve in any classical
resistor, fails when the transport is phase coherent. Suppose a small conductor with a random
impurity potential is biased between two reservoirs with different chemical potentials which will
simply tilt the random potential distribution, as shown in Fig. 10.4.1.l The effective resistance of
such a biased impurity potential is a random function of the bias voltage. The electron wavefunction
extends all over a sample when L < Lφ. Any disturbance at a given point modifies the wavefunction
and, especially, its phase at any other point in the sample. So local conductivity has lost its meaning,
Ohm’s law is no longer applicable and the relation between I and V is nonlinear. Conductance
fluctuates strongly when I changes. Define ∆G as the difference of measurement value and classical
value of conductance, its amplitude of fluctuation is around the order of e2/h.

Furthermore, one cannot even assume that R(I), the resistance as a function of current, is equal to
R(−I). The resistance is not symmetric under exchange of the battery terminals. It can be illustrated
in Fig. 10.4.1, that there is no inherent symmetry between positive and negative bias, because the
potential has no mirror symmetry, or in a realistic three-dimensional wire it has no inversion center
symmetry. This nonlinearity in the I-V curve has been measured: A representative example of non-
ohmic behavior, found in an antimony wire at low temperatures, is shown in Fig. 10.4.2, where the
deviation from Ohm’s law is significant. One sees that quantum interference causes the conductance
to fluctuate randomly and reproducibly throughout the range of current studied. Near zero current,
the fluctuations are sharp, with an rms amplitude of e2/h.

µ1

µ2+V

µ2−V

Figure 10.4.1 Illustration of the physics for the nonlinear response of a phase-coherent wire.
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Figure 10.4.2 Conductance fluctuations measured as a function of current in a 0.6-µm length of Sb wire.
From R. A. Webb and S. Washburn, Phys. Today 41, 46 (1988).

One of the interesting experimental consequences is that the rms amplitude of the voltage fluctu-
ations in a four-terminal sample becomes independent of length when the separation L between the
voltage is less than Lφ. A four-terminal method, like the inset in Fig. 10.4.3, was used to measure
conductance, where current is injected at lead 1 and removed at lead 4, and the voltage difference
is measured between leads 2 and 3. Classically, the average resistance V23/I14 depends linearly on
L. The quantum-interference contributions to the voltage fluctuation with changing magnetic field
behave very differently. In fact, when the distance L between 2 and 3 is less than Lφ, ∆V has no

lS. Washburn and R. A. Webb, Rep. Prog. Phys. 55, 1311 (1992).
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Figure 10.4.3 Length dependence of the voltage fluctuation amplitude. Inset is a four-lead sample. From
R. A. Webb and S. Washburn, Phys. Today 41, 46 (1988).

Figure 10.4.4 Magnetoresistance. Top: two similar wires, one of which has a ring dangling outside the
path. Middle: conductance fluctuation patterns. Bottom: Fourier transforms of the conductance curves
show an additional peak for the circuit with the ring, indicating hc/e Aharonov–Bohm oscillations. From
R. A. Webb and S. Washburn, Phys. Today 41, 46 (1988).

relation with length L. It is clear from Fig. 10.4.3 that for L > Lφ, we find that ∆V is proportional
to (L/Lφ)1/2 as expected, but for L < Lφ, ∆V is a constant, even for L → 0, and the voltage
fluctuation ∆V does not vanish. The reason for this length independence arises from the fact that
∆V is not determined by the size of the sample, but rather by the correlation length. Here the
voltage between 2 and 3 is not only determined by the electron path between 2 and 3, but also the
paths between 1 and 3, 2 and 4. This is the nonlocal effect.

Since it is very difficult to observe the nonlocal property of the electric current by changing
the positions of the voltage probes, the two devices shown in Fig. 10.4.4 are perhaps suitable for
experimental measurement. Two identical four-probe wires were fabricated, but on the second
sample a small ring was attached. The observation showed the dependence of the voltage drop
between 2 and 3 upon the magnetic field applied in the direction perpendicular to the sample in the
presence of the electric current between 1 and 4. The conductance of both wires exhibit random
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fluctuations with the same characteristic field scale, but the second sample shows additional high-
frequency “noise”. The Fourier transforms of both datasets clearly show that this high-frequency
noise is in fact an hc/e oscillation. This is the AB effect which takes place in the small ring. Although
this is impossible in classical conductors, the measured conductance as a function of the magnetic
flux through the ring has a Fourier component corresponding to a period of hc/e. For this effect to
be observable, some large fraction of the electrons must have enclosed the ring coherently.

10.4.2 Reciprocity in Reversed Magnetic Fields

Another counterintuitive discovery was that the magnetoresistance R(H) measured in any four-
terminal arrangement on a small wire does not remain the same when the magnetic field is reversed.
Classically, of course, R(H) should equal R(−H). Figure 10.4.5 dramatically illustrates the asym-
metric behavior found in a small gold wire, which is typical of all four-probe measurements made on
small wires and rings. R(−H) bears little resemblance to R(+H). The second trace in Fig. 10.4.5(a)
is the magnetoresistance obtained by interchanging the current and voltage leads. At first glance,
it seems to bear little resemblance to the upper curve. Upon closer inspection, however, one sees
that the positive-field half of the second trace is very similar to the negative-field half of the first
trace. All the other permutations of leads yield different, asymmetric patterns of magnetoresistance
fluctuation. These patterns are amazingly constant over time.

∆
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Figure 10.4.5 Asymmetric conductance fluctuation of a small gold wire. (a) Conductance fluctuation mea-
sured under magnetic field reversal. (b) Decomposing the measurements into symmetric and antisymmetric
parts. From R. A. Webb and S. Washburn, Phys. Today 41, 46 (1988).

None of these observations violates any fundamental symmetries. In fact, as Büttiker (1988)
showed, the general properties displayed in Fig. 10.4.5(a) are consistent with the principle of
reciprocity, which requires that the electric resistance in a given measurement configuration and
magnetic field H be equal to the resistance at field −H when the current and voltage leads are
interchanged.

R14,23(H) = R23,14(−H), (10.4.1)

where Rij,kl = Vkl/Iij . The Onsager symmetry relations for the local conductivity tensor may be
more familiar, but they describe the local relationship between current density and electric field.
As we have seen, conductance is a nonlocal quantity, and therefore the appropriate symmetries to
consider are those involving the total resistance R.

To demonstrate reciprocity in the data, one determines the symmetric and antisymmetric parts
of the resistance fluctuations as

RS(H) =
1

2
[R14,23(H) + R23,14(H)],

RA(H) =
1

2
[R14,23(H) − R23,14(H)].

(10.4.2)
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Figure 10.4.5(b) shows this decomposition of the data. To within the noise level of the experiments,
RS is perfectly symmetric with respect to magnetic direction and RA is perfectly antisymmetric.
Applying this procedure to R13,24 and R24,13 results in a similar RS but a different RA. RA is
not simply due to the classical Hall resistance. The antisymmetric part fluctuates randomly with
an amplitude similar to the symmetric fluctuations. Once again, the conductance fluctuation is
of order e2/h. The amplitude of the antisymmetric component is nearly constant, independent of
L/Lφ, because it arises from nonlocal effects occurring within a distance Lφ of the junctions of the
voltage probes. Excursions of electrons into the voltage probes account for all of the fluctuations
in RA.

10.4.3 Universal Conductance Fluctuations

Quantum coherence can lead to sample-specific and reproducible conductance fluctuations in
mesoscopic systems. For mesoscopic conductors with L ≤ Lφ, the conductance varies from sample
to sample, but its root-mean-square fluctuation

∆G ≡
√

〈(G − 〈G〉)2〉, (10.4.3)

is roughly given by e2/h, almost independent of impurity configuration, sample size, and spatial di-
mensions, so these are called universal conductance fluctuations. Here 〈· · · 〉 refers to an average over
an ensemble of similar mesoscopic conductors with different realizations of the impurity positions.
As we saw in §10.2, e2/h is the fundamental conductance unit for quantum transport, so it is not
too surprising that it sets the size of conductance fluctuations in a mesoscopic conductor.

These universal conductance fluctuations are anomalously large, when viewed from the stand-
point of semiclassical transport theory, in which average conductance attributable to disorder scat-
tering is given reasonably accurately by Boltzmann theory. In a macroscopic sample with N scat-
terers, N is a large number, so to change one scatterer, causes little effect to be observed. But for
a mesoscopic sample, the number of scatterers is relatively small, charge carrier will visit each of
impurities, and the phase shift of the path will be the sum of phase shift of all scatterers, so the
effect of changing one impurity cannot be ignored.

Theoretically, there is a heuristic argument for universal conductance fluctuationm which begins
with the two terminal multi-channel Landauer formula

G =
e2

h
T̃ =

e2

h

∑

αβ

∣

∣t̃αβ

∣

∣

2
, (10.4.4)

where t̃αβ is the transmission amplitude from incoming channel β on the left to outgoing channel α
on the right. Quantum mechanically, the transmission amplitude can be written as

t̃αβ =

M
∑

i=1

Aαβ(i), (10.4.5)

where Aαβ(i) represents the probability amplitude due to the ith Feynman path that connects
channel β to α. Semiclassically, we can think of the Feynman path i as a classical random walk from
the left of the sample to the right. Note that unlike the more familiar example of ballistic transport,
where the important Feynman paths are restricted to a narrow tube of radius λF connecting the end
points, here the presence of disorder means that the electron motion is diffusive, and the important
Feynman paths are the random walks which cover much of the sample and M is very large. It is
assumed that Aαβ(i) are independent complex random variables. With this assumption, we can

mP. A. Lee, Physica 140A, 169 (1986). More exact theoretical treatment can be found in the classical papers: P. A.
Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985); P. A. Lee, A. D. Stone and H. Fukuyama, Phys. Rev. B 35,
1039 (1987).
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calculate the fluctuation in |tαβ |2, defined by ∆〈|tαβ |2〉 = [〈|tαβ |4〉 − 〈|tαβ |2〉2]1/2. Ignoring terms of
order unity compared with M ,

〈|t̃αβ |4〉 =
∑

ijkl

〈A∗
αβ(i)Aαβ(j)A∗

αβ(k)Aαβ(l)〉 = 2

〈

∑

i

|Aαβ(i)|2
〉2

= 2〈|t̃αβ |2〉2, (10.4.6)

then we can immediately conclude that

∆〈|t̃αβ |2〉 = 〈|t̃αβ |2〉, (10.4.7)

which states that the relative fluctuation of each transmission probability is of order unity.
With (10.4.4) and (10.4.7) we can attempt to estimate the fluctuation in G. The simplest

assumption is that different channels are uncorrelated, i.e., there is no correlation between |t̃αβ |2
and |t̃α′β′ |2, but this gives too small conductance fluctuations compared to experimental results.
We note that tαβ must involve multiple scattering in order to transverse the sample, so there may
be stronger correlations among channels in the transmission, whereas the reflection amplitude is
probably dominated by a few scattering events. Actually, the correct answer can be obtained by
considering the reflection amplitude r̃αβ instead of t̃αβ . Let us introduce the reflectance

e2

h
R̃ =

e2

h

∑

αβ

|rαβ |2. (10.4.8)

By unitarity, T̃ + R̃ = N , so the fluctuation in (e2/h)R̃ is the same as the fluctuation in G. Using
similar reasoning that led to (10.4.7) we obtain

∆〈|r̃αβ |2〉 = 〈|r̃αβ |2〉. (10.4.9)

If we assume that |r̃αβ |2 are uncorrelated from channel to channel, we obtain

e2

h
∆R̃ ≈ e2

h
N〈|r̃αβ |2〉. (10.4.10)

Using Ohm’s law G = σLd−2, σ = (e2/h)kd−1
F l where l is the mean free path and N = (LkF)d−1,

we conclude that

〈|t̃αβ |2〉 ≈
l

NL
, (10.4.11)

which when combined with unitarity leads to

〈|r̃αβ |2〉 ≈
1

N

(

1 − l

L

)

. (10.4.12)

This simply expresses the fact as long as l ≪ L, most of the incoming beam is reflected into
N reflecting channels. Combining (10.4.10) and (10.4.12) we obtain the universal conductance
fluctuation

∆G =
e2

h
∆R̃ ≈ e2

h
. (10.4.13)

Experimentally, these sample-to-sample conductance fluctuations are actually observed in one
given sample, which is however subject to a varying applied magnetic field. As the magnetic field
adds a phase factor to the electron partial waves between the various random scattering events, it
has the same effect as changing the positions of the impurity atoms randomly from one sample to
another. So we need to measure the magnetoresistance to verify universal conductance fluctuation
in mesoscopic systems. For bulk metallic samples, the conductance changes smoothly with applied
magnetic field. The physical properties of a bulk sample depend on the material, but various
samples of the same material have the same physical properties. The resistance of a thin wire at low
temperature is plotted against H in Fig. 10.4.6. This pattern of fluctuation is sample-specific, and for
a given sample, the pattern is reproducible. But for another sample composed of the same material,
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Figure 10.4.6 Experimental result for
magnetoresistance fluctuation of a thin wire
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ical simulation. A. D. Stone, Phys. Rev.
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Figure 10.4.7 Multichannel conduction
behavior with an applied magnetic field.

the magnetoresistance pattern will be different, because the number and distribution of scatterers in
both samples are different. So the magnetoconductance fluctuations for a given mesoscopic conductor
as a function of the applied field can be differentiated from noise. It is called a magneto-fingerprint.
The numerical simulation in Fig. 10.3.6 gives very similar fluctuation pattern.

The magnetoresitance in a mesoscopic sample is closely related to AB effect. Consider the path
of an electron that enters a conductor consisting of various scatterers as in Fig. 10.4.7. The path
represents one of those Neff paths, where Neff is the number of effective channels. The path consists
of various loops. When a magnetic field is applied, there will be a field dependent phase shift in
each segment of loops according to the AB effect. The interference pattern at the next junction
oscillates as a function of a magnetic field. The amplitude of the oscillation is of the order of e2/h
in each path, and its period is φ0 = hc/e divided by the area A surrounded by the loops. As A
may take any value from zero to the cross section of the sample, the conductance of the sample,
which is a superposition of those oscillations, with loop-specific periods and phases, has an aperiodic
fluctuation. The fluctuation in Fig. 10.4.6 observed in the experiment can, in this way, be interpreted.
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Part III

Bonds and Bands with Things

Between and Beyond



Only connect · · ·
— E. M. Forster

A genuine symbiosis may also emerge from complemen-

tary approaches. The typical chemist wants above all to un-

derstand why one substance behaves differently from another;

the physicist usually wants to find principles that transcend

any specific substance.

— Dudley Herschbach (1997)



Chapter 11

Bond Approach

In this part we are mainly concerned with the electronic structure of matter. We start from
atoms and ions, pass through molecules, then concentrate on solids in the crystalline state. Both
bond and band approaches are introduced, contrasted and sometimes used side by side. Single-
electron methods such as the molecular orbital method and the band method are our major topics,
fully discussed, justified and their inevitable deficiencies delineated. On the other hand, many-body
effects are emphasized from the start, culminating in the chapter on correlated electronic states. A
special chapter is devoted to the electronic properties of nanostructures in order to connect with
contemporary research.

This chapter is devoted to the bond approach with a strong chemical flavor. We believe that
students of condensed matter physics should know the basic concepts of quantum chemistry and
acquire some chemical insights, especially those interested in more complex structures.

§11.1 Atoms and Ions

Atoms are fundamental building blocks for molecules and condensed matter. Here we review some
basic ideas of atomic physics, especially those closely related to quantum chemistry and condensed
matter physics.

11.1.1 A Hydrogen Atom

We begin with the simplest atom, hydrogen. It may be described as an electron moving in the
Coulomb field of a stationary proton. The Schrödinger equation for this electron in spherical polar
coordinates is written (see Fig. 11.1.1),

[

∂

∂r

(

r2 ∂

∂r

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2
+

2mr2

�2

(

Ze2

r
+ E

)]

ψ = 0. (11.1.1)

This equation can be solved analytically. Each solution is called the wavefunction or atomic orbital

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), (11.1.2)

where Rnl(r) are the radial components and Ylm(θ, ϕ) are spherical harmonics which show the
angular dependence of the wavefunctions. The wavefunctions are characterized by a set of quantum
numbers, i.e., principal quantum number n, angular momentum quantum number l, and magnetic
quantum number m. The energy eigenvalues are

En = − e4

2�2

1

n2
, n = 1, 2, . . . . (11.1.3)
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Figure 11.1.1 The coordinate system of a hydrogen atom.

With a given principal quantum number n, there are n2 possible combinations, according to the
following scheme

n−1
∑

l=0

l
∑

m=−l

1 =

n−1
∑

l=0

(2l + 1) = n2. (11.1.4)

The energy is the same, i.e., it is n2-fold degenerate. This energy degeneracy will be partially lifted
in atoms with many electrons and further reduced if the atom or the ion is situated in a non-spherical
environment.

It is interesting to inspect the spatial distribution of different atomic orbitals (see Fig. 11.1.2):
Only s-orbitals (with l = 0) are isotropic; others are anisotropic with nodes (i.e. loci where ψ = 0),
such as p- (with l = 1), d- (with l = 2), and f - (with l = 3) orbitals. These geometrical shapes,
which determine the spatial distribution of the electron clouds, have important consequences for
chemical and physical properties. It is advisable that the reader should be able to visualize these
shapes.
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Figure 11.1.2 The three-dimensional graphs
for s, p, d orbitals.
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Figure 11.1.3 Schematic diagram for the energy
levels of electron shells in many-electron atoms.

11.1.2 Single-Electron Approximation for Many-Electron Atoms

We consider an atom with Z electrons. The Hamiltonian of this system includes three parts:
the kinetic energy; the attractive potential between every electron and nucleus; and the repulsive
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potential between every pair of electrons. The Schrödinger equation for this many-electron atom is



− �
2

2m

Z
∑

i=1

∇2
i −

Z
∑

i=1

Ze2

ri
+

1

2

∑

i�=j

e2

|ri − rj |



Ψ = EΨ. (11.1.5)

The many-electron atom problem is too complicated to be solved analytically, so some sort
of approximation must be resorted to. The most useful approximation is the self-consistent field
approximation introduced by D. R. Hartree and V. A. Fock, in which each electron is described by
its one-electron Schrödinger equation,

[

− �
2

2m
∇2 + v(r)

]

ψ = εψ, (11.1.6)

where v(r) includes both the ionic potential energy and the interaction energy from other electrons.
It can be assumed, with sufficient accuracy, that this potential is spherically symmetric, and

therefore the type of solution is similar to that of hydrogen, i.e., the orbitals are still specified
by s, p, d, and f states. However, one should also take into account the electron spin and the
Pauli exclusion principle; each orbital may have two electrons with opposite spins. Therefore, in
addition, a spin quantum number ms = ±1/2, describing the spin coordinate, is introduced to the
set of quantum numbers specifying the orbital. According to the Pauli exclusion principle and the
principle of minimum energy, Z electrons occupy the different orbitals of a many-electron atom,
from the lowest upward, forming the shell structure of electrons. So, the general outline of the
periodic table of chemical elements is explained. Using a single-electron approximation, ground
state electronic configurations may be assigned to all atoms, such as He (1s2), Li (1s2 2s1), C (1s2

2s2 2p2), O (1s2 2s2 2p4), etc., and the details can be seen in the periodic table. It should be noted
that spectroscopic evidence as well as detailed calculations show that the energy degeneracy for
electrons with the same principal quantum number is lifted in many-electron atoms, and the general
order for electron filling in valence shells and sub-shells is shown in Fig. 11.1.3. Actually the filling
order is also dependent on atomic number Z (see Fig. 11.1.4), for instance, for light elements 3d is
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filled before 4s, while for heavier elements the reverse is true. In the crossing region (z = 20 ∼ 28,
i.e., 3d transition metal elements, from Ca to Ni), the situation is very complex (see Fig. 11.1.5),
it is complicated by the many-body correlations of electrons. However the geometrical shapes of
atomic orbitals are roughly the same as those of hydrogen, so we may still use the figures shown in
Fig. 11.1.2 with some confidence.

11.1.3 Intraatomic Exchange

In spite of the enormous success achieved by the single-electron approximation, there are many
problems that require a more rigorous treatment of the Coulomb interactions between the electrons
in an atom. Let us consider the simplest case, a pair of electrons, for instance two electrons in a He
atom, one in the ground state 1s, another in the first excited state 2s; or two electrons in an unfilled
3d shell of a transition metal atom, with the rest of electrons ignored. The state of each electron is
described by a spin-orbital,

ψ(x, y, z, sz) = φ(x, y, z)χ(sz), (11.1.7)

where φ(x, y, z) is the spatial part, and χ(sz) is the spin part. The combination of the spins of two
electrons may have a symmetric form, called the spin-triplet, S = 1; and antisymmetric form, called
the spin-singlet, S = 0, as listed below (see Fig. 11.1.6)

Ψss =



















χ11 = α(1)α(2),

χ10 =
1√
2
[α(1)β(2) + α(2)β(1)],

χ1−1 = β(1)β(2),

(11.1.8)

Ψsa = χ00 =
1√
2
[α(1)β(2) − α(2)β(1)], (11.1.9)

where α indicates spin up and β spin down.
Then we can express the total antisymmetric wave function as

Ψ = [φ0(r1)φnl(r2) − φ0(r2)φnl(r1)]





χ11

χ10

χ1−1



 , (11.1.10)

or
Ψ = [φ0(r1)φnl(r2) + φ0(r2)φnl(r1)]χ00. (11.1.11)
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Figure 11.1.6 Schematic diagrams for spins of combined wave functions of two electrons.
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Because the total wavefunction Ψ for a pair of electrons is antisymmetric (to satisfy Fermi–Dirac
statistics), if the spin is symmetric, the spatial wave function will be antisymmetric and vice versa.

Now the question is: which state (spin-singlet or spin-triplet) has the lower energy? The answer
may be obtained from the following argument: According to the Pauli principle, two electrons
with parallel spins cannot be at the same point in space, because then they would occupy the
same quantum mechanical state. So these two electrons tend to keep away in real space in order
to minimize Coulomb repulsive energy. By contrast, two electrons with antiparallel spins have no
restriction on being at the same point in space. Therefore, it is the Coulomb repulsive force that raises
the energy of the singlet state; consequently parallel spins of the triplet state are energetically favored.
This conclusion is reached for orthogonal orbitals in the same atom. This Coulomb interaction
induced spin alignment is called the intraatomic exchange interaction, which is the physical origin of
the magnetic moments of atoms or ions. Later, we shall see similar exchange interactions between
electrons situated on different atoms, and delocalized into energy bands, play important roles in the
ferro- and antiferromagnetism of molecules and solids. From the above argument, it is very clear
that the “exchange interaction” is just a direct consequence of the Coulomb interaction between
electrons; no extra ‘mysterious’ exchange force is needed to explain it.

11.1.4 Hund’s Rules and Magnetic Moments in Ions

From spectroscopic data, F. Hund formulated three empirical rules about the ground state of
partially filled electronic shells of atoms or ions, known as Hund’s rules.

1st rule: The ground state of an isolated atom or ion has the largest value of total spin S.
2nd rule: It also has largest value of the total orbital angular momentum L that is permitted by

the first rule.
3rd rule: It has total angular momentum J =| L−S | for less than half-filled shells, and J = L+S

for more than half-filled shells.
The first rule is a direct consequence of parallel spin alignment due to intra-atomic exchange

interaction discussed in the previous section, while the third rule is related to spin-orbit coupling.
From Hund’s rules we can deduce the value of the effective magnetic moment for an atom or ion,

µeff = gL[J(J + 1)]1/2µB = pµB, (11.1.12)

where gL is the Landé factor, J is the total angular momentum, µB is Bohr magneton defined by

µB =
e�

2mc
. (11.1.13)

This is the natural unit for magnetic moment in atoms or ions, and has a value µB = 9.27 ×
10−21 erg/Oe.

For rare earth elements, experimental values of effective magnetic moments agree reasonably
well (with exceptions for Sm and Eu) with the predictions based on the three Hund’s rules (see
Table 11.1.1); while for 3d transition metal elements, no contribution from the orbital moments is
found. The orbital moments are said to be quenched; only spins as predicted by the 1st Hund’s rule
contribute to experimental data (see Table 11.1.2). The reason for quenching of orbital moments of
d-electrons will be discussed later (see §11.4).

§11.2 Diatomic Molecules

11.2.1 The Exact Solution for the Hydrogen Molecular Ion H+
2

H+
2 is the simplest molecule. This system may be described as one electron moving in the

Coulomb field of two fixed protons. Assume the distance between the two protons A and B is R
and the distances between the moving electron and fixed protons are rA and rB (see Fig. 11.2.1).
Then the Schrödinger equation for the electron is

− �
2

2m
∇2ψ −

(

e2

rA
+

e2

rB

)

ψ = E(R)ψ. (11.2.1)



Table 11.1.1 Calculated and measured effective Bohr magneton numbers p of trivalent rare earth ions.

Element Electronic state to Hund’s rule Calculated p Mea

f -shell (l = 3) nd = d-electron
number

S L = |Σ| J Ground state termnd ml = 3, 2, 1, 0, −1, −2, −3

Ce3+ 1 ↑ 1/2 3 5/2

J = |L − S|

2F5/2 2.54

Pr3+ 2 ↑ ↑ 1 5 4 2H4 3.58

Nd3+ 3 ↑ ↑ ↑ 3/2 6 9/2 4I9/2 3.62

Pm3+ 4 ↑ ↑ ↑ ↑ 2 6 4 5I4 2.68

Sm3+ 5 ↑ ↑ ↑ ↑ ↑ 5/2 5 5/2 6H5/2 0.84

Eu3+ 6 ↑ ↑ ↑ ↑ ↑ ↑ 3 3 0 7F0 0.00

Gd3+ 7 ↑ ↑ ↑ ↑ ↑ ↑ ↑ 7/2 0 7/2 8S7/2 7.94

Tb3+ 8 ↓↑ ↑ ↑ ↑ ↑ ↑ ↑ 3 3 6 7F6 9.72

Dy3+ 9 ↓↑ ↓↑ ↑ ↑ ↑ ↑ ↑ 5/2 5 5/2 6H15/2 11.63

Ho3+ 10 ↓↑ ↓↑ ↓↑ ↑ ↑ ↑ ↑ 2 6 8 5I8 11.60

Er3+ 11 ↓↑ ↓↑ ↓↑ ↓↑ ↑ ↑ ↑ 3/2 6 15/2

J = L + S

4I15/2 9.59

Tm3+ 12 ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↑ ↑ 1 5 6 3H6 7.57

Yb3+ 13 ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↑ 1/2 3 7/2 2F7/2 4.54



Table 11.1.2 Calculated and measured effective number of Bohr magnetons p for 3d transition metal ions.

Element Electronic state to Hund’s rule Calculated p Mea

d-electron number

S L = |Σ| J Ground state term J = S J = |L ± S|n ml = 2, 1, 0, −1, −2

Ti3+

1 ↑ 1/2 2 3/2

J = |L − S|

2D3/2 1.73 1.55

V4+ 2D3/2 1.73 1.55

V3+ 2 ↑ ↑ 1 3 2 3F2 2.83 1.63

V2+

3 ↑ ↑ ↑ 3/2 3 3/2

4F3/2 3.87 0.77

Cr3+ 4F3/2 3.87 0.77

Mn4+ 4F3/2 3.87 0.77

Cr2+

4 ↑ ↑ ↑ ↑ 2 2 0

5D0 4.90 0

Mn3+ 5D0 4.90 0

Mn2+

5 ↑ ↑ ↑ ↑ ↑ 5/2 0 5/2

6S5/2 5.92 5.92

Fe3+ 6S5/2 5.92 5.92

Fe2+ 6 ↓↑ ↑ ↑ ↑ ↑ 2 2 4

J=L+S

5D4 4.90 6.70

Co2+ 7 ↓↑ ↓↑ ↑ ↑ ↑ 3/2 3 9/2 4F9/2 3.87 6.54

Ni2+ 8 ↓↑ ↓↑ ↓↑ ↑ ↑ 1 3 4 3F4 2.83 5.59

Cu2+ 9 ↓↑ ↓↑ ↓↑ ↓↑ ↑ 1/2 2 5/2 2D3/2 1.73 3.55
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A B

R

P φ

Figure 11.2.1 The coordinate system for hydrogen molecular ion.

Equation (11.2.1) can be solved in elliptic coordinates with the two protons as foci. Set

ξ =
rA + rB

R
(1 ≤ ξ < ∞),

η =
rA − rB

R
(−1 ≤ η ≤ +1). (11.2.2)

The third coordinate is defined by the azimuthal angle φ. The equation is transformed into

− 2�
2

mR2

[

1

ξ2 − η2

∂

∂ξ

{

(ξ2 − 1)
∂ψ

∂ξ

}

+
1

ξ2 − η2

∂

∂η

{

(1 − η)2
∂ψ

∂ξ

}

+
1

(ξ2 − 1)(1 − η2)

∂2ψ

∂φ2

]

− 4e2ξ

R(ξ2 − η2)
ψ = E(R)ψ, (11.2.3)

using the method of separation of variables, we set

ψ(ξ, η) = X(ξ)Y (η), (11.2.4)

and, by substitution into Eq. (11.2.3), we get two ordinary differential equations

d

dξ

{

(ξ2 − 1)
dX

dξ

}

+

(

mR2E

2�2
ξ2 +

mRe2

�2
ξ + A

)

X = 0. (11.2.5)

d

dη

{

(η2 − 1)
dY

dη

}

+

(

mR2E

2�2
η2 + A

)

Y = 0. (11.2.6)

Energy eigenvalues E and the separation constant A for each value of R are determined by the
boundary conditions from (11.2.2) at the end of the intervals. This set of equations were derived
and solved numerically, for the first time by O. Burrau in 1927a and subsequently solved analytically
under certain restrictions.b The result for E versus R is shown in Fig. 11.2.2. In order to find the
equilibrium separation of two protons, the Coulomb repulsive potential energy e/R should be added
to E:

U(R) = E(R) +
e2

R
. (11.2.7)

Curves for U(R) are shown in Fig. 11.2.3. The condition for a stable minimum is found to be
R = 2 AU = 0.106 nm, with energy U = −16.3 eV, and the dissociation energy for this molecular
ion is thus 2.8 eV.

This exact result gives a quantum mechanical picture for a molecular bond, i.e., a mobile electron
acting as a ‘glue’ that binds two atoms together to form a molecule. Though, qualitatively speaking,

aO. Burrau, Kgl. Denske Selskab. Mat. Fys. medd 7, 1 (1927).
bD. Bates, K. Ledsham and A. L. Stewart, Phil. Trans. Roy. Soc. A 246, 215 (1953).
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the reason for bond formation may be understood in classical physics, (for there is electrostatic
attraction when a negative charge is placed between positive ones), an exact calculation (based
on quantum mechanics) is required to establish it beyond doubt, to give a detailed quantitative
description and to understand its real nature. The exact result agrees very well with experimental
data for H+

2 .

11.2.2 The Molecular Orbital Method

In the exact solution of the H+
2 problem discussed in the previous section, the electron is delo-

calized in space, without belonging to a particular atom. This is the spirit of the molecular orbital
method, being somewhat similar to the band theory of solids. However, for molecular systems with
two or more electrons, the Coulomb interaction between the electrons makes things difficult and
some sort of approximation is needed. The molecular orbital method is a way to do this, based
on single-electron approximation. The Coulomb interaction is either ignored or incorporated into a
molecular field.

For a system of many-electron diatomic molecules, we may fill the orbitals of H+
2 with electrons

according to the Pauli principle and minimum energy requirement. The procedure is just like building
up many-electron atoms. For the H2 molecule, the obvious choice is to put the second electron in
the 1s orbital to form an antiparallel pair. Indeed, experiment shows an extra energy gain (15.4 eV)
from the addition of a second electron, as well as an increase of the dissociation energy to 4.7 eV. The
increased stability of H2 as compared with H+

2 confirms the chemical intuition that the electron-pair
bond is the most common bond in chemistry. Furthermore, if a third electron is introduced, from
Fig. 11.2.2 and 11.2.3, the choice is 2pσ and no bound state is formed.

Two combinations are prescribed for us by the inversion symmetry of the H molecule about the
midpoint between the two protons. The wavefunction has even parity, for it recovers itself after the
inversion; while antiphase combination has odd parity, for it changes sign after inversion, i.e.

ψ(−x,−y,−z) = ±ψ(x, y, z). (11.2.8)

A commonly adopted approximation procedure is the linear combination of atomic orbitals (LCAO)
to treat molecular problems, i.e.,

ψ(ri) = ψA(ri) ± ψB(ri). (11.2.9)
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Figure 11.2.2 Plot of the electronic
energy levels versus internuclear distance.
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versus the internuclear distance.
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Figure 11.2.4 Ground-state wave func-
tions of H+

2 along the central line, (a) exact
result, (b) bonding LCAO, (c) antibonding
LCAO.
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Figure 11.2.5 Bonding energy versus in-
ternuclear distance for H+

2 , (a) exact result,
(b) bonding atomic orbital, (c) antibonding
atomic orbital.

To judge whether this approximation can handle molecular problem with reasonable accuracy,
we first apply it to H+

2 , where we have the exact results for comparison. Wave functions along the
central line are plotted in Fig. 11.2.4, and the energies U versus the intermolecular distance R are
plotted in Fig. 11.2.5. A bond is formed in the even parity state, but not in the odd one. This
comparison shows that the LCAO scheme with its easy visualization and close connection to atomic
entities works quite satisfactory to give a semi-quantitative picture of chemical bonds. These two
combinations of AOs are called bonding and antibonding respectively because the enhancement of
electronic density is located in the internuclear region for the former; located outside the internuclear
region for the latter.

Historically, the first molecular orbital treatment of H2 was proposed by F. Hund and
R. S. Mulliken, they used just two orbitals of Eq. (11.2.9) as their single-electron wave functions
satisfying the single-electron Schrödinger equation

Hiψi =

(

− �
2

2m
∇2

i −
e2

rAi
− e2

rBi

)

= εiψi. (11.2.10)

As well as the inversion symmetry of this molecular system, molecular orbitals (MOs) have even and
odd parities.

Here we introduce the variation method to find the MOs through LCAO. Let us use a trial
wavefunction with normalizing factor Ni as

ψi = Ni[cAψA(ri) + cBψB(ri)]. (11.2.11)

Its expectation value of energy is

E(ψ) =

∫

ψ∗Hψdri
∫

ψ∗ψdri
, (11.2.12)

and to minimize the total energy, let

∂E

∂ci
= 0 (i = A, B). (11.2.13)

We get secular equations

(HAA − ESAA)cA + (HAB − ESAB) = 0, (11.2.14)

(HAA − ESAA)cA + (HAB − ESAB) = 0, (11.2.15)

with a corresponding determinant to be solved
∣

∣

∣

∣

HAA − ESAA HAB − ESAB

HAB − ESAB HBB − ESBB

∣

∣

∣

∣

= 0. (11.2.16)
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Here HAA, HBB, . . . are the matrix elements of the Hamiltonian, and since A and B are chemically
identical, let HAA = HBB = α, which is called the Coulomb integral

α =

∫

ψAHiψAdri =

∫

ψBHiψBdri. (11.2.17)

Now let HAB = HBA = β,

β =

∫

ψBHiψAdri =

∫

ψAHiψBdri. (11.2.18)

This is the bond (or resonance) integral, for this term is crucial for molecular bonding. They are
overlap integrals, obviously SAA = SBB = 1, and

SAB = SBA =

∫

ψAψBdri. (11.2.19)

Solving the secular equations, two MOs are found,

ψ± =
1

√

2(1 ± S)
(ψA ± ψB) (11.2.20)

with corresponding energies

E± =
α ± β

1 ± SAB
. (11.2.21)

This solution of the MO problem for H2 is in agreement with our intuitive guess outlined above.
Obviously the best choice is to put two electrons as an antiparallel pair into the even bonding orbital,
and leave the odd antibonding orbital empty. This prescription for the ground state is quite similar
to band theory, i.e., solving the one-electron problem, then filling-up the energy levels from the
bottom up. The antibonding state is the 1st excited state for H2 (see Fig. 11.2.6).

Bond MO

Antibond MO

1sB1sA

E

1sA 1sB

(a) (b)

Figure 11.2.6 (a) Energy diagram showing MO formation with (b) the corresponding pictorial represen-
tation of orbitals.

This treatment is not very accurate for H2; however, it is easy to generalize to more complex
cases due to the flexibility of one particle wavefunctions and the adaptability of further refinements.
Since the molecular orbital method (MO) has been improved with various techniques to increase its
accuracy and can be fruitfully applied to various molecular problems, it is regarded as a mainstay
of quantum chemistry.

Just like AOs, MOs may be displayed as geometrical shapes in real space (see Fig. 11.2.6) with
their corresponding symmetries. If we view these orbitals along a line passing through two atoms,
they appear to be cylindrically symmetrical. This is the molecular counterpart of the spherical
symmetry of s atomic orbitals, so these orbitals are called σ-orbitals. The bonding state with even
parity, is marked by the subscript ‘g’ (in German, gerade), while the antibonding state with odd
parity is marked by ‘u’ (in German, ungerade). The two molecular orbitals shown in (11.2.20) and
(11.2.21) are usually denoted by σg and σu.

MOs may be classified according to symmetry considerations. We can show some well-known
bonding states such as σ, π, and δ orbitals: The σ orbitals have symmetry about the line joining
the nuclei, if we take the z-axis as an axis of symmetry, there are bonds s–s, s–pz, pz–pz, etc.; the π
orbitals have a nodal plane containing the line between the nuclei, and there are bonds px–px, py–py,
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etc.; the δ orbitals possess two nodal planes, such as dxy–dxy, etc.. Note the following correspondence
between AOs and MOs (see Fig. 11.2.7):

Atomic orbitals: s, p, d, f . . .
Molecular orbitals: σ, π, δ, φ . . .
The higher-energy MOs are of great importance for helping us to understand the more complex

diatomic molecules, just like we use the atomic orbitals of the hydrogen atom to help us understand
the electronic structures of many-electron atoms. It should be noted that the antibonding orbitals
are an integral part of MOs, placed in the appropriate places in the energy level diagram, to be filled
with antiparallel pairs of electrons just as MOs. Rules for filling MOs with electrons are just like that
of AOs: the Pauli principle, Hund’s rule and the minimum energy criterion. We may take the case
of O2 as an example, in which the triplet state (S = 1) with unpaired electrons in degenerate 1πg

levels appear according to Hund’s rule (see Fig. 11.2.8), so O2 is paramagnetic. At low temperature,
solid β−O2 is found to be an antiferromagnet.c

(a) σ Orbital

(b) π Orbital

(c) δ Orbital

Figure 11.2.7 Symmetry of σ-, π- and
δ-orbitals viewing perpendicular to bond-
ing axis.

3σu

1πg

3πg

1πu

2p2p

2σu

2σg

2s 2s

1s 1s
1σu

1σg

Figure 11.2.8 The occupancy of MOs in O2.

11.2.3 Heitler and London’s Treatment of Hydrogen Molecule

The starting point of Heitler and London’s theory of the hydrogen molecule is different from
that of the molecular orbital method, so instead of a one-electron approximation, it is based on an
elementary treatment of the two-electron problem. Historically, it was the first theoretical treatment
of the chemical bond, and it gave quite accurate values for the bonding energy of H2. However, this
model is difficult to generalize to more complex molecules, so as a quantum chemical method, it has
been superseded by the more versatile molecular orbital method. On the other hand, this treatment
had a strong impact on condensed matter physics, for it lead to the first explicit formulation of the
magnetic exchange interaction in solids by Heisenberg. The reader may also be aware that we view
this problem as an intermediate stage in our dealings with the many-body correlation of electrons
from atomic physics to solid state physics.

This is a two-electron problem in the field of two protons, its Hamiltonian has several terms

H = − �
2

2m
∇2

1 −
�

2

2m
∇2

2 −
e2

rA1
− e2

rA2
− e2

rB1
− e2

rB2
+

e2

r12
+

e2

rAB
. (11.2.22)

cA. P. J. Jansen, Phys. Rev. B 33, 6352 (1986).
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The first two terms are due to isolated atoms, the next four terms are those which express the
two electrons moving in the field of the two protons A and B, while final two terms are due to the
electron-electron and the proton-proton interaction.

Let us consider two hydrogen atoms A and B widely separated, with 1s wave functions ψA and
ψB respectively, then we bring them somewhat closer together to form a molecule. Two electrons sit
in their own spatial orbitals with spins. According to the Heitler–London scheme, the two electrons
reside in different atoms, so three spin-triplet states and one spin-singlet state are obtained as follows.

The triplet (S = 1):

|Ψ1〉 =
1

√

2(1 − S2
AB)

α(s1)α(s2)[ψA(r1)ψB(r2) + ψA(r2)ψB(r1)], Sz = 1. (11.2.23)

|Ψ2〉 =
1

√

2(1 − S2
AB)

[α(s1)β(s2) + β(s1)α(s2)][ψA(r1)ψB(r2) − ψA(r2)ψB(r1)], Sz = 0.

(11.2.24)

|Ψ3〉 =
1

√

2(1 − S2
AB)

β(s1)β(s2)[ψA(r1)ψB(r2) − ψA(r2)ψB(r1)], Sz = −1. (11.2.25)

The singlet (S = 0):

|Ψ4〉 =
1

2
√

(1 + l2)
[α(s1)β(s2) − β(s1)α(s2)][ψA(r1)ψB(r2) + ψA(r2)ψB(r1)], Sz = 0. (11.2.26)

The situation is somewhat similar to the case treated in §11.1.3, with the difference here that
the two electrons are on non-orthogonal orbitals. For now, the wavefunctions of two electrons will
overlap, described by the overlap integral

SAB =

∫

ψ∗
A(r)ψB(r)dr. (11.2.27)

The triplet energy and the singlet energy are

Et = 〈Ψ1|H |Ψ1〉 = 2Eat +
CAB − IAB

1 − S2
AB

, (11.2.28)

Es = 〈Ψ4|H |Ψ4〉 = 2Eat +
CAB + IAB

1 + S2
AB

, (11.2.29)

where the Coulomb and exchange integrals are

CAB =

∫

dr1

∫

dr2|ψA(r1)|2
e2

|r1 − r2|
|ψB(r2)|2 −

∫

dr1
e2

|r1 − RB|
|ψA(r1)|2

−
∫

dr2
e2

|r2 − RA|
|ψB(r2)|2 (11.2.30)

and

IAB =

∫

dr1

∫

dr2ψ
∗
A(r1)ψB(r1)

e2

|r1 − r2|
ψ∗

B(r1)ψA(r2)

−SAB

∫

dr1
e2

|r1 − RB|
ψ∗

A(r1)ψB(r1) − SAB

∫

dr2
e2

|r2 − RA|
ψ∗

B(r2)ψB(r2).

(11.2.31)
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The difference in energy between the singlet and the triplet is

J12 = Es − Et = −2
S2

ABCAB − IAB

1 − S4
AB

. (11.2.32)

According to the original Heitler–London calculation, J12 is negative with a large overlap of
wave functions, and the spins of the two electrons are antiparallel. This agrees with the result of
the molecular orbital method and has been verified by experiment. For two atoms with infinite sep-
aration, J12 is close to zero. Whether there is a region in which J12 is positive when the interatomic
distance is intermediate has attracted much theoretical attention. More accurate calculations of two
hydrogen atoms show that J12 is always negative. These things have been critically reviewed by
C. Herring (1963)d in detail, and the conclusion is that direct exchange interactions between atoms
and ions always favors antiferromagnetic coupling. This conclusion has been amply confirmed by
experimental findings; for example, in recent experiments on large clusters of Fe and Mn magnetic
ions surrounded by nonmetallic ions and radicals, antiferromagnetic couplings are always found.e

Some exceptions to this rule will be discussed in Chap. 13.
If we set SAB = 0 in Eq. (11.2.27), the orbitals become orthogonal, and J12 is positive; this

confirms our treatment of interatomic exchange in §11.1.3, which is the foundation of Hund’s rule.

11.2.4 The Spin Hamiltonian and the Heisenberg Model

The Heitler–London model for H2, outlined above, gives the energy of the molecule in terms of
four states, three triplet states and one singlet state. For many problems higher molecular states may
be ignored altogether, by representing the molecule simply as a four-state system. It is appropriate
to introduce an operator, known as a spin Hamiltonian, whose eigenvalues are the same as those of
the original Hamiltonian, and whose eigenfunctions give the spins of the corresponding states.

In order to construct the spin Hamiltonian some fundamental properties of the spin operator for
the electron should be recalled: the spin operator for each electron satisfies the relationship

S2
i =

1

2

(

1

2
+ 1

)

=
3

4
. (11.2.33)

So the total spin satisfies

S2 = (S1 + S2)
2 =

3

2
+ 2S1 · S2. (11.2.34)

Since S2 has the eigenvalue S(S + 1), then we know the operator S1 · S2, has eigenvalue +1/4 in
the triplet (S = 1) and −3/4 in the singlet (S = 0), so the spin operator can be written as

Hs =
1

4
(Es + 3Et) − (Es − Et)S1 · S2, (11.2.35)

whose eigenvalue for each triplet state is Et, for the singlet state is Es just as we have desired.
Omitting the constant term (Es + 3Et) by redefining the zero of energy, the spin Hamiltonian
becomes

Hs = −J12S1 · S2. (11.2.36)

This will favor parallel spins if J12 is positive and antiparallel spins if J12 is negative. This form
of the spin Hamiltonian may be extended from the case of two atoms to the case of N atoms, and
even to N → ∞ as atoms in a crystalline lattice:

Hs = −
∑

i<j

JijSi · Sj, (11.2.37)

dC. Herring, Direct exchange between well-separated atoms, in G. T. Rado and H. Suhl (eds.), Magnetism, Vol. IIB,
Academic Press, New York (1963). For ions of transition metals, there is the added complication of the orbital
degeneracy of d-electrons, this problem will be treated in §13.1.4.
eD. Gatteschi et al., Science 265, 1054 (1994).
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in which the sum of all pairs of atoms (or ions) i, j is carried out, just as a straightforward exten-
sion of a two-atom molecule. This is the famous Heisenberg Hamiltonian, and the Jij are coupling
constants. Originally Heisenberg devised this Hamiltonian as a first attempt to understand ferro-
magnetism based on quantum mechanics, but the situation is not so simple as he imagined. This
form of the Hamiltonian is formulated for localized spins, and this description is only suitable for
insulators. However, the most important ferromagnets are metals and alloys in which the electrons
are delocalized, while most insulators are antiferromagnetic. Now we have learned that simple di-
rect exchange is not the basic ingredient of real ferromagnets: The physical origin of ferromagnetism
must be sought elsewhere, such as in superexchange, double exchange, indirect exchange and the
exchange interaction of itinerant electrons. This will, by no means, diminish the importance of the
Heisenberg Hamiltonian for the study of the magnetic properties of matter, for this simple formula-
tion with its easy visualization gives an effective framework to understand a lot of things related to
magnetic order, both ground states and excited states.

§11.3 Polyatomic Molecules

11.3.1 The Molecular Orbital Method for Polyatomic Molecules

The main task of the molecular orbital method is to find the single-electron wavefunctions (i.e.,
MOs) as solutions of the wave equations for the polyatomic molecule and construct the corresponding
energy level diagram. The principal method of solving these problems is to use the LCAO to find
the MOs. The calculation begins by the choice of a basis, i.e., a set of AOs describing the electronic
states of isolated atoms or ions. Furthermore, to simplify the problem, we may assume that the core
electrons remain intact, so only electrons in outer shells are taken into account. Then single-electron
MOs are formed as linear combinations of AOs, while the full wavefunctions (1, 2, . . . , N) form a
Slater determinant:

Ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(1) ψ1(2) . . . ψ1(N)
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. . . . . . . . . . . .

ψN (1) ψN (2) . . . ψN (N)

∣

∣

∣

∣

∣

∣

∣

∣

(11.3.1)

The numbers in the arguments of the orbital ψi stand for the four quantum numbers (orbital
plus spin), and the function is antisymmetric. The larger the number of initial AOs in the basis,
the more accurate the approximation of the MOs, but the more complicated calculations becomes,
because the number of single-electron integrals of type (11.3.1) is then ∼ (1/2)N2, and that of two-
electron integrals ∼ N4. Carrying out complete non-empirical, ab initio calculations takes account
of all the electrons in the system, and further the positions of the nuclei are gradually determined
by minimizing the total energy. Even for comparatively simple molecules such as CO2 or H2O, a
basis with several tens of Slater or Gaussian functions rn−1 exp(−βr)Ylm or rn−1 exp(−αr2)Ylm is
usually employed, and the number of integrals is 105 ∼ 106, which is a very time-consuming task.
When N reaches several tens or more, and without symmetry to simplify the problem, it seems that
accurate calculation is impossible even with the aid of modern electronic computers. This is just the
exponential wall (i.e., the exponential increase of the number parameter for a satisfactory ab initio

calculation of MOs versus the number of atoms) mentioned by W. Kohn in his Nobel lecture.f

Once the energy levels of MOs are determined, electrons fill up the energy ladder according to
the building rules; thus ground states and excited states may be determined, just as we did in atomic
physics. The electrons are delocalized in the molecular space and surely various MOs play important
roles in the chemical bonds: it is often difficult to assign a particular bond to a definite orbital. Only
when the total wavefunction is obtained can the picture of the electron distribution in the molecule
be finally clarified.

fW. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
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11.3.2 Valence Bond Orbitals

The localized behavior of chemical bonds is well established experimentally: Bond direction,
bond length, bond dissociation energy and polarity are characteristic parameters for a chemical
bond. They are almost equal in various molecules, and transferable from one to another. This
evidence is the foundation of the concept of the electron-pair bond due to N. G. Lewis which was
updated into the theory of valence-bonds based on hybridized atomic orbitals by L. Pauling.

We may construct valence bond orbitals by the hybridization of atomic orbitals of similar energies,
either from the same atom or from different atoms. Let us consider the case of the hybridization of
s and p orbitals from the same atom: In an isolated atom, the s orbital is isotropic in shape, while
the p orbitals are directional along rectangular axes x, y, and z. For orbitals hybridized between
s and p states, more pointed directional shapes may be formed, for instance, one s orbital may be
hybridized with three p orbitals, i.e., four sp3 orbitals along tetrahedral directions are formed (see
Fig. 11.3.1(c)),

σ1 =
1

2
(s + px + py + pz), σ2 =

1

2
(s + px − py − pz),

σ3 =
1

2
(s − px + py − pz), σ4 =

1

2
(s − px − py + pz). (11.3.2)

x xx

yy

z

(a) (b) (c)

Figure 11.3.1 Hybridized orbitals for s, p electrons (a) sp orbitals, (b) sp2 orbitals, (c) sp3 orbitals.

Every hybridized orbital may accommodate another electron from the other atom, so a spin-
singlet pair is formed. This is the ideal bonding scheme for C, Si, Ge atoms, in which the valence
shell lacks 4 electrons, so tetrahedral bonding with other atoms fill the complete octet set. This
is the structure of the methane molecule, as well as the crystal structure for diamond, Si and Ge.
One s-orbital may be hybridized with two p orbitals, i.e., three sp2 orbitals along planar triangular
directions are formed (see Fig. 11.3.1(b)). This type of bonding between one C atom and two other
C atoms and one H atom forms the backbone of the benzene molecule; this bonding also appears in
graphene (an atomic sheet of graphite). One s-orbital may hybridized with one p orbital, thus two sp
orbitals along a line in opposite directions are formed (see Fig. 11.3.1(a)). In general, hybridization
may cost some energy in an isolated atom, for it may raise some electrons from pure s state to mixed
s and p states; however, this energy investment is amply returned with a profit once the electron-pair
valence bonds are formed with neighboring atoms.

Also d-electrons may participate in hybridization, and hybridized orbitals such as d3s with tetra-
hedral bonding, d2sp3 with octahedral bonding, dsp2 with triangular-bi-pyramidal bonding, dsp2

with planar square bonding can be formed. These may explain the prevalence of oxygen octahedra
in many transition metal oxide crystals, such as the perovskites.

The valence bond orbital gives a clear picture of localized bonds in terms of the pairing of electrons
described by a singlet wavefunctions as independent ‘structures’. These valence bond orbitals obey
rules of ‘maximum overlap’ and orthogonality. Then we can divide the electrons in a molecule into
several independent parts: pairs in the inner shell, lone pairs and bonding pairs, denoted by A, B,
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C, etc.. The total energy can be written as the sum of components,

E = EA + EB + EC + · · · + UAB + UAC + UBC + · · · , (11.3.3)

where EA, EB . . . stands for electronic energy of A, B . . . components in the field of nuclei and other
electrons, while UAB, UAC . . . stands for the Coulomb repulsive energy between components A and
B, A and C, . . . . In general, the minimum of EA + EB + · · · is attained by the optimization of bond
lengths. However, for non-overlapping electron-pairs,

U ≈ e2

∫

ρA(1)ρB(2)

r12
dr1dr2. (11.3.4)

This is just the Coulomb repulsive energy between electron density distributions eρA and eρB, so the
sum of these energy terms will be minimized by making various electron-pairs stay as far away as
possible. We may visualize the situation as distribution of locations of electron-pairs on the spherical
surface of a valence shell shared by the bonding atoms. The optimum solution to this problem is to
place the electron-pairs on the vertices of a regular polyhedron circumscribed by this sphere. For
3-dimensional bonding: this ideal is realized for the case of 4 pairs in tetrahedral bonding; for 6 pairs
in octahedral bonding; for 5 pairs, no ideal regular polyhedron is available and so the less symmetric
trigonal bipyramid is adopted.

For two-dimensional bonding, for 3 pairs triangular bonding is ideal; for 4 pairs, square bonding;
for 2 pairs, the diametric line. If there are lone pairs, things become more complicated as the
Coulomb repulsive energy of lone pairs is somewhat larger than that of bonding pairs. If lone pairs
are present in the valence shell, a compromise is reached for a less symmetrical bonding scheme.

The idea of electron pair bonding was proposed by G. N. Lewis and that of the octet structure
was proposed by I. Langmuir before the advent of quantum mechanics; these ideas were synthesized
to form valence shell electron pair repulsion theory, based on quantum mechanics. It is interesting
to observe that the secret of this age-old chemical wisdom is the many-body correlation of electrons.

11.3.3 The Hückel Approximation for the Molecular Orbital Method

The Hückel approximation introduces a drastic simplification making the molecular orbital
method possible to treat quite complicated organic molecules. Its basic assumption is that the
carbon ion core and the localized σ-bonding electrons are to be regarded as a ‘scaffold’ or ‘skeleton’
for the electrons to move around; i.e., every π-electron moves in the effective field of the scaffold and
other electrons. Then the Schrödinger equation for a single π-electron can be written as follows:

(

− h2

2m
∇2 −

∑

i

e2

ri

)

ψ = Eψ, (11.3.5)

where ψ is the π-molecular orbital, and E is the energy eigenvalue. We may put pz orbitals of all
carbon atoms into LCAO for variation:

ψ =

N
∑

i=1

ciφi (11.3.6)

and then we get a linear set of secular equations:

(H11 − E)C1 + (H12 − ES12)C2 + · · · + (H1N − ES12)CN = 0,

. . . . . . . . . . . . ,

(HN1 − ESN1)C1 + (HN2 − ESN2)C2 + · · · + (HNN − E)CN = 0,

(11.3.7)

where the AOs φ1, φ2, . . . , φN are supposed to be normalized; Hrs and Srs denote the energy integral
and overlap integral, respectively.
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In Hückel’s treatment, further simplifications are introduced by setting
(1) the Coulomb integral equal to Hrr = α,
(2) the resonance integral equal to Hrs = β if the r-atom connects with the s-atom, otherwise

Hrs = 0,
(3) the overlap between neighboring atoms is ignored Srs = 0 when r �= s.
Let energy E scale with ε, with α setting the zero point, it is found that

α − E

β
= −ε or E = α + βε. (11.3.8)

Thus the secular equations are highly simplified.
The Hückel approximation is a powerful tool to treat problems of the electronic structures of

complex organic molecules. Take conjugated molecules with rings such as benzene C6H6 as an
example: It is a ring with N = 6 members. It is quite easy to treat the general case in which N
equals any integer. The simplified secular equations may be written immediately as follows,

−εc1 + c2 + cN = 0,

. . . . . . . . . . . . ,

cm−1 − εcm + cm+1 = 0,

. . . . . . . . . . . . ,

c1 + cN−1 − εcN = 0.

(11.3.9)

In fact, we only need to consider one general equation in Eq. (11.3.9),

cm−1 − εcm + cm+1 = 0,

which relates three neighboring coefficients. For the ring-like organic molecule shown in Fig. 11.3.2,
the boundary condition must be periodic,

c0 = cN , cN+1 = c1, (11.3.10)

N=1 N=∞N=3 N=4 N=5 N=6

ε=α 4β

Antibonding

Bonding

Nonbonding

}

}

Figure 11.3.2 Conjugated rings and their energy level diagrams. Note when N increases, discrete levels
are transformed into a continuous band.

Now we take the coefficient cm with quantum number k as

ck
m = ck exp

(

2πimk

N

)

, (11.3.11)

and substitute it into Eq. (11.3.9), so

εk = 2 cos

(

2kπ

N

)

, (11.3.12)
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and the eigenenergy is

Ek = α + 2β cos

(

2πk

N

)

, (11.3.13)

where

k = 0,±1, . . . ,

{

±(N − 1)/2, for N = odd

±N/2, for N = even.
(11.3.14)

A couple of k with the same value but opposite sign correspond to two different solutions with the
same energy. So, except the first MO (k = 0) and the final MO (k = N/2) of an even number ring,
all other MOs are travelling wave solutions corresponding to the electron moving in one direction
(k positive) around the ring or opposite (k negative).

Energy levels are distributed about E = α, with symmetry if N is even; with asymmetry if N
is odd, as shown in Fig. 11.3.2. However, their energy levels have upper bound 2β and lower bound
−2β, when N → ∞, a densely populated continuous one-dimensional energy band with band width
4β is formed. This calculation may help us to trace how the bond approach is transformed into the
band approach.

For long chain polymers such as (CH)n, [Pt(CN)
2−
4 ], . . . , if N is sufficient large, end effects can

be neglected. Their electronic structure may be mimicked by that of the N -ring with N → ∞, i.e.,
a 1-D band structure with additional complexity due to chemical structure.

11.3.4 Electronic Structure of Some Molecules

In this section we shall discuss the electronic structure of some selected molecules to show the
results of quantum chemical calculation.

(1) Water (H2O)
Perhaps water is the most important substance both in the physical and in the life sciences.

Water is also noted for its anomalous physical and chemical properties, so it is interesting to study its
electronic structure. MO calculation gives the diagram of energy levels for H2O shown in Fig. 11.3.3.
The ground state configuration is (1a) (2a) (1b) (3a) (1b): here (1a) represents the inner 1s electron
pair of oxygen atom; (2a) and (1b) are two pairs of bonding electrons, corresponding to two O-H
bonds; (3a) and (1b) represent two pairs of non-bonding electrons of oxygen atoms, called lone-pairs.

p

s

b1,b2

h,h'

2b2

4a1

1b1

3a1

1b2

2a1

φa1

φb1

a2b(H1s)

Ha,HbH2OO

Figure 11.3.3 Energy level diagram of H2O.

With the formation of the H2O molecule, the valence shell of the oxygen atom is filled with the
octet set of electrons, so it is very stable. According to the valence shell electron-pair repulsion rule,
the spatial arrangement of bonding pairs and lone pairs should be nearly tetrahedral. Due to the fact
that the repulsive force between the lone-pairs is slightly larger than that between bonding pairs, the
angle between the two O-H bonds is 104.5◦, somewhat less than the ideal tetrahedral angle of 109.5◦.
However, the incipient tetrahedral coordination should be noted. As partners of covalent bonding,
oxygen and hydrogen atoms are actually unequal in strength, so polar covalent bonding results.
H2O is a strongly polar molecule, with the region near the protons positively charged and the region
near the lone-pairs in the oxygen atom negatively charged. The lone-pair electrons may attract
protons in nearby H2O molecule to form hydrogen bonds. Hydrogen bonds, though much weaker,
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are also directional in real space like covalent bonds, but their origin is based on the attraction of
unlike charges, somewhat like ionic bonds. This is why water molecules appear in the associated
state. When NaCl is dissolved in water, each Na+ or Cl− ion is surrounded by a spherical shell
of regularly arranged polar water molecules that are electrostatically attracted to it — a process
called hydration. Hydration is the reason why water is such a good solvent for various salts and
other substances. In some biochemical processes, the ions with their hydration spheres should be
regarded as an entity somewhat like a molecule, say, when considering their passage through small
pores in a membrane. When water is frozen into ice, it has a crystal structure like that of hexagonal
diamond in which tetrahedral coordination is clearly displayed and hydrogen bonds and covalent
bonds supplement each other. When ice is melted, this structure collapses, some of the hydrogen
bonds are ruptured, so tighter packing of molecules is achieved making water denser than ice.

(2) Aromatics

Benzene and its derivatives are important organic molecules. The classical structural formula for
benzene is characterized by an alternate arrangement of single and double bonds, known as Kekulé
structures, shown in Fig. 11.3.4. Experimental results confirm that the six carbon bonds are actually
identical in length and bond strength. So, according to molecular orbital theory, these π bonds are
delocalized, shared by different carbon atoms; note the double-doughnut-shaped electron cloud (see
Fig. 11.3.6) which Pauling called the ‘resonance’ between the two equivalent Kekulé structures.
Nuclear magnetic resonance spectra show evidence of the existence of a ‘circular current’ of these
delocalized π-electrons, induced by the magnetic field.
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Figure 11.3.4 Structure of benzene. (a) Kekulé structures, (b) electron density for delocalized π electrons
of benzene.
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Figure 11.3.5 Structure and optical absorption
of benzene and other molecules with planar region
of fused rings (polyacenes).
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Figure 11.3.6 The molecular orbital energy
levels of naphthalene. (a) Calculated by the
Hückel approximation, (b) calculated by the
Hückel approximation with additional overlap
correction (l = 0.25).
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Several planar benzene rings may share edges, and naphthalene, anthracene and other molecules
are formed in this manner as shown in Fig. 11.3.5. Figure 11.3.6 shows the energy levels of naphtha-
lene calculated according to the Hückel approximation and those with additional overlap correction.
Note the change from a symmetrical arrangement of levels around ε = α, to an asymmetrical ar-
rangement; furthermore there is an energy gap between the lowest unoccupied molecular orbital
(LUMO) and the highest occupied molecular orbital (HOMO) which plays a crucial role in optical
transitions somewhat akin to band gaps in crystals. These molecules display interesting electronic
and optical properties.

(3) Fullerene C
C60 is the soccer ball shaped molecule which consists of 60 carbon atoms arranged in a truncated

icosahedron with icosahedral symmetry, the highest symmetry possible for a molecule. It is a great
credit to quantum chemists to have predicted the existence of C60 and even published the MO and
energy level sequence shown in Fig. 11.3.7 before the actual discovery of C60 molecule by Kroto,
Smalley and Curl in 1985. It is easy to recognize that 60 electrons fill up 30 bonding MOs with
a large gap between LUMO and HOMO, which testify to its stability.g Then other fullerene and
carbon nanotubes were synthesized, and many novel properties were discovered. Their significance
for chemistry, condensed matter physics and materials science cannot be overestimated.

E

LUMO

HOMO

Figure 11.3.7 Energy levels of C60 from HMO calculation.

§11.4 Ions in Anisotropic Environments

11.4.1 Three Types of Crystal Fields

In §11.1 we were essentially concerned with free atoms or free ions. We have seen that for a
hydrogen atom, orbitals with the same principal quantum number n are n2-fold degenerate; however,
in many-electron atoms, this degeneracy is partially lifted, the energy degeneracy in orbitals is now
limited to the same sub-shell with the same angular momentum quantum number l, such as 3d or 4f.
If an atom or an ion is situated on a site in a crystal, the energy levels of this atom or ion certainly
will be influenced by the anisotropic environment, i.e., the crystal fields. So further lifting of the
energy degeneracy, or in other words further splitting of energy levels, will be expected. We have
already seen that, in the experimentally measured magnetic moments of 3d transition metal ions,
contribution from the orbital part is entirely missing. Presumably this is also the effect of crystal
fields. To study the effect of crystal fields on atoms or ions is actually doing atomic physics in the

gEarly in 1971, E. Osawa described C60 as the structure like a soccer ball in his book Aromatics; later the Russian
scholar Bochvar discussed C60’s structure by the Hückel approximation, see I. V. Stamkevich et al., Russ. Chem.
Rev. 53, 604 (1984); then R. A. Davidson published his calculation, see R. A. Davidson, Theor. Chem. Acta. 58,
193 (1981).
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anisotropic environment. According to the strength of the crystal field, we may distinguish three
types of crystal field effect:

1) The weak case (exchange splitting > spin-orbit coupling > crystal field)
This is the case for rare earth atoms in crystal fields: the 4f orbitals lie so deep within the

ion core that other occupied shells of the same ion nearly screen out the electrostatic potential of
neighboring ions. Thus, this situation is hardly different from the free ion. Even Hund’s 3rd rule
takes precedence over the crystal field effect.

2) The medium case (exchange splitting > crystal field > spin-orbit coupling)
This is the case for transition metal ions (particularly 3d-ions). Since crystal fields now dominate

the spin-orbit coupling, Hund’s 3rd rule ceases to apply and J is no longer a good quantum number.
This is why orbital magnetic moments are quenched by crystal fields.

3) The strong case (crystal field > exchange splitting > spin-orbit coupling)
Now the crystal field is comparable to (or even larger than) the exchange splitting, which gives

rise to Hund’s 1st and 2nd rule, so it mixes the states with those of other terms. This is the case for
some 4d and 5d transition metal compounds, for which the mixing of the d-orbitals of the central
cation with the p-orbitals of the surrounding anions should be taken into account. These are the
subject of ligand field theory, to be distinguished from crystal field theory which uses a purely ionic
description.

11.4.2 3d Transition Metal Ions in Crystal Fields

Initially, we shall focus our attention on the case of medium crystal fields, i.e., 3d transition
metal ions with an incomplete d-electron shell in the center of an oxygen octahedron. Consider the
case of LaTiO3 with an ideal perovskite structure, in which the Ti ion is situated at the center of
an oxygen octahedron as shown in Fig. 11.4.1.

Figure 11.4.1 Local environment of a transition metal ion at the center of the oxygen octahedron.

The ionic state of LaTiO3 can be summarized as La3+, Ti3+, O2−, in which La3+ and
O2− have closed shells; the magnetic moment is carried by the single d-electron of the Ti3+ ion.
Surely the motion of this d-electron is governed not only by the potential of the Ti ion core, but also
by the electrostatic potential of the surrounding six O ions, so the Hamiltonian for the 3d electron
is written as

H3d(r) = H(Ti)(r) +

6
∑

j=1

V (O)(r − Rj). (11.4.1)

The crystal field effect in an octahedral field can be understood qualitatively by the symmetry
argument shown in Fig. 11.4.2. In a free ion, the orbitals of the 3d electrons are 5-fold degenerate. In
a crystal field, lobes of dx2−y2 and dz2 orbitals point directly to point charges of the O anions leading
to a strong interaction. The Coulomb repulsive energy raises up their energy levels, while the lobes
of the dxy, dyz , dzx orbitals point in the diagonal directions, avoiding the O anions, and these energy
levels will be lowered. So originally degenerate levels will split into two groups, the lower triplet one,
called t2g, the higher doublet one, called eg. For La2CuO4, the parent compound of the first high Tc
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dxy ,dyz ,dzx dx2-y2 dz2(a) (b) (c)

Figure 11.4.2 3d orbitals of a center ion in the octahedral environment of O anions.

superconductor, the local environment of the Cu ion is approximately octahedral. Its valence state
is identified as La3+, Cu2+, O2−

4 , the ion with the partially filled shell is Cu in the 3d configuration.
The problem is rather similar to Ti3+: In the case of the Ti ion, we are concerned about only the
d-state which is occupied; in the case of the Cu ion, the d-state has an unoccupied hole.

For tetragonal and cubic crystal fields, a similar argument may reverse the energy sequence for
t2g and eg. More elaborate consideration of the point group symmetry of the crystal field will reach
the same conclusion. The energy of this splitting is denoted by ∆; its value can be calculated
theoretically through more elaborate manipulation using the Hamiltonian in Eq. (11.4.1).

11.4.3 Jahn Teller Effect

Returning to our example of a Ti3+ ion at the center of a ideal oxygen octahedron, the ionic
ground state is predicted to be orbitally degenerate, i.e., we cannot distinguish the orbitals in a
doublet eg or triplet t2g. However, this is forbidden by the Jahn–Teller theorem which states: if the
symmetry of the crystal field is so high that the ground state is predicted to be degenerate in energy,
then spontaneous distortion should appear to lift the orbital degeneracy. This sort of distortion is
called the Jahn–Teller effect. In the case of the Ti ion in the O octahedron, we assume that the
octahedron is elongated along the z-axis by δz (see Fig. 11.4.3), this tetragonal distortion induces
the distance between two ions in the z direction to become larger than the corresponding distances
along the x- and y-axes. The difference in the Coulomb repulsion between the orbitals along the
z-direction and those in the x-, or y-direction will lift the energy degeneracy (see Fig. 11.4.4).

δz

Figure 11.4.3 Jahn–Teller distortion of
an oxide octahedron.

d

t2g

eg

E0

dx2-y2

dx2

dxy

dxx,dyz

Figure 11.4.4 Energy levels in octahedral
crystal field.

The energy relationship in the Jahn–Teller effect is summarized as follows: the distortion of the
octahedron costs an elastic energy αδ2

z ; the splitting of electronic energy level is proportional to δz;
two electrons drop to a lower level, but one electron rises to a higher level, and the net gain in energy
is −βδz. Thus, the total energy αδ2

z − βδz is minimized by finite distortion δz = β/2α. This neatly
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explains why the Jahn–Teller effect appears spontaneously. However, it should be noted that, for
linear molecules such as CO2, the Jahn–Teller distortion is absent.

The Jahn–Teller effect was originally formulated for molecules, and then extended to crystalline
states. In crystalline states, Jahn–Teller complexes, e.g., distorted octahedra with elongated axes
may be distributed randomly along the x-, y- and z-axes, called the random state; or coupled
together along one axis, either in a parallel or an antiparallel pattern; these are called ferrodistortive
or antiferrodistortive states. Phase transitions may occur between these states and this is known
as the cooperative Jahn–Teller effect. It is interesting to note that if we visualize the ground state
orbitals, orbital-ordering is accompanied by the ordering of Jahn–Teller complexes. However, orbital-
ordering may be decoupled from the Jahn–Teller effect, with purely electronic origin or coupled with
magnetic ordering.

In this section we have used z-axis elongation of oxygen octahedra as an example of Jahn–Teller
effect mainly for its easy visualization; the actual distortion may be more complex and more difficult
to imagine.

11.4.4 Ions in Ligand Fields

Let us consider the case where this is a strong crystal field in which covalent bonds may be formed
between the central ion and its neighboring atoms, i.e., ligands. The same is true for the case of
transition metal complexes, or coordination compounds, in this case, the ligands are nonmetallic
atoms or molecules, such as TiF3−

6 , Fe(CN)4−6 , . . . , etc.
Now the situation is more complicated than ions in an ordinary crystal field. In addition, MOs

must be introduced to account for the covalent bonds between the central metal ion M and the
ligands, L, while the symmetry arguments of crystal field theory are still qualitatively valid.

Consider the case of complexes ML6 with octahedral structure, with M at the origin of Cartesian
coordinates, and 6 Ls at equal distances from the center. MOs may be divided into two groups: σ:
s, px, py, pz, dx2−y2 , dz2 ; π: dxy, dyz, dzx. New orbitals are formed in the ligands to match the
corresponding σ bonds and π bonds. Due to the fact that dxy, dyz, dzx orbital lobes mismatch those
of L (see Fig. 11.4.2), they become nonbonding orbitals. 6 orbitals of M and 6 orbitals of L form
12 delocalized MOs, one half are bonding orbitals, the another half are antibonding orbitals. The
energy levels are shown schematically in Fig. 11.4.5.
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3d ∆0

Figure 11.4.5 The energy levels
for the MOs of octahedral transition
metal complexes.
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Figure 11.4.6 The electronic spin tran-
sition of Fe2+ ion in octahedral conju-
gated molecules.

Here the sequence of antibonding doublet e∗g and nonbonding triplet t2g just corresponds to that
of eg and t2g in the case of ions in crystals, so the analysis, from point symmetry consideration of
the octahedral field, is still valid for the case of the ligand field; however, the value of the splitting
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energy ∆ is somewhat modified. To calculate the value of ∆ directly from ligand field theory is quite
difficult, so we may deduce these values from optical absorption spectra. Most of these complexes
have optical absorption in the visible region. The simplest case is [Ti(H2O)6]

3+: It has an absorption
band at 20 000 cm−1, which corresponds to the transition from t2g to e∗g, so the approximate value
is found to be 20 000 cm−1 or 2.4 eV. In general, the values lie between 1 ∼ 4 eV for most of these
complexes.

Their magnetic properties are also very interesting. Take the vanadium complex [V(H2O)6]
3+ as

an example: Its central ion is V3+ with two valence electrons. We must put these two electrons into
the lowest triplet t2g levels; according to Hund’s rule, they should occupy two different degenerate
levels with parallel spins.

For the chromium complex [Cr(H2O)6]
3+, we predict that three degenerate t2g levels should be

filled with parallel spins. However, for [Cr(H2O)6]
2+, with four electrons, there are two alternatives:

either go into another t2g orbital with antiparallel spin, or put into a higher eg level with parallel
spin and gain Coulomb energy. Which state is realized depends on the value of ∆. A low value of
∆ favors the state with high spin (HS), while a high value of ∆ favors the state of low spin (LS). In
Table 11.4.1 we find that, when the number of d-electrons nd ≤ 3 or nd ≥ 8, the situation is clear,
and the complex is in the HS state. For 4 ≤ nd ≤ 7, there are two alternatives: either the HS state
or LS state. The equilibrium state at 0 K depends on the energy or enthalpy.

It is interesting to observe that, in some cases, the spin crossover from the LS state to HS state
may be induced by change of temperature, pressure or irradiation by light. For instance, consider
an Fe2+ ion surrounded by six ligands at the corners of an octahedron. The enthalpy of the LS
state is slightly less than the HS state (see Fig. 11.4.6). At low temperature, the thermodynamically
stable state is the LS state. Assume T1/2 stands for the temperature for which there is coexistence
of 50% of LS and 50% of HS complexes. When the temperature is higher than T1/2, the HS state
becomes the thermodynamically stable state, because the entropy associated with the HS state
is larger than that associated with the LS state, then the entropy gain term ∆S outweighs the
energy (or the enthalpy) loss. This spin-crossover or transition is the physical basis of the new
type of magnetic memory devices in the fast-developing field of molecular magnetism.h It should be
remembered that the competition between high and low spin states may occur in the cases of ions
in a crystal environment, such as ions with 3d6 configuration (realized by Fe2+ and Co3+ ions) in
oxygen octahedra.

Table 11.4.1 High-spin and low-spin complexes with octahedral structures.

Number of d-electrons High-spin state Low-spin state
t2g eg n p t2g eg n p

1 —↑ — — — — 1 1.73
2 —↑ —↑ — — — 2 2.83
3 —↑ —↑ —↑ — — 3 3.87
4 —↑ —↑ —↑ —↑ — 4 4.90 —↑↓ —↑ —↑ — — 2 2.83
5 —↑ —↑ —↑ —↑ —↑ 5 5.92 —↑↓ —↑↓ —↑ — — 1 1.73
6 —↑↓ —↑ —↑ —↑ —↑ 4 4.90 —↑↓ —↑↓ —↑↓ — — 0 0
7 —↑↓ —↑↓ —↑ —↑ —↑ 3 3.87 —↑↓ —↑↓ —↑↓ —↑ — 1 1.73
8 —↑↓ —↑↓ —↑↓ —↑ —↑ 2 2.83
9 —↑↓ —↑↓ —↑↓ —↑↓ —↑ 1 1.73

Previously, we have discussed the coordination compounds formed by σ-electron donation.
Furthermore, organometallic coordination compounds may be formed by combining conjugated
molecules with transition metal ions through π-electron donation. We may take ferrocene
(Fe(C5H5)2) as an example (see Fig. 11.4.7). The problem is how to combine the two π-MOs and the
AO of Fe. The calculation by quantum chemistry gives the energy levels shown in Fig. 11.4.8: there

hO. Hahn and C. J. Marlinez, Science 279, 44 (1998).
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Figure 11.4.7 The structure of ferrocene.
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Figure 11.4.8 The energy levels of ferrocene.

are six bonding MOs, three nonbonding MOs and a high-energy antibonding MO. Nine low-energy
obitals contain 18 electrons (two C5H5 provide ten π-electrons and Fe atom (d6s2) provides eight
electrons), forming the full electron shell of the inert element Kr (d10s2p6). We can also find the
magnetism of ferrocene from Fig. 11.4.8: It is antiferromagnetic because the nine MOs are occupied
by electrons. If we replace an Fe atom by a C atom, an extra electron will take the first antibonding
MO, so this would be ferromagnetic but not stable: If we substitute a Ni atom, two extra elec-
trons will occupy a pair of antibonding MOs, and this is ferromagnetic according to the Hund’s
rule. The treatment of ferrocene above may be extended to other metallic coordination compounds
with different rings. This kind of coordinate compounds provides a new opportunity for research on
molecular magnets.
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Chapter 12

Band Approach

One of the most important aspects of condensed matter physics involves the electronic properties
of many-particle systems. Energy band theory, based on the single-electron approximation, provides
a conceptual framework for understanding a large part of the electronic properties of solids. As
discussed in Chaps. 5 and 6, band theory is the basis for electrical classification of crystals as metals,
semiconductors and insulators. Besides electrical properties, this theory is capable of explaining
optical, magnetic and thermal properties. Next we introduce the many-particle Hamiltonian and
the various approximations which give justification to, as well as show the limitations of, the single-
electron approximation. Further, density functionals are introduced, which replace wavefunctions
in the calculation of electronic structure; these procedures have proved to be effective and efficient.
Finally, the results of band calculation are discussed and compared with the properties of various
types of materials.

§12.1 Different Ways to Calculate the Energy Bands

As was stated in §5.2, in one-electron approximations, like the near-free electron model or the
tight-binding electron model for crystalline materials, a set of independent electrons moving in a pe-
riodic potential leads to a band picture. However, nearly-free and tight-binding electron models are
too crude to be useful in calculations that are to be compared with experimental results. More reli-
able band structure calculations in solids involve a lot of methods, such as the orthogonalized plane
wave method, pseudopotential method, cellular method, augmented plane wave (APW) method,
etc. In this section we shall introduce some of the common methods employed in calculations of real
bands. The primary differences among the various methods of band calculations include two aspects:
one is to choose a reasonable set of functions in which to expand the electronic wavefunctions, and
the other is to approximate the real crystalline potential by an effective potential.

12.1.1 Orthogonized Plane Waves

The simplest complete orthogonal set of functions is plane waves,

|k + G〉 = Ω−1/2ei(k+G)·r, (12.1.1)

where Ω is the volume of a crystal and G denotes the reciprocal lattice vectors. In principle, the
wavefunction of an electron in a crystal can be expanded in plane waves,

ψk(r) = Ω−1/2
∑

G

c(G)ei(k+G)·r. (12.1.2)

We substitute this into the Schrödinger equation, and get the secular equations,

∑

G′

{[

�
2

2m
(k + G)2 − E(k)

]

δGG′ + V (G − G′)

}

c(G′) = 0, (12.1.3)
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where the Fourier coefficients are,

V (G − G′) =
1

Ω

∫

drV (r)e−i(G−G′)·r. (12.1.4)

The requirement of nontrivial solutions for (12.1.3) gives the following determinant equation,

∣

∣

∣

∣

[

�
2

2m
(k + G)2 − E(k)

]

δGG′ + V (G − G′)

∣

∣

∣

∣

= 0. (12.1.5)

Diagonalizing this determinant, the eigenvalues E(k) and the coefficients c(G) can all be obtained.
In deriving the secular equations (12.1.3), we did not have to assume that V (r) was small, and in

principle this set of equations enables us to find the energies E(k) and the wavefunctions ψk(r) for
an electron moving in any periodic potential V (r). However, in practice, the equations can only be
solved at all easily if most of the coefficients V (G) are small (compared with the Fermi energy EF).
In the nearly-free electron approximation we assumed that they are all small, so that the solution
wavefunctions contain only a few nonzero Fourier coefficients c(G). In reality, this will not be so:
V (r) varies rapidly with r near the nuclei. Consequently the coefficients V (G) are large, and only
decrease in magnitude slowly as |G| increases. These equations then become a formidably large set
of coupled equations. The solution wavefunctions contain many Fourier components, and within the
ion core at least, they look nothing like plane waves. Physically, this is just what we should expect:
within the ion cores, ψ(r) must look something like an atomic wavefunction, and such a function
will certainly need many Fourier components to represent it adequately. The energy bands of simple
metals appear to be described well by the nearly-free electron (NFE) approximation; however, there
are still some discrepancies. The reason for this is that the bands of simple metals originate from the
s- and p-electrons. These states must be orthogonal to the s- and p-core functions, which oscillate
with very short wavelengths.

Herring provided a modification in which the base functions include not only the plane waves
with smaller momentum k + G, but also the isolated atomic wavefunctions with larger momentum,
achieved by adding a sum of Bloch functions to the plane wave so that the orthogonalized plane
wave (OPW) corresponding to k is

φk(r) = Ω−1/2eik·r −
∑

j

µjkφjk(r), (12.1.6)

where φjk are Bloch functions formed from atomic orbitals χj(r) that describe core states

φjk(r) =
1√
N

∑

l

eik·Rlχj(r − Rl). (12.1.7)

For example, to calculate the energy bands of potassium through to zinc, the Bloch functions included
in the OPWs would be formed from the 1s-, 2s-, 2p-, 3s-, 3p-orbitals of the atom.

The conduction electron wavefunction should be orthogonal to the core states so the coefficents
µjk are then determined by µjk = Ω−1/2

∫

φ∗
jkeik·rdr, which enables the wavefunction in (12.1.2) to

be orthogonal to all the core states φjk. The OPW (12.1.6) has just such a character: within each
ion core the φjk terms are large; and outside it, they are small, as shown in Fig. 12.1.1. Now we use
a set of OPWs to form a Bloch wave,

ψk(r) =
∑

G

cGφk+G(r). (12.1.8)

This method leads the secular determinant for the eigenvalues to be identical with the NFE
determinant, although, in addition to the Fourier component of the crystal potential V (G), there
is a repulsive contribution from core-orthogonality. This tends to cancel the attractive Coulomb
potential term in the core region, which results in much smaller Fourier components and hence
nearly-free-electron-like behavior of the band structure of simple metals.



· 303 ·§12.1 Different Ways to Calculate the Energy Bands

(a)

(b)

(c)

Figure 12.1.1 (a) Plane wave, (b) core state and (c) orthogonal plane wave state.

12.1.2 Pseudopotential

The OPW method leads in a natural way to the concept of pseudopotential. The true lattice po-
tential V (r) is replaced by a much weaker potential V ps(r) which preserves the original eigenenergies
E(k).

Suppose we write the eigenfunction of the Schrödinger equation as

ψk(r) = ψps
k −

∑

j

µjφj , (12.1.9)

where ψps
k is a plane-wave-like function and φj an atomic function. The sum over j extends over

all the atomic shells which are occupied; for example, in Na, the sum extends over 1s, 2s, and 2p
shells. The coefficients µj are chosen such that the function ψk(r), representing a 3s-electron, is
orthogonal to the core function φj . By requiring this orthogonality, we ensure that the 3s-electron,
when at the core, does not occupy the other atomic orbitals already occupied. The function ψk has
the features we are seeking: away from the core, the atomic functions φj are negligible, and thus
ψk = ψps

k , a plane wave-like function. At the core, the atomic functions are substantial and act so
as to induce rapid oscillations, as shown in Fig. 12.1.2(a).

(a) (b)

Figure 12.1.2 The pseudopotential concept: (a) The actual potential and corresponding wavefunction,
(b) the pseudopotential and corresponding pseudofunction.

If we now substitute ψk into the Schrödinger equation, then

(

− �
2

2m
∇2 + V

)

ψk = E(k)ψk, (12.1.10)

and we also, approximately, have

(

− �
2

2m
∇2 + V

)

φj = E(j)φj . (12.1.11)
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Rearranging the terms, one finds that the equation may be written in the form

(

− �
2

2m
∇2 + V ps

)

ψps
k = E(k)ψps

k , (12.1.12)

where

V ps = V +
∑

j

(E(k) − Ej) |φj〉〈φj |. (12.1.13)

These results are very interesting. (12.1.12) shows that the effective potential is given by V ps,
while (12.1.13) shows that V ps is weaker than V , because the second term on the right of the equation
tends to cancel the first term. This cancellation of the crystal potential by the atomic functions is
usually appreciable, often leading to a very weak potential, known as the pseudopotential. Since
V ps is so weak, the wavefunction as seen from (12.1.12) is almost a plane wave, given by ψps

k , and
is called a pseudofunction. The pseudopotential and pseudofunction are illustrated graphically in
Fig. 12.1.2(b). Note that the potential is quite weak, and, in particular, the singularity at the core
is entirely removed. Correspondingly, the rapid oscillations in the wavefunction have been erased,
so that there is a smooth plane-wave-like function.

Now we can understand why the valence electron in Na, for instance, seems to behave as a
free particle despite the fact that the crystal potential is very strong at the ionic cores. In fact,
when the exclusion principle is properly taken into account, the effective potential is indeed quite
weak. The free-particle behavior, long taken to be an empirical fact, is now borne out by quantum-
mechanical calculations. The explanation of this basic paradox is one of the major achievement of
the pseudopotential method. This method has also been used to calculate band structures in many
metals and semiconductors, such as Be, Na, K, Ge, Si, etc., with considerable success.

It was realized that, except for the transition metals and the rare-earth metals which have unfilled
d or f shells, the NFE model in fact works remarkably well: the band structure and the shape of the
Fermi surface can be quite closely reproduced by choosing the right values for a few coefficiets V (G)
in the expansion and setting the rest equal to zero. These V (G) are, in fact, the Fourier coefficients
of a rather weak and smoothly-varying pseudopotential V ps(r) for which the conduction electron
band structure E(k) happens to be much the same as for the (far stronger) potential V (r). The
corresponding wavefunctions

ψps(r) =
∑

c(G)ei(k+G)·r (12.1.14)

vary smoothly throughout the unit cell.

Unfortunately, the pseudopotential approach, like the OPW approach, fails for the transition
metals and the rare-earth metals, where there is no clear dividing line between tightly-bound core
electrons and loosely-bound valence electrons. Correspondingly, the NFE approximation is of no use
as a guide to the band structure of these metals, though it is very useful, as originally intended, for
the treatment of electrons in metals such as Na, K and Al.

12.1.3 The Muffin-Tin Potential and Augmented Plane Waves

From the start we have emphasized there are two different approaches for the energy bands of
periodic solids: one approach is the NFE model, with pseudopotential theory as its improved form;
another is the TBE model, in which the LCAO approximation is generally adopted. To combine
the advantages, and to avoid the disadvantages, of both approaches is a crucial problem for band
calculations. J. C. Slater (1937) proposed the concept of a muffin-tin potential to solve this problem:
The periodic potential for the energy band is clearly divided into two parts: a spherically symmetric
atomic potential for the region within ion cores; a constant potential (generally chosen to be zero)
for the open space between ion cores. So the muffin-tin potential is expressed as

V (r) =

{

Va (r) , r < rc;

0, r ≥ rc.
(12.1.15)
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Here rc is the radius of an ion core, surely smaller than the Wigner–Seitz (WS) radius r, so no contact
or overlap of ion cores occurs (Fig. 12.1.3). The Muffin-tin potential may be easily generalized to
the case of a lattice with a basis, in which ion cores with different radii are chosen.

There are many methods of calculating band structures

Figure 12.1.3 A schematic diagram
for the muffin-tin potential.

utilizing the muffin-tin potential; we choose the augmented
plane wave (APW) method as an illustrating example. The
wavefunction for the wavevector k is now taken to be

wk =

{

atomic function, r < rc;

Ω−1/2eik·r, r ≥ rc.
(12.1.16)

Inside the core the function is atom-like, and is found by solv-
ing the appropriate free-atom Schrödinger equation. Outside
the core the function is a plane wave because the potential
is constant there. The atomic function in (12.1.16) is chosen
such that it joins continuously to the plane wave at the surface
of the sphere forming the core; this is the boundary condition
here.

The function wk does not have the Bloch form, but this can be remedied by forming the linear
combination

φk =
∑

G

a(k + G)wk+G, (12.1.17)

where the sum is over the reciprocal lattice vectors, which has the proper form. The coefficients
a(k + G) are determined by requiring that φk minimize the energy. An augmented plane wave
consists of a plane wave Ω−1/2 exp(ik ·r) in the region between the spheres, and a linear combination
of atomic-like wavefunctions satisfying the spherically symmetric potential within each sphere; the
linear combination is chosen to match the plane wave at the surface of the sphere, so that the resultant
APW wavefunction, φk(r), is continuous across this surface. With composite wavefunctions, the
APW method seems to attain the initial goal for combining both the NFE approach and the TBE
approach.

The Bloch wave ψk(r) is now written as a sum of APWs

ψk(r) =
∑

G

c(G)φk+G(r), (12.1.18)

and the coefficients c(G) are chosen by a variational method to give the best solution. The equations
determining these coefficients turn out to be almost identical in form to (12.1.3). But the coefficients
V (G) are no longer just the Fourier coefficients of V (r); they are much more complicated objects.
Nevertheless, relatively few of these coefficients are important, so the coupled set of equations is
of manageable size and can be reasonably solved by computer. In practice, the series in (12.1.18)
converges quite rapidly, and only four to seven terms (sometimes even less) suffice to give the
desired accuracy. The APW is a sound and powerful method for calculating band structures in
solids, especially for transition metals and rare earths.

There are many other methods for band-calculation using muffin-tin potentials, such as the
Korringa–Kohn–Rostoker (KKR) method, muffin-tin orbitals (MTO) method, as well as linearized
APW (LAPW) and linearized MTO (LMTO) but we shall not go into details of these here. For
reference, the advanced textbook of J. Callaway (1996) is recommended.

12.1.4 The Symmetry of the Energy Bands and the k · p Method

The symmetry of crystal structures greatly simplifies band-calculations. The basic principle of
symmetry of energy bands can be stated as follows: The energy function in the Brillouin zone has
the full point group of the crystal; any symmetry operation, such as rotating the crystal around an
axis that leaves it invariant, also transforms k into itself. Moreover, due to the fact the Hamiltonian
for the one-electron Schrödinger equation is real, E(k) = E(−k). This is true for any symmetry of
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Figure 12.1.4 Symmetry points in the Brillouin zones of different real lattices: (a) sc, (b) fcc, (c) bcc,
(d) sh.

the crystal, even for crystals without inversion symmetry. Actually, this arises from time reversal
symmetry, and is called Kramers degeneracy.

Symmetry points and lines in the Brillouin zone for the sc, fcc, bcc, and sh structures are shown
in Fig. 12.1.4; note the symbols for the symmetry points. We may obtain further information about
the energy bands in the crystal by analogy with the crystal field splitting of atomic states.

We will select some special wavevectors corresponding to symmetry points in the Brillouin zone
(BZ), such as the central point Γ, where k = 0. We classify these states using group theory: as
the wavevector moves away from this point, the group of wavevectors becomes smaller, and some
degeneracies are lifted. A fair amount of information about the energy bands may be gathered
from symmetry analysis alone, but to obtain the bands themselves requires detailed calculation. In
general, the higher the symmetry of the point in the zone, the lower the amount of computational
expenditure. So, group theory is an indispensable tool for actual calculation of the energy bands.

From the energy band calculation scheme outlined above, we can get the energy bands in the
whole Brillouin zone. However, for some properties, such as the electrical properties of semiconduc-
tors, the important charge carriers (electrons and holes) are distributed in a small region around
the bottom of the conduction band or near the top of the valence band. At room temperature,
kBT = 26 meV, so only the band structure near the bottom of the conduction band or the top of the
valence band may influence the electrical properties. Although conventional band calculations can
give some information about the band structure in these regions, they are not very accurate and we
need a good tool for analyzing problems and obtaining a quantitative relationship between energy
E and wave vector k.

The k · p perturbation method has been developed to fulfill this need. It takes the energy and
wavefunction at k = 0 as the zeroth approximation, and terms related to k in the Hamiltonian as
the perturbation terms, and then gets the band structure near k = 0 through the 1st order and 2nd
order perturbations. Assuming the extrema of both the conduction and valence bands are situated
at k = 0, we can substitute the crystal wavefunction eik·runk(r) into the single-electron Schrödinger
equation

[

p2

2m
+

�

m
k · p +

�
2k2

2m
+ V (r)

]

unk(r) = E(k)unk(r), (12.1.19)
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and let unk(r) be expanded into wavefunctions of different bands at k = 0,

unk(r) =
∑

n′

Cn′nun′0(r). (12.1.20)

Equations for the coefficients Cn′n can then be derived from

∑

n′

{[

En(0) +
�

2k2

2m

]

δn′n +
�

m
k · pn′n

}

Cn′n = En(k)Cnn, (12.1.21)

where

pn′n =

∫

Ω

u∗
n0(r)pun′0(r)dr. (12.1.22)

The second term of the left hand side of (12.1.21) is the k · p perturbation term. From this analysis
En(k) can be obtained through rigorous diagonalization or perturbation.

§12.2 From Many-Particle Hamiltonian to Self-Consistent

Field Approach

In spite of the enormous success of band theory in the elucidation of electronic structures of
solids, the heart of band theory is the single-electron approximation which has been already used
with much success in theories of many-electron atoms and polyatomic molecules. Now the problem
is to place these single-electron approaches within the framework of more fundamental many-particle
theory in order to seek justification and to show the limitations, as well as to hint at possible ways
to improve these single-electron theories.

12.2.1 Many-Particle Hamiltonians

The Schrödinger equation for a system with more than one particle is

i�
∂

∂t
Ψ = HΨ, (12.2.1)

where H and Ψ are the many-particle Hamiltonian and wavefunction, respectively. For a set of
noninteracting particles, the Hamiltonian of the system is

H =
∑

i

Hi =
∑

i

[

− �
2

2m
∇2

i + v(ri)

]

, (12.2.2)

where the independent-particle solution ψn for each Hi satisfies
[

− �
2

2m
∇2 + v(r)

]

ψn = εnψn. (12.2.3)

These wavefunctions can be combined to form a total wavefunction for the system according to some
prescribed rules.

Once we turn on the interaction terms, a piece of condensed matter is composed of an enormously
large number (more than 1024) of interacting nuclei and electrons, with equal positive and negative
charge. The motion of any particle is now correlated with all other particles, and such an interacting
many-particle system may be described by the following Hamiltonian

H =
∑

i

p2
i

2m
+

∑

α

P 2
α

2Mα
+

1

2

∑

i�=j

e2

|ri − rj |
+

1

2

∑

α�=β

ZαZβe2

|Rα − Rβ |
−

∑

iα

Zαe2

|ri − Rα|
, (12.2.4)

where ri, pi, m and −e are used to represent the coordinates, momenta, mass and charge of electrons,
while Rα, Pα, Mα and Zαe are the corresponding quantities of the nuclei. For the quantum me-
chanical treatment in coordinate representation, it is usual to take pi → −i�∇i, and Pα → −i�∇α;
here we have omitted the spin indices for brevity. In some circumstances, we should take the spins
of the electrons into account, and then the magnetic properties of the system can be tackled.
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12.2.2 Valence Electrons and the Adiabatic Approximations

In principle, we may say that all of condensed matter physics is contained in (12.2.4); however,
it is impossible to solve the corresponding Schrödinger equation in order to extract any information.
Since it is difficult to get results directly, various approximations and models were introduced with
the purpose of simplifying the problem.

We consider a simple example for which there are N identical atoms in a solid, with a number
of core electrons, which can be regarded as tightly-bound to the nuclei. These bound electrons
are localized and generally make little contribution to the properties of the solid. However, the
outer-orbital electrons can be delocalized. In fact, when the atoms are combined to form a solid, the
configurations of these valence electrons vary greatly, but the core electrons do not change much. The
electrical and optical properties are determined mainly by the valence electrons. Hence, we arrive at
the valence electron approximation, in which each nucleus and its bounded electrons is looked upon
as one ion and then the solid is considered to be composed of the valence electrons together with the
ions. The valence electron approximation is correct for alkali metals, noble metals, and many other
materials, but it is not always true. For instance, in the transition metals and rare earths, there is
a mixed valence phenomena which will be discussed in Chap. 13; this makes the exact concept of
the valence electron somewhat blurred. Often, however, the valence electron approximation is very
effective.

If we further assume, on average, that there is only one valence electron for each ion in an
identical particle system, then the Hamiltonian of the system can be written as

H = − �
2

2m

∑

i

∇2
i −

�
2

2M

∑

α

∇2
α +

1

2

∑

i�=j

e2

|ri − rj |
+

∑

iα

v(ri, Rα) +
1

2

∑

α�=β

v(Rα, Rβ), (12.2.5)

where v(ri, Rα) is the shielded Coulomb potential, and v(Rα, Rβ) the short range potential, respec-
tively.

The concept of the adiabatic approximation comes from thermodynamics: We call a thermo-
dynamic process an adiabatic one when the system remains in equilibrium, no heat transfer takes
place and the entropy is constant. The quantum mechanical theory for such systems was developed
by Born and Oppenheimer, so the adiabatic approximation is often called the Born–Oppenheimer
approximation. For the electron system in a solid, the total electronic wavefunction depends on
the instantaneous relative positions of the vibrating ions: The electrons move so rapidly that they
adjust adiabatically to the much slower vibrations of the ions. On the other hand, as far as the
ions are concerned, the rapidly moving electrons can be looked upon as a homogeneously smeared
background. The direct result is, of course, that we may treat the electrons and vibrating ions as
separate subsystems. It is instructive to assume that the total wavefunction can be written as a
product of an electronic part and a ionic part, as implied by the adiabatic approximation. It can
be shown that this wavefunction is an approximate solution to the total Hamiltonian with an error
which depends on (m/M)1/4 (m/M is the ratio between the masses of the electron and the ion),
which is small.

Under the adiabatic approximation, the coupling between electrons and ions in (12.2.5) is ignored,
and we only need to investigate the independent subsystems: one is the interacting ion system which
is described by

H = − �
2

2M

∑

α

∇2
α +

1

2

∑

α�=β

v(Rα, Rβ) +
∑

α

ve(Rα), (12.2.6)

where ve(Rα) is the contribution of electrons which may be looked as homogeneously distributed;
the other is the interacting electron system with a static potential field,

H = − �
2

2m

∑

i

∇2
i +

1

2

∑

i�=j

e2

|ri − rj |
+

∑

i

v(ri), (12.2.7)

where v(ri) is the potential provided by all ions to the ith electron. For a periodic structure, or a
homogeneous structure, it is appropriate to assume that v(ri) has the same form for all electrons.
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As we can see, the electrons are assumed to be decoupled from the ionic vibrations. The rigid ionic
potential field still exists and can be looked on as an external field for the electrons.

It should be noted that this decoupling may break down in some special cases, for instance the
Jahn–Teller effect discussed in §11.4.3, and further examples that will be discussed in later chapters.
In general, the wavefunction of a system is a one-electron function of the coordinates of all the
electrons, Ψ(r1, . . . , rN ). It is a well defined problem for a Schrödinger equation



− �
2

2m

∑

i

∇2
i +

∑

i

v(ri) +
1

2

∑

i�=j

e2

|ri − rj |



Ψ(r1, . . . , rN ) = EΨ(r1, . . . , rN). (12.2.8)

This is easier than (12.2.4), but is not exactly solvable, either. The origin of the complexity arises
from the Coulomb interaction, and we must adopt further approximations to simplify the interaction
between electrons.

12.2.3 The Hartree Approximation

The single electron Schrödinger equation with external potential v(r) is (12.2.3), where v(r) can
be a periodic potential. In other cases, the potential arises from different atoms in molecules or the
central potential of the atomic structures. It must be justified why in some cases (12.2.8) may be
reduced to (12.2.3), because there are actually many electrons interacting with each other.

Under one further approximation, it is possible to reduce the interacting many-electron system
to an individual electron problem in an effective potential. This potential should be determined
self-consistently by all other electrons in the system.

As a first step, neglecting its antisymmetric requirement, the total wavefunction for a system
with N electrons could be written as the product of one-electron wavefunctions

Ψ(r1, . . . , rN ) =

N
∏

i=1

ψi(ri), (12.2.9)

for which Hartree suggested a variational calculation of

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (12.2.10)

to minimize the energy. If Ψ were the exact ground state wavefunction of the system, then E would
be the ground state energy. The variational principle states that E is stationary with respect to
variation of Ψ, and is an upper bound to the ground state energy. From (12.2.9), this procedure
leads to a set of Hartree equations
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∫

ψ∗
j (r′)ψj(r

′)dr′

|r − r′|



ψi(r) = εiψi(r), (12.2.11)

where the prime is used to rule out the possibility of j = i, and εi are variational parameters, which
look like the one-electron energy eigenvalues. We can now define an effective potential as

veff = v(r) +
∑

j

′
e2

∫

ψ∗
j (r′)ψj(r

′)dr′

|r − r′| , (12.2.12)

and so (12.2.11) is equivalent to (12.2.3). The potential seen by each electron is then determined
from the average distribution

∑

j ψ∗
j (r′)ψj(r

′) of all the other electrons. We must notice that the εi

are not truly one-electron energies: It is easy to illustrate this from

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∑

i

εi −
1

2

∑

i�=j

e2

∫∫

ψ∗
j (r′)ψj(r

′)ψ∗
i (r)ψi(r)

|r − r′| drdr′. (12.2.13)
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The Hartree equations (12.2.11) can be solved self-consistently by iteration. When we take this
self-consistent field approximation, it includes a sum of terms, each of which depends on the coor-
dinates of a single electron. A self-consistent calculation must be made, since the states themselves
must be known in order to compute the interaction potential, which must, in turn, be known in
order that we may compute the states. First we assume a particular set of approximate eigenstates,
compute the effective potential and then recalculate the eigenstates repeatedly. This procedure leads
to a set of states consistent with the potential.

Now we shall apply the Hartree approximation to the jellium solid, in which the positive ion cores
are smeared out to form a continuum of positive charges just to neutralize the negative charges of
valence electrons. Since everything is homogeneous, we can take a set of plane-wave states as the
first approximation for the ground state

ψi(r) =
1√
Ω

eik·r , (12.2.14)

normalized to the volume of this system. Each k is doubly occupied up to the Fermi wave vector
and the Hartree potential is

v(r) =
2e2

Ω

kF
∑

k=0

∫

dr′

|r − r′| −
e2

Ω

∫

dr′

|r − r′|. (12.2.15)

The first term is cancelled by the positive background, because the system is neutral, while the
second is the self-interaction term. If the point r is selected as the origin, then

e2

Ω

∫

dr′

r′
=

4πe2

Ω

∫

r′dr′. (12.2.16)

This integral scales linearly with the average of the total system and goes to zero in the limit of a
large system. Thus the Hartree equation for the jellium solid is reduced to

[

�
2

2m
∇2 + E(k)

]

ψk(r) = 0. (12.2.17)

This has plane wave solutions, and is described exactly by a complete set of single particle wave-
functions, just as for the noninteracting electron gas. This is simply the Sommerfeld model for free
electrons in a solid, deduced with the help of the self-consistent field. The Hartree approximation
also can be applied to real solids by replacing the original electron-ion potential by a new one-electron
potential evaluated self-consistently. However, to obtain more realistic interaction effect we must go
beyond it to introduce the Hartree–Fock approximation.

12.2.4 The Hartree Fock Approximation

Because electrons are fermions, the Pauli principle must be considered. It is reasonable to take
a linear combination of product wavefunctions to satisfy this antisymmetry condition and express it
as a Slater determinant

Ψ({ri}) =
1√
N !

∣

∣

∣

∣

∣

∣

ψ1(r1) · · · ψ1(rN )
· · · · · · · · ·

ψN (r1) · · · ψN (rN )

∣

∣

∣

∣

∣

∣

. (12.2.18)

This is Hartree–Fock (HF) approximation. Variational calculation putting (12.2.18) into (12.2.10)
leads to a set of Hartree–Fock equations:
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ψj(r) = εiψi(r).

(12.2.19)
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The construction of an effective potential like (12.2.12) is trivial, but these equations should also be
solved self-consistently.

We may obtain a value for the total energy in the Hartree–Fock approximation and this will
again contain a correction to the simple sum over the parameters εi. The extra term is the exchange
interaction

e2

2

∑

i�=j

∫∫

ψ∗
i (r)ψj(r)ψ∗

j (r′)ψi(r
′)

|r − r′| drdr′, (12.2.20)

as distinguished from the direct interaction, which is also present in the Hartree approximation. The
exchange interaction arises from every pair of parallel electrons.

In the application of HF equations, it is usually assumed that the spatial part of the wavefunction
is the same for spin-up and spin-down electrons, i.e., every orbital is doubly occupied, and the
wavefunctions of the Slater determinant are spin singlets. This is the so-called restricted Hartree–
Fock (HF) method, and can be reasonably used in many problems not involving magnetism. In
magnetic problems the HF equations are necessarily different. So the two sets of functions, for
spin-up and spin-down, need not be identical or orthogonal; this is the unrestricted HF method.
Certainly the solution of the unrestricted HF will be more laborious than the restricted HF.

Now we can also apply the Hartree–Fock (HF) approximation to the jellium solid. We can
still assume plane waves as the starting wave functions. Just like the Sommerfeld solid, the other
interaction terms cancel, and only the exchange interaction term remains. For a large volume Ω,
the sum over k can be changed into an integral over the Fermi sphere, i.e., (1/Ω)

∑

k =
∫

g(k)dk.
Then by Fourier transform of 1/r,

∫

eik·r

r
dr =

4π

k2
. (12.2.21)

Since the kinetic energy of the state k is �
2k2/2m, the exchange term may be evaluated, and we get
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=
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∣
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∣

∣

∣

∣

]

. (12.2.22)

Because of the 1/r factor in the exchange integral, the total energy is ∼ n1/3, where n is the
electron density. It seems that if the electron density varies slowly in space, the exchange energy can
be calculated as a volume integral of this n1/3 exactly, and the exchange term in the Hartree–Fock
equations can be replaced by a potential proportional to n1/3(r).

Figure 12.2.1 shows the relationship of the ex-

E
x
(k

)

k

EF E

g
(E

)

(a) (b)

Figure 12.2.1 (a) Ex versus k and (b) g(E)
versus E of the jellium solid in the HF approx-
imation.

change energy Ex versus k and density of states
g(E) versus E. This may be regarded as a smeared
out Fermi distribution, with the infinite slope cor-
responding to the sharp drop at the Fermi surface,
i.e., (∂E/∂k)EF

= ∞, correspondingly, g(EF) ∝

(∂E/∂k)−1
EF

= 0, which makes the problem difficult.
It should be noted that HF does not improve the
Sommerfeld model for solids: the density of states
at the Fermi level vanishes and metallic proper-
ties which depend on the density of states near the
Fermi level are changed for the worse because the
qualitative agreement of the Sommerfeld model is
destroyed by the introduction of the exchange term.

It also reflects the long-range nature of the Coulomb potential, for the Fourier transform of 1/r is
4π/k2, which diverges at k = 0. But if we use the screened Coulomb potential e2 · e−k0r/r instead of
the bare Coulomb potential, the corresponding Fourier transform is 4πe2/(k2+k2

0), which eliminates
the divergence at k = 0. We can get a similar result to (12.2.22) by using the electronic screened
effect, but kF should be changed into 2kF. In this way the non-physical result on the Fermi surface
is eliminated. When the HF approximation is used to calculate the electronic structure of molecules
or solids, the potential is only concerned with the scale of the molecules or unit cells, so the difficulty
will not arise. However the correction due to electron correlation should be retained.
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The HF approximation has been widely used in the MO methods of quantum chemistry as well as
in band calculations in periodic solids. In order to identify the one-electron equation in (12.2.3), we
need a more direct relation between the parameters εi and the energies of interest in a crystal. It is
instructive to calculate the total energy E(N) and E(N −1) using a Slater determinant by assuming
that the individual one-electron functions are the same if the total number of the particles changes
by one. Koopmans showed that the difference in these two total energy ∆E = E(N) − E(N − 1)
will simply be the parameter εi for the state that has been omitted. The conclusion is that the
ionization energy of the crystal with respect to any given electron state is simply the Hartree–Fock
parameter εi. Thus Koopmans theorem allows us to regard the calculated energy as one-electron
energy eigenvalues. This kind of one-electron picture could be used in simple metals, but may break
down in some cases such as transition or rare-earth metals.

§12.3 Electronic Structure via Density Functionals

12.3.1 From Wavefunctions to Density Functionals

Up to now we have utilized wavefunctions as basic variables which satisfy the Schrödinger equa-
tion, especially in the Hartree–Fock approximation using self-consistent field, in order to solve for the
electronic structure of molecules and solids. From the wavefunction Ψ, we get the electron density
distribution n(r) in molecules and solids.

Is it possible to regard n(r) as a basic variable in the calculation of electronic structure of
solids and molecules? The answer is yes. Here we follow, essentially, the chain of reasoning in the
illuminating account given in W. Kohn’s Nobel lecture.a

In 1927, the Thomas–Fermi (TF) theory actually incorporated this concept to give a simplified
treatment of the electronic structure of solids. It supposes electrons to be moving in an external
potential veff(r), and introduces a one-to-one implicit relation between veff(r) and n(r):

n(r) = γ[µ − veff(r)]3/2, (12.3.1)

with

γ =
1

3π2

(

2m

�2

)3/2

,

and

veff(r) = v(r) + e2

∫

n(r′)

|r − r′|dr′. (12.3.2)

µ in (12.3.1) is the chemical potential, independent of r. (12.3.1) is based on

n = γ(µ − v)3/2, (12.3.3)

the density of a uniform degenerate electron gas in a constant external potential v, where the second
term in (12.3.2) is just the classical electrostatic potential times (−1), generated by the electron
density distribution n(r).

However, TF theory is only useful for describing some qualitative trends such as total energies; it
is too crude to account for chemical binding, so its application to the electronic structure of solids is
quite limited. But the intimate connection of n(r) and v(r) in TF theory suggested that a knowledge
of the ground-state electronic density n(r) for any electronic system (with or without interactions)
uniquely determines the system. If we can prove this, then a new framework for electronic structure
calculation based on n(r) may be built. This is the starting point for the formulation of density
functional theory (DFT).

aW. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
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12.3.2 Hohenberg Kohn Theorems

Two basic theorems proved by Hohenberg and Kohn laid the foundation of density functional
theory (DFT).

Theorem 1. The ground-state density n(r) of a bound system of interacting electrons in some
external potential v(r) determines this potential uniquely. The term ‘uniquely’ means here: up to
an uninteresting additive constant.

The proof: let n(r) be the nondegenerate ground-state density of N electrons in the potential
v1(r) and the ground state wavefunction be Ψ1 with the energy E1. We have

E1 = 〈Ψ1|H1|Ψ1〉

=

∫

v1(r)n(r)dr + 〈Ψ1|T + U |Ψ1〉, (12.3.4)

where H1 is the total Hamiltonian corresponding to v1, T and U are the kinetic and interaction
energy operators. Now we assume that there is another v2(r), not equal to v1(r)+constant, with
ground state wavefunction Ψ2, which is not equal to Ψ1, but gives the same n(r), then

E2 =

∫

v2(r)n(r)dr + 〈Ψ2|T + U |Ψ2〉. (12.3.5)

Since E is nondegenerate, the Rayleigh–Ritz variation principle gives two inequalities

E1 < 〈Ψ2|H1|Ψ2〉

=

∫

v1(r)n(r)dr + 〈Ψ2|T + U |Ψ2〉

= E2 +

∫

[v1(r) − v2(r)]n(r)dr, (12.3.6)

and

E2 < 〈Ψ1|H2|Ψ1〉 = E1 +

∫

[v2(r) − v1(r)]n(r)dr. (12.3.7)

In the second inequality we use (12.3.4) since nondegeneracy is not assumed. Adding together
these inequalities we get an absurd result

E1 + E2 < E1 + E2. (12.3.8)

So we conclude that the assumption of the existence of a second potential v2(r) �= v1(r) + constant,
which gives the same n(r), must be wrong. Now we can assert: since n(r) uniquely determines both
N and v(r), it also determines implicitly all properties derivable from H through the solutions of
the time-independent or time-dependent Schrödinger equations, including many-body effects.

Theorem 2. The ground-state energy E can be obtained through the variation of trial densities
ñ(r) instead of the trial wavefunctions Ψ̃. This is called the Hohenberg–Kohn variational principle
which can be derived from the Raleigh–Ritz variational principle,

E = min
Ψ̃

〈Ψ̃|H|Ψ̃〉. (12.3.9)

Here we follow the more simple derivation using the constrained search due to Levy (1982).b

Every trial wavefunction Ψ̃ corresponds to a trial density ñ(r) obtained by integrating over all
variables, except the first, and multiplying by N . The minimization of (12.3.9) may be carried out

bM. Levy, Phys. Rev. A 26, 1200 (1982).
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in two stages. First we fix a trial ñ(r) and denote the trial functions Ψ̃α
ñ(r). With fixed ñ(r), the

constrained energy minimum is defined as

Ev[ñ(r)] = min
α

〈Ψ̃α
ñ |H|Ψ̃α

ñ〉

=

∫

v(r)ñ(r)dr + F [ñ(r)], (12.3.10)

where
F [ñ(r)] = min

α
〈Ψ̃α

ñ(r)|T + U |Ψ̃α
ñ(r)〉, (12.3.11)

F [ñ(r)] is an universal functional of the density ñ(r) which requires no explicit knowledge of v(r).
In the second step we minimize (12.3.10) over all n,

E = min
ñ(r)

Ev[ñ(r)] = min
ñ(r)

{
∫

v(r)ñ(r)dr + F [ñ(r)]

}

. (12.3.12)

For a nondegenerate ground state, the minimum is for the ground-state density ñ(r); for degen-
erate ground states, it is one of the ground-state densities. As Kohn remarked, the HK minimum
principle may be regarded as the formal proof of Thomas–Fermi theory. Thus the formidable prob-
lem of finding the minimum of 〈Ψ̃|H|Ψ̃〉 with respect to the 3N -dimensional trial function Ψ̃ has
been transformed into the much easier problem of finding the minimum of Ev[ñ(r)] with respect to
the three-dimensional trial function ñ(r).

12.3.3 The Self-Consistent Kohn Sham Equations

The Hohenberg–Kohn theorem leads to a set of effective Schrödinger equations for single-particle
functions.c The F [n] can be separated into three parts

F [n] = T [n] +
e2

2

∫∫

n(r)n(r′)

|r − r′| drdr′ + Exc[n], (12.3.13)

where the first term represents the kinetic energy, the second the ordinary Coulomb energy and the
third the exchange and correlation energies.

We do not know exactly T [n] and Exc[n], but we can bypass this problem for a moment. By vary-
ing the total energy, and adding the condition that the number of electrons must remain constant,
i.e.,

∫

δn(r)dr = 0, we have

∫

δn(r)

[

δT [n]

δn(r)
+ v(r) + e2

∫

n(r′)

|r − r′|dr′ +
δExc[n]

δn(r)
− µ

]

dr = 0, (12.3.14)

where µ, coming in as a Lagrange multiplier, is a constant corresponding to the chemical potential.
Then (12.3.14) gives

δT [n]

δn(r)
+ v(r) + e2

∫

n(r′)

|r − r′|dr′ +
δExc[n]

δn(r)
= µ. (12.3.15)

Thus, we can define an effective potential

veff(r) = v(r) + e2

∫

n(r′)

|r − r′|dr′ + vxc(r), (12.3.16)

in which the exchange-correlation potential is

vxc(r) = δExc[n]/δn(r). (12.3.17)

cW. Kohn and L. J. Sham, Phys. Rev. A140, 1133 (1965).
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We now consider a collection of noninteracting electrons and treat the kinetic energy items by
supposing that the system of N electrons has a set of N single-electron functions, so

n(r) =
N
∑

i=1

|ψi(r)|2. (12.3.18)

The kinetic energy functional can be written as

Ts[n] =
�

2

2m

N
∑

i=1

∫

∇ψ∗
i (r) · ∇ψi(r)dr =

�
2

2m

N
∑

i=1

∫

ψ∗
i (r) · (−∇2)ψi(r)dr. (12.3.19)

It is believed that (12.3.19) is a proper approximation, although there has been no proof that
Ts[n] holds for exact T [n]. Formally, this complication can be ignored, and the difference between
T [n] and Ts[n] can be absorbed into Exc[n]. The result is an eigenequation

[

− �
2

2m
∇2 + veff(r)

]

ψi(r) = εiψi(r), (12.3.20)

with the effective potential defined in (12.3.16). This is a Hartree-like equation for the one-electron
function ψi(r), with veff and n(r) defined by Eqs. (12.3.16) and (12.3.18). These self-consistent
equations are called Kohn–Sham (KS) equations. The ground-state energy may be constructed
from the solution of (12.3.20),

EG =

N
∑

i=1

εi −
e2

2

∫

n(r)n(r′)

|r − r′| drdr′ + Exc[n] −
∫

n(r)vxc(r)dr. (12.3.21)

As Kohn also remarked, KS theory may be regarded as the formal demonstration of Hartree
theory. In principle, all many-body effects are included in the exact Exc and vxc. The practical
usefulness of DFT depends entirely on whether approximations for the functional Exc[ñ(r)] can be
found with sufficient simplicity as well as accuracy. On the other hand, if the physical density n(r)
is independently known, either directly from experiment or derived theoretically from wavefunction-
based accurate calculations for small systems, veff(r) and hence vxc(r) can be obtained.d

12.3.4 Local Density Approximation and Beyond

Now the formal framework for DFT has been described, the next problem facing us is how to
use it to solve physical problems. Some sort of approximation for Exc[n (r)] must be adopted; the
viewpoint of ‘nearsightedness’ is important here.

In 1996 Kohn proved the following principle: the local static physical properties of a many-
electron system at r are dependent on the particles in the neighborhood of r (for example, within
the sphere of radius ∼ λF(r), the local Fermi wavelength λF(r) ≡ [3π2n(r)]−1/3) and are insensitive
to any change of potential outside this region. So approximations should be of a local, or quasi-local,
nature.e This gives a delayed justification for the success of the simplest approximation, known as
the local density approximation (LDA) proposed by Kohn and Sham.

Consider a system whose density varies slowly. Then a good approximation is to write Exc[n] in
the local form

Exc[n] ≈
∫

εxc[n(r)]dr. (12.3.22)

This local form leads to

vxc[n(r)] ≈ dεxc[n(r)]

dn(r)
≡ µxc[n(r)], (12.3.23)

dW. Wang and B. G. Parr, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford,
1989.
eW. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
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where µxc[n(r)] is the exchange-correlation chemical potential of the uniform electron gas with its
density equal to the local density n(r). A particularly simple, albeit somewhat inaccurate, form for
εxc[n(r)] is obtained by neglecting correlation at all in the uniform electron gas, as will be discussed
in the next section. This produces the exchange energy

εxc[n(r)] ≈ −3e2

2π
(3π2n(r))1/3n(r) (12.3.24)

and the potential

vxc[n(r)] ≈ −2e2

(

3

π

)1/3

n1/3(r). (12.3.25)

Incorporating correlation into the problem can produce significant improvement.
The LDA, obviously exact for a uniform electron gas, is expected to be useful only for densities

varying slowly on the scale of the local Fermi wavelength. This condition is rarely satisfied for atomic
systems. However, the LDA has been found to be extremely useful for the solid state, especially for
complex structures. It can also be extended to local spin density approximation (LSDA) in order to
treat magnetic systems with unpaired spins.

Based on DFT (mostly LDA), in conjunction with band calculation methods, such as pseudopo-
tential, APW, LMTO, etc., ab initio calculations for the energy bands have been developed with
spectacular success, especially in tackling complex structures for energy bands in solid state physics
and materials science. As for the treatment of valence bonds in chemistry, the superiority of DFT
over methods based on wavefunctions, such as HF, becomes more apparent with the passage of time.
The amount of computation depends crucially on the number of atoms N without any symmetry
in the basic unit: in the case of HF, it depends exponentially on N , a rough estimate is about p3N

(with p ∼ 3–10); in the case of standard methods of DFT, it scales with N3, and new methods such
as order-N or O(N) algorithm within the framework of DFT, which will scale linearly with N , are
being vigorously investigated and developed. So DFT is now, by general consensus, the pillar of
scientific computation in the physical sciences.

However, the original scheme of DFT was designed for the calculation of ground states, and mod-
ified schemes were needed to treat the excited states. So the quasiparticle (QP) approximation was
developed, and further single-particle Green’s function and dynamic screened Coulomb interaction
(GW) approximations were also developed.

Although DFT has proved to be extremely successful in various applications, the way it is
constructed precludes detailed insights into the electron-correlation problem contained in the pair-
distribution function g(r, r′) defined by

g(r, r′) =
1

n(r)n(r′)

〈

Φ

∣

∣

∣

∣

∣

∣

∑

i�=j

δ(r′ − ri)δ(r − rj)

∣

∣

∣

∣

∣

∣

Φ

〉

. (12.3.26)

Here |Φ〉 is the ground state wavefunction of a system, r and r′ are coordinates of the electrons in
the system, and n(r) and n(r′) are the corresponding electron densities. This function describes the
change in the probability of finding an electron at point r′ due to the presence of one at point r, and
gives a suitable description for electron-correlation due to Coulombic repulsion, i.e., the correlation
hole. The pair-distribution function is partially incorporated into the exchange-correlation energy
Exc(n) in DFT, i.e.,

Exc(n) =
e2

2

∫∫

drdr′n(r)
g̃(r, r′) − 1

|r − r′| n(r′), (12.3.27)

where g̃(r, r′) is related to g(r, r′) via

g̃(r, r′) =

∫ 1

0

dλg(r, r′, λ). (12.3.28)

The parameter λ (0 ≤ λ ≤ 1) modifies the Coulomb interaction to a fictitious one

e2

|r − r′| →
λe2

|r − r′| , v (r) → vλ (r) . (12.3.29)
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The simplicity of DFT, or comparable approximations to DFT, is the result of making a reasonable
assumption for g(r, r′) instead of calculating it from first principles.

Though, in principle, the many-body effects are included in DFT, in practice DFT has been
employed with success only for systems with weakly or medium correlated electrons. For strongly
correlated electronic systems, such as Mott insulators, doped Mott insulators and heavy electron
metals, the results of DFT are still not coming out all correctly. So, in the next chapter, when we are
concerned with systems with strongly correlated electrons, we will start our theoretical discussion by
introducing some model Hamiltonians. How to combine the insights gained by model Hamiltonians
with suitable modifications of DFT remains one of the crucial problems for current theoretical
research, and we shall face this subject in Chap. 13.

12.3.5 Car Parrinello Method

Molecular dynamics (MD) based on Newtonian equations of motion of classical mechanics is a
very effective method for the computer simulation of equilibrium and nonequilibrium structures on
the atomic scale. In general, this type of calculation utilizes atomic potentials, either empirically
or theoretically derived. For systems of inert atoms, Lennard–Jones potentials are used; for metal-
lic systems, the glue potential of embedded atoms are used; for covalent crystals, Stillinger–Weber
potentials are used. These all-classical calculations may be carried out in comparatively large sys-
tems, so they have very important applications in computer simulations from the various physical
processes occurring in clusters and crystalline lattices, including lattice dynamics. However, some
subtle quantum mechanical effects may be lost in such simulations.

Since great success in the calculation of the electronic structures of solids has been achieved by
DFT, an important problem facing the computation community is to connect MD with the DFT
method. This goal was realized with the development of the Car–Parrinello method in 1985.f

Now we shall return to the many-particle Hamiltonian of mixed system of electrons and ions.
Using the Born–Oppenheimer approximation, since they are more massive and moving slowly, the
ions may be approximated as classical particles obeying Newtonian mechanics, and the electronic
states may be described by KS equations. According to DFT, for a definite configuration of ions
{Ri}, the ground-state total energy E({Ri}) for a system of interacting electrons is a functional of
the electron density n(r). If the configuration of ions changes, then E({Ri}) becomes a potential
surface, called the Born–Oppenheimer potential surface. The ground state energy ε can be found
by minimization of the energy functional with respect to the electronic degree of freedom Ei. The
key point of the Car–Parrinello method is to introduce a fictitious system of electron dynamics into
the real physical problem in which we are interested.

An electronic state can be expressed by a set of occupied orbitals ϕi (i = 1, . . . , n). The gener-
alized classical Lagrangian of this fictitious system can be expressed as

L = T − V, (12.3.30)

where T is the kinetic energy and V the potential energy. The kinetic energy is given by

T =
1

2

∑

l

MlṘ
2
l +

1

2

∑

µi|ϕ̇i|2, (12.3.31)

where the first term represents the real ionic kinetic energy (Ṙ = dR/dt), and the second term is a
fictitious kinetic energy associated with the ‘velocities’ of the electronic orbitals defined as

ϕ̇i =
dϕi

dt
. (12.3.32)

In (12.3.31), µ is a fictitious inertial mass assigned to the ‘motion’ of ϕi orbitals through the Born–
Oppenheimer potential surface. The potential energy V includes both electronic energy and purely
ionic contributions, and thus it is a function of both the ionic positions and electronic orbitals,
V = V ({Rl}, {ϕi}).
fR. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
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The equation of motion associated with the Lagrangian is

d

dt

∂L

∂ϕ̇∗
i

− ∂L

∂ϕ∗
i

= 0. (12.3.33)

The electronic orbitals must satisfy the constraint of orthonormality, i.e.,

σij =
1

Ω

∫

Ω

ϕi(r)ϕj(r)dr − δij = 0, (12.3.34)

where Ω is the volume and δij equals 1 (when i = j), or 0 (when i �= j). Such constraint leads to
additional constraint ‘forces’, and a Lagrange multiplier should be introduced. Car and Parrinello
wrote the Lagrangian as,

L =
1

2

∑

i

µi|ϕ̇i(r)|2+
1

2

∑

l

MlṘ
2
l +V [{ϕi}, {Rl}]+2

∑

ij

λij

(

1

Ω

∫

ϕ∗
i (r)ϕj(r)dr − δij

)

. (12.3.35)

Thus, two coupled equations of motion can be derived, a fictitious one for the orbitals which is
equivalent to the KS equation

µϕ̈i = − ∂V

∂ϕ∗
i

−
∑

λijϕj ; (12.3.36)

and another for the ions which is the classical equation of motion

MlR̈l = − ∂V

∂Rl
. (12.3.37)

In this framework, the dynamics of electron parameters is a fictional process; however, it may
be used to realize dynamical simulated annealing: when R̈l, ϕ̈i become smaller, this is equivalent to
lowering the temperature of the system, until at T = 0, the equilibrium state with minimum energy is
reached. At the equilibrium state, this equation reduces to the Kohn–Sham equation. This method
has proved to be very effective in the study of equilibrium and nonequilibrium structures on the
atomic scale, dynamical properties of atomic systems, and properties of ions and electrons at finite
temperatures.

§12.4 Electronic Structure of Selected Materials

12.4.1 Metals

(1) The Simple Metals. Simple metals are metals with valence electrons coming from the s and
p shells. Their common characteristic is that the NFE model is a good approximation for them.
The simplest among them are the monovalent alkali metals such as Na, K, Rb and Cs with the bcc
structure, the measured Fermi surfaces are nearly spherical, with deviations only about 0.1%. Their
transport behavior is free-electron-like.

Trivalent Al has the fcc crystal-structure and a Fermi surface that is free-electron-like, with two
electrons to occupy the 1st Brillouin zone (BZ) completely, and another one to occupy the 2nd and
3rd ones. The net result is just like leaving a hole pocket of about +e in the 2nd zone. This explains
the high field Hall coefficient of Al which is about 1 hole per atom.

(2) The Noble Metals. The noble metals Cu, Ag and Au are also monovalent like alkali metals,
with some differences: for instance, K has only a half-filled 4s band outside the argon core; while for
Cu there is a d-shell filled with 10 electrons lying between the argon core and the half-filled 4s band.
It is the overlap of the d-bands and s-band that makes things in Cu somewhat more complicated.
The noble metals are fcc in structure, with a bcc reciprocal lattice. Experimental results show the
Fermi surface of Cu is still sphere-like, but with 8 necks bulging out along the 〈111〉 directions,
touching the zone surfaces (Fig. 12.4.1). This induces more complexity in the transport phenomena
in noble metals, such as the unsaturated high field magnetoresistance in Cu due to open orbits.
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However, the Fermi surface still has only one branch, so, like the alkali metals, the noble metals
may be regarded as one-band metals in the analysis of transport phenomena. The band structure
of Cu is shown in Fig. 12.4.2. Some of the bands are clearly derived from the NFE model, shown
as dashed lines, but there are also five almost horizontal bands running a little way below EF, not
accounted for at all on the NFE model, these are the d-bands. The filled d-bands near the Fermi
surface in the noble metals may influence their physical properties, such as the optical properties
exemplified by their reflectivity which is the origin of their metallic shine.

Figure 12.4.1 The Fermi
surface of Cu.
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Figure 12.4.2 The band structure of Cu (full lines) compared with
NFE approximation (broken lines).

(3) The Transition Metals. Transition metals are those with partially filled d bands, and this
makes things more complicated. We should expect these to give rise to narrow bands fairly well-
described by the tight-binding approximation. On the other hand, the s and p electrons should
continue to give NFE bands. Take 3d transition metals as examples: Parts of the band structures
of the first series of transition metals calculated by the APW method are shown in Fig. 12.4.3.

Ti(hcp)
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Cr(bcc)

Γ H

Fe(bcc)

Γ H

Co(fcc)

Γ X

Ni(fcc)

Γ X

Cu(fcc)

XΓ Γ

Figure 12.4.3 Parts of band structure of transition metals.

Some trends may be noted: with increasing atomic number, the d-shell gradually fills up, and
becomes more compact, then the energy of the d-band becomes lower. Finally, when the d-shell is
completely filled in Cu, the d-band drops below the Fermi surface. For transition metals, both the
s-band and the d-band cut the Fermi surface, making transport phenomena more complicated.

We can see that almost the same curves for each crystal structure are obtained, except the
position of the Fermi surface is different in Fig. 12.4.3. So we may derive a master curve for density
of states (DOS) for the same crystal structure, the case for fcc is shown in Fig. 12.4.4. The density of
states is much higher for d-bands than for s bands, and this effect can be observed in the electronic
contribution to the low temperature specific heat.

The regular variation of cohesion energy with the filling of the d-band, peaking at half-filling for
refractory metals, is well-known (Fig. 12.4.5). It is especially clear in the second and the third groups,
where no magnetic complications are present. The LDA calculations of Wigner–Seitz (WS) radii and
total energies of the transition metals agree quite well with the experimental data (Fig. 12.4.6). The
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general tendency may be simply explained by the argument of J. Friedel:g A Hartree-like scheme is
adopted, where the total energy is obtained by summing up the energies of the occupied one-electron
states. The cohesive energy Es per atom is then simply given by

Es = − 2

N

∑

k

Ek + ndE0 = 2

∫ EF

0

(E0 − E)n(E)dE, (12.4.1)

where nd is the number of d-electrons per atom. From the analog to chemical bonding, in an
incompletely filled d-band, more ‘bonding’ than ‘antibonding’ states are occupied. The effect should
be a maximum when all the ‘bonding’ states, but no ‘antibonding’ states are occupied, i.e., for a

gJ. Friedel, in The Physics of Metals, vol. 1 Electrons (ed. J. M. Ziman), Cambridge University Press, Cambridge,
1971, p. 340.
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Fermi level EF equal to the energy level of isolated atoms, with

ρ = 2

∫ EF

0

n(E)dE. (12.4.2)

The experimental data can be roughly fitted to a shifted parabola

|Es(nd)| = [A(10 − nd)nd + Bnd], (12.4.3)

where A, B are constants.
If cohesion is interfered with by the Coulomb correlation of electrons, the ferromagnetism of Fe,

Ni and Co and antiferromagnetism of Cr and Mn are the direct results of electron correlation. For
treatment of metals with spin-polarized electronic density, LSDA was developed, and the density of
states of up and down spins can be calculated separately; the result for Ni is shown in Fig. 12.4.7.
Note the spin-polarized state below the Fermi surface of a ferromagnet. Though ab initio calculation
can show the existence of ferromagnetism in Fe, Ni and Co, the mechanism for its formation is not
clearly displayed and is all but buried in the enormous mass of calculations. We shall returned to
this subject in Chap. 13.

(4) Lanthanides and Actinides. In the periodic table, there are two series of elements with
unfilled f -shells. From Ce to Lu, the lanthanide series of the rare earth elements, the 4f shell is
gradually filled; for the actinides running from Th to Lw, the 5f shell is gradually filled up.

The radial distribution of the atomic orbital of an rare earth atom (Fig. 12.4.8), shows that the
radius of the 4f orbitals is only 1/5–1/4 of the atomic radius, which is mainly determined by that of
5d-6s orbitals. Thus, in crystalline solids, the 5d and 6s electrons are delocalized into broad unfilled
conduction bands with 3 electrons showing metallic behavior, while the f -electrons remain in the
ion core. In general, localized electrons in unfilled f -shells do not participate in the bonding of
solids, but their spins are lined up, showing magnetic moments. The only exception for delocalized
f -electrons participating in bonding occurs in the low temperature phase of Ce.

The situation of actinides is just in-between the 3d transition metals and the rare earth elements:
for early actinides, from Ac to Pu, 5f -shell filling induces the parabolic decrease of atomic volume,
following Friedel’s rule for the transition metals, that the bonding states are filled first. It shows
that, for these metals, the f -electrons are delocalized and participate in bonding. However, just
before the optimum bonding is reached, right after Pu and before Am, the atomic volume increases
enormously (by 50%) and then the curve becomes quite flat (Fig. 12.4.9). Thus, the behavior of the
later actinides resembles the rare-earth elements, in which the f -electrons are localized in the ion
core and no longer participate in bonding. In order to describe this abrupt transition, we must go
beyond the LDA, using a theory incorporating many-body effects.
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12.4.2 Semiconductors

Band theory achieved its most important success in the elucidation of semiconductor physics
and the establishment of semiconductor electronics. In principle, there is no qualitative difference
between semiconductors and insulators, only the bandgap is narrower for semiconductors. In fact,
the band structures for Si and diamond show a similar, NFE-like pattern.

(1) Direct-Gap and Indirect-Gap. Calculated band structures for some common semiconductors
are shown in Fig. 12.4.10. The common feature is there are valence bands below the Fermi level
EF = 0, and conduction bands above the Fermi level.
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Figure 12.4.10 Band structure of four common semiconductors Si, Ge, GaAs and AlAs. The calculation
excludes the spin-orbit interaction.

However, there is an important difference: for compound semiconductors (GaAs and AlAs), the
tops of the valence bands and the bottoms of the conduction bands line up at the same values of k,
the optical transitions between them may be accomplished by emission or absorption of a single pho-
ton; this is a direct gap semiconductor. For elemental semiconductors (like Si and Ge), the situation
is different: the tops of the valence bands and the bottoms of the conduction bands do not line up at
the same k, so optical transitions between them, besides having emission or absorption of photons
are accompanied by a process which compensates the difference in k, such as emission or absorption
of phonons. These are called indirect gap semiconductors. It is obvious that optical transitions
are much more efficient in direct gap semiconductors, although Si is the most widely used semicon-
ductor for electronics; compound semiconductors are mostly used for opto-electronic applications.

(2) The Band Gaps. It should be noted that, in general, band calculation results come out
well and have been regarded as a useful tool for guiding practice; however, quantitatively speaking,
calculated bandgaps are too small when compared with the experimental values. This means that,
even in semiconductors, correlations between electrons in the excited state have been underestimated
in the LDA; however more accurate calculations in the quasiparticle (QP) approximation have
rectified this situation (Table 12.4.1).

Semiconductors are widely used as materials for light emitting diodes (LED) and laser diodes
(LD). The bandgap is an important criterion in selecting materials for these applications: GaAs for
near infrared, GaP for red, and the successful development by of GaN for blue and violet LEDs and
LDs by Nakamura was a great technical achievement in the 1990s. In 1991, L. T. Canham discovered
strong visible light emission from porous Si showing that not only is the bandgap widened in nano-
structured Si, but also the emission efficiency is improved. This gives promise for nanostructured Si
as a potential opto-electronic material.
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Table 12.4.1 Bandgaps of semiconductors: experimental values versus theoretical ones.

Crystal
The type of the

Eg (eV) (experimental values) Eg (eV) (theoretical values)

energy gap∗ 300 K 0 K LDA∗ QP∗

diamond i 5.4 3.9 5.6
Si i 1.11 1.17 0.5 1.29
Ge i 0.66 0.744 < 0 0.75
αSn d 0.00 0.00
InSb d 0.17 0.23
InAs d 0.36 0.43
InP d 1.27 1.42
GaP i 2.25 2.32
GaAs d 1.43 1.52 0.37 1.29
GaSb d 0.68 0.81
AlSb i 1.6 1.65
SiC (hex) i − 3.0
GaN (W)∗ d 3.5 2.3 3.5
GaN (ZB)∗ d 3.3 2.1 3.1

Note: 1. i = indirect-gap, d = direct-gap.
2. (W)∗ = wurtzite structure; (ZB)∗ = zincblende structure.

(3) The Effective Masses. The electronic properties of semiconductors are completely determined
by the comparatively small numbers of electrons excited into the conduction band, and holes left
behind in the valence band. The effective masses of electrons and holes are important parameters for
semiconductors. Based on the definition of the effective mass in §6.1, E(k) may be Taylor-expanded
into

E(k) = E(k0) +
�

2(kx − k0x)2

2m∗
x

+
�

2(ky − k0y)2

2m∗
y

+
�

2(kz − k0z)
2

2m∗
z

. (12.4.4)

This may be calculated using the k · p perturbation method intro-

Ek

∆'

Figure 12.4.11 Schematic
diagram for the band edges
in a direct-gap semiconduc-
tor.

duced in §12.1.4. In direct-gap materials, the conduction band edge is
spherical with effective mass m∗,

Ec = Eg + �
2k2/2m∗. (12.4.5)

referred to the valence band edge. The valence bands are degenerate
near the edge, with heavy hole (hh) and light hole (lh) bands degenerate
at the center, and a band due to splitting ∆′ of the spin-orbit coupling.
The values of effective masses can also be derived experimentally from
cyclotron resonance in semiconductors (see Fig. 14.2.11).

In indirect-gap materials the situation is more complex. The valence
band edges for Si and Ge are at k = 0, with light and heavy hole bands,
as well as a split off one due to the spin-orbit interaction. However,
the energy surfaces are not spherical but warped, making the effective
masses harder to characterize.

The conduction band edges for Si and Ge are not situated at k = 0,
but at points L for Ge; and on the lines labelled ∆, a little away from
the boundary points X for Si. The energy surfaces are spherical there.

(4) Electron Density Distribution in Real Space. From band calculations we can compute the
electron density distribution in real space; also this distribution may be measured directly from
accurate X-ray diffraction data. Figure 12.4.12 shows the results for Si, and the agreement is quite
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good. Furthermore, the density of valence electrons is higher in the region around the mid-point
of the line joining two neighboring atoms, and this gives clear evidence for covalent bonds. In the
electron density distribution for GaAs, the valence electrons still concentrate on that line, but the
center is shifted toward the As atom, showing the tendency of ionic bonding within the framework
of covalent bonds. This tendency becomes more visible in the case of ZnSe (see Fig. 12.4.13).

12.4.3 Semimetals

Graphite, As, Sb and Bi are semimetals. For some directions in k-space, their valence bands
and conduction bands overlap, showing metallic behavior, while in other directions, the two kinds of
bands do not overlap and show insulator behavior (see Fig. 12.4.14). The densities of charge carriers
for transport are several orders of magnitude smaller than that of common metals, for instance,
ne = nh = 3× 1018/cm3 for graphite, and 2× 1020/cm3, 5× 1019/cm3 and 3 × 1017/cm3 for As, Sb
and Bi, respectively. The band structures of semimetals show overlap, which may occur in a special
region of the Brillouin zone (see Fig. 12.4.14). For example, when the overlap is small we call it a
semimetal, as it still shows metallic behavior. Bi single crystals, which can be easily fabricated in a
high purity state, were much used in early experimental measurements, so the Fermi surface of Bi
is thoroughly known. However its electronic properties still provide surprises, as exemplified by the
discovery of very high magnetoresistance.h

Graphite is a very interesting material because of its electronic properties. The interlayer bonding
is mainly supplied by bonds of sp2 hybrids with a triangular arrangement in a honeycomb lattice; in
addition the π-electrons on the pz orbitals are delocalized throughout the layer. Individual graphite
layers are held together by the much weaker van der Waals interactions.

Now we shall study the band structure of single atomic layer graphite, i.e. graphene: it consists
of a deep-lying sp2

x–σ bonding band, followed by a pz–π bonding band at the top of the valence
band which are completely filled; over them there are empty conduction bands, the antibonding π∗

band and the higher σ∗ band.
The Brillouin zone (BZ) is a hexagon rotated 60◦ with respect to the real lattice (Fig. 12.4.15).

The gap is largest at Γ, becomes smaller at M and vanishes at K where the valence and conduction
states are degenerate at the Fermi level. This is the ideal situation, in which the density of states is
zero at the Fermi level, indicated in Fig. 12.4.16; but the residual interlayer interactions make the

hThe magnetoresistance of Bi is just OMR which is produced by charge carriers executing cyclotronic motion in the
magnetic field. Because the density of charge carriers in Bi is small, ωcτ ≫ 1 (where ωc is cyclotron radius and τ

is the scattering time of charge carries) and a large magnetoresistance at room temperature is observed in Bi single
crystal thin films. See C. L. Chien et al., J. Appl. Phys. 87, 4659 (2000).
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Figure 12.4.15 The band structure of a single graphite layer.
(a) Band structure for the triangle MK in a 3D representation.
(b) Band structure for the line KM in a 2D representation.
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Figure 12.4.16 (a) The density of states versus energy of a single layer of graphite and (b), (c) its modifi-
cation by intercalation.

density of states (DOS) small but finite; this is why graphite shows metallic behavior. The layered
structure of graphite makes it easy to form intercalation compounds with intercalated layers of
foreign atoms or molecules. Intercalation may induce charge transfer between the intercalated layer
and the host: either donating electrons to graphite (e.g., alkali atoms as intercalants) or donating
holes to graphite (in other words, accepting electrons, e.g., Br, AsF5 and PtF6 as intercalants); in
both cases, intercalation makes the compound metallic.

12.4.4 Molecular Crystals

Molecular crystals are composed of molecules with saturated chemical bonds. In general, molec-
ular crystals are insulators because all the electrons are localized in the molecules and participate in
intra-molecular bonding. The cohesive forces forming the crystals come from weak attractive forces
(e.g., van der Waals forces) between molecules. Therefore, molecular crystals are usually vapor or
liquid phases at room temperature, and the melting points of their solid phases are very low.

(1) Monoatomic Crystals. Atoms in inert elements such as He, Ne, Ar, Kr and Xe with closed-
shell electronic structure, are candidates for stable monoatomic molecular crystals at low temperature
(for the crystallization of He, in addition, a pressure of several tens of atmospheres must be applied).
The simplest model for these crystals uses the classical potential of the Lennard–Jones type for the
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interaction between atoms,

u(R) = 4ε

[

( σ

R

)12

−
( σ

R

)6
]

, (12.4.6)

and this gives the basic parameters for these crystals.
All inert element solids are insulators, except that solid Xe changes into metallic condition under

50 GPa pressure.i For ordinary crystals, vibrations about the equilibrium positions are due to
thermal fluctuations, and these are classical crystals. However, for a light element like He, the zero
point motion due to quantum mechanics becomes large compared with the atomic separation, and
the behavior of these crystals is radically different from classical crystals, so these crystals are called
quantum crystals.

The magnitude of the quantum effect may be characterized by a dimensionless parameter Λ
defined by

Λ =
h

σ
√

mε
, (12.4.7)

where σ and ε are the parameters from the Lennard–Jones potential (12.4.6), m is the mass of
the atom and h is Planck’s constant. The parameter Λ is a measure of the relative magnitude
of the kinetic energy of zero-point motion of atoms and the interaction energy in the crystalline
phase. The values of Λ for inert elements, other than He, are small compared with 1, so these show
classical behavior; while for He isotopes quantum behaviors are expected. Furthermore, He is the
only element which remains in the liquid state down to 0 K under atmospheric pressure, i.e., it
is a quantum liquid. We may say that quantum fluctuations of atoms can melt the crystal even
in the absence of thermal fluctuations. Some peculiarities of quantum crystals should be noted:
For instance, 3He impurities (spin 1/2 fermions) in a 4He crystal propagate as waves in the periodic
potential of the He lattice near 0 K, just like electrons in ordinary crystals, with k as a good quantum
number and energy eigenvalues forming bands. The diffusion coefficient of 3He impurities tends to
infinity at 0 K.

(2) Diatomic Molecular Crystals. Next we would like to consider molecular crystals composed
of diatomic molecules such as N2, O2, F2, Cl2, Be2, I2, H2, D2 and the slightly more complicated
cases of CO, HCl, HBr, HI. For the case of N2, the low temperature phase is fcc with a regular
alignment of molecular axes. With a rise in temperature this alignment becomes more random due
to thermal motion, and eventually the fcc phase becomes unstable and makes a transition to hcp
at Tc. In the high temperature hcp phase, all the molecules perform nearly free rotations to appear
spherical, and they close-pack into the hcp structure. Such a transition, in which molecular axes
change from ordered to random configurations, is called a rotational phase transition, and this is a
characteristic property of molecular crystals in general.

For a diatomic molecule with two atomic species, the molecule can have a permanent dipole
moment, which contributes to the cohesive energy due to dipole-dipole interactions, and sometimes
causes a dielectric anomaly at the rotational transition point. Some crystals such as DCl etc., even
show ferroelectricity, with the permanent dipoles arranged in parallel.

The bonding of diatomic molecular crystals are of the van der Waals type, making them insula-
tors. Under high pressure, some crystals undergo an insulator-metal transition; for instance, under
16–18 GPa, the bandgaps of I2 disappear, and I2 has metallic behavior; Br2 changes from a diatomic
molecular crystal to a monoatomic one under 80 GPa, coinciding with the insulator-metal transition;
and a similar change is found in O2 under 95 GPa.j

(3) H2 Crystal and Metallic Hydrogen. Now we shall discuss problems related to the H2 crystal
in some detail, as well as in a wider perspective. H2 molecules are placed on each lattice site, then
we use a Lennard–Jones type of potential to determine their interaction energy and equilibrium
separation. However, quantum mechanical effects manifest themselves in that the separation of

iR. Reichlin et al., Phys. Rev. Lett. 62, 669 (1989).
jThere are some articles about the insulator-metal transition: I2, B. M. Riggleman and H. G. Drickmer, Chem. Phys.
51, 1117 (1963), K. Kasai et al., J. Phys. Soc. Jap. 51, 1811 (1982); Br2, Y. Fujii et al., Phys. Rev. Lett. 63, 2998
(1991); O2, K. Shimizu et al., Nature 393, 767 (1998).
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nearest molecules is found to be 0.375 nm, which is much larger than the equilibrium separation of
0.32 nm determined classically, i.e. the actual crystal is expanded considerably due to zero point
oscillations of protons, and the H2 crystal is a kind of quantum crystal. Since the separation of
molecules in the crystal is about 5 times larger than that of protons in the H2 molecule, there is
hardly any overlap between the wavefunctions of neighboring molecules, and it is a wide bandgap
(Eg = 15 eV) insulator. However, hydrogen in the periodic table is in the same column as the alkali
metals and it has been predicted that under high pressure, protons will occupy lattice sites, with
the delocalized electrons as described by NFE model. In this way solid metallic hydrogen may be
regarded as a special form of quasi-alkali metal and so metallic hydrogen remains the Holy Grail for
some condensed matter physicists. The following are some research results in this direction.

In 1935, Wigner and Huntington predicted that H2 molecule crystals would change into a
monoatomic solid at 25 GPa; later this value was modified to 200 GPa. The H2 molecular crystal
can also change into the metallic phase by overlapping the bands; the transition pressure in this case
is predicted to be lower than the value mentioned above. This transition pressure is related to the
crystal structure, but the exact transition structure at 0 K is still unknown. If we extrapolate the
pressure versus volume data with the pressure of hcp structure up to 20 GPa, we get 620 GPa as the
transition pressure. N. W. Ashcroft et al. predicted that both monoatomic and diatomic metallic
hydrogen are high Tc superconductors. Recently, static pressures of 290 GPa have been applied, due
to the improvement of the diamond anvil technique, but solid metallic hydrogen has not yet been
found, and only two kinds of orientationally ordered hydrogen molecular crystals, the II phase and
the III phase, have been found.k

While research on solid metallic hydrogen was in something of a quandary, other experiments
achieved conspicuous success: liquid metallic hydrogen was found. In 1996, Nellis et al. at Livermore
Lab. observed the dc resistivity of liquid hydrogen drops to 0.5 × 104 Ω cm under a pressure of
140 GPa at 3000 K by a dynamic high pressure technique. This value coincides with those of
the monoatomic liquids Cs and Rb, whose transitions to the metallic state occur at 2000 K. This
provided direct proof of the existence of liquid metallic hydrogen. Figure 12.4.17 shows a schematic
phase diagram, from which we see that the pressure for insulator-metal transition in the liquid state
is much lower than in the solid state. There is lots of liquid hydrogen at the high pressures which
exist in Jupiter and Saturn and the existence of liquid metallic hydrogen is of great significance for
planetary science.
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Figure 12.4.17 Schematic phase diagram of H2. Solid state I is the disordered phase; II and III are
orientational ordered phases, the former is quantum and the latter is classical. The solid line in high
temperature regime denotes the transition to plasma phase (PPT). Inset gives the relation of resistance and
pressure by theoretical prediction. From W. J. Nellis et al., Phil. Trans. Roy. Soc. Lond. A 356, 119
(1998).

kFor a review of solid hydrogen, see H. K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994); for the explanation
of different orientational ordered phases, see I. I. Mazin et al., Phys. Rev. Lett. 78, (1997); a review about research
on liquid metallic hydrogen, is given by W. J. Nellis, A. A. Louis and N. W. Ashcroft, Phil. Trans R. Soc. Lond. A
356, 119 (1998).
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(4) C60 Solids. At room temperature, C60 molecules may be close-packed into an fcc structure,
where the C60 molecules are held together by weak van der Waals interactions with inter-center
spacings of about 1 nm and a minimum inter-cage separation of 0.3 nm. Part of the band structure
of C60 solid is shown in Fig. 12.4.18(a), in which the energy bands expanded from HOMO and
LUMO in Fig. 11.3.7 are shown. Pure crystalline C60 is a semiconductor with narrow band width
of about 0.5 eV and a gap of 1.5 eV.

Γ ∆ Σ ΧΧ W L Γ

g
(E

)

-0.5

0

0.5

1

1.5

2

E (eV)

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0

g
(E

)

(a) (b)

k

C60

K3C60

K4C60

K6C60

Figure 12.4.18 (a) Band structure of solid C60 showing the top of the valence band and the bottom of the
conduction band. (b) Densities of states for solid C60 and some potassium fullerites.

Since the interstitial voids in solid C60 is quite large, foreign atoms, such as alkali atoms, may
be inserted into voids by diffusion. Just like intercalation, this process is accompanied by charge
transfer between the alkali atom M and the host C60, forming fullerites. Donated electrons occupy
the lowest one of the conduction bands. Thus at the composition M3C60, all interstitial voids (one
octahedral and two tetrahedral voids per lattice site) of the fcc structure are filled with alkali atoms.
If each alkali atom donates one electron, then the lowest band of the conduction states is half-
filled with electrons, and M3C60 shows metallic behavior. To accommodate further alkali atoms the
structure is transformed into the bcc structure, with a limiting composition of M6C60, at this point
the conduction bands are completely filled and the material returns to be a semiconductor. M3C60

has been found to be a superconductor with a Tc somewhat higher than ordinary superconducting
metals and alloys, but lower than the oxide superconductors.

12.4.5 Surfaces and Interfaces

In Chap. 7, we discussed surface electronic states under ideal conditions. Real surfaces and
interfaces are very complex, and the reader should consult monographs on this subject. Here we shall
cite some examples to illustrate things that are actually observed and their relation to theoretical
calculations.

(1) 7 × 7 Cell of Reconstructed Si(111) Surface. One of the most stunning facts revealed by
modern surface research techniques is the surface reconstruction of the Si(111) surface. The freshly
cleaved (111) surface has been reconstructed with an enlarged cell of 2×1, and then, after annealing
at high temperature, a reconstructed cell 7 × 7 appears. The STM image of a 7 × 7 reconstructed
surface is shown in Fig. 12.4.19. An extremely complex dimerization adatom stacking fault model
for a 7× 7 cell of reconstructed Si(111) surface (DAS) model has been proposed to account for this
image (Fig. 12.4.20). It is a credit to DFT that ab initio electronic calculation can substantiate this
model, and the Car–Parrinello method may be used to explore its dynamical properties.
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Figure 12.4.19 STM image of 7× 7 cell of reconstructed Si(111) surface (provided by Prof. J. G. Hou).
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Figure 12.4.20 DAS model for 7× 7 cell of reconstructed Si (111) surface. (a) The view perpendicular to
the surface. (b) The view of cross-section along the long diagonal. Large full circles are atoms on the top;
medium full circles are other atoms; hollow circles are dimers.

(2) Metal-Semiconductor Interfaces. The Schottky barrier at a metal-semiconductor interface
is the physical origin of the rectifying effect of a semiconductor diode. This potential barrier may
block one direction of electric current and inject current in the reverse direction. The bands of
the semiconductor bend in the vicinity of the interface because, in order to equalize the chemical
potentials (the levels of the Fermi surfaces) in both metal and semiconductor, electrical charges must
flow from one to the other, to build up an electric field. In case of an n-type semiconductor in contact
with a metal, electrons must flow from semiconductor to metal, leaving the semiconductor positively
charged, with a depletion layer of thickness d, and the bands are bent upwards as a response.

In 1939 Schottky and Mott proposed a model to account for the Schottky barrier height as the
difference of the work functions of the metal Wm and the affinity of the semiconductor φs (the
difference of vacuum level and the bottom of conduction band), i.e., Es = Wm − φs. According to
this model, for a specific semiconductor, the Schottky potential barrier should scale linearly with
the work functions of the metals. Experimentally it is found that this holds only for more ionic
semiconductors such as ZnS, AlN, ZnO, . . . , but is very weak, or almost non-existent, for standard
semiconductors, like Si, Ge, GaAs, InSb, etc.
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Figure 12.4.21 Schematic diagram for the metal induced gap states (MIGS).

In 1947, J. Bardeen proposed an alternative model in which the Fermi level is pinned at an inter-
face state. Then in 1965, V. Heine introduced the idea of the metal induced gap states (MIGS): when
the conduction band of the metal overlaps the energy gap of the semiconductor, the wavefunctions
in the metal will penetrate through the interface with exponential decay, forming interface states in
the gap on the semiconductor side (see Fig. 12.4.21), i.e.,

ψ(z) = A exp(−qz) cos
(πz

a
+ ϕ

)

, (z > 0). (12.4.8)

More elaborate calculation of the electronic structure of the Al/Si junction (using the empiri-
cal pseudopotential method for Si and the jellium model for Al) precisely indicate the MIGS and
subsequent STM observation actually verified it.

(3) Insulator-Semiconductor Interfaces. Metal-oxide-semiconductor (MOS) devices are the most
widely used semiconductor devices. They are fabricated by planar techniques, involving the depo-
sition of a layer of Al on a layer of SiO2 formed by thermal growth on a p-type Si surface. The Al
layer acts as the gate electrode. Application of a positive bias to the gate electrode will cause the
semiconductor bands to bend down at the insulator-semiconductor interface (Fig. 12.4.22(a)). The
majority carriers, i.e., holes, are repelled away from the interface, so a depletion layer about 100 nm
thick is formed. As the gate voltage is increased over a critical value Vc, the bottom of the conduction
band bends below the Fermi level and an inversion layer about 1 ∼ 10 nm thick is formed, in which
degenerate electrons are contained in the region, by an approximately triangular-shaped potential
well (U(z) = eεeffz, for z > 0). We shall return to this in Chap. 14.
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Figure 12.4.22 Metal-insulator-semiconductor interfaces in a MOS device: (a) Vg = 0, (b) Vg = V0,
depletion layer → inversion lager, (c) Vg > V0, degenerate electrons in triangular-shaped potential well.

Field effect devices based on MOS technology not only play a leading role as the most important
electronic devices in information technology, but also provide very powerful devices for basic research.
For example, they led to the discovery of both the integral and fractional quantum Hall effects.
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Chapter 13

Correlated Electronic States

In this chapter we are mainly concerned with those electronic systems of correlated electrons
in which band theory is found inadequate. The first section is devoted to Mott insulators, which
should be metals according to band theory, but actually they are insulators. The Hubbard model is
introduced to treat this kind of material. Doped Mott insulators were found to be strange conductors,
such as the cuprate high Tc superconductors and manganites with colossal magnetoresistance. After
this we will examine another set of phenomena due to the effects of magnetic impurities: The
Anderson model is introduced, the Kondo problem is explained and a brief sketch of heavy electron
metals and related problems is given. Finally, the outlook for this field is discussed both from the
viewpoint of experiment and theory. It should be noted that some phenomena belonging to strongly
correlated states, such as Wigner crystallization, fractional quantum Hall effect, will be discussed in
Part VI.

§13.1 Mott Insulators

13.1.1 Idealized Mott Transition

It should be recognized that enormous success has been achieved by band theory in clarifying
the electronic structures of the solid state; in explaining why some substances are metals, others
semiconductors or insulators; especially in building up a theoretical framework for the quantitative
understanding of transport properties of semiconductors and metals. However, in 1937 there was a
serious setback because it gave incorrect ground states for some transition metal monoxides, such
as CoO, MnO and NiO. We may take the case of CoO to illustrate this point: It has a slightly
distorted rock salt (NaCl) structure with a unit cell which contains one Co atom and one O atom.
The outer shell of the Co atom has electron configuration 3d4s, and the O atom 2s2p, so the number
of electrons per unit cell is 9 + 6 = 15, an odd number. According to band theory, crystals with
a unit cell containing an odd number of electrons should be a metal, so the ground state of CoO
was predicted to be metallic. However, this did not agree with experiment: CoO is actually an
insulator with a large gap. What’s wrong with band theory? Mott’s verdict is that in spite of its
sophisticated theoretical treatment it had neglected the correlation between electrons, so it must fail
when it faces systems with strongly correlated electrons. These transition metal oxides are called
Mott insulators.

For many years Mott insulators were neglected by most textbooks on solid state physics, only
cultivated by a small number of scientists specializing in the metal-insulator transitions. The dis-
covery of high Tc superconductors in cuprates and the rediscovery of colossal magnetoresistance in
manganites have changed this situation. These materials have proved to be doped Mott insulators.
So the physics of Mott insulators, doped Mott insulators, as well other systems of strongly correlated
electrons have acquired an unprecedented importance in contemporary research in condensed mat-
ter physics. The central problem for Mott insulators and related materials is to find the correlation



· 334 · Chapter 13. Correlated Electronic States

energy of the electrons. It is expressed as the Hubbard energy U for the double occupancy of the
same orbital on the same atomic site by two electrons.

Mott considered the idealized metal-insulator transition for a Na crystal by changing the inter-
atomic spacings. He predicted that at a critical interatomic spacing ac, the electrical conductivity
at zero temperature should jump abruptly from zero to a finite quantity; this first-order phase tran-
sition at which all valence electrons of a crystal are set free at once is now called the Mott transition
(Fig. 13.1.1).

(a)

(b)

(c)
ψ

1/a

U

B

Eσ

Figure 13.1.1 An illustration for the idealized Mott transition. (a) Electrical conductivity versus the inverse
interatomic spacing; (b) bandwidth (half-filled 3s band of Na) versus the inverse interatomic spacing, also
shown are Hubbard energy U (assumed to be independent of interatomic spacing) and site occupation on
both sides of the Mott transition; (c) distribution of orbitals on both sides of the Mott transition.

From the tight-binding approximation of band theory, we may show that the bandwidth B should
increase when the interatomic spacing decreases, due to the increasing overlap of neighboring atomic
wavefunctions. On the other hand, electrical conductivity requires valence electrons to hop from one
atom to another; this process may be expressed explicitly as a reaction involving charge fluctuation
between neighboring atoms:

Na + Na → Na+ + Na−.

So at a Na− site, the double occupancy of an orbital at the same lattice site occurs. Since there is
already an electron on the lattice site, if a second electron wants to occupy the same site, it must
overcome the large Coulombic repulsive force. Thus the energy cost for double occupancy of an
orbital on the same lattice site is called the Hubbard energy U . In the limit of isolated atoms,

U = I − A, (13.1.1)

where I is the ionization energy and A is the electron affinity; for metallic elements, the values of U
lie below 8–10 eV, but for nonmetallic elements, the values of U are higher.

Now we are ready to make an approximate estimate of the Mott transition. Since the band is
half-filled, the average energy for electrons in a electron band of width B with N sites is about
(1/4)NB. The ground state for a half-filled band is homogeneous: the probability that a site is
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occupied by either a spin-up or a spin-down electron is equal to 1/2; then the probability for a
doubly occupied site (i.e., configuration Na−) is equal to 1/4; and the same probability as for an
unoccupied site (i.e., configuration Na+). Thus the charge fluctuation for conduction requires an
energy investment of about (1/4)NU . Hence the conclusion is that Mott transition occurs at

U = B. (13.1.2)

For U < B, it is metallic; while for U > B, it is insulating. Since the bandwidth B depends on the
atomic spacing but the Hubbard energy U is rather insensitive to atomic spacing, a change in the
interatomic separation will cause a crossover from the metallic regime to an insulating one, i.e., a
Mott transition can be described as an electron correlation-induced collective localization of all the
free electrons, as shown in Fig. 13.1.1.

Now we can return to the subject of CoO: Its lattice constant is large enough to cause it to be
on the insulating side, far from the Mott transition. It is a Mott insulator, i.e., it is in the highly
correlated insulating state, in which electrons tend to minimize the Coulomb interaction energy
by staying alone at each lattice site. In general, the ground state of most Mott insulators is also
antiferromagnetic; however, it is not the magnetic interactions that drive these materials into the
insulating state. Rather, it is Coulomb repulsions, which are still in operation even in the case of
the paramagnetic state. We shall return to this topic in §13.1.3. Some substances, such as V2O3,
are quite near the Mott transition, on the insulating side at ambient temperature and pressure but
a change in temperature or pressure may bring them easily to the Mott transition. We shall discuss
this subject further in Chap. 19.

13.1.2 Hubbard Model

Hubbard introduced a model Hamiltonian that included the possible competition of kinetic energy
lowering by banding and Coulomb correlation energy lowering by localization. Hubbard considered
that, for tight binding-like narrow band systems, the Coulomb interaction could be replaced by the
on-site interaction U to the lowest order approximation, resulting in the widely studied Hamiltonian
for an s band of the form

H =
∑

i,j,σ

tijc
†
jσcjσ + U

∑

i

niσniσ̄, (13.1.3)

where niσ = c†iσcjσ is the number operator, c†iσ and cjσ are the creation and annihilation operators
of electrons on atom i, and σ shows the spin. If we ignore the hopping integrals beyond nearest
neighbors, the Hamiltonian contains three parameters: t̃0 = tii, t̃ = tij (for i and j nearest neigh-
bors), and U . It is easy to show that t0 is the mean energy of the band, and t is equal to half the
width of the band.

If U = 0 in (13.1.3), the problem becomes very simple: When we use the creation and annihilation
operators of Bloch states given by

c†iσ =
1√
N

∑

k

eik·Ric†kσ, ciσ =
1√
N

∑

k

e−ik·Rickσ, (13.1.4)

the first term of (13.1.3) becomes

∑

kσ

Ekσc†kσckσ, Ek =
∑

ij

tije
ik·(Ri−Rj), (13.1.5)

where Ek is the energy of the Bloch state with the wave vector k.
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The meaning of the parameter U follows from a consideration of the limit of infinite lattice
constant. Clearly when t̃ = 0, the Hamiltonian becomes diagonal and the energy becomes

E =
∑

i

[t̃0(niσ + niσ̄) + Uniσniσ̄] = N1t̃0 + N2(2t̃0 + U), (13.1.6)

where N1 is the number of lattice sites occupied by one electron, and N2 the number of sites occupied
by two electrons. t0 is therefore the energy needed to bind an electron on an isolated atom. t0 + U
is the energy needed to attach the second electron with opposite spin, as shown in Fig. 13.1.1.
Hence U is the Coulomb interaction energy of two electrons located in the same orbital of the same
atomic site.

U =

∫

dr1

∫

dr2 |ψ(r1 − R)|2 e2

|r1 − r2|
|ψ(r1 − R)|2 . (13.1.7)

This is the more precise definition of U in solids. In the ground state, one electron is accommodated
at each atom, all electrons should have the same energy t0, and N1 = N , N2 = 0. In this limit
we can find a strict localization of the electrons. The Hubbard approximation thus leads the band
model to a local description.

The ground states for the Hubbard Hamiltonian are either itinerant states when t̃ ≫ U , or
localized when t̃ ≪ U . We now look at the ground state of a system with finite lattice constant in
which each lattice atom possesses one electron. The spin direction is taken to change from neighbor
to neighbor (antiferromagnetic ground state). If we introduce into this system a further electron
with a given spin, it can be accommodated at one of the N/2 atoms which already has an electron
with opposite spin. The Pauli principle forbids its placement with any of the other N/2 atoms. The
energy of this electron amounts to t̃0 + U at any isolated atom. Due to the interaction between all
N/2 states which can accept the electron, this energy splits up into a band centering around t̃0 + U
(now t̃ �= 0). The same arguments lead to the splitting up of the energy t̃0 into a corresponding
band. As long as the widths of the bands are smaller than the separation (t̃0 + U) − t̃0 = U , there
will be a gap between the two bands. At a critical amount of splitting determined by the lattice
constant the gap will disappear. The transition from the localized description to the band model
then takes place.

This result can be derived quantitatively from the Hamiltonian in (13.1.3), but the calculations
are too lengthy to reproduce here. In the example just considered, i.e., half-filled s-band and
antiferromagnetic ground state, we can see the specific result in the figure for the density of states
related to the ratio B/U . As shown in Figs. 13.1.2 and 13.1.3, for the large ratio, the curve only
changes slightly; if the ratio is reduced to the critical value, the band splits into two separate
subbands, and the gap of the subbands increases with reduced ratio B/U .
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t0+U

E
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t0
ɶ

Figure 13.1.2 Transition from localized states to
delocalized states in a half-filled energy band in the
Hubbard model. t0 is the energy needed to attach
an electron to a free ion, t0+U is the energy needed
to attach a second electron to the same ion.
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Figure 13.1.3 Density of states g(E) showing
band splitting by electron-electron interactions in
the Hubbard model.
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13.1.3 Kinetic Exchange and Superexchange

At exactly half-filling, for a large U , i.e., t̃/U ≪ 1, the effective Hamiltonian is just the well-known
antiferromagnetic Heisenberg model

H = −J
∑

ij

Si · Sj, (13.1.8)

with J = −4t̃ 2/U . This can be explained by the kinetic exchange process envisaged as follows:
let us consider a pair of neighboring sites. If the spins are antiparallel, a virtual hopping process
can create an intermediate pair state with one site empty and the other site doubly occupied with
energy cost U . The associated energy gain according to second order perturbation theory is of order
−t̃ 2/U . If the spins are parallel, hopping is forbidden by the Pauli principle.

Kinetic exchange gives us the basic reason why most insulators are antiferromagnetic. In
Fig. 13.1.4, the magnetic states of transition metal oxides and fluorides are tabulated: a great
majority of these insulating crystals are indeed antiferromagnetic; while a few ionic compounds such
as EuO, K2CuF4, CrO2 are known to be ferromagnetic with low Curie temperatures. However, in
most oxides and fluorides, this kind of direct kinetic hopping is almost impossible due to separation
by the intervening oxygen or fluorine ions, so superexchange must be invoked.

Figure 13.1.4 Summary of the magnetic states of various transition metal oxides and fluorides (compiled
by J. W. Allen). From R. M. White and T. H. Geballe, Long Range Order in Solids, Academic Press, New
York (1979).

Superexchange acquired its name because of the relatively large distances, occupied by diamag-
netic ions, radicals or molecules, over which the exchange effect is realized. For example, in MnO, the
Mn++ ions interact over a distance of 0.4 nm, and the overlap of their atomic d-orbitals is negligible.
Surely the wave functions of these ‘ligands’ are modified by the presence of the magnetic ions, and
they take part in a kind of exchange interaction. Kramers considered that this modification of wave
functions had magnetic characteristics, which gave a kind of exchange interaction with other ions.
Anderson further introduced the idea that there are covalently mixing d-states of magnetic ions and
p-states of the ligand oxygen ion. In an antiferromagnet, such as MnO, which has the NaCl crystal
structure, the spins in single (111) planes are parallel, while those in two adjacent (111) planes are
antiparallel. The antiferromagnetic coupling is between second nearest-neighbor cations, such as
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A = Mn++ and C = Mn++, via an intervening (nearest neighbor) anion, B = O−−. The calculation
of the exchange integral in this situation can be based on bonding and antibonding symmetrized
LCAO. For example, if we assume that the configuration is perfectly ionic; each Mn ion would then
have a single unpaired electron in a d-state, and the O ion would have, in the outermost occupied p
states, two electrons with antiparallel spins as shown in Fig. 13.1.5.

A B C

3d 3dp

Figure 13.1.5 The spin configurations of four electrons in the 3d and p orbitals on sites Mn-O-Mn.

This situation may be generalized to cases with periodic structure, where the atomic orbitals
should be replaced by Wannier functions, and the transfer integral between Ri and Rj sites becomes

bij = 〈w(r − Ri)|H(Rj) |w(r − Rj)〉 , (13.1.9)

where w(r−Ri) is a Wannier function for an electron on an atom at Ri. In fact, the superexchange
may be regarded as a generalization of kinetic exchange to cases where electrons of the intervening
oxygen atom participate in the virtual hopping processes.

According to Goodenough and Kanamori, exchange interactions between half-filled orbitals are
described by the virtual hopping process as shown in Fig. 13.1.6(a). The antiferromagnetic coupling
is derived to be

Jkin
ij = −2b2

ij/4S2U, (13.1.10)

where S is the net spin of a magnetic atom and U is the Hubbard energy for the intermediate state
when two electrons occupy the same orbital. This is known as the first Goodenough–Kanamori rule
for superexchange.a

Furthermore, spin-up electrons may be transferred from a full orbital to an empty one [shown
in Fig. 13.1.6(b)]; thus, the intraatomic exchange energy (Hund’s rule coupling) ∆ex/U2 favors
ferromagnetic exchange coupling:

Jkin
ij = +2b2

ij∆ex/4S2U. (13.1.11)

This is the second Goodenough–Kanamori rule for superexchange.

Goodenough also considered cases in which orbitals are in contact but without overlap, for
instance, when the dxy orbitals are at 90◦ with a px orbital as an intermediate link, where the overlap
is zero by symmetry (see Fig. 13.1.7). This may be regarded as the realization of Hund’s rules for
parallel spins with orthogonal orbitals in an interatomic situation. The example demonstrates the
importance of geometrical shapes of orbitals for the interatomic interactions. This aspect will be
further discussed in the next subsection.

It should be noted that superexchange also plays an important role in ferrimagnetism, i.e.,
antiferromagnetic coupling of unequal spins on different atomic sites, so a net magnetization is
realized. Thus, superexchange is also the physical foundation of other important classes of technical
magnetic materials, such as ferrites and garnets.

aJ. B. Goodenough, Phys. Rev. 100, 564 (1955); Phys. Chem. Solids 6, 287 (1958); J. Kanamori, Phys. Chem.
Solids 10, 87 (1959).
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3d 3dp 3d 3dp

(a) (b)

Figure 13.1.6 Virtual processes for the Goodenough–Kanamori rule of superexchange: (a) cation d-shell
half filled (antiferromagnetic); (b) cation d-shell < half filled (ferromagnetic).
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Figure 13.1.7 An illustration of the possibility for ferromagnetic alignment through superexchange.

13.1.4 Orbital Ordering versus Spin Ordering

The orbital degeneracy of d-electrons introduces further richness into the physics of Mott insula-
tors, and the Hubbard model may be generalized to the case in which each site has n-fold degenerate
orbitals.

First, we shall examine the simplest case, i.e., two electrons on two sites A and B, where each
site has two-fold degenerate d orbitals, ψa and ψb. We may take two eg orbitals in octahedral sites,
i.e., dx2−y2 and d3z2−r2 as an example. Now, we consider a diatomic molecule in which each atom
has two orbitals (see Fig. 13.1.8). We are facing the Heitler–London problem in a new context, two
electrons on two sites with the added complexity of two orbitals. We may emulate the Heitler–London
treatment of H2; however, we should note the difference: instead of only 4 different low-energy states
of H2 classified into 1 singlet and 1 triplet; now we have 16 different states, to be classified into 4
singlets and 4 triplets. We shall not go into the theoretical details here but be content with making
some general observations.

a b

A B

a b

d3z2-r2 dx2-y2

(a) (b)

a b

Figure 13.1.8 Schematic diagram of a eg molecule for two orbitals a and b on two sites A and B.
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We should distinguish the Hubbard energy on different orbitals, Ua, Ub and Uab, where the last
is the energy cost for a pair of electrons sitting on neighboring orbitals of a same site. Intuitively, it
is plausible that Uab is smaller than Ua or Ub.

If two electrons occupy the same orbital ψa at two sites, then we may consider the virtual process
I in Fig. 13.1.9(a): for a singlet in the a-orbital, the energy gain is

Es ≈ −4t̃ 2
a

Ua
, (13.1.12)

and a similar expression for the energy gain for a singlet in the b-orbital. These are results of the
kinetic exchange discussed in §13.1.3.

a b

A B A B A B

A B A B A B

a b a b a b a b a b

(a)

(b)

Figure 13.1.9 Virtual hopping processes for electrons between two sites: (a) process I, i.e., virtual hopping
process in a single orbital (a or b); (b) process II, i.e., virtual hopping process in mixed orbitals (a and b).

For parallel spins on the same orbital at two sites, no hopping can take place; thus there is no
energy gain. Other two singlets and two triplets occupy mixed a-b orbitals, so the triplets can have
lower energy. Let us consider the virtual process II in Fig. 13.1.9(b): the intermediate state costs
energy Uab-J where J is the energy gain due to Hund’s rule coupling, so the energy gain for the
triplet is about

Et ≈ − t̃a t̃b
Uab − J

. (13.1.13)

Since, roughly, Ua = Ub = U > Uab = U − 2J , so the triplets have lower energy than the singlets,
and the ground state is the triplet with the lowest energy.

It is interesting to observe that intra-atomic exchange (Hund’s rule coupling) may induce intersite
ferromagnetic exchange by reducing the values of denominators in the energy expressions. This is
a new type of ferromagnetic insulator that we have encountered. However, the ferromagnetic spin
order in this case arises from the fact that electrons occupy different orbitals. We are already
acquainted with the rule that the symmetric spin wave functions must be accompanied by the
antisymmetric orbital wave functions, and vice versa. Thus, for degenerate orbitals, we may envisage
a new kind of order, i.e., orbital order. Since the degenerate orbitals may have different shapes or
orientations, so orbital order is related to the arrangement of orbital shapes or orientations on sites.
Staggered orbitals have antisymmetric orbital wave functions which are accompanied by symmetric
spin wavefunctions, i.e., parallel spins; while regular orbitals are accompanied by anti-parallel spins.

Now we are ready to extend the results obtained in a two-electron system to a lattice of localized
electrons, as we have already done in the derivation of the Heisenberg Hamiltonian from the Heitler–
London treatment of H2 in §11.2.4.

Now we may introduce a pseudospin T variable to describe the orbital ordering on lattice sites:
the two possible choices of orbitals are represented by the pseudospin T , whose z component
Tz = +1/2, when dx2−y2 is occupied; and Tz = −1/2, when d3z2−r2 is occupied. Three compo-
nents of this pseudospin satisfy similar commutation relations to those of spin operators. There
are interactions between spins S and pseudospins T of different ions. The following generalized
Heisenberg Hamiltonian is used to account for these generalized interactions

H = −
∑

i<j

[JS (Si · Sj) + JT (Ti · Tj) + JST (Si · Sj) (Ti · Tj)], (13.1.14)
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where the exchange and pseudo-exchange coupling constants JS and JT originate from quantum
mechanical processes with intermediate virtual states, and JST is the coupling constant between
exchange and pseudoexchange. Rotational symmetry in the spin space leads to the inner product
of the interactions between spins. Though its extension to the interaction between pseudospins may
be somewhat questionable, it is commonly adopted for simplicity. When more than two orbitals
are involved, depending on orbitals, many different situations can be realized, and spins and orbital
pseudospins are intimately coupled. Furthermore, the transfer integral tij depends on the direction
of bonds ij which are also dependent on the pairing of the orbitals dx2−y2 and d3z2−r2 . This induces
anisotropy of the Hamiltonian in the pseudospin space as well as in the real space.

Figure 13.1.10 An example of the stag-
gered orbital order (pseudospin antiferro-
magnetism): alternation of dx2−y2 and
d3z2−r2 orbitals in a simple cubic lattice.

Figure 13.1.11 Orbital order and spin
order of LaMnO3.

Thus, for orbitals on different lattice sites, we can define the orbital order by its pseudospins.
Using the pseudospin language, we may call the staggered orbital order as orbital antiferromag-
netism; and the regular orbital order as orbital ferromagnetism. Figure 13.1.10 is an example of
staggered orbital order, i.e., orbital antiferromagnetism. It should be emphasized that these terms
are by no means connected with antiferromagnetism or ferromagnetism of orbital magnetic mo-
ments, but indicate ordered arrangement of pseudospins on the lattice, or in other words, staggered
or regular orbital order. Since spins and orbital pseudospins are coupled together, in general, spin
ferromagnetism favors pseudospin antiferromagnetism (staggered orbital order); while spin antifer-
romagnetism favors pseudospin ferromagnetism (regular orbital order).

Now we would like to inspect the real situation of Mott insulators: Let us consider K2CuF4,
CaMnO3 and LaMnO3 as examples. Indeed K2CuF4 is found to be a ferromagnet, due to staggered
orbital order; CaMnO3 is found to be an antiferromagnet, due to regular orbital order; these examples
seem correct. However, LaMnO3 is found to be an antiferromagnet, why? Its arrangements of
orbitals and spins on the lattice are shown in Fig. 13.1.11. We find that a planar ferromagnetic spin
coupling is induced by the staggered orbital order in the planes, while antiferromagnetic spin coupling
between planes is induced by the regular orbital order along the c-axis. Actually LaMnO3 is a
ferromagnet disguised as an antiferromagnet: its magnetic structure consists of antiferromagnetically
coupled ferromagnetic layers, and 2/3 of the nearest neighbor sites of each magnetic ion are occupied
by parallel spins. By the way, the Jahn–Teller effect couples the orbital order and the crystal lattice
order. Surely orbital order, together with spin order, will play conspicuous roles in the physics of
Mott insulators and doped Mott insulators.

13.1.5 Classification of Mott Insulators

Mott insulators are insulators with strong electron correlation effects: the partially filled d-band
is split into a set of Hubbard subbands. However, these subbands are sandwiched between various
4s and 2p bands; their mutual arrangements will determine their insulating behavior. According to
a classification scheme,b Mott insulators are classified into two types: the criterion is the relative
values of the Hubbard energy, or gap, U and the charge transfer energy, or gap, ∆. The smaller gap

bJ. Zanen, G. A. Sawatzty, and J. W. Allen, Phys. Phys. Lett. 55, 418 (1985).



· 342 · Chapter 13. Correlated Electronic States

∆

U

Charge Transfer Insulator

(∆<U)

Lower Hubbard Band

Upper Hubbard Band

p Band
U

∆

Mott-Hubbard Insulator

(U<∆)

Upper Hubbard Band

Lower Hubbard Band

p Band

 g(E)

E

g(E)

Figure 13.1.12 The relative positions of Hubbard subbands and the oxygen 2p band (schematic).

is of crucial importance for the transport behavior. If ∆ > U , the insulator is called Mott–Hubbard
(MH) type; if U > ∆, it is called charge transfer (CT) type, as shown in Fig. 13.1.12.

In MH insulators, the charge excitations for transport are d-electrons. But in CT insulators,
there is overlap of the lower subband and 2p band, and the top of the 2p band is higher than that of
the lower subband, so the lowest excitation is from the top of the 2p band to the bottom of the upper
Hubbard subband. This excitation creates a d-like quasi-particle and a p-hole. Figure 13.1.13 shows
the variation of experimentally determined gap energies for a series of compounds LaMnO3 and
YMO3 (here M denotes some 3d transition metal element). A MH type of energy gap is observed for
early members(indicated by full symbols), it increases in magnitude as the number of 3d electrons
increases; by comparison, the CT type of energy gap between the O-2p band and upper Hubbard
band becomes smaller. The Mott–Hubbard gap around M = Cr decreases with further increase

CT

MH

LaMO3

YMO3

Sc Ti V Cr Mn Fe Co Ni Cu
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E
g
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)

3d Elctron Number

Figure 13.1.13 Optically determined gaps in
Mott insulators in LaMnO3 and YMO3 (full sym-
bols are MH gaps, open symbols are CT gaps).
Taken from T. Arima et al., Phys. Rev. B 48,
17006 (1993).
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of d-electrons and eventually is closed for M = Ni and Cu. This tendency is equivalent to the
increase of covalency between d-electrons of metal atoms and p-electrons of oxygen atoms in the first
row transition metal perovskites. This is characterized by the metal oxygen hybridization strength
tpd. This parameter may be introduced into this classification scheme. Such a modified d-electron
phase diagram (U/tpd, ∆/tpd) is shown in Fig. 13.1.14. The dotted diagonal not only divides Mott
insulators into region A (charge transfer insulator) and B (Mott–Hubbard insulator), but also divides
the metallic region into C and D; further, a covalent insulator region E is marked, in which tpd plays
a crucial part.

§13.2 Doped Mott Insulators

13.2.1 Doping of Mott Insulators

Doping is an important means of modifying the physical properties of band insulators as well as
semiconductors, the situation is just the same for Mott insulators. Mott insulators are characterized
by an integer filling factor, i.e., the d-bands are filled with an integer number of electrons, or in other
words they are stoichiometric. The filling factor may be increased or decreased by chemical doping.
The former is called electron doping, the latter hole doping. The usual chemical doping process
is the substitution of ions with different valence for cations (or anions) in the parent compound.
For instance, we may substitute divalent Sr ions for trivalent La ions in the parent compounds
LaTiO3 (a Mott–Hubbard insulator) and LaCuO4 (a charge transfer insulator) with x = 0.125, to
produce La1−xSrxTiO3 and La2−xSrxCuO4. Though both parent compounds are antiferromagnetic
insulators with S = 1/2, after doping both become metals with anomalous properties, the titanate
is a nonmagnetic heavy Fermi liquid, while the cuprate is a high Tc superconductor.

It should be noted that the hole doping of Mott–Hubbard insulators is quite different from that
of charge transfer insulators. For the former, the Fermi level lies above the top of the lower Hubbard
subband, and doping creates holes in the d-bands. For the latter, the highest occupied band is the
oxygen 2p, the Fermi level lies above the top of the 2p band, so doping creates holes in the 2p band.
However, for electron doping, the situations are quite similar for both types of Mott insulators, i.e.,
to put electrons in the upper Hubbard subband. Furthermore, hole doping and electron doping of
charge transfer insulators are markedly different. While the majority of high Tc superconductors
are hole-doped, only Nd2−xCexCuO4 is electron-doped. It should be noted that a doped Mott
insulator not only introduces extra charge carriers into the original insulator, but also introduces
extra spins into the original ordered antiferromagnet, making the physics of doped Mott–Hubbard
(MH) insulators complex and interesting.

Nonstoichiometry, or altered stoichiometry, of a compound’s composition also modifies its d-
band filling number. A well-known example of this is YBa2Cu3O7(YBCO) with variable oxygen
content. Figure 13.2.1 shows the range of filling control (control of d-band filling numbers) for some
3d transition-metal oxides with perovskite and perovskite-like structures. Black bars indicate the
range of solid solution (mixed crystal) compounds so far successfully synthesized.

Substitution not only plays an important role in the control of filling but also brings distortions
into structures, so it may indirectly reduce the band width B of compounds. So filling control,
together with band width control, determines the schematic metal-insulator phase diagram with
the relative electron correlation strength represented by U/B as ordinate and the band filling of 3d
band as abscissa (Fig. 13.2.2). From this diagram we may see that YMO3 shows stronger electron
correlation than LaMO3 due to the reduced B introduced by the distorted oxygen octahedra. The
integer-filled 3d transition-metal oxides with the perovskite structure are mostly Mott insulators,
apart from LaCuO3 and LaNiO3. A fractional valence or filling can drive the system metallic, yet
in some cases the compounds remain insulating for large U/B.

13.2.2 Cuprates

Cuprate high Tc superconductors are doped charge transfer (CT) insulators; their crystal struc-
tures are mostly perovskite-like, such as K2CuF4 displayed in Fig. 13.2.3.
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Figure 13.2.1 A guide map for the synthesis of filling-controlled 3d transition-metal oxides with perovskite
and layered perovskite (K2NiF4-type) structures. Taken from M. Imada et al., Rev. Mod. Phys. 70, 1037
(1998).

Band

Insulator

Mott-

Hubard

Insulator

(Y
,C

a)
TiO

3

(L
a,

Y
)T

iO
3

(Y
,C

a)
V

O 3

(L
a,
Sr)

TiO
3

(L
a,
Sr)

V
O 3

B=Ti V Cr

(L
a,

Sr
)C

rO
3

Fe

Sr(Fe,Co)O3

(L
a,

Sr)
C
oO

3

Co
Ni Cu

R
N

iO
3

R
C

u
O

3

ABO3

ReO3 Metal

UBU/B

A=

Y

B
3+

La

Ca

Sr

B
4+

¢ ¢/B

Charge Transfer

Insulator

Insulator

(L
a,
Sr)

M
nO

3
(S

r,
C

a)
F

eO
3

(L
a,

Sr)
FeO

3

(La,Ca)CoO3(Y
,C

a)
FeO

3

(La,Ca)MnO3

d
 0

d
 1

d
 2

d
 3

d
 4

d
 5

d
 6

d
 7

d
 8

Figure 13.2.2 A schematic metal-insulator phase diagram for 3d transition-metal oxides with the perovskite
structure. Taken from M. Imada et al., Rev. Mod. Phys. 70, 1037 (1998).

The crucial part played by CuO2 layers in carrying current is universally recognized (Fig. 13.2.4).
The CuO2 active layers are sandwiched between block layers, which act as charge carrier reservoirs.
The number of active layers n may vary from 1–4. For the La compound, n = 1; For Bi-Sr-Ca-Cu-O
(BSCCO) compound, n = 2. For the Y-Ba-Cu-O (YBCO) compound, in addition, Cu-O chains
are also important. All parent compounds are Mott insulators of the charge transfer type with
antiferromagnetic order: for the La compound TN = 330 K, for the Y compound TN = 500 K.

We may take the comparatively simpler compound La2−xSrxCuO4(0 < x < 0.3) as an example to
analyze its electronic structure. Cu atoms are situated in the centers of distorted oxygen octahedra,
the Cu-O distance for O atoms that lie outside the CuO2 plane is 0.23 nm; surely that is larger than
0.19 nm for O atoms in the plane. The chemical bonds may be described by the molecular orbital
method: the stability of the structure of the CuO2 plane can be ascribed to the σ bonds formed by
Cu 3dx2−y2 and O 2px,y (see Fig. 13.2.5), while the much weaker π-bonds between Cu 3dx2−y2 and O
2pz as well as other wavefunctions with slight overlap may be ignored. From energy band calculation,
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Figure 13.2.3 Crystal structures of some typical cuprates: (a) La2CuO4; (b) YBa2CuO7; (c) NdCuO4.
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it is found that the highest antibonding pdσ∗ orbital is half filled, indicating metallic character for
La2CuO4. This is in contradiction to the fact that La2CuO4 is an insulator. In spite of many details
of the energy band structure being provided by modern LDA calculations, the insufficiency of these
single-particle theories should be noted, for it has given the wrong answer for the ground state.

Actually undoped La2CuO4 is an excellent insulator with antiferromagnetic long-range order.
Only doping with sufficient Sr can destroy this antiferromagnetic long range order and turn it into
a metallic superconductor. It is the strong correlation between electrons that makes the electronic
properties of cuprates surprising and extraordinary. The important parameter to characterize elec-
tron correlation is the Hubbard energies Ui in the Hubbard Hamiltonian, here Ui = Udd or Upp,
denoting the correlation energy of electrons at the Cu 3d orbital and O 2p orbital respectively. It
was shown that the values of the Hubbard energies may be deduced from experimental data on
inner-shell photo-electron emission spectroscopy in conjunction with some theoretical model. For
CuO2 planes, Udd has the approximate value U = 7 eV, which is much higher than the valence
bandwidth t ≈ 2 eV for valence band pdσ. When U ≫ t, the probability of two 3d holes on the
same atomic site is very small, so if the occupation of a single sd hole is expressed as

c̃iσ = ciσ(1 − niσ̄), (13.2.1)

the Hubbard model may be simplified to the t-J model

H = t
∑

ijσ

c̃†iσ c̃jσ − J
∑

i<j

Si · Sj, (13.2.2)

in which the first term describes the electron moving in the CuO2 plane, while the second term
is the Heisenberg Hamiltonian describing the effective exchange interaction of neighboring spins of
3d holes. This exchange interaction is realized through O 2p orbitals between Cu atoms by the
superexchange mechanism (see §13.1.3). This t-J model is one of most popular models to describe
the electronic behavior of the highly correlated electrons in high Tc superconductors.

We may take Sr-doping of La2CuO4 as an example: Doping creates p-holes in oxygen ions. A
p-hole means a p-lobe of an oxygen ion has an uncompensated spin that is surrounded by spins on
the Cu sites. So p-d hybridization brings about the exchange interaction between Cu and O spins.
It may be envisaged that a p-hole does not stay at a single O site; instead it spreads out into four
sites, occupying an orbital has the same symmetry as the d-orbital with the spin at the central Cu
site. This p-state binds to the central d-spin, forming a pair of up and down spins called a Zhang–
Rice singlet.c A dilute gas cloud of Zhang–Rice singlets may drive the system into the conducting
state. There is some experimental evidence supporting the idea that it is Zhang–Rice singlets to
act as charge carriers for transport in some high Tc superconductors; at least it is valid for light
doping levels.
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Figure 13.2.6 Electronic phase diagram for cuprates.

Surely, it is this highly correlated state of electrons that makes the normal properties of high
Tc superconductors extremely anomalous and difficult to account for. Figure 13.2.6 is a typical
electronic phase diagram for cuprates: Without doping, it is an antiferromagnetic insulator. At some

cF. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988); 41, 7243 (1990).
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doping level (x = 0.02) the antiferromagnetic long range order collapses, and in its stead a short-
range 2D antiferromagnetic order with metallic conductivity appears. Then, at about x = 0.05,
superconductivity appears. Between x = 0.02–0.05, according to general consensus, it is a spin
glass. At the optimum doping level of x = 0.16, Tc is highest. On the underdoped side (x < 0.16),
there appears a pseudo-gap in the normal state above Tc; the true nature of this pseudo-gap is
still unsettled (see §18.3.3). The physical properties of the underdoped normal state are extremely
anomalous. The rich physics of cuprates appears to be still unexhausted after more than 15 years
of worldwide intensive research. We shall discuss some of the problems related to the cuprate
superconductivity in Chap. 18.

13.2.3 Manganites and Double Exchange

Manganite perovskites T1−xDxMnO3, where T is a trivalent cation (e.g., La3+) and D is a
divalent cation (e.g., Ca2+, Sr2+, or Ba2+), have been the focus of intense study since 1993 due to
their colossal magnetoresistance (CMR) effects. The magnetic and orbital structure of the parent
compound LaMnO3 may be simply stated: it has a distorted perovskite structure in the orthorhombic
system; it is a Mott insulator of charge transfer (CT) type and a peculiar antiferromagnet with in-
plane ferromagnetism. With hole-doping by Sr in the composition range x ≈ 0.2–0.4, charge balance
is maintained by the creation of a fraction x of Mn4+ ions (d3) distributed randomly throughout the
crystal, while the (1−x) manganese ions are in the Mn3+ (d4) state. Resistivity versus temperature
for different compositions of La1−xSrxMnO3(0 < x < 0.4) is shown in Fig. 13.2.7, in which resistivity
drastically decreases when the temperature falls below the Curie temperature Tc. At temperatures
above the ferromagnetic Curie temperature Tc, the resistivity behaves like an semiconductor with
(dρ/dT ) < 0, but at temperatures lower than Tc, metallic behavior with (dρ/dT ) > 0 is indicated.
It shows that the onset of ferromagnetism is coincident with the insulator-metal transition. This is
explained by the double exchange mechanism for mixed valent oxides first proposed by C. Zener.d
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Figure 13.2.7 Resistivity versus temperature for La1−xSrxMnO3(0 < x < 0.4). Taken from A. Urshibara
et al., Phys. Rev. B 51, 14103 (1995).

It should be noted that there is an important difference in electronic structure between cuprates
and manganites. In cuprates, due to the Jahn–Teller distortion of the CuO2 sheets, a large energy
splitting is found between d3z2−r2 and dx2−y2 orbitals, and only the dx2−y2 orbital is relevant, i.e.,

dC. Zener, Phys. Rev. 82, 403 (1951), P. W. Anderson and H. Hasegawa, Phys. Rev. 118, 675 (1955).
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the orbital degree of freedom is quenched. However, for doped manganites, the orbital degree of
freedom is still active, as exemplified by the double exchange which will be discussed below.

In the undoped state, x = 0, each ion on the lattice will remain Mn3+; its ionic state is t32g e1
g,

i.e., three d-electrons in t2g orbitals plus one electron in eg orbital, and the Hund’s rule total spin is
S = 2. Real hopping motion of electrons is forbidden by the Mott correlation effect. After doping
with a finite value of x, an x-fraction of Mn3+ ions in random lattice sites are transformed into
Mn4+ ions in the ionic state t2g with the Hund’s rule total spin S = 3/2, retaining only the core
of Mn3+ ion, and making the eg electrons free to move between lattice sites, which gives a large
conductivity. The motion of eg electrons on the background around the t2g cores is described by the
double exchange Hamiltonian

H = −t̃
∑

ij

(c†iσcjσ + h.c.) − JH

∑

i

S · si, (13.2.3)

where the first term is the one-electron band term, and the second term describes the exchange
interaction between the electron spin si of the itinerant electrons and the S of the t2g orbitals of
the localized electrons. If the hopping integral t̃ is much smaller than the intraatomic exchange JH

(Hund’s rule coupling between itinerant eg with localized t2g), then the energy can be simplifies to

E = −JHS ± t̃ cos(θ/2). (13.2.4)

This is the energy associated with a modification of the transfer integral, where θ is the angle
between neighboring spins. Figure 13.2.8 shows that two hopping states are not parallel. The
bandwidth is, in fact, controlled by the directions of neighboring spins; it is wide when the spins are
parallel, narrow when they are antiparallel. In contrast to superexchange, in which the exchange
interaction is due to virtual hopping processes of electrons between neighboring atoms, real electron
hopping processes between neighboring atoms is the foundation of double exchange (see Fig. 13.2.9).

Since LaMnO3 is an insulator with planar ferromagnetic spins antiferromagnetically coupled,
while La1−xSrxMnO3(x > 0.2) is definitely a ferromagnetic metal with double exchange interactions,
it is interesting to explore the physical nature of this transition. de Gennes used a pure spin model
to account for this transition; in this model, there is AFM superexchange between fixed t2g cores,
as well as double exchange of eg electrons hopping between t2g sites. We may envisage that the
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Figure 13.2.9 Mechanism of double exchange for a manganite.
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sublattice magnetizations gradually tilt from antiparallel orientation toward parallel orientation.
The spins on (100) Mn planes are uniformly polarized, but the angle θ subtended by the spins on
neighboring planes are assumed to be dependent on the doping level x[1]. When x = 0, θ = π; when
x reaches some critical value xc, then θ = 0. The energy density is composed of two terms: the
first term is due to superexchange between t2g cores; the second is due to double exchange, i.e., the
spin-orientation dependent hopping energy of eg electrons,

E(θ) = J cos(θ) − x[4t̃ + 2t̃ cos(θ/2)], (13.2.5)

where, of course, classical spins are assumed and in the large J limit (J/t̃ → ∞), x is also assumed
to be sufficiently small that the eg electrons are situated near the band bottom. Minimizing E(θ)
with respect to θ, we get

cos(θ/2) =
t̃x

2J
. (13.2.6)

The solution gives a reasonable physical picture for the transition from an AFM insulator to a
FM metal with doping level x: at x = 0, θ = π, AFM state; at small x, x ≪ 1, θ ≈ π − (t̃x/J),
the canted AFM state; at the critical value xc = 2J/t̃, θ = 0, FM state. So a gradual transition,
from the canted phase for 0 < x < xc to the full ferromagnetic alignment for x > xc, is predicted.e

However, it should be noted that the real situation is more complicated, for there is an orthorhombic-
rhombohedral structural phase transition near x ≈ 0.175.

13.2.4 Charge-Ordering and Electronic Phase Separation

Charge-ordering can occur in widely different systems, ranging from wholly localized systems
such as alkali halide ionic crystals to a wholly delocalized one such as the electron crystallization
envisaged by Wigner. For an ordinary delocalized system of electrons, the kinetic energy due to
the Pauli exclusion principle is much more important than the potential energy due to Coulomb
repulsion. However, the situation drastically changes when the electron concentration is very low.
To explain it, we may use the jellium model, i.e., a system of homogeneous electron gas with a
positively charged background spreading uniformly over it. Let r0 denote the mean radius of the
volume for a single electron, defined by (4π/3)r3

0 = ρ−1, where ρ is the electron density. The average
kinetic energy of an electron due to the uncertainty principle is δεkin = (∆p)2/2m ≈ 1/2mr2

0, but the
average potential energy due to the Coulomb repulsion is δεpot ≈ e2/r0. Since the former decreases
with the inverse square power of r0, while the latter decreases with inverse r0, it is predicted that, for
very low concentration, the potential energy becomes larger than the kinetic energy. If this situation
happens, then the electrons will crystallize into a lattice to minimize the Coulomb repulsion, while
the kinetic energy will maintain the zero-point motion of electrons around the equilibrium position.
This change from a homogeneous to an inhomogeneous charge distribution will occur at a value of
r0 about 40–100 Bohr radius, is known as Wigner crystallization. We shall give a more detailed
discussion of this problem in Chap. 19.

Here we shall focus our attention on the charge ordering of doped Mott insulators, especially
manganites. Take La1−xCaxMnO3 as an example. Compared with La1−xSrxMnO3, the ionic radius
of Ca is less than that of Sr, so replacement of Sr by Ca will introduce more distortion into the crystal
structure, and its band width will be somewhat reduced. Instead of the typical double exchange
behavior in the Sr doped manganite, we are faced with a more complicated situation, as indicated by
its phase diagram (Fig. 13.2.10). At x = 0, there is no conduction electron for any Mn site; at x = 1,
there is one conduction electron; between these limits, there is x electrons for each Mn site. Now
the problem is how to distribute these electrons in space. We have already seen that spin-ordering
and orbital-ordering play important roles in manganites, now charge ordering is added to make the
physics of manganites more rich and complex.

In La1−xCaxMnO3, at x = 0.5, a stable charge-ordered AFM state below Tc = 160 K is found.
This charge-ordered state can be explained by an ingenious model proposed by Goodenough
(Fig. 13.2.11): Mn3+ and Mn4+ are arranged like a checkerboard, exhibiting the charge ordered,

eP. G. de Gennes, Phys. Rev. 118, 114 (1960).
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Figure 13.2.10 Phase diagram of La1−xCaxMnO3. From P. Schiffer et al., Phys. Rev. Lett. 15, 3336
(1995).
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Figure 13.2.11 Spin, charge and orbital ordering in La0.5Ca0.5MnO3 (a) schematic diagram (b) with corre-
sponding JT distortions (the dark and light shaded squares show Mn3+ and Mn4+ sites) as the checkerboard
pattern. Taken from T. Mizokawa and A. Fujimori, Phys. Rev. B 56, R493 (1997).

spin ordered and orbital ordered states altogether. Since Mn3+ sites have a Jahn–Teller distortion,
this periodic distribution of Mn ions reduces not only the Coulomb repulsive energy and exchange
interaction energy, but also the Jahn–Teller distortion energy by the orbital ordering. So it seems
an optimum solution to this problem; in fact, this model has been verified by X-ray and neutron
diffraction measurements. The different types which describe charge, orbital and spin-ordering ar-
rangements were classified by Wollan and Koehler in their neutron diffraction paper.f

It is interesting to note that manganites showing a large CMR effect are not those that exhibit
pure double exchange behavior but are those involved with charge ordering. In Fig. 13.2.12, the
magnetoresistances versus temperature for various compositions of La0.7−xPrxCaO3 are displayed,
in which the inflationary expression (ρ0 − ρH)/ρH for magnetoresistance may reach 104–105, so it
is fittingly called colossal. The theory for CMR is still unsettled: One type of theory stresses the
importance of the Jahn–Teller effect in charge carriers; another type of theory invokes Anderson lo-
calization of electrons due to nonmagnetic impurities. The experimental evidence increasingly shows
that the electronic phase separation into nanoclusters of FM metals and charge-ordered insulators
may play an important role in CMR.g

fE. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955); for a theoretical explanation, see J. B. Goodenough,
Phys. Rev. 100, 564 (1955); for a recent review, see Y. Tokura and N. Naogosa, Orbital physics in transition metal
oxides, Science 288, 462 (2000).
gE. Dagotta, T. Hotta and A. Mareo, CMR materials: the key role of phase separation, Phys. Rep. 344, 1 (2001).
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Figure 13.2.12 Magnetoresistance at 5 T versus temperature T (K) for compositions of La0.7−xPrxCa0.3Mn.
Curie temperatures Tc are marked by arrows. Taken from H. Y. Hwang et al., Phys. Rev. Lett. 75, 914
(1995).

The electronic phase separation phenomenon is a general result of competition involving various
types of ground states, such as metallic versus insulating states and various types of ordered states;
also various types of interactions such as the Coulomb, exchange and Jahn–Teller interactions com-
pete with each other. In the end, clusters or stripes of various electronic phases with nanometer
sizes or larger may appear in specimens; their structures and physical consequences are still being
hotly investigated. Phase separation also appears in other oxides; for instance, the ‘stripe phases’ in
cuprates involving charge and spin ordering also form an important topic of current research. For-
merly, the study of the electronic properties in condensed matter physics was most concerned with
homogeneous states of materials; with electronic phase separation, a new chapter on the electronic
properties of inhomogeneous materials is just emerging. Perhaps it will be some time before this
field ripens.

§13.3 Magnetic Impurities, Kondo Effect and

Related Problems

Another important area of correlated electronic states, developed in parallel with the Mott insu-
lators, involves magnetic impurities in metals. The problem of magnetic moment formation and its
influence on the resistivity of metals at low temperatures leads to the Kondo effect. This in turn has
opened the field of the Kondo problem, as well as heavy electron metals and Kondo insulators. All
these have attracted special attention from many distinguished theoreticians and experimentalists,
and the main problem was solved in the 1970s and 1980s. Related problems such as heavy electron
metals (or heavy fermions) and Kondo insulators are still among the important topics of strongly
correlated electrons in current research. Full elucidation of the Kondo effect is beyond our scope;
the reader could consult Hewson’s monograph and related literature for that. Our attention will
be focussed on the Anderson Hamiltonian of a magnetic impurity for its simplicity, as well as its
importance in many-body physics. Then we will make a sketch of phenomena related to the Kondo
problem.

13.3.1 Anderson Model and Local Magnetic Moment

In §7.2, we already treated impurity atoms in metals. Impurity atoms are considered as simple
metallic ions with different charges situated in a gas of free electrons. This approach has been
modified to treat the transition metal impurity problem by introducing the important concepts of
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resonance scattering and virtual bound states. However, the Anderson model can reach essentially
the same results, and it is more flexible in handling problems and easier to get quantitative results,
so it becomes one of those important theories to handle many-body effects. We shall discuss the
case of a transition metal impurity with an unfilled d-band, moreover; it will be also correct for an
impurity with an unfilled f -band.

(a) (b) (c)
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gd+(E)

EF
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gd- (E)

Figure 13.3.1 Pictorial representation of the Anderson model: (a) original atomic d-level; (b) it is split
and polarized by on-site Coulomb repulsion; (c) it is further broadened by hybridization with s-electrons in
the conduction band of the host.

The fundamental point of the Anderson model is the use of a localized description for the impurity
and a delocalized description for the electrons in the host metal. Now consider the simplest case:
the impurity atom has only a single orbital for a d-level occupied by a spin-up electron; double
occupation will cost energy U , the Hubbard energy (Fig. 13.3.1). For d-electrons on the impurity
site, the Hamiltonian may be written as

Hd =
∑

σ

εdndσ + Und↑nd↓. (13.3.1)

For s-electrons in the conduction band of the host, the Hamiltonian can be written as

Hs =
∑

kσ

εknkσ. (13.3.2)

Anderson further introduced an s-d hybridization interaction term with strength Vkd

Hsd =
∑

kσ

Vkσ [c†kσcdσ + c†dσckσ]. (13.3.3)

When Vkd is not strong, it is equivalent to the s-d model first proposed by Zener (see Bib. [1]). The
Anderson Hamiltonian is just the sum of the three terms introduced above,

H = Hd + Hs + Hsd (13.3.4)

Now we shall examine the physical consequence of the Anderson model: the energy for single
occupation of the d-level is εd, while that for double occupation is εd + U . For a magnetic moment
to exist in the localized ion, it requires εd < εF, where εF is the Fermi level of the s-band. So single
occupation is energetically favorable; and εd+U > εF, makes double occupation unfavorable. Due to
the interaction between the localized d-state and the Bloch states of the conduction electrons of the
host metal, s-d hybridization takes place as a perturbation of the d-level. This hybridization of the
atomic d-level and the s-band of the host due to quantum mechanical tunneling can be interpreted
as formation of a virtual bound state by resonant scattering of conduction electrons. The transition
rate between the d-level and s-band can be described by the Fermi golden rule, in which the density
of states in the s-band at the d-level g(εdσ) makes the d-level extend to some resonance width with

Γσ = πV 2g(εdσ);

thus, the sharp level at εdσ will be replaced by a spectral density function of a Lorentzian form

ρdσ(ε) =
1

π

Γσ

(ε − εdσ)2 + Γ 2
σ

. (13.3.5)
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A slight shift of the center can be added with no particular physical significance. The consequence
of the broadening of the d-levels by resonance is that the occupancy of the d ↑ level 〈nd↑〉 becomes
< 1, while 〈nd↓〉 becomes > 0, so whether the local moment is still retained on the impurity site
demands further theoretical scrutiny. We may evaluate now

〈nd↑〉 =
1

π

∫ εF

−∞

Γdε

(ε − εd)2 + Γ 2
=

1

π
arccot

εd − εF + 〈nd↓〉U
Γ

. (13.3.6)

Of course, we have a comparable expression for 〈nd↓〉, so

〈nd↓〉 =
1

π
arccot

εd − εF + 〈nd↑〉U
Γ

. (13.3.7)

These equations must be solved self-consistently. Graphical solutions for chosen parameters are
shown in Fig. 13.3.2. In case of small U , no magnetic moment remains. In case of large U , the
lowest energy occurs at the intersections with unequal moments. In the lowest energy state, the
local moment is given by 〈nd↑〉 − 〈nd↓〉 = ±0.644µB. We see that the formation of a local moment
is a cooperative effect requiring an appropriate range of parameters. It arose from the interaction
term Und↑nd↓ in the Hamiltonian. Through this analysis, Anderson explained why the iron group
elements from V to Co show magnetic moments when dissolved in Cu, Ag and Cu but show no
magnetic moment when dissolved in Al.
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Figure 13.3.2 The self-consistency plot of 〈nd↓〉 against 〈nd↑〉: (a) U = Γ and εF − εd = 0.5Γ ; the only
solution is for 〈nd↑〉 = 〈nd↓〉 and no local moment is formed. (b) U = 5Γ and εF − εd = 2.5Γ ; there are
three solutions with two corresponding to a local moment.

13.3.2 Indirect Exchange

If there is a local magnetic moment on the impurity, the next problem is to examine the spin
polarization of the host electron gas around this magnetic moment. The situation is somewhat similar
to the charge polarization treated in §7.2.3. If only contact action is considered, as in (7.2.28), we can
get (7.2.34), i.e., the local magnetic moment of an impurity brings about an oscillation in the spin
density of the free electron gas. This has been verified in Cu-Mn and Ag-Mn by NMR measurements.

Now further steps should be taken. Every impurity atom introduces spin density oscillation
around it over quite a long range (Fig. 7.2.3), so it is expected that magnetic interaction may be set
up between different impurity atoms. This is an indirect interaction called the Ruderman–Kittel–
Kasaya–Yoshida (RKKY) interaction, after the theoreticians who first formulated it. Assuming that
magnetic impurity 1 with spin S1 is situated at the origin, while impurity 2 with spin S2 is situated
at R. If the perturbation method is valid, then the interaction energy may be expressed as

E12 ≈ JS2 · s(r) ≈ 3πn2

64EF

cos (2kFr)

(kFr)3
J2S1 · S2. (13.3.8)
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Certainly this formula is used only to demonstrate the possibility of indirect exchange between lo-
calized spins via conduction electrons; more elaborate calculations should be made for this type of
interaction in real materials. This type of interaction is used to explain the mechanism of ferromag-
netism, antiferromagnetism and many other types of magnetism with exotic configurations such as
the helix, cone etc., of the rare earth metals. It also explains the behavior of spin glasses, because
the long-range oscillation of spin density may account for both the positive and negative, as well as
more exotic, couplings of localized spins via the conduction electrons.

C. Zener proposed a theory of ferromagnetism of Fe based on the exchange interaction between
localized spins via the conduction electrons. The physical picture is rather like the RKKY interaction
described above but without invoking the oscillation of spin charge density of the electron gas. As
a theory of ferromagnetism of Fe, Zener’s theory fails to account for the itinerant character of the
d-electrons, so it cannot be valid for Fe.h However, owing to the emergence of spintronics, research
on ferromagnetic semiconductors has become a hot topic. GaAs-Mn with atomic concentration of
Mn 5% has been fabricated with molecular beam epitaxy, and its Curie temperature has reached
110 K.i It is found that localized Mn spins couple through the charge carriers in GaAs, whose density
is much lower than that of the electron gas in metals, so the oscillation of spin density is smeared
out. Only ferromagnetic coupling remains possible, so it is unexpectedly found that Zener’s theory
is valid in this case.j

13.3.3 Kondo Effect

Equation (7.2.28) can be used to deal with the interaction between the magnetic impurities and
band electrons in a nonmagnetic metal, and the Hamiltonian may be rewritten as (it can be directly
derived from the Anderson Hamiltonian)

H = −
(

J

N

)

s · Sjδ(r − Rj), (13.3.9)

where Sj is the spin of the impurity at Rj , s is the spin of the conduction electron, and J is the
exchange coupling. In the presence of a spin-polarized impurity that is spin-up, only spin-down
conduction electrons have the opportunity to enter, so this exchange coupling is antiferromagnetic,
i.e., J < 0. We can interpret this Hamiltonian as describing the quantum mechanical exchange of a
spin-up electron at the impurity site with a spin-down electron at the Fermi level of the conduction
electrons (see Fig. 13.3.3). Many such events may produce an extra sharp resonance in the density
of states at the Fermi energy, while a broader resonance is due to the coupling of the impurity level
to the conduction band. Since transport properties of materials are determined by electrons with
energies near the Fermi level, the resistivity of a material is dramatically influenced by this extra
resonance, as exemplified by the Kondo effect.

k'k

Figure 13.3.3 Spin flip scattering of a localized impurity moment by a conduction electron (the base line
indicates the spin state of the impurity).

hFor this theory, see C. Zener, Phy. Rev. 81, 440 (1950); Phys. Rev. 83, 299 (1950).
iH. Ohno et al., Phys. Rev. Lett. 68, 2664 (1992).
jT. Dietl et al., Science 287, 1019 (2000).
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Figure 13.3.4 The resistance versus temperature curves for metals: curve (a) shows the residual resistance
independent of temperature due to impurities and defects in the specimen; curve (b) shows the normal state
to superconductor phase transition; curve (c) shows the Kondo effect.

The variation of electrical resistance with temperature is an important characteristic for mate-
rials. For metals, the resistance is mainly due to the scattering of electrons by lattice vibrations.
Generally speaking, the value of resistance is reduced by a decrease of temperature. For nominally
pure metals it is generally found that the resistance is gradually reduced to a certain value of resid-
ual resistance which is specimen-dependent and determined by impurities and defects (curve (a) in
Fig. 13.3.4). Residual resistivities obey the Mathiessen’s rule, i.e., they are additive and independent
of temperature. For many metals such as Hg, Al, etc., the resistance is suddenly reduced to zero
below a certain critical temperature Tc, they become superconductors (curve (b) in Fig. 13.3.4).
Furthermore, there is another possibility, as shown in curve (c) in Fig. 13.3.4. The resistance of
metal reaches a minimum then rises again when the temperature is further reduced. The puzzle of
the resistance minimum of the noble metals was discovered in the early 1930s. It was suspected to be
an impurity effect, but it was difficult to pin down. In the 1950s, the development of semiconductor
technology brought with it tremendous progress in material purification and characterization, and
experimentalists identified the resistance minimum as due to transition metal impurities dissolved
in the nonmagnetic metal host. This effect was explained by J. Kondo theoretically in 1964, and
subsequently became known as the Kondo effect. The Kondo effect is a many-electron effect in which
localized electrons with spins interact with conduction electrons in the band. In this problem the
interaction among conducting electrons is still ignored. This problem is complex but still soluble,
and may be regarded as an archtype of many related problems.

Because a resistance anomaly is a common property in many alloys with dilute magnetic impuri-
ties, it is expected that the specific band structure does not have much influence, and the simplified
density of states may be used, with B denoting the bandwidth. Kondo used this Hamiltonian to cal-
culate the resistivity associated with the spin exchange scattering process in the second-order Born
approximation. The resistivity due to impurities was found to be ρimp and that due to scattering of
lattice vibrations to be aT 5, so the total resistivity may be expressed as

ρ = aT 5 + ρimp = aT 5 + cimp

(

ρ0 − ρ1 ln
2kBT

B

)

, (13.3.10)

where cimp is the concentration of impurities and ρ0 is the residual resistivity, ρ1 = 4|J |gF is a
constant. It should be noted that there is a logarithmic term which drastically increases when
the temperature is lowered; the total resistivity will reach a minimum when (dρ/dT ) = 0, at the
temperature

Tmin =
(ρ1

5a

)
1
5

c
1
5

imp. (13.3.11)

This is in general agreement with experiment. Kondo’s original paper presented a full comparison
with the experimental results of Fe in Au, as shown in Fig. 13.3.5; the agreement was found to be
very satisfactory. Other physical properties show similar behavior, e.g., specific heat and magnetic



· 356 · Chapter 13. Correlated Electronic States

0.030

0.032

0.034

0.074

0.076

0.078

0.080

0.082

0.084

0.086

0.088

0.090 0.200

0.198

0.196

0.194

0.192

0.190

0.188

0.186

0.184

0 1 2 3 4

0.002 at. %

0.006 at. %

0.02 at. % Fe

T (K)

ρ
tm

p
(µ

Ω
. c

m
)

AuFe

Figure 13.3.5 Comparison of experimental results for the resistivity of dilute Fe in Au at very low tem-
peratures with the logarithmic form. From J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

susceptibility. But according to this theory: when T → 0, ρ → ∞, indicating that perturbation
theory will lose its validity at low temperature. So physicists were greatly concerned with what
happens with the Kondo resistance when T → 0.

A. A. Abrikosov et al. dealt with this problem by introducing higher order perturbation terms
(the so-called most divergent sum method). The magnetic susceptibility can be expressed as:

χimp =
(gLµB)2S(S + 1)

3kBT

{

1 +
2JgF

1 − 2JgF ln (2kBT/B)
+ c2 (2JgF)

2

}

. (13.3.12)

If we introduce the Kondo temperature

kBTK =
1

2
B exp

(

− 1

2 |J | gF

)

, (13.3.13)

then at T = TK, we shall get the absurd result χ → ∞, indicating that near TK the perturbation
calculations become invalid. So though Kondo’s original paper gave a correct physical explanation of
the resistance minimum and other anomalous physical properties due to transition metal impurities;
it raised new questions about the physics of systems near or below TK; the so-called Kondo problem.

In the late 1960s, Anderson introduced the idea of scaling, in which physical properties depend on
temperature only in the form of T/TK, and identified kBTK as the unique energy scale of the Kondo
problem. At high temperature, i.e., T ≫ TK, the spin interaction J is small but the bandwidth B is
wide, so Kondo’s results are correct for this regime and may be reformulated in the scaling form as
a function of ln(T/TK). At low temperature, T ≪ TK, the opposite is true, J becomes strong, but
B becomes small, so the physical relationship will be entirely different. In the early 1970s, K. G.
Wilson applied the renormalization group method to the Kondo problem, with exemplary success.
The low-temperature magnetic susceptibility is found to be

χimp(T ) =
ω(gLµB)2

4kBTK

{

1 − ax

(

T

TK

)2

+ O

(

T

TK

)4
}

, (13.3.14)

where ω = 0.5772 is known as the Wilson number, and the low-temperature electrical resistance

ρimp(T ) = ρ0

{

1 − aR

(

T

TK

)2

+ O

(

T

TK

)4
}

. (13.3.15)
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Now we can summarize the whole picture for the Kondo problem: At high temperature, T ≫ TK,
the d-spin is essentially free; its contribution to magnetic susceptibility is Curie-like, like an inde-
pendent magnetic moment. The scattering of conduction electrons is classified into two types: those
of ordinary potential scattering and those involving a spin-flip by the magnetic impurity. As the
temperature is lowered, in a wide crossover regime centered around TK, the spin-flip scattering
events become more frequent with a concurrent build-up of a spin compensating cloud. So numer-
ical solutions for the whole temperature range were found by the renormalization group method,k

furthermore, the exact solution of the s-d model and the Anderson model by the Bethe Ansatz
substantiated these results.l

The physical nature of the resistance minimum is due to frequent spin-flip scattering events.
At low temperature, T ≪ TK, spin-compensation is nearly complete; the impurity spin with its
compensating electron spin cloud is strongly bound together, forming a Kondo singlet and appearing
to be non-magnetic. Electrons are scattered by the big singlet with strong potential scattering, but
spin-flip scattering disappears.

13.3.4 Heavy-Electron Metals and Related Materials

Heavy-electron metals or heavy fermions are rare earth or actinide compounds showing metal-
lic behavior with a variety of anomalous thermodynamic, magnetic and transport properties. The
prominent examples of heavy-electron metals are CeAl3, CeCu2Si2, CeCu6, UBe13, UPt3, UCd11,
U2Zn17, and NpBe13, containing Ce, U and Np, respectively. At high temperature, these systems
behave like weakly interacting collections of magnetic moments of f -electrons and conduction elec-
trons with quite ordinary masses; at low temperatures, the f -electron magnetic moments become
strongly coupled to the conduction electrons and to one another, and the effective masses of the
conduction electrons becomes heavy, typically about 10 to 100 times the bare electron mass.

It is appropriate to give some basic experimental results for some typical heavy electron metals.
Figure 13.3.6 shows the relation between the resistivity and temperature for some heavy electron
metals, and the inset shows the linear relation between R and T 2 of CeAl3 at low temperatures.
For T < 0.3 K, ρ(T ) follows the T 2 law as shown in the inset of Fig. 13.3.6, and displays a broad
maximum at Tmax ≈ 35 K. Besides ρ(T ), Cp(T ) and χ(T ) as shown in Fig. 13.3.7 also show the
typical heavy electron behavior. In fact, below 0.2 K the linear specific heat term is enormous, with
γ = 1620 × 104 erg/mol K2. In order to appreciate how huge this value is, let us recall that for
ordinary metals, it is about 10−3 times smaller (for Cu, K and Ni: 0.695, 2.08 and 7.02 in units of
104 erg/mol K2, respectively). Similarly, the magnetic susceptibility can be more than two orders
of magnitude larger than the temperature-independent Pauli susceptibility observed in conventional
conducting materials.

Magnetic susceptibility data show a Kondo-like behavior: at high temperatures the Curie-like
behavior is due to the independent magnetic moments of f -atoms; at low temperatures, compen-
sating electron-clouds about f -atoms are gradually build up to form a lattice of spin-singlets, so
at T = 0, only enhanced Pauli susceptibility remains. From resistivity data, surely the Kondo-like
scatterings play an important role. However, at low temperatures f -electrons are delocalized into
the Fermi sea, thus the resistivity decreases again, so we see a resistivity maximum, instead of the
minimum in Kondo effect.

For an explanation of the anomalous properties of heavy electrons, it is appropriate to generalize
the Kondo Hamiltonian to the Kondo lattice model (KLM) as

HKLM = −t
∑

ijσ

(c†iσcjσ + h.c.) − J
∑

i

si · Si, (13.3.16)

kK. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
lN. Andrei, Phys. Rev. Lett. 45, 1379 (1979); P. B. Wiegmann, Phys. Lett. 81A, 175 (1981).
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where si = (1/2)
∑

σσ′ τσσ′c†iσciσ′ are the spin-density operators of the conduction electrons and

Sl = (1/2)
∑

σσ′ τσσf †
lσflσ′ are localized spins, with τ being the Pauli matrices. The exchange

interaction derived in this way is antiferromagnetic and inversely proportional to U . Therefore the
limit of strong Coulomb interaction corresponds to the small-J limit of the Kondo lattice model.

The Kondo lattice model is one of the standard models for heavy electrons. In this model the
charge fluctuations of the f electrons are completely omitted, and the lowest f -ion multiplet is taken
into account as a localized spin. Thus the Kondo lattice model is an example of a coupled spin-
fermion system. For this model an important question arises from the interplay between the Kondo
screening and the RKKY interaction: Kondo screening favors a nonmagnetic singlet state, while the
RKKY interaction tends to stabilize a magnetically-ordered phase, generally a spiral state. There
may exist a transition between the large-J regime, where the localized spins are essentially screened
by the conduction electrons, and the small-J regime, in which the effective interaction mediated by
the conduction electrons leads to magnetic order among the local spins.

At higher temperatures, the heavy electron systems behave as nearly independent localized spins
and conduction electrons. The two sets of degrees of freedom are coupled only weakly by the
exchange coupling. As the temperature is lowered, the localized spins start to couple strongly with
the conduction electrons. After anomalous behaviors in the crossover region, the heavy electron
materials settle in various types of different ground states. An extensive Hartree–Fock treatment
has been used on the three-dimensional Kondo lattice model with the usual electron density, and
has given relative stability for three types of ground states — the magnetically disordered Kondo
singlet, the ferromagnetic state, and the antiferromagnetic state. The mean-field phase diagram for
the Kondo coupling J/t versus the conduction-electron number nc is shown in Fig. 13.3.8.

From the above discussion, heavy electron metals may be theoretically interpreted by the Kondo
lattice model: for J = 0, the ground state has the conduction electrons forming a Fermi sea surround-
ing localized spins of f -electrons, which are free to point either up or down. If an antiferromagnetic
J is switched on, one possibility is the formation of a series of Kondo singlets, which then bind
the f -spins to the conduction electrons; this may be identified as the non-magnetic heavy electron
state. There is another possibility: to form a local singlet, a f -spin should polarize the surrounding
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Fermi sea. As a consequence the neighboring spins may feel this disturbance and line up into a spin
ordered state, according to the RKKY interaction.

There are other possible ground states for Kondo-like materials: one is the Kondo insulator, a
small gap of the order a few meV, in contrast to semiconductors with gaps of the order eV; another
type of ground state is a superconductor. The heavy electrons form pairs which condense into the
superconducting state, for example, URu2Si2, UNi2Al3, UPd2Al3, CeCu2Si2, UPt3 and UBe13. In
general, these have rather small Tc (Tc < 1–2 K), but display unconventional properties and exotic
pairing mechanisms; we shall not go into details here. Generally speaking, Kondo-like materials
form another important class of materials with strongly correlated electrons in current research.

§13.4 Outlook

After a brief survey of correlated electronic states, we have seen some peaks of icebergs floating
on the ocean surface, with an enormous unknown mass below. Now we would like to discuss the
prospects of this field using an empirical view on the one hand and a theoretical approach on the
other.

13.4.1 Some Empirical Rules

Most interesting materials for high-tech are those conductors on the verge of becoming insulators,
or in other words bad metals. Semiconductors may be taken as a shining example, they are doped
band insulators with their conductivity finely controlled. With advent of high Tc superconductors
and colossal magnetoresistors, doped Mott insulators have become hot topics of current research
and high-tech materials with great potential. Since the study of compounds with 4 or 5 elements is
just beginning, the potential for further research in materials with strongly correlated electrons is,
indeed, enormous.

Some empirical rules may be used as maps to guide us. Surely the periodic table of elements is
a master map; however, to accentuate the elements with unfilled d and f shells which are closely
related with narrow bands, the sequence of d and f shells should be suitably modified. The ratios
of d or f shell volume to the volume of the Wigner–Seitz (WS) cell are shown in Fig. 13.4.1, the
values of the ratio are all less than 0.5, showing these shells lie between inner core and bonding
states. For lanthanides, the values are below 0.05, the f -shells are localized within the atoms. On
the other hand, the d-electrons of the transition elements still participate in the bonding of metals.
For actinides, the situation is in between: The early actinides are like transition metals, while the
heavier actinides resemble the rare earths. With this in mind, the periodic table of elements may be
redrawn according to the sequence of the spatial extent of f and d shell (4f -5f -3d-4d-5d) as proposed
by Smith and Kmetko (Fig. 13.4.2). It should be noted that the elements with delocalized electrons
lie on one side of the table, while those with localized electrons lie on the other. The transition region
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is drawn as an inclined band across the table, where strongly correlated electronic states occur. It
is interesting to note that Ce and Pu are situated on the margin of localization-delocalization: Ce
has two polymorphic phases, at room temperature the γ phase, with 4f electrons localized; while
at high pressure or low temperature the α phase, with 4f electrons delocalized (see Fig. 12.4.8). Pu
also has two polymorphic phases: at room temperature the α phase, with 5f electrons delocalized;
while at high temperature the δ phase, with 5f electrons partly localized (see Fig 13.4.9). In Am,
the 5f electrons are fully localized.

Though this kind of periodic table is a chart for elements, its usage may be extended to alloys
and compounds whose basic ingredients occupy suitable places in this table. For instance, the basic
ingredient for a heavy electron alloy is certainly a lanthanide or an actinide element; for the cuprates,
the basic ingredient is a Cu2+ ion with one electron deficient in its d-shell, so it should be regarded
as a transition metal to occupy the place of Ni in the table.
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From the table, you may note the ferromagnetic metals Fe, Co and Ni with their strong ferro-
magnetism due to itinerant-electrons, though their narrow d-bands overlap with the wide s-band,
showing typical metallic behavior. Ce and U based alloys are typical heavy electron metals; the
cuprates are high-Tc superconductors; the manganites are colossal magnetoresistors; exotic super-
conductors with p-wave pairing have been found in UGe2 and ruthenates. Most of these findings
were discovered after this table was published.

From an historical point of view, intensive studies of the physical properties of compounds with
many components began with the discovery of high Tc superconductors. Only a few have been
studied in detail. How to prospect, explore and study the fertile field of complex compounds with
superior or peculiar physical properties is one of the important topics of condensed matter physics
in the 21st century.

13.4.2 Theoretical Methods

P. W. Anderson and J. R. Schrieffer are two distinguished physicists who have made important
contributions to the many-body problems of condensed matter theory. Although they have different
views on the theory of high Tc superconductors, they are unanimous about the present situation of
condensed matter theory: There should be two volumes of condensed matter physics; volume one
is about the physics of weakly or medium correlated electrons, already mature and well-established;
volume two is about the physics of strongly-correlated electrons and is still waiting to be written.m

It is expected that this will be a fertile field for theorists to introduce new ideas, new models and
new methods. The effectiveness of these approaches has been testified to by the successes achieved
in the fractional quantum Hall effect, a clean system of strongly correlated electrons.

However, for systems treated in this chapter there is added complexity due to chemistry. On
the cross-disciplinary side, close synthesis with quantum chemistry is needed, as exemplified by the
establishment of the orbital physics of transition metal oxides. Inhomogeneity in electronic structures
such as stripe phases, phase separation and competing ground states in cuprates and manganites
poses new problems for theorists. These are related to the physics of nonequilibrium states and
nonlinear physics.

In the field of more traditional condensed matter theories, the problem is how to reconcile density
functional theory with model Hamiltonians such as the Hubbard model and the Anderson model.
Density functional theory (especially LDA) has achieved extraordinary success in the calculation of
electronic structure of weakly and moderately correlated electronic structure of solids but is found
to be inadequate in solving the electronic structure of strongly correlated systems. So we have em-
phasized model Hamiltonians, especially the Hubbard Hamiltonian and the Anderson Hamiltonian,
in our account of the electronic structures of strongly correlated electronic states.

Though these model Hamiltonians proved their importance and enlightened our understanding
of strongly correlated electronic systems, they are quite intractable and not able to give very detailed
electronic structures for real materials. Real materials often have crystal structures that are quite
complicated, with the number of atoms per unit cell usually reaching or exceeds 10–15, so the
interaction between electrons and degrees of freedom of lattice demands more detailed study, which
lies outside the model Hamiltonians. So an important direction of recent progress consists of the
combination of these two different types of theoretical treatment.

One of the combination schemes is called the LDA+U method.n This method is to add a mean
field Hubbard-like term to the LDA functional. The main idea of this method is similar to the
Anderson impurity model: to separate electrons into two subsystems — localized d or f electrons
for which the Coulomb interaction should be taken into account by a term containing U in a model
Hamiltonian and delocalized s and p electrons that could be described by an orbital-independent one-
electron potential (LDA). This method has been applied to the electronic structure and magnetism
of Mott insulators with quite good results.

The shortcomings of the LDA+U method come from the mean field approximation; the physical
properties related to self-energy such as the enhancement and decrement of mass are difficult to

mP. W. Andenson and J. R. Schrieffer, Phys. Today 44, June 55 (1991).
nV. I. Anisimov, E. Aryasetiaswan and A. I. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997).
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account for. Further on the way, the LDA++ method and dynamical mean-field theory (DMFT)
were developed.o As an example of the latter technique: it successfully solved the polymorphic
transition from αPu to δPu at 600 K in which a 5f electron changes from a delocalized state to a
partly localized state with a concurrent expansion of atomic volume by about 25%. It shows that
the combination of two approaches can solve a difficult problem of strongly correlated electrons.p
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Chapter 14

Quantum Confined Nanostructures

In artificial nanostructures including quantum wells, wires and dots, the motion of electrons
is governed by effective potentials, which confine the electrons in one, two, or three directions.
These confinements bring about plentiful quantum effects, which are useful in designing electronic
structures and tailoring physical properties. A fundamental problem is what characteristic size of
nanostructure will make such a remarkable change to the electrons that it modifies their optical,
transport and magnetic properties. Because a large part of the physical properties are determined
by electrons at the Fermi surface, it is expected that the Fermi wavelength is this characteristic
size. From §5.2.1, we obtain the Fermi wavelength for a free-electron gas; taking this simple case
as an example, we find that Fermi wavelength decreases with electron density. According to the
parameters of materials, it is easy to determine that this characteristic size is about 200 nm for
semiconductors, and about 1 nm for metals. The former corresponds to the upper limit of nano-size,
and the latter the lower one, so this difference is quite significant. An artificial structure fabricated
at nano-size, at moderate temperature, will show quantum confinement effects.

§14.1 Semiconductor Quantum Wells

A semiconductor quantum well is a sandwich structure, in which a piece of narrow-gap material
is placed between two pieces of wider-gap material. A heterostructure composed of a thin layer of
GaAs embedded between two thick layers of AlGaAs, each with thickness much greater than the
penetration length of the confined wavefunction, provides a simple picture of a quantum well. In this
section we describe the electron states and optical properties of a quantum well in the GaAs-AlGaAs
system. In this case, both types of carrier, electrons and holes, are all confined within the GaAs
layer.

14.1.1 Electron Subbands

Consider an electron moving in a confined potential: Its energy levels can be calculated quite
easily in the approximation of the envelope wavefunction, due to the modulation of the quickly
oscillating Bloch function of the parent bulk materials. Roughly speaking, the Bloch function gives
the solution of the bulk Hamiltonian, and the envelope function ensures that the boundary conditions
at the surfaces of the film are met. The Bloch function wavelength is given by the atomic layer spacing
via λBloch = 2a. The envelope function wavelength λenv is determined by the thickness d of the film.
Taking z as the growth direction, we can write the Schrödinger equation for the envelope function
φ(z) as

[

− �
2

2m∗(z)

d2

dz2
+ Vc(z)

]

φ(z) = Eφ(z), (14.1.1)

where m∗(z) is the electron effective mass, Vc(z) the energy level of the bottom of the conduction
bands, and E the confined eigenenergy of the carriers. The continuity conditions at the interfaces
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Figure 14.1.1 Schematic diagrams of quantum well energy levels and wavefunctions for three possible
potentials. (a) Infinitely deep square well; (b) finite square well; and (c) triangular well.

are that φ and (1/m∗)(dφ/dz) are continuous; the latter is necessary for conservation of particle
current. In the following, three different potential profiles are taken into account.

First consider the simple case of an infinitely deep square well, where the potential V = 0 within
the well, and V = ∞ out of it. Here, the solution to (14.1.1) is simple, as the wavefunction must
be zero outside the well region. Taking the origin of z at one interface, with the width of the well
L, the eigenstate is φn = (2/L)1/2 sin(nπz/L), with eigenenergy En = n2

�
2π2/2m∗L2, where the

quantum number n = 1, 2, . . . . It is noted that the φn have even parity for odd n and odd parity for
even n, about the center of the well.

In order to show clearly the symmetries of the wavefunctions and to extend the treatment to the
general case of finite potential wells, it is more convenient to shift the origin to the center of the
well. For the case n = 1, 3, . . . , the solutions of (14.1.1) show even parity:

φn(z) =











A cos(kz), |z| < L/2,

B exp[κ(z + L/2)], z < −L/2,

C exp[−κ(z − L/2)], z > L/2.

(14.1.2)

For the case n = 2, 4, . . . , solutions of (14.1.1) show odd parity:

φn(z) =











A sin(kz), |z| < L/2,

B exp[κ(z + L/2)], z < −L/2,

C exp[−κ(z − L/2)], z > L/2.

(14.1.3)

Figure 14.1.1(a) shows the solutions for an infinitely deep well, while Fig. 14.1.1(b) shows the
solutions for a finite well. Note the difference: For the former the wavefunctions are limited within
the well; but for the latter the wavefunctions are spilled out across the interfaces.

In the energy range −V0 < E < 0, the eigenenergy

En =
�

2k2

2m∗
A

− V0, En = −�
2κ2

2m∗
B

, (14.1.4)

where the suffixes A and B denote the material of the well and barrier, respectively. By using the
continuity conditions at z = ±L/2, (14.1.2) and (14.1.3) yield implicit eigenvalue equations

(k/m∗
A) tan(kL/2) = κ/m∗

B, (14.1.5)

and
(k/m∗

A) cot(kL/2) = −κ/m∗
B. (14.1.6)

The equations can be solved numerically or graphically. As a simple example, when m∗
A = m∗

B, the
above two equations can be transformed into

cos(kL/2) = k/k0, for tan(kL/2) > 0, (14.1.7)
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and

sin(kL/2) = k/k0, for tan(kL/2) < 0, (14.1.8)

where

k2
0 = 2m∗V0/�

2. (14.1.9)

The solution is shown in Fig. 14.1.2. There is always at least one bound state. The number of bound
states is

1 +

⌊

(

2m∗
AV0L

2

π2�2

)1/2
⌋

,

where ⌊x⌋ indicates taking the integer part of x. It is evident that if k0 → ∞ the infinitely high
barrier solutions can be found again.
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Figure 14.1.2 Graphical solutions for a finite square well potential. The intersections of the straight line
y = k/k0 with the curves y = cos(kL/2) (solid line) give the even solutions, and these with the curve
y = sin(kL/2) (dot line) give the odd solutions.

Another often-encountered potential is the triangular quantum well, as shown in Fig. 14.1.1(c)
for which the potential V (z) = eEz for z > 0 and an infinite barrier for z ≤ 0, where Ez is the electric
field. The eigensolution of (14.1.1) is the Airy function

φn = Ai

[

(

2m

�2e2E2
z

)1/3

(eFz − En)

]

. (14.1.10)

The boundary condition at z = 0 gives the eigenvalues

En = −
(

e2E2
z �

2

2m

)1/3

an, (14.1.11)

where an is the nth zero of Ai(z). Asymptotically, and also to a very good approximation for small
n, one has

an ≈ −
[

3π

2

(

n +
3

4

)]2/3

, n = 0, 1, . . . ,

so that

En ≈
(

�
2

2m

)1/3 [
3πeEz

2

(

n +
3

4

)]2/3

. (14.1.12)

In practice, the quantum well is a layered structure, so perpendicular to the growth direction z,
an electron can execute two-dimensional movement. For simplicity, we shall assume a free electron
approximation in the x-y plane for which the wavefunction is

ψkn(r, z) = A−1/2eik·rφn(z), (14.1.13)
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Figure 14.1.3 Schematic pictures of quantum well levels and corresponding subbands. Some possible
optical transitions are also sketched.

where r = (x, y), k = (kx, ky), and A is the area of the quantum well. The eigenenergy levels
previously obtained are now extended to

E = En +
�

2k2

2m
, (14.1.14)

leading to subbands shown in Fig. 14.1.3.
In this simple discussion for the quantum well structure, we have assumed that the conduction

band state is a pure s-type state and we have used a simple effective mass theory to understand
the quantum well band structure. A more sophisticated calculation can be performed, in which one
retains the full description of the band structure of the individual components (e.g., an eight band
model). When this is done, it turns out that the results for the conduction states are not affected
very much.

14.1.2 Hole Subbands

The description presented above of the quantum well energy band is quite valid for electron states
of the s-type, since the electron states, as noted earlier, in direct band gap materials are adequately
described by a single s-type band. However, the valence band states are formed from p-type states,
leading to heavy hole and light hole states, even in bulk semiconductors, due to strong anisotropy.
This is unfortunate. While the heavy-hole (3/2, ±3/2) and light-hole (3/2, ±1/2) states are pure
states at k = 0, they strongly mix away from k = 0. Thus, the dispersion relation for the hole states
is much more complicated. Although, as far as subband level positions are concerned, the starting
energies of the subbands can be solved just as for electrons, i.e., independently for the heavy-hole
and light-hole states, the degeneracy of the hole states in the bulk valence bands must be taken
into account. Most treatments of bulk valence band structure begin with simple models, to which
ever-greater complications are added. The same is true for quantum well states.

According to the Kane model, which is an extension of the k · p approximation of §12.1.4 with
the added complication of spin-orbit coupling, we take as a basis set the lowest conduction band
which has s-type symmetry associated with the orbitals at each atomic site, and the three uppermost
valence bands which have p-type symmetry at each atom, all at k = 0. From these we form a fourfold
degenerate set of orbitals, in the absence of interatomic interactions, but, once these are added in,
the sharp energy levels broaden into bands. The two most important interaction terms are the
effective mass parameter P , involving interband interactions, and a spin-orbit coupling parameter
Q. The resulting energy bands are of the following form: The conduction band is given by

E = Eg + �
2k2/2m∗ + [

√

(E2
g + 8P 2k2/3)− Eg]/2, (14.1.15)
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and the valence band by

E =











−�
2k2/2m∗, (heavy holes),

−�
2k2/2m∗ − [

√

(E2
g + 8P 2k2/3) − Eg]/2, (light holes),

−Q − �
2k2/2m∗ − P 2k2/(3Eg + 3Q), (split off).

(14.1.16)

To these we must add the perturbations represented by the reduction of the dimensionality in a quan-
tum well. This is exceedingly complicated, and requires numerical calculations. After appropriate
simplification, we can get expressions for the bulk energy bands near k = 0. In the direction z

E = −�
2k2

z

2m
(γ1 − 2γ2), for Jz = ±3/2, (14.1.17)

thus the heavy-hole mass is m/(γ1 − 2γ2), and

E = −�
2k2

z

2m
(γ1 + 2γ2), for Jz = ±1/2, (14.1.18)

with light-hole mass m/(γ1 + 2γ2). For GaAs, we have γ1 = 6.790 and γ2 = 1.924.
For hole levels in a quantum well, a successive perturbation approach is used. After a first-order

perturbation, the quantum well potential lifts the degeneracy between the Jz = ±3/2 and ±1/2
bands. The appropriate expressions for the in-plane dispersion at kz = 0 in a quantum well are

E =
�

2k2

2m
(γ1 + γ2), for Jz = ±3/2, (14.1.19)

E =
�

2k2

2m
(γ1 − γ2), for Jz = ±1/2. (14.1.20)

It is noted that the transverse dispersion corresponding to Jz = ±3/2 (heavy-hole band along the z
direction), now has a light mass m/(γ1 + γ2), whereas the Jz = ±1/2 level now has a heavy mass
m/(γ1 − γ2).

In fact, the effects of quantum well perturbation on the Hamiltonian and the k �= 0 terms should
be treated on the same footing. This is a numerical exercise with a simple solution when the well
is infinitely deep, but otherwise it involves a complex interaction of the two phenomena. Typical
results for the dispersion relations of valence bands in a quantum well are shown in Fig. 14.1.4. As
can be seen quite clearly, the valence band is highly non-parabolic. It is also interesting to note that
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Figure 14.1.4 Dispersion curves for hole bands in a GaAs-Al0.3 Ga0.7As quantum well structure.
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the first light hole band has a curvature opposite to the normal valence band structure, i.e., the hole
state has a negative mass near the zone edge. The character of the hole states is represented by pure
angular momentum states at the zone center, but there is a strong mixing of states as one proceeds
away from there.

14.1.3 Optical Absorption

The most successful application of semiconductor quantum wells to date may be the exploitation
of the optical properties of quantum wells. It is interesting to consider the optical absorption between
bound states; in fact, we could measure the bound energy levels of a quantum well by shining light
on the sample and determining which frequencies were absorbed. A photon is absorbed by exciting
an electron from a lower level to a higher one, with the energy of the photon matching the difference
in electronic energy levels. It is known that the states factorize into a product of a bound state in z
and a transverse plane wave, as described by (14.1.13) and (14.1.14). Each state n for motion along
z gives rise to a subband of energies.

The optical absorption is related to the matrix element between two such states 〈mk′|e · p|nk〉,
which depends strongly on e, the polarization of the light. When e = (1, 0, 0) or (0, 1, 0), i.e.
polarization is in the x-y plane, the matrix element is zero, so no light is absorbed. Thus light
that propagates normal to the layers, a convenient orientation for experiments, cannot be absorbed.
On the other hand, when the electric field is normal to the quantum well, i.e. e = (0, 0, 1), which
requires light to propagate in the plane of the well, the results are quite different: In this case
e · p = −i�∂/∂z, which affects only the wavefunction of the bound states. Thus

〈mk′|e · p|nk〉 = A−1

∫

dz

∫

d2rφ∗
m(z)ei(k−k′)·rpzφn(z). (14.1.21)

The integral over r gives A if k′ = k and zero otherwise, so the two-dimensional wavevector is
conserved. Thus, optical transitions are vertical in k, as shown in Fig. 14.1.4. The remaining matrix
element can be abbreviated to 〈m|pz|n〉.

Because the allowed transitions are vertical in the transverse k-plane, so the absorbed frequencies
satisfy �ω = Em − En, i.e., absorption is seen only at frequencies corresponding to the separation
of the bound states of the well. Thus there are discrete lines, despite the continuous spectrum of
states available, because of the restriction to vertical transitions. The lines may be broadened by
any difference in effective mass between the subbands and transitions into the continuum above the
quantum well occur at high energies.

The remaining task is to evaluate the matrix element

〈m|pz |n〉 = −i�

∫

φ∗
m(z)

d

dz
φn(z)dz. (14.1.22)

An important result follows from the symmetry of the quantum well: The wavefunctions in a sym-
metric well, such as that shown in Fig. 14.1.5(a) where V (−z) = V (z), are either even or odd in z.
The derivative changes the parity, and the matrix element will be non-zero only if one state is even
and the other odd. This is a selection rule that governs which transitions can be seen in optical
absorption. Thus, absorption is permitted from the lowest state n = 1 to n = 2, 4, . . . , but not to
odd values of n. This result applies to any symmetric well.

Now, we consider the optical absorption between electron subbands and hole subbands, as shown
in Fig. 14.1.5. The energy levels for bound electrons and holes can be rewritten as

Eene
= Ec +

�
2π2n2

e

2meL2
; (14.1.23)

and

Ehnh
= Ev − �

2π2n2
h

2mhL2
, (14.1.24)

respectively, where Ec is the bottom of the conduction band, and Ev is the top of the valence band.
The conduction and valence bands are separated by the bandgap Eg = Ec − Ev.
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Figure 14.1.5 Optical absorption in a quantum well.
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Figure 14.1.6 A double-well structure
with the unperturbed potentials V1, V2 and
the wavefunctions ψ1, ψ2 for the separate
wells represented by dotted lines and solid
lines, respectively.

At the start, the valence band is completely full and the conduction band completely empty (at
zero temperature). Optical absorption may lift an electron from the valence band into the conduction
band; this process leaves behind an empty state or hole in the valence band. In a bulk sample of
GaAs, optical absorption can occur, provided that �ω > Eg. However, this is not so for a quantum
well, because the states in the well are quantized due to confinement. The lowest energy at which
absorption can occur is given by the difference in energy Eel − Ehl between the lowest well state in
the conduction band and the highest well state in the valence band. Absorption can occur at higher
energies, by using other states. The strongest transitions occur between corresponding states in the
two bands, so we set ne = nh = n. Therefore, strong absorption occurs at frequencies given by

�ωn = Een − Ehn = Eg +
�

2π2n2

2L2

(

1

me
+

1

mh

)

. (14.1.25)

The energies look like those in a quantum well where the effective mass is meh given by 1/meh =
1/me + 1/mh. This is called the optical effective mass.

In practice there is a reverse process called photoluminescence. Light with �ω > Eg is shone
on the sample, which excites many electrons from the valence to the conduction band everywhere.
Some of these electrons become trapped in the quantum well, and the same thing happens to the
holes in the valence band. It is then possible for an electron to fall from the conduction band into
a hole in the valence band and release the difference in energy as light. Experimentally, only the
lowest levels are usually seen, so the photoluminescence spectrum often shows a line at �ω1.

14.1.4 Coupled Quantum Wells

We have considered the optical absorption of a single quantum well. Actually, it is easy to
fabricate multilayer structures with two types of semiconductor materials. As the barriers are thick
enough, we can still treat the individual wells as independent. However, as the barriers become
thinner (< 2 nm), there is significant interaction between adjacent wells, and so we should consider
coupled multiple quantum wells.

Beyond the double-barrier single well structure, the simplest structure is the double-well configu-
ration as shown in Fig. 14.1.6, which can be easily analyzed by the usual tight-binding perturbation
model. As the barrier thickness is decreased, the exponentially-decaying wavefunction in the barrier
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will have some finite value in the next well. Treating this wavefunction overlap as a perturbation,
one finds the perturbation matrix element to be, in a two-well configuration,

V12 = 〈ψ1|H|ψ2〉, (14.1.26)

where H is the electronic Hamiltonian, ψ1 and ψ2 the unperturbated wavefunctions of single wells
1 and 2, and V1(z) and V2(z) are the corresponding confining potentials.

Within the restricted basis of the functions ψ1 and ψ2 the Schrödinger equation is then

(

E1 + V1 V12

V ∗
12 E1 + V1

)(

a1

a2

)

= E

(

a1

a2

)

, (14.1.27)

where V1 = V2 = 〈ψ1|V1(z)|ψ1〉 = 〈ψ2|V2(z)|ψ2〉, so that E = E1 +V1 ±|V12|, and the levels are split
by 2|V12|.

Once the barriers are appreciably thicker, say more than 5 nm, the interaction through them falls
off sharply, and once the barriers exceed 10 nm there is, in effect, no interaction between adjacent
wells. At this stage, the optical effects associated with adjacent wells simply add in parallel.

Introducing more wells leads to the creation of a continuous band of states. The transition from
single wells to multiply-connected wells can be revealed by optical absorption. For N wells, the
N -degenerate levels give rise to bands with 2N states.

§14.2 Magnetic Quantum Wells

A magnetic quantum well is also a sandwich structure composed of different materials, but at
least one of them is a ferromagnetic metal. In writing this section we are much indebted to the
excellent review on magnetic nanostructures by F. J. Himpsel et al. (Bib. [6]).

14.2.1 Spin Polarization in Metal Quantum Wells

Consider a single metal film confined by two interfaces, for simplicity with vacuum on each
side. The energy dispersion relation E(k‖), parallel to the surface of the film, is not affected by the
confinement, so band theory can be used. Perpendicular to the surface, however, the energy spectrum
E(kz) is discrete. We call these discrete thin film states quantum well states. The wavefunctions
associated with the discrete states are characterized by a rapidly oscillating Bloch function that is
modulated by a slowly-varying envelope wavefunction. The number of nodes in the envelope function
determines the index of the discrete states (see §14.1.1).
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et al., Adv. Phys. 47, 511 (1998).



· 371 ·§14.2 Magnetic Quantum Wells

Extending this to metal multilayers, just like semiconductor quantum wells, a key feature of
these quantum wells is still the reflection of electrons by the interfaces, which confine electrons
within the layers with lower inner potential and quantized momentum and energy perpendicular to
the layers. The discrete thin film states can be found using photoemission and inverse photoemission;
the measurements give the density of states. Spectra of quantum well states in a simple magnetic
structure are shown in Fig. 14.2.1, with epitaxial Cu(100) film of varying thickness grown on Co(100).
It can be seen that the states become denser in thicker films and appear to converge towards the
upper band edge at X4′ (the curves are from a simple envelope function model, and the full circles
come from photoemission and inverse photoemission data with k‖ = 0). The energy positions of the
quantized states with film thickness are described rather well by the envelope wavefunction model;
the curves represent this modela

dn(E) =
n − 1 + φ(E)

1 − k(E)
, (14.2.1)

where dn is the thickness (in monolayers) at which the nth quantum well state appears at the energy
E, k(E) is the inverted bulk dispersion (with k in units of the Brillouin zone boundary), and φ(E) is
the sum of the phase shifts for reflection at the two surfaces of the Cu film. Here, the phase function
is obtained empirically by fitting a linear φ(E) relation to the n = 2 state; all the other states follow
without adjustable parameters.

In magnetic metal quantum wells, an additional complication comes from the fact that the
reflectivity is spin dependent, owing to the spin dependence of the inner potential in ferromagnets.
Therefore, these quantized states may become spin-polarized. Actually, with ferromagnetic metals as
barriers the quantum well states need to be spin-polarized, even in a noble metal film, such as Cu or
Ag. This has been confirmed by experiment: Figure 14.2.2(a) shows a spin-polarized photoemission
spectrum of a quantum well state in a Cu on fcc Co(100) near the Fermi level. It corresponds to
state 2 in Fig. 14.2.1. The state has predominantly minority spin character. A first principles local
density calculation arrives at the same conclusion, as shown in Fig. 14.2.2(b).
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Figure 14.2.2 Spin polarization of quantum well states for Cu on Co(100). (a) Spin-polarized photoemission
data; (b) First-principle calculation. From F. J. Himpsel et al., Adv. Phys. 47, 511 (1998).

There is a rather simple explanation for the spin polarization of quantum well states in magnetic
multilayers: Generally, two magnetic layers are separated by a nonmagnetic spacer; quantized states
exist for parallel magnetization only (bottom) and not for antiparallel magnetization. Quantum well
states are formed by reflection of electrons at interfaces. The averaged inner potential of majority
spin and minority spin states differs by the magnetic exchange splitting, leading to spin-dependent
reflectivity, and only states with significant band offset to the nonmagnetic spacer band are confined.
For metals to the right of the ferromagnets (particularly the noble metals) the majority bands are

aJ. E. Ortega et al., Phys. Rev. B 47, 1540 (1993).
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Figure 14.2.3 Schematic diagram of a magnetic quantum well in trilayers.

nearly lined up as shown in Fig. 14.2.3. Therefore, the minority spins experience a band offset and are
confined in the quantum well states, but the majority spins behave like a continuous bulk band that
extends throughout the noble metal and ferromagnet. For spacers to the left of the ferromagnets,
for example Cr, the minority bands line up, and a majority spin polarization is expected for the
quantum well states. This argument works independently of the specific band topology, but it does
not guarantee full confinement, that is 100% reflectivity at the interface. Only in particular cases
does one encounter a situation where the minority spins become totally Bragg reflected since they
run into a bandgap in the ferromagnet.

14.2.2 Oscillatory Magnetic Coupling

Spin polarization in magnetic quantum well states can give rise to a fascinating characteristic of
magnetic multilayers: Indeed, an oscillation of the magnetic coupling strength with thickness of the
nonmagnetic layers has been observed and explained.b Two ferromagnetic layers line up, either in
parallel or antiparallel depending on the thickness of a nonmagnetic spacer, with atomic precision.
This effect has been observed for many combinations of ferromagnets and spacer materials. Typical
oscillation periods are about 10 Å, but shorter and longer periods have also been observed.c

The oscillation periods are connected to the Fermi wavelength. To find the electronic origin for
this effect we focus on states near the Fermi level. Figure 14.2.4(a) shows the thickness dependence
of the density of states in the Cu layer with the Kerr effect on the magnetic coupling in the Co-Cu-
Co trilayers. The density of states (DOS) at the Fermi level oscillates with the period of about six
atomic layers (10 Å), coinciding with the period of spin polarization in Fig. 14.2.4(b) and saturation
field in Fig. 14.2.4(c).

The wavelength measured in the density of states oscillations is that of the envelope function,
and not the, much shorter, wavelength of Bloch states at the Fermi level. The latter is the length
scale of classical models of magnetic coupling, such as the RKKY interaction. There is an another
basic length scale in the system, that is, the lattice constant. The beat frequency between the Fermi
wavelength and the lattice constant determines the longer period of magnetic oscillations. One has
to determine the envelope function wavevector kenv by subtracting the Fermi wavevector kF = 2π/λF

from the zone boundary wavevector kZB

kenv = kZB − kF. (14.2.2)

The oscillation period is given simply by the inverse of kenv. The fact that the Fermi level crossing
in Cu occurs at about one sixth of the Brillouin zone away from band maximum at X leads to a
six-layer oscillation period. This result is identical with the prediction of RKKY theory after taking
the discrete lattice into account.

bP. Grünberg et al., Phys. Rev. Lett. 57, 2442 (1986).
cJ. Unguiris et al., Phys. Rev. Lett. 67, 140 (1991).
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(1998).

The RKKY model describes the coupling between two spin impurities via an intervening electron
gas. The electron gas responds to the first spin by spin density oscillations, whose period is set by
the Fermi wavevector kF. A second spin at a distance r from the first couples to the spin density
wave. For a free electron gas, the interaction energy between the two spins takes the form

J(r) ∝ cos(2kFr)

r3
. (14.2.3)

When summed over spins in two sheets, the coupling becomes

Jplanar ∝
cos(2kFz)

z2
, (14.2.4)

where z is the spacing between the sheets. Actually, the quickly oscillating RKKY coupling can only
be sampled at discrete crystal planes. Figure 14.2.5 shows the resulting beat frequency between the
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Fermi wavelength and the lattice constant. If the two are similar, the resulting oscillation period
can become quite long.

In most cases, these RKKY periods are identical with those obtained for the quantum well states,
with the spanning vector equal to twice the envelope wevevector kenv. With the similarity in the
periods predicted by RKKY and quantum well states, there is a good reason to believe that the two
models are based on common physics, with the RKKY approach coming from reciprocal space and
the quantum well approach from real space, so they are almost equivalent, although there may be
some discrepancies in the details.

14.2.3 Giant Magnetoresistance

Magnetoresistance is the change of resistance of materials under applied magnetic fields. Just
as discussed in §8.2, due to the Lorentz force there is always an intrinsic, but small, ordinary mag-
netoresistance (OMR) in all metals. However, there is giant magnetoresistance (GMR) in magnetic
multilayers. Experimental results in Fig. 14.2.6 showed for the first time that the resistance of Fe/Cr
superlattices with antiferromagnetic coupling can change remarkably under magnetic fields. This
kind of GMR effect has also been realized in many other magnetic multilayer structures and has
brought important technical applications.
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Figure 14.2.6 Magnetoresistance of three Fe/Cr superlattices at 4.2 K. From M. N. Baibich et al., Phys.

Rev. Lett. 61, 2472 (1988).

The GMR effect is closely related to electronic spin polarization and oscillatory magnetic cou-
pling. The basic structural unit is still a tri-layer, where two ferromagnetic layers are separated by a
nonmagnetic layer, typically 1 nm thick. As we have seen, two magnetic configurations are possible
by changing the thickness of the spacer: One with ferromagnetic layers oriented parallel, and the
other antiparallel. The parallel configuration exhibits lower resistance than the antiparallel configu-
ration. If one starts out with an antiparallel configuration and forces it into parallel alignment with
an external field, the resistance decreases. Here the antiferromagnetic configuration as a starting
point can be obtained by choosing the right spacer thickness. Figure 14.2.7 gives an example to
illustrate the relationship of magnetoresistance to spacer thickness. It is consistent with Fig. 14.2.4,
which shows the oscillatory magnetic coupling.

Experimental measurement of GMR can be done in two geometries: With the current in the
plane (CIP) and the current perpendicular to the plane (CPP) of the layers. The CPP geometry is
conceptually simpler and exhibits larger magnetoresistance, because there is no component through
the normal metal layer; all current crossing over the layered structure must bear a spin-related
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Figure 14.2.8 Schematic DOS and electronic transition in magnetic trilayers. (a) Antiparallel arrangement
of magnetic moments; (b) Parallel arrangement of magnetic moments.

scattering at the interfaces. The GMR effect arises from spin-polarized electronic transport in
magnetic multilayers; the spin-dependent scattering can take place at the interfaces and also in the
bulk. However, a large number of experiments have confirmed that, for homogeneous multilayers,
scattering mainly takes place at the interfaces. Certainly, defects in the interiors of layers, such as
magnetic impurities in normal metallic layers and inhomogeneity in magnetic layers, can contribute
to bulk spin scattering. Here we consider that the interfaces, including their roughnesses, play
essential roles. Spin scattering at an interface must be deduced from the degree of matching of
the conduction bands at the Fermi levels on both sides of the interface. Taking a Fe-Cr tri-layer
shown in Fig. 14.2.8 as example, The paramagnetic d band of Cr matches the minority spin d band
of Fe in energy, but does not match with its majority spin d band. This illustrates that the up
and down spins at the interface are not equivalent. The minority spins can have antiparallel and
parallel configurations, each giving rise to different effects on electronic transport. Arrows denote
the electronic transport from one ferromagnetic layer through the nonmagnetic metallic layer to
another magnetic layer.

Here we shall focus on the simpler CPP geometry to give a simple exposition of the key phe-
nomena contributing to GMR. A good starting point is the optical polarizer analyzer analogy in
Fig. 14.2.9. Conduction electrons become spin-polarized by spin-dependent scattering at the mag-
netic interfaces: Interfaces at the ferromagnetic layers act as spin-polarizers. The electron current
perpendicular to the interfaces increases when the magnetic orientation is switched from antiparallel
to parallel by an external field. Antiparallel orientation of the two ferromagnetic layers is equivalent
to a crossed optical polarization filter: we note that a 90◦ rotation of an optical polarizer corresponds
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Figure 14.2.9 Simplified visualization of GMR via an optical polarizer-analyzer analogue.

to a 180◦ rotation for an electron polarizer since the photon spin is 1 and the electron spin 1/2.
Therefore, the transmitted electron current is low in the antiparallel configuration. But when an
applied field turns the magnetizations from antiparallel to parallel, the current perpendicular to the
interface increases dramatically.

Perpendicular transport is easily recognized, since the current is composed of two unmixed com-
ponents, spin-up and spin-down. Therefore we can determine the spin-dependent scattering coeffi-
cients and finish the correct description of the magnetoresistance in magnetic multilayer structures.
Such a picture can be quantified into a two-channel model, where the majority and minority spins
are treated as separate current channels, and their conductivities are just added up. This model
assumes a low probability for spin-flip scattering across the whole stack. Each channel is then
equivalent to a series of resistors when electrons are scattered at various interfaces and in the bulk.
Figure 14.2.10 shows schematically this mechanism for magnetoresistance. Under a high magnetic
field, the magnetizations of every layer are parallel. Because different spin orientations have different
scattering probabilities, they have different resistivities ρ↑ and ρ↓, as shown in Fig. 14.2.10(a). The
total resistivity of the system is

ρF =
ρ↑ρ↓

ρ↑ + ρ↓
. (14.2.5)

There is a low resistance channel for electrons with one kind of spin. Current mainly passes through
this channel, so the total resistance (14.2.5) has a lower value. Figure 14.2.10(b) represents the re-
versed situation, the neighboring magnetic layers are antiparallel, the electrons with lower resistance
in one layer will show higher resistance in the neighboring layer. Therefore, each channel has the
same resistivity (ρ↑ + ρ↓)/2, and the total resistivity of the system is

ρAF =
1

4
(ρ↑ + ρ↓). (14.2.6)

It is easy to see that in general ρAF ≫ ρF, so the magnetoresistivity can be defined as

MR =
ρAF − ρF

ρF
. (14.2.7)

For magnetic materials Fe, Co and Ni, the differences of resistivities ρ↑ and ρ↓ are very large
and, by a simple argument, we can write the resistivity for spin σ as

ρσ = mσ/nσe2τσ. (14.2.8)
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Figure 14.2.10 Two channel model for GMR. (a) Parallel magnetization under high magnetic fields;
(b) Antiparallel magnetization under zero magnetic field and antiferromagnetic exchange interaction.

where mσ and nσ are the electronic mass and number density of spin σ. Taking Vσ as a scattering
matrix element, in the Born approximation, the transition probability is

τ−1
σ ∼ |Vσ |2nσ(EF). (14.2.9)

Therefore, the spin-dependent resistivity ρσ can be calculated microscopically.

It should be noted that the spin relaxation length is usually greater than 10 nm, so an electron can
cross through many layers before it loses its original orientation. Within this length, each magnetic
interface represents a spin filter, so the more scattering interfaces there are, the more obvious the
filtering effect is, i.e., magnetoresistance increases with the number of layers. A useful picture to show
the interface scattering comes from the spin-polarized quantum well states is indicated in Fig. 14.2.3,
i.e, there are spin-dependent steps in the inner potential which can even cause total reflection of the
minority spins. Experiments have confirmed that GMR occurs only at a well-defined thickness of
the spacer layer where the ferromagnetic layers are magnetized antiparallel. The resistance drops
when the orientation is switched from antiparallel to parallel by an external field.

GMR occurs not only in well ordered multilayers but also in granular materials, such as ferromag-
netic particles, e.g. Co segregated in noble metal Cu.d A random coupling between ferromagnetic
particles is enough to produce GMR, because on average half of the particles are antiparallel to each
other. If the sizes of particles are appropriate, the electronic spin-dependent scattering at the Co-Cu
interfaces causes GMR. The resistance of a magnetic granular material will change considerably,
when a magnetic field is applied. But if the sizes of particles are increased, the ratio of surface to
volume decreases and GMR will diminish and disappear finally.

§14.3 Quantum Wires

In the last two sections, we investigated electrons that are confined in a bound state along one
direction and behaved as though they were free in two dimensions. There is the possibility of
confining electrons further and so reduce their effective dimensionality to one; this is the area of
quantum wires.

dA. E. Berkowitz et al., Phys. Rev. Lett. 68, 3745 (1992); J. Q. Xiao et al., Phys. Rev. Lett. 68, 3749 (1992).
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14.3.1 Semiconductor Quantum Wires

If we take the confining potential of a semiconductor material related to spatial position r =
(x, y), the electrons remain free to move along z and the result is a wire, closely analogous to an
electromagnetic wave guide.

Starting with the two-dimensional (2D) Schrödinger equation for the confining potential

[

− �
2

2m∗

(

∂2

∂x2
+

∂2

∂y2

)

+ V (r)

]

φmn(r) = Emnφmn(r). (14.3.1)

The total wavefunction and the energy are given by

ψmnk(r, z) = φmn(r)eikz , (14.3.2)

and

Emn(k) = Emn +
�

2k2

2m∗ . (14.3.3)

The simplest geometry for which explicit results can be obtained easily is a rectangular geometry
with a potential that is zero inside and infinitely high outside; i.e. a two-dimensional infinitely deep
well. Assume that the respective effective masses for motions in the kx, ky, and kz directions are
mx, my, and mz; we can still use envelope functions, which are presumed to be slowly varying on
an atomic scale. In the effective mass approximation, the envelope wavefunction of a state with
quantum numbers m, n and wavevector k in a rectangular wire of dimensions a and b is taken to be

ψmnk(r, z) =

(

4

ab

)1/2

sin
πmx

a
sin

πny

b
eikz , (14.3.4)

where m, n = 1, 2, 3, . . . . The free electron-like motion along the wire leads to subbands of states
with energies

Emn(k) =
m2π2

�
2

2mxa2
+

n2π2
�

2

2myb2
+

�
2k2

2mz
. (14.3.5)

The subband energies for k = 0 are non-degenerate (not including spin) in general, but for a
square with a = b the states m, n and n, m will be degenerate when m �= n. The density of states
(DOS) per unit energy for the one-dimensional subband with quantum numbers m and n in a wire
of length L is

g(E) = 2 · 2 L

2π

dk

dE
=

(

L2mz

π�2

)1/2

(E − Emn)−1/2 , (14.3.6)

where the first factor arises because there are states with both positive and negative values of k, and
the second factor of 2 is the spin degeneracy. By the way, there is no simple closed form solution
for the envelope wavefunctions and energy levels of a rectangular wire with a finite barrier.

Another simpler case may be the one with a circular cross section. To be a little more general, we
consider an elliptical GaAs wire with semimajor axis a and semiminor axis b. It is assumed that the
electrons are confined in this kind of wire by an infinite barrier. In elliptical coordinates r = (r, θ, z)
with r the radial coordinate, θ the angular coordinate, z the axial coordinate, the wavefunction can
be separated into

ψ = AU(r)V (θ)eikz , (14.3.7)

where k is the axial wavevector. The radial and angular components of the wavefunction satisfy the
Mathieu equations

d2U(r)

du2
− [β − 2λ cosh(2r)]U(r) = 0, (14.3.8)

d2V (θ)

dθ2
+ [β − 2λ cos(2θ)]V (θ) = 0. (14.3.9)
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The angular functions are periodic V (θ + 2π) = V (θ) which implies that the separation constant
β are quantized as βm where m is the azimuthal quantum number. The solutions to the above
equations which are regular to the origin are

ψmnk(r) = Amneikz

{

Cem(r, λmn)cem(θ, λmn), even,

Sem(r, λmn)sem(θ, λmn), odd,
(14.3.10)

where ce, se, Ce, and Se are the Mathieu functions, λmn is given by

λmn =
1

4
f2k2

mn (14.3.11)

with f the semifocal distance (= ae′ with e′ the eccentricity) and kmn is the confinement wavevector
of the electron in the xy plane. The labels odd and even refer to the parities of the angular functions
with respect to θ. The Mathieu functions with index m even have periodicity π, while those with
m odd have periodicity 2π. The requirement that the above wavefunction vanishes at r0 is given by

r = r0 = cosh−1(1/e′) (14.3.12)

and yields the quantum number n. The nth root of the radial component is labeled λmn and the
normalized factor Amn is given by

A−2
mn = L

∫ 2π

0

∫ r0

0

U2
m(r, λmn)V 2

m(θ, λmn)f2(sinh2 r + sin2 θ)drdθ, (14.3.13)

where L is the length of the elliptical wire which is assumed to be effectively infinite. The total
energy of the state (m, n, k) is given by

Emn(k) =
�

2

2m∗
(

k2
mn + k2

)

. (14.3.14)

Figure 14.3.1 illustrates the confinement energy as a function of a/b for fixed b = 50 Å. It is
noted that both the cylindrical (e′ = 0) and the slab e′ → 1 limits are obtained, with the degeneracy
in the cylindrical states lifted by the elliptical asymmetry. The number of electronic states, within
the energy interval shown in Fig. 14.3.1, increases dramatically as e′ approaches unity, and only a
few of the states are shown in this figure. There is a tendency that, as the eccentricity increases, the
ground state wavefunction tends to be localized near the region of lowest curvature, in other words
towards the center of the ellipse.
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Figure 14.3.1 The subband energies of an elliptical wire. The solid curves correspond to even states with
period π, the dotted curves are even states with period 2π, the dashed curves are odd states with period π
and the dashed-dot curves are odd states with period 2π. From C. R. Bennett et al., J. Phys.: Condens.

Matter 7, 9824 (1995).
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14.3.2 Carbon Nanotubes

Carbon nanotubes have exotic electronic properties and can be considered as prototypes for a
one-dimensional quantum wire. An ideal nanotube can be thought of as a hexagonal network of
carbon atoms that has been rolled up to make a seamless cylinder (see §2.3.4). Just a nanometer
across, the cylinder can be tens of microns long, and each end is “capped” with half a fullerene
molecule. Single-wall nanotubes can be thought of as the fundamental cylindrical structure, and
these form the building blocks of both multi-wall nanotubes as well as more complicated ropes.
Many theoretical studies have been concerned with the properties of single-wall nanotubes.

The unique electronic properties of carbon nanotubes are due to the quantum confinement of
electrons normal to the nanotube axis. In the radial direction, electrons are confined by the mono-
layer thickness of the graphene sheet. Around the circumference of the nanotube, periodic boundary
conditions come into play: Going around the cylinder once introduces a phase difference of 2π.

Because of this quantum confinement, electrons can only propagate along the nanotube axis, and
so their wavevectors point in this direction. The resulting number of one-dimensional conduction and
valence bands effectively depends on the standing waves that are set up around the circumference
of the nanotube. These simple ideas can be used to calculate the dispersion relations of the one-
dimensional bands, which link wavevector to energy, from the well known dispersion relations in a
graphene sheet.

The calculated dispersion relations for a small diameter nanotube show that about one-third
of small-diameter nanotubes are metallic, while the rest are semiconducting, depending on their
diameter and chiral angle. We see in Fig. 14.3.2 that an armchair (5, 5) nanotube and a zigzag (9,
0) nanotube are metallic, while a zigzag (10, 0) nanotube is a semiconductor. A small increase in
diameter may have a major impact on the conduction properties of carbon nanotubes. Here we use
the (m, n) notation for nanotubes introduced in §2.3.4.
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Figure 14.3.2 Dispersion relations of three
types of nanotubes. Each curve corresponds to
a single quantum subband. The Fermi level is at
E = 0. (a) Metal-like; (b) Metal-like; and (c)
Semiconductor-like. From M. Dresselhaus et al.,
Phys. World, Jan., 33 (1998).
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Figure 14.3.3 Density of states for
several armchair nanotubes show dis-
crete peaks at the positions of the
band maxima or minima. The density
of states of these metallic nanotubes
is nonzero at E = 0. Optical transi-
tions can occur between mirror-image
spikes, such as A→B. From M. Dres-
selhaus et al., Phys. World, Jan., 33
(1998).

The electronic density of states has also been calculated for a variety of nanotubes. Figure 14.3.3
shows the calculated results for metallic (8, 8), (9, 9), (10, 10), and (11, 11) armchair nanotubes.
While conventional metals have a smooth density of states, the DOS for these nanotubes are char-
acterized by a number of singularities, where each peak corresponds to a single quantum subband.



· 381 ·§14.3 Quantum Wires

These singularities arise from quasi-one-dimensionality. As the nanotube diameter increases, more
wavevectors are allowed in the circumferential direction; since the bandgap in semiconducting nan-
otubes is inversely proportional to the tube diameter, the bandgap approaches zero at large diam-
eters, just as for a graphene sheet. At a nanotube diameter of about 3 nm, the bandgap becomes
comparable to thermal energies at room temperature.

A carbon nanotube is very much like a piece of graphene sheet with a hexagonal lattice that has
been wrapped into a seamless cylinder. Since its discovery in 1991, the peculiar electronic properties
of these structures have attracted much attention. Despite the difficulties, pioneering experimental
work has confirmed the main theoretical predictions about the electronic structure of nanotubes.
Their electronic conductivity, for example, has been predicted to depend sensitively on tube diameter
and chiral angle (a measure of the helicity of the tube lattice), with only slight differences in these
parameters causing a shift from a metallic to a semiconducting state. In other words, similarly
shaped molecules consisting of only one element (carbon) may have very different electronic behavior.
Scanning tunneling microscopy (STM) offers the potential to probe this prediction, as it can resolve
simultaneously both the atomic structure and the electronic density of states. Scanning tunneling
microscopy and spectroscopy on individual single-walled nanotubes have yielded atomically resolved
images that allow us to examine the electronic properties as a function of tube diameter and chiral
angle. Results show that there are both metallic and semiconducting carbon nanotubes, and that
the electronic properties indeed depend sensitively on the chiral angle. The bandgaps of both tube
types are consistent with theoretical predictions.

14.3.3 Metal Steps and Stripes

Most of the concepts related to the quantum wires discussed above can be extended to steps or
stripes on metal surfaces, so we can call them metal wires. It is much more difficult to obtain truly
confined states, however, since the bulk states are able to couple to the wire states easily. There are
two confining directions: one perpendicular to the surface, and the other in-plane, but perpendicular
to the wires. The crystal periodicity is kept only along the wire direction. A variety of step-related
electronic and magnetic phenomena have been discovered, such as step states, lateral quantization
and in-plane anisotropy.

The one-dimensional analog of a two-dimensional surface or interface is a single step. Electrons
that are already confined perpendicular to the surface can become confined perpendicular to the
step, too. Even if they are not totally confined, their wavefunctions are scattered elastically at the
step edge, producing standing waves and ripples in the charge density. These oscillations have been
sampled directly by scanning tunneling spectroscopy. The analogue of a surface state would be a
wavefunction confined to a step edge.

A terrace confined by two parallel steps is the one-dimensional analog of a thin film. Such
a structure produces lateral standing waves, similar to the standing waves induced by quantum
well states in a thin film. On a terrace, the band structure perpendicular to the steps becomes
quantized, Fig. 14.3.4(a); parallel to the step the continuum of energies remains. Scanning tunneling
spectroscopy allows direct visualization of this effect. Figure 14.3.4(b) shows the first three quantized
states on a Au(111) terrace 0.36 nm wide.e The dI/dV spectra are offset according to the sample
bias. The arrows indicate maxima in the charge density when the bias voltage coincides with one of
the quantized levels, and the step profile is shown as a broken curve. The results clearly demonstrate
the ability to image the probability amplitudes and to obtain the spectra of confined states at metal
surfaces, even at room temperature.

A simple theoretical description can be given: It is reasonable to assume that the reflection of
electrons incident at a step from the side of the upper terrace is stronger than the reflection of
electrons incident on the step from the lower terrace side. For certain step orientations, the barrier
on the upper side of a step is found to be well represented by a hard-wall potential. It is likely that
electrons incident on the lower side of the step can more easily be transmitted into the empty bulk
states. In this simple model of a terrace of width a, we can place a hard-wall barrier at the upper side
of the step leading to the lower terrace, which we take as the origin. That is, at x = 0, V (0) = ∞,

eP. Avouris and I. Lyo, Science 264, 942 (1994).
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Figure 14.3.5 (a) Schematic diagrams of a lateral superlattice and its potential; (b) Dispersion relations
along the directions parallel and perpendicular to the steps; (c) Band dispersion of an image state on a
stepped Cu(100) surface measured by two-photon photoemission. From X. Y. Wang et al., Phys. Rev. B

53, 15738 (1996).

and at x = L, the bottom of the step, a delta function barrier may be used, i.e., V (L) = V0δ(x−L)
with V0 determined by experiments. The wavefunction of the electrons in the narrow terrace was
taken to be of the form

ψ(k‖) = A sin(kxx)eikyy, (14.3.15)

and the density of states can be calculated. The simulation based on this model can reproduce well
the dI/dV scans of Fig. 14.3.4(b). On the other hand, it is observed that the energies of the confined
states in terraces with widths in the range of 30 to 60 Å are proportional to L−2.

A stepped surface having an infinite array of parallel steps forms a lateral superlattice, as schemat-
ically shown in Fig. 14.3.5(a) with L as the step spacing. A simple model potential is also shown for
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the steps; that is, a one-dimensional train of δ-functions will produce the nearly-free-electron-like
band structure. For such a periodic structure we expect energy bands, but they are folded back into
the small Brillouin zone of the reciprocal step lattice, as shown in Fig. 14.3.5(b). Its boundaries lie
at k = ±πL in the direction perpendicular to the steps. Such folding-back of the bands has been
observed for the n = 1 image state on Cu(100) shown in Fig. 14.3.5(c).

With respect to the flat surface, we notice two changes: the bottom of the band is shifted up in
energy, since the average potential is higher after including the repulsive barriers, and the continuity
is broken at the boundaries of the step-induced Brillouin zone, where small gaps open up. The shift
of the surface band has been observed with STM and photoemission spectroscopy for the surfaces
of Cu(111) and Au(111).

Steps have significant influences on magnetic properties, especially anisotropy. Using the stepped
surface of a non-magnetic material, it is possible to create lateral magnetic superlattices by step
decoration and step-flow growth of ferromagnets.

§14.4 Quantum Dots

It is possible to go one stage further and confine electrons or holes in all three dimensions. The
typical approach is that they are first confined in one dimension by growth, a quantum well or
doped heterojunction, and then restricted to a small area by etching or an electrostatic potential.
The resulting zero-dimensional structure is a quantum dot, just like an artificial atom. Electrons
in a quantum dot structure can occupy only discrete energy states, similar to the discrete states of
atoms. The density of states is just a set of δ-functions, as there is no free motion in any direction.
In general, quantum dots are small, with size less than 100 nm and with a number of electrons
between one and a few thousand.

14.4.1 Magic Numbers in Metal Clusters

The term “clusters” is generally used to describe aggregates composed of several to several
hundreds atoms. These clusters, with intermediate size, are often found to have hybrid properties
characteristic of neither the molecular nor the bulk limits. For example, magnetism is a interesting
problem. While a metal may be non-magnetic in the bulk phase, small clusters of its atoms may
exhibit magnetism. One of the most important facts is that these clusters often do not have the same
structure or atomic arrangement as a bulk solid, and they may change structure with the addition of
just one or a few atoms. A striking phenomenon appears in the mass abundance spectra: Clusters
consisting of certain numbers of atoms are more abundant than others; these favored numbers are
called “magic numbers”.

Clusters of simple metal atoms attract our attention: The particularly striking, and experimen-
tally demonstrated, example of wave order is the valence electrons in a small drop of sodium, or
some other simple metal, which form an ordered quantum state analogous to the ordered electron
structures of atoms. An abundance distribution of sodium clusters is shown in Fig. 14.4.1. Clusters
composed of 8, 20, 40 and 58 atoms, i.e. certain numbers of ions with the same number of valence
electrons, are especially stable. It is the electrons, not the ions, that quantize and decide the varia-
tions in stability. As a consequence, small metal clusters form a periodic system, like the system of
chemical elements — only much larger.

The jellium model, as a simple theory for electronic structure of metallic clusters, is borrowed
from solid state physics, which ignores many-body interactions completely. Here, geometrical effects,
like surface constraints, are particularly important in applying the jellium model to small metal
clusters. Confinement of the jellium and the electrons to spherical or ellipsoidal regions leads to
shell structure. Some simple quantum models illustrating electronic shell structure are depicted in
Fig. 14.4.2. For a three-dimensional harmonic oscillator model, the energy level are equally spaced.
When degeneracies are included in this model, there is a shell structure in the electronic energy-level
occupation; i.e. degenerate levels are separated by wide gaps. A similar result is also found for
a three-dimensional square-well potential, but with unevenly spaced energy levels. A model that
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gives results similar to those found in self-consistent jellium calculations is intermediate between
the harmonic oscillator and square-well models. In this model the energy levels are characterized
by principal and angular momentum numbers (n, l). However, unlike electrons in atoms where l
must be less than n, in this case there is no restriction on the relative values of l and n because the
potential is not of the Coulomb form. The successive energy levels including their degeneracies for
the intermediate model are 1s(2), 1p(6),1d(10), 2s(2), 1f(14), 2p(6), 1g(18), 2d(10), 3s(2), 1h(22),
2f(14), 3p(6), 1i(26), 2g(18) . . . . Hence, as electrons fill the shells, closings occur for total electron
numbers 2, 8, 18, 20, 34, 40, 58, 68, 70, 92, 106, 112, 138, 156 and so on. In clusters of alkali or
noble metals each atom contributes one electron, and shell closures occur for clusters containing
the numbers of atoms in this series. Total energies should be low for clusters having these magic
numbers, and hence clusters of these sizes are expected to be particularly stable.

We must note the characteristics of the effective potential, which is not the screened Coulomb
potential around the positive charge of the point-like nucleus, but is more like a spherical cavity. The
positive charge with the number of elementary charges is smeared out through the whole volume.
The influence of the detailed positive charge configuration can be ignored to first order. Only the
average positive charge density seems to matter. In this simple model the positive charge density
distribution is chosen to be a homogeneously charged sphere as

ρ+(r) = ρ0θ(r0 − r), (14.4.1)

where ρ0 is the average density of the jellium, which is set equal to the valence electron density for
the alkali metal, r0 the cluster radius, and θ a step function. The cluster radius is related to the
total number of electrons N as r0 = rsN

1/3, where rs is the electron density parameter satisfying
ρ−1
0 = 4πr3

s/3.
As a reasonable assumption, we can adopt the effective one-electron potential inside the cluster,

with a spherically symmetric rounded potential well of the form

U(r) = − U0

exp[(r − r0)/ǫ] + 1
, (14.4.2)

where U0 is the sum of the Fermi energy (3.23 eV) and the work function (2.7 eV) of the bulk value.
The parameter ǫ determines the variation of the potential at the edge of the sphere; ǫ = 1.5 a.u. is
suitable for this purpose. Based on the effective potential (14.4.2), The Schrödinger equation can
be solved numerically for each N . It yields discrete electronic levels characterized by the angular
momentum quantum number l with degeneracy 2(2l + 1). The electronic levels shift down slowly
and continuously, as N increases, and the electronic energy for each cluster with N atoms, E(N),
is obtained by summing the eigenvalues of the occupied states. The difference in electronic energies
between adjacent clusters, E(N)−E(N − 1), is defined as ∆(N). The peaks result when ∆(N + 1)
increases discontinuously, as an energy level is just filled at certain N and the next orbital starts to
be occupied in the cluster with N + 1 atoms.

Numerical calculation shows that the total energy yield dips at the magic numbers. To make
comparisons with measured abundance spectra, it is useful to calculate the second derivative of the
total energy with respect to N ,

∆2(N) ≡ 2E(N) − E(N − 1) − E(N + 1). (14.4.3)

It can be argued that if the clusters in the formation region are approximately in local thermal
equilibrium, the observed abundances at temperature T can be expressed as

ln
I2
N

IN−1IN+1
∝ ∆2(N)

kBT
, (14.4.4)

where IN is the abundance intensity for an N -atom cluster. Figure 14.4.1 shows a comparison
between the experimental abundance spectrum and ∆2(N) for Na clusters. The peaks in ∆2(N)
coincide with the discontinuities in the mass spectra. So the main sequence N = 2, 8, 20, 40, 58,
and 92 can be associated with an electronic shell structure. The shell structure is determined by
large energy gaps between different energy levels.
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Other peaks found in the calculation, at N = 18, 34, 68, and 70, are weaker than the observed ones
and are more sensitive to the potential parameter. The good agreement between the experimental
results and the model calculation suggests that there are no perturbations large enough to distort
the main features of the level structure. A more sophisticated theoretical treatment of electronic
structure is afforded by the density functional method, with the local density approximation for a
chosen exchange-correlation potential. Its results are very similar to those obtained in a spherical
pseudopotential method.

It is expected that closed-shell configurations will lead to spherical clusters. However, other
configurations with some kind of distortion are also possible.f Ellipsoidal clusters are prevalent for
open-shell configurations.

We would now like to give a little discussion about the problem of Coulomb explosion. Different
from bulk materials, stability against charging is an experimentally important property of the clus-
ters. When more and more electrons are stripped out from the cluster, the Coulomb repulsion of
the positive charge distribution eventually beats the binding energy of the cluster, then the cluster
explodes spontaneously. This fragmentation is a complicated dynamical process which we will not
discuss here. It has been found that for alkali metals, the simple jellium model gives correctly the
energetically most preferable fragmentation channels. This suggests that the jellium model can be
used to study qualitatively the fragmentation of large clusters. The results show that the most
preferable fragmentation channels are those for which the products are magic clusters. However the
distribution of fragments from magic clusters are different from those where the parent is not magic.
This is a result of the fact that, of charged clusters, the most stable are those where the number of
electrons corresponds to a magic number. Then the clusters with one positive charge have magic
numbers (number of atoms) 3, 9, 21, 41, etc. This has been seen experimentally in charged noble
metal clusters.

14.4.2 Semiconductor Quantum Dots

At first, we consider the simple case where the semiconductor quantum dot has a spherical shape,
where the radius R is on the order of a few nanometers. For example, semiconductor microcrystallites
in glass matrices which have been extensively studied. One way to make such a quantum dot is to
surround a small region of semiconductor with another semiconductor that has a larger band gap.
Optically excited electrons and holes have are assumed to have effective masses me and mh, the
same as in the bulk material.

For the experimentally relevant case of spherical quantum dots, the single-particle Schrödinger
equations for the electron and hole, in the absence of a Coulomb interaction, can be written as

− �
2

2mα
ψα(r) = Eαψα(r), (14.4.5)

where α = e or h. As an illustrating example, we consider the boundary condition of infinite
confinement potential, so

ψα(r) = 0, for r = R. (14.4.6)

Then the eigenfunction and eigenenergy are

ψα(r) =

(

4πR3
)−1/2

jl+1(κnl)
jl

(

κnl
r

R

)

Ym
l (θ, φ), (14.4.7)

and

Eα =
�

2

2mα

(κnl

R

)2

, (14.4.8)

where jl is the lth order spherical Bessel function with κnl being its nth root, Ym
l (θ, φ) are the

spherical harmonics. Thus we can use quantum numbers n, l, and m to denote the quantum state

fK. Clemenger, Phys. Rev. B 32, 1359 (1985).
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of the system. The constant coefficient in (14.4.3) comes simply from the normalization of the
wavefunction.

The boundary condition (14.4.6) is satisfied if jl (κnl) = 0. Some of its solutions are κ10 =
π, κ11 = 4.4934, κ12 = 5.7635, κ20 = 6.2832, κ21 = 7.7253, κ22 = 9.0950, κ30 = 9.4248, etc.
It is customary to refer the nl eigenstates as ns, np, nd, etc., where s, p, d, etc. correspond to
l = 0, 1, 2, . . . , respectively, i.e. κ10 = κ1s, κ11 = κ1p, . . . . It is different from the notation of atomic
spectroscopy, where a 1s state would not be possible, because we are now treating a spherical
confinement potential, not a Coulomb potential.

Consider the electrons and holes separately, and take the zero of the energy at the top of the
valence band, then

Ee = Eg +
�

2

2me

(κnele

R

)2

, (14.4.9)

and

Eh = − �
2

2mh

(κnhlh

R

)2

. (14.4.10)

The lowest two energy levels are plotted schematically in Fig. 14.4.3. We see from this figure that the
usual three-dimensional band structure is drastically modified and has become a series of quantized
single-particle levels.

E E

h,1p

h,1s

e,1s

e,1p

k

Figure 14.4.3 Schematic plot of the
single-particle energy spectrum in bulk
semiconductors (left) and in small quan-
tum dots (right).
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e1p,h1p

e1p,h1s

e1s,h1p

e1s,h1s

Figure 14.4.4 Schematic representation
of the one-electron-hole-pair transitions
in a semiconductor quantum dot.

The optical absorption spectrum is associated with electron-hole pairs. To describe an electron
and a hole simultaneously, the Schrödinger equation of the system is written as

(

− �
2

2me
∇2

e −
�

2

2mh
∇2

h + Vc

)

Ψ(r) = EΨ(r), (14.4.11)

still with the boundary condition (14.4.6). Vc is the Coulomb potential; if Vc = 0, there are analytical
solutions for the eigenstates

Ψ(re, rh) = ψ(re)ψ(rh), (14.4.12)

and eigenenergy

E = Ee + Eh = Eg +
�

2

2me

(κnele

R

)2

+
�

2

2mh

(κnhlh

R

)2

. (14.4.13)

(14.4.13) shows that the absorption is blue shifted with respect to the bandgap Eg. The shift varies
with the size R, like 1/R2, being larger for smaller sizes. Figure 14.4.4 exhibits the schematic
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representation of the one-electron-hole pair states. The notations e1s, h1p, etc., refer to the electron
being in the 1s state, the hole being in 1p, etc. The selection rules for the dipole-allowed interband
transitions are ∆l = 0 in the absence of Coulomb interaction. For example, the E1s−1s-transition,
where electron and hole are both of 1s-type, is allowed.

When the Coulomb interaction is included, the problem can no longer be solved analytically and
a numerical approach is necessary. The optical absorption may be weakly modified, since the kinetic
energy terms dominate for quantum dots. The selection rules stated earlier are no longer valid, and
transitions with ∆l �= 0 become weakly allowed.

Most realistic quantum dot systems contain dots of various radii, making it necessary to include
the dot size distribution. Since the optical resonance energies strongly depend on the quantum dot
radii, a radius distribution leads to a resonance distribution, which manifests itself as inhomogeneous
broadening in the optical spectra.

14.4.3 Fock Darwin Levels

A typical way to create a quantum dot is to produce a lateral confinement V (x, y) that restricts
the motion of the electrons, which are initially confined in a very narrow quantum well in the z
direction. Then it forms a flat disk, with transverse size considerably exceeding its thickness. In
the effective mass approximation, the confined electrons can be considered as moving in a two-
dimensional model potential with a parabolic well; near the bottom

V (r) = V0 +
1

2
m∗ω2

0r
2, (14.4.14)

where r = (x, y) is the position vector, m∗ is the effective mass, and ω0 is a characteristic frequency
determined by the electrostatic environment. If there is an external magnetic field perpendicular to
the plane of the dot, then the Hamiltonian is

H =
1

2m∗

(

p − e

c
A
)2

+
1

2
m∗ω2

0r
2 =

p2

2m∗ +
1

2
m∗

(

ω2
0 +

1

4
ω2

c

)

r2 − 1

2
ωclz, (14.4.15)

where p is the momentum, lz = xpy − ypx the projection of the angular momentum onto the field
direction, A the vector potential of the magnetic field B, and ωc = eB/m∗c the cyclotron frequency.
Here we take a symmetric gauge where A = (By,−Bx, 0)/2.

To solve this problem, we can construct the complex variables

z = x + iy, z∗ = x − iy, (14.4.16)

and

∂z =
1

2
(∂x − i∂y) , ∂∗

z =
1

2
(∂x + i∂y) , (14.4.17)

and also define the effective length

l0 =
lB

(1 + 4ω2
0/ω2

c)
1/4

(14.4.18)

where

lB =

(

�c

eB

)1/2

(14.4.19)

is the magnetic length in the absence of a confining potential.
According to the above definitions, (14.4.15) might be transformed into the sum of two indepen-

dent harmonic oscillators with the characteristic frequencies

ω± =

(

ω2
0 +

1

4
ω2

c

)

± 1

2
ωc, (14.4.20)
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and the corresponding eigenstates and eigenenergies

ψn+n−(z, z∗) =
1√
2π

exp

(

zz∗

4l0

)

(∂z)
n+(∂∗

z )n−

(n+!n−!)1/2
exp

(

−zz∗

2l20

)

. (14.4.21)

and

E(n+n−) = �ω+

(

n+ +
1

2

)

+ �ω−

(

n− +
1

2

)

, (14.4.22)

which are called Fock–Darwin states and levels, respectively. In the absence of a magnetic field,
these levels are degenerate, ω+ = ω− = ω0, whereas a strong magnetic field leads to the formation
of the structure of Landau energy levels, separated by the cyclotron energy �ω+ ≈ �ωc. The system
has circular symmetry, so the angular momentum operator component along the symmetry axis,
lz = xpy − ypx = z∂z − z∗∂∗

z , commutes with H. The operator lz is diagonal on the basis of the
Fock–Darwin states

lz(n+n−) = n+ − n−. (14.4.23)

Due to the circular symmetry of the Hamiltonian, the motion in the angular variable can be
separated out, and the appropriate component of the angular momentum m is a good quantum
number. The electron wavefunction can hence be written in the form

ψnm(r, θ) = φm(θ)Rnm(r), (14.4.24)

where the angle dependent function

φm(θ) = (2π)−1/2eimθ (14.4.25)

is the eigenfunction of the operator of the angular momentum projection, with eigenvalue m, while
the radius-dependent function has the form

Rnm(r) =

√
2

l0

[

nr!

(nr + |m|)!

](

r

l0

)|m|
exp

(

− r2

2l20

)

L|m|
nr

(

r2

l0

)

. (14.4.26)

In the above expression L|m|
nr denotes the Laguerre polynomials

L|m|
nr

(z) =
1

m!
z−|m|ez dnr

dznr

(

znr+|m|e−z
)

, (14.4.27)

n = 0, 1, . . . is the principal quantum number; m = −n,−n+2, . . . , n−2, n is the azimuthal quantum
number; and nr = (n− |m|)/2 is the radial quantum number. The pairs of quantum number (n, m)
and (n+, n−) are related by

n = n− + n+, m = n− − n+. (14.4.28)

The eigenenergies expressed by the quantum numbers (n, m) are

E(n, m) = (n + 1)�

(

ω2
0 +

1

4
ω2

c

)1/2

− 1

2
m�ωc. (14.4.29)

The evolution of the energy spectrum in an increasing magnetic field is presented in Fig. 14.4.3.
The Zeeman splitting, very small for GaAs, is neglected here. The pairs of numbers on the vertical
axis give the electron eigenstates (n+, n−), while the straight dashed lines show the energies of
subsequent Landau levels (the levels in the absence of a parabolic potential in the plane of a dot, or
ω− = 0)

E(n+) = �ωc

(

n+ +
1

2

)

, n+ = 0, 1, . . . . (14.4.30)

The perpendicular arrows represent the allowed optical transitions. In the dipole approximation,
the intraband optical transitions satisfy the following selection rules

n′
+ = n+ ± 1 or n′

− = n− ± 1, (14.4.31)

together with the allowed resonance frequencies ω±, indicated in Fig. 14.4.5.
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Figure 14.4.5 Evolution of the Fock–Darwin energy levels in a magnetic field. Dashed lines represent the
Landau energy levels, and vertical arrows the allowed optical transitions. From L. Jacak, P. Hawrylak, and
A. Wójs, Quantum Dots, Springer, Berlin (1998).

Besides the conduction band electrons, the valence band holes are the second type of carrier that
can be bound in a quantum dot. Due to their opposite electric charge, and also due to the valence
band building from atomic p-type orbitals, there is much complexity in treating holes.

The Fock–Darwin treatment is a single-electron approach, in the few-electron case it has reason-
able agreement with experiment.g More exact theory must take into consideration of the Coulomb
interactions.

14.4.4 Coulomb Blockade

It is not only the wave nature of electrons but also the discrete nature of charge, in units of e,
that is important. The capacitance, C, of nanostructures can be so small that the charging energy,
e2/2C, for adding a single electron to, for instance, a quantum dot exceeds the thermal energy. A
large charging energy can prevent the addition to, or removal from, a nanostructure of even one
electron, resulting in transport effects such as the Coulomb blockade in tunneling. Single-electron
transistors have been developed in which a switch from the “on” state to the “off” state is induced,
as the name implies, by just one electron.

We have examined the electronic structures of quantum dots in the single-electron approximation.
Another important aspect of nanostructures, including quantum dots, involves electronic correlation
effects, especially in transport processes. Here we will discuss quantum dot situations in which the
Coulomb interaction may be modelled by an effective capacitance.

Quantum dots may form small solid state devices in which the number of electrons can be made
a well-defined integer N . In discussing transport, we can consider a small structure called a single-
electron transistor, depicted in Fig. 14.4.6. There are several kinds of single-electron transistors.
One of them can be made by depositing metal gates over a two-dimensional electron gas formed in
a GaAs/AlGaAs heterostructure. Applying a negative voltage to these gates depletes the regions
between them, creating a small dot, or an atomic-like box for electrons, coupled by tunneling to two
separate two-dimensional electron gases acting as source and drain leads. For such a single-electron
transistor, we denote Isd as the source-to-drain current, Vsd the voltage between the leads, then the
linear conductance is G = Isd/Vsd, with Vsd kept very small. As the gate voltage Vg changes, the

gL. P. Kouwenhoven et al., Science 278, 1788 (1997).
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result for conductance G is a series of periodically spaced peaks, each indicating a change in the
number of electrons N in the dot by one, due to the Coulomb blockade.

The electronic states in the dot can be probed by transport when a small tunnel coupling is
allowed between the dot and the nearby source and drain leads. This coupling is usually made as
weak as possible, to prevent strong fluctuations in the number of confined electrons. The quantization
of charge permits the use of a simple model in which all of the electron-electron interactions are
captured in the single-electron charging energy e2/2C, where C is the total capacitance between
the dot and the rest of the system. This simple model has been successful in describing a transport
phenomenon generally known as Coulomb blockade oscillations.

S D

Electrode

Gate

Figure 14.4.6 A schematic single-electron transistor with a quantum dot weakly coupled by tunnel barriers
to two leads connecting to reservoirs. There is also a gate electrode.

If we consider a tunneling junction with area S = 100 nm2, thickness d = 1 nm, and dielectric
constant ǫ = 10, using the classical expression for the capacitance, then the capacitance is C =
ǫS/4πd = 10−15 F. The capacitance introduces an energy scale, the charging energy, corresponding
to a single-electron charge (−e), EC = e2/2C ≈ 10−4 eV, which corresponds to a temperature of
EC/kB ≈ 1 K. In a tunneling process the electrostatic energy changes by an amount of the order
magnitude of EC . Hence we expect, in the sub-Kelvin regime, electron transport to be affected by
charging effects.

The Coulomb blockade oscillations of conductance are a manifestation of a single-electron tun-
neling through a quantum dot. In Fig. 14.4.6 the gate electrode is used to control the number of
electrons in the dot. The dot is assumed to be small enough that the one-electron eigenenergies
are well separated. A current Isd can be passed through the dot by applying a voltage difference
Vsd between the reservoirs. In the absence of charging effects, a conductance peak due to resonant
tunneling occurs when the Fermi energy EF in the reservoirs lines up with one of the energy levels
in the dot. This condition is modified by the charging energy. The conductance oscillations occur
as the voltage on the gate electrode is varied. The number N of electrons on the dot between two
barriers is an integer, so that the charge Q = −Ne on the dot can only change by a discrete amount
e. In contrast, the electrostatic potential difference of the dot and the leads changes continuously
as the electrostatic potential φext due to the gate is varied. This gives rise to a net charge imbal-
ance Cφext − Ne between the dot and the leads, which oscillates in a saw-tooth pattern with the
gate voltage. Tunneling is blocked at low temperatures, except near the degeneracy points of the
saw-tooth, where the charge imbalance jumps from +e/2 to −e/2. At these points the Coulomb
blockade of tunneling is lifted and the conductance exhibits a peak.

In a simple model, the total electrostatic energy is written as

U(N) = (Ne)2/2C − Neφext, (14.4.32)

where the external electrostatic potential φext comes from external charges, in particular those on
a nearby gate electrode. So it is reasonable to say that Qext = Cφext plays the role of an “external
induced charge” on the dot, which can be varied continuously by means of an external gate voltage,
in contrast to Q, which is restricted to integer multiples of (−e). In terms of Qext one can write

U(N) = (Ne − Qext)
2/2C − Q2

ext/2C. (14.4.33)

We emphasize that Qext is an externally controlled variable, via the gate voltage, regardless of the
relative magnitude of the various capacitances in the system.
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The probability of finding N electrons on the quantum dot in equilibrium with the reservoirs is
given by

P (N) ∝ exp{−[F (N) − NEF]/kBT }, (14.4.34)

where F (N) is the free energy, which approaches the ground state energy E(N) of the dot as T → 0,
for which we take the simplified form

E(N) = U(N) +
N
∑

p=1

Ep, (14.4.35)

where Ep are the one-electron energy levels, which depend on the size of the quantum dot, the
gate voltages, and any magnetic field, but assumed not to depend on N . P (N) is zero at very low
temperature unless the condition E(N) − NEF = 0 is satisfied for some N . For current to flow we
need a finite probability for electrons entering and leaving the dot, i.e. a finite probability of there
being either N or N + 1 electrons on the dot which implies

F (N + 1) − F (N) = EF. (14.4.36)

Combining with (14.4.35), it gives

EN + U(N) − U(N − 1) = EF. (14.4.37)

Substitution of (14.4.32) into (14.4.37) gives a renormalized energy for the N -electron quantum
dot

E∗
N = EN +

(

N − 1

2

)

e2

C
= EF + eφext. (14.4.38)

There will be peaks in the current as the bias is applied such that this condition is satisfied for suc-
cessive N . The left-hand-side of (14.4.38) defines a renornalized energy level E∗

N . The renormalized
level spacing

∆E∗ = ∆E +
e2

C
(14.4.39)

is enhanced above the bare level spacing by the charging energy. For a sufficiently large dot
(N ≥ 100), this equality is satisfied for successive values of N . If EN ≫ e2/C, then the peaks
in conductance will occur roughly periodically, with the period determined by ∆(eφext) = e2/C, as
seen in the conductance versus gate voltage in Fig. 14.4.7 where successive peaks going to the left
arise from reducing one electron. The oscillation period of the conductance can be used to infer the
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Figure 14.4.7 Coulomb blockade oscillations. From E. B. Foxman et al., Phys. Rev. B 47, 10020 (1993).
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capacitance of the quantum dot. With the addition of a magnetic field, one can anticipate that the
energy levels of the quantum dot due to a combination of electrostatic and magnetic confinement
will show spin-splitting of the one-electron levels.

14.4.5 Kondo Effect

In §13.3, we had discussed the Kondo effect, i.e. for metals with dilute magnetic impurities
there is a resistivity minimum as the temperature is lowered. Its physical essence is that conduction
electrons interact with a single localized unpaired electron. At low temperatures a spin singlet state
is formed between the unpaired localized electron and the delocalized electron at the Fermi energy.

Now, for quantum dot structures, it was predicted theoretically that a Kondo singlet state could
also form.h This prediction has been verified experimentally in the low temperature transport of
electrons using a single-electron transistor.i Because of this, a single-electron transistor could provide
a means of investigating aspects of the Kondo effect under controlled circumstances that are not
accessible in conventional systems. For examples, the number of electrons can be changed from
odd to even, the energy difference between the localized state and the Fermi level can be tuned,
the coupling to the leads can be adjusted, and a single localized state can be studied rather than a
statistical distribution as in macroscopic materials.

VSD U

U

DrainSource Dot

E
EF

Figure 14.4.8 Energy diagram of a single-electron transistor in a semiconductor heterostructure.

Several important energy parameters and their relative sizes determine the behaviors of a single-
electron transistor. At low temperature, the number of electrons N in the dot is an integer. This
number could be changed by raising the voltage Vg of the gate electrode which lowers the energy
of electrons in the dot relative to the Fermi level EF in the leads. To analyze the Kondo effect, we
must take the spins of the electrons into account, in addition to the electron-electron interaction.
Just as in the appearance of Coulomb blockade, the energy required to add an electron to an empty
dot is E1 which is the energy of the lowest spatial state of the dot. A second electron, with the
opposite spin, goes into the same spatial state, but its addition costs a larger energy E1 + U , where
U is the Coulomb repulsion energy between the two electrons and equals the charging energy in the
capacitance model. Because a third electron can no longer enter the E1 state, it enters the next
available spatial state with energy E2. Taking account of the Coulomb interaction with the first
two electrons, its addition requires an energy E2 + 2U . Continuing this procedure, the occupancy
energy levels are at E1, E1 + U , E2 + 2U , E2 + 3U , and so forth, which occur in pairs as indicated
in Fig. 14.4.8. The peak widths are finite because of a finite escape time onto the leads. Two peaks
within a pair are separated by U , whereas the separation between different pairs, corresponding to
different spatial states, is larger. It is worth to note that there is an essential difference depending
on whether N is odd or even. If the number of electrons N in the dot is odd, the unpaired electron

hT. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
iD. Goldhaber-Gordon et al., Nature 391, 156 (1998). For a review, see L. Kouwenhoven and L. Glazman, Phys.
World, Jan., 33 (2001).
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causes the dot to have a local moment. At temperatures less than TK, this local moment is screened
by the nearby electrons in the leads, forming a singlet state of spin 0.

Another important energy Γ is the coupling of electronic states on the dot to those on the leads,
resulting from tunneling. We have assumed Γ is small to ensure the Coulomb blockade. However, if Γ
increases by tuning the tunnel barriers, the number of electrons on the dot becomes less well-defined.
When the fluctuations in N become much greater than unity, the quantization of charge is completely
lost. In this open regime, noninteracting electrons usually give a proper description of transport. It
is more complicated in the intermediate regime where the tunnel coupling is relatively strong but
the discrete nature of charge still plays an important role. Here, the transport description must
incorporate higher order tunneling processes through virtual, intermediate states. In this case, spins
should be taken into account, and the tunneling may be viewed as a magnetic-exchange coupling.

Virtual State

U

E0

(a) (c)(b)

µL µR

ΓL
ΓR

Figure 14.4.9 Schematic energy diagram of a dot.
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Figure 14.4.10 Kondo resonance in the density of states.

The energy that determines whether Kondo physics will be visible is kBTK. TK is the Kondo
temperature. As the samples are cooled to near the Kondo temperature, the inner shoulder of each
pair of peaks in G(Vg) broadens and is enhanced, whereas no broadening is seen outside of the pairs
where the dot is non-magnetic. This is a signature of the Kondo effect in the dot systems, which
is predicted theoretically. The Kondo effect is essentially a screening of the dot spin by nearby
free electrons and so takes place only when the dot is magnetic. Below the Kondo temperature,
the unpaired electrons in the dot hybridize with the conduction band states in the leads. Once
this takes place, it is no longer appropriate to talk about an isolated dot. We should rather regard
the dot plus the screening cloud as a new “quasi-dot” of spin zero. This hybridization produces
in the local density of states of the quasi-dot a sharp peak (Kondo resonance) at E = EF, which
enhances G. For an appropriate gate voltage Vg, the first-order tunneling is blocked in the case
shown in Fig. 14.4.9(a). An electron cannot tunnel onto the dot because the two electron energy
E0 + U exceeds the Fermi energies of the leads µL and µR. Also, the electron on the dot cannot
tunnel off because E0 < µL, µR. This is the Coulomb blockade described before. In contrast to first-
order tunneling, higher order processes, in which the intermediate state costs an energy of order U ,
are allowed for short time scales. In particular, we are interested in virtual tunneling events that
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effectively flip the spin on the dot. One such example is depicted in Fig. 14.4.9(b) and (c). Successive
spin-flip processes effectively screen the local spin on the dot and form a spin-singlet state. This
correlated state gives rise to the Kondo effect in a quantum dot which can be described as a narrow
peak in the density of states at the Fermi levels of the leads, as shown in Fig. 14.4.10(a). This
Kondo resonance gives rise to a temperature-sensitive enhancement of conductance through the dot.
Out of equilibrium, when a bias voltage Vsd is applied between the source and drain, eV = µL −µR,
the Kondo peak in the density of states splits into two peaks, each pinned to one chemical potential,
as depicted in Fig. 14.4.10(b). This splitting will lead to new features in the differential conductance
dI/dV .

From the above discussion on the Kondo phenomena in quantum dots, we are dealing with a spin
system which allows one to study an individual, artificial magnetic impurity and tune, in situ, the
parameters in Kondo problem. As N is even, there is no Kondo effect because the dot has no local
moment. Sweeping the gate voltage Vg to change N , we can switch a quantum dot from a Kondo
system to a non-Kondo system as the number of electrons on the dot is changed from odd to even.

§14.5 Coupled Quantum Dot Systems

Quantum dots are small conductive regions in which electrons are governed by the interplay of
quantum mechanical and electrostatic effects. Because of confinement effects, electrons occupy well-
defined, discrete quantum states, so an individual quantum dot is often referred to as an ‘artificial
atom’. Furthermore, it can be extended to consider two, three or lot of more quantum dots connected
by electronic tunneling. This kind of coupled structure is then called an ‘artificial molecule’, or
‘artificial solid’ which can be made in many configurations with adjustable interdot tunneling rates.

14.5.1 Double Quantum Dots

Just as in double quantum well structures, when particles are allowed to tunnel back and forth
between two quantum dots, the energy states of the individual dots mix and form new states that
extended over both dots. The extended states are referred as the bonding or symmetric state, and the
antibonding or antisymmetric state. There is an energy splitting between bonding and antibonding
states. It is important for device application whether different dots can be coupled together in
a quantum mechanically coherent way. Depending on the strength of the interdot coupling, the
two dots can form ‘ionic’ or ‘covalent’ bonds. In the former case, the electrons are localized on
individual dots, while in the latter, the electrons are delocalized over both dots. Covalent binding
leads to bonding and antibonding states, whose energy difference is proportional to the degree of
tunneling. Here we can study a transition from ionic bonding to covalent bonding in a double
quantum dot by changing the interdot coupling.

Tunnel coupling between quantum dots can be continuously adjusted from the weak tunneling
regime, in which the dots are well isolated, to the strong tunneling regime, in which the two dots
effectively join into one. In the weak coupling regime, the number of electrons on each dot, N1 and
N2, are quantized, and the Coulomb blockade theory applies to each dot individually. In the strong
tunneling regime, N1 and N2 are not individually well defined, and the coupled dots system enters
the interesting regime in which it acts as an artificial molecule. However, we assume the coupled dot
system is well isolated from the leads and the total number of electron, N = N1 + N2, is quantized.
We can still use the Coulomb blockade for the entire coupled dot system to probe its ground state
energy.

We can expect that the dc current through a structure with double quantum dots in the presence
of oscillating fields may display interesting phenomena not observable in single dots. Figure 14.5.1(a)
gives a schematic picture of a double quantum dot structure. In this system, for the weak coupling
regime, electrons are strongly localized on the individual dots when tunneling between the two dots
is weak. Electron transport is then governed by single electron charging effects. The charging can
be tuned away by means of the gate voltages. It is then energetically allowed for an electron to
tunnel between dots when a discrete state in the left dot is aligned with a discrete state in the right
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Figure 14.5.1 (a) A double quantum dot structure, and (b) diagram of its electron energies.

dot. External voltages also control the alignment of the discrete states. A current can flow when
electrons tunnel, while conserving energy, from the left lead, through the left and right dots, to the
right lead. There is another way the the energy is also conserved: when a photon of energy �ω, which
matches the energy difference between the states of the two dots, is absorbed from a microwave field
of frequency ω, as shown in Fig. 14.5.1(b).

It is found theoretically that the d.c. current is very sensitive to an oscillating field. A detailed
description of photon-assisted tunneling in a double quantum dot has been given. The basic idea is
that electrons can absorb quanta of fixed energy �ω from a classical oscillating field. An a.c. voltage
drop

V = Vac cos(ωt) (14.5.1)

across a tunnel barrier modifies the tunnel rate through the the barrier as

T̃ ′(E) =
+∞
∑

n=−∞
J2

n(α)T̃ (E + n�ω). (14.5.2)

Here T̃ ′(E) and T̃ (E) are the tunnel rates at energy E with and without an a.c. voltage, respectively;
Jn(α) is the nth order Bessel function of the first kind, evaluated at α = eVac/�ω, which describes
the probability amplitude that an electron absorbs or emits n photons of energy �ω.

Microwave spectroscopy with frequencies in the range 0–50 GHz has been used to measure the
energy difference between states in the two dots of the device shown in Fig. 14.5.1(a). The energy
differences, including the bonding-antibonding splitting, are controlled by the gate voltage which
tunes the coupling between the dots. The resonance in the lowest trace in Fig. 14.5.2 is due to an
alignment of discrete states. The other traces are measured while applying a microwave signal. The
satellites resonance are due to photon-assisted tunneling processes which involve the emission (left
satellite) or absorption (right satellite) of a microwave photon. The satellite resonances induced by
the external oscillating field can be of the same order of magnitude as the main static resonance
with an even smaller width.

As the microwave power is increased, more satellite peaks appear in the current-gate-voltage plot
corresponding to the absorption of multiple photons which are observed up to n = 11. At these
high powers, the microwaves strongly perturb the tunneling. The separation of the satellite peaks
from the main peak depends linearly on frequency from 1 to 50 GHz. This is the result of that the
fact that the tunnel coupling is negligible. The electrons are thus localized on the individual dots,
which have an ionic bonding. The coupling between the dots can be increased by changing the gate
voltage on the center gate. In contrast to the weakly coupled dots, covalent bonding occurs when two
discrete states that are spatially separated become strongly coupled. Electrons then tunnel quickly
back and forth between the dots. In a quantum mechanical description this results in a bonding and
antibonding state which are respectively lower and higher in energy than the original states.
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Figure 14.5.2 Current resonance through a double quantum dot. From T. H. Oosterkamp et al., Nature

395, 873 (1998).

To single out the current that is only due to the microwaves we can operate the device as
an electron pump driven by photons in the way shown in Fig. 14.5.1(b). By sweeping the gate
voltages we vary ∆E = EL − ER, where EL and ER are the energies of the uncoupled states
in the left and right dot. The bonding and antibonding states, that are a superposition of the
wavefunctions corresponding to an electron in the left and right dot, have an energy splitting of

∆E∗ = EA − EB =
[

(∆E)2 + (2Γ )2
]1/2

, where Γ is the tunnel coupling between the two dots.
When the sample is irradiated, a photocurrent may result as illustrated in Fig. 14.5.3.

I<0 I=0 I >0

(a) (b) (c)

Figure 14.5.3 Measured pumped current through the strongly coupled double-dot. (a) EL > ER which
results in electron pumping from right to left corresponding to negative current; (b) The whole system is
symmetric (EL = ER) and consequently the net electron flow must be zero; (c) EL < ER which gives rise to
pumping from left to right and a positive current.

A non-zero current indicates that an electron was excited from the bonding state to the anti-
bonding state, thereby fulfilling the condition �ω = ∆E∗, or conversely

∆E =
[

(�ω)2 − (2Γ )2
]2

. (14.5.3)

Figure 14.5.4 shows measured current traces as a function of the uncoupled energy splitting ∆E,
where from top to bottom the applied microwave frequency is decreased from 17 to 7.7 GHz in
0.5 GHz steps. The distance between the pumping peaks, which is proportional to 2∆E, decreases
as the frequency is lowered. However, the peak distance decreases faster than a straight line, and
goes to zero as the frequency approaches the minimum energy gap between bonding and antibonding
states, �ω = 2Γ. For �ω < 2Γ, the photon energy is too small to induce a transition from the bonding
to the antibonding state.
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Figure 14.5.4 Measured pumped current through the strongly coupled double-dots. From T. H.
Oosterkamp et al., Nature 395, 873 (1998).

14.5.2 Semiconductor Quantum Dot Superlattices

As we have seen, an individual quantum dot behaves like an artificial atom and a double quantum
dot can be looked upon as an artificial molecule, so it is natural to think that a lot of quantum dots
may be organized to form an artificial crystal. This is really true. Experimentally, a sequence of
fifteen quantum dots, which are electrostatically defined in a two-dimensional electron gas by means
of a two metallic gates on top of a GaAs/AlGaAs heterostruture, shows the transport properties
of a one-dimensional crystal. The schematic layout of the device is shown in Fig. 14.5.5, in which
the period of the artificial crystal is 200 nm. The voltages Vg1 and Vg2 make the depletion region
resemble a periodic saddle-shaped electrostatic potential with maxima in the narrow regions.

In a perfect conventional crystal, the coupling between atomic states results in a collective state
characterized by energy bands separated by energy gaps. The conducting properties of a solid
strongly depend on the location of the Fermi energy in the band structure. These basic concepts
are still effective in artificial crystals. In the one-dimensional quantum dot array shown in the
inset of Fig. 14.5.5, spatial quantization is realized in all three directions. The transport properties
of single quantum dots fabricated with the same split-gate technique demonstrates the formation
of zero-dimensional states through oscillating conductance. In a sequence of equal quantum dots
with equal coupling to nearest neighbors, the levels develop into minibands. The number of states
within a miniband is equal to the number of dots, and the energy gap between consecutive bands
is determined by the coupling between dots. Weak coupling yields a narrow band and a large gap,
while strong coupling will result in a wide band and a small gap.

The theoretical consideration has been confirmed by conductance measurements, as shown in
Fig. 14.5.5. The application of a magnetic field establishes adiabatic transport. The only scattering
now takes place within a single subband at the potential maxima defined by the fingers. As can be
seen, the two deep peaks enclose fifteen oscillations, which corresponds exactly with the number of
quantum dots in the one-dimensional crystal. The deep peaks can be associated with energy gaps,
and the small oscillations with the discrete states in the miniband. The effect of lowering the gate
voltage Vg2 here is mainly the decrease in Fermi energy and the reduction in dot area. Note that
the reduction in area results in large energy separations that increase the bandwidth. Both effects
move the Fermi energy through the miniband structure. A maximum in the conductance occurs
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Figure 14.5.5 Conductance versus gate voltage Vg2 on
the second gate at magnetic field 2T and Vg1 = −0.45 V
on the first gate. The inset schematically shows the
gate geometry; the dashed lines indicate the depletion
regions in the two-dimensional electron gas. The upper
depletion is moved towards the fingers when Vg2 is made
more negative. From L. P. Kouwenhoven et al., Phys.

Rev. Lett. 65, 361 (1990).
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Figure 14.5.6 Optical absorption (ABS)
and photoluminescence (PL) spectra at
10 K for a close-packed solid of CdSe quan-
tum dots that are 38.5 Å (curve a) and 62 Å
(curve b) in diameter. Dotted lines are pho-
toluminescence spectra of the same dots but
in a dilute form dispersed in a frozen solu-
tion. From C. B. Murray et al., Science

270, 1335 (1995).

when the Fermi energy coincides with the energy of a discrete state within the miniband. A simple
one-dimensional model of resonant transmission can be used to illustrate the experimental results.

One of the important applications for quantum confinement effects is semiconductor lasers. There
has been development of semiconductor lasers from quantum well lasers, to quantum wire lasers,
and now to quantum dot lasers. To make a quantum dot laser, we need a dense array of equal-sized
dots within the active region.

Artificial crystals can be extended from one-dimension to higher dimensions. Semiconductor
nanocrystallites of CdSe have been self-organized into three-dimensional quantum dot superlat-
tices (colloidal crystals). The size and spacing of the dots within superlattice are controlled with
near-atomic precision. This kind of well-defined ordered artificial solid provides opportunities for op-
timizing properties of materials and offer possibilities for observing interesting and potentially useful
new collective physical phenomena. Optical spectra of closed-packed CdSe quantum dots show the
effects of quantum confinement on the individual dots as well as evidence of interdot interactions.
The solid curves in Figure 14.5.6 show 10 K optical absorption and photoluminescence spectra of a
thin solid film of close-packed CdSe quantum dots that are 38.5 Å (curve a) and 62 Å (curve b) in
diameter. The discrete and size-dependent optical absorption features and the band edge emission
are characteristics of the quantized electronic transitions of individual quantum dots. Comparison of
optical spectra for dots closed-packed in the solid with dots in a dilute matrix reveals that, although
the absorption spectra are essentially identical, the emission line shape of the dots in the solid is
modified and red-shifted, an indication of interdot coupling.

14.5.3 Metal Quantum Dot Arrays

We should now like to discuss the magnetic properties of transition metal quantum dot arrays in
which the dots are separated by non-magnetic tunnel barriers. Recent experimental work on one-
and two-dimensional self-organized arrays of nanosize transition metal dots show magnetic ordering.
For example, in the case of a two-dimensional system of Fe dots on an insulator substrate, a long
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Figure 14.5.7 The contribution JD of the dot electronic structure to the superexchange for a nickel dot
array. (a) Without self-field; (b) with self-field B = 0.7 T. From V. N. Kondratyev and H. O. Lutz, Phys.
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range order has been found, which has been attributed to a contribution of the exchange coupling
between the dot supermoments.j

When the transition metal dots are sufficiently densely packed, the electronic structure will be
modified due to exchange coupling. For instance, if ferromagnets are separated by a non-magnetic in-
sulator, the tunnel exchange spin current results in Anderson-type superexchange coupling, nonoscil-
latory with separation distance. A similar coupling can be expected in a regular dot array with a
coherent state of the dot supermoments. There are two geometrical parameters, one is dot size, and
the other is the distance between any two dots. Variations of these two parameters that are too
large will prevent the formation of a coherent state. The limiting condition can be expressed, within
Anderson localization theory, as Γ/B < 2, with Γ the level broadening due to variations, and B the
miniband splitting. For sufficiently small Γ, after some mathematics, the superexchange coupling
constant J0 for zero temperature can be approximately written as

J0 = JDJB, (14.5.4)

where JD and JB are determined by the dot electronic structure and the barrier properties, respec-
tively.

Expression (14.5.4) is the Anderson-type superexchange coupling originating from tunneling
between the superparamagnetic dots. The sign of the coupling constant is determined by the dot
electronic structure and remains unchanged with interdot separation, similar to what is obtained
for ferromagnetic layers abutted by an insulator. Numerical results for the dot-size dependence
contained in JD for the Ni system is shown in Fig. 14.5.7, which displays regular oscillations with
varying dot diameter. The sign of JD indicates a ferromagnetic type of exchange when the gross
shells are more than half filled, and it changes smoothly to an antiferromagnetic type for a gross-shell
occupation below one-half. This behavior remains also if the self-field is taken into account in the
case of small dot diameters (∼ 1 nm), while for large sizes the exchange coupling of supermoments
is preferentially ferromagnetic. JB in equation (14.5.4) exponentially decreases: This arises from
the exponentially decaying overlap of superparamagnetic dot wavefunctions extending their tail into
the barrier. This restricts the interdot separation at which exchange can contribute to the magnetic
ordering, in agreement with experiments.
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Part IV

Broken Symmetry and Ordered

Phases



Order is heav’n’s first law · · ·
— Alexander Pope

Symmetry cannot change continuously: what I have called

the first theorem of condensed matter physics.

— P. W. Anderson (1981)



Chapter 15

Landau Theory of Phase

Transitions

Phase transitions are cooperative phenomena involving a global change of structure and physi-
cal properties of a system when a certain external variable, in most cases temperature or pressure,
is changed continuously. Mean-field theory has been successfully used in many kinds of phase
transitions: e.g., the theories of van der Waals for the vapor-liquid transition (1873), Weiss for the
paramagnetism-ferromagnetism transition (1907), and Bragg–Williams for the order-disorder transi-
tion in alloys (1934). The well-known superconductivity theory of Bardeen–Cooper–Schrieffer (1957)
is also a mean-field theory. The theory of second-order phase transitions posed by Landau (1937),
has attracted much attention because of its simplicity of formalism and universality of application.
It can be used to illustrate ferroelectric, structural, magnetic and even the superconducting and
superfluid phase transitions. The Landau theory of phase transitions is a phenomenological theory
based on thermodynamic principles; it unifies various mean-field theories.

§15.1 Two Important Concepts

In the Landau theory of phase transitions, we emphasize two closely related important, general
concepts: Broken symmetry and the order parameter.

15.1.1 Broken Symmetry

A phase transition is usually accompanied by some breakdown of symmetry. What is symmetry?
We have touched this subject in Chap. 1. Symmetry is the invariance of some physical quantities
under some kind of operations, all of which may form a closed set called a symmetric group. Ta-
ble 15.1.1 enumerates some continuous symmetric operations of several different systems. Take the
liquid state for example: Its physical properties are invariant to arbitrary translation and rotation,
that is to say, invariant, under the Euclidean group E(3) transformation.

In general, a physical system is described by a Hamiltonian, so the symmetry possessed by the
system is closely related to the invariance of the Hamiltonian under the transformations. For the
liquid state, the Hamiltonian H of the system is invariant under group E(3). We might take G0 to
denote the symmetric group of a system which is described by a Hamiltonian H, and let g be an
element of the group, then the symmetry requires

g−1Hg = H. (15.1.1)

At sufficiently high temperature, when all microscopic states of the system become more or less
equally accessible, the symmetry of H becomes that of Gibbs free energy G.

When macroscopic conditions are changed (the temperature is decreased, or the pressure is
increased, or an external field is applied) one or more symmetric elements may disappear: This is
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the phenomenon of broken symmetry. Broken symmetry refers to the situation in which the state of a
system does not have the full symmetry possessed by the Hamiltonian used to describe the system. A
magnetic system is a well-known example: At temperatures above its Curie temperature the system
has zero magnetization in zero field; it is symmetric, i.e., does not have any preferred direction of the
magnetization. As the temperature is lowered below the Curie temperature, however, a spontaneous
magnetization develops in a specific direction; consequently the full symmetry of directions for the
magnetization breaks down.

Phase transitions occur in systems with large numbers of particles, and many-body interactions
or correlations play an important role, so we need to go from an independent particle model to
a many-body problem. Different kinds of interactions lead to different ordered phases through
symmetry breaking, when the temperature is decreased or the pressure increased. Now, interactions
between particles are not a weak correction but the dominant factor which determines various ordered
phases. For many-particle systems, due to interactions, qualitatively different ordered phases appear,
as shown in Table 15.1.2. Broken symmetry leads to the appearance of ordered phases; at zero
temperature, the ground state has broken symmetry. At low temperature, a system may display
many different ordered states.

Let us consider a structural phase transition, as temperature decreases the symmetry may be
transformed from the liquid state to a crystalline state. In this process, continuous translation and
rotation symmetries are broken. The resulting symmetry group of the crystal is one of the 230
possible space groups. In many cases, especially of second-order phase transitions, the symmetry
group G of the broken symmetric state is a subgroup of the initial group G0, i.e., G ⊂ G0. Assume |G〉
is the ground state of a system, then for an operation h ∈ G, broken symmetry leads to h|G〉 = |G〉.
However, for an operation g /∈ G, we have g|G〉 �= |G〉, even though g ∈ G0.

In some systems, there may be degenerate ground states. In these cases, the real ground state
is only one of these possible ground states. The physical phenomena taking place in this special
ground state will not or only partly display the original symmetries of the physical laws. Here the
symmetries are not broken by external factors; the breaking is thoroughly spontaneous. In reality,
the symmetries of the physical laws have not been destroyed but cannot be displayed in the special
background. So we can distinguish two types of broken symmetries, one is spontaneous breaking for
which H remains invariant, and the other is externally disturbed as H → H + H′, where H′ is an
additional perturbation to the original Hamiltonian H.

Landau emphasized the importance of broken symmetry: A given symmetry element is either
there or it is not. In each state there is either one symmetry or the other, the situation is never
ambiguous. When the symmetry is broken, there is concurrent ordering. It should be noted that the
transition between phases with different symmetries, like liquid and crystal or different crystalline
states, cannot occur in a continuous manner, that is to say, it is impossible to change symmetry
gradually.

Most phase transitions are associated with a sudden change of symmetry. We may ask if there are
phase transitions without change of symmetry? The answer is yes! The vapor-liquid transition, as
will be discussed in §19.2.1, is an example that has no symmetry change. The states above and below
the transition temperature are all isotropic; only the density changes drastically. Other examples
such as liquid-glass transition, paramagnetic-spin glass transition, and metal-insulator transition are
also unrelated to broken symmetry. We shall discuss these phase transitions in §19.2, §19.3, and
§19.4, respectively. They are involved in a more general concept called broken ergodicity.

15.1.2 Order Parameter

We shall give a quantitative description of the phase transition in a system. According to the
spirit of broken symmetry, phase transitions are characterized by the loss or gain of some symmetry
elements when the macroscopic variables of the system are changed. When a system is transformed
from a high symmetry phase to a low symmetry phase, there is a physical quantity η, called the
order parameter, which varies in such a way that it is zero in the high symmetry phase and takes
nonzero values in the low symmetry phase. For instance, in a structural phase transition where the
atoms are displaced from their equilibrium positions in the high symmetry phase, η may be taken
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Table 15.1.1 Transformations associated with various continuous symmetries.

Symmetric Infinitesimal Finite Characteristics of
group generator transformation transformation

translation k eik·r translation r in wavevector
k direction

rotation L eiφn·L rotation φ along n axis
with angular momentum L

spin precession S eiχn·S rotation χ along n axis
when spin S precesses

gauge N eiθN phase change θ caused by the
action of number operator N

as the amount of the displacement. For a magnetic transition, η may be taken as the macroscopic
magnetic moment per unit volume of a ferromagnet, or the magnetic moment of the sublattice for
an antiferromagnet.

Since the order parameter is closely connected with the symmetry of a system, we can call the high
symmetry phase the disordered phase, and the low symmetry phase the ordered phase. According
to the Landau theory of phase transitions, there may exist a macroscopic order parameter η which
measures the ordered phase below the transition temperature Tc. η is a thermodynamic variable,
as it is the ensemble average of some microscopic variables σi. Such variables σi are functions
of the space-time coordinates around the site i, so that the time variation, as well as the spatial
distribution, is significant for the averaging of distributed variables. In the disordered phase above
Tc, those variables σi are usually in fast random motion so that their time average 〈σi〉t vanishes
at each lattice point and hence is independent of the site i. In contrast, at temperatures below
Tc, they are correlated and in slow motion, so that the ordered phase is dominated by their spatial
distribution.

It must be emphasized again that the symmetry of a system is changed only when η becomes
nonzero, any nonzero value of the order parameter, no matter how small, brings about a lowering
of the symmetry. Therefore, change of the symmetry is always abrupt, but the order parameter can
vary in two different ways.

The manner in which the symmetry is broken enables us to define the order of the transition.
There are two kinds of phase transitions in general. One is the first-order phase transition, for
which the order parameter appears discontinuously below the transition temperature Tc. The two
symmetry groups for the high symmetry phase and low symmetry phase may or may not have any
group-subgroup relationship to each other. The other is the second-order phase transition, also
known as the continuous phase transition, for which the order parameter appears gradually. The
symmetries on the two sides of the transition are related, the symmetry group on the lower symmetry
side must be a subgroup of the higher symmetry side.

For instance, in ferroelectric systems, the order parameter is the electric polarization. As the
temperature decreases through Tc, the polarization can go from zero to a finite value continuously or
discontinuously. Figure 15.1.1 shows the first-order or discontinuous phase transition in BaTiO3. At
high temperatures, BaTiO3 has a cubic lattice whose unit cell is composed with the barium atoms
at the vertices, the titanium atoms at the centers, and the oxygen atoms at the centers of the faces.
As the temperature decreases below Tc, the titanium and oxygen atoms begin to move relative to
the barium atoms, parallel to an edge of the cube. Once this happens, the symmetry of BaTiO3 is
changed, it becomes tetragonal instead of cubic. In this process, the electric polarization (now taken
as the order parameter) jumps from zero to a finite value at Tc = 120◦C. In contrast, Fig. 15.1.2
shows the second or continuous phase transition at Tc = 110 K. The structural symmetry change
also from cubic to tetragonal by a tilt of the neighboring oxygen octahedra. The tilting angle can
be taken as the order parameter; we see the order parameter grows gradually from zero.
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Figure 15.1.2 Second-order phase transition of SrTiO3. ϕ is the tilting angle of the oxygen octahedra.
ϕ0 = 1.3◦ is the maximum value of the tilting angle.

In some cases it is possible to use a variable external force to change the nature of the transition
from first-order to second-order. If we can change the variable external force in arbitrary small steps
we can go from first-order to second-order passing through a threshold point between the two cases
which is called a “tricritical point”.

Any order parameter, as a physical quantity, can be a scalar, or a vector, or a tensor. Generally
speaking, the order parameter may have multicomponents. In the simplest case, the order parameter
is a scalar. In this case the number of components of the order parameter n = 1. For example,
we have chosen (c/a − 1) and ϕ/ϕ0 as the order parameters for BaTiO3 and SrTiO3 respectively.
They are all scalar order parameters. The order parameter can also be a vector with a number of
components n = 3. A well-known example is a bulk ferromagnet: Below the Curie temperature, the
material has macroscopic magnetization M , which is a vector. For a two-dimensional isotropic ferro-
magnet, the magnetization is limited to a plane, so its number of components is n = 2. Similarly, for
superfluids and superconductors, their macroscopic wave functions are chosen as order parameters.
Because a macroscopic wavefunction, written as ψ = ψ0 exp(iθ), is complex with modulus ψ0 and
phase θ, so n = 2. For the vapor-liquid phase transition, we cannot distinguish the symmetry of
the vapor and liquid, so there is no change of symmetry at all, but at the transition temperature,
gas and liquid are separated, we can take the density difference ρl − ρg as the order parameter, as
shown in Fig. 15.1.3. For some strong first-order reconstruction phase transitions, although there is
no group and subgroup relation between their high-temperature phase and low-temperature phase,
it is still possible to define suitable order parameters to treat them in the framework of Landau
theory.
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Order Parameter

ρl(T)

Tc
T

ρc

ρ

ρg(T)

Figure 15.1.3 The ρ-T phase diagram of gas-liquid.

Table 15.1.2 Broken symmetry and ordered phases.

Phase Broken symmetry Order parameter

crystal translation and rotation ρ =
∑

G ρGeiG·r

nematic rotation ηij = 1
2 (3ηiηj − δij)

smectic rotation and 1D translation ηij = A|ψ| cos(qz − φ)

ferroelastic inversion P

antiferroelastic inversion
∑

p (sublattice)

ferromagnetic time reversal M

antiferromagnetic time reversal
∑

m (sublattice)

superfluid 4He gauge (U(1) group) ψ = |ψ|eiθ

superconductivity gauge (U(1) group) ψ = |ψ|eiθ

15.1.3 Statistical Models

We would like to consider the physical realization of the order parameters at the microscopic
level. In most cases, internal interaction is the main reason for spontaneous symmetry breaking when
the temperature is lowered below Tc, because internal interactions will suppress thermal fluctuations
and lead to an internal field conjugate to the order parameter, which in turn helps to drive the entire
system into an ordered state.

Every phase transition is accompanied by the appearance, at the phase transition point Tc, of
a set of physical quantities that are absent in the initial phase. These quantities may be divided
into two major groups: microscopic and macroscopic parameters. Examples of micro parameters are
atomic displacements or atomic spins arising at the phase transition point Tc, and also variations of
the probability of finding an atom of a given species on a given site.

In addition, a variety of physical properties of the substance are described by macroscopic vari-
ables, such as electric polarization, magnetization, strain tensor, etc. Measurement of these quanti-
ties underlies the various experimental techniques of investigating phase transitions in materials.

Phase transitions are induced by the mutual interactions of many particles, and are cooperative
in nature. In order to understand the nature of cooperative transitions, it is necessary to employ
more powerful microscopic theories which take into account the details of atomic interactions beyond
simple thermodynamic theories; this leads to statistical models.

There are some fundamental models that describe cooperative behavior in condensed matter
systems. Although these models may be too simple to imitate real physical systems, they still
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include enough information of many-body interactions and can give qualitative prediction of the
behavior, by solving the corresponding equations.

It is conventional and convenient to use magnetic language and write the model Hamiltonian in
terms of spin variables, although it will turn out to be applicable to many non-magnetic systems.

A realistic model for many magnets with localized moments is provided by the Heisenberg Hamil-
tonian

H = −
∑

ij

JijSi · Sj − H ·
∑

i

Si, (15.1.2)

where J is the exchange energy and H the applied field. This Hamiltonian can be rewritten in the
form

H = −Jz

∑

ij

Sz
i Sz

j − J⊥
∑

ij

(Sx
i Sx

j + Sy
i Sy

j ) − H
∑

i

Sz
i , (15.1.3)

where x, y, z label Cartesian axes in spin space, and the applied field is assumed along the z-axis.
For J⊥ = 0, it reduces to the Ising model, while for Jz = 0, it is the XY model.

In some systems the combined cooperative interaction and local crystal field interaction forces the
spins to point up or down in a specific direction, which implies a one-dimensional order parameter,
i.e., the Ising case. In some other systems the spins can only rotate within a single plane, implying
a two-dimensional order parameter, which is the XY model. Still in other magnetic systems the
allowed direction for the spins is not restricted to a line or to a plane but may be in any spatial
direction, so there is a three-dimensional order parameter: the Heisenberg case. In all these three
cases, the transition from the paramagnetic to magnetically-ordered state can be characterized by
the occurrence of mean magnetic moment vectors on the sites.

The spin-1/2 Ising model is a remarkably successful model for an interacting system. A classical
spin variable, which is allowed to take the values ±1, is placed on each lattice site. By taking J⊥ = 0
and omitting the subscript z in (15.1.3), we write the Ising Hamiltonian as

H = −J
∑

ij

SiSj − H
∑

i

Si. (15.1.4)

It is clear that a positive J favors parallel, and negative J antiparallel, alignment of the spins. The
main restriction of the Ising model is that the spin vector can only lie parallel to the direction of
quantization introduced by the magnetic field. This means that the Ising Hamiltonian can only prove
useful in describing a magnet which is highly anisotropic in spin space. There are some physical
systems, MnF2 for example, which to a good approximation obey this criterion. However, despite
its simplicity the Ising model is widely applicable, because it can describe any interacting two-state
system, such as order-disorder transitions in binary alloys, which will be discussed in §20.2.1.

We take the macroscopic mean value of the Ising system, i.e. the magnetization, as the order
parameter η. At high temperature, the Ising spin system has the symmetries of the Z2 group. The
elements of the Z2 group are

Z2 = {E, I} ,

here E is the identity transformation and I is the inversion transformation. If a system has the
symmetry of Z2, then under the symmetry operation of Z2, the free energy of the system is invariant
for η → η, η → −η. For an Ising spin system, at T > Tc, η = 0, so Eη = η, and Iη = η, satisfying
Z2 symmetry. But at T < Tc, η �= 0, the transformations are

Eη = η, Iη = −η.

and Z2 symmetry is broken. The thermodynamic state below Tc lacks the full symmetry of H, i.e.,
broken symmetry!

For the XY model, any spin i is a two-dimensional vector, which can written as

Si = iSix + jSiy = S(i cos θi + j sin θi).

If we take the average of Si as the order parameter

η = 〈Si〉,
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then in the high-temperature phase, T > Tc, the spin vectors at sites are randomly distributed,
satisfying the symmetry of the O(2) group, corresponding to the case in which the orientational
angle in the two-dimensional plane can take any value, so

η = 0,

but in the low-temperature phase, T < Tc, the symmetry of the O(2) group is broken. If J⊥ > 0,
the spin vectors will predominantly lie along a certain direction in the xy plane; the O2 symmetry
is broken simultaneously and the average θi takes a definite value, i.e.,

η = 〈S〉(i cos θ + j sin θ).

Broken symmetry comes from the interactions of spins at different sites, J⊥, and there exists the
following relation for spins at any sites i and j

Si · Sj = SixSjx + SiySjy = S2 cos θij . (15.1.5)

It is obvious 〈θij〉 → 0 when the symmetry is broken.
For an isotropic XY system, the ordered states are infinitely degenerate; a different realization

of the ordered state corresponds to different values of the phase for a definite free energy from
a reference direction in the xy plane. It is known that the symmetry groups O(2) and U(1) are
isomorphic, so the order parameter can also expressed as a complex number

η = 〈S〉eiθ.

The components of the complex number are its amplitude 〈S〉 and phase θ. The XY model is the
simplest model for the study of continuous symmetry breaking. A complex parameter, such as a
macroscopic wavefunction ψ = |ψ|eiθ, can also be used to describe superfluid and superconducting
phase transitions with the breaking of gauge symmetry.

§15.2 Second-Order Phase Transitions

The order of a phase transition is defined in the Ehrenfest scheme in which the order of the lowest
derivatives of the free energy shows a discontinuity at the transition point. Landau formulated the
central principles of the phenomenological theory of second-order phase transition based on the idea
of spontaneous symmetry breaking at the phase transition. By means of this approach, it has been
possible to treat phase transitions of a different nature in distinct systems from a unified viewpoint.
In what follows, we will usually take a scalar order parameter to give an illustration of the principles.

15.2.1 Series Expansion of Free Energy

The quantitative theory of second-order phase transitions can be started from the Gibbs free
energy G of the system, which is a function of pressure P , temperature T and order parameter η. It
must be kept in mind that, in the function G(P, T, η), the variable η is not on the same footing as
the variables P and T ; whereas the pressure and temperature can be specified arbitrarily, the value
of η must itself be determined from the condition of thermal equilibrium, i.e. the condition that G
is minimized for given P and T .

The continuity of the change of state in a second-order phase transition implies that the quantity
η takes arbitrarily small values near the transition point. In the vicinity of the phase transition
point the Gibbs free energy G can be expanded in a power series of η. For the case of scalar order
parameter η, the free energy is written as

G(P, T, η) = G0 + αη + Aη2 + Cη3 + Bη4 + · · · , (15.2.1)

where G0 is the Gibbs free energy of the high symmetry phase and is unrelated to the phase transition
but α, A, C, B are certain parameters of the system that are dependent on P and T . We will use
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temperature as the macroscopic variable to induce a phase transition in what follows. Actually, it
is also possible to substitute another variable for the temperature, for instance, a pressure sufficient
to trigger the transition in the case of a ferroelectric, where the temperature is fixed, while the
smectic-nematic liquid crystal transition can be driven by an external magnetic field.

The stability condition requires that G, as a function of η, should be a minimum and thus satisfy

(

∂G

∂η

)

= 0,

(

∂2G

∂η2

)

> 0, (15.2.2)

from which it follows that the linear terms in (15.2.1) cancel out. The equilibrium value of order
parameter η is found by combining (15.2.1) and (15.2.2). For the high symmetry phase, T > Tc, the
equilibrium value η = 0, it is necessary that A > 0; on the other hand, for the low symmetry phase,
T < Tc, η takes a non-zero value, and it is required that A < 0. Therefore, at the transition point
T = Tc, A = 0. In the vicinity of Tc the coefficient of the quadratic term A may be expected to be
a linear function of temperature

A(P, T ) = a(P )(T − Tc), (15.2.3)

with a(P ) > 0.
If the phase transition point, T = Tc, itself is stable, the conditions

(

∂2G

∂η2

)

η=0

= 0,

(

∂3G

∂η3

)

η=0

= 0,

(

∂4G

∂η4

)

η=0

> 0, (15.2.4)

must also fulfilled, then

A(P, Tc) = 0, C(P, Tc) = 0, B(P, Tc) > 0. (15.2.5)

Assuming that the two possibilities of broken symmetry for η and −η are equivalent, the coefficient
C is identically equal to zero. Generally, B is weakly temperature dependent; we take it as a positive
constant here. By neglecting the high order terms, the free energy is in the form

G(P, T, η) = G0 + A(P, T )η2 + Bη4. (15.2.6)

From ∂G/∂η = 0, we obtain
η(A + 2Bη2) = 0, (15.2.7)

which can be called the equation of state, because it governs the relationship of P and T in the
system. From it there are two solutions,

η = 0, (15.2.8)

and

η = ±
(

− A

2B

)1/2

= ±
[

a(Tc − T )

2B

]1/2

. (15.2.9)

For T ≥ Tc, η = 0 is stable, but for T < Tc, η = 0 corresponds to the free energy being a maximum,
and thus only the nonzero solution is stable, which corresponds to the appearance of the ordered
phase. We can see the situation in Fig. 15.2.1. Here, for simplicity, we take the free energy of the
high temperature phase G0 as the zero point of energy.

The dependence of the order parameter on temperature in (15.2.9) shows that the transition is
continuous at the transition point. This characteristic is displayed in Fig. 15.1.2.

15.2.2 Thermodynamic Quantities

Phase transitions may bring many extraordinary physical properties to systems. The thermo-
dynamic quantities may change drastically; examples showing anomalies are thermal expansion
coefficients, elastic constants, refractive indices etc. Even transport coefficients such as the thermal
and electric conductivity often present pronounced anomalies in the vicinity of the phase transition.
For instance, the dielectric constant of ferroelectrics diverges as Tc is approached from both sides.
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η

G G

T>Tc
T<Tc

(a) (b)

η

Figure 15.2.1 Free energy as a function of the scalar order parameter in the vicinity of the second-order
phase transition. (a) T > Tc; (b) T < Tc.

For a second-order phase transition, the absence of any discontinuous change of state at the
phase transition point has the result that the thermodynamic functions of the system, including its
entropy, energy, volume, etc., vary continuously as the transition point is passed. Hence a second-
order phase transition, unlike the first-order, is not accompanied by emission or absorption of heat.
In fact, it is the derivatives of the these thermodynamic quantities, i.e. the specific heat, the thermal
expansion coefficient, the compressibility, etc., that are discontinuous at a transition point of the
second-order.

Now we discuss the temperature dependence of entropy and specific heat at the transition point.
The entropy is given by S = −∂G/∂T . For T > Tc, in the high symmetry phase, η = 0, so

S = −∂G0

∂T
= S0, (15.2.10)

however, when T < Tc, η �= 0, and

S = S0 +
a2

2B
(T − Tc). (15.2.11)

It is clear that at T = Tc, S = S0. Thus the entropy is continuous at the transition point. This
continuity of first-order derivatives of G indicates that the phase transition is second-order.

The specific heat at constant pressure is evaluated from CP = T (∂S/∂T )P . For the high sym-
metry phase,

CP = T

(

∂S0

∂T

)

P

, (15.2.12)

but for the low symmetry phase,

CP = T

(

∂S0

∂T

)

P

+
a2Tc

2B
, (15.2.13)

just at Tc, there is no divergence, but a discontinuous jump of CP between Tc− and Tc+. The size
of the discontinuity is

∆CP =
a2Tc

2B
. (15.2.14)

Other quantities besides CP , such as the thermal expansion coefficient, compressibility, etc., are
also discontinuous. There is no difficulty in deriving relations between the discontinuities of all these
quantities.

15.2.3 System with a Complex Order Parameter

The symmetry that is broken in the formation of the superconducting or the superfluid state is
the gauge symmetry, as will be discussed in Chap. 18. A macroscopic wavefunction emerges below
the transition temperature and can be introduced to denote the broken gauge symmetry. From
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G

G

T>Tc T<Tc

(a) (b)

η η

Figure 15.2.2 Free energy surfaces for complex order parameter corresponding to two cases for (a) T > Tc

and (b) T < Tc.

the thermodynamic standpoint, the macroscopic wavefunction can be taken as a complex order
parameter.

η = η0e
iθ.

There are two real components, the amplitude η0 and phase angle θ.
These two components should be spatially homogeneous for a system, in the absence of applied

field. According to Landau theory, we expand the free energy to fourth order

G = G0 + A|η|2 + B|η|4, (15.2.15)

where A = a(T − Tc) and B > 0, as usual. The minimum of free energy in (15.2.15) will be given
by ∂G/∂η0 = 0, so we have

(A + 2Bη2
0)η0 = 0. (15.2.16)

The solutions are η0 = 0, for T > Tc; or η0 = (A/2B)1/2 = [a(Tc − T )/2B]1/2 for T < Tc.
In the normal state for T > Tc, η0 = 0 and G = G0, we could say that θ takes any value, so

gauge symmetry is intact. When T < Tc, η0 �= 0 and θ takes a definite value. The gauge symmetry
is broken. Figure 15.2.2 gives the free energy surface in these two cases. However, we note that in
(15.2.15) the phase factor does not appear unambiguously. If we perform the transformation

η → η′ = eiθ′

η, (15.2.17)

where θ′ is an additional phase difference, the form of (15.2.15) does not change. This transformation
corresponds to a rotation by the angle θ′ in the complex plane. The set of all such rotation constitutes
the continuous group U(1). It is clear that G is invariant under the transformation of group U(1).
So it seems that there still exists gauge symmetry in the free energy. In fact, a gauge transformation
applied to the ordered state changes θ to some other value corresponding to a different ordered
state with the same free energy. These ordered states are degenerate, analogous to ferromagnetic
states. In the low temperature phase, the minimum of G lies on a circle. Every point on the circle
represents a possible ordered state. When the symmetry is spontaneously broken, the system is in
a state represented by one of the points of the circle, see Fig. 15.2.2(b).

The phase of the macroscopic wavefunction arises in the condensation process. Just below the
transition temperature, only a small fraction of the particles are in the condensate and participate in
superflow. As the temperature is lowered, the thermal effects, which tend to destroy the condensate,
become less important and a large fraction of particles condense into the condensate. At T = 0 K,
the maximum number of particles have entered the condensate. We can expect that the phase and
the particle density are a couple of conjugate variables. In general, it is impossible to specify the
density and the phase simultaneously. Careful analysis shows that there is an uncertainty relation
for large N

∆N∆θ ∼ 1. (15.2.18)
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More intricate broken gauge symmetries are involved in which appropriate “internal” degrees of
freedom are associated with the ordering process. Examples of this kind include liquid crystalline
phases and the phase of superfluid 3He.

§15.3 Weak First-Order Phase Transitions

Landau theory which has been successfully used for second-order phase transitions can be ex-
tended to treat some weak first-order phase transitions. For these first-order phase transitions, the
concept of order parameter is still effective.

15.3.1 Influence of External Field

In a number of systems, phase transitions are involved in a pair of conjugated variables whose
product is often an energy. For example, pressure P and volume V in vapor-liquid transitions,
magnetic field H and magnetization M in paramagnetic-ferromagnetic transitions, electric field E

and polarization P in paraelectric-ferroelectric transitions, and stress σ and strain ε in paraelastic-
ferroelastic transitions.

We are interested in the contribution of conjugated fields of order parameters to phase transitions.
For simplicity, consider a conjugate field h of the scalar order parameter η which leads the free energy
to add a term of −ηh, then the free energy takes the form

Gh(P, T, η) = G0 + a(T − Tc)η
2 + Bη4 − ηh. (15.3.1)

Figure 15.3.1 shows that the free energy is asymmetric about order parameter η. Note that the
minimum of free energy above Tc is not at η = 0, and below Tc, the two minimum values are not
equal again.

Gh

T>Tc T>Tc T<TcT<Tc

η

Figure 15.3.1 Asymmetric free
energy under external field.

Tc T

η

Figure 15.3.2 Phase diagram of η versus
T under the fixed external field h, dot line
corresponds to h = 0.

By using the equilibrium condition ∂Gh/∂η = 0, we have the equation of state

2a(T − Tc)η + 4Bη3 − h = 0, (15.3.2)

and under a fixed external field h, we can plot η as a function of T in Fig. 15.3.2.
We can evaluate the susceptibility χ = (∂η/∂h)T,h→0; the result is

χ =
1

2a(T − Tc) + 12Bη2
, (15.3.3)

then at T > Tc,

χ =
1

2a(T − Tc)
, (15.3.4)



· 416 · Chapter 15. Landau Theory of Phase Transitions

T<Tc

T=Tc

T>Tc

A

B

B'

A'

D'

h

η

O

D

Figure 15.3.3 Phase diagram of η versus T under the fixed external field h, dotted line corresponds to
h = 0.

and at T < Tc,

χ =
1

4a(Tc − T )
. (15.3.5)

When T → Tc, χ → ∞. This is the Curie–Weiss law.
Figure 15.3.3 gives η as a function of h at different temperatures for T > Tc and T < Tc. The

η-h solid lines refer to stable states of the system; the dashed lines refer to unstable states. The
segments A-B and A′-B′ of the η versus h curve correspond to metastable states. The segments B-O
and B′-O refer to unstable states with negative values of the second-order derivative, ∂2G/∂h2 < 0,
or with a inverse susceptibility

χ−1 =

(

∂h

∂η

)

η=0

=

(

∂2G

∂η2

)

η=0

. (15.3.6)

Analysis of the η versus h curves sketched in Fig. 15.3.3 show that, when the field h is varied, the
order parameter η and the energy of the system should exhibit discontinuities between the states
corresponding to the points B-D′ and D-B′. A hysteresis loop D-A-B-D′-A′-B′ should be observed
in experiments. The coercive field is equal to (hB′ − hB)/2. First-order phase transition appears
when T < Tc.

15.3.2 Landau Devonshire Model

In many ferroelectrics, weak first-order phase transitions have been observed experimentally, even
without an external electric field, but the transformation properties of the order parameters exclude
a cubic term. In describing such transitions, the free energy should be expanded to higher terms
(Devonshire, 1949).

We assume that the spontaneous polarization in a ferroelectric is along a fixed direction, so
the polarization is taken as a scalar order parameter. Suppose B < 0, but for stability of the low
temperature phase, we expand the free energy to the 6th power

G(P, T, η) = G0 + a(T − Tc)η
2 + Bη4 + Dη6, (15.3.7)

where D > 0. It is noted that the coefficient A = a(T − Tc) is kept invariant, because we assume
(15.3.7) is only a small modification of (15.2.6). Now Tc is not a transition temperature. Its meaning
will be derived later.

The equilibrium condition ∂G/∂η = 0 gives the equation of state

2a(T − Tc)η + 4Bη3 + 6Dη5 = 0. (15.3.8)
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There are solutions

η = 0, (15.3.9)

η2 =
−B + [B2 − 3aD(T − Tc)]

1/2

3D
, (15.3.10)

and

η2 =
−B − [B2 − 3aD(T − Tc)]

1/2

3D
. (15.3.11)

The condition for (15.3.10) and (15.3.11) having real roots gives an upper limit of temperature T+

T+ = Tc +
B2

3aD
> Tc. (15.3.12)

For T < T+, it can be verified that (15.3.10) is a solution that minimizes the free energy, but to
form an ordered state, (15.3.11) is unstable or meaningless.

It must be emphasized that T+ is not a transition temperature, though (15.3.10) can represent a
metastable polarized state. We should see if G is larger or less than G0 after (15.3.10) is substituted
into (15.3.7). As a matter of fact, the real transition temperature T = Tt is determined from the
condition G − G0 = 0; this gives

a(T − Tc)η
2 + Bη4 + Dη6 = 0. (15.3.13)

Then, from the condition of real root, we have

Tt = Tc +
B2

4aD
, (15.3.14)

which is less than T+. We now have three characteristic temperatures which are arranged in a
sequence T+ > Tt > Tc. Tt is the temperature of the phase transition. At T = Tt, there are three
minima of G: η = 0, and η = ±(−B/2D)1/2.

We depict the curves of free energy versus polarization η at different temperatures T in Fig. 15.3.4.
When T > T+, only η = 0 corresponds to the minimum of the free energy, so the disordered phase
is stable; for T+ > T > Tt, there are η = 0 and η �= 0 as equilibrium values for G, but still the
disordered phase is more stable, and the ordered phases are metastable. At T = Tt, for which

G

T

η

Figure 15.3.4 Free energy
versus order parameter in the
Landau–Devonshire theory.

G
T>Tt T=Tt T<Tc

η

Figure 15.3.5 Free energy versus or-
der parameter in Landau–de Gennes
theory.
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G − G0 = 0, a first-order phase transition takes place. The polarization changes discontinuously
from zero to a finite value

η2 =
B

2D
. (15.3.15)

The change of entropy can be computed

∆S =
∂G

∂T
− ∂G0

∂T
=

aB

2D
, (15.3.16)

which also changes discontinuously. If T is lower than Tt, the disordered phase becomes unstable,
and the ordered phase stable. Finally, at T = Tc, for η = 0, ∂G/∂η = 0 and ∂2G/∂η2 = 0, so η = 0
is a spinodal point. Tc corresponds to the absolutely unstable limit of the disordered phase, and
η = ±(−2B/3D)1/2 are perfectly stable.

We can also adopt (15.3.7), in the case of B > 0, to study ferroelectric phase transitions. There
is no doubt that this is related to second-order phase transitions. As in the last subsection, we
can add the influence of an external field into consideration; we need only to add a term −hη into
(15.3.7). Now G is not symmetric about the η axis, and first-order phase transitions related to T or
h may take place.

15.3.3 Landau de Gennes Model

We shall discuss the microscopic theory of the isotropic-nematic phase transition of liquid crystals
in §16.3. For nematic liquid crystals, η denotes the orientational order parameter. If this phase
transition is first-order, some anomalies appear. This is due to the fact that, in the isotropic phase,
there is no long-range order in the direction of the alignment of the molecules, or in other words, the
order parameter vanishes, on average. However, small nematic droplets can exist in the isotropic
phase, even though the orientations of successive droplets are uncorrelated.

In 1971, de Gennes proposed a phenomenological description of these effects on the basis of the
Landau theory of phase transitions. The point is that the free energy should include the cubic term

G(P, T, η) = G0 + a(T − Tc)η
2 + Cη3 + Bη4, (15.3.17)

where C < 0, still B > 0. Tc represents the temperature of a phase transition of second-order if
C = 0. Now the free energy G contains a nonzero term η3. This odd function of η ensures that the
states, with some nonvanishing value of η due to some alignment of molecules, will have different
free energy values depending on the direction of the alignment. A state with an order parameter
η is not the same as the state with −η. We shall find such a free energy predicts a discontinuous
phase transition. It can be clearly seen in Fig. 15.3.5.

Equilibrium condition ∂G/∂η = 0 gives the equation of state

2a(T − Tc)η + 3Cη2 + 4Bη3 = 0, (15.3.18)

the solutions are

η = 0, (15.3.19)

η =
−3C + [9C2 − 32aB(T − Tc)]

1/2

8B
, (15.3.20)

and

η =
−3C − [9C2 − 32aB(T − Tc)]

1/2

8B
. (15.3.21)

To satisfy the real root condition, we can define a temperature limit

T+ = Tc +
9C2

32aB
. (15.3.22)

When T > T+, only η = 0 is stable. As T < T+, there is a metastable minimum for η �= 0.
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The first-order phase transition point can be obtained from G − G0 = 0

Tt = Tc +
C2

4aB
< T+. (15.3.23)

The system has two stable minima at T = Tt; corresponding to η = 0 and η �= 0. A true phase
transition occurs at temperature Tt and there is a jump of order parameter at Tt of amount

∆η = − C

2B
. (15.3.24)

Absolute instability appears at T ≤ Tc. Here T = Tc is a spinodal point for η = 0, because
∂2G/∂η2 = 0. Tc is the absolutely unstable limit for the high symmetry phase. Taking the equilib-
rium condition from (15.3.18), we can find η = −3C/4B from (15.3.20).

We have arrived at the conclusion that the presence of a cubic term in the expansion of G makes
the phase transition first-order.

15.3.4 Coupling of Order Parameter with Strain

In structural phase transitions, there may appear an interplay of the strain ε with the order
parameter η. An interaction of the type η2ε is a reasonable choice in some simple cases. We could
add this and also a term representing the elastic energy to the free energy

G = G0 + a(T − Tc)η
2 + Bη4 + Jη2ε +

1

2
Kε2, (15.3.25)

where J is the coupling constant and K is the elastic constant, all assumed to be independent of
temperature, near Tc.

The condition for a minimum of the free energy ∂G/∂η = 0 gives

a(T − Tc) + 2Bη2 + Jε = 0. (15.3.26)

In addition, the equation of state for the variable ε can be obtained as

σ =

(

∂G

∂ε

)

η,T

= Jη2 + Kε. (15.3.27)

In the case of no external stress, i.e. σ = 0, we get spontaneous strain below the transition temper-
ature Tc

ε = −Jη2

K
, (15.3.28)

and

η2 = −a(T − Tc)

2B∗ , (15.3.29)

and

B∗ = B − J2

2K
. (15.3.30)

It follows that the equilibrium value ε depends linearly on temperature.
The inverse susceptibility is easily found from (15.3.27)

χ−1 =

(

∂σ

∂ε

)

σ=0

= K + 2Jη

(

∂η

∂ε

)

σ=0

. (15.3.31)

From it we find that the model (15.3.25) gives a discontinuous change at the transition point

χ−1 = K, for T > Tc; (15.3.32)

and

χ−1 = K − J2

2B
, for T < Tc. (15.3.33)
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Figure 15.3.6 Susceptibility versus temperature for the model with coupling between strain and order
parameter.

Figure 15.3.6 shows the temperature dependence of the susceptibility for second-order transitions
described by the free energy (15.3.25). It is clear that there a finite jump at Tc.

We introduce a conjugate field h in the order parameter η, and the field is defined by

h =

(

∂G

∂η

)

ε,T

= 2a(T − Tc)η + 4Bη3 + 2Jηε. (15.3.34)

The inverse susceptibility is

χ−1
η = 2a(T − Tc) + 12Bη2 + 2Jε. (15.3.35)

Above Tc, η = 0, ε = 0, so

χ−1
η = 2a(T − Tc). (15.3.36)

Below Tc, η and ε take the equilibrium values in (15.3.28) and (15.3.29), respectively, then

χ−1
η = 4a

B

B∗ (Tc − T ). (15.3.37)

We see that the susceptibility satisfies the Curie–Weiss law. From the results obtained, it can be
understood that the susceptibility corresponding to the parameter η diverges at the transition point
Tc, whereas the susceptibility corresponding to the parameter ε remains finite within the framework
of the model (15.3.25).

The statement above corresponds to the situation in which the coupling between the order
parameter and strain is weak. (15.3.25) gives a description of a second-order phase transition. If the
coupling is strong the situation will be different. Actually, we can substitute (15.3.28) into (15.3.25),
the free energy is

G = G0 + a(T − Tc)η
2 + B∗η4. (15.3.38)

This expression is just like the one component free energy in equation (15.2.6), but there is a
substitution of B → B∗. There is no doubt that if B > B∗ > 0, the phase transition is still second-
order. However, if the coupling is strong enough to lead to B∗ < B, the high symmetry state is
unstable, and a higher degree term, such as Dη6, needs to be included into the free energy. Then
the coupling of η-ε may drive the phase transition from second-order to first-order.

§15.4 Change of Symmetry in Structural Phase Transitions

The symmetry consideration of Landau theory is perhaps most significant in analyzing struc-
tural phase transitions in crystals. A prerequisite for this study is the theory of space groups of
crystals. As temperature decreases, a crystal can undergo a series of structural phase transitions.
When T is lowered through a certain Tc, the symmetry of the crystal can be changed from high to
low. A generalized order parameter with multicomponents will be used to characterized the broken
symmetry in structural phase transitions.
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15.4.1 Density Function and Representation Theory

Crystal symmetry is lowered by a reduction in the number of symmetry elements of both rotations
and translations when passing through a structural phase transition. This reduction gives rise to a
new crystal structure. The theoretical analysis consists of enumerating all the possible structural
types that may be obtained from a parent crystal as a result of phase transitions and determining
how low symmetry space groups are contained in the space group of the initial phase.

We can begin from the density function ρ(r) to describe crystal structures and to ascertain the
symmetries of crystals. For concreteness, ρ(r)dr is the probability to find the number of electrons
in the volume element dr in the neighborhood of the point r.

Let the initial high symmetry phase be specified by the symmetry group G0, which leaves the
density function ρ0(r) of the system invariant. Below, but near, Tc, the density function for the low
symmetry phase becomes

ρ(r) = ρ0(r) + δρ(r), (15.4.1)

where δρ is the change of density function to form the low symmetry phase. Since the state changes
continuously at a second-order phase transition, the symmetry of the new phase may become lower
only due to the loss of part of the symmetry elements and will be described by a group G that is a
subgroup of the initial group G0, i.e., G ⊂ G0.

The method of analyzing symmetry variation at a second-order phase transition, proposed by
Landau, is based on expanding the density function ρ(r) or δρ(r) in a complete set of the basis
functions ψν

i of the irreducible representations of the initial group G0,

δρ(r) =
∑

ν

′ ∑

i

ην
i ψν

i , (15.4.2)

where ν denotes the different irreducible representations (IR), and i the basis functions of the same
IR. There is no identity representation in

∑′
ν , because it keeps the symmetry of G0. In general, each

second-order phase transition is related to only one IR, and the density function can be reduced to

δρ(r) =

d
∑

i=1

ηiψi(r), (15.4.3)

where d denotes the dimension of the IR. ηi is an expansion coefficient which is independent of
coordinate but varies with pressure P and temperature T . It is reasonable to view the set {η1, . . . , ηd}
as a vector order parameter, η, transforming according to the IR, with the same transforming
properties as the basis functions. In the high symmetry phase, at T > Tc, all the ηi = 0, but when
T < Tc at least some of these coefficients should become non-zero. Since the density function varies
continuously at the phase transition point as T → Tc, the coefficients ηi tend to zero and may be
considered small in the vicinity of Tc. The physical meaning of (15.4.3) is that the ordered phase
is formed by the freezing of a particular density fluctuation of individual structure characterized by
one IR of G.

In dealing with structural phase transitions in crystals, the problem has focused on finding the
IR of space group. The successful method adopts the modulated wave vector. The space group IRs
are specified by wavevectors defined with the help of reciprocal lattice vectors. Using the symmetry
of the reciprocal lattice, it is possible to classify all the points that belong to a Brillouin zone (BZ).

Some specific points in a Brillouin zone are called Lifshitz points and have particularly high
symmetry, that is some set of symmetry elements that leave a given point fixed or transform it
into an equivalent one. The construction of the IRs of space group G is associated with the action
of its elements g on a given wavevector k. Some of the elements of group G leave the wavevector
k invariant or transform it into an equivalent one, which differs by an arbitrary reciprocal lattice
vector G. The point-group symmetry operation g (rotation and reflection) of Group G0 leaves k

invariant, i.e.,

gk = k, (15.4.4)
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while the non-symmorphic operation (glide-reflection or screw rotation) changes k to an equivalent
wavevector, different by a reciprocal lattice vector, i.e.,

gk = k + G. (15.4.5)

The totality of all such elements satisfying the above condition forms a subgroup Gk of the group
G0 and is called the wavevector group.

The IRs of the wavevector group Gk are characterized by the wavevector k and the representation
number ν. The IRs of the entire space group G0 are characterized by a wavevector star, which is
labelled {k}. A star is a set of nonequivalent wavevectors that are obtained from a given wavevector
by the action of all the space group elements, and the individual vectors comprised in this set are
said to be the star arms, kL. The latter can be obtained by the action of gL elements on a given
wavevector k

kL = gLk. (15.4.6)

These elements are representative elements of coset decomposition of group G0 relative to its sub-
group Gk

G0 =

lk
∑

L=1

gLGk. (15.4.7)

The number of star arms lk is evidently equal to the index of the subgroup Gk in the group G0.
The basis functions of the group Gk IR are Bloch functions of the form

ψν
kλ(r) = uν

kλ(r)eik·r, (15.4.8)

where uν
kλ(r) have the periodicity of the lattice. Under the action of a group Gk element, the set of

ψν
kλ (λ = 1, 2, . . . , dν) transforms according to the equation

gψν
kλ(r) =

dν
∑

µ=1

Γν
kµλ(g)ψν

kµ. (15.4.9)

A basis of the IR of the entire group G is generated by the set of Bloch functions {ψν
k1λ}, {ψν

k2λ}, . . . ,
{ψν

klk
λ} prescribed on all star arms k1, k2, . . . ,klk . Here we note that k determines the translational

symmetry of ψi, and also δρ, i.e., the property of the lattice of the new phase.

15.4.2 Free Energy Functional

For structural phase transition based on the density function description, the free energy func-
tional of a crystal is written as

G = G(P, T, ρ(r)). (15.4.10)

This functional form of the free energy can be transformed according to an IR as in (15.4.3). Here
we fix the ψi and let {ηi} transform under the operations of G, then

G = G(P, T, {ηi}), (15.4.11)

where ηi can be found by the equilibrium condition. Because the coefficients ηi of the basis functions
of the responsible IR can be defined as a multicomponent order parameter, the number of these
components is equal to the dimensionality of the responsible IR; the theoretical scheme discussed in
§15.2 will be useful. It is clear that for T ≥ Tc, δρ = 0, then all ηi = 0. This is the high symmetry
phase. However, at T < Tc, δρ �= 0, there must be at least one ηi �= 0, and the low symmetry phase
appears. As T approaches Tc, δρ → 0, ηi → 0.

G may be expanded in powers of {ηi} near the critical temperature. Since the free energy of a
crystal must obviously be independent of the choice of coordinates, it must be invariant under any
transformation of the coordinate system and in particular under the transformation of the group G.
Thus the expansion of G in powers of the ηi can contain in each term only an invariant combination
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of the ηi that is of the appropriate power. This corresponds to constructing polynomial expansions
of the free energy in powers of a multicomponent order parameter. No linear invariant can be
formed from quantities that are transformed according to a non-unit IR of a group, for otherwise
that representation would contain the unit representation and would be reducible. The structure of
the quadratic terms is determined by the fact that only one second-order invariant

∑

i η2
i exists for

each irreducible representation according to which the quantities ηi transform under the action of
the group G elements. Higher order, such as cubic, fourth order, etc., expansion terms are invariant
polynomials of the corresponding order. If we introduce the normalization definition

ηi = ηγi,
∑

i

γ2
i = 1, (15.4.12)

then
η2 =

∑

i

η2
i . (15.4.13)

Now {γi} describes the symmetry of the ordered states, while the scale η is a measure of the degree
of order. Above Tc, η is zero, and it increases continuously from zero when T is lowered below Tc.
We expand the free energy to fouth order

G = G0(P, T ) + η2A(P, T ) + η3
∑

α

Cα(P, T )I(3)
α (γi) + η4

∑

α

Bα(P, T )I(4)
α (γi), (15.4.14)

I
(3)
α , I

(4)
α are polynomials of the 3rd and 4th orders formed from quantities γi, the sum over α

indicating the number of independent invariant formed by γi.
One may apply the same lines of argument as those used in the elementary Landau analysis

enunciated in §15.2. For insight into this, we write only the leading terms in the expansion of G,
which are of the form

G = G0 + A(P, T )
∑

i

η2
i = G0 + A(P, T )η2. (15.4.15)

From the minimization of the free energy ∂G/∂η = 0, and ∂2G/∂η2 > 0, we see that at T > Tc,
the coefficient of the second-order term A should be positive, so that the equilibrium value of the
parameters ηi is equal to zero; at T < Tc, A becomes negative, and an ordered state occurs with at
least one of the ηi taking a non-zero value.

15.4.3 Landau Criteria

The general scheme of the Landau theory enables us to find all allowed ordered phases arising
from a given initial phase via second-order phase transitions. The corresponding analysis reduces to
the construction of an expansion of the free energy in powers of the order parameter transformed
according to an IR of some group G, followed by minimization of the free energy to find the stable
phase.

Landau himself proposed and solved in general form the problem that the initial group IRs
cannot give rise to a second-order phase transition. As was implicit in §15.3.3, the presence in
the free energy of cubic terms leads inevitably to a first-order phase transition. Therefore, the
condition which restricts the list of IRs describing the second-order phase transition consists of the
requirement that the IR allows no third-order invariants constituted by the coefficients ηi for the
corresponding IR. In fact, from the condition of transition point itself should be stable, we have the
Landau criterion

I(3)
α (γi) = 0, (15.4.16)

or to say that it is impossible to construct third-order invariants, and the fourth-order term must
be positive in (15.4.15).

We give some details of this: At T = T−
c , A(P, Tc) = 0, so the second-order term vanishes. The

free energy is
G = G0 + η3Cα(P, T )I(3)

α (γi) + η4Bα(P, T )I(4)
α (γi). (15.4.17)
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Here, for brevity, only one third order term and one fourth order term are presented. From the
equilibrium condition ∂G/∂η = 0,

3I(3)
α (γi)Cα(P, T )η2 + 4I(4)

α (γi)Bα(P, T )η3 = 0, (15.4.18)

so there are solutions
η = 0,→ G = G0, (15.4.19)

related to the high symmetry phase; and

η = −3I
(3)
α (γi)Cα(P, T )

4I
(4)
α (γi)Bα(P, T )

→ G = G0 −
32

43

[I
(3)
α (γi)Cα(P, T )]4

[I
(4)
α (γi)Bα(P, T )]3

(15.4.20)

represents the low symmetry phase. We must assume

Bα(P, T )I(4)
α (γi) > 0, (15.4.21)

otherwise for

Bα(P, T )I(4)
α (γi) < 0 → G > G0,

or

Bα(P, T )I(4)
α (γi) = 0 → G → −∞,

both of these are unreasonable, so there is no stable solution. Thus, it is clear at T = T−
c , η �= 0,

the order parameter changes from 0 to −3I
(3)
α Cα/4I

(4)
α Bα discontinuously. This does not suggest a

second-order phase transition, unless 3I
(3)
α Cα = 0. Because Cα(P, T ) = 0 is not a general case, we

require that (15.4.16) is satisfied, and

G = G0 + η2A(P, T ) + η4
∑

α

Bα(P, T )I(4)
α (γi). (15.4.22)

We have arrived at two Landau criteria for second-order phase transitions. The first is that the
group G for the low symmetry phase is the subgroup of the initial group G0 for the high symmetric
phase. The second is that there is no third-order invariant in the free energy functional.

15.4.4 Lifshitz Criterion

The original Landau theory assumed that the ordered phase arising from the phase transition be
homogeneous. Lifshitz demonstrated that there may be spatially inhomogeneous phases occurring, if
the free energy involves terms containing order parameter derivatives with respect to the coordinates.
Linear invariants in derivatives have come to be called Lifshitz invariants.

We have so far studied the situation where the ordering is uniform throughout the medium, in
which η has the same value everywhere. When we consider the situation where the thermodynamic
fluctuations play an important role, we need to introduce the density of Gibbs free energy g,

g = g(P, T, ηi(r),∇ηi(r)). (15.4.23)

Here for simplicity, only the first derivative term is included, ∇ηi(r). Note that ηi(r) is now a local
quantity. The free energy of the system is

G =

∫

g(P, T, ηi(r),∇ηi(r))dr. (15.4.24)

We can still use the picture of a modulated wavevector. In the case of a solid that has lost spatial
homogeneity, there will be a response of the phase transition to continuous change of wavevector
k. For a homogeneous phase transition, at the transition point Tc there is only one characteristic
wavevector, k = k0 to satisfy A(k0) = 0, and G will be a minimum for stability of the new phase.
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The free energy of the new phase with periodicity corresponding to k0 should be a minimum around
k0. However, if inhomogeneity is to appear, we may consider

k = k0 + κ, (15.4.25)

κ is a small quantity, and 1/κ offers a spatial modulation, i.e., a kind of macroscopic inhomogeneity.
Then the order parameter η becomes a slowly varying function spatially, so the free energy will
contain terms composed of ∂ηi/∂xp, and ηj∂ηi/∂xp, where i, j = 1, 2, . . . , d and p = 1, 2, 3 denote
the components of the order and space, respectively. In this first-order approximation, the density
of free energy takes the form

g

(

P, T, ηi,
∂ηi

∂xp

)

= g0(P, T, ηi) +
∑

ip

Ui,p(P, T )
∂ηi

∂xp

+
1

2

∑

ijp

Vijp(P, T )

[

ηi
∂ηj

∂xp
+ ηj

∂ηi

∂xp

]

+
1

2

∑

ijp

Vijp(P, T )

[

ηi
∂ηj

∂xp
− ηj

∂ηi

∂xp

]

+ · · · (15.4.26)

where g0 does not include the derivatives of the order parameter. The expansion coefficients are
defined as

Uip(P, T ) =
∂G

∂(∂ηi/∂xp)
, (15.4.27)

which equals zero, due to the equilibrium condition, and

Vijp(P, T ) =
∂2G

∂ηi∂(∂ηi/∂xp)
. (15.4.28)

It is clear that
∫ (

ηi
∂ηj

∂xp
+ ηj

∂ηi

∂xp

)

dxp ∼ ηiηj ,

which can be included into the first term of (15.4.26). So the total free energy is

G =

∫

gdr =

∫

g0dr +
1

2

∑

ijp

Vijp(P, T )

∫ (

ηi
∂ηj

∂xp
− ηj

∂ηi

∂xp

)

dr. (15.4.29)

Here the term (ηi∂ηj/∂xp − ηj∂ηi/∂xp) cannot be transformed into ηiηj after integration and will
play an important role in the form of inhomogeneous structures.

From the stability condition of ∂ηi/∂xp as an independent variable,

δG

δ(∂ηj/∂xp)
=

∑

i

Vijpηi(r) = 0 (i, j = 1, . . . , d). (15.4.30)

This is a set of linear equations: In the low symmetry phase, ηi(r) are not all zero, so for fixed
p (p = 1, 2, 3), the coefficient matrix V (p) = {Vijp} should satisfy

det[V (p)] = 0. (15.4.31)

Because Vijp is a function of P and T , it is accidental that det[V (p)] = 0. In general, we may require

∑

ijp

Vijp

∫

dxp

[

ηi
∂ηj

∂xp
− ηj

∂ηi

∂xp

]

= 0. (15.4.32)

This is the Lifshitz criterion, which means that the nonexistence of the Lifshitz invariant is the
condition for a phase transition between two homogeneous phases to be possible.
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The Lifshitz condition is also called the homogeneous condition; it eliminates the possibility of
transition from high temperature homogeneous phase to lower temperature inhomogeneous phase.
Lifshitz also proved that only the Γ point, and the end points with high symmetry of k at the
boundary of the Brillouin zone, relate to second-order phase transitions. According to his argument,
the wavevector k of the new phase is a simple fraction of the wavevector of the initial phase. We
can write

a′
i =

∑

ij

lijaj (i, j = 1, 2, 3), (15.4.33)

where ai is a basis vector of the initial structure, and a′
j that of the new phase and lij is an integer.

However, when the Lifshitz condition is unfulfilled, then G <
∫

g0dr, and the inhomogeneous
phase may have a lower free energy than the homogeneous phase. In this case, the state of the
crystal should be stable with respect to loss of macrohomogeneity, and an incommensurate phase
may appear. We shall discuss the commensurate-incommensurate phase transition in §16.2.3.

By the way, we note that (15.4.29) is related to the fact that G is only expanded to first-order
derivatives ∂η/∂xp, so the Lifshitz condition is not very strict. Higher order expansion may lead to
domain structure. One of the examples is the Ginzburg–Landau free energy density

g(P, T, η,∇η) = g0(P, T, η) + K(∇η)2, (15.4.34)

where K > 0. The total free energy is

G =

∫

g(P, T, η,∇η)dr, (15.4.35)

from its minimum, the distribution of order parameter, and domain structure can be determined.
However, besides the criteria due to Landau and Lifshitz discussed above, there may be other

criteria that will be neglected here.a On the other hand, the Landau theory of phase transitions
also has been fruitfully extended to another type of structural phase transitions — reconstructive
phase transitions, in which the group-subgroup relationship is entirely missing by retaining only the
concept of the order parameter.b
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Chapter 16

Crystals, Quasicrystals and Liquid

Crystals

In Part I we discussed the structures of crystals, quasicrystals, and liquid crystals. They are all
the result of broken spatial translational and orientational symmetries. In this chapter we would
like to go beyond geometry, in order to clarity the physical reason for their formation. Landau
theory may be the first step in this direction, but more microscopic theories are needed for further
elucidation.

§16.1 Liquid-Solid Transitions

Starting from a homogeneous and isotropic liquid and lowering the temperature gradually, mass
or compositional density waves will arise in the liquid. Below a certain temperature, some density
wave modes are locked in and an ordered solid is formed. One would like to explain the structure from
first-principle calculations, taking into account the actual electronic properties of the constituent
atoms. However, such a calculation of crystal stability is very elaborate, and some understanding
of the relative stability of solids and liquids can be obtained by using postulated periodic density
waves within the framework of the phenomenological Landau theory of phase transitions.

16.1.1 Free Energy Expansion Based on Density Waves

Consider a two- or three-dimensional liquid which has full translational and rotational symmetries
corresponding to the Euclidean group. The liquid phase may condense into the solid phase, and we
would ask what are the possible ordered structures that arise at low temperatures. To simplify this
problem, we may ignore the difference in mean density between liquid and solid, so the Gibbs free
energy may be replaced by the Helmholtz free energy F .

In the homogeneous and isotropic liquid phase, the density function ρ0 is a constant. When
temperature decreases, the original higher symmetry is broken. At the point of transition, ρ0 →
ρ0 + δρ = ρ, where δρ and ρ have the symmetry of the ordered solid. According to Landau theory,
the condensed phase is described by a symmetry-breaking order parameter which transforms as
an irreducible representation of the symmetry group of the liquid phase. Due to the translational
symmetry, the irreducible representation is labeled by the wavevectors q, and the density of the
low-temperature ordered phase is written

ρ(r) = ρ0 +
∑

q

ρqeiq·r. (16.1.1)
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The complex constants ρq, labelled by the wavevectors q, are the order parameters of the phase
transition. ρ(r) is real, so

ρq = ρ∗−q, (16.1.2)

(where the symbol ∗ denotes complex conjugate). To determine which structure may actually become
stable, the free-energy of the system F is expanded in terms of the possible order parameters ρq.
Because of the rotational symmetry, the free energy depends only on the magnitude |q| and not on
its direction. In general, the order parameters corresponding to wavevectors with a single length are
important. It is reasonable to fix q to G, where G are the reciprocal lattice vectors of the solid, and
ρG is the Fourier component of the density.

The free energy of the solid is a functional of ρ(r), i.e., F = F (P, T, ρ(r)). Near the transition
point, F can be expanded in powers of ρG, such as

F = F0 + F1 + F2 + F3 + F4 + · · · , (16.1.3)

where F0 is the free energy of the liquid phase and Fn for n �= 0 contains terms with ρ
G1

ρ
G2

· · ·ρ
Gn

.
It is easy to see that the permissible Fn can only include terms satisfying

G1 + G2 + · · · + Gn = 0. (16.1.4)

Actually, F should not change under any translation of the origin of the coordinates, i.e. under
coordinate transformation r → r + R,

ρ
G1

ρ
G2

· · · ρ
Gn

= ρ
G1

ρ
G2

· · · ρ
Gn

exp{i(G1 + G2 + · · · + Gn) · R}.

Because R is chosen as an arbitrary constant vector, (16.1.4) must be fulfilled.
(16.1.4) gives a basic relation to constrain the possible wavevectors. Taking n = 1, we have for

the first-order term G1 = 0, so F1 = 0. This is consistent with the minimum of free energy given in
last chapter. For the second-order terms, n = 2, G1 = −G2, so F2 satisfies

F2 =
∑

G

A
G
|ρ

G
|2, (16.1.5)

where A
G

are constants depending on pressure P and temperature T as well as G. Because of the
isotropy of the liquid, the quantities A

G
depend only on the magnitude, but not the direction, of

the vector G. On the other hand, near the transition point, we can expect that density waves arise
that correspond only to plane waves with one definite wavelength, and A

G
will have a minimum.

Designating coefficient A
G

simply by A, we have

F2 = A
∑

G

|ρ
G
|2, (16.1.6)

where the summation is over G with only different direction.
The third-order terms have the form

F3 =
∑

G1G2G3

C
G1G2G3

ρ
G1

ρ
G2

ρ
G3

, (16.1.7)

where in every term

G1 + G2 + G3 = 0. (16.1.8)

But, as has just been pointed out, near the transition point, density waves should have the same
period. Therefore, in the third-order terms only those G1, G2, G3 which have the same absolute
magnitude and differ only in direction take part. (16.1.8) means therefore that G1, G2, G3 should
form an equilateral triangle. In all third-order terms these triangles have equal size, because the
quantity G is determined by the second-order term, and differ only in their orientation in space.
Because of the isotropy of the liquid the coefficients C

G1G2G3
can depend only on the sizes, but not
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(a) (b) (c)
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G3G4
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(d) (e)

G2
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G1

Figure 16.1.1 Wavevector combinations representing (a) smectic structure, (b) rodlike triangular struc-
tures or triangular atomic monolayers, (c) bcc structures, (d) two-dimensional Penrose structures or three-
dimensional rodlike lyotropic structures, and (e) icosahedral quasicrystals.

on the orientations, of these triangles. Therefore all C
G1G2G3

in the third-order terms are equal,
their common value is denoted by C here. In this way, we write

F3 = C
∑

G1G2G3

ρ
G1

ρ
G2

ρ
G3

, (16.1.9)

where the summation is over G1, G2, G3.

In the same way F4 and F5, etc. can also be written out. Finally, the free energy expanded to
fifth order takes the form as follows

F = F0 + A
∑

G

|ρ
G
|2 + C

∑

|Gi|=G

ρ
G1

ρ
G2

ρ
G3

+ B
∑

|Gi|=G

ρ
G1

ρ
G2

ρ
G3

ρ
G4

+ E
∑

|Gi|=G

ρ
G1

ρ
G2

ρ
G3

ρ
G4

ρ
G5

. (16.1.10)

From this we can discuss the stability of a variety of structures. The wavevector combinations of some
possible structures are shown in Fig. 16.1.1 and will be analyzed in the following two subsections.
We shall see that the third-order terms in (16.1.10) are essential for some liquid-solid transitions.
The third-order terms violate the Landau criteria for continuous phase transitions, so liquid-solid
transitions are first order. However, in these first-order phase transitions, the Landau theory is still
valid.

16.1.2 Crystallization

As the simplest example, we first consider a single density wave

ρ(r) =
1√
2
ρ cos(G · r), (16.1.11)
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which describes a smectic liquid crystal with wavevector G as well as −G, as shown in Fig. 16.1.1(a).
The translational invariance is broken in one direction only. The minimum of free energy must be
fulfilled by the second term (16.1.5).

Next we consider the density waves in two dimensions. The relative phases of the different density
waves are very important for the formation of crystals. A structure composed by superposing three
waves which form an equilateral triangle [Fig. 16.1.1(b)] can take advantage of the third-order terms
in (16.1.10). The role of these terms is to lock the three waves together. In two dimensions,
the resulting “triple-G” structure represents a two-dimensional triangular (or honeycomb) crystal
absorbed on a smooth substrate, for example, on the surface of graphite, xenon atoms can form
triangular lattice, as shown in Fig. 16.1.2. In three dimensions, these give rodlike structures with two-
dimensional periodicity and with liquid translational symmetry in the third direction, as observed
for lyotropic mesophases.

G1

G2

G3

G1

G2

G3

(a) (b)

Figure 16.1.2 Density waves for two-dimensional crystals.

For isotropic and homogeneous media, there are many choices for reciprocal lattice vectors, so
many kind of three-dimensional crystals can be formed. The actual lattice is dependent on the
combination of the coefficients in the free energy F . It has been known that the metallic elements
on the left side of the periodic table of the elements, i.e., the elements of groups IA, IIA, IIIB-VIB,
except Mg, and almost all the lanthanides and actinides, when near or lower than the melting curve,
are all bcc structure. At lower temperature, a large number of them change into other structures.
Among the high temperature phases, more than 40 elements have the bcc structure. Thus there
must be a general factor which controls the formation of the bcc structure. These results can be
understood by considering the symmetry when a liquid is transformed into a solid. To generalize the
Landau theory, one can directly conclude that the bcc structure will appear first when the first-order
behavior of the phase transition near the melting curve is not pronounced. This is possible for many
metals, because when a phase transition takes place in a metal, its volume changes very little, and
the latent heat is less than kBT , so it is a weak first-order transition. This provides an illustration
for the formation of bcc structure.

S. Alexander and J. McTaque pointed out that,a if six pairs of ±Gi form an octahedron, as shown
in Fig. 16.1.1(c), the free energy, in general, decreases, and this leads to the formation of a three-
dimensional body-centered cubic structure. Here ρ

Gi
could be written as ρ

Gi
= (1/2

√
6)ρ exp(iθi),

and the density is

ρ(r) =
∑

octa

ρ√
6

cos(Gi · r + θi), (16.1.12)

where the sum includes each pair of vectors in the octahedron, and the higher order terms are
omitted. An octahedron has four pairs of triangular faces, each of which gives a contribution to the
free energy, so one expects, in general, the bcc structure to have lower free energy than the rodlike
lyotropic structure. Not all six pairs of vectors Gi are linearly independent; they can all be formed
by linear combinations of three vectors. The third-order term of the free energy takes the form

F3 =
∑ C

6
√

6
ρ3 cos(θi + θj + θk), (16.1.13)

aS. Alexander and J. McTaque, Phys. Rev. Lett. 41, 702 (1978).
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and the free energy can be minimized by choosing

θi + θj + θk = πp,

where p is an integer. Only three of the four constraints are linearly independent, so there are only
three degrees of freedom leaving the free energy invariant

F3 = − 2C

3
√

6
ρ3. (16.1.14)

From this theory, we can understand why the high temperature solid phase of almost all metallic
elements is bcc.

By the way, it should be noted that there is a kind of mean-field theory for liquid-solid phase
transitions — density functional theory in which the difference in density between liquid and solid
is taken seriously.b

16.1.3 Quasicrystals

As stated in Chap. 2, the experiment on Al86Mn14 alloy showed a diffraction spectrum with two-
three- and five-fold symmetry, the apparent point group symmetry is icosahedral. The icosahedral
ordering can be described as a 6-G structure corresponding to a six-dimensional space group formed
by superposition of compositional density waves. All 6D space-group operations describe actual
symmetry operations in the real 3D crystals. The diffraction spots can be labelled by six Miller
indices (n1, . . . , n6), and the pattern is spanned by six linearly independent reciprocal lattice vectors
G1, . . . ,G6. The actual atomic or electronic densities can be thought of as superpositions of six
density waves with wavevectors Gi, and higher harmonics. Only one length scale is involved since
|G1| = |G2| = · · · = |G6|. Comparison with experiments indicates that the actual 6D space group
of the Mn-Al alloy is the simple-cubic version.

The Landau theory allows for the existence and complete stability of systems with icosahedral
symmetry; S. Alexander and J. McTague (1978), in fact, predicted the existence of icosahedral
structure. Anyhow, the melting transition of icosahedral structures is first order.

In addition to the three-dimensional icosahedral case, a slightly simpler two-dimensional struc-
ture is formed by superposition of five density waves with wavevectors G1, . . . ,G5 to form a regular
pentagon. The resulting ordered structure has five-fold rotational symmetry, but no discrete trans-
lational invariance. We call this crystal a generalized Penrose structure. The Penrose structure is
characterized by a five-dimensional space group which gives a description of fivefold rotation in 5D
space. An example of a Penrose structure is the decagonal phase of 2D quasicrystals.c

The fifth-order term in (16.1.10) favors a two-dimensional structure composed of five den-
sity waves with wavevectors forming regular pentagon as shown in Fig. 16.1.1(d). Writing ρi =
(1/2

√
5)ρ exp(iθi), the density becomes

ρ(r) =

5
∑

i=1

ρ√
5

cos(Gi · r + θi), (16.1.15)

and the fifth-order term of the free energy takes the form

F5 =
E

25
√

5
ρ5 cos(θ1 + θ2 + θ3 + θ4 + θ5). (16.1.16)

If E is positive the minimum of the free energy is

(

F pent
5

)

min
= − E

25
√

5
ρ5. (16.1.17)

bT. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979).
cFor a detailed discussion of the stability of Penrose and icosahedral structures in terms of Landau theory see P. Bak,
Phys. Rev. Lett. 54, 1517 (1985); Phys. Rev. B 32, 5764 (1985).
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In contrast to the situations for the triangular 2D case and the bcc 3D case, these operations
cannot be represented by two-dimensional translations. This is related to the fact that the five
vectors Gi cannot be formed as linear combinations of two vectors spanning a regular reciprocal
lattice. Four of the vectors are linearly independent. The resulting ρ(r) for θi = 0 has fivefold
symmetry, but does not form a regular space-filling Bravais lattice. Such structures can be called
generalized Penrose structures as an extension of original Penrose tilings. For θi = 0 the structure
actually has tenfold symmetry, since θi → θi+π leaves it invariant. Figure 2.4.6 shows the symmetry.
The straight lines represent maxima of the individual density waves, so that at the center r = 0 the
density is maximized since all the waves have maxima at this point, which could represent actual
atoms.

AlMn quasicrystals were first produced during crystallization of a melt via a first-order phase
transition when the melt was subjected to sufficiently rapid quenching. The quasicrystalline state
was shown to be a sufficiently stable metastable state. We must heat this quasicrystal to 400◦C
for more than an hour to make it transform to the usual crystal phase Al6Mn4. Subsequently
mm-scale AlLiCu quasicrystals were discovered by traditional melt-casting; this is a thermodynamic
equilibrium phase with defects. A new generation of icosahedral quasicrystals, such as AlFeCu,
AlRuCu, and AlPdMn has equilibrium phases with fully ordered structures.

It is interesting to note that in (16.1.10) the fifth order terms in combination with the third
order terms favor more complicated structures in three dimensions composed of wavevectors forming
regular icosahedra as shown in Fig. 16.1.1(e). An icosahedron has twenty regular triangular faces,
twelve corners, and thirty edges. The 15 pairs of edge vectors ±Gi define a structure

ρ(r) =
∑

i

ρ√
15

cos(Gi · ri + θi), (16.1.18)

and the third- and fifth-order terms of free energy become

F3 =
ρ3C

15
√

15

∑

10 triangles

cos(θi + θj + θk), (16.1.19)

and

F5 =
ρ5E

225
√

15

∑

6 pentagons

cos(θi + θj + θk + θl + θm). (16.1.20)

If the signs of C and E are the same, the minimum of F3 + F5 is located at θi = 0 or θi = π. For
instance, when C and E are all positive, the resulting free energy becomes

(F3 + F5)min = − 2ρ3C

3
√

15
− 2ρ5E

75
√

15
, (16.1.21)

which, for small C/E, can become favorable compared with both the free energy of the bcc structure
in (16.1.12) and the free energy of the Penrose structure in (16.1.15), which in three dimensions is
an icosahedral structure.

The discussion above is purely phenomenological, and cannot be used to predict the existence
of icosahedral structures in any given material. However, the Landau theory allowed us to show
that the icosahedral structures may, in principle, be stable in some circumstances. By the way, the
fourth-order term in the free energy has been ignored so far, or that is to say, it was assumed that
this term has the same value for the bcc phase and the icosahedral phase. In practice, this term will
contribute to the stability of the related phases.

Up to now, we have considered a set of vectors all having the same modulus corresponding to
the edges of a regular icosahedron. Alternatively, we can adapt the 12 vectors joining the center
of the icosahedron to its 12 vertices. Their modulus is a little different from the one of the edge
vectors. Geometrically, each edge vector is an integral combination of two vertex vectors. Several
models have been proposed, for the stabilization of the icosahedral phase by considering both the
vertex and the edge vectors, in order to give a more rigorous illustration of the diffraction patterns.
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This analysis of quasicrystals by Landau’s thermodynamic theory is based on the postulate
that, over a certain temperature interval, the quasicrystalline state may have a lower free energy as
compared with the usual crystalline state with a bcc structure. The icosahedral symmetry of qua-
sicrystal structure thus obtained is the unique representative of quasi-crystallographic symmetry of
three-dimensional quasicrystals, including simple and body-centered two space groups, for example,
AlMn and AlLiCu belong to the former, while AlFeCu and AlPdMn belong to the latter. They are
somewhat different in structure.

§16.2 Phase Transitions in Solids

The ordered structures formed under the melting line are unstable as the temperature is lowered
continuously. The symmetry will be broken further. So phase transitions may take place from solid
to solid, with change of symmetry. There are abundant phase transitions in solids: We will discuss
three typical examples in this section.

16.2.1 Order-Disorder Transition

We have already discussed in §3.1 the order-disorder transition in substitutional binary alloys
which have periodic lattices.

The mutual solubility of two metals capable of forming an alloy can be described in terms of a
simple model which assumes that the cohesive energy is the sum of interactions between nearest-
neighboring sites, such as εAB, εAA and εBB. For T = 0 K, (a) if εAB > (εAA + εBB)/2, then
the case where all A atoms are separated from the B atoms is energetically more favorable; (b) if
εAB < (εAA + εBB)/2, the case of A atoms mixed with B atoms is dominant. These are the ordered
states. At higher temperatures, entropy will play a prominent role in mixing the two types of atoms
on lattice sites, so a disordered state is established. At some critical temperature Tc, a order-disorder
phase transition will take place.

Bragg and Williams (1934) proposed the first satisfactory theoretical model which described the
order-disorder transition in alloys, based upon a mean-field approach.

Zn,Cu

Cu,Zn

Zn

Cu

T>Tc T<Tc

(a) (b)

Figure 16.2.1 Unit cell of CuZn alloy in the ordered and disordered phases.

Consider a simple case such as that of β-brass (CuZn), the unit cell of which has been depicted
in Fig. 16.2.1. In the disordered phase, each atomic position can be occupied by either A or B atoms
with equal probability. In the ordered phase, there are two interpenetrating simple cubic lattice in
which each atom A is surrounded by eight nearest neighbor atoms B and vice versa.

In binary alloys AB such as CuZn (β brass), atomic ordering takes place below the transition
temperature Tc, arising from a diffusive rearrangement of atoms among lattice sites. Since the
process is slow (often quasistatic), the rearrangement can be described by a variable σi defined by
the difference

σi = pi(A) − pi(B), (16.2.1)
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where pi(A) and pi(B) are local probabilities for the site i to be occupied by an atom A and by an
atom B, respectively, and satisfying

pi(A) + pi(B) = 1. (16.2.2)

The macroscopic order parameter η is given by the spatial average

η = 〈σi〉 =
1

N

∑

i

σi, (16.2.3)

where the summation is taken over the whole subsystem.
We can formulate the pseudospin model to represent probabilities for ordering in binary systems.

It is reasonable to assume that the correlation energy in a correlated system is generally expressed
by the Hamiltonian

H = −
∑

ij

Jijσiσj , (16.2.4)

where Jij is a parameter for the magnitude of the correlation between σi and σj , and the negative
sign is attached for convenience. In the following, we shall show that (16.2.4) can be derived from
a physical description of the short-range interactions in crystals.

The short-range correlation energy Ei, arising from those interactions between the site i and
the neighboring sites j, can be expressed in terms of local probabilities, pi(A), pi(B), pj(A), pj(B).
Namely,

Ei =
∑

j

pi(A)pj(A)εAA + pi(B)pj(B)εBB + pj(A)pi(B)εAB + pj(B)pi(A)εBA. (16.2.5)

According to (16.2.1) and (16.2.2),

pi(A) =
1

2
(1 + σi), pi(B) =

1

2
(1 − σi). (16.2.6)

Substituting these into (16.2.5), the energy Ei can be expressed in terms of the order variables σi

and σj , i.e.,

Ei =
∑

j

const. − K(σi + σj) − Jσiσj , (16.2.7)

where

const. =
1

2
(2εAB + εAA + εBB), K =

1

4
(εBB − εAA), J =

1

4
(εAA + εBB − 2εAB).

The first constant term in (16.2.7) is independent of the ordering process, while K is zero for most
binary alloys where εAA ≈ εBB. The parameter J is for pair correlations with nearest neighbors,
and is essentially the same as the Jij in (16.2.4). Therefore (16.2.4) and (16.2.7) are considered as
expressions for pseudospin interactions.

Considering z nearest neighbors i = 1, . . . , z in the vicinity of σi, the short-range Ei is given by

Ei = −Jσi

∑

j

σj . (16.2.8)

In this expression, the quantity J
∑

j σj may be interpreted as the local field Fi at the site i due to
the nearest group of σj . In the mean-field approximation the average 〈∑j σj〉 taken over the group
of z neighbors may be replaced by zη applied to the whole subsystem, and hence F = 〈Fi〉 = Jzη,
which is analogous to the Weiss field in a ferromagnet which will be discussed in the next chapter.
As remarked, the ordered phase of a binary system consists of two subsystems characterized by ±η,
which are however thermodynamically indistinguishable because of the invariant Gibbs free energy
under inversion η → −η.

Alternatively, the local probabilities averaged over all lattice sites in the subsystems can be
written as

p(A) = 〈pi(A)〉, p(B) = 〈pi(B)〉,
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where
p(A) + p(B) = 1,

the order parameter can be defined as

η = p(A) − p(B). (16.2.9)

Here the average probabilities p(A) and p(B) can take values in the continuous range between 1 and
0, and they can be expressed as

p(A) =
1

2
(1 + η), p(B) =

1

2
(1 − η).

For complete disorder, p(A) = p(B) = 1/2, and hence η = 0. On the other hand, ordered states
η = ±1 correspond to p(A) = 1, p(B) = 0 and p(B) = 1, p(A) = 0, respectively.

The mean-field F = zJη gives a self-consistent equation for the order parameter

η = tanh
zJ

2kBT
η. (16.2.10)

The solution of (16.2.10) can be obtained graphically from the intersection of the straight line
y = (zJ/2kBT )η and the hyperbolic curve η = tanh y, as illustrated in Fig. 16.2.2. It is noticed
that for 2kBT/zJ ≥ 1 the intersection is only at η = 0, whereas for 2kBT/zJ < 1 there is another
intersection at which the nonzero η represents a partially ordered state. The transition temperature
is given by

Tc =
zJ

2kB
. (16.2.11)

0

1

y

T>Tc T=Tc T<Tc

A

tanh y

η

Figure 16.2.2 Graphically solu-
tions for the order parameter η.

E

P

Figure 16.2.3 P versus E

curves and Ps(T ) for a typical
second order transition ferro-
electric crystal.

16.2.2 Paraelectric-Ferroelectric Transition

The phenomenon of ferroelectricity is closely related to piezoelectricity and pyroelectricity. A
ferroelectric crystal can be defined as a piezoelectric possessing a spontaneous electric polarization
which is reversible under the action of an external electric field. Pyroelectrics possess a temperature
dependent spontaneous polarization. The polarization can switched back and forth along the polar
axis under the action of an external electric field.

The paraelectric-ferroelecric phase transition is in general a structural transition in which a
change in the crystal structure is accompanied by the appearance of a spontaneous electric polar-
ization with anomalous dielectric properties, such as where the dielectric constant has a sharp peak
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at the transition temperature, and a plot of electric polarization P versus electric field E shows a
hysteresis loop, as in Fig. 16.2.3.

Ferroelectric phase transitions can be displacive phase transition or disorder-order type. If the
ferroelectric phase is realized by the minute displacement of atoms or molecules in the paraelectric
phase, then such a transition is said to be displacive. In the order-disorder transition, the ferroelectric
phase results from the ordering of certain atoms or molecules in the paraelectric phase. It is possible
for a transition to have characteristics of both.

Ferroelectric phase transitions can be either continuous or discontinuous. In the case of con-
tinuous phase transitions, the spontaneous polarization varies continuously with temperature and
tends to zero at the transition temperature (see Fig. 16.2.4(a)). A discontinuous phase transition
is characterized by an abrupt change in the spontaneous polarization at the transition temperature
(see Fig. 16.2.4(b)).

TTc

P

(a)

P

Tc T

(b)

Figure 16.2.4 Temperature dependence of the spontaneous polarization in (a) continuous and (b) discon-
tinuous ferroelectric phase transitions.

Here we shall give a treatment of the simple case of a uniaxial system with rigid elementary
dipoles that can reorient in either one of two opposite directions. Because any dipole is surrounded
by many other dipoles and is affected by them, we can use the effective field approach to ferroelectric
transitions. This approach is completely analogous to the Weiss theory for ferromagnets which will
be discussed in the next chapter. The effective field can be written as

Eeff = E + γP, (16.2.12)

where E is the external field and γP is the cooperative field due to a partially ordered system
of dipoles, which gives rise to a non-zero dipolar field on any point of the lattice. The energies
associated with the two possible orientations of a given dipole are, therefore w = ±(E + γP )µ,
where µ is the elementary dipole moment. The partition function is the sum of only two Boltzmann
factors with +w and −w, and the number of dipoles pointing in the direction favored and opposed
by the effective field is given by

N+ =
N

Z
ew/kBT , N− =

N

Z
e−w/kBT , (16.2.13)

where N is the total number of the dipoles, and Z the partition function

Z = ew/kBT + e−w/kBT . (16.2.14)

The polarization is then given by a self-consistent equation

P = (N+ − N−)µ = Nµ tanh
(E + γP )µ

kBT
. (16.2.15)

To study spontaneous polarization, we simply let E = 0. As T approaches Tc from below, P
approaches zero, one gets the critical temperature

Tc = γNµ2/kB. (16.2.16)

Then, it is easy to obtain the spontaneous polarization

Ps = Nµ
√

3[1 − (T/Tc)]
1/2. (16.2.17)
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The dielectric constant, which is defined as ǫ = 4πdP/dE, shows a strong temperature depen-
dence in the vicinity of the transition point. It is easy to prove that the dielectric constant at T
near Tc obeys the Curie–Weiss law

ǫ(T ) =
C

T − Tc
, T ≥ Tc, (16.2.18)

and

ǫ(T ) =
C

2(T − Tc)
, T ≤ Tc (16.2.19)

where C = 4πTc/γ is the Curie constant.
The specific heat and other thermal properties of the ferroelectric system can be calculated from

the temperature dependence of the internal energy associated with the ordering of the dipole system

U = −1

2
EeffP = −1

2
γP 2, (16.2.20)

with the following results for transition heat, transition entropy, and specific heat discontinuity at Tc

∆U = U(Tc) − U(0) =
1

2
NkBTc, (16.2.21)

∆S =

∫ Tc

0

d

[

−1

2
γP 2

s (T )

]/

T, (16.2.22)

and

∆Cp = Tc
dS

dT
=

3

2
NkB. (16.2.23)

Ferroelectric transitions are usually accompanied by pronounced anomalies near Tc in many
other physical properties: structural properties (unit cell dimensions, atomic position), thermal
properties (specific heat, thermal conductivity), elastic properties (sound velocity and attenuation,
elastic constants), optical properties (refractive indices, birefringence, optical activity), etc. These
facts make ferroelectric crystals useful in a variety of applications.

16.2.3 Incommensurate-Commensurate Transitions

Incommensurate phases occur in various materials when broken symmetry develops a spatially
periodic variation of structure, or composition, or charge density, or spin density with a period
which is not a simple multiple of that in prototypic phase. Usually, the incommensurate phase
is stable only in a limited temperature range, and there its lattice period becomes longer with
decreasing temperature. At some temperature a commensurate structure becomes more stable
than the incommensurate one, and so an incommensurate-commensurate transition takes place. A
succession of prototypic-incommensurate-commensurate phase transitions is experimentally observed
with a decrease in temperature. We can take a ferroelectric to show this process. Molecular crystal
thiourea is paraelectric above 202 K and ferroelectric below 169 K. Between 169 K and 202 K, it
exhibits an incommensurate phase. In this temperature range, there is a polarization wave of dipole
moments in the crystal whose wavelength is incommensurate with the underlying lattice periodicity.

It is natural to adapt the density wave description. The spatial variation of the density can be
expressed in terms of the basis functions of the symmetry group for the high-temperature phase

δρk(r) =
∑

i

ηikψik(r). (16.2.24)

The modulated wavevector k changes with temperature and denotes two transitions: At T = TI,
the transition is from high-temperature prototypic phase to incommensurate phase; and at
T = TL, the transition from incommensurate phase to low-temperature commensurate phase.

We shall give a simple example related to the quantitative derivation of an incommensurate tran-
sition. In this example. the order parameter has two components denoted by η1 and η2 corresponding
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to a two-dimensional representation of the symmetry group of the prototypic phase. According to
the transformation properties of the symmetry group, the free energy density should be in the form
of a combination of invariants. Since, in the incommensurate phase, the order parameter depends
on spatial coordinates it is necessary to include the gradient invariants in the free energy. In the
case of a two-component order parameter, it is sufficient to consider the dependence on only one
coordinate, for example, on x. Here we write the free energy density by taking into account two
fourth-order invariants and gradient terms including a Lifshitz invariant and a Ginzburg term

g = g0 + A(η2
1 + η2

2) + B1(η
2
1 + η2

2)2 + B2η
2
1η2

2

+ δ

[

η1
∂η2

∂x
− η2

∂η1

∂x

]

+
κ

2

[

(

∂η1

∂x

)2

+

(

∂η2

∂x

)2
]

. (16.2.25)

We note that the case of two-component order parameter with the Lifshitz invariant is realized in
numerous crystals in which incommensurate phases are observed. For a structural phase transition
of the displacive type, the normal coordinates of the soft mode are taken to be the order parameter.
The incommensurate phase corresponds to a soft mode wavevector located in a general point in the
Brillouin zone (BZ). The soft mode eigenvectors Q, Q∗ can be taken as the complex order parameter.
This order parameter (Q, Q∗) is actually equivalent to (η1, η2) by noting the replacement Q = η1+iη2

and Q∗ = η1 − iη2.
It is convenient to introduce the transformation

η1 = η sin θ, η2 = η cos θ, (16.2.26)

and define α = 2A, β1 = 4[B1 + B2/8], β2 = −B2/2, then the free energy density has the form

g = g0 +
α

2
η2 +

β1

4
η4 +

β2

4
η4 cos 4θ − δη2 ∂θ

∂x
+

κ

2

[

(

∂η

∂x

)2

+ η2

(

∂θ

∂x

)2
]

, (16.2.27)

where η(x) and θ(x) are modulated along the x-direction. The free energy density defined in (16.2.27)
has been successfully used to describe the successive prototypic-incommensurate-commensurate
phase transitions and anomalies of physical properties in ferroelectrics, e.g., in ammonium fluo-
roberyllate, (NH4)2BeF4.

In order to ensure the stability of the commensurate phase in a certain temperature interval,
without expanding to higher degree terms, we must have β1 > β2. On the other hand, a positive
wavenumber k implies δ > 0 and κ > 0. The free energy is then

G =

∫

L

g

(

η, θ,
∂η

∂x
,
∂θ

∂x

)

dx, (16.2.28)

where L is the length of the crystal in the x-direction. From the equilibrium conditions, ∂F/∂η =
0, ∂F/∂θ = 0, we obtain a set of coupled nonlinear differential equations

αη + β1η
3 + β2η

3 cos 4θ − 2δη
∂θ

∂x
+ κη

(

∂θ

∂x

)2

− κ
∂2η

∂x2
= 0, (16.2.29)

β2η
4 sin 4θ + 2κη

∂η

∂x

(

∂θ

∂x
− δ

K

)

+ κη2 ∂2θ

∂x2
= 0. (16.2.30)

For general values of the coefficients, the solutions of this set of equations can only be obtained by
numerical methods. Analytic treatments can be carried out for the constant amplitude approxi-
mation in which η is taken as a constant, and only θ(x) is spatial modulated. In this simplifying
assumption, the thermodynamic quantities and temperature dependence of the modulated wavevec-
tor can be calculated. However, the mathematical analysis involved is still complex. We prefer to
limit ourselves to a discussion of some special cases from (16.2.29) and (16.2.30), and we hope to
account for the principal characteristics of incommensurate transitions.
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We consider the solutions for commensurate phases. If it is required that ∂η/∂x = 0, ∂θ/∂x = 0,
then (16.2.29) and (16.2.30) are simplified to

η(α + β1η
2) + β2η

3 cos 4θ = 0, (16.2.31)

and
β2η

4 sin 4θ = 0. (16.2.32)

Obviously, there are two sets of solutions. The first set of solutions is η = 0, and θ can take an
arbitrary value; this case is the high-temperature prototypic phase. The second set of solutions is
related to η �= 0, and so the structure is ordered. Here sin 4θ = 0 determines eight θ values defining
eight directions in the plane (η1η2). Only four directions correspond to the minima of free energy,
which depends on the sign of β2. The results are: for β2 > 0, θ = ±π/4,±3π/4, and for β2 < 0,
θ = 0,±π/2, π. The amplitude of the order parameter is in the same form

η2 = − α

β1 − |β2|
, (16.2.33)

as usual, we set α = α0(T − TL). When T < TL, η2 > 0, the low-temperature phases are commen-
surate and ordered. Figure 16.2.5(a) shows the low-temperature commensurate phases denoted by
some isolated dots on the (η1, η2) plane with amplitude ηe, and argument θe.

η2

(a) (b) (c)

η1

η2

η1

η2

η1

η1,η2 η1,η2 η1,η2

x x x

Figure 16.2.5 The thermodynamic stable solutions in the order parameter plane with β2 > 0. (a) Low-
temperature commensurate phases; (b) ignoring anisotropic energy; (c) numerical results.

Because of the existence of the Lifshitz invariant, it is in fact prohibited for the second-order
transition to go directly to the commensurate phase from the prototypic phase. We should discuss
the solution for incommensurate phase: Near the transition point of the prototypic phase to incom-
mensurate phase, the order parameter may be considered as a small quantity, and has a form of
plane wave

η1 = η sin(kIx), η2 = η cos(kIx), (16.2.34)

i.e., η ≃ 0 and θ = kIx. The modulated wavevector can be obtained by ignoring the higher order
terms in (16.2.30), then

Kη
∂η

∂x

(

∂θ

∂x
− δ

K

)

= 0. (16.2.35)

We find that
kI = δ/κ. (16.2.36)

It is seen that modulated wavevector is determined by the coefficients of the Lifshitz term and
Ginzburg term. Supposing β1 ≫ β2 and neglecting anisotropic terms, (16.2.29) can be transformed
into

α0

(

T − TL − δ2

α0κ

)

+ β1η
2 = 0. (16.2.37)
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From this expression, we can define the transition temperature from the prototypic phase to the
incommensurate phase

TI = TL +
δ2

α0κ
. (16.2.38)

When TL < T < TI, the amplitude of the order parameter is

η2
I = −α0(T − TI)

β1
> 0. (16.2.39)

As T → TI, η2
I → 0, so the transition is continuous. In the vicinity of TI the modulation wavelength

∼ 1/kI = κ/δ is irrational with respect to the lattice period.
It can be seen that on the order parameter plane, the stable phase is represented by any point

on the circle with radius ηI, η1 and η2 are changing along the x-axis sinusoidally with amplitude
ηI and wavenumber kI, as shown in Fig. 16.2.5(b). This is called the single plane wave form of
incommensurate phase, as shown in Fig. 16.2.6(a). As the temperature decreases, the anisotropic
energy increases, and the representative points on the (η1, η2) plane are not distributed homoge-
neously but will be dense near the low-temperature commensurate phases. Numerical solutions of
(16.2.29) and (16.2.30) show that near TL the incommensurate modulated wave becomes a square
wave, as shown in Fig. 16.2.5(c). This square wave is composed of a lot of domain structure. The
domain walls are discommensurations while among domains there are commensurate structures, as
shown in Fig. 16.2.6(b). When the temperature decreases further, the domain walls diminish, and
finally at TL, the domain walls vanish and there is only a commensurate phase.

(a)

(b)

Figure 16.2.6 Modulation wave in an incommensurate phase. (a) Single plane modulation for T near TI.
(b) Domain and wall structure for Tc < T < TI.

§16.3 Phase Transitions in Soft Matter

Soft matter includes liquid crystals, polymers, colloids, etc. Their polymorphic configurations
lead to a large number of interesting phenomena, especially as phase transitions can be driven
by entropy as well as energy. In this section we will discuss first isotropic-nematic transition in
thermotropic liquid crystals, and then briefly introduce the phase separation in hard-sphere packing.

16.3.1 Maier Saupe Theory for Isotropic-Nematic Transition

As introduced in §3.3, the thermotropic liquid crystal is supposed to be composed of rod-like
molecules. As the temperature decreases, it will experience an isotropic-nematic transition. The
nematic phase differs from ordinary liquids in its anisotropy. Its symmetry is cylindrical, that is, there
exists a unique axis along which some of the properties are quite different from those perpendicular
to this axis. The symmetry axis, denoted as n̄, is referred to as the director. The anisotropy of
nematics arises from the tendency of the rod-like molecules in the fluid to align their long axis
parallel to the director. At finite temperature, the thermal motion prevents perfect alignment with
n̄, the orientations of the molecules are in fact distributed over angle θ, as shown in Fig. 16.3.1,
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where φ is the azimuthal angle. If there is no preference for a particular θ, then all such angles
become equally probable and complete isotropy results; this is the isotropic normal liquid phase.
Ordering in the polar angle θ distinguishes the nematic structure from the isotropic liquid.

We should define the long-range orientational order parameter in the nematic phase. One may
expect projection of the molecules along n̄, cos θ, would be a natural order parameter, but this is
not right, because the direction n̄ and −n̄ are fully equivalent, i.e., the preferred axis is non-polar.
So we need to consider the term cos2 θ rather than cos θ to describe the molecules. Furthermore, we
desire the average value, 〈cos2 θ〉, averaged over all molecules in the liquid. When all the molecules
are fully aligned with n̄, all θ = 0 and 〈cos2 θ〉 = 1. On the other hand, if the molecules are randomly
distributed in direction, all values of θ are equally likely and 〈cos2 θ〉 = 1/3. It is natural to choose

η = 〈P2〉 =
1

2
〈3 cos2 θ − 1〉, (16.3.1)

as a scalar order parameter for the nematic phase. P2 is just the second-order Legendre function.

n

Figure 16.3.1 Schematic dia-
grams of the structure of a ne-
matic liquid crystal and single
rod-like molecule.

r

φ2

θ1
θ2

φ1

Figure 16.3.2 Schematic dia-
gram of the interaction between
two rod-like molecules.

The stability of the nematics results from interactions between the constituent molecules. The
pair potential between two rod-like molecules can generally be expressed as

V12 = V12(r, θ1, φ1, θ2, φ2), (16.3.2)

where r is the distance between the centers of mass, θi and φi are orientational and azimuthal angles,
respectively. However, it is very difficult to get the exact form of (16.3.2).

An approach has proved to be extremely useful in developing a theory of spontaneous long-range
orientational order and the related properties is the Maier–Saupe molecular field method (1958).d

We should get a single-molecule potential, then a molecule is in the mean field of all other molecules,
such as

V (cos θ) = −vP2(cos θ)〈P2〉, (16.3.3)

where the contribution of all other molecules is characterized by the degree of order 〈P2〉, −P2(cos θ)
describes the angular-dependence of potential which is a minimum when the molecule ‖ n, and
maximum when ⊥ n, and v is the strength of the intermolecular interaction, v > 0.

We now need an orientational distribution function, which describes how the molecules are dis-
tributed among the possible directions about the director. It gives the probability of finding a
molecule at some prescribed angle θ from n̄. With this function we can calculate the average val-
ues of various quantities of interest pertaining to the nematic phase. From the classical statistical

dIn addition to being applied to isotropic-nematic transitions, Maier–Saupe theory can be extended to other ther-
motropic phase transition in liquid crystals, for example, one from isotropic phase to smectic phase, which has
orientational order and one-dimensional translational order simultaneously, refer to W. L. McMillan, Phys. Rev. A
4, 1238 (1971).
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mechanics, the orientational distribution function is

f(cos θ) = Z−1 exp[−βV (cos θ)], (16.3.4)

and the single molecule partition function is

Z =

∫ 1

0

exp[−βV (cos θ)]d(cos θ), (16.3.5)

where β = 1/kBT .
Now the order parameter, just like the average of the second-order Legendre function, can be

calculated from

〈P2〉 = η =

∫ 1

0

P2(cos θ)f(cos θ)d(cos θ)

=

∫ 1

0
P2(cos θ) exp[βvP2(cos θ) · η]d(cos θ)
∫ 1

0 exp[βvP2(cos θ) · η]d(cos θ)
. (16.3.6)

This is a self-consistent integral equation which can be used to determine the temperature depen-
dence of order parameter. Choosing one value of kBT/v, we can get one 〈P2〉. Numerical results are
shown in Fig. 16.3.3. Among them 〈P2〉 = 0 is a solution at all temperature; this corresponds to the
normal isotropic liquid.

Tc=0.22019

0

0.4

0.8

1.2

-0.4

0 0.04 0.08 0.12 0.16 0.20 0.24

kBT/v

P
2

Figure 16.3.3 Phase diagram of Maier–Saupe transition. The stable equilibrium solutions are shown as
the solid lines.

Here the transition temperature is in fact Tc = 0.22019v/kB. For temperatures T below Tc,
two other solutions appear. The upper branch tends to unity at absolute zero and represents the
nematic phase. The lower branch tends to −1/2 at absolute zero and represents a phase in which
the molecules to line up perpendicular to the director without azimuthal order. We can judge which
one of the three solutions is stable by minimizing the free energy.

The internal energy is the average of the potential

U =
1

2
N〈V 〉 =

1

2
N

∫ 1

0

V (cos θ)f(cos θ)d(cos θ), (16.3.7)

where N is the number of molecules, and the factor 1/2 is required to avoid counting the inter-
molecular interactions twice. The entropy is calculated by taking the average of the logarithm of
the partition function

S = −NkB〈ln f〉 =
N

T
〈V 〉 + NkB ln Z. (16.3.8)
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Combining (16.3.7) and (16.3.8), the Helmholtz free energy

F = −NkBT ln Z − 1

2
N〈V 〉. (16.3.9)

The reason for the appearance of the second term is the replacement of pair interactions by
a temperature-dependent single molecular potential. We can verify its correctness by setting
∂F/∂〈P2〉 = 0, and see that the self-consistent equation (16.3.6) is regained. Thus, as required
by thermodynamics, the self-consistent solutions to the problem must be those that represent the
extrema of the free energy. From the minimum of F , we can show that, when T < Tc, the nematic
phase is stable.

Numerical calculation shows that the order parameter decreases from unity to a minimum value
of 0.4289 at T = Tc. For temperatures above Tc the isotropic phase with vanishing order parameter
is stable. The stable phases are shown by the solid line in Fig. 16.3.3. The phase transition is first-
order, because the order parameter discontinuously changes from 0.4289 to 0. The general trend
of the temperature dependence of 〈P2〉 displayed in Fig. 16.3.3 is in agreement with experimental
results.

16.3.2 Onsager Theory for Isotropic-Nematic Transition

In the Maier–Saupe theory we have seen how an anisotropic, attractive interaction (16.3.3) can
give rise to a first-order isotropic-nematic transition. The origin of the anisotropy lies in the fact that
the molecules are rod-like and quite rigid. Then one expects that, besides the anisotropic attractive
interaction, there must also be an anisotropic steric interaction which is due to the impenetrability
of the molecules. Taking into account only the steric interaction, Onsager established his theory for
the transition of a system of hard rods from the isotropic phase to anisotropic phase as the density
is increased.e

To understand Onsager theory, we should consider two kinds of entropy in a gas of hard rods.
One is the entropy due to the translational degrees of freedom, and the other is the orientational
entropy. More important is that there is a coupling between these two kinds of entropy through the
effect of excluded volume. The excluded volume is the volume into which the center of mass of one
molecule cannot move due to the impenetrability of the other molecule. The excluded volume is
always larger when two hard rods lie at an angle with each other than they are parallel. It is clear that
the translational entropy favors parallel alignment of the hard rods because this arrangement gives
less excluded volume and, therefore, more free space for the molecules to jostle around. However,
parallel alignment represents a state of low orientational entropy. Therefore, a competition exists
between the tendencies to maximize the translational entropy and to maximize the orientational
entropy. In the limit of zero density the tendency to maximize the orientational entropy always wins
because each molecule rarely collides with another molecules, and the gain in excluded volume due
to parallel alignment would only be minimal addition to the already large volume of space within
which each molecule can move about. When the density is increased, however, the excluded volume
effect becomes more and more important. In the limit of tight-packing density, the hard rods must
be parallel. A transition between the isotropic and anisotropic states therefore must occur at some
intermediate density.

Simply put, at sufficiently low densities the rods can assume all possible orientations and the
fluid will be isotropic. As the density increases, it becomes much more difficult for the rods to point
in random directions and intuitively one may expect the fluid to undergo a transition to a more
ordered anisotropic phase with uniaxial symmetry. This was first proved by Onsager. Onsager’s
approach is based on an exact density expansion for free energy.f

We consider a fluid of long thin hard-rod molecules with well defined length L and diameter D,
satisfying L ≫ D. The only forces of importance correspond to steric repulsion, i.e., the rods cannot
eIt is noted that, just as Maier–Saupe theory, Onsager theory was also successfully applied to the formation of smectic
phase. See A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel, Phys. Rev. A 36, 2929 (1987); X. Wen, R. B.
Meyer and D. L. D. Caspar, Phys. Rev. Lett. 63, 2760 (1989).
fFor the Onsager theory for isotropic-nematic transition and its extension, see G. J. Vroege and H. N. W. Lekkerkerker,
Rep. Prog. Phys. 55, 1241 (1992).
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interpenetrate each other and the volume fraction ν = (1/4)ρπLD2, where ρ is the concentration of
the rods, is much smaller than unity.

To study this system of hard rods, we must specify not only the overall concentration ρ, but
also the angular distribution of the rods, so we may define f(Ω) as the number of rods per unit
volume pointing in a solid angle Ω. It is clear that the sum over all the solid angles must satisfy the
condition of normalization, so

∫

f(Ω)dΩ = 1. (16.3.10)

The free energy of the system expanded to first order in density is

F = F0 + kBT

{∫

f(Ω) ln[4πf(Ω)]dΩ +
1

2
ρ

∫ ∫

f(Ω)f(Ω′)u(ΩΩ′)dΩdΩ′
}

. (16.3.11)

The first term on the right side of the above expression can be taken as a constant, so will be
neglected in the following discussion; the second term describes the entropy contribution associated
with molecular alignment; the third term describes the excluded volume effects, u(ΩΩ′) is the volume
excluded by one rod in direction Ω as seen by one rod in direction Ω′. The calculation of u is simple
for the long rods, where end effects are ignored and it is expressed as

u = 2L2D|sinγ|, (16.3.12)

where γ is the angle between Ω and Ω′.
We can obtain a self-consistent equation for the

γ

-
- '

Figure 16.3.4 Excluded volume of two hard
rods with angle γ.

distribution function f(Ω) by specifying that the free
energy (16.3.11) is a minimum for all variations of
f(Ω) that satisfy the constraint (16.3.10). Taking λ
as the Lagrange multiplier, we can write

δF = kBTλ

∫

δf(Ω)dΩ, (16.3.13)

and give the self-consistent equation

ln[4πf(Ω)] = λ − 1 − ρ

∫

u(ΩΩ′)f(Ω′)dΩ′. (16.3.14)

λ is then determined by the normalization condi-
tion (16.3.10). (16.3.12) and (16.3.14) show that the
concentration ρ enters the problem only through the
combination ρL2D ∝ ×νL/D.

Equation (16.3.14) always has an isotropic solution, f(Ω) = 1/4π, independent of a, but if
νL/D is large enough, it may also have anisotropic solutions describing a nematic phase. To solve
the nonlinear integral equation (16.3.15), Onsager adopted a variational method, based on a trial
function of the form

f(Ω) = A cosh(α cos θ), (16.3.15)

where α is a variational parameter, θ the angle between a and the nematic axis, and A is a constant
which should be chosen to normalize f according to (16.3.10). In the region of interest, α turns
out to be large (∼ 20) and the function f is strongly peaked around θ = 0 and θ = π. The order
parameter is

η =
1

2

∫

f(Ω)(3 cos2 θ − 1) sin θdθ =≃ 1 − 3/α, (16.3.16)

for α ≫ 1. Minimizing the energy F in (16.3.11) with respect to α, one obtains a function F (c)
which shows a first-order phase transition from isotropic (α = 0) to nematic (α ≥ 18.6). The volume
fraction ν occupied by the rods in the nematic phase, just at the transition point, is νn

c = 4.5D/L.
At the same point, the value of ν for the isotropic phase, in equilibrium with the nematic phase, is
smaller: νi

c = 3.3D/L.
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Note that νn
c and νi

c are independent of T in this model. This means that the hard rods are
an ‘athermal’ system, and this phase transition is driven by entropy. Of particular interest is the
value of the order parameter ηc in the nematic phase just at the transition: This turns out to be
quite high (ηc ≃ 0.84). Thus the Onsager solution leads to a rather abrupt transition between a
strongly-ordered nematic and a completely disordered, isotropic phase.

16.3.3 Phase Separation in Hard-Sphere Systems

In recent years, the concept of the entropy-driven phase transitions has been extensively applied
to illuminate the phase behavior of soft matter. Here we will give a discussion of the phase separation
of hard sphere systems.g

For phases of condensed matter in equilibrium, the condition of free energy minimum must be
satisfied. In the free energy

F = U − TS, (16.3.17)

U is the internal energy, T the temperature and S the entropy. In conventional solids, which may
be designated as the hard matter, the contribution of internal energy is larger than the entropy.
That is to say, the internal energy determines the structure of the equilibrium phase. Taking the
crystallization discussed in §16.1.2 as example, when temperature decreases, a phase transition takes
place from disordered liquid to ordered crystal for the system. In this process the reduction of the
entropy will increase the free energy, so the appearance of the ordered phase is due to the decrease
of internal energy, in order to ensure the free energy is a minimum. This kind of phase transition has
arisen from energy, so it can be called an energy-driven phase transition. In the case of soft matter,
the situation is just the opposite: compared with TS, the contribution from U is too small to have
an influence on the configuration of the system. Now the decrease of the free energy is mainly due
to the increase of the entropy; the equilibrium state is determined by the entropy maximum instead
of the internal energy minimum. The key point is that the increase of microscopic disorder is found
to be beneficial to the appearance of macroscopic order. Formally, the entropy deviation from an
equilibrium value will give rise to an entropic force; its effect is just like the gradient of a potential
in practice. Entropic force will drive a system to develop into a new phase with a minimum free
energy. This is the driving force for the entropy-driven phase transition.

The simplest model to describe the entropy-driven phase transitions is the Alder–Wainright’s
computer model of hard spheres for fluids developed in the 1950s. Actually there are weak attractive
interactions between atoms. Just as will be discussed in §19.2.1, these interactions lead to a gas-
liquid phase transition. To investigate the entropy-driven phase transition, we may assume that the
internal energy of a system is only a function of temperature and not density. If the temperature is
fixed, corresponding to a fixed internal energy, but the sphere density is varied, it is possible for us
to observe the entropy-driven phase transition directly.

In a hard sphere system with a single size for the sphere radius, the internal energy is always
zero for different configurations. The forces between particles and the free energy of the system are
thoroughly determined by the entropy. It is clear that the entropy of the system is only related
to the total volume fraction occupied by hard spheres ν. When ν is small, the chances of collision
between particles is less, the system is looked as a ideal gas. As ν increases, the restriction of the
movement of a particle by collisions with neighboring particles is also increased. In the case of
close packing, all particles are trapped. The pronounced characteristic for hard sphere systems is
that there are two close packing densities, the hexagonal close-packing density νh = 0.7405 and the
random close packing density νr = 0.638. In the case of random close packing, particles are arranged
randomly, but each particle contacts with other particles, so its movement is inhibited. It is noted
that νr < νh. We can imagine magnifying the lattice of the hexagonal close packing structure, while
the crystalline structure is kept invariant. It is obvious as the lattice is magnified, ν decreases, and
each particle can move freely around a site in the magnified lattice. The result of this free movement
for particles leads the entropy to increase. It should be pointed out that for random close packing,

gA concise introduction to the role of entropy in soft condensed matter is found in T. C. Lubensky, Solid St. Commun.
102, 187 (1997).
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there are a lot of configurations which form residual entropy for glasses. But just as will be discussed
in §19.2.3, there is less chance for different configurations to access each other, so it is reasonable
to take the entropy of each configuration as zero. Therefore, the magnified lattice with ν = nur has
higher entropy compared to the random close packing structure with the same volume fraction. This
means for a liquid phase in the quasi-equilibrium process, when the volume fraction increases, the
system is favored to form a periodic crystal, and not to be trapped into a random liquid structure.
This is an entropy-driven first-order liquid-solid phase transition. To realize the glass transition for
a liquid, it is necessary to use quenching, a nonequilibrium process.

Figure 16.3.5 Schematic diagram of exclusive volume between large sphere, small sphere, and wall of
container.

Mixtures of hard spheres with different sizes provide interesting examples showing the role of
entropy. For a simple discussion, we consider a dispersion system composed of colloidal spheres with
two different diameters. The diameter of a large sphere dL is much larger than that of a small one
dS. If both the volume fractions are about the same, then the number of small spheres exceeds that
of large ones, so the entropy of small spheres play a principal role in determining the structure of
the system. The configuration adopted by large spheres must let the entropy of the small spheres
be a maximum. It can be seen from Fig. 16.3.5 that two large spheres will provide more free space
for small spheres when they are in contact and near the wall of the container, due to the excluded
volume effect. In Fig. 16.3.5 solid lines represent the profiles of spheres and the walls of the container,
Shadow corresponds the impenetrable regions. So between large spheres there is an entropy-induced
attractive force, called the depletion force. The concept of the depletion force is very important in
colloidal, latex, and biological systems. Particles involved are not only hard spheres, but can also
be hard rods, or sphere-rod mixtures. Contact of large particles with the walls of a container can
contribute more free volume to small particles, so surfaces provide also a kind of attractive force.
Experiments verify that large particles can not only separate on surfaces but also form crystals if
their density is high enough. Using the jargon of modern statistical physics, the entropic force gives
rise to a crystalline phase of large particles, which wet a solid surface.

Based on the discussion for attractive force between large spheres, we can expect that a phase
separation will appear between large and small particles by increasing volume fractions. The entropic
mechanism for this effect is very obvious. If the large spheres form a close-packed crystal, all voids
between large spheres cannot contain large spheres, so more free space is left to small spheres. This
two-component hard-sphere mixture shows very rich phase behaviors. These phase behaviors are
dependent on three parameters, i.e., the volume fractions of large and small spheres νL and νS, and
the ratio of radii of large and small spheres α = rL/rS. The ideal hard-sphere gas attracts much
attention currently. The colloidal dispersion phase composed of polystyrene spheres of diameters
from 0.06 µm to 8 µm has been used to verify experimentally the theoretical predictions from the
hard sphere model. Figure 16.3.6 shows the phase diagram from the experimental measurements and
theoretical analysis for a colloidal system with large and small spheres of diameters 0.825 µm and
0.069 µm. The horizontal and vertical axes represent the volume fractions of large and small spheres,
respectively. It is found that the phase boundary determined from the experiments is consistent with
the theoretical calculation.
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Chapter 17

Ferromagnets, Antiferromagnets

and Ferrimagnets

Magnetic ordering, such as ferromagnetism, antiferromagnetism and ferrimagnetism, arises from
the broken symmetry of time-reversal or spin-rotation. There are two physical models to describe
the magnetism of condensed matter: One is the localized; the other, the itinerant. The former has
been used successfully in magnetic insulators, and the latter for magnetic metals. These two models
are opposed but complementary to each other and illustrate the intrinsic properties of magnetism
of materials, however, they are still in the stage of development with increasing sophistication. Cer-
tainly, in many cases, these two models cannot be separated from each other. There has been a trend
to combine both to develop a unified theory to understand magnetism. In this chapter we are mainly
concerned with the formation of magnetically-ordered phases and intrinsic magnetic properties. The
problems of technical magnetization and micromagnetics will be discussed in Part VII.

§17.1 Basic Features of Magnetism

Magnetic properties of materials are closely related to the spin of microscopic particles. Spin, as
a new degree of freedom, is purely quantum mechanical, although sometimes it can be considered as
a classical vector, such as in Langevin’s treatment of paramagnetism, and also in many statistical
models, like the classical Ising, XY, and Heisenberg models.

17.1.1 Main Types of Magnetism

Magnetic behavior in solids is, in general, involved in the orientations of magnetic dipoles. Each
of these dipoles, or magnetic moments, is composed of the electronic spins, electronic orbitals, and
nuclear magnetic moments. Because the nuclear magnetic moment is so much smaller than the
electronic magnetic moment (by three orders of magnitude), when macroscopic magnetism in solids
is investigated, the nuclear moment can be neglected and only ionic and electronic moments are con-
sidered.a Furthermore, in magnetic compounds of transition metals, the orbital moment is always
quenched, so the actual moment is mainly provided by the electronic spin. Magnetism in solids,
according to its magnitude and sign, principally includes five types: Diamagnetism, paramagnetism,

aIt should be noted that there are obvious interactions between nuclear spins and electronic spins. This is the ba-
sis of using nuclear magnetic resonance and the Mössbauer spectra to study magnetism of matter. By adiabatic
demagnetization, substances can be cooled to ultra low temperature, to temperatures in the range of µ K. Experimen-
tally, nuclear magnetic ordered phases have been observed at 10−3–10−7 K, for example, the nuclear ferromagnetism
(Tc=0.40 mK) of 141Pr in PrNi5 and the nuclear antiferromagnetism (TN=1.03 mK) in 3He crystals, see A. Abragam
and M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon Press, Oxford (1982). Recent experimental
results show that nuclear spin polarization may appear in a semiconductor adjacent to a ferromagnet; its internal field
gives considerable influence on the transport of electrons with spins, so it has practical significance in spintronics.
Refer to R. Kawakami et al., Science 294, 131 (2001).
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Figure 17.1.1 Several kind of magnetic behavior. (a) Paramagnetism; (b) ferromagnetism; (c) antiferro-
magnetism; and (d) ferrimagnetism.

ferromagnetism, antiferromagnetism, and ferrimagentism. The first two types only represent the
properties of the independent moment ensemble, but the latter three types reflect cooperative phe-
nomena of a large number of moments. Figure 17.1.1 shows these important types. The upper part
displays the moment distribution, the magnetization M of a sample is the vector sum of these mo-
ments; the lower part represents the susceptibility χ = M/H versus temperature, H is the applied
magnetic field.

(1) Diamagnetism. Diamagnetic substances have negative susceptibility. Actually, all substances,
such Cu, Zn, Au, H2O have basic diamagnetism, but it is very weak and often overshadowed by
the positive paramagnetic susceptibility, usually larger by one or two orders of magnitude. Basic
diamagnetism is independent of temperature and arises from the effect of applied fields on the inner
shell electrons of atoms. Electronic orbitals around a nucleus can sometimes be looked upon as a
current. When a magnetic field is applied, the electronic motion is disturbed, corresponding to the
moment being modified and an induced moment appears. According to the Lenz law for electro-
magnetic induction, this induced moment is opposite to the applied field, therefore its susceptibility
χd is negative. χd is not only small, but also independent of temperature and external field.

(2) Paramagnetism. Many solids, such as Na, Al, V, Pd have paramagnetism. In Fig. 17.1.1(a),
the magnetic moments are oriented randomly. Under the application of an applied field H , the
number of moments will increase along the +H direction but decrease along −H direction. This
process leads to a small magnetization M , which is linearly dependent on the applied field; moreover,
once the applied field is removed, the magnetization disappears instantly. It is easy to show that
the relation between susceptibility and temperature is χ ∝ T−1.

(3) Ferromagnetism. Typical ferromagnetic substances are Fe, Co, Ni. As shown in Fig. 17.1.1(b),
the ferromagnetism appears for them when temperature is below a transition temperature (Curie
point) Tc. That is to say, below Tc spins tend to take parallel orientation spontaneously. Above Tc,
ferromagnets have paramagnetism; the spins are oriented randomly. The relation between suscepti-
bility and temperature satisfies the Curie–Weiss law χ ∝ (T − Tc)

−1.
(4) Antiferromagnetism. Typical antiferromagnetic substances are Cr and Mn, and also oxides

like MnO, CrO, CoO; their behavior is displayed in Fig. 17.1.1(c). Above a transition temperature
(Néel point) TN, spins distribute randomly and have paramagnetic behavior. However, below TN,
one half of the spins are antiparallel to the another half. So the resultant magnetization is zero.
Above TN the relation between susceptibility and temperature satisfies χ ∝ (T + ΘA)−1.
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(5) Ferrimagnetism. Figure 17.1.1(d) shows ferrimagnetism. A ferrite, like Fe3O4, is a typical
ferrimagnet. Above Tc the spins are oriented randomly, but below Tc they are arranged antiparallel.
But it is different from an antiferromagnet, the magnetic moments are not equal on different sublat-
tices, and a net magnetization appears. This is similar to a ferromagnet, but usually ferromagnets
are metals and ferrimagnets are nonmetals. Another important difference from ferromagnets is that
for most ferrimagnets their susceptibility-temperature relation does not follow the Curie–Weiss law
in a large temperature range above Tc. Only after T > 2Tc, does the temperature dependence of
χ−1 asymptotically approaches linearity.

There are other spin configurations, like helical, canted, spiral and umbrella-like, but the five
types discussed above are the main ones. Among them ferromagnets attracts the most attention:
Ferromagnets display complicated magnetic hysteresis; this is the basic problem for technical mag-
netization and we will discuss it in Part VII.

The magnetically ordered structures are the results of direct or indirect interactions between
ionic moments on sites or delocalized electronic moments in crystals. Previously, we have discussed
several kinds of magnetic interactions, such as the direct exchange (including kinetic exchange),
superexchange and double exchange, and also the indirect, or RKKY, exchange between localized
moments mediated by conduction electrons. In addition, there are exchange interactions between
itinerant electrons. This situation is more complicated, due to that 3d electrons are partly delocalized
into the Fermi sea, and partly localized around atomic sites; moreover, these two aspects cannot be
distinguished completely, and this is related to the complex many-body problems of electrons.

All these exchange interactions contribute to the formation of diverse magnetically ordered struc-
tures through cooperative phenomena for macroscopic magnetism. For example, direct exchange and
superexchange will be used in the magnetization theory of local moments in §17.2; the exchange of
itinerant electrons will be discussed in §17.3, and the RKKY interaction will be introduced to discuss
spin glasses in §19.3.

Although these five kinds of exchange interactions were proposed for different cases and have been
applied to various circumstances appropriately, there are no clear borderlines between them. They
are related to each other, and there are overlaps of their regions of application. Figure 17.1.2 is a
schematic diagram which shows the relationships between these five exchange interactions. The solid
circles represent the main region of application for each type of interaction, while the dashed circles
indicate enlarged regions of application. Strictly speaking, in real substances it is possible there are
several exchange interactions which coexist and are mixed together. For transition metals, it is most
suitable, in principle, to use the exchange interactions between the itinerant electrons. The RKKY
exchange has been used mainly to illustrate the magnetic ordered phases in rare earth metals, but
in some circumstances, it is also effective for some transition metals and alloys. In fact, the RKKY
theory was first proposed to explain experiments in CuMn. In recent years, for the interlayer coupling
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Figure 17.1.3 Magnetic structure of MnO.

of multilayers, the theoretical computations based on RKKY exchange interactions have become
consistent with experimental results. This means there are localized moments on the transition group
atoms in metals or alloys. Neutron scattering experiments can provide information about localized
spin densities in transition metals, but it only gives the spin density distribution probability. From
the theoretical point of view, general Bloch functions with the tight-binding approximation can
give indications about itinerancy as well as localization of electrons. We take into account the s-d
exchange interaction and strong correlations, itinerant s and d electrons always have large probability
and time to locate around nuclei of the transition elements, so there exist localized moments, in the
probabilistic sense.

17.1.2 Spatial Pictures of Magnetic Structures

Neutron diffraction has played a pivotal role in illuminating magnetic ordered structures. X-ray
diffraction can only be used to locate atoms or ions in a crystal; neutron diffraction can further
determine the distribution of magnetic moments in the crystal. The theory of antiferromagnets,
proposed by Néel, was verified by neutron diffraction. In the following, we will begin our discussion
of magnetic structures of the oxides, representative of insulators.

The magnetic structure of MnO is typical: Its crystalline structure is of the NaCl type, and Mn
is a magnetic ion. In MnO the spins of the Mn ions are arranged alternately positive and negative,
as shown in Fig. 17.1.3, so the whole structure is antiferromagnetic. The magnetic structures of
FeO, CoO, NiO show some similarities, but are more complicated. The trivalent ions Ti3, V3+,
Cr3+, Fe3+ which can be used to form M2O3 oxides with the Al2O3 type crystalline structure, are
also antiferromagnets generally. Among them, α−Fe2O3 is a somewhat special, at temperatures
950 K–260 K, the magnetic moments are located in the basal plane, perpendicular to the body
diagonal of the rhombohedron, the Fe ions in adjacent atomic layers are arranged antiparallel with a
small tilt. The small tilt angle leads to the neighboring moments being unable to cancel each other,
so a weak ferromagnetism appears, see Fig. 17.1.4; but its magnetic behavior approaches that of
an antiferromagnet.b Below the temperature T = 260 K, called the Morin temperature, moments
are turned perpendicular to the basal plane, then α−Fe2O3 becomes a normal antiferromagnet.
The oxides with the perovskite structure, like LaCrO3, LaMnO3, often appear antiferromagnetic:
Neutron diffraction experiments have shown very complicated magnetic structures, some of which
have been discussed in Chap. 13. The magnetic data of some important antiferromagnetic substances
are compiled in Table 17.1.1.

bThe weak ferromagnetism arising from the moment tilt of an antiferromagnet has attracted the interest of theorists.
First, I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958) gave a phenomenological explanation; then by the
perturbation method of the Anderson superexchange interaction, T. Moriya, Phys. Rev. 120, 91 (1960) gave it
a microscopic theoretical foundation. In recent years, scientists have adopted ab initio calculation of electronic
structure to give further explanations. Similar, but with magnetic configurations being completely different, is the
weak ferromagnetism of Mn3Ga and Mn3Sn in which magnetic ions are arranged in a triangle which is not closed, so
there are residual moments which show weak ferromagnetism. It should be emphasized that the physical nature of
this weak ferromagnetism due to the tilt of localized moments is completely different from the weak ferromagnetism
in itinerant electrons, which will be discussed later in §17.3.3.
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Table 17.1.1 Intrinsic magnetic properties and crystalline structures of several antiferromagnets.

Compounds Crystalline structures TN(◦K) Θ(◦K) Θ/TN Cmole χp(0)/χp(TN)

MnO fcc 122 610 5.0 4.40 0.69
FeO fcc 185 570 3.1 6.24 0.77
CoO fcc 291 280 0.96 3.0 —
NiO fcc 515 — — — 0.67
MnS fcc 165 528 3.2 4.30 0.82
MnF2 rutile 74 113 1.5 4.08 0.75
FeF2 rutile 85 117 1.4 3.9 0.72
CoF2 rutile 40 53 1.3 3.3 —
NiF2 rutile 78 116 1.5 1.5 —
MnO2 corundum 86 — — — 0.93
Cr2O3 corundum 307 1070 3.5 2.56 0.76

α-Fe2O3 corundum 950 2000 2.1 4.4 —
FeS layered hexagonal 613 857 1.4 3.44 —

FeCl2 layered hexagonal 24 −48 −2.0 3.59 < 0.2
CoCl2 layered hexagonal 25 −38.1 −1.5 3.46 ∼ 0.2
NiCl2 layered hexagonal 50 −68.2 −1.4 1.36 —
FeCO3 complex 57 — — — 0.25

CuCl2·2H2O rhombohedronal 4.3 5 1.16 — —
FeCl2·4H2O rhombohedronal 1.6 2 1.2 3.61 —
NiCl2·6H2O rhombohedronal 5.3 — — — —
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The typical oxides with ferrimagnetic structure are ferrites: Magnetic ions on two, or more,
sublattices have unequal moments. Although they are arranged antiparallel, the net moments are
not zero. The typical crystalline structures of ferrites include the cubic spinel, garnet, and magneto-
plumbite structures. We take a ferrite with the spinel structure an example: The chemical formula of
a spinel ferrite is MFe2O4, where M is M2+ or M3+ metallic ions. Its crystalline structure, is shown
in Fig. 17.1.5: Oxygen ions are arranged according to face centered cubic close packing, each unit
cell contains eight molecular formula units, there are 64 tetrahedral voids and 32 octahedral voids;
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Table 17.1.2 Intrinsic magnetic properties and crystalline structures of several ferrimagnets.

(a) Spinel Ferrimagnets

Structures Curie Ionic moments (µB) Saturation

Compounds types point A B Net value magnetization

Tc/K position position Theoretical Experimental Ms/kG

MnFe2O4 I 575 −(1 + 4) 1 + 9 5 46 ∼ 5 0.40
Fe3O4 I 860 −5 4 + 5 4 4.1 0.50

CoFe2O4 I 790 −5 3 + 5 3 3.7 0.45
NiFe2O4 I 865 −5 2 + 5 2 2.3 0.33
CuFe2O4 I 728 −5 1 + 5 1 1.3

Li0.5Fe2.5O4 I 943 −5 0 + 7.5 2.5 2.5 ∼ 3 0.033
MgFe2O4 I 700 −5 0 + 5 0 1.1 0.0092

(b) Garnet Ferrimagnets

Curie Compensation Magnetic moment per molecular Saturation

Compounds points temperature formula at 0 K magnetization

Tc/K T ∗/K Theoretical Experimental at RT

|3(2S) − 5| |3(L + 2S) − 5| Ms/kG

Y3Fe5O12 560 — 5 5 4.96 0.14
GdFe5O12 564 290 16 16 15.2 0.010
DyFe5O12 563 220 10 25 17.2 0.032

(c) Hexagonal Magnetic Lead Ferrimagnets

Magnetic moment per molecular Saturation
Type Compounds Tc formula at 0 K magnetization at RT

Theoretical Experimental Ms/kG

BaM BaFe12O19 20 19.9 0.37
SrM SrFe12O19 20 20.2 0.37
PbM PbFe12O19 20 19.6 0.33
BaW Ba2Fe2+

2 Fe3+
16 O27 28 27.6 0.40

BaX Ba2Fe2+
2 Fe3+

16 O27 48 47.5 0.20

but cations actually occupy eight tetrahedral voids (A sites) and 16 octahedral voids (B sites). The
spinel structure can be divided into two types: Normal (N) and inverse (I). In the normal type, M2+

occupy the A sites, M3+ occupy the B sites; but in the inverse type, M3+ occupy the A sites, equal
numbers of M2+ and M3+ occupy the B sites. Magnetite was the earliest magnet discovered by hu-
mans, but it is not a ferromagnet, rather a ferrimagnet. Neutron diffraction verified that its structure
is of the inverse spinel type, i.e., its magnetic moments are distributed as (Fe3+)A(Fe3+Fe2+)BO4.
Because the spins on sites A and B are arranged antiparallel, the moments of Fe3+ on sites A and B
cancel each other, and the net moments are provided by Fe2+ on sites B. Some data on ferrimagnetic
substances are shown in Table 17.1.2.

Neutron diffraction studies of the magnetic structures of the transition metals have also been
very enlightening. Unlike insulators, the three typical ferromagnetic metals, Fe, Co and Ni have
lattice site magnetic moments which are smaller than those of the isolated ions; moreover, they
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Figure 17.1.6 Different types of magnetic ordered structures for rare earth metals.

Table 17.1.3 Magnetic structures of several rare earth metals and alloys.

are all non-integers, showing that their d electrons partly participate the itinerant process. On the
other hand, experimental results from neutron scattering show that the spin density in Cr fluctuates
sinusoidally, providing an example for the existence of spin density waves.

Neutron diffraction has also obtained very rich results from the study of rare earth metals
and alloys, especially showing the non-collinear structure of the magnetic order, see Fig. 17.1.6.
Table 17.1.3 lists the various complicated cases and very large ionic moments for the magnetic
ordered structures of the magnetic rare earth metals.
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17.1.3 Band Pictures of Magnetic Structures

In the last subsection we have shown how the magnetic moments of various materials are arranged
in real space. Because magnetic structures are also closely related to the electronic spins, energy
band structures displayed in reciprocal space provide another viewpoint to understand magnetic
structures. Just like the description in Chap. 12, the calculated results based on the spin density
functional approach can provide energy band structures for different spin orientations, up or down,
and also the corresponding densities of states for magnetic subbands. For nonmagnetic solids, such
as Si and Na, the densities of states of energy bands for different spins are completely symmetric,
but asymmetry appears clearly in ferromagnetic solids. Figure 17.1.7 shows the densities of states
for up (majority) spins and down (minority) spins of Fe and Co. Their asymmetry leads to a
number difference for electrons with spin up and spin down, that is, N↑ > N↓. This is the spin
polarization, which is the physical source of ferromagnetism in these metals. It is noted that Fe is
clearly different from Co. For Co, its 3d ↑ subband is fully filled, but for Fe it is not fully filled, so
their spin polarizations ρ = (n↑ − n↓)/n↓ are different. The 3d ↑ subbands of Co and Ni are fully
filled, so ρ is very high; but the 3d ↑ of Fe is not filled and ρ is lower. According to the filling of
the two subbands by 3d electrons, we can understand ferromagnetism, antiferromagnetism, and the
corresponding results of magnetic moment values in a series of transition metals, see Table 17.1.4.c
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Figure 17.1.7 DOS curves. (a) Fe; (b) Co. From J. Kübler, Theory of Itinerant Electron Magnetism,
Oxford University Press, Oxford (2000).

Moments of highly spin-polarized ferromagnetic metals can be obtained by counting the d elec-
trons. The electronic configuration of most 3d metals is [Ar]3dn4s2. For the elements with n > 5,
there are about 1.35 4s electrons (not spin polarized on the whole) entering the 3d band. The 3d
band can accomodate ten electrons, if the 3d ↑ subband is fully filled, then the number of electrons
with down spin is n↓ = n + 1.35 − 5; the net moment is

m = (n↑ − n↓)µB = [5 − (n + 1.35 − 5)]µB = (8.65 − n)µB. (17.1.1)

From this formula it is found that m(Co) = 1.65µB, m(Ni) ≈ 0.65µB, which are almost consistent
with the experimentally measured values. In iron, m(Fe) ≈ 2.65µB, but the experimentally measured
value is only m(Fe) = 2.2µB; this is ascribed to the 3d ↑ subband not being fully filled (weakly spin
polarized), so the magnetic moment is decreased.

The measured results for moments in some two-component alloys of transition metals can be fitted
by the Slater–Pauling curve as shown in Fig. 17.1.8, in which the sloping line on the right-hand side

cIn some references the high spin polarization Co and Ni is called strong ferromagnetism, while the low spin polarization
in Fe is called weak ferromagnetism. These terms are easily misunderstood, because there are other criteria for the
magnitude of ferromagnetism. For example, the strength of exchange interactions, which determines the value of Tc,
and the number of net magnetic moments gives saturated magnetizations. From these criteria, the ferromagnetism of
Fe is not weak. The net magnetic moment of Fe is larger than that of Co and Ni, while its Tc is in between them.
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Table 17.1.4 Electron distribution in energy bands and intrinsic magnetic properties of ferromagnetic
metals.

Electronic Distribution of Hole
E value of moments (µB)

Element configuration band electrons number Spin Magnetic Neutron diffraction

of isolated 3d ↑ 3d ↓ 4s ↑ 4s ↓ 3d ↑ 3d ↓ number measure 3d 4s Net

atoms value

Cr 3d44s2 2.7 2.7 0.3 0.3 2.3 2.3 0 0 0
Mn 3d54s2 3.2 3.2 0.3 0.3 1.8 1.8 0 0 0
Fe 3d64s2 4.8 2.6 0.3 0.3 0.2 2.4 2.2 2.216 2.39 −0.21 2.18
Co 3d74s2 5.0 3.3 0.35 0.35 0 1.7 1.7 1.715 1.99 −0.28 1.71
Ni 3d84s2 5.0 4.4 0.3 0.3 0 0.6 0.6 0.616 0.620 −0.105 0.515
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Figure 17.1.8 Slater–Pauling curve for two component 3d magnetic alloys.

represents the relation in (17.1.1). This accounts for the role the number of d electrons modified by
alloying. For two-component alloys, we can write

m/µB = (1 − x)m′
A + xm′

B, (17.1.2)

where m′
A and m′

B are the moments of A and B, respectively. For alloys satisfying the right side of
the Slater–Pauling curve, m′ = 8.65−n; but for metalloid, m′ = 0.65−nv (nv is the number of valence
electrons), for example, for H, m′ = −0.15. It is simple and convenient to use this rule to treat
the magnetic structures of alloys, moreover its validity even surpasses that of the simple rigid band
model. Fe6.5Co3.5 alloy gives the highest value of moment (2.5µB), which is an important constituent
of the strong magnetic alloy Alnico (an alloy of Fe, Co, Ni, Al, etc.). It should be noted that the Fe-
Ni alloy deviates from the Slater–Pauling curve, showing an anomaly. Some of the Fe-Ni alloys have
anomalous physical properties. For example, Fe32Ni66 is called as permalloy, which has excellent soft
magnetic properties. Fe64Ni36, called as invar, has its zero thermal expansion coefficient, which is
related to its anomalous electronic structure. There are also a series of ferromagnetic alloys without
ferromagnetic elements, such as the binary alloys of Mn with N, P, As, Sb, Bi; Cr with S, Te, Pb; and
also three-component alloys called Heusler alloys, like Cu2MnAl, Cu2MnSn, Cu2MnIn, Cu2MnGa,
etc. In addition, there are low Tc ferromagnets without magnetic ions, like ZrZn2 with Tc ∼ 22 K;
Sc3In with Tc ∼ 6.1 K. Both are purer itinerant electron systems than Fe, Co, Ni, and will be
discussed in §17.3.3. These kinds of alloys also have a very weak ferromagnetism, but its physical
origin is entirely different from the weak ferromagnetism due to canted antiferromagnetism as stated
in §17.1.2.

For transition alloys containing rare earth elements, the dominant role is often played by the
sublattice of transition metals; some alloys with excellent permanent magnet properties, such as
Nd2Fe14B and SmCo5, belong to this category.
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Figure 17.1.9 DOS of spin subbands of CrO2. From J. Kübler, Theory of Itinerant Electron Magnetism,
Oxford University Press, Oxford (2000).

Figure 17.1.7(a) shows that there is a valley near EF on the curve of the spin ↓ density of state for
Fe. If the components and crystalline structure of alloys were suitably designed, this energy valley
could developed into a pseudogap, and even a real gap, then become completely spin polarized
(ρ = 100%) ferromagnets, i.e., the half-metallic ferromagnet, could be obtained. To arrive at this
objective, it is necessary to have complicated components and structures. The Heusler alloy X2MnY
or half Heusler alloy XMnY then became the focus of theoretical study, here X = Co, Ni, Cu, Pd, Pt,
etc., Y = Al, Sn, In, Sb; the crystalline structures are complicated ordered structures based on the
bcc structure with the unit cell enlarged by a factor of eight. Kübler et al. were first to find, in the
energy band calculations for Heusler alloys, that there is a valley going to zero in the density of states
of the spin ↓ subband, similar to a pseudo-gap; afterwards, de Groot et al. discovered clear energy
gaps in the half Heusler alloys NiMnSb, PdMnSb and PtMnSb.d The characteristics of this kind
of electronic structure can be summarized as follows: In two spin subbands, one shows an energy
gap and is insulator (or semiconductor)-like, while the other is metal-like without an energy gap,
de Groot called them half-metallic ferromagnets. The most typical, and also simplest in structure
among half-metallic ferromagnets, is CrO2. Its crystalline structure is of the rutile type. The density
of states (DOS) is shown in Fig. 17.1.9; the gap width of the spin down subband is Eg ∼ 1.88 eV,
while the conduction band is located about 0.38 eV above EF. The reason why CrO2 becomes a
semi-metallic ferromagnet is simply due to the exchange splitting, i.e., the difference between the
spin-up subband and spin down subband is larger than the bandwidth occupied by spin-up electrons.
Therefore all the valence electrons are spin up; none are spin down. That is, in CrO2, the spins
are completely polarized; all the valence electrons are spin-oriented in the same direction. The
ferromagnets La1−xCaxMnO3, etc., introduced in §12.2.3, due to the double exchange interaction
also belong to this type; their metallic behavior comes from the spins of doped holes being aligned
parallel to each other.

Another type of ferromagnets is insulators or semiconductors. There are energy gaps in all
electronic subbands including spin-up and spin-down. EuO with NaCl-like structure is ferromagnetic
with a Tc ∼ 70 K; furthermore, the O can be substituted by S, Se or Te. With the emergence of
spintronics, research on semiconducting ferromagnets has become a hot topic. In conventional

dThe theoretical problems about the half metallic ferromagnets are referred to Bib. [11]. A review article on this field
is W. E. Picket and J. S. Moodera, Phys. Today 54 (5), 39 (2001).
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compound semiconductors, such as GaAs, InSb, by doping with excessive Mn, Co, Fe, they become
ferromagnetic. For example, in GaAs the equilibrium solubility of Mn is very low (< 0.1%), but, by
the molecular beam epitaxy technique, doped Mn in GaAs film can reach 5%, and its Tc ∼ 110 K.e

In the anatase structure doped with 8% Co, its Tc is higher than room temperature.f Also by the
molecular beam epitaxy technique the digital alloy or δ doping can be fabricated; for example, an
atomic layer of MnAs can be inserted every few atomic layers of GaAs. In this way a ferromagnet
with a high Tc was obtainedg The formation of this type of ferromagnet can be explained by the
RKKY exchange interactions coupled by the charges in semiconductors. Because the concentration of
charge carriers in semiconductors is far less than the concentration of conduction electrons in metals,
instead of RKKY oscillation, only ferromagnetic coupling appears. Its mechanism is somewhat
similar to the theory of ferromagnetism based on s-d interaction originally proposed by Zener.
In ferromagnetic semiconductors, the Zeeman splitting by internal fields leads to complete spin
polarization for parabolic energy bands, so they are possible candidate materials for spintronics.

Organic magnets have also attracted much attention. In §11.4, we discussed ferrocene, which is
an example of coordination compounds with 3d magnetic ions. If we combine it with other organic
molecules to form charge-transfer salts, then connecting them to form net-like solids, among them
there may be some magnetically-ordered phases, which might be antiferromagnetic, or ferrimagnetic,
or ferromagnetic. A few of them have Tc higher than room temperature, for example, the ferrimag-
net [V(TCNE)2]·12CH2Cl2.

h It is noted that in organic compounds without 3d ions, completely
composed of light elements C, N, H, O, magnetically-ordered phases have also been observed. For
example, in 1991, C13H16N3O4 was found to have ferromagnetism,i its Tc ∼ 0.65 K. Afterwards, the
solid formed by grafting C60 molecules to TADE has also found to be ferromagnet at low tempera-
tures with Tc equal to 16 K.j These results tell us that there is potential for molecular solids to form
magnetically ordered structures.

17.1.4 Hamiltonians with Time Reversal Symmetry

One of the important symmetry operations is time reversal; this operation can be described by
the time reversal operator T . For objects in condensed matter physics, time reversal is related to
complex conjugation; this connection can be proved from the time-dependent Schrödinger equation

Hψ = i�
∂ψ

∂t
. (17.1.3)

By performing operation T and noting H is Hermitian, we have

Hψ∗ = −i�
∂ψ∗

∂t
= i�

∂ψ∗

∂(−t)
. (17.1.4)

Comparing (17.1.4) with (17.1.3), we can see the only variation is that t changes its sign and
ψ becomes ψ∗, while the Schrödinger equation is still satisfied. If we take an another complex
conjugate operation for (17.1.4), then (17.1.3) is obtained again. That is for two time inversions,
the equation of motion is invariant.

It is essential and effective to consider the commutativity between some physical quantities and
the time inversion operator. For the position vector r, it is trivial to write

T rT −1 = r, (17.1.5)

while for the momentum operator p, in classical mechanics p = dr/dt, or in quantum mechanics,
p = (�/i)∇, and we obtain

T pT −1 = −p. (17.1.6)

eH. Ohno et al., Appl. Phys. Lett. 69, 363 (1996); H. Ohno, Science 281, 951 (1998).
fR. Kawakami, Appl. Phys. Lett. 77, 2379 (2000).
gY. Matsumoto et al., Science 291, 854 (2001).
hG. Du et al., Appl. Phys. 73, 6556 (1993).
iM. Kahasi et al., Phys. Rev. Lett. 67, 746 (1991).
jP. M. Allemend et al., Science 253, 302 (1991).
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Figure 17.1.10 Schematic diagram for magnetic moments given by currents.

By combining the last two equations, the orbital angular momentum L should be satisfied by

T LT −1 = −L. (17.1.7)

When spin is taken into account, because it is generalized from orbital angular momentum in the
quantum sense, the commutativity should be in the same way as in (17.1.7)

T ST −1 = −S, (17.1.8)

and the operation T thus reverses a magnetic moment. Alternatively, we can also understand the
magnetic moment in a semiclassical way by thinking of T as reversing the direction of an electric
current, because an orbiting charge constitutes a current as shown in Fig. 17.1.10. Since I = dQ/dt,
we may write −I = dQ/(−dt) and therefore we could also associate T as a time inversion operator.

Suppose that the Hamiltonian of a physical system is a function of coordinates, momenta and
spins described by

H(r, p, S),

then according to (17.1.5), (17.1.6) and (17.1.8), it will be transformed as

T H(r, p, S)T −1 = H(r,−p,−S). (17.1.9)

Except when an external magnetic field is present, in general, the Hamiltonian will be invariant
under the simultaneous transformation r → r, p → −p, S → −S, such that

T H(r, p, S)T −1 = H(r, p, S). (17.1.10)

Therefore we can say that the Hamiltonian has time-reversal symmetry, even if it includes spin
operators.

In most band theories, spin is irrelevant, for example, for a single electron in the periodic poten-
tial, the Hamiltonian is

H =
p2

2m
+ V (r), (17.1.11)

which has time reversal symmetry. Its eigenstates are the Bloch functions in space, and for each
ψk(r) we can put two electrons with opposite spins into the two states with this wavefunction. Then
time-reversal symmetry always leaves a Kramers degeneracy between any Bloch state ψk(r) and its
complex conjugate ψ∗

k(r), which describes a state in which both the wavevector and the spin of the
electron have been reversed. This implies E(k) = E(−k), regardless of point group symmetries of
the lattice.

Another simple example for which this is true is a single-particle Hamiltonian containing spin-
orbit coupling

H =
1

2m
p2 + V (r) +

�

4m2c2
σ · (∇V × p). (17.1.12)

which is obviously invariant under time reversal operation.
In the rest of this chapter, we will be concerned with magnetic ordering. There are two theoretical

models to treat the ordering process, one begins with the Heisenberg Hamiltonian (§11.2.4), and
the other with the Hubbard Hamiltonian (§13.1.2). The former recognizes the existence of local
magnetic moments, while the latter favors band electrons by taking their spins into account.
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The Heisenberg Hamiltonian is based on the exchange interaction of local electrons introduced
first in §14.4. If there are magnetic ions with spin vector Si at lattice sites Ri, we can construct the
Heisenberg Hamiltonian

H = −
∑

i>j

JijSi · Sj , (17.1.13)

by considering the interaction of near neighbor ion pairs; then Jij is the exchange integral, as a
function of the distance between ions i and j, i.e.,

Jij = Jij(|Ri − Rj |), (17.1.14)

In most magnetic insulators, the nearest neighboring interaction is dominant, and can be taken as
a constant J . The Hamiltonian is now written as

H = −J
∑

i>j

Si · Sj. (17.1.15)

It is not difficult to note that the Heisenberg Hamiltonian (17.1.9) or (17.1.10) is invariant under
time-reversal. However, the addition of a term −H · S, where H is a fixed external magnetic field,
destroys the invariance. This is broken time-reversal symmetry, broken by an applied field. But, even
though there is no external field, as temperature decreases, there will be a magnetization which arises
in systems described by the Heisenberg Hamiltonian. We shall find later that the materials with
J > 0 are ferromagnets, and J < 0 antiferromagnets. In these cases, the time-reversal symmetry is
spontaneously broken.

In contrast to the Heisenberg model for local magnetic moments, to investigate the itinerant
electrons with interactions can start from the Hubbard Hamiltonian

H =
∑

ijσ

Tijc
†
iσciσ +

1

2
U

∑

iσ

niσniσ̄, (17.1.16)

where i and j describe the atomic positions, Tij is a matrix element between two sites, and the
interaction is

U =

∫ ∫

|ψ(r1)|2
e2

|r1 − r2|
ψ(r2)|2dr1dr2. (17.1.17)

It is easy to see that if the spins in (17.1.16) are all reversed, its form is the same, so the Hubbard
Hamiltonian is also invariant under time-inversion. It only remains to apply an external field or to
decrease the temperature to break the time-reversal symmetry.

Time-reversal is associated with inversion of the spin orientations. In the case of a crystal without
magnetic moments, or loosely speaking in the case of a paramagnetic substance in which the local
moments is randomly distributed, the crystal Hamiltonian will be invariant under time-reversal.
However, broken time-reversal invariance leads to the appearance of a rich variety of magnetic
structures. As introduced in Chap. 1, taking the spin operator related to black and white operations,
there are 1191 magnetic space groups, instead of 230 colorless space groups (see §1.5.2). There are
different magnetic states, e.g., paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic,
as shown in Fig. 17.1.1, or even more complicated magnetic ordering structures like helical, canted,
spiral, umbrella-like, etc. All these show the diversity of magnetic structures arising from spins.

§17.2 Theory Based on Local Magnetic Moments

The physical picture of magnetism in solids was first established on the basis of local moments.
Weiss (1907) was the first to introduce the concept of molecular field to study ferromagnetism. It
was later used by Néel (1936, 1948) to study antiferromagnetism and ferrimagnetism. The essential
idea is that each spin is acted upon by an effective magnetic field proportional to the magnetization
of the crystal. Weiss’s theory was proposed before Heisenberg’s quantum theory. Now in this section
we shall use Heisenberg Hamiltonian to derive Weiss’s effective field, then to investigate the ferro-
magnetic, antiferromagnetic and ferrimagnetic transitions, finally we go beyond the framework of the
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molecular field to discuss the problem of magnetic ground state. The ferromagnetic ground state is
very simple, the exact result is same as that derived using molecular field; but the antiferromagnetic
ground state is more sophisticated, so far a perfect solution is still lacking.

17.2.1 Mean-Field Approximation for Heisenberg Hamiltonian

When we consider coupling only between atoms and their nearest neighbors, from Heisenberg
Hamiltonian (17.1.15), we can write the Hamiltonian for a cluster around a single atom at lattice
point i

Hi = −JSi ·
z

∑

j=1

Sj , (17.2.1)

where z is the number of nearest neighbors. An effective field Heff can be defined as

gLµBHeff = J

z
∑

j=1

Sj = J

z
∑

j=1

〈Sj〉 = zJ〈Sj〉, (17.2.2)

where gL is the Landé factor, and µB the Bohr magneton equal to e�/2mc. The essential point is
that we have taken the average 〈Sj〉 to replace Sj . The single atom Hamiltonian now becomes

Hi = −gLµBSi · Heff . (17.2.3)

Because the magnetization is
M = NgLµB〈Sj〉, (17.2.4)

the effective field is

Heff =
zJ

gLµB
〈Sj〉 =

zJ

Ng
2
Lµ2

B

M = γM , (17.2.5)

with γ = zJ/Ng
2
Lµ2

B.
If there is an external field H added, then total field is

Ht = H + Heff = H + γM . (17.2.6)

Assume that H is along the z axis; due to the isotropy of (17.1.16), broken symmetry leads Heff

to also be along the z axis, then the field may be treated as scalars. Instead of (17.2.1), the single
atom Hamiltonian is

Hi = −gLµBSizHt. (17.2.7)

The eigenvalues of Hi are
Eν = −gLµBνHT, ν = −S, . . . , S. (17.2.8)

For studying the thermodynamic behaviors of the system, the partition function is necessary. It
can be written according to (17.2.8)

Z =
S
∑

ν=−S

e−Eν/kBT =
S
∑

ν=−S

eνgLµBHt/kBT , (17.2.9)

and after summation

Z =
sinh[gLµBHt(2S + 1)/2kBT ]

sinh[gLµBHt/2kBT ]
. (17.2.10)

The magnetization in (17.2.4) is

M = NkBT
∂ ln Z

∂Ht
= NgLµBSBS(x), (17.2.11)

where BS is the so-called Brillouin function, defined as

BS(x) =
2S + 1

2S
coth

(

2S + 1

2S
x

)

− 1

2S
coth

(

1

2S
x

)

, (17.2.12)
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and

x =
gLµBSHt

kBT
. (17.2.13)

By defining the maximum of magnetization

M0 = NgLµBS, (17.2.14)

we can get the reduced magnetization as

m = M/M0 = BS(x), (17.2.15)

where BS(x) can take values from 0 to 1 as x changes from infinity to zero. Let x0 = gLµBSH/kBT ,
then

x = x0 + (zJS2/kBT )m. (17.2.16)

We see that (17.2.15) and (17.2.16) are two coupled equations and can be solved graphically. The
result is shown in Fig. 17.2.1.
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Figure 17.2.1 Graphical solution of magnetization.

17.2.2 Ferromagnetic Transition

Ferromagnets must experience a spontaneous breaking of time-reversal symmetry from the para-
magnetic phase to the ferromagnetic phase, after the temperature decreases through the transition
temperature Tc.

First consider that the external field H = 0. For small values of x, the Brillouin function (17.2.12)
is expanded as

BS(x) =
S + 1

3S
x − [(S + 1)2 + S2](S + 1)

90S3
x3 + · · · . (17.2.17)

A spontaneous internal magnetic field develops at temperature Tc, where it is first possible to satisfy
(17.2.15) and (17.2.16). Substituting (17.2.17) to (17.2.15), we get

Tc =
2JzS(S + 1)

3kB
. (17.2.18)

For T > Tc, a magnetic solution exists only if an external field is present. For T < Tc, the
spontaneous magnetization in zero field satisfies the transcendental equation

m = BS

(

3S

S + 1

Tc

T
m

)

. (17.2.19)
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In the vicinity of Tc, m is given by

m2 =
10

3

(S + 1)2

(S + 1)2 + S2

Tc − T

Tc
, (17.2.20)

if the expansion (17.2.17) is used. The relationship between the magnetization and temperature is

m ∼ (Tc − T )1/2.

We note that above Tc, the magnetic dipoles in a solid are randomly oriented, so in the absence
of an applied magnetic field there is no net magnetic moment. Below Tc, there is a partial alignment
of the dipoles and a spontaneous magnetization. It is interesting to note that the magnetization
M is a vector whose direction is not unique because the basic Hamiltonian (17.1.16) is isotropic.
Thus upon heating a magnet above Tc and recooling, the same magnitude of magnetization will
occur, but the direction may be different. If the magnetic order is influenced by crystal structures,
an anisotropic term should be added into the Hamiltonian; then this degeneracy will be lifted and
lowered.

We will investigate some other thermodynamic quantities related to phase transitions. We find
from (17.2.16) using the small argument expansion

x = x0 +
Tc

T
x. (17.2.21)

This gives the susceptibility

χ =
M

H
=

C

T − Tc
, (17.2.22)

where

C =
Ng

2
Lµ2

BS(S + 1)

3kB
(17.2.23)

is the Curie constant. Equation (17.2.22) is the Curie–Weiss law. When T → Tc, χ → ∞, a
spontaneous magnetization is established.

The specific heat can be deduced from the internal energy

U = −M

(

1

2
γM + H

)

= −1

2
γM2

0m

(

m +
2H

γM0

)

,

that is

CM =
∂U

∂T
= −γM2

0

(

m +
H

γM0

)

∂m

∂T
. (17.2.24)

When H = 0, for T > Tc, m = 0, so

CM = 0, (17.2.25)

and for T < Tc, m �= 0, then

CM = −1

2
γM0

dm2

dT
= 5NkB

S(S + 1)

(S + 1)2 + S2
. (17.2.26)

We can see that the specific heat has a finite discontinuity at the Curie temperature. This indicates a
second-order phase transition. In fact the results from the molecular field, including magnetization,
susceptibility, and specific heat, are consistent with Landau theory. If we take m = M/M0 as the
order parameter to construct the free energy

G = G0 + A(T )m2 + Bm4 − Hm, (17.2.27)

we can confirm these results easily by using the treatment in Chap. 15.
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17.2.3 Antiferromagnetic Transition

A negative value of the exchange integral J in the Heisenberg Hamiltonian (17.1.16) may lead to
the appearance of antiferromagnetism. For simplicity, we take two sublattice system as an example.
Alternatively, we consider the next nearest neighbor model in which there are two interaction con-
stants between two kinds of spins. J12 = J21 couples the different sublattices, but J11 = J22 couples
the same sublattice. The basic treatment stated below is not difficult to generalize to the case of n
sublattices.

It is natural to use the effective field method discussed before, but for two sublattices i, j (i, j =
1, 2), there are two effective fields

Hi = H +
∑

j

γijMj , (17.2.28)

in which each effective field includes the contribution of magnetizations from two sublattices through
the coupling constants

γij =
2zijJij

Ng2µ2
B

, (17.2.29)

where zij is the number of neighbors of an atom on sublattice i which are on sublattice j and are
connected with i by the exchange parameter Jij . If we suppose that the nearest neighbors of an
atom on sublattice 1 are all on sublattice 2, and vice versa, then z12 = z1 is the total number of
nearest neighbors. We suppose that the next nearest neighbors of a given atom are on the same
sublattice, so we put z11 = z22 = z2 is the total number of next nearest neighbors. We also relabel
J1 = J12, the exchange parameter for nearest neighbors, and J2 = J11 the exchange parameter for
next nearest neighbors. Then

γ12 = γ21 =
2z1J1

Ng
2
Lµ2

B

, γ11 = γ22 =
2z2J2

Ng
2
Lµ2

B

.

Repeating the arguments of the ferromagnetic case, reduced magnetization on sublattice i is

mi = BS(xi), (17.2.30)

where xi = gLµBHiS/kBT , and M0i = NgLµBS/2. At higher temperatures, the material is in the
paramagnetic phase; the material is only magnetized in the direction of applied field H . We expand
the Brillouin function (17.2.30) and retain only the first term, then

mi = BS(xi) =
S + 1

3S
xi =

(S + 1)gLµBHi

3kBT
.

Substitute it into (17.2.28), it is found

Mi −
C

2T

∑

j

γijMj =
C

2T
H, (17.2.31)

where C is the Curie constant defined by (17.2.23). We sum (17.2.31) with respect to i and make
use of the symmetry properties of the coefficients γ: γij = γji, for i �= j, and γii = γjj . The result is

M



1 − C

2T

∑

j

γij



 =
C

T
H. (17.2.32)

Now the paramagnetic susceptibility is derived directly from (17.2.32)

χ =
M

H
=

C

T + ΘA
, (17.2.33)
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where

ΘA = −C

2

∑

γij = −2S(S + 1)

3kB

∑

i

ziJi. (17.2.34)

Antiferromagnetism is characterized by the dominance of terms with negative J , and ΘA will be
a positive temperature. Thus, the susceptibility of an antiferromagnet in the paramagnetic region
obeys a Curie–Weiss law with a negative Curie temperature Tc = −ΘA.

To investigate the possibility of a transition to an antiferromagnetic ordered state in zero external
field, we set H = 0 in (17.2.31) and look for a nontrivial solution by

∣

∣

∣

∣

∣

2T/C − γ11 γ12

γ12 2T/C − γ11

∣

∣

∣

∣

∣

= 0. (17.2.35)

The roots of this equation give a set of two possible transition temperatures, the eigenvectors give
the ratios of the Mi, that is, the relative magnetization of the two sublattices. The solutions for the
transition temperatures are

T =
C

2
(γ11 ± γ12) =

2S(S + 1)

3kB
(z2J2 ± z1J1). (17.2.36)

The solution with the plus (+) sign has T = −ΘA. This describes a transition at negative tem-
perature, not observable. In fact, this solution corresponds to ferromagnetism as is seen from the
eigenvector (M1 = M2), and therefore is an unstable state of the system. The other root has an
eigenvector which gives M1 = −M2, so that the two sublattices are magnetized oppositely. This is
the antiferromagnetic state, and the transition temperature, called the Néel temperature, is

TN =
2S(S + 1)

3kB
(z2J2 − z1J1). (17.2.37)

If there is only nearest neighbor interaction, then J1 = −|J |, J2 = 0, thus

TN = ΘA =
2S(S + 1)

3kB
z1|J |.

17.2.4 Ferrimagnetic Transition

Ferrimagnets are the extension of antiferromagnets, but unlike antiferromagnets, their magnetic
moments on different sublattices cannot fully cancel each other. This means that the antiparallel
configuration of the magnetic moments of two sublattices is the lower-energy state of the system,
but the two types of magnetic moments are different. Néel’s mean-field treatment to ferrimagnetic
transition can give a reasonable explanation of many magnetic properties of ferrites.

Using similar reasoning for antiferromagnets in §17.2.3, we still obtain the expressions (17.2.28)
and (17.2.29) in effective fields, in which the magnetizations of the two sublattices are M1 and M2,
respectively, and γij represent the coupling constants among the same sublattice or between two
sublattices. For ferrimagnets, γ12 = γ21 is still satisfied, and both are negative, but M1 �= M2, and
also γ11 �= γ22. In general, γ11 and γ22 can be positive or negative, but for most of the ferrimagnetic
materials, they are negative; moreover, |γ11| and |γ22| are far less than |γ12|. Taking the z axis
as the symmetry-breaking direction and denoting the effective fields and magnetizations by scalar
quantities, the magnetizations in equilibrium are

Mi = NigLµBSiBSi
(xi), (17.2.38)

where Ni is the number of atoms with spin quantum number Si in unit volume, BSi
(x) and xi are

defined similar to (17.2.12) and (17.2.13), only the spins and total field are changed.
According to (17.2.17), near the transition temperature expasion of the Brillouin function to the

first order can give

Mi =
Ci

T
Hi, (17.2.39)
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where the Curie constant Ci is obtained by adding superscript and subscript i to N and S in
(17.2.23). The next step is to substitute the effective fields with the scalar expressions in (17.2.28).
We can write the following explicit equations

(T − C1γ11)M1 − C1γ12M2 = C1H,

−C2γ12M1 + (T − C2γ22M2) = C2H. (17.2.40)

From these two equations, the magnetizations of the sublattices are obtained, respectively, as

M1 =
C1(T − C2γ22) + C1C2γ12

(T − C1γ11)(T − C2γ22) − C1C2γ2
12

H,

M2 =
C2(T − C1γ11) + C1C2γ12

(T − C1γ11)(T − C2γ22) − C1C2γ2
12

H. (17.2.41)

The total magnetization is M = M1 + M2, and the susceptibility is determined by χ = M/H .
In order to show the relation of susceptibility and temperature, it is more convenient to write its
reciprocal form

1

χ
=

T

C
− 1

χ0
− σ

T − Θ
, (17.2.42)

where C = C1 + C2, the other constants χ0, σ and Θ can all be conveniently determined by the
material parameters Ci and γij . The relation 1/χ − T in (17.2.42) is a hyperbola, as shown in
Fig. 17.1.1(d). Its asymptotic behavior at high temperatures (T → ∞) can be simplified to

1

χ
=

T

C
− 1

χ0
. (17.2.43)

For general ferrimagnetic materials, the intercept −1/χ0 is positive, then one positive temperature
can be defined as

Θ = −C/χ0, (17.2.44)

so (17.2.43) becomes

χ =
C

T + Θ
. (17.2.45)

This expression is very similar in form to the paramagnetic susceptibility of antiferromagnets
(17.2.33). That is to say, at high enough temperatures, the relation between 1/χ and T for fer-
rimagnets is essentially linear, similar to the mean-field results of antiferromagnetic materials.

Taking H = 0 and getting the roots from the coefficient determinant in (17.2.40), we can find
the Néel temperature for a ferrimagnetic transition

TN =
1

2
{C1γ11 + C2γ22 + [(C1γ11 − C2γ22)

2 + 4C1C2γ
2
12]

1/2}. (17.2.46)

Below this Néel temperature, the two sublattices tend to be antiparallel, and spontaneous magneti-
zations can appear. The magnetizations of the sublattices are determined by the two transcendental
equations, also the external field H = 0; then the composite spontaneous magnetization is

M(T ) = M1(T ) + M2(T ). (17.2.47)

Due to the difference of material parameters in ferrimagnets, there are some interesting character-
istics in their magnetic properties which are absent in ferromagnets and antiferromagnets. Generally
speaking, the maximum of magnetization of each sublattice is located at zero temperature, corre-
sponding to M1(0) and M2(0). As the temperature rises, the magnetization decreases and becomes
zero at the Néel temperature. It is possible that the relation of the composite magnetization and tem-
perature is similar to the standard ferromagnetic curve in Fig. 17.1.1(b), but some unconventional
curves can often appear; one example is shown in Fig. 17.2.2. It can be seen from the figure that
the direction of the composite magnetization can be reversed in some temperature range, denoted
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Figure 17.2.2 Reversal of magnetization direction in ferrimagnets.
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Figure 17.2.3 Relation of magnetization-temperature in ferromagnets.

by the dashed line. However, the physical quantity actually measured is |M1(T ) + M2(T )|, i.e., the
solid line in the figure. Then there is a temperature corresponding to the composite magnetization
equal to zero, represented in the figure by Tc, which is called the compensated point. According
to the investigation by Néel, all the M(T )-T curves in Fig. 17.2.3, denoted by Q, P , N , L and M ,
respectively, can appear.

17.2.5 Ferromagnetic and Antiferromagnetic Ground States

In §17.2.2 and §17.2.3, we have seen the appearance of ferromagnetic and antiferromagnetic
ordered phases when the temperature decreases. We are interested here in their ground states.

The Heisenberg Hamiltonian (17.1.15) can be rewritten in the form of raising and lowering
operators,

H = −
∑

i>j

JijSi · Sj = −
∑

i>j

Jij

(

Sz
i Sz

j +
1

2
S+

i S−
j +

1

2
S−

i S+
j

)

, (17.2.48)

here the raising and lowering operators S+
i , S−

i are defined as

S±
i = Sx

i ± iSy
i , (17.2.49)

and the commutation relations are

[Sz
i , S±

j ] = ±δijS
±
i , [S+

i , S−
j ] = 2δijS

z
i . (17.2.50)

It is noted that spin operators for different sites commute.
We can write the difference of the operators

1

2
S−

i S+
j − 1

2
S+

i S−
j = i(Sx

i Sy
j − Sy

i Sx
j ), (17.2.51)
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which is antisymmetric about i and j, so vanishes on summation. Now the Heisenberg Hamiltonian is

H = −
∑

i,j

Jij(S
z
i Sz

j + S−
i S+

j ). (17.2.52)

It is convenient to define Jii = 0, and thus extend the sum over all i, j, without restriction.
Let us consider the state of the coupled spins in which each Sz

i attains its maximum value S.
We call this state |0〉, which represents the completely ferromagnetic state

|0〉 =
∏

i

|S〉i. (17.2.53)

This state has the property that

Sz
i |S〉i = S|S〉i, S+

i |S〉i = 0, (17.2.54)

in which the left equality means any spin takes its maximum quantum number on the z axis, while
the right hand equality says that no spin can be raised. The eigenenergy of this state for Hamiltonian
(17.2.42) is

H|0〉 = E0|0〉, E0 = −S2
∑

ij

Jij .

In the case in which Jij differs from zero only when i and j are nearest neighbors, the sum over
j gives N , the total number of atoms in the crystal. Taking into account the number of nearest
neighbors z, the energy

E0 = −NzS2J. (17.2.55)

The state |0〉 can easily be seen to be the ground state of the system for positive J . If any spin has
less than its maximum z component, then the eigenvalue of (17.2.42) will be less. So, in the case of
ferromagnetic spin systems (J > 0), the state with all spins are aligned along one direction, becomes
the ground state of the Heisenberg Hamiltonian.

It is relatively simple to find out the ferromagnetic ground state. In contrast, the antiferro-
magnetic ordered state described by the molecular field is not the ground state of the Heisenberg
Hamiltonian for quantum spins. In the case of an antiferromagnetic spin system (J < 0) investigated
above, the ordered state in the molecular field approximation consists of two sublattices, in which
all spins on each of the sublattices are aligned anti-parallel along the same direction. But this state
is not the ground state of the Heisenberg Hamiltonian; it is not even an eigenstate.

In the molecular field approximation for the antiferromagnetic spin system, as Anderson (1951)
pointed out,k the Néel state energy is determined solely by the longitudinal part of the exchange
interaction. Therefore the molecular field value

E = NzS2J (17.2.56)

is an upper bound for the ground state energy of antiferromagnetic spin systems. We consider a
cluster consisting of a spin Si on one sub-lattice and its z neighboring spins Si+δ on the other
sub-lattice, which are interacting with the former. The Hamiltonian for this cluster is given by

Hi = −2JSi ·
∑

δ

Si+δ. (17.2.57)

If we write St =
∑

δ Sj+δ, the energy of this spin cluster is given by

−2JSi · St = −J [(Si + St)
2 − S2

i − S2
t ]

= −J [(Si + St)
2 − S(S + 1) − St(St + 1)].

kP. W. Anderson, Phys. Rev. 86, 694 (1951).
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For J < 0, this energy is the lowest when the magnitude of Si + St is St − S. The energy of the
cluster for this case is

−J [(St − S)(St − S + 1) − S(S + 1) − St(St + 1)] = 2JS(St + 1),

which is lowest when St has its maximum value zS. Thus the lowest energy is given by

2JS(zS + 1). (17.2.58)

Since the total Hamiltonian is the sum of (17.2.47) over i, the ground state energy is clearly larger
than N/2 times (17.2.48), so that this value gives a lower bound to the ground state energy EG.
Form (17.2.48), we find the following inequalities

NzJS2 > EG > NzJS2

(

1 +
1

zS

)

. (17.2.59)

The right-hand inequality suggests that the energy is lower than the molecular field approximation,
when the quantum effect increases as zS becomes smaller. The results suggest, in particular, that
in the one-dimensional lattice with spin 1/2 (giving the smallest zS), the ground state energy may
become as low as twice the value of the molecular field approximation.

The ground state of antiferromagnets is an unsolved problem, except in the special case of a
one-dimensional array of spin 1/2 ions with coupling only between nearest neighbors. The rigorous
treatment of the one-dimensional antiferromagnetic ground state is based on the Bethe ansatz. Its
mathematics are quite complicated and we shall not discuss them here. But we will give a simplified
analysis, following Anderson (1972).l For a one-dimensional antiferromagnetic chain with S = 1/2,
we can construct the Néel state

ψN = α(1)β(2)α(3)β(4) · · · , (17.2.60)

where α and β denote two opposite spin states. The energy of this system is

E = 〈ψN|H|ψN〉 = NJzS2/2 = NJ/4. (17.2.61)

For an alternating chain of paired atoms, the state is

ψ =
α(1)β(2) − α(2)β(1)

2
(34)(56) · · · , (17.2.62)

and the energy is

E =
NJ

2
S(S + 1) = 0.75NJ, (17.2.63)

which is lower than the energy in (17.2.61), but much closer to the correct energy E0 = 0.886NJ .
These solutions of the chain are obtained by writing the wavefunction as a linear combination

of products of pair-bond wave functions of the type of (17.2.62). Anderson called it the resonating
valence bond (RVB) model, schematically shown in Fig. 17.2.4. Furthermore, Anderson applied this
treatment to a two-dimensional case of a triangular lattice divided into three sublattices with spins
of the three sublattices at 120◦ to each other. The energy of this state is

E△
N = NJ

(

3 × 1

2
S2

)

= 0.75NJ, (17.2.64)

with each spin parallel to its local field. This energy as is

E△
N = 2 × (0.463± 0.007)NJ. (17.2.65)

The two-dimensional case also permits a pair-bond trial wave function. The ground state may
be that in which these many different bond configurations are linearly combined in the same wave-
function to lower the energy. Further result shows

E△ = 2 × (0.54 ± 0.01)NJ. (17.2.66)

lP. W. Anderson, Mat. Rev. Bull. 8, 153 (1973); P. Fazekas and P. W. Anderson, Phil. Mag. 30, 432 (1974).
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Figure 17.2.4 Two-dimensional resonating valence bonds.

At absolute zero, the Néel state can be consistently postulated to be a locally stable minimum
in the total energy, but not the absolute minimum. The relation between the Néel state and the
real ground state is that of a quantum solid versus a quantum liquid. The Néel state is a solid: it
has condensed into a spin lattice, whereas the real ground state is a fluid of mobile valence bonds,
i.e., pairs of spins correlated together into singlets. The two states are so far apart in phase space as
to be unavailable quantum-mechanically to each other. LiNiO2, with a triangular lattice, has been
recognized as a possible candidate for RVB as antiferromagnetic ground state. But actually, due to
the interaction between the spin order and orbital order, it is more complicated than expected.m

§17.3 Theory Based on Itinerant Electrons

We have considered the magnetism that may be treated as though the electrons are contained
within the cores of the atoms in solids. However, there are magnetic metals in which magnetism
arises from conduction electrons. In the following, we will discuss the problem in the band picture.
For conduction electrons with exchange interactions, we can understand why certain metals are
ferromagnetic (Fe, Co, Ni), antiferromagnetic (Cr, Mn, γ-Fe) or nonmagnetic (Sc, V, Ti, etc.).

17.3.1 Mean-Field Approximation of Hubbard Hamiltonian

There is 5-fold orbital degeneracy for d electron, but for simplicity, we only consider the one-
band model. Since the d-orbitals in the transition metals are much more localized than those of
the s-electrons, the overlap of d-wavefunctions is much less than the s-wavefunctions. So we treat
a conduction-electron system in one band with short-range interaction, i.e., an electron system
described by the Hubbard Hamiltonian (17.1.16). Under the mean-field approximation, (17.1.16)
can be rewritten in the form

H =
∑

ijσ

Tijc
†
iσciσ + U

∑

iσ

niσ〈niσ̄〉. (17.3.1)

In a homogeneous system, 〈niσ̄〉 has no dependence on position, so

〈niσ̄〉 = 〈nσ̄〉.

Now (17.3.1) becomes

H =
∑

ijσ

Tijc
†
iσciσ + U

∑

iσ

〈nσ̄〉c†iσciσ. (17.3.2)

We can transform this into the Bloch representation,

H =
∑

kσ

εkσc†kσckσ +
∑

kσ

U〈nσ̄〉c†kσckσ. (17.3.3)

The first term is the total energy of band electrons; its value is a minimum for nσ = nσ̄. The second
term represents the Coulomb energy for anti-parallel electrons; its value is lower, when the difference

mFor the magnetic order of LiNiO2, the experimental investigation can be seen in R. Reynaud et al., Phys. Rev.
Lett. 86, 3638 (2001); and theoretical study in Y. Q. Li et al., Phys. Rev. Lett. 81, 3537 (1998).
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of electron numbers with antiparallel spins increases. The competition of these two terms might lead
to the splitting of energy band. This is the Stoner model. To be clear, (17.3.3) is rewritten as

H =
∑

kσ

Ekσc†kσckσ , (17.3.4)

with
Ekσ = εkσ + U〈nσ̄〉, (17.3.5)

to represent the energy of an itinerant electron. Although (17.3.4) is analogous to a Hamiltonian
describing noninteracting electrons, the single electron energy Ekσ is correlated to the number of
antiparallel electrons.

Actually U provides a molecular field for the energy band electrons. Define

n = 〈n↑〉 + 〈n↓〉, m = 〈n↑〉 − 〈n↓〉, (17.3.6)

in which n is the number of itinerant electrons for each atom, and m is the relative magnetization
per atom. If N is the number of atoms in unit volume, the magnetization is

M = NµBm. (17.3.7)

From (17.3.6) and (17.3.7), we have

〈nσ〉 =
1

2
(n + σm), σ = ±1, (17.3.8)

so

Ekσ =

(

εkσ +
1

2
nU

)

− σµB

(

U

2Nµ2
B

M

)

. (17.3.9)

The second term corresponds to a molecular field. If 〈n↑〉 �= 〈n↓〉, the energy band splitting is

Ek↓ − Ek↑ = U(〈n↑〉 − 〈n↓〉) ≡ 2∆, (17.3.10)

as schematically shown in Fig. 17.3.1, there is spontaneous magnetization in the system.

g
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↑
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↓
(E)g

↑
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(a) (b)

Figure 17.3.1 Band splitting of ferromagnetic phases in transition metals. g↑(E) is the density of states
with spin up, and g↓(E) is the density of states with spin down. (a) Half-metallic ferromagnet with full spin
polarization; (b) ordinary ferromagnet with partial spin polarization.

17.3.2 Stoner Theory of Ferromagnetism

First we should like to introduce the Stoner criterion for ferromagnetism. According to (17.3.6),
the population of itinerant electrons in the Bloch state (kσ) satisfies Fermi distribution

〈c†kσckσ〉 = 〈nkσ〉 = f(Ekσ).
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If there is an applied field H , we can rewrite (17.3.9) as

Ekσ = εkσ − σµB

(

H +
U

2Nµ2
B

M

)

, (17.3.11)

where the constant term (1/2)nU is omitted. By translation invariance, the magnetization is

M(T ) = NµB(〈n↑〉 − 〈n↓〉) = µB

∑

k

[f(Ek↑) − f(Ek↓)]. (17.3.12)

This is a self-consistent equation in combination with (17.3.11). The detailed result will depend on
the band structure. For weak magnetic field and weak mean field, f(Ekσ) can be expanded and

M(T ) ∝ 2µ2
B

(

H +
U

2Nµ2
B

M

)∫ ∞

0

[

−∂f(E)

∂E

]

g(E)dE, (17.3.13)

where g(E) is the density of states. This is the generalization of (6.3.51) by adding the molecular
field to the external field.

For itinerant electrons, U �= 0, by using (6.3.52), we have

M(T ) =
χp(T )

1 − 2(U/N)[χp(T )/4µ2
B]

H ≡ χ(T )H, (17.3.14)

where χp(T ) is the paramagnetic susceptibility of itinerant electrons. Taking 4µ2
B as the unit of

magnetic susceptibility, we can see from (17.3.14) that χ0(T ) becomes infinite when 2(U/N)χp(T ) =
1. This shows that the paramagnetic phase is unstable and a spontaneous magnetization appears.
The condition of stability for the ferromagnetic phase is

2
U

N
χp(T ) > 1. (17.3.15)

In terms of (6.3.52), χp(T = 0)/4µ2
B = g(EF)/2, the condition of ferromagnetism at zero tempera-

ture is
U

N
g(EF) > 1. (17.3.16)

This is called the Stoner criterion. Now the ferromagnetic ground state is energetically more favor-
able, and the total numbers for electrons with spin up and spin down are not the equilibrium values,
as indicated in Fig. 17.3.1. Moreover, according as the interaction is strong or weak, one can have
total or partial ferromagnetism.

For the paramagnetic phase at zero temperature, we find that

χ(T = 0) =
χp(T = 0)

1 − (U/N)g(EF)
. (17.3.17)

It is clear that, due to the interaction U , the paramagnetic susceptibility at T = 0 K should be
multiplied by the Stoner factor S

S =
1

1 − (U/N)g(EF)
. (17.3.18)

It can be seen from the Stoner criterion (17.3.16) that whether there is ferromagnetism from
the itinerant electrons depends on the product of the interaction constant and the DOS at Fermi
surface. Figure 17.3.2 gives the results from a theoretical computation of the exchange integral J
and the DOS at Fermi surface g(EF) for some metals in the periodic table. It is to be noted that
the exchange integrals J of some simple metals, like Li, Be, Na, Mg, K, are obviously larger than
those of Fe, Co, Ni, but for g(EF) the former is much smaller than the latter. The reason for Fe, Co,
Ni becoming metallic ferromagnets is that their J and g(EF) are all relatively larger, so the Stoner
criterion is satisfied. In the periodic table, the whole trends of variation for J and g(EF) may be
summarized as: in general, J decreases with Z, but in the transition metal group, J increases with
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Figure 17.3.2 Exchange integral J and DOS at Fermi surface g(EF) with atomic number.

Z. The s band and p band of simple metals are wide, so their g(EF) are small, while the d bands of
transition metals are narrow, so g(EF) is larger. In transition metals, the tendency for localization
of electronic orbitals near the top of d bands makes J and g(EF) larger. These characteristics may
explain why Fe, Co, Ni of 3d group are ferromagnets.

Now we will discuss the spontaneous magnetization. For a transition metal satisfying the con-
dition (17.3.16), the spin polarization may be strong or weak, determined by its d electron band
structure. To study the spontaneous magnetization, we consider the situation at T �= 0 K without
an applied field. The electronic energy from (17.3.11) is

Ekσ = εkσ − 1

2
σUm, (17.3.19)

and the Fermi distribution function is

f(Ekσ) =

[

exp
Ekσ − 1

2σUm − µ

kBT
+ 1

]−1

, (17.3.20)

where µ is the chemical potential and equal to the Fermi energy EF at T = 0 K.
The total number of electrons in the spin-up band N+ is

N+ =

∫ ∞

0

[

exp
E − 1

2Um − µ

kBT
+ 1

]−1

g(E)dE, (17.3.21)

where the density of states can be different for different metals. We take the free electron form for
further calculation,

g(E) =
3

4
NE

−3/2
F E1/2. (17.3.22)

For convenience, we use the following abbreviations

x =
E

kBT
, η =

µ

kBT
, β =

Um

2kBT
, (17.3.23)

and define the function

F1/2(α) =

∫ ∞

0

x1/2dx

ex−α + 1
. (17.3.24)
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Then

N+ =
3

4
N

(

kBT

EF

)3/2

F1/2(η + β). (17.3.25)

Similarly the total number of electrons in the spin-down band is

N− =
3

4
N

(

kBT

EF

)3/2

F1/2(η − β). (17.3.26)

The total number of electrons in two spin directions is N = N+ + N−, and the magnetization
becomes M = µB(N+ − N−). We write them as

N =
3

4
N

(

kBT

EF

)3/2
[

F1/2(η + β) + F1/2(η − β)
]

, (17.3.27)

and

M =
3

4
NµB

(

kBT

EF

)3/2
[

F1/2(η + β) − F1/2(η − β)
]

. (17.3.28)

For ferromagnetic metals, µ is usually several eV, but kBT ∼ 2.5 × 10−3 eV for T = 300 K,
so η ≫ 1. Starting from (17.3.27) and (17.3.28), after a little mathematics, we get the following
equation

U

EF
=

1

m
[(1 + m)2/3 − (1 − m)2/3]

[

1 +
π2

12

(

kBT

EF

)2

(1 − m2)−2/3

]

, (17.3.29)

which we will now use to determine the spontaneous magnetization.
When T = 0 K, (17.3.29) is reduced into

U

EF
=

1

m

[

(1 + m)2/3 − (1 − m)2/3
]

. (17.3.30)

We can write the condition for spontaneous magnetization

4

3
<

U

EF
< 22/3. (17.3.31)

When T = Tc, m = 0, so the Curie temperature can obtained from (17.3.31)

π2

12

(

kBTc

EF

)2

=
3

4

U

EF
− 1. (17.3.32)

Near the Curie point, m ≪ 1, and also noting that EF ≫ kBT , (17.3.29) can be approximated to

m2 =
9π2

8

(

kBTc

EF

)2
[

1 −
(

T

Tc

)2
]

, (17.3.33)

or

M = M0
3π

2
√

2

(

kBTc

EF

)

[

1 −
(

T

Tc

)2
]1/2

, (17.3.34)

which differs from the result M(T ) ∼ (Tc−T )1/2 from molecular field theory. When T > Tc, the sys-
tem is in the paramagnetic phase; in a reasonable approximation, from (17.3.14), the paramagnetic
susceptibility is derived

χ(T ) ∼ T 2
F

T 2 − T 2
c

, (17.3.35)

which is different from the Curie–Weiss law.
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The Stoner band model is in agreement with almost all experimental measurements related to the
d-bands, such as electronic specific heat, Fermi surface, transport properties, etc., and also explains
the non-integer values of magnetization at T = 0. Anyway, the band model gives a satisfactory
explanation for many properties of metals and alloys. But it should be noted that the Stoner theory
is a mean-field theory for itinerant ferromagnets and there are still some discrepancies between
experiment and theory. For a better understanding of these properties, it is necessary to have
detailed knowledge of the band structure; it is also necessary to treat the interactions between the
electrons in a less simplistic way, i.e., to include the fluctuations.

17.3.3 Weak Itinerant Ferromagnetism

We have seen above that the itinerant electron model description of the ferromagnetism of transi-
tion metals is very successful, however, its shortcomings are also obvious, especially the temperature
dependence of the magnetization, as well as the paramagnetic susceptibility, is inconsistent with
Curie–Weiss law. On the other hand, the Tc values estimated from this model for transition metals
are often too high. The reason is that spin fluctuation has not been taken sufficiently into account;
this is a common fault for mean-field theory. However we may note here that there is an interesting
class of materials known as very weak itinerant ferromagnets which have very low Curie tempera-
tures, i.e., ∼ 10 K, and the energy splitting between the up and down spin subbands is very small.
In these materials the temperature dependence of magnetization and susceptibility are in consistent
with (17.3.34) and (17.3.35).

Theoretical consideration can similarly begin from (17.3.21), but now we allow an applied mag-
netic field, so the number of electrons with positive or negative spin can be written as

N± =

∫ ∞

0

[

exp
E − µ ∓ 1

2Um ∓ µBH

kBT
+ 1

]−1

g(E)dE. (17.3.36)

The reduced magnetization is a function of temperature, as well as magnetic field, i.e., m = m(H, T ).
Weak itinerant ferromagnetism means m0 = m(0, 0) ≪ 1. If the applied field is not very strong,
it is reasonable to assume m(H, T ) ≪ 1. Therefore, (17.3.36) can be expanded for temperatures
satisfying kBT/EF ≪ 1, we have

2

N
g(EF)

(

mU

2
+ µBH

)

= m

[

1 + α

(

T

Tc

)2
]

+ γm3 · · · , (17.3.37)

with

α =
1

6
π2(kBTc)

2(D2
1 − D2), γ =

1

8

[

N

g(EF)

]2 (

D2
1 − D2

3

)

, Dν = g(ν)(EF)/g(EF),

where Tc is the Curie temperature and g(ν)(EF) is the ν-order derivative of g.
It is found from (17.3.37) that, at zero temperature and zero applied field, there is an expression

1

N
g(EF)U = 1 + γm2

0, (17.3.38)

which returns to the Stoner criterion when its right-hand side is ≥ 1. So γ ≫ 0 is required. This is
the necessary, but not sufficient, condition for the appearance of weak ferromagnetism.

Defining a zero-field dynamic susceptibility as

χ0 = χ(0, 0) =

(

∂M(H, T )

∂H

)

0,0

, (17.3.39)

it can be deduced that

χ0 = g(EF)µ2
Bµ0/γm2

0. (17.3.40)
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This formula tells us that the susceptibility increases with decreasing m0 and this has physical
meaning. From (17.3.37) and (17.3.38), and Tc as the divergent temperature for (∂m/∂H)H=0, i.e.,
(∂H/∂m)m=m(0,Tc) = 0, we have

α = γm2
0. (17.3.41)

Because α is proportional to T 2
c , so above expression can be used to determine Tc.

From (17.3.38) to (17.3.41), (17.3.37) can be written into

[

M(H, T )

M(0, 0)

]3

−
[

M(H, T )

M(0, 0)

]

[

1 −
(

T

Tc

)2
]

=
2χ0H

M(0, 0)
, (17.3.42)

or further into
M2(H, T ) = M2(0, 0)[1 − (T/Tc)

2 + 2χ0H/M(H, T )]. (17.3.43)

So the theory predicts that, at different temperatures, the relation between M2 and H/M gives a
series of parallel straight lines, and the line for T = Tc passes through the origin. This type of plot
is called an ‘Arrott chart’. The parallel straight lines in Fig. 17.3.3 describe this variation, and are
the results of one typical weak itinerant ferromagnet, ZrZn2.

From (17.3.42), the temperature dependence of zero-field dynamic susceptibility χ = χ(0, T ) can
be given above or below Tc

χ =



























χ0

[

1 −
(

T

Tc

)2
]−1

, T < Tc,

2χ0

[

(

T

Tc

)2

− 1

]−1

, T > Tc.

From (17.3.43), we find that the temperature dependence of spontaneous magnetization is

M2(0, T ) = M2(0, 0)

[

1 −
(

T

Tc

)2
]

, (17.3.44)

that is to say, if the relation of M2 and T 2 is plotted, it should be a straight line. This was verified
in the investigation of the compound ZrZn2, as shown in Fig. 17.3.4.
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17.3.4 Spin Density Waves and Antiferromagnetism

Antiferromagnetism in metals can also be investigated in the band approach when the electron-
electron interaction is considered. Its ground state is characterized by a periodic modulation of
spin density. This type of ground state was first proposed by Overhauser (1960, 1962) for isotropic
metals;n by common consensus, the antiferromagnetism of chromium is due to spin density waveso

and it has been confirmed that spin density waves appear in highly anisotropic, so-called quasi-one-
dimensional, metals.p

Just as in §6.3.4, we introduce a spatially varying external magnetic field along the z axis

H(r) =
∑

q

Hqeiq·r. (17.3.45)

The coupling of the electron system to this field is described by an extra term

H′ = −
∑

q

MqH−q, (17.3.46)

where Mq is the q-th component of magnetization along z and can be related to the spin operator by

Mq = gLµBSq. (17.3.47)

Now we can write the total Hamitonian as

H =
∑

kσ

εkc†kσckσ + U
∑

i

ni↑ni↓ −
∑

q

MqH−q. (17.3.48)

This Hamiltonian can be rewritten as

H =
∑

kσ

Ekc†kσckσ − 2U

g
2
Lµ2

B

∑

q

MqM−q −
∑

q

MqH−q, (17.3.49)

where Ek = εk + nU/2. The first term describes the non-magnetic behavior, and the last two terms
are related to magnetism. We can write these last two terms as

−
∑

q

M−q

(

Hq +
2U

Ng
2
Lµ2

B

Mq

)

.

The term (2U/Ng
2
Lµ2

B)Mq acts exactly as a mean field. By definition,

Mq = χ(q)Hq = χ0(q)

(

Hq +
2U

Ng
2
Lµ2

B

Mq

)

, (17.3.50)

from which

χ(q) = χ0(q)

(

1 +
2U

Ng
2
Lµ2

B

χ(q)

)

. (17.3.51)

We can find in the normalized susceptibility, in unit of g
2
Lµ2

B, that

χ(q) =
χ0(q)

1 − (2U/N)χ0(q)
. (17.3.52)

nA. W. Overhauser, Phys. Rev. Lett. 4, 462 (1960); Phys. Rev. 128, 1437 (1962); Phys. Rev. 167, 691 (1968).
oE. Fawcett, Rev. Mod. Phys. 60, 209 (1988).
pG. Grüner, Rev. Mod. Phys. 66 1 (1994).
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The normalized susceptibility of independent particles was given in §6.2, i.e.,

χ0(q) =
∑

k

f(Ek+q) − f(Ek)

Ek − Ek+q

. (17.3.53)

For a given q, χ(q) may become infinite at the temperature Tc(q) when

2U

N
χ0(q) = 1. (17.3.54)

If, at T = 0, this condition is not satisfied for any value of the q the system is non-magnetic at
all temperatures. If it is satisfied for various values of q, a system which is non-magnetic at high
temperature will be ordered at the temperature Tc = max [Tc(q)].

We obtain ferromagnetic order if q0 = 0 and antiferromagnetic order if q0 = π/a for a simple
cubic, for example. If q0 has an arbitrary value, there may be two types of order (the z axis being
arbitrary), i.e., one is a sinusoidal spin density wave with

M(Ri) = M0 cos(q0 · Ri), (17.3.55)

and the other is a helicoidal spin density wave with

Mx(Ri) = M0 cos(q0 · Ri), My(Ri) = ±M0 sin(q0 · Ri). (17.3.56)

The choice of plus or minus corresponds to two possible rotations of the magnetization when q0 ·Ri

increases. Starting with these three spin density waves, one may construct spin density waves of any
polarization. At Tc, one of the three spin density waves builds up with an infinitesimal amplitude.
The existence of static spin density waves depends crucially on the zero order susceptibility χ0(q).
We have seen the form of χ0(q) for free particles: In this case q0 = 0 and the system becomes
ferromagnetic. In general χ0(q) depends in a detailed fashion on the band structure, but one can
give some general guidelines: χ0(q) is important if, for a large number of k values, (Ek − Ek+q)
is small. This situation occurs if two portions of the Fermi surface coincide (nearly) over a large
area for a translation of wavevector q0 or q0 + K. This condition is just the one which gives Kohn
anomalies.

In one dimension χ0(2kF) is infinite, and there is an instability for any infinitesimal value of the
interaction for q0 = 2kF. In three dimensions, χ0(q) is finite. But with a Coulomb interaction,
the Hartree–Fock theory gives an instability for q0 = 2kF whatever the strength of the interaction
may be.
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Chapter 18

Superconductors and Superfluids

§18.1 Macroscopic Quantum Phenomena

The key to the theoretical understanding of macroscopic quantum phenomena was provided by
Einstein (1924) in his prediction of the Bose–Einstein condensation (BEC) of an ideal gas composed
of identical bosons. Although the first experimental confirmation of the BEC of dilute gases with
very weak interactions (close to an ideal gas) came much later (1995), the postulate of BEC in
quantum liquids has enabled the study of superconductivity and superfluidity and has stood the
test of time.a Here, we will give a brief account of BEC and subsequent experimental verification,
before a general introduction of superfluids and superconductors.

18.1.1 The Concept of Bose Einstein Condensation

Quantum statistical mechanics predicts that there is a phase transition in an ideal gas of identical

bosons when the thermal de Broglie wavelength λT = (2π�/kBT )
1/2

exceeds the mean spacing
between particles. Under such conditions, bosons are stimulated by the presence of other bosons in
the lowest energy state to occupy that state as well, resulting in the macroscopic occupation of a
single quantum state i with energy εi satisfying the distribution

ni(T ) =
1

exp [β (εi − µ)] − 1
, (18.1.1)

where β = 1/kBT and µ is the chemical potential. The total number of particles, N , will be given
by summing over the quantum states i

N =
∑

i

1

exp [β (εi − µ)] − 1
(18.1.2)

at any temperatures. Because the particle number is now conserved, the chemical potential is
determined from (18.1.2). When T is low enough, all particles are in the state with lowest energy
ε0, so it is reasonable to assume

n0(T ) ≡ N0(T ) =
1

exp [β (ε0 − µ)] − 1
≈ N. (18.1.3)

Because N is a macroscopic number (∼ 1023 say), the exponent in (18.1.3) is very small, with
the result that kBT/ (ε0 − µ) ≈ N . It follows that µ is very close to ε0, but just below it. Also,
since the number of particles in the next higher level n1(T ) ≪ N , (ε1 − µ) ≫ (ε0 − µ). Therefore

aFor the original theoretical prediction, see A. Einstein, Sitzgber Press Acad Wissen 3 (1925); the first observation on
BEC of dilute gases, see M. H. Anderson et al., Science 269, 198 (1995); the early explanation for superconductivity
and superfluidity as macroscopic quantum phenomena, see F. London and H. London, Proc. Roy. Soc. (Lond.)
A149, 71 (1935), and F. London, Superfluids: Vols. I, II., Wiley, New York, 1950, 1964.
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the gap between ε1 and ε0 is much larger than that between ε0 and µ. At finite temperatures µ is
further below ε0.

Under cyclic boundary conditions, the quantum states of free atoms in a box can be characterized
by wavevectors q, and their energy levels are εq = �

2q2/2M . In an independent system, ε can be
treated as a continuous variable, and we can introduce the density of states

g(ε) =
V

4π2

(

2M

�2

)3/2

ε1/2. (18.1.4)

The summation over states in (18.1.2) is now replaced by an integral over ε, but it should be noted
that the integral does not include the particles in the ground state, due to g(0) = 0. The omission
of the particles with ε = 0 is serious since N0(T ) can be of order N at low temperatures. Thus, we
must write

N = N0(T ) + N ′(T ), (18.1.5)

where

N ′(T ) =
V

4π2

(

2M

�2

)3/2 ∫ ∞

0

ε1/2dε

exp[β(ε − µ)] − 1
. (18.1.6)

Because µ � 0, at a given temperature this expression takes its maximum value for µ = 0, so putting
µ = 0 gives us an upper bound for N ′(T ). With x = βε, we have

N ′(T ) �
V

4π2

(

2MkBT

�2

)3/2 ∫ ∞

0

x1/2dx

ex − 1
. (18.1.7)

The definite integral in (18.1.7) can be evaluated and is 2.612 × √
π/2, and the maximum number

of particles in excited states is therefore

N ′
m(T ) = 2.612V

(

MkBT

2π�2

)3/2

. (18.1.8)

At sufficiently high temperatures, N ′
m(T ) is large enough for all the particles to be accommodated

in excited levels. However, as the temperature is reduced, a critical temperature Tc is reached below
which N ′

m(T ) is less than N . In other words, below Tc particles start moving into the lowest energy
level, and do so in increasing number as the temperature is lowered further. The critical temperature
Tc is thus defined by setting N ′

m(Tc) = N , which yields

Tc =
2π�

2

MkB

(

N

2.612V

)2/3

. (18.1.9)

Combination of the last two equations shows that the number of particles in excited states is

N ′(T ) = N

(

T

Tc

)3/2

. (18.1.10)

The remaining particles are in the ground state, and from (18.1.10), we find

N0(T ) = N

[

1 −
(

T

Tc

)3/2
]

. (18.1.11)

At absolute zero all the particles are in the lowest energy level; above Tc almost all the particles
are in excited levels. Between absolute zero and Tc the particles are divided into two groups, some
in the lowest level and some in excited levels. In a system of macroscopic size, the single particle
quantum state with lowest energy remains occupied by a macroscopically large number of particles
up to a finite temperature (see Fig. 18.1.1). This is the BEC: The particles in the lowest level
comprising what is called the “condensate”. However, this condensation is quite different from what
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(a) (b)

E E

Figure 18.1.1 Schematic diagram showing occupation of energy levels for a BE condensate of ideal gas:
(a) T = 0; (b) 0 < T < Tc.

occurs, for example, when a gas is liquified. In the latter, the particles form two phases separated
by a well defined boundary in position space. In contrast, the BEC can be regarded as a separation
in momentum space, but there is no physical boundary between the condensate and the excited
particles. Nevertheless, the particles are ordered according to their momenta, and from this point
of view, the BEC is an example of an order-disorder transition. BEC provides a basic concept for
macroscopic quantum phenomena, such as superfluidity and superconductivity. Though real bosons
have interactions, BEC happens in the case of real quantum gases and liquids. Since entropy is
carried by the thermally excited particles, these particles form a normal fluid, while the condensate,
in which a macroscopic number of particles have zero momentum, forms a kind of superfluid.

Since the theory of BEC was originally proposed for an ideal gas, a crucial problem has been
how to generalize this to a gas of interacting bosons. This problem was first tackled by Bogoliubov
(1947) in his theory of superfluidity for a system of weakly repulsive bosons. Then Penrose and
Onsager (1956) gave a more general theory showing that the BE condensate may survive, in the
case of interacting bosons, as a state with long range order in momentum space or, in the more
precise way introduced by C. N. Yang, with off-diagonal long range order. It was suggested that
this state may be characterized by an off-diagonal component of a density matrix.b We may write
the density matrix in terms of the creation and annihilation operators Ψ̂†(r) and Ψ̂(r)

ρ(r, r′) = 〈Ψ̂(r)Ψ̂†(r′)〉 = N0cΨ0(r)Ψ∗
0(r

′) + g(r − r′), (18.1.12)

whereˆ is introduced to distinguish operators from one-particle states, 〈· · ·〉 denotes the statistical
average, and g(r−r′) is the short-range correlation within the de Broglie wavelength at a temperature
T . It is assumed that the wavefunction Ψ0(r) of the condensate changes over a macroscopic scale.
There is only short range order in the high temperature phase. However, |r − r′| reaches infinity
in the Bose–Einstein condensation (BEC), and ρ(r, r′) remains finite and of the order of particle
density, which is called off-diagonal long range order (ODLRO). In comparison, crystalline order
is characterized by periodic variation of density n(r) in space. It should be emphasized that the
ODLRO can only arise in a system of particles governed by quantum statistics, while crystalline
order readily appears in a system of particles obeying classical statistics though their interactions
may have a quantum nature. Although a system of fermions does not condense into a single-particle
state due to the Pauli principle, an ODLRO in a two-particle density matrix associated with the
pair formation of particles may appear.

Now we may show schematically the occupation of energy levels for the BE condensate of inter-
acting bosons in Fig. 18.1.2. Compared with the ideal gas, two differences should be noted: First,
the number of particles condensing into the lowest level is reduced, i.e., at 0 K, not all particles are
in the lowest level, which means that the condensate is depleted by interactions. Second, the nature
of the excited levels is altered, as shown by the excited levels in superfluid at 0 K and the additional
excitations above 0 K. The normal fluid fraction is related to these thermal excitations. It should

bsee N. N. Bogoliubov, J. Phys. USSR 11, 1923 (1947); R. Penrose and L. Onsager, Phys. Rev. 104, 412 (1956);
C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
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T=0
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Figure 18.1.2 Schematic diagram showing occupation of energy levels for a BE condensate of interacting
bosons: (a) T = 0; (b) 0 < T < Tc.

be noted that, due to interactions, the condensate fraction is no longer identified with the superfluid
fraction; the latter is 100% at 0 K, while the former may be much smaller.

18.1.2 Bose Einstein Condensation of Dilute Gases

In the real world there is no ideal gas to give a direct test of the theory of BEC. The closest
approximation to an ideal gas is a dilute gas with weak interactions. In 1995, the first successful BEC
of a trapped dilute gas of Rb atoms, under ultra low temperature with laser cooling plus evaporation
cooling, was achieved by E. Cornell and C. Wieman. Afterwards BEC for other dilute gases such
as Na, Li, 1H as well as the metastable first excited state of 4He have been also realized. So a new
family of condensed matter (condensed in momentum space) have been added to our repertoire.
The challenge was to cool the gases to temperatures below 1 µK, while preventing the atoms from
condensing into a solid or liquid. These neutral atoms are cooled by using a combination of laser and
evaporative cooling to the very low temperatures (under 100 nK). The laser cooling can produce
confined gases at relatively low densities around 1012 atoms cm−3 and the number of atoms in the
trap is typically about 103–107. These alkalis are effectively weakly interacting gases at sufficiently
low temperatures, so that the interaction does not overwhelm the nature of quantum statistics in
the BEC process. Then the quantum statistics of particles, rather than the interactions between
them, dominates the transition.

The fact that these gases are highly inhomogeneous has one important consequence: At the
critical temperature, a sharp peak was observed, centered at the zero velocity in velocity distribution.
This shows the obvious character of BEC, i.e., the BEC shows up not only in momentum space,
but also in real space. This double possibility of investigating the effects of condensation is very
interesting from both theoretical and experimental viewpoints. Preceeding and parallel to this
dramatic experimental progress, a large body of theoretical work has been done on trapped dilute-
gas BE condensates. An impressive agreement between theory and experiment has already been
achieved for such things as condensate size, shape, interaction energy and excitation frequencies.

The confining potential for alkali atoms in the magnetic traps now used is in the quadratic form

V (r) =
M

2
(ω2

xx2 + ω2
yy2 + ω2

zz2). (18.1.13)

As a first step, we consider an ideal Bose atomic gase, i.e., ignoring atom-atom interactions. The
Hamiltonian of the system is the sum of single-particle Hamiltonians whose eigenvalues have the
form

εnxnynz
=

(

nx +
1

2

)

�ωx +

(

ny +
1

2

)

�ωy +

(

nz +
1

2

)

�ωz, (18.1.14)

here nx, ny, nz are non-negative integers. The ground state is described by the wavefunction

Ψ(r1, . . . , rN ) =
∏

i

Ψ0(ri), (18.1.15)
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in which

Ψ0(r) =

(

Mω0

π�

)1/3

exp

[

−M

2�
(ωxx2 + ωyy2 + ωzz

2)

]

, (18.1.16)

where ω0 represents the geometric average of the oscillator frequencies

ω0 = (ωxωyωz)
1/3. (18.1.17)

The density distribution then becomes ρ(r) = N |Ψ0(r)|2, and its value grows with N . The size
of the cloud instead is independent of N and is given by the harmonic oscillator length

a0 =

(

�

Mω0

)1/2

. (18.1.18)

which corresponds to the average width of the Gaussian in (18.1.16). This is an important length
scale, which is typically of the order of 1 µm in experiments. At finite temperatures only a fraction
of the atoms occupy the lowest state, the others being thermally distributed over the excited states.
The radius of the thermal cloud is larger than a0 and, with a rough estimate, is aT = a0(kBT/�ω0)

1/2,
for kBT ≫ �ω0.

One can derive from quantum statistics of an ideal gas in a harmonic trap the T dependence of
the condensate fraction for T < Tc

N0

N
= 1 −

(

T

Tc

)3

, (18.1.19)

where Tc is the predicted critical temperature for an ideal gas in a harmonic trap in the thermo-
dynamic limit. It is different from that for a uniform ideal gas in (18.1.11), with a T 3 dependence
instead of a T 3/2 one. The experimental curve slightly deviates from the simple theoretical one, but
the agreement can be improved by including a correction for the finite number of atoms (∼ 4000)
in the condensate (Fig. 18.1.3). The condensate fraction at 0 K is about 99%, showing that the
depletion due to the interaction is small.

The appearance of the condensate as a narrow peak in both real space and momentum space is a
peculiar feature of trapped Bose gases which has important consequences in both experiments and
theory. The spatial variation of the condensate density has been observed by the absorption of an
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Figure 18.1.3 The condensate fraction number N versus the scaled temperature for a BE condensate
of Rb gas of 4000 atoms: the solid curve is the theoretical curve for ideal gas in harmonic trap in the
thermodynamic limit; the dotted curve includes a correction for the finite number of atoms; the dashed
curve is the best fit for the experimental data, shown as points. From J. R. Ensher et al., Phys. Rev. Lett.

77, 4984 (1996).
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Figure 18.1.4 The condensate column density versus the radial coordinate: the dashed line is the theoretical
prediction for non-interacting cloud; solid line is theoretical curve with inclusions of two-body interactions
verified by experimental data shown as points. From F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).

appropriate laser light: The observed peaks are much modified by the interactions between atoms
as shown in Fig. 18.1.4. After all, weak interactions between atoms have important roles to play in
many delicate experiments on BE condensates.

Due to the low occupation of the ground state, the superfluidity of Bose–Einstein condensation
(BEC) is rather difficult to observe. There is reliable, but indirect, experimental evidence for the
superfluidity of BE condensates of dilute gases, one of which is the vortex formation to be discussed in
the following section. The fact that atoms in a BE condensate occupy the ground state is somewhat
similar to photons occupying a single quantum state, with identical momentum and energy, in a laser
beam. However, photons are massless, and their number is not a conserved quantity, so lowering the
temperature will not induce BEC of photons. A laser beam can be produced by a nonequilibrium
process: Pumping electrons to a higher energy level will achieve the population inversion, then
stimulated emission will outstrip absorption in a laser cavity. A BE condensate of atoms in a trap
may be coupled out of the trap as a beam of atoms with definite momentum and energy. This beam
of atoms has the same monochromatic and parallel qualities as a laser beam, and is called the atom
laser. This feat was first achieved with a Na beam by W. Ketterle et al. who confirmed its coherent
nature.c

18.1.3 The Superfluidity of Liquid Helium

We consider a collection of helium atoms. Because of its high zero point energy and small atomic
mass, helium remains in the liquid state for a wide range of pressures all the way down to absolute
zero. Helium occurs naturally in two kinds of stable isotopes: 3He and 4He. 3He with nuclear spin 1/2
obeys Fermi statistics, while 4He with nuclear spin 0 obeys Bose statistics. At very low temperatures,
where quantum effects become important, 3He and 4He provide two of the few examples in nature
of quantum liquids. Liquid 4He, which is a Bose liquid, exhibits a rather straightforward transition
to a superfluid state at T = 2.17 K. This can be understood as a condensation of particles into a
single quantum state. Liquid 3He, being a Fermi liquid, also undergoes a transition to a superfluid
state by the formation of atomic pairs, but at a much lower temperature T < 2.7 × 10−3 K.

There are some striking physical properties of 4He. At T > 4.2 K, it forms a normal gas or
vapor, and when the temperature is lowered to T = 4.2 K at a pressure of 1 atm, a normal gas-
liquid transition takes place. It remains a normal liquid, the so-called He I state, until Tc = 2.17 K,
which is called the λ point because of the shape of its CP (T ) versus T variation, as shown in
Fig. 18.1.5. The sharp specific heat peak is the signature of the transition from the normal to the

cM. O. Mews et al., Phys. Rev. Lett. 78, 582 (1997); M. R. Andrews et al., Science 275, 639 (1997).
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Figure 18.1.5 The specific heat anomaly in
the superfluid transition of 4He.
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4He.

superfluid state. At T � Tc, liquid 4He moves collectively without viscosity, i.e., without energy
dissipation, and it can even appear to defy gravity by flowing upwards in the form of a thin film
over the walls of a container.

The phase diagram for 4He is shown in Fig. 18.1.6. At low temperatures 4He has four phases.
The solid phase only appears for pressures above 2.5 MPa, and the phase transition continues down
to T = 0 K. However there are, in fact, two liquid phases separated by a line of λ-point occurring
at about T = 2 K, the exact temperature depending on the pressure. There is a triple point at each
end of the line.

The characteristic for superfluid 4He is flow without viscosity in a capillary tube with a diameter
of the order of 10−7 m. However, a nonvanishing viscosity is observed if it is measured at finite
temperatures through the decay of rotational vibration of a disk suspended in a fluid, as is commonly
used to measure the viscosity of a liquid. The two-component model has been proposed based upon
this observation and the so-called fountain effect. The fluid in this model is made of a superfluid
component with number density ns, which flows without viscosity, and the normal component with
number density nn, which has a finite viscosity and carries entropy. The component ns takes a finite
value at T < Tc and ns = n (total number density) at T = 0 K as shown in Fig. 18.1.7. The relation
was verified by macroscopic experiment by measuring the damping of oscillations of metallic disks
immersed in liquid 4He.

London conjectured that the BEC of an ideal gas is related to the superfluidity of liquid 4He. He
substituted the value of the density of liquid 4He into the N/V in (18.1.9), and obtained T = 3.1 K
which is quite close to 2.17 K, the experimental value of Tc. So, London made a bold assertion that
Tc marks the onset of BEC of liquid 4He. However, liquid 4He is obviously a system in which the
attractive interactions between atoms play an essential role. Experimentally, neutron scattering and
direct momentum measurement from thermal evaporation of surface atoms have determined how
the condensate fraction varies with temperature, as shown in Fig. 18.1.8. This curve may be fitted
to an empirical relation

n0(T ) = n0

[

1 −
(

T

Tλ

)α]

, (18.1.20)
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where the exponent α = 3.6 (which is not equal to 3/2 as for the ideal Bose gas) and n0(0) = 13.9%.
The reduced condensate fraction is surely due to interaction-depletion, which makes the condensate
fraction smaller than the superfluid fraction as already discussed in §18.1.1.

Based on the discussion above, to describe a macroscopic quantum state we can use a macroscopic
wavefunction

Ψ(r) = Ψ0(r)eiθ(r), (18.1.21)

where the modulus Ψ0 and phase θ(r) are all real functions of the position r. A reasonable and
successful application of the macroscopic wavefunction is to illustrate the normalized Ψ(r) as the
probability amplitude, so that Ψ∗(r)Ψ(r) is equal to the average number of superflowing particles
per unit volume, that is,

Ψ∗(r)Ψ(r) = Ψ2
0(r) = ns. (18.1.22)

It will be found later that the phase θ(r) is the key to understand macroscopic quantum phe-
nomena. Now we introduce the condensate momentum p, which satisfies

pΨ =
h

i
∇Ψ. (18.1.23)

For a homogeneous system, Ψ0 is independent of r, then

p = �∇θ. (18.1.24)

It is convenient to interpret the canonical momentum of one particle of the superfluid 4He as

p = M4vs. (18.1.25)

If the superfluid velocity is vs, this, in turn, can be written as

vs =
�

M4
∇θ. (18.1.26)

This equation means that the superfluid velocity is proportional to the gradient of the phase of the
condensate wavefunction. Thus when the superfluid velocity is zero, the phase has the same value
throughout, and when the superfluid velocity is finite and constant, the phase varies uniformly in
the direction of vs. The effect of phase coherence is to lock the condensate particles together in a
state of uniform motion. This may provoke the idea of a rigid structure moving as a whole, but
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it must be remembered that the ‘rigidity’ exists in momentum space rather than in position space.
The phase coherence gives us a qualitative understanding of how a constant superfluid velocity can
be maintained over long times. A sudden change of vs would necessarily involve a simultaneous
identical alteration in the velocity for all members of a macroscopically large number of particles,
an event so unlikely that it can be discounted.

Another manifestation of the macroscopic quantum phenomena is the quantization of circulation.
Consider superfluid 4He in an annular region, such as the space between two concentric cylinders as
shown in Fig. 18.1.9. The circulation of a closed loop can be written as

Γ =

∮

L

vs · dl, (18.1.27)

and, due to (18.1.26), it may be expressed in terms of the phase of the wavefunction.

Li

Figure 18.1.9 Superfluid in annu-
lar (multiply connected) region with a
closed contour L.

Figure 18.1.10 Array of vortex lines in rotating
superfluid 4He.

Since the superfluid wavefunction is single-valued, a trip around a closed loop must leave it
unchanged, which means that the change in θ can only be zero or an integral multiple of 2π. Thus
the circulation is quantized with values

Γ = ν
h

M4
, ν = 0,±1,±2, . . . , (18.1.28)

where M4 is the mass of the 4He atom, h/M4 is called the quantum of circulation which has a value
of 9.97×10−8 cm2s−1. It should be noted that the annulus in Fig. 18.1.9 is an example of a multiply
connected region, it contains a ‘hole’ (i.e., a non-superfluid region) in the superfluid so that closed
loops, such as L, may be drawn.

By taking the curl of (18.1.26), we can show that

∇× vs = 0. (18.1.29)

This condition establishes the irrotational nature of superfluid flow. However, the irrotationality of
superflows does not mean no rotation at all, instead it means that the angular momentum of a rotat-
ing superfluid should be carried by an array of vortex lines, as schematically shown in Fig. 18.1.10.
The cores of the vortex lines are actually normal regions in which ∇ × vs �= 0, while the contour
enclosing a vortex core yields a quantized circulation. Thus, an apparently singly-connected super-
fluid region, as shown in Fig. 18.1.10, is actually multiply connected. This explains the mystery of
rotation of the superfluids by formation of vortex lines, and this type of experimental observation
in rotating BE condensates of dilute gases gave credence to their superfluidity.

The liquid 3He isotope is composed of fermions, however, below 2.7 mK, it was found to be in a
superfluid state. The explanation of this lies in BEC of bosons consisting of pairs of 3He atoms.
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18.1.4 Superconductivity of Various Substances
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Figure 18.1.11 Temperature dependence of the resistivity of a superconductor.

The superconducting state has two fundamental features. One is zero electrical resistivity below
Tc (Fig. 18.1.11). The complete disappearance of resistance is most sensitively demonstrated by
experiments with persistent currents in superconducing rings. Such currents have been observed to
flow without measurable decay for more than a year, so a lower bound for their characteristic decay
time is set to be 10 years. The other is perfect diamagnetism, known as the Meissner effect; the
magnetic flux is completely expelled from a superconductor provided that the magnetic field is not
too large. The existence of the Meissner effect implies that superconductivity will be destroyed by a
critical magnetic field Hc, which is related thermodynamically to the free energy difference between
the normal and superconducting state, i.e., the condensation energy of the superconducting state.
It means that the thermodynamic critical field Hc is determined by the following equation

H2
c (T )

8π
= fn(T ) − fs(T ), (18.1.30)

where fn(T ) and fs(T ) are the Helmholtz free energies per unit volume in the respective states in
zero field. It was found empirically that Hc(T ) is described by a parabolic law (Fig. 18.1.12)

Hc(T ) ≈ Hc(0)

[

1 −
(

T

Tc

)2
]

, (18.1.31)

and there is a specific heat anomaly in the superconducting transition (Fig. 18.1.13).
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Figure 18.1.12 Phase diagram of a
type I superconductor.
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Figure 18.1.13 Specific heat anomaly in the
superconducting transition.

Those superconductors with a complete Meissner effect (sharp Hc) are called type I supercon-
ductors (Fig. 18.1.14); but there are also some superconductors with an incomplete Meissner effect,
the sharp Hc is replaced by the gradual decrease from Hc1 to Hc2 (Fig. 18.1.15); these are called
type II superconductors.

In the equilibrium state, a superconductor is characterized by B = 0 and E = 0. In a supercon-
ductor the condensate ‘particles’ are Cooper pairs of electrons with mass 2m and charge 2e. In an
applied magnetic field B = ∇× A, the canonical momentum of a Cooper pair is given by

p = 2mv + 2eA, (18.1.32)
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where v is the supercurrent velocity. If p is eliminated from (18.1.32) by (18.1.24), we find

vs =
�

2m
∇θ − eA

mc
. (18.1.33)

This equation corresponds to (18.1.26) of a superfluid; it means we may use a macroscopic wave-
function to describe the behavior of superconductors, as already had been pointed out in 1935 by
the brothers F. and H. London.

Introducing the superconducting electron density ns, the supercurrent density is

js = nsevs. (18.1.34)

Combining (18.1.33) and (18.1.34), we find

js =
nse�

2m
∇θ − nse

2

mc
A. (18.1.35)

Taking the curl of (18.1.35), assuming that the superconductor is nonmagnetic, so B = H , we can
write H = ∇× A, then

∇× js +
nse

2

mc
H = 0. (18.1.36)

In the time-independent case, Maxwell equations give

∇× H =
4π

c
js. (18.1.37)

Substituting this into (18.1.36), we can get the London equation

H + λ2
L∇×∇× H = 0, (18.1.38)

with London penetration depth

λL = (mc2/4πnse
2)1/2. (18.1.39)

When Tc = 0 K, ns = n, the estimated valued λL is about 50–200 nm.
The London equation can be used to illustrate the Meissner effect, and in addition, shows a

magnetic field penetration which, together with the shielding supercurrents existing in the surface
of a superconductor, is about the length scale of λL. Let us now investigate the situation for a
semi-infinite specimen. The surface is in the xy plane, the region z < 0 being empty space. From
(18.1.38) and with ∇ · H = 0 from Maxwell equations, we can get

∇2H − 1

λ2
L

H = 0. (18.1.40)

Due to the symmetry of the problem, H is a function of z only. In the direction parallel to the z
axis, according to ∇ · H = 0, we can get dH/dz = 0, so H is a constant and js = 0. If H is in
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the xy plane, without losing generality, we can set H to be along the x axis and (18.1.40) can be
changed into

d2H

dz2
=

H

λ2
L

. (18.1.41)

The final result is

H(z) = H(0)e−z/λL , js =
c

4π

dH

dz
= js(0)e−z/λL . (18.1.42)

Hence the magnetic field does not fall abruptly to zero within the specimen, but is falls off exponen-
tially inside the superconductor as shown in Fig. 18.1.16. The corresponding characteristic length
is just the London penetration depth λL. Thus, the Meissner effect is complete in most of the bulk
region but remains incomplete within the surface region. Figure 18.1.17 gives an illustration of the
Meissner effect of a superconductor.

0 z

B

B(0) λL

Figure 18.1.16 Penetration
of the magnetic field inside the
surface layer of a superconduc-
tor according to the London
equation.

Figure 18.1.17 An illustration
of the Meissner effect with an
additional consideration on the
penetration of a magnetic field
into the surface layer.

©
L

Figure 18.1.18 A ring-
shaped superconductor.

Furthermore, in multiply-connected superconductors, such as a superconducting ring
(Fig. 18.1.18), we may demonstrate flux quantization just like the quantization of circulation in
a multiply-connected superfluid. Since H = 0 and 〈js〉 = 0 along the path L, provided that the
cross-sectional radius of the ring d ≫ λL, then we may derive from (18.1.35)

∮

L

∇θ · dl =

∮

L

2e

�c
A · dl. (18.1.43)

By Stokes’ theorem, the right-hand side of above equation is equal to 2eΦ/�, where Φ is the total
magnetic flux trapped inside the ring. However, on the left hand side of it is the phase of the
superconductor; its total variation along a closed loop must be an integral multiple of 2π. Thus the
quantization of the magnetic flux is derived

Φ = 2πν
�c

2e
= ν

hc

2e
, (18.1.44)

where ν is an integer. The magnetic flux passing through the loop can only take a discrete set of
values. Experimental measurement of flux quantization in superconductors shows that the effective
charge e∗ = 2e, this fact shows that superconductivity is due to paired electrons. Thus the flux
quantum or fluxoid is defined as

Φ0 =
hc

2e
= 2.07 × 10−7 G · cm2. (18.1.45)

Flux quantization has been observed experimentally, and its value gives direct confirmation of the
pairing of electrons in superconductors.
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Table 18.1.1 The periodic table showing superconducting elements.

H
?

Li

Na

K

Rb

Cs
(1.5)

Fr

Be
0.026

(9)

Mg

Ca

Sr

Ba
(5.4)

Ra

Sc

Y
(2.5)

La
(6.0)

Ac

Ti

Zr
0.61

Hf
0.12

Th
1.4

V
5.4

Nb
9.25

Ta
4.47

Cr

Mo
0.92

W
0.01

Mn

Tc
7.7

Re
1.7

Fe
(2)

Ru
0.49

Ir
0.11

Co

Rh
.0003

Os
0.66

Ni

Pd

Pt

Cu

Ag

Au

Zn
0.85

Cd
0.52

Hg
4.15

B
(11)

Al
1.18

Ga
1.08

In
3.41

Ti
2.38

C
?

Si
(7.1)

Ge
(5.3)

Sn
3.72

Pb
7.2

N

P
(5.5)

As
(0.5)

Sb
(3.5)

Bi
(8.5)

O

S
(17)

Se
(5.9)

Te
(4.3)

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

e/a=1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8

s s-d s-p

Elements

Tc (K)

(Tc) Metastable

Ce
(1.8)

Pr-
Yb

Pa
(1.4)

Lu
(2.8)

U
(2.4)

After the discovery of superconductivity, the Tc’s of various elements were measured, and the
results are listed in Table 18.1.1.d There has also been enormous research activity in quest of
materials with higher Tc or Hc2 as well as the search for exotic pairing mechanisms besides the
s-wave singlet pairing of BCS theory. Table 18.1.2 tabulates the achievements in this field.e A few
highlights in the quest for high Tc materials: Nb3Ge with Tc ≈ 23 K held the Tc record for nearly
13 years after 1973; Bednorz and Müller’s discovery of superconductivity of LBCO in 1986 pushed
Tc over the 30 K barrier; the discovery of YBCO, by several research groups independently in 1987,
pushed Tc into liquid nitrogen regime (∼ 93 K); then BSSCO pushed Tc still higher; the present
record of high Tc is still held by Hg cuprate (Tc ≈ 134 K, and 165 K under high pressure). By
the end of 2000, the Tc record for metallic alloys was raised to 39 K by the unexpected discovery
of superconductivity in the intermetallic compound MgB2. Here we also mention some highlights
in search of exotic pairings: The singlet d-wave pairing for high Tc cuprates has received general
consensus, though the mechanism for its pairing is still uncertain; there is some evidence that some
heavy electron superconductors, as well as some ruthenates, may have triplet p-wave pairing signaling
that a magnetic mechanism is involved; while the pairing mechanism in organic superconductors is
being hotly investigated, both from the viewpoint of conventional and exotic mechanisms; there is
also a recent report on the experimental coexistence of ferromagnetism and superconductivity in
the metallic alloy ZrZn2, suggesting that exotic pairing may even infiltrate into the classic domain
of the superconductivity of metallic alloys. We reserve a special section §18.3 on pairing states to
discuss these problems.

dThis is a slightly modified version of the chart by T. H. Geballe published in Science 293, 223 (2002). The data for
Fe are taken from K. Shimitzu et al., Nature 412, 316 (2001); for B from M. I. Erements et al., Science 293, 272
(2001); for S from V. V. Struzhkin et al., Nature 360, 282 (1999); for Pt from R. Konig, Phys. Rev. Lett. 82, 4528
(2001).
eThe values of Tc in brackets are the metastable ones. Data for ZrZn2 taken from C. Pfleiderer et al., Nature 412,
58 (2001); for MgB2 from J. Magamatzu et al., Nature 410, 63 (2001) and D. C. Larbalestier et al., Nature 410, 186
(2001), for a review of MgB2, see C. Day, Phys. Today 54(4), 17 (2002); for UGe2 from S. S. Saxena et al., Nature
406, 587 (2000); for SrRuO4 from S. Nishizaki et al., J. Phys. Soc. Jpn. 65, 1875 (1996), for a review of SrRuO4,
see A. P. Mackensi and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003); for RuSr2GdCu2O8 from W. E. Pickett et
al., Phys. Rev. Lett. 83, 3713 (1999); for SW, from Z. K. Tang et al., Science 292, 2462 (2001); for a review on
superconducting phases of UPt3, see R. Joynt and L. Taillefer, Rev. Mod. Phys. 74, 235 (2002).
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Table 18.1.2 Some superconducting alloys and compounds.

type material Tc (K) Hc2 ) remark

alloys
Mo0.5Re0.5 12.5 115

(solid

solutions)

Nb0.4Ti0.6 9.3 124 practical superconducting

materials for cablesNb0.26Ti0.7Ta0.04 9.9 91

Nb0.75Zr0.25 11 ~26

Pb0.75Bi0.25 8.7

alloys

V3Ga 16.8 240 A15 structure, practical supercon-

ducting materials for cables

(com-

pounds)

dittoNb3Al 18.8 300

dittoNb3Sn 18.1 245

dittoNb3Al0.75Ge0.25 21.0 420

A15 structure, the highest TcNb3Ge 23.2

B1 structureNbN 17

Chevrel-phasePb3Mo6S 14.7 600

Chevrel-phase with highest Hc2 losingGa0.25Eu0.3Pb0.7Mo6S8 14.3 700

superconducting at 0.9K, changing intoErRh4B4 8.5

ferromagnet <0.2K, coexistance of SC

with AFM

ErMo6S8 2.2

39 The highest Tc for alloysMgB2 16~18

coexistence of SC and weak FMZrZn2 0.29

heavy CeCu2Si2 0.5~0.6

having three superconducting phases,

p wave pairing(?)

electron UPt3 0.5

intermetallic

compounds

UBe3

coexistence of SC and weak FMUGe2 <(1)

oxides
perovskite type structureSiTiO3-x 0.05~0.5

perovskite type structureLiTiO4 13
x~0.25.Ba(Pb1-xBix)O3 13

Ba1-2KxBiO3 >30 x>0.35 insulator x~0.4

layered perovskite type structure,

p-wave pairing(?)

SrRuO4 1.2

cuprates

HTSC,La2-xBaxCuO4 >30

layered perovskite type structure

in liguid nitrogen

discovered first superconductor with Tc
YBa2Cu3O7-x 93 150(77K)

Bi2Sr2CaCu2O8 110 500(4.2K)

Tl2Ba2Ca2Cu3O8 125

very unstableHgBa2Ca2Cu3O8-x 135

164 coexistence of SC and WFM in

different layers

RuSr2GdCu2O8 15~40

organic 1D charge transfer salt(TMTSF)2ClO4 1.2~1.4

compounds [BEDT-TTF]2Cu(MCS)2 11.4 1D charge transfer salt,

having the highest Tc for organicsand K3C60 ~18

molecular

materials

Rb3C60 ~28~15

abnormal Meissner effect,single wall nanocarbon-

tube and 1D SC uctuations

(at high pressure)
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§18.2 Ginzburg Landau Theory

The phenomenological theory developed by Ginzburg and Landau has proved to be one of the
most fertile approaches to superconductivity. It gives a comprehensive description of thermodynamic
and electrodynamic properties of superconductors near Tc; sometimes it was even found to be useful
outside the realm of its proven validity. It can be applied to both homogeneous and inhomogeneous
superconductors. The crucial insight of Ginzburg–Landau (GL) theory is to identify the order
parameter Ψ of superconductors, somewhat like the macroscopic wavefunction Ψ: This means the
order parameter must be complex and can vary in space. Once the free energy has been written
down as a function of Ψ and the vector potential A, from the minimum free energy condition, an
equation of motion for Ψ, as well as an equation for the supercurrent in terms of A, may be derived.
The latter has form of the London equation, so it may be regarded as a generalization of the London
equation to the case of a spatially varying Ψ. The GL theory was developed before the microscopic
BCS theory, but later it was shown by Gor’kov that it is a rigorous consequence of the microscopic
theory, within a certain domain of temperature and magnetic field.

18.2.1 Ginzburg Landau Equations and Broken Gauge Symmetry

The crucial wavefunction for a spin-singlet s-wave superconductor is the pair wavefunction
Ψ(r) = 〈ψ↑(r)ψ↓(r)〉. The phase transition from normal to superconducting phase is a transi-
tion in which gauge symmetry is broken. The condensed phase in a superconductor corresponds to a
macroscopically occupied quantum state and is therefore described by a macroscopic wavefunction.
We may interpret |Ψ|2 = Ψ∗Ψ as ns, the local pair density. The Ginzburg–Landau order parameter
Ψ is closely modeled on this macroscopic wavefunction Ψ, though it is not identical to it.

Here, for brevity, we will introduce the Ginzburg–Landau theory in accord with the phenomeno-
logical approach following Chap. 15. Based on the postulate that Ψ is small and varies slowly in
space, the density functional of free energy can be written as

fs(r) = fn + α|Ψ(r)|2 +
β

2
|Ψ(r)|4 +

1

2m∗

∣

∣

∣

∣

(

−i�∇+
e∗

c
A

)

Ψ

∣

∣

∣

∣

2

+
H2(r)

8π
, (18.2.1)

where the pair charge and mass are e∗ = 2e and m∗ = 2m; f0 is the free energy density for the
normal phase; [−i�∇ + (e∗/c)A]Ψ the canonical momentum associated with the condensate and
H(r) the magnetic field.

After taking the minimum of the free energy with respect to Ψ

δF = δ

∫

f(r)dr = 0, (18.2.2)

and using the gauge condition ∇ · A = 0, we have the GL equation

1

2m∗

(

−i�∇+
e∗

c
A

)2

Ψ + αΨ + β|Ψ|2Ψ = 0. (18.2.3)

This differential equation will give us the variation of Ψ within a specimen, once we know A. We
have assumed that, on the boundary of the sample, the normal component is zero; that is,

n ·
(

−i�∇ +
e∗

c
A

)

Ψ = 0. (18.2.4)

If on the other side we take the minimum of the free energy with respect to A, the supercurrent
equation is

js = − ie∗�

2m∗ (Ψ∗∇Ψ − Ψ∇Ψ∗) − e∗2

m∗c
Ψ∗ΨA. (18.2.5)

In general, Ψ = |Ψ| exp(iθ) is a complex function, so if its amplitude is constant, the supercurrent
equation is

js =
e∗

m∗ |Ψ|2
(

�∇θ − e∗

c
A

)

= e∗|Ψ|2vs, (18.2.6)
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which is consistent with (18.1.34). This is just the formula for current in quantum mechanics. The
analogy of Ψ(r) to a wavefunction of quantum mechanics cannot be taken too literally: Ψ(r) is not
a wavefunction in the usual sense. The GL equation is nonlinear in the term β|Ψ(r)|2Ψ(r). Neither
the quantum-mechanical principle of superposition holds for Ψ(r), because of this nonlinearity, nor
does Ψ(r) have to be normalized because |Ψ(r)|2 is not a probability distribution. Really Ψ(r) in
the GL equations is just the order parameter of the superconducting phase transition. However,
since the superconducting state is a manifestation of macroscopic quantum phenomena, this order
parameter acquires some wavefunction-like behavior.

The physics of symmetry changes at the superconducting transition temperature Tc is most
simply understood using GL theory. For any Ψ(r) we can readily find another with exactly the
same free energy, i.e., exp(iθ)Ψ(r), where θ is the phase angle. This transformation is called a
global gauge transformation.f When θ takes different constants, since the free energy f in (18.2.1)
is invariant to the transformation, all these transformations form a gauge symmetry group of f .
We may visualize the global gauge symmetry by the Argand diagram shown in Fig. 18.2.1. The
symmetry operation which changes Ψ(r) into exp(iθ)Ψ(r) is simply a rotatation to any point on
the diagram by an angle φ about the origin. The symmetry group of these 2D rotations is known
mathematically as U(1), the group of unitary transformations in one dimension. A matrix M is
unitary if its Hermitian conjugate is equal to its inverse, i.e., M∗ = M−1, a complex number exp(iθ)
satisfies this condition for its complex conjugate exp(−iθ) equals its inverse 1/ exp(iθ).

e
iθ
ª

Reª

ª'=e
iθ
ª=0

θ

ª

θ0

Im

Figure 18.2.1 Schematic diagram showing global gauge transformation of the GL order parameter.

Now the crucial point is that, though the free energy has gauge symmetry, its minima need not
possess this symmetry. The symmetry can be broken spontaneously on cooling through Tc. The
GL equations give a simple illustration for superconductors. For simplicity, we assume that the
size of the superconductor is infinite (so surface effects may be neglected) and the magnetic field is
absent (A = 0). Then the minimum of free energy in (18.2.1) corresponds to a spatially constant
Ψ(r) = Ψ0. The GL equation (18.2.3) can be simplified to

αΨ0 + β|Ψ0|2Ψ0 = 0. (18.2.7)

This has two solutions Ψ0 = 0 and |Ψ0| = (−α/β)1/2, for α/β < 0. If we assume that β > 0, and α
changes sign as α = a(T − Tc) at Tc, the solutions for T > Tc and T < Tc are found to be

|Ψ0| =

{

0, T > Tc

[a(T − Tc)/β]
1/2

, T < Tc

. (18.2.8)

fIt should be noted that the global gauge transformations are quite different from the local gauge transformations
which are commonly encountered in particle physics and electromagnetism. In a local gauge transformation Ψ(r) →

exp[iθ(r)]Ψ(r) in which θ(r) can be a function of position. The gauge transformations in electromagnetism A = A+∇χ

are also local and not global.
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Consider the normal state T > Tc, Ψ0 = 0: Applying the global gauge transformation gives the
trivial identity Ψ0 exp(iθ) = 0, showing it is invariant after the gauge transformation. Then consider
the superconducting state T < Tc: The global gauge transformation gives Ψ0 → Ψ0 exp(iθ) �= 0,
it is not invariant after the gauge transformation. Thus for the state above Tc, the global gauge
symmetry is intact, but it is spontaneously broken below Tc. This situation is clearly shown in
Fig. 18.2.1.

The GL-like theory was formulated for the treatment of 4He superfluid as well as the BE con-
densate of dilute gases in trap. We now consider the Ginzburg–Pitaevskii equation for 4He, which
is identical to (18.2.3) when A = 0,

(

− �

2M4
∇2 + α + β|Ψ(r)|2

)

Ψ(r) = 0; (18.2.9)

this is an extension to the case of a normal fluid which is not stationary, the kinetic energy of the
normal fluid must be included in the free energy term

f(r) =
1

2
M4|(−i�∇− vn))Ψ(r)|2 + f0(|Ψ(r)|2), (18.2.10)

where f0 is the free energy density of the stationary fluid in equilibrium. The Gross–Pitaevskii
equation for a BE condensate in the trap is

(

− �
2

2M
∇2 + V (r) + g|Ψ(r)|2

)

Ψ(r) = µΨ(r), (18.2.11)

where g and µ denote the interaction strength and chemical potential, respectively. The absence
of interactions (g = 0) will reduce it to the Schrödinger equation for single particles confined in a
harmonic trap.

18.2.2 Penetration Depth and Coherence Length

In the interior of a superconductor, no magnetic field exists and the gradient term vanishes, the
free energy density in (18.2.1) is reduced to

fs − fn = α|Ψ|2 +
1

2
β|Ψ|4, (18.2.12)

where the temperature dependence of parameters are assumed α = a(T − Tc), and β is a constant
larger than zero determined from the free energy minimum. In this case, the first term in (18.2.3)
vanishes, and we can write

|Ψ|2 = |Ψ∞|2 = −α

β
∝ (1 − t), (18.2.13)

where t = T/Tc. Combined with (18.1.30), the thermodynamic critical field is determined from

fs − fn =
H2

c

8π
= −α2

2β
, (18.2.14)

i.e.,

Hc =

(

4π

β

)1/2

|α| ∝ (1 − t), (18.2.15)

from which when T → Tc, Hc → 0.

From (18.2.6), the current is simply given by

js =
e

m

|α|
β

(

�∇θ − 2e

c
A

)

. (18.2.16)
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If we notice that B = ∇× A and js = (c/4π)∇× B, we find the usual London penetration depth
is temperature dependent

λL =

(

mc2β

8πe2|α|

)1/2

∼ (1 − t)−1/2. (18.2.17)

The supercurrent is confined within this distance λL from the surface.
To study the variation of the wavefunction near the surface, we consider the GL equations (18.2.3)

in the absence of field, i.e., A = 0. Since all of the coefficients are real, Ψ must be real, and there is
no supercurrent, js = 0. Introducing a dimensionless wavefunction Ψ′ = Ψ/Ψ∞, and assuming that
it varies only in the z direction, (18.2.3) becomes

ξ2(T )
d2Ψ′

dz2
+ Ψ′ − Ψ′3 = 0 (18.2.18)

where a coherence length ξ(T ) can be defined as

ξ(T ) =

(

�
2

2m∗|α|

)1/2

∝ (1 − t)−1/2. (18.2.19)

ξ is the characteristic length for variation of the order parameter, which diverges at T = Tc. To see
the significance of ξ(T ) more clearly, we seek an approximate solution for (18.2.18). Let Ψ′ = 1+∆Ψ′,
with ∆Ψ′ ≪ 1, then the first-order of (18.2.18) becomes

ξ2 d2

dz2
∆Ψ′ + (1 + ∆Ψ′) − (1 + 3∆Ψ′ + · · · ) = 0, (18.2.20)

or
d2

dz2
∆Ψ′ =

2

ξ2
∆Ψ′, (18.2.21)

and its solution is
∆Ψ′(z) ∼ e±

√
2z/ξ(T ). (18.2.22)

This means that Ψ will decay to Ψ∞ within the characteristic length ξ(T ).
There is an important GL parameter defined as a ratio of above two length parameters

κ =
λL

ξ
. (18.2.23)

In type I superconductors, λL ∼ 50 nm, ξ ∼ 400 nm, so κ ≪ 1 for these materials. Figure 18.2.2
shows the crossover region of the normal-superconductor boundary, how the magnetic field penetrates

x x
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ξ
ξ

λ

fw fw

H H

Hc Hc

h

ψ

ψ h

κ<<  1 κ>>  1

(a) (b)

Figure 18.2.2 Schematic diagrams showing how the free energy of the wall, local magnetic field and order
parameter vary with the distance from a normal-superconductor interface. (a) Type 1 and (b) type II
superconductors.
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the superconductor to a depth λL, and how Ψ increases in the superconductor to its value at infinity
Ψ∞ in a distance ξ. Abrikosov (1957) shows the importance of the κ ≫ 1 case which leads to type II
superconductors. Essentially all superconducting compounds and all high-Tc materials have κ ≫ 1.
Usually, the value κ = 1/

√
2 is used as a criterion to separate superconductors of types I and II.

18.2.3 Magnetic Properties of Vortex States

As stated in §18.1.4, flux quantization is an important concept related to the macroscopic wave-
function. It should be noted that there is a profound difference in the magnetic behavior of type I
and type II superconductors, as deduced from L. V. Shubnikov’s experimental results in the 1930s.
In contrast to type I, the magnetization of type II material begins to decrease at H > Hc1, then
decreases more gradually, and goes to zero at H > Hc2 see Figs. 18.1.14 and 18.1.15. This peculiar
magnetic behavior is instrumental in making the applications of superconducting magnets and cables
possible. Abrikosov in 1957 first explained the magnetic properties of type II superconductors the-
oretically from the solutions of the GL equations. The essential point is that, in a type II material,
magnetic flux can penetrate into the bulk specimen as an array of vortex lines, between Hc1 and
Hc2. The Meissner effect is not so complete as in type I materials; this mixture of a superconductor
with normal state in the cores of a vortex lattice is called the vortex state or the mixed state. This
bold hypothesis was experimentally confirmed by neutron diffraction in 1965 and direct observations
after that.

With the GL theory, we can determine the value of Hc2 even without an explicit knowledge of
the structure of a vortex state. Since H → Hc2, Ψ → 0; then at magnetic field slightly less than Hc2,
Ψ is very small, so the nonlinear term in GL equation may be dropped and instead the simplified
linear GL equation

1

4m

(

−i�∇ +
2e

c
A

)2

Ψ = |α|Ψ (18.2.24)

may be used. Here, A may be regarded as the vector potential for the homogeneous field H at
Ψ = 0; in this situation, the magnetic field permeates the normal state. Formally (18.2.24) is just a
Schrödinger equation which describes the motion of a particle with charge 2e and mass 2m in the
magnetic field, and this leads to Landau levels (as discussed in §7.3.2), where |α| is the spacing of the
energy levels. Furthermore, the boundary condition Ψ = 0 at infinity is the same for both problems.
We have already solved the problem of a charged particle in a magnetic field; the minimum value
for energy is E0 = �ωH/2, where ωH = eH/2mc. Due to the similarity of these two problems, so we
may conclude that the superconducting phase appears only when the condition

|α| >
e�

2mc
H (18.2.25)

is satisfied. Then we arrive at

Hc2 =
2mc|α|

e�
=

Φ0

2πξ(T )2
=

√
2κHc. (18.2.26)

This is the highest field at which superconductivity can nucleate in a bulk sample in a decreasing
external magnetic field.

Hc1 marks the magnetic field at which the first vortex in the form of a flux quantum penetrates
into the specimen. By definition, when H = Hc1, the Gibbs free energy must have the same value
whether the first vortex is in or out of the sample. Thus, Hc1 is determined by the condition

G(0)
s = G(1)

s , (18.2.27)
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G
(0)
s and G

(1)
s are the Gibbs free energies with no magnetic flux trapped and with the first isolated

vortex line entering the sample. Since

G = F − H

4π
·
∫

hdr, Gs = Fs, (18.2.28)

we may introduce εi (or in other words, the line tension of the vortex) and L the length of vortex
line, whereupon the condition becomes

Fs = Fs + εiL − Hc1Φ0L

4π
. (18.2.29)

Thus we get

Hc1 =
4πεi

Φ0
. (18.2.30)

In the extreme type II limit κ = λ/ξ ≫ 1, at the center of an isolated vortex, Ψ = 0, then it
gradually rises to a limiting value at radius ξ. This defines a vortex core region within which the
behavior is like the normal metal, while outside the core region the behavior is just like an ordinary
London superconductor (see Fig. 18.2.3).

h(r)

ª∞

ª(r)

0ξ λ r

Figure 18.2.3 Magnetic field and superconducting order parameter of an isolated vortex line (schematic).

18.2.4 Anisotropic Behavior of Superconductors

After the discovery of high Tc superconductors, it was found that the GL equation is still valid;
however, the parameters become very anisotropic. Now (18.2.3) can be rewritten as

−�
2

2

(

∇− i
2e

�c
A

)

·
(

1

m

)

·
(

∇− i
2e

�c
A

)

Ψ + αΨ + β |Ψ|2 Ψ = 0, (18.2.31)

where (1/m) is the reciprocal mass tensor with principal values 1/mab and 1/mc. Due to the fact
that the interlayer coupling is weak, mc ≫ mab. The anisotropy of mass causes the coherence length
ξ to be very anisotropic. We may generalize (18.2.19) to the anisotropic case and get

ξ2
i (T ) =

�
2

2mi|α(T )| , (18.2.32)

where the subscript i refers a particular principal axis. Since α(T ) is isotropic and proportional to

(T − Tc), ξi scales with 1/
√

mi and diverges as |T − Tc|−1/2
when T → Tc. The penetration depth

λ is also anisotropic by the relation

2
√

2πHc(T )ξi(T )λi(T ) = Φ0. (18.2.33)

This shows that the anisotropy of the penetration depth λi will be the inverse of that of ξi since
Hc is isotropic, and since λi describes the screening by supercurrents flowing along the ith axis,
not the screening of a magnetic field along the ith axis. We may take an Abrikosov vortex line in
a sample with the magnetic field along the a axis. In an isotropic superconductor, the vortex will
be circularly symmetric; however, in an anisotropic superconductor, the core radius along the plane
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Figure 18.2.4 Cross-section of a vortex line along the a axis in an anisotropic superconductor (schematic).

direction will be ξab, but the core radius along the c direction will be ξc ≪ ξab. On the other hand,
the flux-penetration depth will be λc along the plane direction, and will be much smaller, λab along
the c direction. Thus, both the core and the current streamlines confining the flux are flattened
into ellipses with their long axes parallel to the planes (b axis), and an aspect ratio (mc/mab)

1/2, as
shown in Fig. 18.2.4.

Furthermore, the anisotropy of the upper critical field along the two distinct principal axes may
be derived,

Hc2‖c =
Φ0

2π
ξ2
ab, Hc2‖ab =

Φ0

2π
ξabξc. (18.2.34)

Since ξab ≫ ξc, Hc2‖ab ≫ Hc2‖c. Because Hc1 ∼ 1/λ2, which is inversely related to Hc2, the
anisotropy in Hc1 will be inverse to that for Hc2, i.e., Hc1‖ab ≪ Hc1‖c.

Now we introduce the dimensionless anisotropy parameter

γ =

(

mc

mab

)1/2

=
ξab

ξc
=

λc

λab
=

(

Hc2‖ab
Hc2‖c

)

=

(

Hc1||c
Hc1||ab

)

. (18.2.35)

The mass ratio mc/mab and γ for YBCO are about 50 and 7 respectively, while for BSCCO, these
are 20 000 and 150 respectively. This large anisotropy is one of the decisive factors which make
the high Tc superconductors act so differently from the conventional ones. Near Tc, ξc(T ) ≈ ξc(0)
(1− t)−1/2 will always be large enough to justify the GL approximation discussed above. But when
the temperature is lowered, ξc(T ) shrinks toward a limiting value. If this value is smaller than the
interplanar spacing, it is obvious that the smooth variation assumed in the GL equations will break
down at some intermediate temperature T . At temperatures below Tc, it is expected that the 3D
continuum approximation will be replaced by the 2D behavior of a stack of individual layers. This
may be described by a model proposed by Lawrence and Doniach (LD)g In this model, the free
energy may be expressed as
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dxdy,

(18.2.36)

where the z is along c axis, x, y are the coordinates in the plane, s is the distance between the
layers, the sum runs over layers and the integral is over the area of each layer. Note that if we write
Ψn = |Ψn|eiθn , and assume that all |Ψn| are equal, the last term of (18.2.36) becomes

�
2

mcs2
|Ψn|2[1 − cos(Ψn − Ψn−1)]. (18.2.37)

This term is equivalent to a Josephson coupling energy (1/mc) between adjacent planes (see
§18.4). This crossover from 3D behavior [Hc2 ∝ (Tc − T )] to a 2D one [Hc2 ∝ (Tc − T )1/2] in
superconductors has been verified experimentally by the artificial layered composites Nb/Ge in
certain thickness ranges (Fig. 18.2.5). We can expect that high Tc superconductors would have an
analogous behavior.
gW. E. Lawrence and S. Doniach, Proc 12th Int. Cont. Low Temp. Phys. (Kyoto, 1970); E. Kanda (ed.), Keigaku,
Tokyo, 1971.
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Figure 18.2.5 Upper critical fields of Nb/Ge composites with layer thickness DNb for Nb layer and DGe

for Ge layer. From S. T. Ruggiero et al., Phys. Rev. Lett. 45, 1299 (1980).

§18.3 Pairing States

At the heart of the microscopic theory of superconductivity, as well as that of 3He superfluid-
ity, is the problem of the symmetry of the paired electrons, or atoms, and the mechanism of the
corresponding pair formation. The famous Bardeen–Cooper–Schrieffer (BCS) theory solved these
problems for conventional superconductors with exemplary success; however, we have no intention
to develop a complete description of BCS theory here. This has been the subject of several books
listed in the bibliography. In this section, our task is limited to giving an elementary sketch of the
generalized Cooper pairs and then applying this to various cases: The spin-singlet s-wave pairing
of conventional superconductors, the spin-singlet d-wave pairing of cuprate superconductors, and
the spin-triplet p-wave pairing of 3He superfluid and some exotic superconductors. In writing of
this section, authors are much indebted to the excellent introduction of this subject in Mineev and
Somokhin’s monograph (Bib. [9]).

18.3.1 Generalized Cooper Pairs

The Cooper problem, as one of the fundamental ideas of Bardeen–Cooper–Schrieffer (BCS)
theory, is that the normal metallic state is unstable with respect to the Fermi sea in the presence
of an arbitrarily small attractive interaction between electrons; thus Cooper pairs are formed. Let
us consider a simple model in which two electrons, located at r1 and r2, are added to a Fermi sea
of electrons at T = 0: Suppose that the two electrons interact via the potential V (r1 − r2) and the
presence of other electrons manifests itself only through Pauli exclusion principle (Fig. 18.3.1). The
wavefunction for this pair of electrons satisfies the Schrödinger equation

− �
2

2m
(∇2

1 + ∇2
2)Ψ(r1, r2) + V (r1, r2)Ψ(r1, r2) = (E + 2EF)Ψ(r1, r2), (18.3.1)

where the energy E is measured from the state where two electrons are at the Fermi level. We may
assume the center of mass of these two electrons R = (r1 + r2)/2 is at rest, the wavefunction of the
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k

kF

-k

Figure 18.3.1 Two electrons with oppositely directed momenta just outside the Fermi sphere.

electron pair depends only on r = r1 − r2. Since the condensate in the ground state responsible for
superconductivity must have zero momentum, only a pair of electrons with opposite momenta k and
−k is considered, the coordinate R in the wavefunction can be omitted, and we have a simplified
equation

−�
2

m
∇2Ψ(r) + V (r)Ψ(r) = (E + 2EF)Ψ(r). (18.3.2)

In the momentum representation the wavefunction is written as

φ(k) =

∫

dr e−ik·rΨ(r). (18.3.3)

In general, the wavefunction which has a definite angular momentum quantum number l and associ-
ated magnetic quantum number m can be expanded by spherical harmonics Ylm, and this is true for
the wavefunction in real space as well as in k-space. Let κ = k/kF, for a definite l, the wavefunction
in momentum space is

φl(k) =

l
∑

m=−l

alm(k)Ylm(κ). (18.3.4)

Since the anisotropy of wavefunction leads to the anisotropy of interaction potential which is also
l-dependent and a function of the direction of k, the potential can be expanded by Fourier transform

V (k) =

∫

dr e−ik·rV (r), (18.3.5)

and it can also expanded by spherical harmonics

Vl(k) =
l

∑

m=−l

Vlm(k)Ylm(κ). (18.3.6)

The equation for φl(k) is easily found to be

�
2k2

m
φl(k) +

∑

k′

φl(k
′)Vl(k − k′) = (E + 2EF)φl(k). (18.3.7)

When k < kF,
φ(k) = 0. (18.3.8)

This means simply that all states below the Fermi level are occupied. This equation (Bethe–
Goldstone equation) has a continuous spectrum of solutions for E > 0 corresponds to the collision
of two electrons ±�k. However, Cooper had the insight to point out that the bound states exist for
E < 0 provided that V is attractive.

A drastic simplification is introduced by the assumption that this interaction is attractive and
constant within a thin shell over Fermi surface with the thickness εl, while otherwise is zero

Vl(k − k′) =

{

−Vl, EF < �
2k2/2m, �

2k′2/2m < EF + εl,
0, other cases.

(18.3.9)
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Then (18.3.7) may be rewritten as

(

�
2k2

m
− E − 2EF

)

φl(k) = Vl

∑

k′

φl(k
′), (18.3.10)

where the summation over k′ is restricted within the thin shell defined above.
In order to calculate the bound state, the zero energy level is redefined at the Fermi level, thus

ξk =
�

2k2

2m
− EF, (18.3.11)

and (18.3.10) can be rewritten as

1 = Vl

∑

k

1

2ξk − E
. (18.3.12)

According to the usual method, the summation of k can be replaced by an integration over energy,
so we can get

1 = Vl

∫ εl

0

N(ξ)
dξ

2ξ − E
. (18.3.13)

If εl ≪ E, N(ξ) may be replaced by the value N(0) at Fermi level, then

1 =
1

2
N(0)Vl ln

E − 2εl

E
. (18.3.14)

Finally, we obtain the equation satisfied by the binding energy E, and define the gap function
at 0 K as ∆ = −E/2. For N(0)V ≪ 1, the weak-coupling approximation is introduced, and the
solution is

El = −2εl exp

(

− 2

N(0)Vl

)

, ∆l = εl exp

(

− 2

N(0)Vl

)

. (18.3.15)

Then an allowed energy state exists with E < 0. Thus a bound-pair of electrons with a finite binding
energy 2∆l is called a generalized Cooper pair.

According to the analysis above, we shall make several remarks:

1) The instability exists even for a very weak interaction Vl; the only requirement is that Vl is
attractive. However, what type of interaction responsible for attractive pairing remains unspecified.

2) In the preceding derivation, the Pauli exclusion principle is taken into account between a pair
of electrons at r1, r2 and the electrons at the Fermi surface. The total wavefunction of the Cooper
pair must be antisymmetric with respect to the exchange of r1 and r2. The orbital wavefunction
φl(k) is even or odd according to the value of its angular momentum quantum number l is even
or odd: φl(−k) = (−1)lφl(k). On the other hand, the spin function for paired fermions, each
with spin 1/2, is odd for a spin-singlet (α1β2 − α2β1) with S = 0, and even for the spin-triplets
(α1α2, α1β2 + α2β1, β1β2) with S = 1, here αi (i = 1, 2) means the spin-up state for particle i, and
βi for its spin-down state. Since the total wavefunction for a pair of fermions must be antisymmetric
with the exchange of two particles, we may conclude: The pairing states for even values of l, such
as s-wave (l = 0), d-wave (l = 2), g-wave (l = 4), . . . , from spin-singlets; while the pairing states for
odd values of l, such as p-wave (l = 1), f -wave (l = 3), . . . , form spin-triplets.

3) It should be noted that the particular form of E in (18.3.18) cannot be expanded in powers
of Vl when Vl approaches zero. This explains why the microscopic theories of superconductivity via
conventional perturbation methods must fail.

4) According to the uncertainty principle, we may estimate the spatial extent of a generalized
Cooper pair by requiring ξ0δk � 1. The uncertainty in k may be estimated from the kinetic energy
of a Cooper pair

2∆ ∼ δE ∼ �
2

m
kFδk ∼ �vFδk, (18.3.16)
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then we obtain

ξ0 ∼ �vF

2∆
. (18.3.17)

So the coherence length ξ0 is deduced from the microscopic formation of Cooper pairs. The
instability of a normal Fermi gas against pair formation may be estimated from the critical temper-
ature, i.e., kBTc ∼ 2∆. The Fermi velocity may be estimated from the relationship mvF ∼ �n1/3,
here n denotes the electron density and n−1/3 the mean separation of the fermions. In conventional
superconductors, Tc is several Kelvins, and the electron mass is roughly the free electron mass,
hence ξ0 ∼ 10−4–10−5 cm; this is the same order of magnitude as the coherence length from the GL
theory. The mass of a 3He is about several thousand times larger than that of an electron, while
Tc is three orders of magnitude lower, then ξ0 ∼ 10−6 cm. In heavy electron superconductors, the
mass is about 100–1000 times the free electron mass, but the Tc is about 1 K or lower; in cuprate
superconductors, the Tc reaches 40–100 K, so ξ0 of these materials is about 10−6–10−7 cm. In con-
ventional superconductors, ξ0 is much larger than n−1/3 ∼ 10−8 cm. From this we may conclude:
There are many electron-pairs in a conventional superconductor which are distributed crisscrossing
and overlapping with each other in the same spatial range. This is the original picture of Cooper
pairs in momentum space as described by the Bardeen–Cooper–Schrieffer (BCS) theory. Schafroth
postulated a theory for a pair of electrons in real space just like a two-electron molecule to explain
conventional superconductivity without success. However, for cuprates and heavy fermions, though
ξ0 is still slightly larger than n−1/3, it is not much larger. So some theories use the concept of
bipolarons, which bear some resemblance to the Schafroth pair.

5) The Cooper problem is a simplistic version of the many-body problem: Its solution gave a
decisive clue in the complex problem of the microscopic theory of superconductivity. For realistic
calculations of the physical properties of conventional superconductivity; however, we must go out-
side the Cooper problem. This was accomplished admirably by the BCS theory (for more details
about the BCS theory, see Bibs. [4, 5]).

18.3.2 Conventional Pairing of Spin-Singlet s-Wave

When the interaction Vl is applied to a gas of free electrons considered as s-wave, the electrons
will form spin-singlet pairs with the release of energy. The physical mechanism for the attractive
potential between electrons arises from coupling of electrons with lattice vibrations (electron-phonon
mechanism) which correctly explains the isotope effect of Tc found experimentally by substituting
atoms in the materials by isotopes with different masses, i.e.,

TcM
α = const., (18.3.18)

where α ≃ 1/2 for most elements.
More accurate calculation of ∆(0) by Bardeen–Cooper–Schrieffer (BCS) theory with many-body

formulation obtained a formula in weak-coupling approximation, i.e.,

∆(0) = 2�ωDe−2/N(0)V . (18.3.19)

It should be noted that the form is just the same as (18.3.15), except the value of ∆ is twice as
large. It signifies that the simple derivation with a two-electron approximation in the treatment of
the Cooper problem has captured the essential physics of conventional superconductors.

Now we shall try to explain the physical meaning of the gap function ∆(0). The Cooper pairs
with their pair wavefunctions of zero momentum form a sort of Bose–Einstein condensation (BEC)
in the ground state responsible for superconductivity. The excitations of the superconducting state
show some peculiarities: The excitation of quasiparticles including electrons and holes is formed
by the breaking of the Cooper pairs; this break needs to absorb an energy of 2∆, so for these
quasiparticles, the density of states between ±∆ measured from the Fermi level is zero. From the
BCS theory we can get

N(E) =











0, when |E| < ∆;

N(0)√
E2 − ∆2

, when|E| > ∆,
(18.3.20)
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where we let the Fermi level be the zero point of E, and N(0) is the density of states at the Fermi
level for a normal state metal. This result can be seen in Fig. 18.3.2. The density of states between
±∆ measured from the Fermi level for a normal state metal is transferred away and accumulated in
the range out of the gap of 2∆. For this reason, ∆ is known as BCS gap function. In Fig. 18.3.3, the
Fermi sphere, the energy gap and some quasiparticles are shown. The analogy to semiconductors
should be noted: A definite energy just like the gap in semiconductors is required to produce the
excited states, and it influences some physical properties such as absorption of electromagnetic waves
and single-electron tunneling.
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Figure 18.3.2 A schematic of energy
gap in superconductor.
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Figure 18.3.4 Temperature dependence for BCS energy gap function.

Furthermore, the temperature dependence of the gap function is derived from the BCS theory
and its relationship to Tc is clarified. At T = Tc, ∆ = 0, so a formula for Tc may be derived as

∆(0) = 3.52kBTc. (18.3.21)

Variation of ∆ versus T is shown graphically in Fig. 18.3.4. In the vicinity of Tc, a simple approxi-
mation is obtained

∆(T ) = 1.74

(

1 − T

Tc

)1/2

. (18.3.22)
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From the values of Tc of conventional superconductors, we estimate the energy gap is actually very
small, i.e., has the order of 10−4 eV. The gap can be measured experimentally by several different
method such as tunneling, absorption and reflection of infrared light and nuclear magnetic resonance
(NMR). In general, excellent agreement was found with the BCS theory. In some cases, the slight
deviations are due to the weak coupling approximation, which can be rectified by using strong
coupling theory instead.

The BCS gap function also provides the microscopic interpretation of the GL order parameter,
first derived theoretically by Gor’kov in 1959. The proportionality of the GL order parameter Ψ(r)
to the BCS gap function ∆(r) is not unexpected, since both Ψ and ∆ are complex quantities with
magnitude and phase. They are both zero in the normal state, when T > Tc; at T < Tc, the gap
opens at the Fermi surface and the order parameter becomes non-zero. These may vary in space
or with applied magnetic field or both. Furthermore, the microscopic theory restricts the range of
validity for GL equation near Tc and to gradual spatial variations of Ψ and A. However, the concept
of the order parameter identified as the gap function can be used without restraint even at 0 K.

Though, in general, sharp energy gaps are found for BCS superconductors, there are a few excep-
tional cases in which the fields, currents and gradients may act as ‘pair-breakers’ so the energy gaps
become blurred. For instance, magnetic impurities which break the time-reversal symmetry lead to
strong depression of Tc and modification of BCS states. Also excitation spectra of superconductors
are modified if they carry currents. Strong current may add a common drift momentum K to the
paired electrons lifting the degeneracy of k and −k. So superconductors with concentration of mag-
netic impurities in a certain range become gapless for a finite current range before superconductivity
is destroyed.

18.3.3 Exotic Pairing for Spin-Singlet d-Wave

Symmetry-breaking in conventional superconductors is only the breaking of gauge symmetry
U(1). However, for unconventional superconductors, other symmetries may also be broken at the
phase transition: For instance, the point symmetry group of a crystal (Gc) and the time-reversal
symmetry group T . So the symmetry group of a normal state may be expressed as

G = U(1) × T × Gc. (18.3.23)

Transition into unconventional superconducting, or superfluid, states involves additional sponta-
neously breaking of the symmetry group Gc or T , besides that of U(1). Formerly, we use names,
such as s-wave, p-wave, d-wave and g-wave for the angular momentum of the Cooper pairs, but,
strictly speaking, the presence of the crystal lattice makes the angular momentum l no longer a good
quantum number. A crystal lattice will still have a definite symmetry, though Cooper pairs have
a quantum mixture of states with different momenta. However, point symmetry groups of crystals
may be described by writing down the simplest orbital wavefunctions or spherical harmonics. So
s, dx2−y2 , dxy, . . . with different l may be used to characterize these symmetry states.

Now we consider the energy gap of unconventional superconductivity, taking the d-wave pairing
of cuprates as an example. Since the gap function ∆ must have the same symmetry as the GL
order parameter Ψ, in conventional superconductors the order parameter is unchanged under any
symmetry operation of the crystal group. This means the gap function ∆ must have the full sym-
metry of the crystal, however, for unconventional superconductors, the situation is different: The
order parameter Ψ as well as the gap function ∆ cannot have the full symmetry of the crystal. For
example, in the dx2−y2 superconductor, the order parameter and the gap function change sign under
rotation of 90◦ and reflections in the body diagonals (see Fig. 18.3.5). Since k is a wavevector in
the Brillouin zone, the simplest function which has the right symmetries is

∆(k) = ∆d[cos(kxa) − cos(kya)]. (18.3.24)

For small k we may expand the cosines and find, approximately, ∆(k) ∝ k2
x−k2

y indicating dx2−y2

symmetry. The magnitude of this function ∆(k) is the energy gap for the superconductor, it vanishes
at four special points, where the Fermi surface crosses the square diagonals(kx = ±ky). Experimental
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Figure 18.3.5 k-space representation of allowed symmetry basis functions for tetragonal symmetry appro-
priate for the CuO2 planes in high Tc cuprates. From C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72
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Figure 18.3.6 Energy gap in Bi-2212: full circles indicates the values measured with ARPES as a function
of angle on the Fermi surface; the solid curve is a fit to the data using the d-wave order parameter; the inset
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determination of energy gap in Bi-2212 with the angle resolved photoemission spectroscopy (ARPES)
roughly confirmed dx2−y2 pairing in high Tc superconductors (see Fig. 18.3.6). But it still cannot
settle this problem, further work with phase-sensitive techniques are needed, and we shall discuss
this in §18.4.3.

18.3.4 Pseudogaps and Associated Symmetry

In the underdoped cuprates, p < p0 (here p is the density of charge-carrier per Cu atom in CuO2

plane, and p0 is its optimum value at optimum doping), the pseudogap in the normal state above Tc

was observed by various experimental methods, such as nuclear magnetic resonance (NMR), neutron
scattering, specific heat measurement, photoemission spectra and infrared optical spectra. A result
from specific heat measurements is shown in Fig. 18.3.7.

The most unusual property of the pseudogaps is, with decreasing value of p, the density of states
is depleted near the Fermi level as shown schematically in Fig. 18.3.8. An approximately linear
relation may be fitted to these experimental results,

Eg0 = J

(

1 − p

p0

)

. (18.3.25)
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Figure 18.3.7 Magnitude of pseudogaps Eg0 versus charge-carrier density p for various cuprates deduced
from the specific heat measurements. From Prof. W. Y. Liang.
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Figure 18.3.8 Schematic diagram for the density of states versus energy for pseudogaps in samples with
different charge carrier densities: (a) deeply underdoped sample; (b) moderately underdoped sample; (c)
optimum doped sample.

For p � p0, Eg0 = 0; and the maximum value of Eg0 is J which is about 1200–1500 K. Furthermore,
ARPES studies by Z. X. Shen and associates show that the symmetry of the pseudogap in k-space
is dx2−y2 just like that of the superconducting gap discussed above.

The pseudogaps in cuprate superconductors pose an important theoretical problem: What is
the physical nature of the pseudogaps?h This problem is still not definitely resolved but there
are two different theoretical approaches. One is the phenomenal approach exemplified by V. J.
Emery, and S. A. Kivelson; their argument may be summarized as follows: There are two energy
scales for conventional superconductors: One is the Bardeen–Cooper–Schrieffer (BCS) gap ∆ which
measures the binding energy of Cooper pairs; and the other is the phase stiffness ns, the superfluid
density at T = 0 K, which measures the energy needed to maintain the macroscopic coherence for
supercurrents.

hFor the theory of the pseudogap, see V. J. Emery and S. A. Kivelson, Nature 347, 434 (1995); Y. I. Uemara et al.,
Phys. Rev. Lett. 62, 2317 (1989); P. A. Lee and X. G. Wen, Phys. Rev. Lett. 78, 4111 (1997); P. W. Anderson,
Science 235, 1196 (1987).
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Figure 18.3.9 A schematic diagram illustrating a possible explanation for pseudogaps in cuprates.

For conventional superconductors, ∆ is much smaller than ns; thus it is ∆ that determines
Tc. However, for cuprate superconductors, these two energy scales are more closely balanced. The
situation may be shown schematically in Fig. 18.3.9. There is a curve showing the mean field
critical temperature TMF related to the pair formation energy ∆; there is another curve for the
phase coherence temperature Tq related to the phase stiffness ns. The two curves cross at optimal
doping. It is the lower one of two temperatures which determines the Tc for the superconductive
phase transition. Thus, in the overdoped region, TMF < Tq, then Tc = TMF; in underdoped region,
Tq < TMF, Tc = Tq, the temperature below which the phase coherence becomes macroscopic, and
TMF interpreted as the pseudogap temperature at which the pair formation begins. Another approach
for the pseudogaps is based on the newer development of RVB (resonating valence bond) theory first
proposed by P. W. Anderson. In this scenario, the charge-spin separation is already taken place in
the normal state, as the spinon and holon of collective quasiparticles. A phase diagram somewhat
similar to Fig. 18.3.9 is predicted from the microscopic theory. In particular, it is predicted in the
underdoped region, spinons will form pairs according to dx2−y2 symmetry above Tc; while holons
condense at Tc into superconductors, with the order parameter of dx2−y2 type.

Though many theories have been proposed for the mechanism of d-wave pairing in cuprate
superconductors, the problem is still open for further research; though, in general consensus, it is
believed that the antiferromagnetic fluctuations play an important role in it.

18.3.5 Exotic Pairing for Spin-Triplet p-Wave

The pairing of p-wave into a spin-triplet not only breaks the gauge symmetry, it may also break
time-reversal symmetry. The most thoroughly studied case of p-wave (l = 1) pairing into a spin-
triplet is the superfluid state of 3He. The interaction responsible for pairing of 3He atoms is due to
the exchange of magnetic excitations of the surrounding atomic sea. The phase diagram for liquid
3He is shown in Fig. 18.3.10. It should be noted that there are three different superfluid phases, a
phenomenon typical of p-wave pairing.

For p-wave pairing, l = 1 (an odd value), so the associated spin-pairing state is symmetrical
for particle-exchange, i.e., spin-triplet (see §11.1.3). So the total pairing wavefunction Ψpair is a
linear combination of the components of the product of the orbital wavefunction φα(k) (expressed
by momentum) and the spin function,

Ψpair = φ1(k) |↑↑〉 + φ2(k) (|↑↓〉+ |↓↑〉) + g3(k) |↓↓〉, (18.3.26)

where the orbital wavefunction can be expressed by spherical harmonics Ylm, i.e.,

φα(k) =

1
∑

m=−1

aα
lmYlm(κ), (18.3.27)

they are amplitudes of spin states for Sz = −1, 0, 1.
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Figure 18.3.10 Phase diagram of liquid 3He in a 3D plot.

We now introduce the spin-vector d(k) and Pauli matrix which have components as follows,

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

We can express the pairing wavefunction by the components of d(k) using the symmetrical matrix
iσσy = (iσxσy, iσyσy, iσzσy), and get another expression of Ψpair,

Ψpair = i (d(k) · σ) σy

=

(

−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)

. (18.3.28)

Since the spherical harmonics Ylm(κ) with l = 1 can be expressed as linear function of the
vector k,

Y11(κ) ∼ kx + iky, Y1−1(κ) ∼ kx − iky, Y10(κ) ∼ kz. (18.3.29)

We may write the vector d of the order parameter as

dα(k) = Aαiki. (18.3.30)

The complex 3 × 3 matrix Aαi may be identified as the order parameter for the superfluid 3He.
And it transforms as a vector against rotation in both the spin space and orbital space. Given a
state specified by a set of Aαi, we can rotate it in both spaces with rotation operators R(S) and
R(O) into a new state. As the Hamiltonian of this system is invariant against the rotations, all
the states generated in this way are degenerate in energy. It should be noted that these states are
physically different, just as ideal ferromagnets with spontaneous magnetization in different directions
are different. This is the essential idea of broken symmetry.

Below we shall give a brief sketch of the order parameters for various superfluid phases distin-
guished by the configurations of the spin vector d (or matrix Aαi).

1) B-phase (also called the Balian–Werthamer phase)
Consider the states of 3He in which the total angular momentum is zero. Since J = 0, the pair

state of 3He must be invariant against the simultaneous rotation in spin and orbital space, so

d(k) ∼ k. (18.3.31)

The pair wavefunction now takes the form

ΨB
pair ∼

(

−kx + iky kz

kz kx + iky

)

= (−kx + iky) |↑↑〉 + kz (|↑↓〉+ |↓↑〉) + (kx + iky) |↓↓〉. (18.3.32)
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The B phase is described by a linear combination of three equiprobable states |Sz = +1, m =
−1 >; |Sz = 0, m = 0 > and |Sz = −1, m = +1 >. So the average values of spin magnetic moment
and orbital magnetic moment cancel.

2) A-phase (also called Anderson–Brinkman–Morel phase)
In this phase there are only Ψ↑↑ and Ψ↓↓ pairs if we take the axis of spin space appropriately

and both pairs are in the same orbital state. Starting from

d(k) ∼ (kx + iky, 0, 0), (18.3.33)

the pair wavefunction has the form

Ψ
(A)
pair ∼ (kx + iky)

(

−1 0
0 1

)

= (kx + iky)(|↑↑〉− |↓↓〉). (18.3.34)

Thus the A-phase is a linear combination of two equiprobable states |Sz = +1, m = 1 > and
|Sz = −1, m = 1 >. The total spin in this phase is zero; this is a magnetic state with orbital
magnetism.

In the presence of a magnetic field, the A1 state appears, in which the spins are not compensated,
and it has both orbital and spin magnetic moments. In general, the different states of 3He superfluid
can be explained by p-wave pairing. It means that the spin-triplet p-wave pairing is more complex
than spin-singlet pairing. Some indications of exotic pairing of p-wave electrons have been found
in some unconventional superconductors, for instance, the heavy electron superconductor UPt3 has
three superconducting phases, one below 0.5 K, the other two below 0.44 K; while U1−xThxBe13

has four distinct superconducting phases, in which one phase is considered to be magnetic (see
Fig. 18.3.11).

Also superconductivity has been found in materials which are weakly or marginally ferromagnetic,
such as Sr2RuO4, UGe2, ZrZn2. Even pure Fe under high pressure, after losing ferromagnetism,
becomes a superconductor. In conventional superconductors, magnetic impurities are pair-breakers,
now there are clear indications which show the coexistence (or near coexistence) of superconductivity
and ferromagnetism in these materials (see Fig. 18.3.12). Thus, evidence of spin-triplet p-wave
pairing in these exotic superconductors is mounting and continues to be intensely studied both
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Figure 18.3.11 Phase diagram for U1−xThxBe13.
The four superconducting regions (numbered) can
be described by two pair wavefunctions. In phase
there is evidence from muon spin rotation for
an anomalous magnetic moment of order 0.001 −
0.01 µB. From R. H. Heffner et al., Phys. Rev. Lett.
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experimentally and theoretically. References for these discoveries are listed in the footnote under
Table 18.1.2.

§18.4 Josephson Effects

There are many peculiar phenomena involved in the phases of two weakly-coupled macroscopic
quantum systems. Josephson explored problems related to superconducting weak-links which are
called Josephson junctions. The effect named after him is typical example of broken gauge symmetry.
It clearly embodies Heisenburg uncertainty relation for phase θ and number of particles N , i.e.,
∆θ∆N ≃ 1.

18.4.1 Josephson Equations

S1 S2

ª1 ª2

θ1 θ2

ª1 ª2

I

Figure 18.4.1 Two superconductors separated by a thin insulator.

We consider two superconductors separated by an insulating layer as shown in Fig. 18.4.1. The
insulating layer acts as a potential barrier for electrons. If it is thick, the electrons cannot get
through it, but for the case of a thin layer, the electrons can tunnel across. We choose Ψ1 and Ψ2

to represent the wavefunctions of electron pairs, i.e., the macroscopic wavefunctions of left and right
superconductors. Because the two superconductors are weakly coupled, the wavefunctions should
satisfy the following equations

i�
∂Ψ1

∂t
= E1Ψ1 + KΨ2, i�

∂Ψ2

∂t
= E2Ψ2 + KΨ1, (18.4.1)

where K is the coupling constant corresponding to the transition amplitude for an electron pair
between two superconductors, and E1, E2 are the ground state energies when K = 0.

Suppose the two superconducting regions are connected to the two terminals of a battery, so that
there is a potential difference V across the junction, then E1 − E2 = 2 eV. If we define the zero of
energy at (E1 + E2)/2, the two weak link equations are

i�
∂Ψ1

∂t
= eV Ψ1 + KΨ2, i�

∂Ψ2

∂t
= −eV Ψ2 + KΨ1. (18.4.2)

Actually, when the coupling exists, no matter how weak it is, the two superconductors become one
system and should be described by a single condensate wavefunction.

The densities of Cooper pairs in the two superconductors are

|Ψ1|2 = ρ1, |Ψ2|2 = ρ2. (18.4.3)

so the two macroscopic wavefunctions can be written as

Ψ1 =
√

ρ1e
iθ1 , Ψ2 =

√
ρ2e

iθ2 . (18.4.4)
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Substituting these into (18.4.2), we get four equations by equating the real and imaginary parts in
each case. The result is

ρ̇1 =
2K

�

√
ρ2ρ1 sin(θ2 − θ1), ρ̇2 = −2K

�

√
ρ2ρ1 sin(θ2 − θ1),

θ̇1 =
K

�

√

ρ2

ρ1
cos(θ2 − θ1) −

eV

�
, θ̇2 =

K

�

√

ρ1

ρ2
cos(θ2 − θ1) +

eV

�
. (18.4.5)

The first two equations tell us how the densities would change, and therefore describe the kind of
current that would begin to flow, even though there were no extra electric forces due to an imbalance
of potential. This current from sides 1 to 2 would be just 2eρ̇1(or −2eρ̇2), and

J =
4eK

�

√
ρ2ρ1 sin θ = J0 sin θ, (18.4.6)

where the phase difference θ = θ2 − θ1 and the maximum current density J0 = 4eK
√

ρ2ρ1/� are
defined. We remember that the two sides are connected by wires to the battery, ρ1 and ρ2 do not
in fact change, but the current across the junction s still given by (18.4.6).

What we get from the other pair of equations in (18.4.5) is

θ̇ = θ̇2 − θ̇1 =
2eV

�
, (18.4.7)

or

θ(t) = θ0 +
2e

�

∫ t

0

V (t)dt, (18.4.8)

where θ0 is the value of θ at t = 0. Equations (18.4.6) and (18.4.8) are called the Josephson equations.

18.4.2 The Josephson Effects in Superconductors

The theoretical prediction for (18.4.6) and (18.4.8) were quickly confirmed by experiments, which
showed furthermore that suitable weak links are not limited to pure tunnel junctions, but can be
made in a large variety of ways, such as point contacts, microbridges, etc. There are a lot of quantum
effects related to weak-links which show the importance of the phase in superconductors. We shall
enumerate some of the main results in the following.

If there is no voltage applied, i.e., take V = V0 = 0, then

J = J0 sin θ0. (18.4.9)

This is the dc Josephson effect, which was experimentally observed by Anderson and Rowell in 1963.
It means the current in a weak link with no applied voltage can be any amount between J0 and
−J0, depending on the value of θ0. This effect confirms the meaning of the phase difference among
the superconductors.

If there is a dc voltage across the junction, that is, V = V0 �= 0, 2eV0 should be less than the gap
width to avoid pair breaking, then

J = J0 sin

(

θ0 +
2e

�
V0t

)

. (18.4.10)

This is the ac Josephson effect, which means a dc voltage leads to an ac Josephson current. The
alternating frequency is ω = 2πν = 2eV0/�, which was detected experimentally through the elec-
tromagnetic radiation of the oscillatory current. Actually, there is a constant related to the flux
quantum defined by ν/V0 = 2e/h = 4.8 × 1014 HzV−1.

Further, we can apply an ac voltage at microwave frequency in addition to the dc voltage. The
total voltage is V = V0+v cosωt, but the condition v ≪ V0 is required. Now the Josephson current is

J = J0 sin

(

θ0 +
2e

�
V0t +

2ev

�ω
sin ωt

)

. (18.4.11)
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Using the Fourier expansion, sin(x + ∆x) ≈ sin x + ∆x cosx, the last expression can be approxi-
mated by

J = J0

[

sin

(

θ0 +
2e

�
V0t

)

+
2ev

�ω
sin ωt cos

(

θ0 +
2e

�
V0t

)]

, (18.4.12)

in which the first term is zero on the time average, but the second term gives a dc current if
V0 = �ω/2e. More exactly, using the Fourier–Bessel expansion to higher ranks, we can find that
there are dc components in the frequency modulated current, as the dc voltage satisfies

V0 =
�

2e
nω, (18.4.13)

where n is any integer, and its amplitude is

J = J0Jn

(

2ev

�ω

)

sin θ0, (18.4.14)

where Jn(2ev/�ω) is the n-rank Bessel function. The physical implication for this dc current can
be easily understood. As a matter of fact, a dc voltage V0 leads to an energy difference 2eV0 for
a Cooper pair located in one superconductor from the other superconductor of the junction. The
tunneling process will be facilitated by applied radiation, especially (18.4.12) is fulfilled. Such a
resonance effect has been called Shapiro steps,i which can be demonstrated by experiments like in
Fig. 18.4.2.
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Figure 18.4.2 Current versus voltage of Josephson junction, showing Shapiro steps. From C. C. Grimes
and S. Shapiro, Phys. Rev. 169, 397 (1968).

It is very important to understand the effect of an applied magnetic field on the Josephson
junctions from both the viewpoints of basic physics and of applied superconducting electronics.
Now, for simplicity, we focus our attention on the effect of magnetic field through the loop. The
vector potential A will influence the phase of the macro-wavefunction. So θ in (18.4.6) and (18.4.8)
can be changed into

γ = θ − 2π

Φ0

∫

A · dl, (18.4.15)

where Φ0 is the magnetic flux quantum.
We shall consider a special case for a pair of Josephson junctions (denoted by 1 and 2) between a

pair of superconducting electrodes as shown in Fig. 18.4.3. Since B = ∇×A, the enclosed magnetic
flux can be found as the line integral of A around the contour. If the electrodes are thicker than λ,
we can take the integration contour wholly in the region where vs vanishes. From (18.1.33), we may
infer that A = (Φ0/2π)∇θ in the electrodes, so

Φ =

∮

A · dl =
Φ0

2π

∮

∇θ · dl. (18.4.16)

iS. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
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Figure 18.4.3 (a) Schematic diagram for two Josephson junctions in magnetic field; (b) corresponding
quantum interference pattern.

Because the phase must be single-valued,
∮

∆θ · dl should be divided exactly by 2π. So we find that
the phase difference is 2πΦ/φ0, and the maximum supercurrent should be

Imax = 2Ic cos(2πΦ/Φ0). (18.4.17)

The relation plotted in Fig. 18.3.4 is reminiscent of the two slit interference pattern in optics. This
is the physical basis of the dc-SQUID (superconducting quantum interference device) magnetometer,
the most sensitive device for the measurement of magnetic flux, to the accuracy of a extremely small
fraction of Φ0. Just as a system of two slits in optics may be generalized to gratings (1D, 2D or 3D),
the ideal for junction SQUID in a magnetic field may be generalized to an array of junctions (1D, 2D
or 3D) with interesting physical properties. 2D array of Josephson junctions may be used to study
quantum phase transitions; while 3D array is a model system for granular superconductivity for
ceramic superconductors. In this area there are still many problems worthy of further experimental
or theoretical study.
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Figure 18.4.4 (a) Schematic diagram for the circuit of rf-SQUID; (b) corresponding VT versus Il relations
for integral and half-integral numbers of flux quanta.

Another form of SQUID is the rf-SQUID in which only a single Josephson junction is used. A
constant rf (≈ 20–30 MHz) current Il is supplied via a coil resonantly coupled to the SQUID loop
as shown in Fig. 18.4.4(a). The rf loss as a function of the magnitude of the rf voltage VT across it,
is shown in Fig. 18.4.4(b).

18.4.3 Phase-Sensitive Tests of Pairing Symmetry

More definite tests of pairing symmetry of high Tc cuprates can be made using phase-sensitive
techniques with Josephson devices. In a square-shaped single crystal of a cuprate with d-wave
pairing we will have different phases on orthogonal sides. This fact may be used to discriminate
d-wave pairing from s-wave pairing by a suitable design of Josephson junctions or SQUID devices,
e.g., the corner-type junction shown in Fig. 18.4.5. The results of these experimental tests all favor
d-wave pairing for high Tc cuprates, though they still contain some complications to be clarified.
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Figure 18.4.5 Josephson current of a high Tc superconductor corner-type junctions. The dashed line is
the normal superconductor junctions. From D. A. Wollman et al., Phys. Rev. Lett. 74, 797 (1995).

The principle for another set of tests is related to a half-integer flux effect in superconducting
rings, first suggested theoretically in connection with p-wave pairing in heavy electron superconduc-
tors: C. C. Tsuei et al. used the ring geometry of tricrystal grain boundary junctions with controlled
orientations. Based on the fundamental requirement of a single-valued macroscopic pair wavefunc-
tion, the flux quantization of a superconducting ring with self-inductance L can be expressed by

Φa + IsL +
Φ0

2π

∑

ij

γij = nΦ0. (18.4.18)

The supercurrent circulation in the ring is

Is = Iij
c (θi, θj) sin γij , (18.4.19)

where Ic(θi, θj) is the critical current of the junction between superconducting electrodes i and j,
while θi and θj are corresponding angles of the crystallographic axes with respect to the junction
interface. Flux quantization of a multiply-connected superconductor must be valid for a super-
conducting ring with any pairing symmetry. For a ring with an odd number of sign changes in
the circulating supercurrent Is, it is sufficient to consider the case in which only one critical cur-
rent is negative (say I12

c = −|I12
c |), then Is = |I12

c | sin(γ12 + π). In absence of an external field,
Φa = 0, n = 0 for the ground state, the combined conditions of (18.4.18) and (18.4.19) lead to

Is =
π

2π

(

L

φ0

)

+
1

|I12
c | +

1

|I23
c | + · · ·

≈ Φ0

2L
, (18.4.20)

provided that |I12
c |L ≫ Φ0, . . . , |Iij

c |L ≫ Φ0. It is interesting to note that, in the ground state of
a superconducting ring with an odd number of sign changes: π ring, when the external magnetic
field is zero, half integer flux quantum will appear; with even number (including 0) of sign changes
(0 ring), Is = 0, no half integer flux quantum will appear. An series of ingenious experiments by
C. C. Tsuei et al. using a YBCO tricrystal with controlled orientations and photolithographically
patterned rings detected half integer flux in π rings, but not in 0 rings. In consequence it gave an
unambiguous confirmation of the d-wave pairing in high Tc cuprates (see Fig. 18.4.6).

18.4.4 Josephson Effect in Superfluids

Since the Josephson effect is a manifestation of macroscopic quantum phenomena, it is expected
that what happens in superconductors can also occur in superfluids. The Josephson equations are
still valid in this case, except the electric current should be replaced by the mass transport of neutral
atoms.
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Figure 18.4.6 Scanning SQUID microscope image with
three different geometrical configurations to allow an un-
ambiguous test of the symmetry of the order parameter
of YBCO. The central bright spot is π ring, and the
others are 0 rings. From C. C. Tsuei and J. R. Kirtley,
Rev. Mod. Phys. 72, 969 (2000).

∆E
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Figure 18.4.7 Two reservoir of liq-
uid helium connected by a small
aperture.

We can schematically construct a superfluid weak link as in Fig. 18.4.7 where two volumes of
superfluid helium are connected by a small aperture. In this arrangement there is a level difference
∆z between the two reservoirs for which the temperatures are assumed to be equal; the weak link
is a very small aperture. This level difference will give chemical potential difference

µ2 − µ1 = Mg∆z, (18.4.21)

where M is the mass of one 4He or two 3He atoms. Then, we have

θ̇ = θ̇2 − θ̇1 = −1

~
(Mg∆z), (18.4.22)

and a characteristic frequency could be defined as

ω = mg∆z/~. (18.4.23)

It corresponds to the ac Josephson frequency 2eV0/~ for the tunneling of Cooper pairs. It should
be noted that ac Josephson effects in superconductors are electrodynamic effects, while in superfluid
helium they are hydrodynamic effects due to the fact that helium atoms are neutral. However, the
coherence lengths, or healing lengths, ξc of superfluids He at low temperature are very small: For
4He, ξc ∼ 0.1 nm; for 3He, ξc ∼ 50 nm. It is the small coherence length that prevents easy realization
of the Josephson effect in liquid He.

In spite of the more severe requirement for low temperature, the successful realizations of Joseph-
son effect in superfluid 3He with the larger coherence length came first.j The crucial technique is
to fabricate an array of apertures with diameters less than the coherence length as the weak links
between the two reservoirs of superfluids by lithography, a modern microfabrication technique. Fur-
ther along this path, the interference effect of dc SQUID-like devices of superfluid 3He have been
reported, in which the rotation of earth acts like a magnetic field, with the prospect of developing a
sensitive rotation sensor.

Now return to 4He, surely this is a more difficult problem. However, the coherence length diverges
in the critical region near Tc in the following way

ξ = ξ0

(

1 − T

Tλ

)

−γ

, γ = 0.672. (18.4.24)

jFor Josephson effect in superfluid 3He, see E. Varoquax and O. Avenel, Phys. Rev. Lett. 60, 416 (1988); S. V.
Pereversev et al., Nature 388, 449 (1997); R. W. Simmonds et al., Nature 412, 55 (2001).
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When t = Tλ − T is sufficiently small, the coherence length may reach the scale of 10 nm, which
is accessible to modern microfabrication; however, in the critical region, fluctuation effects may
smear out the Josephson signal. An ingenious experiment using t = 3.72 mK actually found the
ac Josephson signal above the noise, and accomplished the goal of realization of Josephson effect in
4He superfluid.k

Bose–Einstein condensation (BEC) of dilute gases form another type of superfluid. One exper-
iment that was carried out first used a laser beam to cut a cigar-shaped BE condensate into two
separated parts. Then the confining potential and the laser were switched off, the two independent
parts of the BE condensates then expand and eventually overlap. In this way clean interference
patterns have been observed in the overlapping region.l Moreover, it opens the door for the study of
quantum interference and the Josephson effect in more complicated situations: For instance, a 1D
array of Josephson junctions has been realized by loading BE condensates into the optical lattice
potential generated by a standing-wave laser field.m
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Chapter 19

Broken Ergodicity

A lot of phase transitions in condensed matter are associated with broken symmetries. However,
there are many other phase transitions in which symmetry breaking cannot be seen, but there is
what we call broken ergodicity. Broken symmetry is seen to be a part of broken ergodicity.

§19.1 Implication of Ergodicity

In the late 19 century, Boltzmann introduce the hypothesis of ergodicity as the basis of statistical
mechanics.a Afterwards Gibbs introduced ensemble theory to substitute for the ergodic hypothesis,
but the difference is not large. We will use the weaker expression, i.e., quasi-ergodicity. This is the
statistical assumption that for a many-particle system in thermal equilibrium, if the experimental
time is long enough, the phase space trajectory which describes the time evolution of the system
will come arbitrarily close to any specified point in the phase space accessible to the system. As a
result, observed quantities are given by the average taken over all of the allowed phase space. In
essence, ergodicity means that the ensemble average, i.e., the phase space average, can be used to
replace the time average of the variables evolving from any single initial condition.

19.1.1 Ergodicity Hypothesis

A condensed material includes a great number of particles composed of electrons and ions. From
a dynamical point of view, we can define a microscopic state by specifying all of the dynamical
variables of the system. However, only a few physical quantities, say the temperature, the pressure
and the density, are usually taken to specify macroscopic state of the system.

Although the atomic world must obey quantum statistical mechanics, often classical treatments
are still reasonable and instructive. So, here we start from classical phase space. Let (q1, q2, . . . , qN )
be the generalized coordinates of a system with N degrees of freedom and (p1, p2, . . . , pN )
their conjugate momentum. A microscopic state of the system is specified by the values of
(q1, q2, . . . , qN , p1, p2, . . . , pN). The 2N -dimensional space constructed from these 2N variables are
the coordinates of the phase space of the system. Each phase point corresponds to a microscopic
state and the microscopic states in classical statistical mechanics make a continuous set of points in
phase space. The evolution of the system is determined by the canonical equations of motion

∂pi

∂t
= −∂H

∂qi
,

∂qi

∂t
=

∂H
∂pi

, (i = 1, 2, . . . , N). (19.1.1)

aErgodicity has been a long-standing mathematical problem. The original form of ergodicity has been proved incorrect
by mathematicians. Even the quasi-ergodicty stated here is still a hypothesis and cannot be proved mathematically.
But the concept of ergodicity has proved useful and important in physics, especially in elucidating thermodynamic
properties as well as nonequilibrium properties. We shall use this concept, in spite of the fact that its mathematical
rigor is questionable.
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These describe the motion of the phase point, xN (t), denoting the dynamical state of the system at
time t. xN are the dynamical degrees of freedom as a function of time t, position and momentum for
a liquid, for example. The trajectory of the phase point is called a phase orbit. For a conservative
system, the energy is constant, i.e.,

H({qi, pi}) = E. (19.1.2)

Therefore the phase orbit must be constrained to lie on a constant energy surface S(E) with (2N−1)-
dimensions.

Ergodicity means that every allowed point in phase space will have been visited by the system
after a sufficiently long time. Allowed points of phase space are those which satisfy macroscopic
constraints, such as that of constant energy. A dynamical quantity A is represented by a time
dependent quantity A(t) = A(xN (t)) which changes in time according to the motion of the phase
point. An observed value of A is therefore to be considered as a time average

〈A〉t = lim
t→∞

1

t

∫ t

0

A(xN (t′))dt′. (19.1.3)

Ergodicity implies that observed quantities are given by averages over all of allowed phase space.
We can write this as

〈A〉s =
1

s(E)

∫

sE

A(xN )dsE , (19.1.4)

where

s(E) =

∫

sE

dsE =

∫

Γ

δ(H(xN ) − E)dxN (19.1.5)

is the area of the energy surface. It appears possible to justify the principle of equal weight for time
average and ensemble average as

〈A〉t = 〈A〉s, (19.1.6)

which is called the ergodic hypothesis. This prescription means that thermodynamic quantities can
be obtained by the computation of a partition function Z and then its differentiation.

An isolated system, which has reached thermal equilibrium, will have the normalized probability
density

ρ(xN , sE) =
1

s(E)
, (19.1.7)

which shows equal probability of states on the energy surface. This is called the micro-canonical
ensemble and forms the base of statistical mechanics of the equilibrium state, as well as a large part
of the nonequilibrium state. A system satisfying the micro-canonical ensemble is ergodic.

Alternatively, we consider a quantum system in which q and p cannot be specified simultaneously
due to the uncertainty principle, so that classical phase space loses its rigorous meaning. In quantum
statistical mechanics, a microscopic state of a stationary dynamical system must be one of the
quantum states determined by the equation

HΨl = ElΨl, (l = 1, 2, . . .).

Here H is the Hamiltonian of the system, El and Ψl are the energy and wavefunction, respectively,
of the lth quantum state. In fact, a quantum state, denoted by the quantum number l, corresponds
to a phase orbit in classical mechanics, so for a dynamical quantity A, its observed value in the
macroscopic sense must be the ensemble average

〈A〉 =
∑

m

〈l|A|l〉, (19.1.8)

where m denotes all possible microscopic states which can be realized by the system under a certain
macroscopic condition. A statistical ensemble is defined by the distribution function that character-
izes it. The most fundamental ensemble is still the micro-canonical ensemble, which is defined by
the principle of equal weight.
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We now understand that ergodicity involves an important assumption, that is, the phase space
average of an system is equal to its infinite time average, and then the infinite time average of
an observable gives a good estimate of the observed value. In various systems related to phase
transitions, this assumption is always impossible or unrealistic, especially as things are related to
time scale.

19.1.2 Involvement of Time Scale

We discuss an example in which broken translational symmetry leads to broken ergodicity.
Assume a N -particle system that is translational invariant. Its Hamiltonian is H(ri), where
i = 1, . . . , N . By varying the temperature, the system may undergo a phase transition. The perfect
translational symmetry means that for an arbitrary vector a we have

H(ri) = H(ri + a). (19.1.9)

We can write the particle density of the system

ρ(r) =
∑

i

δ(r − ri), (19.1.10)

and its Fourier component
ρi(q) = eiq·ri . (19.1.11)

If we use m to denotes the microstates, the expectation value is

〈ρi(q)〉m =
1

Z

∑

m

ρi(q)e−βH(ri), (19.1.12)

where Z is the partition function

Z =
∑

m

e−βH(ri). (19.1.13)

Just as described in the liquid-solid transition, for T > Tc, 〈ρi(q)〉 = 0, while for T < Tc, 〈ρi(q)〉 �= 0,
and at T = Tc, a density wave arises with certain wavevector q, and 〈ρi(q)〉m becomes nonzero. Thus
the transition is associated with some ordering of the particles in space. This is the spontaneous
breaking of the symmetries associated with translational and rotational invariance.

To proceed, we must first specify which microstates should be included in m. If all possible
microstates are included, then because of the translational invariance of the Hamiltonian expressed
in (19.1.9), we can prove from (19.1.11) and (19.1.12) that

〈ρi(q)〉m = eiq·a〈ρi(q)〉m, (19.1.14)

and hence 〈ρi(q)〉m = 0 regardless of the value of T . The only way in which 〈ρi(q)〉m can be
nonzero for T < Tc is to assume that m does not include all the allowed microstates. However,
this statement is not precise enough: If some microstates are omitted from m, but all the residual
microstates remain in m under the action of the translation operation, then 〈ρi(q)〉m will still vanish.
Therefore, it is only if the residual set m is not invariant under the symmetry group of H(ri) that
〈ρi(q)〉m can acquire a non-zero value. The residual set of microstates represents the system subject
to the constraint that the center of mass is at certain position in space. It is not very difficult to
see that there are infinitely many other residual sets m′ in phase space, each corresponding to a
different center of mass position.

Any broken symmetry also breaks ergodicity, but the converse is far from true. The requirement
that the set of microstates included in the summation be restricted for T < Tc is, once again,
ergodicity breaking. In this example, it is associated with spontaneous symmetry breaking, although
this need not be the case: On the co-existence line of the liquid-vapor transition, for example,
phase space is fragmented into two distinct sets, which are not distinct in terms of their symmetry
properties.
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Although one usually presupposes ergodic behavior in statistical mechanics, many systems are
not ergodic in practice. Some systems may technically be ergodic in an infinite time limit but far
from ergodic on reasonable physical timescales, so that a phase space or ensemble average does not
give a measurable time average. Broken ergodicity is equivalent to a restricted ensemble: The phase
space trajectory remains restricted to certain subsets of the allowed phase space for all reasonable
time scales of observation, then a physical quantity A satisfies

〈A〉t = 〈A〉s(partly) �= 〈A〉s.

Time scale plays a critical role and merits further attention. There are two types of time scales,
one is τ0 related to observation, and the other is τ related to the slowest dynamical processes.

t

t

t

Fast Event

Slow Event

Fast Event Slow Event

τ0

τ0

τ0

Figure 19.1.1 Time scales and ergodicity.

We can define a thermal equilibrium state in which all the fast processes have happened and all
the slow ones have not. It is quite clear that the concept of thermal equilibrium depends crucially
on the observational timescale τ0, which itself determines the meaning of fast and slow, as shown in
Fig. 19.1.1.

Let us take the Ising ferromagnet as an example to discuss the role of the time scale. Assuming
H = 0 in (19.1.4), the spontaneous magnetization is expressed as M =

∑

i Si. At T < Tc, and the
system has macroscopic states of positive (up) or negative (down) magnetization.

If at the beginning, the system is denoted by 〈∑Sz
i 〉 = M , through fluctuations there will be a

spin-down cluster which appears with probability

P ∝ e−β∆F , (19.1.15)

where β = 1/kBT and ∆F is the free energy of formation of the spin cluster. Only after the cluster is
larger than a critical size is it possible for the system to grow and arrive at 〈

∑

Sz
i 〉 = −M . Because

the free energy is proportional to the surface area of the cluster

∆F ∝ N (d−1)/dJ, (19.1.16)

where d is the spatial dimensionality,

P ∝ exp[−βJN (d−1)/d]. (19.1.17)

The lifetime of the cluster of given size is

τ ∝ 1/P ∝ exp[βJN (d−1)/d]. (19.1.18)

So, for d > 1, in the thermodynamic limit τ ≫ 1 the macroscopic magnetization is determined by
initial conditions, and ergodicity for positive or negative magnetization is broken.
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Figure 19.1.2 Phase transition of Ising spin system and ergodicity.

Figure 19.1.2 shows schematically the phase space trajectories in the disordered and the ordered
states, as well as the relevant time scales. Γ represents the phase space. When T > Tc, the system is
in the disordered state, 〈∑Sz

i 〉 = 0, and τ0 ≫ τ , the system explores the whole of Γ and ergodicity is
restored. The point, however, is that this would require τ0 to be astronomically large when T ≪ Tc.

The existence of a time scale τ longer than τ0 leads to broken ergodicity and necessitates redefin-
ing the Ising Hamiltonian or the calculation procedure if a physical result is to be obtained. Indeed
the Hamiltonian (19.1.4) with H = 0 gives 〈Si〉 = 0 by symmetry in the canonical prescription. This
is incorrect for the physical case, τ0 < τ . The main effect of τ0 < τ is the effective decomposition of
phase space Γ into two parts, Γ+ and Γ−, for up and down states. So

Γ = Γ+
⋃

Γ−. (19.1.19)

We now understand that, for the ordered state, 〈
∑

Sz
i 〉 = M , or 〈

∑

Sz
i 〉 = −M . There is essentially

no chance of the phase point moving from one to the other within a time τ0. A proper redefinition
of the problem for τ0 < τflip must treat a system with phase space either Γ+ or Γ−, not Γ. The
slow process must not be allowed to happen. This example displays ‘broken symmetry’ because
the compartments do not have the inversion symmetry of the Hamiltonian (1.1) at h = 0. The
inversion symmetry does apply to the union of all compartments and thus implies that the up and
down compartments must be congruent. There are many known examples of broken symmetry in
condensed matter physics, all characterized by the decomposition of phase space into a number of
congruent compartments, disconnected on physical timescales. But the phenomenon of ergodicity
breaking is not limited to broken symmetry.

19.1.3 Internal Ergodicity

In a system that is non-ergodic on physical time scales, the phase point is effectively confined in
one compartment of phase space. In essence, there may be free energy barriers surrounding a com-
partment Γα in phase space, which prevent escape. Because of these barriers between compartments,
the energy surface breaks into several disconnected parts due to the existence of hills and valleys
in phase space. Theoretical treatments of such systems should calculate thermal averages over one
compartment at a time. The probability distribution of physical properties can then be obtained
from the probability of occurrence for each compartment, and moments of these distributions may
be used to predict the results of typical measurements.

The assumption of ergodicity, particularly in the broad sense that a phase average gives a time
average, is appropriate within a particular compartment. That is, the usual apparatus of equilibrium
statistical mechanics is effective when applied to one compartment at a time. Each compartment
thus behaves as a ‘system’ in its own right, but the real physical system can have several such
compartments, all effectively isolated from one another. Within Γ+ or Γ−, there is internal ergodicity.

〈A+〉s = 〈A+〉t, 〈A−〉s = 〈A−〉t. (19.1.20)

Equilibrium statistical mechanics can be effectively applied to one compartment, but not between
compartments.
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In accordance with the assumption of internal ergodicity, the basic approach is to apply the
canonical prescription not to the system as a whole, but to one compartment thereof. We compute
the free energy Fα for compartment Γα from

Fα = −kBT ln Zα = −kBT ln Trαe−βH, (19.1.21)

where Trα is a trace over only those microstates belonging to Γα. Other thermodynamic quantities
for compartment Γα may be computed either by taking an appropriate derivative of Fα, or directly
by averaging an observable A over Γα

〈A〉α =
1

Z
TrαAe−βH. (19.1.22)

This is the consequence of the modified prescription — the restricted ensemble. The restricted
ensemble is assumed to be internally ergodic within each compartment; then the infinite time average
can be replaced by an average over τ0. Restrictions may either be replaced explicitly on the trace
itself, as in (19.1.21) and (19.1.22), or may be realized implicitly by modifying the Hamiltonian H.

Actually many approximation methods, such as mean-field theory, do take account of non-
ergodicity in some ways. They add information about the system and modify the prescription.
A common case is the specification of an order parameter and its use in a Landau expansion.

The trace is frequently restricted by regarding some variables as fixed or quenched and others as
dynamical. Another is the use of periodic potentials in the electronic theory of crystals, associating
atoms or ions with particular lattice points instead of allowing them to be anywhere in space. It has
not yet been rigorously proved that the latter leads to the former, but we can observe that crystals
exist and construct our theories — or restrict our traces — accordingly.

Instead of deriving macroscopic properties from a specified microscopic Hamiltonian, a different
approach, empirical and macroscopic, is to construct trial functions for the free energy F α(T, H)
in compartment Γα. How well this can be done depends on the system and one’s knowledge of
its compartment structure. Among examples of this approach is the Landau theory, which has
been successfully applied to broken symmetry as before and can also be used to generalize broken
ergodicity. In the general case of broken ergodicity, we still try to construct Fα(T, H); stability
criteria continue to apply, and we may make expansions in T or H about any point desired.

Usually, and particularly in a system with a large number of compartments, we are more inter-
ested in the distribution or average of measurable quantities than in their values for one specific
compartment. Thus some parameters in Fα may be variables dependent on α, and we need to
know the frequency of occurrence of different parameter values. Let us write F (T, H, K) for the
dependence of a single free energy function F on some parameters K, which take the value Kα in
compartment Γα. Then Fα(T, H) = F (T, H, Kα). The parameters K could be regarded as frozen
order parameters. Suppose we wish to compute an average, say of Fα,

〈F 〉 =
∑

α

pαFα(T, h), (19.1.23)

using probability pα for compartment Γα.

§19.2 From Vapor to Amorphous Solid

Two classical examples showing broken ergodicity without broken symmetry are transitions from
vapor to liquid and from liquid to amorphous solid by avoiding crystallization. An interesting example
involving the behavior of a liquid drop on a solid surface is also related to broken ergodicity.

19.2.1 Vapor-Liquid Transition

The vapor-liquid transition is of first order, as is the liquid-solid transition discussed in §16.1,
because both have a latent heat and change of volume. Experimentally, a sufficiently dense vapor will
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Figure 19.2.1 P -V and P -T diagram of a typical substance.

condense into a liquid if the pressure is increased or the temperature is lowered. Theoretically, van
der Waals modified the ideal gas equation of state which relates pressure, volume and temperature for
the constituent molecules with no interaction among them, by introducing two correction terms, one
to account for the finite volume of the molecules and another to account for their mutual attraction.

Let us consider the transition between the gas phase and the liquid phase. The P -V and P -
T diagrams are shown in Fig. 19.2.1. The transition takes place at a constant temperature and
pressure. The pressure P (T ) is called the vapor pressure at the temperature T . If the system is
initially in state 1 in one isotherm, where it is all gas, as heat is subtracted from the system, some of
the gas will be converted into liquid, and so on until we reach state 2, where the system is all liquid.
The isotherm in the P -V diagram is horizontal during the phase transition, because the gas phase
has a smaller density than the liquid phase. Consequently, when a certain mass of gas is converted
into liquid, the total volume of the system shrinks, although P and T remain unchanged. Such a
transition is of first order.

U(r)

r0 r0

(a) (b)

U(r)

Figure 19.2.2 Effective interaction potential of an individual molecule in a gas. (a) Qualitative form; (b)
Simplified form.

In most substances the potential energy between two molecules as a function of the intermolecular
separation has the qualitative shape shown in Fig. 19.2.2(a). The attractive part of the potential
energy originates from the mutual electric polarization of the two molecules and the repulsive part
from the Coulomb repulsion and the Pauli principle of the overlapping electronic clouds of the
molecules. The situation can be idealized by approximating the repulsive part by an infinite hard-
sphere repulsion and the attractive part by a infinite range shallow well, so that the potential energy
looks like that in Fig. 19.2.2(b). The main effect of the hard core would be to forbid the presence of
any other molecule in a certain volume around a molecule. The qualitative effect of the attractive
part of the potential energy is a tendency for the system to form a bound state.

The van der Waals theory can be viewed as an example of the mean-field approach to a phase
transition. Suppose each molecule in a gas feels an effective interaction potential due to all other
molecules in the gas which is of the form

U(r) =

{

∞, r ≤ r0

u < 0, r > r0.
(19.2.1)
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This means that each molecule is a hard core of radius r0; within it the potential is infinitely
repulsive, but outside of it the potential is weakly attractive.

The global partition function Z for the gas can be thought of as the product of the N single-
particle partition functions, defined by

Z1 =

∫

dp

∫

dr exp

[

− 1

kBT

(

p2

2m
+ U(r)

)]

, (19.2.2)

where we omit a proportionality factor; the integrals are extended in momentum p and position r

space, as usual. The integral
∫

dp does give a factor which is independent of V , and therefore does
not contribute to the equation of state. On the other hand, the integral

∫

dr can be performed and
gives

(V − Ve)e
−u/kBT ,

where Ve is the ‘excluded volume’ corresponding to the hard core of all molecules in the gas interacting
with a single molecule. The pressure is given by

P = −
(

∂F

∂V

)

T

= kBT
∂ ln Z

∂V
. (19.2.3)

Noticing that Z = ZN
1 , we have

P = NkBT
∂

∂V
[ln(V − Ve) − u/kBT ] . (19.2.4)

It is reasonable to assume that Ve is proportional to the total number of molecules in the gas,
and u, which corresponds to an attractive interaction, is proportional to the density of molecules in
the gas. Therefore,

Ve = (b/NA)N, u = −(a/N2
A)(N/V ), (19.2.5)

where b and a are constants whose physical meaning will become apparent later on, defined in terms
of the Avogadro constant NA, which is the number of molecules in a mole of gas. Combining (19.2.4)
with (19.2.5), we get

P = NkBT

[

1

V − (N/NA)b
− a(N/NA)2

NV 2kBT

]

, (19.2.6)

which, for n = N/NA = 1 (i.e., one mole of gas), leads to

(

P +
a

V 2

)

(V − b) = NAkBT = RT, (19.2.7)

which is the van der Waals equation, where V is the volume per mole and R the gas constant. It
may be noted that for P ≫ a/V 2 and V ≫ b, i.e., a mole of a gas occupying a sufficiently large
volume at a moderately high temperature, (19.2.7) reduces to the ideal gas equation PV = RT .

To investigate in more detail the van der Waals’ equation, we write (19.2.7) as

(PV 2 + a)(V − b) = RTV 2, (19.2.8)

or equivalently,

V 3 −
(

b +
RT

P

)

V 2 +
a

P
V − ab

P
= 0, (19.2.9)

which reflects in a visible way the cubic character of the van der Waals equation. To each pair of
values (T, P ) there are, in general, three solutions for V . We may note that for small T the three
solutions are real; for a certain T = Tc, the three solutions become a single solution with V = Vc,
P = Pc; finally, for large T a pair of roots become complex and a single real solution remains. It
implies that there is a critical point, characterized by Pc, Vc, Tc which can be used as a point of
reference to describe the behavior of the gas. Let us write down

(V − Vc)
3 = V 3 − 3VcV

2 + 3V 2
c V − V 3

c = 0, (19.2.10)
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at V = Vc. We can compare (19.2.10) with (19.2.9) and equate coefficients of identical powers of V .
Thus

(

b +
RTc

Pc

)

= 3Vc, a/Pc = 3V 2
c , ab/Pc = V 3

c . (19.2.11)

Finally we get

Vc = 3b, Pc = a/27b2, Tc = 8a/27bR. (19.2.12)

These results give a direct physical meaning to the constants a and b, which are the characteristic
parameters for a mole of a specific gas in terms of its volume Vc and its pressure Pc at the critical
temperature Tc for the continuous phase transition from the vapor state to the liquid state.

19.2.2 Wetting Transition

Wetting is a process related to the spreading of liquid on a substrate; for convenience in discussion,
we take a solid as the substrate. When a liquid drop is put in contact with a flat solid surface, two
distinct equilibrium regimes may be found: partial wetting with a finite contact angle θ, or complete
wetting θ = 0, just as described in Fig. 19.2.3. In cases of partial wetting, the wetted portion of the
surface is limited by a contact line, for example, a circle.

θ

(a) (b) (c)

Figure 19.2.3 A liquid drop on a surface of a solid with contact angle θ. (a) Partial wetting; (b) Stronger
partial wetting; (c) Complete wetting, θ = 0.

For clarity, we will deal with a macroscopic wedge, and the line L is normal to the plane of
Fig. 19.2.4. Three phases are in contact at the line: The solid S, the liquid L, and the corresponding
equilibrium vapor V. Each interface has a certain free energy per unit area such as σsl, σsv, and
σlv; the latter, as usual, will simply be called σ. The condition of force equilibrium gives Young’s

LV

S

θ

Figure 19.2.4 Definition of contact angle be-
tween vapor, liquid and solid.

Tw

Tp

Tc

T

ρ

Perfect Wetting

Imperfect Wetting

Figure 19.2.5 Phase diagram for the
existence of a wetting transition.
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equation
σ cos θ = σsv − σsl, (19.2.13)

which shows that the contact angle θ is entirely defined in terms of thermodynamic parameters. The
shape of a drop on a substrate is given by the minimum of the total free energy of the system.

A liquid-vapor interface in the vicinity of a solid S may exhibit either a finite equilibrium contact
angle θ (partial wetting) or a strictly vanishing contact angle (complete wetting). There may exist
a particular temperature Tw at which we switch from one regime to the other. This is called the
wetting transition temperature. The phase diagram for vapor and liquid, related temperature and
concentration, can be shown in Fig. 19.2.5. There are two regions of co-existence separated by a
horizontal line denoted as the wetting transition temperature Tw. There is a pre-wetting phase
transition line for the system.

The occurrence of a wetting transition can be argued from the Young equation (19.2.13). The
surface tension depends not only on the concentration but also on the temperature along the coex-
istence line in the phase diagram. If the system approaches the critical point Tc of the gas-liquid
coexistence line, the difference between the liquid and gas phase vanishes and so does σ. It was
analyzed by Cahnb that in this process the difference (σsv −σsl) also vanishes, but more slowly than
σ. A related result is that cos θ in (19.2.13) will diverge as T → Tc. This is in contradiction to
cos θ ≤ 1. The conclusion is that there is always a wetting transition at Tw < Tc so that θ > 0 for
T < Tw and θ = 0 for T ≥ Tw. One can define the spreading coefficient

S = σsv − σsl − σ (19.2.14)

to characterize the wetting transition.
Cahn gave a simple and illuminating argument on the wetting transition. He considered that the

liquid number density ρ(z) varies smoothly as a function of the distance z from the solid surface.
This is adequate if we are dealing with temperatures T that are not too far from the critical point
Tc. There is an important assumption that the forces between solid and liquid are of short range
(∼ a), and can, in fact, be described simply by adding a special energy σc(ρs) at the solid surface.
Here ρs = ρ(z = 0) is the liquid density at the surface and σc is a certain functional

σc = σ0 − σ1ρs +
1

2
σ2ρ

2
s + · · · , (19.2.15)

where σ0, σ1, and σ2 are constants. The σ1 term, favoring large ρs, describes an attraction of
the liquid by the solid. The σ2 term represents a certain reduction of the liquid/liquid attraction
interactions near the surface. The parameters σ1 and σ2 describe the essential features at the
interface. We may say that σc is the contribution to the solid-liquid interfacial energy that comes
from direct contact. However, this is not all of the interfacial energy. Another contribution σd will
come from the distortions in the profile ρ(z), which can be written as a classical “gradient square”
functional

σd =

∫

dz

[

1

2
C

(

dρ

dz

)2

+ W (ρ)

]

, (19.2.16)

where C is a constant and
W (ρ) = f(ρ) − ρµ − P. (19.2.17)

Here f is the free energy density of the bulk liquid, µ its chemical potential and P its pressure. We
shall assume that µ and P correspond to the exact coexistence of liquid and vapor. Then W (ρ) has
two minima of equal height (W = 0) for the two equilibrium densities ρ = ρL (liquid) and ρ = ρv

(vapor), as schematically shown in Fig. 19.2.6.
To construct the density profile in the liquid ρ(z) we optimize (19.2.16) and obtain

−C
d2ρ

dz2
+

dW (ρ)

dρ
= 0, (19.2.18)

bJ. W. Cahn, J. Chem. Phys. 66, 3677 (1977).
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from which a first integral

1

2
C

(

dρ

dz

)2

= W (ρ) (19.2.19)

is derived. There is no integration constant in (19.2.19). If we consider a point deep in the bulk,
where ρ = ρb (ρb being either ρl or ρv), we must have dρ/dz = 0 and W (ρb) = 0 as explained in
Fig. 19.2.6. By using (19.2.19), the distortion energy σd is

σd =

∫ ρs

ρb

[2CW (ρ)]1/2dρ. (19.2.20)

ρρl

W (ρ)

ρv

Figure 19.2.6 The “effective free
energy” W (ρ) as a function of the
density ρ.

ρsρ ρ''

S2

S1 - σc'( ρs)

[2LW( ρs)]
1/2

Figure 19.2.7 The Cahn construction deter-
mining the density at the surface ρs. There are
two locally stable roots (ρ′, ρ′′). The other two
roots are unstable.

The last step is to determine the surface density ρs by minimization of the total energy σd+σc(ρs).
The resulting condition is

−σ′
c(ρs) = [2CW (ρs)]

1/2, (19.2.21)

where σ′
c(ρ) = dσc/dρ. This leads to the graphical construction of Fig. 19.2.7. Here, for the form of

σc(ρs) proposed in (19.2.15), it gives a linear plot for −σ′
c(ρs) = σ1 − σ2ρs.

If the slope σ2 is small, the condition (19.2.21) may give four roots for ρs. Two of these are
locally stable, while the others correspond to a maximum of the free energy and are unstable. In
this regime we find a competition between a state of low ρs (ρs = ρ′) describing a nearly “dry” solid
in contact with the vapor (ρb = ρv) and a state of high ρs (ρs = ρ′′ > ρl) describing a wet solid in
contact with the liquid (ρb = ρl). The energies of these two states are

σsv = σd(ρv, ρ
′) + σc(ρ

′), σsl = σd(ρl, ρ
′′) + σc(ρ

′′), (19.2.22)

and the liquid/vapor interfacial energy σ can be derived from the same analysis

σ = σd(ρv, ρl). (19.2.23)

Using (19.2.22) and (19.2.23), one can check that S in (19.2.14) has a simple graphical interpretation:
In Fig. 19.2.7, S = S1 − S2, which is the difference of the two shaded areas.

Let us now vary the temperature, as indicated in Fig. 19.2.8. (1) At T ≪ Tc the difference ρl−ρv

is large, and S2 is larger than S1. This gives S < 0, i.e., cos θ is finite, leading to partial wetting.
(2) If T is raised, the difference S1 − S2 decreases and vanishes at a special temperature T = Tw.
Here S = 0 and θ = 0. (3) At temperatures T > Tw, S2 < S1, and S is positive. This regime cannot
be observed in thermal equilibrium. Instead of building up a liquid/vapor interface with ρs = ρ′,
the system prefers to achieve it in two steps, through a macroscopic film of L wetting the surface
and giving a total surface energy σsl + σ. Thus, here, we keep θ = 0: The case of complete wetting.
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Figure 19.2.8 First-order transition from the Cahn construction.
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Figure 19.2.9 Second-order transitions from the Cahn construction.

Ultimately, at high temperature (T ∼ Tc), only one stable root is left, corresponding to a solid-liquid
interface.

In this scenario the transition at Tw involves a jump from one energy minimum (ρs = ρ′) to a
distinct minimum (ρs = ρ′′) and is clearly of first order. The plot of cos θ versus temperature in the
partial wetting regime has a finite slope, and intersects cos θ = 1 at T = Tw.

If the slope σ2 of −σ′
c(ρs) is large, at all temperatures T we find only one root ρs from the

construction illustrated in Fig. 19.2.9. (1) At T < Tw, ρs < ρl, and we can construct two density
profiles corresponding to two physical situations: One profile where ρ(z) decreases from ρs to ρv

(describing S/V) and one profile where ρ(z) increases from ρs to ρl (describing S/L). Again a discus-
sion of areas allows one to compare the surface energies. One finds a negative spreading coefficients,
S < 0 corresponding to partial wetting. (2) At high temperatures (T > Tw), the surface density
ρs is higher than ρl; there is only one profile associated with ρs, where ρ(z) decreases from ρs to ρl

(S/L interface). The S/V interface must then involve a macroscopic film of L, and we have complete
wetting. Clearly this scenario corresponds to a continuous, or second-order transition. At T = Tw,
ρs = ρl.

19.2.3 Glass Transition

A glass is an amorphous solid that lacks the periodicity characteristic of a crystal. Many liquids,
inorganic or organic, metallic or insulating, can form glasses upon cooling. When a liquid is cooled,
there may appear either crystalline or glass phases. The crystallization may take place at the melting
point Tm, if the temperature has been lowered sufficiently slowly so that the system has remained in
a state of quasi-thermal-equilibrium. The liquid will become ‘supercooled’ for temperatures below
Tm through rapid quenching of the system and becomes more viscous with decreasing temperature,
and may ultimately form a glass. These changes can be observed readily by monitoring the volume
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Figure 19.2.10 Schematic draw-
ing of the glass transition.
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Figure 19.2.11 The specific heat of
As2S3 near the glass transition.

as a function of temperature, and a typical result is shown schematically in Fig. 19.2.10. The
crystallization process is manifested by an abrupt change in volume at Tm, whereas glass formation
is characterized by a gradual change of slope; the region over which this change of slope occurs is
called the glass transition temperature Tg. Since the transition to the glassy state is continuous, the
glass transition temperature is not well defined. It depends on the rate of cooling of the supercooled
liquid. It is found that the slower the rate of cooling, the larger is the region for which the liquid may
be supercooled, and hence the lower is the glass transition temperature. Thus, the glass transition
temperature of a particular material depends on its thermal history, and is not an intrinsic property
of the substance. The actual value of the glass transition temperature may vary by as much as 10
to 20% for widely differing cooling rates. As an example, for silica-base glasses, the change in Tg for
different cooling rates may be as much as 100–200 K for values of Tg in the range of 600–900 K.

The nature of the glass transition is very complex and even now is poorly understood. It seems
that the glass transition is a second-order phase transition, due to the fact that certain thermody-
namic variables, e.g., V and S, are continuous, yet the derivatives

αT = (∂ ln V/∂T )P , κT = −(∂ ln V/∂P )T , CP = T (∂S/∂T )P

are discontinuous at the transition.

From the behavior observed near Tg in Figs. 19.2.10 and 19.2.11, it may be seen that characteristic
properties of the glass transition closely resemble a second-order thermodynamic transition. While
V (T ) is continuous through the vicinity of Tg, Cp(T ) near Tg has a step in a narrow temperature
interval. However, these changes are not as sharp as they should be in a true second-order transition.

The liquid-glass transition is an old problem and there has been no reliable microscopic theory un-
til now. One well-known theoretical treatment, based on an equilibrium thermodynamic viewpoint,
is the free-volume model. The basic idea is to approach the delocalization-localization transition for
the atoms and molecules by considering the volume available to each molecule, and asking if there is
adequate room for molecular motion. The glass transition occurs when the free volume is sufficiently
squeezed out of the system; this theory has been partially successful to illustrate the glass transition.

It must be emphasized that glass transition is not related to a symmetry change; in fact we
can take glass as the classical example of broken ergodicity: There is no unique structure, i.e.,
configuration. For glass, the structure is whatever the liquid finds itself trapped in. We plot
in Fig. 19.2.12, the configuration energy or potential energy V (X), where X is the configuration
coordinates for all degrees of freedom. So, V is a multidimensional surface with ridges and valleys.

The phase space can be separated into compartments A, B, C, etc.,

Γ = ΓA
⋃

ΓB
⋃

ΓC · · · . (19.2.24)
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Figure 19.2.12 The supposed configurational energy for a glass state.

A given specimen of glass is trapped in one of the deep valleys such as A. It can tunnel or thermally
fluctuate to neighboring low-lying states, but access to states like B or C is ruled out. A macroscopic
specimen of glass has in it compartments representative of a sufficient number of the different realiz-
able configurations like A, B, C, . . . , and each of these compartments is itself sufficiently macroscopic
for thermodynamics to be applicable. One can thus average over configurations before the results of
theory are compared with experiment. This “self-average” property of systems exhibiting quenched
disorder is valid for most properties of physical interest.

From kinetic aspects, the transition observed near Tg differs from a strict second-order phase
transition. The important aspect for a glass transition concerns the relaxation processes that occur
when a supercooled liquid cools. We have already seen that the experimentally measured value of
Tg is not unique; it depends on the time scale of the experiment used to observe it.

The configurational changes that cause the relaxation of the supercooled liquid become increas-
ingly slow with decreasing temperature until, at the glass transition temperature, the material
behaves as a solid. The rapid increase of the viscosity or characteristic relaxation time τ with de-
creasing temperature is one of the most important features of the relaxation process. For a time of
observation, τ0, long compared with the structural relaxation time τ the material appears ‘liquid-
like’, whereas for τ0 > τ the material behaves as if it were ‘solid-like’, which can be specified by a
certain viscosity, say 1014.6 poise. A ‘transition’ will appear to take place when t0 = tr. Tg can thus
be defined.

The main unsolved problem for the glass transition may be summarized as follows: Whether
this is a special kind of phase transition or just a purely dynamical phenomenon. Both viewpoints
have adherents and have gathered evidence to support their theories. In recent years, there has been
significant progress in the glass transition, strongly stimulated by achievements of the mode-coupling
theory. This theory is formulated in terms of non-linear coupling between density fluctuation modes
and predicts an ideal kinetic glass transition. The most important finding is the existence of a
crossover temperature Tcr above the glass transition temperature Tg where significant changes in
the dynamics occur. Although the theory still has to overcome several problems, it highlights a
few essential features in the dynamics of supercooled liquids and has stimulated many experimental
efforts.c

The description of broken ergodicity by using the uneven energy landscape, as shown in
Fig. 19.2.12, will also be effective in discussing the spin glass transition in next section. In recent
years, it has played an important role in treating the problem of protein folding.

§19.3 Spin Glass Transition

Spin glass is a typical example of a condensed matter system characterized by the absence of long-
range order, but exhibiting broken ergodicity. The spin glass is a fundamental form of magnetism
besides ferromagnetism and antiferromagnetism. There are many phenomena analogous to the spin
glass. In condensed matter physics, the analogs are electric dipolar and quadrupolar glasses, granular
superconductors, etc. We can also enumerate many non-physical analogs to the spin glasses, such
as combinational optimizations, neural networks and biological evolution, . . . , etc.

cW. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).
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19.3.1 Spin Glass State

The spin glass is a kind of magnetically disordered structure in which the underlying perfect
crystalline lattice may be preserved. This situation occurs in some dilute magnetic alloys, such as
CuMn or AuFe, with a magnetic component from 0.1 to 10 atomic percent. The local moments in a
metallic host are randomly frozen, as indicated in Fig. 19.3.1. The formation of a spin glass state is
due to the fact that the exchange interaction between moments in a metal has an oscillatory spatial
dependence.

According to the concentration of magnetic impurities in a magnetic alloy, the magnetic state
of the alloy falls into one of several regimes, as schematically represented in Fig. 19.3.2. When the
concentration is very low, the interaction between the spins is negligible; this is the Kondo regime
in which the phenomenon of resistivity minimum may appear. When the concentration is large, this
is the inhomogeneous long-range magnetic ordered regime. In between these two, for intermediate
concentrations, is the spin-glass regime, including cluster spin glass.

Figure 19.3.1 Randomly frozen magnetic moments on a nonmagnetic metal lattice.
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Figure 19.3.2 Various concentration regimes for a magnetic alloy illustrating the different types of magnetic
behavior. From J. A. Mydosh, Spin glasses: An Experimental Introduction, Taylor & Francis, London (1993).

Spin glass systems are characterized by a random competition between ferromagnetic and anti-
ferromagnetic interactions. As a result, conventional magnetic long-range order is not possible.
This constitutes a new state of magnetism, distinctly different from the long-range ordered ferro-
and antiferromagnetic phases. Yet similar to these magnets, the spin glass also has a cooperative or
collective nature in the frozen state. For the dilute magnetic alloys, which are the canonical example
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of spin glass systems, the competition arises from the oscillatory RKKY interactions between the
magnetic ions, mediated by the conduction electrons of the host metal.

Experiments have shown that there are rather sharp cusps in the temperature dependence of the
low frequency susceptibility at low field, in the dilute metallic alloys AuFe and CuMn. Figure 19.3.3
reproduces the first measurements on AuFe which coined the term spin glass, showing the sharp
cusps; the frequency was in the low audio range (50–155 Hz) and the driving field was 5 Gauss. Notice
how the peak height increases in magnitude and shifts to higher temperatures as the concentration of
Fe is increased. At higher temperatures, the magnetic alloy is in the paramagnetic state; however, as
the temperature decreases and approaches a characteristic temperature Tf , relaxation times become
extremely long and the system begins to exhibit hysteresis. A paramagnet-spin glass transition is
assumed to take place at Tf , which is often called the freezing temperature.
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Figure 19.3.3 Low-field ac susceptibility for
four AuFe alloys. From V. Cannella and J. A.
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Spin glass alloys show striking preparation effects and considerable slowing-down of response
to external perturbations below the same characteristic temperature as that found in the ac sus-
ceptibility experiments. One of these features was observed in a dc susceptibility experiment: The
susceptibility obtained by cooling the system in the field yielded a higher value than that obtained
by first cooling in zero field and then applying the field, as shown in Fig. 19.3.4. Similarly, dra-
matic preparation dependence was observed in measurements of the remanent magnetization. These
observations demonstrate that in the new phase, there are many metastable states whose relative
free energies vary in different ways with external perturbations and which have significant energy
barriers impeding motion from one state to another.

Just as in Fig. 19.2.12, for the spin glass we can also construct a picture of the energy surface in
phase space. For all T < Tf there exist an infinite number of distinct equilibrium states, or valleys, in
the free energy landscape, into which the system may fall when cooled below Tf . Each such state is
separated by infinite energy barriers from all the others. An explanation of the onset of preparation
dependence between field-cooled and zero-field-cooled measurements comes from different modifica-
tions with field of the relative energies of different minima, so that the lowest minimum at zero field
is no longer the lowest in even a small field.
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The lowest-lying minima represent the pure equilibrium state; at higher energies there are the
many metastable states. Upon cooling, a spin glass may become stuck in one of these states. If the
system cannot explore all of phase space, then we call it non-ergodic. When the barriers between
the valleys become infinite, ergodicity is lost. The time it takes to go from one valley to another
is the exponential of the height of the barrier between these two valleys. It is not surprising that
there are many different relaxation times present. Theoretical treatment really shows that below the
freezing temperature Tf , the system condenses into non-ergodic state characterized by an infinite
number of pure phases. In comparison, the simple Ising ferromagnets exhibits only two pure phases,
with positive and negative magnetizations. Below the Curie temperature, the broken ergodicity is
associated with spontaneous symmetry breaking, the system will stay in one pure phase for infinite
time in the thermodynamic limit.

Although we have taken a few very specific materials, e.g., CuMn and AuFe, as the examples
for spin glasses, the spin glass is actually a very general phenomenon. Over 500 different systems,
including transition metal alloys, rare-earth binary or pseudo-binary alloys, amorphous magnetic
alloys, and even magnetic semiconductors and magnetic insulators, can display the behavior of spin
glasses, if there is sufficient magnetic coupling, even if the interaction is not RKKY-like.

19.3.2 Frustration and Order Parameter

Edwards and Anderson (1975) attributed the salient phenomena of spin glasses to the competition
between random ferromagnetic and antiferromagnetic interactions for local magnetic ions.d Our
discussion can begin from a model Hamiltonian

H = −
∑

i,j

JijSi · Sj , (19.3.1)

where the i, j label the magnetic ions, the Si are the corresponding spin orientation vectors, and Jij

the exchange interaction between the pair of spin (ij). The spin locations Ri are randomly located
and Jij is a function of (Ri − Rj) that oscillates in sign with separation. In magnetic alloys the
spins are coupled through the RKKY interaction

J(R) = J0
cos(2kFR)

(2kFR)3
, (19.3.2)

which is a long-range indirect exchange interaction mediated by conduction electrons with its oscil-
lation period π/kF, where kF is the Fermi wavevector. This interaction is either ferromagnetic or
antiferromagnetic as a function of distance.

Competing interactions lead to frustration, which refers to conflicts between interactions that
contradict each other and cannot be obeyed simultaneously. More clearly, frustration arises as
pairs of spins get different ordering instructions through the various paths that link i and j, either
directly or via intermediate spins. Frustration is a far-reaching concept, so let us look a bit closer
at it. Suppose we have a triangle of three Ising spins with three bonds of +J or −J as shown
in Fig. 19.3.5. For the configuration (a) three bonds are all positive, so all the bond energies are
satisfied and there will only be a two-fold degenerate ordered state. Here we say that the triangle is
unfrustrated. However, for the configuration (b), two bonds are positive and one bond is negative,
all the bond energies cannot simultaneously be satisfied. One spin remains frustrated no matter
what we do. The degeneracy of the ground states is six-fold. We may write a frustration function
as Φ =

∏

sign (Jij) = ±1, where the minus sign denotes a frustrated system. For the case in
Fig. 19.3.5, Φ = +1 for the unfrustrated (a) and −1 for the frustrated (b).

Generally, frustration increases the energy and the degeneracy of the lowest energy states. Frus-
tration is a necessary ingredient for spin glasses. Antiferromagnetic interactions alone can provide
frustration. A classical demonstration is given by the nearest neighbor Ising model on a triangu-
lar lattice. If all the interactions are ferromagnetic, it exhibits the usual paramagnet-ferromagnet

dThe first theoretical work on spin glass was made by Edwards and Anderson; refer to S. F. Edwards and P. W.
Anderson, J. Phys. F 5, 965 (1975).
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Figure 19.3.5 Triangle lattice with mixed interaction. (a) Unfrustrated plaquettes and (b) frustrated
plaquettes.

transition at finite temperature, but if the interactions are all antiferromagnetic and equal then the
resultant frustration around each plaquette suppresses cooperative order. The frustration combined
with randomness creates a multidegenerate, metastable, frozen ground state for the spin glass. In
the dilute magnetic alloys, when temperature is lowered through a temperature Tf , RKKY interac-
tion leads to magnetic frozen state. Randomly frozen magnetic moments gives rise the frustration
phenomenon. Here the free energy of the system is at one stable point, but not at the absolute
minimum. The mixed ferromagnetic and antiferromagnetic interactions are essential to install the
competition and ensure the cooperativeness of the freezing process.

Edwards and Anderson hypothesized that the cusp of ac susceptibility and other anomalous
behaviors at Tf were associated with a true phase transition with spontaneously broken spin-flip
symmetry to produce the low temperature spin glass phase. Each spin Si develops a nonzero
expectation value, mi = 〈Si〉T in this phase, but the sign and magnitude of mi’s vary from site to
site because of the random competing interactions. The spatial average of the mi’s, that is, the
average magnetization density, thus vanishes.

To describe the spin glass transition, Edwards and Anderson defined the order parameter in the
time domain

q = lim
t→∞

〈〈Si(0)Si(t)〉T〉C, (19.3.3)

where subscripts T and C are the thermal and configurational averages, respectively. When T > Tf ,
q = 0, it is in the paramagnetic state, but when T < Tf , q �= 0, it is in the spin glass state. It is
clear that in the paramagnetic phase we have 〈〈Si〉T〉c = 0 and q = 0, in the ferromagnetic phase
〈〈Si〉T〉c �= 0 and q �= 0 and in the spin glass phase 〈〈Si〉T〉c = 0 and q �= 0.

The recognition of the combination of disorder and frustration led Edwards and Anderson to
propose a more convenient model in which there are spins Si on all the sites of a lattice but the Jij

are chosen randomly from a Gaussian distribution centered at zero. It follows that the time average
for the order parameter can be replaced by the ensemble average, and then we can write

q = 〈〈Si〉2T 〉c, (19.3.4)

where the inner brackets an represent ensemble, or thermal, average while the outer brackets are for
a configurational average. q is called the Edwards–Anderson spin glass order parameter. Edwards
and Anderson went on to construct an approximate mean-field solution for their model, finding that
q did indeed develop a non-zero value at a continuous phase transition at finite temperature, with
an associated cusp in the susceptibility, consistent with the measurements.

We now understand the freezing process as follows: At high temperature, there will be a collection
of paramagnetic spins. As T approaches Tf the various spin components begin to interact with each
other over a longer range, because the temperature induced disorder is being removed. The system
seeks its ground-state (T = 0) configuration for the particular distribution of spins and exchange
interactions. This means the original random alignment of spins can be locked into a preferred
direction due to the local anisotropy. Since there is a spectrum of energy differences between the
frozen states, the system may become trapped in a metastable configuration of higher energy.
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19.3.3 Theoretical Models

The mechanism of the spin-glass transition, similar to that of the glass transition, is not com-
pletely understood. We will give an outline of this problem in what follows. A successful theoretical
approach to the spin-glass transition was initiated by Edwards and Anderson (1975), then developed
by Sherrington and Kirkpatrick (1975), and further modified by Parisi (1979).

Edwards and Anderson (EA) introduced a simple Heisenberg-version model, which focuses on
the bond competition, with a Hamiltonian (19.3.1), in which the sum is over nearest-neighbor pairs
of sites located on a three-dimensional cabic lattice. The exchange interaction Jij is an independent
random variable, satisfying a Gaussian distribution

P (Jij) =
1√
2π∆

exp

(

− Jij

2∆2

)

, (19.3.5)

where ∆ is the variance. The EA model and its mean field approximation was the first step to
understand the spin-glass behavior and possible phase transitions. The model is really very simple,
yet elegant: Replace the site disorder and RKKY interaction by a random set of bonds which satisfy
a Gaussian distribution. What still remains is to establish the true mean-field theory for this model.

In order to derive a mean-field theory for the EA model, Sherrington and Kirkpatrick (SK)
proposed a modification in which the interactions Jij are not restricted to nearest-neighbor pairs of
sites, but couple all pairs of sites, i.e., the interactions are of infinite-range. In addition they took the
spins to be Ising variables, Si = ±1, for simplification. The model is still defined by (19.3.1), except
that a random exchange bond Jij connects every pair of sites (i, j), not just the nearest-neighbor
pairs. Such infinite range model provides a formulation of mean field theory, which can be solved
exactly. Various models distinguish the probability distribution of the exchange interactions.

The SK model gives an ordinary paramagnet at high temperatures: As the critical temperature
Tf is approached from above, there is a continuous spin glass transition. Allowing for the lack of
spatial symmetry, a simple extension of a conventional mean-field approximation yields a set of
self-consistent equations

〈Si〉T = tanh





∑

j

Jijβ〈Sj〉T



 , (19.3.6)

where 〈· · · 〉T is a thermodynamic average. Near the transition temperature Tf , by linearizing the
tanh, we have

〈Si〉T =
∑

j

Jij〈Sj〉T /kBTf . (19.3.7)

Averaging over sites and bonds, and neglecting correlations between those averages, it is found

〈〈Si〉T 〉c =
∑

j

〈Jij〉c〈〈Sj〉T 〉c/kBTf . (19.3.8)

For a symmetric distribution of exchange interactions 〈Jij〉c = 0, no non-trivial result can be ob-
tained. Now we consider (19.3.7) first squared on each side and then averaged. The result is

〈〈Si〉2T 〉c =
∑

j

〈J2
ij〉c〈〈Sj〉2T S2〉c/(kBTf)

2, (19.3.9)

which gives a non-trivial solution

kBTf =





∑

j

J2
ij





1/2

. (19.3.10)

To understand and quantify the spin-glass problem further, we should study the average
free energy 〈F 〉c = −kBT 〈lnZ〉c of the magnetically disordered system, with partition function
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Z = Tr e−βH. A new statistical method, known as replica theory, was adopted to aid in the analysis
of physical averages over quenched disorder, by introducing the mathematical identity

ln Z = lim
n→0

1

n
(Zn − 1) . (19.3.11)

Zn may be interpreted as the partition function of n identical replicas of the original system, and
written as

Zn = Trn exp

(

−
n

∑

α=1

βHα

)

, (19.3.12)

where α denotes the different replicas with corresponding Hamiltonian Hα, and trace Trn is the
trace over all the variables. The average over Zn can be done in terms of cumulants. For the case
of Jij satisfying a Gaussian distribution, the average free energy is

〈F 〉c = −kB lim
n→0

1

n







Trn exp





∑

ij



βJ̃0

n
∑

α=1

Sα
i Sα

j + β2J̃2
n

∑

α,β=1

Sα
i Sβ

i Sα
j Sβ

j







− 1







. (19.3.13)

where J̃0 is the mean and J̃ the standard deviation of the nearest-neighbor P (Jij) and the sum
(ij) now refers to nearest neighbors. We thus effectively replaced the original disordered system of
(19.3.1) by one with a periodic effective temperature-dependent Hamiltonian

Heff = −
∑

ij



J̃0

n
∑

α

Sα
i Sα

j + βJ̃2
n

∑

α,β=1

Sα
i Sβ

i Sα
j Sβ

j



 , (19.3.14)

involving more complicated interactions and requiring analysis in the limit n → 0.
By analogy with conventional magnetism, we can use a replica mean-field approximation by

replacements
∑

ij

Sα
i Sα

j →
∑

ij

(

2Sα
i mα

j − mα
i mα

j

)

,

where mα
i = 〈σα

i 〉T , and

∑

ij

Sα
i Sβ

i Sα
j Sβ

j →
∑

ij

(

2Sα
i Sβ

i qαβ
j − qαβ

i qαβ
j

)

,

where qαβ
i = 〈σα

i σβ
i 〉T , for α �= β. The thermodynamic average 〈· · · 〉T is taken for the effective

Hamiltonian.
Further treatment can invoke the replica-symmetric ansatz by letting the order parameters mα =

m for all α, and qαβ = q for all α �= β. After some mathematics and taking the limit n → 0, the
free energy is

〈F 〉c = N

[

J0m
2

2
− βJ2

4
(1 − q)2 − kBT

∫

dhP (h) ln(2 coshβh)

]

, (19.3.15)

where J0 = J̃0z, J = J̃z1/2, z is the coordination number. The order parameters satisfy the
self-consistent equations

m =

∫

dxP (x) tanh βx, (19.3.16)

and

q =

∫

dxP (x)(tanh βx)2, (19.3.17)

where

P (x) = (2πJq2)−1/2 exp

[

− (x − J0m)2

2Jq2

]

. (19.3.18)
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Figure 19.3.6 Phase diagram of magnetic alloy. (a) Theoretical the result obtained in replica-symmetric
mean-field method for a random-bond Ising model. From D. Sherrington and S. Kirkpatrick, Phys. Rev.

Lett. 35, 1792 (1975). (b) Experimental result of EuxSr1−xS. From H. Maletta and P. Convert, Phys. Rev.

Lett. 42, 108 (1979).

We can get a theoretical phase diagram by using (19.3.16–18) in numerical calculations and confirm
that for the paramagnetic phase, m = q = 0, for the ferromagnetic phase, m �= 0 and q �= 0, but
for spin glass phase, m = 0 and q �= 0. The calculated theoretical phase diagram in Fig. 19.3.6(a)
qualitatively agrees with the experimental phase diagram.

The ac susceptibility in zero field can be expressed in the fluctuation correlation form as

χ(T ) =
1

kBT

∑

ij

(〈SiSj〉 − 〈Si〉〈Sj〉) . (19.3.19)

SK calculation gives it in the q(T ) function as

χ(T ) =
χ0(T )

1 − J0χ0(T )
, (19.3.20)

with χ0(T ) = (1− q(T ))/kBT . By including an applied field H in the Hamiltonian (19.3.1), the SK
calculation can give the field dependence of χ(T ). Figure 19.3.7 exhibits the susceptibility behavior
for J0/∆ = 0 and 0.5 with and without a field H = 0.1∆. There is a sharp cusp in the zero field
and the cusp becomes rounded and shifted down in a dc field. These features are well confirmed by
experiments.

The SK model offers a reasonable first basis for comparison with experiment. The predicted phase
diagram can be nicely mimicked by real spin-glass materials, and the calculated susceptibility is in
qualitative agreement with measurement. However, there is something wrong with the SK model.
A severe drawback is that the entropy goes to a negative value at T = 0: This is closely unphysical.
Other difficulties became apparent with the free energy which turns out to be a maximum with
respect to q for the solutions q = 0, T > Tf and q �= 0, T < Tf . Moreover, the q = 0 solution,
if analytically continued below Tf , has lower free energy than the spin glass state q �= 0. These
results contradict to the conventional second-order phase transition. A detailed analysis of the SK
solution (de Almeida and Thouless, 1978) showed it to be unstable at low temperature both in
the spin-glass and ferromagnetic phases. Such behavior is shown in Fig. 19.3.8 where an H-T line
gives the stability limit of the SK solution. The cause of the instability of the SK model lies in
the replica-symmetric ansatz which treats all the replicas as indistinguishable, i.e., qαβ = q. Such
an assumption leads to an invalid solution of the mean-field EA model. Despite these theoretical
difficulties, the SK solution seems correct above the instability line in Fig. 19.3.8. However, in many
other measurements, such as specific heat, magnetization, etc., this instability induces the SK model
no longer valid, and a more refined model is needed to describe the subtleties of the frozen spin-glass.
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A reasonable approach is a replica-symmetry-breaking scheme to be incorporated into the theory.
In this scheme, the symmetric requirement qαβ = q is abandoned. After a number of attempts, a
correct treatment was finally proposed by Parisi (1979).e

§19.4 Metal-Nonmetal Phase Transitions

Previously we have investigated the disorder-induced metal-nonmetal transition (Anderson tran-
sition) and electronic correlation-induced transition (Mott transition). Here we will continue our
discussion on electronic transition between extended states and localized states, mainly concerned
with interacting electron systems. The broken ergodicity in electron systems is more interesting. Be-
cause electrons are quantum particles, the uncertainty relation ∆x ·∆k ∼ 1 will play important role.
It can be argued that a localized-delocalized transition in configuration space must be accompanied
by an ergodic-nonergodic transition in momentum space, and vice versa. Metal-nonmetal phase
transitions are involved in electrons, so they will be controlled by the rules in quantum mechanics.
There are two kind of phase transitions: One is the normal thermodynamic phase transition, taking
place at nonzero temperatures, although interactions should be described according to quantum
mechanics, but the realization of phase transitions depends on classical thermal fluctuations. The
other is the quantum phase transition, expected to take place at zero temperature. The transition
point is approached through changing pressure, composition or magnetic field, and the realization
of phase transition depends on quantum zero point fluctuation related to the uncertainty principle.
Metal-nonmetal transition can be realized at finite temperature, this is the normal case; but it can
also take place at zero temperature, such as the idealized Mott transition described in §13.1.1, which
is a quantum phase transition. Although exactly zero temperature cannot be reached in laborato-
ries, it can be extrapolated from experimental results taken at temperatures near 0 K; moreover
theoretical study can give many instructive results. The study of the quantum phase transition is
important for condensed matter physics, its conclusions are not only applicable to the cases near zero
temperature, but often give enlightened insights on physical properties in a wide temperature range.
In this section we will discuss first the empirical rules of the metal-nonmetal transition, then the
Wigner crystallization, next the Mott transition, and finally the influence of electronic correlation
on the Anderson transition will be discussed.

eG. Parisi, Phys. Lett. A 73, 203 (1979); J. Phys. A 13, L115; 1101; 1887 (1980).
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19.4.1 Semi-Empirical Criteria

Here we will first introduce two important semi-empirical criteria for metal-nonmetal phase
transitions, the Goldhammer–Herzfeld (GH) criterion (1927) and Mott criterion (1952), and then
explain their relationship. Goldhammer–Herzfeld criterion is used to distinguish various elements in
the periodic table; whether they belong to metals or nonmetals. Their point of view concentrated
on that the density variation can lead to the variation of electric polarization (per mole) αm. When
the density of a substance arrives at a critical value, there will be αm → ∞, or equivalently ǫ → ∞,
then all the valence electrons bound previously to interior of atoms will be delocalized at once, so
the insulator is transformed to a metal.
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Figure 19.4.1 The αm/Ωm values for several elements in the Periodic Table. Black dots represent the
elements in which αm and Ωm all have experimental values; circles represent the elements that have experi-
mental values for Ωm, but only theoretical values for αm. From P. P. Edwards et al., A perspective on the
metal-nonmetal transition, Solid State Phys. 52, 229 (1999).

GH adopted the Clausius–Mossotti relation in dielectrics to understand the physical essence of
this transition, i.e.,

n2 − 1

n2 + 2
=

αm

Ωm
, (19.4.1)

where n is the index of refraction (n =
√

ǫ if µ = 1), αm = 4
3πNAα is the molar polarization (NA is

the Avogadro constant, and Ωm is the molar volume.

According to this criterion, if αm/Ωm = 1, then n2 − 1 = n2 + 2. This means that the high
frequency dielectric constant ε → ∞, and the valence electrons previously quasi-elastically bound
to the interior of atoms are all delocalized to form a sea of free electrons; correspondingly there is a
transition from the nonmetal to the metal. Figure 19.4.1 shows the related data for some elements,
which illustrates that the criterion can be used to distinguish approximately metallic and nonmetallic
elements.
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The Mott criterion begins from the metallic state. If there is a positively charged impurity atom
in a Fermi sea, free electrons affected by the Coulomb interactions give rise to a shielding effect to
the positive charge, then the interaction between the impurity atom and an electron changes from
the Coulomb potential to the Yukawa potential

−e2

r
exp(−λr).

If the density of free electrons is n, then according to semi-classical Thomas–Fermi theory, we have

λ2 ≃ 4me2n1/3

�2
.

In general the Coulomb potential is strong enough to bind an electron. The radius of a hydrogen
in the lowest energy state is the Bohr radius a0 = �

2/me2. If the shielding radius 1/λ is smaller
than a0, then an electron cannot be bound by this state, Therefore there is a dividing line at

λ−1 ∼ a0,

i.e.,
n1/3

c a0 ∼ 0.25, (19.4.2)

where nc is the critical electronic density. The basis of the Mott criterion is dependent on some data
from impurity states and electron-hole pairs in semiconductors. This criterion can also be extended
to some other substances, referring to Fig. 19.4.2. It is not necessary to bother too much about the
precise numerical value of this criterion.
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We can also consider the Mott criterion from another aspect. Beginning from an insulator, the
Coulomb potential in a dielectric is

V (r) = −e2

ǫr
, (19.4.3)

where ǫ is the effective dielectric constant of the medium. When n = nc, ǫ → ∞, certainly the
effective electronic density is determined by the separation between neighboring atoms. In this way
the Mott criterion is related to the GH criterion. If one has calculated nc from the latter, we only
need to modify the value by

n1/3
c a0 = 0.38. (19.4.4)

The metal-nonmetal transitions in liquids of alkali metals, like Ce, Rb, etc., were confirmed
experimentally many years ago. In recent years, it has been found that there is a similar transition
in liquid hydrogen under high temperature and high pressure; the experimental data are displayed

in Fig. 19.4.3. It is easy to see that transitions all appear at n
1/3
c a0 = 0.38 and this indicates the

effectiveness of both criteria and the similarity of condensed hydrogen with alkali metals, because
they are all located in the group IA in the periodic table.

19.4.2 Wigner Crystallization

Wigner (1934, 1938) pointed out, for a low density electronic system, the Coulomb interaction
dominates the kinetic energy, and the electrons may localize into a crystalline lattice. Electrons in
such a phase do not move freely through the available space; they are confined to the sites of a lattice
and their quantum mechanical zero-point motions are limited to small oscillations about their mean
positions. We can expect a Wigner electron crystal has a insulating ground state, and long-range
magnetic order, most probably Néel-like antiferromagnetism, may appear.

The electronic density n = 3/4πr0
3 (r0 is half of the average electronic separation; it can be

written as r0 = rsa0, a0 is the Bohr radius) is an important parameter to determine the behavior of
electronic systems in metals. Because the kinetic energy is proportional to r0

−2, while the Coulomb
repulsive potential is proportional to r0

−1, it can be deduced that: In high densities, r0 ∼ a0, the
electronic kinetic energy dominates, Coulomb potential can be neglected, the behavior of the elec-
tronic system is like a free gas: In low densities, r0 ≫ a0, the Coulomb repulsive potential surpasses
the kinetic energy to play the principal role, and to reduce the Coulomb repulsive interactions, elec-
trons will be separated from each other as far as possible; therefore they will be localized to form a
Wigner crystal.

A simple theoretical treatment can begin from the jellium model, in which the homogeneous
electron gas moves in a fixed uniform background of neutralized positive charges. We consider a
Wigner–Seitz (WS) cell, approximately taken as spherical, and the effect from neighboring cells is
neglected. In this way the computation of electric potential distribution at r from the center of the
unit cell is a simple electrostatic problem. It is easy to get the result

ϕ(r) =
3e

2r0
− er2

2r0
3
. (19.4.5)

The potential in the cell Ep includes two terms: One is the self interaction energy due to the
homogeneously distributed positive charge Es, expressed as

Es =
e

2

∫

r<r0

4πr2neϕ(r)dr =
3

5
· e2

r0
; (19.4.6)

the other is the interaction energy of an electron at r = 0 with the background of positive charges,
expressed as

Ei = −eϕ(0) = −3

2
· e2

r0
. (19.4.7)
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Because the electron is located in a parabolic potential well, its kinetic energy (zero point energy)
compels it to oscillate around the center of the sphere to form an isotropic harmonic oscillator. Its
oscillation frequency is

ω =

(

e2

mr0
3

)1/2

, (19.4.8)

so the electronic zero point energy in the unit cell in three dimensions is

Ek =
3

2
�ω =

3

2

e�

(mr0
3)

1/2
. (19.4.9)

It is clear when r0 → ∞ the kinetic energy for N electrons NEk is proportional to r
−3/2
0 , and not

proportional to r−2
0 , as in high densities. This result means that the picture of the Fermi sphere

in momentum space is no longer valid, and it also means that the abrupt jump of density of states
(DOS) at the Fermi surface disappears.

Introducing the Rydberg constant Ry = e2/2a0 = 13.61 eV, the total energy of a Wigner crystal
composed of N electrons is

N(Ei + Es + Ek) = N

(

−1.8

rs
+

3

rs
3/2

)

Ry. (19.4.10)

According to the competition between kinetic and potential energy, and also the empirical data
from ordinary crystal melting, the critical density for the instability of Wigner lattices is about
rs ∼ 20–100.

It is fairly obvious that the Wigner crystal is a charge density wave state with minimum po-
tential energy. The Wigner lattice breaks the continuous translational symmetry of the underlying
Hamiltonian. Hence there will be a critical temperature for the melting of the Wigner lattice into an
‘electronic liquid’ which, since the electrons are mobile again, will be metallic. Thus we should ob-
serve a thermodynamic phase transition from the Wigner insulator into a conducting state. When
we consider the Wigner transition at finite temperature, it is convenient to define a ratio of the
average Coulomb potential to the average thermal kinetic energy as

Γ ≡ e2/rs

kBT
. (19.4.11)

It was suggested when Γ > 155, electron crystallization would occur at sufficiently low density.

Although Wigner predicted the bcc electron crystal in three dimensions, it was first observed
experimentally that a two-dimensional electron crystal appeared on the surface of liquid helium at
electronic density ρ = 4.4 × 108 cm−2, T = 0.42–0.46 K. Changing the temperature, the melting
curve was obtained. The phase boundary in Fig. 19.4.4 is determined by

Γm =
π1/2e2ρ1/2

kBT
∼ 131 ± 7. (19.4.12)

In fact, low-dimensional systems are more effective to give rise to a Wigner transition, due to
stronger localization in lower dimensions since the average kinetic energy as a function of density
vanishes more rapidly. Hence, the Coulomb interaction is effectively stronger in low dimensions
because of the restricted phase space. We may further reduce the effective dimension in a two-
dimensional electron gas by applying a strong magnetic field, which restricts the motion of the elec-
trons to the lowest Landau level such that we may hope to observe the Wigner insulator experimen-
tally. The evidence for a Wigner crystal in high magnetic fields was obtained in a two-dimensional
electron gas. Its existence has been confirmed by various methods, such as measurement of the
conductivity and of time-resolved photoluminescence. Near fractional filling factors, the problem
for its observation is the proximity of the Wigner crystal to a correlated quantum liquid, the frac-
tional quantum Hall state. The experimental phase diagram of the two-dimensional electron gas in
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GaAs/AlGaAs heterostructures in a strong magnetic field is shown in Fig. 19.4.5. The system is a
correlated electron liquid above the dotted curves, and a Wigner crystal below the curves.

19.4.3 Gutzwiller Variation Method and Phenomenological Treatment

of Mott Transition

As already discussed in §13.1, the Hubbard energy U disfavors double occupancy of the same lat-
tice site. In Gutzwiller’s variational approach, the ground state wavefunction can be approximately
written as

|Ψ〉 =
∏

i

(1 − gni↑ni↓)|Ψ0〉, (19.4.13)

where |Ψ0〉 is the uncorrelated free electron ground state wavefunction, such as a Slater determinant,
and g is a variational parameter which takes into account the reduction of double occupancy of
electrons at the same site. Clearly, in the wavefunction Ψ, the compartments containing doubly-
occupied sites are reduced by a fractional amount g (0 ≤ g ≤ 1) with respect to their value in the
uncorrelated wavefunction Ψ0. It is straightforward to show that for g = 0 one simply regains the
uncorrelated state, which is of course the exact ground state for zero on-site repulsion, U = 0. On
the other hand, g = 1 corresponds to a fully correlated wavefunction in which the compartments
containing doubly occupied sites are suppressed for U = ∞. For finite repulsion, one will have
0 < g < 1, since the effect of correlation is precisely to reduce the number of doubly occupied sites
present in the uncorrelated state.

The ground state energy

E0(g) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (19.4.14)

is estimated by optimization of the parameter g. This estimate satisfies the variational principle and
hence gives an upper bound on the ground-state energy.

Within Gutzwiller’s approximation, the average of (19.4.10) with the Hubbard Hamiltonian can
be written as

E0

N
= n↑q↑ε↑ + n↓q↓ε↓ + Ud. (19.4.15)
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Here nσ = Nσ/N , qσ is the discontinuity of the momentum distribution nkσ at the Fermi surface,
d = D/N , with D =

∑

i〈ni↑ni↓〉 the average number of doubly occupied sites, and εσ is the
average kinetic energy of the uncorrelated system per spin. In the case of one electron per atom,
i.e., a half-filled band for strong electron-electron correlations, n↑ = n↓ = 1/2, q↑ = q↓ = q, and
ε↑ = ε↓ = ε0 < 0, one obtains, after minimization

d =
1

4

(

1 − U

Uc

)

, q = 1 −
(

U

Uc

)2

,
E0

N
= |ε0|

(

1 − U

U0

)2

, (19.4.16)

with Uc = 8|ε0|. This shows that, at a finite critical value of the interaction U = Uc, d, q, and E0 all
vanish. The vanishing of the discontinuity in the momentum distribution at the Fermi surface, and
consequently of the kinetic energy, would signal a metal-insulator transition. In fact, at the critical
strength Uc, all sites would be singly occupied and the electrons fully localized.

k

n(k)

Figure 19.4.6 Ground state momentum distribution. The dotted lines denote the free electron gas, while
the solid lines are in the Gutzwiller correlation wavefunction.

Gutzwiller’s calculation gave a step function for the momentum distribution, as shown in
Fig. 19.4.6; actually, it can be proved that the discontinuity at kF decreases with increasing cor-
relation. A phenomenological treatment proposed by March et al.f parallels some features of the
Gutzwiller theory: We can take the discontinuity q at the Fermi surface of the single particle occu-
pation number n(k) as a generalized order parameter. In the metallic phase, q has a finite value,
while q = 0 represents an insulating state. U is a tuning parameter; when U approaches the critical
strength Uc, q = 0, a metal-insulator transition takes place.

The ground-state energy E(q) can be expanded as a series of q about q = 0,

E(q) = E0 + E1q + E2q
2 + · · · . (19.4.17)

The form of E1 is assumed
E1(U) = α(U − Uc), for α > 0, (19.4.18)

i.e., E1(Uc) = 0, while E2(Uc) > 0. The energy minimum is determined by ∂E/∂q = 0; it evidently
yields

E1 + 2E2q + · · · = 0. (19.4.19)

Near the metal-insulator transition for very small q,

q = − E1

2E2
= Q

(

1 − U

Uc

)

, Q =
αUc

2E2
. (19.4.20)

Substituting q into E(q), we have

Emin = E0 + (−αUcQ + E2Q
2)

(

1 − U

Uc

)2

. (19.4.21)

fN. H. March, M. Suzuki, and M. Parrinello, Phys. Rev. B 19, 2027 (1979).
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The difference in energy between metal and insulator states is

∆E = (−αUcQ + E2Q
2)

(

1 − U

Uc

)2

(19.4.22)

and

d =
d(∆E)

dU
= − 2

Uc
(−αUcQ + E2Q

2)

(

1 − U

Uc

)

. (19.4.23)

These dependences of q, ∆E, and d on 1 − U/Uc are equivalent to those given by Gutzwiller’s
variational calculation.

Furthermore, the spin susceptibility near the metal-insulator transition can be obtained. Take h
as an applied magnetic field; then we may write an energy function as

E(m, q) = E0(m) + am2 + E1q + E2q
2 + bqm2 − hm. (19.4.24)

Taking the energy minimum ∂E(m, q)/∂m = 0, we have

2am + 2bqm = h, (19.4.25)

which gives

χ =
m

h
=

2

a(U) + bq
, (19.4.26)

as U → Uc, q → 0, if a(U) → 0 as 1 − U/Uc or faster, then

χ ∝ 1

1 − U/Uc
.

The susceptibility diverges at the critical strength.

19.4.4 Electron Glass

The behavior of non-interacting electrons moving in a random potential and the related phe-
nomena of localization have been studied in Chap. 9. However, the spatial distribution of localized
electrons in a disordered solid may be strongly influenced by the long-ranged Coulomb repulsion
between them. This will cause a depletion of the single particle density of states (DOS) near the
Fermi energy. At zero temperature the density of states vanishes at the Fermi energy but is non-zero
elsewhere. This is known as the Coulomb gap, and at low temperature it leads to deviations from
Mott’s T 1/4 law for electric conduction by variable-range hopping, since this law was derived by
assuming a constant density of states (DOS) near the Fermi level, and neglecting electron-electron
interaction.

The interplay of the electron-electron interactions and disorder is particularly evident deep on
the insulating side of metal-insulator transition. Both experimental and theoretical studies have
demonstrated that this leads to the formation of a soft ‘Coulomb gap’, a phenomena that is believed
to be related to the glassy behavior of electrons. The classic work of A. L. Efros and B. I. Shklovskii
in 1975 has clarified some basic aspects of this behavior.g A simplified spinless Hamiltonian for a
system of localized electrons can be adopted in the form

H =
∑

i

εini +
1

2

∑

i�=j

e2

ǫrij
ninj, (19.4.27)

where ni, equal to zero or one, is the occupation number, εi the on-site energy, ǫ the dielectric
constant, and rij the distance between the states i and j. An excellent practical realization of such
a system is the impurity band of a lightly doped, compensated semiconductor, where the disorder
arises from the random distribution of impurities over the host lattice sites.

gA. L. Efros, B. I. Shklovskii, J. Phys. C 8, L49, (1975); A. L. Efros, J. Phys. C 9, 2021 (1976).
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It is reasonable to introduce the energies of single-site excitations

Ei = εi +
∑

j

e2

rij
nj . (19.4.28)

At zero temperature, ni = 1 for Ei < EF and ni = 0 for Ei > EF, where EF is the Fermi level. The
ground state of the system should also satisfy another condition: For two states i and j, which in
the ground state are occupied and unoccupied respectively, the transfer of an electron from state i
to j should increase the energy of the system. The energy increment is

∆Eji = Ei − Ej −
e2

ǫrij
> 0, (19.4.29)

where the last term describes the attraction of the created electron-hole pair, and its presence causes
the Coulomb gap. So in the ground state any two energies Ei and Ej separated by the Fermi level
should satisfy the inequality (19.4.25).

Now we can show that the density of states (DOS) g(ε) should vanish at the Fermi level. We
assume g(EF) = g0 and consider an energy interval of small width ε centered at the Fermi level. For
this interval, an average distance R between the states is determined by the condition g0R

3ε ≈ 1 and

equals (g0ε)
−1/3. If ε ≪ ∆ = e3g

1/2
0 /ǫ3/2 the interaction energy of the states e2/ǫR = (e2/ǫ)(g0ε)

1/3

exceeds ε, and the inequality (19.4.25) inevitably breaks down. Thus a constant density of states
contradicts the inequality (19.4.25), and g(ε) at |E − EF| < ∆ should decrease with E − EF and
vanish at the Fermi level.

A self-consistent density of states near the Fermi level may be found from the condition that
for any ε < ∆, the mean interaction energy e2/ǫrij of the states within the ε interval has to be
of the order of ε. In other words, the average distance between the states in the ε interval has to
be of the order of e2/ǫε, i.e., g(ε)(e2/ǫε)3ε ≈ 1, so g(ε) ≈ (ǫ3/e6)ε2. For the two-dimensional case
the same arguments give g(ε) ≈ (ǫ2/e4)|ε|. We can finally write the density of states (DOS) for a
d-dimensional system in a common formula

g(E) ∝ |E − EF|d−1, (19.4.30)

which really characterizes the Coulomb gap. The Coulomb gap is a “soft” gap, meaning that it
vanishes only at E = EF. It is produced by the long-range Coulomb forces and is therefore to
be distinguished from a Hubbard gap, which is due to short-range forces. Only in the case of one
electron per site does a Hubbard gap separate a filled and an empty band. It is different from the
present model, because of the restriction ni = 0 or 1, so the chemical potential always lies in the
lower Hubbard band.

Numerical calculations based on the time averaging Monte Carlo method were carried out for
the sites put on a square or simple cubic lattice.h The disorder is introduced by selecting the site
energies εi from a rectangular distribution of width 2. The number of electrons was one-half the
number of sites, and to maintain electrical neutrality each site had charge +1/2. The single particle
density of states is shown in Fig. 19.4.7 for two- and three-dimensional systems. The Coulomb gap
can be clearly seen. It is noted that at low temperature, single particle excitations might not be
bare, like those considered above, but rather might be electron polarons. If an electron is added to
a site, the system can relax, if nearby electrons move away thereby creating a polarization cloud.
The Coulomb gap for polarons is clearly much narrower than that for bare excitations.

The Coulomb gap is a property of the ground state and therefore exists strictly only at zero
temperature. In a non-interacting system, the occupation of states changes as the temperature
rises, but not their energies. In the presence of interactions, a change in the occupation of one state
alters the energies of all the others; consequently the form of the density of states, as well as its
occupation, is altered. The finite temperature must have an effect on g(E); the numerical results for
two dimensions are shown in Fig. 19.4.8. At the lowest values of T = 0.05 K, g(E) has a well-defined

hFor a detailed discussion, see J. H. Davies, P. A. Lee, T. M. Rice, Phys. Rev. Lett. 49, 758 (1982); Phys. Rev. B
29, 4260 (1984).
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Figure 19.4.8 Bare single particle density of
states for a two-dimensional system at various
temperatures. The lower curve in each cases
shows the density of occupied states. From J.
H. Davies et al., Phys. Rev. Lett. 49, 758
(1982).

gap; this gap closes gradually as the temperature is raised. At T = 0.5 K there is no gap at all, and
the Coulomb gap is washed out at T = 0.3 K. This is something like a transition temperature. As
an example, in silicon doped with donors at about 1% of the concentration at the metal-insulator
transition, a typical Coulomb energy between nearby impurities is a few meV, so the Coulomb gap
should be important at temperatures below about 10 K.

The ground state shows behavior typical of a glass. It is instructive to rewrite the lattice-gas
Hamiltonian (19.4.23) in an Ising form. Setting σi = ni − 1/2, we get for the half-filled band

H =
∑

i

εiσi +
1

2

∑

i�=j

e2

ǫrij
σiσj , (19.4.31)

where the site energies are now distributed about zero energy. In this form, the Hamiltonian is that
of an Ising model in a random field, but with long-range antiferromagnetic interactions. This is
analogous to an Ising spin glass model, so the effective methods for spin glass may be useful here.
For example, a modified order parameter from the spin glass can be defined as

q = 2〈[〈σi〉t − f(εi)]
2〉S , (19.4.32)

where the t denotes the time average and S an average over samples, f(εi) is the average value of
the spin at site i in the absence of interaction. The non-zero value of the order parameter q at low
temperature suggests a glass transition occurs.

A mean field approach was used to investigate the electronic properties of a three-dimensional
system of localized Coulomb-interacting electrons.i There were a large number of metastable states
found by solving the mean-field equation. After ‘heating up’ the system and subsequently slowly
cooling down, lower metastable states are reached. Akin to spin glasses, the calculation results for
specific heat, susceptibility and order parameter strongly support the existence of an electron glass
transition.

In a series of experiments on high-mobility two-dimensional electron gases, a metal-insulator
transition was found in strong magnetic fields. Depending on the degree of disorder, three different
mechanisms for the electron localization are possible: First, the formation of an electron crystal
which is expected for the clean system; second, the formation of a ‘glassy’ electron solid at interme-
diate disorder, and third, an Anderson-type single particle localization at dominant disorder. The
iM. Grünewald et al., J. Phys. C 15, L1153 (1982).
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experimental results of transport properties may be well illustrated by a microscopic quantum theory
by taking the system in a glassy phase.j

There are still a number of key questions which remain for the electron glass: (1) What is the
precise relation of the glassy behavior and the emergence of the Coulomb gap? (2) What should be
the order parameter for the glass phase? (3) How should the glassy freezing affect the compressibility
and the screening of the electron gas? (4) How do the quantum fluctuations (electron tunneling)
melt this glass and influence the approach to the metal-insulator transition.k By taking into account
the hopping energy, a simple lattice model can be written as

H =
∑

i

εini −
∑

ij

tijc
†
i cj +

∑

ij

Vijninj . (19.4.33)

Here tij are the hopping element and Vij the intersite electron repulsions. The analysis by so called
dynamic mean-field theory is simplest if the interaction Vij = V is taken to be uniform within a
volume containing z neighbors, as opposed to the more realistic Coulomb interactions. Nevertheless,
most of the qualitative features of the Coulomb glass are still captured if we consider the coordination
number z ≫ 1. Within this model, the universal form of the Coulomb gap proves to be a direct
consequence of glassy freezing. The glass phase is identified through the emergence of an extensive
number of metastable states, which can be manifested as a replica symmetry breaking instability.
As a consequence of this ergodicity breaking, the zero-field-cooled compressibility is found to vanish
at T = 0, in contrast to the field-cooled one, which remains finite. The more important result from
this model is that quantum fluctuations can melt this glass at T = 0. If the hopping elements are
taken as tij = t, the disorder strength is W , the theoretical phase diagram is shown in Fig. 19.4.9.
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Figure 19.4.9 Phase diagram as a function of temperature T , disorder strength W , and hopping element
t. From A. A. Pastor and V. Dobrosavljevic, Phys. Rev. Lett. 83, 4642 (1999).
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Appendix A

Units and Their Conversion

Measured physical quantities are expressed in units. There are three systems of units commonly
used in physics and technology. The Gaussian cgs system traditionally used in treatises and text-
books of physics; the international SI system, established by the 11th General Conference on Weights
and Measures in 1960, now widely used in physical measurements and technological literature; be-
sides, there is the atomic system used sometimes in some theoretical texts on microscopic physics.
A system of units is chosen for convenience and clarity. A system of units once chosen affects not
only the values of physical quantities obtained from experimental measurements, but also the forms
of formulas relating various physical quantities. We may choose Maxwell equations with related
formulas and Schrödinger equation for an atom with Z electrons to illustrate this point (Tables A.1
and A.2).

A glance at the tables listed below may convince us that the simplest formulation in use is
the atomic system of units. This system of units by setting many universal constants, such as e
(electron charge), m (electron mass), � (� = h/2π, h Planck constant), and c (velocity of light in
vacuo) to unity; thus it achieves simplicity at the expense of physical clarity. So it seems to be a
reserved domain for the initiated, unsuitable for an introductory text on condensed matter physics.
In comparison, the Gaussian formulation appears to be simpler in the case of Schrödinger equation
for an atom, while the SI formulation appears to be simpler in the case of Maxwell equations. But
by further scrutiny the latter simplicity is somewhat deceptive due to the fact that the constitu-
tive relations become more complicated with the introduction of two artificially contrived universal
constants, i.e., the dielectric constant in vacuo ǫ0 and magnetic permeability in vacuo µ0:

ǫ0 = 107/4πc2 = 8.854188 Fm−1, µ0 = 4π × 107 = 12.56637 NA−2.

These two universal constants with artificial dimensionalities are introduced without any justifi-
cation from microscopic physics, for in the vacuum, there is actually no difference between E and D,
or B and H . The only pretext for their introduction is to integrate this system of units with those
practical units already widely used for electromagnetic measurements in laboratories. Considering
that the Schrödinger equation and Coulomb potential as well as the constitutive relations for the
electromagnetic media occupy important places in condensed matter physics, we naturally choose
the Gaussian system of units to formulate our equations. This just follows the tradition of most
textbooks and treatises on solid state physics and condensed matter physics. However, we are not
purists in our use of units; in our text we do not shy away from using some familiar SI units when
listing experimental results, as well as some mixed units already widely used in scientific literature,
for instance, to specify electrical resistivity of materials in units of ohm-cm, or using eV as an unit
for energy,

1 eV = 1.60219× 10−12 = 1.60219× 10−19 J, 1 eV/h = 2.41797× 1014 Hz,

1 eV/hc = 8.06546× 103 cm−1 = 8.06546× 105 m−1, 1 eV/kB = 1.16048× 104 K.
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Also SI prefixes (Table A.3) have been widely used. As to conversion of units from one system
to another, readers may consult Table A.4. Table A.5 gives the values of some fundamental physical
constants in both Gaussian and SI units. The main difficulty in conversion of units lies in magnetic
units. Our recommendation is to always use B-field in SI units, i.e., using B0 = µ0H in free space
instead of H , so we may easily convert units with the relation: 1 tesla (T) = 104 gauss (G). For
this problem, one may consult J. Crangle and M. Gibbs, Phys. World 6, November, 31 (1994).

§A.1 Maxwell Equations and Related Formulas in Three

Systems of Units

Maxwell equation Constitutive relations Lorentz force

Gaussian ∇× H =
4π

c
j +

1

c

∂D

∂t
,∇ · D = 4πρ D = E + 4πP = ǫE F = q

(

E +
v

c
× B

)

∇× E +
1

c

∂B

∂t
= 0,∇ · B = 0 H = B − 4πM =

B

µ

SI ∇× H = j +
∂D

∂t
,∇ · D = ρ D = ǫ0E + P = ǫǫ0E F = q (E + v × B)

∇× E +
∂B

∂t
= 0,∇ · B = 0 H =

1

µ0
B − M =

B

µ
µ0

Atomic ∇× H = 4πj +
∂D

∂t
,∇ · D = 4πρ D = E + 4πP = ǫE F = q (E + v × B)

∇× E +
∂B

∂t
= 0,∇ · B = 0 H = B − 4πM =

B

µ

§A.2 Schrödinger Equation for a Many-Electron Atom in

Three Systems of Units

Gaussian



− �

2m

Z
∑

i=1

∇2
i +

Z
∑

i=1

Ze2

ri
+

1

2

z
∑

i�=j

e2

ri − rj



Ψ = EΨ

SI



− �

2m

Z
∑

i=1

∇2
i +

Z
∑

i=1

Ze2

4πǫ0ri
+

1

2

∑

i�=j

e2

4πǫ0(ri − rj)



Ψ = EΨ

Atomic



−1

2

Z
∑

i=1

∇2
i +

Z
∑

i=1

Z

ri
+

1

2

∑

i�=j

1

ri − rj



Ψ = EΨ

§A.3 SI Prefixes

Factor 10−18 10−15 10−12 10−9 10−6 10−3 103 106 109 1012 1015 1018

Prefix atto femto pico nano micro milli kilo mega giga tera peta exa

Symbol a f p n µ m k M G T P E
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§A.4 Conversion of Units Between SI and Gaussian Systems

Physical Quantity Symbol SI Gaussian

Length l 1 meter (m) 102 centimeter (cm)

Mass m 1 kilogram (kg) 103 gram (g)

Time t 1 second (s) 1 second (s)

Force F 1 newton (N) 105 dyne

Pressure (Stress) p 1 pascal (Pa) 0.9868 × 10−5 atm

Work W 1 joule (J) 107 erg

Energy U 1 joule 107 erg

Power P 1 watt (W) 107 erg s−1

Charge q 1 Coulomb (C) 3 × 109 esu

Charge density ρ 1 coul m−3 3 × 103 esu cm−3

Current I 1 ampere (A) 3 × 109 esu

Current density j 1 A m−2 3 × 105 esu cm−2

Electric field E 1 V m−1 1
3 × 10−4 esu cm−1

Potential ϕ V 1 volt(V) 1
300 esu

Electric polarization P 1 C m−2 3 × 105 esu cm−2

Electric displacement D 1 C m−2 12π × 105 esu cm−2

Conductivity σ 1 ohm m−1(Ω−1m−1) 9 × 109 s−1

Resistance R 1 ohm (Ω) 1
9 × 10−11 s−1

Capacitance C 1 farad (F) 9 × 1011 cm

Magnetic flux Φ 1 weber (Wb) 108 gauss cm2(G cm2)

Magnetic induction B 1 tesla (T) 104 gauss (G)

Magnetic field H 1 ampere-turn m−1(Am−1) 4π × 10−3 oersted (Oe)

Magnetic polarization J = µ0M 1 tesla (T) 1
4π × 104 gauss (G)

Magnetization M 1 JT−1 m−3 10−3 erg Oe−1 cm−3

per unit volume

Magnetic susceptibility χ 1 JT−2 m−3 10−4 Oe−2 cm−3

per unit volume

Inductance L 1 henry (H) 1
9 × 10−11 Gaussian unit

Note: All factors of 3 which occurs in conversion factors (such as 3, 9, 12, 1/3, 1/9/, 1/300) except
those in the exponentials should be replaced by 2.997825 for accurate work.
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§A.5 Fundamental Physical Constants

Quantity Gaussian SI

Electron charge e 4.803207 · 10−10 esu 1.602176 · 10−19 C

Speed of light c 2.997925 · 1010 cm s−1 2.997925 · 108 m s−1

Planck constant � = h/2π 1.054572 · 10−27 erg 1.054572 · 10−34 J

6.582122 · 10−16 eV 6.582122 · 10−16 eV

h 6.626068 · 10−27 erg 6.626068 · 10−34 J

4.135663 · 10−15 eV 4.135663 · 10−15 eV

Electron mass m 9.109382 · 10−28 g 9.109382 · 10−31 kg

Mass ratio(proton/electron) Mp/m 1.836153 · 103 1.836153 · 103

Mass ratio(neutron/electron) Mn/m 1.838684 · 103 1.838684 · 103

Boltzmann constant kB 1.380650 · 10−16 erg K−1 1.380650 · 10−23 J K −1

8.617385 · 10−5 eV K−1 8.617385 · 10−5 eV K−1

Avogadro constant NA 6.022142 · 1023 mol−1 6.022136 · 1023 mol−1

Rydberg constant Ry 13.605698 eV 13.605 698 eV

Bohr radius a0 = �
2/me2 5.291772 · 10−9 cm 5.291772 · 10−11

Bohr magneton µB = e�/2mc 9.274009 · 10−21 erg G−1 9.274009 · 10−24 J T−1

Magnetic moment ratio µp/µB 1.521032 · 10−3 1.521032 · 10−3

(proton/electron)

Fine structure constant α = e2/�c 7.297353 · 10−3 7.297353 · 10−3

Inverse fine structure constant α−1 137.0360 137.0360

Magnetic flux quantum Φ0 = hc/e 4.135667 · 10−7 G cm2 4.135667 · 10−15 T m2

Conductance quantum 2e2/h 6.963638 · 107 esu 7.748092 · 10−5 Ω−1

Quantized Hall resistance RH = h/e2 2.872062 · 10−8 esu 2.581281 · 104 Ω

Josephson constant 2e/h 1.449794 · 1017 esu erg−1 s−1 4.835979 · 1014 Hz V−1

Source: P. J. Mohr and B. N. Taylor, The fundamental physical constants, Phys. Today 55, August
BG 6–16 (2002).
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List of Notations and Symbols

A vector potential
A mass number
Ai(y) Airy function
a acceleration
a, b, c basic vectors of the lattice
a∗, b∗, c∗ basic vectors of the reciprocal

lattice
a, b, c lattice constants
a0 Bohr radius
B magnetic induction
B bandwidth
BS(x) Brillouin function
C cyclic group
Ce electronic specific heat capacity
CP specific heat capacity at

constant pressure
c speed of light in vacuum
D electric displacement
D diffusion coefficient
D fractal (or Hausdorff)

dimension
D dihedral group
d lattice spacing
d Euclidean dimension
dt topological dimension
E = Ee electric field
E energy
E(k) dispersion relation
Ec mobility edge
E

F
Fermi energy

Eg band gap energy
Ek kinetic energy
Eex exchange energy
Exc exchange-correlation energy
e unit vector
e electronic charge

e = 2.71828 base for natural logarithm
e′ eccentricity
F force
F Helmholtz free energy
f Helmholz free energy density
f(E) Fermi distribution function
fc covering density
fp packing density
G symmetry group
G reciprocal lattice vector
G(r, r′) Green’s function
G conductance
G Gibbs free energy
g Gibbs free energy density
g(r, r′) correlation function
g

L
Landé factor

g symmetry operation
(or element)

g(E) density of states
g(ω) frequency distribution

function
g

F
density of states at Fermi level

gt genus
H Hamiltonian
H magnetic field
h height
� = h/2π Planck constant
(h, k, l) or h, k, l index for lattice planes
I electric current
I
AB

exchange integral
i, j, k unit vectors along the

Cartesian axes
J angular momentum
J total angular momentum

quantum number
Jij or J exchange coupling constant
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Jn the nth rank Bessel
function

j electric current density
j angular momentum

quantum number
K0 incident wavevector

outside the surface
K

G
diffracted wavevector
outside the surface

k wavevector
k

F
Fermi wavevector

k
F

Fermi wavenumber at
Fermi level

k
B

Boltzmann constant
L Lagrangian
L total azimuthal quantum

number
L diffusion length
L sample size
Lx, Ly, Lz depolarization factors
l lattice vector
l mean free path
l azimuthal quantum

number
M matrix for group

representation
M magnetization
M atomic (or ionic) mass
m electronic mass
m∗ or m∗

e , m∗
h effective mass of an

electron (or hole) in the
energy band

m magnetic quantum
number

NA Avogadro constant
N total number of particle

(or cell)
n unit normal
n̄ director of liquid crystal
n number density of

electrons
O octahedral group
P electric polarization
P probability
Pl the lth order Legendre

polynomial
p momentum
p effective number of Bohr

magneton
pc percolation threshold
{p, q} or {p, q, r} Schläffli symbol for regular

polyhedra or space filing
Q quality factor for resonant

cavity

q wavevector for lattice
vibration

R atomic (or ionic) position
vector

R electric resistance
R radius of gyration of

polymers
RH Hall resistance
Rnl radial wave function

R̃ reflection coefficient
r̃ reflection amplitude
r, r′ position vector
S, s spin
S entropy
S total spin quantum number
SAB overlap integral
s spin quantum number
T time reversal symmetry

group or operator
T kinetic energy
T [n] kinetic energy functional
T transfer matrix
T thermodynamic

temperature
T tetrahedral group
Tc critical temperature or

Curie temperature
TF Fermi temperature
Tg glass transition

temperature
Tm melting temperature
TN Néel temperature
T0 quantum degeneracy

temperature

T̃ transmission coefficient
t̃ transmission amplitude
t = (T − Tc)/Tc reduced temperature
t time
U internal energy
U Hubbard energy
u displacement vector from

the lattice site
[u, v, w] or 〈u, v, w〉 indices for lattice direction
V potential, voltage
v velocity
W work function
B bandwidth
w(r) Wannier funtion
x, y, z position component along

the Cartesian coordinates
Y icosahedral group
Ylm spherical harmonics
〈y〉 statistical average of y
⌊y⌋ the integer part of y
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Z atomic number
Z partition function
z coordination number
α Coulomb integral
β bond (or resonance) integral
Γ(r, r′) correlation function
γ critical exponent
∆(T ) energy gap of superconductor
δ(r) delta function
E the magnitude of electric field
ε single-particle energy
ǫ dielectric constant
ǫ(ω) dielectric function
η order parameter
η, τ, σ order parameter for smectic

liquid crystal
ΘA Curie–Weiss temperature
ΘD Debye temperature
κ = k/kF reduced wave vector
κ curvature
κ thermal conductivity
κm mean curvature
κG Gaussian curvature
λ wavelength
λL London penetration depth
µ chemical potential
µ

B
Bohr magneton

µt = µe + µh mobility (electron mobility +
hole mobility)

µeff effective magnetic moment
ν frequency
ξc correlation length

ξ0 coherence length of
superconductor

ξs screening length
Π product
π = 3.14159 ratio of circumference of circle

to diameter
∑

sum
σ electrical conductivity
σg molecular orbital with even

parity
σu molecular orbital with odd

parity
σx, σy, σz spin components of Pauli

matrix
τ relaxation time

τ = (1 +
√

5)/2
= 1.61803

golden mean

Φ magnetic flux
Φ0 magnetic flux quantum for

paired-electrons
φ0 magnetic flux quantum for

single-electrons
φ or χ orbital wave function
χp Pauli susceptibility
χ spin wave function
χ magnetic susceptibility
Ω solid angle
Ω volume
Ω0 volume of unit cell
ω angular frequency
ωc cyclotron frequency
ωp plasma frequency
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3d transition metal, 279, 295, 321
α-helix chain, 94
β-brass, 433
β-sheet, 94
δ function, 64, 148
δ-potential, 264
π orbital, 285
π polarization, 141
π ring, 517
π-electron, 291
σ orbital, 285
σ polarization, 140, 141
σ-bonding electron, 291
d-band, 318, 319
d-wave, 507
d-wave pairing, 516, 517
g-wave, 507
n-grid, 67
n-type semiconductors, 206
p-wave, 507
p-wave pairing, 510
s-d hybridization, 352
s-band, 318, 319
s-point grain correlation, 105
s-wave, 507
sp orbital, 290
sp2 orbital, 290
sp3 orbital, 290
0 ring, 517

Abelian group, 31
Abrikosov vortex lattice, 20
Abrikosov, A. A., 7, 16, 356, 499
absolute continuous spectrum, 148
absolutely unstable limit, 418, 419
absorption, 507
absorption spectra, 192
ac conductivity, 202
ac Josephson effect, 514, 518
ac Josephson frequency, 518
ac susceptibility, 541
acceptor, 195
acoustic, 123
acoustic mode, 134
acoustic wave, 136, 232

actinide, 321
adiabatic approximation, 308
adiabatic continuity, 17
Aharonov, Y., 260
Aharonov–Bohm (AB) effect, 252, 260
Airy function, 365
Alexander, S., 430, 431
alkali metals, 545
Allen, J. F., 16
alloy, 73, 537
alternating electric field, 201
alternating frequency, 514
Altshuler–Aronov–Spivak (AAS) effect, 265
amino-acid, 95
Ammann quasilattice, 68
amorphous magnetic alloy, 537
amorphous semiconductor, 14, 247
amorphous solid, 532
amphiphilic interface, 93
amphiphilic molecule, 83
amplitude, 138, 411, 414, 515
Anderson Hamiltonian, 16, 351, 352, 354, 361
Anderson localization, 14, 15, 124, 233, 245,

350, 400
Anderson localization criterion, 244
Anderson model, 16, 242, 244, 333, 352, 361
Anderson transition, 244, 542
Anderson, P. W., 5, 14, 16, 17, 19, 124, 231,

240, 337, 361, 469, 470, 510, 514,
537–539

Anderson-type single particle localization, 551
Andrews, T., 16
angles of crystallographic axis, 517
angular momentum, 279, 507
angular momentum quantum number, 275,

295, 503, 504
angular momentum state, 368
anisotropic, 7, 82, 103, 276, 500
anisotropic environment, 296
anisotropic magnetorisistance (AMR), 218
anisotropic molecule, 11
anisotropic solution, 444
anisotropic term, 464
anisotropy, 212, 217, 383, 503
anomalous dielectric property, 435
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anomalous dispersion, 41
anthracene, 295
anti-ferromagnetic interaction, 535
antibonding orbital, 298
antibonding state, 285
antiferrodistortive, 298
antiferroelectrics, 18
antiferromagnet, 19, 279, 286, 337, 341, 347,

407, 452, 461, 467
antiferromagnetic, 289, 300, 335, 337, 452,

459, 537
antiferromagnetic chain, 470
antiferromagnetic coupling, 288, 338
antiferromagnetic fluctuation, 510
antiferromagnetic ground state, 19, 470
antiferromagnetic Heisenberg model, 337
antiferromagnetic insulator, 343, 346
antiferromagnetic long-range order, 346, 469,

479
antiferromagnetic phase, 535
antiferromagnetic state, 358
antiferromagnetism, 16, 321, 341, 449, 456,

465, 478, 545
antiparallel, 288, 338, 467
antiparallel alignment, 225
antisymmetric, 278, 504
antisymmetric wave function, 278
aperiodic fluctuation, 272
aperiodic structure, 124
applied field, 410, 473
approximate mean-field solution, 538
Archimedean solids (or polyhedra), 37
argon core, 318
Arrott chart, 477
artificial atom, 395
artificial layered composite, 501
artificial molecule, 395
artificial periodic structure, 142
artificial solid (crastal), 395, 398
Ashcroft, N. W., 327
associated state, 294
associativity rule, 30
atom laser, 486
atomic correlation, 75
atomic displacement, 122
atomic distribution function, 77
atomic orbital (AO), 245, 275, 276, 278, 321
atomic physics, 275, 286, 289, 295
atomic position, 437
atomic scale, 229
atomic scattering factor, 140
atomic spacing, 133, 335
attenuation, 437

augmented plane wave (APW) method, 301,
305

average free energy, 540
average scattering rate, 251
average t-matrix (ATM), 14
average velocity, 208
Avogadro constant, 543
azimuthal angle, 282
azimuthal quantum number, 389

Büttiker, M., 255, 257, 262
Bak, P., 22
ballistic regime, 252
ballistic transport, 15
band approach, 15, 16, 275, 293
band calculation, 323
band edge, 165, 168, 249
band index, 125
band insulator, 343
band method, 275
band model, 177, 222
band picture, 250
band structure, 131, 142, 366
band tail, 244
band tail state, 124
band theory, 15, 124, 157, 158, 231, 333
band-calculation, 305
bandgap, 142, 192, 232, 246, 368, 372, 381
bandgap stabilization, 151
bandgaps, 142
bandwidth, 245, 335, 398
Bardeen, J., 6, 22, 330
Bardeen–Cooper–Schrieffer (BCS) gap, 509
Bardeen–Cooper–Schrieffer (BCS) theory, 6,

7, 16, 19, 502, 505
barrier, 178, 364, 371
basic vector, 33
basis, 289
basis function, 437
bcc electron crystal, 546
Bednorz, J. G., 7, 493
benzene, 290, 292, 294
Bernal, J. D., 79
Bessel function, 164, 386, 515
Bethe ansatz, 19, 470
bicontinuous, 52
binary alloy, 7
biological evolution, 534
biology, 229
biomembrane, 87
biopolymer, 8, 10, 82
bipolarons, 505
birefringence, 437
black-white group, 45
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Bloch electron, 155, 161, 165, 174
Bloch function, 138, 140, 142, 186, 302, 422
Bloch momentum, 143
Bloch oscillation, 156, 162, 163, 223, 265
Bloch representation, 471
Bloch solution, 203
Bloch state, 335, 472
Bloch theorem, 123, 130, 132, 136, 142, 183
Bloch tunneling, 221
Bloch wave, 123, 140, 141, 146, 178, 193
Bloch wavevector, 158
Bloch, F., 6, 14
Bloch–Grüneisen law, 205
Bloch-wave-like, 232
body-centered-cubic (bcc) structure, 125, 318,

328, 430
Bogoliubov, N. N., 6
Bohm and Pines theory of plasmon, 16
Bohr magneton, 168, 187, 279, 462
Bohr radius, 187, 349
Boltzmann constant, 9, 97, 203
Boltzmann distribution, 206
Boltzmann equation, 199, 207, 216, 251
Boltzmann factor, 247, 436
Boltzmann transport theory, 235, 238, 251,

270
Boltzmann, L., 21, 521
bond (or resonance) integral, 285
bond approach, 15, 16, 293
bond direction, 290
bond dissociation energy, 290
bond length, 290
bond percolation, 106
bonding of solid, 321
bonding orbital, 298
bonding pair, 290, 291
bonding state, 285
bonding-antibonding splitting, 396
Born approximation, 377
Born, M., 14, 308
Born–Oppenheimer approximation, 308, 317
Born–Oppenheimer potential surface, 317
Born–von Karman cyclic boundary condition,

123, 177
Bose–Einstein condensation (BEC), 10, 12,

481, 483, 486, 505, 519
Bose–Einstein statistics, 10
boson, 10
bottom of the conduction band, 368
bound state, 527
boundary conditions, 22, 164
Bragg condition, 128, 142, 249
Bragg diffraction, 127, 151
Bragg equation, 141

Bragg, W. H., 142
Bragg, W. L., 142
Bravais lattice, 39, 41, 63
Brillouin function, 462, 463, 465, 466
Brillouin zone, 212
Brillouin zone (BZ), 123, 125, 131, 136, 143,

151, 161, 165, 181, 186, 213, 224,
265, 306, 318, 324, 383, 421, 438

Brillouin zone boundary, 126, 212
Brillouin’s theory, 97
Brillouin, L., 14
broken ergodic phase, 22
broken ergodicity, 22, 406, 521, 523, 526
broken gauge symmetry, 413
broken spin-flip symmetry, 538
broken symmetry, 7, 16, 17, 19, 21, 22, 405,

406, 410, 420, 437, 462, 521, 523,
525, 526

broken translational symmetry, 523
Brownian motion, 114
buckminsterfullerene, 37
building block, 144
bulk material, 363
bulk semiconductor, 366
Burrau, O., 282

Cambell, I. A., 216
Canham, L. T., 322
canonical equations of motion, 521
canonical example, 535
canonical momentum, 490, 495
canted, 451, 461
canted antiferromagnetism, 457
Cantor bar (or set), 110, 148
Cantor, G., 110
capacitance, 390
Car–Parrinello method, 9, 317
carbon nanotube, 60, 61, 295, 380
carrier mass, 165
carrier wave, 249
Carroll, L., 29
Cartesian axis, 410
Cartesian coordinate system, 28
catenoid, 52
Cauchy, A. L., 13
cellular method, 301
centered lattice, 39, 41
chain-folding model for polymer

crystallization, 92
change of volume, 526
channels, 254
characteristic frequency, 518
characteristic length, 100, 233
characteristic size, 363



· 568 · INDEX

characteristic temperature, 536
charge density, 122
charge density wave (CDW), 11, 20, 546
charge ordering, 349
charge transfer (CT) type, 342, 343, 347
charge transport, 199
charge-spin separation, 510
charge-transfer salt, 7, 459
chemical potential, 257, 258, 329, 474, 481,

497, 518, 530, 550
chemistry, 229
chiral angle, 62, 380, 381
chiral molecules, 29
chiral vector, 61, 62
cholesteric phase, 82, 84
circle of best fit, 50
circulation, 489
classical crystallography, 67, 72
classical Hall effect, 208
classical harmonic oscillator, 167
classical physics, 283
classical potential, 325
classical statistical mechanics, 521
classical thermal fluctuation, 542
classical waves, 14, 121, 124, 231, 232
Clausius–Mossotti relation, 543
close-packing, 54, 55
closed Fermi surface, 212
closed orbit, 213
Closure rule, 30
clusters, 383
co-precipitation, 100
coden, 95
coherence, 266
coherence length of nonlinear optical media,

146, 237
coherence length of superconductor, 500, 505,

518
coherent backscattering, 237
coherent effect, 252
coherent multiple scattering, 247
coherent nature, 486
coherent potential approximation (CPA), 14
cohesion energy, 319
collective quasiparticles, 510
collision, 199, 209
collision term, 200
color group, 45
colossal magnetoresistance (CMR), 20, 62
column matrix, 133
columnar phase, 84
combination rule for symmetric axes, 34
combination rules, 35
combinational optimization, 534

commensurate, 64
commensurate phase, 437, 439
commensurate-incommensurate phase

transition, 426
commutative, 31
commutativity, 459
compartment, 525, 526, 533
compensated point, 468
complete wetting, 529, 530, 532
complex order parameter, 438
complex plane, 414
complex point group, 47
complex wavevector, 183
composite spontaneous magnetization, 467
composites, 102
compound metallic, 325
compound semiconductor, 322
compressibility, 413, 552
computer simulation, 317
condensate, 495, 503
condensate fraction, 485, 487
condensate wavefunction, 488
condensation, 486
condensation energy, 490
condensed matter, 8, 12, 22, 327, 409, 521
condensed matter physics, 6, 8, 9, 12, 13, 15,

17, 22, 27, 100, 110, 229, 275, 308,
534, 542

conductance, 252, 254, 258, 391
conductance fluctuation, 266
conductance measurement, 398
conductance oscillation, 259
conduction band, 158, 244, 246, 324, 366, 369
conduction band edge, 323
conductivity, 106, 200–202, 206, 209, 233, 238,

246, 251, 252, 255, 546
conductor, 157, 240
configuration space, 542
confining potential, 378
conjugate momentum, 521
conjugated field, 415
connectivity, 104, 106
conservation of energy, 139
constant energy surface, 166, 522
constructive interference, 236
contact angle, 530
continued fraction, 63
continuity condition, 178, 364
continuous group, 33
continuous phase transition, 407, 436
continuous spin glass transition, 539
continuous translational symmetry, 546
continuum, 109, 135
continuum percolation, 240
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convolution, 44, 66
convolution theorem, 44
cooling speed, 76
Cooper pair, 12, 19, 261, 490, 502, 504, 505,

507, 518
Cooper problem, 502, 505
Cooper, L., 6
cooperative Jahn–Teller effect, 298
cooperative phenomena, 16, 17, 450, 451
coordination compound, 459
coordination number, 54, 56, 58, 59, 77, 540
core region, 500
core state, 302
Cornell, E., 484
correlated electron liquid, 547
correlated electronic state, 12, 275
correlated electrons, 20, 322, 333
correlated quantum liquid, 546
correlation, 75, 102, 105
correlation between electrons, 333
correlation function, 75, 76, 78, 91
correlation length, 21, 75, 245, 248
coset decomposition, 422
Coulomb blockade, 393
Coulomb blockade oscillation, 391
Coulomb energy, 299
Coulomb explosion, 386
Coulomb gap, 549, 550, 552
Coulomb gauge, 260
Coulomb integral, 285, 287
Coulomb interaction, 20, 278, 279, 283, 309,

479, 545
Coulomb potential, 302, 311, 387, 544, 545
Coulomb repulsion, 349
Coulomb repulsive energy, 291
coupled multiple quantum well, 369
covalent binding, 395
covalent bond, 294
covalent semiconductor, 183
covering density, 54, 56, 68
covering lattice, 107
covering model, 68
criterion for localization, 248
critical, 75
critical current of type II superconductor, 20
critical density, 546
critical electronic density, 544
critical field, 497
critical index, 8
critical indices, 16
critical phenomena, 5, 8, 16, 20, 92
critical point, 528, 530

critical region, 20, 92
critical state, 148
critical strength, 548, 549
critical temperature, 17, 482, 485, 539
crossover temperature, 534
crystal, 246, 427, 532
crystal field, 295, 296
crystal field theory, 296
crystal growth, 100, 146
crystal lattice, 27, 134
crystal momentum, 121
crystal plasticity, 20
crystal structure, 42
crystal structure analysis, 45
crystal surfaces, 141
crystalline approximants for quasicrystal, 151
crystalline order, 483
crystalline solid, 11, 123, 165
crystalline state, 13, 73, 275
crystallization, 12, 77, 532
crystallography, 27, 37
cube, 35
cubic, 37, 39, 62
cubic terms, 423
cumulants, 540
cuprate, 346, 347, 505
cuprate superconductors, 509
Curie constant, 437
Curie temperature, 406, 537
Curie–Weiss law, 416, 420, 437, 464, 466, 475,

476
Curie-like behavior, 357
current in the plane (CIP), 374
current operators, 200
current perpendicular to the plane (CPP), 374
curvature, 50, 51
curve, 50, 111
curved surface, 111
cut and projection, 65
cut-off frequency, 121
cyclic groups, 35, 37
cyclic relaxation time, 211
cyclotron energy, 389
cyclotron frequency, 167, 212, 214
cyclotron radius, 170
cyclotron resonance, 165, 167, 212, 323
cyclotron resonance frequency, 166, 209, 224
cyclotron resonance mass, 167
cylinder, 52
cylindrical state, 379

D surface, 52
damped plasma oscillation, 202
damping of oscillations, 487
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dc conductivity, 213
dc Josephson effect, 514
dc-SQUID, 516
de Broglie relation, 155
de Broglie wavelength, 8, 101, 121, 483
de Broglie waves, 9, 14, 15, 121, 231
de Gennes, P. G., 17, 92, 348
de Haas–van Alphen (dHvA) effect, 170, 171,

173, 210
Debye characteristic temperature, 136
Debye cut-off wavenumber, 205
Debye frequency, 136
Debye model for the specific heat of solids,

135, 204
decagonal phase, 68, 431
defect-mediated phase transitions, 20
defects, 160, 199
deflation, 65
degeneracy, 143, 276, 464, 537
degeneracy per unit magnetic field per unit

volume, 171
degenerate electron gases, 11
degenerate orbitals, 339
degenerate perturbation theory, 126, 127
degree of order, 423
delocalization-localization, 533
delocalized, 183, 234, 289
delocalized states, 129, 244
density, 521, 523, 543
density correlations, 112
density distribution, 323
density fluctuation, 421
density function, 421
density functional, 301
density functional theory (DFT), 312, 313,

361, 386
density of states (DOS), 131, 132, 170, 173,

195, 201, 238, 245, 246, 256, 319,
325, 372, 378, 382, 456, 458, 546,
549, 550

density wave, 427, 437, 523
dephasing, 211
depletion, 485, 549
depletion force, 446
depletion layer, 329, 330
depolarization factors, 102
designing electronic structure, 363
determinant, 134, 284
devil’s staircase, 115, 148
diagonal disorder, 242
diagonal matrix element, 242
diamagnet, 6
diamagnetism, 449, 450

diametric line, 291
diamond, 144, 290
diatomic molecule, 326
dielectric anomaly, 326
dielectric constant, 105, 122, 149, 412, 435,

437, 549
dielectric function, 202
dielectrics, 247, 543
difference frequency conversion, 145
differential geometry, 50
diffraction pattern, 42, 70, 71, 151
diffraction physics, 142
diffusion, 76, 201, 233
diffusion coefficient, 234, 236–238, 252, 255,

326
diffusion equation, 234
diffusive case, 233
diffusive regime, 252
dihedral groups, 35, 37
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surface, 328

dipolar double layer, 178
dipolar modes, 194
Dirac symbol, 242
Dirac’s delta function, 43, 79
Dirac, P. A. M., 5
direct band gap material, 366
direct exchange, 289, 451
direct lattice, 123
direct-gap, 323
director, 83, 84, 440
disclinations, 16
discommensurations, 440
discontinuous phase transition, 407, 418, 436
discrete energy state, 383
discrete lattice, 135
dislocations, 20
disorder, 146, 233
disorder-induced electron localization, 231
disordered phase, 418
disordered state, 433
disordered systems, 231
dispersion, 14
dispersion curve, 132, 133
dispersion in the medium, 146
dispersion relation, 15, 124–126, 132, 135, 137,

139, 141, 142, 144, 155, 182, 193, 380
dispersion surface, 141
displacement, 133
displacement type, 62
displacement vector, 136
displacive phase transition, 436
distorted perovskite structure, 347
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distortion energy, 531
distribution function, 75, 160, 199, 201, 522
DNA, 6, 29, 94
dodecahedron (dodecahedra), 35, 69
domain structure, 440
domain theory for ferromagnets, 16
domain walls, 440
donated electron, 328
donor, 185
donor doping, 206
donor states, 195
doped charge transfer (CT) insulator, 343
doped Mott insulator, 16, 317, 333, 341, 349
doped Mott–Hubbard (MH) insulator, 343
doped semiconductors, 195
doping, 244
dot supermoments, 400
double barrier, 220
double barrier diode, 220
double exchange, 16, 347, 348, 451
double occupancy, 334
double occupancy of the same, 547
double quantum dot, 395
doublet, 107
doubly degenerated, 194
Drude conductivity, 209
dual, 55
dual lattice, 68
duality, 52
duplication, 94
Duwez, P., 76
dynamic high pressure technique, 327
dynamic matrix, 133, 191
dynamic mean-field theory, 552
dynamic structure, 79
dynamic structure factor, 79
dynamical mean-field theory (DMFT), 362
dynamical quantity, 522
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dynamical X-ray diffraction theory, 139, 141,
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Edwards model, 245, 246
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effective channel number, 254
effective diffusion coefficient, 238
effective field, 6, 436, 461, 462, 465, 466
effective interaction potential, 527
effective magnetic moment, 279
effective mass, 155, 168, 186, 323
effective mass approximation, 388

effective mass parameter, 366
effective medium approximation (EMA), 106
effective number of Bohr magnetons, 172
effective potential, 385
effective temperature-dependent Hamiltonian,
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eigenenergy, 123, 164, 233
eigenfrequency, 123, 133, 143
eigenfunction, 288, 303
eigenstate amplitude, 232
eigenvalue, 288
eigenvector, 133
eigenwavevector, 233
Einstein model, 135, 205
Einstein relation, 201, 238, 255
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elastic, 124, 136
elastic constants, 437
elastic mean free path, 236, 248, 252
elastic scattering cross section, 233
elastic scatterings, 233
elastic wave, 13, 121, 136, 231
electric conductivity, 208, 412
electric current, 517
electric dipolar, 534
electric displacement, 122, 124, 140, 142, 144
electric field, 138, 142, 199–201, 207, 208, 224,

244, 248, 249, 252, 415
electric force, 165
electric polarization, 145, 409, 543
electric susceptibility, 124
electrical conductivity, 106
electrodynamic effects, 518
electrodynamic properties, 495
electromagnetic, 121
electromagnetic modes, 248
electromagnetic potential, 260
electromagnetic theory, 144
electromagnetic wave, 121, 122, 124, 137, 139,

142, 146, 193, 196, 202, 231, 237, 247
electromagnetic wave guide, 378
electromagnetism, 247
electromechanical actuator, 232
electromotive force, 201
electron, 206, 257, 323, 545
electron correlation, 15, 16, 311, 321
electron crystal, 551
electron crystallization, 546
electron density, 139, 185, 363
electron density distribution, 312
electron doping, 343
electron dynamics, 317
electron energy, 125
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electron glass transition, 551
electron localization, 240, 247
electron microscopy, 99
electron pair, 503
electron polarons, 550
electron probability distribution, 127
electron spin, 171
electron state, 363
electron subband, 368
electron trajectory, 165
electron transport, 208, 215, 235, 251
electron wavefunction, 247
electron waves, 127, 146
electron-electron interaction, 19, 549
electron-hole generation, 158
electron-hole pairs, 544
electron-lattice, 20
electron-pair bond, 283, 290
electron-pair valence bond, 290
electron-phonon interaction, 19, 247
electron-phonon mechanism, 505
electronic band structure, 127, 165, 185
electronic charge, 158
electronic conductivity, 381
electronic cyclotron motion, 170
electronic energy band, 141
electronic motion, 170
electronic orbital, 449
electronic phase diagram, 346
electronic phase separation phenomenon, 351
electronic properties, 301, 324
electronic specific heat, 160, 476
electronic spectra, 146
electronic spin, 449
electronic spin magnetic moments, 174
electronic states, 183, 203
electronic structure, 6, 148, 229
electronic surface state, 178, 183
electronic system, 252, 333
electronic velocity, 257
electrostatic Aharonov–Bohm effect, 265, 266
electrostatic field, 106
elemental semiconductor, 185
elementary excitations, 16, 17, 20
Eliashberg, G.M., 6
ellipses, 501
ellipsoid, 102, 103
elliptic, 51, 52
elliptic coordinates, 282
elliptical asymmetry, 379
emergent phenomena, 7
Emery, V. J., 509
emission or absorption of phonon, 322
emission or absorption of photon, 322

empirical rules, 542
enantiomorphic, 41
energy band, 6, 127, 129, 178, 366
energy band structure, 183, 263, 456
energy band theory, 301
energy barrier, 218, 536
energy conservation, 203
energy eigenvalue, 179, 275
energy gap, 128, 142, 151, 181, 223, 244, 295,
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energy increment, 550
energy integral, 291
energy ladder, 289
energy level, 179, 363
energy spectra, 148
energy spectrum, 148, 150, 370
energy surface, 536
energy-driven phase transition, 445
enhanced backscattering, 234, 239
enhanced Pauli susceptibility, 357
enhancement factor, 196
ensemble average, 521, 522, 524
ensemble theory, 521
entropic force, 445
entropy, 11, 413, 443, 445, 487, 541
entropy-driven ordering, 11
entropy-driven phase transition, 445
envelope function, 186
envelope wavefunction, 168, 249, 363, 370
equation of motion, 129, 133
equation of state, 415, 528
equatorial plane, 167
equilibrium condition, 419
equilibrium phases, 432
equilibrium state, 522, 536, 537
equilibrium statistical mechanics, 525
equilibrium value, 412
ergodic hypothesis, 521, 522
ergodic-nonergodic transition, 542
ergodicity, 21, 521, 523, 537
ergodicity breaking, 552
Esaki, L., 163
Euclidean dimension, 111
Euclidean plane, 60
Euclidean space, 45
Euler formula, 52, 60
Euler theorem, 30, 34, 36
Euler–Poincaré characteristic, 50
evanescent Bloch surface waves, 193
evaporation cooling, 10
even parity, 283, 285
exact ground state, 547
exchange coupling, 400
exchange energy, 410
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exchange interaction, 350, 451, 539
exchange parameter, 465
exchange splitting, 296
exchange-correlation energy, 316
exchange-correlation potential, 386
excited state, 322
exciton, 7, 19
excluded volume, 443, 528
exotic pairing mechanisms, 359
expectation value, 523
exponential decay, 247
exponential term, 220
extended state, 146, 148, 178, 231, 241, 246
extended-zone scheme, 125, 127
external field, 462
external perturbations, 536
extrinsic, 158

face-centered-cubic (fcc) structure, 55, 75,
125, 318, 319, 326

far from equilibrium, 22
fcc, 125
femtoseconds, 8
Fermi distribution, 472
Fermi distribution function, 175, 221, 222,

228, 257
Fermi energy, 125, 151, 160, 171, 178, 210,

246, 258, 263, 302, 385, 394, 398,
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Fermi gas, 20
Fermi glass, 244
Fermi golden rule, 352
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502, 506, 549, 550
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Fermi sea, 502
Fermi sphere, 175, 546
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329, 363, 473, 476, 546

Fermi temperature, 160
Fermi velocity, 233
Fermi wavelength, 239, 363, 372, 373
Fermi wavevector, 125
Fermi–Dirac statistics, 10, 279
fermion, 10, 326
ferrimagnet, 454, 467
ferrimagnetic, 459
ferrimagnetic structure, 453
ferrimagnetic transition, 466, 467
ferrimagnetism, 338, 449, 451
ferrite, 338, 453, 466

ferrocene, 299, 459
ferrodistortive, 298
ferroelectric crystal, 435
ferroelectric phase transitions, 418, 436
ferroelectricity, 326, 435
ferroelectrics, 4, 18
ferromagnet, 4, 19, 279, 289, 321, 341, 372,

407, 434, 451, 454, 461, 474
ferromagnetic, 300, 371, 459, 512, 535, 537
ferromagnetic coupling, 459
ferromagnetic ground state, 19, 469
ferromagnetic insulator, 340
ferromagnetic metal, 217
ferromagnetic order, 479
ferromagnetic phase transition, 7
ferromagnetic phases, 541
ferromagnetic semiconductor, 354
ferromagnetic state, 358, 414
ferromagnetic substances, 217
ferromagnetism, 15, 321, 341, 354, 449, 450,

456, 472, 476, 512
Fert, A., 216
Fibonacci, 64
Fibonacci lattice, 65, 146, 148
Fibonacci sequence, 65, 68, 147
Fibonacci superlattice, 149
field emission, 178
filter, 121
first-order Born approximation, 184
first-order phase transition, 17, 407, 423, 444
fluctuation, 21, 237, 241, 476
fluctuation correlation form, 541
fluctuation effect, 519
fluidity, 84
flux-penetration depth, 501
fluxoid, 492
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Fock–Darwin state, 389
folding-back, 383
forbidden band, 121, 193, 232
force constant, 133, 190
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four-probe measurements, 269
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Fourier coefficient, 143, 302
Fourier component, 249, 428, 523
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Fourier transform, 43, 44, 64, 66, 112, 184,

188, 311, 503
Fourier transformation, 123
Fourier transforming, 75
Fourier–Bessel expansion, 515
Fröhlich, H., 6
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fractal dimension, 112, 113
fractal structure, 14, 110
fractals, 110
fractional quantum Hall effect, 20, 333
fractional quantum Hall state, 546
fracton, 14
Frank–Kaspar phase, 57
free electron, 155, 544
free electron gas model, 126
free electron model, 264
free electron parabola, 151
free electron systems, 256
free electrons, 543
free energy, 495
free energy density, 530
free energy functional, 424
free energy landscape, 536
free energy per unit area, 529
free-electron approximation, 125
free-photon field, 249
free-volume model, 533
freezing temperature, 536, 537
frequency conversion, 145
frequency distribution function, 134, 136
frequency doubling, 145
frequency gap, 134, 139
frequency spectrum, 134
frequency-wavevector relation, 124
Friedel oscillation, 178, 181, 185
Friedel’s rule, 321
Friedel, J., 320
frozen order parameter, 526
frozen state, 535
frustrated system, 537
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fullerites, 61
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gap, 127, 249, 263, 506
gap function, 504–507
garnet, 338, 453
gas constant, 528
gas-liquid coexistence line, 530
gas-liquid transition, 16, 486
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gate voltage, 253, 391, 396
gauge fields, 260
gauge invariance, 260
gauge symmetry, 18, 19, 413, 414, 496, 510
Gauss–Bonnet formula, 51
Gaussian curvature, 51, 86

Gaussian distribution, 539, 540
Gaussian function, 289
Gaussian random potential, 246
gels, 10
generalized classical Lagrangian, 317
generalized Cooper pair, 502, 504
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generalized crystallography, 63
generalized order parameter, 548
generalized Penrose structure, 431
generalized rigidity, 17, 19
generalized symmetry, 45
genetic information, 95
genus, 86
geometric phase, 261
giant Hall effect, 242
giant magnetoresistance (GMR) effect, 215,
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Gibbs free energy, 411, 434, 499
Gibbs free energy[G], 500
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Ginzburg, V. I., 6, 495
Ginzburg–Landau (GL) equation, 7
Ginzburg–Landau (GL) free energy density,
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Ginzburg–Landau (GL) theory, 495
Ginzburg–Pitaevskii equation, 497
glass, 11, 22, 73, 76, 246, 532, 534
glass transition, 12, 77, 533, 539, 551
glass transition temperature, 92, 533, 534
glide-reflection, 39, 422
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global gauge transformation, 496, 497
global partition function, 528
Goldhammer–Herzfeld (GH) criterion, 543
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granular superconductor, 516, 534
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group velocity, 155
group-subgroup relationship, 407
growth morphology, 114
Gutzwiller’s variational approach, 547, 549
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Haken, H., 22
half integer flux, 517
half-filled band, 551
half-metallic ferromagnet, 458
Hall coefficient, 210
Hall conductivity, 210
Hamiltonian, 7, 167, 168, 242, 260, 285, 297,

306, 388, 405, 434, 460, 484, 522,
523, 525, 526, 539–541, 546

handedness, 29
hard core, 528
hard sphere systems, 445
harmonic approximation, 122
harmonic oscillator, 135
harmonic oscillator length, 485
harmonic trap, 497
Hartree approximation, 310, 311
Hartree equation, 309, 310
Hartree theory, 315
Hartree, D. R., 277
Hartree–Fock (HF) approximation, 310, 311
Hartree–Fock equation, 310, 311
Hartree–Fock theory, 479
Hartree-like equation, 315
Hausdorff, F., 111
healing lengths, 518
heat transport, 200
heavy electron, 16, 20
heavy electron metal, 317, 333, 351, 357
heavy electron superconductor, 505, 512, 517
heavy fermions, 505
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462, 465, 468, 469
Heisenberg model, 15, 449
Heisenberg uncertainty principle, 12
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helical trajectory, 166
helicoidal spin density wave, 479
helix, 50
helix-coil transition, 8
Helmholtz free energy, 490
Hermitian, 133, 144, 459, 496
Hermitian polynomials, 168
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Hertz, J. A., 17
heterogeneous material, 102, 105
Heusler alloy, 457
Hewson, A. C., 351
hexagon, 54, 60, 67
hexagonal, 39
hexagonal close-packed (hcp) structure, 55
hexagonal close-packing, 55, 445
hexagonal diamond, 59
hexagonal honeycombs, 54
hexagrid, 67
high Tc cuprates, 516, 517
high Tc superconductor, 16, 20, 62, 343, 346,

500, 501
high frequency cutoff, 134
high index of refraction, 144
high pressure, 545
high spin, 299
high symmetric phase, 424
high symmetry phase, 406, 407, 412, 413, 419
high temperature, 545
high temperature phases, 430
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295, 328
Himpsel, F. J., 370
Hohenberg, P. C., 313
Hohenberg–Kohn variational principle, 313
hole, 158, 206, 257, 323
hole doping, 343
hole state, 366
hole subband, 368
holon, 510
homogeneous condition, 426
honeycomb, 55
honeycomb lattice, 107
hopping conduction, 246
hopping energy, 552
hot electron transport, 207
Hubbard energy, 15, 334, 338, 340, 352, 547
Hubbard gap, 550
Hubbard Hamiltonian, 336, 461, 471, 547
Hubbard model, 333, 339, 361
Hubbard subbands, 341
Hubbard, J., 15, 335
Hume–Rothery mechanism, 151, 152
Hume–Rothery phases, 151
Hund’s rule, 279, 286, 288, 299, 300, 338
Hund’s rule coupling, 338, 340, 348
Hund, F., 279, 284
Huntington, H. B., 327
Hurst exponent, 114
hybridization, 290, 394
hybridized, 290
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hydration, 294
hydrodynamic effects, 518
hydrogen, 275
hydrogen atom, 276
hydrogen bond, 293
hyperbolic, 51, 52
hyperbolic curve, 435
hyperbolic equation, 141
hyperbolic plane, 53
hyperbolic surface, 52, 60, 141
hyperspace, 14
hysteresis, 436, 536

icosahedral phase, 432
icosahedral structure, 151
icosahedral symmetry, 35, 63, 69, 70, 151, 295,

433
icosahedron (icosahedra), 35, 36, 59, 69, 432
ideal surface, 177
identical replicas, 540
identity element, 31
imperfections in crystals, 177
impurity, 160, 177, 183, 199, 264
impurity band, 549
impurity center, 183
impurity levels, 206
impurity modes, 192
impurity states, 544
in-plane anisotropy, 381
incident fundamental waves, 145
incident wavevector, 140
incipient localization, 238
incommensurate, 64, 71, 437
incommensurate phase, 11, 437, 439
incommensurate-commensurate transition,
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incommensurately modulated structure, 14,
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independent electron model, 125
index of refraction, 138, 140, 145, 202, 203,
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indirect gap, 322, 323
indirect interaction, 353
inelastic scattering, 233, 251
inelastic scattering mean free path, 251
inertial force, 165
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infinite energy barrier, 536
infinite hard-sphere repulsion, 527
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infinite range shallow well, 527
infinite time average, 523

infinite time limit, 524
inflation, 65
inflection point, 156, 161, 163
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infrared active, 192
infrared light, 507
infrared optical spectra, 508
inhomogeneous broadening, 388
inhomogeneous long-range magnetic ordered,
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inhomogeneous media, 136
inhomogeneous phase, 426
inhomogeneous structure, 99
inhomogeneous superconductors, 495
injection, 216
instability, 546
insulating ground state, 545
insulating layer, 513
insulating state, 548
insulator, 157, 240, 244, 246, 322, 325–327,

337, 452
insulator-metal, 327
insulator-metal transition, 326, 347
insulator-semiconductor interface, 330
integer, 515
integral equation, 184
integral multiple, 492
integrated density of states (IDOS), 148
interaction constant, 473
interaction energy, 545
interaction of itinerant electrons, 289
interaction potential, 503
interaction strength, 497
interaction-depletion, 488
interatomic exchange, 288
intercalant, 325
intercalation, 325
interface state, 330
interference, 236, 239, 247, 261
interference correction, 238
interference effect, 265
interference of back-scattered waves, 233
interference term, 235, 261
interlayer bond, 324
intermetallic compound, 493
intermolecular separation, 527
internal energy, 11, 437, 445
International notation, 35, 37
interstitial void, 328
intrinsic magnetic properties, 449
intrinsic semiconductors, 206
invar, 457
invariance, 405
inverse (I) type of spinel structure, 454
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inverse photoemission, 371
inverse susceptibility, 416, 419
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inversion center, 41
inversion layer, 210, 330
inversion rotation, 30
inversion symmetry, 283, 306
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irrational number, 63–65, 71, 440
irrational slope, 66
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irregular fractal, 112
Ising ferromagnet, 524, 537
Ising Hamiltonian, 410, 525
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Ising spin glass model, 537, 551
isometric transformation, 52
isometry, 28, 47
isotherm, 527
isotope effect, 505
isotropic, 77, 85, 103, 105, 113, 276
isotropic approximation, 251
isotropic parabolic minimum, 186
isotropic phase, 444
isotropic-nematic transition, 418, 440, 443
itinerancy, 452
itinerant electron, 451, 472
itinerant electron model, 476
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Josephson coupling energy, 501
Josephson devices, 516
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semi-infinite periodic chain, 177
semi-regular polyhedron, 37
semiclassical approach, 155, 238, 251
semiclassical particles, 233
semiconducting, 380
semiconducting ferromagnet, 458
semiconductor, 158, 244, 322, 323, 328, 347,

363, 506
semiconductor superlattice, 165
semiconductor diode, 329
semiconductor electronics, 322
semiconductor physics, 322
semiconductor quantum well, 363
semiconductor superlattice, 129
semiconductor surface, 181, 182
semiconductors, 4, 157, 199, 217, 218, 246, 544
semimetal, 157, 324
semiregular, 53
series expansion, 108
Sham, L. J., 315
Shannon, C., 96
shape of Fermi surface, 174
shapes of the Fermi surface, 165
Shapiro steps, 515
Shechtman, D., 37
Sherrington, D., 539
Sherrington–Kirkpatrick (SK) model, 541
shielding supercurrents, 491
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short-range correlation, 483
short-range forces, 550
short-range interactions, 434
short-range order, 11, 75
short-range order parameter, 75
Shubnikov, L. V., 7
Shubnikov–de Haas (SdH) effect, 170, 208,

210, 211
simple cubic (SC) lattice, 550
simple metal, 318
single mass defect, 192
single quantum state, 486
single scattering approach, 250
single-electron approximation, 275, 277, 283,

301, 307
single-electron Schrödinger equation, 284, 306
single-electron tunneling, 391
single-particle Green’s function and dynamic

screened Coulomb interaction (GW)
approximation, 316

single-particle Hamiltonian, 460, 484
single-particle partition function, 528
single-particle Schrödinger equation, 386
single-site excitations, 550
single-wall nanotube, 380
singlet energy, 287
singly-connected, 489
singular continuous spectrum, 148
sinusoidal spin density wave, 479
site percolation, 106, 107
size-dependent diffusion coefficient, 234
Slater determinant, 289, 312, 547
Slater, J. C., 289
Slater–Pauling curve, 456
slowest dynamical processes, 524
slowing-down, 536
small imperfection, 177
smectic phase, 84
soft ‘Coulomb gap’, 549
soft mode eigenvectors, 438
solid, 8, 9, 275
solid state, 327
solid state physics, 12, 13, 15, 17, 121, 155,

286
solid surfaces, 229
Sommerfeld model, 310
sound velocity, 437
space group, 27, 37, 41, 421, 461
space partition, 52
spatial dimensionality, 524
specific heat, 413, 437, 464, 551
specific heat measurement, 508
specific heat peak, 486

spectra of confined state, 381
spectra of lattice modes, 135
sphere, 52
spherical cavity, 385
spherical clusters, 386
spherical harmonics, 275, 386, 503, 510
spherical polar coordinates, 275
spherical pseudopotential method, 386
spherical surface, 52
spheroid, 167
spin, 460
spin crossover, 299
spin density, 188, 478
spin density functional approach, 456
spin density wave (SDW), 11, 20, 478
spin fluctuation, 476
spin function, 504
spin glass, 22, 534, 536–538, 551
spin glass state, 535
spin glass transition, 538
spin glasses, 8
spin Hamiltonian, 288
spin memory effect, 216
spin operator, 288, 468
spin orientation, 456
spin polarization, 174, 208, 225, 372, 374
spin quantum number, 277, 466
spin relaxation length, 377
spin singlet state, 393
spin subband, 476
spin susceptibility, 549
spin transport, 199, 208
spin variable, 410
spin vector, 461
spin waves, 16
spin-dependent resistivity, 377
spin-down, 376
spin-down band, 475
spin-flip, 357
spin-flip scattering, 216, 357
spin-glass, 535, 541
spin-orbit coupling, 279, 296, 323, 366, 460
spin-ordering, 349
spin-polarized electronic density, 321
spin-polarized electrons, 10, 216
spin-polarized photoemission spectrum, 371
spin-polarized state, 321
spin-polarized transport, 225
spin-singlet, 278, 287, 357, 395, 504
spin-singlet d-wave pairing, 502
spin-singlet s-wave pairing, 502
spin-singlet pairing, 512
spin-triplet, 278, 287, 504, 510
spin-triplet p-wave pairing, 502, 512
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spinless Hamiltonian, 549
spinodal decomposition, 100
spinodal point, 418, 419
spinon, 510
spintronics, 215, 217, 458
spiral, 451, 461
spiral state, 358
splat quenching, 76
splitting of energy band, 472
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spontaneous distortion, 297
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472, 524
spontaneous polarization, 435, 436
spontaneous radiation, 196
spontaneous strain, 419
sputtering, 100
square, 54, 550
square bonding, 291
square lattice, 107
square matrix, 133
squared moduli, 127
staggered orbital order, 341
standing wave, 127, 249
standing-wave laser field, 519
star arms, 422
states of up and down spins, 321
static electric field, 200
stationary states, 132
statistical mechanics, 21, 521, 522, 524
statistical model, 409, 449
statistical physics, 8, 10
statistical symmetry, 47
step, 381
step state, 381
steric interaction, 90
stimulated emission, 486
stoichiometric, 343
Stokes’ theorem, 492
Stoner band model, 472, 476
Stoner criterion, 472, 473, 476
Stoner factor, 473
stop-bands, 134, 139
strain, 419
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stripe phase, 351, 361
strong anisotropy, 366
strong coupling theory, 398, 507
strong diffraction spots, 151
strong electron-electron correlations, 548

strong localization, 246
strong magnetic field, 546
strongly correlated electrons, 317, 333, 351,

359, 361, 362
strongly correlated state, 333
strongly disordered systems, 240
strongly localized case, 253
structural phase transition, 62, 349, 420, 421,
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structure factor, 74, 140
subband, 366
subgroup, 32, 63, 407, 421, 422, 424
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substitution rule, 64
substitutional binary alloys, 433
substitutional disorder, 73
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sum frequency, 145
super-cooled liquids, 73
super-microstructure, 100
superconducting cables, 7
superconducting electronics, 7, 515
superconducting phase transition, 411
superconducting quantum interference device,
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superconducting ring, 517
superconducting state, 20, 490
superconducting transition temperature, 496
superconductivity, 6, 15, 16, 347, 481, 483,

490, 499, 502, 512
superconductor, 4, 6, 19, 218, 328, 359, 490,

492, 495, 512, 513, 518
supercooled liquid, 76, 534
supercurrent, 495, 498, 500
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supercurrent velocity, 491
superexchange, 16, 337, 338, 346, 451
superexchange coupling, 400
superfluid, 4, 411, 483, 486, 489, 492, 518
superfluid 4He, 487
superfluid 3He, 415, 510
superfluid fraction, 488
superfluid state, 413, 487, 489, 507
superfluid velocity, 488
superfluid wavefunction, 489
superfluid weak link, 518
superfluidity, 16, 481, 483, 486, 502
superlattice, 15, 101, 131, 132, 163, 164
superparamagnetic, 400
superspaces, 111
superstructure, 74
supramolecular structures, 73, 82
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surface confinement, 179
surface density, 531
surface electronic state, 328
surface energy, 177, 178
surface mode, 189, 193
surface of a solid, 177
surface physics, 14
surface reconstruction, 328
surface state, 183
surface wave, 193
surfaces of metals, 178
susceptibility, 176, 415, 464, 479, 536, 551
swollen chain, 91
symmetric Bragg case, 142
symmetric properties, 133
symmetric well, 368
symmetry, 27, 305, 405, 423, 502
symmetry change, 533
symmetry element, 421
symmetry group, 30, 405, 437, 523
symmetry of reciprocal space, 47
symmetry operation, 28, 47
symmetry states, 507
symmorphic groups, 41
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tailoring physical properties, 363
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technical magnetization, 449, 451
temperature, 170, 405, 411, 445, 521, 523, 527
temperature gradient, 199, 200, 207, 208
temperature-dependent conductivity, 240
temperature-dependent hopping, 246
tensor, 122, 201
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tertiary structure, 94
tetragonal, 39, 62
tetrahedral, 37, 59
tetrahedral bonding, 290, 291
tetrahedral coordination, 80, 293, 294
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tetrahedrally close-packed (tcp) structure, 57,
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tetrahedron, 35
tetrahedron (tetrahedra), 58
Theatatus, 36
theory of chaos, 22
theory of measure, 116
thermal conductivity, 207, 208, 412, 437

thermal current, 208
thermal equilibrium, 8, 10, 524
thermal excitations, 483
thermal expansion coefficient, 413
thermal fluctuation, 76, 122
thermal transport phenomena, 207
thermally excited, 233
thermionic emission, 178
thermodynamic average, 539
thermodynamic behaviors, 462
thermodynamic limit, 485, 524
thermodynamic parameters, 530
thermodynamic quantities, 413
thermodynamic temperature, 11
thermoelectric coefficient, 207
thermoelectric effect, 207
thermoplastic, 92
thermotropics, 82, 440
thiolate, 101
thiourea, 437
third-order harmonic generation, 150
third-order invariant, 423, 424
third-order nonlinear susceptibility, 145
Thom, R., 22
Thomas–Fermi (TF) theory, 312, 544
three-body distribution function, 77
three-dimensional (3D), 132, 142
three-dimensional crystals, 139
threshold energy, 241, 244
tie point, 141
tight-binding approximation, 128, 147, 150,

164, 301, 319, 334, 452
tight-binding disordered one-electron model,

242
tight-binding wavefunctions, 245
tight-packing density, 443
time average, 521, 522, 524
time correlation function, 200
time reversal, 459, 460
time reversal operator, 459
time reversal symmetry, 306
time scale, 523, 524
time-dependent Schrödinger equation, 260,

459
time-resolved photoluminescence, 546
time-reversal symmetry, 461, 510
top of the valence band, 368
topological classification of defects, 16
topological defects, 16, 17, 20
topological dimension, 111
topological structures, 212, 214
topology, 111
total current, 252
total free energy, 530
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total resistance, 257
total resistivity, 355
totally Bragg reflected, 372
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trace, 540
trajectories, 170
transfer energy, 147
transfer matrix, 138, 147, 148, 150, 219
transfer matrix element, 183
transfer model, 147
transition, 527, 532
transition entropy, 437
transition heat, 437
transition metal, 183, 208, 319, 449, 476
transition metal alloys, 537
transition point, 412, 413
transition probability, 203, 377
transition temperature, 433, 435, 436, 466, 539
transitions, 203
translation invariance, 473
translation symmetry, 38
translational, 523
translational entropy, 443
translational invariance, 14
translational operator, 186
translational symmetry, 14, 17, 73, 422
transmission, 255, 256
transmission amplitude, 219, 270
transmission coefficient, 220
transparent insulators, 15
transport coefficient, 412
transport equation, 199
transport phenomena, 15, 318
transport properties, 152, 199, 476, 552
transversal modes, 135
transverse, 167
transverse energy, 221
travelling wave, 127
triacontahedron, 36
trial solutions, 133
triangular bonding, 291
triangular quantum well, 365
triangular-bi-pyramidal bonding, 290
triclinic, 39
tricontahedron, 59, 69
tricritical point, 408
trigonal bipyramid, 291
triple point, 487
triplet, 107, 339
triplet code, 95
triplet energy, 287

truncated icosahedron, 36, 37, 59
truncated octahedron, 55, 125
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tube diameter, 381
tuning parameter, 548
tunneling, 15, 507, 518
tunneling current, 222
tunneling junction, 218, 221
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tunneling model, 222
tunneling phenomena, 218
turbulence, 22, 114
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two sublattices, 467
two-band model, 215
two-body (or pair) distribution function, 77
two-component order parameter, 438
two-current model, 215, 216
two-dimensional (2D), 378
two-dimensional (2D) electron gas, 131
two-dimensional (2D) structures, 144
two-electron problem, 286
two-phase alloy, 103
two-terminal multichannel conductance, 258
two-wave approximation, 140, 141
type I superconductors, 490, 498
type II superconductors, 7, 490, 499

ultrasonic wave, 137
umbrella-like, 451, 461
Umklapp (U) scattering process, 204, 205
uncertainty principle, 504, 522, 542
unconventional properties, 359
unconventional superconductors, 19, 507, 512
undamped plasma oscillation frequency, 202
underdoped cuprate, 508
uniform distribution, 242
uniform motion, 488
unit cell, 125, 128, 138, 437
unit matrix, 133
unit vector, 138
unitary transformation, 496
universal conductance fluctuation, 270, 271
universality, 5, 8, 17, 21
unrestricted HF method, 311
unstable state, 416
upper bound, 469
upper cut-off frequency, 136
Urbach tail, 245, 249

valence band, 158, 244, 246, 322–324, 368
valence bond orbital, 290
valence electron approximation, 308
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van der Waals bond, 59
van der Waals equation, 528
van der Waals force, 325
van der Waals interaction, 324
van der Waals theory, 527
van der Waals, J. D., 16
van Hove correlation function, 79
van Hove singularity, 135, 170
vapor deposition, 100
vapor pressure, 527
vapor-liquid transition, 415, 526
variable-range hopping, 246, 247, 549
vector, 84, 408
vector order parameter, 421
vector potential, 167, 260, 515
vector-wave, 124
vibrational state, 133
virtual hopping process, 337, 338
viscosity, 487, 534
voltage drop, 252
volume, 415
volume per mole, 528
von Laue, M., 14
Voronoi cells, 77
Voronoi polyhedra, 77
vortex, 500
vortex formation, 486

Wannier functions, 128
Wannier–Stark ladder, 163–165
Wannier–Stark state, 165
water, 293
wave amplitude, 132
wave coherence, 251
wave diffusion, 236
wave equation, 121–123, 138, 231, 248
wave packet, 155
wave propagation, 121, 122, 132, 231
wave-particle duality, 155
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wavefunction phase, 251
wavefunctions of electron pairs, 513
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421, 424, 428, 460, 523
wavevector group, 422
wavevector star, 422

weak coupling approximation, 398, 507
weak disorder, 239, 245
weak ferromagnetism, 452, 457, 476
weak first-order phase transition, 415, 416
weak localization, 15, 233, 235, 252, 265
weak scattering, 238
weak scattering potential, 263
weakly attractive, 528
weakly coupled, 513
weighting factor, 204
Weiss field, 434
Weiss theory for ferromagnets, 436
Weiss, P. E., 16
wetting transition, 530
Weyl, H., 27
Widom, B., 5
Wiedermann–Franz law, 208
Wieman, C., 484
Wigner crystal, 11, 20, 545–547
Wigner crystallization, 12, 333, 349, 542
Wigner transition, 546
Wigner, E. P., 327, 545, 546
Wigner–Seitz (WS) cell, 54, 123, 359, 545
Wigner–Seitz (WS) radii, 319
Wigner–Seitz (WS) radius, 305
Wilson, A. C., 14
Wilson, K. G., 5, 356
window function, 66
Wollan, E. O., 350
work function, 177, 178, 329, 385
wüstite, 71
Wyckoff symbol, 42

X-ray diffraction, 42, 86, 124, 140
XY model, 410, 411, 449

Yabolonovitch, E., 124
Young’s equation, 529
Yukawa potential, 544

Zeeman splitting, 389
Zener electric breakdown, 223
Zener’s theory of ferromagnetism, 354
Zener, C., 16, 347
zero on-site repulsion, 547
zero point energy, 546
zero point oscillation, 327
zero temperature, 542
zero thermal expansion coefficient, 457
zero-point fluctuation, 122
zeroth-order approximation, 164
Zhang–Rice singlet, 346
zigzag type of carbon nanotube, 61, 380
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