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Preface

Over the past two decades, photonics, the use of photons for engineering applications,
has gradually become established as a well-defined engineering discipline. Photonics
has developed from studies in crystal optics, guided-wave optics, nonlinear optics,
lasers, and semiconductor optoelectronics. Though many excellent books exist on each
of these subjects, and several have been written specifically to address photonics, it
is still difficult to find one book where the diverse core subjects that are central to
the study of photonic devices are presented with a good balance of breadth and depth
of coverage. Through my teaching of undergraduate courses, I have found it very
effective to introduce the field of photonics to undergraduate students using the rigorous,
systematic approach of this book. Through my experience of working with graduate
students in research, I have found that such a book is very much needed to prepare
a solid foundation for graduate students who intend to major, or minor, in photonics.
Through my teaching experience, I have found it highly desirable and beneficial for both
instructors and students to have ample examples and problems that are well thought out
and fully integrated with the subjects covered in the text. This book is written to address
these needs.

I began this project in early 1994 after many years of teaching undergraduate and
graduate courses in lasers, nonlinear optics, quantum electronics, and quantum mechan-
ics. Though I had already accumulated a large collection of classnotes and problem sets
when I started this project, it still took me exactly nine years to finish writing this book,
with fully one-third of that time devoted to the work on examples and problems. Then,
it took another year to prepare the figures. My students, both those in my classes and
those in my research group, have been highly collaborative with the writing of this
book. Throughout this process, I have taught various parts in different undergraduate
and graduate courses to several hundred students. These students range from junior
undergraduates to second-year graduates majoring in the diverse fields of photonics,
solid-state electronics, electromagnetics, materials engineering, mechanical engineer-
ing, bioengineering, physics, chemistry, and many other disciplines. Many of their
suggestions and feedback have been incorporated. All of the equations, examples, and
problem solutions have been checked by several highly capable students. All of the
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figures were produced, originally, by my graduate students. The manuscript underwent
three major and numerous minor revisions before the book was finalized.

Objectives

This book is written for advanced undergraduate students and new graduate students
who are interested in studying photonics as an engineering subject. A novice graduate
student who plans to major in photonics can study this book thoroughly over a one-
year period to lay a very solid foundation. It is also intended for practicing engineers
and scientists who wish to broaden or deepen their knowledge in the principles of
photonic devices. The objectives of this book are for a student (1) to obtain a good
understanding of the core theory of photonic devices through coherent coverage of the
subject, (2) to develop a deep physical insight into the principles of photonic devices
through descriptive and illustrative approaches, (3) to gain realistic concepts of the
functions of practical devices through numerical examples and discussions, and (4)
to lay a solid foundation for further study and research in the photonics field through
rigorous analytical treatment of the subject.

Guiding principles

To fulfill the objectives through a consistent approach, I followed several guidelines
that I laid down for myself at the beginning of this project:

1. To address the subject at the device level, as the book title suggests. The physics
and principles of devices are treated in depth, but the fabrication and processing
of devices are not touched. The functions and characteristics of devices are also
emphasized, but specific applications in subsystems and systems are not discussed
for the reason that they are too diverse and vary quickly as time goes on.

2. To cover both bulk and guided-wave devices, with sufficient emphasis on guided-
wave devices to reflect the development of photonics into integrated photonics.

3. To use a macroscopic treatment with two central approaches: (a) to treat the optical
properties of materials through reference to the susceptibility tensor, χ, and permit-
tivity tensor, ε; and (b) to treat the interaction of optical waves using coupled-wave
theory for bulk devices and coupled-mode theory for guided-wave devices. With
these approaches, it is possible to treat the majority of devices in great depth with-
out ever touching quantum mechanics. For topics that necessitate an understanding
of quantum concepts, I have adopted an approach that requires as little quantum
mechanics background from the students as possible.
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4. To balance both physics and engineering aspects with descriptive and analytical
approaches to a significant, and consistent, depth throughout the entire book.

5. To concentrate on selected key topics and address them with sufficient rigor and
thoroughness. On the one hand, analytical formulations and results that can be used
at the level of practical applications and research are obtained. On the other, detailed
and tedious mathematical derivations are avoided in favor of developing physical
insight through an emphasis on the physical meanings of the analytical results.

6. To make the tables and figures useful and informative by using real data if possible
while avoiding tedious details. Thus, the majority of the figures depicted in the book
can be generated by the reader with realistic data using the analytical formulations
obtained in the text.

7. To develop the concepts and data of working devices into realistic examples and
problems.

Scope and structure

Photonics is a diverse field that can be addressed at various levels from many different
perspectives. The scope and structure of this book are basically set by the guiding
principles delineated above. This book focuses on the core topics of photonics at the
device level covering both bulk and guided-wave devices. The entire book, as well as
each chapter, is highly structured. Except for the general prerequisites described below,
this book is written to be self-contained. General background and formulations that are
needed for more than one chapter are provided in a few properly located individual
chapters. Specific background needed only for the topics addressed within a particular
chapter is provided at the start of each chapter. This arrangement allows the chapters and
sections covering advanced topics to be treated as modules that can be added or dropped
independently in a course or a study plan. Thus a minimum number of prerequisites
are needed of the reader to begin studying any part of this book.

This book is divided into five parts. The first part consists of only one chapter that
provides the relevant background in electromagnetics and optics for the entire book.
This part also introducesχ and ε as the central concept for describing optical properties
of materials. Part II covers four chapters on waveguides and couplers and lays the found-
ation for guided-wave devices. This part also develops coupled-wave and coupled-mode
theories, which are used to formulate optical interactions throughout the entire book.
Part III consists of four chapters covering devices based on electro-optics, magneto-
optics, acousto-optics, and nonlinear optics. The fourth part contains two chapters on
general discussions of laser amplifiers and laser oscillators. Fiber amplifiers and fiber
lasers are specifically discussed in depth. Part V covers optoelectronic devices in three
chapters. One chapter, i.e., Chapter 12, provides the background on semiconductors
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relevant to optoelectronics. The other two chapters in Part V cover semiconductor
lasers, LEDs, and photodetectors.

All chapters are organized in a consistent manner that mirrors the structure of the
book. Basically, each begins with a general introduction of the underlying fundamental
physics of the topics covered in the chapter, followed by general formulations of the
physical effects. The principles and functions of bulk devices are then discussed. In the
final section, or sections, of a chapter, guided-wave devices are addressed.

Symbols and units

Consistent symbols and notations are used throughout the entire book. The symbols
and notations are chosen based on two criteria: (1) they are the same as those commonly
used in the literature, whenever possible; and (2) they are intuitive to recognize and
easy to distinguish. I also choose not to use many special fonts; thus, script is the only
special font used. However, in a book like this that covers a diverse range of topics, it is
inevitable that one quickly runs into a situation that a particular symbol is commonly
used in the literature to represent two or more different meanings on different occasions.
Whenever there is no confusion, I still choose to use the common symbol for different
meanings. Otherwise, I choose to use subscripts and superscripts to clarify the meaning
of the symbols. The system of symbols and notations followed throughout this book is
described in Appendix A, and a partial list of symbols is presented later among these
preliminary pages.

The SI metric system, which is summarized in Appendix C, is used. The values of
some important fundamental physical constants in SI units are listed in Appendix D.
Values of all the parameters listed in the tables throughout the chapters in this book are
commonly given in SI units. On some rare occasions when the value of a parameter is
not quoted in an SI unit, a conversion to the SI unit is given in the text.

Examples and problems

There are a total of 164 examples and more than 600 problems in the book. The examples
and problems justly take up about one-third of the volume of this book as they took me
about one-third of the time spent on this entire project. All examples and problems are
originally generated and they are evenly distributed across the entire book. To illustrate
the concepts developed in the text, most examples are realistic numerical problems based
on working devices. Problems are tied closely to the text and examples. There are four
types of problems: (1) qualitative questions on general concepts, (2) analytical steps
leading to important results presented in the text because filling such steps by the reader
enhances understanding, (3) further development of certain concepts covered in the text
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into an advanced level beyond the general depth of the text, and (4) practical numerical
problems reduced from realistic working devices. The problems are collected at the
end of each chapter and are identified with the relevant section. They are not grouped
by type, but are arranged in an order that parallels the presentation of the text. This
arrangement, though not what I prefer, facilitates adding or dropping a particular topic
module in a course syllabus or study plan.

Bibliography and reading lists

Though this book is intended to be self-contained, a reader always gains a deeper
understanding and a different perspective of a topic by reading other books and jour-
nal articles. To maintain the coherence of the presentation in the text and to avoid
unnecessarily distracting a reader, references and footnotes are rarely used. Instead, a
bibliography containing reference books and a list of useful journal articles for advanced
reading are placed at the end of each chapter. The reference books in a bibliography
are meant to help a reader obtain a different perspective or further information on a
particular topic. The journal articles listed in a reading list are meant for a reader to
go beyond the level of the presentation in this book. The bibliographies and reading
lists are rather extensive, but are carefully selected to limit their sizes to a manageable
level.

Prerequisites and use of the book

The prerequisites of this book include background knowledge in optics covered in a
college-level general physics course, a foundation in electromagnetic waves preferably
in an electromagnetics course, and some background in semiconductors and quantum
physics obtained in an introductory solid-state electronics course. In my experience, it
is possible for a student who has only minimal background in these areas to succeed
in an undergraduate course using this book if the background chapters of this book are
studied thoroughly. Within the book, the prerequisites of each section are listed in a
table in Appendix B.

This book can be used in a one-year undergraduate course by dropping advanced
sections, and thus cutting about one-third of the material in the book, while covering
every chapter. It can also be used in a one-year intensive graduate course covering all
sections. I also envision this book as being used at different levels in different courses,
including one-quarter or one-semester courses, depending on the interest and emphasis
of a particular curriculum. The modular structure of this book and the table of prerequi-
sites given in Appendix B make it very easy for an instructor to put together a specific
course syllabus and for an independent reader to make up a study plan.
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Partial list of symbols

Symbol Unit Meaning; derivatives References1

a m fiber core radius (3.1)
a none beam divergence ratio (8.108)
a none round-trip intracavity field amplification

factor
(11.5)

aE, aM none asymmetry factors for TE and TM modes (2.48), (2.49)
A, Ã W1/2 mode amplitude (4.45), (4.48)
Aν W1/2 amplitude of mode ν; Aq,ν (4.23)
A21 s−1 Einstein A coefficient (10.19)
A, Ae, Ah s−1 Shockley–Read recombination

coefficients
(12.48)

A m2 area; Aeff, Aq , Aeff
ν (9.103)f, (12.118)

ABD bit m−2 areal bit density (7.55)
b m confocal parameter of Gaussian beam,

b = 2zR

(1.134)f

b none normalized guide index (2.47)
b none linewidth enhancement factor (13.61)
B, B̃ W1/2 mode amplitude (4.45), (4.49)
B Hz bandwidth; Bo (7.57), (14.11)
B m3 s−1 bimolecular carrier recombination

coefficient
(12.49), (13.5)

B12, B21 m3 J−1 s−1 Einstein B coefficients (10.17), (10.18)
B T real magnetic induction in the time

domain
(1.2)

B, B T complex magnetic induction (1.40)
c m s−1 speed of light in free space (1.38)
cνµ none overlap coefficient between modes ν

and µ

(4.41)

ci jkl , c⊥, c‖ m2 A−2 quadratic magneto-optic coefficient (7.13), (7.15)
cn(z, m) none Jacobi elliptic function (9.271)

1 Suffixes, f “forward” and b “backward,” on equation indicate symbols explained for the first time in the text
immediately after or before the equation cited.
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Symbol Unit Meaning; derivatives References

C F capacitance; Cd, Ci, Cj, Cp, Cs (12.119)
C , Ce, Ch m6 s−1 Auger recombination coefficients (12.49)
C0 none characteristic parameter of absorptive

bistable device
(9.178)

Cνµξ , CQ s m−1 W−1/2 effective second-order nonlinear
coefficient for guided modes

(9.223), (9.239)

Cνµξζ s m−1 W−1 effective third-order nonlinear
coefficient for guided modes

(9.243)

d m thickness or distance; deff, dg, dQW, dskin (2.7)
d, d0 m beam spot size diameter, d = 2w,

d0 = 2w0

(1.134)b

dE, dM m effective waveguide thickness for TE and
TM modes

(2.59), (2.64)

d, di jk , diα m V−1 nonlinear d coefficient tensor and
elements, d = [di jk]

(9.34)

deff, dQ m V−1 effective nonlinear d coefficients; d I
eff,

d II
eff

(9.59)f

D none group-velocity dispersion; D1, D2, Dβ (1.166)
D W−1 detectivity (14.45)
De, Dh m2 s−1 electron and hole diffusion coefficients (12.58), (12.59)
Dλ s m−2 group-velocity dispersion, Dλ = −D/cλ (1.167)
D∗ m Hz1/2 W−1 specific detectivity (14.46)
D C m−2 real electric displacement in the time

domain
(1.1)

D, D C m−2 complex electric displacement; De, Do,
D+, D−

(1.41)

D, D C m−2 slowly varying amplitude of D(r, t) and
D; De, Do

(1.126)

DR dB dynamic range (14.49)
DS none normalized difference signal (7.47)
e C electronic charge (7.57)
ê none unit vector of electric field polarization;

êe, êo, ê+, ê−
(1.58)

E1, E2 eV energies of levels |1〉 and |2〉 (10.1)
Ec, Ev eV conduction- and valence-band edges;

Ecn, Ecp, EQW
c,q , EQW

v,q

(12.2)

Eeff V m−1 effective modulation electric field (6.71)
EF eV Fermi energy; EFc, EFi, EFv (12.1)
Eg eV bandgap; Egn, Egp, EQW

g (12.2)
Eth eV threshold photon energy (14.53)
E V m−1 real electric field in the time domain (1.1)
E0, E0 V m−1 static or low-frequency electric field (6.1)
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Ee, Eh V m−1 electric field seen by electrons and
holes

(12.58), (12.59)

E, E V m−1 complex electric field; Ee, Eo, EL, ET (1.39)
Eν V m−1 complex electric field of mode ν (2.1)
E , E V m−1 slowly varying amplitude of E and E ; E i,

E r, E t, E+, E−
(1.47)

Eν , Eν V m−1 complex electric field profile of mode ν (2.1)
Êν V m−1 W−1/2 normalized electric mode field

distribution, Eν = Aν Êν

(2.41)

ER dB extinction ratio (6.78)
f m focal length; fK (1.187), (9.144)
f Hz microwave or acoustic frequency,

f = �/2π ; f0, fm, fpk

(6.95), (8.3)

f3dB Hz 3-dB cutoff frequency; f 3dB
m (6.92)

fB, fR Hz Brillouin and Raman frequencies,
fB = �B/2π , fR = �R/2π

(9.185), (9.182)

fi jk , f m A−1 linear magneto-optic coefficient, Faraday
coefficient

(7.13)

fr Hz relaxation resonance frequency (13.134)
f (E) none Fermi–Dirac distribution function;

fc(E), fv(E)
(12.1)

F none excess noise factor (14.25)
F , F0 none finesse of optical cavity, F0 for lossless

cavity
(9.168), (11.13)

Fo none optical noise figure (10.116)
F1/2(·) none Fermi integral of order 1/2 (12.25)
F(z; z0) none forward-coupling matrix for

codirectional coupling
(4.59)

g, g(ν), g0 m−1 gain coefficient, g0 for unsaturated gain
coefficient; gmax

(1.103)f, (10.44)

gB, gR m−1 Brillouin and Raman gain coefficients,
gB = g̃B Ip, gR = g̃R Ip

(9.204), (9.191)

gth m−1 threshold gain coefficient; gth
mn (11.69)

g̃B, g̃R m W−1 Brillouin and Raman gain factors; g̃B0,
g̃R0

(9.186), (9.181)

ĝ(ν) s lineshape function (10.2)
g none degeneracy factor (10.26)
g, g0 s−1 gain parameter, g0 for unsaturated gain

parameter; gi

(11.73), (13.111)

gn m3 s−1 differential gain parameter (13.129)
gp m3 s−1 nonlinear gain parameter (13.129)
gth s−1 threshold gain parameter (11.70), (13.113)



xxxvi Partial list of symbols

Symbol Unit Meaning; derivatives References

G none laser round-trip field gain; Gc, Gmn , Gc
mn (11.5)

G none photodetector current gain (14.23)
G, G0 none optical amplifier power gain, G0 for

unsaturated gain
(9.137), (10.97)

G0 m−3 s−1 thermal generation rate; G0
e , G0

h (13.5)
GB, GR none Brillouin and Raman amplifier gains;

G th
B , Gf

R, Gb
R, G th

R

(9.205), (9.193)

h, h̄ J s Planck’s constant, h̄ = h/2π (1.178)
h, h1 m−1 transverse spatial parameter of guided

mode field
(3.11), (2.50)

H m height of acousto-optic transducer (8.105)
Hc A m−1 coercive magnetic field Fig. 7.18
H (·) none Heaviside function (13.54)
Hm(·) none Hermite function (1.138)
H A m−1 real magnetic field in the time domain (1.2)
H0, H0 A m−1 static or low-frequency magnetic field (7.4)
H, H A m−1 complex magnetic field (1.41)
Hν A m−1 complex magnetic field of mode ν (2.2)
H, H A m−1 slowly varying amplitude of H and H
Hν A m−1 complex magnetic field profile of mode ν (2.2)
Ĥν A m−1 W−1/2 normalized magnetic mode field

distribution, Hν = AνĤν

(2.41)

i none
√−1

i A current; ib, id, ida, idd, idk, in, iph, is (7.94), (14.14)f
I A injection current; I0, Isat (12.116)
I W m−2 optical intensity; I0, Ii, Iin, Iout, Ir, It, Ith,

Itr

(1.51)

I (ν) W m−2 Hz−1 optical spectral intensity distribution (10.15)
Ia W m−2 intensity of acoustic wave (8.19)
Ip, Is W m−2 pump and signal intensities; I sat

p , I tr
p (10.84), (10.94)

Isat W m−2 saturation intensity (9.153), (10.73)
J, J A m−2 current density; Jdiffusion, Jdrift, Jth (1.6), (12.109)
Je, Je A m−2 electron current densities (12.58), (12.109)
Jh, Jh A m−2 hole current densities (12.59), (12.109)
Jsat A m−2 saturation current density (12.113)
Jm(·) none Bessel function of the first kind (3.16)
k m−1 propagation constant, wavenumber; k0,

ki, kp, kr, kt

(1.84)

k none impact ionization ratio (14.104)
kB J K−1 Boltzmann constant (3.95), (10.20)
ke, ko m−1 propagation constant of extraordinary

and ordinary waves
(1.126)



xxxvii Partial list of symbols

Symbol Unit Meaning; derivatives References

k ′, k ′′ m−1 real and imaginary parts of k,
k = k ′ + ik ′′

(1.100)

kx , ky , kz m−1 propagation constants of x , y, and z
polarized fields

(1.118)

k X , kY , k Z m−1 propagation constants of X , Y , and Z
polarized fields

(6.37), (6.60)

k+, k− m−1 propagation constants of circularly
polarized fields

(7.21)

k̂ none unit vector in the k direction (1.92)
k m−1 wavevector; ki, kr, ks, kt, kq (1.47)
ke, ko m−1 wavevectors of extraordinary and

ordinary waves
(1.127)b

kx , ky , kz m−1 wavevectors of x , y, and z polarized
fields

(1.118)f

k+, k− m−1 wavevectors of left and right circularly
polarized fields

(7.21)f

K m−1 wavenumber of grating or acoustic
wave, K = 2π/�

(4.54), (8.3)

K lm W−1 peak efficacy, photometric radiation
equivalent

(13.65)

K s K factor of semiconductor laser (13.136)
KL, KT m−1 wavenumbers of longitudinal and

transverse acoustic waves
(8.23), (8.24)

Km(·) none modified Bessel function of the second
kind

(3.17)

K m−1 wavevector of grating, acoustic wave,
or material wave

(8.1), (9.180)

l m length or distance; leff, lF, lg, lp, lopt,
lRT

(3.89), (11.33)

la m aperture distance (9.90)
lc m coupling length; lPM

c (4.67)
lcoh m coherence length (9.70)
lλ/2, lλ/4 m half-wave and quarter-wave lengths (1.119), (1.120)
l m length vector along a path (7.49)
L m length of acousto-optic transducer (8.105)
L0 dB background optical loss (7.43)
Le, Lh m electron and hole diffusion lengths (12.105), (12.106)
m none transverse mode index associated with

x or φ

(1.140)

m none modulation index (13.73)
m none electron multiplication factor (14.58)
m0 kg free electron rest mass (12.15)f



xxxviii Partial list of symbols

Symbol Unit Meaning; derivatives References

mc, mv kg conduction- and valence-band density
of states effective masses

(12.15), (12.16)

mhh, m lh kg heavy-hole and light-hole density of
states effective masses

(12.17)

m∗
e , m∗

h kg density of states effective masses of
electrons and holes

(12.15), (12.16)

m∗
r kg reduced effective mass (13.15)

M none number of guided modes; Mβ (2.75), (3.61)
M kg atomic or molecular mass (10.13)
M2 m2 W−1 acousto-optic figure of merit (8.22)
Ms A m−1 saturation magnetization (7.27)
MQW none number of quantum wells (13.81)
M A m−1 real magnetic polarization in the time

domain
(1.2)

M0, M0 A m−1 static or low-frequency magnetization (7.6)
n none transverse mode index associated with

y or r
(1.140), (3.3)

n none index of refraction; nd, ni, nm, np, nβ , n̄ (1.95)
n m−3 electron concentration; nn, np (12.41)
n0 m−3 equilibrium concentration of electrons;

nn0, np0

(12.18)

n1, n2, n3 none refractive indices of waveguide layers,
n1 > n2 > n3

(2.5)

n2 m2 W−1 coefficient of intensity-dependent
index change

(9.49)

ni m−3 intrinsic carrier concentration; nin, nip (12.29)
ne, no none extraordinary and ordinary indices of

refraction
(1.125)

nx , ny , nz none principal indices of refraction (1.110)
nX , nY , nZ none new principal indices of refraction (6.13)
n+, n− none principal indices of refraction for

circularly polarized modes
(7.20)

n⊥, n‖ none indices of second-order magneto-optic
effect

(7.16)

n′, n′′ none real and imaginary parts of refractive
index, n = n′ + in′′

(1.101)

n̂ none unit normal vector (1.17)
N none some number; NDBR, Ne, Ng (8.131), (11.105)
N none group index; N1, N2, Nhigh, Nlow, Nβ (1.170)
N m−3 excess carrier density; Nth, Ntr (12.55)
N1, N2, Nt m−3 population densities in energy levels

|1〉, |2〉, and all levels
(10.24), (10.70)



xxxix Partial list of symbols

Symbol Unit Meaning; derivatives References

N2D m−2 two-dimensional excess carrier density;
N 2D

tr

(13.57)

Na, Nd m−3 concentrations of acceptors and
donors; N−

a , N+
d

(12.30)

Nc, Nv m−3 conduction- and valence-band effective
density of states

(12.22), (12.23)

Nsp none spontaneous emission factor (10.114)
N none number of charge carriers (14.13)
NA none numerical aperture (3.2)
NEP W noise equivalent power (14.42)
p none probability (14.1)
p none cross-section ratio for pumping,

p = σ
p
e /σ

p
a

(10.67)

p m−3 hole concentration; pn, pp (12.42)
p0 m−3 equilibrium concentration of holes;

pn0, pp0

(12.19)

pi jkl , pαβ , p none elasto-optic coefficient (8.7), (8.8)
p(νk) Hz−1 probability density function (10.9)
P W power; Pa, Pav, Pc, Pe, Pin, Pout, Ppk,

Pth, Pn,th

(2.38)

Pp, Ps W pump and signal powers; P in
p , Pout

p ,
P sat

p , P th
p , P tr

p , P in
s , Pout

s

(10.100), (10.95)

Psat W saturation power (10.95)
Psp W spontaneous emission power (10.90)f
P tr

sp W critical fluorescence power (10.93)f
P̂ sp W m−3 spontaneous emission power density,

Psp = P̂ spV
(10.90)

P̂
tr
sp W m−3 critical fluorescence power density,

P tr
sp = P̂

tr
spV

(10.93)

P C m−2 real electric polarization in the time
domain

(1.1)

P, P C m−2 complex electric polarization (1.45)
P (n) C m−2 nth-order nonlinear real electric

polarization
(9.1)

P(n), P (n) C m−2 nth-order nonlinear complex electric
polarization

(9.13)

Pres C m−2 complex electric polarization from
resonant transition

(10.56)

q none frequency index or longitudinal mode
index

(4.5), (11.5)

q none grating order (5.1)
q none quantum number (13.49)



xl Partial list of symbols

Symbol Unit Meaning; derivatives References

q(z) m complex radius of curvature of Gaussian
beam

(1.139)

Q C charge (12.118)
Q none acousto-optic diffraction parameter (8.49)
Q, Qmnq none quality factor of resonator (11.27), (11.31)
r m radial distance, radial coordinate
r none reflection coefficient; r1, r2, rp, rs, rpp,

rps, rsp, rss, r+, r−
(1.147)f

r none pumping ratio of a laser (11.76)
ri jk , rαk m V−1 linear electro-optic coefficients, Pockels

coefficients
(6.14), (6.15)

r ( f ), r (�) none complex modulation response function (13.75)
r̂ none unit vector of radial coordinate r (3.70)
r m spatial vector (1.1)
R none reflectance, reflectivity; R1, R2, RDBR,

Rp, Rs, R+, R−
(1.149)f

R � resistance; Req, Ri, RL, Rs (14.29)
R none chromatic resolving power (8.152)
R m−3 s−1 recombination rates; Re, Rh, Rnonrad,

Rrad, RSR

(12.49)f

Ra(ν) m−3 absorption spectrum (13.18)
Re(ν) m−3 stimulated emission spectrum (13.19)
Rsp(ν) m−3 spontaneous emission spectrum; R0

sp(ν) (13.20)
R0

sp m−3 s−1 spontaneous emission rate in thermal
equilibrium

(13.45)

RB none conversion efficiency of a Brillouin
generator

(9.210)

R1, R2 m−3 s−1 pumping rates for laser levels |1〉 and |2〉 (10.61), (10.62)
R( f ) none electrical power spectrum of modulation

response
(13.76)

R(z; 0, l) none reverse-coupling matrix for
contradirectional coupling

(4.70)

R, Ri j none rotation tensor and elements, R = [Ri j ] (8.6)
R m radius of curvature; R1, R2 (1.136)
R A W−1 responsivity of photodetector with

current output; R0

(14.37)

R V W−1 responsivity of photodetector with
voltage output

(14.38)

s m separation; se (5.68), (6.69)
s none pumping ratio of an amplifier; sth (10.104)
s none signal; sn (14.1)



xli Partial list of symbols

Symbol Unit Meaning; derivatives References

si jkl , sαkl m2 V−2 quadratic electro-optic coefficients, Kerr
coefficients

(6.14), (6.15)

S m−3 photon density (11.71)
Ssat m−3 saturation photon density (11.74)
S W m−2 real Poynting vector (1.28)
S W m−2 complex Poynting vector; Se, So (1.49)
S, Si j none strain tensor, S = [Si j ] (8.5)
S(z; z0) none forward-coupling matrix for

contradirectional coupling
(4.95)

S none amplitude of strain; Skl (8.16)
S none number of photons (14.12)
SNR none, dB signal-to-noise ratio (14.9)
t s time
t none transmission coefficient; tp, ts (1.148)
tr, tf s risetime and falltime (8.114), (14.50)
T K temperature; Tc, Tcomp, TPM (3.95)
T s time interval (1.48), (14.11)
T s round-trip time of laser cavity (11.1)
T none transmittance, transmissivity; TDBR, Th,

Tp, Ts, T⊥, T‖
(1.150)f

T none transformation matrix (6.7)
T̃ none transpose of transformation matrix T (6.8)
u, u0 J m−3 electromagnetic energy density (1.33), (1.29)
u(ν) J m−3 Hz−1 spectral energy density (10.14)
u, ui m elastic deformation wave and its

components
(8.1)f

U J optical energy; Umode (11.77)
U m amplitude of elastic wave (8.1)
v V voltage; vn, vout, vs (14.87)
v m s−1 velocity
va m s−1 acoustic wave velocity; va,L, va,T (8.3)
vg m s−1 group velocity (1.164)
vp m s−1 phase velocity; vm

p , vo
p (1.161)

ve, vh, vsat m s−1 electron and hole drift velocities and
saturation velocity

(14.103)

V none normalized frequency and waveguide
thickness, V number

(2.46)

Vc none cutoff V number; V c
m (2.70)

V rad A−1 Verdet constant (7.26)
V V voltage; Vb, Vj, VMC, Vpk, Vπ , Vπ/2, Vλ/2,

Vλ/4

(6.39)



xlii Partial list of symbols

Symbol Unit Meaning; derivatives References

V0 V contact potential (12.72)
V (λ) none normalized photopic luminous

efficiency
Fig. 13.21

V m3 volume; Vactive, Vmode (1.26), (11.2)
w m width Fig. 2.15
w, w0 m Gaussian beam radius, spot size; w0K;

wp; ws; w⊥; w‖
(1.134)f

W m width of acousto-optic cell (8.125)
W m depletion layer width; W0 (12.94)
W s−1 transition probability rate; W12, W21,

Wp, W tr
p , Wsp

(10.21)–(10.23)

Wp, Wm W m−3 power densities expended by EM field
on P and M

(1.30), (1.31)

W (ν) none transition rate per unit frequency;
W12(ν), W21(ν), Wsp(ν)

(10.17)–(10.19)

x m spatial coordinate
x̂ none unit coordinate vector or principal

dielectric axis
(1.59), (1.109)b

xp, xn m depletion layer penetration depths into
p and n regions

(12.94)

X m spatial coordinate along X̂ (6.9)
X̂ none new principal dielectric axis (6.6)
y m spatial coordinate
ŷ none unit coordinate vector or principal

dielectric axis
(1.59), (1.109)b

Y m spatial coordinate along Ŷ (6.9)
Ŷ none new principal dielectric axis (6.6)
z m spatial coordinate
ẑ none unit coordinate vector or principal

dielectric axis
(2.37), (1.109)b

zR m Rayleigh range of Gaussian beam (1.134)
Z m spatial coordinate along Ẑ (6.9)
Ẑ none new principal dielectric axis (6.6)
Z � impedance; Zs (1.97), (6.107)
Z0 � characteristic impedance of free space (1.93)
α rad field polarization angle; αK (1.61)
α rad walk-off angle of extraordinary wave (1.131)
α none power-law fiber index profile parameter (3.83)
α, α(ν) m−1 attenuation coefficient; αiq , αm, αp, αs,

αr, αR

(1.100), (10.43)

α0, α0(ν) m−1 intrinsic or unsaturated absorption
coefficient

(9.153), (13.32)
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Symbol Unit Meaning; derivatives References

αc m−1 propagation parameter for
contradirectional coupling

(4.72)

αe, αh m−1 electron and hole ionization coefficients (14.104)
β m−1 propagation constant; βB, βmn , βTE, βTM,

βν , βeff
ν , βNL

ν

(1.100), (2.1)

β m3 J−1 isothermal compressibility (3.95)
βc m−1 propagation parameter for codirectional

coupling
(4.61)

γ s−1 relaxation rate, decay rate; γ21, γB, γi,
γout, γR

(1.174)

γ , γ2, γ3 m−1 transverse spatial decay parameter of
mode field

(3.12), (2.51)

γa s−1 acoustic decay rate (8.127)
γc s−1 cavity decay rate, photon decay rate; γcl,

γ c
mnq

(11.26)

γn s−1 differential carrier relaxation rate (13.130)
γp s−1 nonlinear carrier relaxation rate (13.130)
γr s−1 total carrier relaxation rate (13.133)
γs s−1 spontaneous carrier recombination rate (13.3)
� none overlap or confinement factor; �EM, �id,

�p, �s, �ν , �νµξ

(2.77), (11.2)

δ none index dispersion parameter for optical
fiber

(3.108)

δ m−1 phase mismatch parameter for phase
mismatch of 2δ

(4.50)

δϕ rad small variation of phase retardation �ϕ (6.66)
� none normalized index step of optical fiber (3.48)
�

(2)
i jk m V−1 Miller’s constant (9.276)

�EF eV separation between quasi-Fermi levels (12.47)
� fB, � fR Hz Brillouin and Raman spectral linewidths,

� f = ��/2π

(9.187), (9.182)f

�k, �k m−1 phase mismatch; �kQ (9.60)f
�n none index step of waveguide structure or

optical fiber
(3.48)

�n, �p m−3 excess electron and hole concentrations (12.54)
�P C m−2 change in electric polarization (4.3)
�t s temporal broadening or pulsewidth; �tg,

�tm, �tps

(11.95)

�β m−1 guided mode phase mismatch; �βνµξ (4.56)
�β m−1 change in propagation constant; �βpk (6.97)
�ε, �ε F m−1 variation or modulation of electric

permittivity
(4.35)
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Symbol Unit Meaning; derivatives References

�ε̃, �ε̃ F m−1 amplitude of �ε and �ε (8.17)
�η, �η none variation or modulation of relative

impermeability
(6.17)

�θ rad divergence angle of Gaussian beam;
�θo, �θ⊥, �θ‖

(1.137)

�θa rad acoustic beam divergence (8.108)
�λ m spectral width (8.151)
�ν Hz optical linewidth, bandwidth; �νD,

�νinh, �νh, �νp, �νps

(10.4)

�νc Hz longitudinal mode linewidth (11.19)
�νL Hz longitudinal mode frequency separation (11.17)
�νSB Hz stop band of DBR (13.103)
�νST Hz Shawlow–Townes linewidth of laser

mode
(11.65)

�ϕ rad phase shift or retardation; �ϕ0, �ϕb,
�ϕNL, �ϕrec

(6.49), (9.259)

�ϕc rad width of a resonance peak of passive
cavity

(11.12)

�ϕL rad phase separation between neighboring
longitudinal modes

(11.11)

�χ, �χ none variation or modulation of electric
susceptibility

(6.1)

�ω rad s−1 optical bandwidth, linewidth,
�ω = 2π�ν; �ωinh, �ωh

(5.28), (10.3)f

��B, ��R rad s−1 Brillouin and Raman spectral
linewidths, �� = 2π� f

(9.186)f, (9.182)f

ε F m−1 complex electric permittivity; εn, εp (1.95)
ε0 F m−1 electric permittivity of free space (1.1)
ε′, ε′′ F m−1 real and imaginary parts of ε,

ε = ε′ + iε′′
(1.99)

εx , εy , εz F m−1 principal dielectric permittivities (1.109)
εX , εY , εZ F m−1 new principal dielectric permittivities (6.12)
ε+, ε− F m−1 principal dielectric permittivities of

circular polarizations
(7.17)

εres(ω) F m−1 permittivity of resonant transition (11.37)
ε(r, t) F m−4 s−1 real electric permittivity tensor in the

time domain
(1.16)

ε(ω), εi j (ω) F m−1 complex electric permittivity tensor in
the frequency domain

(1.55)

ε rad ellipticity of polarization ellipse; εF, εK (1.65), (7.30)
ζ none a mode parameter for multimode fiber (3.107)
ζ none linear birefringence in magneto-optics (7.74)
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ζmn(z) rad phase variation of Gaussian mode field;
ζ RT

mn

(1.140)

ζp none fraction of pump power absorbed by gain
medium; ζ th

p

(10.107)

η none characteristic constant for HE or EH
fiber mode

(3.39)

η none coupling efficiency; ηin, ηmax, ηout,
ηPM

(4.66)

ηc none power conversion efficiency (10.109)
ηcoll none collection efficiency (14.35)
ηe none external quantum efficiency (11.91), (13.63)
ηesc none escape efficiency (13.68)
ηi none internal quantum efficiency (11.91)
ηinj none injection efficiency (13.67)
ηl lm W−1 photometric efficiency, luminous

efficiency
(13.65)

ηp none pump quantum efficiency (10.84)
ηq none quantum efficiency of laser amplifier (10.111)
ηR none Raman conversion efficiency (9.199)
ηs none slope efficiency, differential power

conversion efficiency
(10.110), (11.90)

ηt none conversion efficiency of transducer (8.105)
ηt none extraction efficiency or transmission

efficiency
(13.67), (14.35)

ηSH none second-harmonic conversion efficiency (9.115)
η̂SH W−1 normalized second-harmonic conversion

efficiency
(9.117)

η, ηi j , ηα none relative impermeability tensor and its
elements, η = [ηi j ]

(1.111)

θ rad coordinate angle (1.121)
θ rad orientation of the polarization ellipse (1.66)
θa rad acceptance angle (3.2)
θB rad Brewster angle or Bragg angle (1.156), (8.65)
θc rad critical angle (1.158)
θd rad angle of diffraction; θPM

d (8.60)
θdef rad deflection angle Fig. 8.5
θF, θK rad Faraday and Kerr rotation angles (7.24), (7.36)
θi, θr, θt rad angles of incidence, reflection, and

refraction (transmitted)
(1.144)

θPM rad phase-matching angle; θ I
PM, θ II

PM Table 9.6
κ m−1 coupling coefficient; κeff, κEE, κEM, κME,

κMM, κνµ

(4.33)
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Symbol Unit Meaning; derivatives References

κ̃ m−1 coupling coefficient defined in (4.42);
κ̃νµ

(4.42)

λ m optical wavelength in free space; λd,
λp, λs

(1.85)

λB m free-space Bragg wavelength (5.23)
λc m cutoff wavelength; λc

m (2.74)
λg m wavelength for photon with bandgap

energy Eg, λg = hc/Eg

(12.2)f

λth m threshold wavelength (14.53)
� m grating period or acoustic wavelength,

� = 2π/K ; �0

(4.54), (8.3)

µ H m−1 magnetic permeability tensor (7.3)
µ0 H m−1 magnetic permeability of free space (1.4)
µe, µh m2 V−1 s−1 electron and hole mobilities (12.58), (12.59)
ν Hz optical frequency; νp, νmnq , νq , νs (1.85)
ν0 Hz central or carrier optical frequency,

ν0 = ω0/2π

(10.11)

ν21 Hz resonance frequency between energy
levels |1〉 and |2〉

(10.1)

νB Hz Bragg frequency (5.24)b
νc Hz characteristic frequency in McCumber

relation
(10.47)

ξ none duty factor or splitting factor (5.16), (9.261)
ξ , ξ (M0z) none electric permittivity tensor elements for

magneto-optic effect
(7.16)

ρ C m−3 charge density (1.7)
ρ kg m−3 density of mass (8.19)
ρ rad walk-off angle between two beams (9.90)
ρ � m resistivity, ρ = 1/σ (12.70)f
ρF rad m−1 specific Faraday rotation, rotatory

power
(7.27)

ρc(E), ρv(E) m−3 J−1 densities of states for conduction and
valence bands

(12.15), (12.16)

ρ(ν) m−3 Hz−1 density of states for band-to-band
optical transitions

(13.16)

σ none extinction ratio of polarizer,
σ = T⊥/T‖; σin, σout

(7.42)

σ m−1 W−1 nonlinear coefficient in self-phase
modulation; σνν

(9.245), (9.266)

σ �−1 m−1 conductivity; σ0 (12.70)
σ m2 gain cross section (13.40), (13.59)
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σ12, σ21 m2 transition cross sections (10.34), (10.35)
σa, σe m2 absorption and emission cross sections;

σap, σ h
e , σ inh

e , σep

(10.36), (10.37)

σ 2
s none variance of s (14.2)

τ s lifetime, decay time, or time constant;
τR, τrad, τRC, τVM

(6.92), (10.5)

τ1, τ2 s fluorescence lifetime of laser levels |1〉
and |2〉

(10.5), (10.6)

τa s acoustic transit time (8.109)
τc s photon lifetime, τc = 1/γc; τcl, τ c

mnq (11.24)
τd s dielectric relaxation time (14.75)
τe, τh s electron and hole lifetimes; τe0, τh0 (12.52), (12.53)
τr s relaxation time constant (14.73)
τs s saturation lifetime or spontaneous carrier

lifetime
(10.74), (12.56)

τsp s spontaneous radiative lifetime (10.30)
τtr s transit time; τ e

tr; τ h
tr (6.92)b, (14.102)

φ rad azimuthal angle, azimuthal angular
coordinate

(1.122)

φ V work function potential, eφ = work
function

(14.54)

� s−1 photon or electron flux; �p, �out, �in
s ,

�out
s

(10.111), (13.63)

�l lm luminous flux (13.66)
ϕ rad phase or phase shift; ϕ0, ϕ1, ϕ2, ϕK, ϕpk,

ϕRT, ϕχ

(1.60)

χ none complex electric susceptibility in the
frequency domain

(1.54)

χ V electron affinity potential, eχ = electron
affinity

(14.55)

χeff m V−1 effective second-order nonlinear
susceptibility; χ I

eff, χ II
eff

(9.59)

χQ m V−1 χeff for quasi-phase matching (9.97)
χres none resonant electric susceptibility,

χres = χ ′
res + iχ ′′

res

(10.52), (11.50)f

χR m2 V−2 effective Raman susceptibility (9.75)
χx , χy , χz none principal dielectric susceptibilities (1.110)f
χ ′, χ ′′ none real and imaginary parts of χ ,

χ = χ ′ + iχ ′′
(1.176)

χ(r, t) m−3 s−1 real electric susceptibility tensor in the
time domain

(1.15)



xlviii Partial list of symbols

Symbol Unit Meaning; derivatives References

χ(ω), χi j none complex electric susceptibility tensor in
the frequency domain

(1.54)

χ(2), χ
(2)
i jk m V−1 second-order nonlinear susceptibility in

the frequency domain
(9.19), (9.21)

χ(3), χ
(3)
i jkl m2 V−2 third-order nonlinear susceptibility in the

frequency domain
(9.20), (9.22)

χm none magnetic susceptibility tensor (7.1)
ψ rad spatial phase of mode field distribution (2.55)
ψe rad angle between Se and optical axis of

crystal
(1.131)

ω rad s−1 optical angular frequency, ω = 2πν; ωp,
ωq , ωmnq

(1.47)

ω0 rad s−1 central or carrier optical frequency,
ω0 = 2πν0

(1.162), (10.12)

ωB rad s−1 Bragg frequency, ωB = 2πνB (5.24)b
ωc rad s−1 cutoff frequency; ωc

m (2.74)
� rad s−1 microwave or acoustic angular

frequency, � = 2π f
(6.39), (8.1)

�B, �R rad s−1 Brillouin and Raman frequencies,
�B = 2π fB, �R = 2π fR

(9.184), (9.182)

�esc rad escape angle (13.68)
�r rad s−1 relaxation resonance frequency,

�r = 2π fr

(13.133)



Abbreviations

ABD areal bit density
ADP ammonium dihydrogen phosphate, NH4H2PO4

APD avalanche photodiode
AS absorbing substrate
ASE amplified spontaneous emission
BBO beta barium borate, β-BaB2O4

BGO bismuth germanate, Bi12GeO20

BSO bismuth silicate, Bi12SiO20

CSP channeled-substrate planar
CW continuous wave
dB decibel
dBm decibel for power measured in milliwatts
dBµ decibel for power measured in microwatts
dBn decibel for power measured in nanowatts
DBR distributed Bragg reflector
DC direct current
DC-PBH double-channel planar buried heterostructure
DFB distributed feedback
DFG difference-frequency generation
DH double heterostructure
EDFA erbium-doped fiber amplifier
EH electric and magnetic, hybrid true fiber modes
ESA excited-state absorption
FCSEL folded-cavity surface-emitting laser
FP Fabry–Perot
FWHM full width at half maximum
GCSEL grating-coupled surface-emitting laser
GGG gadolinium gallium garnet, Gd3Ga5O12

GRIN-SCH graded-index separate confinement heterostructure
HE magnetic and electric, hybrid true fiber modes
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l List of abbreviations

IDT interdigital transducer
IR infrared
KDP potassium dihydrogen phosphate, KH2PO4

KTA potassium titanyl arsenate, KTiOAsO4

KTP potassium titanyl phosphate, KTiOPO4

LBO lithium triborate, LiB3O5

LD laser diode
LED light-emitting diode
LiSAF lithium strontium aluminium fluoride, LiSrAlF6

LN lithium niobate, LiNbO3

LP linearly polarized, approximate fiber modes
MQW multiple quantum wells
MSM metal–semiconductor–metal
NA numerical aperture
NDFA neodymium-doped fiber amplifier
NEA negative electron affinity
NEP noise equivalent power
OPA optical parametric amplifier
OPG optical parametric generator
OPO optical parametric oscillator
PBH planar buried heterostructure
PDFA praseodymium-doped fiber amplifier
PMT photomultiplier tube
PPKTP periodically poled KTP
PPLN periodically poled LiNbO3

QW quantum well
RC resistance–capacitance
RE–TM rare-earth transition-metal
RF radio frequency
SAM separate absorption and multiplication
SAW surface acoustic wave
SBS stimulated Brillouin scattering
SFG sum-frequency generation
SI international system of units
SH single heterostructure
SHG second-harmonic generation
SNR signal-to-noise ratio
SPM self-phase modulation
SQW single quantum well
SRS stimulated Raman scattering
TE transverse electric



li List of abbreviations

TEM transverse electric and magnetic
TGG terbium gallium garnet, Tb3Ga5O12

THG third-harmonic generation
TM transverse magnetic
TPA two-photon absorption
TS transparent substrate
TWPD traveling-wave photodiode
UV ultraviolet
VCSEL vertical-cavity surface-emitting laser
VIPD vertically illuminated photodiode
VMDP velocity-matched distributed photodetector
WGPD waveguide photodetector
WKB Wentzel–Kramers–Brillouin
XPM cross-phase modulation
YAG yttrium aluminum garnet, Y3Al5O12

YIG yttrium iron garnet, Y3Fe5O12

YLF yttrium lithium fluoride, YLiF4





Part I

Background





1 General background

Photonics is an engineering discipline concerning the control of light, or photons, for
useful applications, much as electronics has to do with electrons. Light is electromag-
netic radiation of frequencies in the range from 1 THz to 10 PHz, corresponding to
wavelengths between ∼300 µm and ∼30 nm in free space. This optical spectral range is
generally divided into infrared, visible, and ultraviolet regions, as indicated in Table 1.1.
The spectral range of concern in photonics is usually in a wavelength range between
10 µm and 100 nm. The primary interest in the applications of photonic devices is in
an even narrower range of visible and near infrared wavelengths. As we shall see later,
this spectral range of application is largely determined by the properties of materials
used for photonic devices.

The wave nature of light is very important in the function of photonic devices. In
particular, the propagation of light in a photonic device is completely characterized by
its wave nature. However, in the spectral range of interest for practical photonic devices,
the quantum energies of photons are in a range where the quantum nature of light is also
important. For example, photons of visible light have energies between 1.7 and 3.1 eV,
which are in the range of the bandgaps of most semiconductors. Photon energy is an
important factor that determines the behavior of an optical wave in a semiconductor
photonic device. The uniqueness of photonic devices is that both wave and quantum
characteristics of light have to be considered for the function and applications of these
devices. Generally speaking, the photon nature of light is important in the operation of
photonic devices for generation, amplification, frequency conversion, or detection of
light, while the wave nature is important in the operation of all photonic devices but is
particularly so for devices used in transmission, modulation, or switching of light. In
this chapter, we review some relevant wave and quantum properties of light as a general
background for later chapters.

1.1 Optical fields and Maxwell’s equations

When dealing with photonic devices, we consider in most situations optical fields in
media of various electromagnetic properties. The electromagnetic field in a medium is

3
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Table 1.1 Electromagnetic spectrum

Wave region Frequency Wavelength Devices

Radio kHz–MHz–GHz km–m–cm Electronic devices
Microwave 1 GHz–1 THz 300 mm–300 µm Microwave devices
Optical

Infrared 1 THz–430 THz 300 µm–700 nm
Visible 430 THz–750 THz 700 nm–400 nm
Ultraviolet 750 THz–10 PHz 400 nm–30 nm


 Photonic devices

X-ray 10 PHz–10 EHz 30 nm–300 pm
Gamma ray 10 EHz and above 300 pm and shorter

generally characterized by the following four field quantities:

electric field E(r, t) V m−1,
electric displacement D(r, t) C m−2,
magnetic field H(r, t) A m−1,
magnetic induction B(r, t) T or Wb m−2.

Note that E and B are fundamental microscopic fields, while D and H are macroscopic
fields that include the response of the medium. The units given above and below for the
field quantities are SI units consistent with the SI system used in this book for Maxwell’s
equations. Experimentally measured magnetic field quantities are sometimes given in
Gaussian units, which are gauss for the B field and oersted (Oe) for the H field. The
conversion relations between SI and Gaussian units are 1 T = 1 Wb m−2 = 104 gauss
for B and 1 A m−1 = 4π × 10−3 Oe for H.

The response of a medium to an electromagnetic field generates the polarization and
the magnetization:

polarization (electric polarization) P(r, t) C m−2,
magnetization (magnetic polarization) M(r, t) A m−1.

They are connected to the field quantities through the following relations:

D(r, t) = ε0 E(r, t) + P(r, t) (1.1)

and

B(r, t) = µ0 H(r, t) + µ0 M(r, t), (1.2)

where

ε0 ≈ 1

36π
× 10−9 F m−1 or A s V−1 m−1 (1.3)
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is the electric permittivity of free space and

µ0 = 4π × 10−7 H m−1 or V s A−1 m−1 (1.4)

is the magnetic permeability of free space. In addition, independent charge or current
sources may exist:

charge density ρ(r, t) C m−3,
current density J(r, t) A m−2.

In a medium, the behavior of a time-varying electromagnetic field is governed by
the following space- and time-dependent macroscopic Maxwell’s equations:

∇ × E = −∂ B
∂t

Faraday’s law, (1.5)

∇ × H = J + ∂ D
∂t

Ampere’s law, (1.6)

∇ · D = ρ Coulomb’s law, (1.7)

∇ · B = 0 absence of magnetic monopoles. (1.8)

The current and charge densities are constrained by the following continuity equation:

∇ · J + ∂ρ

∂t
= 0 conservation of charge. (1.9)

In a medium free of sources, J = 0 and ρ = 0. Then, Maxwell’s equations are simply

∇ × E = −∂ B
∂t

, (1.10)

∇ × H = ∂ D
∂t

, (1.11)

∇ · D = 0, (1.12)

∇ · B = 0. (1.13)

These are the equations normally used for optical fields because optical fields are usually
not generated directly by free currents or free charges.

Transformation properties

Maxwell’s equations and the continuity equation are the basic physical laws that govern
the behavior of electromagnetic fields. They are invariant under the transformation of
space inversion, in which the spatial vector r is changed to r′ = −r, or (x, y, z) →
(−x, −y, −z), and the transformation of time reversal, in which the time variable t
is changed to t ′ = −t , or t → −t . This means that the form of these equations is
not changed when we perform the space-inversion transformation or the time-reversal
transformation, or both together.
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Different quantities in Maxwell’s equations have different transformation proper-
ties. An understanding of these properties is important and leads to a fundamental
appreciation of the difference between the characteristics of the electric and magnetic
fields, which is the origin of the difference between the electric and magnetic symme-
try properties of materials. It also helps in understanding many basic characteristics
of the electro-optic, magneto-optic, and nonlinear optical properties of materials to be
addressed in later chapters.

The electric field vectors, E and D, have the same transformation properties as those
of P , while the transformation properties of the magnetic field vectors, H and B, are
the same as those of M. The origin of the electric properties of a material is the charge-
density distribution, ρ(r, t), at the atomic level in the material, whereas that of the
magnetic properties stems from the current-density distribution, J(r, t). The transfor-
mation properties of the scalar quantity ρ are such that the sign of ρ remains unchanged
under the transformation of either space inversion or time reversal. In contrast, J is
a polar vector because it is charge density times velocity, ρv, where velocity, v, is a
polar vector. Thus, the vector J changes sign under the transformation of either space
inversion or time reversal. It changes sign under space inversion because a polar vector
changes sign under space inversion, and it changes sign under time reversal because v
is the first time derivative of r. The electric polarization P is a polar vector because it is
the volume average of the electric dipole moment density defined by ρ(r, t)r, and the
product of a scalar quantity ρ and a polar vector r is a polar vector. In contrast, mag-
netization M is an axial vector because it is the volume average of the magnetic dipole
moment density defined by r × J(r, t), and the cross product of two polar vectors, r
and J, is an axial vector. Therefore, we find the following transformation properties.

1. Electric fields. The electric field vectors, P , E, and D, change sign under space
inversion but not under time reversal.

2. Magnetic fields. The magnetic field vectors, M, H, and B change sign under time
reversal but not under space inversion.

With these transformation properties understood, the invariance of Maxwell’s
equations and the continuity equation under the transformation of space inversion or
time reversal or both can be easily verified.

Response of medium

Polarization and magnetization in a medium are generated, respectively, by the response
of the medium to the electric and magnetic fields. Therefore, P(r, t) depends on E(r, t),
while M(r, t) depends on B(r, t). At optical frequencies, the magnetization vanishes,
M = 0. Consequently, for optical fields, the following relation is always true:

B(r, t) = µ0 H(r, t). (1.14)
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This is not true at low frequencies, however. It is possible to change the properties of
a medium through a magnetization induced by a DC or low-frequency magnetic field,
leading to the functioning of magneto-optic devices. It should be noted that even for
magneto-optic devices, magnetization is induced by a DC or low-frequency magnetic
field that is separate from the optical fields. No magnetization is induced by the magnetic
components of the optical fields.

Except for magneto-optic devices, most photonic devices are made of dielectric
materials that have zero magnetization at all frequencies. The optical properties of such
materials are completely determined by the relation between P(r, t) and E(r, t). This
relation is generally characterized by an electric susceptibility tensor, χ, through the
following definition for electric polarization:

P(r, t) = ε0

∞∫
−∞

dr′
t∫

−∞
dt ′χ(r − r′, t − t ′) · E(r′, t ′). (1.15)

From (1.1), then

D(r, t) = ε0 E(r, t) + ε0

∞∫
−∞

dr′
t∫

−∞
dt ′χ(r − r′, t − t ′) · E(r′, t ′)

=
∞∫

−∞
dr′

t∫
−∞

dt ′ε(r − r′, t − t ′) · E(r′, t ′), (1.16)

where ε is the electric permittivity tensor of the medium.
Because χ and, equivalently, ε represent the response of a medium to the optical

field and thus completely characterize the macroscopic electromagnetic properties of
the medium, (1.15) and (1.16) can be regarded as the definitions of P(r, t) and D(r, t),
respectively. A few remarks can be made:

1. Both χ and ε are generally tensors because the vectors P and D are, in general, not
parallel to vector E due to material anisotropy. In the case of an isotropic medium,
both χ and ε can be reduced to scalars χ and ε, respectively.

2. The relations in (1.15) and (1.16) are in the form of convolution integrals. The
convolution in time accounts for the fact that the response of a medium to excitation
of an electric field is generally not instantaneous or local in time and will not vanish
for some time after the excitation is over. Because time is unidirectional, causality
exists in physical processes. An earlier excitation can have an effect on the property
of a medium at a later time, but not a later excitation on the property of the medium
at an earlier time. Therefore, the upper limit in the time integral is t , not infinity.
In contrast, the convolution in space accounts for the spatial nonlocality of the
material response. Excitation of a medium at a location r′ can result in a change
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(a) (b)

Figure 1.1 Nonlocal responses in (a) time and (b) space.

in the property of the medium at another location r. For example, the property of
a semiconductor at one location can be changed by electric or optical excitation
at another location through carrier diffusion. Because space is not unidirectional,
there is no spatial causality, in general, and spatial convolution is integrated over
the entire space. Figure 1.1 shows the temporal and spatial nonlocality of responses
to electromagnetic excitations. The temporal nonlocality of the optical response of
a medium results in frequency dispersion of its optical property, while the spatial
nonlocality results in momentum dispersion.

3. In addition to the dependence on space and time through the convolution relation
with the optical field, χ and ε can also be functions of space or time independent
of the optical field because of spatial or temporal inhomogeneities in the medium.
Spatial inhomogeneity exists in all optical structures, such as optical waveguides,
where the index of refraction is a function of space. Temporal inhomogeneity exists
when the optical property of a medium varies with time, for example, because of
modulation by a low-frequency electric field or by an acoustic wave.

4. In a linear medium, χ and ε do not depend on the optical field E. In a nonlinear
optical material, χ and ε are themselves also functions of E.

Boundary conditions

At the interface of two media of different optical properties as shown in Fig. 1.2,
the optical field components must satisfy certain boundary conditions. These boundary
conditions can be derived from Maxwell’s equations given in (1.10)–(1.13). From (1.10)
and (1.11), the tangential components of the fields at the boundary satisfy

n̂ × E1 = n̂ × E2 (1.17)
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Figure 1.2 Boundary between two media of different optical properties.

and

n̂ × H1 = n̂ × H2, (1.18)

where n̂ is the unit vector normal to the interface as shown in Fig. 1.2. From (1.12) and
(1.13), we have

n̂ · D1 = n̂ · D2 (1.19)

and

n̂ · B1 = n̂ · B2 (1.20)

for the normal components of the fields.
The tangential components of E and H must be continuous across an interface,

while the normal components of D and B are continuous. Because B = µ0 H for
optical fields, as discussed above, (1.18) and (1.20) also imply that the tangential
component of B and the normal component of H are also continuous. Consequently,
all of the magnetic field components in an optical field are continuous across a boundary.
Possible discontinuities in an optical field exist only in the normal component of E or
the tangential component of D.

Optical power and energy

By multiplying E by (1.6) and multiplying H by (1.5), we obtain

E · (∇ × H) = E · J + E · ∂ D
∂t

, (1.21)

H · (∇ × E) = −H · ∂ B
∂t

. (1.22)
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Using the vector identity

B · (∇ × A) − A · (∇ × B) = ∇ · (A × B), (1.23)

we can combine (1.21) and (1.22) to have

−∇ · (E × H) = E · J + E · ∂ D
∂t

+ H · ∂ B
∂t

. (1.24)

Using (1.1) and (1.2) and rearranging (1.24), we obtain

E · J = −∇ · (E × H) − ∂

∂t

(ε0

2
|E|2 + µ0

2
|H|2

)
−
(

E · ∂ P
∂t

+ µ0 H · ∂ M
∂t

)
.

(1.25)

Recall that power in an electric circuit is given by voltage times current and has
the unit of W = V A (watts = volts × amperes). In an electromagnetic field, we find
similarly that E · J is the power density that has the unit of V A m−3 or W m−3.
Therefore, the total power dissipated by an electromagnetic field in a volume V is just∫
V

E · J dV. (1.26)

Expressing (1.25) in an integral form, we have∫
V

E · J dV = −
∮
A

E × H · n̂dA − ∂

∂t

∫
V

(ε0

2
|E|2 + µ0

2
|H|2

)
dV

−
∫
V

(
E · ∂ P

∂t
+ µ0 H · ∂ M

∂t

)
dV, (1.27)

where the first term on the right-hand side is a surface integral over the closed surface A
of volume V and n̂ is the outward-pointing unit normal vector of the surface, as shown
in Fig. 1.3.

Figure 1.3 Boundary surface enclosing a volume element and the unit surface normal vector.
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Clearly, each term in (1.27) has the unit of power. Each has an important physical
meaning. The vector quantity

S = E × H (1.28)

is called the Poynting vector of the electromagnetic field. It represents the instantaneous
magnitude and direction of the power flow of the field. The scalar quantity

u0 = ε0

2
|E|2 + µ0

2
|H|2 (1.29)

has the unit of energy per unit volume and is the energy density stored in the prop-
agating field. It consists of two components, thus accounting for energies stored in
both electric and magnetic fields at any instant of time. The last term in (1.27) also
has two components associated with electric and magnetic fields, respectively. The
quantity

Wp = E · ∂ P
∂t

(1.30)

is the power density expended by the electromagnetic field on the polarization. It is
the rate of energy transfer from the electromagnetic field to the medium by inducing
electric polarization in the medium. Similarly, the quantity

Wm = µ0 H · ∂ M
∂t

(1.31)

is the power density expended by the electromagnetic field on the magnetization. With
these physical meanings attached to these terms, it can be seen that (1.27) simply states
the law of conservation of energy in any arbitrary volume element V in the medium.
The total energy in the medium equals that in the propagating field plus that in the
electric and magnetic polarizations.

In the special case of a linear, nondispersive medium where ε(r − r′, t − t ′) = εδ(r −
r′)δ(t − t ′), (1.16) simply reduces to D(r, t) = ε · E(r, t). Then, instead of (1.25), we
have

E · J = −∇ · S − ∂

∂t

(
1

2
E · D + 1

2
H · B

)
(1.32)

from (1.24). In this situation, the total energy density stored in the medium, including
that in the propagating field and that in the polarizations, is simply

u = 1

2
E · D + 1

2
H · B. (1.33)

For an optical field, J = 0 and M = 0, as is discussed above. Then, (1.27) becomes

−
∮
A

S · n̂dA = ∂

∂t

∫
V

u0dV +
∫
V

WpdV, (1.34)
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which states that the total optical power flowing into volume V through its boundary
surfaceA is equal to the rate of increase with time of the energy stored in the propagating
fields in V plus the power transferred to the polarization of the medium in this volume.
In a linear, nondispersive medium, we have

−
∮
A

S · n̂dA = ∂

∂t

∫
V

udV. (1.35)

Wave equation

By applying ∇× to (1.10) and using (1.14) and (1.11), we have

∇ × ∇ × E + µ0
∂2 D
∂t2

= 0. (1.36)

Using (1.1), (1.36) can be expressed as

∇ × ∇ × E + 1

c2

∂2 E
∂t2

= −µ0
∂2 P
∂t2

, (1.37)

where

c = 1√
µ0ε0

≈ 3 × 108 m s−1 (1.38)

is the speed of light in free space. The wave equation in (1.37) describes the space-
and-time evolution of the electric field of the optical wave. Its right-hand side can
be regarded as the driving source for the optical wave. The polarization in a medium
drives the evolution of an optical field. This wave equation can take on various forms
depending on the characteristics of the medium, as will be seen on various occasions
later. For now, we leave it in this general form.

1.2 Harmonic fields

Optical fields are harmonic fields that vary sinusoidally with time. The field vectors
defined in the preceding section are all real quantities. For harmonic fields, it is always
convenient to use complex fields. We define the space- and time-dependent complex
electric field, E(r, t), through its relation to the real electric field, E(r, t):1

E(r, t) = E(r, t) + E∗(r, t) = E(r, t) + c.c., (1.39)

1 In some literature, the complex field is defined through a relation with the real field as E(r, t) =
1/2(E(r, t) + E∗(r, t)), which differs from the relation in (1.39) by the factor 1/2. The magnitude of the com-
plex field defined through this alternative relation is twice that of the complex field defined through (1.39). As a
result, expressions for many quantities may be different under the two different definitions. An example is that
of the optical intensity given in (1.98). We have chosen to define the complex field through the relation in (1.39)
without the factor 1/2 primarily because this definition is more convenient and less confusing in expressing the
nonlinear polarizations discussed in Chapter 9.
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where c.c. means the complex conjugate. In our convention, E(r, t) contains the complex
field components that vary with time as exp(−iωt) with positive values of ω, while
E∗(r, t) contains those varying with time as exp(iωt) with positive ω, or exp(−iωt)
with negative ω. The complex fields of other field quantities are similarly defined (see
Appendix A).

With this definition for the complex fields, all of the linear field equations retain their
forms. In particular, Maxwell’s equations for the complex optical fields are

∇ × E = −∂B
∂t

, (1.40)

∇ × H = ∂D
∂t

, (1.41)

∇ · D = 0, (1.42)

∇ · B = 0. (1.43)

The wave equation in terms of the complex electric field is

∇ × ∇ × E + 1

c2

∂2E
∂t2

= −µ0
∂2P
∂t2

, (1.44)

while

P(r, t) = ε0

∞∫
−∞

dr′
t∫

−∞
dt ′χ(r − r′, t − t ′) · E(r′, t ′) (1.45)

and

D(r, t) = ε0E(r, t) + ε0

∞∫
−∞

dr′
t∫

−∞
dt ′χ(r − r′, t − t ′) · E(r′, t ′)

=
∞∫

−∞
dr′

t∫
−∞

dt ′ε(r − r′, t − t ′) · E(r′, t ′). (1.46)

It is important to note that while P, D, and E are complex, χ(r − r′, t − t ′) and ε(r −
r′, t − t ′) in (1.45) and (1.46) are always real and are the same as those in (1.15) and
(1.16).

For a harmonic optical field of wavevector k and angular frequency ω, its complex
electric field can be further written as

E(r, t) = E(r, t) exp(ik · r − iωt), (1.47)

where E(r, t) is the space- and time-varying field envelope, such as that for a modu-
lated field, a guided field, or an optical pulse. Other complex field quantities, such as
H(r, t), can be similarly expressed. The phase factor in (1.47) indicates the direction
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of wave propagation:

ik · r − iωt , forward propagating in k direction;
−ik · r − iωt , backward propagating in −k direction.

The light intensity, or irradiance, is the power density of the harmonic optical
field. It can be calculated by time averaging of the Poynting vector over one wave
cycle:

S = 1

T

T∫
0

E × Hdt = 2 Re(E × H∗), (1.48)

where Re(·) means taking the real part. We can define a complex Poynting vector:

S = E × H∗ (1.49)

so that

S = S + S∗, (1.50)

which has the same form as the relation between the real and complex fields de-
fined in (1.39) except that the real Poynting vector in this relation is time averaged.
The light intensity, I , is simply the magnitude of the real time-averaged Poynting
vector:

I = |S| = |S + S∗|, (1.51)

where I is in watts per square meter.
For harmonic optical fields, it is often useful to consider the complex fields in the

momentum space and frequency domain defined by the following Fourier-transform
relations:

E(k, ω) =
∞∫

−∞
dr

∞∫
−∞

dtE(r, t) exp(−ik · r + iωt), for ω > 0, (1.52)

E(r, t) = 1

(2π )4

∞∫
−∞

dk

∞∫
0

dωE(k, ω) exp(ik · r − iωt). (1.53)

Note that E(k, ω) in (1.52) is defined for ω > 0 only, and the integral for the time
dependence of E(r, t) in (1.53) extends only over positive values of ω. This is
in accordance with the convention we used to define the complex field E(r, t) in
(1.39). All other space- and time-dependent quantities, including other field vectors
and the permittivity and susceptibility tensors, are transformed in a similar manner.
Through the Fourier transform, the convolution integrals in real space and time be-
come simple products in the momentum space and frequency domain. Consequently,



15 1.3 Linear optical susceptibility

we have

P(k, ω) = ε0χ(k, ω) · E(k, ω) (1.54)

and

D(k, ω) = ε(k, ω) · E(k, ω). (1.55)

1.3 Linear optical susceptibility

As mentioned above, the susceptibility tensor χ(r, t) and the permittivity tensor ε(r, t)
of space and time are always real quantities although all field quantities, including both
E(r, t) and E(k, ω), can be defined in a complex form. This is true even in the presence
of an optical loss or gain in the medium. However, the susceptibility and permittivity
tensors in the momentum space and frequency domain, χ(k, ω) and ε(k, ω), can be
complex. If an eigenvalue, χi , of χ is complex, the corresponding eigenvalue, εi , of ε
is also complex, and their imaginary parts have the same sign because ε = ε0(1 + χ).
The signs of such imaginary parts of eigenvalues tell whether the medium has an
optical gain or loss. In our convention, we write, for example, χi = χ ′

i + iχ ′′
i in the

frequency domain. Then, χ ′′
i (ω) > 0 corresponds to an optical loss or absorption,

while χ ′′
i (ω) < 0 represents an optical gain or amplification.

The fact that χ(r, t) and ε(r, t) are real quantities leads to the following symmetry
relations for the tensor elements of χ(k, ω) and ε(k, ω):

χ∗
i j (k, ω) = χi j (−k, −ω) (1.56)

and

ε∗
i j (k, ω) = εi j (−k, −ω), (1.57)

which are called the reality condition. The reality condition implies that χ ′
i j (k, ω) =

χ ′
i j (−k, −ω) and χ ′′

i j (k, ω) = −χ ′′
i j (−k, −ω). Similar relations also apply for the real

and imaginary parts of εi j . Therefore, the real parts of χi j and εi j are even functions
of k and ω, whereas the imaginary parts are odd functions of k and ω. Any constant
contribution, independent of k and ω, in χi j and εi j is an even function of k and ω; hence
it can appear only in the real parts. As a result, the imaginary parts, if they exist, are
always functions of either k or ω, or both. The loss, or gain, in a medium is associated
with the imaginary parts of the eigenvalues of χ(ω); consequently, it is inherently dis-
persive. Any other effects that can be described by the imaginary parts of the eigenvalues
of χ(k, ω) are also dispersive in either momentum or frequency, or both.

The momentum and frequency dependencies of an electric susceptibility, χ(k, ω),
are due to the spatial and temporal nonlocality properties of the underlying physical
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mechanisms that contribute to χ. As discussed in the preceding section, spatial non-
locality causes spatially convoluted effects and results in momentum dependence of
the susceptibility, and temporal nonlocality causes temporal convolution and results in
frequency dispersion of the medium.

In addition to nonlocality, it is also important to consider inhomogeneity, in both
space and time. In a linear medium, changes in the wavevector of an optical wave, or
coupling between waves of different wavevectors, can occur only if the optical property
of the medium in which the wave propagates is spatially inhomogeneous such that
χ(k, ω) is spatially dependent. Likewise, changes in the frequency of an optical wave,
or coupling between waves of different frequencies, are possible in a linear medium only
if the optical property of the medium is time varying such that χ(k, ω) varies with time.
Changes in the wavevector of an optical wave can take the form of changes in the wave
propagation direction, as in reflection and diffraction, or in the optical wavelength,
as in the case when a wave propagates from one part of the medium to another of
different refractive index. Changes in the frequency of an optical wave result in the
generation of other frequencies or the conversion of the optical wave to a completely
different frequency. Consequently, for practical photonic devices, it is often necessary
to consider both nonlocality and inhomogeneity in both space and time, thus writing
χ(r, t ; k, ω) and, correspondingly, ε(r, t ; k, ω).

1.4 Polarization of light

Consider a monochromatic plane optical wave that has a complex field

E(r, t) = E exp(ik · r − iωt) = êE exp(ik · r − iωt), (1.58)

where E is a constant independent of r and t , and ê is its unit vector. The polarization
of the optical field is characterized by the unit vector ê. The wave is linearly polarized,
also called plane polarized, if ê can be expressed as a constant, real vector. Otherwise,
the wave is elliptically polarized in general, and is circularly polarized in some special
cases. For the convenience of discussion, we take the direction of wave propagation to
be the z direction so that k = kẑ and assume that both E and H lie in the xy plane.2

Then, we have

E = x̂E x + ŷE y = x̂ |E x |eiϕx + ŷ|E y|eiϕy , (1.59)

where E x and E y are space- and time-independent complex amplitudes, with phases ϕx

and ϕy , respectively.

2 This assumption is generally true if the medium is isotropic. It is not necessarily true if the medium is anisotropic.
Propagation and polarization in isotropic and anisotropic media are discussed in the following two sections.
However, the general concept discussed here does not depend on the validity of this assumption.
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The polarization of the wave depends only on the phase difference and the magnitude
ratio between the two field components E x and E y . It can be completely characterized
by the following two parameters:

ϕ = ϕy − ϕx , −π < ϕ ≤ π, (1.60)

and

α = tan−1 |E y|
|E x | , 0 ≤ α ≤ π

2
. (1.61)

Because only the relative phase ϕ matters, we can set ϕx = 0 and take E to be real in
the following discussions. Then E from (1.59) can be written as

E = E ê, with ê = x̂ cos α + ŷeiϕ sin α. (1.62)

Using (1.39), the space- and time-dependent real field is

E(z, t) = 2E [x̂ cos α cos(kz − ωt) + ŷ sin α cos(kz − ωt + ϕ)] . (1.63)

At a fixed z location, say z = 0, we see that the electric field varies with time as

E(t) = 2E [x̂ cos α cos ωt + ŷ sin α cos(ωt − ϕ)] . (1.64)

In general, E x and E y have different phases and different magnitudes. Therefore, the
values of ϕ and α can be any combination. At a fixed point in space, both the direction
and the magnitude of the field vector E in (1.64) can vary with time. Except when the
values of ϕ and α fall into one of the special cases discussed below, the tip of this vector
generally describes an ellipse, and the wave is said to be elliptically polarized. Note that
we have assumed that the wave propagates in the positive z direction. When we view
the ellipse by facing against this direction of wave propagation, we see that the tip of the
field vector rotates counterclockwise, or left handedly, if ϕ > 0, and clockwise, or right
handedly, if ϕ < 0. Figure 1.4 shows the ellipse traced by the tip of the rotating field
vector at a fixed point in space. Also shown in the figure are the relevant parameters
that characterize elliptic polarization.

In the description of the polarization characteristics of an optical wave, it is some-
times convenient to use, in place of α and ϕ, a set of two other parameters, θ and
ε, which specify the orientation and ellipticity of the ellipse, respectively. The orien-
tational parameter θ is the directional angle measured from the x axis to the major
axis of the ellipse. Its range is taken to be 0 ≤ θ < π for convenience. Ellipticity ε is
defined as

ε = ±tan−1 b

a
, −π

4
≤ ε ≤ π

4
, (1.65)

where a and b are the major and minor semiaxes, respectively, of the ellipse. The plus
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Figure 1.4 Ellipse described by the tip of the field of an elliptically polarized optical wave at a
fixed point in space. Also shown are relevant parameters characterizing the state of polarization.
The propagation direction is assumed to be the positive z direction, and the ellipse is viewed by
facing against this direction.

sign for ε > 0 is taken to correspond to ϕ > 0 for left-handed polarization, whereas
the minus sign for ε < 0 is taken to correspond to ϕ < 0 for right-handed polarization.
The two sets of parameters (α, ϕ) and (θ, ε) have the following relations:

tan 2θ = tan 2α cos ϕ, (1.66)

sin 2ε = sin 2α sin ϕ. (1.67)

Either set is sufficient to characterize the polarization state of an optical wave com-
pletely.

The following special cases are of particular interest.

1. Linear polarization. This happens when ϕ = 0 or π for any value of α. It is
also characterized by ε = 0, and θ = α, if ϕ = 0, or θ = π − α, if ϕ = π . Clearly,
the ratio E x/E y is real in this case; therefore, linear polarization is described by a
constant, real unit vector as

ê = x̂ cos θ + ŷ sin θ. (1.68)

It follows that E(t) described by (1.64) reduces to

E(t) = 2E ê cos ωt, (1.69)



19 1.4 Polarization of light

Figure 1.5 Field of a linearly polarized optical wave.

The tip of this vector traces a line in space at an angle θ with respect to the x axis,
as shown in Fig. 1.5.

2. Circular polarization. This happens when ϕ = π/2 or −π/2, and α = π/4. It
is also characterized by ε = π/4 or −π/4, and θ = 0. Because α = π/4, we have
|E x | = |E y| = E/

√
2. There are two different circular polarization states:

a. Left-circular polarization. For ϕ = π/2, also ε = π/4, the wave is left-
circularly polarized if it propagates in the positive z direction. The complex field
amplitude in (1.62) becomes

E = E x̂ + iŷ√
2

= E ê+, (1.70)

and E(t) described by (1.64) reduces to

E(t) =
√

2E(x̂ cos ωt + ŷ sin ωt). (1.71)

As we view against the direction of propagation ẑ, we see that the field vector
E(t) rotates counterclockwise with an angular frequency ω. The tip of this vector
describes a circle. This is shown in Fig. 1.6(a). This left-circular polarization is
also called positive helicity. Its eigenvector is

ê+ ≡ x̂ + iŷ√
2

. (1.72)

b. Right-circular polarization. For ϕ = −π/2, also ε = −π/4, the wave is right-
circularly polarized if it propagates in the positive z direction. We then have

E = E x̂ − iŷ√
2

= E ê−, (1.73)
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(a) (b)

Figure 1.6 (a) Field of a left-circularly polarized wave. (b) Field of a right-circularly polarized
wave.

and

E(t) =
√

2E(x̂ cos ωt − ŷ sin ωt). (1.74)

The tip of this field vector rotates clockwise in a circle, as shown in
Fig. 1.6(b). This right-circular polarization is also called negative helicity. Its
eigenvector is

ê− ≡ x̂ − iŷ√
2

. (1.75)

As can be seen, neither ê+ nor ê− is a real vector. Note that the identification
of ê+, defined in (1.72), with left-circular polarization and that of ê−, defined in
(1.75), with right-circular polarization are based on the assumption that the wave
propagates in the positive z direction. For a wave that propagates in the negative z
direction, the handedness of these unit vectors changes: ê+ becomes right-circular
polarization, while ê− becomes left-circular polarization.

Linearly polarized light can be produced from unpolarized light using a polarizer. A
polarizer can be of transmission type, which often utilizes the phenomenon of double
refraction in an anisotropic crystal, discussed in Section 1.6, or of reflection type,
which takes advantage of the polarization-sensitive reflectivity of a surface, discussed
in Section 1.7. A very convenient transmission-type polarizer is the Polaroid film,
which utilizes a material with linear dichroism, having low absorption for light linearly
polarized in a particular direction and high absorption for light polarized orthogonally
to this direction. The output is linearly polarized in the direction defined by the polarizer
irrespective of the polarization state of the input optical wave. A polarizer can also be
used to analyze the polarization of a particular optical wave. When so used, a polarizer
is also called an analyzer.
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1.5 Propagation in an isotropic medium

The propagation of an optical wave is governed by the wave equation. It depends on the
optical property and physical structure of the medium. It also depends on the makeup of
the optical wave, such as its frequency contents and its temporal characteristics. In this
section, we consider the basic characteristics of the propagation of a monochromatic
plane optical wave in an infinite homogeneous medium. For such a monochromatic
wave, there is only one value of k and one value of ω. Its complex electric field is that
given by (1.58), in which the field amplitude E is independent of r and t . Thus,

P(r, t) = ε0χ(k, ω) · E(r, t) (1.76)

and

D(r, t) = ε(k, ω) · E(r, t). (1.77)

Also, in this section, we shall assume no spatial nonlocality in the media thus neglecting
the k dependence of χ and ε. Then,

P(r, t) = ε0χ(ω) · E(r, t) (1.78)

and

D(r, t) = ε(ω) · E(r, t). (1.79)

For a monochromatic wave of a frequency ω, the wave equation is simply

∇ × ∇ × E + µ0ε(ω) · ∂2E
∂t2

= 0. (1.80)

For an isotropic medium, ε(ω) is reduced to a scalar ε(ω) and

∇ · E = 1

ε(ω)
∇ · D = 0. (1.81)

Then, by using the vector identity ∇ × ∇× = ∇∇ · −∇2, the wave equation in (1.80)
is reduced to the following simple form:

∇2E − µ0ε(ω)
∂2E
∂t2

= 0. (1.82)

For an anisotropic medium, (1.82) is generally not valid because (1.81) does not hold.
Note that with E in (1.58) being independent of r and t , we can make the following

replacement for the operators when operating on E of the form in (1.58) or H of the
same form:

∇ −→ ik,
∂

∂t
−→ −iω. (1.83)
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Free space

In free space, P = 0 and ε is reduced to the scalar ε0. Substitution of (1.58) in (1.82)
then yields

k2 = ω2µ0ε0. (1.84)

The propagation constant in free space is

k = ω

c
= 2πν

c
= 2π

λ
, (1.85)

where ν is the frequency of the optical wave and λ is its wavelength. Because k is
proportional to 1/λ, it is also called the wavenumber.

Using (1.83) and noting that B = µ0H and D = ε0E, Maxwell’s equations in (1.40)–
(1.43) become

k × E = ωµ0H, (1.86)

k × H = −ωε0E, (1.87)

k · E = 0, (1.88)

k · H = 0. (1.89)

From (1.86) and (1.87), we also have

E · H = 0. (1.90)

Therefore, the three vectors E, H, and k are orthogonal. These relationships also imply
that

S ‖ k. (1.91)

The relationships among the directions of these vectors are shown in Fig. 1.7.

Figure 1.7 Relationships among the directions of E, D, H, B, k, and S in free space or in an
isotropic medium.
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Using (1.85), we can also write (1.86) and (1.87) in the following form:

H = 1

Z0
k̂ × E, E = Z0H × k̂, (1.92)

where k̂ = k/k is the unit vector in the k direction and

Z0 =
√

µ0

ε0
≈ 120π � ≈ 377 � (1.93)

is the free-space impedance. The concept of this impedance is not that of the impedance
of a resistor but is analogous to the concept of the impedance of a tranmission
line.

Because S ‖ k, the light intensity in free space can be expressed as

I = k̂ · S = 2
|E|2
Z0

= 2Z0|H|2. (1.94)

Lossless medium

In this case, ε(ω) is reduced to a positive real scalar ε(ω), which is different from ε0. All
of the results obtained for free space remain valid, except that ε0 is replaced by ε(ω).
This change of the electric permittivity from a vacuum to a material is measured by the
relative electric permittivity, ε/ε0, which is a dimensionless quantity also known as the
dielectric constant of the material. Therefore, the propagation constant in the medium
is

k = ω
√

µ0ε = nω

c
= 2πnν

c
= 2πn

λ
, (1.95)

where

n =
√

ε

ε0
= (dielectric constant)1/2 (1.96)

is the index of refraction, or refractive index, of the medium.
In a medium that has an index of refraction n, the optical frequency is still ν, but the

optical wavelength is λ/n, and the speed of light is v = c/n. Because n(ω) in a medium
is generally frequency dependent, the speed of light in a medium is also frequency
dependent. This results in various dispersive phenomena such as the separation of
different colors by a prism and the broadening or shortening of an optical pulse traveling
through a medium. We also find that

Z = Z0

n
(1.97)

in a medium. The light intensity is then

I = 2
|E|2

Z
= 2Z |H|2 = 2k

ωµ0
|E|2 = 2k

ωε
|H|2. (1.98)



24 General background

Medium with a loss or gain

As discussed in the preceding section, χ and ε become complex when a medium has
an optical loss or gain. Therefore,

k2 = ω2µ0ε = ω2µ0(ε′ + iε′′), (1.99)

and the propagation constant k becomes complex:

k = k ′ + ik ′′ = β + i
α

2
. (1.100)

The index of refraction also becomes complex:

n =
√

ε′ + iε′′

ε0
= n′ + in′′. (1.101)

The relation between k and n in (1.95) is still valid. Meanwhile, the impedance Z of
the medium also becomes complex. Therefore, E and H are no longer in phase, as can
be seen from (1.92) by replacing Z0 with a complex Z , and I is not simply given by
(1.98) but is given by the real part of it.

It can be shown that if we choose β to be positive, the sign of α is the same as that
of ε′′. In this case, k ′ and n′ are also positive and k ′′ and n′′ also have the same sign as
ε′′. If we consider as an example an optical wave propagating in the z direction, then
k̂ = ẑ and, from (1.58) and (1.100), the complex electric field is

E(r, t) = Ee−αz/2 exp(iβz − iωt). (1.102)

It can be seen that the wave has a phase that varies sinusoidally with a period of 1/β

along z. In addition, its amplitude is not constant but varies exponentially with z. Thus,
light intensity is also a function of z:

I ∝ e−αz. (1.103)

Clearly, β is the wavenumber in this case, and the sign of α determines the attenuation
or amplification of the optical wave:

1. If χ ′′ > 0, then ε′′ > 0 and α > 0. As the optical wave propagates, its field amplitude
and intensity decay exponentially along the direction of propagation. Therefore, α

is called the absorption coefficient or attenuation coefficient.
2. If χ ′′ < 0, then ε′′ < 0 and α < 0. The field amplitude and intensity of the opti-

cal wave grow exponentially. Then, we define g = −α as the gain coefficient or
amplification coefficient.

The unit of both α and g is per meter, often also quoted per centimeter.
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EXAMPLE 1.1 The complex susceptibility of GaAs at an optical wavelength of λ = 850 nm
is χ = 12.17 + i0.49. Therefore, at this wavelength, GaAs has a complex refractive
index of

n = (ε/ε0)1/2 = (1 + χ )1/2 = (13.17 + i0.49)1/2 = 3.63 + i0.0676

and an absorption coefficient of

α = 2k ′′ = 4πn′′

λ
= 4π × 0.0676

850 × 10−9
m−1 = 106 m−1.

An optical beam at 850 nm wavelength can travel in GaAs only for a distance of
l = −ln(1 − 0.99)/α = 4.6 µm before losing 99% of its energy to absorption, which
is obtained by solving 1 − e−αl = 0.99 with α = 106 m−1.

1.6 Propagation in an anisotropic medium

In an anisotropic medium, the tensors χ and ε do not reduce to scalars. Therefore,
P ∦ E and D ∦ E. As a result, (1.81) is not true any more, and, in general,

∇ · E �= 0. (1.104)

Consequently, (1.82) cannot be used for propagation of a monochromatic wave in an
anisotropic medium. Instead, (1.80) has to be used.

Anisotropic χ and ε

In a linear anisotropic medium, both χ and ε are second-rank tensors. They can be
expressed in the following matrix forms:

χ =


χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33


 (1.105)

and

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


. (1.106)

The relationships P = ε0χ · E and D = ε · E are carried out as products between a
tensor and a column vector. For example,
 D1

D2

D3


 =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33




 E1

E2

E3


. (1.107)
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In general, the matrix in (1.106) representing the tensor ε is not diagonal. It can be
diagonalized by a proper choice of the coordinate system, yielding

ε =


ε1 0 0

0 ε2 0
0 0 ε3


, (1.108)

where εi , for i = 1, 2, 3, are the eigenvalues of εwith their corresponding eigenvectors,
ûi , being the axes of the coordinate system chosen to diagonalize ε. The characteristics
of εi and ûi depend on the symmetry properties of ε. The two matrices representing
χ and ε have the same symmetry properties because ε = ε0(1 + χ), where 1 has the
form of a 3 × 3 identity matrix in its addition to the tensor χ. Therefore, χ and ε

are diagonalized by the same set of eigenvectors that represent the axes of the chosen
coordinate system.

The symmetry properties of ε, as well as those of χ, are determined by the properties
of the medium.

1. Reciprocal media. Nonmagnetic materials in the absence of an external magnetic
field are reciprocal media. In a reciprocal medium, the Lorentz reciprocity theorem
of electromagnetics holds; consequently, the source and the detector of an optical
signal can be interchanged. If such a material is not optically active, its optical
properties are described by a symmetric ε tensor: εi j = ε j i . For a symmetric tensor,
the eigenvectors ûi are always real vectors. They can be chosen to be x̂ , ŷ, and ẑ of a
rectangular coordinate system in real space. This is true even when ε is complex. (a) If
a nonmagnetic medium does not have an optical loss or gain, its ε tensor is Hermitian.
A symmetric Hermitian tensor is real and symmetric: ε∗

i j = εi j = ε j i = ε∗
j i . In this

case, the eigenvalues εi have real values. (b) If a nonmagnetic medium has an optical
loss or gain, its ε tensor is not Hermitian but is complex and symmetric: εi j = ε j i

but εi j �= ε∗
j i . Then, the eigenvalues εi are complex. (c) If a nonmagnetic medium is

optically active, it is still reciprocal although its ε tensor is not symmetric. In this
case, the eigenvectors are complex but the eigenvalues can be real if the medium is
lossless.

2. Nonreciprocal media. Magnetic materials, and nonmagnetic materials subject to
an external magnetic field, are nonreciprocal media. In such a medium, no symmetry
exists when the source and the detector of an optical signal are interchanged. The ε

tensor describing the optical properties of such a material is not symmetric: εi j �= ε j i .
The eigenvectors ûi are complex vectors. Therefore, they are not ordinary coordinate
axes in real space, as seen later in the discussion on magneto-optic devices. (a) For
a lossless magnetic medium, ε is Hermitian: εi j = ε∗

j i . In this case, the eigenvalues
εi are real even though the eigenvectors are complex. (b) For a magnetic medium
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that has an optical loss or gain, ε is neither symmetric nor Hermitian. Both the
eigenvectors and the eigenvalues are complex.

Most materials used for photonic devices are nonmagnetic dielectric materials that
are not optically active. The properties of magnetic materials are of interest to us only
in consideration of magneto-optic devices, discussed in Chapter 7. Similarities and
differences between magnetic and optically active materials are also briefly mentioned
in Section 7.2. The discussion in the rest of this section is specific to nonmagnetic
dielectric materials that are not optically active.

According to the above, in a dielectric material the axes of the coordinate system
in which ε is diagonal are real in space and can be labeled x̂ , ŷ, and ẑ. Noncrystalline
materials are generally isotropic, for which the choice of the orthogonal coordinate axes
x̂ , ŷ, and ẑ is arbitrary. In contrast, many crystalline materials that are useful for photonic
device applications are anisotropic. For any given anisotropic crystal, there is a unique
set of coordinate axes for ε to be diagonal. These unique x̂ , ŷ, and ẑ coordinate axes are
called the principal dielectric axes, or simply the principal axes, of the crystal. In the
coordinate system defined by these principal axes, ε is diagonalized with eigenvalues
εx , εy , and εz . The components of D and E along these axes have the following simple
relations:

Dx = εx Ex , Dy = εy Ey, Dz = εz Ez. (1.109)

The values εx/ε0, εy/ε0, and εz/ε0 are the eigenvalues of the dielectric constant tensor,
ε/ε0, and are called the principal dielectric constants. They define three principal
indices of refraction:

nx =
√

εx

ε0
, ny =

√
εy

ε0
, nz =

√
εz

ε0
. (1.110)

Note that when ε is diagonalized, χ is also diagonalized along the same principal axes
with corresponding principal dielectric susceptibilities, χx , χy , and χz . The principal
dielectric susceptibilities of any lossless dielectric material always have positive values;
therefore, the principal dielectric constants of such a material are always larger than
unity.

Because D ⊥ k due to the fact that ∇ · D = 0, there is no D component along
the direction of wave propagation. In general, D can be decomposed into two mutually
orthogonal components, each of which is also orthogonal to k. In an anisotropic crystal,
these two components generally have different indices of refraction, and thus different
propagation constants. This phenomenon is called birefringence. Such a crystal is a
birefringent crystal.
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EXAMPLE 1.2 At an optical wavelength of 1 µm, the permittivity tensor of the KDP
crystal represented in a rectangular coordinate system defined by x̂1, x̂2, and x̂3 is found
to be

ε = ε0


2.28 0 0

0 2.25 −0.051 96
0 −0.051 96 2.19


.

Find the principal axes and the corresponding principal indices for this crystal.

Solution Note that ε is represented by a symmetric matrix because KDP is a nonmag-
netic dielectric crystal. Diagonalization of this matrix yields the following eigenvalues
and corresponding eigenvectors:

εx = 2.28ε0, x̂ = x̂1,

εy = 2.28ε0, ŷ = 0.866x̂2 − 0.500x̂3,

εz = 2.16ε0, ẑ = 0.500x̂2 + 0.866x̂3.

Therefore, the principal axes of the crystal are x̂ , ŷ, and ẑ, given above, and the principal
indices of refraction are nx = √

2.28 = 1.51, ny = √
2.28 = 1.51, and nz = √

2.16 =
1.47.

Index ellipsoid

The inverse of the dielectric constant tensor mentioned above is the relative imperme-
ability tensor:

η = [ηi j
] =

(
ε

ε0

)−1

, (1.111)

where i and j are spatial coordinate indices. In a general rectangular coordinate system
(x1, x2, x3), the ellipsoid defined by∑
i, j

xiηi j x j = 1 (1.112)

is called the index ellipsoid or the optical indicatrix. In a nonmagnetic dielectric
medium, η is a symmetric tensor, i.e., ηi j = η j i , because ε is symmetric. Therefore,
(1.112) can be written as

η11x2
1 + η22x2

2 + η33x2
3 + 2η23x2x3 + 2η31x3x1 + 2η12x1x2 = 1. (1.113)

This equation is usually written as

η1x2
1 + η2x2

2 + η3x2
3 + 2η4x2x3 + 2η5x3x1 + 2η6x1x2 = 1 (1.114)

using the following index contraction rule to reduce the double index i j of ηi j to the
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single index α of ηα:

i j : 11 22 33 23, 32 31, 13 12, 21
or i j : xx yy zz yz, zy zx, xz xy, yx

α: 1 2 3 4 5 6
(1.115)

The index ellipsoid equation is invariant with respect to coordinate rotation. When
a coordinate system with axes aligned with the principal dielectric axes of the crystal
is chosen, ε is diagonalized. Thus the tensor η is also diagonalized with the following
eigenvalues:

ηx = ε0

εx
= 1

n2
x

, ηy = ε0

εy
= 1

n2
y

, ηz = ε0

εz
= 1

n2
z

. (1.116)

In this coordinate system, the index ellipsoid takes the following simple form:

x2

n2
x

+ y2

n2
y

+ z2

n2
z

= 1. (1.117)

Comparing (1.117) with (1.114), we find that the terms containing cross products of
different coordinates are eliminated when the coordinate system of the principal di-
electric axes is used. The principal axes of the index ellipsoid now coincide with the
principal dielectric axes of the crystal, and the principal indices of refraction of the
crystal are given by the semiaxes of the index ellipsoid. This is illustrated in Fig. 1.8.
Therefore, a coordinate transformation by rotation to eliminate cross-product terms
in the index ellipsoid equation is equivalent to diagonalization of the ε tensor. The

Figure 1.8 Index ellipsoid and its relationship with the coordinate system. Here (x, y, z) is the
coordinate system aligned with the principal axes of the crystal, while (x1, x2, x3) is an arbitrary
coordinate system.
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principal dielectric axes and their corresponding principal indices of refraction can
be found through either approach. Between the two approaches, however, diagonal-
ization of the ε tensor is better because it is more systematic and is easier to carry
out.

EXAMPLE 1.3 Find the principal axes and their corresponding principal indices for the
KDP crystal given in Example 1.2 by using the index ellipsoid instead of diagonalizing
the ε tensor as done in Example 1.2. Compare the two approaches.

Solution The relative impermeability tensor in the (x1, x2, x3) coordinate system can
be found by inverting the ε tensor:

η =
(
ε

ε0

)−1

=


2.28 0 0

0 2.25 −0.051 96
0 −0.051 96 2.19




−1

≈




1

2.28
0 0

0
1

2.25
0.010 55

0 0.010 55
1

2.19


.

In the (x1, x2, x3) coordinate system, the index ellipsoid is thus described by the fol-
lowing equation:

x2
1

2.28
+ x2

2

2.25
+ x2

3

2.19
+ 0.0211x2x3 = 1.

To find the principal axes and their principal indices of refraction, the cross-product
term has to be eliminated by rotating the coordinates. From Example 1.2, we know that
this can be done by taking

x1 = x, x2 = 0.866y + 0.500z, x3 = −0.500y + 0.866z.

Substitution of these relations into the above index ellipsoid equation transforms it into
the following equation for the index ellipsoid in the (x, y, z) coordinate system:

x2

2.28
+ y2

2.28
+ z2

2.16
= 1.

Thus the principal indices are nx = √
2.28 = 1.51, ny = √

2.28 = 1.51, and nz =√
2.16 = 1.47.
Comparing the two approaches illustrated in this example and in Example 1.2, it

is clear that they are equivalent to one another. It is also clear that the method of
diagonalizing ε described in Example 1.2 is more systematic and straightforward than
that of eliminating the cross-product terms in the equation for the index ellipsoid,
particularly when there is more than one cross-product term.
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Propagation along a principal axis

We first consider the simple case when an optical wave propagates along one of the
principal axes, say ẑ. Then the field can be decomposed into two normal modes, each
of which is polarized along one of the other two principal axes, x̂ or ŷ. We see from
(1.109) and (1.110) that each field component along a principal axis has a characteristic
index of refraction ni , meaning that it has a characteristic propagation constant of
ki = niω/c, which is determined by the polarization of the field but not by the direction
of wave propagation. For a wave propagating along ẑ, the electric field can be expressed
as

E = x̂E x eikx z−iωt + ŷE yeiky z−iωt

= [x̂E x + ŷE yei(ky−kx )z
]

eikx z−iωt . (1.118)

Because the wave propagates in the z direction, the wavevectors are kx = kx ẑ for
the x-polarized field and ky = ky ẑ for the y-polarized field. Note that kx = nxω/c and
ky = nyω/c are the propagation constants of the x- and y-polarized fields, respectively,
not to be confused with the x and y components of a wavevector k, which are normally
expressed as kx and ky . The field expressed in (1.118) has the following propagation
characteristics.

1. If it is originally linearly polarized along one of the principal axes, it remains linearly
polarized in the same direction.

2. If it is originally linearly polarized at an angle θ = tan−1(E y/E x ) with respect to the
x axis, its polarization state varies periodically along z with a period of 2π/|ky − kx |.
In general, its polarization follows a sequence of variations from linear to elliptical
to linear in the first half-period and then reverses the sequence back to linear in the
second half-period. At the half-period position, it is linearly polarized at an angle θ

on the other side of the x axis. Thus the polarization is rotated by 2θ from the original
direction. This is shown in Fig. 1.9(a). In the special case when θ = 45◦, the wave
is circularly polarized at the quarter-period point and is linearly polarized with its
polarization rotated by 90◦ from the original direction at the half-period point. This
is shown in Fig. 1.9(b).

These characteristics have very useful applications. A plate of an anisotropic material
that has a quarter-period thickness of

lλ/4 = 1

4
· 2π

|ky − kx | = λ

4|ny − nx | (1.119)

is called a quarter-wave plate. It can be used to convert a linearly polarized wave to
circular or elliptic polarization, and vice versa. A plate of thickness 3lλ/4 or 5lλ/4 or
any odd integral multiple of lλ/4 also has the same function. In contrast, a plate of a
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Figure 1.9 Evolution of the polarization state of an optical wave propagating along the principal
axis ẑ of an anisotropic crystal that has nx �= ny . Only the evolution over one half-period is shown
here. (a) The optical wave is initially linearly polarized at an arbitrary angle θ with respect to the
principal axis x̂ . (b) The optical wave is initially polarized at 45◦ with respect to x̂ .

half-period thickness of

lλ/2 = λ

2|ny − nx | (1.120)

is called a half-wave plate. It can be used to rotate the polarization direction of a linearly
polarized wave by any angular amount by properly choosing the angle θ between the
incident polarization with respect to the principal axis x̂ , or ŷ, of the crystal. A plate
of a thickness that is any odd integral multiple of lλ/2 has the same function. Note that
though the output from a quarter-wave or half-wave plate can be linearly polarized,
the wave plates are not polarizers. They are based on different principles and have
completely different functions.

For the quarter-wave and half-wave plates discussed here, nx �= ny . Between the two
crystal axes x̂ and ŷ, the one with the smaller index is called the fast axis while the
other, with the larger index, is the slow axis.

EXAMPLE 1.4 KDP can be used to make quarter-wave and half-wave plates. Find the
thicknesses of the quarter-wave and half-wave plates made of KDP for 1µm wavelength.

Solution From Example 1.3, we know that nx = ny = 1.51 and nz = 1.47 for KDP
at 1 µm wavelength. Because nx = ny , we cannot use nx and ny to make a wave plate
that allows the beam to propagate in the z direction. Instead, the beam can propagate
in any direction on the xy plane so that the difference between nz and nx = ny can
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be used for the function of a wave plate. Assuming that the wave propagates in the x
direction, then the thickness of a quarter-wave plate for λ = 1 µm is

lλ/4 = λ

4|ny − nz| = 1 µm

4 × |1.51 − 1.47| = 6.25 µm.

A quarter-wave plate at 1 µm wavelength can have a thickness of any odd integral
multiple, such as 18.75 µm, 31.25 µm, . . . , of 6.25 µm. A half-wave plate for the 1 µm
wavelength has a thickness of

lλ/2 = λ

2|ny − nz| = 1 µm

2 × |1.51 − 1.47| = 12.5 µm.

A plate of a thickness that is an odd multiple, such as 37.5 µm, 62.5 µm, . . . , of 12.5 µm
also functions as a half-wave plate at 1 µm wavelength. For these wave plates, ẑ is the
fast axis and ŷ is the slow axis because nz < ny .

Optical axes

The state of polarization of an optical wave generally varies along its path of propa-
gation through an anisotropic crystal unless it is linearly polarized in the direction of a
principal axis. However, in an anisotropic crystal with nx = ny �= nz , a wave propagat-
ing in the z direction does not see the anisotropy of the crystal because in this situation
the x and y components of the field have the same propagation constant. This wave
will maintain its original polarization as it propagates through the crystal. Evidently,
this is true only for propagation along the z axis in such a crystal. Such a unique axis
in a crystal along which an optical wave can propagate with an index of refraction that
is independent of its polarization direction is called the optical axis of the crystal.

For an anisotropic crystal that has only one distinctive principal index among its
three principal indices, there is only one optical axis, which coincides with the axis of
the distinctive principal index of refraction. Such a crystal is called a uniaxial crystal.
It is customary to assign ẑ to this unique principal axis. The identical principal indices
of refraction are called the ordinary index, no, and the distinctive index of refraction
is called the extraordinary index, ne. Thus, nx = ny = no and nz = ne. The crystal is
called positive uniaxial if ne > no and is negative uniaxial if ne < no.

For a crystal that has three distinct principal indices of refraction, there are two optical
axes, neither of which coincides with any one of the principal axes. Such a crystal is
called a biaxial crystal because of the existence of two optical axes.

Ordinary and extraordinary waves

When an optical wave propagates in a direction other than that along an optical axis,
the index of refraction depends on the direction of its polarization. In this situation,
there exist two normal modes of linearly polarized waves, each of which sees a unique
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index of refraction. One of them is the polarization perpendicular to the optical axis.
This normal mode is called the ordinary wave. We use êo to indicate its direction of
polarization. The other normal mode is clearly one that is perpendicular to êo because
the two normal-mode polarizations are orthogonal to each other. This normal mode
is called the extraordinary wave, and its direction of polarization is indicated by êe.
Note that these are the directions of D rather than those of E. For the ordinary wave,
êo ‖ Do ‖ Eo. For the extraordinary wave, êe ‖ De �‖ Ee except when êe is parallel to a
principal axis. Both êo and êe, being the unit vectors of Do and De, are perpendicular
to the direction of wave propagation, k̂. From this understanding, both êo and êe can be
found if both k̂ and the optical axis are known. For a uniaxial crystal with optical axis
ẑ, this means that

êo = 1

sin θ
k̂ × ẑ, êe = êo × k̂ (1.121)

if the vector k̂ is in a direction that is at an angle θ with respect to ẑ and an angle φ with
respect to the axis x̂ . Therefore, we have (see Problem 1.6.12)

k̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ, (1.122)

êo = x̂ sin φ − ŷ cos φ, (1.123)

êe = −x̂ cos θ cos φ − ŷ cos θ sin φ + ẑ sin θ. (1.124)

The relationships among these vectors are illustrated in Fig. 1.10.
The indices of refraction associated with the ordinary and extraordinary waves can

be found by using the index ellipsoid given in (1.117), as is shown in Fig. 1.11. The

Figure 1.10 Relationships among the direction of wave propagation and the polarization directions
of the ordinary and extraordinary waves.
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Figure 1.11 Determination of the indices of refraction for the ordinary and extraordinary waves in
a uniaxial crystal using index ellipsoid.

intersection of the index ellipsoid and the plane normal to k̂ at the origin of the el-
lipsoid defines an index ellipse. The principal axes of this index ellipse are in the
directions of êo and êe, and their half-lengths are the corresponding indices of refrac-
tion. For a uniaxial crystal, the index of refraction for the ordinary wave is simply
no. The index of refraction for the extraordinary wave depends on the angle θ and is
given by (see Problem 1.6.12)

1

n2
e(θ )

= cos2θ

n2
o

+ sin2θ

n2
e

, (1.125)

which can be seen from Fig. 1.11. Because D is orthogonal to k and can be decomposed
into Do and De components, we have

D = êoDoeiko k̂·r−iωt + êeDeeike k̂·r−iωt , (1.126)

where ko = noω/c and ke = ne(θ )ω/c. In general, E cannot be written in the form of
(1.126) because its longitudinal component along the wave propagation direction k
does not vanish except when θ = 0◦ or 90◦. We see that ne(0◦) = no and ne(90◦) = ne.
The special case when the wave propagates along one of the principal axes discussed
earlier belongs to one of these situations.

The normal-mode polarizations for an optical wave propagating in a biaxial crystal
can be found following a similar, albeit more complicated, procedure.

EXAMPLE 1.5 From the preceding three examples, we find that KDP is a uniaxial crystal
with ẑ being its optical axis because nx = ny �= nz . At 1 µm wavelength, we have
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no = 1.51 and ne = 1.47. KDP is negative uniaxial because no > ne. For an optical
wave propagating in KDP along a direction k̂ that makes an angle θ with respect to
the optical axis ẑ, the refractive index for the extraordinary wave is a function of θ .
For θ = 0◦, ne(0◦) = no = 1.51. For θ = 90◦, ne(90◦) = ne = 1.47. For 0◦ < θ < 90◦,
1.47 < ne(θ ) < 1.51. For example,

ne(30◦) =
(

cos2 30◦

n2
o

+ sin2 30◦

n2
e

)−1/2

= 1.50,

ne(60◦) =
(

cos2 60◦

n2
o

+ sin2 60◦

n2
e

)−1/2

= 1.48.

Spatial beam walk-off

Each of the normal modes has a well-defined propagation constant. Therefore, the fields
of monochromatic ordinary and extraordinary waves in an anisotropic medium can be
separately written in the form of (1.47), with k = ko for the ordinary way and k = ke

for the extraordinary way. By using (1.83), Maxwell’s equations for a normal mode,
either ordinary or extraordinary, reduce to the following:

k × E = ωµ0H, (1.127)

k × H = −ωD, (1.128)

k · D = 0, (1.129)

k · H = 0. (1.130)

Note that because no �= ne, these relations apply to the ordinary and the extraordinary
normal mode separately with different values for k but not to a wave mixing the
two modes. At optical frequencies, B = µ0H is also true in an anisotropic medium.
Therefore, (1.127) and (1.130) have the same forms as (1.86) and (1.89), respectively.
Because (1.88) for a wave in an isotropic medium is now replaced by (1.129), we
have D ⊥ k for both ordinary and extraordinary waves. For an ordinary wave, Eo ⊥ ko

because Do ‖ Eo. Therefore, the relationships shown in Fig. 1.12(a) among the field
vectors for an ordinary wave in an anisotropic medium are the same as those shown
in Fig. 1.7 for a wave in an isotropic medium. However, Ee �⊥ ke for an extraordinary
wave in general, and Se is not necessarily parallel to ke because De �‖ Ee. The only
exception is when êe is parallel to a principal axis. As a result, the direction of power
flow, which is that of Se, is not the same as the direction of wavefront propagation,
which is normal to the planes of constant phase and is that of ke. This is shown in
Fig. 1.12(b) together with the relationships among the directions of the field vectors.
Note that Ee, De, ke, and Se lie in a plane normal to He because Be ‖ He. Though (1.90)
is still true according to (1.127), the relations between E and H in (1.92) are no longer
valid for an extraordinary wave.
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(a) (b)

Figure 1.12 Relationships among the directions of E, D, H, B, k, and S in an anisotropic medium
for (a) an ordinary wave and (b) an extraordinary wave. In both cases, the vectors E, D, k, and S lie
in a plane normal to H.

If the electric field of an extraordinary wave is not parallel to a principal axis, its
Poynting vector is not parallel to its propagation direction because Ee is not parallel to
De. As a result, its energy flows away from the direction of its wavefront propagation.
This phenomenon is known as spatial beam walk-off. If this characteristic appears in one
of the two normal modes of an optical wave propagating in an anisotropic crystal, the
optical wave will split into two beams of parallel wavevectors but separate, nonparallel
traces of energy flow.

For simplicity, let us consider the propagation of an optical wave in a uniaxial crystal
with k̂, for both ordinary and extraordinary waves, at an angle θ with respect to the
optical axis ẑ. Clearly, there is no walk-off for the ordinary wave because Eo ‖ Do and
So ‖ k̂. For the extraordinary wave, Se is not parallel to k̂ but points in a direction at an
angle ψe with respect to the optical axis. Figure 1.13(a) shows the relationships among
these vectors. The angle α between Se and k̂, which is defined as α = ψe − θ , is called
the walk-off angle of the extraordinary wave. Note that α is also the angle between
Ee and De, as can be seen from Fig. 1.13(a). Because neither Ee nor De is parallel to
any principal axis, their relationship is found through their projections on the principal
axes: De

z = n2
eε0 Ee

z and De
xy = n2

oε0 Ee
xy . Using these two relations and the definition

of α in Figs. 1.12(b) and 1.13(a), it can be shown that the walk-off angle is given by
(see Problems 1.6.14 and 1.6.15)

α = ψe − θ = tan−1

(
n2

o

n2
e

tan θ

)
− θ. (1.131)

If the crystal is positive uniaxial, α as defined in Fig. 1.13(a) is negative. This means that
Se is between k̂ and ẑ for a positive uniaxial crystal. If the crystal is negative uniaxial, α
is positive and k̂ is between Se and ẑ. No walk-off appears if an optical wave propagates
along any of the principal axes of a crystal.
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(a)

(b)

Figure 1.13 (a) Wave propagation and walk-off in a uniaxial crystal. (b) Birefringent plate acting
as a polarizing beam splitter for a normally incident wave. The x̂ , ŷ, and ẑ unit vectors indicate the
principal axes of the birefringent plate.

A birefringent crystal can be used to construct a very simple polarizing beam splitter
by taking advantage of the walk-off phenomenon. For such a purpose, a uniaxial crystal
can be cut into a plate whose surfaces are at an oblique angle with respect to the optical
axis, as is shown in Fig. 1.13(b). When an optical wave is normally incident upon
the plate, it splits into ordinary and extraordinary waves in the crystal if its original
polarization contains components of both polarizations. The extraordinary wave is then
separated from the ordinary wave because of spatial walk-off, creating two orthogonally
polarized beams. However, because of normal incidence, both ke and ko are parallel
to the direction of k̂ although they have different magnitudes. When both beams reach
the other side of the plate, they are separated by a distance of d = l tan α, where l is
the thickness of the plate. After leaving the plate, the two spatially separated beams
propagate parallel to each other along the same direction k̂ because the directions of
their wavevectors have not changed, as is also shown in Fig. 1.13(b).

EXAMPLE 1.6 Find the spatial walk-off angle at 1 µm wavelength at a few representative
propagation directions in KDP. Design a polarizing beam splitter at this wavelength
using a KDP crystal.

Solution For a KDP crystal, no = 1.51 and ne = 1.47 at 1 µm wavelength. The spatial
walk-off angle α of an extraordinary wave is a function of the angle θ between the wave
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propagation direction k̂ and the optical axis ẑ of the crystal. For example,

α = tan−1

(
1.512

1.472
tan 30◦

)
− 30◦ = 1.35◦, for θ = 30◦,

α = tan−1

(
1.512

1.472
tan 45◦

)
− 45◦ = 1.54◦, for θ = 45◦,

α = tan−1

(
1.512

1.472
tan 60◦

)
− 60◦ = 1.31◦, for θ = 60◦.

From these numerical examples, we find that the walk-off angle does not vary mono-
tonically with θ (see Problem 1.6.15).

A polarizing beam splitter can be made by cutting a KDP crystal at an angle, such
as 45◦, with respect to its optical axis for a parallel plate of thickness l. A beam at 1 µm
wavelength that consists of a mix of extraordinary and ordinary polarizations is normally
incident on the plate for θ = 45◦ and α = 1.54◦. Because the ordinary wave does not
have walk-off, the Poynting vectors of the extraordinary and ordinary components
of the beam separate at an angle of α = 1.54◦. If a minimum spatial separation of
d = 100 µm between the extraordinary and ordinary components is desired on the exit
surface of the KDP plate, the minimum thickness of the plate has to be l > d/ tan α =
3.7 mm.

Optical anisotropy and crystal symmetry

The optical anisotropy of a crystal depends on its structural symmetry. Crystals are
classified into seven systems according to their symmetry. The linear optical properties
of these seven systems are summarized in Table 1.2. Some important remarks regarding
the relation between the optical properties and the structural symmetry of a crystal are
made:

1. A cubic crystal need not have an isotropic structure although its linear optical proper-
ties are isotropic. For example, most III–V semiconductors, such as GaAs, InP, InAs,
AlAs, etc., are cubic crystals with isotropic linear optical properties. Nevertheless,
they have well-defined crystal axes, â, b̂, and ĉ. They are also polar semiconductors,
which have anisotropic nonlinear optical properties.

Table 1.2 Linear optical properties of crystals

Crystal symmetry Optical property

Cubic Isotropic: nx = ny = nz

Trigonal, tetragonal, hexagonal Uniaxial: nx = ny �= nz

Orthorhombic, monoclinic, triclinic Biaxial: nx �= ny �= nz
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2. Although the principal axes may coincide with the crystal axes in certain crystals,
they are not the same concept. The crystal axes, denoted by â, b̂, and ĉ, are defined
by the structural symmetry of a crystal, whereas the principal axes, denoted by x̂ ,
ŷ, and ẑ, are determined by the symmetry of ε. The principal axes of a crystal are
orthogonal to one another, but the crystal axes are not necessarily so.

1.7 Gaussian beam

Because the wave equation governs optical propagation, the transverse field distribution
pattern and its variation along the longitudinal propagation direction have to satisfy this
equation in order for the wave to exist and to propagate. A well-defined field pattern that
can remain unchanged as the wave propagates is called a mode of wave propagation.
Such a transverse field pattern is known as a transverse mode. The optical modes that
exist in a given medium are determined by the optical properties of the medium together
with any boundary conditions imposed on the wave equation by the optical structures
in the medium. Here we consider the optical modes in a homogeneous medium. Modes
in waveguides and optical fibers are discussed in Chapters 2 and 3.

A monochromatic optical wave propagating in an isotropic, homogeneous medium
is governed by the wave equation given in (1.82). Clearly, the monochromatic plane
wave expressed in (1.58) is a solution of this wave equation. Therefore, plane waves
are normal modes in an isotropic, homogeneous medium. They are not the only normal
modes, however, as the wave equation governing wave propagation in such a medium
has other normal-mode solutions. One such important set of modes is the Gaussian
modes. Like plane waves, Gaussian modes are normal modes of wave propagation in
an isotropic, homogeneous medium. Different from a plane wave, however, a Gaus-
sian mode has a finite cross-sectional field distribution defined by its spot size. Being
an unguided field with a finite spot size, a Gaussian mode differs from a waveguide
mode, discussed in Chapters 2 and 3, in that its spot size varies along its longitudi-
nal axis, taken to be the z axis, of propagation though its pattern remains unchanged.
Therefore, its transverse field distribution also changes with z though the field pat-
tern does not change. A Gaussian mode field at a frequency ω can thus be expressed
as

Emn(r, t) = Emn(x, y, z) exp(ik · r − iωt) = êEmn(x, y, z) exp(ik · r − iωt), (1.132)

with a corresponding field distribution for its magnetic field component, where m and n
are mode indices associated with the two transverse dimensions x and y, respectively.
A Gaussian mode field has neither longitudinal electric nor longitudinal magnetic field
components. It is a TEM mode that has only transverse electric and magnetic field
components. Normal modes are orthonormal to each other and can be normalized, as
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Figure 1.14 Gaussian beam characteristics.

is discussed in detail in Section 2.4. Gaussian modes are normalized by the following
condition:

2k

ωµ0

∞∫
−∞

∞∫
−∞

|Emn(x, y, z)|2dxdy = 1. (1.133)

The location, taken to be z = 0 for a beam propagating along the z axis, where the
smallest spot size of the beam occurs, is known as the waist of a Gaussian beam. The
minimum Gaussian beam spot size, w0, is defined as the e−2 radius of the Gaussian
beam intensity profile at the beam waist. The diameter of the beam waist is d0 = 2w0.
As illustrated in Fig. 1.14, a Gaussian beam has a plane wavefront at its beam waist.
The beam remains well collimated within a distance of

zR = kw2
0

2
= πnw2

0

λ
, (1.134)

known as the Rayleigh range, on either side of the beam waist. In (1.134), k = 2πn/λ

is the propagation constant of the optical beam in a medium of refractive index n. The
parameter b = 2zR is called the confocal parameter of the Gaussian beam. Because
of diffraction, a Gaussian beam diverges away from its waist and acquires a spherical
wavefront. As a result, both its spot size, w(z), and the radius of curvature, R(z), of its
wavefront are functions of distance z from its beam waist:

w(z) = w0

(
1 + z2

z2
R

)1/2

= w0

[
1 +

(
2z

kw2
0

)2
]1/2

(1.135)

and

R(z) = z

(
1 + z2

R

z2

)
= z

[
1 +

(
kw2

0

2z

)2
]

. (1.136)
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We see from (1.135) that at z = ±zR, w = √
2w0. At |z| � zR, far away from the beam

waist, R(z) ≈ z and w(z) ≈ 2|z|/kw0. Therefore, the far-field beam divergence angle
is

�θ = 2
w(z)

|z| = 4

kw0
= 2λ

πnw0
. (1.137)

For the far field at |z| � zR, we find that the beam spot size w(z) is inversely proportional
to the beam waist spot size w0 but is linearly proportional to the distance |z| from the
beam waist. This characteristic does not exist for the near field at |z| ≤ zR.

A complete set of Gaussian modes includes the fundamental TEM00 mode and high-
order TEMmn modes. The specific forms of the mode fields depend on the transverse
coordinates of symmetry: the mode fields are described by a set of Hermite–Gaussian
functions in rectangular coordinates, whereas they are described by the Laguerre–
Gaussian functions in cylindrical coordinates. Because there is no structurally deter-
mined symmetry in free space, either set is equally valid. Usually the Hermite–Gaussian
functions in the rectangular coordinates are used. In a transversely isotropic and ho-
mogeneous medium, a normalized TEMmn Hermite–Gaussian mode field propagating
along the z axis can be expressed as

Êmn(x, y, z) = Amn

w(z)
Hm

[√
2x

w(z)

]
Hn

[√
2y

w(z)

]
exp

[
i
k

2

x2 + y2

q(z)

]
exp [iζmn(z)]

= Amn

w(z)
Hm

[√
2x

w(z)

]
Hn

[√
2y

w(z)

]
exp

[
− x2 + y2

w2(z)

]
exp

[
i
k

2

x2 + y2

R(z)

]
× exp [iζmn(z)] , (1.138)

where Amn = (ωµ0/πk)1/2(2m+n m! n!)−1/2 is the normalization constant, Hm is the
Hermite polynomial of order m, q(z) is the complex radius of curvature of the Gaussian
wave,

q(z) = z − izR or
1

q(z)
= 1

R(z)
+ i

2

kw2(z)
, (1.139)

and ζmn(z) is a mode-dependent on-axis phase variation along the z axis given by

ζmn(z) = −(m + n + 1) tan−1 z

zR

= −(m + n + 1) tan−1

(
2z

kw2
0

)
. (1.140)

The Hermite polynomials can be obtained using the following relation:

Hm(ξ ) = (−1)meξ 2 dme−ξ 2

dξm
. (1.141)
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Figure 1.15 Intensity patterns of Hermite–Gaussian modes.

Some low-order Hermite polynomials are

H0(ξ ) = 1, H1(ξ ) = 2ξ, H2(ξ ) = 4ξ 2 − 2, H3(ξ ) = 8ξ 3 − 12ξ. (1.142)

We see from (1.138) and (1.142) that the transverse field distribution |Ê00(x, y)| of the
fundamental Gaussian mode, TEM00, at any fixed longitudinal location z is simply a
Gaussian function of the transverse radial distance r = (x2 + y2)1/2 and that the spot
size w(z) is the e−1 radius of this Gaussian field distribution at z. The transverse field
distribution of a high-order mode, TEMmn , is the same Gaussian distribution spatially
modulated by the Hermite polynomials Hm in x and Hn in y. As a result, its field
distribution is more spread out radially than that of the fundamental TEM00 mode.
In general, the higher the order of a mode, the farther its transverse field distribution
spreads out. The intensity patterns of some Hermite–Gaussian modes are shown in
Fig. 1.15.

EXAMPLE 1.7 A fundamental Gaussian beam in free space at the He–Ne laser wavelength
of 632.8 nm has a spot size of w0 = 500 µm at its beam waist. This beam has a
Rayleigh range zR = πw2

0/λ = 1.24 m and a confocal parameter b = 2zR = 2.48 m.
Using (1.135) and (1.136), we find the following spot sizes and radii of curvature at a
few different locations:

w = 502 µm, R = ±15.5 m at z = ±10 cm,

w = 642 µm, R = ±2.54 m at z = ±1 m,

w ≈ 40 cm, R ≈ ±1 km at z = ±1 km.

From these numerical examples, we see that a Gaussian beam diverges very slowly,
much like a plane wave, within the Rayleigh range on both sides of its beam waist. At
the beam waist, a Gaussian beam has a plane wavefront with R = ∞. At a distance
much larger than the Rayleigh range on either side of the beam waist, a Gaussian beam
approaches the characteristics of a spherical wave with R ≈ z. The Gaussian beam in
this example has a far-field divergence angle of �θ = 2λ/πw0 = 0.8 mrad.



44 General background

1.8 Reflection and refraction

The characteristics of reflection and refraction of an optical wave at the interface of
two different media depend on the properties of the media. We first consider the simple
case of reflection and refraction at the planar interface of two dielectric media that
are linear, lossless, and isotropic. In this situation, the permittivities ε1 and ε2 of the
two media are constant real scalars, while the permeabilities are simply equal to µ0 at
optical frequencies. We assume that the optical wave is incident from medium 1 with a
wavevector ki, while the reflected wave has a wavevector kr and the transmitted wave
has a wavevector kt.

Because an optical wave varies with exp(ik · r − iωt), the condition that

ki · r = kr · r = kt · r (1.143)

is required at the interface for the boundary conditions described by (1.17)–(1.20) to
be satisfied at all points along the interface at all times. This implies that the three
vectors ki, kr, and kt lie in the same plane known as the plane of incidence, as shown
in Figs. 1.16 and 1.17. The projections of these three wavevectors on the interface are
all equal so that

ki sin θi = kr sin θr = kt sin θt, (1.144)

where θi is the angle of incidence, and θr and θt are the angle of reflection and the angle
of refraction, respectively, for the reflected and transmitted waves. All three angles are
measured with respect to the normal n̂ of the interface, as is shown in Figs. 1.16 and
1.17. Because ki = kr and ki/kt = n1/n2, (1.144) yields the relation

θi = θr (1.145)

and the following familiar Snell law for refraction:

n1 sin θi = n2 sin θt. (1.146)

By expressing H in terms of k × E in the form of (1.86) with appropriate values of
k for the incident, reflected, and refracted fields, the amplitudes of the reflected and
transmitted fields can be obtained from the boundary conditions in (1.17) and (1.18).
There are two different modes of field polarization.

TE polarization (s wave, σ wave)

The electric field is linearly polarized in a direction perpendicular to the plane of
incidence while the magnetic field is polarized parallel to the plane of incidence, as
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Figure 1.16 Reflection and refraction of a TE-polarized wave at the interface of two isotropic
dielectric media. The three vectors ki, kr, and kt lie in the plane of incidence. The relationship
between θi and θt shown here is for the case n1 < n2.

shown in Fig. 1.16. This is called transverse electric (TE) polarization or perpendicular
polarization. This wave is also called s polarized, or σ polarized. In this case, the
reflection coefficient, r , and the transmission coefficient, t , of the electric field are given
by the following Fresnel equations:

rs ≡ E r

E i
= n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
=

n1 cos θi −
√

n2
2 − n2

1 sin2 θi

n1 cos θi +
√

n2
2 − n2

1 sin2 θi

, (1.147)

ts ≡ E t

E i
= 2n1 cos θi

n1 cos θi + n2 cos θt
= 2n1 cos θi

n1 cos θi +
√

n2
2 − n2

1 sin2 θi

, (1.148)

respectively. The intensity reflectance and transmittance, R and T, which are also known
as reflectivity and transmissivity, respectively, are given by

Rs ≡ Ir

Ii
= |Sr · n̂|

|Si · n̂| =
∣∣∣∣n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

∣∣∣∣
2

, (1.149)

Ts ≡ It

Ii
= |St · n̂|

|Si · n̂| = 1 − Rs. (1.150)

TM polarization (p wave, π wave)

The electric field is linearly polarized in a direction parallel to the plane of incidence
while the magnetic field is polarized perpendicular to the plane of incidence, as shown
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Figure 1.17 Reflection and refraction of a TM-polarized wave at the interface of two isotropic
dielectric media. The three vectors ki, kr, and kt lie in the plane of incidence. The relationship
between θi and θt shown here is for the case n1 < n2.

in Fig. 1.17. This is called transverse magnetic (TM) polarization or parallel polariza-
tion. This wave is also called p polarized, or π polarized. In this case, the reflection
and transmission coefficients of the electric field are given by the following Fresnel
equations:

rp ≡ E r

E i
= n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
=

n2
2 cos θi − n1

√
n2

2 − n2
1 sin2 θi

n2
2 cos θi + n1

√
n2

2 − n2
1 sin2 θi

, (1.151)

tp ≡ E t

E i
= 2n1 cos θi

n2 cos θi + n1 cos θt
= 2n1n2 cos θi

n2
2 cos θi + n1

√
n2

2 − n2
1 sin2 θi

, (1.152)

respectively. The intensity reflectance and transmittance for TM polarization are given,
respectively, by

Rp ≡ Ir

Ii
=
∣∣∣∣n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

∣∣∣∣
2

, (1.153)

Tp ≡ It

Ii
= 1 − Rp. (1.154)

Several important characteristics of the reflection and refraction of an optical wave
at an interface between two media are summarized.
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1. For both TE and TM polarizations, R = |r |2 and R + T = 1, but T �= |t |2.
2. If n1 < n2, light is incident from a rare medium upon a dense medium. In this case,

the reflection is called external reflection. If n1 > n2, light is incident from a dense
medium on a rare medium, and the reflection is called internal reflection.

3. Normal incidence. In the case of normal incidence, θi = θt = 0. There is no
difference between TE and TM polarizations, and

R =
∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣
2

, T = 1 − R = 4n1n2

(n1 + n2)2
. (1.155)

For the case of external reflection at normal incidence, there is a 180◦ phase reversal
for the reflected electric field with respect to the incident field. For internal reflection,
the phase of the reflected field is not reversed at normal incidence. However, the
values of R and T do not depend on which side of the interface the wave comes
from.

4. Brewster angle. For a TE wave, Rs increases monotonically with the angle of
incidence. For a TM wave, Rp first decreases then increases as the angle of inci-
dence increases. For the interface between two lossless media, Rp = 0 at an angle
of incidence θi = θB, where

θB = tan−1 n2

n1
(1.156)

is known as the Brewster angle. When θi = θB, the angle of refraction for the trans-
mitted wave is

θt = π

2
− θB. (1.157)

It can be shown that this angle is the Brewster angle for the same wave incident
from the other side of the interface. Figure 1.18(a) shows the reflectance of TE
and TM waves as a function of the angle of incidence for external reflection at the
interface between two media of refractive indices of 1 and 3.5. These characteristics
are very useful in practical device applications: (a) at θi = θB, a TM-polarized wave
is totally transmitted, resulting in a perfect lossless window for TM polarization –
such windows are called Brewster windows and are useful as laser windows; (b) at
θi = θB, the reflected wave is completely TE polarized – linearly polarized light can
be produced by a reflection-type polarizer based on this principle.

5. Critical angle. In the case of internal reflection with n1 > n2, total internal reflec-
tion occurs if the angle of incidence θi is larger than the angle

θc = sin−1 n2

n1
, (1.158)

which is called the critical angle. The reflectance of TE and TM waves as a function
of angle of incidence for internal reflection at the interface between two media of
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(a) (b)

Figure 1.18 Reflectance of TE and TM waves at an interface of lossless media as a function of the
angle of incidence for (a) external reflection and (b) internal reflection.

Figure 1.19 Reflectance of TE and TM waves at an interface of lossy or amplifying media as a
function of the angle of incidence for external reflection.

refractive indices of 1 and 3.5 is shown in Fig. 1.18(b). Note that the Brewster angle
for internal reflection is always smaller than the critical angle.

6. If one or both media have a loss or gain, the indices of refraction become complex.
In this situation, the reflectance of the TM wave has a minimum that does not reach
zero, as shown in Fig. 1.19 for external reflection.

7. For wave propagation in a general direction in an anisotropic medium, there are
two normal modes that have different indices of refraction. The refracted fields
of these two normal modes can propagate in different directions, resulting in the
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phenomenon of double refraction. Meanwhile, the Poynting vector does not have to
be in the plane of incidence.

8. Optical media are generally dispersive. Therefore, reflectance and transmittance, as
well as the direction of the refracted wave, are generally frequency dependent.

EXAMPLE 1.8 Water has an index of refraction n = 1.33. The index of refraction of
ordinary glass is approximately n = 1.5. For most semiconductors, such as Si, GaAs,
and InP, the index of refraction is often in the range between 3 and 4, depending on
the optical wavelength and the material. Here we take a nominal value of n = 3.5 for
a semiconductor. Find the reflectivities at normal incidence, the Brewster angles, and
the critical angles for these media at their interfaces with air.

Solution Using the formula given in (1.155) for the reflectivity at normal incidence,
we find that R = 0.02 for water, R = 0.04 for ordinary glass, and R typically falls in
the range of 0.3 and 0.32 for a semiconductor. Using (1.156) for the Brewster angle,
we find that θB ≈ 54◦ for water, θB ≈ 56◦ for ordinary glass, and θB is typically around
74◦ for a semiconductor. Using (1.158) for the critical angle, we find that θc ≈ 49◦ for
water, θc ≈ 42◦ for ordinary glass, and θc is around 17◦ for a semiconductor.

1.9 Phase velocity, group velocity, and dispersion

For a monochromatic plane optical wave traveling in the z direction, the electric field
can be written as

E = E exp(ikz − iωt), (1.159)

where E is a constant vector independent of space and time. This represents a sinusoidal
wave whose phase varies with z and t as

ϕ = kz − ωt. (1.160)

For a point of constant phase on the space- and time-varying field, ϕ = constant and
thus kdz − ωdt = 0. If we track this point of constant phase, we find that it is moving
with a velocity of

vp = dz

dt
= ω

k
. (1.161)

This is called the phase velocity of the wave. Note that the phase velocity is a function of
optical frequency because the refractive index of a medium is a function of frequency.
There is phase-velocity dispersion due to the fact that dn/dω �= 0. In the case of normal
dispersion, dn/dω > 0 and dn/dλ < 0; in the case of anomalous dispersion, dn/dω <

0 and dn/dλ > 0.
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Figure 1.20 Wave packet composed of two frequency components showing the carrier and the
envelope. The carrier travels at the phase velocity, whereas the envelope travels at the group
velocity.

In real circumstances, a propagating optical wave rarely contains only one frequency.
It usually consists of many frequency components grouped around some center fre-
quency ω0. For the simplicity of illustration, we consider a wave packet traveling in
the z direction that is composed of two plane waves of equal real amplitude E . The
frequencies and propagation constants of the two component plane waves are

ω1 = ω0 + dω, k1 = k0 + dk,

ω2 = ω0 − dω, k2 = k0 − dk.
(1.162)

The space- and time-dependent total real field of the wave packet is then given by

E = E exp(ik1z − iω1t) + c.c. + E exp(ik2z − iω2t) + c.c.

= 2E{cos[(k0 + dk)z − (ω0 + dω)t] + cos[(k0 − dk)z − (ω0 − dω)t]}
= 4E cos(dkz − dωt) cos(k0z − ω0t). (1.163)

We find that the resultant wave packet has a carrier, which has a frequency ω0 and a
propagation constant k0, and an envelope, which varies in space and time as cos(dkz −
dωt). This is illustrated in Fig. 1.20. Therefore, a fixed point on the envelope is defined
by dkz − dωt = constant, and it travels with a velocity of

vg = dz

dt
= dω

dk
. (1.164)

This is the velocity of the wave packet and is called the group velocity. Because the
energy of a harmonic wave is proportional to the square of its field amplitude, the
energy carried by a wave packet that is composed of many frequency components
is concentrated in regions where the amplitude of the envelope is large. Therefore,
the energy in a wave packet is transported at group velocity vg. The constant-phase
wavefront travels at the phase velocity, but the group velocity is the velocity at which
energy and information travel.
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In reality, group velocity is usually a function of optical frequency. Then,

d2k

dω2
= d

dω
v−1

g �= 0. (1.165)

Therefore, d2k/dω2 represents group-velocity dispersion. A dimensionless coefficient
for group-velocity dispersion can be defined as

D = cω
d2k

dω2
= 2πc2

λ

d2k

dω2
. (1.166)

Group-velocity dispersion is an important consideration in the propagation of opti-
cal pulses. It can cause broadening of an individual pulse, as well as changes in the
time delay between pulses of different frequencies. The sign of the group-velocity
dispersion can be either positive or negative. In the case of positive group-velocity dis-
persion, d2k/dω2 > 0 and D > 0, a long-wavelength, or low-frequency, pulse travels
faster than a short-wavelength, or high-frequency, pulse. In contrast, a short-wavelength
pulse travels faster than a long-wavelength pulse in the case of negative group-velocity
dispersion, d2k/dω2 < 0 and D < 0. In a given material, the sign of D generally de-
pends on the spectral region of concern. Group-velocity dispersion and phase-velocity
dispersion discussed earlier have different meanings. They should not be confused with
each other.

When measuring the transmission delay or the broadening of optical pulses due to
dispersion in optical fibers, another dispersion coefficient defined as

Dλ = −2πc

λ2

d2k

dω2
= − D

cλ
(1.167)

is usually used. This coefficient is generally expressed as a function of wavelength in
units of picoseconds per kilometer per nanometer. It is a direct measure of the chromatic
pulse transmission delay over a unit transmission length.

In general, both ε(ω) and n(ω) in an optical medium are frequency dependent, and
the propagation constant is

k = ω

c
n(ω). (1.168)

Therefore, we have

vp = c

n
(1.169)

and

vg = c

N
, (1.170)

where

N = n + ω
dn

dω
= n − λ

dn

dλ
(1.171)
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is called the group index. Using (1.166) and (1.167), we also have

D(λ) = λ2 d2n

dλ2
(1.172)

and

Dλ(λ) = −λ

c

d2n

dλ2
, (1.173)

respectively.

EXAMPLE 1.9 The index of refraction of a certain type of glass as a function of opti-
cal wavelength around λ = 1.3 µm can be approximated as n = 1.465 − 0.0114(λ −
1.3) − 0.004(λ − 1.3)3, where λ is measured in micrometers. Therefore,

dn

dλ
= −0.0114 − 0.012(λ − 1.3)2,

N = n − λ
dn

dλ
= 1.48 + 0.0156(λ − 1.3)2 + 0.008(λ − 1.3)3,

D = λ2 dn2

dλ2
= −0.024λ2(λ − 1.3).

We find that, in this spectral region, dn/dλ < 0 for any wavelength but D > 0
for λ < 1.3 µm and D < 0 for λ > 1.3 µm. Clearly, this glass has normal phase-
velocity dispersion in the entire spectral region around λ = 1.3 µm, but it has positive
group-velocity dispersion for λ < 1.3 µm and negative group-velocity dispersion for
λ > 1.3 µm. As an example, we find that n ≈ 1.469, N ≈ 1.481, and D ≈ 0.0072 at
λ = 1 µm. We also find that n ≈ 1.463, N ≈ 1.481, and D ≈ −0.0108 at λ = 1.5 µm.
Because of normal phase-velocity dispersion, the group index is always larger than the
refractive index, N > n, in this spectral region.

1.10 Material dispersion

As discussed in Sections 1.1 and 1.3, dispersion in the susceptibility of a medium is
caused by the fact that the response of the medium to excitation by an optical field does
not decay instantaneously. The general characteristics of the medium can be under-
stood from its impulse response. In general, the impulse response of a medium decays
exponentially while oscillating at some resonance frequencies. There may exist several
exponential relaxation constants and several oscillation frequencies for a given material
across the electromagnetic spectrum. This is true even within the optical spectral region.
However, at a given optical frequency ω, the characteristics of the material response
are dominated by the resonance frequency closest to ω and the relaxation constant
associated with the oscillation at this particular resonance frequency. We therefore con-
sider, for simplicity, a medium of a single resonance frequency at ω0 with a relaxation
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(a) (b)

Figure 1.21 Real and imaginary parts, χ ′ and χ ′′, respectively, of susceptibility for a medium with
(a) a loss and (b) a gain near a resonance frequency, ω0.

constant γ . The susceptibility in the time domain is simply the impulse response of the
medium, which is real and has the following general form:

χ (t) ∝
{

e−γ t sin ω0t, t > 0,

0, t < 0.
(1.174)

Note that χ (t) = 0 for t < 0 because a medium can respond only after, but not before,
an excitation. This is the causality condition, which applies to all physical systems.

The Fourier transform of (1.174) yields

χ (ω) =
∞∫

−∞
χ (t)eiωt dt ≈ −χb

ω0

ω − ω0 + iγ
(1.175)

in the frequency domain, where χb = χ (ω � ω0) is a constant equal to the back-
ground value of χ (ω) at low frequencies far away from resonance. In (1.175), we
have taken the so-called rotating-wave approximation by dropping a term that con-
tains ω + ω0 in its denominator because ω + ω0 � |ω − ω0| in the optical spectral
region (see Problem 1.10.1). This susceptibility has the following real and imaginary
parts:

χ ′(ω) = −χb
ω0(ω − ω0)

(ω − ω0)2 + γ 2
, χ ′′(ω) = χb

ω0γ

(ω − ω0)2 + γ 2
, (1.176)

which are plotted in Fig. 1.21. Note that χ ′′(ω) has a Lorentzian lineshape, which has a
FWHM �ω = 2γ . The sign of χ ′′ depends on that of χb. In the normal state, χb > 0,
and the medium has an optical loss near resonance. This characteristic results in the



54 General background

absorption of light at frequency ω = ω0. When χb < 0, the medium has optical gain,
resulting in the amplification of light at ω = ω0 such as in the case of a laser. Note
that both χ ′ and χ ′′ are proportional to χb. Therefore, when χ ′′ changes sign, χ ′ also
changes sign. When χ ′′ < 0, χ ′ is negative for ω < ω0 and positive for ω > ω0, as is
shown in Fig. 1.21(b).

EXAMPLE 1.10 For an atomic transition associated with absorption or emission of op-
tical radiation at 1 µm wavelength, the resonance frequency is ν0 = c/λ = 300 THz,
thus ω0 = 2πν0 = 1.885 × 1015 s−1. If the polarization associated with this resonant
transition relaxes with a time constant of τ = 1 ps, then γ = 1/τ = 1012 s−1 and
�ω = 2γ = 2 × 1012 s−1. Thus the Lorentzian spectral line has a FWHM linewidth of
�ν = �ω/2π ≈ 318 GHz, which is considered quite broad but is approximately only
0.1% of the center frequency ν0 of the spectral line. If the relaxation time constant is
τ = 1 ns, we find a spectral linewidth of �ν ≈ 318 MHz. For a relaxation time constant
of τ = 1 µs, we have a narrow linewidth of �ν ≈ 318 kHz.

Note that the spectral linewidth is determined by the polarization relaxation time
rather than by the population relaxation time of a material. The polarization relax-
ation time constant is generally much smaller than the population relaxation time
constant for a given transition. Therefore, the spectral linewidth of a given transition
can be quite broad even when the energy levels involved have long population re-
laxation times. One good example is the optical transitions in Nd : YAG discussed in
Section 10.1.

A medium generally has many resonance frequencies, each corresponding to an
absorption frequency in the normal state of the medium. Because ε(ω) = ε0(1 + χ (ω)),
the dispersion characteristics of ε(ω) depend directly on those of χ (ω) given by (1.176).
Its real and imaginary parts in the normal state as a function of ω over a spectral
range covering a few resonances are shown in Fig. 1.22. Some important dispersion
characteristics of χ (ω) and ε(ω) are summarized below.

1. It can be seen from Fig. 1.21(a) that χ ′(ω � ω0) is larger than χ ′(ω � ω0) in the
normal state. Therefore, around any single resonance frequency, ε′ at any frequency
on the low-frequency side has a value larger than that at any frequency on the high-
frequency side.

2. A medium is said to have normal dispersion in a spectral region where ε′ increases
with frequency so that dε′/dω > 0. It is said to have anomalous dispersion in a
spectral region where ε′ decreases with increasing frequency so that dε′/dω < 0.
Because dn/dω and dε′/dω have the same sign, the index of refraction also increases
with frequency in a spectral region of normal dispersion and decreases with frequency
in a spectral region of anomalous dispersion.
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(a)

(b)

Figure 1.22 Real and imaginary parts of ε as a function of ω for a medium in its normal state over
a spectral range covering a few resonance frequencies.

3. It can be seen from Fig. 1.22 that when a material is in its normal state, normal
dispersion appears everywhere except in the immediate neighborhood within the
FWHM of a resonance frequency where anomalous dispersion occurs. This char-
acteristic can be reversed near a resonance frequency where resonant amplification,
rather than absorption, exists.

4. Note the distinction between the definition of normal and anomalous dispersion
in terms of the sign of dε′/dω or dn/dω and that of positive and negative group-
velocity dispersion in terms of the sign of D. Both positive and negative
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group-velocity dispersion can appear in a spectral region where the dispersion de-
fined in terms of dn/dω is normal.3

5. In most transparent materials, such as glass and water, normal dispersion appears in
the visible spectral region and may extend to the near infrared and near ultraviolet
regions.

Kramers–Kronig relations

It can be seen from the discussions above that the real and imaginary parts of
χ (ω), or those of ε(ω), are not independent of each other. The susceptibility of any
physical system has to satisfy the causality requirement in the time domain. This
requirement leads to a general relationship between χ ′ and χ ′′ in the frequency
domain:

χ ′(ω) = 2

π
P

∞∫
0

ω′χ ′′(ω′)
ω′2 − ω2

dω′, χ ′′(ω) = − 2

π
P

∞∫
0

ωχ ′(ω′)
ω′2 − ω2

dω′, (1.177)

where the principal values are taken for the integrals. These relations are known as
the Kramers–Kronig relations. Therefore, once the real part of χ (ω) is known over the
entire spectrum, its imaginary part can be found, and vice versa. Note that the relations
in (1.177) are consistent with the fact that χ ′(ω) is an even function, while χ ′′(ω) is an
odd function, of ω, as discussed in Section 1.3. The contradiction to this statement seen
in (1.176) is only apparent but not real. It is caused by the rotating-wave approximation
taken in (1.175). There is no contradiction when the approximation is removed and
exact expressions are used for χ ′(ω) and χ ′′(ω) (see Problem 1.10.1).

1.11 Photon nature of light

When considering the function of a device that involves the emission or absorption
of light, a purely electromagnetic wave description of light is not adequate. In this
situation, the photon nature of light cannot be ignored. Meanwhile, the material involved
in this process also undergoes quantum mechanical transitions between its energy
levels.

The energy of a photon is determined by its frequency ν or, equivalently, its angular
frequency ω. Associated with the particle nature of a photon, there is a momentum

3 In the literature, positive group-velocity dispersion is sometimes referred to as normal dispersion while negative
group-velocity dispersion is referred to as anomalous dispersion. This is confusing and is, strictly speaking, not
correct.
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determined by its wavelength λ or, equivalently, its wavevector k. These characteristics
are summarized below for a photon in free space:

speed c = λν,

energy hν = h̄ω = pc,

momentum p = hν

c
= h

λ
, p = h̄k.

The energy of a photon that has a wavelength λ in free space can be calculated using
the following formula:

hν = 1.2398

λ
µm eV = 1239.8

λ
nm eV. (1.178)

For example, at an optical wavelength of 1 µm, the photon energy is 1.2398 eV.
The energy of a photon is determined only by the frequency, or wavelength, of light,

but not by its intensity. The intensity of light is related to the flux density, or number
per unit time per unit area, of photons by

photon flux density = I

hν
= I

h̄ω
. (1.179)

EXAMPLE 1.11 It is found that a piece of crystal transmits light at λ = 500 nm but
absorbs light at λ = 400 nm. Make an intelligent guess of its bandgap from this limited
information.

Solution Because a crystal transmits photons with energies below its bandgap but
absorbs those with energies above its bandgap, we can reasonably guess that the bandgap
of this crystal falls between the photon energies corresponding to 500 and 400 nm
wavelengths. Using (1.178) for the photon energy, we find that

2.48 eV < Eg < 3.10 eV.

PROBLEMS

1.1.1 Verify that Maxwell’s equations and the continuity equation are invariant under
(a) space inversion, (b) time reversal, and (c) space inversion and time reversal
simultaneously.

1.3.1 Verify the reality condition for electric susceptibility and electric permittivity
given in (1.56) and (1.57), respectively.

1.4.1 Two polarizers placed in tandem along the line of propagation of an optical beam
are called cross polarizers if their axes are arranged to be orthogonal to each
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other. For the purpose of answering the following questions, consider polarizers
of transmission type.
a. Show that no light of any polarization can pass through a set of cross polar-

izers.
b. A third polarizer is inserted in between the two cross polarizers. The trans-

mission of this three-polarizer combination is not zero any more if the axis
of the inserted polarizer is not parallel to either of the original two. Find the
transmittance of this combination as a function of the angle between the axis
of this polarizer and that of the polarizer at the input end.

c. Since each polarizer acts only as a polarization-sensitive filter to transmit the
field component of a particular polarization, the phenomenon described in
(b) may not seem possible. Can you give a physically intuitive explanation
for it?

1.5.1 Express the wavenumber β and the attenuation coefficient α defined in (1.100)
for propagation of an optical wave in an absorptive medium in terms of the real
part, χ ′, and the imaginary part, χ ′′, of the electric susceptibility of the medium.
Show that when χ ′′ � χ ′, we have

α ≈ β
χ ′′

n2
. (1.180)

1.5.2 The electric susceptibility of pure crystalline silicon at the optical wavelength of
λ = 532 nm is χ = 15.48 + i0.284. An optical beam of 1 W power at 532 nm
wavelength is normally incident from the air on the surface of a crystalline
silicon wafer, which is polished to mirror finish. The surface on the other side
of the silicon wafer is antireflection coated so that no reflection of light takes
place on that surface.
a. How much light (in milliwatts) is reflected from the surface from which the

light enters the silicon wafer? How much enters the silicon wafer?
b. How much of the light entering the wafer is transmitted from the other side

if the thickness of the silicon wafer is 100 µm?
c. What is the thickness of the wafer if 1 mW of light is transmitted from the

other side?
1.6.1 An optical isolator transmits light traveling in one direction and blocks its re-

flection traveling in the opposite direction. Show that isolation of light reflected
from a plane mirror can be accomplished by using a combination of a polarizer
and a quarter-wave plate with the axis of the quarter-wave plate set at 45◦ with
respect to the transmission axis of the polarizer.

1.6.2 A polarizer and a half-wave plate can be used to make an attenuator of linearly
polarized light. Sketch a diagram of how this can be achieved and then plot the
output intensity of the system as a function of the angle between the axis of the
wave plate and that of the polarizer.
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1.6.3 A crystal has the following electric permittivity tensor in the (x , y, z) coordinate
system:

ε = ε0


2.25 0 0

0 2.13 0
0 0 2.02


 .

A linearly polarized optical wave that has a free-space wavelength λ = 600 nm
is sent into the crystal. Find the wavelength of the wave in the crystal in each of
the following arrangements.
a. The wave is polarized along x̂ and propagates along ẑ.
b. The wave is polarized along ŷ and propagates along ẑ.
c. The wave is polarized along x̂ and propagates along ŷ.
d. The wave is polarized along ẑ and propagates along ŷ.

1.6.4 When the electric permittivity of a crystal is measured at λ = 1 µm with respect
to an arbitrary Cartesian coordinate system defined by x̂1, x̂2, and x̂3, it is found
to be given by the following tensor:

ε = ε0


4.786 0 0.168

0 5.01 0
0.168 0 4.884


 .

a. Find the principal dielectric axes x̂ , ŷ, and ẑ of the crystal and their corre-
sponding principal indices of refraction.

b. Write down the equation that describes the index ellipsoid of the crystal in
the original coordinate system. What is the equation for the index ellipsoid
in the coordinate system defined by the principal axes?

c. Is the crystal uniaxial or biaxial? Find its optical axis if it is uniaxial or its
optical axes if biaxial.

d. How do you arrange an optical wave to propagate in such a crystal so
that the polarization of the wave remains unchanged throughout the entire
path if the wave is linearly polarized? How about if the wave is circularly
polarized?

e. Make a quarter-wave plate for the optical wave at λ = 1 µm. What is the
thickness of the plate?

1.6.5 Under what condition can the polarization of an optical wave propagating in a
birefringent crystal remain unchanged for any initial state of polarization and
any distance of propagation?

1.6.6 Show that a linearly polarized wave can be converted into a circularly polarized
wave by passing it through a quarter-wave plate, and vice versa. In converting
a circularly polarized wave into a linearly polarized wave, how do you control
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the direction of the linear polarization at the output? Design the arrangement
in conducting such an experiment properly in terms of the orientation of the
relevant axes and the direction of polarization.

1.6.7 How far must a linearly polarized wave at λ = 1 µm travel through a crystal
that has nx = 1.55 and ny = 1.52 before its polarization is changed into each
of the following states. In answering these questions, explain by showing the
arrangements with sketches.
a. It is made circularly polarized.
b. It remains linearly polarized but with its polarization rotated by 90◦.
c. It remains linearly polarized but with its polarization rotated by 60◦.

1.6.8 Quartz is a positive uniaxial crystal, which has no=1.544 23 and ne=1.553 32 at
λ = 600 nm. A quartz plate is cut in such a way that its optical axis is parallel
to the surfaces of the plate. A linearly polarized optical beam at 600 nm is sent
to pass through such a quartz plate.
a. What is the thickness of a piece of quartz needed to change a linearly polarized

beam into a circularly polarized beam at 600 nm wavelength? How should
the quartz plate be arranged with respect to the polarization direction of the
linearly polarized beam in order for this to happen?

b. What should the thickness of the quartz plate be to enable rotation of the
linear polarization of the beam by 50◦? How do you arrange the polarization
direction with respect to the crystal axes in this case?

c. If instead we want to make sure that the linearly polarized beam stays lin-
early polarized in the same direction upon passing through the quartz plate
irrespective of the polarization direction with respect to the optical axis of
the quartz plate, what should the thickness of the plate be?

1.6.9 At what wavelength does a quarter-wave plate for λ = 1 µm function as a half-
wave plate if the dispersion in the refractive indices of the plate is neglected?
At what wavelength does light traveling through the plate always return to its
input polarization state?

1.6.10 Quartz is a positive uniaxial crystal, which has no = 1.544 23 and ne = 1.553 32
at λ = 600 nm.
a. Design a quartz waveplate to be used for rotating the polarization direction

of a linearly polarized beam at 600 nm wavelength by 60◦. Give the thickness
of the plate and the arrangement of your setup.

b. If dispersion of the quartz plate can be neglected, at what other wave-
lengths can this plate be used as a polarization rotator for linearly polarized
light?

c. Again, if dispersion can be neglected, at what optical wavelengths can this
plate be used to convert a linearly polarized beam into a circularly polarized
one?
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d. Find the thickness of a plate that has the same function as the one found in
(a) if it has to be thicker than 1 mm but thinner than 1.5 mm.

1.6.11 Rutile (TiO2) is a uniaxial crystal. Its ordinary and extraordinary indices of
refraction as a function of wavelength are given by

n2
o = 5.913 + 0.2441

λ2 − 0.083
, (1.181)

n2
e = 7.197 + 0.3322

λ2 − 0.0843
, (1.182)

where λ is in micrometers. A rutile plate of thickness l is cut in such a way that
its surface normal is perpendicular to its optical axis.
a. If the plate is to be used as a first-order half-wave plate at an optical wavelength

of 1 µm, what should its thickness l be? How do you arrange the plate
with respect to the polarization of the incident beam if the polarization of a
linearly polarized input beam is to be rotated 60◦ after passing through the
plate?

b. With the thickness of the plate obtained in (a), find another wavelength at
which the plate also functions as a half-wave plate. Find a wavelength at
which it functions as a quarter-wave plate.

1.6.12 Consider wave propagation in a uniaxial crystal whose optical axis is ẑ.
a. By using the relationships among k̂, êo, and êe given in (1.121), verify that

the unit vectors êo and êe are given by the expressions in (1.123) and (1.124),
respectively.

b. By examining the index ellipsoid, show that ne(θ ) for the extraordinary wave
is given by (1.125).

1.6.13 Explain why (1.118) is written in E whereas (1.126) is written in D. How would
D be expressed for the wave that is described by (1.118)? Does it have the same
form as (1.118)? Why? How would E be expressed for the wave that is described
by (1.126)? Does it have the same form as (1.126)? Why?

1.6.14 Show that the walk-off angle as defined in Fig. 1.13(a) is given by (1.131). Given
ne and no for a uniaxial crystal, find the angle θ for the propagation direction k̂
that results in the largest walk-off for an extraordinary wave.

1.6.15 An extraordinary optical wave propagates in a uniaxial crystal with its wavevec-
tor k making an angle θ with respect to the optical axis, ẑ, of the crystal. In the
case when θ �= 90◦, the Poynting vector, S, of the wave is not parallel to k. The
angle α between S and k is the same as that between E and D.
a. Show that the vector S lies between k and the optical axis if the crystal is

positive uniaxial, while k lies between S and ẑ if it is negative uniaxial. What
is the relationship among E, D, and ẑ in either case?
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b. Show that the walk-off angle given by (1.131) can also be expressed as

α = tan−1

[
n2

e(θ )

2

(
1

n2
e

− 1

n2
o

)
sin 2θ

]
, (1.183)

where ne(θ ) is that given by (1.125).
c. Show that the maximum walk-off between S and k occurs at

θ = tan−1 ne

no
(1.184)

for

α = tan−1 no

ne
− tan−1 ne

no
. (1.185)

1.6.16 Rutile (TiO2) is a uniaxial crystal. Its ordinary and extraordinary indices of
refraction as a function of wavelength are given by (1.181) and (1.182), respec-
tively. A rutile plate of thickness l is cut in such a way that its surface normal
is at an angle θ = 30◦ with respect to its optical axis. If this plate is used as a
polarizing beam splitter for normally incident light at λ = 0.8 µm, what is the
separation between the two orthogonally polarized beams leaving the plate? If
the spot size of a collimated incident beam is 100 µm in diameter, what is the
minimum value of l for the two orthogonally polarized beams at the exit to be
completely separated without spatial overlap?

1.7.1 The intensity profile of a fundamental Gaussian beam, whose field profile is
given by (1.138) with m = n = 0, at any spatial location is a function of the
transverse radial distance, r = (x2 + y2)1/2, from the beam center and the lon-
gitudinal distance z from the beam waist.
a. Show that the intensity profile can be expressed as the following Gaussian

function:

I (r, z) = I0(z) exp

[
−2(x2 + y2)

w2(z)

]
= I0(z) exp

[
− 2r2

w2(z)

]
, (1.186)

where I0(z) is the peak intensity of the beam at the longitudinal location z.
b. Express the power, P , of this Gaussian beam as a function of its peak intensity

I0(z) and its spot size w(z) at any location z.
c. Find the variation of the peak intensity I0(z) along the longitudinal axis of

the beam by expressing it as a function of peak intensity I0 at the beam waist
and distance z from the beam waist.

1.7.2 A fundamental Gaussian laser beam of power P = 1 W at a wavelength of
λ = 532 nm is focused to a small spot radius of w0 = 10 µm at its beam waist.
What is the peak intensity I0 at the beam waist? What is the divergence angle
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of the beam? What are its spot size and peak intensity at a distance of 1 m from
the beam waist? If the spot size is reduced by half to w0 = 5 µm at the beam
waist, what are the changes of the peak intensities at the beam waist and at 1 m
from the waist?

1.7.3 A circular aperture of radius a is placed in the path of a fundamental Gaussian
beam with the center of the aperture located at the center of the beam. The
Gaussian beam has a spot size w at the location of the aperture.
a. Find and plot the fraction of beam power transmitted through the aperture as

a function of a and w.
b. What percentage of power is transmitted if the aperture has a radius equal to

the beam spot size, a = w?
c. What is the minimum aperture diameter for the aperture to transmit at least

99% of the beam power?
1.7.4 A laser retroreflector was first placed on the lunar surface by the astronauts

of the Apollo 11 lunar landing mission in 1969. Similar retroreflectors were
placed on different parts of the lunar surface by astronauts in later missions,
including Apollos 14 and 15. These retroreflectors have since been used for
precision lunar laser ranging to measure the distance between Earth and the
Moon using nanosecond and picosecond laser pulses down to a precision of the
order of 1 cm. The Apollo 11 retroreflector consists of an array of 100 silica
corner cubes in a 46 cm × 46 cm panel. Each corner cube has a diameter of
3.8 cm. The function of a corner cube is to reflect the light intercepted by it right
back to the original direction from which the light comes without the need for
critical alignment. The distance between the centers of Earth and the Moon is
about 385 000 km, but the direct distance between their surfaces is shorter and
is about the distance for light to travel in 1.25 s. In this problem, we consider a
lunar ranging experiment using a telescope of 1.5 m diameter to collimate laser
pulses of 350 ps duration at a wavelength of 532 nm from the second harmonic of
a Nd : YAG laser. We assume that the laser beam has a fundamental Gaussian
profile of waist spot size w0 = 0.5 m at the aperture of the 1.5-m-diameter
telescope. We also assume that each corner cube in the retroreflector reflects
about 80% of the laser light it intercepts but adds a divergence of 14 µrad to
the reflected beam due to diffraction. In answering the following questions, we
first ignore the scattering, absorption, diffraction, and dispersion caused by the
atmosphere.
a. What is the divergence angle of the out-going beam? What is the spot size of

the beam on the Moon’s surface?
b. If the laser beam is incident on the retroreflector with the beam center located

at the center of the panel, what fraction of the laser energy is intercepted and
reflected back by the retroreflector?
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c. What is the spot size of the reflected beam on Earth? What fraction of the
beam reflected by the retroreflector back to Earth is intercepted by the 1.5-m
receiving aperture of the telescope?

d. What fraction of the energy in each laser pulse is finally received after making
the round trip to the Moon and back? If we hope to detect at least one photon
in each pulse, what is the minimum energy required of the original out-going
pulse?

e. In reality, the effects of the atmosphere are significant and certainly can-
not be ignored unless the entire station is located in space. In each pass,
the atmosphere adds a divergence of about 18 µrad to the beam mainly
due to dispersion and transmits only about 2% due to scattering and ab-
sorption. Answer questions (a)–(d) with the atmospheric effects accounted
for.

1.7.5 The effect of sending a Gassian beam through a thin lens of focal length f can
be described by the following relation:

1

q ′ = 1

q
− 1

f
, (1.187)

where q and q ′ are the complex radii of curvature of the Gaussian beam imme-
diately before and after the thin lens. The value of f can be either positive or
negative for a positive or negative lense, respectively. A Gaussian beam of waist
radius w0 located at z = 0 is sent through a thin lens of focal length f located
at z = z0.
a. Show that the waist radius for the beam after passing through the lens is

w′
0 = | f |

[(z0 − f )2 + z2
R]1/2

w0, (1.188)

where zR is the Rayleigh range of the incoming beam.
b. Show that the waist of the beam passing through the lens is located at

z = z2
0(z0 − f ) + z2

R(z0 + f )

(z0 − f )2 + z2
R

. (1.189)

c. How can the beam be best collimated? What are the waist radius and Rayleigh
range of this optimally collimated beam?

d. If the lens is placed at the waist location of the incoming beam, what is the
waist radius of the outgoing beam? Where is the waist located? What is the
effect of the lens on the divergence of the beam?

1.8.1 Under what condition is an optical wave that is reflected from a dielectric surface
completely polarized no matter whether the incident wave is polarized or not?
What is its state of polarization?
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1.8.2 A beam of circularly polarized light is incident from the air on the surface of
an isotropic lossless dielectric material. The index of refraction of the dielectric
material is unknown. However, it is found experimentally, by varying the angle
of incidence, that the reflected light is linearly polarized when the angle of
incidence is 60◦. What is the index of refraction of the dielectric material?
Explain what happens.

1.8.3 A reflection-type polarizer can be made simply with a glass plate. If the glass
plate available has an index of refraction n = 1.5 at the wavelength of interest,
what should the incident angle of the light be in order for the plate to function
as a polarizer? Illustrate how this device should be used if the incident light is
arbitrarily polarized.

1.8.4 During a sunny day on the equator when the sun rises at 6 a.m. and sets at 6 p.m.,
at what times is the sunlight reflected from the ocean surface most polarized?

1.8.5 When sunlight reflected from the surface of a body of water is viewed through
linearly polarizing glass, the apparent glare from the water is reduced.
a. Upon which concept discussed in this chapter is this glare reduction

based?
b. Suppose you have a beachfront house, and you want to use polarizing glass to

reduce the glare from the sunlight reflected from the ocean. How should you
orient the polarizing glass? (Should the glass block horizontally or vertically
polarized light?)

c. For what angle of reflected sunlight will your polarizing glass be most effec-
tive? (Assume that the index of refraction of water is 1.33.)

1.8.6 The index of refraction of ordinary glass is n = 1.5.

Figure 1.23 Stack of parallel flat glass plates.

a. Find the Brewster angles for the incidence of light from air to glass and from
glass to air, respectively. What is the angle for total internal reflection?
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b. For a stack of parallel flat glass plates separated by air gaps as shown in
Fig. 1.23, show that if TM-polarized light is incident on the surface of the
first plate at the Brewster angle, it is transmitted through the whole stack
without reflection at any interface. Sketch the path of light through the
stack. What are the effects of the thickness of the plates and that of the air
gaps?

c. What happens if one air gap is filled with water whose index of refraction is
1.33? Illustrate by sketching the path of light.

1.8.7 The indices of refraction for water and diamond are 1.33 and 2.42, respec-
tively.
a. For a piece of diamond exposed to the air, what are the critical angle for int-

ernal reflection, the Brewster angle for external reflection, and the reflectivi-
ties for TE and TM waves at an incident angle of 45◦?

b. Answer the same question for a piece of diamond that is immersed in
water.

1.8.8 A 90◦ symmetric prism with antireflection coating at the input surface as shown
in Fig 1.24 can be used as a retroreflector. This kind of prism can losslessly
reflect light with an adjustable lateral displacement between the paths of the
incident and reflected beams.

Figure 1.24 Prism retroreflector.

a. Show that the path of the reflected beam is parallel to that of the input
beam for both normal and oblique incidence, thus requiring no critical align-
ment.

b. However, if the angle of incidence is too large, the reflected beam will
suffer losses. What is the condition for a retroreflecting prism to have
an angular tolerance of ±5◦ with respect to normal without substantial
loss?

1.8.9 At the optical wavelength of 500 nm, GaAs is measured to have a reflectivity
of 40% at normal incidence and an absorption coefficient of α = 107 m−1.
a. What is the complex refractive index of GaAs at 500 nm? What is the complex

susceptibility?
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b. Plot the reflectivity of GaAs at 500 nm as a function of incident angle for
both TE and TM polarizations. What is the lowest reflectivity for the TM
polarization? At what incident angle does it occur?

1.9.1 Explain how the primary rainbow is formed and describe the sequence of the
rainbow colors from top to bottom. Answer the same questions for the secondary
rainbow and explain the differences between the primary and secondary rain-
bows. Explain also why a rainbow has the shape of an arc. Find the arc angles
for the primary and secondary rainbows.

1.9.2 The LiNbO3 crystal is negative uniaxial. Its indices of refraction for the ordinary
and extraordinary waves at room temperature as a function of optical wavelength
are given by the following Sellmeier equations:

n2
o = 4.9130 + 0.1188

λ2 − 0.045 97
− 0.0278λ2, (1.190)

n2
e = 4.5798 + 0.0994

λ2 − 0.042 35
− 0.0224λ2, (1.191)

where λ is in micrometers. For both ordinary and extraordinary waves at an opti-
cal wavelength of 1.3 µm, find (a) the phase velocities, (b) the group velocities,
and (c) the group-velocity dispersion parameters.

1.9.3 The BBO crystal is negative uniaxial. Its indices of refraction for the ordinary
and extraordinary waves at room temperature as a function of optical wavelength
are given by the following Sellmeier equations:

n2
o = 2.7359 + 0.018 78

λ2 − 0.018 22
− 0.013 54λ2, (1.192)

n2
e = 2.3753 + 0.012 24

λ2 − 0.016 67
− 0.015 16λ2, (1.193)

where λ is in micrometers. For both ordinary and extraordinary waves in the
optical wavelength range between 0.5 and 2.0 µm, plot (a) phase velocity, (b)
group velocity, and (c) group-velocity dispersion, as a function of wavelength.

1.10.1 Find the exact χ (ω) corresponding to χ (t) given in (1.174) without making the
rotating-wave approximation used in (1.175). Show that the real and imaginary
parts of this exact χ (ω) are even and odd functions of ω, respectively. Compare
them with their respective approximate expressions in (1.176) to justify the
applicability of the latter. Show that the exact expression for χ (ω) satisfies the
reality condition, as expected.

1.10.2 A material has two closely spaced resonance frequencies at ω01 and ω02 with
respective response constants χb1 and χb2 and relaxation constants γ1 and γ2.
The condition 0 � ω02 − ω01 � ω01 is always valid in this problem.
a. Consider the case when χb1 = χb2 and γ1 = γ2 = ω02 − ω01. Sketch the real

and imaginary parts of χ (ω) as a function of ω near the two closely spaced
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resonance frequencies. Also indicate the regions of normal and anomalous
dispersion.

b. What changes to the dispersion of a laser material do you expect when its res-
onance at ω01 is pumped to population inversion but not that at ω02, meaning
that χb1 changes sign but χb2 does not? Sketch the real and imaginary parts
of χ (ω) as a function of ω near the two closely spaced resonance frequencies
in this situation.

c. Sketch the real and imaginary parts of χ (ω) as a function of ω near the
two closely spaced resonance frequencies in the situation when population
inversion occurs at both resonances so that both χb1 and χb2 change sign.
Indicate the regions of normal and anomalous dispersion.

d. Answer questions (a)–(c) for the case when χb1 = 3χb2 but γ1 = γ2/3 =
ω02 − ω01.

1.11.1 What is the separation in energy between the two energy levels that are respon-
sible for emission at λ = 1.064 µm of a Nd : YAG laser?

1.11.2 A ruby is basically crystalline Al2O3 doped with Cr3+ impurities. Its red color
is caused by the fact that the Cr3+ ions emit light at 694.3 nm when making the
transition from an excited state to the ground state. What is the energy level of
this excited state?

1.11.3 Silicon has a bandgap of 1.12 eV at room temperature. What wavelengths in the
optical spectrum are transmitted through a pure silicon wafer?

1.11.4 GaAs has an energy bandgap of 1.424 eV at room temperature and absorbs any
photon that has an energy higher than this value. For what optical wavelengths
is GaAs transparent?

1.11.5 Consider monochromatic light illuminating a photographic film. The inci-
dent photons will be recorded if they have enough energy to dissociate the
AgBr molecules in the film. The minimum energy required to do this is
about 0.6 eV. Find the cutoff wavelength longer than which the incident
light will not be recorded. In what spectral region does this wavelength
fall?

1.11.6 A photon of 10.6 µm wavelength is combined with a photon of 1.06 µm wave-
length to create a photon that combines the energies of both. What is the wave-
length of the resultant photon?
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Part II

Waveguides and couplers





2 Optical waveguides

Optical waveguides are the basic elements for confinement and transmission of light
over various distances, ranging from tens or hundreds of micrometers in integrated
photonics to hundreds or thousands of kilometers in long-distance fiber-optic transmis-
sion. They are used to connect various photonic devices. In many devices, they form
important parts or key structures, such as the waveguides providing optical confinement
in semiconductor lasers. Furthermore, they form important active or passive photonic
devices by themselves, such as waveguide couplers and modulators. In this chapter,
we consider the basic characteristics of linear, lossless dielectric waveguides. Opti-
cal fibers are discussed in Chapter 3. Other waveguide devices are discussed in later
chapters.

2.1 Waveguide modes

The basic structure of a dielectric optical waveguide consists of a longitudinally ex-
tended high-index optical medium, called the core, which is transversely surrounded
by low-index media, called the cladding. A guided optical wave propagates in the
waveguide along its longitudinal direction. We consider a straight waveguide whose
longitudinal direction is taken to be the z direction, as shown in Fig. 2.1(a). The char-
acteristics of a waveguide are determined by the transverse profile of its dielectric
constant ε(x, y)/ε0, which is independent of the z coordinate. For a waveguide made
of optically isotropic media, we can simply characterize the waveguide with a single
spatially dependent transverse profile of the index of refraction, n(x, y).

In a nonplanar waveguide of two-dimensional transverse optical confinement, the
core is surrounded by cladding in all transverse directions, and n(x, y) is a function
of both x and y coordinates. The channel waveguides, discussed in Section 2.8, and
the circular optical fibers, discussed in Chapter 3, are such waveguides. In a planar
waveguide that has optical confinement in only one transverse direction, the core is
sandwiched between cladding layers in only one direction, say the x direction, with
an index profile n(x), as shown in Fig. 2.1(b). The core of a planar waveguide is also
called the film, while the upper and lower cladding layers are called the cover and the

73
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(a) (b)

Figure 2.1 (a) Nonplanar waveguide of two-dimensional transverse optical confinement.
(b) Planar waveguide of one-dimensional transverse optical confinement.

Figure 2.2 Index profiles of (a) a step-index planar waveguide and (b) a graded-index planar
waveguide.

substrate, respectively. Optical confinement is provided only in the x direction by the
planar waveguide shown in Fig. 2.1(b).

A waveguide in which the index profile has abrupt changes between the core and the
cladding is called a step-index waveguide, while one in which the index profile varies
gradually is called a graded-index waveguide. Figure 2.2 shows examples of step-index
and graded-index planar waveguides.

Waveguide modes exist that are characteristic of a particular waveguide structure.
A waveguide mode is a transverse field pattern whose amplitude and polarization
profiles remain constant along the longitudinal z coordinate. Therefore, the electric
and magnetic fields of a mode can be written in the following form:

Eν(r, t) = Eν(x, y) exp(iβνz − iωt), (2.1)

Hν(r, t) = Hν(x, y) exp(iβνz − iωt), (2.2)

where ν is the mode index, Eν(x, y) and Hν(x, y) are the mode field profiles, and βν is
the propagation constant of the mode. For a waveguide of two-dimensional transverse
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optical confinement, there are two degrees of freedom in the transverse xy plane, and
the mode index ν consists of two parameters for characterizing the variations of the
mode fields in these two transverse dimensions. For example, ν represents two mode
numbers, ν = mn with integral m and n, for discrete guided modes. For the planar
waveguide shown in Fig. 2.1(b), the mode fields do not depend on the y coordinate.
Thus, (2.1) and (2.2) are reduced to

Eν(r, t) = Eν(x) exp(iβνz − iωt), (2.3)

Hν(r, t) = Hν(x) exp(iβνz − iωt), (2.4)

respectively. In this case, ν consists of only one parameter characterizing the field
variation in the x dimension.

To get a general idea of the modes of a dielectric waveguide, it is instructive to
consider the qualitative behavior of an optical wave in the asymmetric planar step-
index waveguide shown in Fig. 2.2(a), where n1 > n2 > n3. For an optical wave of
angular frequency ω and free-space wavelength λ, the media in the three different
regions of the waveguide define the following propagation constants:

k1 = n1
ω

c
, k2 = n2

ω

c
, and k3 = n3

ω

c
, (2.5)

where k1 > k2 > k3.
An intuitive picture can be obtained from studying ray optics by considering the path

of an optical ray, or a plane optical wave, in the waveguide, as shown in the central
column of Fig. 2.3. There are two critical angles associated with the internal reflections
at the lower and upper interfaces:

θc2 = sin−1 n2

n1
and θc3 = sin−1 n3

n1
, (2.6)

respectively. We see that θc2 > θc3 because n2 > n3. The characteristics of the reflection
and refraction of the ray at the interfaces depend on the angle of incidence θ and the
polarization of the wave.

1. Guided modes. If θ > θc2 > θc3, the wave inside the core is totally reflected at
both interfaces and is trapped by the core, resulting in guided modes. As the wave
is reflected back and forth between the two interfaces, it interferes with itself. A
guided mode can exist only when a transverse resonance condition is satisfied so
that the repeatedly reflected wave has constructive interference with itself. In the
core region, the x component of the wavevector is k1 cos θ for a ray with an angle of
incidence θ , while the z component is β = k1 sin θ . The phase shift in the optical field
caused by a round-trip transverse passage in the core of thickness d is 2k1d cos θ . In
addition, there are phase shifts ϕ2 and ϕ3 associated with the internal reflections at
the lower and upper interfaces, respectively. These phase shifts can be obtained from
the phase angle of rs in (1.147) for a TE wave and that of rp in (1.151) for a TM wave
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(a)

(b)

(c)

(d )

Figure 2.3 Modes of an asymmetric planar step-index waveguide where n1 > n2 > n3. The range
of the propagation constants, the zig-zag ray pictures, and the field patterns are shown
correspondingly for (a) the guided fundamental mode, (b) the guided first high-order mode, (c) a
substrate radiation mode for β = 1.3k3, and (d) a substrate–cover radiation mode for β = 0.3k3.
The waveguide structure is chosen so that it supports only two guided modes. The mode field
profiles are calculated mode field distributions that are normalized to their respective peak values.
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for a given θi = θ > θc2, θc3. Because ϕ2 and ϕ3 are functions of θ , the transverse
resonance condition for constructive interference in a round-trip transverse passage
is

2k1d cos θ + ϕ2(θ ) + ϕ3(θ ) = 2mπ, (2.7)

where m is an integer. Because m can assume only integral values, only certain
discrete values of θ can satisfy (2.7). This results in discrete values of the propagation
constant βm for guided modes identified by the mode number m. The guided mode
with m = 0 is called the fundamental mode and those with m �= 0 are high-order
modes. Although the critical angles, θc2 and θc3, do not depend on the polarization of
the wave, the phase shifts, ϕ2(θ ) and ϕ3(θ ), caused by internal reflection at a given
angle θ depend on the polarization. Therefore, TE and TM waves have different
solutions for (2.7), resulting in different βm and different mode characteristics for a
given mode number m. For a given polarization, solution of (2.7) yields a smaller
value of θ and a correspondingly smaller value of β for a larger value of m. Therefore,
β0 for the fundamental mode has the largest value among the allowed values for β,
and β0 > β1 > . . . , as shown in Figs. 2.3(a) and (b).

2. Substrate radiation modes. When θc2 > θ > θc3, total reflection occurs only at
the upper interface but not at the lower interface. As a result, an optical wave incident
from either the core or the substrate can be refracted at the lower interface. This wave
is not confined to the core, but is transversely extended to infinity in the substrate.
It is called a substrate radiation mode. In this case, the angle θ is not dictated by a
resonance condition like (2.7) but can assume any value in the range of θc2 > θ > θc3.
As a result, the allowed values of β form a continuum between k2 and k3, and
the modes are not discrete. These characteristics of a substrate radiation mode are
illustrated in Fig. 2.3(c).

3. Substrate–cover radiation modes. When θc2 > θc3 > θ , there is no total reflec-
tion at either interface. In this case, an optical wave incident from either side is re-
fracted at both interfaces, and it can transversely extend to infinity on both sides of the
waveguide, resulting in substrate–cover radiation modes. These modes are not dis-
crete, and the allowed values of β for them form a continuum between k3 and 0. These
characteristics of a substrate–cover radiation mode are illustrated in Fig. 2.3(d).

In addition to the three types of modes discussed above, there are also evanescent
radiation modes, which have purely imaginary values of β that are not discrete. Their
fields decay exponentially along the z direction. Because the waveguide is lossless
and does not absorb energy, the energy of an evanescent mode radiates away from the
waveguide transversely. A lossless waveguide cannot generate energy, either. There-
fore, the evanescent modes do not exist in perfect, longitudinally infinite waveguides.
They exist at the longitudinal junctions or imperfections of a waveguide, as well as at
the terminations of a realistic waveguide of finite length. In comparison, a substrate
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radiation mode or a substrate–cover radiation mode has a real β; hence, its energy does
not decay as it propagates. In such a radiation mode, the power flowing away from the
center of the waveguide in the transverse direction is equal to that flowing toward the
center.

The approach of ray optics gives a very intuitive picture of the waveguide modes
and their key characteristics. Nevertheless, this approach has many limitations. In more
complicated waveguide geometries such as that of a circular fiber, the idea of using the
resonance condition based on the total internal reflection to find the allowed values of β

for the guided modes does not necessarily yield correct results.1 For a complete descrip-
tion of the waveguide fields, rigorous analyses using electromagnetic wave equations
are required.

2.2 Field equations

For a linear, isotropic dielectric waveguide characterized by a spatial permittivity dis-
tribution of ε(x, y), Maxwell’s equations in (1.40) and (1.41) can be written as

∇ × E = −µ0
∂H
∂t

, (2.8)

∇ × H = ε
∂E
∂t

. (2.9)

Because the optical fields in the waveguide have the form of (2.1) and (2.2), these two
Maxwell’s equations can be written in the following form:

∂E z

∂y
− iβE y = iωµ0Hx , (2.10)

iβE x − ∂E z

∂x
= iωµ0Hy, (2.11)

∂E y

∂x
− ∂E x

∂y
= iωµ0Hz, (2.12)

and

∂Hz

∂y
− iβHy = −iωεE x , (2.13)

iβHx − ∂Hz

∂x
= −iωεE y, (2.14)

∂Hy

∂x
− ∂Hx

∂y
= −iωεE z. (2.15)

1 For an excellent detailed discussion on this point, see Marcuse, D., Theory of Dielectric Optical Waveguides.
New York: Academic Press, 1974, p. 89.
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From these equations, the transverse components of the electric and magnetic fields
can be expressed in terms of the longitudinal components:

(k2 − β2)E x = iβ
∂E z

∂x
+ iωµ0

∂Hz

∂y
, (2.16)

(k2 − β2)E y = iβ
∂E z

∂y
− iωµ0

∂Hz

∂x
, (2.17)

(k2 − β2)Hx = iβ
∂Hz

∂x
− iωε

∂E z

∂y
, (2.18)

(k2 − β2)Hy = iβ
∂Hz

∂y
+ iωε

∂E z

∂x
, (2.19)

where

k2 = ω2µ0ε(x, y) (2.20)

is a function of x and y to account for the transverse spatial inhomogeneity of the
waveguide structure.

The relations in (2.16)–(2.19) are generally true for a longitudinally homogeneous
waveguide of any transverse geometry and any transverse index profile where ε(x, y) is
not a function of z. They are equally true for step-index and graded-index waveguides.
In waveguides that have circular cross sections, such as optical fibers, the x and y
coordinates of the rectangular system can be transformed to the r and φ coordinates
of the cylindrical system for similar relations. Therefore, in a waveguide, once the
longitudinal field components, E z and Hz , are known, all field components can be
obtained. The fields in a waveguide can have various vectorial characteristics. They can
be classified based on the characteristics of the longitudinal field components.

1. A transverse electric and magnetic mode, or TEM mode, has E z = 0 and Hz = 0.
Dielectric waveguides do not support TEM modes, as can be seen from (2.16)–
(2.19).

2. A transverse electric mode, or TE mode, has E z = 0 and Hz �= 0.
3. A transverse magnetic mode, or TM mode, has Hz = 0 and E z �= 0.
4. A hybrid mode has both E z �= 0 and Hz �= 0. Hybrid modes do not appear in planar

waveguides but exist in nonplanar waveguides of two-dimensional transverse optical
confinement. The HE and EH modes of optical fibers are hybrid modes.

2.3 Wave equations

The field equations obtained in the preceding section establish the relations among the
field components. In general, it is only necessary to find E z and Hz . Then all other
components can be calculated by simply using (2.16)–(2.19). The common approach
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to finding E z and Hz is to solve the wave equations together with boundary conditions.
In this section, we examine the form of the wave equations for waveguides.

To obtain the wave equations, we need the other two Maxwell’s equations in addition
to (2.8) and (2.9). For the case of a linear, isotropic waveguide with a spatially dependent
ε(x, y) discussed here, they can be written as

∇ · (εE) = 0, (2.21)

∇ · H = 0. (2.22)

Note that (2.21) implies that

∇ · E = −∇ε

ε
· E, (2.23)

which does not vanish in general because ε(x, y) is spatially dependent. Using the four
Maxwell’s equations in (2.8), (2.9), (2.21), and (2.22), together with (2.23) and the
vector identity ∇ × ∇× = ∇∇ · −∇2, we have

∇2E + k2E = −∇
(∇ε

ε
· E
)

, (2.24)

∇2H + k2H = −∇ε

ε
× ∇ × H. (2.25)

It can be seen that the three components Ex , Ey , and Ez for the electric field are
generally coupled together because ∇ε �= 0 in a waveguide. For the same reason, Hx ,
Hy , and Hz are also coupled. This fact indicates that the vectorial characteristics of a
mode field in a waveguide are strongly dependent on the geometry and index profile of
the waveguide.

If the terms on the right-hand sides of (2.24) and (2.25) vanish, then the field com-
ponents are decoupled. This condition exists only in certain special cases. For example,
in the case of a TE mode,

∇ε ⊥ E so that ∇ε · E = 0. (2.26)

As a consequence, each component of the electric field of a TE mode satisfies a homo-
geneous scalar differential equation. The magnetic field components of a TE mode are
still coupled because the right-hand term of (2.25) does not vanish.

The index profile of a step-index waveguide is piecewise constant. We can write a
homogeneous wave equation separately for each region of constant ε because ∇ε = 0
within each region. By taking E and H in the forms of (2.1) and (2.2), respectively, and
using (2.24) and (2.25) with ∇ε = 0 for each region of constant ε, we obtain

∂2E z

∂x2
+ ∂2E z

∂y2
+ (k2

i − β2)E z = 0, (2.27)

∂2Hz

∂x2
+ ∂2Hz

∂y2
+ (k2

i − β2)Hz = 0, (2.28)
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where

k2
i = ω2µ0εi = n2

i

ω2

c2
(2.29)

is a constant for region i , which has a constant index of refraction ni . A homogeneous
equation in the same form can be written for each of the other four field components,
E x , E y , Hx , and Hy . However, it is not necessary to solve the wave equations for all
field components because the transverse field components can be found from E z andHz

using the relations in (2.16)–(2.19) once E z andHz are found. Therefore, the mode field
pattern can be obtained by solving only (2.27) and (2.28) for each region of constant
index and by requiring the fields to satisfy the boundary conditions at the interfaces
between neighboring regions. Clearly, this approach does not work for graded-index
waveguides because (2.27) and (2.28) are not valid for such waveguides.

Wave equations for planar waveguides

Homogeneous wave equations exist for planar waveguides of any index profile n(x). For
a planar waveguide, the modes are either TE or TM. Furthermore, ∂/∂y = 0 because the
index profile is independent of the y coordinate. The wave equations are substantially
simplified.

1. TE modes. For any TE mode of a planar waveguide, E z = 0. It can be seen from
(2.16)–(2.19) that E x = Hy = 0 as well because ∂Hz/∂y = 0. The only nonvanish-
ing field components are Hx , E y , and Hz . Because there is only one nonvanishing
electric field component E y , the wave equation for E y is naturally decoupled from
the other field components. Therefore, we have

∂2E y

∂x2
+ (k2 − β2)E y = 0, (2.30)

where

k2 = ω2µ0ε(x) = ω2

c2
n2(x). (2.31)

Using (2.10) and (2.12), the other two nonvanishing field components can be obtained
from E y :

Hx = − β

ωµ0
E y, (2.32)

Hz = 1

iωµ0

∂E y

∂x
. (2.33)

2. TM mode. For any TM mode of a planar waveguide,Hz = 0. Then,Hx = E y = 0
because ∂E z/∂y = 0. The only nonvanishing field components are E x , Hy , and E z .
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In this case, there is only one nonvanishing magnetic field component Hy , and the
wave equation for Hy is naturally decoupled from the other field components. From
(2.25), we have

∂2Hy

∂x2
+ (k2 − β2)Hy = 1

ε

dε

dx

∂Hy

∂x
, (2.34)

where k2 = k2(x) is the same as that given by (2.31). The other two nonvanishing
field components can be obtained from Hy :

E x = β

ωε
Hy, (2.35)

E z = − 1

iωε

∂Hy

∂x
. (2.36)

In the case of a planar waveguide, it is convenient to solve for the unique transverse
field component first: E y for a TE mode and Hy for a TM mode. The other field
components, including the longitudinal component, then follow directly. Although there
is only one nonvanishing longitudinal field component for each type of mode in a
planar waveguide, it is coupled to a transverse field component. For example, Hz of
a TE mode is coupled to Hx and is not described by a simple equation of the form
of (2.30).

2.4 Power and orthogonality

Except for evanescent fields, the energy of the fields in a waveguide flows only in the
longitudinal direction, as discussed in Section 2.1. The intensity of a waveguide mode
ν is thus given by

Iν = Sν · ẑ = (Sν + S∗
ν) · ẑ = (Eν × H∗

ν + E∗
ν × Hν) · ẑ, (2.37)

which is a function of x and y. The power, Pν , of the mode is obtained by integrating
Iν(x, y) over the entire transverse cross section of the waveguide. It can be seen that
the longitudinal components, E z and Hz , of the mode fields do not contribute to the
mode intensity or the mode power.

For TE and TM modes, the power obtained by integrating Iν(x, y) given in (2.37)
can be transformed into other forms. It can be shown, using (2.10) and (2.11), that the
power of a TE mode is simply given by

PTE = 2β

ωµ0

∞∫
−∞

∞∫
−∞

|E|2dxdy. (2.38)
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By using (2.13) and (2.14), the power of a TM mode can be expressed as

PTM = 2β

ω

∞∫
−∞

∞∫
−∞

1

ε(x, y)
|H|2dxdy. (2.39)

In a lossless isotropic waveguide, the mode fields have the following orthogonality
relation:

∞∫
−∞

∞∫
−∞

(Eν × H∗
µ + E∗

µ × Hν

) · ẑdxdy = ±Pνδνµ. (2.40)

The mode fields can be normalized to have the following orthonormality relation:

∞∫
−∞

∞∫
−∞

(
Êν × Ĥ∗

µ + Ê∗
µ × Ĥν

)
· ẑdxdy = ±δνµ, (2.41)

where the plus sign is for forward-propagating modes while the minus sign is for
backward-propagating modes. The electric and magnetic field patterns of a partic-
ular mode ν are represented by the normalized mode field distributions Êν(x, y)
and Ĥν(x, y), respectively. Here δνµ is the Kronecker delta function for discrete
modes. For a nonplanar waveguide, ν = mn and µ = m ′n′; hence δνµ = δmm ′δnn′ .
For a planar waveguide, ν = m, µ = m ′, and δνµ = δmm ′ . For continuous modes, δνµ

has to be replaced by the Dirac delta function δ(ν − µ). For a nonplanar waveguide,
δ(ν − µ) = δ(a − a′)δ(b − b′) for ν = ab and µ = a′b′. The Dirac delta function is
defined as

δ(ν − µ) =
{

0, ν �= µ,

∞, ν = µ,
(2.42)

and
∞∫

−∞
δ(ν)dν = 1. (2.43)

For TE modes, the orthonormality relation in (2.41) can be transformed to

2βν

ωµ0

∞∫
−∞

∞∫
−∞

Êν · Ê∗
µdxdy = δνµ. (2.44)

For TM modes, we have

2βν

ω

∞∫
−∞

∞∫
−∞

1

ε(x, y)
Ĥν · Ĥ∗

µdxdy = δνµ. (2.45)
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The orthogonality relation in (2.40), or the orthonormality relation in (2.41), indicates
that power cannot be transferred between different modes in a linear, lossless waveguide.

For anisotropic or lossy waveguides, (2.40) and (2.41) do not apply, neither do
(2.44) and (2.45). The orthogonality conditions for modes of such waveguides have
other forms.

2.5 Step-index planar waveguides

A step-index planar waveguide is also called a slab waveguide. We have used it in
Section 2.1 with the approach of ray optics to illustrate an intuitive picture and some
basic characteristics of the wave behavior in a waveguide. In this section, the important
characteristics of a slab waveguide are discussed, beginning with solution of the wave
equations developed in Section 2.3. The structure and parameters of the three-layer slab
waveguide under discussion are shown in Fig. 2.4.

Normalized waveguide parameters

The mode properties of a waveguide are commonly characterized in terms of a few
dimensionless normalized waveguide parameters. The normalized frequency and wave-
guide thickness, also known as the V number, of a step-index planar waveguide is
defined as

V = 2π

λ
d
√

n2
1 − n2

2 = ω

c
d
√

n2
1 − n2

2, (2.46)

where d is the thickness of the waveguide core. The propagation constant β can be
represented by the following normalized guide index:

b = β2 − k2
2

k2
1 − k2

2

= n2
β − n2

2

n2
1 − n2

2

, (2.47)

Figure 2.4 Three-layer planar slab waveguide.
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where nβ = cβ/ω = βλ/2π is the effective refractive index of the waveguide mode
that has a propagation constant β. The measure of the asymmetry of the waveguide is
represented by an asymmetry factor a, which depends on the polarization of the mode
under consideration. For TE modes, we have

aE = n2
2 − n2

3

n2
1 − n2

2

. (2.48)

For TM modes, we have

aM = n4
1

n4
3

· n2
2 − n2

3

n2
1 − n2

2

. (2.49)

Note that for a given asymmetric structure, aM > aE. For symmetric waveguides, n3 =
n2 and aE = aM = 0.

Mode parameters

For a guided mode, k1 > β > k2 > k3. Therefore, positive real parameters h1, γ2, and
γ3 exist such that

k2
1 − β2 = h2

1, (2.50)

β2 − k2
2 = γ 2

2 , (2.51)

β2 − k2
3 = γ 2

3 . (2.52)

In correlation with the discussions in Section 2.1 leading to (2.7), it can be seen from
(2.50) that h1 = k1 cos θ , which has the meaning of the transverse component of the
wavevector in the core region of a refractive index n1. For a guided mode, the transverse
components of the wavevectors in the substrate and cover regions given by h2 = (k2

2 −
β2)1/2 and h3 = (k2

3 − β2)1/2, respectively, are purely imaginary because β > k2 > k3.
The field of the guided mode has to decay exponentially in the transverse direction in
the substrate and cover regions with γ2 = |h2| and γ3 = |h3| being the decay constants
in these regions.

For a substrate radiation mode, k1 > k2 > β > k3. Then h2 can be chosen to be real
and positive, and (2.51) is replaced by

k2
2 − β2 = h2

2, (2.53)

while (2.52) is still valid in this case. For a substrate–cover radiation mode, k1 > k2 >

k3 > β. Then both h2 and h3 are real and positive. In this case, in addition to replacing
(2.51) with (2.53), (2.52) is replaced by

k2
3 − β2 = h2

3. (2.54)

The transverse field pattern of a mode is characterized by the transverse parameters
h1, γ2 (or h2), and γ3 (or h3). Because k1, k2, and k3 are well-defined parameters of a
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given waveguide, the only parameter that has to be determined for a particular wave-
guide mode is the longitudinal propagation constant β. Once the value of β is found,
the parameters associated with the transverse field pattern are completely determined.
Therefore, a waveguide mode is completely specified by its β. Alternatively, if any one
of its transverse parameters, such as h1 for most instances, is determined, the value
of its β is also determined, by (2.50), and the mode is completely specified also. As
will be seen in the following, this approach is commonly taken for solving the normal
modes of a waveguide.

Guided TE modes

The fields of a TE mode are obtained by solving (2.30) for E y and by using (2.32) and
(2.33) for Hx and Hz , respectively. The boundary conditions require that E y , Hx , and
Hz be continuous at the interfaces at x = ±d/2 between layers of different refractive
indices. From (2.32) and (2.33), it can be seen that this is equivalent to requiring E y

and ∂E y/∂x be continuous at these interfaces.
For a guided mode, we have to use h1, γ2, and γ3 defined above for the transverse

field parameters in the core, substrate, and cover regions, respectively. The solutions of
(2.30) and the requirement of the boundary conditions yield the following mode field
distribution:

Ê y = CTE




cos(h1d/2 − ψ) exp[γ3(d/2 − x)], x > d/2,

cos(h1x − ψ), −d/2 < x < d/2,

cos(h1d/2 + ψ) exp[γ2(d/2 + x)], x < −d/2,

(2.55)

and the following eigenvalue equations:

tan h1d = h1(γ2 + γ3)

h2
1 − γ2γ3

(2.56)

and

tan 2ψ = h1(γ2 − γ3)

h2
1 + γ2γ3

. (2.57)

To normalize the mode field, we apply the normalization relation of (2.44) to the field
in (2.55). This procedure yields

CTE =
√

ωµ0

βdE

, (2.58)

where

dE = d + 1

γ2
+ 1

γ3
(2.59)

is the effective waveguide thickness for a guided TE mode.
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Guided TM modes

The fields of a TM mode are obtained by solving (2.34) for Hy and by using (2.35) and
(2.36) for E x and E z , respectively. Note that for the step-index waveguide considered
here, dε/dx = 0 in each waveguide layer except at the boundaries. The boundary
conditions require that Hy , εE x , and E z be continuous at the interfaces at x = ±d/2
between layers of different refractive indices. Note that E x is not continuous because
it is the electric field component normal to the interfaces where discontinuities in ε

occur. Similarly, ∂Hy/∂x is not continuous at the interfaces. Rather, it is ε−1∂Hy/∂x ,
or n−2∂Hy/∂x , that is continuous at the interfaces. Therefore, the boundary conditions
are simply that Hy and n−2∂Hy/∂x are continuous at the interfaces.

For a guided TM mode, the solutions of (2.34) and the requirement of the boundary
conditions yield the following mode field distribution:

Ĥy = CTM




cos(h1d/2 − ψ) exp[γ3(d/2 − x)], x > d/2,

cos(h1x − ψ), −d/2 < x < d/2,

cos(h1d/2 + ψ) exp[γ2(d/2 + x)], x < −d/2,

(2.60)

and the following eigenvalue equations:

tan h1d = (h1/n2
1)(γ2/n2

2 + γ3/n2
3)

(h1/n2
1)2 − γ2γ3/n2

2n2
3

(2.61)

and

tan 2ψ = (h1/n2
1)(γ2/n2

2 − γ3/n2
3)

(h1/n2
1)2 + γ2γ3/n2

2n2
3

. (2.62)

To normalize the mode field, we apply the normalization relation of (2.45) to the field
in (2.60). This procedure yields

CTM =
√

ωε0n2
1

βdM

, (2.63)

where the effective waveguide thickness for a guided TM mode is

dM = d + 1

γ2q2
+ 1

γ3q3
(2.64)

and

q2 = β2

k2
1

+ β2

k2
2

− 1, (2.65)

q3 = β2

k2
1

+ β2

k2
3

− 1. (2.66)
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Modal dispersion

Guided modes have discrete allowed values of β. They are determined by the allowed
values of h1 because β and h1 are directly related to each other through (2.50). Because
γ2 and γ3 are uniquely determined by β through (2.51) and (2.52), respectively, they
are also uniquely determined by h1. In terms of the normalized waveguide parameters,
we have

γ 2
2 d2 = β2d2 − k2

2d2 = V 2 − h2
1d2, (2.67)

γ 2
3 d2 = β2d2 − k2

3d2 = (1 + aE)V 2 − h2
1d2. (2.68)

Therefore, there is only one independent variable h1 in the eigenvalue equations,
(2.56) for TE modes and (2.61) for TM modes. The solutions of (2.56) yield the al-
lowed parameters for guided TE modes, while those of (2.61) yield the parameters for
guided TM modes. A transcendental equation such as (2.56) or (2.61) is usually solved
graphically by plotting its left- and right-hand sides as a function of h1d while using
(2.67) and (2.68) to replace γ2 and γ3 by expressions in terms of h1d. The solutions
yield the allowed values of β, or the normalized guide index b, as a function of the
parameters a and V. The results for the first few guided TE modes are shown in Fig. 2.5.
For a given waveguide, a guided TE mode has a larger propagation constant than the
corresponding TM mode of the same order:

βTE
m > βTM

m . (2.69)

However, for ordinary dielectric waveguides where n1 − n2 � n1, the difference is
very small. Then Fig. 2.5 can be used approximately for TM modes with a = aM.

Figure 2.5 Allowed values of normalized guide index b as a function of the V number and the
asymmetry factor aE for the first three guided TE modes. The cutoff value Vc for a mode is the
value of V at the intersection of its dispersion curve with the horizontal axis.
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Figure 2.6 Mode propagation constant β as a function of optical frequency ω for a given
step-index dielectric waveguide.

For a given waveguide, the values of aE and aM, as well as those of d and n2
1 − n2

2,
are fixed. Then, β is a function of optical frequency ω because V depends on ω.
Figure 2.6 illustrates a typical relation between β and ω for guided modes of different
orders.

Comparing β, k1, and k2 in Fig. 2.6, it is seen that the propagation constant of a wave-
guide mode has a frequency dependence contributed by the structure of the waveguide in
addition to that due to material dispersion. This extra contribution also causes different
modes to have different dispersion properties, resulting in the phenomenon of modal
dispersion. Polarization dispersion also exists because TE and TM modes generally
have different propagation constants. Polarization dispersion is very small in weakly
guiding waveguides where n1 − n2 � n1.

EXAMPLE 2.1 An asymmetric slab waveguide is made of a polymer layer of thickness
d = 1 µm deposited on a silica substrate. At 1 µm optical wavelength, n1 = 1.77 for the
polymer guiding layer, n2 = 1.45 for the silica substrate, and n3 = 1 for the air cover.
Find the propagation constants of the guided TE and TM modes of this waveguide. Plot
the mode field distributions.

Solution With the given parameters of the waveguide, we find that V = 6.378,
aE = 1.07, and aM = 10.5 by using (2.46), (2.48), and (2.49). We also find that k1 =
2πn1/λ = 11.12 µm−1, k2 = 2πn2/λ = 9.11 µm−1, and k3 = 2πn3/λ = 6.28 µm−1.
To find the propagation constant, the parameter h1 has to be found by solving (2.56)
for a TE mode or (2.61) for a TM mode. To solve the eigenvalue equations, we take
the variable ξ = h1d and express γ2d and γ3d in terms of ξ by using the relations in
(2.67) and (2.68):

γ2d = (V 2 − ξ 2)1/2 and γ3d = [(1 + aE)V 2 − ξ 2]1/2.
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Then the eigenvalue equation in (2.56) for the TE mode can be expressed in terms of a
single variable ξ as

tan ξ = ξ
(V 2 − ξ 2)1/2 + [(1 + aE)V 2 − ξ 2]1/2

ξ 2 − (V 2 − ξ 2)1/2[(1 + aE)V 2 − ξ 2]1/2
,

and the eigenvalue equation in (2.61) for the TM mode can be expressed as

tan ξ = ξ
n2

1n2
3(V 2 − ξ 2)1/2 + n2

1n2
2[(1 + aE)V 2 − ξ 2]1/2

n2
2n2

3ξ
2 − n4

1(V 2 − ξ 2)1/2[(1 + aE)V 2 − ξ 2]1/2
.

These equations yield only discrete eigenvalues for given values of waveguide param-
eters n1, n2, n3, V, and aE. They are transcendental equations that have to be solved
graphically or numerically. With given waveguide parameters, numerical solution yields
two eigenvalues for each of the two equations, indicating two guided TE modes and two
guided TM modes. Once the eigenvalues for ξ are found, h1, γ2, and γ3 are found. They
can be used to find the phase ψ from (2.57) for a TE mode and from (2.62) for a TM
mode. The propagation constant can be found using (2.50) as β = (k2

1 − h2
1)1/2. The

effective waveguide thickness can be calculated directly from (2.59) for a TE mode and
from (2.64) for a TM mode. The numerical results, as well as the confinement factors
�TE and �TM discussed later, are summarized below.

h1 γ2 γ3 ψ β dE, dM

(µm−1) (µm−1) (µm−1) (rad) (µm−1) (µm) �TE, �TM

TE0 2.47 5.88 8.84 −0.06 10.8432 1.28 0.974
TM0 2.73 5.76 8.76 −0.10 10.7800 1.17 0.977
TE1 4.86 4.13 7.78 π/2 − 0.15 10.0036 1.37 0.871
TM1 5.28 3.58 7.50 π/2 − 0.28 9.7873 1.36 0.834

We see from the listed values that a TE mode has a larger propagation constant than
a TM mode of the same order, confirming the relation stated in (2.69). Among all of
the modes found for this waveguide, β has the largest value for the TE0 mode and
the smallest value for the TM1 mode. Using the mode parameters listed above, the
distributions of Ê y(x) given in (2.55) for the TE modes and Ĥy(x) given in (2.60) for
the TM modes are plotted in Fig. 2.7.

µ

Figure 2.7 Transverse mode field distributions. These field profiles are plotted from real data.
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Cutoff conditions

As discussed above, γ2 and γ3 are real and positive for a guided mode, so that the fields
of the mode decay exponentially in the transverse direction outside the core region and
remain bound to the core. This is equivalent to the condition that θ > θc2 > θc3 in the
ray optics picture illustrated in Fig. 2.3 so that the ray in the core is totally reflected by
both interfaces. Because θc2 > θc3, the transition from a guided mode to an unguided
radiation mode occurs when θ = θc2. This corresponds to the condition that β = k2 and
γ2 = 0. As can be seen from the mode field solutions in (2.55) and (2.60), the fields
extend to infinity on the substrate side for γ2 = 0. This defines the cutoff condition for
guided modes. The cutoff condition is determined by γ2 = 0, rather than by γ3 = 0,
because γ3 > γ2 and γ2 reaches zero first as their values are reduced.

At cutoff, V = Vc. The cutoff value Vc for a particular guided mode is the value of
V at the point where the curve of its b versus V dispersion relation, shown in Fig. 2.5,
intersects with the horizontal axis b = 0. From (2.67) and (2.68), we find by setting
γ2 = 0 that

h1d = Vc and γ3d = √
aEVc (2.70)

at cutoff. Substitution of (2.70) and γ2 = 0 in (2.56) for a guided TE mode yields

tan Vc = √
aE. (2.71)

Therefore, the cutoff condition for the mth guided TE mode is

V c
m = tan−1√aE + mπ, m = 0, 1, 2, . . . (2.72)

A similar mathematical procedure yields the following cutoff condition for the mth
guided TM mode:

V c
m = tan−1√aM + mπ, m = 0, 1, 2, . . . (2.73)

Because aM > aE for a given asymmetric waveguide, the value of Vc for a TM mode
is larger than that for a TE mode of the same order.

Using (2.46), we can write

V c
m = 2π

λc
m

d
√

n2
1 − n2

2 = ωc
m

c
d
√

n2
1 − n2

2, (2.74)

where λc
m is the cutoff wavelength, λc, and ωc

m is the cutoff frequency, ωc, of the mth
mode. The mth mode is not guided at a wavelength longer than λc

m , or a frequency lower
than ωc

m . For given waveguide parameters, (2.72) and (2.73) can be used to determine
the cutoff wavelengths of TE and TM modes, respectively, from (2.74). For a given
optical wavelength, they can be used to determine the waveguide parameters that
allow the existence of a particular guided mode. For given waveguide parameters and
optical wavelength, they can be used to determine the number of guided modes for the
waveguide. Therefore, for a given optical wavelength and a waveguide with a given V
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number, the total number of guided TE modes is simply

MTE =
[

V

π
− 1

π
tan−1√aE

]
int

, (2.75)

while that of the guided TM modes is

MTM =
[

V

π
− 1

π
tan−1√aM

]
int

, (2.76)

where []int means the nearest integer larger than the value in the bracket.
A waveguide with M = 1 that supports only the fundamental TE0 and/or TM0 mode

is called a single-mode waveguide. A waveguide that also supports any number of
high-order modes is a multimode waveguide.

EXAMPLE 2.2 For the waveguide given in Example 2.1, verify that there are exactly two
guided TE modes and two guided TM modes, as is found in the solution of Example 2.1.
If the thickness d of the polymer layer is reduced without changing the index profile of
the structure, which among these four modes gets cut off first? At what value of d is it
cut off?

Solution We already find that V = 6.378, aE = 1.07, and aM = 10.5 for the wave-
guide with d = 1µm and other parameters given in Example 2.1. Therefore, by applying
(2.75) and (2.76), we find that

MTE =
[

6.378

π
− 1

π
tan−1

√
1.07

]
int

= [1.77]int = 2

and

MTM =
[

6.378

π
− 1

π
tan−1

√
10.5

]
int

= [1.63]int = 2,

verifying that there are exactly two guided TE modes and two guided TM modes.
From (2.72) and (2.73), we learn that (1) for TE and TM modes of the same mode

number, the TM mode has a larger value of Vc because aM > aE; and (2) among modes
of the same polarization, a higher-order mode has a larger value of Vc. Therefore, among
all guided modes found in a waveguide, the highest-order TM mode gets cut off first
when the V value is reduced. For the problem under consideration, the TM1 mode is
cut off first as d is reduced so that the value of V is reduced. Using (2.73) we find that
the waveguide does not support the TM1 mode when

V < V c
1 = tan−1

√
10.5 + π = 4.413.

This condition yields d < 0.69 µm, by using (2.46), for the TM1 mode to be cut off from
the waveguide. For V = 4.413 corresponding to d = 0.69 µm, MTE = [1.15]int = 2.
Therefore, the TE1 mode is still supported when TM1 reaches its cutoff point.
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Mode confinement

The mode confinement factor, �mode, of a guided mode is defined as the fraction of
its power in the core region. In an active waveguide, such as that in a semiconductor
laser or in a waveguide amplifier, the core guiding region is where the optical gain is,
whereas the substrate and cover regions are usually passive media without an optical
gain. Only the fraction of power in the core region sees a gain, and the effective gain
of a given mode is proportionally reduced. Therefore, the confinement factor is very
important in assessing the effective gain of an active optical waveguide for a particular
guided mode.

Because the power of a TE mode can be calculated using (2.38), the confinement
factor for a TE mode in a slab waveguide is given by

�TE =

d/2∫
−d/2

|E y(x)|2dx

∞∫
−∞

|E y(x)|2dx

= 2β

ωµ0

d/2∫
−d/2

|Ê y(x)|2dx . (2.77)

For a TM mode, the power can be calculated using (2.39), and the confinement factor
is given by

�TM =

d/2∫
−d/2

n−2
1 |Hy(x)|2dx

∞∫
−∞

n−2(x)|Hy(x)|2dx

= 2β

ωε1

d/2∫
−d/2

|Ĥy(x)|2dx = 2ωε1

β

d/2∫
−d/2

|Ê x (x)|2dx . (2.78)

Using (2.55) to carry out the integration in (2.77) together with (2.56) and (2.57) to
simplify the expression, it can be shown that

�TE = 1

dE

(
d + 1

γ2
· 1

1 + h2
1/γ

2
2

+ 1

γ3
· 1

1 + h2
1/γ

2
3

)
. (2.79)

A similar procedure using (2.60) in (2.78) together with (2.61) and (2.62) yields

�TM = 1

dM

(
d + 1

γ2q2
· 1

1 + h2
1/γ

2
2

+ 1

γ3q3
· 1

1 + h2
1/γ

2
3

)
. (2.80)

As discussed earlier and displayed in (2.69), for guided modes of the same order,
the TE mode has a larger propagation constant than the corresponding TM mode,
βTE > βTM. Therefore, from (2.50)–(2.52), we also have

hTE
1 < hTM

1 , γ TE
2 > γ TM

2 , and γ TE
3 > γ TM

3 (2.81)
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Figure 2.8 Confinement factors of the fundamental TE and TM modes of a symmetric slab
waveguide as a function of the waveguide V number. �TE is a function of V only, but �TM is a
function of both V and n1/n2. The solid curves are obtained from the exact relations of (2.91) for
�TE and (2.92) for �TM with n1/n2 = 1.09. For comparison, the dashed curve shows the values of
�TE obtained from the approximate formula of (2.93).

for TE and TM modes of the same order. Because q2 and q3 defined in (2.65) and (2.66)
for a TM mode can be either larger or smaller than unity, the relationship between dE and
dM and that between �TE and �TM for modes of the same order are less straightforward.
Indeed, for a given mode order, �TE can be either larger or smaller than �TM, but the
difference between them is small. For modes of the same polarization, however, a low-
order mode is more confined than a high-order mode. Therefore, we can only state that

�TE ≈ �TM, but �m > �m+1. (2.82)

The fundamental TE mode has the largest propagation constant but it may or may not
have the largest confinement factor. Either the fundamental TE or the fundamental TM
mode has the largest confinement factor among all guided modes. The confinement
factors for the fundamental TE and TM modes of a symmetric waveguide where
n2 = n3 is shown in Fig. 2.8.

EXAMPLE 2.3 Find the confinement factors for the guided TE and TM modes determined
in Example 2.1 and compare them among modes of different polarizations and modes
of different orders.

Solution With the values of h1, γ2, and γ3, as well as those of dE and dM, found
and listed in Example 2.1, the confinement factors can be calculated using (2.79) and
(2.80) for the TE and TM modes, respectively. The results are listed in the last column
of the table in Example 2.1. By examining the values of the confinement factors for
different modes, we find the following characteristics. (1) The confinement factors for
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TE and TM modes of the same order are about the same. There is no clear pattern
that indicates whether a TE mode or a TM mode has a larger confinement factor. For
example, the TM0 mode has a slightly larger confinement factor than the TE0 mode,
but the relationship is reversed between TE1 and TM1 modes. (2) Among modes of the
same polarization but different orders, it is clear that the confinement factor decreases
as the mode order increases. For example, the TE0 mode has a larger confinement factor
than the TE1 mode. The same statement can be made for TM modes.

2.6 Symmetric slab waveguides

In a symmetric slab waveguide, n3 = n2 and aE = aM = 0. In addition, we also have
γ3 = γ2. Then, it can be seen from (2.57) and (2.62) that tan 2ψ = 0 and

ψ = mπ

2
, m = 0, 1, 2, . . . , (2.83)

for both TE and TM modes. Therefore, the mode field patterns of a symmetric waveguide
given by (2.55) and (2.60) are either even functions of x with cos h1x in the region
−d/2 < x < d/2 for even values of m or odd functions of x with sin h1x in the region
−d/2 < x < d/2 for odd values of m. This characteristic is expected because the mode
field pattern in a symmetric structure is either symmetric or antisymmetric. Figure 2.9
shows the field patterns and the corresponding intensity distributions of the first few
guided modes of a symmetric slab waveguide.

(a)

(b)

Figure 2.9 (a) Field patterns and (b) intensity distributions of the first few guided modes of a
symmetric slab waveguide.
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By equating γ3 to γ2 and using the following identity

tan 2θ = 2 tan θ

1 − tan2 θ
= 2 cot θ

cot2 θ − 1
, (2.84)

the eigenvalue equation (2.56) for TE modes can be transformed to the following two
equations:

tan
h1d

2
= γ2

h1
, for even modes, (2.85)

−cot
h1d

2
= γ2

h1
, for odd modes, (2.86)

which yield the allowed parameters of guided TE modes. These two equations can be
combined in one eigenvalue equation for all guided TE modes:

tan

(
h1d

2
− mπ

2

)
= γ2

h1
=
√

V 2 − h2
1d2

h1d
, m = 0, 1, 2, . . . , (2.87)

where m is the same mode number as the one in (2.83). Using (2.61), a similar procedure
yields

tan

(
h1d

2
− mπ

2

)
= n2

1

n2
2

γ2

h1
= n2

1

n2
2

√
V 2 − h2

1d2

h1d
, m = 0, 1, 2, . . . , (2.88)

for guided TM modes. The solutions of (2.87) yield the allowed values of h1d for a
given value of the waveguide parameter V for both even and odd TE modes. Those of
(2.88) yield the allowed values of h1d for both even and odd TM modes. Figure 2.10
shows an example with V = 5π . Because n1 > n2, it can be seen from comparison of
(2.87) and (2.88) and from the graphic solution shown in Fig. 2.10 that for modes of
the same order, hTE

1 < hTM
1 . This is consistent with the conclusion obtained from the

general discussions in the preceding section.
Because aE = aM = 0, TE and TM modes of a symmetric waveguide have the same

cutoff condition:

V c
m = mπ (2.89)

for the mth TE and TM modes alike. This can also be seen in Fig. 2.10. Because m = 0
for the fundamental modes, neither fundamental TE nor fundamental TM mode in a
symmetric waveguide has cutoff. Any symmetric dielectric waveguide supports at least
one TE and one TM mode. The number of TE modes supported by a given symmetric
waveguide is the same as that of the TM modes and is simply

MTE = MTM =
[

V

π

]
int

. (2.90)

These conclusions are unique to symmetric waveguides. They are not true for an asym-
metric waveguide. For example, a guided mode for an asymmetric slab waveguide at a
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tan(h1d     m   )2 2

Figure 2.10 Graphic solutions for the eigenvalues of guided TE and TM modes of a symmetric
waveguide of V = 5π . The intersections of dashed and solid curves yield the values of h1d for
eigenmodes.

given optical frequency may not exist because both its fundamental TE and TM modes
have a nonzero cutoff.

The confinement factors of the modes of a symmetric waveguide have the following
simple forms:

�TE = γ2d(V 2 + 2γ2d)

V 2(2 + γ2d)
(2.91)

and

�TM = γ2d(q2V 2 + 2γ2d)

V 2(2 + q2γ2d)
. (2.92)

In general, the confinement factor has to be calculated by first solving the eigenvalue
equation of a particular mode to find the mode parameters and then by using (2.91)
or (2.92), or, in the case of an asymmetric waveguide, (2.79) or (2.80). However, for
the fundamental TE mode of a symmetric slab waveguide, the following approximate
formula can be used:

�TE
0 = V 2

2 + V 2
. (2.93)

Note that (2.93) is a function of V only. Thus, it can be used to calculate the confinement
factor of the fundamental TE mode without knowing the mode parameters. It has an
error of less than 1.5%.

EXAMPLE 2.4 A symmetric slab waveguide, shown in Fig. 2.11, is made by covering
the structure in Example 2.1 with silica, thus sandwiching a polymer layer of thickness
d = 1 µm between the silica substrate and cover as shown. At 1 µm optical wavelength,
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n1 = 1.77 for the polymer guiding layer, and n2 = 1.45 for the silica substrate and
cover. How many guided TE and TM modes are supported by this waveguide? Find the
propagation constants and the confinement factors for the guided TE and TM modes
of this waveguide.

µ

Figure 2.11 Symmetric slab waveguide.

Solution With the given parameters of the waveguide, we have V = 6.378, k1 =
11.12 µm−1, and k2 = 9.11 µm−1. Using (2.90), we find that the waveguide now
supports three TE modes and three TM modes because

MTE = MTM =
[

6.378

π

]
int

= [2.03]int = 3.

Compared with the asymmetric waveguide in Example 2.1, two additional modes, TE2

and TM2, are supported by this symmetric waveguide. Because V/π = 2.03 is very
close to the integer 2, however, these two modes are only slightly above cutoff.

The mode characteristics of this asymmetric waveguide can be found in a procedure
similar to, but much simpler than, that used to find those of the asymmetric waveguide
in Example 2.1. By taking ξ = h1d, we see that the eigenvalue equations (2.87) and
(2.88) are already expressed in terms of the variable ξ . They can be solved numerically
to find the values of h1 for the guided TE and TM modes. Then, β = (k2

1 − h2
1)1/2 and

γ2 = (β2 − k2
2)1/2 are found. The phase shift ψ need not be solved because it is simply

ψ = mπ/2 for the mth mode. By setting γ3 = γ2 for the symmetric waveguide, the
effective waveguide thickness can be calculated from (2.59) for a TE mode and from
(2.64) for a TM mode. The confinement factors are found using (2.91) and (2.92) for
TE and TM modes, respectively. The numerical characteristics of the guided modes of
this symmetric waveguide are summarized below.

h1 γ2 ψ β dE, dM

(µm−1) (µm−1) (rad) (µm−1) (µm) �TE, �TM

TE0 2.38 5.92 0 10.8641 1.34 0.965
TM0 2.57 5.84 0 10.8208 1.25 0.967
TE1 4.65 4.37 π/2 10.1027 1.46 0.833
TM1 4.92 4.06 π/2 9.9746 1.49 0.804
TE2 6.37 0.28 π 9.1150 8.08 0.125
TM2 6.37 0.20 π 9.1127 16.2 0.063
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We still see the same characteristics as those in Example 2.1 that a TE mode has a
larger propagation constant than a TM mode of the same order and that the TE0 mode
has the largest propagation constant. The characteristics discussed in Example 2.2 for
the confinement factors are also seen here for the symmetric waveguide. Compared with
the asymmetric waveguide in Example 2.1, it is interesting to see that the symmetric
waveguide now supports TE2 and TM2 modes because of the increased index in the cover
layer from 1, of the air, to 1.45, of silica. Because these two modes are very close to the
cutoff point, they have very small values of γ2. As a consequence, their fields penetrate
deeply into the cover and the substrate, resulting in their large effective thicknesses and
small confinement factors. Meanwhile, their propagation constants are only slightly
larger than k2 of the substrate and cover. The field and intensity distributions of these
modes have the characteristics of the symmetric waveguide modes shown in Fig. 2.9
and are not repeated here.

We can use (2.93) to obtain an estimate of �TE
0 ≈ 0.953 for V = 6.378. Compared

with the actual confinement factor of 0.965 for the TE0 mode listed above, the error of
(2.93) is only 1.2% in this case.

2.7 Graded-index planar waveguides

In the preceding two sections, we have considered slab waveguides that have step-index
profiles. In this section, we consider graded-index planar waveguides, which do not have
the piecewise-constant index profiles of step-index waveguides. Two types of graded-
index planar waveguides, shown in Fig. 2.12, are of practical interest. One is the smooth

Figure 2.12 Two types of graded-index planar waveguides: (a) smooth graded-index waveguide
with a completely smooth graded-index profile and (b) step-bounded graded-index waveguide with
a graded-index profile bounded by an index step on one side. The index values of n1 = 2.232,
n2 = 1.700, and n3 = 1.000 are used for these profiles. At x = a and x = b, n(x) = n2.
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graded-index waveguide, which has a smooth index profile across its entire structure in
the x direction, as shown in Fig. 2.12(a). The other is the step-bounded graded-index
waveguide, which has a graded-index profile on one side but is bounded by a step-
index boundary on the other side of its core, shown in Fig. 2.12(b). A graded-index
planar waveguide can be either asymmetric or symmetric. For the purpose of general
discussion, we consider the index profiles shown in Fig. 2.12 with the index at the peak
of the profile in the waveguide core being n1 and the indices of the substrate and the cover
far away from the core of the waveguide being n2 and n3, respectively, where n1 > n2 >

n3 in consistency with the designation of these three indices throughout this chapter.
The waveguide core is the region between the two points x = a and x = b defined by
n(a) = n(b) = n2 within which an index n(x) larger than both n2 and n3 can be found.

The discussions in Section 2.3 regarding planar waveguides apply to graded-index
planar waveguides as well. Many of the general qualitative conclusions obtained in
Section 2.5 for step-index planar waveguides are also valid for graded-index planar
waveguides. The modes of graded-index planar waveguides are still either TE or TM.
It is also true that the fundamental mode is TE0 and that βTE

m > βTM
m .

The guided TE modes can be found by solving (2.30),

∂2E y

∂x2
+ [k2(x) − β2

] E y = 0, (2.94)

for E y(x), followed by using (2.32) and (2.33) to obtain Hx (x) and Hz(x), respectively.
Similarly, the guided TM modes can be found by solving (2.34),

∂2Hy

∂x2
+ [k2(x) − β2

]Hy = 1

ε

dε

dx

∂Hy

∂x
, (2.95)

for Hy(x), followed by using (2.35) and (2.36) to obtain E x (x) and E z(x), respectively.
For a graded-index waveguide, the propagation constant

k(x) = ω

c
n(x) = 2π

λ
n(x) (2.96)

is a spatially varying function of x . Therefore, (2.94) and (2.95) cannot be readily solved
analytically. Though such second-order ordinary differential equations can be solved
numerically, here we are interested in gaining physical insight into the waveguide
characteristics without resorting to complete numerical solutions. For this purpose,
we consider the common situation where the term on the right-hand side of (2.95) is
very small compared with ∂2Hy/∂x2 so that it can be neglected for (2.95) to take the
form of (2.94) approximately. We then find that these equations have the form of the
Schrödinger equation in quantum mechanics. Approximate solutions can be obtained
using the Wentzel–Kramers–Brillouin (WKB) approximation developed in quantum
mechanics for solving the Schrödinger equation of a general graded potential.

The central concept of the WKB method is to realize the fact that a guided mode
can be established if it forms a standing wave pattern in the transverse x direction
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Figure 2.13 Standing wave patterns for guided modes of m = 8 of (a) the smooth graded-index
planar waveguide and (b) the step-bounded graded-index planar waveguide, which are shown in
Figs. 2.12(a) and (b), respectively. Calculated using the index profiles given in Fig. 2.12, these
mode patterns show oscillatory field variations in the region between x = x2 and x = x3 and
decaying fields outside.

that has oscillatory spatial variations in a certain region within the waveguide core
but has decaying fields away from the core in the substrate and cover, as illustrated in
Fig. 2.13. As discussed in Section 2.1, the condition for such a standing wave pattern to
be formed is that the total phase shift in a round-trip transverse passage be an integral
multiple of 2π . This condition is given in (2.7) for a step-index planar waveguide. A
similar, but more complicated, condition can be obtained for a graded-index planar
waveguide without going through the detailed WKB analysis by simply modifying
(2.7). The key point here is to realize that the first term, 2k1d cos θ , in (2.7) is the
round-trip phase shift through the oscillatory region in the x direction. We notice that
k1 cos θ = h1 = (k2

1 − β2)1/2 for a step-index waveguide and that d is the range of the
oscillatory region in the waveguide. For a graded-index waveguide, k1 has to be replaced
by k(x), and the oscillatory region is where k(x) > β so that the following function

p2(x) = k2(x) − β2 (2.97)

has positive values. Therefore, as seen in Fig. 2.13, the oscillatory region for a given
mode of propagation constant β is the range bounded by the two turning points x = x2

and x = x3, where p(x2) = p(x3) = 0 for k(x2) = k(x3) = β. In the oscillatory region,
where x2 < x < x3, we have p2(x) > 0 so that a real, positive square root p(x) =(
k2(x) − β2

)1/2
exists. In the evanescent regions, where x < x2 and x3 < x , p2(x) < 0

and its square roots are purely imaginary.
From these discussions, it is clear that the following condition can be obtained for

the guided modes of a graded-index planar waveguide:

2

x3∫
x2

[
k2(x) − β2

]1/2
dx = 2mπ − ϕ2 − ϕ3, m = 0, 1, 2, . . . , (2.98)
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where x2 and x3 are the roots of p2(x) = k2(x) − β2 = 0. Because x2, x3, ϕ2, and ϕ3

are all functions of β, this equation has to be solved self-consistently for β with a
given integer m for the mth-order mode. The phase shifts, ϕ2 and ϕ3, are polarization
dependent as well as mode dependent; therefore, TE and TM modes have different
solutions, thus slightly different values of β, for the same value of m in (2.98). They
are (see Problem 2.1.1)

ϕ2 = −2 tan−1

[
β2 − k2(x−

2 )

k2(x+
2 ) − β2

]1/2

and ϕ3 = −2 tan−1

[
β2 − k2(x+

3 )

k2(x−
3 ) − β2

]1/2

(2.99)

for a TE mode of propagation constant β, and

ϕ2 =−2 tan−1 k2(x+
2 )

k2(x−
2 )

[
β2 − k2(x−

2 )

k2(x+
2 ) − β2

]1/2

and ϕ3 =−2 tan−1 k2(x−
3 )

k2(x+
3 )

[
β2 − k2(x+

3 )

k2(x−
3 ) − β2

]1/2

(2.100)

for a TM mode of propagation constant β. The values of the phase shifts are in the range
of −π < ϕ2, ϕ3 < 0 for all guided modes. At x = x2, where we have assumed that the
index grading is smooth for both types of graded-index waveguides shown in Fig. 2.12,
β2 − k2(x−

2 ) = k2(x+
2 ) − β2 as x−

2 and x+
2 approach the turning point x2 infinitesimally

from the left and right, respectively. Therefore, we find that ϕ2 = −π/2 from (2.99) and
(2.100) for any guided TE or TM mode. Following the same reasoning, we also find that
ϕ3 = −π/2 for any guided TE or TM mode for the smooth graded-index waveguide
shown in Fig. 2.12(a), which has smooth index grading at x3. For the step-bounded
graded-index waveguide shown in Fig. 2.12(b), however, the value of ϕ3 cannot be so
generalized but is a function of k1 = k(x−

3 ) and k3 = k(x+
3 ), with k1 > k3, because the

turning point x3 is located at the abrupt index step.
To summarize, for a smooth graded-index waveguide, the eigenvalue equation for

the propagation constants of its guided modes can be simply expressed as

x3∫
x2

[
k2(x) − β2

]1/2
dx =

(
m + 1

2

)
π, m = 0, 1, 2, . . . (2.101)

For a step-bounded graded-index waveguide, however, the eigenvalue equation can
only be simplified to

x3∫
x2

[
k2(x) − β2

]1/2
dx =

(
m + 1

4

)
π − ϕ3

2
, m = 0, 1, 2, . . . , (2.102)

where ϕ3 takes the form in (2.99) for a TE mode and that in (2.100) for a TM mode with
k(x−

3 ) = k1 and k(x+
3 ) = k3. For both types of graded-index waveguides at locations

away from the immediate vicinity of the turning points, the unnormalized mode fields
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for a guided mode have the following asymptotic form:

TE E y(x)
TM Hy(x)

∼




1√|p(x)| exp


−

x2∫
x

|p(x ′)|dx ′


, x < x2,

2√
p(x)

cos


 x∫

x2

p(x ′)dx ′ − π

4


, x2 < x < x3,

(−1)m

√|p(x)| exp


−

x∫
x3

|p(x ′)|dx ′


, x > x3,

(2.103)

where a factor of (−1)m is used in the field pattern for x > x3 to account for the correct
phase of the field at x = x3.

Number of modes

Graded-index waveguides are often used as multimode waveguides because of their low
modal dispersion compared with step-index waveguides. This feature is discussed in
great detail for optical fibers in Section 3.5, but the concept applies generally to planar
waveguides as well. In contrast, single-mode waveguides are preferably step-index
waveguides because the step-index geometry allows precise control of the waveguide
parameters. In addition, the step-index geometry also conforms with the various junction
structures discussed in Section 13.5 for high-performance optoelectronic devices, which
normally requires single-mode characteristics.

The number of guided modes supported by a graded-index planar waveguide can be
found by finding the largest integral value of m for a solution of β from its eigenvalue
equation. Because β > k2 > k3 for any guided mode, the minimum possible value of
β is β = k2. The turning points for β = k2, which are x2 = a and x3 = b shown in
Fig. 2.12, are where k(a) = k(b) = k2 and n(a) = n(b) = n2. The number of guided
modes in a given polarization that are supported by a waveguide is found by adding 1
to the mode number of the highest guided mode because the fundamental mode has a
mode number of m = 0. For a smooth graded-index waveguide, we find that for β = k2,
the phase shifts given in (2.99) and (2.100) are not −π/4, obtained above for (2.101)
where β > k2, but are ϕ2 = ϕ3 = 0 for both TE and TM modes. Then, from (2.98), the
numbers of guided TE and TM modes supported by a smooth graded-index waveguide
as shown in Fig. 2.12(a) are

MTE = MTM =

2

λ

b∫
a

[
n2(x) − n2

2

]1/2
dx




int

, (2.104)

where []int means taking the nearest integer larger than the value in the brackets.
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For a step-bounded graded-index waveguide, we find that ϕ2 = 0 but ϕ3 =
−2 tan−1√aE for a TE mode and ϕ3 = −2 tan−1√aM for a TM mode, where aE and
aM are the asymmetric factors defined in (2.48) and (2.49), respectively. Therefore,
the numbers of guided TE and TM modes supported by a step-bounded graded-index
waveguide as shown in Fig. 2.12(b) are

MTE =

2

λ

b∫
a

[
n2(x) − n2

2

]1/2
dx − 1

π
tan−1√aE




int

(2.105)

and

MTM =

2

λ

b∫
a

[
n2(x) − n2

2

]1/2
dx − 1

π
tan−1√aM




int

. (2.106)

EXAMPLE 2.5 A planar LiNbO3 waveguide made by Ti diffusion is a step-bounded graded-
index waveguide that has an index profile like the one shown in Fig. 2.12(b). The optical
axis of the LiNbO3 crystal, which is negative uniaxial, is lined up with the z axis of
this waveguide so that both TE and TM modes see only the ordinary index no. At
λ = 1.3 µm, no = 2.222. We take the index step to be located at x = b = 0. Then
n(x) = n3 = 1 for x > 0. The graded-index profile created by Ti diffusion has the
following Gaussian profile:

n(x) = no + �ne−x2/d2
, for x < 0,

where d is the diffusion depth of Ti in LiNbO3 required to define the waveguiding
region. The diffusion depth is determined by the Ti diffusion coefficient D and the total
time duration �t for the diffusion process as d = √

D�t . At a temperature of 1020 ◦C,
D = 1.4 × 10−12 cm2 s−1. Design a single-mode Ti : LiNbO3 waveguide that supports
exactly one TE mode and one TM mode at λ = 1.3 µm.

Solution With the given index profile, the condition for the waveguide to support
exactly one TE mode can be found from (2.105) for MTE = 1 as

1 + 1

π
tan−1√aE >

2
√

2no�n

λ

0∫
−∞

e−x2/2d2
dx >

1

π
tan−1√aE

for �n � 1. Using the identity

0∫
−∞

e−x2
dx =

∞∫
0

e−x2
dx =

√
π

2
,

this condition is reduced to

1 + 1

π
tan−1√aE > 2

√
πno�n

d

λ
>

1

π
tan−1√aE .
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The condition for the waveguide to support exactly one TM mode can be obtained by
replacing aE with aM in the above relation. A practical index step, which is controlled
by the thickness of Ti deposited on the surface of LiNbO3 during the diffusion process,
is chosen to be �n = 0.01. For this waveguide, we then have n1 = no + �n = 2.232,
n2 = no = 2.222, and n3 = 1. We also find that aE = 88 and aM = 2188. With these
parameters and with λ = 1.3 µm, we find

3.607 µm > d > 1.147 µm for a single TE mode

and

3.674 µm > d > 1.213 µm for a single TM mode.

To satisfy both conditions so that the waveguide supports exactly one TE mode and one
TM mode, a good choice for the diffusion depth is d = 2 µm, with the chosen index
step of �n = 0.01. Such a waveguide can be made by Ti diffusion at 1020 ◦C for 8
hours because �t = d2/D ≈ 8 hours from the given value of D.

2.8 Channel waveguides

So far we have discussed the characteristics of planar waveguides. In practice, most
waveguides used in device applications are nonplanar waveguides. For a nonplanar
waveguide, the index profile n(x, y) is a function of both transverse coordinates x and
y. There are many different types of nonplanar waveguides that are differentiated by the
distinctive features of their index profiles. One very unique group is the circular optical
fibers discussed in Chapter 3. Another important group of nonplanar waveguides is the
channel waveguides, which include the buried channel waveguides, the strip-loaded
waveguides, the ridge waveguides, the rib waveguides, and the diffused waveguides,
shown in Fig. 2.14.

A buried channel waveguide is formed with a high-index waveguiding core buried in a
low-index surrounding medium. The waveguiding core can have any cross-sectional ge-
ometry though it is often intended to have a rectangular shape, as shown in Fig. 2.14(a).
A strip-loaded waveguide is formed by loading a planar waveguide, which already pro-
vides optical confinement in the x direction, with a dielectric strip of index n3 < n1 or a
metal strip to facilitate optical confinement in the y direction, as shown in Fig. 2.14(b).
The waveguiding core of a strip waveguide is the n1 region under the loading strip,
with its thickness d determined by the thickness of the n1 layer and its width w defined
by the width of the loading strip. A ridge waveguide, shown in Fig. 2.14(c), has a
structure that looks like a strip waveguide, but the strip, or the ridge, on top of its planar
structure has a high index and is actually the waveguiding core. A ridge waveguide
has strong optical confinement because it is surrounded on three sides by low-index
air. A rib waveguide, shown in Fig. 2.14(d), has a structure similar to that of a strip
or ridge waveguide, but the strip has the same index as the high-index planar layer



106 Optical waveguides

Figure 2.14 Representative channel waveguides.
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beneath it and is part of the waveguiding core. These four types of waveguides are
usually classified as rectangular waveguides with a thickness d in the x direction and a
width w in the y direction, though their shapes are normally not exactly rectangular. A
diffused waveguide, shown in Fig. 2.14(e), is formed by creating a high-index region
in a substrate through diffusion of dopants, such as a LiNbO3 waveguide with a core
formed by Ti diffusion. Because of the diffusion process, the core boundaries in the
substrate are not sharply defined. However, a diffused waveguide also has a thickness
d defined by the diffusion depth of the dopant in the x direction and a width w defined
by the distribution of the dopant in the y direction.

One distinctive property of nonplanar dielectric waveguides versus planar wave-
guides is that a nonplanar waveguide supports hybrid modes in addition to TE and TM
modes, whereas a planar waveguide supports only TE and TM modes. Except for those
few exhibiting special geometric structures, such as circular optical fibers, nonplanar
dielectric waveguides generally do not have analytical solutions for their guided mode
characteristics. Numerical methods, such as the beam propagation method, exist for
analyzing such waveguides. Here we are interested in obtaining approximate solutions
that give the mode characteristics without full-blown numerical analysis. One of the
methods for this purpose is the effective index method discussed below.

Effective index method

The basic concept of the effective index method, illustrated in Fig. 2.15, is to convert the
problem of a channel waveguide into that of two planar waveguides. The effective index
method is a good approximation if the waveguide satisfies the following two conditions:
(1) the waveguide width is larger than its thickness, w > d; and (2) waveguiding in the y
direction across its width is not stronger than that in the x direction across its thickness.
Many useful waveguides satisfy these conditions. The effective index method applies
to both step-index and graded-index channel waveguides, including all of those shown
in Fig. 2.14, as long as these two conditions are satisfied. When these two conditions are
satisfied, the characteristics of the guided modes are primarily determined by the layered

=
=

Figure 2.15 Basic concept of the effective index method.
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structure perpendicular to the x direction, much like a planar waveguide of thickness
d, but are modified by a lateral structure of width w. The planar structure defines TE
and TM polarizations, but the lateral structure distorts them. Therefore, a mode with
its electric field mostly in the y direction parallel to the planar layers is called a TE-like
mode, and one with its magnetic field mostly in this direction is called a TM-like mode.

The procedure of applying the effective index method is straightforward. Because an
effective index is mode dependent, we first decide on the specific mode, either TEmn or
TMmn , with specific mode indices m and n, to be analyzed. The waveguide is then div-
ided into three structures for the three vertical regions, I, II, and III, shown in Fig. 2.15.
The structure associated with each region is then treated as a planar waveguide to find
the propagation constant βm for the mode m. The x dependence of the y component of
the mode field, Em,y(x) in the case of a TE-like mode orHm,y(x) in the case of a TM-like
mode, for central waveguide region I is also found through the same procedure. The
propagation constants for the three regions are used to determine the effective indices,
nI = cβ I

m/ω = λβ I
m/2π , nII = cβ II

m/ω = λβ II
m/2π , and nIII = cβ III

m /ω = λβ III
m /2π , for

a vertical planar waveguide of core width w. This structure is then treated as a planar
slab waveguide to solve for the propagation constant βmn of the desired mode and for
the y dependence of the y component of the mode field, En,y(y) in the case of a TE-
like mode or Hn,y(y) in the case of a TM-like mode. Note that En,y(y) for a TE-like
mode of the original channel waveguide is obtained from the E y component of the TMn

field of the effective vertical planar waveguide, whereas Hn,y(y) for a TM-like mode
of the original waveguide is obtained from the Hy component of the TEn field of the
effective vertical planar waveguide. Finally, the y component of the total mode field
for the original channel waveguide is Emn,y(x, y) = Em,y(x)En,y(y), in the case when
the TEmn mode is considered, or Hmn,y(x, y) = Hm,y(x)Hn,y(y), in the case when the
TMmn mode is considered. Other significant field components are found by using (2.32)
and (2.33) for a TE-like mode and by using (2.35) and (2.36) for a TM-like mode. The
propagation constant is simply βmn found from the effective vertical planar waveguide.

EXAMPLE 2.6 A strip-loaded waveguide can be made by loading the planar waveguide
illustrated in Example 2.1 (Fig. 2.7) with a silica strip on top of the polymer layer, as
shown in Fig. 2.16. The silica loading strip has a width of w = 5 µm and a thickness
of t = 2 µm. We are interested in the TM-like modes that have fundamental-mode
characteristics in the x direction. How many such modes exist at λ = 1 µm? Find their
characteristics using the effective index method.

Solution To apply the effective index method to this problem, the waveguide is divided
into three regions as shown in Fig. 2.16. The structure in region I can be treated as
a symmetric waveguide if t is sufficiently large so that the evanescent wave in the
x direction does not reach the air above the strip. From Example 2.4, we find that
γ2 = 5.84 µm−1 for the TM0 mode of interest here. Because exp(−γ2t) ≈ 8 × 10−6
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µ

µ

µ

Figure 2.16 Strip-loaded waveguide for the effective index method.

for t = 2 µm, we can safely say that the evanescent field is completely confined within
the strip. Therefore, the structure in region I is simply the symmetric waveguide solved
in Example 2.4 with β I

0 = 10.8208 µm−1 for the TM0 mode. The structures in regions
II and III are just the asymmetric waveguide solved in Example 2.1 with β II

0 = β III
0 =

10.7800 µm−1 for the TM0 mode. The vertical planar waveguide is thus a symmetric
waveguide that has a width of w = 5 µm and effective indices of nI = 1.7222 and
nII = nIII = 1.7157. The V number of this effective planar waveguide at λ = 1 µm is

V = 2π

λ
w

√
n2

I − n2
II = 4.696.

It has two TE modes and two TM modes because 2π > V > π .
Because the TM-like modes of the strip waveguide are polarized in the x direction,

we have to consider the TE modes of the effective vertical planar waveguide. Because
there are two such TE modes, we have two TM-like modes, TM00 and TM01, which
are associated with the TM0 mode of the horizontal planar waveguide and the TE0 and
TE1 modes, respectively, of the effective vertical planar waveguide. The characteristics
of these TE0 and TE1 modes can be solved in the same manner as that described in
Example 2.4 because the effective vertical waveguide is symmetric. The results are
summarized below.

hI γII ψn βn wn βmn

(µm−1) (µm−1) (rad) (µm−1) (µm) �n (µm−1) �mn

TM00 0.435 0.832 0 10.8120 7.4 0.930 10.8120 0.899
TM01 0.826 0.446 π/2 10.7892 9.5 0.634 10.7892 0.613

In this table, wn is the effective width of the TM0n mode in the y direction similar to
the effective thickness dM in the x direction for the TM0 mode.

Except for those in the last two columns, the parameters listed above are for the y
dependence of the modes. Both mode fields have the same x dependence described
by H0,y(x), which has the characteristics of the TM0 mode listed in Example 2.4.
The y dependence is found by using the parameters listed above to obtain E0,x (y)
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and E1,x (y) of the TE0 and TE1 modes of the effective planar waveguide, respec-
tively. Using Hy = −βE x/ωµ0 after exchanging the x and y coordinates for (2.32),
we then find H0,y(y) and H1,y(y). The y component of the total mode field for
the TM00 mode is then H00,y(x, y) = H0,y(x)H0,y(y) and that for the TM01 mode
is H01,y(x, y) = H0,y(x)H1,y(y). The propagation constants are simply those found
from solving for the effective vertical waveguide: β00 = β0 = 10.8120 µm−1 and
β01 = β1 = 1.7892 µm−1. The effective mode confinement factor �mn , defined as
its fractional power in the d × w two-dimensional guiding core, can be found by
multiplying its two confinement factors in the x and y dimensions. Thus, we have
�00 = 0.967 × 0.930 = 0.899 for the TM00 mode and �01 = 0.967 × 0.634 = 0.613
for the TM01 mode.

PROBLEMS

2.1.1 When total internal reflection occurs at the interface of two dielectric media
under the condition that the incident angle θi is larger than the critical angle θc,
as shown in Fig. 2.17, the reflected wave acquires a phase shift with respect to
the incident wave. This phase shift depends on the polarization of the wave and
is a function of the incident angle θi. Assume that n1 > n2 and that the plane of
incidence is the zx plane as shown.

Figure 2.17 Total internal reflection.

a. Show that the incident and reflected waves in a medium of refractive index
n1 and the evanescent wave in a medium of refractive index n2 all vary with
z for a propagation constant β, which is a function of θi. Show also that
k1 > β > k2, where k1 = n1ω/c and k2 = n2ω/c, and ω is the frequency of
the optical wave.

b. The positive real parameters h1 and γ2 are defined by the relations given in
(2.50) and (2.51), respectively. Describe how these two parameters charac-
terize the spatial variations of the incident, reflected, and evanescent waves.
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c. How are h1 and γ2 related to n1, n2, and θi?
d. Show that for a TE-polarized wave, the phase shift upon total internal reflec-

tion is given by

ϕTE = −2 tan−1 γ2

h1
. (2.107)

e. Show that for a TM-polarized wave, the phase shift upon total internal re-
flection is

ϕTM = −2 tan−1 n2
1γ2

n2
2h1

. (2.108)

f. Plot the phase shifts as a function of incident angle for TE-polarized and
TM-polarized waves at the interface of air and ordinary glass, which has a
refractive index of 1.5.

2.2.1 Derive the field equations given in (2.16)–(2.19) for the field components of a
waveguide mode from the two Maxwell’s equations in (2.8) and (2.9) by using
the mode field definition given in (2.1) and (2.2).

2.2.2 Can a dielectric waveguide support a TEM mode? Why?
2.2.3 Show that hybrid modes do not exist in a planar waveguide, such as a slab

waveguide.
2.2.4 What kinds of guided modes can exist in a planar dielectric waveguide? What

kinds can exist in a nonplanar dielectric waveguide? What kinds can exist in a
nonplanar metallic waveguide? Under what condition can each kind of guided
mode exist in a particular dielectric or metallic waveguide?

2.3.1 Show that Maxwell’s equations lead to the two inhomogeneous wave equations
given in (2.24) and (2.25) in the case when ∇ε �= 0. Show that (2.24) and (2.25)
result in (2.30) and (2.34), respectively, in the case of a planar waveguide, even
when the waveguide has an arbitrary index profile n(x) such that ∇ε �= 0.

2.4.1 In general, the orthonormality relation of dielectric waveguide modes takes the
form of (2.41), and the power of a waveguide mode ν has to be obtained by
using (2.40) with the mode indices µ = ν. Though TE and TM modes can be
treated generally like any other types of modes, they are somewhat special.
a. Show that the orthonormality relation among TE modes of a waveguide can

be expressed in the form of (2.44), and the power of a TE mode can be
obtained by using (2.38).

b. Show that the orthonormality relation among TM modes of a waveguide can
be expressed in the form of (2.45), and the power of a TM mode can be
obtained by using (2.39).

c. Show that (2.44) does not apply to TM modes and that (2.45) does not apply
to TE modes.

d. Show that neither (2.44) nor (2.45) applies to hybrid waveguide modes.
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2.5.1 What is the mode that has the largest propagation constant in a symmetric slab
waveguide? Sketch its field and intensity profiles.

2.5.2 How does the propagation constant β of a particular normal mode vary with
optical frequency in a given slab waveguide? What is the allowed range of β for
the mode to exist and remain guided?

2.5.3 Light can enter a semiconductor slab waveguide in different polarization states.
Describe what happens when light in each of the following input polarization
states is coupled into the waveguide: (a) linearly polarized in a direction parallel
to the boundaries of the core layer, (b) linearly polarized in a direction perpen-
dicular to the boundaries of the core layer, (c) linearly polarized in a direction
that is neither parallel nor perpendicular to the boundaries of the core layer, and
(d) circularly polarized.

2.5.4 Show that the cutoff conditions for the mth guided TE and TM modes of an
asymmetric slab waveguide are those given in (2.72) and (2.73), respectively.

2.5.5 Show that the confinement factors for guided TE and TM modes of an asymmet-
ric slab waveguide are those given in (2.79) and (2.80), respectively. Show that
they reduce to those in (2.91) and (2.92), respectively, in the case of a symmetric
slab waveguide.

2.5.6 It is found that an asymmetric slab waveguide supports two TE modes and two
TM modes at each of the two wavelengths λ = 1.3 and 1.55 µm.
a. Among these modes, which one has the largest β and which one has the

smallest β?
b. Which ones have the largest and the smallest confinement factors?
c. If we start reducing the core thickness of the waveguide while maintaining

the index profile, which mode gets cut off first? Which one gets cut off
last?

2.5.7 In an asymmetric slab waveguide that guides three TE modes and three TM
modes, which mode has the largest propagation constant? As the core thickness
of this waveguide is reduced while the index profile is maintained, which mode
gets cut off first?

2.5.8 A multimode asymmetric slab waveguide has exactly five guided modes. What
are they? Which one has the largest propagation constant? Which one has the
smallest propagation constant? Within what range do their propagation constants
fall? Which one has the largest confinement factor? Which one has the smallest
confinement factor?

2.5.9 For the asymmetric waveguide discussed in Example 2.1, find the wavelength
range within which it is a single-mode waveguide for TE polarization. What is
the wavelength range for it to be single moded for TM polarization?

2.5.10 An asymmetric slab waveguide made of a polymer layer of thickness d = 2 µm
deposited on a silica substrate has the same index profile as the one discussed in
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Example 2.1. At 1 µm optical wavelength, n1 = 1.77 for the polymer guiding
layer, n2 = 1.45 for the silica substrate, and n3 = 1 for the air cover.
a. How many guided modes are supported by this waveguide?
b. Find the propagation constants and the confinement factors for the guided

TE and TM modes of this waveguide.
c. Plot the mode field distributions of the guided modes.
d. If the thickness is reduced, some existing modes will be cut off. Which one

is cut off first? At what thickness is it cut off?
e. If the thickness is increased, additional modes will be supported. At what

thickness will one additional mode be supported? What is that mode?
2.5.11 Use the index profile, n1 = 1.77, n2 = 1.45, and n3 = 1, as that of the waveguide

in Example 2.1 to design a single-mode asymmetric waveguide for λ = 1 µm
wavelength.
a. Design a waveguide that supports only one mode for each polarization by

choosing a proper thickness d for the guiding layer. What are these two
modes? Find the propagation constants and the confinement factors for these
two modes.

b. It is possible to choose a thickness for the waveguide to support one and
exactly one mode between both polarizations. Design such a waveguide.
What is this mode? What are its propagation constant and confinement
factor?

2.6.1 Eigenvalue equations similar to (2.87) and (2.88) can be obtained for asymmetric
waveguides.
a. Show that for TE modes, we have

tan

(
h1d

2
− mπ

2

)
=
√

(h2
1 + γ 2

2 )(h2
1 + γ 2

3 ) − h2
1 + γ2γ3

h1(γ2 + γ3)
. (2.109)

Express this equation in terms of h1d, the waveguide parameters V, and
aE.

b. Show that for TM modes, the eigenvalue equation can be obtained by re-
placing the parameters h1, γ2, and γ3 on the right-hand side of (2.109) with
h1/n2

1, γ2/n2
2, and γ3/n2

3, respectively. Express this equation in terms of h1d ,
V, and aM.

2.6.2 For TE and TM modes of the same order in the same symmetric slab waveguide,
which one has a larger propagation constant? Which one has a higher cutoff
frequency?

2.6.3 Sketch the electric field and intensity distribution patterns of the TE5 and TM5

modes of a symmetric slab waveguide.
2.6.4 Sketch the field distribution patterns of the first two TE modes and the first two

TM modes of the multilayer symmetric waveguide shown in Fig. 2.18.
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Figure 2.18 Seven-layer symmetric slab waveguide.

2.6.5 What is the largest thickness d of a planar symmetric dielectric waveguide
with refractive indices of n1 = 1.50 and n2 = 1.46 for which there is only
one TE mode at λ = 1.3 µm? What is the number of modes if a waveguide
with this thickness is used at λ = 850 nm instead? What are those modes?
What are the confinement factors of the fundamental TE mode for these two
cases?

2.6.6 A symmetric slab waveguide has a confinement factor of �TE
0 = 0.7 for the TE0

mode at 1.55 µm optical wavelength. Neglect the dispersion of the waveguide
material.
a. What is the confinement factor for the TE0 mode at 1.3 µm wavelength?
b. Is the waveguide single moded or multimoded at each wavelength? Explain

briefly.
c. If the thickness of the waveguide core is quadrupled while the same index

profile is maintained, how many modes (including both TE and TM modes)
can the waveguide support at each of the two wavelengths considered here?

2.6.7 A symmetric slab waveguide has a core thickness of 2 µm. Ignoring the dis-
persion of the waveguide material, we find the indices to be n1 = 1.50 and
n2 = 1.46.
a. Is this waveguide single moded or multimoded at λ = 1.5 and 1.3 µm?
b. What is the range of wavelength in which this waveguide is single moded?
c. If we want to make the waveguide to be single moded at both λ = 1.5 and

1.3 µm, how should we change the waveguide parameter? (A qualitative
answer is sufficient.)

2.6.8 A symmetric slab waveguide is found to support exactly five TE and five TM
modes at an optical wavelength λ = 500 nm. Assume that dispersion of the
waveguide material is negligible.
a. How many TE and TM modes does it support at λ = 1 µm?
b. Which mode among those at 500 nm and 1 µm wavelengths has the largest

propagation constant?
2.6.9 A symmetric slab waveguide is used to guide signals at two wavelengths, 1.55

and 1.3 µm, simultaneously. Neglecting the dispersion in the material, the
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refractive indices are n1 = 1.50 and n2 = 1.46 in the core and cladding lay-
ers, respectively. The core thickness is 1.5 µm.
a. How many TE modes does the waveguide support at each of the wavelengths?
b. Which mode among those TE modes in (a) has the largest confinement factor

and how much is it?
c. If the core thickness is increased, additional modes will show up. At what

core thickness will the first additional TE mode show up? What is this TE
mode? Specify the order of the mode and its wavelength.

2.6.10 A symmetric waveguide is made by sandwiching a layer of Alx Ga1−x As be-
tween two layers of AlyGa1−yAs. At an optical wavelength λ = 900 nm, the
index of refraction of Alx Ga1−x As is n = 3.59 − 0.710x + 0.091x2. With these
parameters, design a symmetric single-mode waveguide for TE polarization by
properly choosing the waveguide core thickness d and the material composition
indices x and y. Calculate the confinement factor for the guided TE mode.

2.6.11 A semiconductor slab waveguide is formed by a double heterostructure, with the
core of thickness d being GaAs and both cladding layers being Alx Ga1−x As,
as shown in Fig. 2.19. The index of refraction of the ternary semiconductor
material Alx Ga1−x As depends on the fractional aluminum content x . It has a
lower index of refraction than GaAs. At an optical wavelength λ = 900 nm,
the refractive index of GaAs is nGaAs = 3.59, while that of Alx Ga1−x As is
nx = 3.59 − 0.710x + 0.091x2. With these parameters, we want to design sym-
metric single-mode waveguides for TE polarization by properly choosing the
waveguide core thickness d and the material composition x .

Figure 2.19 Symmetric GaAs/AlGaAs slab waveguide.

a. If x is fixed at 0.3, what is the range of d that allows only the fundamental
mode?

b. If d is fixed at 2 µm, what is the range of x that allows only the fundamental
mode?

c. Design a single-mode waveguide that has a confinement factor of �TE = 0.5
for the TE0 mode.

2.6.12 The index of refraction of Alx Ga1−x As at λ = 1.3 µm is n = 3.41 − 0.52x and
that at λ = 1.5 µm is n = 3.38 − 0.52x . You are asked to design a symmetric
slab waveguide with Alx Ga1−x As cladding layers for x < 0.3 and a GaAs core.
It is desired that the waveguide has the following characteristics: (a) it is single
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moded at both wavelengths, (b) it has a core thickness as small as possible, (c)
it has the largest confinement factor possible for both wavelengths.

2.6.13 In this problem, we would like to design a single-mode symmetric InGaAsP/InP
semiconductor slab waveguide for the 1.3 µm optical wavelength. The substrate
and cladding of such a waveguide are made of InP, which has an index of
refraction of n2 = 3.205 at 1.3 µm. The core is made of In1−x Gax AsyP1−y ,
which has a higher index than InP. Both the bandgap and the refractive index of
the core material are determined by the composition indices x and y. In order to
keep the absorption at 1.3 µm low enough so that the waveguide has a low loss,
we need to keep y < 0.5. This means that the core index is limited to n1 < 3.435.
Assume that we are able to control the material composition only to an accuracy
that allows an accuracy in the refractive index no better than δ(�n) = 0.01. We
want to design a single-mode waveguide that has a confinement factor of at least
0.8.
a. What is the allowed range of the value for the V parameter?
b. What are the maximum and minimum limits of the waveguide core thickness

d set by the requirements?
c. Give one example of your design that satisfies the requirements.

2.7.1 Find the wavelength range within which the Ti : LiNbO3 waveguide designed
in Example 2.5 is single moded for both TE and TM polarizations. In what
wavelength range does the waveguide support a single TE mode but not support
any TM mode? If the index step is doubled to �n = 0.02 but the Ti diffusion
depth remains unchanged at d = 2 µm, within what wavelength range does the
waveguide remain single moded for both polarizations? Ignore the dispersion
of LiNbO3 and that of the index profile in sloving this problem.

2.7.2 A Ti : LiNbO3 waveguide similar to the one designed in Example 2.5 is made
by Ti diffusion at 1020 ◦C for 6 hours. What index step �n should be chosen
so that the waveguide is single moded for both TE and TM polarizations in the
wavelength range between 500 nm and 1.3 µm?

2.7.3 Show that the relations given in (2.105) and (2.106) for a step-bounded graded-
index waveguide reduce to those given in (2.75) and (2.76) for a step-index
waveguide if we transform the step-bounded graded-index waveguide into a
step-index waveguide by setting n(x) = n1 for a < x < b and n(x) = n2 for
x < a.

2.8.1 How many TE0n modes does the strip-loaded waveguide discussed in Exam-
ple 2.6 support at λ = 1 µm? Find their characteristics by using the effective
index method.

2.8.2 A rib waveguide, shown in Fig. 2.20, is formed out of the planar waveguide
discussed in Example 2.1 by raising a strip of polymer that has a width of
w = 5 µm and a thickness of t = 1 µm atop the polymer guiding layer. In
this structure, the rib is part of the waveguiding core, which has a width of
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w = 5 µm and a thickness of d + t = 2 µm. At λ = 1 µm, how many TE0n

modes and how many TM0n modes are supported by this waveguide? What are
they? Find the characteristics of the TE00 and TM00 modes of this rib waveguide
at λ = 1 µm using the effective index method. Which mode has the largest
propagation constant? Which one has the largest confinement factor?

µm

µm

µm

Figure 2.20 Rib waveguide.
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3 Optical fibers

An optical fiber is basically a cylindrical dielectric waveguide with a circular cross
section where a high-index waveguiding core is surrounded by a low-index cladding.
Optical fibers are usually made of silica (SiO2) glass. The index step and profile are
controlled by the concentration and distribution of dopants. For example, the core can be
doped with germania (GeO2) or alumina (Al2O3) or other oxides, such as P2O5 or TiO2,
for a slightly higher index than that of a silica cladding. Alternatively, to take advantage
of low-loss pure silica, the cladding can be doped with fluorine for a slightly lower index
while the core contains undoped pure silica. Silica fibers are ideal for light transmission
in the visible and near-infrared regions because of their low loss and low dispersion in
these spectral regions. They are therefore suitable for optical communications and most
laser applications in this range of the spectrum. Optical fibers made of other materials
are also developed for special applications. For example, low-cost plastic fibers can be
used for short-distance interconnections between personal computers and printers in
offices. Fibers composed of ZrF4, BaF2, AlF3, LiF3, and other fluorides have a low loss
in the range of 2–4 µm in the mid infrared. They can be used for mid-infrared optical
communication or medical applications. Fibers for other spectral regions, such as the
10-µm region of CO2 laser wavelengths, are also developed.

Optical fibers have a wide range of applications. Owing to their low losses and
large bandwidths, their most important applications are fiber-optic communications
and interconnections. Other important applications include fiber sensors, guided optical
imaging, remote monitoring, and medical applications. With active dopants, such as
neodymium or erbium, fibers with an optical gain under optical pumping are also used
as optical amplifiers and fiber lasers, opening up many new applications. In addition,
because optical fibers provide strong optical confinement over long distances, they
also present unique conditions for many interesting nonlinear optical processes, which
lead to such applications as optical soliton formation and propagation, optical pulse
compression, and optical frequency conversion. Within the photonics community, fiber-
optic components and systems form a major industry by themselves. In this chapter,
we discuss the important characteristics of optical fibers.

119
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Figure 3.1 Step-index optical fiber with a core radius a.

3.1 Step-index fibers

A step-index fiber is a nonplanar step-index waveguide that has a circular cross section,
as shown in Fig. 3.1. The core has a radius a. The core diameter, 2a, typically ranges
from a few micrometers for a single-mode fiber to less than 100 µm for a multimode
fiber. It is designed for the fiber to support a desired number of guided modes. The outer
diameter of a fiber is that of the outside boundary of its cladding, which is typically
about 100 µm or somewhat larger. The outer diameter of a fiber is determined by the
requirement that the cladding be thicker than the penetration depth of a guided-mode
field to prevent the field from reaching the air–cladding boundary and by the consi-
deration of easy handling. The standard outer diameter size for multimode silica fibers
is 125 µm.

For a step-index fiber, the waveguide parameter V, also called the V number of the
fiber, is defined as

V = 2π

λ
a
√

n2
1 − n2

2 = ω

c
a
√

n2
1 − n2

2. (3.1)

The numerical aperture of the fiber is

NA =
√

n2
1 − n2

2 = sin θa, (3.2)

which determines the acceptance angle, θa, of an optical fiber. Therefore, the acceptance

angle of a circular fiber is simply θa = sin−1(NA) = sin−1
√

n2
1 − n2

2. The acceptance
angle is the largest incident angle, with respect to the normal of the end surface of a
fiber, that allows an optical beam to be coupled into the fiber core. A wave entering the
fiber at an incident angle smaller than the acceptance angle will be totally reflected at
the core–cladding interface and thus will be guided in the fiber core. A wave entering at
an incident angle larger than θa will be partially transmitted through the core–cladding
interface after entering the fiber and will not be guided.
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EXAMPLE 3.1 A step-index silica fiber has a core index of 1.452, a cladding index of
1.449, and a core diameter of 8 µm. What are its numerical aperture and acceptance
angle? What is the value of its V number at 850 nm wavelength?

Solution For this fiber, n1 = 1.452, n2 = 1.449, and a = 4 µm. The numerical aper-
ture is

NA =
√

n2
1 − n2

2 = 0.093.

The acceptance angle is

θa = sin−10.093 = 5.34◦.

The V number at λ = 850 nm is

V = 2π

λ
a
√

n2
1 − n2

2 = 2.758.

The mode fields of a circular fiber are best described in cylindrical coordinates with

Emn(r, t) = Emn(φ, r ) exp(iβmnz − iωt), (3.3)

Hmn(r, t) = Hmn(φ, r ) exp(iβmnz − iωt). (3.4)

Note that the first index, m, is associated with the coordinate φ, while the second index,
n, is associated with the coordinate r . This designation of indices will become clear
later. The field equations obtained in Section 2.2 are general equations for waveguides.
They can be used for a circular fiber by transforming x and y coordinates to r and φ

coordinates. For example, (2.16)–(2.19) become

(k2 − β2)Er = iβ
∂E z

∂r
+ iωµ0

1

r

∂Hz

∂φ
, (3.5)

(k2 − β2)Eφ = iβ
1

r

∂E z

∂φ
− iωµ0

∂Hz

∂r
, (3.6)

(k2 − β2)Hr = iβ
∂Hz

∂r
− iωε

1

r

∂E z

∂φ
, (3.7)

(k2 − β2)Hφ = iβ
1

r

∂Hz

∂φ
+ iωε

∂E z

∂r
, (3.8)

where k2 = ω2µ0ε(r ) = ω2n2(r )/c2.
For a step-index fiber, (2.27) and (2.28) in Section 2.3 are also valid, but they take

the following form in cylindrical coordinates:

∂2E z

∂r2
+ 1

r

∂E z

∂r
+ 1

r2

∂2E z

∂φ2
+ (k2

i − β2)E z = 0, (3.9)

∂2Hz

∂r2
+ 1

r

∂Hz

∂r
+ 1

r2

∂2Hz

∂φ2
+ (k2

i − β2)Hz = 0, (3.10)



122 Optical fibers

where k2
1 = ω2n2

1/c2 for the core and k2
2 = ω2n2

2/c2 for the cladding for i = 1 and 2,
respectively. For guided modes, we have k1 > β > k2 and

k2
1 − β2 = h2, (3.11)

β2 − k2
2 = γ 2. (3.12)

In general, fiber modes can be hybrid modes with E z �= 0 and Hz �= 0. Therefore,
(3.9) and (3.10) have to be solved simultaneously. They can be solved by separation of
variables. For example, for E z , the solution for φ dependence yields

E z(φ, r ) = R(r )e±imφ, m = 0, 1, 2, . . . , (3.13)

where R(r ) satisfies

d2 R

dr2
+ 1

r

dR

dr
+
(

h2 − m2

r2

)
R = 0, for r < a, (3.14)

d2 R

dr2
+ 1

r

dR

dr
−
(

γ 2 + m2

r2

)
R = 0, for r > a. (3.15)

Equations of the same form define the dependence of Hz on φ and r . The solution of
(3.14) with the requirement that R(r ) be finite at r = 0 is Jm(hr ), the Bessel function
of the first kind of order m. Meanwhile, the solution of (3.15) with the requirement that
r R2(r ) → 0 as r → ∞ yields Km(γ r ), the modified Bessel function of the second kind
of order m. Thus the r dependence of E z and Hz is found to be Jm(hr ) for r < a and
Km(γ r ) for r > a. The leading orders of Jm(x) and Km(x) are plotted in Figs. 3.2(a)
and (b), respectively. These Bessel functions have the following properties:

J0(0) = 1, Jm �=0(0) = 0, (3.16)

Km(0) = ∞, (3.17)

and, for large values of x ,

Jm(x) ≈
√

2

πx

[
cos
(

x − mπ

2
− π

4

)
− 4m2 − 1

8x
sin
(

x − mπ

2
− π

4

)]
, (3.18)

Km(x) ≈
√

π

2x

(
1 + 4m2 − 1

8x

)
e−x . (3.19)

The following identities of the Bessel functions are also found to be useful:

J−m = (−1)m Jm, K−m = Km, (3.20)

J ′
m = 1

2
(Jm−1 − Jm+1), K ′

m = −1

2
(Km−1 + Km+1), (3.21)

m

x
Jm = 1

2
(Jm−1 + Jm+1),

m

x
Km = −1

2
(Km−1 − Km+1). (3.22)

OnceE z andHz are solved, the other field components can be found using (3.5)–(3.8).
The boundary conditions require that the tangential field components, E z , Eφ , Hz , and
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(a)

(b)

−

−

Figure 3.2 Leading orders of (a) the Bessel functions Jm(x) and (b) the modified Bessel functions
Km(x).

Hφ , be continuous at the boundary, r = a, between the core and the cladding. These
conditions result in the requirement that the φ dependence of E z be 90◦ out-of-phase
with respect to that of Hz . Therefore, we can choose

E z(φ, r )=
{

Am Jm(hr ) cos mφ, r < a,

Bm Km(γ r ) cos mφ, r > a,
(3.23)

Hz(φ, r )=
{

Cm Jm(hr ) sin mφ, r < a,

Dm Km(γ r ) sin mφ, r > a,
(3.24)
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where Am , Bm , Cm , and Dm are constants to be found for a particular fiber mode.
Alternatively, we can choose

E z(φ, r )=
{

A′
m Jm(hr ) sin mφ, r < a,

B ′
m Km(γ r ) sin mφ, r > a,

(3.25)

Hz(φ, r )=
{

C ′
m Jm(hr ) cos mφ, r < a,

D′
m Km(γ r ) cos mφ, r > a,

(3.26)

where A′
m , B ′

m , C ′
m , and D′

m are also constants for a particular fiber mode. For m �= 0,
these two sets of choices are degenerate because one can be transformed into the other
by a change of reference of the angle φ for one or the other, which has no physical
significance in a circular fiber. However, for m = 0, they represent distinctly different
sets of modes, as discussed below.

Application of the boundary conditions for a nontrivial solution of Am , Bm , Cm , and
Dm for (3.23) and (3.24) or that of A′

m , B ′
m , C ′

m , and D′
m for (3.25) and (3.26) yields the

following eigenvalue equation for the allowed values of h and γ for the guided modes:[
J ′

m(ha)

ha Jm(ha)
+ K ′

m(γ a)

γ aKm(γ a)

] [
n2

1 J ′
m(ha)

ha Jm(ha)
+ n2

2 K ′
m(γ a)

γ aKm(γ a)

]

= m2 c2β2

ω2

(
1

h2a2
+ 1

γ 2a2

)2

, (3.27)

where J ′
m and K ′

m are the derivatives of the Bessel functions. Recall that each mode in
a circular fiber is characterized by two mode indices m and n. As seen above, the first
index m refers to the angular dependence cos mφ or sin mφ. The second index n refers
to the order of the allowed solutions for eigenvalues h or, equivalently, γ . Therefore,
m is called the azimuthal mode index, or the angular mode index, while n is called the
radial mode index. In general, (3.27) has to be solved numerically.

Fiber modes

It can be seen that when m = 0, the first set of solutions for the longitudinal components
of the mode fields given in (3.23) and (3.24) results in the TM fields with Hz = 0, while
the second set of solutions given in (3.25) and (3.26) results in the TE fields with E z = 0.
Therefore, for m = 0, the guided modes are either TE or TM modes, and (3.27) becomes
two separate eigenvalue equations:

J1(ha)

ha J0(ha)
+ K1(γ a)

γ aK0(γ a)
= 0, for TE modes, (3.28)

and

n2
1 J1(ha)

ha J0(ha)
+ n2

2 K1(γ a)

γ aK0(γ a)
= 0, for TM modes, (3.29)

where the relations J ′
0 = −J1 and K ′

0 = −K1 are used.
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For m ≥ 1, the guided modes in a circular fiber are hybrid modes. Both E z and
Hz exist in these modes. As a result, all six field components exist. In this case, the
solution given in (3.23) and (3.24) is degenerate with that given in (3.25) and (3.26)
with

Am

Cm
= − A′

m

C ′
m

and
Bm

Dm
= − B ′

m

D′
m

. (3.30)

Therefore, for a hybrid mode, we only have to consider the solutions given by, say,
(3.23) and (3.24). The hybrid modes can be classified into two groups. Those with
Am and Cm having the same sign are called HE modes, while those with Am and Cm

having opposite signs are called EH modes. For each given m ≥ 1, the eigenvalue
equation in (3.27) yields two sets of solutions, one for HE modes and another for EH
modes.

Using (3.5)–(3.8), all field components can be found from E z and Hz . For the fields
in the core region, the resulting field expression can be simplified by using the identities
in (3.21) and (3.22) for Jm(x).

1. For TE0n modes, E z = Er = Hφ = 0 and

Hz = J0(hr ), Eφ = iωµ0

h
J1(hr ), Hr = − iβ

h
J1(hr ). (3.31)

2. For TM0n modes, Hz = Eφ = Hr = 0 and

E z = J0(hr ), Er = − iβ

h
J1(hr ), Hφ = − iωε1

h
J1(hr ). (3.32)

3. For HEmn and EHmn modes, all six field components exist and are given by

E z = Jm(hr ) cos mφ, (3.33)

Hz = β

ωµ0
ηJm(hr ) sin mφ, (3.34)

Er = iβ

h

[
1 + η

2
Jm−1(hr ) − 1 − η

2
Jm+1(hr )

]
cos mφ, (3.35)

Eφ = − iβ

h

[
1 + η

2
Jm−1(hr ) + 1 − η

2
Jm+1(hr )

]
sin mφ, (3.36)

Hr = iωε1

h

[
1 + ηβ2/k2

1

2
Jm−1(hr ) + 1 − ηβ2/k2

1

2
Jm+1(hr )

]
sin mφ, (3.37)

Hφ = iωε1

h

[
1 + ηβ2/k2

1

2
Jm−1(hr ) − 1 − ηβ2/k2

1

2
Jm+1(hr )

]
cos mφ, (3.38)

where

η = ωµ0Cm

β Am
. (3.39)
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The value of the constant η is a characteristic of a particular HE or EH mode and
is determined by the boundary conditions through solution of (3.27). For η > 0,
(3.33)–(3.38) represent the field components of the HEmn mode. For η < 0, they
represent the field components of the EHmn mode.

Note that a multiplicative constant common to all of the field components in
a mode is omitted in the above representation. Thus, these mode fields are not
normalized.

The intensity of a mode has to be calculated using (2.37). For the modes of a circular
fiber, it is reduced to

I = 2(ErH∗
φ − EφH∗

r ). (3.40)

The power in a mode is obtained by integrating the intensity over the fiber cross section:

P = 2

∞∫
0

2π∫
0

(ErH∗
φ − EφH∗

r )rdφdr. (3.41)

In accordance with the discussions in Section 2.4, it can be shown that (3.41) is equiv-
alent to (2.38) for a TE mode and is equivalent to (2.39) for a TM mode. For HE and
EH hybrid modes, (3.40) and (3.41) cannot be reduced to the form of only an electric
field or that of only a magnetic field.

Cutoff conditions

The cutoff for a particular guided mode of an optical fiber is determined by the condition
γ = 0, at which instant the guided mode ceases to be guided. This is the same condition
as that for a guided mode of a planar waveguide discussed in Section 2.5. At cutoff, we
have

Vc = ha, (3.42)

which has a form similar to that of (2.70). The equation for finding the cutoff value Vc

depends on the type of mode:

1. For TE0n and TM0n modes, Vc is the nth root of the equation

J0(x) = 0. (3.43)

2. For HE1n modes, Vc is the nth root of the equation

J1(x) = 0, (3.44)

the first of which being x = 0. Therefore, Vc = 0 for the HE11 mode. For HEmn
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(a)

(b)

Figure 3.3 Graphic solutions of Vc for (a) TE0n , TM0n , HE1n , and EH1n modes and (b) HE2n modes.

modes with m ≥ 2, Vc is the nth nonzero root of the equation

Jm−2(x) + n2
1 − n2

2

n2
1 + n2

2

Jm(x) = 0. (3.45)

Because J−1(x) = −J1(x), (3.45) reduces to (3.44) for the HE1n modes when m = 1.
Note that the values of Vc for HEmn modes with m ≥ 2 depend on the specific values
of the refractive indices n1 and n2.

3. For all EHmn modes, m ≥ 1, and Vc is the nth nonzero root of the equation

Jm(x) = 0. (3.46)

Figure 3.3 shows the graphic solution of Vc for some leading modes.
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As can be seen in Fig. 3.3(a), the fundamental mode of a circular fiber is the HE11

mode, which has no cutoff. The first high-order modes are the TE01 and TM01 modes,
which have the same cutoff value of Vc = 2.405. Note that although the TE01 and TM01

modes have the same cutoff Vc, they are not degenerate because they have different β

defined by different eigenvalue equations in (3.28) and (3.29), respectively, when they
are above cutoff. This is also true for other modes that have the same cutoff Vc, such
as the HE12 and EH11 modes.

A fiber that has a waveguide parameter

V = 2π

λ
a
√

n2
1 − n2

2 < 2.405 (3.47)

supports only the fundamental HE11 mode and is called a single-mode fiber. A fiber
with V > 2.405 can support more than just the HE11 mode and is called a mul-
timode fiber. Clearly, whether a fiber is single moded or multimoded depends not
only on its index step and core radius, but also on the optical wavelength being con-
sidered. For a given fiber, V = 2.405 determines its cutoff wavelength, λc, for its
single-mode characteristics. The fiber is single moded for λ > λc, but is multimoded
for λ < λc.

EXAMPLE 3.2 Is the silica fiber described in Example 3.1 single moded at 850 nm wave-
length? What is the cutoff wavelength for its single-mode operation?

Solution As found in Example 3.1, V = 2.758 > 2.405 for the fiber at λ = 850 nm.
Therefore, this fiber is not a single-mode fiber at 850 nm wavelength. The cutoff
wavelength corresponds to Vc = 2.405. It is found as

λc = 2π

Vc
a
√

n2
1 − n2

2 = 975 nm.

This fiber is single moded at wavelengths longer than 975 nm but is multimoded at
shorter wavelengths. For example, it is a single-mode fiber at 1.3 µm wavelength.

3.2 Weakly guiding fibers

Most optical fibers for practical applications are weakly guiding fibers that have a small
index step, �n, between the core and the cladding:

� = �n

n1
= n1 − n2

n1
� 1. (3.48)

The mathematics for the modes of a weakly guiding fiber can be greatly simplified by
taking proper approximations. For example, the cutoff Vc for the HEmn modes with
m ≥ 2 of a weakly guiding fiber can be approximated by the nth nonzero root of
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the equation

Jm−2(x) = 0, (3.49)

which is obtained from (3.45) under the condition of (3.48). Meanwhile, for the modes
of a weakly guiding fiber, β2/k2

2 ≈ 1, and the parameter η defined in (3.39) has a value
of η ≈ 1 for HE modes and a value of η ≈ −1 for EH modes. Therefore, (3.35)–(3.38)
are reduced to a simple form that is useful for obtaining a visualization of the field
patterns and intensity distributions of the modes. The resulting approximate transverse
electric field components, Er and Eφ , and intensity distribution, I , for the four types of
fiber modes are

TE0n: Er = 0, Eφ ∼ J1(hr ), I ∼ J 2
1 (hr ),

TM0n: Er ∼ J1(hr ), Eφ = 0, I ∼ J 2
1 (hr ),

HEmn: Er ∼ Jm−1(hr ) cos mφ, Eφ ∼ −Jm−1(hr ) sin mφ, I ∼ J 2
m−1(hr ),

EHmn: Er ∼ −Jm+1(hr ) cos mφ, Eφ ∼ −Jm+1(hr ) sin mφ, I ∼ J 2
m+1(hr ).




(3.50)

Transverse magnetic field components also have a simple form similar to that of trans-
verse electric field components. Because transverse magnetic field lines are simply
orthogonal to transverse electric field lines, the magnetic field components are not
spelled out explicitly in (3.50). The patterns of the field lines and intensity distributions
of several leading modes are shown in Fig. 3.4. Note that the intensity distributions for
all four types of modes do not depend on φ and have only radial variations.

Linearly polarized modes

It can be seen that except for the HE11 mode, the fields of the fiber modes shown in
Fig. 3.4 are not plane polarized because the field lines are not straight parallel lines.
However, in the weakly guiding approximation, it is possible to represent the fields in
a fiber in terms of linearly polarized modes, called LP modes. Indeed, all of the HE1n

modes are very much plane polarized, particularly in weakly guiding fibers. For other
modes, many are nearly degenerate, and plane polarized fields can be formed by linear
combinations of these nearly degenerate modes if the weakly guiding approximation
leading to (3.50) is valid. For example, in the weakly guiding limit, the cutoff Vc

determined by (3.49) for the HE21 mode is the same as that of TE01 and TM01 modes.
These three modes are nearly degenerate. Combinations of these nearly degenerate
modes result in LP modes.

The discussions above can be demonstrated by considering the x and y components
of the transverse electric field:

E x=Er cos φ − Eφ sin φ, (3.51)

E y=Er sin φ + Eφ cos φ. (3.52)



130 Optical fibers

Figure 3.4 Field line patterns and intensity distributions for several leading modes of a circular
fiber. The dark curves in the field patterns are the electric field lines, and the gray curves are the
magnetic field lines. The thin circle in each profile locates the core boundary of a step-index fiber.
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For any HE1n mode, we have

Er ∼ J0(hr ) cos φ and Eφ ∼ −J0(hr ) sin φ (3.53)

from (3.50). Using (3.51) and (3.52), this results in

E x ∼ J0(hr ) and E y = 0. (3.54)

Therefore, the transverse electric fields of all of the HE1n modes given in the form
of (3.53) are plane polarized in the x direction. They are designated as LP0n modes.
The LP01 mode is simply the HE11 mode and is the fundamental LP mode. There
is two-fold degeneracy in LP0n modes because all HE1n modes are two-fold
degenerate.

Before we proceed further, we have to note that each of the HE and EH modes has
two-fold degeneracy, whereas TE and TM modes have no degeneracy. This is because
the field patterns of the HE and EH modes are functions of φ, but those of the TE
and TM modes are independent of φ. An orthogonal field pattern can be generated by
rotating the field pattern of any HEmn or EHmn mode by an angle of π/2m in φ. For
example, an HE1n mode given by the form in (3.50), such as the HE11 mode shown
in Fig. 3.4, has its field lines parallel to the x direction, as is demonstrated above. Its
degenerate orthogonal mode pattern is one with the field lines parallel to the y direction.
For the HE21 mode given by (3.50) and shown in Fig. 3.4, its degenerate orthogonal
mode pattern HE′

21 can be obtained by substituting φ in (3.50) with φ + π/4 for m = 2.
Thus we have

HE21: Er ∼ J1(hr ) cos 2φ, Eφ ∼ −J1(hr ) sin 2φ,

HE′
21: Er ∼ −J1(hr ) sin 2φ, Eφ ∼ −J1(hr ) cos 2φ.

(3.55)

The TE01 and TM01 modes have no degeneracy. Their Er and Eφ field components are
simply those given by (3.50). Using (3.51) and (3.52), it can be shown that

TE01 + HE′
21: E x ∼ −2J1(hr ) sin φ, E y = 0,

TE01 − HE′
21: E x = 0, E y ∼ 2J1(hr ) cos φ,

TM01 + HE21: E x ∼ 2J1(hr ) cos φ, E y = 0,

TM01 − HE21: E x = 0, E y ∼ 2J1(hr ) sin φ.

(3.56)

These are plane polarized fields. They are designated as the LP11 mode. There is four-
fold degeneracy in the LP11 mode because it contains four nearly degenerate modes,
TE01, TM01, HE21, and HE′

21. The LP11 mode is the first high-order LP mode above the
fundamental mode.

The discussions above can be extended to other LP modes. Except for LP0n modes,
which are just HE1n modes, all other LP modes can be constructed from linear combi-
nations of different basic fiber modes. Their relationships are summarized in Table 3.1.

The eigenvalue equation and the equation defining the cutoff conditions of the
LP modes, as well as their field and intensity patterns, are much simplified. These
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Table 3.1 Fiber modes

LP modes Degeneracy Core intensity pattern Basic modes Degeneracy

LP0n 2 J 2
0 (hr ) HE1n 2

LP1n 4 J 2
1 (hr ) cos2 φ




TE0n 1
TM0n 1
HE2n 2

LPmn (m ≥ 2) 4 J 2
m(hr ) cos2 mφ

{
HEm+1,n 2
EHm−1,n 2

characteristics are summarized below.

1. Eigenvalue equation. The eigenvalue equation for all LPmn modes can be written
as

ha Jm−1(ha)

Jm(ha)
= −γ aKm−1(γ a)

Km(γ a)
. (3.57)

For m = 0, the relations J−1(x) = −J1(x) and K−1(x) = K1(x) from (3.20) can be
used. Note that (3.57) reduces to (3.28) for m = 1 because the eigenvalue of the LP1n

mode is approximately that of the TE0n mode.
2. Cutoff conditions. Except for the LP0n mode, the cutoff Vc value for the LPmn

mode is the nth nonzero root of the equation

Jm−1(x) = 0. (3.58)

This condition can be obtained by considering the cutoff conditions for the TE, TM,
HE, and EH modes discussed in the preceding section in the weakly guiding limit of
(3.48). It can also be obtained by directly applying the cutoff condition of γ = 0 to
the eigenvalue equation in (3.57) for the LP modes. For the LP0n mode, m = 0 and
(3.58) becomes

J1(x) = 0. (3.59)

The first root, x = 0, counts even though it is a trivial root. The LP01 mode, which
is simply the HE11 mode, has no cutoff, as discussed earlier. Therefore, the cutoff
Vc for the LP0n mode is the nth root of (3.59), counting x = 0 as the first one.

3. Number of modes. For a multimode fiber with a large V number, the number of
modes supported by the fiber can be estimated. Since the cutoff V c

mn for the LPmn

mode is the nth nonzero root of (3.58), we have

V c
mn =

(
m + 2n − 3

2

)
π

2
≈ (m + 2n)

π

2
(3.60)

from (3.18). This means that for a given large value of V, the maximum value of m is
mmax ≈ 2V/π , while the maximum value of n for a given m is nmax = V/π − m/2.
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Since there is a four-fold degeneracy for each LPmn mode with m �= 0, the total
number of modes is approximately

M ≈ 4
2V/π∑
m=0

V/π−m/2∑
n=1

1 = 4V 2

π2
+ 2V

π
≈ 4V 2

π2
. (3.61)

4. Field patterns. The fields of the LP modes are plane polarized. Because of the
degeneracy in each LP mode, there are two possible polarizations for an LP0n mode
and four possible combinations of polarizations and angular distributions for an
LPmn mode with m ≥ 1. This characteristic is discussed above for the LP01 and LP11

modes and can be seen in (3.56) for the LP11 mode. For simplicity, we consider the
field to be polarized in the y direction and the azimuthal angular distribution to be
such that E y has a maximum at φ = 0. Then, for any LPmn mode, the field pattern is
simply

E y ∼




1

Jm(ha)
Jm(hr ) cos mφ, r < a,

1

Km(γ a)
Km(γ r ) cos mφ,r > a,

(3.62)

and E x = 0. Note that the boundary conditions for a circular fiber do not require
E y to be continuous at r = a. Rather, they require Eφ and Hφ to be continuous at
r = a. Because (3.62) does not satisfy the boundary conditions exactly, it is only an
approximation under the weakly guiding condition of (3.48).

5. Intensity distributions. The intensity distribution of the LPmn mode has the fol-
lowing pattern:

I (φ, r ) ∼




1

J 2
m(ha)

J 2
m(hr ) cos2 mφ, r < a,

1

K 2
m(γ a)

K 2
m(γ r ) cos2 mφ,r > a.

(3.63)

This characteristic is also summarized in Table 3.1. Figure 3.5 shows the intensity
profiles of a few LP modes.

6. Confinement factor. The confinement factor for a mode is the fractional power in
the core region and is given by

�mode = Pcore

Pmode
=

a∫
0

2π∫
0

I (φ, r )rdrdφ

∞∫
0

2π∫
0

I (φ, r )rdrdφ

. (3.64)

For the LPmn mode, the integrals in (3.64) can be calculated using the intensity
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Figure 3.5 Intensity profiles of a few LP modes. The intensity pattern of the LPmn mode consists of
m node lines intersecting at the center and n intensity peaks counted radially out from the center.
The thin circle in each profile locates the core boundary of a step-index fiber.

distribution given in (3.63), resulting in

�mn = 1 − h2a2

V 2

[
1 − K 2

m(γ a)

Km−1(γ a)Km+1(γ a)

]
. (3.65)

This expression has to be evaluated numerically. An approximate expression is

�mn = 1 − h2a2

V 2

1√
γ 2a2 + m2 + 1

. (3.66)

The confinement factors for some leading LP modes are shown as a function of the
fiber V number in Fig. 3.6. We see that the fundamental LP01 mode has a confinement
factor �01 ≈ 0.84 at the cutoff point of V = 2.405 for the LP11 mode. Note that as
cutoff is approached, the power for a mode with m = 0 or m = 1 moves away from
the core to the cladding so that �mn → 0. However, for LP modes with m ≥ 2, a
large fraction of power remains in the core at cutoff. For a mode with large m, the
power remains primarily in the core.

EXAMPLE 3.3 A multimode silica fiber has a core index of 1.48 and a core diameter of
50 µm. Find the index step needed for it to support at least 1000 guided modes at
850 nm wavelength. How many modes does this fiber support at 1.3 µm wavelength if
dispersion can be ignored?
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Figure 3.6 Confinement factors of leading LP modes as a function of the fiber V number.

Solution According to (3.61), the V number needs to be V = π
√

M/2 > 49.67 so
that M > 1000 for the fiber to support at least 1000 modes. Using n1 = 1.48, a =
50 µm/2 = 25 µm, and λ = 850 nm as given, we find that

n2 ≈
√

n2
1 −

(
V λ

2πa

)2

< 1.4554.

Therefore, we can choose an index step �n = 0.025 for n2 = 1.455, which corresponds
to � = 1.69%. With n2 = 1.455, we find that V = 50.05 > 49.67 and M = 1015 >

1000, as required.
Because M ∝ V 2 ∝ λ−2, we can find the number of modes at 1.3 µm directly from

that at 850 nm if dispersion is ignored. Therefore, the number of modes at 1.3 µm is

M = 0.852

1.32
× 1015 ≈ 434.

It has to be noted that although eigenvalue equations and cutoff conditions are written
for the LP modes, they are approximations valid only in the weakly guiding limit. Except
for LP0n modes, which are simply HE1n normal modes, the LP modes are not the exact
solutions of Maxwell’s equations for a fiber and thus are not true normal modes of a
fiber. This concept can be understood from the fact that an LPmn mode with m ≥ 1 is
a linear combination of some nearly, but not exactly, degenerate modes. Consider the
combination LP11 = TM01 + HE21 given in (3.56). Because the TM01 and HE21 modes
are not exactly degenerate, there is a slight difference, �β, in their propagation
constants. As the LP11 field propagates over a long enough distance, this small �β

eventually causes the phase relation between the TM01 and HE21 fields, which together
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make up the LP11 field, to change. As a result, the combined field will not always be
plane polarized in the same direction. Therefore, the LP11 mode is not a true normal
mode because it is not truly invariant in propagation. However, as can be expected, �β

decreases with �n and becomes insignificant for most practical applications, except
for very-long-distance propagation of the mode. For practical applications, because the
true modes that make up an LP mode are very nearly degenerate, they can be excited
simultaneously if they are above cutoff. Consequently, if a plane polarized optical wave
in free space is coupled into a fiber, it usually results in the excitation of an LP mode.
The mode patterns shown in Fig. 3.5 are those usually seen at the output of a fiber.

3.3 Graded-index fibers

In a graded-index fiber, the index profile, n(r ), in the core of the fiber is a function of the
radial distance, r , from the center of the fiber, as shown in Fig. 3.7. It starts at a value of
n(0) = n1 at the center of the fiber and gradually decreases to a value of n(a) = n2 at
the boundary between the core and the cladding. The fiber V number defined in (3.1)
can still be used, but the properties of a graded-index fiber are also determined by the
specific functional dependence of n(r ) on r. The numerical aperture, for example, is a
function of radial position:

NA(r ) =
√

n2(r ) − n2
2, (3.67)

which decreases from NA(0) =
√

n2
1 − n2

2 at the core center to NA(a) = 0 at the core–
cladding boundary.

Because the index profile is no longer piecewise constant, the electric susceptibility
ε(r ) = ε0n2(r ) is also a function of radial position. As a result, piecewise homogeneous
wave equations for E z and Hz , such as those in (3.9) and (3.10), cannot be used, as
discussed in Section 2.3. For a graded-index glass fiber with ε(r ), it can be shown by

φ
r

x

y

z

x

y

n2n(r)

n1

a

Figure 3.7 Graded-index fiber with a core radius a.



137 3.3 Graded-index fibers

substitution of (3.3) and (3.4) in (2.24) and (2.25), respectively, that

∂2E z

∂r2
+ 1

r

∂E z

∂r
+ 1

r2

∂2E z

∂φ2
+ (k2 − β2)E z = −iβ

d ln ε

dr
Er , (3.68)

∂2Hz

∂r2
+ 1

r

∂Hz

∂r
+ 1

r2

∂2Hz

∂φ2
+ (k2 − β2)Hz = d ln ε

dr

(
−iβHr + ∂Hz

∂r

)
, (3.69)

where k2 = ω2µ0ε(r ) = ω2n2(r )/c2 is a function of r , and the relation

∇ε

ε
= d ln ε

dr
r̂ (3.70)

is used. The longitudinal field components E z and Hz cannot be solved without solving
the transverse field components simultaneously. This is a manifestation of the compli-
cated vectorial nature of the mode fields in a fiber, which is caused by the geometry
and structure of the dielectric fiber waveguide. In general, the problem has to be solved
numerically with vectorial wave equations. However, some approximate analytic ap-
proaches exist that allow us to gain much understanding of the key characteristics of a
graded-index fiber without numerical solutions.

All graded-index optical fibers in practical applications are weakly guiding fibers
with very small index changes satisfying the condition in (3.48). In addition, the index
profiles are usually quite smooth so that the index gradients are small. Under these
assumptions, ∇ε/ε is very small, and an approximation can be made to neglect the
terms on the right-hand sides of (3.68) and (3.69), resulting in the following approximate
homogeneous equations for E z and Hz:

∂2E z

∂r2
+ 1

r

∂E z

∂r
+ 1

r2

∂2E z

∂φ2
+ (k2 − β2)E z ≈ 0, (3.71)

∂2Hz

∂r2
+ 1

r

∂Hz

∂r
+ 1

r2

∂2Hz

∂φ2
+ (k2 − β2)Hz ≈ 0. (3.72)

By separation of variables, these equations yield the same φ dependence as that of the
mode fields of a step-index fiber discussed in Section 3.1 and expressed in (3.23)–(3.26).
The r dependence is given by solution of

d2 R

dr2
+ 1

r

dR

dr
+
(

k2 − β2 − m2

r2

)
R = 0. (3.73)

Because the φ dependence of the mode fields of a graded-index fiber is exactly the
same as that of the mode fields of a step-index fiber and is independent of its index
profile, the classification of the normal modes into the basic TE, TM, HE, and EH
types discussed in Section 3.1 and the concept of the LP modes as appropriate linear
combinations of basic normal modes for a weakly guiding fiber discussed in Section 3.2
are still valid. However, the r dependence of the mode fields is no longer simply
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described by the Bessel functions. It depends on the specific functional form of the
index profile n(r ).

Approximate solutions of (3.73) can be obtained for the r dependence of the guided
mode fields of a graded-index fiber using the WKB approximation in a manner similar
to, but somewhat more complicated than, that outlined in Section 2.7 for obtaining the
approximate solutions for a graded-index planar waveguide. Here we summarize the
results without going through the details.

The existence and the characteristics of guided modes in a graded-index fiber depend
on the sign of the following function:

p2(r ) = k2(r ) − m2 − 1/4

r2
− β2. (3.74)

For any given guided mode, there exist two turning points r = r1 and r = r2, with
0 < r1 < r2 < a, where p(r ) = 0. For the mode field to exist and be guided, it is
necessary that p2(r ) > 0 within the radial range r1 < r < r2, but p2(r ) < 0 for r < r1

and r > r2. The eigenvalue equation for the guided modes of a graded-index fiber is
given in terms of the function p(r ):

r2∫
r1

p(r )dr =
r2∫

r1

[
k2(r ) − m2 − 1/4

r2
− β2

mn

]1/2

dr =
(

n − 1

2

)
π,

n = 1, 2, 3, . . . (3.75)

The allowed values of β can be obtained by solving this equation with integral values
of m and n. Evidently, the solution depends on the precise form of n(r ). For a given
azimuthal index m, there exists only a finite number of discrete values of βmn that are
allowed for the guided modes.

While the φ dependence of the mode fields remains the same as that of the mode fields
discussed in Section 3.1, the radial variations can be approximated with the following
asymptotic form at radial locations away from the immediate vicinity of the turning
points where p(r ) = 0:

R(r ) ∼




1√
r |p(r )| exp


−

r1∫
r

|p(r ′)|dr ′


,r < r1,

2√
r p(r )

cos


 r∫

r1

p(r ′)dr ′ − π

4


,r1 < r < r2,

(−1)n−1

√
r |p(r )| exp


−

r∫
r2

|p(r ′)|dr ′


,r > r2,

(3.76)

where the factor of (−1)n−1 is used for the correct phase at r = r2. For a graded-index
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fiber, this radial solution replaces the Bessel functions Jm(hr ) and Km(hr ) in (3.23)–
(3.26) of the mode fields of a step-index fiber. Note the similarity between the form
of R(r ) in oscillatory and evanescent regions and that of the first terms in (3.18) and
(3.19), respectively, for the asymptotic behavior of Jm(x) and Km(x) at large values
of x .

Number of modes

Graded-index fibers are primarily used as low-dispersion multimode fibers. The total
number of modes supported by a graded-index multimode fiber can be estimated using
the eigenvalue equation in (3.75). It can be seen from (3.75) that for a given azimuthal
mode index m, the largest number, n(m), for the radial mode index is obtained when β

has a minimum value. Since β > k2 for a guided mode, the minimum value of β can
be approximated by k2 for a fiber that has a large number of modes. Therefore, n(m) is
approximately given by

n(m) ≈ 1

π

r2∫
r1

[
k2(r ) − m2 − 1/4

r2
− k2

2

]1/2

dr ≈ 1

π

r2∫
r1

[
k2(r ) − m2

r2
− k2

2

]1/2

dr. (3.77)

Meanwhile, for guided modes, it is necessary that p(r ) > 0 for r1 < r < r2, as discussed
above. Therefore, the largest number, mmax, of the azimuthal mode index for guided
modes is

mmax = r
√

k2(r ) − k2
2 . (3.78)

The total number of guided modes can then be estimated as

M = 4
mmax∑
m=0

n(m) ≈ 4

mmax∫
0

n(m)dm, (3.79)

where the factor 4 accounts for the four-fold degeneracy of most high-order guided
modes as discussed in the preceding section, and the summation over m is replaced
by an integral for a fiber of a large number of densely spaced modes. Substituting
(3.77) and (3.78) in (3.79) and noting that the minimum value of r1 is r = 0 while the
maximum value of r2 is r = a, we have

M≈ 4

π

a∫
0

r
√

k2(r )−k2
2∫

0

[
k2(r ) − k2

2 − m2

r2

]1/2

dmdr

=
a∫

0

[
k2(r ) − k2

2

]
rdr. (3.80)
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In terms of the index profile of the fiber, the total number of modes is

M ≈ ω2

c2

a∫
0

[
n2(r ) − n2

2

]
rdr. (3.81)

Following the line of argument leading to (3.80), we can find the number Mβ of
guided modes that have propagation constants larger than β to be

Mβ =
r2(β)∫
0

[
k2(r ) − β2

]
rdr, (3.82)

where r2(β) is determined by k(r2) = β.

Power-law index profiles

We consider here the following power-law index profile:

n(r ) =

n1

[
1 − 2�

( r

a

)α]1/2
, 0 ≤ r ≤ a,

n2, r > a,
(3.83)

where

� = n2
1 − n2

2

2n2
1

≈ n1 − n2

n1
. (3.84)

With � � 1, the fiber core has a linear index profile for α = 1. It becomes a step-index
fiber for α = ∞. In terms of �, the V number of a fiber is

V = ω

c
a
√

n2
1 − n2

2 = ω

c
an1

√
2�. (3.85)

Substituting (3.83) in (3.81) and using (3.85), the total number of modes can be
obtained:

M = α

α + 2

V 2

2
. (3.86)

From (3.82), the number of modes with propagation constants larger than β is found
to be

Mβ = M

(
1 − β2/k2

1

2�

)(α+2)/α

. (3.87)

Therefore, the propagation constant can be written

β = k1

[
1 − 2�

(
Mβ

M

)α/(α+2)
]1/2

. (3.88)
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The relation in (3.86) between M and V for a graded-index fiber applies only when
M is a large number. It fails for a fiber that supports only a few modes and clearly is not
applicable to single-mode fibers. A single-mode graded-index fiber is also determined
by a cutoff V number similar to (3.47) for a step-index fiber. However, the cutoff V
number for a given graded-index fiber depends on the particular index profile of the
fiber. Specifically, the condition for a fiber with a quadratic index profile of α = 2 to be
single moded is V < 3.53. For other power-law profiles, the condition is approximately
V < 2.405

√
1 + 2/α.

EXAMPLE 3.4 If a graded-index fiber has all of the parameters of the step-index fiber
designed in Example 3.3, except for a quadratic index profile of α = 2, how many
guided modes does it support at 850 nm? What is the propagation constant of its
200th mode? What should its core diameter be for the graded-index fiber to sup-
port at least 1000 modes at 850 nm if its index parameters and profile remain
unchanged?

Solution The fiber designed in Example 3.3 has V = 50.05 and supports 1015 modes
at 850 nm wavelength. A graded-index fiber with the same parameters but with α = 2
also has the same V number according to (3.85), but its mode number is given by (3.86).
Therefore, the number of modes it supports is

M = 2

2 + 2
× 50.052

2
= 626,

which is much smaller than that of the step-index fiber. With n1 = 1.48, we have k1 =
10.94 µm−1. From Example 3.3, we know that � = 0.0169. The propagation constant
for the 200th mode can then be found using (3.88) by taking Mβ = 200 to be β =
0.99k1 = 10.83 µm−1, which is only 1% below k1 because � is only 1.69%.

For M > 1000, we find that V > 63.25 is required by using (3.86) with α = 2.
With n1 = 1.48, n2 = 1.455, and λ = 850 nm, we find from (3.85) that a > 31.6 µm.
Therefore, the minimum core diameter is 63.2 µm, which is clearly larger than the
50 µm core of the step-index fiber that supports the same number of modes.

3.4 Attenuation in fibers

Several factors contribute to attenuation of the power of an optical wave propagating
in an optical fiber. As discussed in Section 1.5, when an optical wave propagates in a
lossy medium with an attenuation coefficient α, its intensity decays exponentially with
distance according to (1.103). Since the power of an optical wave in a fiber is simply the
integration of its intensity over the cross section of the fiber, the attenuation of optical
power over a propagation distance l in a fiber having an attenuation coefficient α is
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given by

Pout = Pine−αl, (3.89)

where Pin and Pout are the input and output power, respectively. In (3.89), Pin and Pout are
measured in watts or, for example, milliwatts or microwatts in low-power applications
or kilowatts or megawatts in high-power applications, while α is given per meter. In
practical applications, α is also measured per centimeter or per kilometer when l is
measured in centimeters or kilometers.

In practical engineering applications, it is convenient to use decibels (dB) as a
measure of relative changes of quantities. The attenuation coefficient α is then mea-
sured in decibels per meter. In the case of low-loss fibers, the propagation length in a
fiber is usually measured in kilometers, and α is conventionally given in decibels per
kilometer:

α(dB km−1) = − 1

l(km)
10 log

Pout

Pin
, (3.90)

where Pin and Pout are measured in watts, milliwatts, or microwatts. Comparing (3.90)
with (3.89), we have

α(dB km−1) = 4.34α(km−1) and α(km−1) = 0.23α(dB km−1). (3.91)

Power can also be measured in decibels and has units of decibel-watts (dBW), decibel-
milliwatts (dBm), or decibel-microwatts (dBµ) defined as follows:

P(dBW) = 10 log P(W), P(dBm) = 10 log P(mW), P(dBµ) = 10 log P(µW).

(3.92)

When power is given in decibel-watts or decibel-milliwatts and the attenuation coeffi-
cient is in decibels per kilometer, (3.89) can be expressed as

Pout(dBW) = Pin(dBW) − α(dB km−1)l(km), (3.93)

or, equivalently,

Pout(dBm) = Pin(dBm) − α(dB km−1)l(km). (3.94)

A similar formula can be written for power measured in decibel-microwatts. These
formulas are very convenient and useful in practical applications as they relate the
input power, output power, and attenuation in a simple arithmetic relation.

EXAMPLE 3.5 A fiber of 40 km length has an attenuation coefficient of 0.6 dB km−1 at
1.3 µm and 0.3 dB km−1 at 1.55 µm. If 1 mW of optical power at each wavelength is
launched into the fiber, what is the output power at each wavelength?
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Solution We can convert the attenuation coefficient given in decibels per kilome-
ter into that measured per kilometer and then use (3.89) to find the output power.
Alternatively, we can convert the input power given in milliwatts into that in decibel-
milliwatts or decibel-microwatts and then use (3.94) to find the output power. The
results are the same. Here we use the second approach. Then, Pin = 1 mW is converted
to Pin = 0 dBm = 30 dBµ using (3.92). The output power at 1.3 µm is

Pout = 0 dBm − 0.6 dB km−1 × 40 km = −24 dBm = 6 dBµ,

which is Pout ≈ 4 µW from (3.92). Similarly, the output power at 1.55 µm is

Pout = 0 dBm − 0.3 dB km−1 × 40 km = −12 dBm = 18 dBµ,

which is Pout ≈ 63 µW. Comparing the results at the two wavelengths, we see the
importance of reducing the losses in a fiber: a reduction in the attenuation coefficient
by a factor of 2 increases the output power by a factor of nearly 16 in this particular
example. The effect is even more dramatic at high losses. A doubling of the attenuation
coefficient from 0.6 to 1.2 dB km−1 results in an output power of only 15.8 nW, which
is a reduction of more than 250 times from the 4 µW output for the 0.6 dB km−1

attenuation.

Attenuation of light in a fiber is primarily caused by absorption and scattering. In
addition, there are mechanical losses and losses due to nonlinear optical effects. The
effects of these loss mechanisms vary, but they all add up to the total loss in a fiber.
Since the majority of optical fibers are silica fibers, we discuss the loss mechanisms
and their effects in silica fibers below.

1. Electronic absorption. The bandgap of fused silica is about 8.9 eV, which corre-
sponds to the photon energy of light at the ultraviolet wavelength of approximately
140 nm. This causes strong absorption of light in the ultraviolet spectral region due
to electronic transitions across the bandgap. Light in the visible and infrared regions
has photon energies less than the bandgap energy and is not expected to be absorbed
through direct electronic transitions across the bandgap. However, in practice, the
bandgap of a material is not sharply defined but usually has bandtails extending
from the conduction and valence bands into the bandgap due to a variety of reasons,
such as thermal vibrations of the lattice ions and microscopic imperfections of the
material structure. In particular, an amorphous material like fused silica generally
has very long bandtails. These bandtails lead to an absorption tail extending into the
visible and infrared regions. Empirically, it is found that the absorption tail at photon
energies below the bandgap falls off exponentially with photon energy.

2. Molecular absorption. In the infrared region, the absorption of photons is accom-
panied by transitions between different vibrational modes of silica molecules. The
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fundamental vibrational transition of fused silica causes a very strong absorption
peak at about 9 µm wavelength. Nonlinear effects contribute to important harmon-
ics and combination frequencies corresponding to minor absorption peaks at 4.4,
3.8, and 3.2 µm wavelengths. The result is a long absorption tail extending into
the near infrared, causing a sharp rise in absorption at optical wavelengths longer
than 1.6 µm. Molecular absorption is the major cause of attenuation in the infrared
spectral region for a silica fiber.

3. Impurity absorption. Impurity absorption could be very important in the near
infrared region because most impurity ions such as OH−, Fe2+, and Cu2+ form ab-
sorption bands in this region where both electronic and molecular absorption losses
of the host silica glass are very low. Near the peaks of the impurity absorption
bands, an impurity concentration as low as one part per billion can contribute to an
absorption loss as high as 1 dB km−1. In fact, fiber-optic communications were not
considered possible until it was realized in 1966 that most losses in earlier fibers
were caused by impurity absorption and then ultra-pure fibers were produced in the
early 1970s. Today, impurities in fibers have been reduced to levels where losses as-
sociated with their absorption are negligible, with the exception of the OH− radical.
The OH− radical results from the presence of water, which can enter a fiber through
the manufacturing process or as humidity in the environment. Therefore, fibers are
manufactured in ultra-dry conditions and are protected by plastic coating from water
in the environment to reduce the loss caused by OH− absorption. The absorption
peak due to the fundamental vibration of the OH− ions appears at 2.73 µm wave-
length where intrinsic molecular absorption of silica is strong. The most important
absorption peaks are those at the harmonics and combination frequencies of 1.39,
1.25, and 0.95 µm wavelengths.

4. Rayleigh scattering. The intrinsic Rayleigh scattering in a fiber is caused by vari-
ations in density and composition that are built into the fiber during the manufacturing
process. They are primarily a result of thermal fluctuations in the density of silica
glass and variations in the concentration of dopants before silica passes its glass
transition point to become a solid. These variations are a fundamental thermo-
dynamic phenomenon and cannot be completely removed. They create microscopic
fluctuations in the index of refraction, which scatter light in the same manner as
microscopic fluctuations of the density of air scatter sunlight. This elastic Rayleigh
scattering process creates a loss given by

αR = 8π2

3λ4
(n2 − 1)βkBT, (3.95)

where n is the index of refraction, kB is the Boltzmann constant, T is the glass
transition temperature, and β is isothermal compressibility. Note that αR ∝ λ−4.
The loss due to Rayleigh scattering is very important in the short-wavelength region
but falls off rapidly as the wavelength increases.
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5. Waveguide scattering. Imperfections in the waveguide structure of a fiber, such
as nonuniformity in the size and shape of the core, perturbations in the core–cladding
boundary, and defects in the core or cladding, can be generated in the manufacturing
process. In addition, environmentally induced effects, such as stress and temperature
variations, also cause imperfections. The imperfections in a fiber waveguide result in
additional scattering losses. They sometimes also induce coupling between different
guided modes. Losses caused by waveguide scattering due to imperfections can be
measured experimentally.

6. Nonlinear losses. In an optical fiber, because light is confined over long distances,
nonlinear optical effects can become important even at a relatively moderate optical
power. Nonlinear optical processes such as stimulated Brillouin scattering and stim-
ulated Raman scattering can cause significant attenuation in the power of an optical
signal. Other nonlinear processes can induce mode mixing or frequency shift, all
contributing to the loss of a particular guided mode at a particular frequency. Be-
cause nonlinear effects are intensity dependent, they can become very important at
high optical powers.

Figure 3.8 summarizes the contributions of various loss mechanisms, except those
of waveguide scattering and nonlinear losses, to the total attenuation in a fiber as a
function of wavelength. The limiting effect at short wavelengths is the Rayleigh scat-
tering, which dominates the electronic absorption of fused silica in this spectral region.
In the infrared region beyond 1.6 µm, attenuation is completely dominated by intrinsic
absorption due to molecular vibrations of silica. In the near-infrared region, attenua-
tion strongly depends on the concentration of the OH− impurity. In addition, in this

λ  µ

-µ -µ

km
−1

)

-

Figure 3.8 Spectral dependence of loss mechanisms and total attenuation in a fiber. Also shown are
spectral ranges for three communication windows. (Based on data from assorted sources.)
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low-loss region, any amount of loss caused by waveguide scattering would be relatively
significant. Therefore, attenuation in this spectral region varies with the quality of the
fiber.

The attenuation coefficient is also mode dependent. The fundamental mode generally
has lower attenuation than high-order modes because its power is more confined to the
core. Therefore, single-mode fibers usually have lower attenuation than multimode
fibers. Among multimode fibers of a fixed outer diameter, such as the standard 125-µm
size, the ones with larger cores, and simultaneously thinner claddings, typically have
higher attenuation because the intensity distribution spreads farther out. A graded-index
multimode fiber usually has lower attenuation than a comparable step-index multimode
fiber because the intensity in a graded-index fiber is more concentrated at the center of
the fiber.

There are three wavelength windows for applications in the transmission of light
with fibers. They are the 850-nm window, corresponding to the wavelengths of
GaAs/AlGaAs lasers, and the 1.3- and 1.55-µm windows, corresponding to the wave-
lengths of InGaAsP/InP lasers. It can be seen from Fig. 3.8 that the lowest attenuation
in the entire spectral range occurs at 1.55 µm while the attenuation at 1.3 µm is slightly
higher. At present, the best fibers have attenuation as low as 0.15 dB km−1 at 1.55 µm
and 0.3 dB km−1 at 1.3 µm, while attenuation at 850 nm is typically 2 dB km−1. This
is the reason why the wavelength of 1.55 µm is chosen for long-distance optical com-
munication systems and the wavelength of 1.3 µm is suitable for metropolitan and
wide-area networks, while wavelengths in the 850-nm window are only useful for local
optical links.

In addition to the losses discussed above, there are also bending losses caused by
macrobends and microbends in a fiber and connection losses incurred at the junctions
of fibers. Macrobends are bends visible from outside and are encountered in the looping
or routing of fibers. Microbends are not visible from outside and are typically created
by mechanical stresses associated with bundling, packaging, and handling of the fiber.
Bending loss can be understood from the viewpoint of ray optics or that of wave
optics. For simplicity, consider the fact that the evanescent field of a guided mode
actually extends to infinity in all radial directions. When a fiber is bent, the evanescent
field on the outside of the bent curve has to travel along a path that has a larger
radius of curvature than that traveled by the field in the core of the fiber. Because
different parts of a mode field have to stay in phase as a single entity, this evanescent
field has to travel faster in order to keep up with the field in the core. The farther
outside the field is, the faster it has to travel. At a critical radius, the required speed
would exceed the speed of light. At this point, the field cannot keep up and radiates
away, resulting in bending loss. Losses caused by controlled bending can be quantified.
Fiber sensors based on bending-induced losses can be constructed for many useful
applications.
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3.5 Dispersion in fibers

Dispersion is the primary cause of limitation on the bandwidth of the transmission of
optical signals through an optical fiber. As discussed in Chapter 2, there are waveguide
and modal dispersions in an optical waveguide in addition to material dispersion,
which is discussed in Chapter 1. Both material dispersion and waveguide dispersion are
examples of chromatic dispersion because both are frequency dependent. Waveguide
dispersion is caused by frequency dependence of the propagation constant β of a specific
mode due to the waveguiding effect. The combined effect of material and waveguide
dispersions for a particular mode alone is called intramode dispersion. Modal dispersion
is caused by the variation in propagation constant between different modes: it is also
called intermode dispersion. Modal dispersion appears only when more than one mode
is excited in a multimode fiber. However, it exists even when chromatic dispersion
disappears. In contrast, if only one mode is excited in a fiber, only intramode chromatic
dispersion has to be considered even when the fiber is a multimode fiber.

Material dispersion

The physical mechanism responsible for material dispersion is discussed in Sec-
tion 1.10. For optical fibers, the materials of interest are pure silica and doped silica.
We first consider the characteristics of relevant parameters for these materials using
the general mathematical definitions given in Section 1.9. The parameters of interest
are the index of refraction, n, the group index, N, and the group-velocity dispersion,
D. Although it is more natural to consider the propagation constant, k, or β in a wave-
guide, and its derivatives as a function of frequency, ω, in practice these parameters are
commonly given as a function of the free-space wavelength, λ.

The index of refraction of pure silica in the wavelength range between 200 nm and
4 µm is given by the following empirically fitted Sellmeier equation:

n2 = 1 + 0.696 166 3λ2

λ2 − (0.068 404 3)2
+ 0.407 942 6λ2

λ2 − (0.116 241 4)2
+ 0.897 479 4λ2

λ2 − (9.896 161)2
, (3.96)

where λ is in micrometers. As discussed at the beginning of this chapter, the index of
refraction can be changed by adding dopants to silica, thus facilitating the means to
control the index profile of a fiber. The amount of index change depends on the type
and concentration of dopant or dopants. Specifically, doping with germania or alumina
increases the index of refraction. Therefore, the coefficients in (3.96) actually depend
on the composition of the glass. The indices of refraction as functions of wavelength
for pure silica and a germania–silica glass that has 13.5 mol % GeO2 and 86.5 mol %
SiO2 are shown in Fig. 3.9(a). The group index N and the group-velocity dispersion D
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Figure 3.9 (a) Index of refraction n and group index N and (b) group-velocity dispersion D
as functions of wavelength for pure silica (solid curves) and germania–silica containing
13.5 mol % GeO2 (dashed curves). Zero group-velocity dispersion appears at 1.284 µm for
pure silica.

can be calculated using (1.171) and (1.172), respectively. The group indices for both
glasses are also shown in Fig. 3.9(a), while the group-velocity dispersion is shown in
Fig. 3.9(b). It can be seen that the addition of GeO2 to silica not only increases the
index of refraction, but also increases material dispersion. As a result, the point of zero
material group-velocity dispersion is shifted from 1.284 µm for pure silica to 1.383 µm
for germania–silica glass. This increase in index of refraction and in dispersion is
reduced if the percentage of GeO2 is reduced. The effects of other dopants vary. For
example, doping with 9.1 mol % P2O5 increases the index of refraction by more than
1% but only slightly shifts the dispersion curve, whereas doping with 13.3 mol % B2O3

results in a reduction of the index of refraction by less than 0.4% but shifts the point
of zero dispersion to 1.231 µm. Clearly, it is possible to control the modification of
material dispersion by dopants.

Waveguide dispersion

The propagation constant of a guided mode of a fiber is determined both by the param-
eters of the fiber, such as its index profile and core size, and by the material properties.
Therefore, the frequency dependence of β of a particular mode has mixed contribu-
tions from material dispersion and waveguide dispersion. It is in fact more convenient
to consider this combined effect directly. To do so, we only have to replace k in all
of the formulas in Section 1.9 by β of the particular mode under consideration, thus
defining the effective refractive index nβ , the effective group index Nβ , and the effective
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group-velocity dispersion Dβ for the mode:

nβ = cβ

ω
, (3.97)

Nβ = c
dβ

dω
= nβ − λ

dnβ

dλ
, (3.98)

and

Dβ = cω
d2β

dω2
= λ2 d2nβ

dλ2
. (3.99)

The exact frequency dependence of these parameters depends on the parameters of the
fiber, which are, specifically, the V number, the normalized index difference �, and,
in the case of the power-law profiles, the parameter α. Since most optical fibers are
weakly guiding, we consider only weakly guiding fibers in the following to simplify
the mathematics.

In the case of a step-index fiber, it is convenient to use the normalized guide index b,
which has the same form as that defined in (2.47), for the step-index planar waveguide:

b = n2
β − n2

2

n2
1 − n2

2

. (3.100)

Taking the weakly guiding approximation of (3.48) and using (3.97), we have

nβ ≈ n2(1 + b�). (3.101)

Figure 3.10 Normalized propagation constant b as a function of fiber V number for some LP
modes of a weakly guiding step-index fiber.
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Figure 3.11 (a) Waveguide group delay parameter, d(V b)/dV , and (b) waveguide dispersion
parameter, V d2(V b)/dV 2, as a function of fiber V number for some LP modes of a weakly guiding
step-index fiber.

The b parameter can be found by solving (3.57) together with (3.11) and (3.12) for β.
It is plotted as a function of the fiber V number in Fig. 3.10 for some LP modes. The
frequency or wavelength dependence of nβ can be found from the dependence of b on
V. Using (3.98) and (3.99), we also find that

Nβ ≈ N2

[
1 + d(V b)

dV
�

]
, (3.102)

where N2 is the group index of the cladding material of the fiber, and

Dβ ≈ D2

[
1 + d(V b)

dV
�

]
+ N 2

2

n2

V d2(V b)

dV 2
�, (3.103)

where D2 is the group-velocity dispersion of the fiber cladding. In deriving (3.102)
and (3.103), terms such as d�/dω and d2�/dω2 that contain the differential material
dispersion are dropped because they are usually very small compared with the terms we
keep. For more accurate calculations, they should be included. In each of the relations
in (3.101)–(3.103), the first term is the material contribution while the other terms are
the waveguide contribution. The waveguide group delay parameter, d(V b)/dV , and
the waveguide dispersion parameter, V d2(V b)/dV 2, are plotted as a function of fiber
V number in Figs. 3.11(a) and (b), respectively.

It can be seen from the discussion above and from the data plotted in Fig. 3.10 that
nβ is bounded by n1 and n2, reaching n2 near cutoff and approaching n1 far away
from cutoff. In contrast, Fig. 3.11(a) shows that only LP0n and LP1n modes have Nβ

reaching N2 at cutoff because only LP0n and LP1n modes have their power moved
completely away from the core into the cladding at cutoff. An LPmn mode with m ≥ 2
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(a)
λ (µm)

(b)
λ (µm)

Figure 3.12 (a) Effective index of refraction and group index and (b) group-velocity dispersion of
the fundamental mode as a function of wavelength. The solid curves show the effective parameters
of the mode with both material and waveguide contributions. The dashed curves show only the
material contribution to the core and cladding regions, labeled 1 and 2, respectively.

still has a large fraction of its power concentrated in the core at cutoff, as discussed
in Section 3.2 and shown in Fig. 3.6. Figure 3.11(b) shows that the group-velocity
dispersion can be modified by the waveguide contribution. As a practical example,
Fig. 3.12 shows the combined material and waveguide contributions for the fundamental
mode of a step-index germania–silica fiber with an index step of n1 − n2 = 0.006 and
a core radius of a = 3 µm. The core is assumed to have 13.5 mol % GeO2 for n1, N1,
and D1 to be consistent with those of the material properties of the germania–silica
glass shown in Fig. 3.9. It is also assumed that the differential material dispersion,
d�/dω, is negligible so that D1 = D2 to show the effect of waveguide dispersion
clearly. As shown in Fig. 3.12(b), the point of zero dispersion is shifted from that
of the germania–silica material at 1.383 µm to 1.5 µm because of the waveguide
contribution.

EXAMPLE 3.6 A step-index single-mode fiber for transmitting a signal at λ = 1.35 µm
is 100 km long. At this wavelength, the fiber has the following parameters for its
silica cladding: n2 = 1.446, N2 = 1.466, and D2 = −0.0027. Its core has a radius of
a = 4 µm and an index of n1 = 1.450. What are the propagation constant, the group
velocity, and the group-velocity dispersion of the signal propagating as the guided mode
of the fiber? If a 10-ps pulse that has a spectral width of �λps = 2 nm is sent through
the fiber, what is its transmission time through the fiber? What is the pulse duration
when it arrives at the other end of the fiber?
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Solution With the given parameters, we find that V = 2 at λ = 1.35 µm. Thus, this
fiber is indeed a single-mode fiber for this wavelength. From Figs. 3.10 and 3.11, we
find the following parameters for V = 2:

b = 0.416,
d(V b)

dV
= 1.065,

V d2(V b)

dV 2
= 0.461.

Using these parameters, together with the given values of n2, N2, and D2, we find from
(3.101), (3.102), and (3.103) that

nβ = 1.448, Nβ = 1.470, Dβ = −0.000 82.

From these results, we then find the following parameters for the mode:

β = 2πnβ

λ
= 6.739 µm−1, vg = c

Nβ

= 2.04 × 108 m s−1,

Dλ = − Dβ

cλ
= 2.02 ps km−1 nm−1.

The transmission time of the pulse through the 100 km length of the fiber is

ttr = l

vg
= 490 µs.

The spread of the pulse due to group-velocity dispersion is

�tg = |Dλ|�λpsl = 404 ps.

Therefore, the pulse arrives at the end of the fiber after 490 µs with a substantially
broadened pulse duration of �tps = 10 ps + 404 ps = 414 ps.

Although the data shown in Figs. 3.10–3.12 are specific for step-index fibers, the
formulas obtained in (3.101)–(3.103) are equally applicable to graded-index fibers.
However, in order to use (3.101)–(3.103) for a graded-index fiber, exact solution of
the eigenvalue equation (3.75) has to be carried out to obtain the frequency dependence
of the propagation constant β, and thus the dependence of b on V, for each guided mode
of interest. This would be the required procedure if the fiber under consideration were a
single-mode graded-index fiber or a multimode graded-index fiber that supported only
a few modes.

For a multimode graded-index fiber that supports a very large number of modes, the
approximate solution of β given by (3.88) can be used. Then, instead of expressing the
index and dispersion parameters in terms of b and V, we can use (3.97)–(3.99) directly
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to obtain

nβ = n1(1 − 2ζ�)1/2, (3.104)

Nβ ≈ N1

(
1 + α − 2 − δ

α + 2
ζ� + 3α − 2 − 2δ

α + 2

ζ 2�2

2

)
, (3.105)

and

Dβ ≈ D1

(
1 + α − 2 − δ

α + 2
ζ�

)
− N 2

1

n1

2(α − δ/2)(α − 2 − δ)

(α + 2)2
ζ�, (3.106)

where

ζ =
(

Mβ

M

)α/(α+2)

(3.107)

and

δ = 2n1

N1

ω

�

d�

dω
= −2n1

N1

λ

�

d�

dλ
. (3.108)

Again, the first term in each of (3.104)–(3.106) represents the material contribution,
while the other terms account for waveguide contributions.

Modal dispersion

Modal dispersion exists because different modes in a multimode waveguide propagate
at different group velocities, as indicated by (3.105). Note that Dβ given by (3.106)
is the total intramode dispersion including material and waveguide contributions for a
mode that has a propagation constant β in a multimode fiber. It has nothing to do with
intermode dispersion. To find the modal dispersion, we have to consider the difference
in Nβ between modes of different β. This difference exists even when there is no
intramode chromatic dispersion so that Dβ vanishes.

In a multimode fiber, the modal dispersion between the fundamental mode and the
highest-order mode supported by the fiber can be estimated. Because the fundamental
mode HE11, or LP01, has two-fold degeneracy, it corresponds to Mβ = 2. For the highest
mode, Mβ = M . Therefore, for a fiber with a very large number of modes, ζlow =
2/M ≈ 0, while ζhigh = 1. They determine the minimum and maximum values of Nβ

among the modes. The modal dispersion can then be expressed as

Nhigh − Nlow = N1

(
α − 2 − δ

α + 2
� + 3α − 2 − 2δ

α + 2

�2

2

)
. (3.109)

Note that Nhigh > Nlow when α > 2 + δ, but Nhigh < Nlow when α < 2 + δ. Because
vg = c/N , this dispersion represents the difference in the group velocity between dif-
ferent modes. Although it is always true that a low-order mode has a larger β and thus
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a smaller phase velocity than a high-order mode, the relationship between their group
velocities is less straightforward. It depends on many factors, including the waveguide
structure, the index profile, the material properties, and how far away the modes are
from cutoff. For example, it can be seen from (3.109) that a low-order mode travels
faster than a high-order mode if α > 2 + δ, whereas the reverse is true if α < 2 + δ.
In addition, it has to be kept in mind that even this statement is not always true for
modes near cutoff, as can be seen from the discussions for step-index fibers and from
Fig. 3.11(a) using (3.102). Therefore, modal dispersion can also be modified by choos-
ing appropriate waveguide and material parameters.

Dispersion compensation

We have seen that all three types of dispersion in a fiber can be modified to a certain
extent by various means. Therefore, it is possible to engineer a desired dispersion
characteristic through careful choice of the type and concentration of dopants to control
the material dispersion while designing the fiber parameters to adjust the waveguide
dispersion and the modal dispersion. In some special applications, one might want a
certain nonzero value of positive or negative dispersion at a particular wavelength. For
example, one would need a finite amount of positive group-velocity dispersion in the
application of fiber-grating compression of optical pulses, whereas one would need
finite negative group-velocity dispersion for the generation and propagation of soliton
pulses in a fiber. Nevertheless, in most applications using fibers to transmit optical
signals, dispersion in a fiber causes undesirable spreading of the signal, limiting the
bandwidth of transmission. It is desirable to reduce the dispersion to zero, if possible,
for such applications.

For applications that require the largest bandwidths, single-mode fibers are the
choice because modal dispersion does not exist in a single-mode fiber. Because the
zero-dispersion point of pure silica is near the window of a local minimum of atten-
uation at 1.3 µm, transmission systems based on this wavelength have the combined
advantage of low attenuation and low dispersion and are a choice for long-distance
optical communications. As discussed in the preceding section, the real minimum of
attenuation appears at 1.55 µm wavelength. Therefore, it is usually desirable to shift
the point of zero dispersion to this wavelength. This task can be accomplished by a
combination of choices of dopants and waveguide parameters, as demonstrated by the
example shown in Fig. 3.12 where the point of zero dispersion is shifted to 1.5 µm
already. Such fibers are known as dispersion-shifted fibers. Zero dispersion in both 1.3-
and 1.55-µm windows can also be accomplished by special profiling of the fiber, re-
sulting in so-called dispersion-flattened fibers that have low dispersion in the region
between 1.3 and 1.55 µm with zero crossings at both wavelengths. Figure 3.13 shows
an example of a dispersion-flattened fiber.
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(a) (b)
λ (µm)

Figure 3.13 (a) Index profile and (b) dispersion characteristics of a dispersion flattened fiber.

For multimode fibers, modal dispersion dominates intramode waveguide dispersion.
It is then important to minimize the modal dispersion. From (3.109), it can be seen that
modal dispersion can be minimized if we choose

α = 2 + δ. (3.110)

The value of δ depends on the dopants and the optical wavelength. In the near infrared
spectral region, it is usually within the range of ±0.3 for most dopants. Therefore,
the optimum profile for a low-dispersion multimode fiber is one close to a quadratic
graded-index profile. This results in a modal dispersion of

Nhigh − Nlow = N1
�2

2
. (3.111)

In comparison, a step-index multimode fiber has α = ∞ and

Nhigh − Nlow = N1�. (3.112)

Because � is a very small number, the modal dispersion in an optimized graded-index
fiber is substantially lower than that in a step-index multimode fiber. It is interesting
to see that the total intramode dispersion Dβ given by (3.106) is also mode dependent.
However, when α is chosen to be the optimum value given by (3.110), Dβ = D1,
and the intramode dispersion becomes mode independent, indicating that waveguide
dispersion is minimized. Therefore, a graded-index fiber that has a minimum modal
dispersion also has a minimum waveguide contribution to the intramode dispersion for
each individual mode.

EXAMPLE 3.7 A multimode fiber of 10 km length has a core group index of N1 = 1.5 and
an index step of � = 2%. If an optical signal sent through this fiber is carried by all
of its guided modes, what is the transmission time of the signal? What is the temporal
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broadening of the signal due to modal dispersion if the fiber is a dispersion-optimized
graded-index fiber? What is the broadening if the fiber is a step-index fiber?

Solution The transmission time of the signal is

ttr = l

vg
= l

c
Nβ ≈ l

c
N1 = 50 µs.

In the case of an optimized graded-index fiber, the temporal broadening due to modal
dispersion is

�tmode = l

c
(Nhigh − Nlow) = l N1

2c
�2 = 10 ns.

In the case of a step-index fiber, the temporal broadening due to modal dispersion is

�tmode = l

c
(Nhigh − Nlow) = l N1

c
� = 1 µs.

Clearly, temporal broadening of the signal due to modal dispersion is much worse in a
step-index fiber than in an optimized graded-index fiber.

PROBLEMS

3.1.1 The only TE and TM modes that exist in a circular fiber are TE0n and TM0n. For
simplicity, consider the case of a step-index optical fiber.
a. Show that TEmn modes with m �= 0 cannot exist in a circular fiber by con-

sidering the continuity of the transverse magnetic field component Hφ at the
boundary between the core and the cladding.

b. Show that TMmn modes with m �= 0 cannot exist in a circular fiber by con-
sidering the continuity of the transverse electric field component Eφ at the
boundary between the core and the cladding.

c. What are the difference between the TE0n mode and other TE modes and that
between the TM0n mode and other TM modes that allow the TE0n and TM0n

modes to exist?
3.1.2 Which of the following are legitimate modes in a circular fiber: TE05, TM32,

HE02, EH22, HE13, EH04, TEM00, HE20?
3.1.3 What is the fundamental mode of a circular fiber? Sketch its field and intensity

profiles.
3.1.4 In this problem, we compare a circular fiber and a slab waveguide.

a. Name the types of guided modes that exist in a slab waveguide and those of
true modes that exist in a circular fiber.

b. Name the modes that have the largest propagation constant in a circular fiber
and in a slab waveguide, respectively.
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c. Is it possible for a slab waveguide to support no guided mode at all? Is it
possible for a circular fiber to support no guided mode?

3.1.5 Counting all possible degeneracies, a dielectric waveguide has exactly six guided
modes. When its core dimension is reduced, some or all of these modes will be
cut off.
a. If the waveguide is an asymmetric slab waveguide, which mode or modes

will be cut off first? Which mode or modes will never be cut off unless the
waveguide core disappears completely?

b. Answer the questions in (a) for a symmetric slab waveguide.
c. Answer the questions in (a) for a circular waveguide such as an optical

fiber.
3.1.6 A step-index waveguide has an index of refraction of n1 = 1.45 for its core and

an index step of �n = 0.005. Neglect the wavelength dependence of the index
of refraction.
a. If the waveguide is a slab waveguide of d = 3 µm core thickness, what is the

shortest wavelength for it to be a single-mode waveguide?
b. If it is an optical fiber of a = 3 µm core radius, what is the shortest wavelength

for it to be a single-mode fiber?
3.1.7 A step-index optical fiber has a numerical aperture of NA = 0.1. Its cladding is

pure silica and has a refractive index of n2 = 1.465.
a. What is the largest core diameter for which the fiber remains single moded at

an optical wavelength of 1.3 µm?
b. If the core diameter is found to be 8 µm, what is the wavelength range in which

the fiber remains single moded?
c. What is the refractive index n1 of the core?

3.1.8 The index of refraction of fused silica is n = 1.452, 1.447, and 1.444 at λ =
850 nm and 1.30 and 1.55 µm, respectively. A step-index silica fiber is found to
be single moded at a wavelength of 1.55 µm and multimoded at a wavelength of
1.30 µm.
a. Is the fiber single moded or multimoded at λ = 850 nm?
b. The core diameter is known to be 2a = 9 µm. Estimate the index step, �n =

n1 − n2. What is the numerical aperture?
c. If a fiber of the same index step is single moded at λ = 1 µm, what is the limit

of the acceptable values for its core diameter?
3.2.1 What are the LP modes of a circular fiber? Which LP modes can propagate like

true normal modes? Which ones cannot?
3.2.2 Can the LP01 mode of a circular fiber propagate without changing its field distri-

bution pattern? How about the LP11 mode?
3.2.3 Sketch the intensity distribution pattern of the LP21 mode in a weakly guiding

step-index fiber.
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3.2.4 Which of the following are legitimate fiber modes: HE32, TE11, EH03, TM02,
TEM01, LP01, LP35, LP00, LP11? Which are true normal modes? Which are ap-
proximate modes?

3.2.5 In this problem, we consider the behavior of a monochromatic laser beam that is
coupled into an optical fiber.
a. The beam is coupled into a multimode fiber. After the optical wave travels for

a certain distance in the fiber, the diameter of the fiber shrinks to become a
single-mode fiber. What will happen to the optical field in the fiber? Are all of
the different mode components of the optical field still there?

b. Now the beam is initially coupled into a single-mode fiber. After a certain
distance, the fiber expands to become a multimode fiber. What happens to the
optical field in the fiber?

3.2.6 The index step � of a practical single-mode silica fiber is typically in the range
of 0.1–0.2%, whereas that of a practical multimode silica fiber is typically in
the range of 1–2%. Discuss the reasons for such a difference. Use numerical
examples to illustrate your arguments.

3.2.7 Determine the cladding index of refraction of a fiber that has a core index of
1.5, a core radius of 5 µm, and V = 2.0 at λ = 1.5 µm. What is the shortest
wavelength λc at which the fiber is a single-mode fiber? What is the number of
modes if this fiber is used at λc/2?

3.2.8 The refractive index of a glass fiber varies with optical wavelength relatively
linearly in the neighborhood of λ = 1.3 µm. For the cladding, the index of
refraction is approximately given by

n2 = 1.465 − 0.0114(λ − 1.3)

in the wavelength range between 1 and 1.6 µm, where the optical wavelength λ

is measured in micrometers. Assume that the index of refraction n1 of the core
of a step-index fiber has the same wavelength dependence as that of the cladding
but is larger by a fixed amount �n, so that n1 = n2 + �n for the entire spectral
range of interest here. Use the wavelength dependence of n2 given above to
design a step-index optical fiber that supports only the fundamental LP01 mode
for wavelengths at 1.3 and 1.55 µm but becomes a multimode fiber at 1 µm
wavelength. For practical purposes, we want the diameter of the fiber core to be
less than ten optical wavelengths.

3.2.9 A step-index silica fiber has a core index of 1.453, an index step, � = �n/n1,
of 0.2%, and a core diameter of 10 µm.

a. Is the fiber single moded or multimoded at λ = 1.3 µm? What is the cutoff
wavelength for single-mode operation of the fiber?

b. If a fiber with the given index profile were to support 400 modes at λ = 1.3 µm,
what should its core diameter be? Compare your answer with the standard outer
diameter of 125 µm for multimode fibers.
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c. If the core diameter of a multimode fiber with the given core index were to be
fixed at the standard value of 50 µm, what should its index step be in order for
it to support 400 modes at λ = 1.3 µm?

3.2.10 A multimode optical fiber is found to have 1000 guided modes at an optical
wavelength λ = 500 nm. Neglect the dispersion of the refractive index of the
fiber material when answering the following questions.
a. How many guided modes does it have at 1.3 µm wavelength?
b. If another fiber is found to have exactly the same index step and index profile

but only half the diameter, how many modes does this fiber have at 500 nm
wavelength?

3.2.11 The refractive index of pure silica is 1.444 at 1.55 µm wavelength. The
cladding layers of optical fibers considered in this problem are made of pure
silica.

a. Design a single-mode silica fiber for λ = 1.55 µm that has a numerical aperture
in the range of 0.1 > NA > 0.07 and is multimoded at λ = 1.3 µm.

b. Design a multimode fiber that supports 500 modes at λ = 1.55 µm and has a
core diameter of 50 µm.

c. How many modes does the multimode fiber support at λ = 1.3 µm?
3.3.1 A multimode graded-index optical fiber for λ = 1.3 µm has a power-law index

profile characterized by the following parameters: n1 = 1.466, n2 = 1.451, and
α = 2. The core radius of the fiber is 50 µm.
a. How many guided modes does this fiber support at λ = 1.3 µm?
b. Estimate the propagation constant of the LP01 mode and that of the highest-

order guided mode.
c. Estimate the propagation constant of the 500th guided mode if it is supported.

3.3.2 A multimode silica fiber has a 50 µm core diameter. The refractive index of its
cladding is 1.453 at 850 nm wavelength and 1.448 at 1.3 µm wavelength.
a. If the fiber has a step-index profile, what is the minimum refractive index of

the core at 850 nm wavelength for it to support at least 500 modes at this
wavelength? What is the numerical aperture?

b. Neglecting the dispersion of the index step, how many modes can the fiber
determined in (a) support at 1.3 µm wavelength?

c. A graded-index fiber has a quadratic index profile with the same core diam-
eter and the same numerical aperture as the step-index fiber found above.
How many modes can it support at 850 nm and 1.3 µm wavelengths,
respectively?

d. At 1.3 µm, the combined material and waveguide dispersion is approximately
zero for these fibers so that modal dispersion completely dominates. The group
index of the core at this wavelength is N1 = 1.462. Find the distances of
propagation for a 1-ns pulse to double its width in the step-index and graded-
index fibers, respectively.
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3.3.3 A single-mode fiber has a core index of n1 = 1.448, an index step of � = 0.1%,
and a core diameter of 12 µm. What is its cutoff wavelength for single-mode
performance if it is a step-index fiber? What is its cutoff wavelength if it is a
graded-index fiber with α = 2? Ignore dispersion in solving this problem.

3.4.1 What limits the use of ordinary silica optical fibers in the infrared region? What
is the physical mechanism that contributes to the limitation?

3.4.2 What are the two wavelength windows for long-distance fiber-optic communica-
tions? What advantages do they offer over other wavelengths?

3.4.3 A detector used in an optical communication system has the sensitivity to detect
signals at a power level of 1 µW at the output end of a fiber transmission line. The
attenuation coefficient of the fiber is 0.3 dB km−1 at 1.3 µm and is 0.2 dB km−1

at 1.55 µm. At an input power level of 1 mW, what is the maximum distance
over which the signals can be sent through this system and be detected if the
signal wavelength is 1.3 µm? What is the distance if the signal wavelength is
1.55 µm?

3.4.4 An optical fiber has an attenuation coefficient of 0.2 dB km−1 at 1.55 µm wave-
length. If the output power is required to be at least 100 nW and the transmission
distance is 200 km, what is the required input power in milliwatts and in decibel-
milliwatts, respectively? If the fiber attenuation coefficient is only increased by
10% to 0.22 dB km−1, how much increase in the input power is required to
maintain the same transmission distance?

3.4.5 A detector used in an optical communication system has the sensitivity to detect
signals at 1.3 µm optical wavelength at a power level as low as 1 µW. If such a
detector is used to monitor the signals at the output end of a fiber transmission
line, what is the maximum distance over which the signals can be sent through a
low-loss silica fiber at an input power level of 1 mW? What could be done if the
signals were to be transmitted over a distance twice as long? What if it is necessary
to send the signal across the country for a distance of as long as 5000 km? Assume
that the low-loss fiber has an attenuation coefficient of 0.3 dB km−1 at 1.3 µm
wavelength. Note that the power that can be sent into a fiber for long-distance
communications is limited to the order of 10–20 mW by nonlinear optical effects,
while the power that can be detected by the most sensitive detectors is limited to
the order of about 1 pW for practical purposes.

3.4.6 A fiber-optic link operating at 1.55 µm wavelength consists of many sections of
low-loss fibers, which are connected with fiber connectors. The optical power
coupled into the transmission link at the input end is −5 dBm. The detector at
the output end of the link requires that the minimum optical power incident upon
it be at least −50 dBm. The maximum length of fiber that can be used between
connectors is 2 km. The loss of each connector is 2 dB.
a. If the fiber attenuation is 1 dB km−1, what is the maximum length of the

link?
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b. What is the ultimate limitation of the link length if the fiber attenuation is
reduced to the absolute minimum?

3.4.7 What are the three most important loss mechanisms that ultimately determine
the attenuation characteristics of a silica fiber in the visible and infrared spectral
regions? At what wavelength is the minimum attenuation typically found in a
silica fiber?

3.5.1 Verify (3.103) and discuss the physical meaning of each term.
3.5.2 In the case of a regular step-index silica fiber, where does zero group-velocity

dispersion normally occur? How does this zero dispersion point shift from a
single-mode fiber of a large core diameter with V = 2.4 to one with a reduced
core diameter if the two have exactly the same index profile and same material
compositions?

3.5.3 Determine the core radius of a multimode step-index fiber with a numerical
aperture of NA = 0.1 if the number of modes is M = 5000 when the wavelength
is 870 nm. If the core refractive index is n1 = 1.445, the group index is N1 =
1.456, and � is approximately independent of wavelength, determine the modal
dispersion for a 2-km fiber.

3.5.4 The total dispersion in a single-mode step-index fiber includes waveguide dis-
persion and material dispersion. Therefore, the point of zero dispersion can be
shifted by choosing appropriate waveguide parameters for the fiber. Consider a
step-index fiber of pure silica cladding.
a. Show that for a single-mode fiber of a simple index profile with n = n1 for

r < a and n = n2 for r > a, the waveguide dispersion always shifts the point of
zero dispersion to a wavelength longer than that of the zero material dispersion.

b. Using the data in Figs. 3.9, 3.10, and 3.11, design a single-mode step-index
fiber of the smallest possible index step that has zero dispersion at 1.55 µm
wavelength due to compensation of material dispersion by waveguide disper-
sion.

3.5.5 What is a dispersion-shifted fiber? What is the major motivation for making such
a fiber?

3.5.6 What is the primary consideration that may lead one to choose a graded-index
fiber over a step-index fiber for application?

3.5.7 A step-index optical fiber is designed for single-mode applications in the trans-
mission window covering the optical wavelength range from 800 to 900 nm. Its
numerical aperture is NA = 0.15. Its core diameter is chosen to be the largest
possible. It has an attenuation coefficient of 5 dB km−1 in this spectral range. Its
group-velocity dispersion, including the material and waveguide effects, at the
center wavelength of 850 nm in this range is Dλ = −820 ps nm−1 km−1.
a. What is the core diameter of this fiber?
b. If 500 µW of input power is coupled into this fiber for transmission over a

distance of 2 km, what is the output power?



162 Optical fibers

c. What is the maximum transmission delay between pulses of different wave-
lengths in this spectral range?

3.5.8 A step-index optical fiber has a core diameter of 9 µm. Its numerical aperture is
NA = 0.1. At a wavelength of 1.55 µm, the attenuation coefficient of the fiber is
0.15 dB km−1, and the group-velocity dispersion Dλ is 17 ps nm−1 km−1.
a. Is this fiber single moded or multimoded at the wavelength of 1.55 µm?

Why?
b. Suppose this fiber is used for long-distance optical pulse transmission. Optical

amplifiers with a gain of 30 dB and a minimum required input power of
−30 dBm are used to compensate for the loss in the fiber. If 1 mW of input
power is coupled into the fiber and the sensitivity of the receiver is −50 dBm,
how many amplifiers are needed for a transmission distance of 1000 km?

c. If an optical pulse being transmitted has a temporal pulsewidth of 1 ns and a
spectral width of 0.016 nm, how far can we extend the transmission distance by
adding more amplifiers before hitting the limitation imposed by group-velocity
dispersion? Assume that the dispersion limitation is reached when the temporal
pulsewidth is doubled.
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4 Coupling of waves and modes

The principles of many photonic devices are based on the coupling between optical fields
of different frequencies or different spatial modes. In general, the coupling mechanism
can be described by a polarization �P on top of a background polarization representing
the property of the medium in the absence of the coupling mechanism. In this chapter,
we present the general coupled-wave and coupled-mode formalisms, which provide the
foundation for understanding the functions of many devices in the following chapters.
The coupled-wave formalism deals with the coupling of optical waves of different
frequencies, whereas coupled-mode theory applies to the coupling of optical fields of
different spatial modes.

4.1 Coupled-wave theory

In this section, the general formulation of the coupled-wave formalism for coupling of
optical waves of different frequencies is presented. For simplicity, we consider only
coupling among plane optical waves, but the formulation can be easily extended for
nonplane waves, such as optical waves of Gaussian beam profiles.

As discussed in Section 1.3, coupling among optical waves of different frequencies is
possible only if the optical property of the medium in which the optical waves propagate
is either time varying or optically nonlinear. Time-varying optical properties can be
induced by time-varying electric, magnetic, or acoustic fields through electro-optic,
magneto-optic, or acousto-optic effects, which are discussed in Chapters 6, 7, and 8,
respectively. In particular, an acoustic wave always induces time-varying changes in the
optical property of a medium, whereas changes induced by electro-optic or magneto-
optic effects can be static when they are caused by static electric or magnetic fields.
Nonlinear optical properties are discussed in Chapter 9. Here we consider the general
formulation without specifying the physical mechanism responsible for the coupling
of optical waves. Applications of the couple-wave formalism to specific situations are
seen in later chapters, particularly Chapters 8 and 9.

The time-varying or nonlinear optical property responsible for coupling of optical
waves of different frequencies can be generally described by a polarization, �P, induced
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165 4.1 Coupled-wave theory

by the underlying effect. In the absence of a coupling mechanism, an optical wave
propagating in a medium is described by the linear wave equation

∇ × ∇ × E + µ0
∂2D
∂t2

= 0, (4.1)

where D accounts for only the linear, static property of the medium. For a monochro-
matic optical wave of constant amplitude at a frequency ω, this equation reduces to

∇ × ∇ × E − ω2µ0ε(k, ω) · E = 0, (4.2)

where ε(k, ω) describes the linear, time-independent optical property of the medium.
Among the solutions of (4.2) are monochromatic plane waves and Gaussian waves.
Here we consider only the plane waves, but the same concept applies to Gaussian
waves as well.

Clearly, an optical wave of frequency ω that is governed by (4.2) propagates indepen-
dently of waves of other frequencies. Therefore, optical waves of different frequencies
do not couple if each of them is governed by (4.1) with D characterizing only the
linear, static property of the medium. To describe the coupling, a certain polariza-
tion �P that characterizes the coupling mechanism has to be included in the wave
equation:

∇ × ∇ × E + µ0
∂2D
∂t2

= −µ0
∂2�P
∂t2

. (4.3)

Because �P couples waves of different frequencies, an optical wave at a given fre-
quency ω does not propagate independently of waves of other frequencies any more.
A monochromatic wave that is coupled to other frequencies cannot propagate without
changing its amplitude, which includes magnitude, phase, and polarization. Conse-
quently, a monochromatic plane wave of constant amplitude is not a solution of (4.3).
In most cases of interest, however, the condition

|�P| � |D| (4.4)

is valid; hence the wave-coupling mechanism can be considered as a perturbation on the
linear, static property of the medium. Then, the total field of the waves being coupled
can be expressed as a linear combination of plane waves of different frequencies, each
of which has a spatially varying amplitude:

E(r, t) =
∑

q

Eq (r) exp(−iωq t) =
∑

q

Eq (r) exp(ikq · r − iωq t). (4.5)

We can also expand �P as a linear combination of its various frequency components:

�P(r, t) =
∑

q

�Pq (r) exp(−iωq t). (4.6)
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Substitution of (4.5) and (4.6) in (4.3) yields the following coupled-wave equation (see
Problem 4.1.1):

∇ × ∇ × Eq − ω2
qµ0ε(kq , ωq ) · Eq = ω2

qµ0�Pq . (4.7)

Note that �Pq (r) is generally not proportional to Eq (r). It contains the fields of other
frequencies to facilitate the coupling. Moreover, it does not necessarily contain a spatial
phase factor of exp(ikq · r). In the special case when the spatial phase factor of �Pq (r)
is exp(ikq · r), the coupling interaction is most efficient and is called phase matched.

Slowly varying amplitude approximation

The coupled-wave equation expressed in (4.7) is a second-order differential equation.
It can be reduced to a first-order differential equation by applying the slowly varying
amplitude approximation, which assumes that variation of the wave amplitude Eq (r)
caused by coupling to other frequencies is negligibly small over the distance of an
optical wavelength. This approximation is valid in almost all situations of practical
interest.

We first consider the situation in an isotropic medium where ε reduces to a scalar ε.
From the discussions in Section 1.5, we find that ∇ · E = 0 in this case. Then, (4.7)
becomes

∇2Eq + ω2
qµ0ε(kq , ωq )Eq = −ω2

qµ0�Pq . (4.8)

Substitution of the relation Eq = Eq exp(ikq · r) in (4.8), followed by application of
the condition k2

q = ω2
qµ0ε(kq , ωq ), yields

∇2Eq + 2i(kq · ∇)Eq = −ω2
qµ0�Pqe−ikq ·r. (4.9)

Under the slowly varying amplitude approximation, we have

|∇2Eq | � |(kq · ∇)Eq |. (4.10)

Consequently, the coupled-wave equation in an isotropic medium can be written as

(kq · ∇)Eq ≈ iω2
qµ0

2
�Pqe−ikq ·r. (4.11)

In the special situation when the amplitudes of all waves being coupled vary only
in a particular direction, say the z direction, we can write Eq (r) = Eq (z) even though
�Pq (r) might have variations in other directions. Then, the coupled-wave equation can
be written as

dEq (z)

dz
≈ iω2

qµ0

2kq,z
�Pq (r)e−ikq ·r. (4.12)

If, furthermore, the interaction is collinear along the z direction, all participating waves
have parallel or antiparallel wavevectors such that kq = kq ẑ for all q . In this situation,
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�Pq can have variations only along the z direction. Then (4.12) can be further simplified
to

dEq (z)

dz
≈ iω2

qµ0

2kq
�Pq (z)e−ikq z. (4.13)

For an optical wave propagating in an anisotropic medium, E is not necessarily
perpendicular to k and, in general,∇ · E �= 0, as discussed in Section 1.6. Consequently,
(4.8) and the equations that follow are not valid in an anisotropic medium. In this
situation, the field Eq propagating in the kq = kq k̂q direction can be divided into a
transverse and a longitudinal component:

Eq = Eq,T + Eq,L, (4.14)

where the transverse component is given by

Eq,T = (k̂q × Eq ) × k̂q (4.15)

and the longitudinal component is given by

Eq,L = (k̂q · Eq )k̂q . (4.16)

Clearly, ∇ · Eq,T = 0 but ∇ · Eq,L �= 0. Therefore, an equation similar to (4.8) can be
written for the transverse component (see Problem 4.1.2):

∇2Eq,T + ω2
qµ0[ε(kq , ωq ) · Eq ]T = −ω2

qµ0�Pq,T, (4.17)

where �Pq,T = (k̂q × �Pq ) × k̂q . Note that �Pq,T can have contributions from the
longitudinal field components of the interacting waves. Following the same procedure
as leads to (4.11), the coupled-wave equation in an anisotropic medium under the
slowing varying amplitude approximation can be written as (see Problem 4.1.3)

(kq · ∇)Eq,T ≈ iω2
qµ0

2
�Pq,Te−ikq ·r. (4.18)

In the special situation when (4.11) can be reduced to (4.12) or (4.13), an equation
similar to (4.12) or (4.13), but expressed in terms of the transverse field components,
can be obtained from (4.18) for wave coupling in an anisotropic medium.

4.2 Coupled-mode theory

Coupled-mode theory deals with the coupling of spatial modes of different spatial
distributions or different polarizations, or both. Although the theory described in this
section is formulated specifically in terms of the coupling of waveguide modes, it can
be easily extended to other kind of spatial modes, such as Gaussian spatial modes.

The mode fields in a lossless waveguide can be expressed in the forms of (2.1)
and (2.2), which satisfy Maxwell’s equations in (2.8) and (2.9). For fields at a single
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frequency ω, we can write

Eν(r) = Eν(x, y) exp(iβνz), (4.19)

Hν(r) = Hν(x, y) exp(iβνz), (4.20)

for the spatial dependence of the mode fields, while the two Maxwell’s equations in
(2.8) and (2.9) become

∇ × E = iωµ0H, (4.21)

∇ × H = −iωεE. (4.22)

The normal modes with fields given by (4.19) and (4.20) are characteristic solutions of
Maxwell’s equations in (4.21) and (4.22).

Mode expansion

The normal modes are orthogonal and can be normalized to have the orthonormality
relation given by (2.41). They form a basis for linear expansion of any optical field at
a given frequency ω in the waveguide:

E(r) =
∑

ν

AνÊν(x, y) exp(iβνz), (4.23)

H(r) =
∑

ν

AνĤν(x, y) exp(iβνz), (4.24)

where Êν and Ĥν are normalized mode fields satisfying (2.41), and the summation
sums over all discrete indices of the guided modes and integrates over all continuous
indices of the radiation and evanescent modes. In an ideal waveguide where these modes
are defined, the normal modes do not couple. Then, the expansion coefficients Aν are
constants that are independent of x , y, and z.

When there is a spatially dependent perturbation to a waveguide, the modes defined
by the unperturbed ideal waveguide are no longer exact normal modes of the perturbed
waveguide. They can now be coupled by the perturbation as they propagate along the
waveguide. As a result, if the fields are still expanded in terms of the normal modes
of the unperturbed waveguide, the expansion coefficients are no longer constants of
propagation but vary with z as the fields propagate down the waveguide:

E(r) =
∑

ν

Aν(z)Êν(x, y) exp(iβνz), (4.25)

H(r) =
∑

ν

Aν(z)Ĥν(x, y) exp(iβνz), (4.26)

where again Êν and Ĥν are normalized mode fields, and the summation is taken over
all guided, radiation, and evanescent modes.
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Single-waveguide mode coupling

We first consider the coupling between normal modes in a single waveguide that is
subject to some perturbation. The spatially dependent perturbation to the waveguide can
be represented by a perturbing polarization �P(r) also at frequency ω. The following
Maxwell’s equations then replace (4.21) and (4.22):

∇ × E = iωµ0H, (4.27)

∇ × H = −iωεE − iω�P. (4.28)

The fields in the perturbed waveguide, which can be expanded as (4.25) and (4.26), are
governed by these two equations with �P �= 0. Meanwhile, the normal mode fields of
the unperturbed waveguide, which are defined by (4.21) and (4.22), also satisfy these
two equations with �P = 0. Using (4.27) and (4.28), we have

∇ · (E1 × H∗
2 + E∗

2 × H1) = −iω(E1 · �P∗
2 − E∗

2 · �P1). (4.29)

This is the Lorentz reciprocity theorem, which holds for any two arbitrary sets of fields
(E1, H1) and (E2, H2).

If we take (E1, H1) to be those of (4.25) and (4.26) and (E2, H2) to be the normal
mode fields given in (4.19) and (4.20), we have �P1 = �P and �P2 = 0. Substituting
these into (4.29) and integrating both sides of the resultant equation over the cross
section of the waveguide, we have

∑
ν

d

dz
Aν(z)ei(βν−βµ)z

∞∫
−∞

∞∫
−∞

(Êν × Ĥ∗
µ + Ê∗

µ × Ĥν) · ẑdxdy

= iωe−iβµz

∞∫
−∞

∞∫
∞

Ê∗
µ · �Pdxdy. (4.30)

By applying the orthonormality relation (2.41), we find from (4.30) the following
coupled-mode equation (see Problem 4.2.1):

±dAν

dz
= iωe−iβν z

∞∫
−∞

∞∫
−∞

Ê∗
ν · �Pdxdy, (4.31)

where the plus sign is used when βν > 0 and mode ν is a forward-propagating mode,
and the minus sign is used when βν < 0 and mode ν is a backward-propagating
mode.

The result in (4.31) can be used for mode coupling caused by any kind of spatially
dependent perturbation on the characteristics of the waveguide. For example, �P can
be a perturbing polarization due to the effects of nonlinear optical interactions on the
fields at frequency ω in the waveguide. For the simple case where the perturbation can
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be represented by a change in linear polarization as

�P = �εE = �ε
∑

ν

AνÊνeiβν z, (4.32)

we have

±dAν

dz
=
∑

µ

iκνµ Aµei(βµ−βν )z, (4.33)

where

κνµ = ω

∞∫
−∞

∞∫
−∞

�εÊ∗
ν · Êµdxdy (4.34)

is the coupling coefficient between mode ν and mode µ. This result can also be extended
to anisotropic waveguides by simply considering �P to be a polarization involving
anisotropy as

�P = �ε · E, (4.35)

where �ε is a tensor. In this situation, the coupled-mode equation is still given by
(4.33), but the coupling coefficient is given by

κνµ = ω

∞∫
−∞

∞∫
−∞

Ê∗
ν · �ε · Êµdxdy. (4.36)

In a lossless waveguide, the dielectric tensor is a Hermitian matrix, as discussed in
Section 1.6. Therefore, �εi j = �ε∗

j i and

κνµ = κ∗
µν (4.37)

in a lossless waveguide.

Multiple-waveguide mode coupling

In an optical structure that consists of more than one waveguide, we can certainly solve
Maxwell’s equations directly with the boundary conditions defined by the entire struc-
ture to find its normal modes. Alternatively, we can divide the structure into separate
individual waveguides, expand the fields in terms of the normal modes of the individual
waveguides, and treat the problem with a coupled-mode approach. The first approach
can yield exact solutions and is sometimes desirable. However, it is not generally possi-
ble to obtain the exact solutions for complicated structures. The coupled-mode approach
yields approximate solutions, but it can be applied to most structures without difficulty.
In addition, it gives an intuitive picture of how optical waves interact in a multiple-
waveguide structure. In the following, we consider the coupled-mode formulation for
multiple parallel waveguides.
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Figure 4.1 Representation of a multiple-waveguide structure in terms of a combination of
individual single waveguides.

The concept of dividing a multiple-waveguide structure into a combination of indi-
vidual single waveguides is illustrated in Fig. 4.1. The multiple-waveguide structure
is described by ε(x, y) while the individual waveguides are described by εa(x, y),
εb(x, y), εc(x, y), and so on. The normal modes are solved for each individual wave-
guide. The fields in the entire structure can be expanded in terms of these normal modes
in the same form as that of (4.25) and (4.26) but with the index ν representing modes
of different individual waveguides. From the standpoint of any individual waveguide
ν, the entire structure looks like εν(x, y) plus a perturbation of

�εν(x, y) = ε(x, y) − εν(x, y). (4.38)

This concept is schematically illustrated in Fig. 4.2. The coupled-mode equation for
the multiple-waveguide structure can be obtained by using the reciprocity theorem of
(4.29) and then following a procedure similar to that taken above to obtain the coupled-
mode equation for the single waveguide. Because the mathematics is quite involved,
we only give the results in the following without detailed derivation.

The coupled-mode equation for a multiple-waveguide structure can still be written
in the same form as that of (4.33):

±dAν

dz
=
∑

µ

iκνµ Aµei(βµ−βν )z, (4.39)

where the plus sign is taken if mode ν is forward propagating, and the minus sign is
used if it is backward propagating. It is noted that the summation over the index µ

runs through the modes of every individual waveguide, not just the modes of one single
waveguide. In addition, the coupling coefficients κνµ have a complicated form and are
best expressed in terms of the matrix elements:

κνµ = cνν[c−1 · κ̃]νµ, (4.40)
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Figure 4.2 Schematic diagram of three coupled waveguides showing the decomposition into
individual waveguides, in solid curves, plus the corresponding perturbation, in dashed curves,
for each of them.

where cνν = 1 if mode ν is forward propagating and cνν = −1 if it is backward prop-
agating, as can be seen from (4.41) below. The elements of the matrices c = [cνµ] and
κ̃ = [κ̃νµ] are given by

cνµ =
∞∫

−∞

∞∫
−∞

(
Ê∗

ν × Ĥµ + Êµ × Ĥ∗
ν

)
· ẑdxdy = c∗

µν (4.41)

and

κ̃νµ = ω

∞∫
−∞

∞∫
−∞

Ê∗
ν · �εµ · Êµdxdy, (4.42)

respectively. The coefficient cνµ represents the overlap coefficient of (Êν, Ĥν) and
(Êµ, Ĥµ), which are the mode fields of different individual waveguides. Note that cνµ �=
0 in general because modes of different waveguides are not necessarily orthogonal to
each other. Because the mode fields used in (4.41) are normalized, we have cνν = 1 or
−1, depending on whether the mode ν is forward or backward propagating as mentioned
above, and |cνµ| ≤ 1. Note also the difference between the form of κ̃νµ and that of the
coupling coefficients of modes in a single waveguide given by (4.36).

In general,

κ̃νµ �= κ̃∗
µν and κνµ �= κ∗

µν (4.43)
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where ν and µ refer to modes of two different waveguides. Therefore, (4.37) is not
always valid for coupling between waveguides. Indeed, it can be shown by using the
reciprocity theorem that

κ̃νµ − κ̃∗
µν = cνµ + c∗

µν

2
(βν − βµ) = cνµ(βν − βµ). (4.44)

It can be seen that there is a direct relationship between the coupling coefficients and the
propagation constants. This is an important relation. It has the following implications.

1. Coupling between two modes is not symmetric, κνµ �= κ∗
µν , unless βν = βµ or cνµ =

c∗
µν = 0. This is because the normal modes in different individual waveguides are

not necessarily orthogonal to each other.
2. Coupling of modes of the same order between two identical waveguides is always

symmetric, resulting in κ̃νµ = κ̃∗
µν and κνµ = κ∗

µν .
3. The relation in (4.44) applies to modes in a single waveguide as well. In this situation,

cνµ = c∗
µν = 0 if ν �= µ, but κ̃νµ = κνµ. Therefore, (4.37) holds in a single waveguide

because the normal modes in the same waveguide are always orthogonal to each
other.

4. It is not possible to change the coupling between two modes without simultaneously
changing their overlap coefficient or their propagation constants.

4.3 Two-mode coupling

In most applications, we are interested in the coupling between two modes. This in-
cludes coupling between two modes in the same waveguide, such as that in a periodic
waveguide, or coupling between two parallel waveguides, such as that in a directional
coupler. For coupling between two modes, the coupled-mode equations can be written
in a simple form that can be solved analytically. In this section, we consider the general
formulation and general solutions for this important case of two-mode coupling. The
characteristics of specific couplers are discussed in Chapter 5.

We have shown that both coupling among modes in the same waveguide and coupling
among multiple waveguides can be described by coupled-mode equations of the same
form as given in (4.33) and (4.39). The only difference is that the coupling coefficients in
(4.39) for multiple-waveguide coupling are defined differently from those in (4.33) for
single-waveguide mode coupling. This is convenient because general solutions of the
coupled-mode equations can be applied to both cases. For a particular problem, we only
have to calculate the coupling coefficients specific to the problem under consideration.

For two-mode coupling either in a single waveguide or between two separate wave-
guides, the field expansion in (4.25) and (4.26) consists of only two modes with am-
plitudes A and B. Thus, coupled-mode equations of the form given in (4.33) or (4.39)
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simply reduce to the following two coupled equations:

±dA

dz
= iκaa A + iκab Bei(βb−βa )z, (4.45)

±dB

dz
= iκbb B + iκba Aei(βa−βb)z. (4.46)

For coupling in a single waveguide, the coupling coefficients in these equations are
simply given by (4.34) in the case of an isotropic waveguide or by (4.36) in the case of
an anisotropic waveguide. According to (4.37), we also have κab = κ∗

ba if the waveguide
is lossless. For coupling between two waveguides, the coupling coefficients are given
by (4.40), which can be expressed explicitly as

κaa = κ̃aa − cabκ̃ba/cbb

1 − cabcba/caacbb
, κab = κ̃ab − cabκ̃bb/cbb

1 − cabcba/caacbb
,

κba = κ̃ba − cba κ̃aa/caa

1 − cabcba/caacbb
, κbb = κ̃bb − cba κ̃ab/caa

1 − cabcba/caacbb
.

(4.47)

As discussed earlier and expressed in (4.43) and (4.44), in general, κab �= κ∗
ba for cou-

pling between two waveguides.
There is a self-coupling term in each of the coupled equations (4.45) and (4.46). These

terms are caused by the fact that normal modes see an index profile in the perturbed
waveguide different from that of the original waveguide where the modes are defined.
They can be removed from these equations by expressing the normal-mode expansion
coefficients as follows:

A(z) = Ã(z) exp


±i

z∫
0

κaa(z)dz


 , (4.48)

B(z) = B̃(z) exp


±i

z∫
0

κbb(z)dz


 . (4.49)

where a plus or minus sign is chosen for a forward-propagating or backward-
propagating mode, respectively.

Before transforming (4.45) and (4.46) into two coupled equations in terms of Ã
and B̃ to remove the self-coupling terms, we have to consider the fact that all of the
coupling coefficients can be a function of z because �ε can be a function of z but the
integration in (4.36) and (4.42) is carried out only over x and y. In case κab(z) and κba(z)
are arbitrary functions of z, the coupled-mode equations in (4.45) and (4.46) cannot
be solved analytically. In this situation, there is no need to simplify the coupled-mode
equations further because they can only be solved numerically. However, for waveguide
structures of practical interest that are designed for two-mode coupling, �ε is either
independent of z or is a periodic function of z. Then, the coupling coefficients are
either constant or periodic in z. In either case, (4.45) and (4.46) can be reduced to the
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following general form:

±d Ã

dz
= iκab B̃ei2δz, (4.50)

±dB̃

dz
= iκba Ãe−i2δz, (4.51)

in terms of Ã and B̃ with κab and κba in these two equations being constants independent
of z. The parameter 2δ is the phase mismatch between the two modes being coupled.
Phase-matched coupling with δ = 0 between two modes is always symmetric with
κab = κ∗

ba irrespective of whether these two modes belong to the same waveguide or
two different waveguides (see Problem 4.3.1).

The general form of (4.50) and (4.51) applies to both cases of constant and periodic
perturbations, but the details of the parameters in these two equations vary.

1. Constant perturbation. In this case, �ε is not a function of z. Then all of the
coupling coefficients κaa , κbb, κab, and κba are constants that are independent of z.
We then find that

A(z) = Ã(z)e±iκaa z and B(z) = B̃(z)e±iκbbz (4.52)

and

2δ = (βb ± κbb) − (βa ± κaa). (4.53)

The choice of sign in each ± here is consistent with that in (4.48) and (4.49) dis-
cussed above. The physical meaning of the self-coupling coefficients is a change in
the propagation constant of each normal mode. While the propagation constants
of the normal modes in the original waveguide are βa and βb, their values are
changed because of the perturbation on the waveguide. These modes now propa-
gate with the modified propagation constants βa ± κaa and βb ± κbb, respectively,
which take into account the effect of the perturbation. In addition, they couple to
each other through κab and κba . Details of this type of coupling are discussed in
Section 5.2.

2. Periodic perturbation. In this case, �ε is a periodic function of z and so are the
coupling coefficients κaa(z), κbb(z), κab(z), and κba(z). The periodic perturbation has
a period � and a wavenumber

K = 2π

�
. (4.54)

The coupling coefficients κab(z) and κba(z), being periodic in z with a periodicity
�, can be expanded in a Fourier series with constant coefficients κab(q) and κba(q)
and a phase factor q K , where q is an integer. Because κaa(z) and κbb(z) are periodic
in z, we find that
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∣∣∣∣∣∣
z∫

0

κaa(z)dz

∣∣∣∣∣∣� K z and

∣∣∣∣∣∣
z∫

0

κbb(z)dz

∣∣∣∣∣∣� K z. (4.55)

Therefore, the contribution to the phase-mismatch parameter 2δ by κaa and κbb is
negligible compared to the contribution by qK. As a result, we find that the coupled-
mode equations in the case of periodic perturbation can also be expressed in the form
of (4.50) and (4.51) but with κab = κab(q) and κba = κba(q) being constants that are
independent of z and

2δ = �β + q K = βb − βa + q K , (4.56)

where �β = βb − βa and q is an integer that minimizes the value of δ. Details of
this type of coupling are discussed in Section 5.1.

With these general considerations, (4.50) and (4.51) represent the most general coupled
equations for two-mode coupling in waveguide structures of practical interest. They can
be solved analytically and their solutions apply to many different two-mode coupling
problems.

Codirectional coupling

First, we consider the coupling of two modes propagating in the same direction, say
the forward direction in z, over a length l, as is shown in Fig. 4.3. In this case, βa > 0
and βb > 0. The coupled equations are

d Ã

dz
= iκab B̃ei2δz, (4.57)

dB̃

dz
= iκba Ãe−i2δz. (4.58)

These equations for codirectional coupling are generally solved as an initial-value
problem with the initial values of Ã(z0) and B̃(z0) given at z = z0 to find the values

(a) (b)

Figure 4.3 Codirectional coupling between two modes of propagation constants βa and βb (a) in
the same waveguide and (b) in two parallel waveguides. A perturbation is required for codirectional
coupling in the same waveguide but is not required for codirectional coupling between two
waveguides.
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of Ã(z) and B̃(z) at any other location z. The general solution can be expressed in the
following matrix form:[

Ã(z)
B̃(z)

]
= F(z; z0)

[
Ã(z0)
B̃(z0)

]
, (4.59)

where the forward-coupling matrix F(z; z0) relates the field amplitudes at the location
z0 to those at the location z. It has the form (see Problem 4.3.2)

F(z; z0) =


βc cos βc(z − z0) − iδ sin βc(z − z0)

βc
eiδ(z−z0) iκab

βc
sin βc(z − z0)eiδ(z+z0)

iκba

βc
sin βc(z − z0)e−iδ(z+z0) βc cos βc(z − z0) + iδ sin βc(z − z0)

βc
e−iδ(z−z0)


 , (4.60)

where

βc = (κabκba + δ2
)1/2

. (4.61)

We consider a simple case when power is launched only into mode a at z = 0. Then
the initial values are Ã(0) �= 0 and B̃(0) = 0. By applying these conditions to (4.59)
and taking z0 = 0 in (4.60), we find that

Ã(z) = Ã(0)

(
cos βcz − iδ

βc
sin βcz

)
eiδz, (4.62)

B̃(z) = Ã(0)

(
iκba

βc
sin βcz

)
e−iδz. (4.63)

The power in the two modes varies with z as follows:

Pa(z)

Pa(0)
=
∣∣∣∣ A(z)

A(0)

∣∣∣∣
2

=
∣∣∣∣ Ã(z)

Ã(0)

∣∣∣∣
2

= κabκba

β2
c

cos2 βcz + δ2

β2
c

, (4.64)

Pb(z)

Pa(0)
=
∣∣∣∣ B(z)

A(0)

∣∣∣∣
2

=
∣∣∣∣ B̃(z)

Ã(0)

∣∣∣∣
2

= |κba|2
β2

c

sin2 βcz. (4.65)

The coupling efficiency for a length l is

η = Pb(l)

Pa(0)
= |κba|2

β2
c

sin2 βcl. (4.66)

Thus, power is exchanged periodically between two modes with a coupling length

lc = π

2βc
, (4.67)

where maximum power transfer occurs. Figure 4.4 shows the periodic power exchange
between the two coupled modes as a function of z. As can be seen from Fig. 4.4,
complete power transfer can occur only in the phase-matched condition when δ = 0.
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(a) (b)

Figure 4.4 Periodic power exchange between two codirectionally coupled modes for
(a) phase-mismatched condition δ �= 0 and (b) phase-matched condition δ = 0. The solid curves
represent Pa(z)/Pa(0), and the dashed curves represent Pb(z)/Pa(0).

Contradirectional coupling

We now consider the coupling of two modes propagating in opposite directions over a
length l, as is shown in Fig. 4.5 where mode a is forward propagating and mode b is
backward propagating. In this case, βa > 0 and βb < 0. Thus, the coupled equations
are

d Ã

dz
= iκab B̃ei2δz, (4.68)

−dB̃

dz
= iκba Ãe−i2δz. (4.69)

These equations for contradirectional coupling are generally solved as a boundary-
value problem with the boundary values of Ã(0) at one end and B̃(l) at the other end to
find the values of Ã(z) and B̃(z) at any location z between the two ends. The general

(a) (b)

Figure 4.5 Contradirectional coupling between two modes of propagation constants βa and βb

(a) in the same waveguide and (b) in two parallel waveguides. A significant perturbation is required
for contradirectional coupling in either case.
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solution can be expressed in the following matrix form:[
Ã(z)
B̃(z)

]
= R(z; 0, l)

[
Ã(0)
B̃(l)

]
, (4.70)

where the reverse-coupling matrix R(z; 0, l) relates the field amplitudes Ã(0) at z = 0
and B̃(l) at z = l to those at location z. It has the following form (see Problem 4.3.4):

R(z; 0, l) =




αc cosh αc(l − z) + iδ sinh αc(l − z)

αc cosh αcl + iδ sinh αcl
eiδz iκab sinh αcz

αc cosh αcl + iδ sinh αcl
eiδ(z+l)

iκba sinh αc(l − z)

αc cosh αcl + iδ sinh αcl
e−iδz αc cosh αcz + iδ sinh αcz

αc cosh αcl + iδ sinh αcl
e−iδ(z−l)




(4.71)

where

αc = (κabκba − δ2
)1/2

. (4.72)

We consider a simple case when power is launched only into mode a at z = 0. Then
the boundary values are Ã(0) �= 0 and B̃(l) = 0. By applying these conditions to (4.70),
we find that

Ã(z) = Ã(0)
αc cosh αc(l − z) + iδ sinh αc(l − z)

αc cosh αcl + iδ sinh αcl
eiδz, (4.73)

B̃(z) = Ã(0)
iκba sinh αc(l − z)

αc cosh αcl + iδ sinh αcl
e−iδz. (4.74)

The power in the two contradirectionally coupled modes varies with z as follows:

Pa(z)

Pa(0)
=
∣∣∣∣ A(z)

A(0)

∣∣∣∣
2

=
∣∣∣∣ Ã(z)

Ã(0)

∣∣∣∣
2

= cosh2 αc(l − z) − δ2/κabκba

cosh2 αcl − δ2/κabκba
, (4.75)

Pb(z)

Pa(0)
=
∣∣∣∣ B(z)

A(0)

∣∣∣∣
2

=
∣∣∣∣ B̃(z)

Ã(0)

∣∣∣∣
2

= κ∗
ba

κab

sinh2 αc(l − z)

cosh2 αcl − δ2/κabκba
. (4.76)

Because mode b is propagating backward with no input at z = l but an output at z = 0,
the coupling efficiency for a length l is

η = Pb(0)

Pa(0)
= κ∗

ba

κab

sinh2 αcl

cosh2 αcl − δ2/κabκba
. (4.77)

Figure 4.6 shows the power exchange between the two contradirectionally coupled
modes as a function of z. As can be seen from Fig. 4.6, complete power transfer occurs
as l → ∞ if δ2 < κabκba .

In the case when Ã(0) �= 0 and B̃(l) = 0, as considered above, contradirectional
coupling can be viewed as reflection of the field amplitude Ã(0) at z = 0 with a reflection
coefficient

r = |r |eiϕDBR = B̃(0)

Ã(0)
= iκba sinh αcl

αc cosh αcl + iδ sinh αcl
. (4.78)
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(a) (b)

Figure 4.6 Power exchange between two contradirectionally coupled modes for (a) phase-
mismatched condition δ �= 0 and (b) phase-matched condition δ = 0. The solid curves represent
Pa(z)/Pa(0) and the dashed curves represent Pb(z)/Pa(0).

The reflectivity is R = |r |2 = η as is given in (4.77). The phase shift is (see Prob-
lem 4.3.7)

ϕDBR = ϕB − tan−1

(
δ

αc
tanh αcl

)
. (4.79)

Conservation of power

Conservation of power requires that in a lossless waveguide structure the net power
flowing across any cross section of the waveguide be a constant independent of the
longitudinal location of the cross section. For codirectional coupling with the power
initially launched into only one mode so that Pa(0) �= 0 but Pb(0) = 0, this requirement
suggests that the sum of power in the two waveguides, Pa(z) + Pb(z), is a constant
because the power in the two modes flows in the same direction. For contradirectional
coupling with the power launched into only one mode so that Pa(0) �= 0 and Pb(l) = 0,
this requirement suggests that Pa(z) − Pb(z) is a constant because the power in mode
b flows in the backward direction while that in mode a flows in the forward direction.
These conclusions are correct for mode coupling in a single waveguide, but they do not
generally hold for coupling between different waveguides.

It can be seen from (4.64) and (4.65) that Pa(z) + Pb(z) is not a constant for codirec-
tional coupling unless κab = κ∗

ba . Similarly, from (4.75) and (4.76), it is also found that
Pa(z) − Pb(z) is not a constant for contradirectional coupling when κab �= κ∗

ba . It seems
that the total power is not conserved in a lossless waveguide structure in the case of
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asymmetric coupling with κab �= κ∗
ba . A close examination reveals that because cab �= 0

in this case of asymmetric coupling, the two modes being coupled are not orthogonal
to each other. Therefore, the total power flow cannot be fully accounted for by gather-
ing the power in each individual mode as if the modes were orthogonal to each other.
Indeed, by taking the total electric field and the total magnetic field expanded as (4.25)
and (4.26), respectively, for two modes to calculate the power of the entire structure,
we find that the total power flow as a function of space is (see Problem 4.3.8(a))

P(z) = caa|A(z)|2 + cbb|B(z)|2 + 2Re
[
cab A∗(z)B(z)ei�βz

]
= caa Pa(z) + cbb Pb(z) + Pab(z), (4.80)

where Pab(z) = 2Re
[
cab A∗(z)B(z)ei�βz

]
can be considered as the power residing be-

tween the two nonorthogonal modes of the two different waveguides. As defined in
the preceding section, cνν = 1 if mode ν is forward propagating and cνν = −1 if
mode ν is backward propagating. It can be shown, using (4.62) and (4.63) for the
case of codirectional coupling and using (4.73) and (4.74) for the case of contradirec-
tional coupling, that P(z) is a constant independent of z no matter whether κab = κ∗

ba

or κab �= κ∗
ba (see Problem 4.3.8(b)). Therefore, conservation of power holds as

expected.
When Pab(z) = 0, it can be shown simply by applying conservation of power that

κab = κ∗
ba; hence the coupling is symmetric (see Problem 4.3.8(c)). Conversely, if the

coupling is symmetric, Pab(z) always vanishes even when mode a and mode b are not
orthogonal to each other. Two conclusions can thus be made:

1. When cab = 0, mode a and mode b are orthogonal to each other. Then Pab(z) = 0
and κab = κ∗

ba even when δ �= 0 so that the two waveguide modes are not phase
matched.

2. When the two modes are phase matched, δ = 0. In this case, Pab(z) = 0 andκab = κ∗
ba

even when mode a and mode b are not orthogonal to each other with cab �= 0 (see
Problem 4.3.8(d)).

Consequently, coupling between two modes a and b is symmetric with κab = κ∗
ba if

these two modes are orthogonal to each other or if they are phase matched.

Phase matching

As can be seen from Figs. 4.4 and 4.6, power transfer is most efficient when δ = 0. The
parameter δ is a measure of phase mismatch between the two modes being coupled.
For the simple case when 2δ = �β = βb − βa , the phase-matching condition δ = 0 is
achieved when βa = βb. Then, the two modes have the same phase velocity and are
synchronized. In case δ includes a contribution from additional structure, such as a
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periodic grating, phase matching of the two modes being coupled can be accomplished
by matching the difference �β = βb − βa with a grating phase factor to make δ = 0.
When considering phase matching between two modes, it is important always to include
all sources of contribution to the phase-mismatch parameter δ.

Phase-matched coupling is always symmetric, meaning that κab = κ∗
ba whenever

δ = 0. This statement is true even when cab �= 0 and βa �= βb (see Problem 4.3.1).
However, symmetric coupling does not necessarily imply a phase-matched condition.
Therefore, it is also possible to have κab = κ∗

ba while δ �= 0. The most obvious example
of this situation is the coupling between two phase-mismatched modes in the same
waveguide.

When perfect phase matching is accomplished, we can take

κ = κab = κ∗
ba with κ = |κ|eiϕ. (4.81)

Because δ = 0, we find that

βc = αc = |κ|. (4.82)

With these relations under the condition of perfect phase matching, the matrix F(z; z0)
for codirectional coupling is reduced to the simple form

FPM(z; z0) =

 cos |κ|(z − z0) ieiϕ sin |κ|(z − z0)

ie−iϕ sin |κ|(z − z0) cos |κ|(z − z0)


 , (4.83)

and the matrix R(z; 0, l) for contradirectional coupling is reduced to

RPM(z; 0, l) =




cosh |κ|(l − z)

cosh |κ|l ieiϕ sinh |κ|z
cosh |κ|l

ie−iϕ sinh |κ|(l − z)

cosh |κ|l
cosh |κ|z
cosh |κ|l


 . (4.84)

For codirectional coupling with perfect phase matching, the coupling efficiency is

ηPM = sin2 |κ|l, (4.85)

and the coupling length is

lPM
c = π

2|κ| . (4.86)

By choosing the interaction length to be l = lPM
c , or any odd multiple of lPM

c , 100%
power transfer from one mode to the other with ηPM = 1 can be accomplished.

EXAMPLE 4.1 A phase-matched codirectional coupler has a coupling length of lPM
c =

1 mm for a 100% coupling efficiency. What is the coupling coefficient of the coupler?
For the same coupling coefficient, what is the length of a 3-dB codirectional coupler
that has a 50% coupling efficiency?
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Solution From (4.86), we find that the coupling coefficient has a value

|κ| = π

2lPM
c

= 1.57 mm−1.

From (4.85), we find that ηPM = 1/2 when |κ|l = π/4. Therefore, the length of the
3-dB codirectional coupler is simply

l3dB = π

4|κ| = lPM
c

2
= 0.5 mm.

A 3-dB codirectional coupler can be made by cutting the length of a 100% codirectional
coupler in half. This statement is true even if the 100% coupler has a length longer than
lPM
c at any odd integral multiple of lPM

c .

For contradirectional coupling with perfect phase matching, the coupling efficiency
is

ηPM = tanh2 |κ|l. (4.87)

For an interaction length of l = lPM
c defined in (4.86), this gives a coupling efficiency

of ηPM ≈ 84%. Although complete power transfer with 100% efficiency cannot be
accomplished in the case of contradirectional coupling, most power is transferred in a
length comparable to the coupling length of codirectional coupling if phase matching
is accomplished.

EXAMPLE 4.2 A phase-matched contradirectional coupler has the same coupling coef-
ficient as that of the codirectional coupler in Example 4.1. What is the length of the
contradirectional coupler for a 99% coupling efficiency? What is the length of a 3-dB
contradirectional coupler with a 50% coupling efficiency?

Solution A contradirectional coupler only approaches 100% efficiency asymptoti-
cally. From (4.87), we find that ηPM = 99% when |κ|l = 3 ≈ 0.96π . Therefore, the
length of the 99% contradirectional coupler with |κ| = 1.57 mm−1 as found in Exam-
ple 4.1 is

l = 3

|κ| = 1.91 mm,

which is almost twice the length of the 100% codirectional coupler of the same coupling
coefficient. We also find from (4.87) that ηPM = 0.5 when |κ|l = 0.88 ≈ 0.28π . The
length of the 3-dB contradirectional coupler is thus

l3dB = 0.88

|κ| = 0.56 mm,

which again is longer than the 3-dB codirectional coupler of the same coupling coef-
ficient found in Example 4.1. We also see that, unlike codirectional couplers, a 3-dB
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contradirectional coupler cannot be made by cutting in half a contradirectional coupler
of nearly complete coupling at 99% efficiency.

In the presence of phase mismatch, symmetric coupling with κab = κ∗
ba is also true

for coupling between two modes in the same waveguide but is not necessarily true
for coupling between two different waveguides. Nevertheless, to illustrate the effect of
phase mismatch on the coupling efficiency between two modes, we consider the simple
case that κ = κab = κ∗

ba , as expressed in (4.81). Then the coupling efficiency obtained
in (4.66) for codirectionally coupled modes can be written as

η = 1

1 + |δ/κ|2 sin2
(
|κ|l
√

1 + |δ/κ|2
)

. (4.88)

The maximum efficiency is

ηmax = 1

1 + |δ/κ|2 (4.89)

at a coupling length of

lc = lPM
c√

1 + |δ/κ|2
. (4.90)

The maximum coupling efficiency is clearly less than unity when δ �= 0. As shown in
Fig. 4.7(a), both lc and ηmax decrease as |δ/κ| increases. If the interaction length is fixed
at l = lPM

c , the efficiency also drops quickly as |δ/κ| increases, as shown in Fig. 4.7(b).

(a) (b)

Figure 4.7 Effect of phase mismatch on codirectional coupling showing (a) the coupling length lc,
normalized as lc/ lPM

c (solid curve) and the maximum coupling efficiency ηmax (dashed curve) and
(b) the coupling efficiency for fixed interaction lengths of l = lPM

c , 3lPM
c , 5lPM

c , both as a function of
|δ/κ|.
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Figure 4.8 Effect of phase mismatch on contradirectional coupling showing the coupling
efficiency for a few different values of |κ|l as a function of |δ/κ|.

For contradirectionally coupled modes, the coupling efficiency can also be expressed
in terms of |κ|l and |δ/κ|:

η =
sinh2

(
|κ|l
√

1 − |δ/κ|2
)

cosh2
(
|κ|l
√

1 − |δ/κ|2
)

− |δ/κ|2
. (4.91)

The coupling efficiency also decreases as phase mismatch increases, as shown in
Fig. 4.8.

EXAMPLE 4.3 Find the coupling efficiencies of codirectional and contradirectional cou-
plers when the phase mismatch has the same magnitude as the coupling coefficient.

Solution For a codirectional coupler with |δ/κ| = 1, we find from (4.88) that

η = 1

2
sin2

√
2|κ|l. (4.92)

For a contradirectional coupler with |δ/κ| = 1, we find from (4.91) that

η = |κ|2l2

1 + |κ|2l2
. (4.93)

It is interesting to see that when the phase mismatch has the same magnitude as
the coupling coefficient, a codirectional coupler can only have a maximum coupling
efficiency of 50% but a contradirectional coupler can still have an efficiency higher
than 50% if |κ|l > 1. However, the coupling efficiency of a contradirectional coupler
varies with |κ|l sinusoidally when |δ/κ| > 1 rather than monotonically as it does when
|δ/κ| < 1.
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In summary, to accomplish efficient coupling between two waveguide modes, the
following three parameters have to be considered:

1. Coupling coefficient. The coupling coefficient κ has to exist and be large enough.
2. Phase matching. The phase mismatch has to be minimized so that |δ/κ| is made

as small as possible. Ideally, perfect phase matching with δ = 0 is desired.
3. Interaction length. For codirectional coupling, the length has to be properly cho-

sen as the efficiency oscillates with interaction length. An overly long length is
neither required nor beneficial. For contradirectional coupling, the length has to
be sufficiently long but does not have to be critically chosen as the efficiency in-
creases monotonically with interaction length. A very long length is not necessary,
either.

PROBLEMS

4.1.1 Show, by expanding the field and the polarization into the linear combinations
of their frequency components expressed in (4.5) and (4.6), respectively, that
the general time-dependent wave equation given in (4.3) reduces to the coupled-
wave equation given in (4.7).

4.1.2 Show that the coupled-wave equation given in (4.7), which is valid for both
isotropic and anisotropic media, reduces to the form given in (4.8) for wave
propagation in an isotropic medium but to the form given in (4.17) for wave
propagation in an anisotropic medium.

4.1.3 Show that the coupled-wave equation given in (4.17) for wave propagation in
an anisotropic medium can be reduced to that given in (4.18) under the slowly
varying amplitude approximation. Show also that it can be further reduced to a
form similar to that of (4.12) and (4.13) under proper conditions. What are the
resulting expressions after such reduction? What are the conditions that allow
such reduction?

4.2.1 Show that the coupled-mode equation given in (4.31) can be obtained by ap-
plication of the Lorentz reciprocity theorem with mode expansion, followed by
use of the orthonormality relation for waveguide modes.

4.2.2 Show that the coupled-mode equation given in (4.39) for multiple-waveguide
mode coupling applies to mode coupling in a single waveguide as well by
showing that κνµ given in (4.40) reduces to that given in (4.36) when all modes
involved in the coupling belong to the same waveguide.

4.3.1 Coupling between two modes, a and b, is in general not symmetric if the two
modes belong to two different waveguides and have different propagation con-
stants such that βa �= βb. Nevertheless, in lossless waveguides, if the coupling is
phase matched in such a way that the total phase mismatch 2δ, which includes all
the perturbations on the waveguides and appears in the coupled-mode equations
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(4.50) and (4.51), is identically zero, the coupling is symmetric. This statement
is true even when βa �= βb and cab = c∗

ba �= 0 so that κ̃ab �= κ̃∗
ba . For simplicity,

consider 2δ to have the form of �β given in (4.53).
a. Show that in lossless waveguides, κ̃aa and κ̃bb are both real quantities.
b. In the case of codirectional coupling, show that when 2δ = 0, κaa − κbb =

κ̃aa − κ̃bb. In addition, verify that κab = κ∗
ba; thus the coupling is symmetric.

c. In the case of contradirectional coupling, show that when 2δ = 0, κaa +
κbb = κ̃aa + κ̃bb. In addition, verify that κab = κ∗

ba; thus the coupling is also
symmetric.

4.3.2 Solve (4.57) and (4.58) for two-mode codirectional coupling as an initial-value
problem with given Ã(z0) and B̃(z0) to find the matrix F(z; z0) expressed in
(4.60). Show that F(z; z1)F(z1; z0) = F(z; z0) to demonstrate that codirectional
coupling can be cascaded. Explain the physical meaning of this result.

4.3.3 In coupling light from one waveguide to another in a configuration of codirec-
tional coupling, is it possible to increase the coupling efficiency continuously
by increasing the length of the coupler? Why?

4.3.4 Solve (4.68) and (4.69) for two-mode contradirectional coupling as a boundary-
value problem with given Ã(0) and B̃(l) to find the matrix R(z; 0, l) expressed
in (4.71).

4.3.5 Instead of expressing contradirectional coupling in terms of the matrix R(z; 0, l)
given in (4.71), the problem can be solved in terms of a matrix S(z; z0) that relates
the mode amplitudes Ã(z0) and B̃(z0) at z0 to the mode amplitudes Ã(z) and
B̃(z) at z for contradirectionally coupled modes as[

Ã(z)
B̃(z)

]
= S(z; z0)

[
Ã(z0)
B̃(z0)

]
, (4.94)

in a manner similar to the matrix F(z; z0) for codirectionally coupled modes.
Show that this matrix for contradirectional coupling has the following form:

S(z; z0) =


αc cosh αc(z − z0) − iδ sinh αc(z − z0)

αc
eiδ(z−z0) iκab

αc
sinh αc(z − z0)eiδ(z+z0)

− iκba

αc
sinh αc(z − z0)e−iδ(z+z0) αc cosh αc(z − z0) + iδ sinh αc(z − z0)

βc
e−iδ(z−z0)


 .

(4.95)

Show also that S(z; z1)S(z1; z0) = S(z; z0). What is the physical meaning of this
result? Can contradirectional coupling be cascaded?

4.3.6 In coupling light from one waveguide to another in a configuration of contradi-
rectional coupling, is it possible to increase the coupling efficiency continuously
by increasing the length of the coupler? Why?

4.3.7 Verify the relation given in (4.79) for the phase shift ϕDBR that is defined in
(4.78) for the reflection coefficient of contradirectional coupling.
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4.3.8 The total power flow in a waveguide structure consisting of two coupled modes
can be obtained by using the total field to calculate the time-averaged Poynting
vector defined in (1.48) and then integrating it over the cross-sectional plane of
the structure.
a. Show that the total power flow is that given in (4.80).
b. Verify the conservation of power for both codirectional coupling and con-

tradirectional coupling in the general situation of asymmetric coupling.
c. Show that κab = κ∗

ba if and only if Pab(z) = 0. What conclusion can be drawn
regarding the condition for symmetric coupling from this fact?

d. Clearly, Pab(z) = 0 if cab = 0. However, show that even when cab �= 0, we
have Pab(z) = 0 if δ = 0.

4.3.9 For codirectional coupling with a fixed value of coupling coefficient |κ| and a
fixed interaction length l, the coupling efficiency varies with the phase-mismatch
parameter δ.
a. For highly efficient coupling with l = lPM

c and ηPM = 1 when perfect phase
matching is achieved, find the values of δ for which the coupling efficiency
is η = ηPM/2 = 1/2.

b. In another limit of very low coupling efficiency with ηPM � 1 because of a
short interaction length of l � lPM

c , find the values of δ for which η = ηPM/2.
4.3.10 For contradirectional coupling in the situation when |δ| > |κ| and when the

phase-matched efficiency ηPM � 1, find the values of δ for which η = ηPM/2.
4.3.11 What are the first and second most likely causes if the coupling efficiency of

a symmetric two-waveguide codirectional coupler is found to be η = 0? Also
answer the same question for a symmetric two-waveguide contradirectional
coupler.

4.3.12 A perfectly phase-matched coupler of high coupling efficiency is designed
and fabricated. In this problem, we examine the tolerance on fabrication
error.
a. If the coupler is a codirectional coupler designed to have a length of l =

lPM
c = π/2|κ| for a 100% efficiency, how much error in its length can be

tolerated for a 10% variation in its efficiency? How much variation in its
efficiency does a 10% error in its length cause?

b. If the coupler is a contradirectional coupler designed to have a length of
l = 3/|κ| for a 99% efficiency, how much error in its length can be tolerated
for a 10% variation in its efficiency? How much variation in its efficiency
does a 10% error in its length cause?

4.3.13 In designing a waveguide coupler of any geometry, what are the three major
parameters that have to be considered in order to have a good efficiency? In
what order of priority do they have to be considered? How are they optimized
for best coupling efficiency in the case of (a) codirectional coupling and (b)
contradirectional coupling?
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5 Optical couplers

Optical couplers are passive devices that couple light through waveguides or fibers.
They play a very important role in the applications of photonic devices and systems.
Optical couplers are used in many different ways. They can be the interface between
devices in a system or can be important devices themselves. The most straightforward,
yet important, application is to route optical waves around for coupling different de-
vices. Sophisticated applications include devices such as polarization converters, mode
converters, guided-wave beam splitters, beam combiners, directional couplers, branch
couplers, wavelength filters, wavelength multiplexers, and so on. In this chapter, we
discuss the waveguide couplers based on mode coupling. Input and output couplers,
which couple light between free space and waveguides, are also discussed. Coupling
due to active modulation, such as electro-optic switches, and coupling characteristics
specific to a particular device are discussed in later chapters.

5.1 Grating waveguide couplers

Grating waveguide couplers have many useful applications and are one of the most
important kinds of waveguide couplers. They consist of periodic fine structures that
form gratings in waveguides. The grating in a waveguide can be either periodic index
modulation or periodic structural corrugation. Periodic index modulation can be per-
manently written in a waveguide by periodically modulating the doping concentration
in the waveguide medium, for example, or it can be created by an electro-optic, acousto-
optic, or nonlinear optical effect. In the latter case, the grating can be time dependent if
the modulation is time varying. It can also be a moving grating if the modulation signal
is a traveling wave. In the case of periodic structural corrugation, the corrugation is a
permanent structure of a waveguide. It is usually located at an interface between layers
of different refractive indices, such as that between the guiding layer and the substrate
or that between the guiding layer and the cover layer of a planar waveguide. It can
also be placed away from the interfaces next to the guiding layer so long as the mode
fields have sufficient penetration into the neighboring layers to see the corrugation.
Figure 5.1 shows a few examples of grating structures in a planar waveguide.

190
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(a) (b) (c)

(d ) (e) ( f )

Figure 5.1 Structures of planar grating waveguide couplers with (a) and (b) periodic index
modulation, (c), (d), (e), and (f) periodic structural corrugation.

In any event, the grating in a waveguide coupler can be considered as a periodic
perturbation of �ε that has a spatial periodicity characteristic of the grating. In a copla-
nar coupler, the grating can have a two-dimensional periodicity while the propagation
vectors of the waves being coupled are in the same plane confined by the waveguide but
not necessarily parallel to each other. In a collinear coupler, the waves being coupled
are propagating either codirectionally or contradirectionally, and the grating is periodic
only in the propagation direction of the guided waves. We consider here only the case
of collinear coupling in a waveguide along the z direction. Then, �ε is periodic only
in z with a period � of the grating, as shown in Fig. 5.1.

With this periodically z-dependent perturbation, the coupling coefficients as defined
in (4.36) and used in (4.45) and (4.46) are also periodic in z. In addition, for coupling
in a single waveguide, we have κab(z) = κ∗

ba(z). They can be expressed in terms of the
following Fourier series expansion:

κab(z) = ω

∞∫
−∞

∞∫
−∞

Ê∗
a · �ε(x, y, z) · Êbdxdy =

∑
q

κab(q) exp(iq K z) (5.1)

and

κba(z) = κ∗
ab(z) =

∑
q

κ∗
ab(q) exp(−iq K z), (5.2)

where
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K = 2π

�
(5.3)

and

κab(q) = 1

�

�∫
0

κab(z)e−iq K zdz. (5.4)

Considering the fact learned from Section 4.3 that efficient coupling exists only near
phase matching, the coupled equations given in (4.45) and (4.46) can be transformed
into (4.50) and (4.51) by the following approximations:

±d Ã

dz
= iκab(z)B̃ei�βz = iB̃

∑
q

κab(q)ei(�β+q K )z ≈ iκ B̃ei(�β+q K )z, (5.5)

±dB̃

dz
= iκba(z) Ãe−i�βz = i Ã

∑
q

κ∗
ab(q)e−i(�β+q K )z ≈ iκ∗ Ãe−i(�β+q K )z, (5.6)

where we can identify the phase mismatch as that given in (4.56):

2δ = �β + q K = βb − βa + q K . (5.7)

Only one term in the Fourier series that yields a minimum value for |δ| is kept in each
of the two coupled-mode equations because only this term will effectively couple the
two waves. To be consistent with the notation used in the discussions following (4.81),
we have also used

κ = κab(q) (5.8)

for the Fourier term that is kept in (5.5) and (5.6).
Note that though κba(z) = κ∗

ab(z), as is indicated in (5.2), κba(q) and κ∗
ab(q) are not

necessarily the same unless both happen to be real quantities. Instead, we have κba(q) =
κ∗

ab(−q) among the Fourier components of κba(z) and κ∗
ab(z). For this reason, the κs

defined above have the following relations: κ = κab(q) = κ∗
ba(−q) and κ∗ = κ∗

ab(q) =
κba(−q).

We see from the above discussion that (5.5) and (5.6) are identical to (4.50) and
(4.51), respectively, if we replace κab and κba in (4.50) and (4.51) respectively with κ

and κ∗. Therefore, the general results obtained in Section 4.3 can be applied directly
to the coupling of modes in a grating waveguide coupler with the coupling coefficients
given by (5.8) and the phase mismatch given by (5.7).

EXAMPLE 5.1 Find the periods of the first- and second-order gratings for phase-matched
coupling between contrapropagating (a) TE0 and TE0 mode fields, (b) TE0 and
TE1 mode fields, and (c) TE1 and TE1 mode fields for the waveguide described in
Example 2.1.
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Solution For phase-matched coupling, it is required that q K = −�β because δ = 0
in (5.7). Therefore, the grating period is

� = −q
2π

�β
, (5.9)

where q = 1 for the first-order grating and q = 2 for the second-order grating.
From Example 2.1, we find that β0 = 10.8432 µm−1 for the TE0 mode and β1 =

10.0036 µm−1 for the TE1 mode. (a) For the coupling from a forward-propagating
TE0 field to a backward-propagating TE0 field, �β = −β0 − β0 = −21.6864 µm−1.
We then find by using (5.9) that �1 = 289.7 nm for the first-order grating and �2 =
579.4 nm for the second-order grating. (b) For the coupling from a forward-propagating
TE0 field to a backward-propagating TE1 field, �β = −β1 − β0 = −20.8468 µm−1.
We find that �1 = 301.4 nm and �2 = 602.8 nm for the first- and second-order gratings,
respectively. (c) For the coupling from a forward-propagating TE1 field to a backward-
propagating TE1 field, �β = −β1 − β1 = −20.0072 µm−1. We find that �1 = 314 nm
and �2 = 628 nm for the first- and second-order gratings, respectively.

Coupling coefficient

As can be seen from the discussions in the preceding section and from (5.5), (5.6),
and (5.7), the only important parameters for the coupling between two modes are the
coupling coefficient κ , or κab(q) for the grating waveguide coupler discussed here, and
the phase mismatch 2δ. The phase mismatch can be calculated using (5.7) once the
propagation constants of the modes being coupled are known and the grating period is
given. The calculation of κab(q) is less straightforward, however. It depends on exactly
how the grating is created and where it is located in the waveguide. It also depends
on the field distributions of the modes being coupled. In the following, we consider
a few simple but important examples, including a grating produced by periodic index
modulation, a sinusoidal corrugation grating, and a square corrugation grating, all in
three-layer planar waveguides.

We assume that the unperturbed waveguides have the structure of the three-layer
planar slab waveguide discussed in Chapter 2 and shown in Fig. 2.4. Combining (5.1)
and (5.4), we can write

κ = κab(q) = ω

�

�∫
0

dz

∞∫
−∞

dxÊ∗
a(x) · �ε(x, z) · Êb(x)e−iq K z (5.10)

for coupling in a planar waveguide. The guiding layer of index n1 has a thickness d
located in the range of −d/2 < x < d/2. For the corrugation gratings, we consider the
corrugation to be located at the interface between the guiding core and the cover layer.
It is centered at the interface and has a depth of dg, extending a maximum distance of
dg/2 into either side of the interface, as shown in Figs. 5.1(c) and (d).
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1. Index-modulation grating. The geometric structure of the waveguide is not per-
turbed, but only the index of refraction is modulated. Because the index modulation
is usually not localized but is distributed throughout the entire thickness of the guid-
ing layer or a large portion of it, the integral in (5.10) has to be calculated with the
complete field distributions Ê∗

a(x) and Êb(x) throughout the waveguide thickness
(see Problem 5.1.1).

2. Sinusoidal corrugation grating. For a sinusoidal corrugation grating in an
isotropic planar waveguide as shown in Fig. 5.1(c), the perturbation susceptibility is

�ε(x, z) =
{
ε0(n2

1 − n2
3), for d/2 < x < d/2 + (dg/2) cos K z, cos K z > 0,

−ε0(n2
1 − n2

3), for d/2 + (dg/2) cos K z < x < d/2, cos K z < 0.

(5.11)

Substitution of (5.11) into (5.10) yields

κab(q) = ω

�




�/4∫
0

dz

d/2+(dg/2) cos K z∫
d/2

dxε0(n2
1 − n2

3)Ê∗
a(x) · Êb(x)e−iq K z

−
3�/4∫

�/4

dz

d/2∫
d/2+(dg/2) cos K z

dxε0(n2
1 − n2

3)Ê∗
a(x) · Êb(x)e−iq K z

+
�∫

3�/4

dz

d/2+(dg/2) cos K z∫
d/2

dxε0(n2
1 − n2

3)Ê∗
a(x) · Êb(x)e−iq K z


 .

(5.12)

In most practical devices, dg � λ/n1. Then, we can approximate Ê∗
a(x) and Êb(x)

in the range of d/2 − dg/2 < x < d/2 + dg/2 of the corrugation by Ê∗
a(d/2) and

Êb(d/2), respectively, to obtain

κab(q) ≈ ωε0(n2
1 − n2

3)Ê∗
a(d/2) · Êb(d/2)

dg

4

(
δq,1 + δq,−1

)
, (5.13)

where δq,1 and δq,−1 are Kronecker delta functions. Clearly, κab(q) �= 0 only for
q = 1 or −1. Using the characteristics of the mode fields in planar slab waveguides
discussed in Section 2.5, it can be shown that (5.13) yields (see Problem 5.1.3)

κab(q) = hahb√
βaβbdE

a dE
b

dg

4

(
δq,1 + δq,−1

)
(5.14)

for coupling between two TE modes, where ha and hb are the parameter h1 defined
in (2.50) and dE

a and dE
b are the effective waveguide thickness defined in (2.59) for

the TEa and TEb modes, respectively. For coupling between two TM modes, we
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have (see Problem 5.1.3)

κab(q) = n2
1 − n2

3

2n2
1

βaβb/n4
1 + βaβb/n4

3 + 2γ3aγ3b/n4
3√

h2
a/n4

1 + γ 2
3a/n4

3

√
h2

b/n4
1 + γ 2

3b/n4
3

hahb√
βaβbdM

a dM
b

× dg

4

(
δq,1 + δq,−1

)
, (5.15)

where the parameters are relevant to the TMa and TMb modes. Because TE and
TM modes do not couple in an isotropic waveguide, it is necessary to introduce
birefringence in order to couple them.

3. Square corrugation grating. The perturbation susceptibility of a square corruga-
tion grating in an isotropic planar waveguide as shown in Fig. 5.1(d) is

�ε(x, z) =
{

ε0(n2
1 − n2

3), for d/2 < x < d/2 + dg/2, 0 < z < ξ�,

−ε0(n2
1 − n2

3), for d/2 − dg/2 < x < d/2, ξ� < z < �,
(5.16)

where 0 < ξ < 1 is the duty factor of the square corrugation. Substitution of (5.16)
into (5.10) yields

κab(q) = ω

�




ξ�∫
0

dz

d/2+dg/2∫
d/2

dxε0(n2
1 − n2

3)Ê∗
a(x) · Êb(x)e−iq K z

−
�∫

ξ�

dz

d/2∫
d/2−dg/2

dxε0(n2
1 − n2

3)Ê∗
a(x) · Êb(x)e−iq K z




≈ ωε0(n2
1 − n2

3)Ê∗
a(d/2) · Êb(d/2)

dg

2

1

�


 ξ�∫

0

dze−iq K z −
�∫

ξ�

dze−iq K z




= 2ωε0(n2
1 − n2

3)Ê∗
a(d/2) · Êb(d/2)

dg

2

sin ξqπ

qπ
e−iξqπ . (5.17)

For coupling between two TE modes, (5.17) yields (see Problem 5.1.3)

κab(q) = hahb√
βaβbdE

a dE
b

dg
sin ξqπ

qπ
e−iξqπ . (5.18)

For coupling between two TM modes, we have (see Problem 5.1.3)

κab(q) = n2
1 − n2

3

2n2
1

βaβb/n4
1 + βaβb/n4

3 + 2γ3aγ3b/n4
3√

h2
a/n4

1 + γ 2
3a/n4

3

√
h2

b/n4
1 + γ 2

3b/n4
3

× hahb√
βaβbdM

a dM
b

dg
sin ξqπ

qπ
e−iξqπ . (5.19)
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We have seen that in the case where the grating is a simple sinusoidal grating propor-
tional to cos K z or, equivalently, sin K z, the expansion in (5.1) has only two terms,
with q = 1 and q = −1. We also see from (5.18) and (5.19) that κab(q) = 0 for a
square grating if ξq is an integer. In practical situations, the grating can be rectangular,
triangular, or any other shape. Then q takes on any integer value for which κab(q) �= 0.

It can also be seen from (5.14) and (5.18) that coupling coefficient between two TE
modes does not depend on any parameters of the cover layer but only on those of the
guiding layer although the grating is located at the interface between the cover and the
guiding layers. This means that we would get exactly the same coupling coefficient for
the two given TE modes if we instead placed the grating with the same parameters,
including its period �, depth dg, and shape, at the interface between the substrate and
the guiding layer. This is also approximately, although not exactly, true for coupling
between TM modes if the asymmetry of the waveguide is small so that γ2 ≈ γ3 for
each mode. This is an important conclusion for practical applications. It indicates
that the same grating can be placed at either interface next to the guiding layer for the
same desired coupling coefficient. This conclusion does not apply, however, to coupling
between TM modes in a highly asymmetric waveguide where γ2 and γ3 are significantly
different for a given mode.

EXAMPLE 5.2 A first-order square corrugation grating that has a depth of dg = 100 nm and
a duty factor of ξ = 0.5 is fabricated at either the upper or lower core–cladding boundary
of the waveguide described in Example 2.1 to make a grating waveguide coupler for λ =
1 µm wavelength. Find the following coupling coefficients: κTE

00 between the forward-
propagating TE0 mode field and the backward-propagating TE0 mode field,κTE

01 between
the forward-propagating TE0 mode field and the backward-propagating TE1 mode
field, and κTM

00 between the forward-propagating TM0 mode field and the backward-
propagating TM0 mode field.

Solution For the waveguide described in Example 2.1, n1 = 1.77, n2 = 1.45, and
n3 = 1 for λ = 1µm. We first check the condition that dg � λ/n1 for the approximation
made in obtaining (5.18) and (5.19) to be valid. Because λ/n1 = 565 nm and dg =
100 nm, this condition is satisfied. Therefore, we can use (5.18) to calculate the coupling
coefficients for the TE modes and (5.19) for the TM modes with q = 1, ξ = 0.5,
dg = 100 nm, and the mode parameters given in the table in Example 2.1.

The coupling coefficient between two TE modes does not depend on whether the
grating is placed in the upper or lower core–cladding boundary. From (5.18), we find
that the coupling coefficient for TE0–TE0 coupling is

κTE
00 = −i

h2
0

β0dE
0

dg

π
= −i0.014 µm−1,



197 5.1 Grating waveguide couplers

and the coupling coefficient for TE0–TE1 coupling is

κTE
01 = −i

h0h1√
β0β1dE

0 dE
1

dg

π
= −i0.0277 µm−1,

where h0 and h1 are the h parameters for the TE0 and TE1 modes, respectively.
The coupling coefficient between two TM modes depends on the location of the

grating. If the grating is placed at the upper boundary between the polymer core of
index n1 = 1.77 and the air cover of index n3 = 1, the coupling coefficient for TM0–
TM0 is calculated using (5.19) as

κTM
00 = −i

n2
1 − n2

3

2n2
1

β2
0/n4

1 + β2
0/n4

3 + 2γ 2
30/n4

3

h2
0/n4

1 + γ 2
30/n4

3

h2
0

β0dM
0

dg

π
= −i0.0233 µm−1,

where all of the parameters belong to the TM0 mode. If the grating is placed at the
lower boundary between the polymer core of index n1 = 1.77 and the silica substrate
of index n2 = 1.45, the coupling coefficient for TM0–TM0 is calculated by replacing
γ3 in (5.19) with γ2 as

κTM
00 = −i

n2
1 − n2

2

2n2
1

β2
0/n4

1 + β2
0/n4

2 + 2γ 2
20/n4

2

h2
0/n4

1 + γ 2
20/n4

2

h2
0

β0dM
0

dg

π
= −i0.0199 µm−1.

We see that there is about 17% difference between these two coefficients for TM mode
coupling because of the difference between γ2 and γ3.

Distributed Bragg reflector

We consider here a device of special interest that has very important applications.
The function of this device is based on coupling between the forward- and backward-
propagating fields of the same mode in a grating waveguide coupler. This is a special
case of contradirectional coupling where βb = −βa and �β = βb − βa . In this case,
we can define

β ≡ βa = −βb. (5.20)

Then, �β = −2β, and (5.7) becomes

2δ = −2β + q K . (5.21)

Thus, the phase-matching condition can be stated as the following Bragg condition:

βB = q
K

2
, (5.22)

where q is the integer that allows phase matching and is the order of coupling be-
tween the two contrapropagating waves. The grating period required to satisfy this
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phase-matching condition is

� = q
π

βB

= q
λB

2nβ

, (5.23)

where λB = 2πnβ/βB is the free-space Bragg wavelength of the field and nβ is the
effective refractive index of the mode field in the waveguide. A grating with a period
given by (5.23) for an integer q is called a qth-order grating for the mode coupling
under consideration. For example, it is a first-order grating if � = λB/2nβ and is a
second-order grating if � = λB/nβ . A simple sinusoidal grating can only be a first-
order grating because, as mentioned above, q can only be 1 or −1 in this case and thus
can only have the value 1 in (5.23).

To get an idea of the size of the grating period in a practical device structure, we
consider as an example the grating in an InGaAsP waveguide for an optical wavelength
of λ = λB = 1.3 µm in free space. The index of refraction for InGaAsP with a bandgap
energy corresponding to 1.3 µm optical wavelength is about 3.48. Taking nβ ≈ 3.48,
we find that λB/nβ ≈ 1.3 µm/3.48 ≈ 374 nm. We then have � = 187 nm for a first-
order grating and � = 374 nm for a second-order grating. These are certainly very fine
structures.

As discussed in the preceding section, the effect of this contradirectional coupling
is an efficient transfer of power from the forward-propagating field to the backward-
propagating field when δ2 < |κ|2. From the input end of the grating waveguide cou-
pler, it is seen that power is reflected back due to this coupling. This type of reflector,
which relies on the coupling of waves by a distributed periodic structure, is called the
distributed Bragg reflector (DBR). Its reflection coefficient r is that given in (4.78)
with an amplitude |r | = η1/2 and a phase ϕDBR given in (4.79). Thus, its reflectiv-
ity is simply the coupling efficiency η given by (4.91). The peak reflectivity at the
Bragg wavelength is RDBR = ηPM given by (4.87) under the phase-matched cond-
ition. The reflectance RDBR and the transmittance TDBR = 1 − RDBR of such a reflec-
tor at its Bragg wavelength where the device has perfect phase matching are plotted
in Fig. 5.2 as a function of the effective coupler length |κ|l. As can be seen from
Fig. 4.6, the reflection of power, or the transfer of power from the forward-propagating
mode to the backward-propagating mode, is not localized but is distributed throughout
the length of the grating coupler. The phase shift of Bragg reflection at the phase-
matched Bragg frequency ωB = 2πνB, which corresponds to the Bragg wavelength
λB through the relation νB = c/λB, is ϕDBR = ϕB for δ = 0 in (4.79). When the opti-
cal frequency deviates from the Bragg frequency, the phase shift of Bragg reflection
given in (4.79) can be expressed in terms of the variation of the propagation constant
β(ω) away from the phase-matched value of β(ωB) = βB in the following form (see
Problem 5.1.9):

ϕDBR = ϕB + 2
[
β(ω) − β(ωB)

]
leff
DBR, (5.24)
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Figure 5.2 Reflectance, RDBR, and transmittance, TDBR, of a distributed Bragg reflector at its Bragg
wavelength as a function of effective coupler length |κ|l.

where

leff
DBR = tanh |κ|l

2|κ| = η
1/2
PM

2|κ| = R1/2
DBR

2|κ| . (5.25)

The parameter leff
DBR is an effective length of the DBR for its reflection phase shift. These

grating couplers can be used in a distributed Bragg reflector laser (DBR laser) or in
a distributed feedback laser (DFB laser) to provide optical feedback without ordinary
Fabry–Perot mirrors. Such lasers are discussed in Section 13.9.

A DBR can be designed to function as a narrow-band frequency filter. Consequently,
an important characteristic of a DBR or DFB laser is its frequency selectivity and sta-
bility, which results in stable single-frequency operation of the laser if the structure is
properly designed. This frequency selectivity of a DBR can be understood by consider-
ing the dispersion characteristics of a waveguide mode and the effect of phase matching,
as shown in Fig. 5.3. The dispersion relations βa(ω) and βb(ω) for the waveguide modes
are determined by the waveguide parameters and the optical frequency ω. In the case
under consideration, we have βa(ω) = β(ω) and βb(ω) = −β(ω). For phase matching,
we need βb + q K = βa , which can be found by shifting the dispersion curve of ω

versus β horizontally by an amount q K to find the intersection between the two curves
representing βb + q K and βa . This procedure is illustrated in Fig. 5.3. The intersecting
point of these two curves corresponds to a frequency ωB at which δ(ωB) = 0 where
phase matching is perfect. Away from this frequency, δ �= 0, and the coupling efficiency
drops. The range of δ within which the modes remain well coupled is −|κ| < δ < |κ|,
which can be found by considering αc in (4.72). For |δ| < |κ|, αc remains real, and the
coupling efficiency given in (4.87) or (4.91) depends on hyperbolic functions that do not
oscillate. Then, η increases monotonically as |κ|l increases, as can be seen in Fig. 5.2.
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Figure 5.3 Dispersion relation showing the coupling of contradirectional modes in a grating
waveguide coupler by phase matching through a qth-order grating of a grating wavenumber K.
Perfect phase matching occurs at ω0. Strong coupling exists in a range where |δ| < |κ|.

For |δ| > |κ|, αc becomes purely imaginary. Then, η depends on sinusoidal functions
and drops quickly as |δ/κ| increases, as can be seen in Fig. 4.8. As a consequence, the
forward- and backward-propagating modes gradually become decoupled.

The frequency bandwidth of a DBR can be found by considering the frequency
dependence of δ. Using (5.21), we have

δ(ω) = −β(ω) + q K

2
= −β(ωB) − dβ

dω
(ω − ωB) + · · · + q K

2
≈ −dβ

dω
(ω − ωB).

(5.26)

For a given value of |κ|l, the maximum efficiency is ηPM given by (4.87). It can be
shown using (4.91) that at η = ηPM/2, we have |δ| > |κ| and (see Problem 5.1.11)

(2 coth2 |κ|l − 1) sin2
(
|κ|l
√

|δ/κ|2 − 1
)

= |δ/κ|2 − 1. (5.27)

The FWHM reflectivity bandwidth �ω for a DBR is given by

�ω = 2

∣∣∣∣δ1/2
dω

dβ

∣∣∣∣ , (5.28)

where |δ1/2| is the root of (5.27) for a given l and |κ|. Its value can also be found by
reading the value of |δ/κ| for η = ηPM/2 on the curve in Fig. 4.8 for a given value of
|κ|l. For a given structure that has a fixed value of |κ|, the bandwidth �ω decreases
as the length l increases. However, for a fixed length l, the bandwidth increases as the
coupling becomes stronger, and the value of |κ| increases.
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By taking dβ/dω = Nβ/c, where Nβ is the effective group refractive index of the
waveguide mode at the Bragg wavelength, the bandwidth given in (5.28) is approxi-
mately bounded within the following range (see Problem 5.1.11):

2
√

2
|κ|c
Nβ

coth |κ|l ≥ �ω > 2
|κ|c
Nβ

. (5.29)

EXAMPLE 5.3 A DBR is made with the grating waveguide coupler described in Ex-
ample 5.2 that has a first-order grating for phase-matched coupling of the forward-
propagating TE0 field to the backward-propagating TE0 field at λ = 1 µm. (a) If a
reflectivity of 50% is desired, what are the required length and the corresponding num-
ber of periods of the grating? (b) How much is the leakage coupling to the backward-
propagating TE1 field? (c) What is the bandwidth of this DBR?

Solution (a) From Example 4.2, we know that |κ|l = 0.88 for a phase-matched
3-dB contradirectional coupler of η = 50%. From Example 5.2, we find that κ = κTE

00 =
−i0.014 µm−1. Therefore, the required length of the DBR is

l = 0.88

|κ| = 63 µm.

From Example 5.1, we know that the period of this first-order grating is � = 289.7 nm.
The number of periods of the DBR is thus

NDBR = l

�
= 217.

(b) For leakage coupling to the TE1 mode, κTE
01 = −i0.0277 µm−1 from Example 5.2.

This coupling is not phase matched. The phase mismatch can be found as

2δ = �β + q K = −β1 − β0 + K = 0.8396 µm−1

for β1 = 10.0036 µm−1, β0 = 10.8432 µm−1, K = 21.6864 µm−1, and q = 1. We then
find that |δ| = 15.16|κTE

01 | and |κTE
01 |l = 1.745 for l = 63 µm. Plugging these numbers

in (4.91) for phase-mismatched contradirectional coupling, we find that the efficiency
for leakage coupling is, for |δ/κTE

01 | > 1 in this case,

η01 =
sin2

(
|κTE

01 l|
√

|δ/κTE
01 |2 − 1

)

|δ/κTE
01 |2 − cos2

(
|κTE

01 l|
√

|δ/κTE
01 |2 − 1

) = 0.004.

Therefore, there is only about 0.4% of the TE0 mode power that is leaked to the TE1

mode because of the large phase mismatch in the TE0–TE1 coupling.
(c) To find the bandwidth without solving for the entire dispersion curve of the

waveguide mode, we take Nβ ≈ nβ as an approximation. Then, for the TE0 mode
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under consideration, Nβ ≈ β0/2πλ = 10.8432/2π = 1.7257 because λ = 1 µm. Us-
ing |κ| = 0.014 µm−1 and �ω = 2π�ν, we find by applying (5.29) that the bandwidth
is bounded in the range

√
2

|κ|c
π Nβ

coth |κ|l = 1.5494 THz ≥ �ν >
|κ|c
π Nβ

= 774.7 GHz.

Solving (5.27) exactly for |κ|l = 0.88 yields |δ1/2| = 1.998|κ|. This results in an actual
bandwidth of �ν = 1.5478 THz. Therefore, the actual bandwidth of this DBR is very
close to its upper bound.

5.2 Directional couplers

Directional couplers are multiple-waveguide couplers used for codirectional coupling.
They can be used in many different applications, including power splitters, optical
switches, wavelength filters, and polarization selectors. We consider in this section
two-channel directional couplers, which consist of two parallel waveguides, as shown
schematically in Fig. 5.4. For simplicity, we consider only the case where each wave-
guide supports only its own fundamental mode. Coupling between the two single-mode
waveguides in such a two-channel directional coupler is simply described by (4.57)

(a)

(b)

Figure 5.4 Schematic diagram of (a) a two-channel directional coupler and (b) its index profile
assuming two step-index waveguides on the same substrate. The coupler is symmetric if
na = nb = n1 and da = db = d.
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and (4.58) with

2δ = (βb + κbb) − (βa + κaa). (5.30)

In addition, caa = cbb = 1 for evaluation of the coupling coefficients using (4.47) be-
cause the waves in both waveguides are forward propagating. In general, the two wave-
guides are not necessarily identical. Then the directional coupler is not symmetric, and
κab �= κ∗

ba , as discussed in Section 4.3. If the two waveguides are identical, the direc-
tional coupler is symmetric. Then, κab = κ∗

ba , κaa = κbb, and βa = βb. In either case,
the general solutions for codirectional coupling obtained in Section 4.3 can be used
directly if the coupling coefficients and the phase mismatch are known.

Coupling coefficient

The coefficients involved in the coupling between two waveguides are given by (4.47).
They are more complicated than those in the coupling between two modes in the same
waveguide because of the existence of the overlap coefficient and the fact that κab �= κ∗

ba

in general. As a result, many parameters have to be calculated in order to obtain the
coupling coefficients κab and κba using (4.47). Here we consider a simple example,
namely, the two-channel directional coupler with step-index waveguides on the same
substrate shown in Fig. 5.4. We assume that the waveguides are planar slab waveguides
for simplicity although practical direction couplers are often made of channel wave-
guides. We also consider only isotropic waveguides where TE and TM modes do not
couple.

As shown in Fig. 5.4, the two waveguides have widths da and db and guiding-layer
refractive indices na and nb, respectively. They are separated by a distance s between
the two near edges of the guiding layers. The index of refraction of the substrate is
n2. When na = nb = n1 and da = db = d, the coupler is symmetric. Otherwise, it is
asymmetric.

To calculate the relevant coefficients, we first identify the perturbation �ε for each
waveguide. For waveguide a, the susceptibility step of waveguide b above the substrate
is the perturbation, and vice versa. Therefore, we have

�εa =
{

ε0(n2
b − n2

2), s + da/2 < x < s + da/2 + db,

0, otherwise,
(5.31)

and

�εb =
{

ε0(n2
a − n2

2), −da/2 < x < da/2,

0, otherwise,
(5.32)

where we have chosen the origin of the x coordinate to be at the center of waveguide
a. Using the field distributions and the characteristic parameters of planar waveguide
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modes obtained in Section 2.5, we can calculate the relevant coefficients using (4.41)
and (4.42).

For coupling between TE modes, the only nonzero component for the electric field
is Ê y given by (2.55). Therefore, we have

κ̃aa = ω

∞∫
−∞

�εa| Êa,y|2dx

= 1

βadE
a

· h2
b + γ 2

b

h2
a + γ 2

a

· h2
a

2γa
(1 − e−2γadb )e−2γas, (5.33)

and

κ̃ab = ω

∞∫
−∞

�εbÊ∗
a,y Êb,ydx

= 1√
βaβbdE

a dE
b

√
h2

a + γ 2
a

h2
b + γ 2

b

· hahb

h2
a + γ 2

b

[
(γa + γb) + (γa − γb)e−γbda

]
e−γbs, (5.34)

where ha and hb are the parameter h1, γa and γb are the parameter γ2, and dE
a and dE

b are
the effective waveguide thickness for the TE modes in waveguide a and waveguide b,
respectively. The coefficient κ̃bb can be obtained by simply interchanging the indices a
and b in (5.33), while κ̃ba can be obtained by interchanging the indices a and b in (5.34).
It can be seen that κ̃aa �= κ̃bb, and κ̃ab �= κ̃ba , in general, as expected. By following a
procedure that reduces (2.41) to (2.44) for TE modes, it can be shown that, for TE
modes, the overlap coefficient defined by (4.41) can be reduced to

cab = c∗
ba = βa + βb

ωµ0

∞∫
−∞

Ê∗
a,y Êb,ydx

= βa + βb√
βaβbdE

a dE
b

[√
h2

a + γ 2
a

h2
b + γ 2

b

hahb

h2
a + γ 2

b

(
1

γa − γb
+ e−γbda

γa + γb

)
e−γbs

+
√

h2
b + γ 2

b

h2
a + γ 2

a

hbha

h2
b + γ 2

a

(
1

γb − γa
+ e−γadb

γb + γa

)
e−γas


. (5.35)

Similar, but somewhat more complicated, formulas can be obtained for coupling be-
tween TM modes.

We now consider the simple case of a symmetric directional coupler. In this case,
na = nb = n1 and da = db = d. Therefore, we have βa = βb ≡ β, ha = hb = h1 ≡ h,
and γa = γb = γ2 ≡ γ , and the coefficients are much simplified. For coupling between
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TE modes of the same order, we have

κ̃aa = κ̃bb = 1

βdE

· h2

2γ
(1 − e−2γ d )e−2γ s, (5.36)

κ̃ ≡ κ̃ab = κ̃∗
ba = 2

βdE

· h2γ

h2 + γ 2
e−γ s, (5.37)

and

c ≡ cab = c∗
ba = 2

dE

h2

h2 + γ 2

(
s + e−γ d

γ

)
e−γ s . (5.38)

Similar simplified formulas can be obtained for coupling between TM modes. The
coupling coefficient used in the coupled-mode equation is

κ = κ̃ − c∗κ̃aa

1 − |c|2 . (5.39)

Because now

βa + κaa = βb + κbb, (5.40)

we have δ = 0, and the coupling is always phase matched, as expected.

EXAMPLE 5.4 A symmetric directional coupler forλ = 1µm wavelength, Fig. 5.5, is made
by placing two strip-loaded waveguides, similar to the one described in Example 2.6,
next to one another with a separation of s = 1 µm. Find the coupling length for the
TM00 mode of the individual waveguide.

µm

µm

µm

µm

µm

Figure 5.5 Symmetric directional coupler.

Solution Because the two waveguides are coupled to each other in the y direction, we
have to examine their characteristics in that direction. In the y direction, the character-
istics of TM00 for the strip waveguide are those of the TE0 mode of the effective vertical
waveguide in the effective index method, as discussed in Example 2.6. Therefore, the
results in (5.36)–(5.38) for symmetric directional coupling between TE modes apply
to this problem by using the mode parameters for TM00 listed in the table of Exam-
ple 2.6: β = 10.8120 µm−1, h = 0.435 µm−1, and γ = 0.832 µm−1. In applying these
formulas, however, we have to replace d with w = 5 µm and dE with wn = 7.4 µm
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because those are the parameters of the two identical waveguides in the y direction.
Using these parameters and s = 1 µm, we find that κ̃aa = κ̃bb = 2.7 × 10−4 µm−1,
κ̃ = κ̃ab = κ̃∗

ba = 1.943 × 10−3 µm−1, and c = cab = c∗
ba = 2.572 × 10−2.

From (5.39), we find the coupling coefficient to be κ = 1.937 × 10−3 µm−1. There-
fore, the coupling length of this directional coupler is

lc = π

2|κ| = 811 µm.

Supermodes

The variation of the field amplitudes in the two coupled waveguides of a directional
coupler as a function of propagation distance is given by (4.62) and (4.63), which are
the solutions for codirectionally coupled modes with initial conditions Ã(0) �= 0 and
B̃(0) = 0. The complete field profile across the directional coupler can be obtained as
a combination of the two mode fields. Substituting (4.62) and (4.63) into (4.52) for the
mode expansion coefficients A(z) and B(z), we have the total field in the directional
coupler:

E(r) = Ã(0)

[
Êa

(
cos βcz − iδ

βc
sin βcz

)
ei(βa+κaa+δ)z + Êb

iκba

βc
sin βcz ei(βb+κbb−δ)z

]

= Ã(0)

[
(βc − δ)Êa + κbaÊb

2βc
ei(β+βc)z + (βc + δ)Êa − κbaÊb

2βc
ei(β−βc)z

]

= Ã(0)
[E1(x, y)eiβ1z + E2(x, y)eiβ2z

]
, (5.41)

where

β = (βa + κaa) + (βb + κbb)

2
, (5.42)

E1 = (βc − δ)Êa + κbaÊb

2βc
, E2 = (βc + δ)Êa − κbaÊb

2βc
, (5.43)

and

β1 = β + βc, β2 = β − βc. (5.44)

We see in (5.41) that the total field in the coupler is a linear combination of two
independent field patterns E1(x, y) and E2(x, y) propagating with different propaga-
tion constants β1 and β2, respectively. They are the normal modes of the composite
two-waveguide structure of the directional coupler. Such modes are known as the su-
permodes of the structure. Note that E1 and E2 given in (5.43) are not normalized.

The characteristics of the supermodes clearly depend on the parameters δ, κab, and
κba . We first consider an asymmetric directional coupler with nonidentical waveguides
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for which δ �= 0. When δ2 � κabκba and δ > 0, we haveβc → δ. As a result,β1 → βb +
κbb → βb and β2 → βa + κaa → βa . Therefore, the supermodes of the composite
structure of the directional coupler are just those of the individual waveguides when
phase mismatch is large. This situation is expected because in the limit that δ2 � κabκba ,
the two waveguides are effectively decoupled, and a wave propagating in either one of
them is not to be affected by the existence of the other. This can be seen from the fact
that in this limit, (5.43) reduces to

E1 → κba

2δ
Êb ≈ 0, E2 → Êa − κba

2δ
Êb ≈ Êa. (5.45)

Therefore, the total field E(r) in (5.41) consists of approximately only the normal mode
field of waveguide a propagating with βa:

E(r) ≈ Ã(0)E2eiβ2z ≈ Ã(0)Êaeiβa z. (5.46)

This is a result of the fact that we have assumed the initial excitation of only waveguide
a. No power is coupled to waveguide b throughout the length of the structure because
of the large phase mismatch. If we assumed the initial excitation of waveguide b only,
we would have E1 → Êb and E2 → 0. Then, the wave would propagate as the normal
mode of waveguide b as if waveguide a did not exist. In the above discussion, we have
assumed that βb > βa so that δ > 0. In the case of βa > βb so that δ < 0, the conclusion
is the same, but with the asymptotic connection of E1 and E2 to Êb and Êa and that of
β1 and β2 to βb and βa simply interchanged.

In a strong coupling situation, where κabκba > δ2, we find from (5.44) and (5.42)
that

β1 > βb + κbb > βa + κaa > β2 (5.47)

if δ > 0. As a result, both E1 and E2 have significant contributions from both Êa and
Êb. Then, the supermodes are linear combinations of individual waveguide modes. At
the input location z = 0, the two supermodes are in phase, and

E(x, y, 0) = Ã(0)(E1 + E2) = Ã(0)Êa, (5.48)

as expected from the fact that only waveguide a is initially excited. The maximum
power transfer occurs when the two supermodes have a π phase shift. This takes place
at a distance of

lc = π

β1 − β2
= π

2βc
, (5.49)

which is exactly the coupling length given in (4.67) obtained from solution of the
coupled-mode equations. At this distance, we find that the total field is

E(x, y, lc) = Ã(0)(E1 − E2)eiβ1lc = Ã(0)
−δÊa + κbaÊb

βc
eiβ1lc (5.50)
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(a)

(b)

Figure 5.6 Evolution of supermode fields (dashed/dotted curves) and total fields (solid curves) in
(a) an asymmetric and (b) a symmetric dual-channel directional coupler. Structural parameters used
to calculate these field profiles are n1 = 1.5, n2 = n3 = 1.46, da = 0.8 µm for (a) and da = 1 µm
for (b), and db = s = 1 µm. Note that the coupling length for symmetric coupling is lPM

c , which is
larger than that for asymmetric coupling; thus lPM

c > lc, as seen in this figure.

because β2lc = β1lc − π . As expected, the power transfer to waveguide b is not com-
plete because δ �= 0. This scenario is illustrated in Fig. 5.6(a).

We now consider the case of a symmetric coupler where the two waveguides are
identical. Then, βa = βb, κaa = κbb, and κab = κ∗

ba ≡ κ , where κab is real and positive
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as can be seen from (5.37). In addition, δ = 0, βc = κ , and β = βa + κaa = βb + κbb.
Therefore, the supermodes become the even and odd modes

E1 = Êa + Êb

2
≡ Eeven, E2 = Êa − Êb

2
≡ Eodd, (5.51)

with the following propagation constants:

β1 = β + κ ≡ βeven, β2 = β − κ ≡ βodd. (5.52)

Note again that Eeven and Eodd as given in (5.51) are not normalized. The total field in
the coupler following initial input to waveguide a only is then

E(r) = Ã(0)[Eeven(x, y)eiβevenz + Eodd(x, y)eiβoddz]. (5.53)

It can be seen that the coupling length is now given by

lPM
c = π

βeven − βodd
= π

2κ
, (5.54)

which is consistent with that given in (4.86) for phase-matched codirectional coupling.
Complete power transfer between the two waveguides is now accomplished at the cou-
pling length because of perfect phase matching. Figure 5.6(b) illustrates the evolution
of supermode fields in this situation. It can be seen from (5.51) and Fig. 5.6(b) that
the even supermode has a symmetric field pattern while the odd supermode has an
antisymmetric field pattern. Because κ is positive real, we also have βeven > βodd.

For two waveguides of given structural parameters and index profiles, the coupling
coefficient depends solely on the proximity between them, as can be seen from (5.33)–
(5.38). As the spacing between the two waveguides is reduced, the coupling becomes
stronger and, according to (5.52), the disparity between the propagation constants of
the two supermodes is increased, resulting in a shorter coupling length.

EXAMPLE 5.5 Find the propagation constants for the even and odd supermodes of the
directional coupler described in Example 5.4. What is the coupling length found from
the beat length of these two supermodes?

Solution Because caa = cbb = 1 for a directional coupler, the self-coupling coeffi-
cients can be found using (4.47) and the parameters found in Example 5.4 as

κaa = κbb = κ̃aa − cκ̃

1 − |c|2 = 2.2 × 10−4 µm−1.

Because βa = βb = 10.8120 µm−1 and κaa = κbb, we find that β = βa + κaa = βb +
κbb = 10.812 22 µm−1. Therefore, the propagation constants for the even and odd
supermodes are, respectively,

βeven = β + κ = 10.814 157 µm−1 and βodd = β − κ = 10.810 063 µm−1,
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where κ = 1.937 × 10−3 µm−1 found in Example 5.4. The beat length is

lPM
c = π

βeven − βodd
= π

2κ
= 811 µm,

which is exactly the coupling length found in Example 5.4, as expected.

Asymmetric directional couplers

In a dual-channel directional coupler, the phase mismatch δ is determined by the sym-
metry between the two individual waveguides. In an asymmetric directional coupler, the
two waveguides are not identical. In this case, δ �= 0 in general. Nevertheless, it is pos-
sible to make δ = 0 for two nonidentical waveguides at a particular optical frequency,
but not at all frequencies, by compensating for the difference in their thicknesses with
a proper difference in their index profiles. Because of the different dispersion char-
acteristics of the two nonidentical waveguides, δ �= 0 at frequencies away from the
phase-matching frequency. Therefore, such a coupler can be used as a frequency filter
similar to the function of a DBR, but for copropagating waves rather than for con-
trapropagating waves as in the case of a DBR.

Similarly to the discussions for the DBR, the frequency selectivity of a phase-
matched asymmetric directional coupler can be illustrated by considering the dispersion
characteristics shown in Fig. 5.7. The waveguides in the coupler are designed so that
βb + κbb = βa + κaa at a desired optical frequency ω0 located at the crossing of the
two dispersion curves in Fig. 5.7. Therefore, δ(ω0) = 0 for perfect phase matching is

Figure 5.7 Dispersion relation showing coupling of the fields in an asymmetric dual-channel
directional coupler. In the range |δ| < |κ|, the two waveguides are well coupled. Mixing of the
waveguide modes corresponding to βa and βb then results in supermodes corresponding to β1 and
β2.



211 5.2 Directional couplers

accomplished at ω0. The two modes Êa and Êb are relatively well coupled within the
range |δ| ≤ |κ|, where |κ| = √

κabκba for coupling in the asymmetric directional cou-
pler. It can be seen from Fig. 5.7 that within this phase-matched range, mixing between
Êa and Êb results in supermodes whose propagation constants β1 and β2 are different
from either βa or βb. Outside this range, the modes in the two waveguides are effectively
decoupled, and the supermodes effectively reduce to the individual waveguide modes.
It can be seen from Fig. 5.7 that in the frequency range where βb + κbb > βa + κaa

for δ > 0, β1 → βb and β2 → βa at large phase mismatch, whereas in the range where
βb + κbb < βa + κaa for δ < 0, β1 → βa and β2 → βb at large phase mismatch. This
observation is consistent with that discussed above regarding the asymptotic behavior
of the supermodes at large phase mismatches.

The frequency bandwidth of the coupler can be found by considering the frequency
dependence of δ. We have

δ(ω) = [βb(ω) + κbb] − [βa(ω) + κaa]

2

= [βb(ω0) + κbb] − [βa(ω0) + κaa]

2
+ 1

2

(
dβb

dω
− dβa

dω

)
(ω − ω0) + · · ·

≈ 1

2

(
dβb

dω
− dβa

dω

)
(ω − ω0), (5.55)

where the frequency dependence of κaa and κbb in the Taylor series expansion is ignored.
It can be included if necessary. At the phase-matching point, the length of the coupler
needed for complete transfer of power from waveguide a to waveguide b is one of the
odd multiples of lPM

c :

l = (2n + 1)lPM
c , n = 0, 1, 2, . . . (5.56)

If the length is chosen to be one given in (5.56), we have η = 1 at δ = 0. Then, δ1/2 for
η = 1/2 can be found from the root of the following equation (see Problem 5.2.6):

2 sin2
(
|κ|l
√

|δ/κ|2 + 1
)

= |δ/κ|2 + 1, (5.57)

where l is one of those given in (5.56). The FWHM frequency bandwidth is then given
by

�ω = 4

∣∣∣∣ δ1/2

dβb/dω − dβa/dω

∣∣∣∣ . (5.58)

Rather than solving (5.57), the value of |δ1/2| can also be found by reading the value
of |δ/κ| for η = 1/2 on the curve in Fig. 4.7(b) corresponding to a given length of the
coupler. It is seen that for a fixed value of |κ|, the frequency bandwidth is narrower
for a length corresponding to a higher multiple of lPM

c . For example, a coupler with
l = 3lPM

c has a narrower bandwidth than one with l = lPM
c .
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By taking |dβb/dω − dβa/dω| = �Nβ/c, where �Nβ is the effective group index
difference between the two waveguide modes at the coupling wavelength, the bandwidth
given in (5.58) is approximately bounded within the range (see Problem 5.2.6)

3.2
|κ|c
�Nβ

≥ �ω > 0, (5.59)

where the equals sign for the upper limit of the bandwidth applies only when l = lPM
c

for |κ|l = π/2.

Symmetric directional couplers

In an ideal symmetric directional coupler, the two waveguides are identical, and the
modes are always phase matched. The coupling efficiency is then simply that given by
(4.85). For a desired coupling efficiency ηPM, the length of the coupler has to be

l = 1

κ

(
nπ ± sin−1√ηPM

) = 2

(
n ± 1

π
sin−1√ηPM

)
lPM
c . (5.60)

For complete transfer of power, the length of the coupler has to be exactly one of
the odd multiples of lPM

c given in (5.56), as discussed above. It is interesting to see
that for a 50% coupling efficiency, we need l = (n + 1/2)lPM

c , where n = 0, 1, 2, . . . ,
and the shortest coupler length needed is exactly lPM

c /2, as can be seen in Fig. 4.4(b).
Launching optical power into one waveguide of such a coupler at its input end results
in equal division of power between the two waveguides at the output end. Thus, the
device functions as a 3-dB coupler or as a 50 : 50 power divider. Any desired coupling
efficiency can be obtained by properly choosing the length of the coupler for a given
value of κ or by choosing a proper value of κ through the design of the coupler for a
given length.

In many applications, it is often necessary to vary the coupling efficiency in the
operation of a device for certain purposes. In some situations, this objective can be
accomplished by altering the effective length of the coupler or the spacing between
the waveguides. This approach is possible if the coupler is not integrated. An example
is a directional coupler made of two closely placed optical fibers whose interaction
length and spacing can be adjusted. If the coupler has an integrated structure, it is cer-
tainly not easy to vary the length of the coupler at will, nor is it convenient to vary the
spacing between the waveguides. In this situation, changes in the coupling efficiency
of a coupler can be accomplished either by altering the value of κ or by varying the
propagation constants βa and βb in the two waveguides by different amounts to intro-
duce a finite phase mismatch δ in the coupler. In fact, a change in κ will necessarily
result in changes in the propagation constants, and vice versa. Nevertheless, changing
the value of κ , and thus the values of βa and βb, does not necessarily result in a phase
mismatch although creating a phase mismatch in an originally symmetric coupler will



213 5.2 Directional couplers

(a) (b)

Figure 5.8 (a) Cross state and (b) parallel state of a directional-coupler optical switch.

Figure 5.9 Schematic illustration of the use of a directional coupler as a TE–TM polarization
splitter. In this example, TE polarization is in the parallel state, while TM polarization is in the
cross state.

certainly cause changes in the coupling coefficients, as indicated by (4.44). In practi-
cal devices, these changes can be created through the electro-optic effect, thus being
controllable with an externally applied voltage, through nonlinear optical effects, thus
being controllable with the optical power in the waveguides, or through any other effects
that cause changes in the refractive index of the medium of the coupler.

The ability to vary the coupling efficiency of a directional coupler through a control
signal results in many useful applications. An important example is an optical switch
that functions between the cross state, in which power is completely transferred from
the input channel to the other channel at the output, and the parallel state, in which
power is completely passed through the input channel at the output without any transfer
to the other channel. These states are illustrated in Fig. 5.8. The cross state is denoted by
⊗, while the parallel state is denoted by �−. The parallel state is also called the bar state.
The function of electro-optically controlled directional coupler switches is discussed
in Section 6.4.

Another interesting example is the TE–TM polarization splitter illustrated in Fig. 5.9.
It is possible to create a difference between the coupling coefficients, κEE and κMM, of
the TE and TM modes, respectively, even though the coupler has a symmetric structure.
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This can be accomplished by fabricating the coupler in a birefringent medium such as
LiNbO3 or a nonbirefringent electro-optic material such as GaAs and by applying
a voltage to adjust properly the different refractive indices seen by the TE and TM
fields. For a coupler of length l, polarization splitting as shown in Fig. 5.9, where TE
polarization is in the parallel state while TM polarization is in the cross state, is achieved
when

l = nπ

κEE

= (2n ± 1)π

2κMM

(5.61)

for an integer n. This is possible if there is a difference between the coupling coefficients
of the two different polarizations of the amount

�κ ≡ |κMM − κEE| = κEE

2n
. (5.62)

For polarization splitting resulting in TE polarization in the cross state and TM polar-
ization in the parallel state, we need �κ = κMM/2n and l = nπ/κMM instead.

5.3 Surface input and output couplers

In a system, it is always necessary to couple light from sources, such as lasers or light-
emitting diodes, to transmission components, which are usually dielectric waveguides or
fibers, to various functional devices, such as optical switches, power dividers, amplifiers,
and modulators, possibly through transmission components again, and ultimately to
photodetectors. The approaches to coupling light in and out of optical waveguides,
including fibers, are basically classified into two categories: (1) surface coupling, also
called longitudinal coupling, and (2) end coupling, also called end-fire coupling or
transverse coupling. The first approach relies on the coupling of an optical wave in or
out of a waveguide through the longitudinal surface of the waveguide. In the second
approach, the optical wave is coupled directly through an exposed cross section at one
end of the waveguide. In this section, we examine the surface couplers.

From the viewpoint of coupled-mode theory, coupling of an optical wave through the
longitudinal surface of a waveguide into a guided mode is an effect of coupling between
the radiation modes of the waveguide and the guided mode. Any unguided propagating
field such as that of the incident optical wave to be coupled into the waveguide can
be expanded in terms of the radiation modes of the waveguide in the form of (4.23)
and (4.24) with the summation replaced by integration over all radiation modes. For
efficient coupling, the phase-matching condition has to be satisfied, as we have seen
time and again in the discussions of the preceding sections. Phase matching is not
possible, however, without some special arrangements to perturb the system because
the longitudinal propagation constant of any radiation mode is always smaller than that
of a guided mode, as discussed in Section 2.1 and illustrated in Fig. 2.3. This difficulty
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Figure 5.10 Illustration of the phase mismatch between a guided mode and a free-propagating field
incident at an angle θ on the surface of the waveguide.

can be seen from the illustration in Fig. 5.10. For a beam incident on the surface of the
guiding layer at an angle θ , the largest propagation constant is that of a plane wave,
k = k3. Its longitudinal propagation constant is the z component, which satisfies

kz = k3 sin θ < k3 < β, (5.63)

where β is the propagation constant of a guided mode. By the same argument and by
the reciprocity theorem for electromagnetic waves, it is equally impossible to couple
the field in a guided mode out of the waveguide through the surface of the waveguide
without some special arrangements.

The task of a surface coupler is to change this situation and to accomplish phase
matching so that a radiation field can be coupled to the guided mode. Naturally, the
same coupler can be used as an output coupler to couple a guided field out to a radiation
field.

Prism couplers

One approach to accomplishing phase matching is to use a prism of high index of
refraction, np, as a surface coupler, as shown in Fig. 5.11. For this arrangement, the
cover of the waveguide is usually air or some low-index fluid filling the gap s between
the prism and the waveguide core. For kp = npω/c, the phase-matching condition is
then

kp sin θ = β, (5.64)

which can be accomplished if

np > n1 > n3 and θ > θc = sin−1 n3

np
. (5.65)
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(a) (b)

2w
2w

Figure 5.11 (a) Input and (b) output coupling using prism couplers.

Note that the angle θ is now measured inside the prism. It is necessary that total internal
reflection occurs for the incident field inside the prism. As a result, the field does not
propagate freely in the gap between the prism and the waveguide core. Then, the
difficulty of phase matching due to (5.63) can be avoided. The total internal reflection
results in an exponentially decaying evanescent field in the gap between the prism and
the waveguide. Coupling to the waveguide mode occurs through optical tunneling when
this evanescent field overlaps with the field of a guided mode if the phase-matching
condition in (5.64) is satisfied.

EXAMPLE 5.6 A rutile prism is used for surface coupling of optical waves at λ = 1 µm
into the guided modes of the waveguide described in Example 2.1. Rutile is a positive
uniaxial crystal that has no = 2.4585 and ne = 2.7495 at λ = 1 µm. The optical wave
to be coupled into the waveguide is incident on the prism surface at an incident angle of
θi, as shown in Fig. 5.12. The prism is cut with an angle of ζ = 45◦ and with its optical
axis perpendicular to the plane of incidence as shown. What are the polarization of the
incident optical wave and the angle θi for coupling into the TE0 mode? What are they
for coupling into the TM0 mode?

Solution The propagation constants for the TE0 and TM0 modes are βTE =
10.8432 µm−1 and βTM = 10.7800 µm−1, both found in Example 2.1. At λ = 1 µm
in rutile, ko

p = 2πno/λ = 15.6187 µm−1 for the ordinary wave and ke
p = ne/λ =

17.2756 µm−1 for the extraordinary wave. The optical wave is incident to the prism
from the air with n3 = 1.
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Figure 5.12 Prism for surface coupling.

For coupling into the TE0 mode, the incident wave has to be TE polarized, in a
direction perpendicular to the plane of incidence, in order to match the polarization of
the guided TE0 mode. This polarization is the extraordinary polarization in the given
rutile prism. Therefore, ke

p is used for ke
p sin θ = βTE to find that θ = 38.87◦ with the

given parameters. We check that the critical angle θ e
c = sin−1(n3/ne) = 21.33◦ < θ , as

expected. From Fig. 5.12, we find that the angle of refraction θt for the wave transmitted
into the prism is θt = ζ − θ = 6.13◦. Therefore, the angle of incidence is

θi = sin−1

(
ne

n3
sin θt

)
= 17.07◦.

For coupling into the TM0 mode, the incident wave has to be TM polarized, in
the plane of incidence, in order to match the polarization of the guided TM0 mode.
This polarization is the ordinary polarization in the given rutile prism. Therefore, ko

p is
used for ko

p sin θ = βTM to find that θ = 43.65◦ with the given parameters. We check
that the critical angle θo

c = sin−1(n3/no) = 23.72◦ < θ , as expected. We then find that
θt = ζ − θ = 1.35◦. Therefore, the angle of incidence is

θi = sin−1

(
no

n3
sin θt

)
= 3.36◦.

The coupling efficiency and other characteristics of the prism coupler can be analyzed
with coupled-mode theory or other approaches of field analysis such as a leaky-wave
analysis. The mathematics is quite involved; therefore, we only discuss some key char-
acteristics without detailed derivations.

It is more straightforward to understand the output coupling from a guided mode
to the radiation field through a prism coupler shown in Fig. 5.11(b) rather than the
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input coupling shown in Fig. 5.11(a). We thus consider the output coupler first. For this
purpose, we take z = 0 to be at the edge of the output-coupling prism. For a guided
mode that has an amplitude of A(0) at z = 0, the analysis using coupled-mode or leaky-
wave theory indicates that the amplitude distribution along the z direction for z > 0
is

A(z) = A(0)e−αrz, (5.66)

where αr is the radiation decay constant. The field coupled out to the prism has a
pattern directly proportional to A(z). For convenience, we assume that the prism is
cut in such a manner that the output radiation field is normal to the exit surface of
the prism as shown in Fig. 5.11(b). Then the output field has the following transverse
pattern:

Eout(zr) =
{

0, for zr < 0,

E0 exp(−αrzr/ cos θ ), for zr > 0,
(5.67)

where zr = z cos θ is the coordinate transverse to the direction of propagation of the
output field. The radiation decay constant has a complicated form but has the following
key characteristics:

αr ∝ 1

deff
e−2γ3s, (5.68)

where deff is the effective waveguide thickness, deff = dE for a TE mode and deff = dM

for a TM mode, and γ3 is the transverse mode field parameter in the cover region defined
by (2.52).

When the length of the prism facing the waveguide is lp, the maximum output-
coupling efficiency is

ηout = 1 − e−2αrlp, (5.69)

which can be obtained from (5.66). If lp is sufficiently long that αrlp � 1, an output-
coupling efficiency that is nearly 100% can be achieved.

For input coupling, the situation is slightly more complicated than that of out-
put coupling. Owing to the reciprocity theorem, input coupling is just the reverse
of output coupling. Therefore, an input efficiency of nearly 100% can be accom-
plished if an input beam propagating reversely with respect to the output beam shown
in Fig. 5.11(b) has exactly the same exponentially decaying profile as that given in
(5.67). In practice, however, most of the input fields do not have such a profile. As
a result, the coupling efficiency is reduced by the overlap factor � of the two field
patterns:

ηin = �ηout, (5.70)
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where

� =


 ∞∫

−∞
E∗

out(zr)Ein(zr)dzr




2

∞∫
−∞

|Eout(zr)|2dzr

∞∫
−∞

|Ein(zr)|2dzr

, (5.71)

and Ein(zr) is the transverse pattern of the input field. The overlap factor � depends on
the profiles of Ein and Eout. For Eout having a pattern as given in (5.67), � = 80.1% if
Ein has a Gaussian profile and � = 81.4% if Ein has a rectangular profile. Therefore,
the maximum input-coupling efficiency is 80.1% for a Gaussian input beam and is
81.4% for a rectangular input beam profile. However, in order to obtain the maximum
input-coupling efficiency, alignment is very critical. In addition to sending the beam
exactly at an angle required by phase matching, the parallel position of the beam has
to be such that the front boundary of the beam exactly intercepts the prism corner, as
shown in Fig. 5.11(a). Also, the length lp of the prism has to be such that lp > 2w/ cos θ

to intercept the entire beam and that αrlp � 1.
For a given input or output coupler, the coupling efficiency depends on αr. It can be

seen from (5.68) that αr depends sensitively on the spacing s between the prism and the
waveguide. For efficient coupling, s typically has to be kept less than half the optical
wavelength in the medium filling the gap. This small gap is usually accomplished
by applying a large pressure to clamp the prism onto the waveguide. The sensitivity
of the coupling efficiency to the variation of this gap requires critical adjustment to
control coupling. This is one of the disadvantages of prism couplers. Furthermore, for
good phase matching and good alignment, the input beam has to be well collimated.
Another disadvantage is that the prism material must have a refractive index higher
than that of the waveguide material. This requirement is particularly difficult to meet
for a waveguide of high refractive index, such as one based on a semiconductor. The
advantages of prism couplers are that they are noninvasive and that no permanent
structures have to be fabricated on the waveguides. Another advantage is that it is easy
to excite different waveguide modes selectively by choosing appropriate incident angles
for phase matching. Prism couplers can be used for channel waveguides as well as planar
waveguides. Therefore, prism couplers are most often used in the characterization of
optical waveguides.

Grating couplers

Another approach to obtaining phase matching for the coupling between the radiation
field and a guided mode is the use of a grating. Figure 5.13 shows input and output
coupling of a planar waveguide using a grating surface coupler. Basically, the function
of the grating is to provide an extra phase factor q K in a manner similar to that of
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(a) (b)

2w

Figure 5.13 (a) Input and (b) output coupling using grating couplers.

the grating waveguide couplers discussed in Section 5.1 so that modes of different
propagation constants can be phase matched and efficiently coupled. However, because
the radiation fields are not restricted to a single propagation direction, the situation here
is more complicated than that of the coupling between guided modes discussed in
Section 5.1. The radiation fields can exist simultaneously in both the cover and the
substrate regions, and the grating can scatter the light into different diffraction orders.
Because the grating is periodic only along the z direction, the extra phase factor q K it
provides is also only in the z direction. Therefore, the phase-matching condition for a
guided mode with a propagation constant β is

kiq,z + q K = β, i = 2, 3, (5.72)

or

ki sin θiq + q K = β, i = 2, 3, (5.73)

where i = 2 for the radiation fields in the substrate region of refractive index n2, i = 3
for those in the cover region of refractive index n3, and θiq is the incident angle of kiq .
Note that because ki sin θiq = kiq,z , the sign of θiq is positive if kiq,z = kiq · ẑ > 0 and is
negative if kiq,z = kiq · ẑ < 0. Because k1 > β > k2 > k3, phase matching is possible
only for q ≥ 1 in (5.73).

Similarly to the treatment of the prism coupler, we consider output coupling first,
which is also more straightforward than input coupling. The field of a guided mode
incident upon the grating region can be coupled to radiation fields in different diffraction
orders that satisfy the phase-matching condition given by (5.73). The result can be
output with multiple beams, two beams, or one beam, shown in Figs. 5.14(a), (c),
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(a) (b)

(c) (d )

(e) ( f )

Figure 5.14 Phase-matched coupling between a guided mode and radiation fields: (a), (c), and (e)
illustrate the conditions for output coupling into multiple beams, two beams, and one beam,
respectively, which are determined by the value of K; (b), (d), and ( f ) show the conditions for
input coupling corresponding to the reverse of (a), (c), and (e), respectively.
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and (e), respectively. For a given waveguide and a given guided mode, the values of
k1, k2, k3, and β are all fixed. Therefore, the number of phase-matched output beams
is simply determined by the grating wavenumber K or, equivalently, the grating period
� = 2π/K . Because n2 > n3, a single-beam output as shown in Fig. 5.14(e) can be
obtained on the substrate side by making K so large, or � so small, that phase matching
is not allowed for any diffraction order in the cover region. A single-beam output on
the cover side can be obtained in the same manner by making n3 > n2.

EXAMPLE 5.7 A first-order grating is fabricated on the surface of a polymer core layer
of the waveguide described in Example 2.1 for surface coupling of an optical wave
of 1 µm wavelength at an incident angle of 20◦ into the forward-propagating TE0

mode of the waveguide. What is the period of the grating? How many diffracted beams
are found on the cover and substrate sides? What are the directions of the diffracted
beams?

Solution We have β = 10.8432 µm−1, k2 = 9.1106 µm−1, and k3 = 6.2832 µm−1

found in Example 2.1. The condition for first-order input coupling at an incident angle
θi is k3 sin θi + K = β. For θi = 20◦, we find that K = β − k3 sin θi = 8.6942 µm−1.
Therefore, the grating period is

� = 2π

K
= 722.7 nm.

The diffracted beams are generated by output coupling of the guided mode field due to
scattering by the grating. Therefore, they can be found by finding the phase-matched
output coupling from the guided mode. On the cover side, the condition is k3 sin θ3q +
q K = β, which leads to

6.2832 sin θ3q = 10.8432 − 8.6942q.

This condition has only one solution: θ31 = 20◦ for q = 1. Therefore, there is only one
diffracted beam on the cover side. At θ31 = 20◦, this beam is in the specular reflection
direction of the incident beam as shown in Fig. 5.15. On the substrate side, the condition
is k2 sin θ2q + q K = β, which leads to

9.1106 sin θ2q = 10.8432 − 8.6942q.

This condition has two solutions: θ21 = 13.64◦ for q = 1, and θ22 = −45.9◦ for q = 2.
Therefore, there are two diffracted beams on the substrate side, one from first-order
diffraction and the other from second-order diffraction of the guided mode field by
the grating. The same results can be obtained by graphic solution, as is shown in
Fig. 5.15.

Similarly to the output coupling with a prism coupler, the amplitude of the guided
mode also decays exponentially in the grating region:

A(z) = A(0)e−αrz, (5.74)
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Figure 5.15 Phase-matching diagram of surface input coupling through a first-order grating.

where z = 0 marks the beginning of the grating, as shown in Fig. 5.13(b). In case there
is more than one output beam, each output beam also has a pattern directly proportional
to A(z) along the surface of the grating in the z direction. Because the direction of each
output beam is determined by a different angle θiq , the transverse field pattern across
the cross section of an output beam is given by

Eout
iq (ziq ) =

{
0, for ziq < 0,

Eiq (0) exp(−αrziq/ cos θiq ), for ziq > 0,
(5.75)

where ziq is the transverse coordinate along the cross section of the iq output beam.
Meanwhile, the total radiation decay constant is the sum of the radiation decay constants
for the coupling of all existing output beams:

αr =
∑
i,q

αiq . (5.76)

The radiation decay constants can be obtained from a coupled-mode or leaky-wave
analysis. They also have a complicated form. However, their characteristics are very
different from those of the prism coupler, as can be expected. The key characteristics
are that for a grating of corrugation depth dg,

αiq ∝ d2
g

deff
, if dg ≤ 1

γ3
, (5.77)

where deff is the effective waveguide thickness used in (5.68), and that the values of αiq

saturate for dg > 1/γ3. The dependence of αiq on the indices i and q is determined by
the shape and symmetry of the grating.
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For a grating of length lg, the output coupling efficiency to the beam of the indices i
and q is

ηout
iq = αiq

αr

(
1 − e−2αrlg

)
. (5.78)

When αrlg � 1, all of the power in a guided mode is coupled out but is divided among
the existing output beams propagating in different directions.

Input coupling to a guided mode through a grating coupler can also be considered
as the reverse of output coupling owing to the reciprocity theorem. However, again the
situation is more complicated than that of the prism coupler because of the possibility
of multiple diffraction orders. As a result, (1) there can be more than one incident
direction for input coupling, and (2) the multiple-beam distribution for input coupling
may look different from that of output coupling. For example, in the case when phase
matching is possible for multiple beams, as shown in Fig. 5.14(a), input coupling
can be accomplished by sending in the beam in a reverse direction to any one of the
output beams or by sending in more than one beam along any or all of these directions.
However, the pattern of the distribution of the diffracted beams, such as that shown
in Fig. 5.14(b), looks different from that in the case of output coupling shown in
Fig. 5.14(a). Figures 5.14(d) and ( f ) show examples of input coupling corresponding
to the output coupling shown in Figs. 5.14(c) and (e), respectively. In any event, if an
input field is incident along the reverse path of an output beam of field Eiq given by
(5.75), the input coupling efficiency is simply

ηin
iq = �iqη

out
iq , (5.79)

where

�iq =


 ∞∫

−∞
E∗

iq (ziq )Ein(ziq )dziq




2

∞∫
−∞

|Eiq (ziq )|2dziq

∞∫
−∞

|Ein(ziq )|2dziq

. (5.80)

For an exponential beam profile of Eiq given in (5.75), �iq = 80.1% if Ein is Gaussian
and �iq = 81.4% if it is rectangular.

In general, α2q ≈ α3q if the shape of the grating teeth is not highly asymmetric.
Therefore, an output beam on the substrate side has about the same power as that of
the same order on the cover side if both can be phase matched to the guided mode.
If this grating is used as an input coupler, then about one-half of the incident power
will be lost before reduction by the overlap factor �iq , resulting in a low coupling
efficiency. This shortcoming can be circumvented by using the one-beam coupler. One
approach is that shown in Figs. 5.14(e) and ( f ). However, there are a few practical
difficulties associated with this backward coupling through the substrate because the
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substrate tends to have a high refractive index close to that of the waveguide core. A
more practical approach is to use a blazed grating with highly asymmetric teeth, such
as those of saw-tooth shape, to cause the major portion of power to be coupled to a
single order on the cover side. Alignment of the input beam is not extremely critical,
but it is necessary to align the front boundary of the beam to intersect with the edge of
the grating for maximum efficiency, as shown in Fig. 5.13(a).

In comparison to the prism coupler, grating couplers are compact and stable be-
cause they are integrated with the waveguide structure. They are compatible with the
integration technology of photonic and optoelectronic devices. With proper design,
they can be used as efficient input and output couplers in innovative applications,
such as vertical output coupling from a semiconductor laser without conventional mir-
rors. Grating-coupled surface-emitting lasers based on this concept are discussed in
Section 13.9.

PROBLEMS

5.1.1 An index-modulation grating characterized by �n(x, z) that is periodic in z is
incorporated into a planar waveguide defined by an index profile n(x) to make
a grating waveguide coupler for optical waves at an optical wavelength λ. The
grating has a period � and a wavenumber K = 2π/� as defined in (5.3).
a. Show that the qth Fourier component of the coupling coefficient as defined

in (5.4) can be expressed as

κab(q) = 2ω

�
ε0

�∫
0

dz

∞∫
−∞

dx n(x)�n(x, z)Ê∗
a(x) · Êb(x)e−iq K z. (5.81)

b. If the waveguiding effect is very weak so that n(x) ≈ n, show that the coupling
coefficient between two TE modes for a coupler that has a sinusoidal index
modulation of �n(x, z) = �n cos kz is

κab(q) = �nπ

λ
(δq,1 + δq,−1)δab. (5.82)

c. With n(x) ≈ n and a square index modulation of duty factor ξ characterized
by

�n(x, z) =
{

�n, for 0 < z < ξ�,

−�n, for ξ� < z < �,
(5.83)

show that the coupling coefficient between two TE modes is

κab(q) = 4�n

λ

sin ξqπ

q
e−iξqπδab. (5.84)
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5.1.2 A DBR mirror for a vertical-cavity surface-emitting laser (VCSEL) has the
index profiles described in Problem 5.1.1(c). The index grating is a first-order
grating for the wavelength λ that has a duty factor of ξ = 1/2.
a. If a reflectivity of 99% is desired, find the length l and the number of grating

periods of the DBR mirror as a function of λ, n, and �n. Find the length l
and the number of periods for λ = 870 nm, n = 3.5, and �n = 0.3.

b. Answer the same questions in (a) for a reflectivity of 99.9%.
c. Answer the same questions in (a) and (b) for a first-order sinusoidal

grating.
5.1.3 Show that (5.14) and (5.15) are, respectively, the coupling coefficients between

two TE modes and between two TM modes for a grating waveguide coupler
with a sinusoidal corrugation grating. Show also that (5.18) and (5.19) are the
coupling coefficients between two TE modes and between two TM modes,
respectively, for a grating waveguide coupler with a square corrugation grating.
What is the coupling coefficient between a TE mode and a TM mode in each of
the two waveguide couplers?

5.1.4 Why is it not possible to use a high-order sinusoidal grating for a grating wave-
guide coupler? Is it possible to use a second-order square corrugation grating
that has a duty factor of ξ = 1/2 for a grating waveguide coupler? When using
a qth-order square corrugation grating, what is the best choice of the duty factor
for the largest coupling coefficient? What is the worst choice?

5.1.5 If the 3-dB grating coupler for the TE0 mode described in Example 5.3 is used
as a DBR for the TM0 mode, what is the efficiency that can be obtained?

5.1.6 Answer the same questions as those raised in Example 5.3 if a second-order
grating that has a duty factor of ξ = 1/4 is used instead of the first-order grating
for the grating coupler.

5.1.7 Estimate the grating period of a second-order DBR for a guided wave at 1.55 µm
in a symmetric slab semiconductor waveguide where n1 = 3.5 and n2 = 3.45.

5.1.8 The propagation constant at λ = 1.3 µm is βTE = 1.65 × 107 m−1 for the TE
mode of an InGaAsP/InP slab waveguide that supports only fundamental TE
and TM modes. The waveguide has a symmetric structure with n1 = 3.53 for
the waveguide core and n2 = 3.4 for the cladding layers.
a. Find the grating period of the second-order DBR for the TE mode of the

waveguide.
b. Estimate the grating period of the second-order DBR for the TM mode

within the smallest range possible with the given information on the wave-
guide.

5.1.9 Show that for small deviations of optical frequency from the Bragg frequency,
the Bragg diffraction phase shift can be expressed in terms of the variation of
the propagation constant β(ω) away from the phase-matched value of β(ωB) in
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the form of (5.24) with an effective length of the DBR for its reflection phase
shift defined in (5.25).

5.1.10 In this problem, we design an InGaAsP/InP DFB laser for 1.55 µm wavelength.
The laser waveguide is a symmetric slab waveguide with n1 = 3.54 in the waveg-
uide core and n2 = 3.4 in the cladding regions. The thickness d of the waveguide
core is to be chosen so that the structure is single moded with a confinement
factor of � = 0.67 for the TE0 mode. A square grating of period �, depth dg,
and duty factor ξ = 1/2, as shown in Fig. 5.16, is to be fabricated at the lower
core–cladding boundary. For simplicity, we consider only the operation of the
TE mode.

Figure 5.16 InGaAsP/InP DFB waveguide.

a. Find the thickness, d, of the waveguide core.
b. What is the propagation constant β of the TE0 mode?
c. If a first-order grating is fabricated, what is the grating period �?
d. Find the length of the grating required for a reflectivity of 50% if the corru-

gation depth of the grating is dg = 100 nm.
e. What happens to the reflectivity if the grating period has a ±10% uncertainty

caused by fabrication error?
f. Can a second-order grating of the same shape and duty factor be used to ac-

complish the same function? What is the period of this second-order grating?
g. If a sinusoidal grating is used, what should its period be? Again, if the sinu-

soidal grating has the same length as that found in (c) for the square grating,
what should its corrugation depth be in order to maintain a reflectivity of
50%?

5.1.11 In this problem, we examine the frequency bandwidth of a DBR structure.
a. Show that |δ| > |κ| at η = ηPM/2 for any given value of |κ|l, where ηPM is

the coupling efficiency with δ = 0 for the given value of |κ|l.
b. Show that the equation in (5.27) determines the value of |δ1/2| for η = ηPM/2

for a given value of |κ|l.
c. Show that for a given value of |κ|l, the value of |δ1/2| is bounded as

√
2|κ| coth |κ|l ≥ |δ1/2| > |κ|. (5.85)
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d. What are the upper and lower bounds of the frequency bandwidth? How does
the bandwidth vary with length l for a fixed coupling coefficient |κ|? How
does it vary with |κ| for a fixed l?

e. What is the strategy for designing a DBR with high reflectivity and narrow
bandwidth? Is it possible to get an arbitrarily small bandwidth for a given
reflectivity?

5.1.12 A DBR structure has a fixed coupling coefficient κ and dispersion characteris-
tics β(ω) such that the product |κdω/dβ| = 2π × 100 GHz at a given optical
wavelength λ = 1 µm. We investigate the dependence of its bandwidth on its
length.
a. Suppose the length of the structure is chosen to be l = lPM

c = π/2|κ|. What
is the FWHM frequency bandwidth �ν ≡ �ω/2π? What is the reflectivity?

b. With the given structure, what is the narrowest frequency bandwidth that can
be obtained? What is the shortest length needed to obtain such a bandwidth?
What is the reflectivity under this condition?

c. Show that the bandwidth cannot be reduced further below what is obtained
in (b) no matter how long the structure is. If you really need a narrower
bandwidth, what can you do to get it?

5.2.1 Show that the coupling coefficients κ̃ab and κ̃ba obtained from (5.34) and the
overlap coefficients cab and cba obtained from (5.35) for the coupling between
two TE modes in the asymmetric two-channel directional coupler shown in
Fig. 5.4 satisfy the relation given in (4.44) when κ̃ab �= κ̃∗

ba in the case of asym-
metric coupling, as required.

5.2.2 Find κ̃aa , κ̃bb, κ̃ab, and κ̃ba , as well as cab and cba , for the coupling between
TM modes in the asymmetric two-channel directional coupler shown in Fig. 5.4.
What are the simplified formulas for these coefficients in the case of a symmetric
directional coupler? Do the coefficients satisfy the relation in (4.44) in the case
of asymmetric coupling?

5.2.3 If the symmetric directional coupler described in Example 5.4 is used to couple
the TM01 modes of the waveguides at λ = 1 µm, what is the coupling length?
What are the propagation constants for the even and odd supermodes?

5.2.4 In this problem, we examine the effect of separation s on the coupling of two
waveguides in a symmetric directional coupler by considering the directional
coupler described in Example 5.4 for TM00 modes at λ = 1 µm.
a. If all of the waveguide parameters remain unchanged from those used in

Example 5.4 except that the separation between the two waveguides is re-
duced to s = 0.5 µm, what is the coupling length? What are the propagation
constants for the even and odd supermodes, respectively?

b. If the separation is increased to s = 2 µm, what is the coupling length? What
are the propagation constants for the even and odd supermodes?
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5.2.5 Consider the coupling between two identical symmetric slab waveguides of
thickness 0.5 µm, separated by 0.5 µm, as shown in Fig. 5.17. At λ = 1.3 µm,
the indices of refraction are n1 = 3.46 and n2 = 3.44.

µm

µm

µm

Figure 5.17 Codirectional coupler consisting of two identical symmetric slab waveguides.

a. Find the coupling coefficient for the TE0 mode.
b. What is the 3-dB coupling length for the TE0 mode?
c. Repeat (a) and (b) for the TM0 mode.

5.2.6 In this problem, we examine the frequency bandwidth of an asymmetric co-
directional coupler that has a length l that is an odd multiple of lPM

c .
a. Show that the equation in (5.57) determines the value of |δ1/2| for η = ηPM/2

for a given value of |κ|l that is an odd multiple of π/2.
b. Show that for a given value of |κ|l that is an odd multiple of π/2, the value

of |δ1/2| is bounded as

0.8|κ| ≥ |δ1/2| > 0. (5.86)

c. What are the upper and lower bounds of the frequency bandwidth? How does
the bandwidth vary with the length l for a fixed coupling coefficient |κ| while
keeping the value of |κ|l to be an odd multiple of π/2? How does it vary
with |κ| for a fixed l?

5.2.7 Consider the use of a dual-channel asymmetric directional coupler as a frequency
filter. The structure is fixed so that |κ| = √

κabκba and βa(ω) and βb(ω) are given.
The only parameter that can be varied is the length of the coupler. The given
parameters combined give a value |κ/(dβb/dω − dβa/dω)| = 2π × 20 THz at
an optical wavelength λ = 600 nm.
a. If the length of the coupler is chosen to be l = lPM

c , what is the FWHM
bandwidth in terms of �λ?

b. If we desire a bandwidth of �λ < 10 nm, what is the minimum length of the
coupler?

c. Show that the bandwidth can continue to narrow if the length of the coupler
continues to increase. However, it is to be noted that the length has to be one
of the odd multiples of lPM

c for maximum efficiency.
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5.2.8 If a grating is placed in the spacing between the two waveguides of a dual-
channel asymmetric directional coupler as shown in Fig. 5.18, what should the
grating period � be for complete power transfer between the two channels to
be possible? The propagation constants in the two waveguides are βa and βb,
respectively, and the coupling coefficients without the grating are κaa , κbb, κab,
and κba .

Figure 5.18 Dual-channel asymmetric directional coupler with a grating of period �.

5.2.9 A fiber-optic frequency filter is made of two single-mode fibers of different
mode propagation constants. They are placed in close contact for a length l as
shown in Fig. 5.19. At 1.3 µm optical wavelength, the effective indices for the
two fiber modes are na

β = 1.466 and nb
β = 1.484, respectively, and the coupling

coefficient between the two fiber modes is κab = 10 cm−1. A sinusoidal fiber
grating of period � is built into the fibers in the coupling section. The input port
of the device is port 1. The device is to function as an optical filter for separating
the 1.3 µm wavelength from other wavelengths.

Figure 5.19 Fiber-optic frequency filter consisting of two different single-mode fibers
modulated by a fiber grating of period �.

a. If the device is to function in such a way as to direct all of the optical power
at 1.3 µm to port 4 and to dump all other wavelengths to port 3, what values
of � and l should be selected?

b. If the device is to direct the power at 1.3 µm to port 2, what should the grating
period � be? In this case, if the length l of the coupler remains the same as
that found in (a), what is the efficiency of directing the 1.3 µm light from
port 1 to port 2?
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c. For the grating periods of (a) and (b), respectively, is it possible to have
light at any wavelength reflected back to port 1? If it is possible, what is this
wavelength?

d. Compare the two types of devices in (a) and (b) to decide which one is a
better device. Why?

5.2.10 Two optical waves of exactly the same wavelength and the same power are
simultaneously injected into the two input ports of a 3-dB directional coupler as
shown in Fig. 5.20. What are the possible power ratios between the two output
ports? What factor determines this ratio?

Figure 5.20 3-dB directional coupler.

5.2.11 A directional coupler can be used for multiplexing or demultiplexing optical
beams at different wavelengths. In this problem, we consider directional couplers
for such applications. For each of the following questions, clearly state the
basic operation principle of the device and the quantitative conditions for the
functioning of the device.
a. A symmetric directional coupler is used as a wavelength demultiplexer for

1.3 and 1.55 µm wavelengths. The two wavelengths enter the device from
the same channel at the input end, but they are split at the output end by
leaving the device from different channels with 1.3 µm in the parallel state
and 1.55 µm in the cross state.

b. An asymmetric directional coupler is used to accomplish the same function
as that described in (a).

c. A wavelength demultiplexer in the structure of a directional coupler is de-
signed to select a particular wavelength, say 1.3 µm, from many wavelengths
that enter the device from the same channel at the input end. At the output
end, the selected wavelength alone leaves the device from one channel while
the other wavelengths all leave from the other channel.

5.3.1 In using a surface prism coupler to couple an optical wave from free space to
a waveguide mode, what are the three factors that need to be considered for
efficient coupling?

5.3.2 The angle ζ of the prism coupler shown in Fig. 5.12 cannot be arbitrarily chosen
but has to satisfy a certain condition in order for the prism to be useful in coupling
an optical beam from outside the prism into the waveguide, as illustrated in
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Example 5.6. Show that the condition is

θ + θc > ζ > θ − θc, (5.87)

where θ is the coupling angle defined by (5.64) and θc is the critical angle
given in (5.65). Show that ζ = 45◦, as chosen for the prism in Example 5.6,
satisfies this condition for the coupling of both TE0 and TM0 modes described
in Example 5.6.

5.3.3 A prism is used to couple light of 1 µm wavelength into a glass slab waveguide,
as shown in Fig. 5.21. The thickness of the waveguide film is 1 µm. Find
the angle θ shown in the figure at which the fundamental TE mode can be
excited.

µm

Figure 5.21 Prism surface coupler.

5.3.4 In coupling light into a planar waveguide using a prism coupler, you have done
everything correctly in terms of choosing a high-index prism and a correct angle
of incidence to ensure phase matching, but there is very little light coupled into
the waveguide. What is the most likely problem you have overlooked? What is
the second most likely problem?

5.3.5 For a surface grating coupler, what determines the grating period? Which factors
determine the coupling efficiency?

5.3.6 Answer the questions raised in Example 5.7 if an incident angle of θi = 45◦

instead of 20◦ is desired for the input beam at λ = 1 µm.
5.3.7 Answer the questions raised in Example 5.7 for a first-order grating that allows

normal incidence of the input beam at θi = 0◦.
5.3.8 A grating surface coupler is fabricated on the surface of a thin-film polymer

waveguide of n1 = 1.55 on a glass substrate of n2 = 1.5, as shown in Fig. 5.22.
At the optical wavelengths considered in this problem, the fundamental mode
of the waveguide is far from its cutoff point.
a. If a laser beam at 532 nm wavelength is to be coupled into the waveguide

from normal incidence to the surface of the thin film, how should the grating
period be chosen?
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Figure 5.22 Grating surface coupler for input coupling at normal incidence.

b. Assume that dispersion of the waveguide is negligible. What grating period
should be chosen if laser beams at both 532 nm and 1.064 µm are to be
coupled into the waveguide from normal incidence?

c. If the grating chosen in (b) is used for output coupling, how many beams will
appear on the air side for the cases of 532 nm and 1.064 µm, respectively?

5.3.9 A grating surface coupler is designed for input and output coupling of the GaAs
waveguide shown in Fig. 5.23. The indices of refraction for the three layers are
n3 = 1, n1 = 3.6, and n2 = 3.4 at the 850 nm optical wavelength of interest.
Answer the following questions without actually solving for the propagation
constants of the guided modes.

Figure 5.23 Grating surface coupler on a GaAs waveguide.

a. What is the range of the grating period that guarantees one and only one
output beam coupled from any guided mode? Which side does this beam
appear?

b. Answer the questions in (a) if two and only two output beams are desired.
c. If the grating is designed so that input coupling can be accomplished through

45◦ incidence from the air side as shown in the figure, what is the direc-
tion of propagation of the guided mode that is excited by this input? What
is the approximate value of the grating period needed for this coupling?



234 Optical couplers

Give the upper and lower bounds for this value with the highest accuracy
possible.

d. Because we did not know the propagation constants exactly, the actual input-
coupling angle for the excitation of a guided mode is unlikely to be exactly
45◦ if a grating period is arbitrarily picked within the bounds obtained in (c).
According to this uncertainty, what is the range within which one can be sure
to find the actual phase-matched incident angle or angles if a grating period
within these bounds is arbitrarily picked?
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Part III

Nonlinear photonics





6 Electro-optic devices

In many applications, it is necessary to control optical waves with externally applied sig-
nals to perform such functions as modulation, switching, deflection, isolation, frequency
shifting, and polarization rotation of optical signals. Depending on the nature of the
external control signal, these functions can be accomplished through the interactions of
an optical wave with an electric field, a magnetic field, an acoustic wave, or another op-
tical wave. Generally speaking, these interactions are all nonlinear optical phenomena.
Nevertheless, electro-optic, magneto-optic, and acousto-optic effects each have very
specific characteristics. Many useful devices have been developed based specifically
on these effects for many important functions, such as optical modulation and optical
switching. The electro-optic, magneto-optic, and acousto-optic devices are discussed
separately in this and the following two chapters. The discussions in Chapter 9 then fo-
cus on nonlinear optical devices based solely on the interactions between optical waves.

6.1 Electro-optic effects

The optical property of a dielectric material can be changed through an electro-optic
effect in the presence of a static or low-frequency electric field E0. The result is a
field-dependent susceptibility and thus a field-dependent electric permittivity:

P(ω, E0) = ε0χ(ω, E0) · E(ω) = ε0χ(ω) · E(ω) + ε0�χ(ω, E0) · E(ω) (6.1)

and

D(ω, E0) = ε(ω, E0) · E(ω) = ε(ω) · E(ω) + �ε(ω, E0) · E(ω), (6.2)

where field-independentχ(ω) = χ(ω, E0 = 0) and ε(ω) = ε(ω, E0 = 0) represent the
intrinsic linear response of the material at the optical frequency ω, while �χ and �ε

represent changes induced by the low-frequency field E0. We can write D(ω, E0) =
D(ω) + �P(ω, E0), where �P(ω, E0) = �ε(ω, E0) · E(ω). The total permittivity of
the material in the presence of the applied field is then

ε(ω, E0) = ε(ω) + �ε(ω, E0) = ε(ω) + ε0�χ(ω, E0). (6.3)

237



238 Electro-optic devices

The dielectric permittivity tensor ε(ω) in the absence of an applied electric field is
diagonal in the coordinate system defined by the intrinsic principal dielectric axes, x̂ , ŷ,
and ẑ, of the dielectric material. The electro-optically induced changes usually generate
off-diagonal elements in addition to changing the diagonal elements,

ε(ω) =


 εx 0 0

0 εy 0
0 0 εz


 , while ε(ω, E0) =


 εx + �εxx �εxy �εxz

�εyx εy + �εyy �εyz

�εzx �εzy εz + �εzz


 ,

(6.4)

in the coordinate system of x̂ , ŷ, and ẑ axes. As discussed in Section 1.6, ε for a dielectric
material is a symmetric tensor. This remains true for an electro-optic material subject
to an applied electric field. Therefore,

εi j = ε j i and �εi j = �ε j i (6.5)

for field-dependent permittivity tensors.
The electro-optically induced nondiagonal permittivity tensor, ε(ω, E0) given in

(6.4), can be diagonalized. Its orthonormalized eigenvectors, X̂ , Ŷ , and Ẑ , are the new
principal dielectric axes of the material in the presence of an applied electric field E0.
In general, they depend on the direction of E0. If the unit vectors X̂ , Ŷ , and Ẑ are
expressed in terms of x̂ , ŷ, and ẑ as

X̂ = a1 x̂ + b1 ŷ + c1 ẑ, Ŷ = a2 x̂ + b2 ŷ + c2 ẑ, Ẑ = a3 x̂ + b3 ŷ + c3 ẑ, (6.6)

then transformation between the old coordinate system defined by x̂ , ŷ, and ẑ and the
new coordinate system defined by X̂ , Ŷ , and Ẑ can be carried out using the following
transformation matrix:

T =


a1 b1 c1

a2 b2 c2

a3 b3 c3


 . (6.7)

Because both sets of vectors, {x̂, ŷ, ẑ} and {X̂ , Ŷ , Ẑ}, that define the transformation
matrix T are orthonormal unit vectors, the transformation characterized by the matrix
T is an orthogonal transformation with the convenient characteristic that T−1 = T̃,
where T̃ is the transpose of T.

The relation in (6.6) between old and new principal axes can be written


 X̂

Ŷ
Ẑ


 = T


 x̂

ŷ
ẑ


 , or


 x̂

ŷ
ẑ


 = T̃


 X̂

Ŷ
Ẑ


 . (6.8)
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The transformation of the coordinates of any vector r = x x̂ + y ŷ + zẑ = X X̂ +
Y Ŷ + Z Ẑ in space is given by
X

Y
Z


 = T


 x

y
z


 , (6.9)

or
x

y
z


 = T−1


 X

Y
Z


 = T̃


 X

Y
Z


 =


a1 X + a2Y + a3 Z

b1 X + b2Y + b3 Z
c1 X + c2Y + c3 Z


 . (6.10)

Accordingly, the field components in the two coordinate systems are related through
EX

EY

EZ


 = T


 Ex

Ey

Ez


 ,


 DX

DY

DZ


 = T


 Dx

Dy

Dz


 , (6.11)

and so on. Diagonalization of ε(ω, E0) to obtain its eigenvalues can be carried out using
T as

Tε(ω, E0)T−1 = Tε(ω, E0)T̃ =


 εX 0 0

0 εY 0
0 0 εZ


 . (6.12)

The propagation characteristics of an optical wave in the presence of an electro-optic
effect are then determined by εX , εY , and εZ with the following new principal indices
of refraction:

nX =
√

εX

ε0
, nY =

√
εY

ε0
, nZ =

√
εZ

ε0
. (6.13)

The discussions above describe a formal and systematic approach to treating an
electro-optic effect in terms of changes in the permittivity tensor. However, electro-optic
effects are traditionally defined in terms of the changes in the elements of the relative im-
permeability tensor asη(E0) = η + �η(E0), which is expanded in the following form:

ηi j (E0) = ηi j + �ηi j (E0) = ηi j +
∑

k

ri jk E0k +
∑
k,l

si jkl E0k E0l + · · · , (6.14)

where the first term ηi j = ηi j (0) is the field-independent component, the elements of the
ri jk tensor are the linear electro-optic coefficients known as the Pockels coefficients, and
those of the si jkl tensor are the quadratic electro-optic coefficients known as the Kerr
coefficients. The first-order electro-optic effect characterized by the linear dependence
of ηi j (E0) on E0 through the coefficients ri jk is called the linear electro-optic effect,
also known as the Pockels effect. The second-order electro-optic effect characterized
by the quadratic field dependence through the coefficients si jkl is called the quadratic
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electro-optic effect, also known as the Kerr effect. Both linear and quadratic electro-optic
effects are nonlinear optical effects, as discussed above.

The Pockels effect does not exist in a centrosymmetric material, which is a material
that possesses inversion symmetry. The structure and properties of such a material
remain unchanged under the transformation of space inversion, which changes the
signs of all rectangular spatial coordinates from (x, y, z) to (−x, −y, −z), and those of
all polar vectors. As discussed in Section 1.1, an electric field vector is a polar vector
that changes sign under the transformation of space inversion. By simply considering
the effect of space inversion, it is clear that the electro-optically induced changes in
the optical property of a centrosymmetric material are not affected by the sign change
in the applied field from E0 to −E0, meaning that ηi j (E0) = ηi j (−E0). As can be
seen from (6.14), this condition requires that the Pockels coefficients ri jk vanish. It can
also be seen that the condition does not require vanishing of the Kerr coefficients si jkl .
Consequently, the Pockels effect exists only in noncentrosymmetric materials, while
the Kerr effect exists in all materials, including centrosymmetric ones.

In (6.14), indices i and j are associated with optical fields, while indices k and l are
associated with the low-frequency applied field. Because ηi j = η j i and �ηi j = �η j i ,
indices i and j can be contracted using the index contraction rule of (1.115), thus
reducing (6.14) to

ηα(E0) = ηα + �ηα(E0) = ηα +
∑

k

rαk E0k +
∑
k,l

sαkl E0k E0l + · · · , (6.15)

where α = 1, 2, . . . , 6 with the meaning defined in (1.115).
From the relation that η = (ε/ε0)−1 defined in (1.111), it can be seen that η in the

absence of E0 is a diagonal tensor in the coordinate system defined by x̂ , ŷ, and ẑ with
the following eigenvalues:

ηx = ε0

εx
= 1

n2
x

, ηy = ε0

εy
= 1

n2
y

, ηz = ε0

εz
= 1

n2
z

, (6.16)

where nx , ny , and nz are the principal indices of refraction of the material in the absence
of an applied electric field. In the presence of an applied field, η(E0) is generally not
diagonal in this coordinate system. Using the relationη · ε/ε0 = 1, the relation between
�ε and �η can be found:

�ε = − 1

ε0
ε · �η · ε and �η = − 1

ε0
η · �ε · η. (6.17)

When η and ε in the absence of E0 are diagonalized, the relations in (6.17) can be
written explicitly as

�εi j = −ε0
�ηi j

ηiη j
= −ε0n2

i n2
j�ηi j and �ηi j = −ε0

�εi j

εiε j
= − �εi j

ε0n2
i n2

j

. (6.18)

In the absence of an electric field, the index ellipsoid of a material is that given by
(1.117) with its principal axes aligned with x̂ , ŷ, and ẑ. Changes in the optical property



241 6.2 Pockels effect

Figure 6.1 Transformation of index ellipsoid by an electro-optic effect. An electro-optic effect
transforms an index ellipsoid originally aligned with the x , y, and z coordinates that are defined by
the original principal axes x̂ , ŷ, and ẑ into a new one aligned with the X , Y , and Z coordinates that
are defined by the new principal axes X̂ , Ŷ , and Ẑ . Meanwhile, the principal indices of refraction
have been changed from nx , ny , and nz to nX , nY , and nZ .

of the material induced by an electro-optic effect deform the index ellipsoid into a new
one described by

(η1 + �η1)x2 + (η2 + �η2)y2 + (η3 + �η3)z2 + 2�η4 yz + 2�η5zx + 2�η6xy = 1,

(6.19)

whose principal axes no longer line up with x̂ , ŷ, and ẑ unless �η4 = �η5 = �η6 = 0.

To find the principal axes of this new ellipsoid and their corresponding principal indices
of refraction, we can perform a coordinate rotation in space to eliminate the cross-
product terms containing yz, zx , and xy. From the discussions above, it can be seen
that this procedure is the same as the coordinate rotation used to diagonalize ε. Thus,
we can use (6.9) to transform (6.19) into

X2

n2
X

+ Y 2

n2
Y

+ Z2

n2
Z

= 1, (6.20)

where nX , nY , and nZ are the same as those given in (6.13). The principal axes of this
ellipsoid are simply the same X̂ , Ŷ , and Ẑ as those found from the eigenvectors of ε
and given in (6.6). Figure 6.1 illustrates the concept described here.

6.2 Pockels effect

The majority of electro-optic devices are based on the Pockels effect. Structurally
isotropic materials, including all gases, liquids, and amorphous solids such as glass,
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show no Pockels effect because they are centrosymmetric. Among the 32 point groups in
the 7 crystal systems, 11 are centrosymmetric, and the remaining 21 are noncentrosym-
metric. It is important to note that the linear optical property of a crystal is determined
only by its crystal system, as mentioned in Section 1.6 and summarized in Table 1.2,
but its nonlinear optical properties, including its Pockels coefficients, further depend
on its point group. An instructive example is that all cubic crystals have isotropic lin-
ear optical properties but not isotropic crystal structures. Two cubic crystals belonging
to different point groups can have very different nonlinear optical properties. Among
the cubic crystals, C, Si, and Ge are centrosymmetric materials of diamond structure
that show no Pockels effect, whereas GaAs, InP, and other III–V semiconductors are
noncentrosymmetric materials that have nonvanishing Pockels coefficients.

For the Pockels effect,

�ηα =
∑

k

rαk E0k, (6.21)

which can be written explicitly in matrix form:


�η1

�η2

�η3

�η4

�η5

�η6




=




r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63





 E0x

E0y

E0z


 . (6.22)

Even for a noncentrosymmetric material, the number of nonvanishing independent
elements in its rαk matrix is generally reduced by its symmetry. Table 6.1 shows the
matrix form of the Pockels coefficients for the 21 noncentrosymmetric point groups.
Some crystal point groups are of particular interest.

1. Cubic 43m. Most III–V semiconductors, such as GaAs, InP, AlAs, and GaP, and
many II–VI compounds, such as ZnTe, ZnSe, CdTe, and HgSe, are cubic crystals
of 43m symmetry. They have isotropic linear optical properties with nx = ny =
nz = no. The rαk matrix has only three nonvanishing elements with the same value:
r41 = r52 = r63.

2. Tetragonal 42m. Crystals possessing tetragonal 42m symmetry include many
commonly used nonlinear optical crystals, such as KH2PO4 (KDP), KD2PO4

(KD∗P), NH4H2PO4 (ADP), ND4D2PO4 (AD∗P), CsH2AsO4 (CDA), AgGaS2, and
AgGaSe2. These are uniaxial crystals with nx = ny = no and nz = ne. The rαk matrix
has only three nonvanishing elements with two independent values: r41 = r52 �= r63.

3. Trigonal 3m. The very useful nonlinear optical crystals LiNbO3, LiTaO3, and
β-BaB2O4 (BBO) of trigonal 3m symmetry are uniaxial with nx = ny = no and
nz = ne. The rαk matrix has eight nonvanishing elements with four independent
values: r13 = r23, r12 = r61 = −r22, r33, and r42 = r51.
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Table 6.1 Matrix form of Pockels coefficients for noncentrosymmetric point groupsa

Triclinic 1




r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63




Monoclinic
2

(2 ‖ ŷ)




0 r21 0
0 r22 0
0 r23 0

r41 0 r43

0 r52 0
r61 0 r63




m
(m ⊥ ŷ)




r11 0 r13

r21 0 r23

r31 0 r33

0 r42 0
r51 0 r53

0 r62 0




Orthorhombic 222




0 0 0
0 0 0
0 0 0

r41 0 0
0 r52 0
0 0 r63




mm2




0 0 r13

0 0 r23

0 0 r33

0 r42 0
r51 0 0
0 0 0




Tetragonal 4




0 0 r13

0 0 r13

0 0 r33

r41 r42 0
r42 −r41 0
0 0 0




4




0 0 r13

0 0 −r13

0 0 0
r41 r42 0

−r42 r41 0
0 0 r63




422




0 0 0
0 0 0
0 0 0

r41 0 0
0 −r41 0
0 0 0




4mm




0 0 r13

0 0 r13

0 0 r33

0 r42 0
r42 0 0
0 0 0




42m




0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r63




Trigonal 3




r11 −r22 r13

−r11 r22 r13

0 0 r33

r41 r42 0
r42 −r41 0

−r22 −r11 0




(continued)
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Table 6.1 (Cont.)

32




r11 0 0
−r11 0 0

0 0 0
r41 0 0
0 −r41 0
0 −r11 0




3m




0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0
r42 0 0

−r22 0 0




Hexagonal 6




0 0 r13

0 0 r13

0 0 r33

r41 r42 0
r42 −r41 0
0 0 0




6




r11 −r22 0
−r11 r22 0

0 0 0
0 0 0
0 0 0

−r22 −r11 0




622




0 0 0
0 0 0
0 0 0

r41 0 0
0 −r41 0
0 0 0




6mm




0 0 r13

0 0 r13

0 0 r33

0 r42 0
r42 0 0
0 0 0




6m2
(m ⊥ x̂)




0 −r22 0
0 r22 0
0 0 0
0 0 0
0 0 0

−r22 0 0




Cubic 432




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




23
and
43m




0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r41




a From Kaminow, I. P., An Introduction to Electrooptic Devices. Orlando, FL: Academic Press, 1974,
pp. 110–111.

4. Orthorhombic mm2. The nonlinear crystals KTiOPO4 (KTP), KTiOAsO4 (KTA),
LiB3O5 (LBO), KNbO3, and Ba2NaNb5O15 have orthorhombic mm2 symmetry.
They are biaxial crystals with nx �= ny �= nz , and they have five independent non-
vanishing Pockels coefficients in the rαk matrix: r13, r23, r33, r42, and r51.

A secondary effect due to the existence of piezoelectricity causes complexity in
the determination of the Pockels coefficients of a crystal. A stress applied to a non-
centrosymmetric polar crystal can induce an electric polarization in the crystal. This
effect is called the direct piezoelectric effect. In the converse piezoelectric effect, an
electric field applied to the same crystal can induce a strain in the crystal. The piezo-
electric effect and the Pockels effect have similar symmetry properties: both vanish
in centrosymmetric materials, and both are restricted by crystal symmetry in simi-
lar manners. Consequently, the piezoelectric effect exists in a crystal that shows the
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Table 6.2 Properties of representative electro-optic crystalsa

Point group Material Pockels coefficients (pm V−1) Refractive index (at 1 µm)

43m GaAs (S)r41 = 1.2 no = 3.50
ZnTe (S)r41 = 4.3 no = 2.76

42m KDPb (T)r41 = 8.8, (T)r63 = 10.5, (S)r63 = 9.7 no = 1.51, ne = 1.47
ADP (T)r41 = 24.5, (T)r63 = 8.5, (S)r63 = 5.5 no = 1.52, ne = 1.48

3m LiNbO3 (S)r13 = 8.6, (S)r22 = 3.4, no = 2.238, ne = 2.159
(S)r33 = 30.8, (S)r42 = 28

LiTaO3 (S)r13 = 8.5, (S)r22 = 1, no = 2.131, ne = 2.134
(S)r33 = 30.5, (S)r42 = 20

mm2 KTP (S)r13 = 8.8, (S)r23 = 13.8, (S)r33 = 35, nx = 1.742, ny = 1.750,
(S)r42 = 8.8, (S)r51 = 6.9 nz = 1.832

KTAc (S)r13 = 15, (S)r23 = 21, (S)r33 = 40 nx = 1.783, ny = 1.789,
nz = 1.870

a Data are collected from various sources in the literature.
b KTP properties from Bierlein, J. D. and Vanherzeele, H., Journal of the Optical Society of America
B 6: 622–633, 1989.
c KTA properties from Bierlein, J. D. and Vanherzeele, H., Applied Physics Letters 54: 783–785,
1989.

Pockels effect. The strain generated in a crystal by an applied electric field can induce
index changes through the photoelastic effect discussed in Chapter 7. In a free crystal,
which is allowed to strain in response to the applied electric field, this secondary effect
is comparable in magnitude to the primary effect that accounts for the index changes
directly caused by the applied electric field. Pockels coefficients measured at constant
strain (indicated by S) with a crystal clamped reflect only the primary effect, whereas
those measured at constant stress (indicated by T) with a crystal free and unclamped
reflect the sum of the primary and secondary effects.

Table 6.2 lists the properties of some representative electro-optic materials. In prac-
tical device applications, an electro-optic crystal is not clamped, but its electro-optic
coefficient is a function of the modulation frequency. At low modulation frequencies,
the electro-optic response of the crystal is that of a free crystal at constant stress be-
cause the photoelastic response can follow the low-frequency modulation signal. At
high modulation frequencies, however, the photoelastic effect vanishes because the
strain in the crystal cannot respond quickly enough to follow the modulation signal.
Consequently, the Pockels coefficients measured at constant stress have to be used for
low-frequency modulation, but those measured at constant strain have to be used for
high-frequency modulation. Besides their dependence on the modulation frequency,
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the Pockels coefficients are also a function of temperature and optical wavelength. Be-
cause of these complications, only typical values of the Pockels coefficients measured
at constant strain are listed in Table 6.2 except for those of KDP and ADP crystals, for
which the r41 coefficient at constant strain is not available.

The technologically most important electro-optic materials are the III–V semicon-
ductors, particularly GaAs and InP and related compounds, and the 3m crystals, such
as LiNbO3 and LiTaO3. Electro-optic devices based on LiNbO3 are the most exten-
sively studied and most well developed. Those based on the III–V semiconductors
are also intensively studied because they can be monolithically integrated with other
optoelectronic devices, including semiconductor lasers, amplifiers, and detectors. It
can be seen from Table 6.2 that the Pockels coefficients of the III–V semiconductors
are relatively small compared with those of other important electro-optic materials.
However, this disadvantage is generally compensated by using advanced semicon-
ductor processing technologies. For example, small waveguide structures with op-
timized overlap of the applied electric field and the optical field can be made in
a III–V semiconductor to maximize the electro-optic modulation efficiency. The in-
trinsic electro-optic effect in a III–V material can also be substantially enhanced by
incorporating artificially tailored structures, such as quantum-well structures, in the
material.

Index changes and rotation of principal axes

Depending on the symmetry of a specific material being used and the direction of the
electric field being applied to the material, the index changes induced by the Pockels
effect may or may not be accompanied by a rotation of principal axes. This fact is best
illustrated through real examples.

We first consider LiNbO3, which is a negative uniaxial crystal of 3m symmetry. The
following analysis applies equally to other 3m crystals although some of them, such as
LiTaO3, are positive uniaxial crystals.

1. The electric field is applied along the optical axis: E0x = E0y = 0, E0z �= 0. In this
case, the changes induced by the Pockels effect are �η1 = r13 E0z , �η2 = r13 E0z ,
and �η3 = r33 E0z . The index ellipsoid becomes(

1

n2
0

+ r13 E0z

)
x2 +

(
1

n2
0

+ r13 E0z

)
y2 +

(
1

n2
e

+ r33 E0z

)
z2 = 1. (6.23)

Equivalently, by using (6.4) and (6.18), the field-dependent dielectric permittivity
tensor can be found:

ε(E0) = ε0


n2

o − n4
or13 E0z 0 0
0 n2

o − n4
or13 E0z 0

0 0 n2
e − n4

er33 E0z


 . (6.24)
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The principal axes are not rotated: X̂ = x̂ , Ŷ = ŷ, and Ẑ = ẑ. The crystal remains
uniaxial with the same optical axis, but the indices of refraction are changed. Since
the induced changes are generally so small that |r13 E0z| � n−2

o and |r33 E0z| � n−2
e ,

the new principal indices of refraction are

nX = nY ≈ no − n3
o

2
r13 E0z, nZ ≈ ne − n3

e

2
r33 E0z. (6.25)

2. The electric field is applied along the y axis: E0x = E0z = 0, E0y �= 0. Then the
induced changes are �η1 = −r22 E0y , �η2 = r22 E0y , and �η4 = r42 E0y . The index
ellipsoid becomes(

1

n2
o

− r22 E0y

)
x2 +

(
1

n2
o

+ r22 E0y

)
y2 + 1

n2
e

z2 + 2r42 E0y yz = 1. (6.26)

The corresponding dielectric permittivity tensor is

ε(E0) = ε0




n2
o + n4

or22 E0y 0 0

0 n2
o − n4

or22 E0y −n2
on2

er42 E0y

0 −n2
on2

er42 E0y n2
e


 . (6.27)

Because of the existence of the yz term in (6.26), which corresponds to the existence
of the off-diagonal terms of ε(E0) in (6.27), the new principal axes Ŷ and Ẑ are
rotated away from ŷ and ẑ while X̂ remains the same as x̂ :

X̂ = x̂, Ŷ = ŷ cos θ + ẑ sin θ, Ẑ = −ŷ sin θ + ẑ cos θ. (6.28)

The angle of rotation θ and the new principal indices of refraction can be found by
eliminating the yz term in (6.26) or, equivalently, by diagonalizing ε(E0) in (6.27)
through a transformation matrix T defined by (6.6) and (6.7). For LiNbO3, since
no > ne and n2

o − n2
e � |n2

on2
er42 E0y| > |n4

or22 E0y| for any E0y below the material
breakdown field of the order of 100 MV m−1, it can be shown that

θ ≈ −tan−1 n2
on2

er42 E0y

n2
o − n2

e

(6.29)

and

nX ≈ no + n3
o

2
r22 E0y,

nY ≈ no − n3
o

2
r22 E0y + 1

2

n3
on4

e

n2
o − n2

e

(
r42 E0y

)2
,

nZ ≈ ne − 1

2

n3
en4

o

n2
o − n2

e

(
r42 E0y

)2
.

(6.30)
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The crystal becomes biaxial in the presence of an electric field applied in the y
direction. Note that not only do the index changes depend on the applied field, but
the angle of rotation of the principal axes is a function of E0y as well.

3. The electric field is applied along the x axis: E0x �= 0, E0y = E0z = 0. The induced
changes are �η5 = r51 E0x = r42 E0x and �η6 = −r22 E0x . Then, we have

1

n2
o

x2 + 1

n2
o

y2 + 1

n2
e

z2 + 2r42 E0x zx − 2r22 E0x xy = 1 (6.31)

and

ε(E0) = ε0




n2
o n4

or22 E0x −n2
on2

er42 E0x

n4
or22 E0x n2

o 0

−n2
on2

er42 E0x 0 n2
e


 . (6.32)

In this case, all three new principal axes X̂ , Ŷ, and Ẑ are rotated away from the original
principal axes. The crystal also becomes biaxial. Because no �= ne, the angles of
rotation depend on the magnitude of E0x . Again, the new principal axes and their
corresponding principal indices of refraction in the presence of E0x can be found by
eliminating the zx and xy terms in (6.31) or by diagonalizing ε(E0) in (6.32). This
problem is left as homework for the reader.

Because r33 is the largest electro-optic coefficient of LiNbO3, the largest index change
is obtained in nZ when the electric field is applied along the z axis.

Another important example is the Pockels effect in a III–V semiconductor of 43m
symmetry, such as GaAs or InP. A similar effect is seen when an electric field is
applied along any of the original principal axes because nx = ny = nz = no and the only
nonvanishing Pockels coefficients are r41 = r52 = r63 for such a crystal. We therefore
consider only the case when the field is applied along the z axis: E0x = E0y = 0,
E0z �= 0. Then, we only have �η6 = r41 E0z . The index ellipsoid becomes

1

n2
o

x2 + 1

n2
o

y2 + 1

n2
o

z2 + 2r41 E0z xy = 1, (6.33)

and the dielectric permittivity tensor becomes

ε(E0) = ε0




n2
o −n4

or41 E0z 0

−n4
or41 E0z n2

o 0

0 0 n2
o


 . (6.34)

The crystal has the following new principal axes:

X̂ = 1√
2

(x̂ + ŷ), Ŷ = 1√
2

(−x̂ + ŷ), Ẑ = ẑ, (6.35)
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with the following new principal indices:

nX ≈ no − n3
o

2
r41 E0z, nY ≈ no + n3

o

2
r41 E0z, nZ = no. (6.36)

In the above, we have considered the simple cases where the electric field is applied
only along one of the principal axes of the crystal. In certain practical situations,
however, the applied electric field may not line up with any of the principal axes. The
index changes and the rotation of principal axes can be found by following the same
general procedure as illustrated above although the mathematics may be somewhat
more complicated.

EXAMPLE 6.1 Find the index changes and the birefringence at λ = 1 µm caused by an
electric field of E0 = 1 MV m−1 applied to LiNbO3 and GaAs, respectively, in a
direction along the z principal axis of the crystal.

Solution The values of the Pockels coefficients and the refractive indices for both
LiNbO3 and GaAs are listed in Table 6.2. For LiNbO3, an electric field applied along its
z axis does not rotate its principal axes but only causes changes in its refractive indices.
The crystal remains uniaxial. From (6.25), we find that the change in the ordinary index
is

�no = −n3
o

2
r13 E0z = −2.2383

2
× 8.6 × 10−12 × 1 × 106 = −4.82 × 10−5,

while the change in the extraordinary index is

�ne = −n3
e

2
r33 E0z = −2.1593

2
× 30.8 × 10−12 × 1 × 106 = −1.55 × 10−4.

The electro-optically induced birefringence is �no − �ne ≈ 1 × 10−4, which is almost
three orders of magnitude smaller than the intrinsic birefringence of no − ne = 0.08 for
LiNbO3. In normal device applications, the applied electric field typically falls in the
range between 0.1 and 10 MV m−1. Because the index changes are linearly proportional
to the applied electric field, the electro-optically induced birefringence is typically two
to three orders of magnitude smaller than the intrinsic birefringence of LiNbO3.

For GaAs, which is originally nonbirefringent, an electric field applied along its z
axis causes a rotation of its x and y principal axes and a birefringence between them.
From (6.36), we find that the electro-optically induced index changes are

�nY = −�nX = n3
o

2
r41 E0z = 3.53

2
× 1.2 × 10−12 × 1 × 106 = 2.57 × 10−5.

The electro-optically induced birefringence is nY − nX = �nY − �nX = 5.15 ×
10−5. Although this birefringence is smaller than that in the case of LiNbO3, it is
significant because GaAs is originally nonbirefringent.



250 Electro-optic devices

6.3 Electro-optic modulators

The index changes induced by the Pockels effect can be utilized to construct a variety of
electro-optic modulators, in either bulk or waveguide structures. An electro-optically
induced rotation of principal axes is not required for the functioning of an electro-optic
modulator though it often accompanies the index changes. However, the directions of
the principal axes in the presence of an applied electric field, whether rotated or not,
have to be taken into consideration in the design and operation of an electro-optic
modulator. In this section, we consider the operation principles of basic electro-
optic modulators. Although some of the concepts, such as transverse phase modu-
lation, that are considered in this section for bulk devices can be directly applied to
guided-wave devices, specific guided-wave electro-optic devices are discussed in the
next section.

Phase modulators

The phase of an optical wave can be electro-optically modulated. For this type of
application, the optical wave is linearly polarized in a direction that is parallel to one
of the principal axes, X̂ , Ŷ , or Ẑ , of the crystal in the presence of a modulation field.
The preferred choice is a principal axis that has a large electro-optically induced index
change but remains in a fixed direction as the magnitude of the modulation electric
field varies. In LiNbO3, this can be accomplished by applying the electric field along
the z axis, as shown in Figure 6.2. In this case, X̂ = x̂ , Ŷ = ŷ, and Ẑ = ẑ, as discussed
earlier. There are two possible arrangements: transverse modulation, where the optical
wave propagates in a direction perpendicular to the modulation field, as shown in
Fig. 6.2(a), and longitudinal modulation, where the modulation field is parallel to the
direction of optical wave propagation, as shown in Fig. 6.2(b).

(a) (b)

Figure 6.2 (a) LiNbO3 transverse electro-optic phase modulator. (b) LiNbO3 longitudinal
electro-optic phase modulator. The x̂ , ŷ, and ẑ unit vectors represent the original principal axes of
the crystal, and X̂ , Ŷ , and Ẑ represent its new principal axes.



251 6.3 Electro-optic modulators

Transverse phase modulators

We first consider the situation of the transverse phase modulator shown in Fig. 6.2(a),
where the optical wave propagates in the X direction. In this case, the optical wave can
be polarized in either the Z or Y direction. If it is linearly polarized in the Z direction,
its space and time dependence can be written as

E(X, t) = ẐE exp(ik Z X − iωt) = ẐE exp(iϕZ − iωt). (6.37)

For propagation over a crystal of length l, the total phase shift is

ϕZ = k Zl = ω

c
nZl = ω

c

(
nel − n3

e

2
r33 E0zl

)
= ω

c

(
nel − n3

e

2
r33V

l

d

)
, (6.38)

where V = E0zd is the voltage applied to the modulator shown in Fig. 6.2(a).
For a sinusoidal modulation of a frequency f = �/2π , the modulation voltage can

be written as

V (t) = Vpk sin �t, (6.39)

which has a peak value of Vpk. The optical field at the output plane, X = l, of the crystal
is

E(l, t) = ẐEeiωnel/c exp
[−i(ωt + ϕpk sin �t)

]
, (6.40)

where

ϕpk = ω

c

n3
e

2
r33Vpk

l

d
= πn3

e

λ
r33Vpk

l

d
(6.41)

is the peak phase shift known as the phase modulation depth for the Z -polarized optical
field. Using the Bessel-function identities

exp(−iϕpk sin �t) =
∞∑

q=−∞
Jq (ϕpk)e−iq�t (6.42)

and J−q = (−1)q Jq , we find that

E(l, t) = ẐEeiωnel/c

{
J0(ϕpk)e−iωt +

∞∑
q=1

Jq (ϕpk)
[
e−i(ω+q�)t + (−1)qe−i(ω−q�)t

]}
.

(6.43)

Thus, a series of side bands at the harmonics of the modulation frequency are generated
on both high- and low-frequency sides of the optical carrier frequency by the sinusoidal
phase modulation.

If the optical field is instead linearly polarized in the Y direction, the phase shift after
propagation through the crystal is

ϕY = kY l = ω

c
nY l = ω

c

(
nol − n3

o

2
r13 E0zl

)
= ω

c

(
nol − n3

o

2
r13V

l

d

)
. (6.44)
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The phase modulation depth is then

ϕpk = ω

c

n3
o

2
r13Vpk

l

d
= πn3

o

λ
r13Vpk

l

d
(6.45)

for the modulation voltage given in (6.39). Since no ≈ ne but r33 ≈ 3.6r13, it can be seen
by comparison of (6.45) with (6.41) that for a desired modulation depth, the modulation
voltage required for a Y -polarized optical wave is about 3.6 times that for a Z -polarized
wave.

Longitudinal phase modulators

For the longitudinal phase modulator shown in Fig. 6.2(b), an optical wave of any
polarization in the XY plane will experience the same amount of phase shift because
nX = nY . For a crystal of length l as shown in Fig. 6.2(b), we have

ϕX = ϕY = ω

c

(
nol − n3

o

2
r13 E0zl

)
= ω

c

(
nol − n3

o

2
r13V

)
, (6.46)

where V = E0zl for the longitudinal modulator. Therefore, with a sinusoidal modulation
voltage as given in (6.39), the modulation depth of the longitudinal phase modulator is

ϕpk = ω

c

n3
o

2
r13Vpk = πn3

o

λ
r13Vpk, (6.47)

which is independent of crystal length l.
It is seen that the voltage required for a given modulation depth is independent of the

physical dimensions of the modulator in the case of longitudinal modulation, while it is
proportional to d/ l in the case of transverse modulation. One advantage of transverse
modulation is that the required modulation voltage can be substantially lowered by
reducing the d/ l dimensional ratio of a transverse modulator. Another advantage is
that the electrodes of a transverse modulator can be made with standard techniques and
can be patterned if desired, while those of a longitudinal modulator have to be made of
transparent conductors that can be very difficult, if not impossible, to fabricate in the
dimensions of a typical optical waveguide. However, if a large input and output aperture
is desired such that d/ l > 1, it becomes advantageous to use longitudinal modulation
rather than transverse modulation.

The relative advantages and disadvantages of transverse versus longitudinal mod-
ulation discussed above also hold true for the polarization and intensity modulators
discussed in the following.

EXAMPLE 6.2 As a practical example, consider the LiNbO3 transverse and longitudinal
phase modulators shown in Figs. 6.2(a) and (b), respectively, where the modulation
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voltage is applied along the z axis of the crystal. Find the required voltage Vpk for a phase
modulation depth of ϕpk = π at λ = 1 µm for optical waves of different polarizations.

Solution We first consider the transverse modulator shown in Fig. 6.2(a). Using
(6.41) and the parameters of r13 = 8.6 pm V−1, r33 = 30.8 pm V−1, ne = 2.159, and
no = 2.238 given in Table 6.2 for LiNbO3, the peak voltage required to have ϕpk = π

for a Z -polarized wave is found to be

Vpk = λ

n3
er33

d

l
= 1 × 10−6

2.1593 × 30.8 × 10−12

d

l
V = 3.23

d

l
kV.

Using (6.45), we find that the required peak voltage for a Y -polarized wave is

Vpk = λ

n3
or13

d

l
= 1 × 10−6

2.2383 × 8.6 × 10−12

d

l
V = 10.4

d

l
kV.

For a bulk modulator where d and l are generally of the same order of magnitude, the
required modulation voltage is on the order of kilovolts. However, for a waveguide
modulator of typical waveguide dimensions, d/ l is of the order of 10−3. For example,
in a transverse waveguide modulator that has dimensions of d = 5 µm and l = 5 mm,
the peak voltage required is reduced to 3.23 and 10.4 V for Z - and Y -polarized waves,
respectively.

For the longitudinal modulator shown in Fig. 6.2(b), the optical wave is polarized
in the XY plane. From (6.47), we find that the peak voltage required for ϕpk = π is
always

Vpk = λ

n3
or13

= 1 × 10−6

2.2383 × 8.6 × 10−12
V = 10.4 kV,

irrespective of the dimensions of the longitudinal modulator or the polarization of the
optical wave.

Polarization modulators

In the operation of an electro-optic polarization modulator, the optical wave is not
linearly polarized in a direction that is parallel to any of the principal axes in the
presence of the modulation field. The optical field can be decomposed into two linearly
polarized normal modes. If the two normal modes see different field-induced indices
of refraction, there is a field-dependent phase retardation between the two modes. The
polarization of the optical wave at the output of the crystal can then be controlled by
the modulation field.

The LiNbO3 transverse modulator discussed above becomes a polarization modulator
if the input optical field polarized in the Y Z plane is parallel to neither Ŷ nor Ẑ :

E(0, t) = (ŶEY + ẐE Z )e−iωt , (6.48)
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(a)

(b)

Figure 6.3 (a) LiNbO3 transverse electro-optic polarization modulator. (b) GaAs longitudinal
electro-optic polarization modulator. The x̂ , ŷ, and ẑ unit vectors represent the original principal
axes of the crystal, and X̂ , Ŷ , and Ẑ represent its new principal axes.

where EY �= 0 and E Z �= 0, as is shown in Fig. 6.3(a). At the output, we have

E(l, t) =
(

ŶEY eikY l + ẐE Z eik Z l
)

e−iωt = (ŶEY ei�ϕ + ẐE Z

)
eik Z l−iωt , (6.49)

where

�ϕ = (kY − k Z )l (6.50)

is the phase retardation between the Y and Z components. Using (6.25), we have

�ϕ = π

λ

[
2(no − ne)l + (n3

er33 − n3
or13)V

l

d

]
. (6.51)

The intrinsic birefringence of a uniaxial LiNbO3 crystal causes a voltage-independent
background phase retardation of �ϕ0 = 2π (no − ne)l/λ at V = 0 in the absence of an
applied field. For a given crystal length, the background phase retardation is fixed, and
the function of the device cannot be varied if no modulation field is applied. By properly
choosing the value of l, the device can function as a quarter-wave or half-wave plate,
as discussed in Section 1.6. An applied field causes an additional voltage-dependent
phase retardation. The output polarization state of a given input optical wave with
nonvanishing Y - and Z -field components can be varied by varying the modulation
voltage. Thus, the device functions as a voltage-controlled polarization modulator.

For proper operation of the device as a voltage-controlled polarization modulator,
the background phase retardation can be compensated by a fixed bias voltage. To find
the compensation bias voltage, we note that any phase retardation that is an integral
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multiple of 2π has no net effect on the polarization of the optical wave at the output
of the device. Therefore, the net effect of the background phase retardation can be
evaluated by expressing �ϕ0 as

�ϕ0 = 2π

λ
(no − ne)l = 2mπ + 2π

λ
(no − ne)�l, (6.52)

where m is a properly chosen integer for

− λ

2(no − ne)
< �l = l − mλ

no − ne
≤ λ

2(no − ne)
(6.53)

so that

−π < �ϕ0 − 2mπ = 2π

λ
(no − ne)�l ≤ π. (6.54)

The polarization of the output wave is actually only determined by the following dif-
ferential phase retardation:

�ϕ − 2mπ = 2π

λ
(no − ne)�l + π

λ
(n3

er33 − n3
or13)V

l

d
. (6.55)

A fixed bias voltage for compensation of the background phase retardation can then be
chosen as

Vb = 2(ne − no)

n3
er33 − n3

or13

d

l
�l = 2(ne − no)

λ
�lVπ , (6.56)

where

Vπ = λ

n3
er33 − n3

or13

d

l
(6.57)

is the half-wave voltage, which can also be denoted as Vλ/2. The voltage-controlled
phase retardation can then be recast in the following form:

�ϕ − 2mπ = V − Vb

Vπ

π. (6.58)

From (6.53) and (6.56), we find that the bias voltage can always be chosen within a range
of −Vπ ≤ Vb < Vπ . At V − Vb = ±Vπ , the device functions as a half-wave plate that
has a phase retardation of �ϕ = 2mπ ± π . At V − Vb = ±Vπ/2, the device functions
as a quarter-wave plate with a phase retardation of �ϕ = 2mπ ± π/2. Therefore, the
quarter-wave voltage Vπ/2, or Vλ/4, is half that of the half-wave voltage, both measured
with respect to the bias point.

The background phase retardation contributed by the intrinsic birefringence is the
major drawback of the LiNbO3 transverse polarization modulator discussed here. Al-
though it can be compensated by a bias voltage that falls within the range of ±Vπ ,
the requirement of such a DC bias voltage complicates the operation of the device,
particularly when it is modulated at a high frequency. Because the bias voltage depends
on the length and the refractive indices of the device, it is susceptible to changes in the
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operating condition, such as temperature variations caused by operation of the device.
Furthermore, the bias voltage is also a function of optical wavelength because �l varies
as the optical wavelength varies. In practice, the bias voltage has to be carefully ad-
justed for each individual device in a given operating condition due to small variations
in device length and refractive indices.

EXAMPLE 6.3 A LiNbO3 transverse polarization modulator for λ = 1 µm as shown in
Fig. 6.3(a) has dimensions of d = 5 µm and l = 5 mm. Find the half-wave voltage Vπ

and the bias voltage Vb required for compensating the background phase retardation
from the intrinsic birefringence of LiNbO3. If the length varies by ±5 µm due to
fabrication errors or changes in the operating condition, what are the changes in Vπ and
Vb, respectively?

Solution Using the parameters of LiNbO3 given in Table 6.2, we find from (6.57)
that Vπ ≈ 4.68 V. With no − ne = 0.079 at λ = 1 µm found from the data in Table 6.2,
we find that �l = 0 with m = 395 for l = 5 mm. Therefore, Vb = 0 from (6.56).

A length variation of ±5 µm amounts to a change of ±0.1% in the total length. From
(6.57), we find that it causes a change of only about ∓0.1% in Vπ . However, it results in
�l = ±5 µm, also with m = 395. From (6.56), we find that the required compensation
bias voltage is Vb ≈ ∓3.70 V. We therefore see that a small variation in the length of
the device causes a similarly small change in Vπ , but it can lead to a large change in
the compensation bias voltage.

The LiNbO3 longitudinal modulator shown in Fig. 6.2(b) cannot function as a po-
larization modulator because nX = nY . Instead, we consider the GaAs longitudinal
modulator shown in Fig. 6.3(b). In this case, the principal axes and their corresponding
indices of refraction in the presence of a modulation field are those given in (6.35) and
(6.36), respectively. The optical wave to be modulated propagates in the Z direction
and has both X and Y field components. At the input end, it can be written as

E(0, t) = (X̂E X + ŶEY

)
e−iωt . (6.59)

After propagating through the crystal, the optical field is

E(l, t) =
(

X̂E X eik X l + ŶEY eikY l
)

e−iωt = (X̂E X + ŶEY ei�ϕ
)

eik X l−iωt , (6.60)

where

�ϕ = (kY − k X )l (6.61)

is the phase retardation between the Y and X components of the optical field. Using
(6.36) and the fact that V = E0zl for the longitudinal modulator, we have

�ϕ = 2π

λ
n3

or41V = V

Vπ

π, (6.62)
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where the half-wave voltage is

Vπ = λ

2n3
or41

. (6.63)

It can be seen from (6.62) that no bias voltage is needed for this GaAs modul-
ator because both x and y axes are ordinary axes in the absence of an applied field.
However, because of the longitudinal modulation scheme, Vπ is a constant indepen-
dent of both dimensions l and d. Therefore, in comparison with the LiNbO3 trans-
verse modulator, the advantage of this modulator in requiring no bias voltage is
completely offset by the disadvantage due to its longitudinal modulation scheme. In a
GaAs transverse polarization modulator, both problems can be eliminated (see Problem
6.3.8).

EXAMPLE 6.4 For λ = 1 µm, the parameters for GaAs given in Table 6.2 yield Vπ ≈
9.72 kV from (6.63), which is independent of the dimensions of the GaAs longitudinal
modulator. Though no bias voltage is needed because GaAs has no intrinsic birefrin-
gence, this half-wave voltage cannot be reduced by varying the dimensions of the
modulator. For �ϕ to vary in the range between 0 and π , the modulation voltage has
to be varied between 0 and 9.72 kV.

Amplitude modulators

An electro-optic amplitude modulator can be constructed by simply placing a polar-
ization modulator between a polarizer at the input end and another, often referred to
as an analyzer, at the output end. Usually, the axis of the polarizer and that of the
analyzer are arranged to be orthogonally crossed, although other arrangements are
possible.

Figure 6.4 shows a typical setup for a GaAs longitudinal amplitude modulator. In
this arrangement, the polarizer ensures that the input optical wave is linearly polarized
in the y direction while the analyzer passes only the x component of the optical wave
at the output end. The input field is E(0, t) = ŷEe−iωt , which can be written in the form
of (6.59) with E X = EY = E/

√
2. Then, from (6.60), the field at the output end of the

crystal is

E(l, t) = E√
2

(X̂ + Ŷ ei�ϕ)eik X l−iωt = E
2

[
x̂(1− ei�ϕ) + ŷ(1 + ei�ϕ)

]
eik X l−iωt , (6.64)

where �ϕ is the same as that given in (6.61). Because the analyzer passes only the x
component of the optical field, the transmittance of the amplitude modulator is

T = Iout

Iin
= sin2 �ϕ

2
= 1

2
(1 − cos �ϕ). (6.65)
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(a)

(b)

Figure 6.4 GaAs longitudinal electro-optic amplitude modulator. A bias phase retardation of π/2
can be introduced with (a) a bias voltage Vb = Vπ/2 or (b) a properly oriented quarter-wave plate.
The x̂ , ŷ, and ẑ unit vectors represent the original principal axes of the crystal, and X̂ , Ŷ , and Ẑ
represent its new principal axes.

A similar result is obtained for an amplitude modulator constructed by placing any
other polarization modulator, such as the LiNbO3 transverse polarization modulator
shown in Fig. 6.3(a), between a pair of properly oriented polarizer and analyzer.

Because �ϕ varies linearly with applied voltage V, the amplitude modulator would
have a linear response if its transmittance T varied linearly with �ϕ. It can be seen
from (6.65) that this is not generally true. However, for small variations of �ϕ, it is
approximately true near �ϕ = π/2, as can be seen by substituting

�ϕ = π

2
+ δϕ (6.66)

in (6.65) to get

T = 1

2
(1 + sin δϕ) ≈ 1

2
(1 + δϕ) (6.67)

for |δϕ| � π . By setting the operating point at a bias phase retardation of �ϕb = π/2,
the device has a linear small-signal response, as shown in Fig. 6.5. Then, with a voltage
such as that given in (6.39), the output intensity will be sinusoidally modulated. This
bias phase retardation can be obtained either by operating the device with a fixed
bias voltage of Vb = Vπ/2, as shown in Fig. 6.4(a), or by inserting a properly oriented
quarter-wave plate between the modulator crystal and the analyzer to introduce an extra
fixed phase retardation of π/2, as shown in Fig. 6.4(b).
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Figure 6.5 Transmission characteristics of the electro-optic amplitude modulator shown in
Fig. 6.4. The response is nearly linear for small variations near the operating point at �ϕb = π/2.

For large-signal applications, the response of the amplitude modulator is nonlinear.
The device is then often used as an electro-optically controlled ON–OFF modulator. In
these types of applications, a bias is neither useful nor necessary.

6.4 Guided-wave electro-optic modulators

Optical waveguides possess many unique characteristics that do not exist in bulk optics.
An important one is their ability to guide optical waves within a small cross-sectional
area over a long distance. This allows for the possibility of using the transverse modu-
lation scheme to realize very efficient modulators at very low modulation voltages. In
bulk optics, the ratio of the length to the cross-sectional dimensions is limited by the
diffraction effect, limiting the advantage that can be realized using transverse modula-
tion. This limitation does not exist in waveguide optics. Another unique characteristic
is the existence of waveguide modes. This results in many phenomena that have no
counterpart in bulk optics, such as mode coupling, mode conversion, and modal dis-
persion. These unique features are the basis of many devices that take advantage of
the waveguide configuration. In addition, guided-wave electro-optic devices are im-
portant building-block components of integrated optical and integrated optoelectronic
systems.

The modulation electric field in a waveguide is usually the fringe field around surface
electrodes or, in some cases of semiconductor waveguides, the field resulting from a
junction voltage drop. Figure 6.6 shows the two commonly used approaches for buried
waveguides, particularly the Ti-diffused LiNbO3 waveguides, using surface-loading
electrodes. In the configuration shown in Fig. 6.6(a), the electrodes are placed on two
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(a) (b)

Figure 6.6 Configurations for applying a modulation field to a buried waveguide through
surface-loading electrodes. In (a), E0‖ is applied to the waveguide. In (b), E0⊥ is applied. The
buffer layer in (b) is required to reduce loss to TM-like modes.

sides of the waveguide, and the horizontal electric field E0‖ is applied. In the configu-
ration shown in Fig. 6.6(b), one of the electrodes is placed directly over the waveguide,
and the applied electric field is the vertical E0⊥. The buried waveguide shown in Fig. 6.6
is a channel waveguide, but the index step at the air–crystal interface along the vertical
direction is much higher than those at other waveguide boundaries. Therefore, modes
with electric fields polarized mainly parallel to the air–crystal interface are called TE-
like modes, whereas those with electric fields polarized mainly perpendicular to this
interface are called TM-like modes. When an electrode is placed directly over a wave-
guide, an insulating buffer layer, usually SiO2 or Al2O3, between the electrode and
the substrate crystal is needed to ensure low loss for TM-like modes, as also shown in
Fig. 6.6(b).

In a waveguide, the modulation electric field applied to a particular waveguide mode
depends on a number of parameters, including the geometric dimensions of the wave-
guide structure and the optical field distribution of the mode. In general, the modul-
ation field is not uniformly distributed across the mode field distribution. The effect
of electro-optic modulation in a waveguide can be calculated using the coupled-mode
theory discussed in Section 4.2. For modulation on a single mode, the effect is to
introduce a change in the propagation constant of the mode. This change is equal to the
self-coupling coefficient of the mode given by

�βν = κνν = ω

∞∫
−∞

Ê∗
ν · �ε · Êνdρ, (6.68)

where �ε is the electro-optically induced change in the dielectric permittivity tensor
andρ is the two-dimensional vector in the cross-sectional plane of the waveguide. As an
example, we consider phase modulation of a TE-like mode in a waveguide modulator
that is fabricated in a LiNbO3 crystal with the crystal surface perpendicular to the x
principal axis and the longitudinal direction of the waveguide parallel to the y principal
axis. This arrangement is shown in Fig. 6.7(a) and is referred to as y propagating in
an x-cut crystal. The modulation field appearing in the waveguide area is E0‖, which is
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(a) (b)

Figure 6.7 Waveguide phase modulators in (a) an x-cut, y-propagating LiNbO3 crystal and (b) a
z-cut, x-propagating LiNbO3 crystal. The x̂ , ŷ, and ẑ unit vectors represent the principal axes of the
crystal.

E0z in this configuration. Because a TE-like mode of this waveguide is predominantly
polarized in the z direction and �εzz = −n4

er33 E0z from (6.24), we have

�βTE = −n4
er33ωε0

∞∫
−∞

∞∫
−∞

E0z(x, z)|ÊTE(x, z)|2dxdz

= −n4
er33

2

V

se

ω2µ0ε0

βTE

�TE

≈ −π

λ
n3

er33
V

se
�TE, (6.69)

where V is the applied voltage, se is the separation between the electrodes, βTE is
approximated by neω/c, (2.44) is used to normalize the mode field, and

�TE = se

V

2βTE

ωµ0

∞∫
−∞

∞∫
−∞

E0z(x, z)|ÊTE(x, z)|2dxdz

= se

V

∞∫
−∞

∞∫
−∞

E0z(x, z)|ÊTE(x, z)|2dxdz

∞∫
−∞

∞∫
−∞

|ÊTE(x, z)|2dxdz

(6.70)

is the overlap factor, which accounts for the overlap between the modulation electric
field and the optical mode. The overlap factor has a value between 0 and 1. The total
electro-optically induced phase shift of this mode over length l of the modulator is
simply �ϕ = �βTEl.
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Comparing the result obtained above with that in (6.41) for the bulk phase modulator,
we find that the net effect for a waveguide mode ν can be approximated by using a
single uniform effective modulation electric field given by

Eeff = �ν

V

se
, (6.71)

where �ν is evaluated using the appropriate modulation field component for the device
configuration under consideration. For example, E0‖ is used for the electrode configu-
ration in Fig. 6.6(a), while E0⊥ is used for the configuration in Fig. 6.6(b). The value
of �ν depends on the electrode configuration and is different for different waveguide
modes in the same structure. For a given configuration and a given waveguide mode,
it increases monotonically as the ratio of the electrode separation to the horizontal
waveguide width increases.

EXAMPLE 6.5 An x-cut, y-propagating LiNbO3 single-mode waveguide phase modulator
for λ = 1.3 µm, as shown in Fig. 6.7(a), has a gap separation of se = 20 µm between
its electrodes and an overlap factor of �TE = 0.57 for its TE-like mode. It is modulated
with an applied voltage of V = 12 V. What is the effective modulation electric field
strength? Find the electro-optically induced change in the propagation constant of the
TE-like mode. If an electro-optically controlled phase shift of π is desired, what is the
required length of the device?

Solution According to (6.71), the effective modulation electric field is

Eeff = �TE
V

se
= 0.57 × 12

20 × 10−6
V m−1 = 342 kV m−1.

From (1.191) in Problem 1.9.2, we find that ne = 2.145 for LiNbO3 at λ = 1.3 µm.
We then find, using (6.69), that

�βTE = − π

1.3 × 10−6
× 2.1453 × 30.8 × 10−12 × 12

20 × 10−6
× 0.57 m−1

= −251.23 m−1.

For �ϕ = π , the required length of the device is

l = π

|�βTE| = 12.5 mm.

In the following, we discuss a few important electro-optic waveguide devices. The
principle of phase modulation discussed in the preceding section can be applied di-
rectly to guided-wave phase modulators. Amplitude modulation and switching func-
tions using guided-wave devices are typically realized using either waveguide inter-
ferometers or directional couplers. Polarization modulation is accomplished through
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electro-optically controlled coupling and conversion between guided modes of differ-
ent polarizations. Other functions, such as frequency filtering, are also possible using
guided-wave devices. Preferably, single-mode waveguide devices are used to attain the
best performance at the lowest modulation voltage.

Mach–Zehnder waveguide interferometers

Guided-wave electro-optic phase modulators can be used to construct waveguide in-
terferometers for effective amplitude modulation of guided optical waves. A Mach–
Zehnder waveguide interferometer consists of two parallel waveguides connected at
the input and output ends, respectively, by beam-splitting and beam-combining optical
couplers. These couplers can be Y-junction waveguides, as in the devices shown in
Fig. 6.8, or directional couplers, as shown in Fig. 6.9. Modulation electric fields are

(a) (b)

Figure 6.8 Mach–Zehnder waveguide interferometric modulator using Y junctions fabricated on
(a) an x-cut, y-propagating LiNbO3 substrate and (b) a z-cut, x-propagating LiNbO3 substrate. The
x̂ , ŷ, and ẑ unit vectors represent the principal axes of the crystal.

(a) (b)

Figure 6.9 Balanced-bridge interferometers fabricated on z-cut, x-propagating LiNbO3 substrates
using (a) bent waveguides and (b) straight waveguides. Isolation between the two arms of the
interferometer is accomplished with a large separation in (a) and an etched slot in (b). The x̂ , ŷ, and
ẑ unit vectors represent the principal axes of the crystal.
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applied to two parallel waveguides, which form the two arms of the interferometer and
are sufficiently separated to avoid direct coupling between them. Each waveguide by
itself functions as an electro-optic phase modulator. Constructive or destructive inter-
ference occurs at the output coupler if the phase difference between the two arms is,
respectively, an even or odd multiple of π . By electro-optically controlling this phase
difference through the applied voltage, the amplitude of the guided optical field at the
output can be modulated.

The Mach–Zehnder waveguide interferometer shown in Fig. 6.8(a) uses Y-junction
couplers and is fabricated in an x-cut, y-propagating LiNbO3 crystal. To use the largest
electro-optic coefficient r33 in LiNbO3, both the modulation electric field and the optical
field have to be polarized in the z direction. This requirement can be fulfilled by using
the electrodes shown in Fig. 6.8(a) for TE-like modes. In this electrode configuration,
the modulation voltage is applied to the central electrode while the outer electrodes are
grounded. The modulation electric fields appearing in the two arms point in opposite
directions, resulting in a push–pull operation with equal but opposite phase shifts in the
optical waves propagating through the two arms. For an interferometer with identical
arms, any other background phase shifts are exactly canceled. Thus the total phase
difference is twice the electro-optically induced phase shift in each arm. If the two arms
are identical single-mode waveguides, the phase difference induced by a modulation
voltage V for a TE-like mode is

�ϕ = 2π

λ
n3

er33�TE
l

se
V = π

V

Vπ

, (6.72)

where

Vπ = λ

2n3
er33�TE

se

l
(6.73)

is the half-wave voltage corresponding to a phase difference of π between the two arms.
For a TM-like mode, we have

Vπ = λ

2n3
or13�TM

se

l
. (6.74)

The half-wave voltage for a TM-like mode is more than three times that for a TE-
like mode of a similar overlap factor. Therefore, this particular interferometer favors
operation with a TE-like mode.

EXAMPLE 6.6 A Mach–Zehnder waveguide interferometric modulator for λ = 1.3 µm
using Y junctions as shown in Fig. 6.8(a) consists of two parallel x-cut, y-propagating
LiNbO3 single-mode waveguide phase modulators with se = 20 µm in a push–pull
configuration. Both waveguides have �TE = �TM = 0.57 and l = 12.5 mm, like the
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one discussed in Example 6.5. Find the half-wave voltages for the TE-like and TM-like
modes, respectively.

Solution We find from (6.73) that Vπ for the TE-like mode is

Vπ = 1.3 × 10−6

2 × 2.1453 × 30.8 × 10−12 × 0.57
× 20 × 10−6

12.5 × 10−3
V = 6 V,

which is half of the value of Vπ for the phase modulator in Example 6.5 because of the
push–pull operation of the interferometer. From (1.190) in Problem 1.9.2, we find that
no = 2.222 for LiNbO3 at λ = 1.3 µm. Therefore, from (6.74), we find that Vπ for the
TM-like mode is

Vπ = 1.3 × 10−6

2 × 2.2223 × 8.6 × 10−12 × 0.57
× 20 × 10−6

12.5 × 10−3
V = 19.3 V,

which is larger than Vπ for the TE-like mode because r13 < r33 for LiNbO3.

In comparison, Fig. 6.8(b) shows a Mach–Zehnder interferometer fabricated on a
z-cut, x-propagating LiNbO3 substrate. In this configuration, the electrodes have to
be placed directly over the waveguides in order to use r33. For a push–pull operation
with equal but opposite phase shifts in the two arms of this interferometer, only two
electrodes are needed with one receiving the modulation voltage and the other grounded,
as illustrated in Fig. 6.8(b). This interferometer favors a TM-like mode, which has a
lower half-wave voltage of

Vπ = λ

2n3
er33�TM

se

l
(6.75)

than the half-wave voltage of

Vπ = λ

2n3
or13�TE

se

l
(6.76)

for a TE-like mode of a similar overlap factor.
For a Mach–Zehnder waveguide interferometer using Y junctions, if both input and

output Y junctions are ideal 3-dB couplers, the power transmittance for a specific guided
mode is

T = Pout

Pin
= cos2 �ϕ

2
= 1

2
(1 + cos �ϕ). (6.77)

For applications as a small-signal amplitude modulator, the device can be operated with
a fixed bias voltage of Vb = Vπ/2 or −Vπ/2 for linear response. For applications as an
ON–OFF modulator, no bias is needed. The maximum transmittance in the ON state
versus the minimum transmittance in the OFF state is defined as the extinction ratio. It
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is usually measured in decibels:

ER = −10 log
Tmin

Tmax
(dB). (6.78)

One important advantage of the waveguide interferometer is that a very high extinction
ratio can be accomplished with single-mode structures at a low modulation voltage.
The major source of incomplete extinction in the OFF state comes from the imbalance
between the two arms due to small fabrication errors, but a single-mode waveguide in-
terferometer is very tolerant of this small imbalance. In a multimode structure, however,
different modes have different Vπ because � is different for different modes. Because
this variation results in different �ϕ for different modes at a specific modulation voltage,
a high extinction ratio is difficult to accomplish when more than one mode is excited.

Instead of Y junctions, 3-dB directional couplers can be used at both input and output
ends of a Mach–Zehnder waveguide interferometer. This type of Mach–Zehnder inter-
ferometer is called the balanced-bridge interferometer. Figure 6.9 shows two examples.
The phase-shifter section consists of two decoupled identical phase modulators. It has
exactly the same function as that in a Mach–Zehnder interferometer using Y junctions.
However, both input and output ports now have two channels. If straight waveguides are
used, as in the example shown in Fig. 6.9(b), the waveguides have to be closely spaced
to allow coupling in the coupler sections. Crosstalk due to coupling in the phase-shifter
section has to be eliminated. This objective can be accomplished by etching a slot in
the gap, as shown in Fig. 6.9(b), or by mismatching the two waveguides.

With input to only one channel, the straight transmission through the same channel
at the output is

T = sin2 �ϕ

2
= 1

2
(1 − cos �ϕ), (6.79)

where �ϕ is the electro-optically induced phase difference between the two arms of the
interferometer discussed above. The crossover efficiency to the other output channel is

η = 1 − T = cos2 �ϕ

2
= 1

2
(1 + cos �ϕ). (6.80)

When used as a modulator, a balanced-bridge interferometer has two complementary
output channels. Otherwise, it has similar characteristics to those of an interferometer
using Y junctions. In addition, a balanced-bridge interferometer can also be used as
an optical switch. When �ϕ is 0 or any integral multiple of 2π , the interferometer
is in the cross state because η = 1. This feature is expected because in this situation
the phase-shifter section has null net effect, and the function of the interferometer is
simply that of two serially connected 3-dB directional couplers. When �ϕ is equal to
any odd integral multiple of π , the interferometer is in the parallel state with T = 1.
By switching the control voltage for �ϕ to have even or odd multiples of π , the device
can be electrically switched between the two switch states.
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(a) (b)

Figure 6.10 (a) Schematic structure and (b) switching diagram of an electro-optic uniform-�β

directional coupler switch. Note that a trivial solution of l = 0 exists for the parallel state.

Directional coupler switches

A very important practical application of directional couplers is to use them as optical
switches, which can be switched between cross and parallel states. This function re-
quires switching the coupling efficiency η between the values of 1 and 0. For a fabricated
device with fixed geometric parameters, this can be done by varying the phase mis-
match or the coupling coefficient between the two waveguides through electro-optically
induced changes in the refractive index of the waveguide material. For simplicity, we
consider in the following only symmetric directional couplers where the two waveguide
channels have identical geometric and material parameters. Any differences between the
two channels are thus induced solely by the applied electric field through the electro-
optic effect. Similar concepts can be applied to asymmetric directional couplers as
well.

Figure 6.10(a) shows the basic structure of an electro-optic directional coupler switch.
This structure has a two-electrode configuration similar to that of the two-electrode
Mach–Zehnder interferometers. The only difference is that the two waveguides in
a directional coupler are coupled while those in an interferometer are isolated. If the
device is fabricated on a z-cut, x-propagating LiNbO3 substrate, the effect of the applied
voltage is also to induce a phase difference of �ϕ = πV/Vπ , with Vπ given by (6.75)
and (6.76) for TM-like and TE-like modes, respectively.

Without an applied voltage, the symmetric coupler is perfectly phase matched with
βa = βb, κaa = κbb, and κab = κ∗

ba ≡ κ , where κ is real and positive. The effective
propagation constant for each waveguide is β = βa + κaa = βb + κbb, and the phase-
matched coupling length is lPM

c = π/2κ given in (5.54). The phase difference �ϕ



268 Electro-optic devices

induced by the applied voltage results in a phase mismatch of

2δ = �β = �ϕ

l
(6.81)

between the two waveguides of the coupler. To first order, the changes in the coupling
coefficient κ induced by the electric field can be neglected in this two-electrode configu-
ration. More significant changes in κ are possible using a three-electrode configuration.

With a phase mismatch given by (6.81), the coupling efficiency of this switch is that
given by (4.88):

η = 1

1 + δ2/κ2
sin2

(
κl
√

1 + δ2/κ2
)

. (6.82)

Because �ϕ and hence the value of δ are linearly proportional to the applied voltage,
the switching function of the device can be accomplished by electrically switching δ

between the values corresponding to η = 1 and 0. However, it can be seen from (6.82)
that if δ �= 0, it is not possible to have η = 1 though η = 0 is possible. Therefore, to
allow access to both cross and parallel states, it is necessary to design the device to
be in the cross state when there is no applied voltage, V = 0 and thus δ = 0. This
requirement means that the coupler has to be perfectly symmetric and its length has to
be exactly one of the odd integral multiples of lPM

c :

l = (2n + 1)lPM
c , n = 0, 1, 2, . . . (6.83)

The parallel state can then be reached with an applied voltage to induce a δ that satisfies
κl
√

1 + δ2/κ2 = mπ so that η = 0. Using (6.81) and (6.83), this condition can be cast
in the following form:(

l

lPM
c

)2

+
(

�βl

π

)2

= 4m2, m = 0, 1, 2, . . . (6.84)

These conditions for the cross and the parallel state are plotted in Fig. 6.10(b). As
an example, we see that if l = lPM

c , the parallel state can be first reached with �ϕ =
�βl = √

3π . This phase shift corresponds to a switching voltage Vs = √
3Vπ , which is√

3 times that needed for the balanced-bridge interferometer switch discussed above to
reach the first parallel state. As can be seen from Fig. 6.10(b), for l = lPM

c , the parallel
state can be further reached with �βl = √

4m2 − 1π at higher applied voltages, but
the cross state exists only when �βl = 0.

EXAMPLE 6.7 A uniform-�β directional coupler switch as shown in Fig. 6.10 for λ =
1.3 µm is fabricated on a z-cut, x-propagating LiNbO3 substrate. The gap separation
between the electrodes is se = 5 µm, and the overlap factor for the TM-like mode is
found to be �TM = 0.247 for optical waveguides of 6 µm width. A desired coupling
coefficient between the two parallel waveguides can be obtained by properly choosing
the spacing between the parallel waveguides in the coupling section covered by the
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electrodes. If a switching voltage of 5 V for the TM-like mode is desired, what are the
required coupling coefficient and the length of the coupling section?

Solution The length of the coupling section can be chosen to be l = lPM
c = π/2κ ,

which is the shortest length required to have access to both cross and parallel states.
Then the switching voltage is Vs = √

3Vπ . For a switching voltage of 5 V, we find that
Vπ = 2.89 V. For this z-cut device in a push–pull configuration, Vπ is that given by
(6.75). Therefore, we find that the required length for Vπ = 2.89 V is

l = λ

2n3
er33�TM

se

Vπ

= 1.3 × 10−6

2 × 2.1453 × 30.8 × 10−12 × 0.247
× 5 × 10−6

2.89
m = 15 mm.

The required coupling coefficient is

κ = π

2l
= 104.72 m−1.

The function of the directional coupler switch shown in Fig. 6.10 depends critically
on the accuracy of fabrication because its cross state cannot be reached by tuning the
applied voltage but requires precise symmetry and the exact length of the coupler.
Any slight deviation in the symmetry or in the length results in crosstalk to the other
channel in the cross state. This limitation can be overcome by using the reversed-�β

configuration shown in Fig. 6.11(a). In this configuration, voltages of equal magnitude
but opposite polarities are applied to the split electrodes. If the electro-optically induced
phase mismatch in the first section of a length of l/2 is �β = 2δ, that in the second

(a) (b)

Figure 6.11 (a) Schematic structure and (b) switching diagram of a reversed-�β directional
coupler switch. The solid curves are the solutions for the reversed-�β directional coupler switch,
while the dashed curve is that of the uniform-�β directional coupler switch shown in Fig. 6.10(b).
Note that a trivial solution of l = 0 exists for the parallel state.
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(a) (b)

Figure 6.12 Evolution of power flow in (a) a two-section directional coupler with uniform �β and
(b) a reversed-�β directional coupler for �β = 2κ . The solid curves represent Pa(z)/Pin(0), and
the dashed curves represent Pb(z)/Pin(0).

section, also of a length of l/2, is −�β = −2δ. By considering the device as two
couplers in tandem and by solving the coupled-mode equations, it can be shown that
the total coupling efficiency of this device is (see Problem 6.4.8)

η = 4κ2

β2
c

sin2 βcl

2

(
1 − κ2

β2
c

sin2 βcl

2

)
, (6.85)

where βc = (κ2 + δ2)1/2, as defined in (4.61). By expressing (6.85) in terms of l/ lPM
c

and �βl/π , the conditions for the parallel and the cross state, which have η = 0 and
η = 1, respectively, can be plotted in the switching diagram shown in Fig. 6.11(b).

It is now possible to reach both the parallel and the cross state by controlling the
applied voltage if l/ lPM

c is chosen to be within a proper range such as 1 ≤ l/ lPM
c ≤ 3.

As an example, consider l = √
2lPM

c . In this case, the cross state with η = 1 is reached
when �β = 2κ , thus �βl = √

2π , and the parallel state with η = 0 is reached when
�β = 2

√
7κ , thus �βl = √

14π . This example is also illustrated in Fig. 6.11(b). The
possibility of reaching the cross state in this condition can be understood intuitively
with the illustration shown in Fig. 6.12 for the conditions of l = √

2lPM
c and �β = 2κ .

For a coupler with a uniform �β across the two sections, we find from (6.82) that
η = 0, and the device is in the parallel state rather than in the cross state. We also find
by substituting l in (6.82) with l/2 that at the end of the first section, the input power
from one channel is equally divided between the two channels. Therefore, each section
alone functions as a 3-dB coupler. Under the conditions considered here, the second
section of the uniform-�β coupler couples all of the power back to the original channel,
resulting in η = 0 and the parallel state, as shown in Fig. 6.12(a). However, if the sign
of phase mismatch is reversed in the second section, as is the case in the reversed-�β
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coupler, the process in the second section is also reversed, resulting in η = 1 and the
cross state. This process is shown in Fig. 6.12(b).

Waveguide polarization modulators

The function of a waveguide polarization modulator depends on the coupling between
modes of different polarizations. As is true for any coupled-mode device, the key
parameters to be considered are also the phase mismatch and the coupling coefficient
between the two polarization modes. Unlike the situation in the directional couplers
discussed above, however, the two polarization modes are generally phase mismatched
and are originally uncoupled. Therefore, the task of the modulation electric field is to
create a sufficiently strong field-dependent coupling coefficient while simultaneously
reducing or eliminating the phase mismatch if necessary. For two orthogonally polarized
modes to couple to one another, it is necessary to induce the corresponding off-diagonal
elements in the dielectric permittivity tensor. For instance, if a LiNbO3 waveguide is
fabricated with its structural axes lined up with the principal axes of the crystal, a
modulation electric field E0y will couple y- and z-polarized mode fields, as can be seen
from (6.27), whereas an E0x creates coupling between x- and y-polarized modes and
that between x- and z-polarized modes, as can be seen from (6.32). In contrast, an E0z

cannot create such coupling between any two orthogonal polarizations, as can be seen
from (6.24).

As an example, we consider the coupling between fundamental TE-like and TM-like
modes in an x-cut, y-propagating LiNbO3 waveguide shown in Fig. 6.13. Because the
birefringence of LiNbO3 is relatively large, phase mismatch between the TE-like and
the TM-like modes is contributed primarily by the fact that they have quite different
indices, approximately ne and no, respectively:

�β = βTM − βTE ≈ 2π

λ
(no − ne). (6.86)

Figure 6.13 Waveguide polarization modulator fabricated on an x-cut, y-propagating LiNbO3

substrate using a periodic electrode for phase matching between TE-like and TM-like modes. The
x̂ , ŷ, and ẑ unit vectors represent the principal axes of the crystal.
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This large phase mismatch has to be compensated before any significant coupling
between these two modes can take place. The required phase matching can be accom-
plished by using a grating of a proper period �, as discussed in Section 5.1 and indicated
by (5.7). For perfect phase matching with δ = 0, we need q K = −�β. Therefore, the
grating period has to be one of those given by

� = −q
2π

�β
≈ −q

λ

no − ne
, q = −1, −2, . . . , (6.87)

where q takes on negative integral values because no > ne for LiNbO3 and the value
of � has to be positive. For a first-order grating (q = −1), the phase-matching con-
dition requires that � ≈ 7, 12.5, and 18 µm for λ = 0.6, 1, and 1.3 µm, respectively.
Such a grating can be generated by using the periodic electrode shown in Fig. 6.13 to
create a periodic electro-optically modulated �ε along the propagation direction of the
waveguide. The coupling coefficient is then given by

κEM(q) = κ∗
ME(q) = ω

�

�∫
0

dy

∞∫
−∞

∞∫
−∞

dxdzÊ∗
TE(x, z) · �ε(x, y, z) · ÊTM(x, z)e−iq K y,

(6.88)

where �ε is periodic in y for the device configuration shown in Fig. 6.13.
Since the TE-like and TM-like modes are mainly polarized in the z and x directions,

respectively, they are coupled primarily through the off-diagonal zx and xz terms of
�ε in (6.32) that are contributed by the effect of the E0x component of the periodic
modulation electric field. Although a periodic E0y component also exists, its contri-
bution is not significant. For a first-order grating, this leads to the following coupling
coefficient:

κ = κEM(q = −1) = κ∗
ME(q = −1)

≈ ω

�

�∫
0

dy

∞∫
−∞

∞∫
−∞

dxdzÊ∗
TE,z(x, z)(−ε0n2

on2
er42)E0x (x, y, z)ÊTM,x (x, z)eiK y

≈ −π

λ
n3/2

o n3/2
e r42�EM

V

se
, (6.89)

where

�EM = 2β
1/2
TE β

1/2
TM

ωµ0

se

V

1

�

�∫
0

dy

∞∫
−∞

∞∫
−∞

dxdzE0x Ê∗
TE,z ÊTM,x eiK y

≈ se

V

1

�

�∫
0

dy

∞∫
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dxdzE0x Ê∗
TE,z ÊTM,x eiK y


 ∞∫
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1/2 (6.90)
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is the overlap factor for electro-optic coupling of TE-like and TM-like modes. If perfect
phase matching is accomplished by accurate selection of the grating period, the coupling
efficiency is simply that given by (4.85): ηPM = sin2 |κ|l. Because |κ| can now be
controlled by the modulation voltage, the coupling length lPM

c = π/2|κ| can be varied
by varying the voltage. For a given device of length l, the coupling efficiency can then
be varied between 0 and 1 through variation of the modulation voltage. In general, the
device can be used to modulate or control the polarization of the guided optical wave,
for example, to convert an elliptically polarized input beam into a linearly polarized
output beam, or vice versa. When the voltage is set at a value for ηPM = 1, it is possible
to convert a TE-like mode to a TM-like mode completely, or vice versa. In this instance,
the device functions as a TE–TM mode converter.

EXAMPLE 6.8 An x-cut, y-propagating LiNbO3 waveguide TE–TM mode converter as
shown in Fig. 6.13 for λ = 1.3 µm consists of a periodic interdigital electrode that has
a period of � = 18 µm for phase matching. The interelectrode gap is se = 4 µm, and
the overlap factor for TE–TM electro-optic coupling is �EM = 0.1. The total length of
the electrode section is l = 10 mm. Find the mode-conversion voltage that is required
for complete conversion between TE and TM modes.

Solution The required electro-optically controlled coupling coefficient for complete
TE–TM mode conversion is |κ| = π/2l for the device of length l. By using (6.89), the
mode-conversion voltage can be expressed as

VEM = λ|κ|se

πn3/2
o n3/2

e r42�EM

= λ

2n3/2
o n3/2

e r42�EM

se

l
. (6.91)

With the given parameters of the device, we find that

VEM = 1.3 × 10−6

2 × 2.2223/2 × 2.1453/2 × 28 × 10−12 × 0.1
× 4 × 10−6

10 × 10−3
V = 8.92 V.

Phase matching for the polarization modulator shown in Fig. 6.13 cannot be ad-
justed electrically but has to be accomplished by accurate selection and fabrication of
the electrode period. Figure 6.14 shows a few other configurations of waveguide polar-
ization modulators, which are fabricated on z-propagating LiNbO3 substrates. In the
configuration shown in Fig. 6.14(a), a y-cut substrate is used. A two-electrode structure
provides the horizontal modulation field component E0x for coupling between TE-like
and TM-like modes, which are polarized mainly in the x and y directions, respectively.
The two polarizations have the same ordinary index because the propagation direction
is along the optical axis of the crystal. The only phase mismatch between the TE-like
and the TM-like modes is caused by modal dispersion. Because modal dispersion is
small in a weakly guiding waveguide, it need not be intentionally compensated if the
coupling coefficient is made sufficiently large so that |κ| � δ. Therefore, a fixed bias
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(a)

(b) (c)

Figure 6.14 Three configurations for z-propagating waveguide polarization modulators (a) on
y-cut LiNbO3, (b) and (c) on x-cut LiNbO3. The x̂ , ŷ, and ẑ unit vectors represent the principal
axes of the crystal.

voltage can be used to provide a large bias |κ| to reduce the effect of the phase mismatch
effectively. A similar situation applies to polarization modulators fabricated in III–V
semiconductors, as can be seen from (6.34). In fact, because a III–V semiconductor is
not birefringent, the waveguide can be fabricated along any direction, not necessarily
parallel to a crystal axis, for modes with different polarizations to suffer only modal
dispersion.

In z-propagating LiNbO3 waveguides, the slight modal dispersion can be further
compensated, if desired, by applying an E0y component in addition to E0x . This can
be done using a three-electrode configuration with asymmetrically applied voltages, as
shown in Fig. 6.14(b), or using an asymmetrically placed two-electrode configuration
with one electrode directly on top of the waveguide, as shown in Fig. 6.14(c). Compen-
sation of the phase mismatch can be accomplished by adjusting E0y through the applied
voltage because E0y induces equal but opposite changes in the refractive indices along
x and y directions, as can be seen from (6.27).

6.5 Traveling-wave modulators

At a low modulation frequency, the time it takes for the optical wave to travel through
an electro-optic modulator is short compared to the modulation period. This situation
is characterized by the condition that f τtr < 1, where f is the modulation frequency
and τtr is the transit time for the optical wave to propagate through the modulator.
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In this case, the modulator can be considered as a lumped device because its length
is small compared to the wavelength of the modulation field. The 3-dB modulation
bandwidth, f3dB, of a lumped electro-optic modulator is determined by both the transit
time τtr of the optical wave and the RC time constant τRC of the lumped driving circuit
including the loading effects of the modulator. Because τRC > τtr for most lumped
modulators, the modulation bandwidth of a lumped modulator is usually determined
by its RC time constant so that

f3dB = 1

2πτRC

. (6.92)

The value of τRC for a modulator of a given resistance, such as 50 �, increases with
the length l of its electrode because the capacitance increases with this length. For a
lumped LiNbO3 waveguide modulator, the product f3dBl typically falls in the range of
1–3 GHz cm. Therefore, the modulation bandwidth of a lumped LiNbO3 is limited to
a few gigahertz at best.

In many applications, however, the modulation frequency is in the microwave or
millimeter-wave range to take advantage of the high-bandwidth capacity of the optical
carrier wave. The modulation efficiency of a lumped modulator drops drastically at high
modulation frequencies because of its RC-limited frequency response. This problem
can be overcome by using a traveling-wave configuration for the modulator and by
matching the phase velocity of the microwave modulation field to that of the optical
wave in the traveling-wave modulator.

The electrodes of a traveling-wave modulator are made of strip transmission lines,
as shown in Fig. 6.15. The electrodes are specifically designed for traveling-wave
interactions. The high-frequency modulation signal is injected at one end, propagates
along the same direction as the optical wave, and terminates at the end of the electrode
transmission line. The traveling-wave configuration inherently requires the use of the
transverse modulation scheme. This, however, is consistent with the configurations of
most guided-wave devices. Therefore, traveling-wave modulation can be applied to a
large variety of guided-wave devices, including single-waveguide phase modulators,
Mach–Zehnder interferometers, and directional coupler switches, to meet the demand

Figure 6.15 Traveling-wave phase modulator.
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for high-frequency modulation and switching very often found in the applications of
guided-wave devices.

Two key factors determine the modulation bandwidth of a traveling-wave modu-
lator: (1) phase-velocity mismatch between the optical wave in the waveguide and
the microwave in the transmission line and (2) frequency-dependent attenuation of
the microwave modulation signal as it propagates along the transmission line. These
parameters are determined by the waveguide material, the details of the waveguide
structure, and the design of the transmission line. A transmission line has a character-
istic impedance, Z , given by

Z =
√

L

C
, (6.93)

where L and C are, respectively, the inductance and capacitance per unit length of the
transmission line. The phase velocity, vm

p , of a microwave electrical signal propagating
in a transmission line is

vm
p = 1√

LC
= c

nm
, (6.94)

where nm is the refractive index of the microwave in the transmission line. For a
microwave transmission line on a LiNbO3 substrate, nm ≈ 4.225 with variations around
this value caused by variations in the structure and parameters of the transmission line.
The microwave traveling in the transmission line suffers a loss characterized by a
frequency-dependent power attenuation coefficient of αm, thus a voltage attenuation
coefficient of αm/2. The modulation signal sent from the input end of the modulator
is then characterized by the following space- and time-dependent traveling microwave
voltage throughout the electrode:

V (z, t) = Vpke−αmz/2 cos

[
2π f

(
z

vm
p

− t

)]
, (6.95)

where Vpk is the peak modulation voltage and f is the modulation frequency of the
microwave signal. The phase velocity, vo

p, of a guided optical wave is determined by
its frequency ω and propagation constant β as

vo
p = ω

β
= c

nβ

, (6.96)

where nβ is the effective refractive index of the guided optical wave.
Because an optical wavefront entering the input end of the electrode at time t arrives

at location z at a later time of t + z/vo
p, it sees a space- and time-varying voltage of

V (z, t + z/vo
p), rather than V (z, t), as it travels through the waveguide in the modulator.

Therefore, the electro-optically induced change in the propagation constant of the
guided optical wave as a function of modulation frequency varies with space and time
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as follows:

�β( f, z, t) = �βpke−αmz/2 cos
[
2π f

(τVM

l
z − t

)]
, (6.97)

where �βpk is the change corresponding to a constant peak voltage Vpk and

τVM =
∣∣∣∣∣ l

vm
p

− l

vo
p

∣∣∣∣∣ = l

c
|nm − nβ | (6.98)

is an effective temporal walk-off between the wavefronts of the optical wave and the
microwave due to the velocity mismatch between them. The electro-optically induced
phase shift for the optical wave at the output end of the modulator as a function of the
modulation frequency and time can be found as

�ϕ( f, t)=
l∫

0

�β( f, z, t)dz =�ϕpk(0)
1

l

l∫
0

e−αmz/2 cos
[
2π f

(τVM

l
z − t

)]
dz, (6.99)

where �ϕpk(0) = �βpkl is the phase shift induced by a constant voltage Vpk at f = 0.
Instead of carrying out the integration in (6.99), we examine two important limiting
cases in the following.

1. Bandwidth limited by velocity mismatch. If τVM is significant but αm ≈ 0, the
integral in (6.99) yields

�ϕ( f, t) = �ϕpk( f ) cos
[
2π f

(
t − τVM

2

)]
, (6.100)

where

�ϕpk( f ) = �ϕpk(0)
sin π f τVM

π f τVM

(6.101)

is the modulation-frequency-dependent peak phase shift. By setting �ϕpk( f3dB) =
�ϕpk(0)/2, the 3-dB modulation bandwidth limited by velocity mismatch is found
to be

f VM
3dB ≈ 2

πτVM

= 2c

πl|nm − nβ | . (6.102)

2. Bandwidth limited by microwave attenuation. If the phase velocities of the
optical wave and the microwave signal are perfectly matched, we have τVM = 0.
The modulation bandwidth is then only limited by the increasing loss of the strip
line at high frequencies characterized by αm( f ) as a function of the modulation
frequency. In this limit, the integral in (6.99) yields

�ϕ( f, t) = �ϕpk( f ) cos 2π f t, (6.103)
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where

�ϕpk( f ) = �ϕpk(0)
1 − e−αm( f )l/2

αm( f )l/2
(6.104)

is a function of the modulation frequency through the frequency dependence of
αm. By setting �ϕpk( f3dB) = �ϕpk(0)/2, the 3-dB modulation bandwidth limited by
attenuation in the transmission line is found to be determined by

αm( f3dB) ≈ 3.2

l
. (6.105)

The frequency dependence of the attenuation coefficient of a transmission line is usu-
ally characterized by αm = a f 1/2, where a is a constant. Then the 3-dB modulation
bandwidth limited by attenuation can be expressed as

f att
3dB ≈

(
3.2

al

)2

. (6.106)

A figure of merit for a modulator is its power–bandwidth ratio, P/ f3dB, which mea-
sures the power cost of imposing a unit bandwidth of information on the optical carrier.
The required microwave power to drive the modulator depends on the impedance Zs of
the microwave source and the impedance Z of the modulator. The standard impedance
for the microwave source is Zs = 50 �. It is desired that the impedance Z of the modu-
lator matches Zs as closely as possible for the most efficient delivery of the microwave
power to the modulator, but perfect match is often not possible because of design con-
straints. In the general situation when Z �= Zs, the power required from the microwave
source for a peak modulation voltage Vpk on the modulator is

P = V 2
pk

2Zs

1

1 − [(Zs − Z )/(Zs + Z )]2 . (6.107)

For a modulator such as a Mach–Zehnder interferometer that requires a total phase
variation from 0 to π for the full range of its operation, only a peak voltage of Vpk =
Vπ/2 is required by biasing the device at Vb = Vπ/2 so that the full swing of the
microwave voltage from −Vpk to Vpk provides the voltage variations from 0 to Vπ .
The P/ f3dB ratio for a properly designed traveling-wave modulator is generally much
smaller than that for a comparable lumped modulator, reflecting a much improved
performance.

EXAMPLE 6.9 Properly designed transmission lines are used for the electrodes of the x-cut,
y-propagating LiNbO3 Mach–Zehnder waveguide interferometric modulator shown in
Fig. 6.8(a) and discussed in Example 6.6. The transmission line electrodes have an
impedance of Z = 30 �; a microwave index of nm = 4.225; and a frequency-dependent
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microwave power attenuation coefficient of αm = a f 1/2, with a = 2 dB cm−1 GHz−1/2.
It is driven by a microwave source of impedance Zs = 50 �. Find the 3-dB modula-
tion bandwidth and the P/ f3dB ratio of this traveling-wave Mach–Zehnder waveguide
interferometric modulator for the TE-like mode at λ = 1.3 µm.

Solution From Example 6.6, we find that the length of the electrodes is l = 12.5 mm,
and the half-wave voltage for the TE-like mode is Vπ = 6 V. We also find that nβ ≈
ne = 2.145 for the TE-like mode of this device. We then find that τVM = 86.7 ps, and
that the bandwidth limited by velocity mismatch is

f VM
3dB = 2 × 3 × 108

π × 12.5 × 10−3 × |4.225 − 2.145| Hz = 7.3 GHz

using (6.102). To find the bandwidth limited by attenuation, we first convert the attenu-
ation coefficient measured in decibels per centimeter into that measured per centimeter
using the relation in (3.91). Therefore, a = 2 dB cm−1 GHz−1/2 = 0.46 cm−1 GHz−1/2.
We then find that the bandwidth limited by attenuation is

f att
3dB =

(
3.2

0.46 × 1.25

)2

GHz = 31 GHz

using (6.106). Because f att
3dB > f VM

3dB , the bandwidth of this modulator is limited by
velocity mismatch to be f3dB = 7.3 GHz.

By biasing the modulator at Vb = Vπ/2 = 3 V, the device can be modulated with a
peak voltage of Vpk = Vπ/2 = 3 V. With Z = 30 � and Zs = 50 �, it is then found
that P = 96 mW using (6.107). Thus, the modulator has a power–bandwidth ratio of
P/ f3dB = 13.15 mW GHz−1.

PROBLEMS

6.2.1 Is it possible to make a Pockels cell for electro-optic modulation using silicon
or ordinary glass? Explain.

6.2.2 Verify the angle of rotation of principal axes and the principal indices of refrac-
tion given in (6.29) and (6.30), respectively, which are induced by an electric
field E0y through the Pockels effect in LiNbO3. Use the parameters listed in
Table 6.2 to evaluate the rotation angle θ of the y and z axes and the changes in
the principal indices at λ = 1 µm induced by an applied field of 1 MV m−1.

6.2.3 Find the principal axes and their corresponding principal indices of refraction
as a result of the Pockels effect in LiNbO3 when the electric field is applied
along the x axis. Use the parameters listed in Table 6.2 to evaluate the changes
at λ = 1 µm in the principal indices and the crystal birefringence caused by an
applied field of 1 MV m−1.
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6.2.4 Consider a uniaxial crystal of 622 symmetry such as CdS, in which the only
nonvanishing Pockels coefficients are r52 = −r41. The uniaxial optical axis is
taken to be the z axis. The ordinary index of refraction is no, and the extraordinary
index is ne.
a. With an applied DC voltage polarized in an arbitrary direction, write down

the nonvanishing elements of the �χ tensor in terms of the nonvanishing
electro-optic coefficients.

b. Show that by applying a DC voltage along the x axis, the crystal becomes
biaxial. Find the new refractive indices as a function of the applied DC electric
field.

6.2.5 KTP is a biaxial crystal of mm2 symmetry that has five nonvanishing Pockels
coefficients, r13, r23, r33, r42, and r51. An electric field E0 is applied along its z
principal axis.
a. Write down the index ellipsoid equation and the dielectric permittivity tensor

as a function of the applied electric field.
b. Find the principal axes and their corresponding principal indices as a function

of the applied electric field as a result of the Pockels effect.
c. Use the parameters of KTP listed in Table 6.2 to find the changes at λ = 1 µm

in the principal indices and in the birefringence of the crystal caused by an
applied field of E0 = 1 MV m−1.

6.2.6 Answer the questions in Problem 6.2.5 for the KTP crystal in the case when E0

is applied along the y principal axis.
6.2.7 Answer the questions in Problem 6.2.5 for the KTP crystal in the case when E0

is applied along the x principal axis.
6.2.8 A 43m crystal, such as GaAs, has cubic crystal symmetry and isotropic linear

optical properties. It can become birefringent due to the Pockels effect when a
DC electric field is applied.
a. A DC electric field of E0 = E0(ŷ cos θ + ẑ sin θ ) is applied to the crystal in

the yz plane, where θ is the angle between the DC field polarization and the
y principal axis. Find the new principal axes and their corresponding new
principal refractive indices.

b. With this DC field applied to the crystal at a given angle θ , how do you arrange
the polarization of a linearly polarized optical beam propagating along the
x principal axis so that it remains linearly polarized along its entire path
through the crystal?

c. If the linearly polarized optical beam propagates along the z principal axis,
how would you arrange the directions of polarization for the DC and optical
fields so that the beam remains linearly polarized along its entire path through
the crystal?

6.2.9 BaTiO3 is a uniaxial crystal of 4mm symmetry with no = 2.44 and ne = 2.37
at the optical wavelength of 546 nm. Take ẑ to be the optical axis. Its only



281 Problems

nonvanishing electro-optic coefficients are r33 = 23 pm V−1, r13 = r23 = 8 pm
V−1, and r42 = r51 = 820 pm V−1.
a. Consider a beam at 546 nm wavelength traveling through a BaTiO3 crystal

of 1 mm thickness along the y axis of the crystal. If the wave is linearly
polarized in the xz plane but not along the x or z axis, what is its state of
polarization at its exit from the crystal?

b. In principle we can apply a DC electric field on the crystal to keep the
beam linearly polarized along its entire path of propagation through the
crystal. Along which direction should this voltage be applied for this pur-
pose? What is this voltage? Do you see any practical problem with this
proposal?

c. What happens to the optical axis of the crystal if we apply a DC electric field
along the y direction? Explain.

6.3.1 What is the advantage of transverse modulation over longitudinal modulation
for an electro-optic modulator?

6.3.2 A KTP transverse phase modulator for λ = 1 µm has the configuration shown
in Fig. 6.2(a) with the modulation voltage applied along its z axis. Answer each
of the following questions for optical waves polarized in x , y, and z directions,
respectively, under different possible arrangements.
a. Find the phase modulation depth ϕpk as a function of the parameters of KTP,

the dimensions of the modulator, and the peak modulation voltage Vpk.
b. Use the parameters given in Table 6.2 to find the peak modulation voltage

required for a phase modulation depth of ϕpk = π for a bulk modulator of
dimensions of d = 3 mm and l = 6 mm.

c. Find the peak modulation voltage required for a phase modulation depth
ϕpk = π for a waveguide modulator that has dimensions of d = 3 µm and
l = 6 mm.

6.3.3 A KTP longitudinal phase modulator for λ = 1 µm has the configuration shown
in Fig. 6.2(b) with the modulation voltage applied along its z axis. Answer each
of the following questions for optical waves polarized in x , y, and z directions,
respectively, if possible, under different possible arrangements.
a. Find the phase modulation depth ϕpk as a function of the parameters of KTP,

the dimensions of the modulator, and the peak modulation voltage Vpk.
b. Use the parameters given in Table 6.2 to find the peak modulation voltage

required for a phase modulation depth of ϕpk = π for a bulk modulator that
has dimensions of d = 3 mm and l = 6 mm.

c. Compare the result obtained in (b) with that in Problem 6.3.2(b) of the trans-
verse modulator. Explain the difference.

6.3.4 A KTP transverse polarization modulator for λ = 1 µm has the configuration
shown in Fig. 6.3(a) with the modulation voltage applied along its z axis and
the optical wave propagating in the x direction.
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a. Express the phase retardation �ϕ between the y- and z-polarized components
of the optical wave as a function of the parameters of KTP, the dimensions
of the modulator, and the modulation voltage V .

b. Use the parameters given in Table 6.2 to find the bias voltage Vb re-
quired for compensation of the intrinsic birefringence of KTP and the
voltage differential, Vπ − Vb, between the half-wave voltage and the bias
voltage for a waveguide modulator that has dimensions of d = 5 µm and
l = 5 mm.

6.3.5 A III–V semiconductor is an electro-optic crystal that has 43m symmetry and
an index of refraction no. A DC electric field E0 is applied to the crystal in
the [001] crystallographic direction. A light beam at a wavelength λ travels in
the [110] direction. Its polarization makes an angle of 45◦ with respect to the
[001] axis.
a. Show that the plane of polarization is rotated by 90◦ after the light has traveled

a distance of

l = λ

n3
or41 E0

.

b. What is changed if the DC electric field is turned by 90◦ but is still transverse
to the direction of wave propagation, i.e., if the DC field is now parallel to
the [110] direction?

6.3.6 KDP is a uniaxial crystal of 42m symmetry. Its optical axis is the z axis.
a. In an application of KDP for electro-optic phase modulation, describe

how you would arrange the principal axes of the crystal with respect to
the DC and optical field polarization directions in the longitudinal and
transverse modulation schemes, respectively. Show the arrangements with
sketches.

b. Find the half-wave voltage for an optical beam at λ = 1 µm wavelength in
the longitudinal modulation scheme.

c. What arrangement is necessary so that the half-wave voltage in the transverse
modulation scheme is half that of the longitudinal modulation scheme found
in (b)?

6.3.7 The electro-optic crystal ADP is uniaxial, with the z axis being the optical axis.
A DC voltage is applied in the z direction.
a. It is used as a polarization modulator in a longitudinal modulation scheme

with a linearly polarized input beam at 1 µm wavelength propagating in the
z direction. How do you arrange the polarization of the input beam with
respect to the principal axes of the crystal so that it will be rotated by 90◦

after it passes through the crystal if the magnitude of the DC voltage is
properly adjusted? What is this voltage? If the voltage is then reduced by
one half, what happens to the polarization of the output light? If rotation of
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the linear polarization by 60◦ rather than 90◦ is desired, what should you
do?

b. Answer the same questions in (a) if the optical wave propagates in the xy
plane while any possible walk-off is avoided.

6.3.8 Design GaAs transverse electro-optic polarization and intensity modulators that
require no bias voltage. Compare them to LiNbO3 transverse modulators and
GaAs longitudinal modulators for the same functions.

6.4.1 Give the names of three important types of interferometers and sketch their basic
structures.

6.4.2 In this problem, we consider the effect of imbalance between the two arms of
a waveguide interferometer. The waveguides in the two arms support only the
dominant TE mode. However, due to fabrication errors, the input and output
Y-junction couplers deviate slightly from ideal 3-dB couplers. As a result, the
input coupler splits the input power with a ratio of (1 + δ1)/(1 − δ1) between
the two arms, while the output coupler has an imbalance of (1 + δ2)/(1 − δ2)
between the two arms.
a. Show that the extinction ratio for this interferometer is given by

ER = 20 log
1 + [(1 − δ2

1)(1 − δ2
2)]1/2 + δ1δ2

δ1 + δ2
. (6.108)

b. Assume that δ1 = δ2 = δ. For an extinction ratio of 30 dB, how much imper-
fection can the device tolerate?

6.4.3 A z-cut, x-propagating LiNbO3 Mach–Zehnder waveguide interferometer as
shown in Fig. 6.8(b) is used as an electro-optic amplitude modulator for an
optical wave at 1.55 µm wavelength. The two arms of the interferometer are
single-mode waveguides at this wavelength. The waveguides are weakly guiding
such that the propagation constants of the guided modes are very close to those
determined by the material properties alone. The electrodes are separated by a
gap of se = 18 µm and are designed to cover most of the waveguide regions such
that the overlap factors for the TE-like and TM-like modes are �TE = �TM =
0.45. At 1.55 µm, we have no = 2.213, ne = 2.137, r33 = 30.8 pm V−1, and
r13 = 8.6 pm V−1 for LiNbO3.
a. If the electrodes have an equal length of l = 1 cm, what are the half-wave

voltages for the TE-like and TM-like modes, respectively?
b. If the electrodes are designed such that the interferometer functions as a

lumped modulator, what are the highest modulation frequencies for the TE-
like and TM-like modes, respectively?

c. If the electrodes are designed as transmission lines with an impedance Z =
50 �, what are the power–bandwidth ratios for the TE-like and TM-like
modes of this device, respectively?
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6.4.4 A symmetric Mach–Zehnder electro-optic waveguide modulator with 3-dB cou-
plers at the input and output ends, as shown in Fig. 6.16, is fabricated on GaAs.
At the optical wavelength of interest, λ = 1.3 µm, the single-mode waveguides
have a confinement factor of � = 0.75 for both TE-like and TM-like modes.
The linear refractive index is no = 3.48, and the nonvanishing Pockels coeffi-
cients are r41 = r52 = r63 = 1.2 pm V−1 for GaAs at this wavelength. The gap
between the electrodes is se = 3 µm, and the length of them is l = 4.25 mm.
For the following questions, assume that an input optical wave at 1.3 µm is
launched into port 1.

Figure 6.16 Symmetric Mach–Zehnder electro-optic waveguide modulator with 3-dB couplers.
The x̂ , ŷ, and ẑ unit vectors represent the original principal axes of the crystal, and X̂ , Ŷ , and Ẑ
represent its new principal axes.

a. If the input light is launched into the TE-like mode, what is the minimum
voltage that is needed to have equal intensity at output ports 3 and 4?

b. If the device is used as a switch for the TE-like mode, what is the switching
voltage between the parallel state and the cross state?

c. What is the highest modulation frequency of the device if it is a lumped
modulator with a capacitance of 1 pF and a resistance of 100 �?

d. If the device is designed in the form of a traveling-wave modulator with
Z = 50 � for the transmission-line electrodes, what is the average power for
high-frequency switching operation?

e. Can the device be used as an electro-optic switch for the TM-like mode? If you
answer positively, what is the switching voltage? If you answer negatively,
give an explanation.

6.4.5 A single-pole-double-throw electro-optic switch consists of an electro-optically
modulated Mach–Zehnder interferometer that is connected to a 50 : 50 power-
splitting Y-junction waveguide at the input end and to a 3-dB directional coupler
at the output end, as shown in Fig. 6.17. The two channels of the device are
identical single-mode waveguides, and the 3-dB coupler at the output end is
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perfectly phase matched. A modulation voltage is applied to the lower arm of
the interferometer to cause a phase difference �ϕ between the waves traveling
through the two separate arms of the interferometer. Therefore, at the beginning
of the output 3-dB coupler, the fields in the two channels are of equal magnitude
but that in channel b has a phase shift of �ϕ with respect to that in channel a.

Figure 6.17 Single-pole-double-throw electro-optic switch with Y-junction input and 3-dB coupler
output.

a. If the coupling coefficient of the 3-dB coupler is κ , which is a real parameter,
what is the shortest possible length of the coupler?

b. Show that the output power in channel a is given by

Pout
a = Pin

2
(1 − sin �ϕ), (6.109)

and that in channel b is given by

Pout
b = Pin

2
(1 + sin �ϕ), (6.110)

where Pin is the power launched into the device at the input end.
6.4.6 Consider a single-pole-double-throw electro-optic switch as shown in Fig. 6.17

and considered in Problem 6.4.5 that is fabricated on an x-cut, y-propagating
LiNbO3 substrate. The length of the electrodes is l = 6 mm, and the gap between
them is se = 5 µm. The effective overlap factor is approximately the same for
the TE-like and TM-like modes: �TE = �TM = 0.7. At the desired operating
wavelength of λ = 1.55 µm, we find no = 2.213, ne = 2.137, r33 = 30.8 pm
V−1, and r13 = 8.6 pm V−1 for LiNbO3.
a. What is the minimum voltage needed for the output power to be concentrated

in only one channel if the device is operated in the TE-like mode? What is
the minimum voltage change required in order to switch the output power
completely from one channel to the other?

b. Answer the questions in (a) for the operation in TM-like mode.
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6.4.7 What is the shortcoming of an ordinary electro-optic directional coupler switch
with uniform electrodes? What can be done to overcome this limitation?

6.4.8 By solving the coupled-mode equations discussed in Section 4.2, show that the
coupling efficiency of the reversed-�β directional coupler shown in Fig. 6.11(a)
is that given by (6.85). Note that because the second section of the coupler has a
different phase mismatch from that of the first section, the input conditions for the
second section are Ã2(0) = Ã1(l/2)ei(βa+κaa )l/2 and B̃2(0) = B̃1(l/2)ei(βb+κbb)l/2,
where βa and βb include the induced phase mismatch such that δ = (βb − βa)/2.

6.4.9 A reversed-�β directional coupler switch as shown in Fig. 6.11(a) for the
TM-like mode at λ = 1.3 µm is fabricated on a z-cut, x-propagating LiNbO3

substrate with the same waveguide and electrode parameters as those of the
uniform-�β directional coupler switch described in Example 6.7. Find the volt-
ages to reach the cross and parallel states, respectively, if the length of the
device is chosen to be (a) l = lPM

c , (b) l = √
2lPM

c , and (c) l = 2lPM
c , where lPM

c

is the coupling length found for the uniform-�β directional coupler switch in
Example 6.7.

6.4.10 The concept of the reversed-�β directional coupler discussed in Section 6.4 can
be extended to have any even number of 2m sections of periodically reversed
�β. If all sections have an equal length of l/2m and ηs is the coupling efficiency
of a single section, which can be obtained by replacing l with l/2m in (6.82),
the output coupling efficiency of the entire coupler of length l can be expressed
as

η = sin2 κeffl, (6.111)

where

κeff = 2m

l
sin−1√ηs. (6.112)

Show that the coupling efficiency given by (6.85) for a two-section device can
be expressed in this form with m = 1.

6.4.11 What is the basic requirement for the functioning of an electro-optic waveguide
polarization modulator? What else is often also necessary in order to make such
a device efficient?

6.4.12 Find the coupling coefficient for the polarization modulator shown in
Fig. 6.14(a) using the coupled-mode theory. A LiNbO3 device has electrodes of
an equal length of l = 2 cm, a gap of se = 8 µm between the two electrodes, a
waveguide geometry of �EM = 2/π , and a phase mismatch of δ = 1.25 cm−1

between its TE-like and TM-like modes. Plot the relative TE and TM output
powers as a function of the modulation voltage for this device when it is operated
with a TE-polarized input beam at λ = 0.632 µm. What are the voltage and the
percentage of power conversion to the TM polarization at the first peak? What
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is the required voltage for a power conversion efficiency of more than 90%?
What improvement can be realized if the phase mismatch is reduced by 80% to
δ = 0.5 cm−1?

6.4.13 In this problem, we compare the principles and operating conditions of the
three types of guided-wave electro-optic devices: the Mach–Zehnder waveguide
interferometer, the directional coupler switch, and the TE–TM mode converter
based on x-cut, y-propagating LiNbO3.
a. What is the basic operation principle of each device? What are the differences

in the concepts of these devices?
b. What is the function of the applied voltage in the operation of each device?
c. How is phase matching accomplished for each device?

6.5.1 What is the factor that fundamentally limits the modulation bandwidth of a
lumped electro-optic modulator? What are the primary factors that determine
the modulation bandwidth of a traveling-wave electro-optic modulator?

6.5.2 Find the 3-dB modulation bandwidth and the P/ f3dB ratio for the TM-like mode
of the traveling-wave Mach–Zehnder waveguide interferometric modulator con-
sidered in Example 6.9.

6.5.3 If the device considered in Problem 6.4.6 functions as a traveling-wave modu-
lator with its electrodes made of microstrip lines of nm = 4.225, what are the
maximum modulation frequencies for the TE-like and TM-like modes, respec-
tively?
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7 Magneto-optic devices

Magneto-optic materials have unique physical properties that offer the opportunity
of constructing devices with many special functions not possible from other photonic
devices. The most significant of these properties are that the linear magneto-optic effect
can produce circular birefringence and that, unlike other optical effects in dielectric
media, it is nonreciprocal. All practical magneto-optic devices exploit one or both
of these two properties. Important applications of these devices include polarization
control, optical isolation, optical modulation, and magneto-optic recording. The basic
principles of magneto-optic effects, as well as the functions of various magneto-optic
devices based on these effects, are considered in this chapter.

7.1 Magneto-optic effects

Because magneto-optic effects are intimately connected to the magnetic properties of
materials, we first briefly summarize the fundamental magnetic properties of materials.
To a certain degree there is a parallelism between the electric and the magnetic prop-
erties of materials, but this parallelism is not complete. We shall pay attention to the
similarities and differences between these properties in order to gain an appreciation
of the uniqueness of magneto-optic devices.

Following the similarity between (1.1) and (1.2), a magnetic susceptibility tensor,
χm, analogous to the electric susceptibility tensor χ can be defined to describe the
magnetization induced by a magnetic field. In parallel with (1.54) and (1.55) for electric
fields, we have, for magnetic fields,

M(k, ω) = χm(k, ω) · H(k, ω) (7.1)

and

B(k, ω) = µ0H(k, ω) + µ0M(k, ω) = µ(k, ω) · H(k, ω). (7.2)

In general, magnetic permeability

µ = µ0(1 + χm) (7.3)

289
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is a tensor for an anisotropic material. As mentioned in Section 1.1, in any material there
is no physical basis to specify a magnetization induced by the magnetic component
of an electromagnetic field at an optical frequency. Because the electric and magnetic
components in an electromagnetic field are mutually coupled, it is not physically mean-
ingful to define an optically induced magnetization that is separate from the optically
induced electric polarization. Consequently, at an optical frequency ω, χm(ω) = 0 and
µ(ω) = µ0 in all materials, including anisotropic ones.

In magnetostatics, however, a nonvanishing magnetization in response to an exter-
nally applied magnetic field can appear in a material. In this situation, a nonvanishing
magnetic susceptibility tensorχm is meaningful andµ clearly differs from µ0. Bothχm

and µ are symmetric tensors. They can be diagonalized with real, orthogonal principal
axes in a manner similar to the diagonalization of the symmetric χ and ε tensors of a
nonmagnetic dielectric material that shows no optical activity. A fundamental difference
between the electric and the magnetic properties of materials is that while the principal
dielectric susceptibilities are always positive, as mentioned in Section 1.6, the principal
magnetic susceptibilities of lossless magnetic materials can be either positive or nega-
tive. A material is referred to as paramagnetic if its principal magnetic susceptibilities
are positive and as diamagnetic if they are negative. While the dielectric susceptibilities
of ordinary materials are typically on the order of 1–10, the magnetic susceptibilities
of paramagnetic and diamagnetic materials are extremely small, typically on the order
of ±10−5.

In a diamagnetic material there are no intrinsic magnetic dipole moments. The nega-
tive magnetization in such a material results from the magnetic dipole moments induced
by an external magnetic field, which are always aligned in opposition to the inducing
field. In contrast, a paramagnetic material consists of atoms or ions that have intrinsic
magnetic dipole moments. Above a certain temperature that is characteristic of a par-
ticular paramagnetic material, these magnetic dipoles are randomly oriented in thermal
equilibrium. In the presence of an externally applied magnetic field, these dipoles tend
to align in the direction of the magnetic field and overshadow all diamagnetic effects in
the material, resulting in a net positive magnetization. A few crystals are paramagnetic
along one principal axis but diamagnetic along another, however.

In some paramagnetic solids, the intrinsic magnetic dipole moments can become
orderly oriented in the absence of an external magnetic field due to their mutual inter-
actions if the temperature is reduced below a certain critical value. Such solids are called
magnetically ordered. A magnetically ordered solid whose intrinsic magnetic dipoles
tend to line up in the same direction has a spontaneous magnetization and is called a
ferromagnetic material, or a ferromagnet. Examples of ferromagnets are Fe, Co, Ni, Gd,
Dy, and the alloy MnBi. The intrinsic magnetic dipoles in a magnetically ordered solid
can also assume alternate antiparallel directions. This ordering can still result in a net
spontaneous magnetization if the alternating dipoles are different and their moments
do not cancel. Materials with this kind of property are called ferrimagnetic materials,
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or ferrimagnets. The most important ferrimagnetic materials are the rare-earth iron gar-
nets, particularly Y3Fe5O12 (YIG), and the rare-earth transition-metal (RE–TM) alloys,
such as GdFe, GdCo, TbFe, GdTbFe, TbFeCo, etc. If antiparallel alignment of the al-
ternating dipoles in a solid results in complete cancellation of their magnetic moments,
there is no net spontaneous magnetization though the solid is magnetically ordered.
Such a solid is called an antiferromagnetic material, or an antiferromagnet. Examples
of antiferromagnets are Cr, FeO, CoO, NiO, FeF2, CoF2, CoCO3, and many garnets,
such as Ca3Cr2Ge3O12, Ca3Mn2Ge3O12, and Mn3Al2Si3O12. The critical temperature,
Tc, is called the Curie temperature for a ferromagnetic or ferrimagnetic material and
the Néel temperature for an antiferromagnetic material. Above Tc, these materials are
paramagnetic with small magnetic susceptibilities. In a ferromagnetic or ferrimagnetic
material the value of the magnetic susceptibility diverges at Tc as the spontaneous mag-
netization appears. In an antiferromagnetic material, however, no spontaneous mag-
netization occurs. The magnetic susceptibility of an antiferromagnet merely reaches a
finite maximum value at a temperature slightly above Tc.

Macroscopic magnetic domains having different magnetization orientations nor-
mally exist in a ferromagnetic or ferrimagnetic material below its Curie temperature.
Consequently, the material appears to be only weakly magnetized or completely un-
magnetized. By applying an external magnetic field, the domains that are oriented along
the field grow at the expense of the adversely oriented ones, thus increasing the total
net magnetization of the material. This process is reversible in weak magnetic fields
but shows the characteristics of a hysteresis in strong fields. The largest magnetization
reached is the saturation magnetization, Ms, beyond which the magnetization does
not increase further with increasing magnetic field. Properties analogous to ferromag-
netism also exist in some dielectric materials called ferroelectrics. In a ferroelectric
material, a spontaneous polarization appears below its Curie temperature. Examples of
ferroelectric crystals are KDP, BaTiO3, LiNbO3, and KNbO3.

Because χm = 0 and µ = µ0 at optical frequencies, the response of a material,
irrespective of whether it is magnetic or nonmagnetic, to an optical field at a frequency
ω is fully described by its electric susceptibility χ(ω) and, equivalently, by its electric
permittivity ε(ω). A material does respond to a static magnetic field, H0, however. Its
optical properties can be changed by its response to H0, resulting in various magneto-
optic effects. The electric susceptibility and electric permittivity at an optical frequency
ω thus become a function of H0:

P(ω, H0) = ε0χ(ω, H0) · E(ω) = ε0χ(ω) · E(ω) + ε0�χ(ω, H0) · E(ω) (7.4)

and

D(ω, H0) = ε(ω, H0) · E(ω) = ε(ω) · E(ω) + �ε(ω, H0) · E(ω), (7.5)

where χ(ω) = χ(ω, H0 = 0) and ε(ω) = ε(ω, H0 = 0) represent the intrinsic proper-
ties of the medium in the absence of the magnetic field. In the case of a ferromagnetic
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or ferrimagnetic material, in which a static magnetization M0 exists, the properties of
the medium at an optical frequency are dependent on M0. Then, instead of (7.4) and
(7.5), we have

P(ω, M0) = ε0χ(ω, M0) · E(ω) = ε0χ(ω) · E(ω) + ε0�χ(ω, M0) · E(ω) (7.6)

and

D(ω, M0) = ε(ω, M0) · E(ω) = ε(ω) · E(ω) + �ε(ω, M0) · E(ω). (7.7)

While χ and ε are changed in the presence of H0 or M0, the magnetic permeability of
the material at an optical frequency remains the constant µ0, and the relation between
B(ω) and H(ω) remains independent of H0 or M0:

B(ω) = µ0H(ω). (7.8)

Therefore, magneto-optic effects are completely characterized by ε(ω, H0), if no int-
ernal magnetization is present, or by ε(ω, M0), if an internal magnetization is present.
In general, these effects are weak perturbations to the optical properties of the material.
The first-order, or linear, magneto-optic effect is characterized by a linear dependence
of ε on H0 or M0, and the second-order, or quadratic, magneto-optic effect results from
a quadratic dependence of ε on H0 or M0. Note that like electro-optic effects, both
first- and second-order magneto-optic effects are nonlinear optical effects.

The general description of magneto-optic effects in terms of ε(ω, H0) or ε(ω, M0)
is analogous to the general description of electro-optic effects in terms of ε(ω, E0).
The classification of first- and second-order magneto-optic effects is also analogous to
that of first- and second-order electro-optic effects. However, there are many important
fundamental differences between magneto-optic and electro-optic effects. These differ-
ences originate from basic distinctions in the electric and the magnetic characteristics
of materials and are mostly tied to the fact that electric and magnetic fields follow
different rules of transformation under space inversion and time reversal, as described
in Section 1.1. The major differences and their implications are summarized below.

1. Space-inversion symmetry. Materials with the space-inversion symmetry are
centrosymmetric. In such materials, no spontaneous electric polarization can exist,
and the first-order electro-optic effect also vanishes. However, neither a spontaneous
magnetization nor the first-order magneto-optic effect is not forbidden in a cen-
trosymmetric material. This difference is due to the fact that under space inversion,
the polar vectors P and E change sign, but the axial vectors M and H do not.
Therefore, amorphous solids can be ferromagnetic or ferrimagnetic but cannot be
ferroelectric. The first-order magneto-optic effect appears in gases and liquids, as
well as in amorphous solids and nonpolar cubic crystals, where the Pockels effect
does not exist.
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2. Time-reversal symmetry. Materials with the time-reversal symmetry are lossless
and reciprocal. A lossless dielectric material not subject to an external magnetic field
possesses time-reversal symmetry because it is reciprocal. Time-reversal symmetry is
lost in a dielectric material when it has a loss or gain, or when an external magnetic
field is applied to it. A magnetically ordered material, regardless of whether it is
lossless or not, is nonreciprocal and thus does not possess time-reversal symmetry.

3. Reciprocity. In an optical system that has time-reversal symmetry, an optical signal
can be run backward in time without changing the reality of the physics. This is
not possible if the medium involved is nonreciprocal or if it has a loss or gain.
However, there is a difference between the two possibilities that causes the time-
reversal symmetry to break down. In a nonreciprocal medium, there is no symmetry
in the interchange of the source and the detector of an optical signal. In contrast, the
symmetry in such an interchange exists in a reciprocal medium that has a loss or
gain. Therefore, only the magneto-optic system, being nonreciprocal, can provide
the function of optical isolation discussed in later sections. A lossy dielectric system,
despite its lack of time-reversal symmetry, is not capable of such a function.

4. Magnetic symmetry. The symmetry properties of dielectric materials discussed
in Chapters 1 and 6 are based on the considerations of spatial transformations only.
They are in fact the electric symmetry properties of materials. The magnetic symmetry
properties of materials have to be determined by considering spatial transformations
in combination with time-reversal transformation because magnetic structures do
not have time-reversal symmetry. The result is magnetic symmetry groups, called
Shubnikov’s groups, which are much more complicated than the ordinary symmetry
groups based solely on the electric structures of crystals. Therefore, general sym-
metry considerations for the magneto-optic effects in magnetically ordered crystals,
particularly in anisotropic ones, are quite complicated.

We first consider the magneto-optic effects in a material that is not magnetically
ordered, i.e., a paramagnet or a diamagnet. In such a material, operation of the time-
reversal transformation yields

εi j (ω, H0) = ε j i (ω, −H0) (7.9)

when the material is subject to an external magnetic field H0. This relation characterizes
the magneto-optic effects in a magnetically nonordered material. It is generally true
regardless of the symmetry property of the material. If the material is lossless, then its
dielectric permittivity tensor is Hermitian:

εi j (ω, H0) = ε∗
j i (ω, H0). (7.10)

If we express the real and imaginary parts of ε explicitly by writing εi j = ε′
i j + iε′′

i j , we
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find from combination of these two relations that

ε′
i j (ω, H0) = ε′

i j (ω, −H0) = ε′
j i (ω, H0) = ε′

j i (ω, −H0), (7.11)

ε′′
i j (ω, H0) = −ε′′

i j (ω, −H0) = −ε′′
j i (ω, H0) = ε′′

j i (ω, −H0). (7.12)

As a result, the magneto-optic effects in a magnetically nonordered, lossless material
can be generally described as

εi j (H0) = εi j + �εi j (H0) = εi j + iε0

∑
k

fi jk H0k + ε0

∑
k,l

ci jkl H0k H0l + · · · , (7.13)

where fi jk and ci jkl are real quantities that satisfy the following relations:

fi jk = − f jik, ci jkl = c jikl = ci jlk = c jilk . (7.14)

The linear dependence of εi j (H0) on the magnetic field appears only as antisymmet-
ric, imaginary components in the off-diagonal elements of the permittivity tensor. This
first-order magneto-optic effect results in circular birefringence; it manifests itself as,
notably, the Faraday effect and the magneto-optic Kerr effect discussed in the following
sections. The first-order magneto-optic effect and the phenomena resulting from it are
nonreciprocal. In any material, even a centrosymmetric one, that has a spontaneous
magnetization or is subject to an external magnetic field, the first-order magneto-optic
effect always exists, resulting in the nonreciprocity of such a material. In contrast,
the quadratic dependence on the magnetic field appears as symmetric, real compo-
nents in the permittivity tensor elements. This second-order magneto-optic effect is
reciprocal and is called the Cotton–Mouton effect. It causes a linear birefringence
in the material and is analogous to, but much weaker than, the electro-optic Kerr
effect.

Note that in expressing the magneto-optic effects in terms of (7.13) we have expanded
the elements of the permittivity tensor ε instead of expanding those of the relative
impermeability tensor η, as done in (6.14) for electro-optic effects. The reason is that
it is convenient to use the index ellipsoid in dealing with electro-optic effects but not
in treating magneto-optic effects. Instead, as we shall see later in this chapter, it is
convenient to use the permittivity tensor directly to treat magneto-optic effects. As
demonstrated in Section 6.1, the choice of using ε or η does not make a difference in
the final result and is only a matter of convenience.

The magneto-optic effects are relatively weak in comparison to, and tend to be
obscured by, any natural or structural birefringence that might exist in a material. For-
tunately, both first- and second-order magneto-optic effects exist in isotropic materials,
including noncrystals and cubic crystals. For these reasons, materials of particular inter-
est and practical importance for magneto-optic effects and their applications are those
in which any birefringence originated from other effects, such as material anisotropy or
inhomogeneity, does not exist or, if it exists, does not dominate the particular magneto-
optic effect of interest. Such materials include isotropic materials and, in some cases,



295 7.1 Magneto-optic effects

uniaxial crystals subject to a magnetic field that is parallel to the optical axis. For
magneto-optic effects in these materials, we can take the direction of H0 to be the z
direction without loss of generality. Then, H0 = H0z ẑ, and (7.13) yields

ε(H0) = ε0


n2

o + c⊥ H 2
0z i f H0z 0

−i f H0z n2
o + c⊥ H 2

0z 0
0 0 n2

e + c‖ H 2
0z


 , (7.15)

where f = f123, c⊥ = c1133 = c2233, and c‖ = c3333. Clearly, the Cotton–Mouton effect
results in a linear birefringence, which is insignificant unless (c‖ − c⊥)H 2

0z ≥ n2
e − n2

o.
This condition usually means that the material has to be isotropic or nearly isotropic
in order for the Cotton–Mouton effect to be observable. Note also that in order to
observe the Cotton–Mouton effect, the propagation direction of an optical wave has
to be perpendicular to the magnetic field direction so that an optical field component
parallel to H0 exists.

The magneto-optic effects in magnetically ordered crystals can be rather complicated
due to the magnetic symmetry properties of such crystals. However, for the same reasons
as described above, magnetically ordered materials of practical importance for device
applications are also isotropic materials and, in some cases, uniaxial crystals with the
magnetic field or the magnetization parallel to the optical axis. For a magnetically
ordered, lossless material that falls into one of these categories, (7.15) applies if it
is antiferromagnetic. In a ferromagnetic or ferrimagnetic material, the magneto-optic
effects are determined by its magnetization M0, rather than by any externally applied
magnetic field H0, despite the fact that the value and direction of M0 can be varied by
H0. Then, for M0 = M0z ẑ, ε(M0) can be expressed as

ε(M0) = ε0


 n2

⊥ iξ 0
−iξ n2

⊥ 0
0 0 n2

‖


 , (7.16)

where ξ , representing the first-order effect, is linearly dependent on M0z with the sym-
metry of ξ (M0z) = −ξ (−M0z), and n2

⊥ and n2
‖, accounting for the second-order effect,

are functions of M2
0z . In the case of an isotropic material, n2

‖ − n2
⊥ is proportional to

M2
0z , creating a magnetically induced linear birefringence. Because of this magnetic

linear birefringence, a ferromagnet or ferrimagnet that has an isotropic structure does
not really have isotropic optical properties. For the same reason, the so-called cubic
ferromagnetic or cubic ferrimagnetic crystals, such as YIG and other magnetic garnets,
are never really cubic. However, the magnetic linear birefringence is generally very
small, with n‖ − n⊥ on the order of a few ×10−5 at room temperature for most magnetic
garnets. In the case of a uniaxial crystal, the magnetic linear birefringence is dominated
by, and is difficult to separate from, the nonmagnetic natural birefringence of the
crystal.
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In the rest of this chapter, we shall restrict our discussions to magneto-optic effects
in isotropic materials or uniaxial crystals with H0, or M0, parallel to the optical axis.

7.2 Faraday effect

The Faraday effect is a phenomenon based on the propagation and transmission of an
optical wave through a material in the presence of a magnetic field. For the convenience
of a general discussion, we consider the ε tensor in the presence of a magnetic field
or a magnetization of the form given by (7.16). When there is an applied magnetic
field but no spontaneous magnetization, we identify the tensor elements, ξ , n⊥, and n‖,
with the corresponding elements in (7.15) as ξ = f H0z , n2

⊥ = n2
o + c⊥ H 2

0z , and n2
‖ =

n2
e + c‖ H0z . When there is a spontaneous magnetization, we follow the definitions of

ξ (M0z), n2
⊥(M2

0z), and n2
‖(M2

0z) in (7.16) because the effect is then completely determined
by the magnetization regardless of whether there is an applied magnetic field or not.

The eigenvalues and the corresponding eigenvectors of ε can be found by diagonal-
izing ε through the normal procedure (see Problem 7.2.1). By so doing, we find that
the eigenvalues are

ε+ = ε0(n2
⊥ − ξ ), ε− = ε0(n2

⊥ + ξ ), εz = ε0n2
‖, (7.17)

and the eigenvectors are, correspondingly,

ê+ = 1√
2

(x̂ + iŷ), ê− = 1√
2

(x̂ − iŷ), ẑ. (7.18)

The complex eigenvectors, ê+ and ê−, respectively, are the left- and right-circularly
polarized unit vectors defined in Section 1.4. These two complex unit vectors appear as
eigenvectors because the ε tensor in the presence of a magnetic field or a magnetization
is not symmetric. The eigenvalues are all real because ε is Hermitian. It is clearly not
possible to attach the meaning of the principal axes in real space to these complex
eigenvectors. Nonetheless, these eigenvectors still define the principal normal modes
of polarization for proper decomposition of the electric field components of an optical
wave that propagates in the medium:

D+ = ε+E+, D− = ε−E−, Dz = εz Ez. (7.19)

Therefore, ε+/ε0, ε−/ε0, and εz/ε0 are the principal dielectric constants for the three
normal modes. They define the following three principal indices of refraction:

n+ =
√

n2
⊥ − ξ ≈ n⊥ − ξ

2n⊥
, n− =

√
n2

⊥ + ξ ≈ n⊥ + ξ

2n⊥
, nz = n‖. (7.20)

The propagation constants for the normal modes are given by

k+ = n+ω

c
, k− = n−ω

c
, kz = nzω

c
. (7.21)
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When an optical wave propagates along the z axis, in either the positive z or the
negative z direction, the normal modes are the circularly polarized modes ê+ and ê−,
with propagation constants k+ and k−, respectively. As mentioned in Section 1.4, if the
wave propagates in the positive z direction, ê+ is the left-circular polarization and ê−
is the right-circular polarization. If the wave propagates in the negative z direction, ê+
becomes the right-circular polarization while ê− becomes the left-circular polarization.
In either situation, however, n+ and k+ defined above remain with ê+, and n− and k− still
belong to ê−. With a fixed z direction, the wavevectors for the two circularly polarized
normal modes are k+ = k+ ẑ and k− = k− ẑ, respectively, for forward propagation in
the positive z direction and are k+ = −k+ ẑ and k− = −k− ẑ, respectively, for backward
propagation in the negative z direction. Furthermore, we see from (7.20) that the values
of n+ and n−, thus also those of k+ and k−, do not depend on the wave propagation
direction. Instead, they depend only on the direction of H0, or that of M0 if an internal
magnetization exists. If an optical wave is initially circularly polarized, either left
or right, it is in one of the normal modes. It propagates with a single propagation
constant belonging to the circular polarization and maintains the same polarization
state throughout its path in the medium. If it is reflected to propagate in the opposite
direction, its handedness changes, but not its unit vector or its propagation constant. If
an optical wave is initially linearly or elliptically polarized, its field is a superposition
of the two circularly polarized normal modes. This field then decomposes into two
circularly polarized orthogonal components that propagate with different propagation
constants, k+ and k−. This phenomenon is called circular birefringence. It is known as
magnetic circular birefringence because it is caused by the magneto-optic effect.

A case of special interest is the propagation of a linearly polarized optical wave in
such a medium. Assume, without loss of generality, that the wave is initially linearly
polarized in the x direction at an arbitrary initial position z = 0:

E(0, t) = x̂Ee−iωt = E√
2

(ê+ + ê−)e−iωt , (7.22)

with E+ = E− = E/
√

2. Both circularly polarized components propagate as normal
modes with their respective propagation constants. When the wave propagates a distance
l in the positive z direction, we have

E(l, t) = ê+E+ exp[ik+ · ẑ(l − 0) − iωt] + ê−E− exp[ik− · ẑ(l − 0) − iωt]

= ê+E+ exp(ik+l − iωt) + ê−E− exp(ik−l − iωt)

= E
2

[
x̂
(

eik+l + eik−l
)

+ iŷ
(

eik+l − eik−l
)]

e−iωt

= E
(

x̂ cos
k− − k+

2
l + ŷ sin

k− − k+

2
l

)
exp

(
i
k+ + k−

2
l − iωt

)
. (7.23)

The optical field clearly remains linearly polarized because its x and y components are
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in phase, but its plane of polarization is rotated by an angle of

θF = tan−1 E y

E x
= k− − k+

2
l = π

λ
(n− − n+)l ≈ πξ

λn⊥
l. (7.24)

This magnetically induced rotation of the plane of polarization of a linearly polarized
optical wave is called Faraday rotation, and this phenomenon is known as the Faraday
effect. It can be shown that the plane of polarization rotates by the same amount in
the same sense if the wave propagates in the negative z direction for the same distance
l. Therefore, the sense of Faraday rotation is independent of the direction of wave
propagation (see Problem 7.2.4). A positive value for θ corresponds to a rotation from
the positive x axis to the positive y axis, which is counterclockwise rotation when
viewed facing against the direction of propagation. A device that provides the function
of the Faraday rotation is called a Faraday rotator.

In a paramagnetic or diamagnetic material, which has no internal magnetization, the
Faraday rotation for a linearly polarized wave propagating over a distance l is linearly
proportional to the externally applied magnetic field. The Faraday rotation angle in this
case is generally expressed as

θF = V H0zl, (7.25)

where

V = ω f

2cn⊥
= π f

λn⊥
(7.26)

is the Verdet constant (measured in radians per ampere). In the literature, the Verdet con-
stant is often quoted in Gaussian units (minutes per oersted per centimeter). The conver-
sion between Gaussian and SI units is 1 min Oe−1 cm−1 = 2.094 × 10−2 deg A−1 =
3.655 × 10−4 rad A−1. The Verdet constant defined in terms of (7.25) and given in
radians per ampere or degrees per ampere is convenient when the magnetic field is
generated by a current. In many practical situations, however, the magnetic field is
provided by a permanent magnet. Then, the Faraday rotation angle is often writ-
ten in terms of the magnetic induction as θF = V B0zl, and the unit of the Verdet
constant is correspondingly quoted as degrees per gauss per centimeter in the Gaus-
sian system or radians per tesla per meter in the SI system. The conversion between
Gaussian and SI units is 1◦ G−1 cm−1 = 106◦ T−1 m−1 = 1.745 × 104 rad T−1 m−1.
The conversion of units for the Verdet constant from one defined in terms of B0z to
one defined in terms of H0z is 1◦ G−1 cm−1 → 1◦ Oe−1 cm−1 for Gaussian units and
1 rad T−1 m−1 → 4π × 10−7 rad A−1 for SI units. The Verdet constant has positive
values for diamagnetic materials and negative values for paramagnetic materials. The
Verdet constants of some materials of interest are listed in Table 7.1. The Verdet con-
stant of a given material is a function of both optical wavelength and temperature. In the
optical spectral region, its absolute value usually increases when the optical wavelength
or the temperature decreases.
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Table 7.1 Verdet constants of representative paramagnetic and
diamagnetic materials at 300 K

Verdet constant
Wavelength

Material λ (nm) V (rad A−1) V (rad T−1 m−1)

Watera 589.3 4.79 × 10−6 3.81
Diamond 589.3 5.88 × 10−6 4.68
Quartz 589.3 6.07 × 10−6 4.84
Light flint glass 589.3 1.16 × 10−5 9.23
CS2 589.3 1.55 × 10−5 12.3
Pr3+–B glass 670 −8.88 × 10−5 −70.7
Pr3+–Al–Si glass 700 −7.24 × 10−5 −57.6
Tb3+–Al–Si glass 700 −7.89 × 10−5 −62.8
Dy3+–Al–Si glass 700 −9.94 × 10−5 −79.1
Pr3+–P glass 700 −4.50 × 10−5 −35.8
Tb3+–P glass 700 −5.48 × 10−5 −43.6
Ce3+–P glass 500 −1.19 × 10−4 −94.7

700 −4.82 × 10−5 −38.4
Pure silica glassb 532 6.00 × 10−6 4.77

632.8 3.93 × 10−6 3.13
785 3.24 × 10−6 2.58

TGGc 500 −2.74 × 10−4 −218
532 −2.39 × 10−4 −190
632.8 −1.68 × 10−4 −134
750 −1.01 × 10−4 −80
800 −8.17 × 10−5 −65

1064 −5.03 × 10−5 −40
1300 −2.51 × 10−5 −20

aHandbook of Optics, New York: McGraw-Hill, 1978, pp. 17-20, 17-21.
Same source for diamond, quartz, light flint glass, and CS2.
bTan, C. Z. and Arndt, J., Journal of Non-Crystalline Solids 222: 391–395,
1997; Journal of Physics & Chemistry of Solids 60: 1689–1692, 1999.
c Tb3Ga5O12: Barnes, N. P. and Petway, L. B., Journal of the Optical So-
ciety of America B 9: 1912–1915, 1992; Chen, X., Lavorel, B., Boquillon,
J. P., Saint-Loup, R., and Jannin, M., Solid-State Electronics 42: 1765–
1766, 1998; and assorted other sources.

In a ferromagnetic or ferrimagnetic material, which has an internal magnetization, ξ
is determined by the magnetization rather than by the applied magnetic field. The total
Faraday rotation angle for an optical wave traveling over a distance l through such a
material is simply

θF = ρF
M0z

Ms
l, (7.27)
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where M0z ≤ Ms is the existing magnetization in the material and Ms is the saturation
magnetization of the material. The Faraday rotation can be small if the material is not
sufficiently magnetized; it is maximized only when the material is fully magnetized to
reach its saturation magnetization. The Faraday rotation is then characterized by the
following specific Faraday rotation, or rotatory power:

ρF = ωξ (Ms)

2cn⊥
= πξ (Ms)

λn⊥
, (7.28)

which is the amount of rotation per unit length traversed by the optical wave in the
material at saturation magnetization. It has the unit of radians per meter, but is of-
ten quoted in the unit of degrees per centimeter. The conversion between them is
1◦ cm−1 = 1.745 rad m−1. The specific Faraday rotation can have either positive or
negative values. Many metallic ferromagnetic materials, such as Fe, Co, and Ni, have
very large values of specific Faraday rotation, but they also have very large absorption
coefficients and, consequently, are not very useful in many device applications that
require optical transmission. Therefore, a figure of merit for these materials is ρF/α,
often quoted in degrees per decibel, which measures the amount of Faraday rotation in
a medium for a certain amount of attenuation. The specific Faraday rotations of some
ferromagnetic and ferrimagnetic materials, together with their absorption coefficients
and figures of merit, are listed in Table 7.2. Both the specific Faraday rotation and the
absorption coefficient of a material are highly dependent on the optical wavelength and
the temperature. Similar to the Verdet constant of a paramagnetic or diamagnetic mat-
erial, the specific Faraday rotation of a ferromagnetic or ferrimagnetic material
normally increases when the temperature or the wavelength decreases. Significant
variations can occur in either direction, however, near the optical frequencies cor-
responding to ferromagnetic resonances in such materials, sometimes even chan-
ging the sign of the specific Faraday rotation in a given material at certain resonance
frequencies.

The Faraday effect is nonreciprocal. It has the characteristic that the sense of the
Faraday rotation in a particular material is independent of the direction of wave prop-
agation but is determined only by the direction of the external magnetic field, or that of
the magnetization if the material is ferromagnetic or ferrimagnetic. The expression for
θF in (7.25) holds true for propagation in either the parallel or the antiparallel direction
with respect to H0, and that for ρF in (7.28) is also valid for propagation in either di-
rection with respect to M0. The amount of the Faraday rotation is doubled, rather than
canceled, when an optical wave passing through a magneto-optic material is reflected
to retrace its original path in the opposite direction back to the starting point. This
phenomenon is a direct consequence of the fact discussed above that the propagation
constant associated with each circularly polarized eigenvector is independent of the
wave propagation direction and, therefore, is not changed by reflection.



301 7.2 Faraday effect

Table 7.2 Specific Faraday rotation of representative ferromagnetic and ferrimagnetic
materials at 300 K

Wavelength Specific rotation Absorption coefficient Figure of merit
Material λ (nm) ρF (◦ cm−1) α (dB cm−1) ρF/α (◦ dB−1)

Fea 546 3.5 × 105 3.3 × 106 0.11
Co 546 3.6 × 105 3.7 × 106 0.10
Ni 400 7.2 × 105 9.1 × 105 0.79
MnBi 632.8 5.3 × 105 3.3 × 106 0.16
YIGb 1064 280 65 4.3

1150 250 54 4.6
1200 240 50 4.8
1310 224 35 6.4
1550 216 23.8 9.1

YbBi : YIGc 1310 760 38 20
1550 404 15.7 25.8

Bi : YIGd 1550 −1250 2.7 463
Ce : YIGe 1310 −2510 9.8 256

1550 −1310 2.7 486

a Freiser, M. J., IEEE Transactions on Magnetics MAG-4: 152–161, 1968. Same source for Co and
Ni.
b Y3Fe5O12: Sekijima, T., Fuji, T., Wakino, K., and Okada, M., IEEE Transactions on Microwave
Theory and Techniques 47: 2294–2298, 1999; Zhao, W., Sensors and Actuators A 89: 250–254, 2001;
and assorted other sources. The absorption coefficients of YIG cited here are much higher than those
reported in old literature.
c YbyBix Y3−x−yFe5O12 with x = 1.03, y = 1.12: Zhao, W., Sensors and Actuators A 89: 250–254,
2001. The properties of YbBi : YIG vary with Yb and Bi concentrations.
d Bix Y3−x Fe5O12: Sekijima, T., Fuji, T., Wakino, K., and Okada, M., IEEE Transactions on Microwave
Theory and Techniques 47: 2294–2298, 1999. The properties of Bi : YIG vary with Bi concentration.
e Cex Y3−x Fe5O12 with x = 0.5: Sekijima, T., Fuji, T., Wakino, K., and Okada, M., IEEE Transactions
on Microwave Theory and Techniques 47: 2294–2298, 1999. The properties of Ce : YIG vary with
Ce concentration.

The Faraday rotation is positive when the value of θF, or that of ρF, is positive,
meaning that the rotation is counterclockwise when viewed in the direction against
that of H0, or that of M0 when an internal magnetization exists. Therefore, the sense
of positive Faraday rotation is the same as the electric current that generates H0 or,
in the case of ferromagnets and ferrimagnets, the current that can be conceptually
associated with M0. Using the right-hand rule, the axial vector corresponding to a
positive Faraday rotation points in the same direction as that of the H0 or M0 causing
the Faraday effect. For negative Faraday rotation, the sense of rotation is opposite to
that for positive Faraday rotation. Figure 7.1 summarizes these concepts.

The Faraday rotation in a diamagnetic material is positive because its Verdet constant
is positive, whereas that in a paramagnetic material is negative because its Verdet
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(a)

(b)

Figure 7.1 Positive Faraday rotation for an optical wave propagating in (a) a parallel direction and
(b) an antiparallel direction with respect to H0, or M0. The sense of positive rotation is the same as
the electric current that can be associated with H0, or M0. For negative Faraday rotation, the sense
of rotation is just the opposite.

constant is negative. The Faraday rotation in ferromagnets and ferrimagnets can be
either positive or negative.

EXAMPLE 7.1 A Faraday rotator consists of a TGG crystal in a magnetic field that has a flux
density of B0 = 0.5 T along the longitudinal axis of the crystal. If a Faraday rotation
angle of 45◦ is desired for a linearly polarized optical beam at 800 nm wavelength
traveling through the crystal, what should the crystal length be? In which sense is the
polarization of the wave rotated? If the beam is reflected back at the output end of the
crystal, what is the polarization direction of the reflected wave at the input end?

Solution From Table 7.1, V = −65 rad T−1 m−1 at 800 nm wavelength for TGG.
Because the value of V is negative but that of B0 is positive in this problem, the Faraday
rotation angle is negative. The sense of rotation for a negative Faraday angle is clockwise
when viewed facing against the direction of wave propagation. The desired Faraday
rotation angle is θF = −45◦ = −π/4 rad. Therefore, the required length of the crystal is

l = θF

V B0
= −π/4

−65 × 0.5
m = 0.024 m = 24 mm.

The total Faraday rotation angle of the reflected wave is double that of the single-pass
rotation angle. Thus, the reflected wave returning to the input end is linearly polarized
at 90◦ with respect to the polarization direction of the incident wave.

Besides attenuating the transmission of an optical wave, the optical absorption of a
material has some very interesting consequences on the Faraday effect. In the presence
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of absorption losses, both n+ and n− become complex. When the imaginary parts of n+
and n− do not have equal values, the two circularly polarized normal modes experience
different degrees of attenuation. This phenomenon is called circular dichroism, as
distinct from the linear dichroism between two linearly polarized modes. In the presence
of circular dichroism, a linearly polarized wave undergoing a Faraday rotation does not
remain linearly polarized but becomes elliptically polarized with a Faraday rotation
angle, θF, and a Faraday ellipticity, εF, given by (see Problem 7.2.8)

θF = Re
[π
λ

(n− − n+)l
]

≈ Re

[
πξ

λn⊥
l

]
, (7.29)

and

εF = tan−1tanh Im
[π
λ

(n− − n+)l
]

≈ tan−1tanh Im

[
πξ

λn⊥
l

]
. (7.30)

The absorption that is directly related to the magneto-optic effect makes ξ a complex
quantity with an imaginary part, ξ ′′. If the background material is relatively lossless
so that n′

⊥ � |n′′
⊥|, the circular dichroism is solely contributed by ξ ′′ and is known as

magnetic circular dichroism.
A material in which the normal modes of optical wave propagation are circularly

polarized is referred to as being optically active or optically gyroscopic. Such a ma-
terial exhibits circular birefringence. Certain nonmagnetic materials, such as quartz
and sugar solutions, possess natural optical activity in the absence of a magnetic field
or a magnetization. In analogy, the existence of a magnetically induced circular bire-
fringence in an otherwise optically nonactive material is sometimes called artificial,
or induced, optical activity. The similarities between these two phenomena are that
both have circularly polarized normal modes and both can cause circular birefringence
and circular dichroism. The plane of polarization of a linearly polarized wave can also
be rotated while propagating through a naturally optically active medium in a way
similar to Faraday rotation. The fundamental difference between them is that natural
optical activity is reciprocal, as mentioned in Section 1.4, whereas magnetically in-
duced optical activity is nonreciprocal. In the simplest case, natural optical activity can
be described by an ε tensor in the form of (7.16) but with ξ = γ k̂ · ẑ, where γ is a
characteristic constant of the medium. Because of this dependence on wavevector, the
values of k+ and k− associated with ê+ and ê− are exchanged when the propagation
direction is reversed. This characteristic, in contrast to the discussions immediately
following (7.21), manifests the fundamental difference between natural circular bire-
fringence and magnetic circular birefringence. As a result, when a linearly polarized
optical wave traverses a naturally optically active medium twice along the same path
but in opposite directions, the angle of rotation of its polarization gained in the forward
pass is exactly canceled by that obtained in the backward pass, thus returning the wave
back to its exact original polarization direction (see Problem 7.2.11). Whereas mag-
netically induced optical activity exists in all materials, natural optical activity cannot
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exist in centrosymmetric materials. In an otherwise centrosymmetric medium, such as
a liquid, the addition of molecules, such as sugar molecules, that cause optical activity
breaks the centrosymmetry of the system.

7.3 Magneto-optic Kerr effect

Reflection of a polarized optical wave from the surface of a material with an internal
magnetization or from that of one subject to an external magnetic field results in a
change of the polarization state and/or the reflectivity that is dependent on the magne-
tization or the magnetic field. This phenomenon is known as the magneto-optic Kerr
effect. It is totally unrelated to, and should not be confused with, the electro-optic Kerr
effect discussed in Chapter 6. The only connection between the two is that both were
discovered by J. C. Kerr. The magneto-optic Kerr effect stems from the same physical
origin as the Faraday effect. Both are first-order magneto-optic effects. The distinc-
tion between the two is that the Faraday effect is associated with light in transmission
whereas the Kerr effect is associated with light in reflection. The Kerr effect can be
observed from the surface of a material that has no internal magnetization but is subject
to an external magnetic field or from the surface of a ferromagnetic or ferrimagnetic
material. The latter is more important than the former in practical applications, and we
shall take it to be the case in the following discussions. The general concepts and the
results obtained can be applied to the former case in a similar fashion.

There are three configurations, shown in Fig. 7.2, of the magneto-optic Kerr effect.
In the polar Kerr effect, the magnetization M0 is normal to the surface of the magnetic
medium from which the optical wave is reflected. In the longitudinal Kerr effect, also
known as the meridional Kerr effect, M0 is parallel to the surface of the medium and
lies in the plane of incidence. In the transverse Kerr effect, also known as the equatorial
Kerr effect, M0 is normal to the plane of incidence.

Consider the simple and most common situation in which the incident optical wave
traveling in an isotropic, nonmagnetic medium is reflected from the surface of an
isotropic magnetic medium. The TE and TM polarizations are both normal modes for

(a) (b) (c)

Figure 7.2 Three configurations of magneto-optic Kerr effect: (a) polar Kerr effect,
(b) longitudinal Kerr effect, and (c) transverse Kerr effect.
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the incident and the reflected optical waves traveling in the isotropic, nonmagnetic
medium. However, they are not normal modes for the wave traveling in the magnetic
medium because of circular birefringence of the medium. Consequently, upon reflection
from the magnetic surface, the TE-polarized component of an incident wave can be
coupled to the TM-polarized component, and vice versa. All of the three Kerr effects
can then be generally expressed in terms of a tensor of reflection coefficients:[

E r
s

E r
p

]
=
[

rss rsp

rps rpp

][
E i

s

E i
p

]
, (7.31)

where the subscripts s and p represent TE and TM polarizations, for s and p waves,
respectively, and the superscripts i and r indicate incident and reflected fields, respec-
tively.

From the discussions in the preceding section, we know that only the electric field
components that are perpendicular to the magnetization interact with the magnetization
and see the circular birefringence. For polar and longitudinal Kerr effects, both TE
and TM polarizations interact with M0 because both have nonvanishing components
perpendicular to M0. This interaction results in nonvanishing rsp and rps due to coupling
between the TE- and TM-polarized fields through circular birefringence of the magnetic
medium. The values of rsp and rps are proportional to ξ . Their phases are different from
those of rss and rpp. Consequently, a linearly polarized incident wave is turned into an
elliptically polarized wave with the direction of its major axis rotated away from the
initial plane of polarization. Because rsp and rps are linearly dependent on M0, they
change sign when the direction of M0 is reversed. Consequently, both the angle of
rotation and the ellipticity of the elliptically polarized reflected wave change sign upon
reversing the direction of M0. For the transverse Kerr effect, only TM polarization
interacts with M0 because the electric field of the TE polarization is parallel to M0.
Then, rsp = rps = 0, and rss is independent of M0. The net effect is only a magnetically
induced change in rpp. This change is linearly proportional to ξ . It also changes sign
when the direction of M0 is reversed.

The Kerr effect in each configuration varies with the angle of incidence. In a majority
of cases, particularly in those with small incident angles, the polar configuration has a
larger effect than both longitudinal and transverse configurations. The Kerr effect in the
polar configuration increases as the angle of incidence decreases. At normal incidence,
the Kerr effect reaches its maximum in the polar configuration, but it vanishes in both
longitudinal and transverse configurations. Therefore, among the three different config-
urations in combination with all possible angles of incidence, the polar configuration at
normal incidence has the most pronounced Kerr effect and is most useful for practical
applications such as magneto-optic recording. It is also the simplest to analyze. In the
following, we consider this specific case.

We consider the polar Kerr effect at normal incidence from free space on the surface
of a ferromagnet or ferrimagnet. The magnetic material is assumed to be isotropic or
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(a) (b)

Figure 7.3 Polar Kerr effect at normal incidence: (a) configuration showing the designation of the
coordinates and the direction of the magnetization and (b) sense of Kerr rotation and that of Kerr
ellipticity with respect to the direction of magnetization for positive values of θK and εK.

uniaxial with its magnetization parallel to the optical axis along the z direction. The
incident wave propagates in the negative z direction while the reflected wave propagates
in the positive z direction, as is shown in Fig. 7.3(a). Without loss of generality in the
case under consideration, a linearly polarized incident beam can be assumed to be
polarized in the x direction:

Ei(z, t) = x̂Ee−ikz−iωt = E√
2

(ê+ + ê−)e−ikz−iωt . (7.32)

In free space, ê+ and ê− are also normal modes of propagation like x̂ , all of which
have the same propagation constant k. In addition, E+ = E− = E/

√
2. In the magnetic

material, x̂ is not a normal mode any more, and the normal modes ê+ and ê− have dif-
ferent propagation constants. As discussed in the preceding section, when the direction
of M0 is fixed, the values of the propagation constants k+ and k−, as well as those of
the principal indices of refraction n+ and n−, for the normal modes ê+ and ê−, respec-
tively, are independent of whether the wave propagates in a parallel or an antiparallel
direction with respect to the direction of M0. Only the handedness of ê+ and ê− is
interchanged when the propagation direction is reversed. As independent eigenmodes
with characteristic indices of refraction, the circularly polarized modes do not couple to
each other on reflection. They have the following clearly defined reflection coefficients
(see Problem 7.3.2):

r+ = 1 − n+
1 + n+

, r− = 1 − n−
1 + n−

, (7.33)

for the ê+ and ê− modes, respectively. According to the configuration defined in Fig. 7.3,
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the reflected wave propagates in the positive z direction. The wave reflected from
the magnetic surface back into free space, where ê+ and ê− modes have the same
propagation constant k, is then described by

Er(z, t) = ê+r+E+eikz−iωt + ê−r−E−eikz−iωt

= E√
2

(ê+r+ + ê−r−)eikz−iωt

= E
2

[x̂(r+ + r−) + iŷ(r+ − r−)] eikz−iωt . (7.34)

The x and y components of this reflected field are E r
x = E(r+ + r−)/2 and E r

y =
iE(r+ − r−)/2, respectively. Clearly, the reflected wave is elliptically polarized.

As described in Section 1.4, the characteristics of an elliptically polarized field can
be completely specified by either of the two sets of parameters: (α, ϕ) and (θ, ε). Using
(1.62), the parameters αK and ϕK that characterize the elliptically polarized field in
(7.34) are given by

tan αK eiϕK = E r
y

E r
x

= i
r+ − r−
r+ + r−

, (7.35)

where the subscript K for the parameters indicates their association with the Kerr
effect. Because it is generally true in practical magnetic materials that |r+ − r−| �
|r+ + r−|, the value of αK is very small. So are the values of the corresponding θK and
εK parameters. Using the relations in (1.66) and (1.67) in the limit of small values for
these parameters, we have

tan αK eiϕK ≈ αKeiϕK ≈ θK + iεK. (7.36)

Combining (7.35) and (7.36), we find

θK + iεK = i
r+ − r−
r+ + r−

= i
n+ − n−

n+n− − 1
≈ −i

ξ

n⊥(n2
⊥ − 1)

. (7.37)

Therefore, the Kerr rotation angle, θK, and the Kerr ellipticity, εK, are given by

θK = Im

[
ξ

n⊥(n2
⊥ − 1)

]
, εK = −Re

[
ξ

n⊥(n2
⊥ − 1)

]
, (7.38)

respectively. In case optical loss of nonmagnetic origin is small in the magnetic medium
so that |n′′

⊥| � n′
⊥, θK is caused solely by magnetic circular dichroism and is com-

pletely determined by ξ ′′ while εK is caused by magnetic circular birefringence and is
determined by ξ ′. Note the distinction between the Faraday effect and the Kerr effect.
Magnetic circular birefringence is the cause of Faraday rotation and Kerr ellipticity,
whereas magnetic circular dichroism is the mechanism behind Kerr rotation and Fara-
day ellipticity (see Problem 7.2.8).

As can be seen from (7.38), both θK and εK are linearly dependent on magnetization.
Both depend strongly on the optical wavelength. They are intrinsic properties of a
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magnetic material that are generally determined by direct measurement. Their values
are small, normally on the order of ±1◦ or less for most materials. Their signs are
defined in a manner similar to how the sign of Faraday rotation is defined: θK is positive
if the major axis of the ellipse describing the polarization of the reflected wave is rotated
away from the direction of linear polarization of the incident wave in a sense that can
be described by an axial vector pointing in the direction of M0, and εK is positive if
the elliptically polarized field at a fixed point in space rotates in the same sense as
the electric current that can be associated with M0. This convention is illustrated in
Fig. 7.3(b).

EXAMPLE 7.2 At 546 nm wavelength, iron at room temperature has a complex index of
refraction of n = 2.73 + i3.3 and, when fully magnetized, a complex linear magneto-
optic constant of ξ = −0.18 + i0.74. A linearly polarized optical wave at 546 nm is
normally incident on a fully magnetized iron surface in polar configuration, as shown
in Fig. 7.3. Find the Kerr rotation angle and the Kerr ellipticity of the reflected wave.

Solution Neglecting second-order magneto-optic effects, we can take n⊥ = n =
2.73 + i3.3. Then,

ξ

n⊥(n2
⊥ − 1)

= −0.18 + i0.74

(2.73 + i3.3)[(2.73 + i3.3)2 − 1]
= 0.0061 − i0.0074.

Using (7.38), we find that θK = −7.4 mrad ≈ −0.42◦ and εK = −6.1 mrad ≈ −0.35◦.
Because |θK| � 1 and |εK| � 1, the approximations made in (7.36) and (7.37) to obtain
(7.38) are valid.

7.4 Optical isolators and circulators

In an optical system, reflections and backscattering of light often cause serious prob-
lems ranging from noise in the photodetectors to instabilities in the light sources. A
feedback, even at an extremely low level, to a laser usually has a significant effect on the
laser characteristics. It can change the laser frequency, increase the laser noise, create
fluctuations in the laser intensity, lock the laser to a different mode of operation, or
drive the laser into instability, even chaos. A feedback to a photodetector or other parts
of an optical system also has many undesirable effects. Sometimes the problem is so
severe that it renders the entire system useless.

Optical isolators are needed to avoid such problems. An optical isolator is a nonre-
ciprocal device that transmits an optical wave in one direction but blocks it in the reverse
direction much as the function of a diode in an electric circuit. The key specifications
of an optical isolator are the insertion loss, the return loss, and the reverse isolation
of the device. The insertion loss is the attenuation of an optical signal propagating in
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(a) (b)

Figure 7.4 Diagrammatic illustration of an optical isolator with (a) a forward-propagating input
signal, P f

in, and (b) a backward-propagating input signal, Pb
in, together with the transmitted and

reflected components for defining the key specifications.

the forward direction through the optical isolator. The return loss specifies how well
the reflection of the forward-propagating signal is eliminated. Referring to Fig. 7.4(a),
they are defined as

Insertion loss = −10 log
P f

t

P f
in

, (7.39)

Return loss = −10 log
Pb

r

P f
in

. (7.40)

The reverse isolation is a measure of the isolation function of the device and is defined as
the attenuation of a backward-propagating optical signal through the isolator. Referring
to Fig. 7.4(b), it is given by

Reverse isolation = −10 log
Pb

t

Pb
in

. (7.41)

For a good isolator, it is desired that the value of the insertion loss be as low as
possible while those of the return loss and the reverse isolation be as high as possible.
Furthermore, the return loss has to be higher than the reverse isolation for a device to
be functionally useful.

In some systems, such as fiber-optic transmission systems, bidirectional transmission
with isolation from backscattering and reflections is necessary. This function can be
accomplished by an optical circulator, which loops an optical signal through successive
ports while blocking backscattered and reflected light. The diagrams in Fig. 7.5 illustrate
the function of a four-port optical circulator. A true optical circulator connects all ports
in an endless loop, as shown in Fig. 7.5(b). A quasi-optical circulator loops an optical
signal through successive ports but is not able to transmit it from the last port to the first
port. As an example of the application of optical circulators, Fig. 7.6 shows bidirectional
transmission in a single-fiber transmission line using one circulator on each end. Both
true circulators and quasi-circulators are acceptable for this particular application.

The key components of optical isolators and circulators are the Faraday rotators
because only the Faraday effect has the nonreciprocity in transmission required by
these devices. The most commonly used materials for Faraday rotators in these appli-
cations are the YIG crystal and bismuth-substituted rare-earth iron garnet films, such as
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(a) (b)

Figure 7.5 Diagrammatic illustration of (a) a four-port optical circulator and (b) its looping
function.

Figure 7.6 Schematic illustration of bidirectional transmission in a single fiber transmission line
using two circulators.

Bix Y3−x Fe5O12 (Bi : YIG), Gd3−x Bix Fe5O12, (YbTbBi)3Fe5O12, and many other differ-
ent compositions. These ferrimagnetic films have very large values of specific Faraday
rotation and are used for making very compact isolators and circulators. Paramagnetic
garnets, such as Tb3Ga5O12 (TGG) and Tb3Al5O12, and paramagnetic glasses, such as
terbium-doped glasses, are sometimes also used. Whether the material used is ferrimag-
netic or paramagnetic, it is normally placed in the magnetic field of a permanent magnet.
In the case of a ferrimagnetic garnet, the magnetic field keeps the garnet magnetized,
preferably at saturation magnetization for maximum efficiency.

Polarization-dependent isolators

The basic structure of an optical isolator consists of a Faraday rotator of total Faraday
rotation angle θF = 45◦ and two linear polarizers, as shown in Fig. 7.7(a). The axis of
the input polarizer can be arbitrarily oriented, but the axis of the output polarizer has
to be rotated by θp = 45◦ with respect to that of the input one in the same direction as
the polarization rotation caused by the Faraday rotator. An optical wave entering the
device in the forward direction through the input polarizer becomes linearly polarized
by this polarizer. The Faraday rotator then rotates its plane of polarization by 45◦ into
a direction parallel to the axis of the output polarizer. Therefore, the linearly polarized
wave emerging from the Faraday rotator is transmitted by the output polarizer without
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(a)

(b)

λ   

Figure 7.7 Basic structure and principle of polarization-dependent optical isolators. (a) The basic
structure of an optical isolator changes the polarization direction at the output. (b) The addition of a
properly oriented half-wave plate in the isolator restores the polarization back to its original
direction. λ/2 labels a half-wave plate.

attenuation. For reverse isolation, an optical wave of any polarization entering from the
output end is polarized by the output polarizer. Because Faraday rotation is independent
of wave propagation direction, the backward-propagating wave emerging from the
Faraday rotator has a linear polarization orthogonal to the axis of the input polarizer
and is thus blocked. To minimize the insertion loss in the application of this isolator,
the input optical wave clearly has to be linearly polarized in a direction parallel to the
axis of the input polarizer. After passing through the isolator, its plane of polarization
is rotated by 45◦ though it is still linearly polarized. Therefore, the basic isolator shown
in Fig. 7.7(a) changes the polarization direction of the optical wave. This problem can
be eliminated by adding a properly oriented half-wave plate and reorienting the output
polarizer, as shown in Fig. 7.7(b). Because the half-wave plate is a reciprocal element,
it does not interfere with the function of the isolator while restoring the polarization
direction. For both devices shown in Figs. 7.7(a) and (b), the function of the reverse
isolation is independent of the polarization of the backward-propagating wave.

To obtain a high return loss, the surfaces of every component along the optical path in
an isolator have to be antireflection coated. To eliminate any further residual reflection,
the facets of the components are sometimes cut or tilted at a small angle, typically
somewhere between 1◦ and 10◦. The antireflection coatings also serve the purpose of
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reducing the insertion loss. The limiting factor for insertion loss is the absorption of the
optical components, particularly that of the Faraday rotator. That part of the absorption
that contributes to circular dichroism also reduces the reverse isolation by making a
linearly polarized input wave elliptically polarized after its passage through the rotator.
Therefore, a Faraday rotator that has both a large specific rotation and a low absorption
coefficient is most desirable. In order to have a low insertion loss and a high reverse
isolation, it is also very important to choose polarizers of very high extinction ratios.
The extinction ratio of a polarizer is an intrinsic property of the polarizer that is defined
as

ER = −10 log
T⊥
T‖

= −10 log σ, (7.42)

where T‖ is the transmittance of an optical wave that is linearly polarized in a direction
parallel to the axis of the polarizer, T⊥ is that of its orthogonal polarization, and σ =
T⊥/T‖ is the extinction ratio in the linear scale. Other major factors that affect both the
insertion loss and the reverse isolation are the Faraday rotation angle θF and the Faraday
ellipticity εF generated by the Faraday rotator, as well as the angle θp between the axis of
the output polarizer and that of the input polarizer. For an isolator of the basic structure
shown in Fig. 7.7(a), where the input and output polarizers have extinction ratios σin

and σout, respectively, the insertion loss and the reverse isolation can be expressed,
respectively, as (see Problem 7.4.1)

Insertion loss = L0 − 10 log
[
cos2(θF − θp) + σout sin2(θF − θp) + (1 + σout)ε

2
F

]
,

(7.43)

Reverse isolation = L0 − 10 log
[
cos2(θF + θp) + σin sin2(θF + θp) + (1 + σin)ε2

F

]
,

(7.44)

where L0 is the background optical loss including absorption losses of the Faraday
rotator and the polarizers and residual reflection losses due to imperfect antireflection
coating of the optical surfaces in the system. It can be seen from (7.43) and (7.44) that
the insertion loss is minimized while the reverse isolation is maximized by choosing
θF = θp = 45◦. The effect on the reverse isolation caused by a deviation of θF from 45◦

can be removed by adjusting θp for a counter deviation of the same amount, albeit at the
expense of increasing the insertion loss. Similar relations, with proper modifications
according to a particular structure, can be written for the isolator shown in Fig. 7.7(b),
as well as for those of other structures.

EXAMPLE 7.3 An optical isolator of the structure shown in Fig. 7.7(a) has a background
optical loss of 0.5 dB. Both the input and output polarizers have the same extinction ratio
of 40 dB. The Faraday ellipticity generated by the Faraday rotator is negligibly small.
If the Faraday rotation angle has the ideal value of θF = 45◦, what are the minimum



313 7.4 Optical isolators and circulators

insertion loss and the maximum reverse isolation? If the Faraday rotation angle is off
by only 1◦ from this ideal value, what is the reverse isolation when the insertion loss
is minimized? What is the insertion loss when the reverse isolation is maximized?
Is it better to minimize the insertion loss or to maximize the reverse isolation in this
situation?

Solution From (7.42), we find that σ = 10−4 for both input and output polarizers of a
40-dB extinction ratio. When θF = 45◦, the minimum insertion loss and the maximum
reverse isolation are simultaneously achieved by setting θp = 45◦. Because L0 = 0.5 dB
and εF ≈ 0, we find from (7.43) and (7.44) that

Minimum insertion loss = L0 = 0.5 dB,

Maximum reverse isolation = L0 − 10 log σ = 40.5 dB.

When the Faraday rotation angle is off by 1◦, we have θF = 45 ± 1◦. To minimize the
insertion loss, we choose θp = θF = 45 ± 1◦ so that θF − θp = 0, but then θF + θp =
90 ± 2◦. With this choice of θp, the insertion loss remains at its minimum value of
0.5 dB according to (7.43), but the reverse isolation becomes

L0 − 10 log
[
cos2(90◦ ± 2◦) + σ sin2(90◦ ± 2◦)

] ≈ 29.3 dB.

To maximize the reverse isolation, we have to choose θp = 45 ∓ 1◦ so that θF + θp =
90◦, but then θF − θp = ±2◦. With this choice of θp, the reverse isolation remains at its
maximum value of 40.5 dB according to (7.44), but the insertion loss becomes

L0 − 10 log
[
cos2(±2◦) + σ sin2(±2◦)

] = 0.505 dB.

We find that there is a significant reduction of 11.2 dB in the reverse isolation when the
insertion loss is minimized, but there is only a negligibly small increase of 0.005 dB in
the insertion loss when the reverse isolation is maximized. One clearly should choose
to maximize the reverse isolation by maintaining θF + θp = 90◦ when θF deviates from
its ideal value of 45◦.

For most applications, a reverse isolation of 30 dB or higher is usually required.
Isolators with a reverse isolation of 30–50 dB, an insertion loss of 1–2 dB or less, and
a return loss higher than 60 dB are commercially available. Some applications require
a reverse isolation of 60 dB or more. In this case, two separate isolators in tandem or a
two-stage cascaded optical isolator, such as the one shown in Fig. 7.8, can be used to
increase the reverse isolation, but at the expense of increasing the insertion loss.

Though high-quality polarizers and coatings of relatively large bandwidths are com-
mon, an optical isolator generally has a narrow bandwidth because the rotation angle
of a given Faraday rotator depends strongly on the optical wavelength. However, wave-
length tunability is possible. It can be done by moving the rotator rod into or out of the
surrounding magnet for more or less exposure to the magnetic field, thus maintaining
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Figure 7.8 Two-stage cascaded optical isolator.

the Faraday rotation angle at 45◦ for varying wavelengths. In the case of the two-stage
cascaded isolator shown in Fig. 7.8, the amount of the Faraday rotation can alterna-
tively be controlled by varying the separation between the two rotators to adjust the
influence of the stray magnetic field from each stage on the rotator rod of the other.
The performance of an isolator also varies with temperature because of the temperature
dependence of the Faraday rotator. To some extent, this temperature dependence can
be compensated by applying similar techniques.

Polarization-independent isolators

Although the isolators discussed above extinguish light of any polarization in a reverse
direction, their transmission in the forward direction is polarization dependent because
of the input polarizer. In some applications, the sensitivity of an isolator to the polariza-
tion of the input optical signal is a major drawback. For instance, the polarization state
of an optical wave transmitted through a non-polarization-preserving optical fiber not
only is uncertain but also changes with environmental conditions. It is therefore highly
desirable that polarization-independent isolators be used in fiber-optic transmission
systems, as well as in the applications of in-line isolation for fiber amplifiers. In some
other instances, light sources are capable of emitting in different polarization states,
sometimes for very useful applications such as in the cases of polarization-switching
and polarization-bistable lasers. Clearly, for optical isolation in systems containing such
sources, polarization-independent isolators are absolutely necessary.

The function of an isolator inherently relies on the manipulation of the polarization
state of an optical wave using a Faraday rotator. Therefore, the way to construct a
polarization-independent isolator is not to avoid manipulating the polarization. Because
an optical wave of any polarization state can be decomposed into two orthogonal linearly
polarized components, the basic idea behind any polarization-independent isolator is
to separate these two components at the input, manipulate them separately through the
nonreciprocal Faraday rotator, and then combine them at the output. This concept can
be implemented with a variety of designs. Figure 7.9 shows one example. This device
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λ  λ  

Figure 7.9 Polarization-independent optical isolator and its principle of operation. The
polarization-dependent isolator used in this design maintains input polarization direction at
the output. PBS indicates a polarizing beam splitter. λ/2 labels a half-wave plate.

λ  

Figure 7.10 Polarization-independent optical isolator used in a fiber transmission line and its
principle of operation. The coupling between the fiber tip and the isolator can be carried out in
many different ways and is not specified here. PBS indicates a polarizing beam splitter. λ/2 labels
a half-wave plate.

consists of two birefringent plates functioning as polarizing beam splitters based on
the phenomenon of spatial beam walk-off discussed in Section 1.6, two half-wave
plates for orienting the polarization in proper directions, and a polarization-dependent
isolator that maintains the input polarization direction at the output, such as the one
shown in Fig. 7.7(b) or that shown in Fig. 7.8. In the forward direction, an input wave
of any polarization state is split by the input birefringent plate into two orthogonal
linearly polarized components. The first half-wave plate rotates the polarization of the
lower beam into the same direction as the upper beam, which is the proper polarization
direction for transmission through the polarization-dependent isolator. At the output,
the second half-wave plate again rotates the polarization of the lower beam by 90◦,
turning it back to its original input polarization direction. The output birefringent plate
then combines the two beams into one of the same polarization state as that of the input
wave. The isolation function of this device in the reverse direction is self-evident from
the function of the polarization-dependent isolator inside the device.

For a polarization-independent isolator used in a fiber transmission line, the isolation
function can be accomplished by sufficiently displacing the backward-propagating
optical wave, instead of extinguishing it, so that it does not couple into the input
fiber core in the reverse direction. Using this principle, the structure of a polarization-
independent isolator can be substantially simplified. Figure 7.10 shows one design of
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λ  

Figure 7.11 Polarization-dependent circulator. The circulator loops in the sequence
1 → 2 → 3 → 4 → 1 among the four nonreciprocal ports. Ports 5 and 6 are reciprocal ports and
are not part of the circulator loop. PBS indicates a polarizing beam splitter. λ/2 labels a half-wave
plate.

such a device, which consists of two birefringent plates, one 45◦ Faraday rotator, and one
half-wave plate. Also illustrated in Fig. 7.10 is the principle of operation of this device.

Polarization-dependent circulators

Figure 7.11 shows the structure of a polarization-dependent optical circulator. It consists
of two polarizing beam splitters, one 45◦ Faraday rotator, and one half-wave plate.
A polarizing beam splitter cube splits s- and p-polarized waves by transmitting and
reflecting them, respectively, at the interface of the prisms that constitute the cube.
The orientation of the half-wave plate is such that the net polarization rotation angle
through the combination of the Faraday rotator and the half-wave plate is zero for a
linearly polarized forward-propagating wave, but is 90◦ for a backward-propagating
wave. Therefore, an s-polarized wave entering port 1 exits port 2 s polarized; an s-
polarized wave entering port 2 exits port 3 p polarized; a p-polarized wave entering
port 3 exits port 4 p polarized; finally, a p-polarized wave entering port 4 exits port
1 s polarized. It can be seen that these four ports are nonreciprocal because wave
propagation in the reverse sequence is forbidden. For each of these four nonreciprocal
ports, the input and output polarizations are the same. Ports 5 and 6 in this particular
device are reciprocal ports and are not part of the circulator. If an optical wave of the
wrong polarization direction enters a particular nonreciprocal port, it cannot enter the
loop of the circulator but is lost through one of the reciprocal ports. For example, if
a p-polarized wave enters port 1, it is lost through port 5. Consequently, the device is
clearly a four-port polarization-dependent circulator. Other designs based on similar
concepts are also possible.
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λ  

Figure 7.12 Four-port polarization-independent optical circulator. The looping sequence is
1 → 2 → 3 → 4 → 1. PBS indicates a polarizing beam splitter. λ/2 labels a half-wave plate.

Polarization-independent circulators

For the same reasons as those discussed above for the need of polarization-independent
isolators, there is also a need for polarization-independent optical circulators in many
applications. The basic idea for constructing a polarization-independent circulator is
also the same as that discussed above for constructing a polarization-independent isola-
tor. Following that concept, a polarization-independent circulator can be implemented
by making slight modifications on the structure of the polarization-dependent circulator
shown in Fig. 7.11. The resulting device is shown in Fig. 7.12. In this device, an opti-
cal wave of any polarization state entering any of the four nonreciprocal ports is split
into two orthogonally polarized beams. Both are transmitted through the combination
of a 45◦ Faraday rotator and a properly oriented half-wave plate. The two beams are
combined afterwards at the succeeding port. The polarization state of the output beam
is the same as that of the input beam. It can be easily verified that the device functions
as a four-port circulator and that its function is independent of the polarization of the
optical wave propagating through it.

Other designs are also possible for polarization-independent circulators. In particular,
the polarizing beam splitter cubes can be replaced by birefringent plates to make very
compact devices, but at the expense of increasing the complexity of the device.

7.5 Magneto-optic modulators and sensors

Polarization and amplitude modulators that are based on the Faraday effect and are
driven by currents or magnetic fields can be easily realized. In comparison to the electro-
optic polarization and amplitude modulators discussed in Chapter 6, these devices
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have similar functions but quite different characteristics. The mechanism responsible
for magneto-optic polarization modulators is circular birefringence, whereas that for
electro-optic polarization modulators is linear birefringence. If the input optical wave
is linearly polarized, the output of an ideal magneto-optic polarization modulator is
linearly polarized, but that of an electro-optic polarization modulator is elliptically
polarized in general and is linearly polarized only when the applied voltage is equal
to an integral multiple of the half-wave voltage. The basic structure of both magneto-
optic and electro-optic amplitude modulators consists of a polarization modulator and
a polarizer–analyzer pair.

The basic configuration of a magneto-optic amplitude modulator is simply that of
the polarization-dependent optical isolator shown in Fig. 7.7(a), except that θF for a
modulator can have any value and the polarizer at the output is now referred to as
the analyzer. Usually, there is absorption loss in the Faraday rotator, as well as in
the polarizer and the analyzer. If the Faraday rotator has negligible magnetic circular
dichroism, the transmitted optical wave remains linearly polarized, though attenuated.
The intensity transmittance of the modulator is then given by

T = Iout

Iin
= T0e−αl cos2(θF − θp) = T0

2
e−αl[1 + cos 2(θF − θp)], (7.45)

where α and l are the absorption coefficient and the length, respectively, of the Faraday
rotator and T0 accounts for losses in the polarizer, the analyzer, and other components
such as the nonmagnetic substrate supporting a magnetic film. If the input optical wave
is linearly polarized, 0 < T0 ≤ 1. If it is unpolarized, 0 < T0 ≤ 1/2.

If the absolute value of θF is small, θp is chosen to be 45◦ for a linear response. Then
T varies linearly with θF:

T = T0

2
e−αl(1 + sin 2θF) ≈ T0e−αl

(
1

2
+ θF

)
. (7.46)

In this case, the transmittance T has the highest sensitivity in response to variations in
the value of θF around the point θF = 0. Because θF of a paramagnetic or diamagnetic
Faraday rotator is linearly proportional to the magnetic field, and thus is also linearly
proportional to the modulating current, a linear response that has a high sensitivity over
a large dynamic range can be obtained for a modulator using such a Faraday rotator. In
certain applications, however, a value of θp different from 45◦ is chosen for objectives
other than a linear response.

To measure the value of the Faraday rotation angle θF independently of the fluctua-
tions in the input optical intensity and the absolute calibration of the detection system,
a dual-quadrature polarimetric configuration as shown in Fig. 7.13 can be employed.
In this configuration, a polarizing beam splitter, such as a Glan prism, is used to di-
vide the output beam into two orthogonal linearly polarized beams detected by two
differential photodetectors of matched responsivity. The output readings from the two
photodetectors are taken to compute a normalized difference signal
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Figure 7.13 Dual-quadrature polarimetric detection scheme for the measurement of the Faraday
rotation angle. PD indicates a photodetector. PBS indicates a polarizing beam splitter.

DS = P1 − P2

P1 + P2
, (7.47)

where P1 and P2 are the optical powers of the two beams detected by the differential
photodetectors. By properly orienting the principal axis of the polarizing beam splitter
with respect to that of the input polarizer for θp = 45◦ so that DS = 0 when θF = 0, the
difference signal has the following dependence on the Faraday rotation angle:

DS = sin 2θF. (7.48)

Current and magnetic field sensors

A magneto-optic amplitude modulator can be used as a current or magnetic field sen-
sor. For this kind of application, a linear response is desired. Therefore, the absolute
value of θF is kept small within the range of operation, and the analyzer is carefully
oriented at θp = 45◦ with respect to the polarizer so that (7.46) is valid. Paramagnetic
or diamagnetic materials, such as silica glass, terbium-doped glasses, TGG, Bi12SiO20

(BSO), and Bi12GeO20 (BGO), are used.
There are two different types of current sensors, namely, linked and unlinked. In a

linked sensor, the conductor carrying the current to be measured is fully enclosed by
the magneto-optic medium. In an unlinked device, the magneto-optic medium does not
fully enclose the conductor.

Figure 7.14 shows two examples of the linked type. In Fig. 7.14(a), the Faraday rotator
is made of a monolithic magneto-optic material, such as a single piece of silica glass.
The conductor passes through the central opening of this medium. A linearly polarized
wave is guided by total internal reflection at the properly shaped corners to travel closely
along the magnetic field line encircling the conductor. To multiply the Faraday rotation
angle, sophisticated optical design for guiding the optical wave to encircle multiple
turns around the conductor can be implemented over this basic structure. Alternatively,
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(a) (b)

Figure 7.14 Magneto-optic current sensors of linked type that use (a) a monolithic Faraday rotator
and (b) an optical fiber wound around the conductor as the Faraday rotator.

an optical fiber wound around the conductor, shown in Fig. 7.14(b), can be used. For
a linked current sensor, the Faraday rotation angle given in (7.25) has to be modified
because both the magnetic field and the optical path loop around the current. Using
Ampere’s law, we have

θF = V
∮

H0 · dl = V Ni, (7.49)

where N is the number of turns for which the optical path encircles the current i .

EXAMPLE 7.4 A fiber-optic current sensor of linked type as shown in Fig. 7.14(b) consists
of 20 turns of silica fiber wound around the conductor. The detection scheme has the
dual-quadrature polarimetric configuration shown in Fig. 7.13 with a polarized He–Ne
laser at λ = 632.8 nm used as the light source. The sensor has a dynamic range from 1 A
to 1 kA. What is the smallest Faraday rotation angle the sensor is required to measure?
What is the largest linearity error in the measurement?

Solution At 632.8 nm wavelength, the Verdet constant of silica fiber is V = 3.93 ×
10−6 rad A−1 from Table 7.1. To obtain a current reading of 1 A at the lower end of
its dynamic range, the sensor, with N = 20, is required to be capable of measuring a
Faraday rotation angle as small as

θF = 3.939 × 10−6 × 20 × 1 rad = 78.6 µrad.

Linearity error of the measurement occurs because of the difference between the signal,
DS = sin 2θF, that is obtained from the reading of the sensor according to (7.48) and
the response, 2θF, that is directly proportional to the current. It increases as the absolute
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(a)

(b)

(c)

Figure 7.15 Magneto-optic current sensors of unlinked type that have (a) a simple structure, (b) a
sophisticated structure with a flux concentrator and multiple optical passes through the rotator, and
(c) a Faraday rotator in a solenoid. FR represents a Faraday rotator. TR means total reflection.

value of θF increases from zero toward π/2. Therefore, the largest linearity error occurs
at the upper end of the dynamic range at i = 1 kA for which θF = 78.6 mrad. It is found
as

Linearity error = 1 − sin 2θF

2θF

= 1 − sin(2 × 0.0786)

2 × 0.0786
≈ 0.41%.

Unlinked magneto-optic current sensors can also take a variety of different structures.
Figure 7.15(a) shows a simple structure, whereas a more sophisticated structure is
shown in Fig. 7.15(b). In the latter structure, the Faraday rotator is placed in the gap of
a magnetic core that serves the purpose of a flux concentrator to enhance the sensitivity
of the device by concentrating the magnetic flux through the rotator. Figure 7.15(c)
shows yet another structure consisting of a Faraday rotator that is looped around by
a current-carrying conductor in the form of a solenoid; the relation in (7.49) also
applies to this structure with N being the number of turns of the conducting wire in
the solenoid. One can also take advantage of the nonreciprocal nature of the Faraday
effect to multiply the total Faraday rotation angle in an unlinked device, thus further
enhancing the sensitivity of the device, by properly applying total-reflection coatings on
the rotator surfaces for the optical wave to have multiple internal passes in the rotator,
as also shown in Fig. 7.15(b).

There are advantages and disadvantages for both linked and unlinked types of de-
vices. As can be seen from (7.49), a linked device measures the current directly and
is virtually immune to interference from external stray magnetic fields. An unlinked
device does not measure the current directly, but measures the magnetic field induced
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by the current. It requires careful calibration for a correct reading of the current be-
cause it is susceptible to external interference and spatial variations of the magnetic
field strength. One major problem of linked devices, however, is the maintenance of
the correct polarization direction of the linearly polarized optical wave looping around
in the rotator. All changes in the polarization direction have to be caused solely by the
Faraday effect. Any other effects, such as improper internal reflection in a monolithic
rotator and linear birefringence in a fiber caused by bending stress, that lead to polar-
ization changes have to be eliminated in order to obtain a correct reading of the current
being measured. The bandwidth of a magneto-optic current sensor of either type is ul-
timately limited by the optical transit time through the sensing element. Therefore, the
device is capable of sensing AC currents at very high frequencies even when relatively
long fibers are used. The light source used does not have to be polarized because it is
polarized by the polarizer at the input end of the device before entering the Faraday
rotator.

From the above discussions, it is clear that any unlinked current sensor can also be
used as a magnetic field sensor.

Spatial light modulators

A magneto-optic spatial light modulator consists of a one- or two-dimensional spatial
array of independently addressable Faraday rotators placed between a polarizer and
an analyzer. A single-crystal magnetic thin film, commonly a bismuth-substituted iron
garnet film of a high specific Faraday rotation coefficient, is grown on a lattice-matched,
transparent, nonmagnetic garnet substrate, typically Gd3Ga5O12 (GGG) or its deriva-
tives such as one doped with Ca, Mg, and Zr. This substrate allows a large amount of
Bi to be incorporated into the iron garnet film for a large specific Faraday rotation. The
magnetic film is structured into a one- or two-dimensional array of isolated mesas using
microprocessing technology. Each mesa defines a pixel (picture element) of the spatial
light modulator. It is required that the film has a sufficiently large uniaxial magnetic
anisotropy with a positive anisotropy constant in the direction normal to the surface,
thus ensuring that the magnetization always points either up or down normal to the film
surface.

The magnetization state of a pixel is controlled by two orthogonally running con-
ductors that intersect at one corner of the mesa, as shown in Fig. 7.16. Switching of
the magnetization state is accomplished by changing the magnetization direction. A
uniform magnetic field stronger than the saturation field of the film material can be
externally applied to the entire array to switch all of the pixels in the array to a given
state, thus refreshing the array by erasing any existing pattern. The array can then be
configured into any desired pattern by switching the magnetization state of selected
pixels using the magnetic field generated by the currents flowing through the matrix
conductors. The combined magnetic field generated by the currents flowing through



323 7.5 Magneto-optic modulators and sensors

Figure 7.16 Pixel configuration and current-controlled switching process in a magneto-optic
spatial light modulator.

the two conductors intersecting at a selected mesa is sufficient to initiate the switching,
but not that generated by the current through either conductor alone. Thus, the entire
array of pixels can be electrically addressed using orthogonally crossing matrix drive
conductors.

In switching the magnetization state of a pixel, the magnetic field triggers movement
of the magnetic domain wall across the mesa, as also illustrated in Fig. 7.16. If the
magnetic field exceeds the saturation field and lasts long enough, the domain wall can
sweep across the entire mesa, resulting in complete switching of the magnetization
direction. If, instead, the currents generating the magnetic field are terminated at the
moment when the domain wall reaches the bottom of the film but has not swept across
the mesa, the mesa will be nucleated, containing equal areas magnetized in opposite
directions. Consequently, there are three different magnetization states for a pixel: two
uniformly magnetized states and the nucleated state. When a pixel is in one of the two
uniformly magnetized states, a linearly polarized optical wave transmitted by the pixel
experiences a Faraday rotation angle of either ρFl or −ρFl, where ρF is the specific
Faraday rotation and l is the thickness of the film. When it is in the nucleated state, the
Faraday rotation for the optical wave transmitted by the pixel averages out to be zero.

A spatial light modulator can be used either in binary operation, by switching between
the two uniformly magnetized states of opposite magnetization direction, or in ternary
operation, by switching among all of the three different magnetization states.

The basic configuration of a transmission-mode magneto-optic spatial light modu-
lator in binary operation is illustrated in Fig. 7.17. The input light, which can be either
polarized or unpolarized to begin with, is polarized by the polarizer. Using (7.45), the
transmittance for the two uniformly magnetized states can be expressed as

T = T0e−αl cos2(±ρFl − θp). (7.50)

In order for the device to have the highest possible contrast ratio, the surfaces of the
Faraday rotator are antireflection coated to eliminate reflections that can introduce
improper polarization changes to the transmitted light. In addition, the value of θp has
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Figure 7.17 Illustration of a transmission-mode magneto-optic spatial light modulator in binary
operation.

to be chosen such that TOFF = 0 in the OFF state. One choice is θp = 90◦ − ρFl for
the magnetization state yielding a Faraday rotation angle of −ρFl to represent the OFF
state. Another choice is θp = 90◦ + ρFl for the magnetization state corresponding to a
Faraday rotation angle of ρFl to represent the OFF state. In either case, the transmittance
in the ON state is

TON = T0e−αl sin2(2ρFl). (7.51)

Clearly, the optimum thickness of the magnetic film that yields the highest transmittance
in the ON state depends on the values of both α and ρF (see Problem 7.5.6). In practice,
TOFF is never exactly zero because of residual reflections from the rotator surfaces
and the circular dichroism in the film. Ignoring the effect of circular dichroism, the
OFF-state transmittance is given by (see Problem 7.5.8)

TOFF = T0 R1 R2e−3αl sin2(2ρFl), (7.52)

where R1 and R2 are the reflectivities of the two surfaces of the Faraday rotator con-
sisting of the magnetic film on a substrate. The contrast ratio of the device is given by
(see Problem 7.5.8)

Contrast ratio = TON

TOFF
= e2αl

R1 R2
. (7.53)

Clearly, to maximize the contrast ratio, the residual reflections have to be minimized
with high-quality antireflection coating while maximizing the ON-state transmittance.

EXAMPLE 7.5 A Bi : YIG film of 10 µm thickness on GGG substrate is used for a
transmission-mode magneto-optic spatial light modulator operated at 632.8 nm wave-
length. At this wavelength, the film has an absorption coefficient of α = 0.108 µm−1

and a specific Faraday rotation of ρF = 1.68 × 10−2 rad µm−1. The sample is antire-
flection coated on both surfaces with T0 = 0.9 caused only by the absorption in the
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polarizer and analyzer. What is the ON-state transmittance of the modulator? If the film
thickness is increased to 16 µm, what is the ON-state transmittance?

Solution For l = 10 µm, we find with the given parameters that

TON = 0.9 × e−0.108×10 × sin2(2 × 1.68 × 10−2 × 10) = 3.3%.

For l = 16 µm, the transmittance is increased to

TON = 0.9 × e−0.108×16 × sin2(2 × 1.68 × 10−2 × 16) = 4.2%.

Further increase in the film thickness does not increase the ON-state transmittance but
results in a decrease in the ON-state transmittance (see Problem 7.5.6).

If the analyzer is oriented such that θp = 90◦, (7.50) yields the same transmittance,
which is proportional to sin2(ρFl), for the two uniformly magnetized states. These
two states can still be distinguished because their transmitted fields have a π phase
difference. Consequently, this arrangement leads to the binary phase-only mode of
operation. In this configuration, the transmittance of a pixel in the nucleated state is
zero. A ternary phase-only mode of operation consisting of the +1, 0, and −1 states is
possible if the nucleated state is also included in the operation.

Using a reflection-mode spatial light modulator, the magnetic film can be halved
in thickness while maintaining the same contrast ratio as that of a transmission-mode
device. In a reflection-mode device, the back surface of the Faraday rotator is made
totally reflective while the front surface is antireflection coated. Light entering the
rotator from the front surface passes through the film twice before leaving the film,
also from the front surface. Because of the nonreciprocal characteristic of the Faraday
effect, the Faraday rotation is cumulative for both passes. The linear absorption is also
cumulative. Therefore, if the film of a reflection-mode device is half as thick as that
of a transmission-mode device, the reflectance of the reflection-mode device in any
particular state is the same as the transmittance of the transmission-mode device in the
corresponding state.

The magneto-optic spatial light modulator has several unique features that enable
it to find many useful applications, such as parallel optical signal processing, optical
pattern recognition, image coding, and reconfigurable optical interconnects. On the
one hand, the device is electrically addressable and has a high frame rate because the
magnetization state of a pixel can be switched in a time as short as 1 ns. In practical
applications, typical current pulses used for the switching are on the order of 100 ns. On
the other hand, the device has the nonvolatility to hold a pattern for a long time because
the pixels do not spontaneously demagnetize without the externally applied magnetic
field or the controlling current pulses. A very high contrast ratio can be obtained by
optimizing the film thickness and by eliminating the absorption and stray reflections
of the optical components as much as possible. The size of a pixel is typically on the



326 Magneto-optic devices

order of 10 µm × 10 µm to 100 µm × 100 µm. A very large number of pixels can be
incorporated in a device for a high image resolution.

7.6 Magneto-optic recording

In magneto-optic recording, digitized information stored in a magnetic thin film is read
using the magneto-optic Faraday or Kerr effect. There are certain similarities between
the principle of magneto-optic recording and that of the magneto-optic spatial light
modulator. Indeed, because of its nonvolatility, a magneto-optic spatial light modulator
also has the ability to hold digitized information for later access. Reading of the recorded
information is performed using the magneto-optic Faraday effect. However, while the
application of a magneto-optic spatial light modulator is primarily dynamic information
processing, the purpose of magneto-optic recording is data storage and retrieval. There-
fore, there are many fundamental differences between them due to different practical
considerations.

The media for magneto-optic recording are ferromagnetic or ferrimagnetic thin films
supported by nonmagnetic substrates. The presence of a sufficiently large uniaxial
magnetic anisotropy with a positive anisotropy constant in the direction normal to
the film surface is required to ensure that the film has two clearly distinguishable,
oppositely directed magnetization states, which represent the binary logical states. In
amorphous magnetic films prepared by evaporation or sputtering, this condition can
be achieved by properly choosing the deposition parameters to create an anisotropic
atomic arrangement along the film normal.

The materials suitable for the application of magneto-optic recording include mag-
netic oxides, particularly the Bi-substituted garnets, metallic Pt–Co and Pd–Co multi-
layers, and magnetic alloys. The most popular magneto-optic recording materials today
are amorphous ferrimagnetic rare-earth transition-metal (RE–TM) alloys containing
one or more of the rare earths Gd, Tb, and Dy in addition to one or more of the transi-
tion metals Fe and Co. The most prominent examples are GdTbFe and TbFeCo alloys.
The magnetizations of these rare-earth and transition-metal atoms vary differently with
temperature and are antiferromagnetically coupled. The rare-earth magnetization is
larger at low temperatures, whereas the transition-metal magnetization is larger at high
temperatures. Consequently, an alloy of a proper RE–TM composition is a ferrimag-
netic material that has a compensation temperature, Tcomp, below its Curie temperature
Tc. At Tcomp, the magnetizations of the rare earth and the transition metal are equal and
opposite, resulting in zero net magnetization. The coercive field, Hc, exhibits a singu-
larity tending toward infinity at Tcomp. Above the compensation point, Hc decreases as
the temperature is increased toward Tc. The magnetization and coercivity of such an
alloy as a function of temperature are shown in Figs. 7.18(a) and (b), respectively. The
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(a) (b)

Figure 7.18 Temperature-dependent characteristics of (a) the magnetization and (b) the coercivity
of a rare-earth transition-metal alloy.

compensation and Curie temperatures, as well as the temperature characteristics of Hc,
of an alloy can be controlled by properly choosing the composition of the alloy.

The information is stored in the recording medium by means of magnetic domains.
Writing, erasing, and rewriting are achieved by switching the magnetization direction
through a thermomagnetic process with optical heating by a focused laser beam. The
composition of the medium is chosen to have a compensation point close to room
temperature and a Curie temperature between 400 and 600 K. On the one hand, this
medium provides a high coercivity at room temperature to stabilize the information
stored in the magnetic domains and to allow for a high storage density. On the other
hand, the coercivity of the heated spot can be significantly lowered in the write process
with a laser beam of a moderate power to raise the temperature of the heated spot near
or above the Curie temperature.

The thermomagnetic switching process is based on a simple principle that the mag-
netization in a locally heated volume of the film can be oriented to the direction of an
applied magnetic field when the coercivity is lowered at a high temperature to be less
than the applied magnetic field. Writing is accomplished by focusing a laser beam of
a moderately high power, typically in the range of 5–10 mW, to a diffraction-limited
spot on the medium. The write process is performed either by modulating the laser
power at a constant magnetic field or by modulating the magnetic field at a constant
laser power during the pass of the laser beam over the medium along the data track.
The latter permits direct overwrite, but its switching frequency is limited to less than
10 MHz due to the operation margins of the coil generating the magnetic field. Er-
asure of the written information is accomplished by heating the medium with a con-
stant laser power at a constant magnetic field to revert the magnetization of the bit to be
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(a) (b) µm

Figure 7.19 (a) Multilayer structure and (b) tracking pregrooves of a magneto-optic disk.

erased back to the preset direction. The simplest overwrite scheme uses two passes of
the laser beam over the medium: the first pass for erasing the old information and the
second for writing the new data. More sophisticated schemes using one or two laser
beams in a single pass for direct overwrite are also developed. Magneto-optic record-
ing is both erasable and rewritable because the thermomagnetic switching process is
reversible.

The optimum magneto-optic disk is based on a multilayer structure to achieve long-
term stability, high read-out efficiency, and high switching sensitivity. As shown in
Fig. 7.19(a), a typical disk is composed of a pregrooved, transparent polyvinyl chloride
or glass substrate of about 1 mm thickness, a precoated antireflection dielectric layer of
80 nm thickness, a magneto-optic medium layer of 45 nm thickness, a thin space layer,
a reflective metallic layer of 30 nm thickness, and, finally, a protective polymer layer
of a few micrometers thickness. The laser light used for writing, erasing, or reading is
incident on the disk from the substrate side, as is also illustrated in Fig. 7.19(a). The
composition and thickness of each layer, as well as the number of different layers, vary
in disks designed for different applications. The pregrooved structure serves for tracking
in the recording system. The depth of the pregrooves is in the range of 50–70 nm, and
the spacing between neighboring tracks is designed to be twice the focused laser beam
spot size. A typical example is shown in Fig. 7.19(b). By monitoring light reflected
from the pregrooved structure, tracking servomechanisms maintain the position of the
recording head accurately along the track and keep the focal point of the laser beam on
the surface of the magneto-optic medium layer.

The written domain size is governed more by the magnetic properties of the medium
and the domain nucleation and growth processes than by the diameter of the focused
laser beam. Domain sizes smaller than the Rayleigh resolution limit, dR = 1.22λ/NA,
are quite easily written in a good magneto-optic medium. The practical spot size is
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approximately given by

d0 = 0.5λ

NA
, (7.54)

where λ is the laser wavelength and NA is the numerical aperture of the objective lens.
Taking into account the spacing between the pregrooved tracks in a disk, this yields an
areal bit density of

ABD = 1

2d2
0

= 2(NA)2

λ2
. (7.55)

Typically an objective lens with a numerical aperture of 0.5 or greater is used so that
the spot has submicrometer dimensions.

EXAMPLE 7.6 A magneto-optic recording system uses a diode laser emitting at λ =
800 nm and an objective lens of NA = 0.5. For this system, the laser spot has a submi-
crometer spot size of 800 nm, according to (7.54). Using (7.55), it is found that the areal
bit density is approximately 78 Mbit cm−2 (or 503 Mbit in−2). For this bit density, the
mark area, which is the area for each bit, is 1.28 µm2.

To achieve a high recording density, one avenue is to reduce the wavelength of
the laser light utilized. According to (7.55), a 40% increase in areal bit density can
be realized by replacing the diode lasers at 800 nm with red diode lasers of wave-
lengths at around 670 nm. The areal bit density can be quadrupled by using an InGaN
laser at 400 nm wavelength. Further increase of the bit density can be accomplished
by using lenses of high numerical aperture. The bit density is also dependent upon
the data coding scheme. Using efficient codes for the data, such as those employing
the magnetic flux changes between domains rather than the domains themselves to
represent the information, the bit density can be effectively doubled. An areal bit den-
sity as high as 100 Gbit in−2, equivalent to 15.5 Gbit cm−2, has been achieved (see
Problem 7.6.1).

For effective optical heating, high optical absorption in the magnetic film is required.
Consequently, the polar Kerr effect, rather than the Faraday effect, is most commonly
used for the read process. From (7.38), it can be seen that the polar Kerr angle θK

obeys the relation θK(M0) = −θK(−M0). Therefore, the two possible directions of
magnetization correspond to a positive and a negative Kerr signal, respectively. The
magneto-optic recording system consists of a polarization-sensitive optical head, as is
shown in Fig. 7.20(a). During readout, the laser power is typically reduced to about
one-tenth of that used for writing, which is far below the threshold to write or erase.
Upon reflection from the magnetic medium, the plane of polarization of the light is
rotated by the polar Kerr effect. From (7.38), it can be seen that in the polar Kerr
effect a Kerr rotation angle is always accompanied by a Kerr ellipticity. Therefore,
the reflected light is passed through a wave plate to compensate for the ellipticity
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(a) (b)

Figure 7.20 (a) Schematics of a magneto-optic recording head assembly. (b) Field decomposition,
by a polarizing beam splitter, of the Kerr-rotated reflected light for the differential photodetectors.
LD indicates a laser diode. PD indicates a photodetector. BS indicates a beam splitter. PBS
indicates a polarizing beam splitter.

introduced by the polar Kerr effect. It is then decomposed into two components by a
polarizing beam splitter that is set at 45◦ with respect to the polarization of the incident
light, as shown in Fig. 7.20(b). The two components are directed to a set of differential
photodetectors. With no magneto-optic rotation of the plane of polarization, the intensity
of light at each photodetector is the same, yielding no difference signal between the two
photodetectors. With a rotation of the plane of polarization, one photodetector receives
more light than the other, resulting in a difference signal. As shown in Fig. 7.20(b), with
a polarization rotation angle of θK, the optical fields of the reflected light passing through
the polarizing beam splitter to reach the two photodetectors are E1 = Er cos(π/4 + θK)
and E2 = Er sin(π/4 + θK), respectively. Consequently, the signal current produced by
the differential photodetectors is given by

is = RP0 R
[
sin2

(π

4
+ θK

)
− cos2

(π

4
+ θK

)]
= RP0 R sin 2θK, (7.56)

whereR is the responsivity of the photodetectors, P0 is the average laser power incident
upon the medium surface, and R is the reflectivity of the medium surface. Clearly, the
polarity of the difference signal indicates the direction of the magnetization because is

changes sign with θK.
From (7.56), the difference-signal current can be increased by increasing the detec-

tor responsivity, the laser power, the medium reflectivity, or the Kerr rotation angle.
However, the important parameter characterizing the medium and the recording sys-
tem is the signal-to-noise ratio (SNR) rather than the difference signal alone. The SNR
obtainable from a magneto-optic recording system is fundamentally limited by shot
noise in the differential photodetectors. The shot-noise, which is determined by the
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total detector current rather than by the difference signal current, is given by

i2
n = 2eBRP0 R, (7.57)

where e is the electronic charge and B is the bandwidth of the detectors. Because the
maximum values of |θK| for magneto-optic recording media are on the order of 10 mrad,
the shot-noise-limited SNR is given by

SNR = 10 log
i2
s

i2
n

≈ 10 log
2RP0 Rθ2

K

eB
, (7.58)

where θK is in radians. The SNR can be increased by increasing the laser power or the
value of Rθ2

K. The value of Rθ2
K is purely determined by the recording medium and is

regarded as the figure of merit of a magneto-optic recording medium. Because the laser
power in the read process is limited by the threshold for writing or erasing, this figure of
merit is a very important consideration in the choice of a medium. For RE–TM alloys,
the maximum values of |θK| are below 0.5◦, and R ≈ 0.4 at a laser wavelength around
800 nm. Other media have slightly higher values of θK, but have other disadvantages.
For example, MnBi has a Kerr rotation angle of θK = 0.7◦, but it is polycrystalline,
resulting in a noise figure high above the shot-noise limit and a poor SNR in spite of
the large Kerr rotation.

EXAMPLE 7.7 A representative set of parameters for a magneto-optic recording system
is R = 0.4 A W−1, P0 = 1 mW, R = 0.4, θK = 0.4◦ = 7 mrad, and B = 10 MHz,
yielding a shot-noise-limited SNR of 40 dB.

In a magneto-optic recording system, there is no direct contact between the recording
head and the medium. The spacing between the optical head and the disk can be of the
order of millimeters. Therefore, head crashes are not a concern as they are in magnetic
recording systems. Because the optical access is provided through a transparent sub-
strate and the laser beam is highly focused on the surface of the magneto-optic film,
small particles on the back side of the substrate are out of the focal plane of the laser
beam and do not significantly affect recording or readback. These characteristics of the
magneto-optic recording technology make it possible to have a removable disk.

7.7 Guided-wave magneto-optic devices

It is possible to implement various kinds of guided-wave magneto-optic devices for opti-
cal modulation, switching, and many other functions. Nevertheless, there has been very
little interest in developing such devices because equal or better performance of the func-
tions provided by such devices can be accomplished by their electro-optic or acousto-
optic counterparts. Among devices of equal performance, the magneto-optic ones have
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certain disadvantages. Magneto-optic waveguides are not compatible with the dielectric
and semiconductor waveguides used in most photonic devices because they have to be
fabricated with magnetic materials, most commonly magnetic garnets, on special sub-
strates that can support such waveguides. Furthermore, magneto-optic modulators and
switches compare less favorably to the voltage-controlled electro-optic modulators and
switches of the same function, particularly those in waveguide structures, because they
have to be controlled by currents. However, magneto-optic devices utilizing the linear
magneto-optic effect have the unique advantage of nonreciprocity, which is not possible
for devices utilizing electro-optic or acousto-optic effects. Therefore, the most important
guided-wave magneto-optic devices are nonreciprocal devices, including guided-wave
optical isolators and circulators. In such devices, the core of the waveguide consists
of a material that has a spontaneous magnetization. No controlling current is needed.
Most of them utilize YIG or Bi-substituted YIG waveguides on GGG substrates.

Nonreciprocal TE–TM mode converters

There are some fundamental differences between guided-wave devices and bulk de-
vices. Light propagates in a waveguide in the form of waveguide modes. Polarization
rotation in a waveguide is accomplished through coupling between orthogonally polar-
ized modes, such as the TE and TM modes in a planar waveguide and the TE-like and
TM-like modes in a three-dimensional waveguide. Figure 7.21 shows a YIG waveg-
uide on a GGG substrate with a magnetization M0 = M0z ẑ and a permittivity tensor
described by (7.16). From the expression in (7.7), this permittivity tensor can be divided
into two parts by writing ε(M0) = ε(0) + �ε(M0). The waveguide modes are defined
by the permittivity tensor:

ε(0) = ε0


n2

⊥ 0 0
0 n2

⊥ 0
0 0 n2

‖


 , (7.59)

which does not include the circular birefringence caused by the magnetization. These
modes are coupled through the linear magneto-optic effect caused by the perturbing

Figure 7.21 Nonreciprocal TE–TM-mode converter with a magnetic YIG waveguide on a GGG
substrate. The magnetization of the waveguide is in the longitudinal direction.
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permittivity tensor:

�ε(M0) = ε0


 0 iξ 0

−iξ 0 0
0 0 0


 , (7.60)

which is responsible for circular birefringence. For a waveguide that supports only
fundamental TE-like and TM-like modes, the coupling coefficients can be found using
(4.36). With �ε given in (7.60) for M0 = M0z ẑ, the self-coupling coefficients, κEE and
κMM for TE-like and TM-like modes, respectively, are both found to be zero. Conse-
quently, the propagation constants of both modes are not influenced by the perturbation
caused by �ε, and the phase mismatch between them is simply given by

2δ = �β = βTM − βTE, (7.61)

where βTE and βTM are determined by taking the dielectric tensor of the waveguide core
to be only ε(0) given in (7.59). However, there is a nonvanishing coupling coefficient
between these two modes given by (see Problem 7.7.3(a))

κ = κEM = κ∗
ME

= ω

∞∫
−∞

∞∫
−∞

dxdyÊ∗
TE(x, y) · �ε(x, y) · ÊTM(x, y)

≈ −iρF�EM, (7.62)

where ρF is the specific Faraday rotation, given by (7.28), of the waveguide material
and

�EM = 2β
1/2
TE β

1/2
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ωµ0
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∞∫
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TE,y(x, y)ÊTM,x (x, y)


 ∞∫
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−∞
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1/2 (7.63)

is the overlap factor for the magneto-optic coupling of TE-like and TM-like modes
through the linear magneto-optic effect. The distribution of the magnetization in the
entire structure is described by M0z(x, y), which has a value of M0z(x, y) = M0z in the
magnetic core region and a value of M0z(x, y) = 0 in the nonmagnetic regions.

The coupling efficiency from one mode to another in a nonreciprocal magneto-optic
TE–TM mode converter follows that of the codirectional coupler discussed in
Section 4.3. However, unlike the electro-optic TE–TM mode converter discussed
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in Section 6.4, a magneto-optic TE–TM mode converter is a nonreciprocal device.
If an optical wave is allowed to travel multiple passes back and forth in a nonreciprocal
magneto-optic TE–TM mode converter, the net coupling efficiency from one mode to
the other depends only on the total distance, but not on the direction, over which the
wave has traveled within the waveguide. When the TE and TM modes are perfectly
phase matched, the conversion efficiency is simply

η = sin2 |κ|l, (7.64)

where l is the cumulative distance traveled in both directions. An optical wave that
makes a round trip in a nonreciprocal magneto-optic TE–TM mode converter due to
reflection at the far end of the waveguide does not return to the input end in its original
polarization state unless the value of |κ|l, with l being twice the length of the waveguide
for a round trip, happens to be an integral multiple of π . In contrast, in a reciprocal
TE–TM mode converter, irrespective of how many round-trip passes an optical wave
has traveled, the length l used in (7.64) for calculation of the coupling efficiency is the
physical distance measured from the input end to the point where the conversion is being
evaluated, not the cumulative distance traveled by the optical wave. Consequently, an
optical wave that makes a round trip in a reciprocal TE–TM mode converter always
returns to the input end in its original polarization state (see Problem 7.7.1).

According to the discussions in Section 7.1, the material used in a magneto-optic
device must have no other birefringence that dominates the magneto-optic effect used
for the operation of the device. The materials, such as YIG and GGG, used in magneto-
optic waveguides are generally isotropic materials. The phase mismatch between TE-
like and TM-like modes in such waveguides is caused by the structural birefringence
due to the difference in the boundary conditions imposed by the waveguide structure
on the TE-like and TM-like modes. This structural birefringence is not very large in
an ordinary waveguide, but in a magneto-optic waveguide it can easily dominate the
circular birefringence caused by the linear magneto-optic effect because the value of
ρF is generally very small. Therefore, the phase mismatch caused by the structural
birefringence, which always results in �β = βTM − βTE < 0 according to (2.69), is
generally too large for a magneto-optic TE–TM mode converter.

The general concept for reducing the phase mismatch and attaining phase match-
ing in a nonreciprocal magneto-optic TE–TM mode converter is to introduce other
birefringence of opposite sign in the waveguide to counterbalance the structural bire-
fringence. There are several approaches to implementing this concept. The simplest is
to incorporate in the magnetic waveguide core a proper amount of stress-induced bire-
fringence, which is caused by stress in the waveguide due to a slight lattice mismatch
between the waveguide core and the substrate, or growth-induced birefringence, which
is not caused by lattice mismatch but by the dopants in the waveguide core such as the
bismuth atoms in a Bi-substituted YIG layer. Another approach is to have a layer of
anisotropic crystal, such as LiIO3, grown on top of the magnetic waveguide core in such
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a way that the fields of the orthogonally polarized TE-like and TM-like modes pene-
trating into this layer see a proper amount of difference in the refractive index to coun-
terbalance the difference in their boundary conditions. The desired counterbalancing
birefringence for the elimination of phase mismatch can also be introduced by artificial
structures, such as periodic grooves, on the waveguide, as the discussions in Section 5.1
demonstrate.

Nonreciprocal phase shifters

A unique nonreciprocal waveguide device that has no counterpart among bulk devices
is the nonreciprocal phase shifter. The function of this device depends on nonrecip-
rocal coupling between the transverse and longitudinal electric field components of a
waveguide mode through a magnetization that has a component perpendicular to both
of them. For simplicity, we consider a planar magneto-optic waveguide whose mag-
netic core layer has a magnetization, M0 = M0y ŷ, in a direction perpendicular to both
longitudinal and transverse field components, ÊTM,z ẑ and ÊTM,x x̂ , respectively, of the
TM waveguide mode, as shown in Fig. 7.22. The permittivity tensor of this magnetic
layer can be written as ε(M0) = ε(0) + �ε(M0) with

ε(0) = ε0


n2

⊥ 0 0
0 n2

‖ 0
0 0 n2

⊥


 (7.65)

and

�ε(M0) = ε0


 0 0 −iξ

0 0 0
iξ 0 0


 , (7.66)

where ξ is linearly proportional to M0y and ξ (−M0y) = −ξ (M0y). In this case, the prop-
agation constants of the waveguide modes without perturbation of the linear magneto-
optic effect due to ξ (M0y) are determined by taking ε(0) given in (7.65) alone as

Figure 7.22 Nonreciprocal phase shifter for the TM mode in a planar magneto-optic waveguide.
The magnetization direction is perpendicular to both electric field components of the TM mode. The
self-coupling coefficient of the TM mode changes sign upon reversal of the propagation direction.
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the permittivity tensor of the waveguide core. The effect of �ε on the propagation
characteristics of the waveguide modes is again evaluated using coupled-mode theory
in a procedure similar to that used above in the treatment of the TE–TM mode converter.
For the planar waveguide shown in Fig. 7.22, it is found that κEM = κME = κEE = 0
and (see Problem 7.7.3(b))

κMM = ω

∞∫
−∞

dxÊ∗
TM(x) · �ε(x) · ÊTM(x)

= 2ωε0
ξ

M0y
Im


 ∞∫

−∞
dx M0y(x)Ê∗

TM,x (x)ÊTM,z(x)


 , (7.67)

where M0y(x) = M0y in the magnetic core layer and M0y(x) = 0 outside the magnetic
core. There is no TE–TM mode coupling in this waveguide, and the propagation constant
of a TE mode is not perturbed by the linear magneto-optic effect. However, because Ê x

and Ê z of a TM mode are 90◦ out-of-phase, as can be seen by comparing (2.35) with
(2.36), κMM exists if the integral in (7.67) yields a nonzero value. It can be shown that
this integral is zero if the waveguide is symmetric but is nonzero if the two boundaries
of the magnetic core layer are different (see Problem 7.7.3(b)). Consequently, the linear
magneto-optic effect can induce a change in the propagation constant of a TM mode in
an asymmetric waveguide.

If the designation of the x , y, and z coordinate axes is fixed, the sign of ξ is fixed
in a given waveguide with a fixed magnetization. However, the product Ê∗

TM,x ÊTM,z

changes sign together with the propagation constant when the direction of propagation
of a TM mode is reversed, as can be seen from Fig. 7.22. According to (7.67), this sign
change leads to a corresponding sign change in κMM with the reversal of the propagation
direction:

κb
MM = −κ f

MM. (7.68)

Taking into account these changes caused by the linear magneto-optic effect, the prop-
agation constants of a TM mode in forward and backward directions of propagation
are

β f
TM = βTM + κ f

MM (7.69)

and

βb
TM = −βTM − κb

MM = −βTM + κ f
MM, (7.70)

respectively, where βTM represents the absolute value of the propagation constant of a
TM mode in the absence of the linear magneto-optic effect. In (7.70), the value of the
backward-propagation constant is chosen to be negative by following the convention
defined in the coupled-mode theory of Sections 4.2 and 4.3. Because βb

TM �= −β f
TM in
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an asymmetric waveguide where κMM �= 0, the phase shift experienced by a TM mode
propagating in such a waveguide is nonreciprocal. The nonreciprocal phase shift results
from coupling between the longitudinal and transverse electric field components of a
TM mode through the linear magneto-optic effect. Such a phenomenon does not exist
for TE mode fields, nor does it exist for fields in bulk homogeneous media. It does not
exist for TM modes of a symmetric waveguide, either.

Optical isolators

Guided-wave optical isolator can be implemented by using either a nonreciprocal TE–
TM mode converter or a nonreciprocal phase shifter.

A waveguide isolator using a nonreciprocal TE–TM mode converter follows the
same basic concept of a polarization-dependent optical isolator in bulk form. The key
component is a 45◦ Faraday rotator, which has the function of turning the direction of
polarization of a linearly polarized wave by 45◦ in a single pass and by 90◦ in double
passes. One major difference between a waveguide Faraday rotator in the form of a
nonreciprocal TE–TM mode converter and a bulk Faraday rotator has to be recognized,
however.

An optical wave that is linearly polarized at the input remains linearly polarized
along its path through a bulk Faraday rotator. Only its direction of polarization is
rotated. A 45◦ Faraday rotator made in a bulk material is easily obtained by simply
choosing the length lF of the Faraday rotator properly so that θF = ρFlF = π/4. In
comparison, implementation of a 45◦ Faraday rotator in a waveguide structure using a
nonreciprocal magneto-optic TE–TM mode converter is not so straightforward if phase
mismatch between the TE-like and TM-like modes is not completely eliminated. If
perfect phase matching is accomplished so that �β = 0, it can be shown from solution
of the coupled-mode equations that the TE-like and TM-like modes excited by any
linearly polarized input wave and coupled by the coefficient given in (7.62) remain in
phase throughout the waveguide. In this situation, a 45◦ Faraday rotator in a waveguide
structure is accomplished by choosing the length of the waveguide to be

lF = π

4|ρF|�EM

(7.71)

so that the coupling efficiency given in (7.64) has a value of η(l = lF) = 1/2 for a
single pass and a value of η(l = 2lF) = 1 for a round-trip pass. A TE-polarized input
wave will be completely converted to the orthogonal TM polarization after a round trip
through such a waveguide, and vice versa, as shown in Fig. 7.23(a).

If any phase mismatch exists so that �β �= 0, the phase between the TE-like and TM-
like components of a guided field varies along the waveguide for any input polarization.
Although it is possible, in the case that |�β| ≤ 2|ρF|�EM, to choose a length of the
waveguide such that η = 1/2 for a single pass, it still does not make the waveguide
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(a)

(b)

Figure 7.23 Implementation of 45◦ Faraday rotators using (a) a phase-matched nonreciprocal
magneto-optic TE–TM mode converter and (b) a nonreciprocal magneto-optic TE–TM mode
converter with a finite phase mismatch.
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a 45◦ Faraday rotator due to the fact that its output in a single pass is elliptically polarized.
Consequently, it is not possible to have a 45◦ Faraday rotator with a purely TE-polarized
or purely TM-polarized input wave if phase mismatch exists (see Problem 7.7.4). To
accomplish a high reverse isolation for an isolator, however, any light propagating in
the reverse direction must be blocked by a polarizer at the input end of the device.
Because an elliptically polarized wave cannot be completely blocked by a polarizer,
it is necessary that a 45◦ Faraday rotator be used, at least for the reverse propagation
direction.

A 45◦ Faraday rotator using a waveguide that has a phase mismatch of �β �= 0 is
possible, however, if the length of the waveguide is chosen to be (see Problem 7.7.5(a))

lF = 1[
ρ2

F�
2
EM + (�β)2/4

]1/2 tan−1

[
1 + (�β)2

4ρ2
F�

2
EM

]1/2

, (7.72)

while the input polarization is chosen to be 22.5◦ off the TE- or TM-polarization
direction on the proper side determined by the sign of ρF, as shown in Fig. 7.23(b).
To make an isolator, the orientation of the output polarizer is chosen at 22.5◦ on the
proper side so that any light that is back coupled from the output end returns to the
input end linearly polarized. It can then be blocked by the input polarizer whose axis is
chosen to be orthogonal to this polarization and at 45◦ with respect to that of the output
polarizer. Therefore, perfect isolation can always be accomplished for any values of
�β and ρF. However, because of the simultaneous presence of a nonreciprocal effect
caused by ρF and a reciprocal effect caused by �β, the waveguide does not function
as a 45◦ Faraday rotator for a wave propagating in the forward direction with its input
polarization defined by the input polarizer. As a result, the wave becomes elliptically
polarized at the output, resulting in an insertion loss given by (see Problem 7.7.5(c))

Insertion loss = L0 − 10 log
8ρ2

F�
2
EM

8ρ2
F�

2
EM + (�β)2

, (7.73)

where L0 accounts for all background insertion loss including coupling losses to the
waveguide and absorption losses in the waveguide and polarizers.

EXAMPLE 7.8 A magneto-optic waveguide has the simple structure of a magnetic Bi : YIG
film of 4 µm thickness on a nonmagnetic GGG substrate. The top of the Bi : YIG film
is exposed to the air. The waveguide is used as a nonreciprocal TE–TM converter
in a guided-wave optical isolator for 1.15 µm wavelength. At this wavelength, n1 =
2.178 for the Bi : YIG film, n2 = 1.945 for the GGG substrate, and ρF = 280◦ cm−1,
equivalent to 0.49 rad mm−1. The device is operated in the fundamental TE0 and TM0

modes of the waveguide. It has a background insertion loss of L0 = 3 dB. Find the
required length of the waveguide and the total insertion loss of the isolator.
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Solution First, we solve for the TE0 and TM0 mode parameters of the asymmetric
slab waveguide with n1 = 2.178, n2 = 1.945, n3 = 1, and d = 4 µm to find that βTE =
11.877 17 µm−1, βTM = 11.875 93 µm−1, and �EM = 0.999. Therefore, �β = βTM −
βTE = −1.24 mm−1. Using these parameters, we find from (7.72) that the required
length for the waveguide is

lF = 1

(0.492 × 0.9992 + 1.242/4)1/2
tan−1

(
1 + 1.242

4 × 0.492 × 0.9992

)1/2

mm=1.29 mm.

Using (7.73), we find that

Insertion loss = 3 dB − 10 × log
8 × 0.492 × 0.9992

8 × 0.492 × 0.9992 + 1.242
dB = 5.6 dB.

The phase mismatch in the waveguide contributes an additional 2.6 dB to the insertion
loss.

A practical problem arises in the use of a 45◦ Faraday rotator in a waveguide. This
rotation angle poses no problem for a bulk device, but it results in a mixture of orthog-
onally polarized modes at the input or the output, or both, of the waveguide that carries
out this essential function for an isolator. This situation is not consistent with that in the
applications of most guided-wave devices, which normally have a well-defined single
TE-like or TM-like mode at both input and output ends. Some guided-wave devices
are designed to function only properly for a particular mode of polarization. Therefore,
a practical guided-wave optical isolator that can be integrated with other guided-wave
devices must operate with single-polarization mode fields at both its input and output
ends, meaning that the total amount of polarization rotation between its input and output
ends has to be 0◦ or an integral multiple of 90◦. Because nonreciprocity is required of
an isolator, such a guided-wave optical isolator must be a unidirectional TE–TM mode
converter, which converts a TE-like mode into a TM-like mode, and vice versa, in one
direction of propagation but has no net polarization conversion in the opposite direction
of propagation. It is not possible to construct such a unidirectional TE–TM mode con-
verter using the linear magneto-optic effect alone, nor is it possible without using the
linear magneto-optic effect. A similar function in bulk devices, shown in Fig. 7.7(b),
is accomplished by combination of a 45◦ Faraday rotator and a quarter-wave plate. In
guided-wave devices, such a function can be accomplished by combination of a non-
reciprocal magneto-optic TE–TM mode converter functioning as a 45◦ Faraday rotator
and a reciprocal TE–TM mode converter functioning as a 45◦ linear polarization rotator
analogous to a quarter-wave plate. These two mode converters can be either placed in
tandem or distributedly mixed.

A unidirectional TE–TM mode converter can be realized by using the reciprocal linear
magnetic birefringence of the Cotton–Mouton effect for the reciprocal TE–TM mode
converter. In this approach, shown in Fig. 7.24(a), both nonreciprocal and reciprocal
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(a)

(b)

Figure 7.24 Optical isolators using unidirectional TE–TM mode converters. (a) The reciprocal
Cotton–Mouton effect is utilized for the section of the reciprocal TE–TM mode converter placed in
tandem with the nonreciprocal TE–TM mode converter. In the nonreciprocal section, M0 is in the
longitudinal direction. In the reciprocal section, M0 is in the transverse xy plane and is tilted away
from the mode-field polarization directions. (b) An anisotropic crystal with its optical axis properly
tilted but lying in the yz plane is used as the top layer of the waveguide to function as a distributed
reciprocal TE–TM mode converter. The metallic film sections in each device function as mode
filters to transmit only TE-like modes.

TE–TM mode converters are realized using the same magnetic waveguide materials.
In the nonreciprocal section the magnetization is parallel to the longitudinal direction
of the waveguide, whereas in the reciprocal section it lies in the transverse plane and
is tilted at an angle, θm, with respect to the transverse TM electric field polarization.
By choosing a proper value of the angle θm for the magnetization direction and a
proper length for the reciprocal section of the waveguide, the desired reciprocal 45◦

linear polarization rotation can be realized even when �β �= 0. A second approach
uses an anisotropic crystal, such as LiNbO3 or LiIO3, for the reciprocal function. This
approach can be carried out by using such an anisotropic crystal for a layer on top of the
magnetic waveguide, as shown in Fig. 7.24(b). In this arrangement, the nonreciprocal
and reciprocal TE–TM mode converters are distributedly mixed. Coupling between TE-
like and TM-like modes for reciprocal conversion is caused by penetration of the mode
fields into the nonmagnetic top layer. The optical axis of the anisotropic crystal has to be
tilted at a proper angle away from the transverse TE and TM electric field polarization
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directions in order for the TE-like and TM-like modes to have a nonzero coupling
coefficient of the amount needed for the reciprocal 45◦ linear polarization rotation.

Other components needed in completing a guided-wave optical isolator using a uni-
directional TE–TM mode converter are the input and output mode selectors analogous
to the polarizers used in a bulk isolator. These components can be easily implemented
with metal-loaded strips at both input and output ends of the device, as also shown
in Fig. 7.24. With proper design, the metallic films on top of the waveguide can have
strong attenuation for the TM-like mode but very little attenuation for the TE-like mode,
based on the fact that the transverse electric field component of the TM-like mode is
perpendicular to the metallic film surface but that of the TE-like mode is parallel to it.
Thus the metallic film sections function as mode filters for transmitting only TE-like
modes. When LiNbO3 on YIG is used to implement the concept shown in Fig. 7.24(b),
it is also possible to design the waveguide structure such that the TE-like mode is a
guided mode while the TM-like mode is a leaky mode. There is no need for additional
mode selectors in an isolator using such a semileaky waveguide, which already has a
built-in mode-filtering function.

A very different type of guided-wave optical isolator that has no bulk counterpart uses
a nonreciprocal phase shifter in an asymmetric Mach–Zehnder waveguide interfero-
meter, as shown in Fig. 7.25. Because a nonreciprocal phase shifter is possible only
for the TM-like mode, this optical isolator functions only in the TM-like mode. This
device consists of two asymmetric waveguides. One waveguide has a properly oriented
transverse magnetization and functions as a nonreciprocal phase shifter. The other is not
magnetized and functions as a reciprocal phase shifter. In the absence of the perturbation
from the linear magneto-optic effect, there is a reciprocal difference of �βTM between
the upper and lower waveguides in the propagation constants of the TM-like mode due to
asymmetry between the two waveguides. The TM-like mode field propagating through
the magnetized arm has a net reciprocal phase advance of �ϕrec = �βTMl = π/2
over that propagating through the nonmagnetized arm, where l is the length of the

Figure 7.25 Optical isolator using a nonreciprocal phase shifter in an asymmetric Mach–Zehnder
waveguide interferometer. This device allows transmission in the forward direction by constructive
interference and blocks transmission in the backward direction by destructive interference.
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phase-shifter section of the interferometer. The magnetized waveguide is further de-
signed to have in the forward-propagation direction a net nonreciprocal phase shift of
�ϕf

nonrec = κ f
MMl = −π/2 due to the linear magneto-optic effect and a corresponding

nonreciprocal phase shift of�ϕb
nonrec = κb

MMl = π/2 in the backward direction. The two
waveguide arms are connected at both input and output ends with 3-dB Y-junctions.
Consequently, in the forward direction, the combined reciprocal and nonreciprocal
phase difference between the two arms is �ϕf = �ϕrec + �ϕf

nonrec = 0, resulting in
total transmission of the TM-like mode launched into the device. In the backward direc-
tion, a combined phase difference of �ϕb = �ϕrec + �ϕb

nonrec = π causes destructive
interference to completely block the transmission of the TM-like mode.

Optical circulators

A guided-wave optical circulator can be realized with a nonreciprocal balanced-bridge
interferometer by simply replacing the Y-junctions at the input and output ends of the
nonreciprocal Mach–Zehnder interferometer shown in Fig. 7.25 with ordinary 3-dB
directional couplers. The resulting device and its function are shown in Fig. 7.26. From
the discussions regarding the operation of a balanced-bridge interferometer in Sec-
tion 6.4, it can be easily seen by applying (6.79) and (6.80) that this nonreciprocal
interferometer is in the cross state for forward propagation and is in the parallel state
for backward propagation when it is designed to have �ϕf = 0 and �ϕb = π . Con-
sequently, it functions as a four-port optical circulator with a 1 → 4 → 2 → 3 → 1
looping sequence.

It is also possible to implement an optical circulator using a nonreciprocal directional
coupler switch that consists of a nonreciprocal phase-shifter in one of its two coupling
arms and a nonmagnetized reciprocal waveguide in another, as shown in Fig. 7.27.
Because the cross state of a simple directional coupler switch is accessible only with

Figure 7.26 Optical circulator using a nonreciprocal phase shifter in a balanced-bridge
interferometer. This device operates in the cross state in the forward direction and in the parallel
state in the backward direction. The looping sequence is 1 → 4 → 2 → 3 → 1.
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Figure 7.27 Optical circulator using a nonreciprocal phase shifter in a directional coupler switch.
This device operates in the cross state in the forward direction and in the parallel state in the
backward direction. The looping sequence is 1 → 4 → 2 → 3 → 1.

a total phase difference of �ϕ = 0 between its two arms, the length of the device has
to be chosen according to (6.83), and the phase difference for reaching the parallel
state is determined by (6.84). Consequently, the reciprocal and the nonreciprocal phase
shifts needed for proper operation of this device are different from those needed for
the nonreciprocal Mach–Zehnder and balanced-bridge interferometers. The shortest
length that can be chosen for the phase-shifter section is l = lPM

c with a corresponding
phase difference of �ϕ = √

3π between the two coupling arms for the parallel state.
With these parameters, this device should be designed to have �ϕrec = √

3π/2 and
�ϕf

nonrec = −�ϕb
nonrec = −√

3π/2 so that �ϕf = 0 and �ϕb = √
3π for it to operate

in the cross state in the forward direction and in the parallel state in the backward
direction, as also shown in Fig. 7.27.

Both devices shown in Figs. 7.26 and 7.27 function only with the TM-like mode
because of the use of the nonreciprocal phase shifter.

PROBLEMS

7.2.1 Diagonalize the matrix representing ε in (7.16) to verify that the normal modes of
wave propagation in a magneto-optic medium are the three eigenvectors given
in (7.18) with corresponding principal indices of refraction given in (7.20).
Show that ê+ and ê− form a set of orthonormal eigenmode unit vectors for the
propagation of an electromagnetic wave in the z direction.

7.2.2 Linear birefringence often coexists with circular birefringence in a magneto-
optic medium. When linear birefringence appears in the xy plane perpendicular
to the magnetic field in the z direction, the dielectric permittivity tensor of the
medium can be expressed as

ε = ε0


 n2 iξ 0

−iξ n2 + ζ 0
0 0 n2

z


 , (7.74)
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where ζ characterizes the linear birefringence that can be either positive or
negative. Consider the simple case when n, ζ , and ξ are all real parameters so
that both linear dichroism and circular dichroism are absent in the medium.
a. Show that the normal modes of wave propagation in this medium are

ê1 = 1√
2


(1 + ζ√

ζ 2 + 4ξ 2

)1/2

x̂ + i

(
1 − ζ√

ζ 2 + 4ξ 2

)1/2

ŷ


 , (7.75)

ê2 = 1√
2


(1 − ζ√

ζ 2 + 4ξ 2

)1/2

x̂ − i

(
1 + ζ√

ζ 2 + 4ξ 2

)1/2

ŷ


 , (7.76)

and ẑ, with corresponding principal indices of refraction given respectively
by

n1 =
(

n2 + ζ −
√

ζ 2 + 4ξ 2

2

)1/2

≈ n + ζ −
√

ζ 2 + 4ξ 2

4n
, (7.77)

n2 =
(

n2 + ζ +
√

ζ 2 + 4ξ 2

2

)1/2

≈ n + ζ +
√

ζ 2 + 4ξ 2

4n
, (7.78)

and nz .
b. Show that ê1, ê2, and ẑ form a set of orthonormal normal modes for optical

waves in free space.
c. Show that in the absence of linear birefringence, ê1 and ê2 reduce to the

circularly polarized normal modes ê+ and ê−, respectively, while n1 and n2

reduce to n+ and n−, respectively.
d. Show that in the absence of circular birefringence, ê1 and ê2 reduce to the

linearly polarized normal modes x̂ and ŷ, respectively, and n1 and n2 reduce
to nx and ny , respectively.

e. Represent x̂ and ŷ in terms of ê1 and ê2.
7.2.3 Show, by using the results in Problem 7.2.2, that the simultaneous effects of both

linear and circular birefringence in a Faraday rotator of a length l on an optical
wave of a wavelength λ traveling through the rotator is to transform an input field
of Ein = (E x x̂ + E y ŷ)ine−iωt to an output field of Eout = (E x x̂ + E y ŷ)outeikl−iωt

by the following Jones matrix:


E x

E y




out

=




cos θ − i
ζ√

ζ 2 + 4ξ 2
sin θ − 2ξ√

ζ 2 + 4ξ 2
sin θ

2ξ√
ζ 2 + 4ξ 2

sin θ cos θ + i
ζ√

ζ 2 + 4ξ 2
sin θ




E x

E y




in

,

(7.79)
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where k = π (n1 + n2)/λ and

θ = π
√

ζ 2 + 4ξ 2

2λn
l. (7.80)

7.2.4 Show that in an isotropic medium subject to H0 if an optical wave propagates
along an arbitrary direction with respect to the direction of H0, the angle of the
Faraday rotation is that of (7.25) but with H0z in the formula replaced by the
projection of H0 on the path of propagation. How should (7.25) be modified if
the isotropic medium is ferromagnetic and the optical wave does not propagate
in a direction parallel or antiparallel to M0?

7.2.5 If a linearly polarized optical wave at 1.064 µm is sent through the TGG Faraday
rotator described in Example 7.1, what is the Faraday rotation angle in a single
pass? With the given crystal length, if a Faraday rotation angle of 45◦ in a single
pass is desired for the wave, what should the magnetic flux be? Answer the same
questions for a linearly polarized wave at 750 nm wavelength.

7.2.6 Fully magnetized YIG, YbBi : YIG, Bi : YIG, and Ce : YIG listed in Table 7.2 are
used to make Faraday rotators at 1.55 µm wavelength. Compare the performance
characteristics of these rotators by finding the length of each crystal needed for
a Faraday rotation angle of 45◦ and the corresponding loss due to absorption in
each rotator. If the crystals are antireflection coated so that there are no reflection
losses at the input and output surfaces, what is the transmittance of each Faraday
rotator?

7.2.7 Iron has a very large specific Faraday rotation, but it cannot be used to make
useful Faraday rotators. Use the data given in Table 7.2 to give a numerical expla-
nation for the possible difficulty. Are the other ferromagnets listed in Table 7.2
any better than iron?

7.2.8 Show, using (7.23) and the relations defined in (1.66) and (1.67), that an initially
linearly polarized wave entering a medium of circular dichroism, where n+ and
n− are complex, becomes elliptically polarized with a Faraday rotation angle of
θF and a Faraday ellipticity of εF given in (7.29) and (7.30), respectively, after
the optical wave propagates a distance l. Show that the Faraday ellipticity can
be approximated as

εF ≈ Im

[
πξ

λn⊥
l

]
(7.81)

when |εF| � 1. Compare the Faraday rotation angle and the Faraday ellipticity
to the Kerr rotation angle and the Kerr ellipticity given in (7.38).

7.2.9 How should the expressions for the Verdet constant and the specific Faraday
rotation given in (7.26) and (7.28), respectively, be modified for a material that
has circular dichroism?
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7.2.10 At 546 nm wavelength, iron has a complex index of refraction of n = 2.73 +
i3.3 and, when fully magnetized, a complex linear magneto-optic constant of
ξ = −0.18 + i0.74 at room temperature.
a. Find the absorption coefficient, measured per meter and in decibels per cen-

timeter, of iron at 546 nm. Compare the result to the data given in Table 7.2.
b. Find the specific Faraday rotation of fully magnetized iron at 546 nm. Com-

pare the result to the data given in Table 7.2.
c. A linearly polarized optical wave at 546 nm is normally incident on the surface

of fully magnetized iron and propagates in the direction of the magnetization.
What are the Faraday rotation angle θF and the Faraday ellipticity εF of
the transmitted wave after it travels a distance of the skin depth, dskin =
1/α?

d. Compare the values of θF and εF to those of θK and εK found in Example 7.2.
7.2.11 In this problem, we study the difference between the Faraday effect and natural

optical activity. A linearly polarized plane wave propagating along a fixed z axis
in the medium is considered. Circular polarizations, ê+ and ê−, are the normal
modes of the wave propagation.
a. Show that the sense of Faraday rotation is independent of the forward or

backward direction of wave propagation. (As a result, the amount of the
Faraday rotation is doubled instead of being canceled when an optical wave
passing through a magneto-optic material is reflected to traverse its original
path in the opposite direction back to the input end.)

b. Show that the sense of polarization rotation caused by natural optical activity
is reversed when the direction of wave propagation is reversed. (Therefore,
the net amount of the polarization rotation is zero when an optical wave
passing through a naturally optically active material is reflected to traverse
its original path in the opposite direction back to the input end.)

7.2.12 Name two physical effects that can make a linearly polarized wave rotate polar-
ization while always retaining linearly polarized as the wave propagates through
a medium. Experimentally, how do you tell the difference between these two
effects?

7.3.1 At 1 µm wavelength, nickel has a complex index of refraction of n = 2.1 + i5.1
and, when fully magnetized, a complex linear magneto-optic constant of ξ =
0.23 + i0.4 at room temperature. A linearly polarized optical wave at 1 µm is
normally incident on a fully magnetized nickel surface in the polar configuration
shown in Fig. 7.3.
a. Find the absorption coefficient, measured per meter and in decibels per cen-

timeter, of nickel at 1 µm.
b. Find the specific Faraday rotation of fully magnetized nickel at 1 µm. What

is the figure of merit in degrees per decibel.
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c. Find the Faraday rotation angle θF and the Faraday ellipticity εF of the trans-
mitted wave after it travels a distance of the skin depth, dskin = 1/α.

d. Find the Kerr rotation angle θK and the Kerr ellipticity εK of the reflected
wave.

7.3.2 Verify the relations in (7.33) using the boundary conditions for the electromag-
netic fields at the interface between free space and a magnetic medium.

7.3.3 The approximation used in (7.20) for n+ and n− and the conditions |n⊥ − 1| > 1
and |n⊥ + 1| > 1 are valid for magneto-optic Kerr materials of interest.
a. Show that r+ and r− given in (7.33) can be expressed in terms of the Kerr

rotation angle and the Kerr ellipticity as follows:

r+ ≈ (1 + εK − iθK)r, (7.82)

r− ≈ (1 − εK + iθK)r, (7.83)

where

r = 1 − n⊥
1 + n⊥

. (7.84)

b. Show that the reflectivities, R+ = |r+|2 and R− = |r−|2, for the two circularly
polarized modes have the following relation:

R+ − R− = 4εK R, (7.85)

where R = |r |2.
7.3.4 Use the parameters of iron at 546 nm from Problem 7.2.10 to find the value of

R+ − R− for circularly polarized waves at 546 nm that are normally incident on
a fully magnetized iron surface in the polar configuration. Use the parameters of
nickel at 1 µm from Problem 7.3.1 to find the value of R+ − R− for circularly
polarized waves at 1 µm that are normally incident on a fully magnetized nickel
surface in the polar configuration.

7.4.1 Show that the insertion loss and the reverse isolation of a polarization-dependent
isolator of the structure shown in Fig. 7.7(a) can be expressed as (7.43) and
(7.44), respectively. Show that it is possible to minimize the insertion loss while
maximizing the reverse isolation at the same time by setting θF = θp = 45◦.
What are the expressions for the minimum insertion loss and the maximum
reverse isolation?

7.4.2 An optical isolator of the structure shown in Fig. 7.7(a) is desired to have an
insertion loss less than 1 dB and a reverse isolation larger than 30 dB. The input
and output polarizers have the same extinction ratio. The Faraday rotator gen-
erates both a rotation angle θF and an ellipticity εF for a linearly polarized input
optical wave in a single pass. The device has a background optical loss of L0.
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a. If θF = 45◦, what are the required values of the background loss, the
polarizer extinction ratio, and the Faraday ellipticity that allow the device to
satisfy the stated performance specifications?

b. If θF = 40◦ instead, how can the stated performance specifications be met?
7.4.3 An optical isolator of the structure shown in Fig. 7.7(a) has a specified maximum

insertion loss of L (dB) and a specified minimum reverse isolation of I (dB),
where I � L . The Faraday rotator generates a single-pass rotation angle of θF =
45◦ + �θF, which varies with the operating condition. The Faraday ellipticity
is within the limit that allows the device to meet its performance specifications.
Show that to meet the specifications, the following condition has to be satisfied:

|�θF| <
1

2
cos−1

[
10(L0−L)/20

]
, (7.86)

where L0 is the background optical loss defined in (7.43) and (7.44).
7.4.4 The wavelength dependence of the Faraday rotation angle of YbBi : YIG can

be approximated by

1

θF

∂θF

∂λ
= −3.6 µm−1. (7.87)

If an optical isolator consisting of a YbBi : YIG Faraday rotator has a back-
ground optical loss of L0 = 0.5 dB and a high reverse isolation of 60 dB, find
the bandwidth of its operation for an insertion loss that is kept below 1 dB.
If the device is designed for a center wavelength of 1.3 µm, what is its useful
wavelength range of application? To maintain maximum reverse isolation,
how much should the output polarizer angle θp be varied as the wavelength
is varied over this wavelength range? Assume that the background loss is not
wavelength dependent within the wavelength range of interest.

7.4.5 An optical isolator consisting of a YbBi : YIG Faraday rotator as described in
Problem 7.4.4 has an insertion loss of 0.5 dB and a reverse isolation of 60 dB with
θF = 45◦ at 1.3 µm wavelength at 300 K. The output polarizer angle of the isola-
tor is fixed at θp = 45◦ and cannot be adjusted. Assume that the background loss
remains constant within this wavelength range and that εF is negligibly small.
a. What are the variations in the insertion loss and in the reverse isolation over

a wavelength range between 1.28 and 1.32 µm?
b. The temperature dependence of the Faraday rotation angle of YbBi : YIG

can be approximated by

1

θF

∂θF

∂T
= −4.2 × 10−4 K−1. (7.88)

What are the variations in the insertion loss and in the reverse isolation for
a temperature variation of ±20 K?
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7.4.6 Verify the function of the device shown in Fig. 7.11 as a polarization-dependent
optical circulator and the function of the device shown in Fig. 7.12 as a
polarization-independent optical circulator.

7.5.1 For a magneto-optic amplitude modulator of the basic configuration shown in
Fig. 7.7(a), find an expression for the transmittance to replace (7.45) in the case
when linear birefringence coexists with magneto-optic circular birefringence
in the Faraday rotator as described in Problem 7.2.2. The birefringent phase
factor and the Faraday rotation angle resulting from the linear birefringence
and the circular birefringence, respectively, are

ϕ = ωζ

2nc
l = πζ

λn
l, θF = ωξ

2nc
l = πξ

λn
l. (7.89)

Show that when θp is chosen to be 45◦ in this situation, we have, in place of
(7.46), the following transmittance:

T = T0

2
e−αl


1 + 2θF√

ϕ2 + 4θ2
F

sin
√

ϕ2 + 4θ2
F


 . (7.90)

7.5.2 The Faraday rotator of a length l in a magneto-optic amplitude modulator of
the dual-quadrature polarimetric configuration shown in Fig. 7.13 has both
linear birefringence and magneto-optic circular birefringence, as described in
Problem 7.2.2. For an optical wave of wavelength λ, the birefringent phase
factor and the Faraday rotation angle resulting from the linear birefringence
and the circular birefringence, respectively, are

ϕ = ωζ

2nc
l = πζ

λn
l, θF = ωξ

2nc
l = πξ

λn
l. (7.91)

a. In the case when a linearly polarized beam is launched through the input
polarizer and θp is chosen to be 45◦, show that

DS = 2θF√
ϕ2 + 4θ2

F

sin
√

ϕ2 + 4θ2
F . (7.92)

b. In the case when a circularly polarized beam is launched in the absence of
the input polarizer, show that

DS = ϕ√
ϕ2 + 4θ2

F

sin
√

ϕ2 + 4θ2
F . (7.93)

7.5.3 The dynamic range of the fiber-optic current sensor described in Example 7.4
is expanded to 3 kA at the upper end. If the number of turns of fiber is kept
at 20, what is the largest linearity error? In what current range is the linearity
error below 1%? If the linearity error is to be kept below 1% over the entire
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dynamic range from 1 A to 3 kA by reducing the number of fiber turns, what is
the maximum number of turns allowed? What is the smallest Faraday rotation
angle to be measured in this situation?

7.5.4 A linked fiber-optic current sensor of the dual-quadrature polarimetric
configuration shown in Fig. 7.13 consists of a 2-m-long silica fiber wound
around the conductor. At the 632.8 nm wavelength of the light source, the
refractive index of silica is n = 1.457. The largest Faraday rotation angle
corresponding to the maximum current to be measured is 100 mrad. If there is
linear birefringence in the fiber, find the largest value of the birefringence ζ that
is allowed for a reduction of the difference signal DS by less than 10%. What
is the corresponding birefringence measured as the difference in the refractive
indices between the two birefringent axes? What are the value of ζ and the cor-
responding refractive index birefringence for a 50% reduction of the difference
signal DS?

7.5.5 An unlinked current sensor for a dynamic range from 10 µA to 1 A consists
of a TGG Faraday rotator in a 1000-turn solenoid in a configuration shown in
Fig. 7.15(c). A semiconductor laser at 750 nm wavelength is used as the light
source. What is the range of Faraday rotation angle that the detection system has
to be designed to measure in order to cover the dynamic range of this device?

7.5.6 Show, using (7.51), that the magnetic film of a magneto-optic spatial light
modulator has the following optimum thickness for the highest ON-state
transmittance:

lopt = 1

2ρF

tan−1 4ρF

α
, (7.94)

where ρF and α are, respectively, the specific Faraday rotation and the
absorption coefficient of the magnetic film.

7.5.7 A magneto-optic spatial light modulator is constructed with a Bi : YIG film
on LLC substrate between a polarizer and an analyzer. The magnetic film has
ρF = 2.58 × 10−2 rad µm−1 and α = 0.086 µm−1 at 632.8 nm wavelength
and ρF = 1.17 × 10−2 rad µm−1 and α = 0.013 µm−1 at 788 nm wavelength.
All surfaces are broadband antireflection coated so that T0 = 0.95 at both
wavelengths due to the absorption of the polarizer and analyzer.
a. Find the optimum thickness of the film for the highest ON-state transmittance

at 632.8 nm. With this film thickness, what are the values of TON at 632.8
and 788 nm, respectively?

b. Find the optimum thickness of the film for the highest ON-state transmittance
at 788 nm. With this film thickness, what are the values of TON at 632.8 and
788 nm, respectively?

7.5.8 Show that the OFF-state transmittance of a magneto-optic spatial light
modulator is that given in (7.52) when the reflectivities of the rotator surfaces
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are considered but the circular dichroism is ignored. With the result, show that
the contrast ratio of this device is that given in (7.53).

7.5.9 The rotator surfaces of the magneto-optic spatial light modulator described
in Problem 7.5.7 are antireflection coated to have residual reflectivities of
R1 = R2 = 1% at 632.8 nm and R1 = R2 = 0.5% at 788 nm.
a. If the film thickness is optimized for 632.8 nm wavelength, what are the

OFF-state transmittance and the contrast ratio of the device at 632.8 nm?
What are they at 788 nm?

b. If the film thickness is optimized for 788 nm wavelength, what are the
OFF-state transmittance and the contrast ratio of the device at 632.8 nm?
What are they at 788 nm?

7.6.1 Magneto-optic recording of very high areal bit densities at 15.5 Gbit cm−2

(100 Gbit in−2) and beyond is possible. It is accomplished using a blue laser at
488 nm wavelength and a specially designed super-Solid Immersion Lens that
has a numerical aperture of 1.8.
a. What are the theoretical laser spot size on the medium and the areal

bit density according to (7.55)? The measured spot size is actually
182 nm. Based on this spot size, what is the areal bit density according
to (7.55)?

b. For an areal bit density of 15.5 Gbit cm−2 (100 Gbit in−2), what is the
required mark area?

c. To accomplish the high bit density of 15.5 Gbit cm−2 (100 Gbit in−2), a
center aperture detection magnetic super-recording (CAD-MSR) medium,
which allows optical reading of a very small magnetic domain, is used. A
portion of the focused laser beam is optically masked to create an effective
aperture smaller than the diffraction-limited laser spot size. The bit spacing
is then reduced to 40 nm. What track pitch, which is the spacing between
neighboring tracks, should be chosen to accomplished a bit density of
15.5 Gbit cm−2 (100 Gbit in−2)?

7.6.2 A magneto-optic recording system uses a medium that has a reflectance of
R = 0.6 and a Kerr rotation angle of θK = 0.3◦. The read laser power is 1 mW,
and the differential photodetectors have a responsivity of R = 0.35 A W−1.
a. What is the shot-noise-limited SNR of the system if the system has a

bandwidth of 10 MHz?
b. A large bandwidth of 100 MHz is desired. If the read and detection system

is kept unchanged but a different medium can be used, what should the Kerr
rotation angle of the medium be in order to maintain a shot-noise-limited
SNR of at least 30 dB?

7.7.1 An optical wave is launched into a guided-wave TE–TM mode converter as a
TE-like mode at the input end and is allowed to make round-trip passes in the
waveguide.
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a. Show that if the device is a nonreciprocal Faraday TE–TM mode converter,
the coupling efficiency to the TM-like mode is given by (7.64) with l being
the cumulative length traveled by the optical wave in both directions in the
waveguide.

b. Show that if the device is a reciprocal TE–TM mode converter, the coupling
efficiency to the TM-like mode is also given by (7.64) but with l being the
distance from the input end to the point where the conversion efficiency is
being evaluated rather than the cumulative traveling length over multiple
passes in the waveguide.

c. Identify the root of the difference between the nonreciprocal and the
reciprocal TE–TM mode converters.

7.7.2 Find the conversion efficiency of a nonreciprocal Faraday TE–TM mode
converter in a single pass through a waveguide of length l when a finite phase
mismatch exists between the TE and TM modes. Find the conversion efficiency
in a round trip over such a waveguide. Show that both single-pass and round-trip
efficiencies reduce to the expression given in (7.64) in the situation of perfect
phase matching. Can the round-trip efficiency be obtained by simply doubling
the length in the single-pass efficiency in the presence of a phase mismatch?
Can this be done in the situation of perfect phase matching? Give a physical
explanation to the answers.

7.7.3 In the absence of the linear magneto-optic effect, the mode characteristics
of the planar waveguide shown in Fig. 7.22 are simply those discussed in
Section 2.5. We have seen that the waveguide functions as a nonreciprocal
TE–TM mode converter if the waveguide core has a magnetization M0 = M0z ẑ
and that it functions as a nonreciprocal phase shifter for the TM mode if M0 =
M0y ŷ.
a. Verify that κEE = κMM = 0 and κEM = κ∗

ME ≈ −iρF�EM, as given in (7.62),
if M0 = M0z ẑ.

b. With M0 = M0y ŷ as shown in Fig. 7.22, show that κEM = κME = κEE = 0
and kMM given by (7.67) has a nonzero value only for asymmetric magnetic
waveguides.

c. What are the coupling coefficients if the magnetization in the waveguide
core is perpendicular to the boundary surfaces of the planar waveguide,
i.e., M0 = M0x x̂? Can you give a physical argument to explain the results
obtained in this case?

7.7.4 In this problem, we consider the effect of phase mismatch between the TE and
TM modes in a nonreciprocal magneto-optic TE–TM mode converter that is
used as a guided-wave Faraday rotator.
a. Show that if a finite phase mismatch exists, so that �β �= 0, an optical wave

launched at one end of the waveguide as a linearly polarized wave in the
purely TE or purely TM mode does not appear at the other end linearly
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polarized even when the length of the waveguide is chosen such that the
power conversion efficiency is η = 1/2. Therefore, the waveguide does not
function as a 45◦ Faraday rotator. What is the phase difference between the
TE and TM mode fields at the waveguide output?

b. If the wave makes a round trip in the waveguide after being launched as
a linearly polarized wave in a purely TE or purely TM mode, is it linearly
polarized after it returns to the input end in the case when �β �= 0 but l is
chosen so that η = 1/2?

c. Does the mode converter function as a 90◦ rotator in a round trip?
7.7.5 A magneto-optic TE–TM mode converter can be used to construct a guided-

wave optical isolator even when the TE and TM modes are not phase matched.
The consequence is an increased insertion loss caused by the phase mismatch.
a. Show that a guided-wave 45◦ Faraday rotator can be constructed if the length

of the waveguide is chosen to be that given in (7.72) while a linearly polarized
wave is launched at one end with its polarization being 22.5◦ off the TE- or
TM-polarization direction on one side, which is determined by the sign of ρF.

b. Does this rotator function as a 90◦ rotator in a round trip?
c. Show that if the input and output polarizers of the isolators are arranged to

maximize the reverse isolation, then the insertion loss of the device is that
given in (7.73).

7.7.6 A guided-wave optical isolator for 1.15 µm wavelength is based on a magneto-
optic waveguide that has the structure of the one described in Example 7.8
but has a magnetic Bi : YIG film of 2 µm thickness. Solving for the waveguide
structure results in the following parameters for the TE0 and TM0 modes:
βTE = 11.819 98 µm−1, βTM = 11.811 73 µm−1, and �EM = 0.994. This
device is operated in the fundamental TE0 and TM0 modes of the waveguide
and has a background insertion loss of L0 = 3 dB. Find the required length
of the waveguide and the total insertion loss of the isolator. Compare the
characteristics of this device with those of the one described in Example 7.8.
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8 Acousto-optic devices

Scattering of light by acoustic waves was first investigated by Brillouin. The acoustic
frequencies involved in Brillouin scattering fall in the ultrasonic and hypersonic regions.
Hypersonic waves in a medium are caused by thermal excitation, whereas ultrasonic
waves can be excited electronically using piezoelectric transducers. The acoustic waves
used in acousto-optics are generally ultrasonic waves that have frequencies in the range
between about 100 kHz and a few gigahertz. The basic principles of acousto-optic
devices are based on the scattering of light by the periodic index variations generated
by an acoustic wave in the supporting medium. These periodic index variations form
a moving index grating, generated by a traveling acoustic wave, or a standing index
grating, generated by a standing acoustic wave. Because the speed of sound in dielectric
media that are used for device applications typically falls in the range between 1 and
10 km s−1, the index gratings generated by ultrasonic acoustic waves have grating
periods ranging from the order of 1 µm to a few centimeters. A unique property of
the index grating created by an acoustic wave is that its period and modulation depth
can be varied by varying the frequency and amplitude, respectively, of the acoustic
wave through variation in the electronic signal applied to the transducer. Therefore,
the operating parameters of an acousto-optic device can be controlled electronically.
Practical acousto-optic devices include modulators, beam deflectors, frequency shifters,
couplers, switches, and spectrum analyzers.

8.1 Elastic waves

An acoustic wave in a medium is an elastic wave of space- and time-dependent periodic
deformation in the medium. A traveling plane acoustic wave can be expressed as

u(r, t) = U cos(K · r − �t). (8.1)

A standing plane acoustic wave is a combination of two contrapropagating traveling
waves of equal amplitude, wavelength, and frequency. It can be described by

u(r, t) = U cos(K · r) cos �t . (8.2)

357
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In (8.1) and (8.2), u(r, t) represents the time-dependent displacement of the point at r
in the medium subject to deformation, U is the amplitude of the elastic wave, and K and
� = 2π f are its wavevector and angular frequency, respectively. The physical meaning
of the displacement vector u(r, t) is that in a fixed coordinate system, an atom, or an
ion, in the medium at location r before deformation is moved to location r + u under
deformation caused by the elastic wave. Therefore, u(r, t) describes the motion of the
particles in the medium supporting the acoustic wave. The direction of the amplitude
vector U defines the polarization of the acoustic wave, while that of the wavevector K
describes the direction of propagation of the wave. The two contrapropagating traveling
waves that form the standing wave expressed in (8.2) propagate in K and −K directions,
respectively. The magnitude of the wavevector is

K = 2π

�
= �

va
= 2π f

va
, (8.3)

where � and va are the wavelength and phase velocity, respectively, of the acoustic
wave.

For any given direction of propagation of an acoustic wave in any medium, there
are three orthogonal normal modes of polarization. If one mode is polarized along the
direction of K, the directions of polarization of the other two modes are perpendicular
to K. An acoustic wave polarized in the direction of K is known as a longitudinal
wave, while one with a polarization perpendicular to K is called a transverse wave or a
shear wave. In isotropic media and cubic crystals, the three normal modes are always
one purely longitudinal and two purely transverse for any direction of acoustic wave
propagation. In anisotropic crystals other than those in the triclinic system, the normal
modes again consist of one purely longitudinal wave and two purely transverse waves
if the acoustic wave propagates along a crystal axis of two-, three-, four-, or six-fold
symmetry. In general, however, the polarization directions of the normal modes of an
acoustic wave in an anisotropic crystal are not necessarily parallel or perpendicular
to the direction of wave propagation. Then, a mode that has its polarization close to
the direction of K is called quasi-longitudinal, and one whose polarization is close to
being perpendicular to K is called quasi-transverse. Figure 8.1 illustrates the charac-
teristics of different modes of acoustic waves. At a given acoustic frequency in a given
medium, the acoustic velocity va, and, consequently, the wavelength �, and the value
of K all depend on both the direction of propagation and that of the polarization of
an acoustic wave. In an isotropic medium, the two transverse modes are degenerate,
meaning that they have the same acoustic velocity, but they are generally not degenerate
with the longitudinal mode. In a cubic crystal, the two transverse modes are degener-
ate only for waves propagating along certain directions, such as the [100] and [111]
directions of the crystal. In anisotropic crystals, all three normal modes are generally
nondegenerate.
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(a)

(b)

(c)

(d )

Figure 8.1 Spatial variations of displacement vectors for (a) longitudinal acoustic wave,
(b) transverse acoustic wave, (c) quasi-longitudinal acoustic wave, and (d) quasi-transverse
acoustic wave.

Deformation of a medium can be characterized by a second-rank displacement gra-
dient tensor defined by

∂ui

∂x j
, (8.4)

where the indices i, j = 1, 2, 3 represent the coordinates x , y, z. The mechanical strains
associated with deformation are described by a symmetric strain tensor, S = [Si j ],
defined by

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (8.5)

The three tensor elements Sxx , Syy , and Szz are tensile strains, while the other ele-
ments Syz = Szy , Szx = Sxz , and Sxy = Syx are shear strains. In addition, there is an
antisymmetric rotation tensor, R = [Ri j ], defined by

Ri j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
. (8.6)

Clearly, Rxx = Ryy = Rzz = 0, while Ryz = −Rzy , Rzx = −Rxz , and Rxy = −Ryx .
Note that the elements of the strain and rotation tensors, as well as those of the dis-
placement gradient tensor, are dimensionless. For elastic deformation caused by an
acoustic wave such as that described by (8.1), all of these tensor elements are space-
and time-dependent quantities.

If the reference coordinate system is chosen such that one of its axes lines up with
K, a longitudinal acoustic wave generates only one tensile strain component and no
rotation while a transverse acoustic wave generates only shear strains and rotation. For
example, if we take K = K x̂ , a longitudinal wave has U = U x̂ . Then, the only nonzero
element of the strain tensor is Sxx , and all elements of the rotation tensor vanish. For
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a transverse wave, U = U y ŷ + U z ẑ. If both U y and U z are nonzero, the only nonzero
elements of the strain tensor are Sxy = Syx and Szx = Sxz , while the nonzero elements
of the rotation tensor are Rxy = −Ryx and Rzx = −Rxz . If an acoustic wave is neither
purely longitudinal nor purely transverse, it can generate both tensile and shear strains
as well as many elements of the rotation tensor.

8.2 Photoelastic effect

Mechanical strain in a medium causes changes in the optical property of the medium
due to the photoelastic effect. The basis of acousto-optic interaction is the dynamic
photoelastic effect in which the periodic time-dependent mechanical strain caused by
an acoustic wave induces periodic time-dependent variations in the optical properties
of the medium.

The photoelastic effect is traditionally defined in terms of changes in the elements
of the relative impermeability tensor caused by strain:

ηi j (S) = ηi j + �ηi j (S) = ηi j +
∑
k,l

pi jkl Skl, (8.7)

where pi jkl are dimensionless elasto-optic coefficients, also called strain-optic coeffi-
cients or photoelastic coefficients, and they form a fourth-rank tensor. Because ηi j = η j i

and Skl = Slk , the elasto-optic tensor [pi jkl] is symmetric in i and j and in k and l. The
rules of index contraction defined in (1.115) can be used to reduce the double indices
i j and kl to single indices α and β:

pi jkl = p jikl = pi jlk = p jilk = pαβ, where α, β = 1, 2, . . . , 6. (8.8)

In general, pαβ �= pβα . Then, (8.7) can be expressed as

ηα(S) = ηα + �ηα(S) = ηα +
∑

β

pαβ Sβ, (8.9)

where the elements Sβ are defined by the following rules:

S1 = Sxx , S2 = Syy, S3 = Szz,

S4 = 2Syz, S5 = 2Szx , S6 = 2Sxy .
(8.10)

Note that the factor 2 in the definitions of S4, S5, and S6 deviates from the standard rules
used in index contraction. Similarly to the electro-optic Kerr effect, the photoelastic
effect exists in all matters, including centrosymmetric crystals and isotropic media.
Acousto-optic interactions are not precluded by any symmetry property of a medium.
Table 8.1 lists the matrix form of pαβ for various point groups. Also included in the
table is the pαβ matrix for isotropic media, which has only two independent elements,
p11 and p12. The elasto-optic coefficients are dimensionless. The largest of them for a
particular material typically has a value on the order of 0.1–0.5.
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Table 8.1 Matrix form of elasto-optic coefficients for all point groupsa

Triclinic
1
1




p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66




Monoclinic
2
m

2/m




p11 p12 p13 0 p15 0
p21 p22 p23 0 p25 0
p31 p32 p33 0 p35 0
0 0 0 p44 0 p46

p51 p52 p53 0 p55 0
0 0 0 p64 0 p66




Orthorhombic
222

mm2
mmm




p11 p12 p13 0 0 0
p21 p22 p23 0 0 0
p31 p32 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66




Tetragonal
4
4

4/m




p11 p12 p13 0 0 p16

p12 p11 p13 0 0 −p16

p31 p31 p33 0 0 0
0 0 0 p44 p45 0
0 0 0 −p45 p44 0

p61 −p61 0 0 0 p66




422
42m
4mm

4/mmm




p11 p12 p13 0 0 0
p12 p11 p13 0 0 0
p31 p31 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p66




Trigonal
3
3




p11 p12 p13 p14 p15 p16

p12 p11 p13 −p14 −p15 −p16

p31 p31 p33 0 0 0
p41 −p41 0 p44 p45 p46

−p46 p46 0 −p45 p44 p41

−p16 p16 0 −p15 p14
1
2 (p11 − p12)




32
3m
3m




p11 p12 p13 p14 0 0
p12 p11 p13 −p14 0 0
p31 p31 p33 0 0 0
p41 −p41 0 p44 0 0
0 0 0 0 p44 p41

0 0 0 0 p14
1
2 (p11 − p12)




(continued)
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Table 8.1 (cont.)

Hexagonal
6
6

6/m




p11 p12 p13 0 0 p16

p12 p11 p13 0 0 −p16

p31 p31 p33 0 0 0
0 0 0 p44 p45 0
0 0 0 −p45 p44 0

−p16 p16 0 0 0 1
2 (p11 − p12)




622
6mm
6m2

6/mmm




p11 p12 p13 0 0 0
p12 p11 p13 0 0 0
p31 p31 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 1

2 (p11 − p12)




Cubic
23
m3




p11 p12 p13 0 0 0
p13 p11 p12 0 0 0
p12 p13 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44




432
43m
m3m




p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44




Isotropic




p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 1

2 (p11 − p12) 0 0
0 0 0 0 1

2 (p11 − p12) 0
0 0 0 0 0 1

2 (p11 − p12)




a Nye, J. F., Physical Properties of Crystals. London: Oxford University Press, 1957, pp. 250–251.

Many crystals, for example LiNbO3 and TeO2, that are of interest in acousto-optic
applications are piezoelectric. The elasto-optic coefficients of such crystals are modified
by the piezoelectric effect due to the fact that the strain produced by an acoustic wave
generates an electric field in a crystal, which also causes index changes in the crystal
through the electro-optic effect. The modifications due to this secondary effect can be
quite significant in certain crystals. These modifications depend on the direction of
propagation of the acoustic wave. Furthermore, they can rotate the index ellipsoid and
induce birefringence, as can be imagined from our experience with the Pockels effect
discussed in Chapter 6. The modifications to pi jkl due to this piezoelectric effect still
maintain the symmetry described in (8.8), but they do not follow the matrix form listed
in Table 8.1. Their matrix form depends on the combination of the wave propagation
direction and crystal symmetry.

The photoelastic effect associated with the rotational deformation characterized by
the rotation tensor was not included in the definition of the elasto-optic coefficients
pi jkl expressed in (8.7). A complete description of the photoelastic effect has to include
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the contributions from both strain and rotation as

�ηi j (S, R) =
∑
k,l

(
pi jkl Skl + p′

i jkl Rkl
)
. (8.11)

In this relation, pi jkl can be considered to include modifications due to the piezoelectric
effect, with the understanding that they are not exactly the same as those listed in
Table 8.1 and that they depend on the direction of propagation of the acoustic wave. If
the indices i , j , k, and l are referenced to the principal axes of a crystal, we have

p′
i jkl = −1

2

(
1

n2
i

− 1

n2
j

) (
δikδ jl − δilδ jk

)
, (8.12)

where ni and n j represent the principal indices of refraction of the crystal. It can be
seen that p′

i jkl is symmetric in i and j but is antisymmetric in k and l. Therefore, index
contraction cannot be applied to the indices k and l in (8.11) and (8.12). Nevertheless, in
(8.11) the indices i and j can still be contracted by following the rules in (1.115) into a
single index α to write �ηi j = �ηα for it to be used to express the index ellipsoid in the
form of (6.19). From (8.12), we find that p′

i jkl vanishes for isotropic media and cubic
crystals and that the rotational effect is significant only in strongly birefringent crystals.

In the treatment of acousto-optic diffraction using coupled-wave theory, it is desirable
to express the photoelastic effect caused by strain and rotation in a medium formally
in terms of a change in the permittivity of the medium as

ε(ω, S, R) = ε(ω) + �ε(ω, S, R) = ε(ω) + ε0�χ(ω, S, R), (8.13)

where ε(ω) is the dielectric permittivity tensor of the medium in the absence of strain
and rotation fields. The effect of strain and rotation on an optical field E(ω) propagating
in a medium is characterized by a polarization of

�P(ω, S, R) = �ε(ω, S, R) · E(ω). (8.14)

Once the elements of �η caused by strain and rotation are found through the procedure
described above, the elements of �ε can be found using the relation in (6.17) or that
in (6.18).

Acousto-optic figure of merit

In the case when �ηi j is independent of rotation tensor elements but is a function of
strain tensor elements only, we can use (8.7) and (6.18) to express the photoelastic
changes in the permittivity tensor as

�εi j = −ε0n2
i n2

j�ηi j = −ε0n2
i n2

j

∑
k,l

pi jkl Skl, i, j, k, l = 1, 2, 3. (8.15)

The strain tensor elements depend on the propagation direction and the polarization
mode of the acoustic wave. For an acoustic wave that has a wavevector K and an angular
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frequency �, the strain tensor elements vary with space and time as

Skl = Skl sin(K · r − �t), (8.16)

where Skl is the amplitude of the strain. The magnitude of vector K depends on the
polarization of the acoustic wave because longitudinal and transverse acoustic modes
propagating in the same direction generally have different velocities. Then the photo-
elastic permittivity tensor is a function of space and time:

�ε = �ε̃ sin(K · r − �t), (8.17)

where �ε̃ is the amplitude of �ε, and its elements are

�ε̃i j = −ε0n2
i n2

j

∑
k,l

pi jklSkl . (8.18)

The intensity in watts per square meter of an acoustic wave that has a strain amplitude
S is given by

Ia = 1

2
S2ρv3

a , (8.19)

where ρ is the density of the medium and va is the velocity of the specific acoustic
mode under consideration. Therefore, the strain amplitude in (8.18) can be properly
calculated from the acoustic intensity using the relation:

S =
(

2Ia

ρv3
a

)1/2

. (8.20)

In acousto-optic diffraction, as we shall see in the following section, the coupling
coefficient between an incident optical wave of a unit polarization vector êi and a
diffracted optical wave of a unit polarization vector êd is determined by the following
effective permittivity:

�ε̃id = ê∗
i · �ε̃ · êd. (8.21)

The diffraction efficiency, however, is proportional to the square of the coupling coef-
ficient in the low-efficiency limit. In practical acousto-optic applications, it is usually
convenient to use an acousto-optic figure of merit that is defined as

M2 = |�ε̃id|2
2ε2

0nind Ia
= n3

i n3
d p2

ρv3
a

, (8.22)

where ni and nd are the refractive indices seen by the incident and diffracted optical
waves, respectively, p is an effective elasto-optic coefficient properly characterizing
the interaction, and va is the velocity of the acoustic mode involved in the interaction.

Note that the parameters in the definition of M2 have to be chosen properly according
to the mode of operation. Therefore, the figure of merit is specific to the mode of
operation. It depends on both the propagation direction and the polarization mode of
the acoustic wave, as well as on the polarizations of the optical waves. The figure
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of merit M2 has the unit of cubic seconds per kilogram, which is equivalent to square
meters per watt. The properties of some representative acousto-optic materials are listed
in Table 8.2. The values of M2 and va listed in this table are measured under specific
experimental conditions. They are subject to changes under different conditions.

Another factor to be considered in the practical applications of an acousto-optic
material is the acoustic attenuation due to acoustic absorption of the medium, which
generally increases with the square of the acoustic frequency. As a consequence, popular
materials such as silica glass, TeO2, PbMoO4, and Ge are limited to applications at
acoustic frequencies well below 1 GHz and are often used in an acoustic frequency range
between 10 and 500 MHz. GaP can be used in the acoustic frequency range between
500 MHz and 1 GHz. Because of its relatively low acoustic attenuation, LiNbO3 is
suitable for applications at high acoustic frequencies up to 5 GHz.

Isotropic medium

We consider, for simplicity, the propagation of a plane acoustic wave in an isotropic
medium. From the discussions in the preceding section, there are one longitudinal and
two transverse modes for an acoustic wave in an isotropic medium. We can define the
x direction of the coordinate system to be the direction of propagation of the acoustic
wave so that K = K x̂ . Then a longitudinal wave can be expressed as

u(x, t) = x̂U cos(KLx − �t). (8.23)

The two orthogonal transverse modes are degenerate. A transverse wave polarized in
the y direction can be written as

u(x, t) = ŷU cos(KTx − �t), (8.24)

and that polarized in the z direction as

u(x, t) = ẑU cos(KTx − �t). (8.25)

Because KL �= KT in general, the longitudinal and transverse waves have different
acoustic velocities, va,L = �/KL and va,T = �/KT, respectively.

For the longitudinal wave given in (8.23), the only nonvanishing strain tensor element
is the tensile strain

S1 = Sxx = S1 sin(KLx − �t), (8.26)

where S1 = S xx = −KLU is the amplitude of the space- and time-dependent periodic
strain wave. Using (8.15) and the matrix form of pαβ for isotropic media in Table 8.1,
we find that

�ε = �ε̃ sin(KLx − �t) = −ε0n4


 p11 0 0

0 p12 0
0 0 p12


S1 sin(KLx − �t). (8.27)
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For the y-polarized transverse wave given in (8.24), the only nonvanishing strain tensor
elements are the shear strains Sxy = Syx ; thus

S6 = 2Sxy = S6 sin(KTx − �t), (8.28)

where S6 = 2S xy = −KTU . Because p66 = (p11 − p12)/2 in an isotropic medium, we
have

�ε=�ε̃ sin(KTx − �t)=−ε0n4


 0 1

2 (p11 − p12) 0
1
2 (p11 − p12) 0 0

0 0 0


S6 sin(KTx−�t).

(8.29)

Similarly, for the z-polarized transverse wave given in (8.25), we have

S5 = 2Szx = S5 sin(KTx − �t) (8.30)

and

�ε=�ε̃ sin(KTx − �t)=−ε0n4


 0 0 1

2 (p11 − p12)
0 0 0

1
2 (p11 − p12) 0 0


S5 sin(KTx−�t),

(8.31)

where S5 = 2S zx = −KTU .
We see from the above examples that the elements of the �ε̃ tensor have the form

�ε̃i j = −ε0n4 pS, (8.32)

where p is the appropriate elasto-optic coefficient andS is the amplitude of the appropri-
ate strain tensor element representing the traveling acoustic wave under consideration.
In an isotropic medium, the acousto-optic figure of merit defined in (8.22) is simplified
as

M2 = n6 p2

ρv3
a

. (8.33)

Note that even in an isotropic medium, M2 still depends on the mode of the acoustic
wave and the polarizations of the optical waves involved in the interaction.

EXAMPLE 8.1 Fused silica glass is an isotropic material that has only two independent
elasto-optic coefficients, p11 = 0.121 and p12 = 0.271. A longitudinal acoustic wave
at a frequency of 500 MHz is generated to propagate in the x direction. Use the data
listed in Table 8.2 to find the wavelength of the acoustic wave and the figure of merit at
632.8 nm optical wavelength for optical waves of different polarizations. If the acoustic
wave has an intensity of 10 W cm−2, what are the photoelastic index changes?
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Solution From Table 8.2, we find that va,L = 5.97 km s−1 for a longitudinal acoustic
wave in silica glass. At an acoustic frequency of f = 500 MHz, the wavelength of the
longitudinal acoustic wave is found using (8.3) to be

�L = va,L

f
= 11.92 µm.

The longitudinal acoustic wave has a wavevector K = KL x̂ . Therefore, the acousto-
optic permittivity change �ε has the form of that given in (8.27) for isotropic
silica glass. For an optical wave that is linearly polarized in the x direction, par-
allel to the acoustic wavevector K, we have p = p11 and the following figure of
merit:

M‖
2 = n6 p2

11

ρv3
a,L

= 1.4576 × 0.1212

2.2 × 103 × (5.97 × 103)3
s3 kg−1 = 3.0 × 10−16 s3 kg−1

= 3.0 × 10−16 m2 W−1.

For an optical wave that is polarized in any direction in the yz plane, perpendicular to
the acoustic wavevector K, we have p = p12 and the following figure of merit:

M⊥
2 = n6 p2

12

ρv3
a,L

= 1.4576 × 0.2712

2.2 × 103 × (5.97 × 103)3
s3 kg−1 = 1.5 × 10−15 s3 kg−1

= 1.5 × 10−15 m2 W−1.

With Ia = 10 W cm−2 = 1 × 105 W m−2, we have the following strain amplitude:

S =
(

2Ia

ρv3
a,L

)1/2

=
[

2 × 105

2.2 × 103 × (5.97 × 103)3

]1/2

= 2.07 × 10−5.

Therefore, �ε̃xx = −ε0n4 p11S = −1.13 × 10−5ε0 and �ε̃ yy = �ε̃zz = −ε0n4 p12S =
− 2.53 × 10−5ε0. Because �ε is diagonal and because |�ε̃i i/ε0| � n2, we have

�nx (x, t) = �ε̃xx

2nε0
sin(KLx − �t) = −3.38 × 10−6 sin(KLx − �t),

�ny(x, t) = �ε̃ yy

2nε0
sin(KLx − �t) = −8.68 × 10−6 sin(KLx − �t),

�nz(x, t) = �ε̃zz

2nε0
sin(KLx − �t) = −8.68 × 10−6 sin(KLx − �t),

where KL = 2π/�L and � = 2π f .
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8.3 Acousto-optic diffraction

We see from the preceding two sections that the space- and time-dependent periodic
permittivity changes induced by a traveling plane acoustic wave of the form given in
(8.1) can be generally expressed as

�ε = �ε̃ sin(K · r − �t), (8.34)

where K depends on both the polarization and the propagation direction of the acoustic
wave. In general, �ε̃ is a function of the strain and the rotation generated by the acoustic
wave in the medium, the elasto-optic coefficients of the medium, the mode and direction
of the acoustic wave, and the frequency and polarization of the optical wave, but it is
independent of the values of K and �. When an optical wave at a frequency ω is
incident on this medium, the interaction between the optical wave and the periodic
modulation described by (8.34) can generate diffracted optical waves at frequencies
ω ± �. The diffracted waves at ω ± � can be diffracted once more to generate waves
at frequencies ω ± 2�. If this process is allowed to cascade, we will end up with a
series of diffracted optical waves at frequencies ω + q�, where q admits both positive
and negative integers and is the order of acousto-optic diffraction.

For acousto-optic diffraction from a traveling acoustic wave, each diffraction order
has a unique propagation direction. Therefore, there is a single wavevector kq associ-
ated with the optical wave component at the frequency ωq = ω + q�. Following the
formulation of the coupled-wave theory discussed in Section 4.1, the total optical field
consisting of all interacting components can then be expressed in the form of (4.5):

E(r, t) =
∑

q

Eq (r)eikq ·r−iωq t =
∑

q

êqEq (r)eikq ·r−iωq t , (8.35)

where êq is the unit vector defining the polarization of Eq . According to (8.14), the polar-
ization induced by interaction of the acoustic wave with the optical field component of
the frequency ωq is �Pq (r) = �ε(ωq ) · Eq (r) = �ε(ωq ) · Eq (r) exp(ikq · r). Because
ω � �, dispersion of the medium within the frequency range of interaction can be
ignored to take �ε(ωq ) = �ε. According to (4.6), the total induced polarization is

�P(r, t) =
∑

q

�ε · Eq (r)eikq ·r−iωq t

=
∑

q

�ε̃ · Eq (r) sin(K · r − �t)eikq ·r−iωq t

= 1

2i

∑
q

�ε̃ · Eq (r)
[
ei(kq+K)·r−iωq+1t − ei(kq−K)·r−iωq−1t

]

= 1

2i

∑
q

�ε̃ ·
[
Eq−1(r)ei(kq−1+K)·r − Eq+1(r)ei(kq+1−K)·r

]
e−iωq t . (8.36)
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Comparing (8.36) with (4.6), we find that

�Pq (r) = 1

2i
�ε̃ ·

[
Eq−1(r)ei(kq−1+K)·r − Eq+1(r)ei(kq+1−K)·r

]
. (8.37)

Using (4.11), we have the following equation for coupling of optical waves through
their interaction with a traveling acoustic wave in an isotropic medium:

(kq · ∇)Eq = ω2
qµ0

4
�ε̃ ·

[
Eq−1ei(kq−1+K−kq)·r − Eq+1ei(kq+1−K−kq)·r

]
. (8.38)

In an anisotropic medium, the valid coupled-wave equation can be obtained by
taking the transverse component on both sides of (8.38) according to (4.18). From this
coupled-wave equation, the following general observations can be made.

1. Each optical frequency is directly coupled only to its neighboring frequencies shifted
by � or −�.

2. Coupling between optical waves of different polarizations is possible in both isotropic
and anisotropic media because �ε̃ is generally anisotropic. In an isotropic medium,
this coupling is possible when p11 �= p12, as can be seen from the demonstration in
the preceding section.

3. The coupling efficiency depends on the polarization and the propagation direction of
the optical waves being coupled, as well as on the polarization and the propagation
direction of the acoustic wave.

4. Coupling between Eq and Eq−1 is phase matched when kq−1 = kq − K, whereas
the phase-matching condition for coupling between Eq and Eq+1 is kq+1 = kq + K.
The efficiency for the coupling between two specific wave components of different
frequencies depends critically on the amount of phase mismatch in the coupling
process.

Consequently, acousto-optic diffraction displays many different phenomena under
different experimental conditions. Each phenomenon is useful for certain applications.

Raman–Nath diffraction

We consider the diffraction, in an isotropic medium, of a plane optical wave at a
frequency ω by a column of plane acoustic wave in a geometry shown in Fig. 8.2(a).
The acoustic wave propagates in the x direction so that K = K x̂ . The value of K depends
on the polarization of the acoustic wave, as is demonstrated in the preceding section.
The incident optical wave propagates in a direction close to normal to the acoustic
column so that its wavevector ki makes a small angle θi with respect to the z-coordinate
axis, as also shown in Fig. 8.2(a). The acoustic wave column has a finite width in the z
direction, but it extends in the x direction far beyond the region of interaction. We also
assume that the interaction is two-dimensional so that there are no variations in the
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(a) (b)

Figure 8.2 (a) Configuration and (b) wavevector diagram for Raman–Nath diffraction in an
isotropic medium. Phase matching in the x direction determines the propagation angles of the
diffracted waves. Phase mismatch exists only in the z direction.

y direction for both the optical and the acoustic waves. With these assumptions, any
changes in the amplitude of the optical field caused by its interaction with the acoustic
wave column occur only along the z direction even though the propagation direction of
the optical wave might not be parallel to the z-coordinate axis. Consequently, we have
Eq (r) = Eq (z) though kq = kq,x x̂ + kq,z ẑ and kq,x �= 0 in general.

Under the conditions discussed above, the coupled-wave equation in (8.38) can be
written as

dEq

dz
= ω2

qµ0

4kq,z
�ε̃ · {Eq−1 exp[i

(
kq−1,x + K − kq,x

)
x + i

(
kq−1,z − kq,z

)
z]

− Eq+1 exp[i
(
kq+1,x − K −kq,x

)
x + i

(
kq+1,z −kq,z

)
z]
}
, (8.39)

according to (4.12). Because the field amplitudes in this equation vary with z only, the
x-dependent phases on the right-hand side of this equation must vanish, resulting in
the following phase-matching condition:

K = kq,x − kq−1,x = kq+1,x − kq,x . (8.40)

This phase-matching condition determines the propagation direction of each diffracted
wave component. Because ω � �, we can take the approximation that kq = n(ω +
q�)/c ≈ nω/c = k. Then, (8.40) can be written as

K = k
(
sin θq − sin θq−1

) = k
(
sin θq+1 − sin θq

)
, (8.41)

where θq is the directional angle of kq with respect to the z axis, as shown in Fig. 8.2(b).
The zeroth order, q = 0, represents the undiffracted component with k0 = ki and
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θ0 = θi at the original frequency ω0 = ω. The recursion relation in (8.41) can then
be reduced to

sin θq = sin θi + q K

k
. (8.42)

For small angles of incidence and diffraction, (8.42) can be written as

θq ≈ θi + q K

k
= θi + q

λ

n�
= θi + q

λ f

nva
, (8.43)

where n is the refractive index of the medium. By expressing the phase mismatch in
the z direction in terms of the angle of propagation for each wave component, (8.39)
becomes

dEq

dz
= ω2

qµ0

4k cos θq

[
�ε̃q,q−1Eq−1eikz(cos θq−1−cos θq) − �ε̃q,q+1Eq+1eikz(cos θq+1−cos θq)

]
,

(8.44)

where �ε̃q,q−1 = ê∗
q · �ε̃ · êq−1 and �ε̃q,q+1 = ê∗

q · �ε̃ · êq+1. The coupled equations
represented by (8.44) are known as the Raman–Nath equations.

The solution of (8.44) depends on many experimental parameters. In the special case
when the direction of propagation of the incident optical wave is normal to the direction
of propagation of the acoustic wave so that θi = 0, the phase-mismatch parameters in
(8.44) can be approximated as

kz(cos θq−1 − cos θq ) ≈ kz

(
q − 1

2

)
K 2

k2
, (8.45)

kz(cos θq+1 − cos θq ) ≈ −kz

(
q + 1

2

)
K 2

k2
, (8.46)

using (8.43) to expand cos θq . If the interaction length l along the z direction is small
so that

q
K 2l

k
� 1, (8.47)

the cumulative phase mismatch over the interaction length can be neglected. Then (8.44)
can be approximated as

dEq

dz
≈ ω2

qµ0

4k

(
�ε̃q,q−1Eq−1 − �ε̃q,q+1Eq+1

)
. (8.48)

In this situation, acousto-optic coupling allows many diffraction orders to be observed.
This is the regime of Raman–Nath diffraction. The condition for Raman–Nath diffrac-
tion is usually stated as

Q = K 2l

k
= 2π

λl

n�2
= 2π

λ f 2l

nv2
a

� 1, (8.49)
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although the condition in (8.47) is more precise when high diffraction orders are con-
sidered. Typically, one chooses Q ≤ 0.3 for Raman–Nath diffraction. In addition to this
condition, Raman–Nath diffraction occurs only when the optical wave propagates in a
direction normal, or nearly normal, to the direction of propagation of the acoustic wave.

Because �ε̃q,q−1 and �ε̃q,q+1 have different values and both vary with q, there is
no general solution to the coupled equations of (8.48). Nevertheless, with the incident
optical wave propagating in the z direction and the acoustic wave propagating in the
x direction, we do have �ε̃q,q−1 = �ε̃q,q+1 = �ε̃id, which is independent of q in the
following special situations (see Problem 8.3.1).

1. If the acoustic wave is longitudinally polarized and the incident optical wave is
linearly polarized either in the x or y direction, then êq = êi for all q.

2. If the acoustic wave is a y-polarized transverse wave, then êq = êi for all even
values of q and êq = ê1 for all odd values of q. This statement is true irrespective of
the polarization state of the incident optical wave, which can be linear, circular, or
elliptical.

In these special cases, (8.48) can be written as

dEq

dz
= ω2µ0�ε̃id

4k

(Eq−1 − Eq+1
)
, (8.50)

where the approximation of ωq ≈ ω is taken. We can cast (8.50) in the form

dEq

dζ
= 1

2

(Eq−1 − Eq+1
)

(8.51)

by taking

ζ = ω2µ0�ε̃id

2k
z. (8.52)

The recursion relation in (8.51) is that of the Bessel functions given in (3.21). Therefore,
its solutions are the Bessel functions:

Eq (z) = E0(0)Jq

(
ω2µ0�ε̃id

2k
z

)
, (8.53)

where E0(0) is the amplitude of the incident optical wave, which is the zeroth order
with q = 0, at the input plane z = 0. We can define a coupling coefficient

|κ| = π

λ

(
M2 Ia

2

)1/2

, (8.54)

where λ is the optical wavelength in free space and M2 is related to ε̃id according to the
relation in (8.22). Then, for an interaction length l, we have

Eq (l) = E0(0)Jq (−2|κ|l) = E0(0)J−q (2|κ|l), (8.55)
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Figure 8.3 Raman–Nath diffraction efficiencies of a few leading diffraction orders.

where we have used the identity Jq (−x) = J−q (x) for the Bessel functions. The leading
orders of the Bessel functions have been plotted in Fig. 3.2. The Raman–Nath diffraction
efficiency for order q over an interaction length l is

ηq = Iq (l)

I0(0)
= J 2

−q (2|κ|l) = J 2
q (2|κ|l) = η−q . (8.56)

Because J 2
−q = J 2

q according to (3.20), the diffraction orders q and −q have the same
diffraction efficiency. Figure 8.3 shows the Raman–Nath diffraction efficiencies of a
few leading orders.

In the above, we have considered Raman–Nath diffraction in an isotropic medium.
Raman–Nath diffraction in an anisotropic crystal that involves a polarization change
between successive orders would require successive anisotropic phase matching and is
generally not possible.

EXAMPLE 8.2 A longitudinal acoustic wave propagates in a piece of fused silica glass in
the x direction. An optical wave at 632.8 nm wavelength propagating in the z direction is
diffracted by this acoustic wave in the Raman–Nath regime. (a) If the acoustic frequency
is kept at f = 100 MHz, what is the limit on the interaction length l? (b) If the acousto-
optic interaction length is l = 1 cm, what is the requirement on the acoustic frequency
f ? (c) Find the first-order diffraction efficiency for an interaction length of l = 1 cm
and an acoustic intensity of Ia = 1 W cm−2.

Solution For a longitudinal acoustic wave in fused silica, we have va = va,L =
5.97 km s−1 from Table 8.2. We also have n = 1.457 for fused silica at λ = 632.8 nm.
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(a) For f = 100 MHz, we have the following limit for the interaction length:

l � nv2
a

2πλ f 2
= 1.3 mm.

From these results, we see clearly that Raman–Nath diffraction takes place only at low
acoustic frequencies or short interaction lengths.

(b) For l = 1 cm, the requirement that Q � 1 sets the following limit on the acoustic
frequency:

f �
(

nv2
a

2πλl

)1/2

= 36 MHz.

(c) Because M2 = 1.5 × 10−15 m2 W−1, we find, using (8.54), that |κ| = 13.64 m−1

for Ia = 1 W cm−2. Therefore, 2|κ|l = 0.2728 for l = 1 cm, and the first-order diffrac-
tion efficiency for q = 1 and q = −1 alike is

η1 = η−1 = J 2
1 (0.2728) ≈ 0.018.

Bragg diffraction

When the interaction length l is sufficiently large so that

Q = K 2l

k
= 2π

λl

n�2
= 2π

λ f 2l

nva
� 1, (8.57)

the cumulative phase mismatch for each pair of coupled wave components cannot
be neglected when solving (8.44). Consequently, it is necessary to have perfect, or
nearly perfect, phase matching between two coupled wave components in order to
have a significant diffraction efficiency from one of them to the other. This condition
defines the regime of Bragg diffraction. In practice, Q ≥ 4π is often chosen for Bragg
diffraction.

The incident wave, being the zeroth order with a wavevector ki and a frequency ω,
is directly coupled only to the diffraction orders q = 1 and q = −1. It can be seen by
taking q = 0 in (8.38) that the phase-matching condition for generation of the diffraction
order q = 1 at the up-shifted frequency ω1 = ω + � is

kd = k1 = ki + K, (8.58)

whereas that for generation of the diffraction order q = −1 at the down-shifted fre-
quency ω−1 = ω − � is

kd = k−1 = ki − K. (8.59)

For any diffraction order q to be generated, it is found by reduction that the phase-
matching condition of kq = ki + qK has to be satisfied for ωq = ω + q�. In addition,
because each diffraction order is directly coupled only to its neighboring orders, Bragg
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diffraction at a high order requires successive generation of low diffraction orders,
thus simultaneous satisfaction of corresponding phase-matching conditions. With the
exception of some very special cases, these requirements cannot be fulfilled. Conse-
quently, only one diffraction order, either q = 1 or q = −1, is usually generated in
Bragg diffraction from a traveling acoustic wave.

Bragg diffraction occurs in both isotropic and anisotropic media when the phase-
matching condition in (8.58) or that in (8.59) is satisfied. The polarization of the
diffracted wave is determined by the property of the �ε̃ tensor and the polarization
of the incident optical wave in much the same manner as that discussed above for
Raman–Nath diffraction. Therefore, in both isotropic and anisotropic media, acousto-
optic Bragg diffraction can be accompanied by a change of polarization between the
incident and diffracted waves. In an isotropic medium, kd ≈ ki = k no matter whether
there is a change of polarization in the process or not. In an anisotropic medium, kd = ki

when the incident and the diffracted waves have the same polarization, but kd �= ki in
general when they have different polarizations. The type of acousto-optic diffraction in
which kd �= ki is called birefringent diffraction, whereas that in which kd = ki is called
nonbirefringent diffraction.

With the incident wave propagating at a directional angle θi and the diffracted wave
propagating at a directional angle θd, the phase-matching conditions in (8.58) and (8.59)
can be expressed as

kd cos θd = ki cos θi, kd sin θd = ki sin θi ± K , (8.60)

where the plus sign is for up-shifted diffraction and the minus sign is for down-shifted
diffraction. Therefore, for phase-matched, up-shifted Bragg diffraction, the angles of
incidence and diffraction are

θi = −sin−1 K 2 + k2
i − k2

d

2ki K
= −sin−1 λ f

2niva

[
1 + v2

a

λ2 f 2
(n2

i − n2
d)

]
, (8.61)

θd = sin−1 K 2 + k2
d − k2

i

2kd K
= sin−1 λ f

2ndva

[
1 + v2

a

λ2 f 2
(n2

d − n2
i )

]
, (8.62)

respectively.
For phase-matched, down-shifted Bragg diffraction, the signs of both θi and θd change

from those given above for up-shifted diffraction. Note that when ki �= kd, either the
incident or the diffracted wave has to be an extraordinary wave; sometimes both of
them are. Therefore, in the above equations, the value of ki depends on θi and that of kd

depends on θd, in general. In Bragg diffraction, the angles of incidence and diffraction
are not limited to small values as is the case in Raman–Nath diffraction. As can be
seen from (8.61) and (8.62), depending on the values of ki, kd, and K involved in
the process, the values of θi and θd dictated by the phase-matching conditions can be
anywhere between −π/2 and π/2, if they exist. For certain combinations of ki, kd, and
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(a)

(c)

(e)

(g)

(i)

(h)

( j )

(b)

(d )

( f )

Figure 8.4 Phase-matching configurations for Bragg diffraction from a traveling acoustic wave of
a wavevector K = K x̂ under various situations: (a)–(d) kd < ki, (e) and (f) kd = ki, (g)–(j) kd > ki.
Configurations for up-shifted diffraction are shown in (a), (c), (e), (g), and (i) on the left. Those for
down-shifted diffraction are shown in (b), (d), ( f), (h), and ( j) on the right. Both noncollinear and
collinear phase-matching configurations are shown in each case.

K , there are no solutions for θi and θd. In such cases, Bragg diffraction cannot occur
because the required phase-matching condition cannot be satisfied.

Figure 8.4 shows various phase-matching configurations for up-shifted and down-
shifted Bragg diffraction from a traveling acoustic wave of a given wavevector K.
Several remarks on phase-matched Bragg diffraction can be made:
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1. Bragg diffraction in an isotropic medium, with or without a change of polarization,
and that in an anisotropic medium without a change of polarization between the
incident and the diffracted waves are nonbirefringent because kd ≈ ki = k in such
cases. The angles of incidence and diffraction in nonbirefringent Bragg diffraction
are of equal magnitude but opposite signs:

θi = −θB, θd = θB, (8.63)

for up-shifted diffraction, and

θi = θB, θd = −θB, (8.64)

for down-shifted diffraction, where

θB = sin−1 K

2k
= sin−1 λ f

2nva
(8.65)

is known as the Bragg angle. For a monochromatic optical wave incident at any θi,
there is always one and only one value of K that can satisfy the phase-matching
condition for either up-shifted or down-shifted Bragg diffraction, depending on the
sign of θi, as demonstrated in Figs. 8.4(e) and ( f ).

2. For Bragg diffraction in an isotropic medium, the values of K and f that allow
phase-matched interaction fall in the following range:

0 ≤ K ≤ 2k, or 0 ≤ f ≤ 2nva

λ
. (8.66)

For birefringent Bragg diffraction in an anisotropic medium in general, the range of
K and f for phase-matched interaction is

|ki − kd| ≤ K ≤ |ki + kd|, or
|ni − nd|va

λ
≤ f ≤ |ni + nd|va

λ
. (8.67)

3. For birefringent Bragg diffraction in an anisotropic medium, there is a change of
polarization between the incident and the diffracted waves, and kd can be either
smaller or larger than ki. In the case when kd < ki, Bragg diffraction occurs only
if the incident angle satisfies π/2 ≥ |θi| > cos−1(kd/ki). For each acceptable value
of θi, there may exist two values or only one value of K for phase matching if the
diffracted wave is extraordinary so that the value of kd depends on θd, but two values
of K always exist for each acceptable θi if the diffracted wave is ordinary. Up-shifted
diffraction occurs when θi has a negative value, as demonstrated in Figs. 8.4(a) and
(c). Down-shifted diffraction occurs when θi has a positive value, as demonstrated
in Figs. 8.4(b) and (d). In the case when kd > ki, for any incident angle except
θi = 0, one value of K exists for up-shifted diffraction and another for down-shifted
diffraction, if the values of both ki and kd are fixed. For given ki and K, this implies
that kd for up-shifted diffraction and that for down-shifted diffraction have different
directions and different magnitudes, as demonstrated in Figs. 8.4(g)–( j).
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4. When θi = π/2 or −π/2, the phase-matching configurations are collinear. In these
configurations, also shown in Fig. 8.4, ki and kd are both collinear with K but can
be either parallel or antiparallel to each other.

EXAMPLE 8.3 The angles of incidence and diffraction for Bragg diffraction are determined
by the parameters of both the optical and the acoustic waves in the medium, including
λ, ni, and nd for the optical waves and f and va for the acoustic wave. To see the
dependences of θi and θd on these parameters clearly, it is convenient to define a
dimensionless normalized acoustic frequency:

f̂ = λ f

(ni + nd)va
. (8.68)

Then θi and θd given in (8.61) and (8.62) for up-shifted Bragg diffraction can be
expressed as

θi = −sin−1 f̂ + f̂ min/ f̂

1 + f̂ min

, θd = sin−1 f̂ − f̂ min/ f̂

1 − f̂ min

, (8.69)

where

f̂ min = ni − nd

ni + nd
. (8.70)

Note that f̂ min can be either positive or negative depending on whether ni > nd or
nd > ni. For down-shifted Bragg diffraction, the signs of both θi and θd change from
those seen in (8.69). For nonbirefringent Bragg diffraction, we simply set ni = nd = n
so that f̂ min = 0 and θi = −θd = −θB with

θB = sin−1 f̂ . (8.71)

We find from (8.69) that θi and θd have solutions only if the frequency f̂ falls within
the range:

| f̂ min| ≤ f̂ ≤ 1. (8.72)

This condition is the same as that in (8.67) for birefringent Bragg diffraction and that
in (8.66) for nonbirefringent Bragg diffraction. Therefore, | f̂min| is the minimum nor-
malized acoustic frequency that allows a phase-matched birefringent Bragg interaction,
whereas there is no minimum acoustic frequency for phase-matched nonbirefringent
Bragg diffraction. In the case when ni > nd so that f̂ min > 0, we also find from (8.69)
that θd = 0 while |θi| has a minimum value of |θmin

i | for an incident angle of

θmin
i = −sin−1 2| f̂ min|1/2

1 + | f̂ min|
= − cos−1 nd

ni
(8.73)

at the frequency of

f̂ t = | f̂ min|1/2. (8.74)

In the case when nd > ni, we find θi = 0 and θd = θmin
d = cos−1ni/nd at the frequency
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(a) (b)

(c)

Figure 8.5 Angles of incidence and diffraction as a function of the dimensionless normalized
acoustic frequency, f̂ , for (a) up-shifted birefringent Bragg diffraction with ni = 2.2 and nd = 1.8
and (b) up-shifted nonbirefringent Bragg diffraction with n = 2. (c) Deflection angle as a function
of the dimensionless normalized acoustic frequency for both birefringent (solid curve) and
nonbirefringent (dashed curve) cases. Tangential phase matching for birefringent diffraction occurs
at the frequency f̂ t.

f̂ t. Phase matching for birefringent Bragg diffraction at f̂ t so that one angle is zero
and another has a minimum absolute value is known as tangential phase matching or
90◦phase matching because either kd (in the case when ni > nd) or ki (in the case when
nd > ni) is perpendicular to K in this situation.

To illustrate the dependences of θi and θd on the value of f̂ numerically and to
compare birefringent and nonbirefringent interactions, we consider a birefringent case
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with ni = 2.2 and nd = 1.8 and a nonbirefringent case with n = 2 so that ni > nd

and ni + nd = 2n = 4. For birefringent diffraction, we find that f̂ min = 0.1 and that
θi = θmin

i = −35.1◦ and θd = 0 at f̂ t = 0.316. The values of θi and θd as a function
of f̂ are shown in Fig. 8.5(a) for birefringent Bragg diffraction and in Fig. 8.5(b) for
nonbirefringent Bragg diffraction. The deflection angle θdef = θd − θi measured from
the direction of the incident wave to that of the diffracted wave is shown in Fig. 8.5(c)
for both cases. As can be seen, the dependences of θi and θd on f̂ differ significantly
between birefringent and nonbirefringent cases, particularly at frequencies near and
below f̂ t. However, there is very little difference in the deflection angle θdef between
the two cases except at frequencies near and below | f̂ min| where birefringent diffraction
has a cutoff but nonbirefringent diffraction does not.

Taking the approximation that ω1 ≈ ω ≈ ω−1 and considering the general situation
that the phase-matching condition may not be perfectly satisfied, we find from (8.38)
the following coupled equations for Bragg diffraction:

cos θi
∂E i

∂z
+ sin θi

∂E i

∂x
= ∓ω2µ0�ε̃id

4ki
Edei�k·r, (8.75)

cos θd
∂Ed

∂z
+ sin θd

∂Ed

∂x
= ±ω2µ0�ε̃di

4kd
E ie

−i�k·r, (8.76)

where �ε̃id = ê∗
i · �ε̃ · êd = �ε̃∗

di. For up-shifted diffraction, �k = kd − ki − K, and
the top signs are used on the right-hand side of both (8.75) and (8.76). For down-
shifted diffraction, �k = kd − ki + K, and the bottom signs are used. According to
the discussions in Section 4.1, it is also understood that in the case of diffraction in
an anisotropic medium, (8.75) and (8.76) represent the transverse components of the
fields being coupled. We can define the following normalized amplitude for an optical
field:

A =
(

2k

ωµ0

)1/2

E (8.77)

so that, according to (1.98), the intensity of the field is simply

I = |A|2. (8.78)

Then, the coupled equations for Bragg diffraction can be written as

cos θi
∂ Ai

∂z
+ sin θi

∂ Ai

∂x
= iκ Adei�k·r, (8.79)

cos θd
∂ Ad

∂z
+ sin θd

∂ Ad

∂x
= iκ∗ Aie

−i�k·r, (8.80)

where, for up-shifted or down-shifted diffraction, respectively,

κ = i
ω2µ0�ε̃id

4k1/2
i k1/2

d

or κ = −i
ω2µ0�ε̃id

4k1/2
i k1/2

d

. (8.81)
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Using (8.22), we find that the Bragg coupling coefficient can be expressed in terms of
the acousto-optic figure of merit as

|κ| = π

λ

(
M2 Ia

2

)1/2

, (8.82)

which has the same form as that of the coupling coefficient for Raman–Nath diffraction
defined in (8.54). In general, θi and θd can have any values between −π/2 and π/2,
and Ai and Ad can vary with both x and z. However, two extreme cases that have much
simplified solutions for the coupled equations in (8.79) and (8.80) are of particular
interest and are discussed in the following.

Small-angle Bragg diffraction: θi ≈ 0

In case the angles of incidence and diffraction are both very small, cos θi and cos θd

can both be approximated by unity, and sin θi and sin θd are both approximately zero.
This is the situation in which the optical waves propagate almost perpendicularly to the
acoustic wave. It normally occurs when the acoustic wavelength is much larger than
the optical wavelength but the interaction length is large so that (8.57) is satisfied. In
this case, the field amplitudes, Ai and Ad, vary primarily with z only, and the phase
mismatch is �k = �kẑ. The coupled equations in (8.79) and (8.80) then reduce to

dAi

dz
= iκ Adei�kz, (8.83)

dAd

dz
= iκ∗ Aie

−i�kz. (8.84)

The boundary conditions are Ai(0) �= 0 and Ad(0) = 0. These coupled equations de-
scribe codirectional coupling of the incident and the diffracted waves with symmetric
coupling coefficients. They have the solutions obtained in Section 4.3 for codirection-
ally coupled modes when we identify �k with 2δ. Therefore, the codirectional Bragg
diffraction efficiency over an interaction length l is

η = Id(l)

Ii(0)
= |Ad(l)|2

|Ai(0)|2 = 1

1 + �k2/4|κ|2 sin2
(
|κ|l
√

1 + �k2/4|κ|2
)

. (8.85)

The diffraction efficiency in the case of perfect phase matching is

ηPM = sin2 |κ|l. (8.86)

Using (8.82), it is found that the acoustic intensity needed for 100% Bragg diffraction
efficiency is

Ia = λ2

2M2l2
. (8.87)
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Collinear Bragg diffraction: θi = ±π/2

Another special case of particular interest is collinear Bragg diffraction, which occurs
when the incident optical wave propagates collinearly with the acoustic wave. The
wavevector ki can be either parallel or antiparallel to K, corresponding to θi = π/2
and −π/2, respectively. The phase-matching condition in (8.60) then requires that θd

be either π/2 or −π/2. Therefore, kd is collinear with both ki and K. As can be seen
from the collinear phase-matching configurations shown in Fig. 8.4, the diffracted op-
tical wave can propagate either codirectionally or contradirectionally with respect to
the incident optical wave. Collinear Bragg diffraction in an isotropic medium is al-
ways contradirectional because ki = kd = K/2 in this situation. However, collinear
Bragg diffraction in an anisotropic medium can be codirectional or contradirectional
because two values of K exist for phase-matching in each case when ki �= kd. Codi-
rectional Bragg diffraction occurs in an anisotropic medium with an acoustic wave at
a low frequency corresponding to a small K value, whereas contradirectional Bragg
diffraction occurs with an acoustic wave at a high frequency corresponding to a large
K value.

From the above discussions, we find that the coupled equations describing collinear
Bragg diffraction can be either those of codirectional coupling or those of contradirec-
tional coupling, depending on whether the propagation directions of the incident and the
diffracted waves are codirectional or contradirectional. In either case, with θi = ±π/2,
θd = ±π/2, and K = K x̂ , both Ai and Ad vary only with x and �k = �kx̂ . The
coupled equations in (8.79) and (8.80) then reduce to

±dAi

dx
= iκ Adei�kx , (8.88)

±dAd

dx
= iκ∗ Aie

−i�kx . (8.89)

In (8.88), the plus or minus sign on the left-hand side is chosen respectively according
to whether ki points in the direction of x̂ or −x̂ . Similarly, in (8.89), the plus or minus
sign is chosen respectively according to whether kd points in the direction of x̂ or −x̂ .

1. When ki and kd point in the same direction, the same sign is chosen in both (8.88) and
(8.89) for codirectional coupling between the incident and the diffracted waves. The
boundary conditions for codirectional Bragg diffraction are Ai(0) �= 0 and Ad(0) =
0, and the diffraction efficiency is that given in (8.85) in general and that in (8.86)
for perfect phase matching. Collinear, codirectional Bragg diffraction is birefringent
and is possible only in anisotropic media. It is always accompanied by a change of
polarization between the incident and the diffracted waves.

2. When ki and kd point in opposite directions, different signs are chosen in (8.88) and
(8.89) for contradirectional coupling between the incident and the diffracted waves.
For contradirectional Bragg diffraction over an interaction length l, the boundary
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conditions are Ai(0) �= 0 and Ad(l) = 0 if kd = −kd x̂ and are Ai(0) �= 0 and
Ad(−l) = 0 if kd = kd x̂ . The solutions obtained in Section 4.3 for contradirectionally
coupled modes can be used when we identify �k with 2δ. Therefore, the contradi-
rectional Bragg diffraction efficiency is

η = Id(0)

Ii(0)
= |Ad(0)|2

|Ai(0)|2 =
sinh2

(
|κ|l
√

1 − �k2/4|κ|2
)

cosh2
(
|κ|l
√

1 − �k2/4|κ|2
)

− �k2/4|κ|2
. (8.90)

The diffraction efficiency in the case of perfect phase matching is

ηPM = tanh2 |κ|l. (8.91)

Collinear, contradirectional Bragg diffraction is possible in both isotropic and
anisotropic media. A change of polarization between the incident and the diffracted
waves may or may not occur in this process.

EXAMPLE 8.4 An optical wave at 632.8 nm wavelength interacts with a longitudinal acous-
tic wave of a frequency f = 100 MHz in a piece of fused silica glass over an interaction
length of l = 4 cm. The incident optical wave is polarized in a direction êi that is perpen-
dicular to vector K of the acoustic wave. Is this interaction in the Bragg regime? What
incident angle θi should be chosen for phase matching? What is the deflection angle θdef?
Find the acoustic intensity that is required for a 100% diffraction efficiency if that is
possible.

Solution From Table 8.2, we find that va = va,L = 5.97 km s−1 for a longitudinal
acoustic wave in silica glass and n = 1.457 at 632.8 nm. At the acoustic frequency of
f = 100 MHz, we find that

Q = 2π
λ f 2l

nv2
a

= 2π × 632.8 × 10−9 × (100 × 106)2 × 4 × 10−2

1.457 × (5.97 × 103)2
= 30.6 � 1.

Therefore, the interaction is in the Bragg regime, and phase matching is required.
Because this is nonbirefringent phase matching, the angles of incidence and diffraction
are both defined by the following Bragg angle:

θB = sin−1 λ f

2nva
= sin−1 632.8 × 10−9 × 100 × 106

2 × 1.457 × 5.97 × 103
= 0.21◦.

We then have θi = −θB = −0.21◦ and θdef = 2θB = 0.42◦ for up-shifted diffraction
and θi = θB = 0.21◦ and θdef = −2θB = −0.42◦ for down-shifted diffraction.

Because θi ≈ 0 in this problem, this is a case of small-angle Bragg diffraction. It
is therefore possible to accomplish a 100% diffraction efficiency. Because êi ⊥ K, the
relevant figure of merit for this interaction is M⊥

2 = 1.5 × 10−15 m2 W−1 found in
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Example 8.1. We then find, using (8.87), that the required acoustic intensity is

Ia = λ2

2M2l2
= (632.8 × 10−9)2

2 × 1.5 × 10−15 × (4 × 10−2)2
W m−2 = 8.29 W cm−2.

Diffraction from a standing acoustic wave

So far only diffraction from a traveling acoustic wave has been considered. We have
seen that each spatial diffraction order defined by a wavevector kq at a diffraction angle
θq contains a single, uniquely defined frequency of ωq = ω + q�. This is not the case,
however, for diffraction from a standing acoustic wave.

A standing acoustic wave can be considered as a linear superposition of two con-
trapropagating traveling waves with both K and −K existing simultaneously for phase
matching. The implication of this situation is two-fold: (1) both up-shifted and down-
shifted frequencies are simultaneously generated in each phase-matched direction of
diffraction, and (2) each shifted optical frequency generated by diffraction can be
diffracted back to the direction of the incident wave with a further shift in frequency.
This process cascades. Figure 8.6 shows the cascading process in the case of Raman–
Nath diffraction from a standing acoustic wave. At the output, each of the even spatial
orders, including the undiffracted zeroth order, consists of all of the frequencies up- or
down-shifted by even multiples of �, whereas each of the odd spatial orders consists
of all of the frequencies up- or down-shifted by odd multiples of �.

For Bragg diffraction from a standing acoustic wave, the incident angle can be either
θi or −θi of the form given in (8.61) because K and −K exist simultaneously. In either
case, both up-shifted and down-shifted frequencies are generated in the direction of the

Figure 8.6 Cascading process in Raman–Nath diffraction from a standing acoustic wave.
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Figure 8.7 Cascading process in Bragg diffraction from a standing acoustic wave.

corresponding kd. This process cascades. Consequently, the undiffracted beam in the
ki direction contains a series of even side bands at ω ± 2m�, and the diffracted beam
in the kd direction contains the odd side bands at ω ± (2m + 1)�. Figure 8.7 shows the
cascading process in Bragg diffraction.

A formal analysis of diffraction from a standing acoustic wave using coupled-wave
theory can be carried out, but it is very complicated because each spatial order consists
of many different frequency components. Closed-form analytical solutions can be ob-
tained, however, without solving coupled-wave equations but by extending the results
obtained from the analysis of diffraction from a traveling wave. For a standing acoustic
wave of the form given in (8.2), we have

�ε = �ε̃ sin(K · r) cos �t = �ε̃(t) sin(K · r). (8.92)

Because ω � �, the temporal variation in �ε̃(t) = �ε̃ cos �t is very slow compared
to the optical cycles. Consequently, in place of (8.35), we can expand the field as

E(r, t) =
∑

q

Eq (r, t)eikq ·r−iωt =
∑

q

êqEq (r, t)eikq ·r−iωt , (8.93)

where q represents the spatial diffraction order and kq = ki + qK.
For Raman–Nath diffraction, it follows from the analysis leading to (8.55) that for

the spatial diffraction order q ≥ 0, we have

Eq (l, t)

E0(0, 0)
= Jq (−2|κ|l cos �t)

=
q∑

n=0

∞∑
m=0

m∑
p=−m

(−1)q+pq!(2m)!(|κ|l)m

2q+2mm!n!(q−n)!(m− p)!(m + p)!
Jq+m(2|κ|l)ei(q−2n−2p)�t ,

(8.94)

and E−q (l, t) = (−1)qEq (l, t) for the negative spatial orders. In the expansion of (8.94),
we have used the following multiplication theorem for the Bessel functions:

Jq (x cos φ) = cosqφ

∞∑
m=0

sin2mφ

m!

( x

2

)m
Jq+m(x), for q ≥ 0. (8.95)

As can be seen from (8.94), the temporal dependence of Eq (l, t) contains all of the
positive and negative even harmonics of � if q is an even integer, and it contains all
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of the positive and negative odd harmonics of � if q is an odd integer. Therefore, each
even spatial order consists of a series of frequency components at ω ± 2m�, while
each odd spatial order consists of a series of frequency components at ω ± (2m + 1)�.

A similar analysis can be carried out for Bragg diffraction in different situations. For
small-angle Bragg diffraction with perfect phase matching, we have

Ai(l, t) = Ai(0, 0) cos(|κ|l cos �t)

= Ai(0, 0)
∞∑

m=−∞
(−1)m J2m(|κ|l)ei2m�t , (8.96)

Ad(l, t) = iAi(0, 0) sin(|κ|l cos �t)

= iAi(0, 0)
∞∑

m=−∞
(−1)m J2m+1(|κ|l)ei(2m+1)�t , (8.97)

where, for the expansion, we have used the following identities:

cos(x cos φ) =
∞∑

m=−∞
(−1)m J2m(x)ei2mφ, (8.98)

sin(x cos φ) =
∞∑

m=−∞
(−1)m J2m+1(x)ei(2m+1)φ. (8.99)

It can be seen clearly from (8.96) and (8.97) that the undiffracted beam consists of
the frequency component at ω and all of the even side bands at ω ± 2m�, while the
diffracted beam consists of all of the odd side bands at ω ± (2m + 1)�, as discussed
above.

The concept of intensity refers to the flow of energy through a unit area. It can be
clearly defined for a traveling wave but is not applicable to a standing wave. However, a
standing wave can be considered to be the linear superposition of two contrapropagating
traveling waves of equal amplitude and, therefore, of equal intensity. For a standing
acoustic wave described by (8.2), we find the amplitude of the strain tensor element
representing the two contrapropagating acoustic waves to be S f = Sb = S/2, where S
is the same as the tensor element Skl defined in (8.18). Therefore, the intensities of the
two contrapropagating traveling acoustic waves are given by

I f
a = I b

a = 1

2

(S
2

)2

ρv3
a . (8.100)

Using (8.20) for the relation between Ia and S used in defining M2 in (8.22), we find
from the above that Ia = 4I f

a = 4I b
a . We then find, using (8.22), that

|�ε̃id|2 = 8ε2
0nind M2 I f

a = 8ε2
0nind M2 I b

a . (8.101)
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Using (8.101) in (8.53) and (8.81) for the cases of Raman–Nath and Bragg diffraction,
respectively, we find that the coupling coefficient for both cases is

|κ| = 2π

λ

(
M2 I f

a

2

)1/2

= 2π

λ

(
M2 I b

a

2

)1/2

. (8.102)

This is the coupling coefficient that appears in (8.94) and in (8.96) and (8.97) for
diffraction from a standing acoustic wave. It has a form different from that of (8.54)
and (8.82) for diffraction from a traveling acoustic wave.

In both Raman–Nath and Bragg diffraction from a standing acoustic wave, the number
of frequencies that appear in each spatially separated, diffracted or undiffracted, beam
is determined by the dispersion and the bandwidth of the medium, as well as by the
total length and the strength of interaction.

8.4 Acousto-optic modulators

The acoustic wave of an acousto-optic modulator is amplitude modulated. The oper-
ation of an acousto-optic modulator is based on the dependence of the acousto-optic
diffraction efficiency on the intensity of the acoustic wave. The acoustic intensity can
be controlled by an electrical signal that generates the acoustic wave in a modulator. An
acousto-optic modulator is an electronically addressed amplitude modulator that ac-
cepts an electrical modulation signal to vary the intensity of an optical beam accordingly.

Acousto-optic modulators have been put to many different applications. The straight-
forward application is amplitude modulation of an optical beam, thus encoding a modu-
lation signal on an optical carrier or providing loss modulation to an optical system such
as a Q-switched or mode-locked laser. Sophisticated applications include time-domain
convolution and correlation of wide-band RF signals in signal processing systems.

Generally speaking, an acousto-optic modulator can operate either in the Bragg
regime or in the Raman–Nath regime. In the low-efficiency limit, the efficiency of the
first diffraction order of a Raman–Nath-type modulator is similar to the diffraction
efficiency of a Bragg-type modulator. For low-efficiency diffraction from a traveling
wave with |κ|l � 1, the efficiency of the first diffraction order of a Raman–Nath-type
modulator is, according to (8.56),

η1 = J 2
1 (2|κ|l) ≈ |κ|2l2 = π2 M2l2

2λ2
Ia, (8.103)

while the diffraction efficiency of a Bragg-type modulator with perfect phase matching
is, according to (8.86),

ηPM = sin2 |κ|l ≈ |κ|2l2 = π2 M2l2

2λ2
Ia. (8.104)
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A similar comparison can be made in the case of diffraction from a standing wave using
(8.94) and (8.97). However, notwithstanding this similarity, an acousto-optic modulator
operating in the Raman–Nath regime has a few disadvantages in comparison to one
operating in the Bragg regime. For this reason, most acousto-optic modulators designed
for practical applications are of Bragg type.

One obvious disadvantage of a Raman–Nath-type modulator easily seen from Fig. 8.3
is that none of the diffraction orders can reach a diffraction efficiency higher than 34%.
In comparison, a phase-matched Bragg-type modulator has a maximum diffraction
efficiency of 100%. Other disadvantages stem from the condition in (8.49), which is
required for Raman–Nath diffraction. Under the constraint of this condition, the ac-
ceptable interaction length l decreases quadratically as a function of acoustic frequency
and linearly as a function of optical wavelength. At high acoustic frequencies and/or
for long optical wavelengths, the interaction length becomes impracticably small so
that a very large acoustic intensity is required in order to have a significant diffrac-
tion efficiency. A modulator of Raman–Nath type is thus limited to applications with
low acoustic frequencies and, consequently, small bandwidths. Such limitations do not
apply to a modulator of Bragg type.

Traveling-wave modulators

Traveling acoustic waves are used in the majority of acousto-optic modulators. The most
important performance characteristics to be considered for a traveling-wave modulator
are its diffraction efficiency η, its bandwidth, measured by a 3-dB modulation bandwidth
f 3dB
m , and its speed, measured by a modulation response risetime, tr. A traveling acousto-

optic modulator is normally operated in the Bragg regime with a focused optical beam
of small spot size to reduce the acoustic transit time across the optical beam and thus
increase its modulation bandwidth and speed.

Figure 8.8 shows the diagram of a typical solid-state acousto-optic modulator oper-
ating with a traveling acoustic wave in the Bragg regime. The acousto-optic cell, which
can be a crystal or a noncrystalline glass, is attached to a piezoelectric transducer at
one end and is terminated by an angled surface at the other end. The piezoelectric
transducer consists of a metallic electrode, a piezoelectric crystal such as LiNbO3, and
one or more metallic bonding layers for the attachment of the piezoelectric crystal
to the acousto-optic cell. It converts the applied RF electrical signal into an acoustic
signal and couples the acoustic power to the acousto-optic cell to generate the traveling
acoustic wave. The angled termination surface reflects the acoustic wave away from
the incident direction so as to prevent the reflected acoustic wave from interacting with
the optical beam. This back surface is also often loaded with an acoustically absorbing
material to reduce acoustic reflection.

The cross-sectional area of the acoustic beam in the modulator shown in Fig. 8.8 is
H L , which is defined by the length L and height H of the transducer. The acoustic
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Figure 8.8 Typical solid-state acousto-optic modulator operating with a traveling acoustic wave in
the Bragg regime. Up-shifted diffraction is illustrated here. For an anisotropic acousto-optic
modulator, |θi| �= |θd|. For an isotropic acousto-optic modulator, |θi| = |θd| = θB.

intensity is

Ia = Pa

H L
= ηt Pe

H L
, (8.105)

where Pa is the acoustic power delivered by the transducer to the acoustic medium,
Pe is the power of the electrical signal driving the transducer, and ηt is the conversion
efficiency of the transducer from electric to acoustic power. Using (8.82) and (8.86),
we find that the diffraction efficiency of a Bragg-type traveling-wave modulator with
perfect phase matching can be expressed as

ηPM = sin2

[
π

λ

(
M2

2H L
Pa

)1/2

l

]
= sin2

[
π

λ

(
M2

2H L
ηt Pe

)1/2

l

]
. (8.106)

In the low-efficiency limit, the diffraction efficiency is linearly proportional to the
modulation power:

ηPM ≈ π2 M2l2

2λ2 H L
Pa = π2 M2l2

2λ2 H L
ηt Pe, if ηPM � 1. (8.107)

For a modulator using a traveling acoustic wave, a time-dependent Pe(t) that carries the
modulation signal is applied to the device so that the diffraction efficiency varies with
time. When an acousto-optic modulator is used as a loss modulator, the transmittance
from the incident optical beam to the undiffracted optical beam is T = 1 − ηPM in the
situation of perfect phase matching.
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(a)

(b)

Figure 8.9 (a) Continuously varying amplitude modulation signal and (b) pulsed digital amplitude
modulation signal carried by a traveling acoustic wave.

Most acousto-optic modulators take the configuration of small-angle Bragg interac-
tion shown in Fig. 8.8. In this configuration, acousto-optic interaction takes place when
the optical beam passes through the width of the acoustic beam. The interaction length
is then defined by the length of the transducer: l = L .

The amplitude modulation signal that is applied to a traveling-wave acousto-optic
modulator can be either a continuously varying signal, as shown in Fig. 8.9(a), or
a pulsed digital signal, as shown in Fig. 8.9(b). In either case, the modulation signal
appears as a modulation on the amplitude, thus on the intensity, of the acoustic wave at a
carrier frequency of f0 = �0/2π . The frequency, fm, of a sinusoidal modulation signal
that is imposed on an acoustic carrier wave of a frequency f0 must satisfy the condition
that fm < f0. This modulation generates two side-band acoustic frequencies at f0 − fm

and f0 + fm. Through the dependence of the acousto-optic diffraction efficiency on the
intensity of the acoustic wave, the intensities of the diffracted and undiffracted optical
beams vary with the amplitude modulation signal accordingly.

In a practical modulator, both the incident optical beam and the acoustic beam have
a certain degree of beam divergence because of the finite dimensions of their cross-
sectional sizes. The performance characteristics of a traveling-wave acousto-optic mod-
ulator are determined by three basic parameters: (1) the factor Q; (2) the beam diver-
gence ratio

a = �θo

�θa
(8.108)
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of the optical beam divergence �θo to the acoustic beam divergence �θa; and (3) the
acoustic transit time

τa = d

va
, (8.109)

defined as the time it takes for an acoustic wavefront to travel across a light beam that
has a beam diameter d at the interaction point.

To ensure that the modulator operates in the Bragg regime, the value of Q has to
satisfy (8.57). More precisely, to eliminate parasitic coupling of optical intensity to
high diffraction orders sufficiently, it is necessary to have

Q = 2π
λl

n�2
≥ 4π. (8.110)

The divergence of an optical beam is inversely proportional to its beam waist with a
proportionality factor determined by the shape of the beam profile. For an optical beam
of the fundamental Gaussian spatial profile discussed in Section 1.7, the divergence is
given by (1.137) as

�θo = 2λ

πnw0
, (8.111)

where w0 is the minimum Gaussian beam spot size in the acoustic medium. The acoustic
beam can be considered to have a rectangular transverse spatial distribution with a beam
width L determined by the length of the transducer, as shown in Fig. 8.8. Its divergence
is given by

�θa = �

L
. (8.112)

Assuming that acousto-optic interaction takes place at the optical beam waist, as in
the most favorable situation, the acoustic transit time is given by τa = d0/va = 2w0/va.
The most important characteristics to be considered for a traveling-wave acousto-optic
modulator are the diffraction efficiency and the modulator response. Optimization of
these characteristics dictates the choice of the values of a and τa in designing a practical
acousto-optic modulator.

In the analysis of acousto-optic diffraction presented in Section 8.3, we have consid-
ered only the interaction between plane optical and plane acoustic waves, both of which
were assumed to have zero divergence. In this ideal situation, perfect phase matching
can be accomplished over the entire optical wavefront when the conditions in (8.60)
are satisfied. Then the formulas in (8.106) and (8.107) are accurate for calculation of
the diffraction efficiency. In a realistic situation where the optical beam has a nonzero
divergence angle �θo, the optical wavefront covers a range of directions from −�θo/2
to �θo/2 with respect to its central direction of propagation. If the acoustic beam has an
infinite plane wavefront with a single, well-defined direction of propagation, the phase-
matching conditions in (8.60) cannot be simultaneously satisfied for the entire range of
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optical wavefront directions. Consequently, the overall diffraction efficiency of the op-
tical beam is degraded. In this situation, the formulas for the diffraction efficiency given
in (8.106) and (8.107) become inaccurate but tend to overestimate the real efficiency
of the device. In reality, however, the acoustic beam also has a nonzero divergence,
and its wavefront covers a range of directions from −�θa/2 to �θa/2 with respect to
its central direction of propagation. If �θa ≥ �θo, it is possible for different optical
wavefront directions to be phase matched by different acoustic wavefront directions.
Therefore, to lessen the degradation in diffraction efficiency caused by divergence of
the optical beam, a small value of a is required, meaning that the optical beam has to
be more collimated than the acoustic beam for maximizing the diffraction efficiency.

The response of a traveling-wave acousto-optic modulator is primarily determined
by the value of τa. If the modulation signal varies substantially within a time interval
of τa, the acoustic wave intensity varies spatially across the width of the optical beam.
This spatial nonuniformity of acoustic intensity across the cross section of the optical
beam leads to nonuniform diffraction of the optical beam. As a result, the modulation
signal carried by the acoustic wave is not faithfully converted to the modulation of the
optical beam. For a given value of τa, this effect becomes more significant at higher
modulation frequencies, thus degrading the response of a modulator to high-speed or
high-frequency modulation signals. Quantitatively, the modulator response is measured
by the modulation bandwidth in the case of a continuously varying modulation signal,
or by the modulation speed in the case of a pulsed modulation signal. The modulation
bandwidth is characterized by a 3-dB modulation frequency, f 3dB

m , at which point the
frequency response of a modulator rolls off to 50% of its maximum response. The
modulation speed is characterized by a risetime, tr, which is defined as the time interval
needed for the modulated optical intensity of the diffracted beam to rise from 10 to
90% of its steady-state value in response to a step modulation signal.

Detailed analysis of the response of a traveling-wave acousto-optic modulator in-
volves convolution of the spatial intensity profile of the optical beam with the propaga-
tion of the acoustic wave carrying the modulation signal across the optical beam. The
results depend on the spatial profile of the optical beam as well as on the value of a.
For an optical beam of the fundamental Gaussian spatial profile, we have

f 3dB
m ≈




0.75

τa
, a � 1,

0.86 − 0.13a

τa
, a � 1,

(8.113)

and

tr ≈
{

0.65τa, a � 1,

(0.45 + 0.25a)τa, a � 1.
(8.114)
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It can be seen that, besides degrading the diffraction efficiency, a large value of a also
degrades the modulator response.

From the discussions presented so far, it seems that for the best performance of a
modulator, the value of a should be made as small as possible. This is not true, however,
because a and τa are both functions of the optical beam waist diameter. For a given
modulator with a fixed acoustic beam divergence, the value of a can be reduced only by
reducing the value of �θo through collimation of the optical beam. The consequence is
an increase in the optical beam waist diameter and a corresponding increase in the value
of τa, thus degrading the bandwidth and the speed of the modulator. From (8.113) and
(8.114), it is clear that a small value of τa is required for a large modulation bandwidth
and, correspondingly, a high modulation speed. Indeed, to obtain a large modulation
bandwidth and a high modulation speed, the optical beam has to be focused to a small
beam waist located in the interaction region. These conflicting requirements lead to the
need for properly choosing an optimum value of a depending on the requirements of a
particular application. Once this choice is made, the value of τa and, consequently, the
characteristics of the modulator response are basically determined.

Two additional issues regarding the functional reality of a traveling-wave acousto-
optic modulator have to be considered. First, the amplitude modulation signal carried
by the acoustic wave generates side-band frequencies on both high- and low-frequency
sides of the carrier frequency f0. For a modulator with a modulation bandwidth of
f 3dB
m , the side-band frequencies cover the range from f0 − f 3dB

m to f0 + f 3dB
m . Clearly,

the lowest side-band frequency has to be a positive frequency in order for the modu-
lation signal not to be distorted. In practical situations, it is often necessary to avoid
nonlinear distortion of the modulation signal by requiring that the highest side-band
frequency be smaller than the second harmonic of the lowest side-band frequency:
f0 + f 3dB

m < 2( f0 − f 3dB
m ). This requirement leads to the following condition for the

carrier frequency:

f0 ≥ 3 f 3dB
m . (8.115)

Another realistic issue is the need to separate the diffracted and the undiffracted optical
beams cleanly at the output of the modulator. The clean separation between these two
beams can be ensured by requiring that the deflection angle be larger than twice the
beam divergence:

|θdef| = |θd − θi| > 2�θo. (8.116)

In a modulator where the acousto-optic diffraction is nonbirefringent, |θdef| = 2θB, and
the above condition becomes

θB > �θo. (8.117)

The conditions discussed above set some constraints on the physical parameters of
a traveling-wave acousto-optic modulator:
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1. Condition for Bragg diffraction. The condition in (8.110) that Q ≥ 4π for Bragg
diffraction sets the following minimum interaction length for a given acoustic carrier
frequency:

L = l ≥ 2n�2
0

λ
= 2nv2

a

λ f 2
0

, (8.118)

where �0 is the acoustic carrier wavelength corresponding to the acoustic carrier
frequency f0 and n is the refractive index of the medium. For a given value of a, we
find, using (8.111) and (8.112), that this condition requires the Gaussian beam spot
size located at the interaction region to be subject to the following condition:

d0 = 2w0 ≥ 8

aπ
�0 = 8va

aπ f0
. (8.119)

For a given acoustic beam width L and a given optical beam spot size w0, the condition
for Bragg diffraction sets the limit for the lowest acceptable carrier frequency:

f0 ≥
(

2nv2
a

λL

)1/2

= 4va

aπw0
= 8

aπτa
, (8.120)

where we have used the relation τa = d0/va = 2w0/va by taking d in (8.109) to be
the beam waist diameter d0.

2. Condition for beam separation and side-band limitation. Using the definitions
for θB, �θo, and �θa in (8.65), (8.111), and (8.112), respectively, it can be shown that
the condition that θB > �θo = a�θa given in (8.117) for clean separation between
the diffracted and the undiffracted beams sets the following lower limit for the
acoustic beam width:

L = aπnw0�

2λ
≥ 2anv2

a

λ f 2
0

, (8.121)

and the following lower limit for the optical beam spot size:

d0 = 2w0 ≥ 8

π
�0 = 8va

π f0
. (8.122)

This latter constraint sets the following lower limit for the acoustic carrier frequency:

f0 ≥ 4va

πw0
= 8

πτa
. (8.123)

This condition guarantees that f0 ≥ 3.4 f 3dB
m because f 3dB

m ≤ 0.75/τa for any value
of parameter a, according to (8.113). Therefore, the condition that f0 ≥ 3 f 3dB

m given
in (8.115) imposed by side-band consideration is automatically satisfied as long as
the condition in (8.122) for clean beam separation is satisfied.

From these discussions, we see that the value of the parameter a determines whether
the physical parameters of a traveling-wave acousto-optic modulator are dictated by
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the condition for Bragg diffraction or by the condition for clean beam separation. In
the case when a < 1, the limits set by the condition for Bragg diffraction determine the
physical parameters of the device because they are more stringent than those required
by the condition for clean beam separation. In the case when a > 1, the limits set by
the condition for clean beam separation are more stringent and thus define the physical
parameters of the device.

In applications where the modulation bandwidth and speed have to be maximized,
the optimum choice for the value of a is

a = 1.5, (8.124)

for f 3dB
m = 0.65/τa and tr = 0.85τa with a small value of τa due to a focused beam waist

in this situation. Then the acoustic beam width and the optical beam spot size are limited
by the constraints set by (8.121) and (8.122), respectively, while the acoustic carrier
frequency is subject to the condition in (8.123). In applications where the diffraction
efficiency and the collimation of the optical beam have to be maximized at the ex-
pense of modulation speed, a � 1 is chosen so that f 3dB

m = 0.75/τa and tr = 0.65τa

with a large value of τa due to an unfocused beam waist. Then the acoustic beam
width and the optical beam spot size are limited by the constraints set by (8.118)
and (8.119), respectively, while the acoustic carrier frequency is subject to the condi-
tion in (8.120). In all applications, the height of the transducer, however, only has to
be H ≤ √

2d0 = 2
√

2w0 to cover the spot size of the optical beam at the interaction
point.

The modulation bandwidth and modulation speed discussed above take into consid-
eration only the interaction of the acoustic wave with the optical beam. Clearly, the
overall response of a modulator to an electrical modulation signal is also subject to the
bandwidth of the piezoelectric transducer and its supporting electronic circuitry. This
transducer bandwidth is characterized by the frequency dependence of the conversion
efficiency ηt defined in (8.105).

EXAMPLE 8.5 A fused silica traveling-wave acousto-optic modulator using the longitu-
dinal acoustic mode at an acoustic carrier frequency of f0 = 100 MHz is designed for
the optical wavelength at λ = 1.064 µm. The optical wave is polarized in a direction
perpendicular to the propagation directions of both the optical and the acoustic waves.
The physical length L and height H of the transducer are chosen so that the device can
be used for both high-speed application with a focused optical beam and low-speed
application with a collimated optical beam. (a) Find the optimum optical beam spot
size and the values of f 3dB

m and tr for the high-speed application. (b) Find the values of
f 3dB
m and tr for the low-speed application with a collimated optical beam waist diam-

eter of d0 = 1 mm. (c) If the transducer efficiency is ηt = 60%, what is the electrical
modulation power needed to obtain a modulation loss of 10% for the device?
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Solution From Table 8.2, we find that va = va,L = 5.97 km s−1 for a longitudinal
acoustic wave in silica glass. At λ = 1.064 µm, n = 1.45 for pure silica, as can be
calculated by using (3.96).

(a) For the high-speed application, we choose a = 1.5. Then the beam spot size is
limited by (8.122) to be

d0 = 2w0 ≥ 8va

π f0
= 8 × 5.97 × 103

π × 100 × 106
m = 152 µm.

Therefore, the beam waist can be focused to a minimum of w0 = 76 µm to obtain a
minimum acoustic transit time of τa = 8/π f0 = 25.5 ns using (8.123). We then have
f 3dB
m = 0.65/τa = 25.5 MHz and tr = 0.85τa = 21.7 ns. The width of the acoustic

beam is required by (8.121) to be

L ≥ 2anv2
a

λ f 2
0

= 2 × 1.5 × 1.45 × (5.97 × 103)2

1.064 × 10−6 × (100 × 106)2
m = 1.46 cm.

We can then choose a transducer length of L = 1.5 cm.
(b) With L = 1.5 cm and w0 = d0/2 = 500 µm for the low-speed application, we

then find that

a = �θo

�θa
= 2λ f0L

πnw0va
= 2 × 1.064 × 10−6 × 100 × 106 × 1.5 × 10−2

π × 1.45 × 500 × 10−6 × 5.97 × 103
= 0.235.

Because a = 0.235 � 1, we have to use (8.120) to find that τa ≥ 8/aπ f0 = 108 ns.
We then have f 3dB

m = 0.75/τa ≤ 6.9 MHz and tr = 0.65τa ≥ 70 ns for the low-speed
application with a collimated beam spot size of d0 = 1 mm.

Because this device is to be used for both high-speed and low-speed applications,
the height of the transducer is dictated by the larger beam spot size in the low-speed
application to be H ≥ √

2d0 = 1.4 mm. Therefore, we can choose a transducer height
of H = 1.5 mm.

(c) Because M2 ∝ n6, we can use the value of M2 = 1.5 × 10−15 m2 W−1 for n =
1.457 at 632.8 nm to find that M2 = (1.45/1.457)6 × 1.5 × 10−15 m2 W−1 = 1.46 ×
10−15 m2 W−1 for n = 1.45 at 1.064 µm. Because both θi and θd are very small in
the operation of this device, we have l = L . For a modulation loss of 10%, we need
ηPM = 0.1. With ηt = 60%, the required electrical power can be found by using (8.107)
to be

Pe = 2λ2 H

π2 M2L

ηPM

ηt
= 2 × (1.064 × 10−6)2 × 1.5 × 10−3 × 0.1

π2 × 1.46 × 10−15 × 1.5 × 10−2 × 0.6
W = 2.6 W.

This is the required power for low-speed modulation. For high-speed modulation, the
required power would be somewhat higher for the same modulation loss of 10% because
of the degradation in efficiency at a high modulation speed with a focused optical
beam.
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Standing-wave modulators

Acousto-optic modulators that utilize standing acoustic waves are used in some special
applications such as laser mode locking. A standing-wave modulator provides sinu-
soidal amplitude modulation at a very high frequency. It differs from a traveling-wave
modulator in many important aspects, from the device structure to the performance
characteristics. The most important performance characteristics of a standing-wave
acousto-optic modulator are its diffraction efficiency η and its loss modulation fre-
quency, fm = 2 f , at twice the acoustic frequency in the low-efficiency limit. It is
always operated in the Bragg regime with a well-collimated optical beam.

In order to create a standing acoustic wave, the acousto-optic cell is made to be a
resonant acoustic cavity. Instead of the angled surface of the acousto-optic cell of a
traveling-wave device, the surface at the far end across the cell width is made parallel
to the near end that is attached to the piezoelectric transducer, as shown in Fig. 8.10.
With a given cell width W measured in the direction of the acoustic wave, a standing
acoustic wave is formed only when the acoustic wavelength satisfies the condition:

W = m
�

2
, m = integer. (8.125)

Therefore, the device functions only at the following discrete acoustic resonance fre-
quencies:

f = m
va

2W
, m = integer, (8.126)

Figure 8.10 Typical solid-state acousto-optic modulator operating with a standing acoustic wave in
the Bragg regime. For an anisotropic acousto-optic modulator, |θi| �= |θd|. For an isotropic
acousto-optic modulator, |θi| = |θd| = θB.
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which are determined by the cell width and the acoustic velocity. The resonance frequen-
cies are sensitive to variations in the value of va caused by temperature fluctuations. In
many applications of a standing-wave modulator, the temperature of the acousto-optic
cell has to be carefully stabilized to maintain stable and efficient operation.

The acoustic power that has to be delivered by the transducer to the acoustic resonator
is equal to the product of the acoustic energy stored in the resonator and the decay rate,
γa, of that energy:

Pa =
(

I f
a + I b

a

va
H LW

)
γa ≈ 2I f

a

va
H LWγa, (8.127)

where we have taken I f
a ≈ I b

a for an efficient resonator. The acoustic power, Pa, is con-
verted from an electrical power, Pe, by a transducer, which has a conversion efficiency
of ηt: Pa = ηt Pe. Using (8.97) and (8.102), we find that the diffraction efficiency of a
standing-wave acousto-optic modulator with perfect phase matching can be expressed
as

ηPM = sin2

[
π

λ

(
M2va

H LWγa
Pa

)1/2

l cos �t

]
= sin2

[
π

λ

(
M2va

H LWγa
ηt Pe

)1/2

l cos �t

]
.

(8.128)

In the low efficiency limit, we have

ηPM ≈ π2 M2l2va

λ2 H LWγa
ηt Pe cos2 �t = π2 M2l2va

2λ2 H LWγa
ηt Pe(1 + cos 2�t), if ηPM � 1.

(8.129)

Again, l = L in the configuration of small-angle Bragg diffraction. We see that, when
a standing-wave acousto-optic modulator is operated in the low-efficiency limit, the in-
tensity of the diffracted beam at its output is sinusoidally modulated at twice the acoustic
carrier frequency with a modulation depth that is linearly proportional to the driving
power. Unlike the situation in a traveling-wave modulator, there is no need to impose
an additional modulation signal on the carrier. Therefore, Pe in the above equations
is a constant. The transducer is driven by an unmodulated RF electrical signal at the
desired acoustic frequency. A standing-wave modulator is capable of modulating an
optical beam at very high frequencies, but the allowed modulation frequencies cannot
be tuned continuously because they are discretely defined by the resonance frequencies
of the acousto-optic cell.

A standing-wave acousto-optic modulator is often used as a loss modulator, such as
in its use as a mode locker for a mode-locked laser. The transmittance from the incident
optical beam to the undiffracted optical beam in a loss modulator is T = 1 − ηPM in
the case of perfect phase matching.
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In the consideration of the performance characteristics of a standing-wave modulator,
the only relevant parameters are Q and a. The acoustic transit time τa is irrelevant
because the two contrapropagating acoustic waves that form the standing wave are not
amplitude modulated. To ensure operation in the Bragg regime, the requirement that
Q ≥ 4π given in (8.110) still has to be satisfied, leading to the same minimum length
given in (8.118) for the transducer. Because the transit time is no longer relevant, the
value of a is not subject to the conflicting requirements faced by a traveling-wave device.
Therefore, the optical beam in a standing-wave modulator can be well collimated so
that a � 1 to avoid degradation of the diffraction efficiency caused by divergence of
the optical beam.

EXAMPLE 8.6 A fused silica standing-wave acousto-optic modulator using the longitudi-
nal acoustic mode at the acoustic frequency of f = 100 MHz is designed for the optical
wavelength at λ = 1.064 µm with specifications similar to those of the traveling-wave
modulator described in Example 8.5. The optical wave is polarized in a direction per-
pendicular to the propagation directions of both the optical and the acoustic waves. It
has a collimated optical beam waist diameter of d0 = 1 mm. The transducer efficiency
is also ηt = 60%, and the length L and height H of the transducer are to be chosen
properly for this device. The resonant acousto-optic cell of this standing-wave mod-
ulator has a width of W = 3 cm, resulting in a decay rate of γa = 4 × 104 s−1. Find
the modulation frequency and the electrical modulation power needed to obtain a peak
modulation loss of 10% for the device.

Solution Because the optical beam is collimated to have a beam waist diameter of
d0 = 1 mm, we know from Example 8.5 that a � 1 in this situation. The length L is
thus subject to the condition in (8.118):

L ≥ 2nv2
a

λ f 2
= 2 × 1.45 × (5.97 × 103)2

1.064 × 10−6 × (100 × 106)2
m = 9.7 mm,

which can be smaller than that chosen in Example 8.5. For easy comparison to Exam-
ple 8.5, however, we choose the same transducer length of L = 1.5 cm and the same
transducer height of H = 1.5 mm.

With an acoustic carrier frequency of f = 100 MHz, the loss modulation frequency
is fm = 2 f = 200 MHz according to the discussions following (8.129). The operation
of this device is small-angle Bragg diffraction with l = L . From (8.129) the required
electrical power for a peak modulation loss of ηmax

PM = 10% can be found to be

Pe = λ2 H Wγa

π2 M2Lva

ηmax
PM

ηt

= (1.064 × 10−6)2 × 1.5 × 10−3 × 3 × 10−2 × 4 × 104 × 0.1

π2 × 1.46 × 10−15 × 1.5 × 10−2 × 5.97 × 103 × 0.6
W = 263 mW.
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In comparison to the traveling-wave modulator described in Example 8.5, we find
that the standing-wave modulator has a much higher modulation frequency at a much
reduced modulation power for a given modulation loss. However, a standing-wave
modulator is not as versatile as a traveling-wave modulator because it only allows
periodic sinusoidal modulation at twice its resonance frequencies.

8.5 Acousto-optic deflectors

The acoustic wave of an acousto-optic deflector is frequency modulated. Unlike
an acousto-optic modulator, which is an amplitude modulator, an acousto-optic de-
flector is a frequency modulator, which allows its acoustic frequency to be varied
electronically.

Acousto-optic deflectors have many applications. A frequency shifter, which has the
sole purpose of generating a diffracted optical beam at an optical frequency shifted
by the amount of the acoustic frequency from the input optical frequency, can be
considered as the simplest form of an acousto-optic deflector. Acousto-optic deflectors
are also used in such diverse applications as optical scanners, spatial light modulators,
RF pulse compressors, and programmable optical interconnecters.

An acousto-optic deflector generally functions in the Bragg regime with a traveling
wave. Its most important performance characteristics are its diffraction efficiency η and
its number of resolvable spots N . An acousto-optic deflector has a structure similar to
that of a traveling-wave acousto-optic modulator shown in Fig. 8.8, but it is always
operated with a highly collimated optical beam with the parameter a � 1 to increase
the value of N .

The basic principle of acousto-optic deflectors is simple: the acousto-optic deflection
angle, θdef = θd − θi, which has an absolute value of 2θB in the case of nonbirefringent
Bragg diffraction, is determined by the phase-matching condition, which can be varied
by varying the value of the propagation constant K of the acoustic wave. Because
K = 2π f/va, the deflection angle can be varied by varying the acoustic frequency.

The efficiency of a deflector is also given by (8.106), or (8.107) in the low-efficiency
limit. Because an acousto-optic deflector always uses the configuration of small-angle
diffraction, its interaction length is defined by the length of its transducer: l = L .
Certain requirements, such as the condition that Q ≥ 4π for the device to function in
the Bragg regime, apply to both modulators and deflectors, but many key parameters
of a deflector are subject to considerations different from those for determining the
parameters of a modulator. While the modulation signal applied to a modulator is
the amplitude variations on a constant acoustic carrier frequency, the signal applied
to a deflector has a constant amplitude but a varying acoustic frequency. The overall
bandwidth of an acousto-optic deflector is subject to both the Bragg bandwidth of the
acousto-optic interaction and the transducer bandwidth determined by the frequency
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(a) (b)

w w0

Figure 8.11 (a) Basic principle of an acousto-optic deflector illustrating the deflection range and
the number of resolvable spots. (b) Side view of the device.

dependence of the conversion efficiency ηt. The bandwidth considered in the following
refers to the Bragg bandwidth alone.

In an acousto-optic deflector, both the propagation direction of the incident optical
beam and that of the acoustic wave are usually fixed when the value of K is varied by
varying the acoustic frequency. In this situation, the angle of incidence, θi, is fixed, and
the variation in the deflection angle is simply determined by the change in the angle
of diffraction: δθdef = δθd. Because the value of θi is fixed, perfect phase matching in
all directions is not possible if the direction of vector K is fixed when the value of K
is varied. As shown in Fig. 8.11, the angle of diffraction, θd, is now determined by the
requirement for phase matching in the x direction parallel to K. For small variations of
K , the value of θd varies linearly with K. If the acoustic frequency is varied over a range
� f from f0 − � f/2 to f0 + � f/2, where f0 is the center frequency, the propagation
constant of the acoustic wave varies over a range �K = 2π� f/va. Correspondingly,
the deflection angle varies over a range of (see Problem 8.5.1(c))

�θd = �K

kd
= λ

ndva
� f, (8.130)

where nd is the index of refraction seen by the diffracted optical beam.
In practical applications, an acousto-optic deflector is controlled by varying the

acoustic frequency for the diffracted optical beam to address different spatial loca-
tions. In the random access mode of operation, the acoustic frequency is changed
discretely from one to another to access random positions. In the continuous scan
mode of operation, the acoustic frequency is varied continuously so that the deflection
angle changes continuously. An important parameter for an acousto-optic deflector is
the number N of resolvable spots. Over a given deflection range �θd, this parameter
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is determined by the divergence of the diffracted optical beam through the following
relation:

N = �θd

�θo
, (8.131)

as illustrated in Fig. 8.11. If the optical beam has a Gaussian spatial profile, �θo has
the form given in (8.111). Substituting (8.111) and (8.130) in (8.131), we have

N = π

4
τa� f, (8.132)

where τa is the acoustic transit time defined in (8.109). For a deflector, τa is also called
the time aperture of the device. The constant multiplication factor π/4 in (8.132) is
specific to a Gaussian beam. This factor is different for different optical beam profiles
but is generally on the order of unity. Thus the number of resolvable spots is given by
the time–bandwidth product τa� f .

For a given value of � f , the value of N is solely determined by the value of τa.
To increase the number of resolvable spots within a given frequency bandwidth, it
is necessary to increase the acoustic time aperture by collimating the optical beam
or by choosing an acousto-optic medium that has a low acoustic velocity. However,
the acoustic transit time determines the response time of a deflector. In a deflector
operating in the random access mode, it takes a temporal delay of τa for the deflector
to address a new spatial position when the acoustic frequency is changed from one
to another. Therefore, the scan rate, defined as the number of spots addressed per
second, is 1/τa in the random access mode. The scan rate in the continuous scan mode
is generally much higher than 1/τa. Usually the speed requirement of a deflector is not
very demanding and can be easily satisfied. Therefore, the choice of the parameter τa

for a deflector is primarily determined by the desired number of resolvable spots within
a given frequency bandwidth.

We have seen in the preceding section that the minimum height H of the transducer
for an acousto-optic modulator is determined by the optical spot size. This is because
the optical beam is normally focused to a small round spot. For a deflector, however, the
optical spot size, w0 = vaτa/2, in the acoustic wave propagation direction parallel to K
as determined by (8.109) is usually quite large because a deflector normally requires a
relatively large value of τa for a large value of N . In this situation, it is not necessary to
maintain a round spot shape because the optical spot size in the direction perpendicular
to K is irrelevant to the transit time τa. The optical beam can then take an elliptic spot
shape as seen in Fig. 8.11 for a small value of H to increase the diffraction efficiency
at a given acoustic power level. In this case, the height of the transducer is limited by
the divergence of the acoustic beam to the order of

H ≈ va

(
τa

f0

)1/2

. (8.133)
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To prevent the second harmonics of the frequencies within the operating bandwidth
from interfering with the function of a deflector, the highest frequency within the
bandwidth has to be smaller than the second harmonic of the lowest frequency: f0 +
� f/2 < 2( f0 − � f/2). For a given center frequency, this requirement sets the upper
limit for the bandwidth:

� f ≤ 2

3
f0. (8.134)

The maximum value of the fractional bandwidth, defined as � f/ f0, of an acousto-optic
deflector is set by this condition at 0.67. This condition has the same form as that of
(8.115) if we identify the carrier frequency of a modulator with the center frequency of a
deflector and � f with 2 f 3dB

m . Note, however, that the bandwidth � f and the modulation
bandwidth f 3dB

m are completely different in terms of their physical originals and their im-
plications for device performance. As we have seen in the preceeding section, the modu-
lation bandwidth f 3dB

m is determined by the acoustic transit time τa; it is related to the re-
sponse speed of a device. In contrast, the bandwidth � f is determined by the maximum
acceptable phase mismatch of a deflector; it is irrelevant to the speed of the device but
determines the largest deflection angle and thus the number of resolvable spots. For a de-
flector, the response speed is still related to its modulation bandwidth as f 3dB

m ≈ 0.75/τa

for a � 1, but � f �= 2 f 3dB
m . Indeed, � f and f 3dB

m are not directly related. Therefore,
τa and � f can be simultaneously optimized to maximize the value of N in (8.132).

Nonbirefringent deflectors

When the value of K is varied, both the angle of incidence and the angle of diffraction
have to change accordingly in order to maintain perfect phase matching. When the
incident angle θi is fixed, a change in the value of K without a corresponding change
in the direction of vector K results in a phase mismatch. Though phase matching in
the x direction parallel to K is maintained through a change in the value of θd, a phase
mismatch along the z direction perpendicular to vector K cannot be avoided. On either
side of the acoustic frequency range, the maximum deviation from the center frequency
is � f/2. The corresponding maximum deviation in the propagation constant is �K/2
from the center value K0, as illustrated in Fig. 8.12. If θi is chosen to be the angle
θi0 = ±θB0 for perfect phase matching at f0, the phase mismatch that appears at either
edge of the bandwidth is (see Problem 8.5.1(d))

|�k| = K0

4k
�K = πλ f0

2nv2
a

� f (8.135)

to first order. Instead of ensuring perfect phase matching at f0, the incident angle can
be chosen as

θi = θi0

[
1 +

(
� f

2 f0

)2
]

, (8.136)
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Figure 8.12 Phase-matching diagram of a nonbirefringent acousto-optic deflector showing phase
mismatch at the edges of the deflection range.

to minimize the largest phase mismatch for a given bandwidth � f . Then the phase
mismatch can be minimized to the following value:

|�k| = πλ f0

2nv2
a

� f

[
1 −

(
� f

2 f0

)2
]

. (8.137)

This phase mismatch results in a reduction in the diffraction efficiency. The maximum
acceptable phase mismatch depends on the interaction length l and the acceptable
reduction of efficiency at the edges of the bandwidth. A convenient general criterion is
to limit the value of |�k|l to less than 0.9π:

|�k|l = πλ f0l

2nv2
a

� f

[
1 −

(
� f

2 f0

)2
]

≈ π

2

�θd

�θa
≤ 0.9π, (8.138)

where �θa is the divergence of the acoustic beam defined in (8.112). In the limit of
low diffraction efficiency where |�k| > κ , the constraint in (8.138) ensures that the
diffraction efficiency at the edges of the bandwidth is not reduced by more than 3 dB
below that at the center frequency (see Problem 8.3.16). Other criteria can be chosen
based on the bandwidth and efficiency specifications of a device.

The condition in (8.138) can be appreciated from two different, but equivalent, view-
points. From one viewpoint, the relation |�k|l ≤ 0.9π indicates that in order to limit
the degradation of the diffraction efficiency caused by phase mismatch to an acceptable
level, the interaction length has to be kept below an upper limit set by the amount of
phase mismatch at the edges of a given bandwidth. From another viewpoint, the relation
�θd ≤ 1.8�θa implied by (8.138) leads to a picture similar to that used in the preced-
ing section in the discussion of the relation between �θa and �θo for a traveling-wave
acousto-optic modulator. For efficient interaction over the entire deflection range, the
divergence �θa of the acoustic beam has to be large enough that the acoustic wavefront
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covers a sufficiently wide range of directions for all of the different diffraction directions
within the range of �θd to be phase matched by different acoustic wavefront directions.
These two viewpoints are equivalent because the interaction length is defined by the
width of the acoustic beam and a small acoustic beam width results in a large acoustic
beam divergence.

Combining (8.131) and (8.138), we find that

a = �θo

�θa
≤ 1.8

N
� 1, (8.139)

where N for a practical deflector is generally a large number. The small value of a
required by (8.139) can be appreciated by considering the fact that for an acousto-
optic deflector, �θo has to be much smaller than �θd in order to have a large number
of resolvable spots but �θa has to be on the order of �θd in order to prevent severe
degradation in the diffraction efficiency due to phase mismatch at the edges of the range
of deflection.

The lower limit for the length L of the piezoelectric transducer given by (8.118) is still
valid due to the requirement for a deflector to operate in the Bragg regime throughout
the entire bandwidth. Because a lower frequency sets a more stringent lower limit for L ,
we have to use the lowest frequency f0 − � f/2 for the Bragg condition. In addition, the
relation in (8.138) and the fact that l = L together set an upper limit for L . Combining
these two limits, we find the following constraints for the length of the transducer in a
nonbirefringent acousto-optic deflector:

1.8nv2
a

λ f0� f

[
1 −

(
� f

2 f0

)2
]−1

≥ L ≥ 2nv2
a

λ f 2
0

(
1 − � f

2 f0

)−2

. (8.140)

For optimum performance of a deflector, both a large � f , for a large number of resolv-
able spots, and a large L , for a high efficiency, are desired. The optimum values of � f
and L for a nonbirefringent deflector can be found by solving (8.140) with equals sign
for both places of the ≥ sign to be (see Problem 8.5.3)

� f = 0.525 f0 and L = 3.68
nv2

a

λ f 2
0

. (8.141)

EXAMPLE 8.7 A LiNbO3 acousto-optic deflector for 1.3 µm optical wavelength is desired
to have a 1 GHz bandwidth with 100 resolvable spots. The optical axis ẑ of the crystal
is parallel to the [001] direction, and the y-coordinate axis is taken to be in the [010]
direction. The acoustic wave is a transverse mode propagating in the [001] z direction
and polarized in the y direction. Its acoustic velocity is 3.59 km s−1. Optical deflection
takes place in the yz plane, and the incident optical wave is a Gaussian beam of
an elliptical spot shape polarized in the x direction. The ordinary and extraordinary
indices of refraction for LiNbO3 at 1.3 µm are no = 2.222 and ne = 2.145, respectively.
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(a) Find the required acoustic time aperture τa and the optical spot size w0 in the z
direction. (b) Find the optimum center acoustic frequency f0. (c) Find the optimum
dimensions L and H for the transducer to maximize the efficiency. (d) What is the peak
diffraction efficiency for 1 W of acoustic power?

Solution (a) With � f = 1 GHz and N = 100, we find by using (8.132) that
τa = 4N/π� f = 127.3 ns. Then the spot size in the z direction is w0 = vaτa/2 =
228.5 µm. This is not the required spot size in the x direction, however, as the beam is
elliptical.

(b) For interaction of the x-polarized optical wave with the z-propagating, y-polarized
transverse acoustic mode in LiNbO3, the only coupling is through the �εxx ele-
ment of the acousto-optic permittivity tensor with a figure of merit of M2 = 3.15 ×
10−15 m2 W−1 at λ = 1.3 µm (see Problem 8.3.6). Therefore, this deflector is non-
birefringent with both incident and diffracted waves polarized in the x direction.
We can then use (8.141) to find that the optimum center acoustic frequency is
f0 = � f/0.525 = 1.9 GHz for � f = 1 GHz.

(c) From (8.141), the optimum length of the transducer is

L = 3.68
nv2

a

λ f 2
0

= 3.68 × 2.222 × (3.59 × 103)2

1.3 × 10−6 × (1.9 × 109)2
m = 22.5 µm

and, from (8.133), the optimum height is

H = va

(
τa

f0

)1/2

= 3.59 × 103 ×
(

127.3 × 10−9

1.9 × 109

)1/2

m = 29.4 µm.

(d) The peak diffraction efficiency at f0 = 1.9 GHz for Pa = 1 W is, for l = L ,

ηPM = π2 M2L

2λ2 H
Pa = π2 × 3.15 × 10−15 × 22.5 × 10−6

2 × (1.3 × 10−6)2 × 29.4 × 10−6
× 1 = 0.7%.

Birefringent deflectors

For a nonbirefringent deflector, the constraints in (8.140) dictate that increasing the
bandwidth � f leads to a reduction in the length L , and vice versa. It is therefore not
possible to increase both � f and L simultaneously above their respective optimum
values given in (8.141).

Using birefringent Bragg diffraction under the special condition of tangential phase
matching, also known as 90◦ phase matching, as discussed in Example 8.3, it is possible
to increase the values of both� f and L for a birefringent deflector beyond their optimum
values for a nonbirefringent deflector, thus increasing the number of resolvable spots and
the diffraction efficiency simultaneously. In the application of a deflector, it is required
that θd varies sensitively to the acoustic frequency f while θi is fixed. Therefore, the
conditions for birefringent tangential phase matching in a deflector are (1) ni > nd so
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Figure 8.13 Tangential phase-matching scheme for a birefringent acousto-optic deflector.

that ki > kd and (2) K 2
0 = k2

i − k2
d so that perfect phase matching occurs at the center

frequency f0 with θd = 0, which are shown in Fig. 8.13. This frequency f0 is determined
by the normalized frequency f̂ t found in (8.74) as f0 = (ni + nd)va f̂ t/λ. Under this
phase-matching condition, the maximum phase mismatch that appears at the edges of
the bandwidth is (see Problem 8.5.4)

|�k| ≈ (�K )2

8kd
= πλ

4ndv2
a

(� f )2. (8.142)

Applying the criterion of |�k|L = |�k|l ≤ 0.9π , we find that the bandwidth and the
transducer length of a birefringent deflector under the tangential phase-matching con-
dition are subject to the following constraints:

3.6ndv
2
a

λ(� f )2
≥ L ≥ 2ndv

2
a

λ f 2
0

(
1 − � f

2 f0

)−2

. (8.143)

This condition can be satisfied for the largest bandwidth allowed by the condition in
(8.134). Therefore, it leads to the following optimum values for the bandwidth and the
interaction length, respectively (see Problem 8.5.6):

� f = 2

3
f0 and L = 8.1

ndv
2
a

λ f 2
0

. (8.144)

In comparison to (8.141), we see that tangential phase matching for a birefringent
deflector allows an interaction length that is more than twice that of the optimum
length for a nonbirefringent deflector while having a 27% increase in its bandwidth to
reach its allowable maximum.

The upper limit of length L can be further doubled if we move the phase-matching
point slightly away from the tangential point by choosing K 2

0 = k2
i − k2

d + (�K )2/8,
as shown in Fig. 8.14. Under this arrangement, perfect phase matching occurs at the two
frequencies of f0 ± � f/2

√
2, and the maximum phase mismatch appears at the center
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kz kz

Figure 8.14 Optimum phase-matching scheme for a birefringent acousto-optic deflector of a large
bandwidth.

frequency as well as at both edges of the bandwidth. This maximum phase mismatch
is (see Problem 8.5.5(c))

|�k| ≈ (�K )2

16kd
= πλ

8ndv2
a

(� f )2, (8.145)

which is only half the value of that in (8.142). Consequently, instead of (8.143), we
have

7.2ndv
2
a

λ(� f )2
≥ L ≥ 2ndv

2
a

λ f 2
0

(
1 − � f

2 f0

)−2

. (8.146)

Therefore, while the bandwidth remains at its allowable maximum, the interaction
length is doubled (see Problem 8.5.6):

� f = 2

3
f0 and L = 16.2

ndv
2
a

λ f 2
0

. (8.147)

In the above discussions, we have assumed that nd is a constant that does not vary
with acoustic frequency. In the situation when the diffracted beam is an extraordinary
wave, however, nd can be a function of the diffraction angle and thus a function of the
acoustic frequency. Then the optimization process is more complicated than what is
discussed above, but the general concepts are still valid.

EXAMPLE 8.8 A LiNbO3 acousto-optic deflector for 1.3 µm optical wavelength is desired
to have a 1 GHz bandwidth with 100 resolvable spots such as the one described in
Example 8.7. The acoustic wave is still a transverse mode propagating in the [001] z
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direction, but is now polarized in the x direction. Its acoustic velocity is also 3.59 km s−1.
Optical deflection still takes place in the yz plane, and the incident optical wave is still
a Gaussian beam of an elliptical spot shape polarized in the x direction. (a) Find
the required acoustic time aperture τa and the optical spot size w0 in the z direction.
(b) Find the optimum center acoustic frequency f0. (c) Find the optimum dimensions
L and H for the transducer to maximize the efficiency. (d) What is the peak diffraction
efficiency for 1 W of acoustic power?

Solution (a) With � f = 1 GHz and N = 100, we still find, using (8.132), that τa =
4N/π� f = 127.3 ns. Then the spot size in the z direction is w0 = vaτa/2 = 228.5 µm.
These two parameters are the same as those found in Example 8.7.

(b) For interaction of the x-polarized optical wave with the z-propagating, x-polarized
transverse acoustic mode in LiNbO3, the only coupling is through the �εxy = �εyx and
�εzx = �εxz elements of the acousto-optic permittivity tensor with a figure of merit
of M2 = 1.075 × 10−14 m2 W−1 at λ = 1.3 µm (see Problem 8.3.6). Therefore, this
deflector is birefringent with both an ordinary incident wave polarized in the x direction
and an extraordinary diffracted wave polarized in the yz plane. We find that ni > nd

because LiNbO3 is negative uniaxial. Therefore, tangential phase matching so that θd =
0 for the optimum performance of the deflector is possible. This occurs at θi = −15.13◦

for up-shifted diffraction, or θi = 15.13◦ for down-shifted diffraction, at an acoustic
frequency of ft = 1.6 GHz for tangential phase matching (see Problem 8.3.6). Because
θd = 0, the diffracted wave is polarized in the z direction with nd = ne = 2.145. For
this device, the center acoustic frequency is dictated by the tangential phase-matching
condition to be f0 = ft = 1.6 GHz rather than by the desired � f and the optimum
condition in (8.144). With � f = 1 GHz, we find that � f/ f0 = 0.625 < 2/3.

(c) Because the value of � f/ f0 is smaller than its optimum value allowed by (8.144),
the value of L can be larger than that given in (8.144). It is determined by its upper
bound in (8.143) to be

L = 3.6ndv
2
a

λ(� f )2
= 3.6 × 2.145 × (3.59 × 103)2

1.3 × 10−6 × (1 × 109)2
m = 76.6 µm.

The height of the transducer can be chosen to be approximately

H = va

(
τa

f0

)1/2

= 3.59 × 103 ×
(

127.3 × 10−9

1.6 × 109

)1/2

m = 32 µm.

(d) The peak diffraction efficiency at f0 = 1.6 GHz for Pa = 1 W is, for l = L ,

ηPM = π2 M2L

2λ2 H
Pa = π2 × 1.075 × 10−14 × 76.6 × 10−6

2 × (1.3 × 10−6)2 × 32 × 10−6
× 1 = 7.5%,

which is more than ten times that of the nonbirefringent deflector described in Exam-
ple 8.7. By further using the optimum phase-matching scheme illustrated in Fig. 8.14,
the length L can be doubled to L = 153.2 µm, thus doubling the peak efficiency to
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Figure 8.15 Phased-array transducer for acoustic beam steering in an acousto-optic deflector. As
the acoustic frequency is tuned, both the acoustic wavelength and the acoustic wavefront direction
change accordingly.

15%. However, with this optimum phase-matching scheme, the peak efficiency does
not occur at f0 = 1.6 GHz, but occurs at two frequencies: f0 + � f/2

√
2 = 1.954 GHz

and f0 − � f/2
√

2 = 1.246 GHz.

Deflectors using phased-array transducers

The phase mismatch that exists over the bandwidth of a deflector is caused by the
fact that the propagation directions of both the incident optical wave and the acoustic
wave are fixed while the acoustic frequency is varied. In the operation of an acousto-
optic deflector, it is clearly not practical to vary the direction of the incident optical
wave in response to variations in the acoustic frequency in order to maintain perfect
phase matching. However, using a multiple-element phased-array transducer shown
in Fig. 8.15, the direction of the acoustic K vector can be steered to satisfy the phase-
matching condition better as the acoustic frequency is varied.

The simplest phased-array transducer consists of equally spaced elements of the
same width, but a phase shift of π between each pair of adjacent elements is introduced.
The interference among the acoustic waves generated by the phase-shifted elements
causes the acoustic power to concentrate in the direction of constructive interference.
This direction shifts from the normal to the transducer by an angle θ given by (see
Problem 8.5.7(a))

θ ≈ sin θ = π

dt K
= �

2dt
= va

2dt f
, (8.148)

where dt is the center-to-center distance between adjacent elements in the transducer
array, as shown in Fig. 8.15. Therefore, as the acoustic frequency varies, the direction
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of the acoustic beam is steered accordingly. In a nonbirefringent deflector using this
simple phased-array transducer, the maximum phase mismatch over a given bandwidth
can be reduced to the value given in (8.145) when the parameters of the transducer
and the incident direction of the optical beam are chosen properly (see Problem 8.5.7).
Therefore, the bandwidth � f and the interaction length L of a nonbirefringent deflector
using this phased-array transducer under optimum conditions are subject to the same
constraints as given in (8.146). Their optimum values are thus those given in (8.147).

The simple phased-array transducer with a constant phase shift of π between ad-
jacent elements does not completely eliminate phase mismatch within a given band-
width, but it allows the performance of a nonbirefringent deflector to match the best
performance of a birefringent deflector. Further improvement to obtain closer phase
matching over a large bandwidth is possible with a more sophisticated phased-array
transducer to fine tune the acoustic beam direction. For most applications, however, a
complicated transducer is not practical because the effort is not justified by the benefit
gained.

8.6 Acousto-optic tunable filters

An optical grating can be used for the separation or filtering of optical frequencies, as
is seen in any grating spectrometer and in a distributed Bragg reflector as discussed
in Section 5.1. It is also possible to use the index grating generated by an acoustic
wave in a medium for such purposes. One advantage of such an acousto-optic filter,
or acousto-optic spectrometer, is that it is electronically tunable because the period
of the acousto-optic grating can be varied by altering the acoustic frequency. This
electronic tunability allows an acousto-optic filter to have many sophisticated functions
that are not possible with an ordinary spectroscopic device. For example, the acoustic
frequency can be rapidly scanned or quickly switched from one to another, thus allowing
very rapid optical spectrum analysis. The acoustic signal driving the filter can also be
amplitude or frequency modulated, thus imposing a desired amplitude or frequency
modulation on the optical signal at the selected optical frequency. As a result, the
applications of acousto-optic tunable filters cover a very wide range from wavelength
tuning of a laser to wavelength-division multiplexing and demultiplexing in optical
communication systems, as well as various spectroscopic analyses.

An acousto-optic tunable filter functions exclusively in the Bragg regime because its
tunability and frequency selectivity rely entirely on the phase-matching condition. It
generally uses a traveling acoustic wave because the acoustic frequency cannot be tuned
continuously in a standing-wave device. Practical acousto-optic filters, except for those
in waveguide structures discussed in the following section, function exclusively with
birefringent Bragg diffraction in anisotropic crystals. The most important characteristic
parameters of an acousto-optic tunable filter are its chromatic resolving power, its
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angular aperture, and its efficiency. Because high spectral resolution is one of its merits,
it generally operates with the parameter a � 1 with a large angular aperture.

The selectivity and resolution of the optical frequency in the interaction of an op-
tical wave with a grating increase linearly with interaction length. To have a long
interaction length with an acousto-optic grating while avoiding the need to expand
the acoustic beam width and the consequential reduction of the acoustic intensity at a
given acoustic power, it is necessary to use collinear, or nearly collinear, Bragg diffrac-
tion. For collinear, codirectional Bragg diffraction, the phase-matching condition is
kd = ki ± K . The optical wavelength selected under this phase-matching scheme in an
acousto-optic filter driven by an acoustic wave at frequency f is

λ = �nva

f
, (8.149)

where �n = |nd − ni|. For collinear, contradirectional Bragg diffraction, the phase-
matching condition is kd = −ki ± K , and the relation between the selected optical
wavelength and the acoustic frequency becomes λ = (nd + ni)va/ f . The contradirec-
tional scheme is not practical for an ordinary acousto-optic tunable filter using a typ-
ical acousto-optic material because it requires an acoustic frequency on the order of
10 GHz for a typical optical wavelength, say λ = 1 µm. In contrast, over the entire
optical spectral range, the acoustic frequencies required for an acousto-optic tunable
filter functioning in the codirectional scheme are, according to (8.149), generally in the
practical range of 10 MHz to 1 GHz for typical acousto-optic materials, such as LiNbO3,
TeO2, and CaMoO4, that are used for this purpose. Therefore, the ideal phase-matching
scheme for a practical acousto-optic filter is collinear, codirectional Bragg interaction.
In certain applications, exact collinear interaction is not possible due to the limitation
of the parameters of the available acousto-optic materials. Then noncollinear birefrin-
gent Bragg interaction under a special tangential phase-matching condition can also
be used to design practical noncollinear acousto-optic tunable filters. For an acousto-
optic tunable filter that uses either collinear or noncollinear interaction, an anisotropic
crystal is needed and there is always a polarization change between the incident and
diffracted optical waves. This statement, however, is not true for guided-wave acousto-
optic tunable filters, as we shall see in the next section. In this section, we consider
only collinear filters for simplicity, but the general concepts apply to noncollinear filters
as well.

Figure 8.16 shows two configurations for collinear acousto-optic tunable filters. The
interaction length l is measured along the longitudinal direction, rather than the trans-
verse direction, of the acoustic beam. Therefore, the interaction length in an acousto-
optic tunable filter is not determined by the transducer length: l �= L . Because of bire-
fringent Bragg interaction, the filtered optical beam at the selected wavelength has a
polarization different from that of the unfiltered beam. In general, a very high extinc-
tion ratio can be easily achieved in separating orthogonally polarized optical waves. By
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(a)

(b)

Figure 8.16 Configurations for collinear acousto-optic tunable filters.

using proper polarizing optical components to separate the filtered beam from the unfil-
tered beam, a very high signal-to-noise ratio can be obtained. This is another advantage
of acousto-optic tunable filters.

In collinear, codirectional Bragg diffraction, if both the frequency and the propagation
direction of the acoustic wave are fixed, the phase mismatch caused by a wavelength
deviation of δλ and an angular deviation of δθi in the incident optical wave is (see
Problem 8.6.1)

�k ≈ 2π (nd − ni)

λ

[
−δλ

λ
+ (δθi)2

2

]
. (8.150)

A very important characteristic of an acousto-optic tunable filter is its optical spectral
resolution. Over a spectral width of �λ centered at the wavelength λ that is selected by
a given acoustic frequency f according to (8.149), the largest wavelength deviations
away from λ are δλ = ±�λ/2 at the two edges of the spectral width. For a perfectly
collimated optical beam with δθi = 0, the general criterion that |�k|l ≤ 0.9π leads to
the following spectral width passed by the filter:

�λ = 0.9λ2

�nl
. (8.151)

The chromatic resolving power of the acousto-optic filter is then given by

R = λ

�λ
= �nl

0.9λ
= f l

0.9va
= l

0.9�
. (8.152)

Hence the resolving power is simply given by the number of acoustic wavelengths
covered by the interaction length and is linearly proportional to the interaction length.
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Another important characteristic of an acousto-optic tunable filter is its angular aper-
ture. As is the case in the application of any spectroscopic instrument, the input optical
beam incident on the acousto-optic tunable filter is usually not well collimated. A large
angular aperture is thus needed for a high optical collection efficiency at the input,
which then leads to a high overall efficiency for the device. The angular aperture of a
given acousto-optic tunable filter is determined by the maximum angular divergence
�θo allowed for the incident optical beam. An angular divergence of �θo in the inci-
dent optical beam corresponds to maximum angular deviations of δθi = ±�θo/2 with
respect to the center direction of the beam. For any given optical spectral component,
we find that

�θo = 2

(
0.9λ

�nl

)1/2

= 2

R1/2
(8.153)

by applying the criterion |�k|l ≤ 0.9π . Note that �θo is the maximum allowable optical
beam divergence inside the acousto-optic medium. The difference in the refractive
index between the medium and free space causes a change in the divergence of an
optical beam between free space and the acousto-optic medium. Therefore, the angular
apertures for the incident and the diffracted waves in free space outside the medium are,
respectively,

�θi = ni�θo = 2ni

R1/2
and �θd = nd�θo = 2nd

R1/2
. (8.154)

For birefringent interaction in a collinear filter, one of the two optical waves has to
be an extraordinary wave but both optical waves have to be polarized in a plane that is
perpendicular to the acoustic K direction because ki ‖ kd ‖ K. Therefore, interaction
is generally restricted to the plane that is perpendicular to the optical axis of the crystal
with the extraordinary optical wave polarized in the direction along the optical axis.
Because the interaction length is not determined by the transducer length in a collinear
configuration, it is possible to increase the diffraction efficiency and the resolving power
of a collinear acousto-optic tunable filter simultaneously by choosing l > L . The length
l is normally limited by the attenuation of the acoustic wave and by the availability of
long acousto-optic crystals.

EXAMPLE 8.9 It is possible to make a collinear LiNbO3 acousto-optic tunable filter utiliz-
ing a transverse acoustic mode that propagates in the [010] y direction and is polarized
in the [100] x direction. The acoustic velocity of this mode is va = 4.08 km s−1. The
birefringent collinear interaction with ki ‖ kd ‖ K ‖ ŷ then couples the ordinary wave
polarized with êo = x̂ and the extraordinary wave polarized with êe = ẑ through the
acousto-optic tensor elements �εxz = �εzx (see Problem 8.2.5(c)). This filter is used
to select an ordinary incident wave spectrally at λ = 1.3 µm with a chromatic resolv-
ing power of R = 103. The ordinary and extraordinary refractive indices of LiNbO3



416 Acousto-optic devices

at 1.3 µm are no = 2.222 and ne = 2.145, respectively. Find the required acoustic
frequency f and the required interaction length l. What are the spectral linewidth �λ

and the angular apertures �θi and �θd?

Solution The required acoustic frequency is

f = �nva

λ
= |2.222 − 2.145| × 4.08 × 103

1.3 × 10−6
Hz = 241.66 MHz.

For R = 103, the needed interaction length is

l = 0.9λR

�n
= 0.9 × 1.3 × 10−6 × 103

|2.222 − 2.145| m = 1.52 cm.

The spectral linewidth is simply �λ = λ/R = 1.3 nm. The angular apertures are �θi =
2no/R1/2 = 0.141 rad = 8.05◦ and �θd = 2ne/R1/2 = 0.136 rad = 7.77◦.

8.7 Guided-wave acousto-optic devices

Guided-wave acousto-optic devices are developed along the same principles discussed
in preceding sections for bulk devices. For the same reasons as those that require prac-
tical bulk acousto-optic devices to be of Bragg type, all practical guided-wave acousto-
optic devices also function in the Bragg regime. With only a few exceptions, a bulk
counterpart can be identified for each guided-wave acousto-optic device, both of which
have the same basic operation principles and are subject to the same considerations in
terms of performance characteristics.

Guided-wave acousto-optic devices differ from bulk acousto-optic devices in two
major aspects. First, the acoustic wave used in a guided-wave device is a surface
acoustic wave (SAW) that is excited by a transducer fabricated on the top of the device
rather than the volume acoustic wave that is used in a bulk device and is excited by a
transducer attached to one end of the device. Furthermore, as is true for any guided-
wave device, the optical waves involved in the function of a guided-wave acousto-optic
device are in the form of waveguide modes.

A SAW needed in a guided-wave acousto-optic device is excited using an interdigi-
tal transducer (IDT) that consists of an array of electrodes on the piezoelectric surface
of the device, as shown in Fig. 8.17. Many anisotropic crystals, such as LiNbO3, are
piezoelectric. Both the IDT for generating the SAW and the optical waveguide can be
fabricated directly on such a material. Isotropic materials, such as fused silica, are not
piezoelectric. Many useful crystals, such as GaAs and quartz, are also nonpiezoelec-
tric. When a nonpiezoelectric material is used as the waveguide substrate, a layer of
piezoelectric material, such as ZnO, has to be placed on top for generation of a SAW
through an IDT.
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Figure 8.17 Generation of a surface acoustic wave by an interdigital transducer.

A SAW differs in many significant aspects from a bulk acoustic wave. These differ-
ences account for some qualitative and quantitative differences between a guided-wave
acousto-optic device and its bulk counterpart. They also make the analysis of a guided-
wave acousto-optic device complicated. Without getting into detailed analysis of SAWs,
which in many cases of anisotropic media has no analytical solution, we consider here
only some key features of SAWs. To facilitate the discussions, we consider a SAW
propagating in the z direction on the surface of a material normal to the y direction, as
shown in Fig. 8.17.

1. A SAW cannot be considered to be either longitudinal or transverse as a bulk acoustic
wave is. Its mechanical displacement vector u has at least two components, and
sometimes all three components, coupled together. Therefore, a SAW is always
elliptically polarized. Moreover, the ellipticity of a SAW is a function of the distance
y into the substrate.

2. In the case of an isotropic medium and also in the case of an anisotropic medium
with yz being a crystal symmetry plane, u has only y and z components. We then
have u(r, t) = ŷuy(y, z, t) + ẑuz(y, z, t) = (ŷU y(y) + ẑU z(y)) cos(K z − �t) for a
traveling SAW propagating in the z direction, where both U y(y) and U z(y) decay
in the y direction in a distance on the order of the acoustic wavelength �. In this
situation, we find that the nonvanishing strain tensor elements are S2 = Syy , S3 = Szz ,
and S4 = 2Syz .

3. In the case of an anisotropic medium with yz not coinciding with any crystal symme-
try plane, u has all three x , y, and z components. All three components are functions
of y and z but do not vary with x . Then, u(r, t) = x̂ux (y, z, t) + ŷuy(y, z, t) +
ẑuz(y, z, t) = (x̂U x (y) + ŷU y(y) + ẑU z(y)) cos(K z − �t). We find in this situation
that only S1 = Sxx vanishes. All other strain tensor elements exist at the same
time.

4. While any strain tensor element S(y, z, t) is a function of y, z, and t , its amplitude
S(y) is a function of y only because the amplitude U(y) of the displacement is
a function of y only. The strain field of a SAW is localized in a surface layer of
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a thickness on the order of the acoustic wavelength, but it might oscillate as it
tapers off. The amplitudes of different strain tensor elements normally have different
magnitudes and phases as a SAW is elliptically polarized.

5. The total acoustic power of a SAW is then

Pa = L

2
ρv3

a

∞∫
0

S2(y)dy, (8.155)

where L is the width of the SAW beam and va is the velocity of the SAW. In a uniform
IDT like the one shown in Fig. 8.17, L is defined by the overlap between adjacent
electrodes rather than by the length of the electrodes.

6. In a piezoelectric medium such as LiNbO3, acousto-optic interaction between a SAW
and an optical wave generally involves the electro-optic effect caused by the electric
field generated by the SAW. This phenomenon can have a significant effect on the
figure of merit of the acousto-optic interaction.

7. The velocity of a SAW is smaller than the velocities of the longitudinal and transverse
modes of the bulk acoustic wave in the same medium.

The polarity of the bias voltage alternates periodically in an IDT, resulting in a
spatial periodicity that is characterized by a pair of electrodes of opposite polarity in
each period. For an IDT that is designed to function around a center acoustic frequency
of f0, this periodicity has to match the wavelength �0 of the SAW at this frequency.
Thus the center-to-center distance between two adjacent electrodes of opposite polarity
is de = �0/2. The corresponding SAW frequency

f0 = va

2de
(8.156)

is called the synchronous frequency of the IDT. To generate a SAW at a frequency
f , which can be different from f0, an RF signal at this frequency f is applied to the
electrodes of the IDT. As illustrated in Fig. 8.17, an IDT radiates bidirectionally two
SAWs of equal power at both ends. Only one of these two SAWs is useful at a time for
any given acousto-optic interaction in a device.

The conversion efficiency of an IDT is determined by the matching circuit that
drives the IDT and the radiation impedance of the electrode array in the IDT. The
frequency response of an IDT has a bandwidth that is determined by the number Ne of
the electrodes or, more precisely, the number Ng = Ne − 1 of the gaps in the electrode
array. Therefore, the useful acoustic power, which accounts for the acoustic output from
only one end of the IDT, is

Pa( f ) = ηt( f, Ng)Pe( f ) = ηckt( f, Ng)ηa( f, Ng)Pe( f ), (8.157)

where Pe( f ) is the electrical power at the RF frequency f , ηckt( f, Ng) accounts for the
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efficiency of the matching circuit, and

ηa( f, Ng) = sin2[Ngπ ( f − f0)/2 f0]

N 2
g sin2[π ( f − f0)/2 f0]

≈ sin2[Ngπ ( f − f0)/2 f0]

[Ngπ ( f − f0)/2 f0]2
(8.158)

is the normalized acoustic radiation efficiency of the IDT. This normalized efficiency
has a unity peak value at the center frequency: ηa( f0, Ng) = 1. The bandwidth of ηa

depends on the number of electrodes. From (8.158), we find that the 3-dB acoustic
radiation bandwidth, f3dB, of the IDT for ηa( f0 ± f3dB/2, Ng) = 1/2 is

f3dB = 1.772

Ng
f0. (8.159)

The specific functional form of ηckt( f, Ng) depends on the type of circuit used to drive
the IDT. Both its peak value and its bandwidth depend on the number of electrodes
and the circuit design. For a given type of circuit, the peak efficiency increases but the
bandwidth decreases as the number of electrodes in an IDT is increased. The circuit is
usually designed to have a bandwidth much larger than the acoustic radiation bandwidth
so that ηckt is practically a constant at its peak value in the frequency range within
f0 ± f3dB/2. The theoretical maximum value of ηckt is 1/2 because an IDT radiates
bidirectionally. Therefore, in the most ideal situation with an optimized broadband
circuit of maximum efficiency, we have ηt( f, Ng) ≤ ηa( f, Ng)/2 with a bandwidth
limited by f3dB given in (8.159).

EXAMPLE 8.10 A z-propagating SAW in y-cut LiNbO3 has a phase velocity va =
3.488 km s−1. An IDT is designed to generate this SAW at a center frequency of
500 MHz and a 3-dB bandwidth of at least 100 MHz. Find the center-to-center separa-
tion between the electrodes and the number of electrodes for the IDT.

Solution The synchronous frequency of the IDT has to be the center acoustic fre-
quency f0 = 500 MHz. Therefore, we find from (8.156) that the center-to-center elec-
trode separation needs to be

de = va

2 f0
= 3.488 × 103

2 × 500 × 106
m = 3.488 µm.

For f3dB ≥ 100 MHz, we find from (8.159) that

Ng = 1.772
f0

f3dB

≤ 1.772 × 500 × 106

100 × 106
= 8.86.

Therefore, the maximum value for Ng is 8, and the maximum number of electrodes is
Ne = 9.

A guided-wave acousto-optic device can be either coplanar or collinear. Similarly
to their bulk counterparts, guided-wave acousto-optic modulators and deflectors gener-
ally use small-angle Bragg diffraction in a coplanar configuration while guided-wave
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(a)

(b)

Figure 8.18 Basic configurations for (a) coplanar and (b) collinear guided-wave acousto-optic
devices.

acousto-optic tunable filters and mode converters have the configuration of collinear
Bragg diffraction. The basic configurations for coplanar and collinear guided-wave
acousto-optic devices are shown in Figs. 8.18(a) and (b), respectively. In either case,
the phase-matching condition is dictated by the wavevectors of the participating normal
modes of the optical waveguide:

βd = βi ± K, (8.160)

whereβi andβd are the normal-mode wavevectors of the incident and diffracted optical
beams, respectively, K is the wavevector of the SAW, and the plus and minus signs
are for up- and down-shifted diffraction, respectively. Most of the results obtained in
Section 8.3 for Bragg diffraction in a bulk medium can be applied directly to Bragg
diffraction in an optical waveguide by (1) replacing ki and kd byβi andβd, respectively,
and (2) interpreting ni and nd as ni = λβi/2π and nd = λβd/2π to represent the effective
refractive indices seen by relevant waveguide modes. The phase mismatch, if it exists,
becomes �k = βd − βi − K for up-shifted diffraction and �k = βd − βi + K for
down-shifted diffraction. After making these modifications, the results obtained in the
preceding three sections for bulk acousto-optic devices are also valid for their guided-
wave counterparts, with the exception of the diffraction efficiency and some other
characteristics discussed later in this section.

The coupled equations for Bragg diffraction in an optical waveguide have to be
obtained by employing a coupled-mode analysis. They have the same form as (8.79)
and (8.80), with Ai and Ad now representing the amplitudes of waveguide modes that
characterize the incident and the diffracted optical beams, respectively. The Bragg
coupling coefficient obtained from the coupled-mode analysis can be expressed in a
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form similar to that in (8.81):

κ = ±i
ω2µ0

4β
1/2
i β

1/2
d

�ε̃eff
id , (8.161)

where the plus and the minus signs are for up- and down-shifted diffraction, respectively,
and

�ε̃eff
id = 2β

1/2
i β

1/2
d

ωµ0

∞∫
−∞

Ê∗
i · �ε̃ · Êddy. (8.162)

If the photoelastic effect is the sole contribution to the changes in the dielectric properties
of the medium in a guided-wave device, we have

�ε̃eff
id ≈ −ε0

(
2nind M2 Pa

L�

)1/2

�id, (8.163)

where ni and nd are the refractive indices seen by the modes of the incident and the
diffracted optical beams, respectively, and

�id =

∞∫
0

S(y)Ê∗
i (y)Êd(y)dy


 1

�

∞∫
0

S2(y)dy

∞∫
−∞

|Ê i(y)|2dy

∞∫
−∞

|Êd(y)|2dy




1/2 (8.164)

is a dimensionless overlap factor for the optical modes and the strain field of the SAW.
The overlap factor �id accounts for the different spatial distributions of the optical
modes and the SAW. It is a function of the acoustic frequency f because the strain
field distribution of a SAW depends on the acoustic frequency. The Bragg coupling
coefficient for a guided-wave acousto-optic device can then be expressed as

|κ| = π

λ

(
M2 Pa

2L�

)1/2

�id = π

λ

(
M2 f Pa

2Lva

)1/2

�id. (8.165)

Consequently, for a coplanar or a codirectional, collinear guided-wave acousto-optic
device that uses a traveling acoustic wave, the diffraction efficiency for an interaction
length l in the case of perfect phase matching is

ηPM = sin2

[
π

λ

(
M2 f

2Lva
Pa( f )

)1/2

�id( f )l

]
, (8.166)

or, in the low-efficiency limit,

ηPM ≈ π2 M2l2 f

2λ2Lva
�2

id( f )Pa( f ), if ηPM � 1. (8.167)
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In expressing �ε̃eff
id in the form of (8.163), we have assumed that only the photo-

elastic effect contributes to the changes in the dielectric properties of the medium.
The discussions and conclusions that follow (8.163) are subject to this assumption.
Many practical acousto-optic materials, such as LiNbO3 for example, are piezoelectric
and have large Pockels coefficients. Through the piezoelectric effect, the SAW can
generate a significant electric field, which can then induce a significant change in the
dielectric properties of the medium through the Pockels effect. In this situation, �ε̃ has
contributions from both photoelastic and electro-optic effects. Then, the parameters M2

and �id that appear in (8.165)–(8.167) have contributions from both effects. In certain
situations, such as in the interaction of a TE mode with a z-propagating SAW in a y-cut
LiNbO3 waveguide, the contribution from the electro-optic effect can even dominate
that from the photoelastic effect.

Modulators

A guided-wave acousto-optic modulator generally has a coplanar configuration like
that shown in Fig. 8.18(a). The general characteristics of acousto-optic modulators
discussed in Section 8.4 remain true for guided-wave modulators as well. The only
characteristic that is different between a guided-wave acousto-optic modulator and its
bulk counterpart is the functional dependence of the diffraction efficiency on various
device parameters, as is discussed above and can be seen by comparing (8.166) with
(8.106). Although a modulator is driven by a time-dependent signal at a fixed carrier
frequency, the diffraction efficiency of each frequency component in the modulation
signal varies because of its frequency dependence, which is expressed in (8.166). As
a result, the modulation bandwidth of a guided-wave acousto-optic modulator is not
only determined by the acoustic transit time τa, but is also subject to the bandwidth of
the IDT determined by (8.158) and that of the overlap factor �id( f ).

Deflectors

Guided-wave acousto-optic deflectors are coplanar devices. They have a basic config-
uration like that shown in Fig. 8.18(a) though more sophisticated transducers are often
used for broadband deflectors. The discussions in Section 8.5 are generally applicable
to guided-wave acousto-optic deflectors.

The most important parameter that characterizes the performance of an acousto-optic
deflector is its bandwidth � f because, as the relation in (8.132) shows, the number of
spatially resolvable spots that can be addressed by a deflector is linearly proportional to
its bandwidth. The bandwidth of a guided-wave acousto-optic deflector is limited by the
phase-matching bandwidth of the acousto-optic Bragg diffraction, the IDT bandwidth,
and the bandwidth of the overlap factor.

The characteristics of the Bragg phase-matching bandwidth have been fully discussed
in Section 8.5. The Bragg bandwidth can be increased either by using birefringent Bragg
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Figure 8.19 Phased-array interdigital transducer for the generation of a surface acoustic wave
whose propagation direction is steered by the acoustic frequency to track the Bragg condition.

diffraction under the tangential phase-matching condition or by using a phased-array
transducer in a nonbirefringent deflector. These approaches are applicable to guided-
wave deflectors as well. In a birefringent guided-wave Bragg deflector that uses the
tangential phase-matching condition, the incident and the diffracted optical beams are
waveguide modes of orthogonal polarizations. In a planar waveguide, this kind of
interaction involves coupling between TE and TM modes. A bandwidth comparable to
that of an optimized birefringent deflector is possible for a nonbirefringent deflector
that uses a phased-array transducer.

In a guided-wave device, a phased-array transducer consists of multiple elements of
identical IDTs that are equally spaced but are successively displaced at a constant step
h, as shown in Fig. 8.19. The step height is chosen to be an integral multiple of the
center-to-center distance between adjacent electrodes:

h = mde = m
�0

2
, m = integer. (8.168)

At the center frequency f0, the SAWs generated by the IDT elements are all in phase,
resulting in a combined SAW propagating in the normal direction. At any frequency f
shifted away from f0, the regular spatial displacement between successive IDT elements
causes a frequency-dependent regular phase shift between adjacent individual SAWs,
thereby steering the direction of the combined SAW wavefront according to the variation
in the acoustic frequency.

As can be seen from (8.158) and subsequent discussions, the bandwidth of a regular
IDT is quite limited. A phased-array IDT as shown in Fig. 8.19 increases the Bragg
bandwidth of the acousto-optic interaction, but it does not improve the bandwidth
of the IDT itself. Consequently, the bandwidth of a deflector using such a phased-
array IDT is still subject to the limitation of the same IDT bandwidth. This limitation
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(a)

(b)

Figure 8.20 (a) Multiple tilted interdigital transducers of staggered center frequencies.
(b) Individual frequency responses and composite frequency response of the transducers.

(a)

(b)

Figure 8.21 (a) Curved interdigital transducer with tapered electrodes. (b) Tilted-finger chirped
interdigital transducer.

can be overcome by using an array of multiple tilted IDTs of staggered synchronous
frequencies, as shown in Fig. 8.20(a). The individual IDTs are tilted in order for the
Bragg phase-matching condition to be satisfied at each synchronous frequency. The
difference in the tilt angles between two adjacent IDTs is equal to the difference between
the Bragg angles at the corresponding synchronous frequencies of the two IDTs. The
frequency response of each individual IDT is centered at the corresponding synchronous
frequency. The synchronous frequencies of the individual IDTs are staggered in such
a way that the individual frequency responses of adjacent IDTs intersect at −6 dB
down from the peak response in order to obtain a large composite overall frequency
response, as illustrated in Fig. 8.20(b). Two broadband IDT structures that evolve from
the same concept are shown in Fig. 8.21. The curved IDT with tapered electrodes shown
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in Fig. 8.21(a) results from parallel connection of multiple tilted IDTs of continuously
varying parameters, whereas the tilted-finger chirped IDT shown in Fig. 8.21(b) results
from serial stacking of multiple tilted IDTs of continuously varying parameters.

An array of multiple tilted IDTs has a broad composite transducer bandwidth. It
also provides a broad Bragg bandwidth due to tracking of the Bragg phase-matching
condition by the tilted angles of the individual IDTs. The curved IDT and the tilted-finger
chirped IDT have similar characteristics. In contrast, a phased-array IDT increases only
the Bragg bandwidth but not the transducer bandwidth. However, at any given acoustic
frequency, all of the elements in a phased-array IDT are simultaneously excited, whereas
in any of the broadband IDTs only part of the structure is effectively excited at a given
acoustic frequency due to the design of staggered synchronous frequencies. Therefore,
a deflector that uses a phased-array IDT can have a larger diffraction efficiency than
one that uses one of the broadband IDTs. In order to optimize the bandwidth and
the efficiency at the same time, a combination of different schemes is often used.
For example, an array of multiple tilted phased-array IDTs of staggered synchronous
frequencies can be designed for a nonbirefringent deflector of high efficiency and large
bandwidth. In a birefringent deflector that has a large Bragg bandwidth, the Bragg angle
varies little with varying acoustic frequencies due to the tangential phase-matching
scheme. For such a device to have a large overall bandwidth, its Bragg bandwidth can
be matched with a large IDT bandwidth by using an array of multiple untilted IDTs of
staggered synchronous frequencies or a parallel-finger chirped IDT.

To utilize the Bragg bandwidth and the IDT bandwidth fully, the bandwidth of the
overlap factor is generally made large enough by ensuring, through the design of the
waveguide structure, sufficient overlap of the interacting optical modes with the SAW
field distribution.

Tunable filters

Guided-wave acousto-optic tunable filters are typically collinear devices though, as is
mentioned in Section 8.6, noncollinear configurations are also possible. The general dis-
cussions presented in Section 8.6 apply to guided-wave tunable filters as well. However,
guided-wave tunable filters have some unique characteristics due to modal dispersion
that does not exist in bulk devices. Because modes of the same polarization but different
orders, such as TE0 and TE1, have different propagation constants, a collinear guided-
wave acousto-optic tunable filter that is based on a change in the mode order without
a change in the polarization is possible. However, guided-wave acousto-optic tunable
filters that involve orthogonally polarized modes cannot be constructed with isotropic
materials though the orthogonally polarized TE and TM modes always have different
propagation constants even when the waveguide structure is made of layers of isotropic
materials (see Problem 8.7.1). It is possible to construct collinear acousto-optic fil-
ters with TE–TM mode conversion using waveguides in properly oriented anisotropic
substrates (see Problem 8.7.4).
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Mode converters

The guided-wave acousto-optic filters discussed above can be used as guided-wave
acousto-optic mode converters. The only difference between these two types of devices
is the purpose of their applications. Any guided-wave acousto-optic tunable filter cannot
operate without converting one waveguide mode to another, but its purpose is to select a
desired optical wavelength out of a possibly broad spectrum. In contrast, the functional
purpose of a guided-wave acousto-optic mode converter is to convert a waveguide
mode from one polarization to another or from one mode order to another. A high
mode-conversion efficiency is the most desirable characteristic of a mode converter. A
mode converter is generally designed for the phase-matching condition to be satisfied
at a desired optical wavelength of application. Furthermore, the input to the device is
a coherent optical wave in the designated incident waveguide mode at this particular
wavelength so that a high mode-conversion efficiency can be obtained.

PROBLEMS

8.2.1 Fused silica glass is an isotropic material that has only two independent elasto-
optic coefficients, p11 = 0.121 and p12 = 0.271. A transverse acoustic wave
at a frequency of 500 MHz that is polarized in the y direction is generated
to propagate in the x direction. Use the data listed in Table 8.2 to answer the
following questions.
a. Find the wavelength of the transverse acoustic wave and compare it to that

of the longitudinal acoustic wave found in Example 8.1.
b. Find the figures of merit at 632.8 nm optical wavelength for acousto-optic

interaction with optical waves of linear polarization that are parallel and
perpendicular to K, respectively.

c. Find the change �ε(x, t) in the permittivity tensor of this material caused by
such an acoustic wave at an intensity of 10 W cm−2.

8.2.2 Consider an acoustic wave propagating along the [100] axis of a cubic crystal
of 43m symmetry such as GaAs or GaP. Take x̂ to be along the crystal [100]
axis so that K = K x̂ .
a. Find the tensor �ε induced by each normal mode of the acoustic wave in

terms of elasto-optic coefficients and strain tensor elements.
b. From the answers in (a), find the conditions under which acousto-optic

diffraction in GaP does not change the polarization of the optical waves.
8.2.3 The three independent elasto-optic coefficients for a GaP crystal of 43m sym-

metry are p11 = −0.151, p12 = −0.082, and p44 = −0.072. The density of the
crystal is ρ = 4.13 × 103 kg m−3. The refractive index of GaP at 632.8 nm
wavelength is 3.31. For an acoustic wave propagating along one of the crystal
axes, say [100], the velocity of its longitudinal mode is va,L = 5.85 km s−1 and
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that of its transverse modes is va,T = 4.13 km s−1. Take x̂ to be the direction of
the [100] crystal axis. The acoustic wave has an intensity of 10 W cm−2.
a. Find the figures of merit for acousto-optic interactions of a longitudinal acous-

tic wave with optical waves at 632.8 nm of linear polarizations that are parallel
and perpendicular to K, respectively.

b. Find the index changes caused by this longitudinal acoustic wave.
c. Find the figures of merit for acousto-optic interactions of a transverse acoustic

wave with optical waves of linear polarizations that are parallel and perpen-
dicular to K, respectively.

d. Find the changes in the permittivity tensor caused by this transverse acoustic
wave.

8.2.4 Though the linear optical property of a cubic crystal is similar to that of an
isotropic material in the sense that a cubic crystal has only one refractive index
independent of the optical polarization, the acousto-optic properties of a cubic
crystal such as GaP are different from those of an isotropic material such as
silica glass. We consider in this problem a longitudinal acoustic wave propa-
gating along the [110] direction of a GaP crystal. The velocity of this acoustic
wave is va,L = 6.32 km s−1, which is different from that of the longitudinal
wave propagating along one of the crystal axes described in Problem 8.2.3. To
describe the acousto-optic interaction in this situation, we take the new coor-
dinates x̂ ′ = (x̂ + ŷ)/

√
2, ŷ′ = (x̂ − ŷ)/

√
2, and ẑ′ = ẑ, where x̂ , ŷ, and ẑ are

the coordinate axes along the crystal axes. Then x̂ ′ is along the [110] direction
of the crystal. The elasto-optic coefficients transformed to this new coordi-
nate system are p′

11 = (p11 + p12 + 2p44)/2, p′
12 = (p11 + p12 − 2p44)/2, and

p′
44 = (p11 − p12)/2.

a. Use the data given in Problem 8.2.3 for GaP to find the figures of merit
for acousto-optic interactions of this [110] longitudinal acoustic wave with
optical waves at 632.8 nm of linear polarizations that are parallel and per-
pendicular to K, respectively.

b. Find the index changes caused by such a longitudinal acoustic wave of an
intensity of 10 W cm−2.

8.2.5 LiNbO3 is a trigonal crystal of 3m symmetry. It is uniaxial with an optical axis
parallel to the crystal [001] direction that is designated the z axis. The crystal
[100] and [010] directions are designated as the x and y axes, respectively.
a. Consider an acoustic wave that propagates in the crystal along the [001] direc-

tion with K = K ẑ. Find the tensor �ε induced by each normal mode of this
acoustic wave in terms of elasto-optic coefficients and strain tensor elements.

b. Find the tensor �ε induced by each normal mode of an acoustic wave that
propagates along the [100] direction with K = K x̂ .

c. Find the tensor �ε induced by each normal mode of an acoustic wave that
propagates along the [010] direction with K = K ŷ.
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d. From the answers in (a)–(c), find the conditions under which acousto-optic
diffraction in LiNbO3 does not change the polarization of the optical waves.

e. From the answers in (a)–(c), find the conditions under which the incident
and diffracted optical waves of acousto-optic Bragg diffraction in LiNbO3

are orthogonally polarized.
8.2.6 The tetragonal crystal PbMoO4 has 4/m symmetry. It is negative uniaxial with

the z axis designated as its optical axis. Its density is ρ = 6.95 × 103 kg m−3,
and its ordinary and extraordinary refractive indices at λ = 632.8 nm are
no = 2.386 and ne = 2.262, respectively. The velocity of its longitudinal
acoustic mode propagating along the crystal [001] direction with K = kẑ is
va = 3.63 km s−1. Its nonvanishing independent elasto-optic coefficients are
p11 = 0.24, p12 = 0.24, p13 = 0.255, p16 = 0.017, p31 = 0.175, p33 = 0.300,
p44 = 0.067, p45 = −0.01, p61 = 0.013, and p66 = 0.025. Find the acoustic
figures of merit at 632.8 nm for optical polarizations that are perpendicular and
parallel to K, respectively.

8.3.1 Consider Raman–Nath diffraction, in an isotropic material, of an optical
wave propagating in the z direction by an acoustic wave propagating in the x
direction as shown in Fig. 8.2.
a. Show that in the diffraction by a longitudinal acoustic wave the polarizations

of the diffracted waves of all orders are the same as that of the incident wave
if the incident optical wave is linearly polarized in either the x or y direction.

b. Show that in the diffraction by a y-polarized transverse acoustic wave the
polarizations of all even-order diffracted waves are the same as that of
the incident wave and those of all odd-order diffracted waves are the same
as that of the first-order diffracted wave for any polarization state of the
incident optical wave.

c. What happens in the interaction with a z-polarized transverse acoustic
wave?

8.3.2 An optical wave at 632.8 nm wavelength interacts at normal incidence with a
longitudinal acoustic wave of 10 MHz frequency in a piece of TF-7 flint glass
over an interaction length of 5 mm. The optical wave is linearly polarized in a
direction perpendicular to the K vector of the acoustic wave. Use the data given
in Table 8.2 for TF-7 glass to answer the following questions: Is the interaction
in the Raman–Nath or Bragg regime? What is the maximum value for the
first-order diffraction efficiency η1? Find the acoustic intensity needed to reach
this maximum diffraction efficiency. Find the first-order diffraction efficiency
for an acoustic intensity of 5 W cm−2. What is the first-order diffraction
angle?

8.3.3 The nonvanishing independent elasto-optic coefficients of LiNbO3, which has
3m symmetry, are p11 = −0.026, p12 = 0.090, p13 = 0.133, p14 = −0.075,
p31 = 0.179, p33 = 0.071, p41 = −0.151, and p44 = 0.146. For acoustic
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waves propagating in the [100] direction with K = K x̂ , the acoustic velocities
are va,L = 6.57 km s−1 for the longitudinal mode polarized in the x direction,
va,T = 4.08 km s−1 for the transverse mode polarized in the y direction, and
va,T = 3.59 km s−1 for the transverse mode polarized in the z direction. The
density of LiNbO3 is 4.64 × 103 kg m−3. The optical axis is the z axis. The
ordinary and extraordinary indices of LiNbO3 at 1.3 µm optical wavelength
are no = 2.222 and ne = 2.145, respectively. We are interested in up-shifted
Bragg diffraction at λ = 1.3 µm by a z-polarized transverse acoustic mode.
Both ki and kd of the incident and diffracted optical waves lie in the xy plane.
The incident optical wave is a z-polarized extraordinary wave so that êi = ẑ.
Use the results obtained in Problem 8.2.5 to answer the following questions.
a. Is the diffracted wave an ordinary or extraordinary wave? Is this birefringent

or nonbirefringent diffraction?
b. What are the minimum and maximum acoustic frequencies that define the

frequency range for phase-matched interaction?
c. Is tangential phase matching possible? If it is possible, what is the required

acoustic frequency f0? What are the values of θi and θd?
d. What is the figure of merit M2 at the tangential phase-matching point if that

is possible?
8.3.4 Answer the questions given in Problem 8.3.3 in the case when the incident

optical wave is an ordinary wave polarized in the xy plane so that êi ⊥ ẑ.
8.3.5 Answer the questions given in Problem 8.3.3 in the case when the acoustic

wave is a y-polarized transverse mode and the incident optical wave is a
z-polarized extraordinary wave so that êi = ẑ.

8.3.6 The velocities of acoustic waves propagating in the [001] direction of LiNbO3

with K = K ẑ are va,L = 7.27 km s−1 for the longitudinal mode polarized in the
z direction and va,T = 3.59 km s−1 for both of the transverse modes polarized
in the x and y directions, respectively. We consider up-shifted Bragg diffraction
at λ = 1.3 µm with both ki and kd of the incident and diffracted optical waves
in the yz plane. The acoustic wave is the x-polarized transverse mode. The
incident optical wave is an x-polarized ordinary wave so that êi = x̂ . Answer
the questions given in Problem 8.3.3. What difference does it make if the
acoustic wave is y polarized?

8.3.7 Show that, for birefringent Bragg diffraction in an anisotropic crystal in the
case when ni > nd, phase-matched diffraction is not possible if the incident
angle of the optical wave falls in the range of |θi| < cos−1(nd/ni). Show also
that there is no such limitation if ni < nd.

8.3.8 Show that for given values of incident and diffracted optical wavenumbers,
ki and kd, respectively, in an anisotropic medium, the value of the acoustic
wavenumber, K , has to be in the range given in (8.67) in order for phase-matched
Bragg diffraction to be possible.
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8.3.9 Consider phase-matched Bragg diffraction in which the acoustic wave has fixed
polarization and direction of propagation but its frequency can be varied. Assume
for simplicity that the values of ni and nd for the incident and diffracted waves do
not depend on the angles of incidence and diffraction, θi and θd, respectively. Plot
θi and θd as a function of the varying acoustic frequency for the following cases.
a. Up-shifted diffraction in the case when ni > nd.
b. Down-shifted diffraction in the case when ni > nd.
c. Up-shifted diffraction in the case when ni < nd.
d. Down-shifted diffraction in the case when ni < nd.
e. Up-shifted diffraction in an isotropic medium.
f. Down-shifted diffraction in an isotropic medium.

8.3.10 In some special situations, more than one diffraction order can be simultane-
ously phase matched in Bragg diffraction from a traveling acoustic wave in an
anisotropic crystal. Consider for simplicity the interaction in a uniaxial crystal
with a configuration in which ki, kd, and K all lie on the plane normal to the
optical axis of the crystal. Then, for both ordinary and extraordinary waves,
the magnitudes of the wavevectors ki and kd are independent of the angles θi

and θd. Take the two characteristic refractive indices of the crystal to be n1 and
n2 with n1 > n2. The incident optical wave has a wavelength λ and an angular
frequency ω. For phase matching, we vary the acoustic frequency f to vary the
value of K . Consider both birefringent and nonbirefringent phase-matching
possibilities in answering the following questions.
a. If ni = n1 > n2, is it possible to generate two up-shifted beams at ω + �

and ω + 2� simultaneously through phase-matched Bragg diffraction? If
it is possible, how many different scenarios can be found? What are the
required conditions for each case? What are the phase-matching acoustic
frequency, in terms of f̂ defined in (8.68), and the angles of incidence and
diffraction for the beams?

b. Answer the questions in (a) for ni = n2 < n1.
c. Answer the questions in (a) for the simultaneous generation of two

down-shifted beams at ω − � and ω − 2� in the case when ni = n1 > n2.
d. Answer the questions in (c) for ni = n2 < n1.
e. It is also possible to generate one up-shifted beam at ω + � and one

down-shifted beam at ω − � simultaneously. Find the condition, the phase-
matching acoustic frequency, and the angles of incidence and diffraction for
each possible case.

8.3.11 Give an example for the situations described in Problem 8.3.10 by considering
Bragg diffraction in LiNbO3 with no = 2.222 and ne = 2.145 at the 1.3 µm
optical wavelength.

8.3.12 In the absence of an actively generated acoustic wave, thermal vibrations in
a medium can serve as the required acoustic waves to cause frequency-shifted
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diffraction of an optical wave. This phenomenon is the well-known Brillouin
scattering, which is essentially phase-matched Bragg diffraction by the acoustic
modes of a medium. If an optical wave is launched into a silica optical fiber, in
which direction or directions do the frequency-shifted optical waves generated
by spontaneous Brillouin scattering propagate? What frequency components
can be found in the scattered waves? Use the Sellmeier equation given in (3.96)
and the acoustic velocity of va = 5.97 km s−1 to find the frequency shift, known
as the Brillouin frequency, fB, at the following optical wavelengths: 632.8 and
850 nm, and 1.06, 1.3, and 1.55 µm.

8.3.13 A z-polarized extraordinary optical wave at 1.3 µm is collinearly diffracted
by a longitudinal acoustic wave propagating in the [100] x direction of
LiNbO3 to generate a y-polarized ordinary optical wave. The velocity of this
longitudinal acoustic wave is va = 6.57 km s−1. The density of LiNbO3 is
4.64 × 103 kg m−3. The acousto-optic coupling of these two optical waves
in this configuration is through the elasto-optic coefficient p41 = −0.151 of
LiNbO3, and the ordinary and extraordinary refractive indices are no = 2.222
and ne = 2.145, respectively. The acoustic intensity is 10 W cm−2, and
the interaction length is 1 cm. If the acoustic frequency has to be kept
below 5 GHz for practical reasons, in which directions do the optical
waves propagate? Find the phase-matching frequency and the diffraction
efficiency.

8.3.14 Compare Raman–Nath diffraction and Bragg diffraction regarding their basic
principles, requirements, and characteristics. Explain why almost all practical
acousto-optic devices operate in the Bragg regime.

8.3.15 Discuss the primary differences between nonbirefringent acousto-optic Bragg
diffraction and birefringent acousto-optic Bragg diffraction.

8.3.16 In this problem, we consider Bragg diffraction in the limit of low diffraction
efficiency.
a. Show that for both small-angle Bragg diffraction and collinear Bragg

diffraction, the diffraction efficiency in the case of perfect phase matching is

ηPM ≈ |κ|2l2 = π2 M2 Ia

2λ2
l2 (8.169)

in the limit that ηPM � 1.
b. Show that in the situation where (8.169) is valid, the dependence of the

diffraction efficiency on the phase-mismatch parameter for |�k| > |κ| can
be described as

η ≈ ηPM
sin2(�kl/2)

(�kl/2)2
(8.170)

for both small-angle and collinear diffraction.
c. What are the values of �k for which η = ηPM/2?
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8.4.1 Show that if the length L of an acousto-optic modulator is chosen to be the
minimum limited by (8.118) when a < 1 or that limited by (8.121) when
a > 1, the Rayleigh range zR of the Gaussian optical beam is always larger than
L so that the optical beam remains well collimated throughout the length of the
modulator no matter whether the beam is focused or not. Therefore, the choice
of a modulator height of H = 2

√
2w0 is sufficient to cover the beam spot.

8.4.2 A fused silica traveling-wave acousto-optic modulator similar to the one de-
scribed in Example 8.5 is desired for high-speed application with a risetime of
tr = 10 ns at λ = 1.064 µm optical wavelength. The acoustic wave is the longi-
tudinal mode, and the optical wave is polarized in a direction perpendicular to the
propagation directions of both optical and acoustic waves. Find the 3-dB modula-
tion bandwidth f 3dB

m , the required carrier frequency f0, and the optimum optical
beam spot size w0 for this device. Practical considerations for the construction
and operation of this device require that the physical length L and height H of
the transducer be larger than 0.5 mm. The transducer efficiency is ηt = 80%.
Design the device by properly choosing the values of L and H so that the device
has a modulation loss of at least 5% for an electrical modulation power of 1 W.

8.4.3 Answer the questions in Example 8.5 for a fused silica traveling-wave
acousto-optic modulator designed for an optical wavelength at λ = 632.8 nm
instead of 1.064 µm. Compare the results with those found in Example 8.5 for
1.064 µm wavelength.

8.4.4 Use the data listed in Table 8.2 to answer the questions in Example 8.5 for
a PbMoO4 traveling-wave acousto-optic modulator that is designed for an
optical wavelength at λ = 1.064 µm. The acoustic wave is a longitudinal mode
propagating in the [001] direction, and the optical wave is an ordinary wave
polarized in a direction perpendicular to the propagation directions of the op-
tical and acoustic waves. The ordinary and extraordinary refractive indices of
PbMoO4 at 1.064 µm are no = 2.298 and ne = 2.200, respectively. Compare
the results with those found in Example 8.5 for the fused silica modulator.

8.4.5 A silica standing-wave acousto-optic modulator is used as a mode locker for a
Nd : YAG laser at 1.064 µm wavelength to provide a periodic loss modulation
at 100 MHz in tune with the 100 MHz longitudinal mode spacing of the laser
so that the longitudinal modes of the laser are locked together in phase. At
one end, the acousto-optic cell of the modulator is attached to a matched
transducer that has dimensions L = 4 cm and H = 1 cm. The width of the cell
is W = 4 cm. For fused silica, n = 1.45 and M2 = 1.46 × 10−15 m2 W−1 at
λ = 1.064 µm, and va = 5.97 km s−1.
a. What should the acoustic frequency f used to drive this modulator be?
b. Does the device function in the Bragg regime with clean separation between

diffracted and undiffracted beams?
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c. The acoustic decay rate γa of the resonant cell is contributed by the losses as-
sociated with absorption inside the cell and acoustic reflection at the far end of
the cell. The absorption loss rate is quadratically proportional to the acoustic
frequency and is given by γab = γ0 f 2 with γ0 = 7.2 dB µs−1 GHz−2 for sil-
ica. The reflection loss rate is given by γr = −(va/2W ) ln R, where R is the
reflectance of the acoustic wave. For this device, R = 0.8. Find the value of γa.

d. If the transducer conversion efficiency is ηt = 70%, what is the peak
modulation loss for an electrical modulation power of Pe = 1 W?

8.4.6 Compare traveling-wave and standing-wave acousto-optic modulators. Discuss
their differences in device structures, operation principles, performance
characteristics, and applications.

8.5.1 In this problem, we consider the phase mismatch �k = �kẑ in the case of
small-angle Bragg diffraction with fixed values of ki and kd. With perfect phase
matching, the angles of incidence and diffraction are θi and θd, respectively,
and the acoustic wavevector is K = K x̂ . It is assumed that θi �= 0 and θd �= 0
in this problem.
a. For a fixed value of K , a deviation of the angle of incidence from the value

θi required by the phase-matching condition results in a phase mismatch.
If the angular deviation of the incident wave is δθi � θi, corresponding to
an angle of incidence of θ ′

i = θi + δθi, show that the angle of diffraction is
changed to θ ′

d = θd + δθd and

δθd = δθi. (8.171)

b. Show that in the situation described in (a), the phase mismatch in the z
direction is

�k = ∓K δθi, (8.172)

where the minus sign is for up-shifted diffraction, and the plus sign is for
down-shifted diffraction.

c. If the incident angle is fixed at θi but the value of K is changed to K ′ = K +
δK , the angle of diffraction also deviates from θd. Show that, to first order,

δθd = ± δK

ki cos θi
≈ ±δK

ki
, (8.173)

where the plus sign is for up-shifted diffraction, and the minus sign is for
down-shifted diffraction.

d. Show that in the situation described in (c), the phase mismatch in the z
direction, for either up- or down-shifted diffraction, is, to first order,

�k = −k2
d + K 2 − k2

i

2ki K cos θi
δK ≈ −k2

d + K 2 − k2
i

2ki K
δK . (8.174)
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e. The phase mismatch caused by a deviation in the incident angle can be
compensated by a change in the value of K , and vice versa. Show that in
order to maintain phase matching, the amount of δK needed to compensate
for the phase mismatch caused by an incident-angle deviation of δθi is

δK = ∓ 2ki K 2 cos θi

k2
d + K 2 − k2

i

δθi ≈ ∓ 2ki K 2

k2
d + K 2 − k2

i

δθi, (8.175)

where the minus sign is for up-shifted diffraction, and the plus sign is for
down-shifted diffraction.

f. Show that when phase matching is maintained by compensation between
δθi and δK discussed in (e), the angle of diffraction is changed by an amount
of

δθd = −k2
i + K 2 − k2

d

k2
d + K 2 − k2

i

δθi (8.176)

for either up- or down-shifted diffraction.
8.5.2 Answer the questions in Problem 8.5.1 for acousto-optic Bragg diffraction in

an isotropic medium.
8.5.3 In this problem, we consider the optimum bandwidth � f and transducer length

L of a nonbirefringent deflector. Their optimum values depend on the criterion
chosen for the acceptable efficiency reduction at the band edges due to phase
mismatch. Consider the low-efficiency limit so that the efficiency as a function
of phase mismatch can be approximated by (8.170) in Problem 8.3.16.
a. Show that when the criterion is chosen as 3-dB efficiency reduction at the

band edges, as is taken to obtain (8.138), the optimum values of � f and L
are those given in (8.141).

b. Find the optimum values of � f and L for the criteria chosen based on
maximum efficiency reductions of 1, 2, 4, and 5 dB, respectively.

8.5.4 Tangential phase matching for Bragg diffraction in the case when ki > kd is
considered. In the case of perfect phase matching, the acoustic wavevector is
K = K x̂ and θd = 0. A deviation from the phase-matching condition results in
a phase mismatch of �k = �kẑ.
a. If the value of K is fixed, show that a deviation of the angle of incidence

from θi to θ ′
i = θi + δθi results in a change of the angle of diffraction

from θd = 0 to θd = δθd = δθi and a phase mismatch �k = ∓K δθi. These
results are the same as those obtained in (8.171) and (8.172) for the general
phase-matching condition.

b. The incident angle is fixed at θi, but the value of K is changed to
K ′ = K + δK . Show that in this case the change in the angle of diffraction
is δθd = ±δK/kd, which is the same as that in (8.173) for the general



435 Problems

phase-matching condition. However, show also that the phase mismatch is

�k = [k2
d − (δK )2]1/2 − kd ≈ − (δK )2

2kd
, (8.177)

which is different from that in (8.174) for the general phase-matching
condition.

8.5.5 A large bandwidth can be obtained for an acousto-optic deflector using
the optimum birefringent phase-matching scheme shown in Fig. 8.14. The
value of K for the acoustic wave ranges from K0 − �K/2 to K0 + �K/2,
corresponding to the range of frequencies from f0 − � f/2 to f0 + � f/2. In
this scheme, perfect phase matching does not occur at the tangential point, or at
the center frequency f0. Instead, perfect phase matching occurs at two different
frequencies, which are between the center frequency and the two edges of the
bandwidth, respectively. The maximum absolute value of the phase mismatch
over the entire bandwidth is minimized if the phase mismatch at center frequency
is equal in magnitude but opposite in sign to the phase mismatch at the two
edges of the bandwidth. For simplicity, we consider only the case of up-shifted
diffraction.
a. Show that in order to minimize the overall phase mismatch according to the

discussion above, the incident angle should be chosen to be

θi = −sin−1 K0

ki
= −sin−1 λ f0

niva
, (8.178)

so that θd = 0 at the center frequency.
b. Show that the phase mismatch at the center frequency is

�k = kd

2
−
[

k2
d

4
− (�K 2)

16

]1/2

≈ (�K )2

16kd
(8.179)

if it is made equal in magnitude and opposite in sign to that at the edges of
the bandwidth.

c. Show that to satisfy the requirement in (b), the K value corresponding to
the center frequency is given by

K 2
0 = k2

i − (kd − �k)2 ≈ k2
i − k2

d + (�K )2

8
. (8.180)

d. Show that perfect phase matching occurs at the following two frequencies:

fPM ≈ f0 ± � f

2
√

2
. (8.181)

e. Show that perfect phase matching occurs at the following two angles of
diffraction:

θPM
d ≈± sin−1 �K

2
√

2kd

= ±sin−1 λ� f

2
√

2ndva

. (8.182)
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8.5.6 Show that the bandwidth of a birefringent deflector can be chosen to be the
maximum value � f = 2 f0/3 allowed by (8.134) while at the same time the
transducer length can be as large as that given in (8.144) for the tangential
phase-matching scheme. Show also that it can be further doubled to that given
in (8.147) for the optimum birefringent phase-matching scheme.

8.5.7 The phased-array transducer shown in Fig. 8.15 steers the direction of the
K vector of the combined acoustic beam through the effect of constructive
interference. In this problem, a nonbirefringent acousto-optic deflector using
such a phased-array transducer to increase its bandwidth is considered. For
simplicity, consider only up-shifted diffraction.
a. Show that the direction of the acoustic beam is steered by the acoustic

frequency according to (8.148). Show also that the tip of the K vector tracks
a line normal to the transducer as the acoustic frequency is varied.

b. Show that if the phase mismatch at the center frequency is made equal in
magnitude but opposite in sign to the phase mismatch at the two edges of
the bandwidth, the maximum absolute value of the phase mismatch over the
entire bandwidth is minimized and has the following value:

�k ≈ (�K )2

16k
. (8.183)

c. Show that in order to accomplish the requirement in (b), the center-to-center
distance between adjacent transducer elements has to be

dt ≈ nv2
a

λ[ f 2
0 − (� f )2/8]

, (8.184)

and the incident angle of the optical beam has to be given by

sin θi ≈ −λ f0

nva

(
1 − λ2 f 2

0

8n2v2
a

)
. (8.185)

d. Show that perfect phase matching occurs at the two acoustic frequencies
of fPM = f0 ± � f/2

√
2 for the two corresponding angles of diffraction at

θPM
d ≈ ± sin−1(�K/2

√
2k).

8.5.8 A phased-array transducer is used to optimize the efficiency for the nonbire-
fringent LiNbO3 deflector described in Example 8.7.
a. What is the optimum center acoustic frequency if it is required that

� f = 1 GHz? Find the optimum length L of the phased-array transducer
and the optimum center-to-center distance dt between neighboring trans-
ducer elements. How many transducer elements are required? What is the
minimum transducer height H?

b. What is the required incident angle if up-shifted diffraction is considered?
How does it compare with that for the nonbirefringent deflector described in
Example 8.7 using a monolithic transducer?
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c. Find the peak diffraction efficiency of this device at an acoustic power level
of 1 W. At what frequencies does this peak efficiency occur? What are the
corresponding diffraction angles?

d. What is the deflection angular range �θd?
8.5.9 A nonbirefringent acousto-optic deflector made of fused silica is designed for

632.8 nm optical wavelength. The longitudinal mode of an acoustic wave at
a center frequency of f0 = 500 MHz with va = 5.97 km s−1 is used. The time
aperture τa is limited by the loss of the acoustic wave due to absorption. The
absorption loss rate is quadratically proportional to the acoustic frequency and
is given by γab = γ0 f 2 with γ0 = 7.2 dB µs−1 GHz−2 for silica. It is desired that
the maximum loss of the acoustic power at the far end of the device across the
optical beam is less than 1 dB over the entire acoustic frequency range. The op-
tical wave is an optimally shaped elliptical Gaussian beam that is polarized in a
direction perpendicular to the K vector of the acoustic wave so that M2 = 1.5 ×
10−15 m2 W−1. The refractive index is n = 1.457 at λ = 632.8 nm.
a. Find the maximum values of the bandwidth � f and the time aperture τa for

this device. What is the largest number N of resolvable spots for this device?
b. What are the dimensions of the elliptical beam spot?
c. What are the optimum values of the transducer dimensions L and H?
d. If up-shifted diffraction is considered, what is the required incident angle of

the optical beam? What is the deflection angular range �θd?
e. What is the peak diffraction efficiency for an acoustic power of 1 W? At

what acoustic frequency and diffraction angle does it occur?
8.5.10 A phased-array transducer is used to optimize the efficiency for the nonbire-

fringent fused silica deflector described in Problem 8.5.9.
a. Find the maximum values of the bandwidth � f and the time aperture τa

for this device. What is the largest number N of resolvable spots for this
device?

b. What are the dimensions of the elliptical beam spot?
c. Find the optimum length L of the phased-array transducer and the optimum

center-to-center distance dt between the neighboring transducer elements.
How many transducer elements are required? What is the minimum
transducer height H?

d. If up-shifted diffraction is considered, what is the required incident angle of
the optical beam? What is the deflection angular range �θd?

e. What is the peak diffraction efficiency for an acoustic power of 1 W? At
what acoustic frequencies and diffraction angles does it occur?

8.6.1 Show that in collinear, codirectional Bragg diffraction, phase mismatch as a
function of the wavelength and angular deviations of the incident optical beam
is that given in (8.150) when both the frequency and the propagation direction
of the acoustic wave are fixed.
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8.6.2 The LiNbO3 acousto-optic tunable filter described in Example 8.9 is used for
650 nm optical wavelength. At this wavelength, no = 2.284 and ne = 2.198.
The interaction length is fixed at l = 1.52 cm as that in Example 8.9. Find the
required acoustic frequency for selecting this optical wavelength. What are the
resolving power and the spectral linewidth? What are the angular apertures?
Compare the results with those found in Example 8.9 for 1.3 µm wave-
length.

8.6.3 It is possible to make a collinear LiNbO3 acousto-optic tunable filter with
a longitudinal acoustic mode that propagates in the [100] x direction. The
acoustic velocity of this mode is va = 6.57 km s−1. The birefringent collinear
interaction with ki ‖ kd ‖ K ‖ x̂ then couples the ordinary wave polarized
with êo = ŷ with the extraordinary wave polarized with êe = ẑ through the
acousto-optic tensor elements �εyz = �εzy (see Problem 8.2.5(b)). This filter
is used to select an ordinary incident wave spectrally at λ = 1.3 µm with the
same interaction length of l = 1.52 cm found in Example 8.9. Find the required
acoustic frequency for selecting this optical wavelength. What are the resolving
power and the spectral linewidth? What are the angular apertures? Compare
the results with those found in Example 8.9 that uses a different acoustic
mode.

8.6.4 LiNbO3 has a transparency range between 400 nm and 4 µm. Use the ordinary
and extraordinary indices of LiNbO3 as a function of optical wavelength
found in (1.190) and (1.191), respectively, to plot the tuning curves of the two
collinear LiNbO3 tunable filters showing the required acoustic frequency as
a function of optical wavelength in the transparency range of LiNbO3. Also
plot the chromatic resolving power as a function of optical wavelength for an
interaction length of l = 1 cm for both devices.

8.7.1 An optical waveguide is fabricated on a substrate of an isotropic medium. A
SAW for acousto-optic interaction with the guided optical waves propagates
in the z direction on the surface normal to the y direction as shown in
Fig. 8.17.
a. Find the acousto-optic permittivity tensor �ε(r, t) as a function of the

nonvanishing elasto-optic coefficients given in Table 8.1 and the spatially
and temporally dependent strain tensor elements associated with the
SAW.

b. Under what configurations can acousto-optic interaction of the guided
optical waves with this SAW lead to coupling between TE and TM modes
of the waveguide?

c. With this SAW, is it possible to make a collinear guided-wave acousto-optic
tunable filter or mode converter that involves mode conversion between TE
and TM modes? Explain.
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8.7.2 What modifications have to be made to the answers to the questions in
Problem 8.7.1 if the substrate is instead a cubic crystal with the y and z
directions aligned with two of its axes?

8.7.3 Answer the questions in Problem 8.7.1 for a LiNbO3 waveguide with a
z-propagating SAW in a y-cut LiNbO3 crystal.

8.7.4 Is it possible to make a collinear guided-wave acousto-optic TE–TM mode
converter in a z-cut, y-propagating LiNbO3 waveguide? Is it possible in a
y-cut, x-propagating LiNbO3 waveguide?

8.7.5 The fractional bandwidth of a guided-wave acousto-optic deflector using a
regular IDT is usually limited to a maximum value of 0.4. Assume that the
bandwidth of the driving source is made large enough by optimizing the
parameters of the electronic circuit so that the IDT bandwidth is limited
primarily by the frequency dependence of the radiation efficiency of the
IDT. This IDT is used to generate a z-propagating SAW in a y-cut LiNbO3

waveguide. The velocity of this SAW is va = 3.488 km s−1. The value of
M2�

2
id, including the contributions of both photoelastic and electro-optic

effects, for this device operating at λ = 1.3 µm and a center acoustic frequency
of 1 GHz is estimated to be about 2 × 10−14 m2 W−1. The optical waveguide
is weakly guiding so that the refractive indices of the guided optical waves
can be approximated by those of the bulk material with no = 2.222 and
ne = 2.145.
a. Find the number of electrodes that corresponds to a 3-dB fractional

bandwidth of 0.4 for the IDT. Find the peak efficiency.
b. What are the synchronous frequency of the IDT and the center-to-center

distance between two adjacent electrodes in the IDT?
c. To maximize the interaction length, the phase-matching bandwidth of this

deflector is chosen to be the same as the IDT bandwidth. If this deflector
is used as a nonbirefringent deflector for the TE0 mode of the waveguide,
what are the upper and lower limits of the length L allowed for the
electrodes?

d. What is the maximum peak deflection efficiency for Pe = 10 mW when
the value of L is properly chosen? What is the value of L that gives this
maximum efficiency?

e. With the optimum value for L chosen in (d), what is the electrical power
Pe needed to drive the IDT for the deflector to have a peak efficiency of
50%?

8.7.6 Compare the characteristics and advantages of different types of IDT that are
designed and used for guided-wave acousto-optic deflectors.
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9 Nonlinear optical devices

The functioning of electro-optic, magneto-optic, and acousto-optic devices discussed in
earlier chapters is based on the fact that the optical properties of a material depend on the
strength of an electric, magnetic, or acoustic field that is present in an optical medium.
At a sufficiently high optical intensity, the optical properties of a material also become
a function of the optical field. Such nonlinear response to the strength of the optical
field results in various nonlinear optical effects. Nonlinear optics is an established
broad field with applications covering a very wide range. The most important nonlinear
optical devices are optical frequency converters. The frequency-converting function of
such devices is uniquely nonlinear and is difficult, if not impossible, to accomplish
by other means in the absence of optical nonlinearity. Other unique nonlinear optical
devices include all-optical switches and modulators. Many interesting nonlinear optical
phenomena, such as optical solitons, stimulated Raman scattering, and optical phase
conjugation, also find useful applications.

9.1 Optical nonlinearity

The origin of optical nonlinearity is the nonlinear response of electrons in a material to
an optical field as the strength of the field is increased. Macroscopically, the nonlinear
optical response of a material is described by a polarization that is a nonlinear function
of the optical field. In general, such nonlinear dependence on the optical field can take a
variety of forms. In particular, it can be very complicated when the optical field becomes
extremely strong.

In the situations of most nonlinear optical devices of interest, with the exception of
saturable absorbers, the perturbation method can be applied to expand the total optical
polarization in terms of a series of linear and nonlinear polarizations:

P(r, t) = P (1)(r, t) + P (2)(r, t) + P (3)(r, t) + · · · , (9.1)

where P (1) is the linear polarization and P (2) and P (3) are the second- and third-order
nonlinear polarizations, respectively. Except in some special cases, nonlinear polariza-
tions of fourth order and beyond are usually not important and thus can be ignored.

441
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Linear polarization P (1) is a linear function of the optical field, whereas nonlinear polar-
izations P (2) and P (3) are, respectively, quadratic and cubic functions of the optical field:

P (1)(r, t) = ε0

∞∫
−∞

dr′
t∫

−∞
dt ′χ(1)(r−r′, t−t ′) · E(r′, t ′), (9.2)

P (2)(r, t)

= ε0

∞∫
−∞

dr1

∞∫
−∞

dr2

t∫
−∞

dt1

t∫
−∞

dt2χ(2)(r−r1, t−t1; r−r2, t−t2) : E(r1, t1)E(r2, t2),

(9.3)

P (3)(r, t)

= ε0

∞∫
−∞

dr1

∞∫
−∞

dr2

∞∫
−∞

dr3

t∫
−∞

dt1

t∫
−∞

dt2

t∫
−∞

dt3χ(3)(r−r1, t−t1; r−r2, t−t2; r−r3, t−t3)

... E(r1, t1)E(r2, t2)E(r3, t3), (9.4)

whereχ(1) is the linear susceptibility andχ(2) andχ(3) are the second- and third-order
nonlinear susceptibilities, respectively.1 The linear susceptibility is that of linear optics

discussed in Chapter 1. In general, χ(1) is a second-rank tensor, χ(1) =
[
χ

(1)
i j

]
, as ex-

pressed in (1.105), whereasχ(2) andχ(3) are, respectively, third- and fourth-rank tensors:

χ(2) =
[
χ

(2)
i jk

]
(9.5)

and

χ(3) =
[
χ

(3)
i jkl

]
. (9.6)

The nonlinear susceptibilities, χ(2) and χ(3), characterize the nonlinear optical proper-
ties of a material. Thus, the relations in (9.3) and (9.4) define the nonlinear polarizations
that describe the nonlinear responses of a material to an optical field. Because of the
generally anisotropic nature of nonlinear susceptibility tensors, the nonlinear polariz-
ations P (2) and P (3) are expressed in the form of high-order products between the
nonlinear susceptibilities and the optical field.

As discussed in Section 1.1, the response of a material to an optical field can be
nonlocal in space and noninstantaneous in time. This statement is true for both linear and
nonlinear responses. In consideration of this fact, the linear polarization P (1) defined
in (9.2) and the nonlinear polarizations P (2) and P (3) defined in (9.3) and (9.4) are
generally expressed in the form of convolution integrals over both space and time. For

1 In defining polarizations and susceptibilities in the form of (9.2)–(9.4), we consider only the electric-dipole
contribution to the material response under the electric-dipole approximation by neglecting the contributions
from magnetic dipoles, electric quadrupoles, and other multipoles to the material response. When the electric-
dipole contribution vanishes, other contributions can be important.
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material responses that are local in space but not necessarily instantaneous in time, the
susceptibilities can be expressed as

χ(n)(r − r1, t − t1; r − r2, t − t2; . . .) = χ(n)(t − t1, t − t2, . . .)δ(r − r1)δ(r − r2) . . .

(9.7)

Then, the linear and nonlinear polarizations can be expressed as

P (1)(r, t) = ε0

t∫
−∞

dt ′χ(1)(t−t ′) · E(r, t ′), (9.8)

P (2)(r, t) = ε0

t∫
−∞

dt1

t∫
−∞

dt2χ(2)(t−t1, t−t2) : E(r, t1)E(r, t2), (9.9)

P (3)(r, t) = ε0

t∫
−∞

dt1

t∫
−∞

dt2

t∫
−∞

dt3χ(3)(t − t1, t − t2, t − t3)
... E(r, t1)E(r, t2)E(r, t3).

(9.10)

In the momentum space and frequency domain, spatially local but temporally nonin-
stantaneous responses imply that the linear and nonlinear susceptibilities are functions
of optical frequencies but are independent of optical wavevectors:

χ(n)(ω1, ω2, . . . , ωn) =
∞∫

0

dt1

∞∫
0

dt2 . . .

∞∫
0

dtnχ
(n)(t1, t2, . . . , tn)eiω1t1+iω2t2+···+iωn tn .

(9.11)

This situation applies to the interactions discussed in this chapter. Therefore, the dis-
cussions in this chapter are restricted to spatially local interactions where the linear and
nonlinear polarizations can be expressed in the form of (9.8)–(9.10) and the linear and
nonlinear susceptibilities in the momentum space and frequency domain are functions
of optical frequencies only.

The polarizations defined in (9.8)–(9.10) above are expressed in terms of real field
quantities, just as any basic definitions of electromagnetic field quantities are. However,
as we have seen throughout the preceding chapters, it is generally convenient to deal with
optical fields in terms of complex field quantities because optical fields are harmonic
fields. As seen in Section 1.2, conversion to expressions in terms of complex field
quantities is quite straightforward. Maxwell’s equations and the wave equation all
retain their general form after the conversion. The complex field E(r, t) is defined in
(1.39) through its relation to the real field E(r, t) as

E(r, t) = E(r, t) + E∗(r, t) = E(r, t) + c.c. (9.12)

In line with this definition, a complex nonlinear polarization, P(n)(r, t), in the real
space and time domain can be defined through its relation to the real nonlinear
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polarization, P (n)(r, t), as

P (n)(r, t) = P(n)(r, t) + P(n)∗(r, t) = P(n)(r, t) + c.c. (9.13)

Note that in our convention, E(r, t) and P(n)(r, t) contain components that vary with
time as exp(−iωt) with positive values of ω, while E∗(r, t) and P(n)∗(r, t) contain those
varying with time as exp(iωt) with positive values of ω or, equivalently, exp(−iωt) with
ω assuming negative values. By substituting (9.12) and (9.13) in (9.8)–(9.10), expres-
sions of complex polarizations in terms of complex fields can be obtained. The relation
between the complex linear polarization P(1)(r, t) and the complex field E(r, t) has the
same form as (9.8), as shown in (1.45). However, the complex nonlinear polarizations
P(2)(r, t) and P(3)(r, t) contain products of E(r, t) and E∗(r, t) in addition to those of
E(r, t) alone. Consequently, they have more complicated expressions than those of the
real polarizations in (9.9) and (9.10).

The optical field involved in a nonlinear interaction usually contains multiple, dis-
tinct frequency components. Such a field can be expanded in terms of its frequency
components as is done in (4.5):

E(r, t) =
∑

q

Eq (r) exp(−iωq t) =
∑

q

Eq (r) exp(ikq · r − iωq t), (9.14)

where Eq (r) is the slowly varying amplitude and kq is the wavevector of the frequency
componentωq . The nonlinear polarizations also contain multiple frequency components
and can be expanded as

P(n)(r, t) =
∑

q

P(n)
q (r) exp(−iωq t). (9.15)

Note that we do not attempt to express P(n)
q (r) further in terms of a slowly varying

polarization amplitude multiplied by a fast varying spatial phase term as is done for
Eq (r). The reason is that, as we shall see later, the wavevector that characterizes the
fast-varying spatial phase of a nonlinear polarization P(n)

q (r) is not simply determined
by the frequency ωq but is determined by the fields involved in a particular nonlinear
interaction of interest.

In the discussions of nonlinear polarizations, we also use the notations E(ωq ) and
P(n)(ωq ) defined respectively as

E(ωq ) = Eq (r) and P(n)(ωq ) = P(n)
q (r). (9.16)

Field and polarization components with negative frequencies are interpreted as

E(−ωq ) = E∗(ωq ) and P(n)(−ωq ) = P(n)∗(ωq ). (9.17)

The following notation for nonlinear susceptibilities is also used:

χ(n)(ωq = ω1 + ω2 + · · · + ωn) = χ(n)(ω1, ω2, . . . , ωn) (9.18)
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for ω1 + ω2 + · · · + ωn = ωq , where χ(n)(ω1, ω2, . . . , ωn) are the frequency-domain
susceptibilities defined in (9.11).

Using the definitions of the complex fields and polarizations in (9.12) and (9.13)
as well as their expansions in (9.14) and (9.15), we can obtain, by taking the Fourier
transform on (9.9) and (9.10), the following relations:

P(2)(ωq ) = ε0

∑
m,n

χ(2)(ωq = ωm + ωn) : E(ωm)E(ωn) (9.19)

and

P(3)(ωq ) = ε0

∑
m,n,p

χ(3)(ωq = ωm + ωn + ωp)
... E(ωm)E(ωn)E(ωp). (9.20)

The summation is performed over all positive and negative values of frequencies that,
for a given ωq , satisfy the constraint of ωm + ωn = ωq in the case of (9.19) and the
constraint of ωm + ωn + ωp = ωq in the case of (9.20). More explicitly, by perform-
ing the summation over positive frequencies only and by expanding the product, we
have

P (2)
i (ωq ) = ε0

∑
j,k

∑
ωm ,ωn>0

[
χ

(2)
i jk(ωq = ωm + ωn)E j (ωm)Ek(ωn)

+ χ
(2)
i jk(ωq = ωm − ωn)E j (ωm)E∗

k (ωn)

+ χ
(2)
i jk(ωq = −ωm + ωn)E∗

j (ωm)Ek(ωn)
]

(9.21)

and

P (3)
i (ωq ) = ε0

∑
j,k,l

∑
ωm ,ωn ,ωp>0

[
χ

(3)
i jkl(ωq = ωm + ωn + ωp)E j (ωm)Ek(ωn)El(ωp)

+ χ
(3)
i jkl(ωq = ωm + ωn − ωp)E j (ωm)Ek(ωn)E∗

l (ωp)

+ χ
(3)
i jkl(ωq = ωm − ωn + ωp)E j (ωm)E∗

k (ωn)El(ωp)

+ χ
(3)
i jkl(ωq = −ωm + ωn + ωp)E∗

j (ωm)Ek(ωn)El(ωp)

+ χ
(3)
i jkl(ωq = ωm − ωn − ωp)E j (ωm)E∗

k (ωn)E∗
l (ωp)

+ χ
(3)
i jkl(ωq = −ωm + ωn − ωp)E∗

j (ωm)Ek(ωn)E∗
l (ωp)

+ χ
(3)
i jkl(ωq = −ωm − ωn + ωp)E∗

j (ωm)E∗
k (ωn)El(ωp)

]
.

(9.22)

Usually only a limited number of frequencies participate in a given nonlinear optical
interaction. Consequently, only one or a few terms among those listed in (9.21) or (9.22)
contribute to a nonlinear polarization of interest.
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EXAMPLE 9.1 Three optical fields at the wavelengths of λ1 = 750 nm, λ2 = 600 nm, and
λ3 = 500 nm, corresponding to the frequencies of ω1 = 2πc/λ1, ω2 = 2πc/λ2, and
ω3 = 2πc/λ3, respectively, are involved in second-order nonlinear optical interactions.
Find the nonlinear polarization P(2) at the frequency of ω4 = 2πc/λ4, where λ4 =
300 nm. If E(ω1) = E1 x̂ , E(ω2) = E2(ŷ + ẑ)/

√
2, and E(ω3) = E3 ẑ, what is the x

component of P(2)(ω4)?

Solution Because λ−1
1 + λ−1

3 = 2λ−1
2 = λ−1

4 , we find that ω4 = ω1 + ω3 = ω2 + ω2.
Therefore, using (9.19), we find the following second-order nonlinear polarization at
the frequency ω4:

P(2)(ω4) = ε0
[
χ(2)(ω4 = ω1 + ω3) : E(ω1)E(ω3) + χ(2)(ω4 = ω3 + ω1) : E(ω3)E(ω1)

+χ(2)(ω4 = ω2 + ω2) : E(ω2)E(ω2)
]
.

Note that there are two terms from the mixing of ω1 and ω3 because of permutation,
but there is only one term from ω2 mixing with itself. Using the given fields at the three
frequencies, we can express the x component of P(2)(ω4) as

P (2)
x (ω4) = ε0

[
χ (2)

xxz(ω4 = ω1 + ω3)E1 E3 + χ (2)
xzx (ω4 = ω3 + ω1)E3 E1

+ χ (2)
xyz(ω4 = ω2 + ω2)

E2√
2

E2√
2

+ χ (2)
xzy(ω4 = ω2 + ω2)

E2√
2

E2√
2

+ χ (2)
xyy(ω4 = ω2 + ω2)

E2√
2

E2√
2

+ χ (2)
xzz(ω4 = ω2 + ω2)

E2√
2

E2√
2

]
= ε0

[
χ (2)

xxz(ω4 = ω1 + ω3)E1 E3 + χ (2)
xzx (ω4 = ω3 + ω1)E3 E1

+ χ (2)
xyz(ω4 = ω2 + ω2)

E2
2

2
+ χ (2)

xzy(ω4 = ω2 + ω2)
E2

2

2

+ χ (2)
xyy(ω4 = ω2 + ω2)

E2
2

2
+ χ (2)

xzz(ω4 = ω2 + ω2)
E2

2

2

]
.

The other two components, P (2)
y (ω4) and P (2)

z (ω4), of P(2)(ω4) can be explicitly spelled
out by following a similar procedure.

9.2 Nonlinear optical susceptibilities

The nonlinear optical properties of a material are characterized by its nonlinear optical
susceptibilities. In this section, the general properties of nonlinear optical susceptibili-
ties are discussed.

It can be seen from (9.3) and (9.4) that the space- and time-dependent nonlinear sus-
ceptibilities χ(n)(r − r1, t − t1; r − r2, t − t2; . . . ; r − rn, t − tn) are real tensors be-
cause both P (n)(r, t) and E(r, t) are real vectors. Though χ(n)(r1, t1; r2, t2; . . . ; rn, tn)
is always a real function of space and time, its Fourier transform is generally complex.
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Therefore, the frequency-dependent nonlinear susceptibilities χ(n)(ωq = ω1 + ω2 +
· · · + ωn) defined in the frequency domain are generally complex. This characteristic
is common to linear and nonlinear susceptibilities, as can be seen by reviewing the
characteristics of the linear susceptibility discussed in Section 1.3. Also common to
linear and nonlinear susceptibilities is the fact that the imaginary part of a frequency-
dependent susceptibility signifies the presence of loss or gain in a medium, meaning
that there is a net exchange of energy between the optical field and the medium through
the interaction described by this susceptibility. The real part of a frequency-dependent
susceptibility, irrespective of whether it is linear or nonlinear, does not cause a net
energy exchange between the optical field and the medium.

The linear and nonlinear optical properties of a given material are not independent
of each other. Indeed, there are close relations, at both microscopic and macroscopic
levels, between the linear and nonlinear optical susceptibilities of the same material.
Such connections and their implications can be seen in most of the questions asked
in Problems 9.2.5–9.2.11. The reason for such connections is simply that both linear
and nonlinear optical properties of a material have their roots in the same microscopic
material properties, including the atomic compositions, the energy levels, the resonance
frequencies, and the relaxation rates, as determine the optical responses of the material.

Reality condition

The reality condition discussed in Section 1.3 and expressed explicitly in (1.56) for
linear susceptibility can be generalized for nonlinear susceptibilities. As mentioned
above, nonlinear susceptibilities in the real space and time domain are real functions
of space and time. This reality condition leads to the following relation for nonlinear
susceptibilities in the momentum space and frequency domain:

χ(n)∗(k1, ω1; k2, ω2; . . . ; kn, ωn) = χ(n)(−k1, −ω1; −k2, −ω2; . . . ; −kn, −ωn).

(9.23)

In the case of spatially local interaction when the relation in (9.7) is valid, we can
use (9.18) to write the reality condition for nonlinear susceptibilities in the following
form:

χ(n)∗(ωq = ω1 + ω2 + · · · + ωn) = χ(n)(−ωq = −ω1 − ω2 − · · · − ωn). (9.24)

Elements of susceptibility tensors

To gain a general perspective of the susceptibility tensor elements, we first review the
properties of the linear susceptibility tensor χ(1). Because χ(1) =

[
χ

(1)
i j

]
is a second-

rank tensor, it consists of nine tensor elements, as shown explicitly in (1.105). Because
the linear susceptibility is a function of a single frequency, only one frequency, ω, needs
to be specified. When bothχ(1)(ω) andχ(1)(−ω) are considered, the number of elements



448 Nonlinear optical devices

doubles. The reality condition, by stating that the elements of χ(1)(−ω) are completely
determined by those ofχ(1)(ω), reduces the maximum number of independent elements
back to nine. As discussed in Section 1.6, the linear susceptibility tensor χ(1) of a
material can always be diagonalized, thus further reducing the nine tensor elements to
only three diagonal elements that represent the eigenvalues of the tensor. Depending
on the spatial symmetry of a material, the number of independent linear susceptibility
elements needed for characterizing the linear optical properties of the material can be
further reduced from three to two or one, as summarized in Table 1.2 in terms of the
relations among the three principal refractive indices.

Similar concepts apply in consideration of the properties of nonlinear susceptibili-
ties. However, the complexity increases dramatically due to the fact that the nonlinear
susceptibilities are high-rank tensors and are functions of multiple frequencies. Be-
ing a third-rank tensor, χ(2) =

[
χ

(2)
i jk

]
has 27 tensor elements. The fourth-rank tensor

χ(3) =
[
χ

(3)
i jkl

]
has 81 tensor elements. In the most general situation, three different

frequencies are involved in a second-order nonlinear process characterized by χ(2).
The three frequencies, say ω1, ω2, and ω3, are not independent of one another but are
subject to the condition: ω3 = ω1 + ω2, assuming that ω3 > ω1, ω2. For each tensor
element χ

(2)
i jk , there are 3! different permutations of the three frequencies, resulting in

the following six different frequency dependencies:

χ
(2)
i jk(ω3 = ω1 + ω2), χ

(2)
i jk(ω2 = ω3 − ω1), χ

(2)
i jk(ω1 = −ω2 + ω3),

χ
(2)
i jk(ω3 = ω2 + ω1), χ

(2)
i jk(ω2 = −ω1 + ω3), χ

(2)
i jk(ω1 = ω3 − ω2).

(9.25)

The sign of each frequency in every element in (9.25) can be changed simultaneously
to have elements such as χ

(2)
i jk(−ω3 = −ω1 − ω2), and so on. Fortunately, because of

the reality condition expressed in (9.24), this sign change does not result in additional
susceptibility elements needed for describing a nonlinear process. Therefore, the total
number of frequency-dependent χ(2) tensor elements needed to describe a second-
order nonlinear interaction among three different optical frequencies completely is
27 × 3! = 162. For a third-order nonlinear process characterized by χ(3), there can in
general be four different frequencies involved in the interaction. Therefore, the total
number of frequency-dependent χ(3) tensor elements is 81 × 4! = 1944.

In most situations of practical interest, the number of independent elements of a
nonlinear susceptibility tensor that has to be considered in a particular nonlinear inter-
action can be greatly reduced by applying the symmetry considerations discussed in
the following.

Permutation symmetry

There is an intrinsic permutation symmetry that is purely a matter of convention of
the notation used for frequency-dependent nonlinear susceptibilities. As an example,
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we consider, in the case of ω3 = ω1 + ω2, a nonlinear polarization P (2)
x (ω3) generated

by two orthogonally polarized optical field components Ey(ω1) and Ez(ω2) through a
second-order nonlinear process. According to (9.21), we have

P (2)
x (ω3) = ε0

[
χ (2)

xyz(ω3 = ω1 + ω2)Ey(ω1)Ez(ω2)

+ χ (2)
xzy(ω3 = ω2 + ω1)Ez(ω2)Ey(ω1)

]
. (9.26)

Both terms on the right-hand side of (9.26) are needed because of the convention used
in (9.21) for expanding the product of (9.19). However, they are equal in magnitude
because they represent the same physical process of nonlinear mixing of Ey(ω1) and
Ez(ω2) to generate P (2)

x (ω3). Therefore, χ (2)
xyz(ω3 = ω1 + ω2) = χ (2)

xzy(ω3 = ω2 + ω1).
Generalization of this result leads to the following intrinsic permutation symmetry:

χ
(2)
i jk(ω3 = ω1 + ω2) = χ

(2)
ik j (ω3 = ω2 + ω1). (9.27)

This intrinsic permutation symmetry permits free permutation of only the frequencies
on the right-hand side of the equals sign in the argument of a nonlinear susceptibility
if the corresponding Cartesian coordinate indices are also permuted simultaneously.
It applies to the elements of χ(3) as well. It reduces the number of independent χ(2)

elements from 162 to 81 and that of independentχ(3) elements from 1944 to 324 without
imposing any qualifying physical conditions.

EXAMPLE 9.2 Simplify the expressions for P(2)(ω4) and P (2)
x (ω4) in Example 9.1 by using

the intrinsic permutation symmetry of χ(2). Write out the expressions for P (2)
y (ω4) and

P (2)
z (ω4).

Solution The intrinsic permutation symmetry requires that χ(2)(ω4 = ω1 +
ω3) : E(ω1)E(ω3) = χ(2)(ω4 = ω3 + ω1) : E(ω3)E(ω1). Therefore, the first two terms
in P(2)(ω4) can be combined to have the following expression:

P(2)(ω4) = ε0
[
2χ(2)(ω4 = ω1 + ω3) : E(ω1)E(ω3)

+χ(2)(ω4 = ω2 + ω2) : E(ω2)E(ω2)
]
.

By applying the intrinsic permutation symmetry explicitly to the elements of χ(2),
we can use the relations χ (2)

xxz(ω4 = ω1 + ω3) = χ (2)
xzx (ω4 = ω3 + ω1) and χ (2)

xyz(ω4 =
ω2 + ω2) = χ (2)

xzy(ω4 = ω2 + ω2) to express the x component of P(2)(ω4) as follows:

P (2)
x (ω4) = ε0

[
2χ (2)

xxz(ω4 = ω1 + ω3)E1 E3 + χ (2)
xyz(ω4 = ω2 + ω2)E2

2

+ χ (2)
xyy(ω4 = ω2 + ω2)

E2
2

2
+ χ (2)

xzz(ω4 = ω2 + ω2)
E2

2

2

]
.
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The y and z components of P(2)(ω4) are, respectively,

P (2)
y (ω4) = ε0

[
2χ (2)

yxz(ω4 = ω1 + ω3)E1 E3 + χ (2)
yyz(ω4 = ω2 + ω2)E2

2

+ χ (2)
yyy(ω4 = ω2 + ω2)

E2
2

2
+ χ (2)

yzz(ω4 = ω2 + ω2)
E2

2

2

]

and

P (2)
z (ω4) = ε0

[
2χ (2)

zxz(ω4 = ω1 + ω3)E1 E3 + χ (2)
zyz(ω4 = ω2 + ω2)E2

2

+ χ (2)
zyy(ω4 = ω2 + ω2)

E2
2

2
+ χ (2)

zzz(ω4 = ω2 + ω2)
E2

2

2

]
.

A full permutation symmetry exists when all of the frequencies contained in a suscep-
tibility are far away from any resonance frequencies of a material so that the material
causes no loss or gain to the optical field at those frequencies. Therefore, the full permu-
tation symmetry is valid when the imaginary part of a susceptibility is negligibly small.
It breaks down in a nonparametric process, where the imaginary part of the susceptibility
is significant. The full permutation symmetry allows all of the frequencies in a nonlinear
susceptibility to be freely permuted if the Cartesian coordinate indices are also per-
muted accordingly. It permits the interchange of the frequency on the left-hand side of
the equals sign in the argument of a nonlinear susceptibility with any one on the right-
hand side, which is not permitted by the intrinsic permutation symmetry. However, the
sign of a frequency has to be changed at the time when it is moved across the equals sign
in a permutation. For example, χ (2)

i jk(ω3 = ω1 + ω2) = χ
(2)
j ik(−ω1 = −ω3 + ω2), and so

on. By applying the reality condition given in (9.24) and the fact that the susceptibility
is necessarily real when the full permutation symmetry is valid, we then have

χ
(2)
i jk(ω3 = ω1 + ω2) = χ

(2)
j ik(ω1 = ω3 − ω2) = χ

(2)
ki j (ω2 = ω3 − ω1). (9.28)

Similar relations can be written for the χ(3) elements. This full permutation symmetry
further reduces the maximum number of independent χ(2) elements from 81 to 27 and
that of independent χ(3) elements from 324 to 81.

If, in addition to being lossless so that the full permutation symmetry is valid, a
medium is also nondispersive in the entire spectral range that covers all of the frequen-
cies contained in a nonlinear susceptibility, the frequencies in the susceptibility can
be freely permuted independently of the Cartesian coordinate indices. Similarly, the
Cartesian coordinate indices can also be permuted independently of the frequencies.
This permutation symmetry is known as Kleiman’s symmetry condition. Under this
condition, we have

χ
(2)
i jk(ω3 = ω1 + ω2) = χ

(2)
i jk(ω1 = ω3 − ω2) = χ

(2)
i jk(ω2 = ω3 − ω1)

= χ
(2)
j ik(ω3 = ω1 + ω2) = χ

(2)
ki j (ω3 = ω1 + ω2), (9.29)
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and so on. Kleiman’s symmetry condition, when applicable, further reduces the number
of independent χ(2) elements from 27 to a maximum of 10 and that of independent χ(3)

elements from 81 to a maximum of 15.

Spatial symmetry

As we have seen in Section 1.6, the form of the linear susceptibility tensor is determined
by the symmetry property of a material. The forms of the nonlinear susceptibility tensors
of a material also reflect the spatial symmetry property of the material structure. As a
result, some elements in a nonlinear susceptibility tensor may be zero and others may
be related in one way or another, greatly reducing the total number of independent
tensor elements. However, as mentioned in Section 6.2, the linear susceptibility tensor
has its form determined only by the crystal system of a material, whereas the form of
a nonlinear susceptibility tensor further depends on the point group of the material.
Within the 7 crystal systems, there are 32 point groups. Among the 32 point groups,
21 are noncentrosymmetric and 11 are centrosymmetric. The 21 noncentrosymmetric
point groups are those listed in Table 9.1. The 11 centrosymmetric point groups are
triclinic 1, monoclinic 3/m, orthorhombic mmm, tetragonal 4/m and 4/mmm, trigonal
3 and 3m, hexagonal 6/m and 6/mmm, and cubic m3 and m3m.

Many materials, including gases, liquids, amorphous solids, and many crystals that
belong to the 11 centrosymmetric point groups, possess space-inversion symmetry. In
the electric-dipole approximation, nonlinear optical effects of all even orders, but not
those of the odd orders, vanish identically in a centrosymmetric material.2 Therefore,
χ(2) contributed by electric-dipole interaction is identically zero in a centrosymmetric
material, whereas a nonzero χ(3) exists in any material. This fact can be easily ver-
ified by considering the effect of space inversion on the nonlinear polarizations P (2)

and P (3) given in (9.3) and (9.4), respectively. The space-inversion transformation can
be performed on a centrosymmetric material without changing the properties of the
material. Being polar vectors, P (2), P (3), and E all change sign under such a trans-
formation. From (9.3), we then find that P (2) = −P (2). Therefore, P (2) cannot exist
and χ(2) has to vanish identically in a centrosymmetric material. No such conclusion
is drawn for P (3) and χ(3) as we examine (9.4) following the same procedure (see
Problem 9.2.3).

The discussion above about the vanishing electric-dipole χ(2) for a centrosymmetric
material is valid only for the bulk nonlinear optical property of the material but does
not apply to the surface or interface of the material. Centrosymmetry does not exist on
the surface of any material or at an interface between two different materials even when

2 Nonlinear optical effects of even orders that are contributed by magnetic-dipole and electric-quadrupole inter-
actions can still exist in a centrosymmetric material. Nonlinear optical effects of even orders contributed by
electric-dipole interaction can also exist at the surfaces or interfaces of centrosymmetric materials where the
centrosymmetry is broken.
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Table 9.1 Nonvanishing elements of the second-order nonlinear susceptibility
tensor for noncentrosymmetric point groups

System Point group Nonvanishing tensor elements

Triclinic 1 All elements are independent and nonvanishing

Monoclinic 2 xyz, xzy, xxy, xyx, yxx, yyy, yzz, yzx, yxz,
zyz, zzy, zxy, zyx (two-fold axis parallel to ŷ)

m xxx, xyy, xzz, xzx, xxz, yyz, yzy, yxy, yyx,

zxx, zyy, zzz, zzx, zxz (mirror plane perpendicular to ŷ)

Orthorhombic 222 xyz, xzy, yzx, yxz, zxy, zyx
mm2 xzx, xxz, yyz, yzy, zxx, zyy, zzz

Tetragonal 4 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz,
zxx = zyy, zzz, zxy = −zyx

4 xyz = yxz, xzy = yzx, xzx = −yzy, xxz = −yyz,
zxx = −zyy, zxy = zyx

422 xyz = −yxz, xzy = −yzx, zxy = −zyx
4mm xzx = yzy, xxz = yyz, zxx = zyy, zzz
42m xyz = yxz, xzy = yzx, zxy = zyx

Trigonal 3 xxx = −xyy = −yxy = −yyx, xyz = −yxz, xzy = −yzx,

xzx = yzy, xxz = yyz, yyy = −yxx = −xxy = −xyx,

zxx = zyy, zzz, zxy = −zyx
32 xxx = −xyy = −yxy = −yyx, xyz = −yxz, xzy = −yzx,

zxy = −zyx
3m xzx = yzy, xxz = yyz, yyy = −yxx = −xxy = −xyx,

zxx = zyy, zzz (mirror plane perpendicular to x̂)

Hexagonal 6 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz,
zxx = zyy, zzz, zxy = −zyx

6 xxx = −xyy = −yxy = −yyx,

yyy = −yxx = −xxy = −xyx
622 xyz = −yxz, xzy = −yzx, zxy = −zyx

6mm xzx = yzy, xxz = yyz, zxx = zyy, zzz
6m2 yyy = −yxx = −xxy = −xyx

Cubic 432 xyz = yzx = zxy = −xzy = −yxz = −zyx
23 xyz = yzx = zxy, xzy = yxz = zyx

43m xyz = yzx = zxy = xzy = yxz = zyx

the materials themselves are centrosymmetric. Therefore, χ(2) contributed by electric-
dipole interaction exists at any material surface or interface. As a result, second-order
nonlinear processes that normally do not occur in the bulk of a certain material, such as
silicon, which is centrosymmetric, can take place on its surface or interface. The surface
χ(2) also depends on the structure of the material surface.

We have seen in Section 6.1 that the Pockels effect exists only in noncentrosymmetric
materials while the electro-optic Kerr effect exists in all materials. Indeed, the Pockels
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effect can be considered a special second-order nonlinear optical effect, and the electro-
optic Kerr effect is a special third-order nonlinear optical effect. According to (9.21), a
nonlinear polarization P (2)

i (ω) induced by the interaction between a static electric field
E0k = Ek(0) polarized along the k direction and an optical field E j (ω) polarized along
the j direction can be expressed as

P (2)
i (ω) = ε0

[
χ

(2)
i jk(ω = ω + 0)E j (ω)Ek(0) + χ

(2)
ik j (ω = 0 + ω)Ek(0)E j (ω)

]
= 2ε0χ

(2)
i jk(ω = ω + 0)E j (ω)E0k . (9.30)

Using (6.18) and identifying �εi j (ω) with P (2)
i (ω)/E j (ω) = 2ε0χ

(2)
i jk(ω = ω + 0)E0k ,

we find that the Pockels coefficients are related to the χ(2) elements as (see Prob-
lem 9.2.4)

ri jk = − 2

n2
i n2

j

χ
(2)
i jk(ω = ω + 0) = − 2

n2
i n2

j

χ
(2)
ki j (0 = ω − ω), (9.31)

where the full permutation symmetry is used in moving the zero frequency to the left-
hand side of the equals sign in the argument of χ(2). Similarly, for the electro-optic
Kerr coefficients, we have (see Problem 9.2.4)

si jkl = − 3

n2
i n2

j

χ
(3)
i jkl(ω = ω + 0 + 0). (9.32)

It can be seen from the above discussions that though not all noncentrosymmetric
crystals are useful, any material that can support a second-order nonlinear process
through electric-dipole interaction is necessarily a noncentrosymmetric crystal. The
nonvanishing χ(2) tensor elements and the relations among them for each of the 21
noncentrosymmetric point groups are listed in Table 9.1.

EXAMPLE 9.3 The x̂ , ŷ, and ẑ directional unit vectors used to define the electric field
polarizations in Examples 9.1 and 9.2 are aligned with the principal x , y, and z axes
of a crystal. (a) Use the result obtained in Example 9.2 to find the nonvanishing terms
in the three components of P(2)(ω4) if the nonlinear interaction takes place in a 43m
crystal, such as GaAs. (b) Find the nonvanishing terms in the case of a crystal of mm2
point group, such as KTP.

Solution (a) From Table 9.1, the only nonvanishing χ(2) elements for the 43m point
group are χ (2)

xyz = χ (2)
yzx = χ (2)

zxy = χ (2)
xzy = χ (2)

yxz = χ (2)
zyx . From the expressions for the

components of P(2)(ω4) obtained in Example 9.2, we have, for a 43m crystal,

P (2)
x (ω4) = ε0χ

(2)
xyz(ω4 = ω2 + ω2)E2

2,

P (2)
y (ω4) = 2ε0χ

(2)
yxz(ω4 = ω1 + ω3)E1 E3,

P (2)
z (ω4) = 0.
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(b) For the mm2 point group, the only nonvanishing χ(2) elements are χ (2)
xzx , χ (2)

xxz ,
χ (2)

yyz , χ (2)
yzy , χ (2)

zxx , χ (2)
zyy , and χ (2)

zzz , according to Table 9.1. Then, the expressions for the
components of P(2)(ω4) obtained in Example 9.2 reduce to

P (2)
x (ω4) = 2ε0χ

(2)
xxz(ω4 = ω1 + ω3)E1 E3,

P (2)
y (ω4) = ε0χ

(2)
yyz(ω4 = ω2 + ω2)E2

2,

P (2)
z (ω4) = ε0

[
χ (2)

zyy(ω4 = ω2 + ω2)
E2

2

2
+ χ (2)

zzz(ω4 = ω2 + ω2)
E2

2

2

]
.

Because χ(3) exists in all materials, the materials used for the devices that are based
on third-order nonlinear optical processes are usually isotropic noncrystalline materials,
such as glasses, or cubic crystals, such as the III–V semiconductors. Only occasion-
ally are noncubic crystals used for such devices. Third-order nonlinear processes are
particularly important for isotropic materials because χ(2) vanishes identically so that
χ(3) becomes the leading nonlinear susceptibility of such materials. Table 9.2 lists the
nonvanishing χ(3) tensor elements and the relations among them for the cubic crystal
system and for isotropic materials. It can be seen that for all of the point groups in the
cubic system and for isotropic materials, there are only 21 nonvanishing χ(3) tensor
elements. For the 23 and m3 point groups, there are 7 independent χ(3) elements. For
the 432, 43m, and m3m point groups, there are only 4 independent elements of the
types χ

(3)
1111, χ (3)

1122, χ (3)
1212, and χ

(3)
1221. If Kleiman’s symmetry condition is valid, the num-

ber of independent elements reduces to 2 of the types χ
(3)
1111 and χ

(3)
1122 = χ

(3)
1212 = χ

(3)
1221

for all point groups in the cubic system. For an isotropic material, there are only

Table 9.2 Nonvanishing elements of the third-order nonlinear
susceptibility tensor for cubic and isotropic materials

System Point group Nonvanishing tensor elements

Cubic 23, m3 xxxx = yyyy = zzzz,
xxyy = yyzz = zzxx, yyxx = zzyy = xxzz,
xyxy = yzyz = zxzx, yxyx = zyzy = xzxz,
xyyx = yzzy = zxxz, yxxy = zyyz = xzzx

432, 43m, m3m xxxx = yyyy = zzzz,
xxyy = yyxx = yyzz = zzyy = zzxx = xxzz,
xyxy = yxyx = yzyz = zyzy = zxzx = xzxz,
xyyx = yxxy = yzzy = zyyz = zxxz = xzzx

Isotropic xxxx = yyyy = zzzz = xxyy + xyxy + xyyx,

xxyy = yyxx = yyzz = zzyy = zzxx = xxzz,
xyxy = yxyx = yzyz = zyzy = zxzx = xzxz,
xyyx = yxxy = yzzy = zyyz = zxxz = xzzx
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3 independent χ(3) elements among the 4 types of nonvanishing elements because
χ

(3)
1111 = χ

(3)
1122 + χ

(3)
1212 + χ

(3)
1221. If Kleiman’s symmetry condition is valid in an isotropic

material, we have

χ
(3)
1122 = χ

(3)
1212 = χ

(3)
1221 = 1

3
χ

(3)
1111, (9.33)

reducing the number of independent χ(3) elements to only 1.

Nonlinear optical d coefficients

In the literature, experimentally measured values of second-order nonlinear suscepti-
bilities of a material are commonly quoted in terms of nonlinear coefficients di jk , or diα

under index contraction.3 The relation between the d coefficients and the χ(2) elements
is simply

di jk = 1

2
χ

(2)
i jk (9.34)

if neither index j nor index k is associated with a DC field.

Index contraction

In certain situations, the rule of index contraction expressed in (1.115) can be applied
to χ

(2)
i jk and di jk on the last two indices j and k by replacing jk with α. Then the 27

elements of χ
(2)
i jk , or di jk , are reduced to 18 elements of χ

(2)
iα , or diα , for i = 1, 2, 3

and α = 1, 2, . . . , 6. Clearly, the condition for index contraction to be applicable is
when there is no physical significance in interchanging the last two indices j and k
independently of the frequencies in χ

(2)
i jk .

For χ(2)(ω3 = ω1 + ω2) in general, index contraction applies only when Kleiman’s
symmetry condition is valid so that χ

(2)
i jk(ω3 = ω1 + ω2) = χ

(2)
ik j (ω3 = ω1 + ω2). How-

ever, index contraction applies without the requirement of Kleiman’s symmetry condi-
tion in the special cases of χ(2)(2ω = ω + ω) and χ(2)(0 = ω − ω).

For χ(2)(2ω = ω + ω), which characterizes the process of second-harmonic genera-
tion, index contraction always applies because χ

(2)
i jk(2ω = ω + ω) = χ

(2)
ik j (2ω = ω + ω)

by the definition of the intrinsic permutation symmetry.
For χ(2)(0 = ω − ω), which characterizes the process of optical rectification for the

generation of a DC electric field by an optical field, index contraction applies only

3 The nonlinear optical d coefficients are not to be confused with the piezoelectric d coefficients though both are
second-rank tensors and they have the same matrix form. The piezoelectric d coefficients define the piezoelectric
polarization induced by a strain tensor.
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when the medium is lossless at the frequency ω so that χ
(2)
i jk(0 = ω − ω) = χ

(2)
i jk(0 =

−ω + ω) = χ
(2)
ik j (0 = ω − ω) due to the reality condition and the intrinsic permutation

symmetry. From (9.31), we find that

rαk = − 2

n2
i n2

j

χ
(2)
kα = − 4

n2
i n2

j

dkα, (9.35)

where χ
(2)
kα = χ

(2)
ki j (0 = ω − ω) and the index k is associated with the DC electric field.

Note that Kleiman’s symmetry condition is never valid for χ(2)(0 = ω − ω) because
no material can be completely nondispersive in the entire spectral range from DC to
the optical frequencies.

With index contraction, the second-order nonlinear susceptibilities χ
(2)
iα and, cor-

respondingly, the nonlinear coefficients diα can be expressed in the form of a 3 × 6
matrix. From the relation in (9.35), it is clear that the matrix form of χ

(2)
iα and diα for

each of the noncentrosymmetric point groups is exactly the transpose of the matrix of
the Pockels coefficients listed in Table 6.1. If Kleiman’s symmetry condition is valid,
the matrix form of χ

(2)
iα and diα is further simplified to result in a maximum of only

10 independent parameters. For example, d14 = d25 = d36 under Kleiman’s symmetry
condition. From Table 6.1, we find that the only nonlinear coefficients for the 422 and
622 point groups are d25 = −d14, which have to vanish identically under Kleiman’s
symmetry condition though the Pockels coefficients r52 = −r41 do not have to vanish.
We also find that under Kleiman’s symmetry condition the 3 independent nonlinear
coefficients d14, d25, and d36 for the 222 point group reduce to 1 identical parameter,
and the 2 independent parameters d14 = d25 and d36 for the 42m point group also reduce
to a single parameter. The properties of some important nonlinear crystals are listed in
Table 9.3.

Using (9.21) and (9.34), the second-order nonlinear polarization can be expressed
in terms of the diα matrix. In the general case of ω1 + ω2 = ω3 with ω1 �= ω2, we
have
 P (2)

x (ω3)
P (2)

y (ω3)
P (2)

z (ω3)


 = 4ε0


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




×




Ex (ω1)Ex (ω2)
Ey(ω1)Ey(ω2)
Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ez(ω1)Ey(ω2)
Ez(ω1)Ex (ω2) + Ex (ω1)Ez(ω2)
Ex (ω1)Ey(ω2) + Ey(ω1)Ex (ω2)




. (9.36)
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In the case of second-harmonic generation, we have


 P (2)

x (2ω)
P (2)

y (2ω)
P (2)

z (2ω)


 = 2ε0


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







E2
x (ω)

E2
y(ω)

E2
z (ω)

2Ey(ω)Ez(ω)
2Ez(ω)Ex (ω)
2Ex (ω)Ey(ω)




. (9.37)

Note that each d coefficient in (9.36) has the same value as the corresponding one in
(9.37) if we ignore dispersion due to frequency differences between (9.36) and (9.37). It
is true that in the case when ω1 �= ω2, P(2)(ω3) = 2P(2)(2ω) if E(ω1) = E(ω2) = E(ω)
as is seen by comparing (9.36) and (9.37).

Unit conversion

The SI system, which is essentially the MKSA system, is used consistently in this
book. Nevertheless, the Gaussian system is also used quite often in the literature.
In the Gaussian system, cgs units are used, but the electric field quantities and the
susceptibilities are normally given the units of esu, meaning electrostatic units, without
explicitly spelling out their true dimensions. In the SI system, the units are explicit.
Unit conversion for susceptibilities between the SI and Gaussian systems follows the
following relations:

SI Gaussian

χ (1)(dimensionless) = 4πχ (1)(dimensionless), (9.38)

χ (2)(m V−1) = 4π

3 × 104
χ (2)(esu), (9.39)

χ (3)(m2 V−2) = 4π

9 × 108
χ (3)(esu). (9.40)

Unit conversion for the d coefficient is the same as that for χ (2) given in (9.39) because
the relation in (9.34) is independent of the unit system used.

9.3 Nonlinear optical interactions

As discussed in the preceding section, optical susceptibilities in the frequency domain
are, in general, complex quantities. Following the same convention, used in Sections 1.3
and 1.10 for complex linear susceptibility in the frequency domain, complex nonlinear
susceptibilities in the frequency domain can be expressed as χ(2) = χ(2)′ + iχ(2)′′ and
χ(3) = χ(3)′ + iχ(3)′′ to define their real and imaginary parts clearly. Similarly to the
case of linear susceptibility discussed in Section 1.10, the imaginary part of a nonlinear
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susceptibility is always associated with the intrinsic resonances of a material. Such
resonances signify the transitions between different energy levels of the material. Near
the resonance frequencies that are relevant to a particular susceptibility, the imaginary
part of the susceptibility peaks while the real part displays a highly dispersive behavior
(see Problems 9.2.5 and 9.2.8). We shall not get into discussions on the quantum-
mechanical characteristics of nonlinear susceptibilities as a function of energy levels
of a material, or on the intrinsic relationship between the real and imaginary parts of
a nonlinear susceptibility. Such subjects are of special interest in studies of material
properties as well as in the application of nonlinear optics as a spectroscopic tool.
For our purpose in this chapter, it suffices to understand that the imaginary part of a
nonlinear susceptibility is strongly coupled to the transition resonances of a material
in a way similar to the dependence of the imaginary part of the linear susceptibility
on the material resonances. In addition, the real and imaginary parts of a nonlinear
susceptibility are also related in a way similar to the relationship, expressed in the
Kramers–Kronig relation, between those of the linear susceptibility.

An optical interaction that is characterized by a real frequency-dependent suscepti-
bility, or the real part of a complex susceptibility, is generally classified as paramet-
ric, whereas one that is associated with the imaginary part of a complex frequency-
dependent susceptibility is nonparametric. In a nonparametric process, the state of the
material changes, and the total optical energy also changes accordingly, because the
process is connected to resonant transitions in the material. In a purely parametric pro-
cess, however, both the state of the material in the medium and the total optical energy
remain unchanged because the process does not cause any net exchange of energy
between the optical field and the medium.

In a parametric linear process, the energy of any given optical frequency component
is conserved because a linear process does not couple fields of different frequencies, as
can be seen from the fact that linear susceptibility χ(1)(ω) is a function of a single fre-
quency. In a parametric nonlinear process, energy exchange among different frequency
components caused by nonlinear coupling among them usually occurs though the sum
of energies from all of the interacting frequency components is conserved. For example,
in a parametric process characterized by a real χ(2)(ω3 = ω1 + ω2), optical energy can
be transferred from the frequency components at ω1 and ω2 to the component at ω3, or
vice versa. Therefore, the energy in each individual frequency component may change,
but the total optical energy contained in all three frequency components is conserved
because there is no net exchange of energy between the optical field and the medium
in a parametric process.

There are two features that are unique to nonlinear optical processes: one is optical
frequency conversion, and the other is field-dependent modification of a certain material
property. All nonlinear optical processes exhibit at least one, though not necessarily
both, of these two features. All functional nonlinear optical devices take advantage of
one or both of these two unique features.
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As we have seen again and again in earlier chapters, a very important condition
for efficient coupling among optical waves or among optical modes is phase matching,
regardless of which physical mechanism is responsible for the coupling. Phase matching
is also most important for efficient nonlinear optical interactions. The phase-matching
condition for a second-order nonlinear interaction that is characterized by the relation
ω3 = ω1 + ω2 among the interacting frequencies is

k3 = k1 + k2. (9.41)

The phase-matching condition for a third-order interaction that is characterized by the
relation ω4 = ω1 + ω2 + ω3 among the interacting frequencies is

k4 = k1 + k2 + k3. (9.42)

When a particular frequency changes sign, the corresponding wavevector in the phase-
matching condition also changes sign. The phase-matching condition is not automati-
cally satisfied in a parametric process that leads to the conversion of optical frequencies.
However, it is automatically satisfied in a parametric process that does not convert en-
ergy from one optical frequency to another. It is also automatically satisfied in any
nonparametric process where an exchange of energy between the optical field and the
medium occurs.

Second-order nonlinear optical processes

Table 9.4 lists the second-order nonlinear processes. As indicated in this table, the con-
tributing susceptibility for each of these processes is the real part, χ(2)′, of a frequency-
dependent second-order susceptibility. Therefore, all of them are parametric in nature,
and the frequencies involved in a second-order process of interest are generally far
away from any resonance frequencies of the nonlinear medium.

Although each process listed in Table 9.4 demonstrates a unique phenomenon and has
its own specific applications, all of them are basically parametric frequency conversion

Table 9.4 Second-order nonlinear optical processes

Process Susceptibility Phase matching

Second-harmonic generation (SHG) χ(2) ′(2ω = ω + ω) Required
Sum-frequency generation (SFG) χ(2) ′(ω3 = ω1 + ω2) Required
Difference-frequency generation (DFG) χ(2) ′(ω2 = ω3 − ω1) Required
Optical parametric amplification (OPA) χ(2) ′(ω2 = ω3 − ω1) Required
Optical parametric generation (OPG) χ(2) ′(ω3 = ω1 + ω2) Required
Optical rectification χ(2) ′(0 = ω − ω) Automatic
Pockels effect χ(2) ′(ω = ω + 0) Automatic
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(a) (b)

Figure 9.1 (a) Sum-frequency generation and (b) second-harmonic generation. Second-harmonic
generation is the degenerate case of sum-frequency generation.

(a) (b)

Figure 9.2 (a) Difference-frequency generation and (b) optical rectification. Optical rectification is
the degenerate case of difference-frequency generation.

processes generally characterized by a real susceptibility of the form χ(2)(ω3 = ω1 +
ω2). The differences among different processes come either from different experimental
conditions or from different subjective purposes of application.

The full permutation symmetry expressed in (9.28) applies to the real susceptibilities
characterizing parametric second-order processes. Therefore, the processes of sum-
frequency generation, difference-frequency generation, and optical parametric gen-
eration listed in Table 9.4 have the same nonlinear susceptibility. In sum-frequency
generation, shown in Fig. 9.1(a), an optical wave at a high frequency, ω3, is gener-
ated through nonlinear interaction of optical waves at two lower frequencies, ω1 and
ω2, with the nonlinear medium. Second-harmonic generation is the degenerate case of
sum-frequency generation for ω1 = ω2 = ω and ω3 = 2ω, as shown in Fig. 9.1(b). In
difference-frequency generation, shown in Fig. 9.2(a), two optical waves at frequen-
cies ω3 and ω1 interact with the nonlinear medium to generate an optical wave at the
difference frequency ω2 = ω3 − ω1. Optical rectification, shown in Fig. 9.2(b), is the
degenerate case of difference-frequency generation for ω3 = ω1 = ω and ω2 = 0. In
nondegenerate sum- and difference-frequency generation, two optical waves at different
frequencies have to be supplied at the input. In second-harmonic generation and optical
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Figure 9.3 Optical parametric generation.

rectification, only one optical wave is needed at the input. Second-harmonic generation
performs the function of frequency doubling for the input optical wave, whereas optical
rectification generates a DC electric field in a nonlinear medium through the interaction
of an optical wave with the medium.

In sum-frequency generation, energy conservation implied by the relation ω3 = ω1 +
ω2 requires that one photon at ω1 and another at ω2 be annihilated simultaneously
when one photon at ω3 is generated. The intensities of both input waves at ω1 and
ω2 decrease as the intensity of the output wave at ω3 grows. In difference-frequency
generation characterized by the relation ω2 = ω3 − ω1, however, one photon at the input
frequency ω1 is generated simultaneously with one photon at the difference frequency
ω2 when one photon at ω3 is annihilated. Therefore, as the intensity of the output wave
at ω2 grows, the intensity of the low-frequency input wave at ω1 also increases though
that of the high-frequency input wave at ω3 diminishes.

The reverse process of sum-frequency generation is optical parametric generation,
in which an optical wave at a high frequency ω3 interacts with the nonlinear medium
and generates two optical waves at the lower frequencies ω1 and ω2, as shown in
Fig. 9.3. In this process, one photon at ω3 is annihilated when two photons at ω1

and ω2, respectively, are generated. This process can occur spontaneously in the form
of parametric fluorescence. In practical applications, it normally takes place with a
feedback or with another input wave at either ω1 or ω2. When a feedback is provided,
usually by placing the nonlinear crystal in a resonant optical cavity, optical parametric
oscillation is possible with only one input wave at ω3. If an input wave at one of the
parametric frequencies, say ω1, is also provided, the process is basically the same as that
of difference-frequency generation except that the purpose is now the amplification of
the signal at the input frequency ω1 rather than the generation of the wave at the
difference frequency ω2. For this reason, this process is called optical parametric
amplification.

The special case of the Pockels effect can also be considered as parametric mixing
of an optical field at ω with a DC or low-frequency electric field though it is generally
described in terms of a modification on the permittivity tensor of a crystal by the DC
or low-frequency electric field.
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EXAMPLE 9.4 Starting with a Nd : YAG laser that emits at a single wavelength of
1.064µm, what different optical wavelengths can possibly be generated through second-
order nonlinear optical processes in a single step? What can be generated in two cas-
caded steps?

Solution Starting from λω = 1.064 µm, we can generate its second harmonic at
λ2ω = λω/2 = 532 nm by frequency doubling in one step through χ(2)(2ω = ω + ω)
in a nonlinear crystal. We can also use optical parametric generation to generate pairs
of tunable wavelengths at λ1, λ2 > 1.064 µm for 1/λ1 + 1/λ2 = 1/λω in one step
through χ(2)(ω = ω1 + ω2) in a nonlinear crystal. Therefore, it is possible to obtain a
visible wavelength at 532 nm and a range of tunable infrared wavelengths longer than
1.064 µm.

In two cascaded steps, many more wavelengths can be generated. The second har-
monic can be further frequency doubled to the fourth harmonic at λ4ω = λω/4 =
266 nm. We can also mix the fundamental and the second harmonic in a nonlinear
crystal to generate the third harmonic at λ3ω = λω/3 = 354.7 nm by sum-frequency
generation through χ(2)(3ω = ω + 2ω) in a nonlinear crystal. The second harmonic at
532 nm generated in the first step can be used to generate a range of tunable wavelengths
longer than 532 nm through optical parametric generation. This range of tunable wave-
lengths longer than 532 nm can also be covered by frequency doubling the tunable
infrared wavelengths generated through optical parametric generation in the first step,
as well as by mixing the tunable infrared wavelengths with the fundamental at 1.064 µm
through sum-frequency generation.

We can see further along this line that if we take merely three steps of second-order
nonlinear optical mixing processes, either all in cascade or mixed in parallel/cascade,
it is possible to cover a wide spectral range from the deep ultraviolet to the far infrared
by starting with a single laser wavelength. The requirements for these processes to take
place efficiently, as well as their limitations, are discussed in Sections 9.5 and 9.6.

Third-order nonlinear optical processes

The third-order nonlinear processes of common interest are listed in Table 9.5. Among
these third-order processes, some, such as third-harmonic generation, parametric fre-
quency conversion, and the optical Kerr effect, are parametric, whereas others, such as
absorption saturation and stimulated Raman scattering, are nonparametric. As can be
seen in Table 9.5, the contributing susceptibility of a parametric third-order process is
the real part, χ(3)′, and that of a nonparametric process is the imaginary part, χ(3)′′, of
a frequency-dependent third-order susceptibility.

As many as four different optical frequencies can participate in a third-order para-
metric frequency conversion process. As shown in Fig. 9.4, there are a few different
variations of this process. In a scenario similar to sum-frequency generation, three
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Table 9.5 Third-order nonlinear optical processes

Process Susceptibility Phase matching

Third-harmonic generation (THG) χ(3) ′(3ω = ω + ω + ω) Required

Parametric frequency conversion




χ(3) ′(ω4 = ω1 + ω2 + ω3)
χ(3) ′(ω4 = ω1 + ω2 − ω3)
χ(3) ′(ω3 = ω4 − ω1 − ω2)

Required

Optical Kerr effect

{
χ(3) ′(ω = ω + ω − ω)
χ(3) ′(ω = ω + ω′ − ω′)

Automatic

Self-phase modulation (SPM) χ(3) ′(ω = ω + ω − ω) Automatic
Cross-phase modulation (XPM) χ(3) ′(ω = ω + ω′ − ω′) Automatic
Electro-optic Kerr effect χ(3) ′(ω = ω + 0 + 0) Automatic
Absorption saturation χ(3) ′′(ω = ω + ω − ω) Automatic
Gain saturation χ(3) ′′(ω = ω + ω − ω) Automatic
Two-photon absorption (TPA) χ(3) ′′(ω1 = ω1 + ω2 − ω2) Automatic
Stimulated Raman scattering (SRS) χ(3) ′′(ωS = ωS + ωp − ωp) Automatic
Stimulated Brillouin scattering (SBS) χ(3) ′′(ωS = ωS + ωp − ωp) Automatic

Figure 9.4 Third-order parametric frequency conversion processes. (a) ω1 + ω2 + ω3 → ω4.
(b) ω1 + ω2 → ω3 + ω4. (c) ω4 − ω1 → ω2 + ω3. (d) ω4 → ω1 + ω2 + ω3.

photons at frequencies ω1, ω2, and ω3 combine to generate a photon at a higher fre-
quency ω4 = ω1 + ω2 + ω3, as shown in Fig. 9.4(a). In another scenario, shown in
Fig. 9.4(b), two photons at ω1 and ω2 combine to generate two other photons at ω3 and
ω4. In yet another scenario, which is similar to difference-frequency generation, shown
in Fig. 9.4(c), one photon at ω4 breaks into three photons at ω1, ω2, and ω3 through
the interaction of the wave at ω4 with another wave at a lower frequency, say ω1. In a
process similar to parametric generation, it is also possible for a photon at ω4 to break
into three photons at ω1, ω2, and ω3 without an input at any of the lower frequencies,
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(a) (b)

Figure 9.5 (a) Stokes and (b) anti-Stokes transitions for stimulated Raman scattering.

as shown in Fig. 9.4(d). Third-harmonic generation is simply the degenerate case of
the first scenario for ω1 = ω2 = ω3 = ω and ω4 = 3ω. Other partially degenerate cases
exist also. For example, for any of the three scenarios shown in Fig. 9.4, it is possible
that ω1 = ω2 = ω but ω3 �= ω and ω3 �= ω4.

The parametric frequency conversion processes are not the only third-order nonlin-
ear processes that result in optical frequency conversion. Among the nonparametric
processes, stimulated Raman scattering and stimulated Brillouin scattering also lead to
optical frequency conversion. However, being nonparametric, these processes are con-
nected to the intrinsic resonances of the medium and are dependent on the initial state of
the material. If the material is originally in the ground state of the relevant transition, an-
nihilation of a photon at the pump frequency, ωp, of the incident optical wave creates an
excitation in the material and a photon at a down-shifted Stokes frequency ωS = ωp − �,
as illustrated in Fig. 9.5(a). If the material is originally in an excited state, it is possi-
ble to create a photon at an up-shifted anti-Stokes frequency ωAS = ωp + � while the
material simultaneously makes a transition from the excited state to the ground state,
as illustrated in Fig. 9.5(b). The Stokes susceptibility is χ(3)′′(ωS = ωS + ωp − ωp),
whereas the anti-Stokes susceptibility is χ(3)′′(ωAS = ωAS + ωp − ωp). The amount of
frequency shift, � = ωp − ωS = ωAS − ωp, is determined by the excitation responsible
for a given process and is a characteristic of the material. The fundamental difference
between a Raman process and a Brillouin process is the mode of excitation in the mat-
erial that participates in the interaction. In stimulated Raman scattering, the interaction
is associated with the excitation at the molecular or atomic level, such as the optical
phonons of a medium or the vibrational modes of molecules. In stimulated Brillouin
scattering, the interaction is associated with the long-range excitation characterized by
the acoustic phonons, or the acoustic wave, of a medium.

Other third-order processes listed in Table 9.5 do not cause optical frequency con-
version but have the characteristic of inducing field-dependent changes in the optical
properties of a material. These processes are characterized by either the real or ima-
ginary part of a susceptibility of the form χ(3)(ω = ω + ω′ − ω′). When ω′ = ω, there
can be only one beam in the interaction, as illustrated in Fig. 9.6(a), but there can
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(a) (b)

(c)

Figure 9.6 Third-order processes for field-induced susceptibility changes: (a) one-beam
interaction, (b) interaction of two beams of the same frequency, and (c) interaction of two beams
of different frequencies.

also be two physically distinguishable beams of the same frequency, as illustrated in
Fig. 9.6(b). When ω′ �= ω, there are always two optical beams in the interaction, as
illustrated in Fig. 9.6(c). In the case of one-beam interaction, we find that

P (3)
i (ω) = 3ε0

∑
j,k,l

χ
(3)
i jkl(ω = ω + ω − ω)E j (ω)Ek(ω)E∗

l (ω) (9.43)

using (9.22) and the intrinsic permutation symmetry. In the case of two-beam interac-
tion, for either ω′ = ω or ω′ �= ω, we have

P (3)
i (ω) = 3ε0

∑
j,k,l

χ
(3)
i jkl(ω = ω + ω − ω)E j (ω)Ek(ω)E∗

l (ω)

+ 6ε0

∑
j,k,l

χ
(3)
i jkl(ω = ω + ω′ − ω′)E j (ω)Ek(ω′)E∗

l (ω′) (9.44)

and a similar expression for P (3)
i (ω′) in terms of χ

(3)
i jkl(ω

′ = ω′ + ω′ − ω′) and χ
(3)
i jkl(ω

′ =
ω′ + ω − ω). By identifying the total polarization at the frequency ω as Pi (ω) =
P (1)

i (ω) + P (3)
i (ω), we find that the total field-dependent permittivity tensor can be

expressed as

εi j (ω, E) = εi j (ω) + �εi j (ω, E), (9.45)

where εi j (ω) = ε0

[
1 + χ

(1)
i j (ω)

]
represents the field-independent linear permittivity

tensor of the medium and �εi j (ω, E) accounts for the field-dependent change induced
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by nonlinear optical interaction. For one-beam interaction,

�εi j (ω, E) = 3ε0

∑
k,l

χ
(3)
i jkl(ω = ω + ω − ω)Ek(ω)E∗

l (ω). (9.46)

For two-beam interaction,

�εi j (ω, E) = 3ε0

∑
k,l

χ
(3)
i jkl(ω = ω + ω − ω)Ek(ω)E∗

l (ω)

+ 6ε0

∑
k,l

χ
(3)
i jkl(ω = ω + ω′ − ω′)Ek(ω′)E∗

l (ω′). (9.47)

The field-dependent permittivity of the form described here is the basis of many non-
linear optical phenomena that have important practical applications.

The nonlinear process discussed here generally leads to an optical-field-induced
birefringence because �εi j is a tensor. The simplest case involves a single linearly
polarized optical wave in an isotropic medium with the optical field polarized in any
fixed direction, or in a cubic crystal with the optical field polarized along one of the
crystal axes. Then P(3) is parallel to E of the optical field, and the only susceptibility
element that contributes in this type of interaction is χ

(3)
1111(ω = ω + ω − ω). Therefore,

the permittivity seen by the optical field is

ε(ω, E) = ε(ω) + 3ε0χ
(3)
1111|E(ω)|2

= ε(ω) + 3χ
(3)
1111

2cn0
I (ω), (9.48)

where n0 is the linear refractive index of the medium and I (ω) is the intensity of the
optical beam. We see from this relation that the real part of χ

(3)
1111(ω = ω + ω − ω)

leads to the following intensity-dependent index of refraction:4

n = n0 + n2 I (ω), (9.49)

where

n2 = 3χ
(3)′
1111

4cε0n2
0

(m2 W−1). (9.50)

This intensity-dependent index of refraction represents the simplest case of the op-
tical Kerr effect. Depending on the material properties and the experimental con-
ditions, it leads to the phenomena of self-phase modulation, self focusing, and self
defocusing.

The value of n2 for a given material varies with optical wavelength, impurities, and
temperature. In particular, it can be significantly enhanced by transition resonances

4 In the literature, we sometimes see a different expression of n = n0 + 2n2|E |2. The value of n2 defined by this
expression is accordingly different from that given in (9.50).



468 Nonlinear optical devices

in a manner like the resonant enhancement of the linear refractive index. Its value also
depends on its response speed because n2 of a given material can be contributed by
many different physical mechanisms that have different relaxation times. For example,
the value of n2 at room temperature of a semiconductor, such as GaAs or AlGaAs, can
range from the order of 1 × 10−17 m2 W−1 for wavelengths far away from the absorption
bandgap to the order of 2 × 10−10 m2 W−1 for wavelengths near the bandgap with
exciton enhancement, and then further to the order of 1 × 10−8 m2 W−1 with exciton
enhancement near the band edge in GaAs/AlGaAs quantum wells.

EXAMPLE 9.5 Silica glass has an electronically contributed nonlinear susceptibility of
χ

(3)
1111(ω = ω + ω − ω) = 1.8 × 10−22 m2 V−2 that causes an intensity-dependent index

change in optical fibers. Its linear refractive index is n0 ≈ 1.45 in the visible and near
infrared spectral regions of interest for most applications of optical fibers. Find the
value of n2 for silica fibers. For an ultrashort optical pulse that has a pulsewidth on the
order of picoseconds or femtoseconds, the peak power can easily be a few kilowatts.
Take a femtosecond pulse of a 10 kW peak power that propagates in a fiber of a
10 µm core diameter. What is the optical-field-induced index change seen by this
pulse?

Solution Using (9.50), we find that

n2 = 3 × 1.8 × 10−22

4 × 3 × 108 × 8.85 × 10−12 × 1.452
m2 W−1 = 2.4 × 10−20 m2 W−1.

Therefore, n2 = 2.4 × 10−20 m2 W−1 for silica fibers. The optical-field-induced index
change seen by the pulse is

�n = n2 I = 2.4 × 10−20 × 10 × 103

π × (10 × 10−6/2)2
= 3 × 10−6.

We see that the optical-field-induced index change is very small even for a pulse of
10 kW peak power confined in a very small fiber core to reach a very high intensity.
Nevertheless, this small index change can have very significant effects on the charac-
teristics of the optical pulse through the process of self-phase modulation, and on other
pulses through cross-phase modulation. It is the root of such fascinating phenomena
as optical solitons and pulse spectral broadening. The value of n2 for optical fibers
varies with the dopants in the fiber and with the optical wavelength. In the literature,
the value of n2 = 3.2 × 10−20 m2 W−1 is often quoted for optical fibers. In Er-doped
fibers, the value of n2 at a resonance wavelength of 980 nm can be increased to the order
of 1 to 3 × 10−15 m2 W−1, depending on the doping concentration, due to resonance
enhancement.
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(a) (b)

Figure 9.7 Resonant transitions for two-photon absorption at (a) ω1 + ω2 and (b) 2ω.

From (9.48), we also see that the imaginary part of the total susceptibility is

χ ′′ = χ (1)′′ + 3χ
(3)′′
1111

2cn0
I (ω). (9.51)

Therefore, the imaginary part of χ
(3)
1111(ω = ω + ω − ω) leads to an intensity-

dependent change in the loss or gain of a medium. As a general rule, the sign of
χ

(3)′′
1111(ω = ω + ω − ω) that is contributed by a single-photon transition of a resonance

frequency at or near ω is always the opposite of that of χ (1)′′(ω). When χ (1)′′ > 0, the
medium has a linear loss but χ (3)′′ is negative and contributes to an intensity-dependent
reduction of the loss, resulting in absorption saturation. When χ (1)′′ < 0, the medium
has a gain. Then, χ (3)′′ is positive and causes intensity-dependent gain saturation.

The characteristics of a nonparametric third-order process are determined by the
resonant transition that is responsible for the process. In Table 9.5, we see that the
susceptibility for two-photon absorption has the same form as that for stimulated Raman
scattering. However, the resonance frequency of the transition for stimulated Raman
scattering is the difference ωp − ωS, whereas that for two-photon absorption is the sum
ω1 + ω2, as shown in Fig. 9.7(a). In the special case when ω1 = ω2 = ω, both the
susceptibility for two-photon absorption and that for absorption saturation or gain
saturation have the form χ(3)′′(ω = ω + ω − ω). The difference between them is that
the nonlinear susceptibility responsible for absorption saturation or gain saturation
is resonant at ω but that for two-photon absorption is resonant at 2ω, as shown in
Fig. 9.7(b).

A nonlinear process that characterizes the interaction of four optical waves is gen-
erally referred to as four-wave mixing. In nondegenerate four-wave mixing, all four
optical waves have different frequencies. The process becomes partially degenerate if
there are only two or three distinct frequencies. In degenerate four-wave mixing, all of
the participating waves have the same frequency. With the exception of the electro-optic
Kerr effect, all of the third-order nonlinear processes can be described as four-wave
mixing processes.
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9.4 Coupled-wave analysis

The coupled-wave theory developed in Section 4.1 is used for analysis of nonlinear op-
tical interactions in a homogeneous medium. In nonlinear optical waveguides, coupled-
mode theory can be used if there is no mixing between different optical frequencies, but
a combination of coupled-wave and coupled-mode formalisms has to be used if there
is frequency mixing in the interaction. In applying coupled-wave or coupled-mode
theory to the analysis of a nonlinear interaction, the perturbing polarization, generally
expressed as �P in Chapter 4, is identified as the characteristic nonlinear polarization,
P(n), of the specific interaction.

A nonlinear optical interaction often takes place in an anisotropic crystal, as can be
expected from the fact that χ(2) vanishes identically in the bulk of an isotropic medium
under the electric-dipole approximation. Even when a nonlinear interaction takes place
in an isotropic medium, a longitudinal field component can sometimes be generated
because of a field-dependent birefringence induced by a third-order nonlinear process
such as the optical Kerr effect discussed above. For these reasons, the correct coupled-
wave equation to be used, under the slowly varying amplitude approximation, for the
analysis of nonlinear optical interactions is the one in (4.18):

(kq · ∇)Eq,T ≈ iω2
qµ0

2
P(n)

q,Te−ikq ·r, (9.52)

where P(n)
q is identified with P(2)

q , or P(2)(ωq ) of (9.19), for a second-order process and
with P(3)

q , or P(3)(ωq ) of (9.20), for a third-order process and, according to (9.14) and
(9.16), the field amplitude Eq is defined by the following relation:

E(ωq ) = Eq (r) = Eq (r)eikq ·r = êqEq (r)eikq ·r. (9.53)

In most cases of interest, the amplitudes of all of the interacting waves vary along the
same direction, which is designated the z direction. Then, the coupled-wave equation
can be written as

dEq,T(z)

dz
≈ iω2

qµ0

2kq,z
P(n)

q,T(r)e−ikq ·r. (9.54)

Note that the propagation direction, which is the direction normal to the wavefront and
is defined by the wavevector k, of each wave is not necessarily the same as the direction
along which the field amplitude varies. In general, the nonlinear polarization P(n)

q may
also have variations along other directions.

Except in some unusual cases, the longitudinal field components of the interacting
optical waves are small and unimportant though they may exist. Then, P(n)

q,T in (9.52) and
(9.54) can be replaced by P(n)

q , further simplifying the coupled-wave equation. When
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this simplification is done, we can multiply both sides of (9.54) by the unit vector ê∗
q to

write the coupled-wave equation as

dEq

dz
= iω2

qµ0

2kq,z
ê∗

q · P(n)
q e−ikq ·r. (9.55)

In the analysis of a nonlinear optical interaction, a coupled-wave equation is written
for each of the interacting waves. The nonlinear polarization on the right-hand side of
each equation couples the equations for different waves, resulting in an array of coupled
nonlinear equations.

Parametric interactions

To illustrate several important concepts using a concrete example, we consider the
coupled equations that describe a parametric second-order interaction of three different
frequencies ω1, ω2, and ω3 with the relation ω3 = ω1 + ω2. We also take the approxima-
tions that allow us to use (9.55). Using (9.19) and the intrinsic permutation symmetry,
we find that

ê∗
3 · P(2)

3 = 2ε0ê∗
3 · χ(2)(ω3 = ω1 + ω2) : ê1ê2E1E2ei(k1+k2)·r, (9.56)

ê∗
1 · P(2)

1 = 2ε0ê∗
1 · χ(2)(ω1 = ω3 − ω2) : ê3ê∗

2E3E∗
2ei(k3−k2)·r, (9.57)

ê∗
2 · P(2)

2 = 2ε0ê∗
2 · χ(2)(ω2 = ω3 − ω1) : ê3ê∗

1E3E∗
1ei(k3−k1)·r. (9.58)

The full permutation symmetry is valid for the realχ(2) that characterizes the parametric
process. Therefore, we can define an effective nonlinear susceptibility as

χeff = ê∗
3 · χ(2)(ω3 = ω1 + ω2) : ê1ê2

= ê1 · χ(2)(ω1 = ω3 − ω2) : ê∗
3ê2

= ê2 · χ(2)(ω2 = ω3 − ω1) : ê∗
3ê1. (9.59)

Following the relation given in (9.34), the effective d coefficient for this interaction is
simply deff = χeff/2. We have the following coupled equations for a parametric second-
order interaction:

dE3

dz
= iω2

3

c2k3,z
χeffE1E2ei�kz, (9.60)

dE1

dz
= iω2

1

c2k1,z
χ∗

effE3E∗
2e−i�kz, (9.61)

dE2

dz
= iω2

2

c2k2,z
χ∗

effE3E∗
1e−i�kz, (9.62)

where �k = k1 + k2 − k3 = �kẑ is the phase mismatch. For linearly polarized waves,
we have ê∗ = ê, and χ∗

eff = χeff is a real quantity. Otherwise, χeff can be complex.
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EXAMPLE 9.6 Take x̂ , ŷ, and ẑ to be the principal axes of LiNbO3. Find the effective
nonlinear susceptibilities for second-harmonic generation in LiNbO3 with (a) a lin-
early x-polarized fundamental wave propagating in the z direction and (b) a linearly
z-polarized fundamental wave propagating in the x direction. The propagation direction
of the second harmonic is in practice determined by many factors. Here we make it the
same as that of the fundamental wave.

Solution For second-harmonic generation, we have the degenerate case of ω1 = ω2 =
ω and ω3 = 2ω. From Table 9.3, we find that the only nonvanishing second-order non-
linear susceptibility elements of LiNbO3 are d31 = d32 = d24 = d15 = −4.4 pm V−1,
d22 = −d21 = −d16 = 2.4 pm V−1, and d33 = −25.2 pm V−1. We also know that
χ

(2)
iα = 2diα , according to (9.34).
In case (a), we have k2ω ‖ kω ‖ ẑ and êω = x̂ . We then find from the nonvanishing

elements of χ(2) for LiNbO3 that P(2)(2ω) has only two components in the y and z
directions contributed by χ

(2)
21 and χ

(2)
31 , respectively. However, because k2ω is forced

to be in the z direction, P (2)
z is a longitudinal component that cannot contribute to

the propagation of the second-harmonic wave. In this situation, ê2ω = ŷ because only
the transverse component P (2)

y is useful for generating the second-harmonic wave.
Therefore,

χeff = ê∗
2ω · χ(2) : êωêω = ŷ · χ(2) : x̂ x̂ = χ

(2)
21 = 2d21 = −4.8 pm V−1.

In case (b), we have k2ω ‖ kω ‖ x̂ and êω = ẑ. We find from the nonvanishing el-
ements of χ(2) for LiNbO3 that P(2)(2ω) has only one component in the z direction
contributed by χ

(2)
33 . Therefore, ê2ω = ẑ and

χeff = ê∗
2ω · χ(2) : êωêω = ẑ · χ(2) : ẑ ẑ = χ

(2)
33 = 2d33 = −50.4 pm V−1.

We see from this example that the value of χeff can vary significantly depending on
the polarization directions of the interacting waves, which in turn are constrained by
the wave propagation directions.

Note that though k1, k2, and k3 individually may not be parallel to ẑ, the phase
mismatch �k has to be parallel to ẑ if the field amplitudes are to vary only along the z
direction. This fact is required mathematically in (9.60)–(9.62) because E1, E2, and E3

are all functions of z only. Physically, the boundary conditions, which are dictated by
Maxwell’s equations, at the surface of a nonlinear crystal where the input waves enter
the crystal require that the tangential component, but not the normal component, of
k1 + k2 be equal to that of k3 for an interaction defined by the relation ω3 = ω1 + ω2.
Therefore, any phase mismatch �k occurs only in the direction normal to the input
surface of the nonlinear crystal, as illustrated in Fig. 9.8(a). This condition can always be
satisfied because only one or two of the interacting waves are provided at the input and
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(a)

(b)

(c)

Figure 9.8 (a) In a parametric interaction, the boundary conditions at the input surface of a
nonlinear crystal require that the phase mismatch �k, as well as the z direction, along which the
field amplitudes vary, be normal to the input surface. (b) The wavefront, defined by the plane of
constant phase, of each wave is normal to its wavevector, but the plane of constant field amplitude
is parallel to the input surface and is normal to ẑ. (c) Periodic variation of the intensity of a
nonlinearly generated wave in the presence of a phase mismatch.
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only their wavevectors are initially given. For example, in sum-frequency generation,
k1 and k2 are determined by the propagation directions of the input waves at ω1 and
ω2, respectively. The propagation direction, k3, of the generated sum-frequency wave
is then determined by two conditions: (1) its magnitude, k3 = ω3n3/c, is determined by
the dispersion and birefringence of the nonlinear crystal; (2) its projection on the crystal
surface has to be equal to the projection of k1 + k2 on the crystal surface, as Fig. 9.8(a)
shows. Because �k = �kẑ, the z direction, along which the field amplitudes vary, is
normal to the input surface of the nonlinear crystal. Figure 9.8(b) shows the fact that
though the Poynting vector of each wave may not line up with ẑ, its magnitude varies
only along the z direction.

The intensity of a wave at a frequencyωq , projected on the plane of constant amplitude
that is normal to the z direction, is given by

Iq = |Sq · ẑ| ≈ 2kq,z

ωqµ0
|Eq |2 = 2cε0nq,z|Eq |2, (9.63)

where Sq is the Poynting vector, nq,z = ckq,z/ωq = nq cos θq , and θq is the angle be-
tween kq and ẑ. In a birefringent crystal, a possible walk-off between the vectors Sq

and kq is neglected by taking the approximation in (9.63). We find that (9.60)–(9.62)
lead to

dI3

dz
= − 2ω3|χeff|

(2c3ε0n1,zn2,zn3,z)1/2
I 1/2
1 I 1/2

2 I 1/2
3 sin ϕ, (9.64)

dI1

dz
= 2ω1|χeff|

(2c3ε0n1,zn2,zn3,z)1/2
I 1/2
1 I 1/2

2 I 1/2
3 sin ϕ, (9.65)

dI2

dz
= 2ω2|χeff|

(2c3ε0n1,zn2,zn3,z)1/2
I 1/2
1 I 1/2

2 I 1/2
3 sin ϕ, (9.66)

where

ϕ = ϕχ + ϕ1 + ϕ2 − ϕ3 + �kz, (9.67)

ϕχ is the phase of χeff defined as χeff = |χeff|eiϕχ , and ϕ1, ϕ2, and ϕ3 are the phases of
E1, E2, and E3, respectively, defined as Eq = |Eq |eiϕq .

The total intensity in the three interacting waves is I = I1 + I2 + I3. Using the
relation ω3 = ω1 + ω2, we find from (9.64)–(9.66) that

dI

dz
= d(I1 + I2 + I3)

dz
= 0. (9.68)

Consequently, the total optical energy is conserved in a parametric process, as is ex-
pected. In addition, we also find that

d

dz

(
I1

ω1

)
= d

dz

(
I2

ω2

)
= − d

dz

(
I3

ω3

)
. (9.69)
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Therefore, every time a photon at ω3 is annihilated, one photon at ω1 and another at
ω2 are generated simultaneously, and vice versa. The relations in (9.68) and (9.69) are
known as the Manley–Rowe relations.

The coupled equations and the Manley–Rowe relations formulated above apply to
all parametric second-order interactions that involve three different optical frequencies.
We see from (9.64)–(9.66) that optical energy is converted from ω3 to ω1 and ω2 if
sin ϕ > 0, whereas it is converted from ω1 and ω2 to ω3 if sin ϕ < 0. If ϕχ , ϕ1, ϕ2,
and ϕ3 are fixed or vary slowly with z, as is normally the case, then sin ϕ changes sign
periodically with z because of the phase mismatch �k. This periodic change of sign
in sin ϕ results in periodic reversal of a parametric process. Therefore, in the presence
of a phase mismatch, the maximum interaction length a given frequency-conversion
process can take without a reversal of the process is the coherence length:

lcoh = π

|�k| . (9.70)

From the above discussions and an examination of (9.64)–(9.66), we can see that the
intensity of a wave generated by a parametric nonlinear process in the presence of
a finite phase mismatch varies periodically along the direction normal to the input
surface of the nonlinear crystal with a half period of lcoh, as illustrated in Fig. 9.8(c).
The intensities of other waves in the interaction also vary with the same period along the
z direction. Therefore, an interaction length larger than lcoh is not useful and can even
be detrimental. Clearly, phase matching is very important for an efficient parametric
interaction.

EXAMPLE 9.7 With a fundamental wave at λ = 1.10 µm, find the coherence length for
each of the two cases of second-harmonic generation in LiNbO3 discussed in Exam-
ple 9.6. At room temperature, LiNbO3 has no = 2.2319 and ne = 2.1536 at 1.10 µm
wavelength and no = 2.3168 and ne = 2.2260 at 550 nm wavelength.

Solution Because k2ω ‖ kω, we have �k = 2kω − k2ω = 4π (nω − n2ω)/λ. In case
(a), we have nω = no(ω) = 2.2319 and n2ω = no(2ω) = 2.3168 because êω = x̂ and
ê2ω = ŷ. Then,

lcoh = π

|�k| = λ

4 × |no
ω − no

2ω| = 1.1

4 × 0.0849
µm = 3.24 µm.

In case (b), we have nω = ne(ω) = 2.1536 and n2ω = ne(2ω) = 2.2260 because êω = ẑ
and ê2ω = ẑ. Then,

lcoh = π

|�k| = λ

4 × |ne
ω − ne

2ω| = 1.1

4 × 0.0724
µm = 3.80 µm.

We see from this example that the coherence length is very small for both cases.
Clearly, the interaction would not be efficient. The reason for this undesirable situation
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is that we have arbitrarily chosen in Example 9.6 some convenient propagation and
polarization directions for the optical waves involved in the second-harmonic generation
process without any consideration of the requirement for phase matching. These two
examples together illustrate that it is possible to obtain a decent value of |χeff|, while
the interaction is still very inefficient because of phase mismatch. Methods for phase
matching are discussed in Section 9.5. Phase-matched second-harmonic generation
processes in LiNbO3 with properly chosen propagation and polarization directions of
the optical waves are demonstrated in Examples 9.8 and 9.9.

For a parametric interaction among linearly polarized waves in a homogeneous bulk
crystal, ϕχ = 0 or π , depending on the sign of χeff. Then, ϕ = ϕ1 + ϕ2 − ϕ3 or ϕ =
π + ϕ1 + ϕ2 − ϕ3 in the case of perfect phase matching. In this situation, it is possible
for a frequency-conversion process to continue over the entire length of a crystal.
Which parametric process occurs is determined completely by the value of ϕ. For
sum-frequency generation, we need ϕ = −π/2 so that optical energy is converted
most efficiently in the direction ω1 + ω2 → ω3. For difference-frequency generation,
optical parametric amplification, or optical parametric generation, ϕ = π/2 is needed
to have the highest efficiency for the conversion of optical energy in the direction
ω3 → ω1 + ω2.

In real experimental settings, a desired process is controlled by the input conditions.
Normally only one or two waves in a parametric three-wave interaction are supplied at
the input; therefore, only one or two phases are set, and at least one phase is arbitrary.
Consider the situation whereχeff is real and positive so thatϕχ = 0. If the input waves are
at ω1 and ω2 and the phase-matching condition k3 = k1 + k2 is satisfied, sum-frequency
generation occurs with the generation of a wave at ω3 that automatically picks a phase
of ϕ3 = ϕ1 + ϕ2 + π/2. If the same phase-matching condition is satisfied but the input
waves are at ω3 and ω2, a wave at ω1 is generated with a phase of ϕ1 = ϕ3 − ϕ2 + π/2,
resulting in difference-frequency generation, or optical parametric amplification in the
case when the amplification of the signal at ω2 is the objective. If only a wave at ω3 is
supplied at the input, optical parametric generation occurs with ϕ1 + ϕ2 = ϕ3 + π/2. In
this situation, the values of ω1 and ω2 are determined by the phase-matching condition
subject to the condition that ω3 = ω1 + ω2.

An interesting question is whether it is possible for other parametric processes,
such as sum-frequency generation for ω1 + ω3 and difference-frequency generation
for ω1 − ω2, and so on, to occur once all three waves at ω1, ω2, and ω3 exist in a
crystal, say, through a sum-frequency generation process of ω1 + ω2 → ω3. From the
above discussions, it is clear that any parametric process can occur if it (1) has a
nonvanishing χeff, (2) is phase matched, and (3) has the correct initial value of the
phase ϕ. It is thus possible to have simultaneous multiple parametric processes if all of
them satisfy the required conditions. In normal situations, however, it is highly unusual
for two or more different processes to occur in a single experimental arrangement
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because of the difficulty of satisfing their respective phase-matching conditions all at
once.

Nonparametric interactions

When writing the coupled-wave equations for any nonlinear process, it is important to
clearly understand the properties of the nonlinear susceptibility that characterizes the
process under consideration first. For a parametric process, the full permutation sym-
metry is valid for the susceptibility; this fact is used in defining the effective suscepti-
bility given in (9.59). In general, the susceptibility for a nonparametric process does not
have the full permutation symmetry because its imaginary part is significant for the pro-
cess. The susceptibilities for different nonparametric processes generally have different
permutation properties because they are related to different resonant transitions in the
material. For example, the susceptibility, χ(3)(ωS = ωS + ωp − ωp), for the Stokes pro-
cess of stimulated Raman scattering and the susceptibility, χ(3)(ω1 = ω1 + ω2 − ω2),
for two-photon absorption look the same, but they have different microscopic forms
and thus very different properties because the former is resonant at ωp − ωS while the
latter is resonant at ω1 + ω2. If ωp, ωS, and ωp + ωS are all far from any resonant tran-
sition frequencies while ωp − ωS is in resonance with a transition in the material, the
following property applies to the Raman susceptibility:

χ
(3)
i jkl(ωS = ωS + ωp − ωp) = χ

(3)∗
kli j (ωp = ωp + ωS − ωS)

= χ
(3)
j ilk(ωS = ωS + ωp − ωp)

= χ
(3)∗
lk j i (ωp = ωp + ωS − ωS). (9.71)

In contrast, the susceptibility for two-photon absorption has the following property:

χ
(3)
i jkl(ω1 = ω1 + ω2 − ω2) = χ

(3)
kli j (ω2 = ω2 + ω1 − ω1)

= χ
(3)
j ilk(ω1 = ω1 + ω2 − ω2)

= χ
(3)
lk j i (ω2 = ω2 + ω1 − ω1) (9.72)

if ω1, ω2, and |ω1 − ω2| are all far from any resonant transition frequencies while
ω1 + ω2 is in resonance with a transition. The difference between the relations in
(9.71) and (9.72) is significant because the imaginary parts of these susceptibilities are
responsible for the nonlinear processes under consideration.

The coupled-wave equations for the process of stimulated Raman scattering are
considered. Using (9.20) and the intrinsic permutation symmetry, we can write

ê∗
S · P(3)

S = 6ε0ê∗
S · χ(3)(ωS = ωS + ωp − ωp)

... êSêpê∗
pES|Ep|2eikS·r, (9.73)

ê∗
p · P(3)

p = 6ε0ê∗
p · χ(3)(ωp = ωp + ωS − ωS)

... êpêSê∗
SEp|ES|2eikp·r. (9.74)
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Applying the relation in (9.71), we can define an effective Raman susceptibility:

χR = ê∗
S · χ(3)(ωS = ωS + ωp − ωp)

... êSêpê∗
p

= êp · χ(3)∗(ωp = ωp + ωS − ωS)
... ê∗

pê∗
SêS. (9.75)

The coupled-wave equations for stimulated Raman scattering are

dES

dz
= i3ω2

S

c2kS,z
χRES|Ep|2, (9.76)

dEp

dz
= i3ω2

p

c2kp,z
χ∗

REp|ES|2. (9.77)

By comparing these two equations to the three equations given in (9.60)–(9.62) for
the parametric second-order interaction, we see clearly that the nonparametric process
of stimulated Raman scattering is automatically phase matched, as is discussed in the
preceding section.

The relation in (9.63) can be used to transform (9.76) and (9.77) into

dIS

dz
= − 3ωSµ0

nS,znp,z
χ ′′

R IS Ip, (9.78)

dIp

dz
= 3ωpµ0

nS,znp,z
χ ′′

R IS Ip. (9.79)

We find that the total light intensity, I = IS + Ip, varies as

dI

dz
= d(IS + Ip)

dz
= 3µ0

nS,znp,z
(ωp − ωS)χ ′′

R IS Ip. (9.80)

Therefore, optical energy is not conserved in the nonparametric Raman process because
there is energy exchange with the material due to the resonant transition at the frequency
� = ωp − ωS. Nevertheless, one Stokes photon is created for every pump photon that
is annihilated. Therefore, in the absence of other loss mechanisms, we still have the
following Manley–Rowe relation:

d

dz

(
IS

ωS

)
= − d

dz

(
Ip

ωp

)
. (9.81)

We see from (9.78) and (9.79) that the direction of energy flow in the Raman process is
determined by the sign of χ ′′

R, which depends on the state of the material. If the material
is in the ground state of the Raman transition, the imaginary part of χ(3)(ωS = ωS +
ωp − ωp) is negative, resulting in χ ′′

R < 0 according to (9.75). In this situation, energy
is converted from the pump wave to the Stokes wave. We also see from (9.80) that in a
Stokes process, there is a net loss in the total optical intensity. The energy corresponding
to this loss is absorbed by the material in making the Stokes Raman transition from the
ground state to the excited state. In case the excited state of the Raman transition is more
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populated than the ground state, the imaginary part of χ(3)(ωS = ωS + ωp − ωp) for
� = ωp − ωS becomes positive. Then χ ′′

R > 0. In this situation, the anti-Stokes process
occurs with the wave at ωS acting as the pump wave and the wave at ωp acting as the
anti-Stokes wave. In the anti-Stokes process, the total optical intensity has a net gain
corresponding to the energy released by the material in making the anti-Stokes Raman
transition from the excited state to the ground state.

From the above discussions, we see that the characteristics of a nonparametric pro-
cess are completely determined by the state of the material. Phase matching for the
interacting optical waves is automatically satisfied in a nonparametric process because
any difference in the momenta of the interacting photons can be absorbed by the mat-
erial if there is energy exchange between the optical field and the medium. For the same
reason, the phase relationship among the interacting waves, which determines the direc-
tion of frequency conversion in a parametric process, plays no role in a nonparametric
process.

9.5 Phase matching

We have seen in the preceding section the importance of phase matching for parametric
nonlinear processes. If a parametric interaction is phase matched, optical power can be
converted efficiently from one frequency to another. Otherwise, the process is perio-
dically reversed, and the optical power shuttles back and forth among the interacting
waves, as Fig. 9.8(c) shows. No matter how long the crystal is, the best efficiency
we can expect from a parametric interaction that is not perfectly phase matched is
that contributed by the interaction over a coherence length. Therefore, phase matching
is one of the most important technical issues that have to be addressed in designing
any efficient nonlinear optical device based on a parametric frequency conversion pro-
cess. In this section, we discuss phase matching for second-order nonlinear optical
processes.

The phase-matching condition of a nonlinear optical process is a relation among
the wavevectors of the interacting waves. When more than two different wavevectors
are involved, phase matching can be either collinear or noncollinear, as illustrated in
Figs. 9.9(a) and (b) for a second-order process. All of the wavevectors are parallel to one
another in collinear phase matching, but they are not in noncollinear phase matching. In
the case of second-harmonic generation with only one input fundamental wave, phase
matching is always collinear because there are only two wavevectors, kω and k2ω,
involved in the process, as shown in Fig. 9.9(c). However, noncollinear phase matching
for second-harmonic generation is also possible if there are two spatially separated
fundamental waves at the input, as shown in Fig. 9.9(d). In the latter situation, the
wavevectors of the two distinct fundamental waves can have different magnitudes if
the two waves are not polarized in the same direction inside a birefringent crystal.
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(a)

(c)

(b)

(d )

Figure 9.9 (a) Collinear and (b) noncollinear phase matching for a second-order process with the
phase-matching condition: k3 = k1 + k2. (c) Collinear and (d ) noncollinear phase matching for
second-harmonic generation.

With noncollinear phase matching, the interaction length is limited by the finite
distance over which the beams overlap in space. Therefore, the collinear phase-matching
arrangement is employed in most nonlinear optical devices though noncollinear phase
matching is also useful in some special applications. In the following, we consider
only collinear phase matching for second-order nonlinear processes, but the general
concepts can be easily extended to noncollinear phase matching. Phase matching for
the third-order processes that are not automatically phase matched is difficult and rarely
worth the effort because such processes are relatively inefficient.

With collinear beams, the phase-matching condition for a general second-order pro-
cess reduces to the following simple scalar relation:

k3 = k1 + k2, or n3ω3 = n1ω1 + n2ω2. (9.82)

Efficient parametric interactions are normally carried out in a spectral region away
from transition resonances of a medium to avoid attenuation of the optical beams due to
resonant absorption of the medium. As discussed in Section 1.10 and shown in Fig. 1.22,
a material has normal dispersion in a spectral region away from resonances, meaning that
n(ω3) > n(ω1), n(ω2). Clearly, collinear phase matching is not possible in an isotropic
material or a cubic crystal within a spectral region of normal dispersion, nor is it possible
in a birefringent crystal if all of the interacting waves have the same polarization. An
isotropic material is of no practical use for second-order nonlinear interactions because
χ(2) = 0 in the electric-dipole approximation. A noncentrosymmetric cubic crystal,
such as GaAs, has a decent χ(2). However, such a crystal in bulk, homogeneous form is
also not useful for second-order nonlinear optical interactions because of its inability
to support collinear phase matching in the normal dispersion region where the crystal
is transparent to the interacting optical waves. It is useful for second-order processes
that are automatically phase matched, namely, the processes of optical rectification and
Pockels effect.

Collinear phase matching can be achieved through the use of (1) anomalous dis-
persion near the resonance frequency of a material, (2) birefringence in a nonlinear
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crystal, (3) periodic spatial modulation in the nonlinear coefficient of a medium, or
(4) modal dispersion of an optical waveguide. Among these possibilities, the use of
anomalous dispersion is not very practical for device applications because of strong
material absorption near a resonance frequency. The modal dispersion of a waveguide
is usually not strong; thus it is also of limited usefulness.

Birefringent phase matching

The most commonly used method of obtaining collinear phase matching for a second-
order nonlinear optical process employs the birefringence of a uniaxial or biaxial crystal.
In the following, phase matching in uniaxial crystals is addressed specifically because
it is less complicated than that in biaxial crystals. The same principles apply to phase
matching in biaxial crystals.

As discussed in Section 1.6 and illustrated in Fig. 1.10, there are two normal mode
polarizations, êo and êe, associated with each direction k̂ of wave propagation in a
uniaxial crystal. The ordinary wave with polarization êo has an ordinary refractive index
no independent of the direction of k̂, whereas the extraordinary wave with polarization
êe has an extraordinary refractive index ne(θ ) that is given in (1.125) and is a function
of the angle θ between the k̂ vector and the optical axis. To satisfy the phase-matching
condition in (9.82) in a spectral region of normal dispersion, the wave at the highest
frequency, ω3, has to be associated with the smaller of the two indices. Consequently, in
a positive uniaxial crystal the wave at ω3, or that at 2ω in the case of second-harmonic
generation, has to be an ordinary wave, whereas in a negative uniaxial crystal it has to
be an extraordinary wave.

There are two different types of birefringent phase-matching methods. In type I
phase matching the two low-frequency waves have the same polarization, whereas in
type II phase matching they have orthogonal polarizations. Note that in collinear phase
matching, the k vectors of the interacting waves are all parallel to one another. Therefore,
their normal modes also have the same êo and êe vectors. Table 9.6 summarizes the
characteristics of type I and type II phase-matching methods for uniaxial crystals. In
Table 9.6, we have arbitrarily assigned for type II phase matching the wave at ω1 to be
the ordinary wave and that at ω2 to be the extraordinary wave. When ω1 �= ω2, there
are two different possibilities of type II phase matching, with the ordinary wave at ω1

Table 9.6 Two types of birefringent phase matching for uniaxial crystals

Positive uniaxial (ne > no) Negative uniaxial (ne < no)

Type I no
3ω3 = ne

1(θPM)ω1 + ne
2(θPM)ω2 ne

3(θPM)ω3 = no
1ω1 + no

2ω2

χeff = êo · χ(2)(ω3 = ω1 + ω2) : êeêe χeff = êe · χ(2)(ω3 = ω1 + ω2) : êoêo

Type II no
3ω3 = no

1ω1 + ne
2(θPM)ω2 ne

3(θPM)ω3 = no
1ω1 + ne

2(θPM)ω2

χeff = êo · χ(2)(ω3 = ω1 + ω2) : êoêe χeff = êe · χ(2)(ω3 = ω1 + ω2) : êoêe
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being the one at either the lower or the higher frequency. The angle θPM between vector
k̂ and the optical axis that allows a particular phase-matching condition to be satisfied
is known as the phase-matching angle.

In collinearly phase-matched second-harmonic generation, there is only one funda-
mental wave. In type I phase matching, the fundamental wave is completely polarized
along one of the normal mode polarizations; thus the phase-matching condition is
simply

n2ω = nω. (9.83)

In type II phase matching, the fundamental wave consists of components in both normal
mode polarizations. Therefore, the phase-matching condition becomes

no
2ω = 1

2

[
no

ω + ne
ω(θPM)

]
(9.84)

for a positive uniaxial crystal, or

ne
2ω(θPM) = 1

2

[
no

ω + ne
ω(θPM)

]
(9.85)

for a negative uniaxial crystal. These different phase-matching methods for second-
harmonic generation are illustrated in Fig. 9.10.

(a)

(c)

(b)

(d )

Figure 9.10 Different phase-matching methods in the region of normal dispersion for
second-harmonic generation: (a) type I and (b) type II phase matching in a positive uniaxial crystal,
and (c) type I and (d ) type II phase matching in a negative uniaxial crystal.
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We see from (1.122) that vector k̂ is a function of both θ and φ. In a phase-matched
interaction, the value of θ is the phase-matching angle θPM, which is obtained by solving
the condition for a specific phase-matching method. Phase matching in a uniaxial crystal
is independent of angle φ. Therefore, the value of θPM is determined without knowledge
of φ. The value of χeff is usually a function of both θ and φ, however. For example,
KDP is a negative uniaxial crystal of 42m symmetry whose only nonvanishing second-
order nonlinear susceptibility elements are χ

(2)
14 = χ

(2)
25 and χ

(2)
36 under the conditions

for index contraction. Using (1.123) and (1.124) for êo and êe, respectively, we find
that χeff = −χ

(2)
36 sin θ sin 2φ, or deff = −d36 sin θ sin 2φ, for type I phase matching

and χeff =
(
χ

(2)
14 + χ

(2)
36

)
sin θ cos θ cos 2φ, or deff = (d14 + d36) sin θ cos θ cos 2φ, for

type II phase matching. Therefore, to maximize the value of |χeff| so that a second-
order interaction in KDP is most efficient, φ has to be chosen to have one of the values
among π/4, −π/4, 3π/4, and −3π/4 in the case of type I phase matching and one of
the values among 0, π/2, −π/2, and π in the case of type II phase matching. In some
crystals, notably uniaxial crystals of symmetry classes 4, 6, 422, 622, 4mm, and 6mm,
χeff is independent of angle φ but is a function of θ only. Then the value of φ can be
chosen arbitrarily, though that of θ is still determined by the phase-matching condition
(see Problem 9.5.1).

For a specific nonlinear interaction in a given crystal, type I and type II phase-
matching methods generally have different phase-matching angles and different ef-
fective nonlinear susceptibilities. In certain cases, only one type of phase matching is
possible. Sometimes, both types are not possible in a particular crystal within a certain
spectral range. In case it is possible to have both type I and type II phase matching,
the choice between the two depends on many practical considerations, including effi-
ciency, angular tolerance, temperature sensitivity, and beam walk-off. Usually the one
with the larger value of |χeff| is chosen if it has no significant disadvantages from other
considerations. Sometimes, χeff vanishes when phase matching is achieved. Clearly,
such phase matching is of no practical usefulness. A simple example is type II phase
matching in KDP with θPM = π/2.

In summary, the condition for phase matching and the value of χeff have to be
considered at the same time when designing a practical device. Phase matching by
itself does not guarantee a desirable value of χeff and, in some special cases, can
even lead to a vanishing χeff. For a collinearly phase-matched interaction in a uniaxial
crystal, the value of θ is determined by phase matching to be θ = θPM, while that of φ

is determined by maximizing the value of |χeff|. In a biaxial crystal, the angle θ is not
independent of the angle φ, but they are determined by similar considerations. When
both θ and φ are determined, the propagation direction k̂, which is common to all of
the interacting waves in a collinear interaction, is fixed. In practice, a nonlinear crystal
intended for a particular application is normally cut with the knowledge of the correct
values of θ and φ for the application in a way that vector k̂ is normal to the input surface
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of the crystal and the êo and êe polarizations are along certain convenient directions in
the experimental setup.

EXAMPLE 9.8 Both type I and type II configurations of collinear birefringent phase match-
ing are considered for second-harmonic generation in LiNbO3 with a fundamental wave
at 1.10µm. Find the polarization directions of the interacting waves, the phase-matching
angle, and the effective nonlinear susceptibility for each type.

Solution LiNbO3 is a negative uniaxial crystal of 3m symmetry. The polarizations of
the ordinary and extraordinary waves in a uniaxial crystal are êo = x̂ sin φ − ŷ cos φ

and êe = −x̂ cos θ cos φ − ŷ cos θ sin φ + ẑ sin θ , given in (1.123) and (1.124), re-
spectively. According to Example 9.6, the nonvanishing nonlinear susceptibility ten-
sor elements of LiNbO3 are d31 = d32 = d24 = d15 = −4.4 pm V−1, d22 = −d21 =
−d16 = 2.4 pm V−1, and d33 = −25.2 pm V−1. According to Example 9.7, the re-
fractive indices of LiNbO3 are no = 2.2319 and ne = 2.1536 at the fundamental
wavelength of 1.10 µm and no = 2.3168 and ne = 2.2260 at the second-harmonic
wavelength of 550 nm. The extraordinary index at an angle θ is given by (1.125) as
n−2

e (θ ) = n−2
o cos2 θ + n−2

e sin2 θ .
For type I phase matching, we find from Table 9.6 that the fundamental is an ordinary

wave with êω = êo and the second harmonic has to be an extraordinary wave with
ê2ω = êe. With the given nonvanishing nonlinear susceptibility elements, we find that
the effective nonlinear susceptibility is

χ I
eff = êe · χ(2) : êoêo = χ

(2)
31 sin θ − χ

(2)
22 cos θ sin 3φ, (9.86)

or, equivalently, d I
eff = d31 sin θ − d22 cos θ sin 3φ. The phase-matching angle θ I

PM can
be found by using the relation in (9.83) for ne

2ω(θ I
PM) = no

ω. Using the formula for ne(θ ),
we find that

θ I
PM = sin−1

[
(no

ω)−2 − (no
2ω)−2

(ne
2ω)−2 − (no

2ω)−2

]1/2

= sin−1

(
2.2319−2 − 2.3168−2

2.2260−2 − 2.3168−2

)1/2

= 74.8◦.

(9.87)

The angle φ is chosen so that |d I
eff| is maximized because φ is irrelevant to phase

matching in a uniaxial crystal. Because d31 < 0, d22 > 0, and 0◦ ≤ θ ≤ 90◦, we can
maximize |d I

eff| by simply making sin 3φ = 1 in (9.86). Therefore, φ is chosen to be
−90◦, 30◦, or 150◦. We then find that d I

eff = −4.88 pm V−1 and χ I
eff = −9.76 pm V−1

for θ = 74.8◦ and φ = −90◦, 30◦, or 150◦.
For type II phase matching, we find from Table 9.6 that the fundamental is required

to have both ordinary and extraordinary components but the second harmonic is an
extraordinary wave with ê2ω = êe. With the given nonvanishing nonlinear susceptibility
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elements, we find that the effective nonlinear susceptibility is

χ II
eff = êe · χ(2) : êoêe = χ

(2)
22 cos2 θ cos 3φ, (9.88)

or, equivalently, d II
eff = d22 cos2 θ cos 3φ. The phase-matching angle θ II

PM can be found
by using the relation in (9.85). Plugging the formula for ne(θ ) into (9.85) results in a
complicated algebraic relation, which can be either solved graphically or numerically to
find that there is no solution for θ II

PM in the range from 0◦ to 90◦. Therefore, type II phase
matching is not possible for second-harmonic generation in LiNbO3 at λ = 1.10 µm.
The angle φ can still be chosen so that |d I

eff| is maximized because φ is irrelevant to
phase matching in a uniaxial crystal. In type II phase matching, |d II

eff| can be maximized
by making cos 3φ = ±1 so that | cos 3φ| = 1. For this purpose, φ can be chosen as
one of the following values: 0◦, ±60◦, ±120◦, or 180◦. Because phase matching is not
possible, maximizing |d II

eff| in this situation serves no practical purpose.
We can compare χ I

eff and χ II
eff obtained in (9.86) and (9.88), respectively, to see that

for LiNbO3 type I interaction is more efficient than type II interaction.

Angle tuning

The phase-matching angle for a specific interaction in a given nonlinear crystal is a
function of the frequencies, or the wavelengths, of the interacting waves. When the
frequencies of the interacting waves are varied, the angle θ has to be varied accordingly
for the interaction to remain phase matched. In practice, this angle tuning is normally
carried out by rotating the crystal while maintaining the beam propagation direction
though it can also be achieved by varying the beam propagation direction while fix-
ing the orientation of the crystal. One situation where this tuning is necessary is in
an application with a wavelength-tunable input wave, such as in the generation of a
wavelength-tunable difference- or sum-frequency wave or in the frequency doubling
of the output from a wavelength-tunable laser. In optical parametric generation where
only the pump-wave frequency at ω3 is fixed, the parametrically generated frequencies
ω1 and ω2 are varied when the parameters for phase matching are varied. Therefore,
angle tuning of a nonlinear crystal is a convenient means for tuning the parametric
wavelengths. Figure 9.11 shows as an example the angle-tuning curves of the paramet-
ric wavelengths for type I and type II collinear phase matching in LiNbO3 with a fixed
pump wavelength at 527 nm. LiNbO3 is a negative uniaxial crystal of 3m symmetry,
in which type I interaction is more efficient than type II interaction. The effective non-
linear susceptibilities for type I and type II phase matching in LiNbO3 are found in
Example 9.8 and are given in (9.86) and (9.88), respectively.

When the frequencies of the interacting waves are fixed, any deviation of the
wave propagation direction away from the phase-matched direction results in a phase
mismatch. The amount of this phase mismatch can be calculated by expanding
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(a) (b)

µm µm
Figure 9.11 Angle-tuning curves showing parametric wavelengths as a function of the
phase-matching angle for (a) type I and (b) type II collinear phase matching in LiNbO3 with a fixed
pump wavelength at 527 nm. The data listed in Table 9.3 are used to generate these curves.

�k = k1 + k2 − k3 around the phase-matching angle:

�k = (k1 + k2 − k3)θPM
+ �θ

[
d

dθ
(k1 + k2 − k3)

]
θPM

+ (�θ )2

2

[
d2

dθ2
(k1 + k2 − k3)

]
θPM

+ · · ·

= �θ

c

(
ω1

dn1

dθ
+ ω2

dn2

dθ
− ω3

dn3

dθ

)
θPM

+ (�θ )2

2c

(
ω1

d2n1

dθ2
+ ω2

d2n2

dθ2
− ω3

d2n3

dθ2

)
θPM

+ · · · (9.89)

The acceptable angular tolerance in a nonlinear interaction is set by the amount of
the acceptable phase mismatch. A common rule for setting this tolerance is �kl < π .
In most applications of nonlinear optical devices, the interacting beams are focused
to increase the efficiency. Because focusing increases the divergence, thus the angu-
lar spread, of a beam, an interaction that has a small angular tolerance requires the
interacting beams to be well collimated and critically aligned.

Because ne(0◦) = no, a phase-matching angle in a uniaxial crystal cannot have the
value of 0◦. Therefore, it can be shown by using (1.125) that (dne(θ )/dθ )θPM

�= 0 except
when θPM = 90◦. If θPM �= 90◦, the first-order term in (9.89) exists; thus �k ∝ �θ

approximately. For phase matching with θPM = 90◦, known as 90◦ phase matching,
the first-order term in (9.89) vanishes; thus �k ∝ (�θ )2. Because �θ � 1, 90◦ phase
matching has a smaller phase mismatch for a given angular deviation or, equivalently,
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(a) (b)

Figure 9.12 Walk-off between (a) an ordinary beam and an extraordinary beam and (b) two
extraordinary beams when the beams propagate collinearly.

a larger angular tolerance for a given acceptable phase mismatch than phase matching
with θPM �= 90◦. In 90◦ phase matching, an extraordinary wave is polarized along the
optical axis, and ne(90◦) = ne.

As can be seen from Table 9.6, for any method of birefringent phase matching,
there is always at least one extraordinary wave involved in the interaction. For an
extraordinary wave that is not polarized along a principal axis of a crystal, there is
a walk-off angle α given by (1.131) between its direction of propagation, defined by
k̂, and its direction of power flow, defined by its Poynting vector S. In a collinear
interaction, all of the interacting waves have the same direction of propagation, but
not necessarily the same direction of power flow. When two interacting beams have
different directions of power flow, there is a walk-off angle ρ between these two beams,
which is defined as the angle between their Poynting vectors. Note the fine difference
between the walk-off angle α and the walk-off angle ρ. As is shown in Fig. 9.12(a), the
walk-off angle between an ordinary beam and an extraordinary beam is simply ρ = |α|,
which is determined only by the walk-off angle α of the extraordinary beam. However,
as illustrated in Fig. 9.12(b), the walk-off angle between two collinear extraordinary
beams is the difference of the walk-off angles of these two beams: ρ = |α1 − α2|,
which exists between two extraordinary beams of different frequencies because of
dispersion.

Because optical beams have finite transverse dimensions in reality, the existence of a
walk-off angle ρ between two interacting beams limits the effective interaction length,
as Fig. 9.12 shows. For Gaussian beams with a radius w0 at the beam waist, the effective
interaction length between two beams subject to the limitation of beam walk-off is the
aperture distance:

la = π1/2w0

ρ
. (9.90)

Clearly, the aperture distance decreases as the beams are increasingly focused.
When θ = 90◦, an extraordinary wave is polarized along the extraordinary principal

axis and thus has no walk-off, as can be verified with (1.131). Consequently, there is
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no walk-off between any two interacting beams in the case of 90◦ phase matching. For
this reason and for the reason discussed above that it has a larger angular tolerance
than phase matching with θPM �= 90◦ has, 90◦ phase matching is also called noncritical
phase matching.

EXAMPLE 9.9 A Gaussian beam of fundamental wave at 1.10 µm is used for second-
harmonic generation with type I collinear angle phase matching in LiNbO3 discussed in
Example 9.8. Find the walk-off angle ρ between the fundamental and second-harmonic
beams. If the fundamental beam is focused to a waist size of w0 = 50 µm, what is the
aperture distance limited by the walk-off effect?

Solution For type I phase matching, only the second-harmonic beam, which is an
extraordinary wave, has walk-off with an angle α between S2ω and k2ω. The fundamental
beam is an ordinary wave with Sω ‖ kω. Therefore, the walk-off between the two
Poynting vectors Sω and S2ω, which is what matters in this interaction, is ρ = |α| for
collinear phase matching with kω ‖ k2ω. By using (1.131) for α and taking the refractive
indices to be no = 2.3168 and ne = 2.2260 at the second-harmonic wavelength of
550 nm, we find, with θ = θ I

PM = 74.8◦, the following walk-off angle:

ρ = |α| =
∣∣∣∣tan−1

(
n2

o

n2
e

tan θ I
PM

)
− θ I

PM

∣∣∣∣
=
∣∣∣∣tan−1

(
2.31682

2.22602
tan 74.8◦

)
− 74.8◦

∣∣∣∣ = 1.12◦ = 19.5 mrad.

For w0 = 50 µm, the aperture distance is

la = π1/2w0

ρ
= π1/2 × 50 × 10−6

19.5 × 10−3
m = 4.54 mm.

The waist size of the second-harmonic beam is normally different from that of the
fundamental beam. In the presence of walk-off, a second-harmonic beam generated by
a circular Gaussian fundamental beam can have an elliptical spot shape. Such compli-
cations are ignored here.

Temperature tuning

It is clear from the above discussions that 90◦ phase matching is most desirable for
both type I and type II phase-matching methods. In general, the ordinary and the
extraordinary indices of a uniaxial crystal have different temperature dependencies,
and the three principal indices of a biaxial crystal also change with temperature at
different rates. In certain cases, it is possible to fix the angle θ at 90◦ while varying
the temperature to achieve phase matching. The temperature, TPM, at which 90◦ phase
matching is achieved in a crystal is called the phase-matching temperature. Whether 90◦
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(a) (b)

µm µm

Figure 9.13 Temperature-tuning curves showing parametric wavelengths as a function of the
phase-matching temperature for (a) type I and (b) type II collinear phase matching in LiNbO3 with
a fixed pump wavelength at 527 nm. The temperature and wavelength dependencies of refractive
indices given in (9.92) and (9.93) are used to generate these curves.

phase matching by tuning the temperature is possible or not depends on the temperature
dependence of the birefringence of a crystal, as well as on the wavelengths of the
interacting waves in a given nonlinear process.

As discussed above, it is important to examine the value of χeff at θ = 90◦ for a
given phase-matching method also. It turns out that χeff = 0 for 90◦ phase matching
in any uniaxial crystal if there are two extraordinary waves and one ordinary wave in
the interaction, as well as in crystals of certain symmetry classes when there are two
ordinary waves and one extraordinary wave in the interaction. Specifically, among all
uniaxial crystals, 90◦ phase matching with χeff �= 0 is possible only for type I phase
matching in a negative uniaxial crystal and for type II phase matching in a positive
uniaxial crystal, but only if the crystal belongs to one of the symmetry classes 3, 4, 6,
4mm, 6mm, 3m, 4, and 42m in either case (see Problem 9.5.2). For biaxial crystals, the
situation is more complicated.

Because the phase-matching temperature for a specific nonlinear interaction in a
given crystal is a function of the frequencies of the interacting waves, it has to be tuned
when the wavelengths of the waves are varied. Alternatively, in optical parametric
generation with a fixed pump wavelength, the parametrically generated wavelengths
can be tuned by tuning the temperature while keeping both the propagation direction
of the beams and the orientation of the crystal fixed. Figure 9.13 shows as an example
the temperature-tuning curves of the parametric wavelengths for type I and type II
collinear phase matching in LiNbO3 with a fixed pump wavelength at 527 nm. As
shown in Fig. 9.13(b), temperature tuning with type II collinear phase matching for
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LiNbO3 is possible, but it is not practically useful because χeff vanishes for type II 90◦

phase matching in LiNbO3. Therefore, temperature tuning for LiNbO3 is useful only
with type I phase matching.

In temperature phase matching, deviation from the phase-matching temperature re-
sults in a phase mismatch given by

�k = (k1 + k2 − k3)TPM
+ �T

[
d

dT
(k1 + k2 − k3)

]
TPM

+ · · ·

= �T

c

(
ω1

dn1

dT
+ ω2

dn2

dT
− ω3

dn3

dT

)
TPM

+ · · · (9.91)

For a practical device that is temperature tuned, the first-order term in (9.91) normally
does not vanish. Therefore, �k ∝ �T to first order.

In comparison with angle tuning, temperature tuning has all of the advantages of
90◦ phase matching discussed above. In addition, because the crystal orientation and
the beam propagation direction are both fixed in a temperature-tuned device, temper-
ature tuning also eliminates all of the troubles that come with angle tuning in me-
chanically changing the crystal orientation while trying to keep the optical beams
aligned.

EXAMPLE 9.10 In this example, we consider 90◦ phase matching in both type I and type II
configurations for second-harmonic generation in LiNbO3 with a fundamental wave at
1.10 µm. The ordinary and extraordinary refractive indices of LiNbO3 as a function of
wavelength and temperature are given by

n2
o = 4.9130 + 0.1173 + 1.65 × 10−8T 2

λ2 − (0.212 + 2.7 × 10−8T 2)2
− 0.0278λ2, (9.92)

n2
e = 4.5567 + 2.605 × 10−7T 2

+ 0.0970 + 2.70 × 10−8T 2

λ2 − (0.201 + 5.4 × 10−8T 2)2
− 0.0224λ2, (9.93)

where λ is the optical wavelength in micrometers and T is the temperature in kelvins.
Use the data in Example 9.8 to find the polarization directions of the interacting waves,
the phase-matching temperature, and the effective nonlinear susceptibility for each
type.

Solution For type I phase matching, the fundamental is an ordinary wave with êω =
êo, and the second harmonic has to be an extraordinary wave with ê2ω = êe. The tem-
perature, T I

PM, for 90◦ type I phase matching is found by solving ne
2ω(T I

PM) = no
ω(T I

PM).
Using the relations given in (9.92) and (9.93), we find the phase-matching temperature
to be T I

PM = 396.7 K, or 123.7 ◦C. Because θPM = 90◦ for 90◦ phase matching, we find
from Example 9.8 that d I

eff = d31 = −4.4 pm V−1 and χ I
eff = χ

(2)
31 = −8.8 pm V−1.
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Because χ I
eff does not depend on angle φ in this situation, the value of φ can be chosen

arbitrarily.
For type II phase matching, the fundamental is required to have both ordinary and

extraordinary components, and the second harmonic is an extraordinary wave with
ê2ω = êe. The temperature, T II

PM, for 90◦ type II phase matching is found by solving
ne

2ω(T II
PM) = (no

ω(T II
PM) + ne

ω(T II
PM))/2. Using the relations given in (9.92) and (9.93), we

find that there is no solution for T II
PM. Therefore, 90◦ type II phase matching is not

possible for second-harmonic generation in LiNbO3 at a fundamental wavelength of
1.10 µm. Combining this finding and that in Example 9.8, we find that type II phase
matching is simply not possible for second-harmonic generation in LiNbO3 at 1.10 µm
fundamental wavelength.

As demonstrated above in Fig. 9.12, birefringent type II phase matching in LiNbO3

is possible for parametric generation at certain wavelengths. However, 90◦ type II phase
matching in LiNbO3, and in any other crystal of 3m symmetry alike, is useless anyway
because χ II

eff = 0 for θ = 90◦, as discussed in the text above and can be seen from (9.88).
For 90◦ collinear phase matching, there is no walk-off between Sω and S2ω because

Sω ‖ kω ‖ k2ω ‖ S2ω. In this situation, the interaction is not limited by an aperture length
because la = ∞ effectively.

Quasi-phase matching

A very different phase-matching technique involves the introduction of a periodic modu-
lation in a nonlinear medium. This approach is known as quasi-phase matching because
phase mismatch is not eliminated within each modulation period but is compensated
periodically. In principle, the periodic modulation can be on either the linear or the
nonlinear susceptibility of the medium. In practice, however, modulating the linear
susceptibility is less efficient than modulating the nonlinear susceptibility.

The principle of quasi-phase matching can be understood intuitively by following the
discussions in Section 9.4 on the physical significance of the phase ϕ given in (9.67).
The existence of a phase mismatch �k leads to a change of the phase ϕ by an amount
of π over a coherence length, resulting in a change of sign in sin ϕ and a reversal of
the direction of energy flow in a parametric process. If the nonlinear susceptibility is
periodically modulated such that a phase ϕχ = π is introduced over each coherence
length, the total phase ϕ is reset to its initial value so that the reversal of the process is
prevented. Then energy can continue to flow in the desired direction. The simplest and
most effective approach to implementing such a periodic modulation is to change the
sign ofχ(2) periodically, as illustrated in Fig. 9.14(a). In ferroelectric nonlinear crystals,
such as LiNbO3, LiTaO3, and KTP, the periodic sign change in χ(2) can be achieved by
periodic poling with an external electric field for periodic ferroelectric domain reversal.
Periodically poled LiNbO3 (PPLN) and periodically poled KTP (PPKTP) are of great
interest.
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(a) (b)

(c)

Figure 9.14 Structures with periodic sign reversal of the nonlinear susceptibility for quasi-phase
matching: (a) first-order structure with a 50% duty factor, (b) general structure with a duty factor of
ξ , and (c) fanned structure for wavelength tuning. Also shown in (a) and (b) is the growth of the
second-harmonic intensity with quasi-phase matching, solid curves, as a function of propagation
distance when a first-order structure with � = 2lcoh is used for second-harmonic generation. Shown
for comparison, dashed curves, is the second-harmonic intensity without quasi-phase matching.
The plus and minus signs refer to the sign of χ (2) in each region.

Any periodic modulation can be viewed as a grating. Therefore, the effect of a perio-
dically modulated nonlinear susceptibility can be formally analyzed with a procedure
similar to that used in the analysis of grating couplers in Section 5.1. In the presence
of a periodic spatial modulation, the effective susceptibility defined in (9.59) becomes



493 9.5 Phase matching

a periodic function of z. It can be expressed in terms of a Fourier series expansion
as

χeff(z) =
∑

q

χeff(q)eiq K z, (9.94)

where K = 2π/�, � is the modulation period, and

χeff(q) = 1

�

�∫
0

χeff(z)e−iq K zdz. (9.95)

By substituting χeff(z) of (9.94) for χeff in (9.60), we have

dE3

dz
= iω2

3

c2k3,z
E1E2

∑
q

χeff(q)ei(�k+q K )z

≈ iω2
3

c2k3,z
χQE1E2ei�kQz, (9.96)

where

χQ = χeff(q) (9.97)

and

�kQ = �k + q K (9.98)

for an integer q that minimizes the value of |�k + q K |. The other two coupled paramet-
ric equations in (9.61) and (9.62) can also be transformed in a similar manner. Therefore,
all of the results obtained for parametric interactions discussed in the preceding section
are still valid in the case of quasi-phase matching after making the substitution of χQ

and �kQ for χeff and �k, respectively.
Perfect quasi-phase matching is achieved when �kQ = 0. This happens when the

modulation period is chosen to be

� = −q
2π

�k
= |q| · 2lcoh. (9.99)

Therefore, first-order quasi-phase matching occurs when � = 2lcoh for q = 1 or −1.
Quasi-phase matching at a high order is also possible.

When designing a periodic structure for quasi-phase matching, it is important to
maximize the value of χQ to obtain the best efficiency for an interaction. In principle,
any periodic structure is potentially useful. The simplest structure is one in which the
sign of the nonlinear susceptibility is periodically reversed at abrupt boundaries. It is
efficient and easy to fabricate. For such a structure with a duty factor ξ , as shown in
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Fig. 9.14(b), we find that

χQ = 1

�


 ξ�∫

0

χeffe
−iq K zdz −

�∫
ξ�

χeffe
−iq K zdz




= 2χeff
sin ξqπ

qπ
e−iξqπ , (9.100)

which has a form similar to the coupling coefficient of a square grating found in (5.18).
Note that the optimum value for the duty factor ξ depends on the order q of a structure.
Clearly, a first-order structure with a 50% duty factor (ξ = 1/2), which is shown in
Fig. 9.14(a), has the largest effective nonlinear susceptibility:

|χQ| = 2

π
|χeff|. (9.101)

For a given interaction, |χQ| is always small than |χeff|.
It seems that an interaction with birefringent phase matching is always more ef-

ficient than that with quasi-phase matching. This is not true, however. In an inter-
action with birefringent phase matching, χeff is subject to the constraints imposed
by the phase-matching configuration on the propagation direction and the polariza-
tions of the interacting waves. Therefore, other than choosing a proper angle φ for the
wave propagation direction and considering the difference between type I and type II
phase-matching methods, there is little freedom in maximizing the effective nonlin-
ear susceptibility when using birefringent phase matching. Quasi-phase matching is
not subject to such constraints because it depends on an externally imposed structure,
rather than intrinsic material properties, for phase matching. Therefore, there is much
freedom in seeking a high susceptibility in an interaction with quasi-phase matching.
For example, for LiNbO3, |χ (2)

22 | < |χ (2)
31 | ≈ |χ (2)

33 |/6. From Examples 9.8 and 9.10, we
find that |χ I

eff| < (|χ (2)
31 |2 + |χ (2)

22 |2)1/2 and |χ II
eff| < |χ (2)

31 | for type I and type II bire-
fringent phase matching in LiNbO3, respectively. With birefringent phase matching, it
is not possible to exploit the largest nonlinear susceptibility element χ

(2)
33 in LiNbO3

because χ
(2)
33 can be used only when all of the interacting waves are polarized along

the extraordinary principal axis. In contrast, with quasi-phase matching, all of the in-
teracting waves can be polarized along the extraordinary axis so that χeff = χ

(2)
33 . If a

first-order periodic modulation with a 50% duty factor is used for quasi-phase match-
ing to compensate for the phase mismatch among the extraordinary waves, we have
|χQ| = 2|χeff|/π = 2|χ (2)

33 |/π , which is about four times the value of |χeff| for the most
efficient interaction with type I or type II birefringent phase matching.

From the above discussions, it is clear that one important advantage of quasi-phase
matching is that it makes possible efficient nonlinear interactions for which birefringent
phase matching is not possible. Nonlinear interactions in nonbirefringent nonlinear
materials, such as III–V semiconductors, can also be phase matched with quasi-phase
matching. The polarization directions of the interacting waves are not restricted in



495 9.5 Phase matching

quasi-phase matching as they are in birefringent phase matching. This flexibility allows
a collinear interaction within the transparency range of a nonlinear material to be
noncritically phase matched with no beam walk-off at any temperature. High efficiency
is possible by arranging the polarization directions of the waves for an interaction to
use the largest susceptibility element of a nonlinear crystal. For wavelength tuning,
the modulation period � has to be varied. With a fanned structure such as that shown
in Fig. 9.14(c), continuous wavelength tuning can be accomplished by translating the
crystal transversely through the beam path.

EXAMPLE 9.11 A PPLN crystal is used for second-harmonic generation of a fundamental
beam at 1.10 µm wavelength. Find the required grating period for quasi-phase matching
and the largest effective nonlinear susceptibility available for this interaction.

Solution The largest nonlinear susceptibility element of LiNbO3 is d33 =
−25.2 pm V−1, thus χ

(2)
33 = 2d33 = −50.4 pm V−1. From the above discussions in

the text, we know that both fundamental and second-harmonic waves have to be ex-
traordinary waves polarized in the z direction in order to obtain the largest value of
|χQ| for a PPLN crystal. Therefore, we have to take ne

ω = 2.1536 for the fundamental
wave at λ = 1.10 µm and ne

2ω = 2.2260 for the second harmonic at λ/2 = 550 nm
to calculate the phase mismatch �k and the coherence length lcoh as in case (b) of
Example 9.7:

lcoh = π

|�k| = λ

4|ne
ω − ne

2ω| = 1.10 × 10−6

4 × |2.1536 − 2.2260| m = 3.80 µm.

From the discussions following (9.100), we know that the largest value for |χQ| is that
given in (9.101) obtained with a first-order structure with a 50% duty factor. Therefore,
the required grating period is

� = 2lcoh = 7.60 µm

for |q| = 1, and the effective nonlinear susceptibility is

|χQ| = 2

π
|χ (2)

33 | = 32.08 pm V−1

or, equivalently, |dQ| = 16.04 pm V−1.
In this scheme of quasi-phase matching, Sω ‖ kω ‖ k2ω ‖ S2ω because both funda-

mental and second-harmonic fields are polarized along the principal z axis. Therefore,
there is no walk-off between Sω and S2ω. This interaction is not limited by an aperture
length, which is effectively la = ∞.
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9.6 Optical frequency converters

A very important class of nonlinear optical devices is the optical frequency converters.
Nonlinear optical frequency conversion is the only means for direct conversion of
optical energy from one frequency to another. Indeed, the discipline of nonlinear optics
was born out of the first observation of second-harmonic generation in 1961.

There are basically two types of nonlinear optical frequency converters. The majority
are based on parametric processes, particularly the parametric second-order processes,
that require phase matching. Sum-frequency generators, difference-frequency gener-
ators, harmonic generators, and parametric amplifiers and oscillators belong to this
type. Devices that use the nonparametric third-order processes of stimulated Raman
or Brillouin scattering to shift the optical frequency are the other type. In this section,
we consider only those based on parametric processes. Devices based on stimulated
Raman or Brillouin scattering are discussed in Section 9.9.

Sum-frequency generators

The basic function of a sum-frequency generator is the generation of an optical wave
at a high frequency, ω3, by mixing two optical waves at low frequencies, ω1 and ω2,
as schematically shown in Fig. 9.1(a). The general application of a sum-frequency
generator is straightforward. It is most often used to obtain, through mixing available
optical waves at long wavelengths, a coherent optical beam at a desired short wave-
length that is not readily available from other sources. If one of the two input waves is
tunable in wavelength, a wavelength-tunable sum-frequency output wave is obtained.
For example, a wavelength-tunable optical beam in the ultraviolet spectral region can
be obtained with a sum-frequency generator that mixes the output of a tunable laser in
the visible spectral region with that of another laser at a fixed wavelength also in the
visible spectral region.

The process of sum-frequency generation is generally described by the coupled equa-
tions in (9.60)–(9.62) with the condition that E1(0) �= 0 and E2(0) �= 0 but E3(0) = 0 at
the input surface, z = 0, of a nonlinear crystal. The general solutions to these coupled
equations can be found in terms of the Jacobi elliptic functions. However, simpler,
and often more useful, solutions can be found for specific experimental conditions of
interest.

The simplest situation is when the efficiency of a sum-frequency generator is low
so that the intensities of both input waves at ω1 and ω2 are not depleted significantly
throughout the interaction. We can then assume E1 and E2 to be independent of z, ignore
(9.61) and (9.62) in the coupled equations, and integrate (9.60) directly to find E3(z).
Using the relation in (9.63) for light intensity, we find that, in the low-efficiency limit,
the intensity of the wave at the sum frequency as a function of the interaction length l
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Figure 9.15 Effect of phase mismatch on the efficiency of sum-frequency generation in the
low-efficiency limit.

can be expressed as

I3(l) = ω2
3|χeff|2

2c3ε0n1,zn2,zn3,z
I1 I2l2 sin2(�kl/2)

(�kl/2)2

= 8π2|deff|2
cε0n1,zn2,zn3,zλ

2
3

I1 I2l2 sin2(�kl/2)

(�kl/2)2
, (9.102)

where deff = χeff/2, and λ3 = 2πc/ω3 is the wavelength of the sum-frequency wave in
free space. In the case of quasi-phase matching, χeff and deff in (9.102) are replaced by
χQ and dQ, respectively.

The effect of phase mismatch is characterized by a function of the form

I3

I PM
3

= sin2(�kl/2)

(�kl/2)2
, (9.103)

which is plotted in Fig. 9.15. When �k �= 0, it does not pay to have a crystal longer
than the coherence length of the interaction, as discussed in the preceding section
and as illustrated in Fig. 9.8(c) (see Problem 9.6.1). When perfect phase matching
is accomplished, the intensity of the sum-frequency wave grows quadratically with
interaction length as I3 = I PM

3 ∝ l2/λ2
3.

We see from (9.102) that I3 ∝ |deff|2 I1 I2 in the low-efficiency limit. Therefore, if the
purpose of an application is to produce a significant intensity for the sum-frequency
wave, the two input waves need to have high and comparable intensities.

In the above, we have assumed that the interacting waves are perfect plane waves.
In reality, each optical beam has a finite cross section and a nonuniform intensity
distribution. This and other spatial effects have to be carefully considered in a detailed
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analysis of a sum-frequency generation process, as well as in that of any other nonlinear
process to be discussed later. Without carrying out such an analysis, we point out the
important, yet easily understood, fact that interaction between two or more optical
beams takes place only in the area where those beams overlap spatially and, if the beams
are optical pulses, also temporally. Therefore, in terms of optical power, I1, I2, and I3 in
(9.102) have to be replaced by P1/A1, P2/A2, and P3/A3, respectively, where Pq is the
total power of the wave at the frequency ωq and Aq is its effective cross-sectional area.
In the low-efficiency limit, we then have P3 ∝ |deff|2 P1 P2A3/A1A2. It is important to
realize that A3 ≤ min(A1,A2) because the sum-frequency wave is generated only in
the area where the two input waves overlap.

We thus arrive at the following conclusions: (1) to maximize the efficiency of sum-
frequency generation with two input waves at given power levels, it is important to
collimate these two beams to the same cross-sectional area and to have them overlap
uniformly so thatA3 is maximized; (2) it is possible to increase the conversion efficiency
by focusing the input waves to reduceA1 andA2 simultaneously so long as the effective
interaction length is not reduced due to the increased divergence of the focused beams;
(3) it does not pay to just focus one input beam or to focus the two input beams unevenly
because doing so results in a corresponding reduction in A3.

Difference-frequency generators

By mixing two optical waves, taken to be at ω3 and ω1, respectively, a difference-
frequency generator produces a third optical wave at the difference frequency ω2 =
ω3 − ω1, as schematically shown in Fig. 9.2(a). Difference-frequency generators are
the simplest devices for the generation of coherent infrared radiation, particularly the
radiation in the mid to far infrared region where efficient laser materials are rare. For
this purpose, both input waves can be in the visible region, or one in the visible and
another in the near infrared region, where many efficient lasers sources are available.
Wavelength-tunable infrared radiation can be obtained if one of the input waves is from
a wavelength-tunable source.

The equations for the description of the difference-frequency generation process are
also those given in (9.60)–(9.62), but the boundary conditions are E3(0) �= 0, E1(0) �= 0,
and E2(0) = 0 at the input surface of a nonlinear crystal. Similarly to the case of sum-
frequency generation, general solutions of the coupled equations with the boundary
conditions for difference-frequency generation can be found in terms of elliptic func-
tions. However, also similarly to the case of sum-frequency generation, simple solutions
under special situations are often more useful.

In the low-efficiency limit, depletion of the intensities of the two input waves is
negligible. By taking the two input fields, E3 and E1, to be independent of z, (9.61)
can be integrated directly for field E2(z) at the difference frequency ω2. The following
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solution for the intensity of the difference-frequency wave is found:

I2(l) = ω2
2|χeff|2

2c3ε0n1,zn2,zn3,z
I3 I1l2 sin2(�kl/2)

(�kl/2)2

= 8π2|deff|2
cε0n1,zn2,zn3,zλ

2
2

I3 I1l2 sin2(�kl/2)

(�kl/2)2
, (9.104)

where λ2 = 2πc/ω2 is the wavelength of the difference-frequency wave in free space.
In the case of quasi-phase matching, χeff and deff in (9.104) are replaced by χQ and dQ,
respectively.

The relation in (9.104) has the same form as that in (9.102). The effect of phase
mismatch is also that shown in Fig. 9.15. With perfect phase matching, I2 = I PM

2 ∝
l2/λ2

2. To produce a significant intensity for the difference-frequency wave, it is also
desirable to have two strong input waves with comparable intensities because I2 ∝
|deff|2 I3 I1. In terms of optical power, we have P2 ∝ |deff|2 P3 P1A2/A3A1, where A2 ≤
min(A3,A1). Therefore, in the low-efficiency limit, the wave produced by a difference-
frequency generator has the same general characteristics as discussed for the wave
produced by a sum-frequency generator.

One word of caution in the application of a difference-frequency generator goes to the
generation of far infrared radiation. When the wavelength of the difference-frequency
wave in the far infrared region becomes comparable to, or even larger than, one of the
cross-sectional beam diameters of the input waves, the diffraction effect of the long-
wavelength difference-frequency wave becomes significant. As a result, the relation in
(9.104) is no longer valid. Instead, spatially nonuniform distribution of the difference-
frequency wave caused by this diffraction has to be considered though the total power
integrated over the entire cross section of the difference-frequency wave is not changed
by the diffraction effect.

Second-harmonic generators

By far the most widely used nonlinear optical devices are the second-harmonic gen-
erators. An optical harmonic generator produces an optical wave at a frequency that
is an integral multiple of the frequency of the input wave. A second-harmonic gener-
ator produces a wave at double the frequency of the input wave; thus it is also called
an optical frequency doubler. In the application of a second-harmonic generator, only
two optical waves are involved in the interaction: one input wave at the fundamental
frequency of ω and a nonlinearly generated wave at the second-harmonic frequency of
2ω, as schematically illustrated in Fig. 9.1(b).

Following a procedure similar to that leading to the coupled equations of
(9.60)–(9.62), we find the following two coupled equations for second-harmonic
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generation:

dE2ω

dz
= i(2ω)2

2c2k2ω,z
χeffE2

ωei�kz = iω

cn2ω,z
χeffE2

ωei�kz, (9.105)

dEω

dz
= iω2

c2kω,z
χ∗

effE2ωE∗
ωe−i�kz = iω

cnω,z
χ∗

effE2ωE∗
ωe−i�kz, (9.106)

where χeff = ê∗
2ω · χ(2)(2ω = ω + ω) : êωêω = êω · χ(2)(ω = 2ω − ω) : ê∗

2ωêω and
�k = 2kω − k2ω = �kẑ. Using the relation in (9.63), we find that (9.105) and
(9.106) lead to the following relation for the intensities of the fundamental and the
second-harmonic waves:

dI2ω

dz
= −dIω

dz
= − 2ω|χeff|

(2c3ε0n2
ω,zn2ω,z)1/2

Iω I 1/2
2ω sin ϕ, (9.107)

where ϕ = ϕχ + 2ϕω − ϕ2ω + �kz. Therefore, we find the following Manley–Rowe
relations for second-harmonic generation that involves only two optical beams:

dI

dz
= d(Iω + I2ω)

dz
= 0 (9.108)

and

d

dz

(
Iω
ω

)
= −2

d

dz

(
I2ω

2ω

)
. (9.109)

As expected, two photons at the fundamental frequency are annihilated to create each
photon at the second-harmonic frequency.

In the low-efficiency limit, depletion of the intensity of the fundamental beam can
be neglected. Then, (9.105) can be integrated directly for E2ω(z) by taking Eω to be
independent of z. The result, expressed in terms of second-harmonic intensity as a
function of interaction length, is

I2ω(l) = ω2|χeff|2
2c3ε0n2

ω,zn2ω,z
I 2
ωl2 sin2(�kl/2)

(�kl/2)2

= 8π2|deff|2
cε0n2

ω,zn2ω,zλ2
I 2
ωl2 sin2(�kl/2)

(�kl/2)2
, (9.110)

where λ = 2π/ω is the wavelength of the fundamental wave in free space. In the low-
efficiency limit, I2ω ∝ |deff|2 I 2

ω, or P2ω ∝ |deff|2 P2
ωA2ω/A2

ω, where Aω and A2ω are the
effective cross-sectional areas of the fundamental and second-harmonic beams, respec-
tively, and A2ω ≤ Aω due to the nonlinear nature of the second-harmonic generation
process.

Perfect phase matching is required if a high efficiency for second-harmonic gen-
eration is desired. In addition, according to the discussions in Section 9.4, it is also
necessary to have ϕ = −π/2. This condition is automatically satisfied if perfect phase
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matching is accomplished and if the input consists of only the fundamental wave
because, without any coherent second-harmonic field at the input, only the second-
harmonic field that has the most favorable phase is generated and subsequently am-
plified. The Manley–Rowe relation in (9.108) states that the total intensity of the fun-
damental and second-harmonic waves remains constant throughout the interaction:
I = Iω + I2ω = Iω(0) for I2ω(0) = 0. Under these conditions, (9.107) leads to

dI2ω

dz
= 2ω|χeff|

(2c3ε0n3
ω,z)1/2

[Iω(0) − I2ω]I 1/2
2ω . (9.111)

Note that with perfect phase matching, nω,z = n2ω,z . By making the change of variable
u2 = I2ω/Iω(0) and by using the fact that u = tanh κz is the solution of the equation
du/dz = κ(1 − u2), we can solve (9.111) to obtain the following general results for
second-harmonic generation with perfect phase matching:

I2ω(l) = Iω(0) tanh2 κl, (9.112)

Iω(l) = Iω(0) sech2κl, (9.113)

where

κ =
[

ω2|χeff|2
2c3ε0n3

ω,z

Iω(0)

]1/2

=
[

8π2|deff|2
cε0n3

ω,zλ
2

Iω(0)

]1/2

. (9.114)

These results are plotted in Fig. 9.16. With perfect phase matching, it is theoretically
possible to convert all of the fundamental power to the second harmonic if the interaction
length is sufficiently long. In the case of quasi-phase matching, χeff and deff in (9.114)
are replaced by χQ and dQ, respectively.

Figure 9.16 Intensities of the fundamental and second-harmonic waves, normalized to the total
intensity, as a function of interaction length in a second-harmonic generator with perfect phase
matching.
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The conversion efficiency of a second-harmonic generator is commonly defined as

ηSH = P2ω(l)

Pω(0)
. (9.115)

In the low-efficiency limit with perfect phase matching,

ηSH = 8π2|deff|2
cε0n3

ω,zλ
2

A2ω

A2
ω

Pω(0)l2. (9.116)

Because ηSH in the low-efficiency limit is linearly proportional to the fundamental
power, it is convenient to define a normalized second-harmonic conversion efficiency
as

η̂SH = ηSH

Pω(0)
= 8π2|deff|2

cε0n3
ω,zλ

2

A2ω

A2
ω

l2. (9.117)

There is a relation betweenA2ω andAω that depends on the cross-sectional profile of the
fundamental beam. For example, A2ω = Aω/2 if the beam has a Gaussian profile, but
A2ω = Aω if the beam has a uniform profile. We see from (9.117) that the conversion
efficiency can be raised by focusing the fundamental beam to reduce its cross-sectional
area, provided that the beam remains well collimated. Focusing the beam too tightly
increases the beam divergence, thus reducing its intensity outside the Rayleigh range
from the beam waist. In addition, the conversion efficiency can be reduced by any
walk-off between the interacting beams.

The second-harmonic generation efficiency of a focused Gaussian beam is a func-
tion of three characteristic lengths: the crystal length l, the confocal parameter
b = 2πnw2

0/λ, and the aperture length la = π1/2w0/ρ defined in (9.90). For b � l and
la � l, the dependence of η̂SH on l2 seen in (9.117) is valid, and η̂SH can be expressed
in the following form:

η̂SH = ηSH

Pω(0)
= 16π2|deff|2

cε0n2
ω,zλ

3

l2

b
. (9.118)

For b < l < 10b or la < l, (9.117) and (9.118) are not valid, but the conversion effi-
ciency can be approximated by

η̂SH = ηSH

Pω(0)
= 16π2|deff|2

cε0n2
ω,zλ

3

1.068l

1 + lb/ l2
a

. (9.119)

We see that if lb � l2
a , the conversion efficiency is independent of crystal length as

ηSH ∝ l2
a /b in this situation. The best efficiency that can be obtained with an optimally

focused Gaussian beam is

η̂SH = ηSH

Pω(0)
= 16π2|deff|2

cε0n2
ω,zλ

3
(1.068l), (9.120)

which occurs under the conditions of no walk-off so that la = ∞ and l = 2.84b. We see
that, with the fundamental beam optimally focused for the best efficiency, the conversion
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efficiency increases only linearly with crystal length but the focused beam waist spot
area has to vary linearly with crystal length to maintain this optimum condition. Note
that in the case of quasi-phase matching, deff that appears in the expressions of ηSH and
η̂SH given in (9.116)–(9.120) has to be replaced by dQ.

We also see that the conversion efficiency increases linearly with an increase in the
input power of the fundamental beam. This statement is true as long as we stay in the
low-efficiency limit so that depletion of the fundamental beam is negligible. In the high-
efficiency regime, conversion efficiency increases sublinearly with the input power of
the fundamental beam. According to (9.112), it is theoretically possible to have 100%
conversion efficiency for second-harmonic generation if the input power is sufficiently
high and the interaction length is sufficiently large. However, the conversion efficiency
of a practical device is usually limited by the damage threshold of a nonlinear crystal,
as well as by many complicated spatial and temporal effects.

For many practical applications, it is often necessary to generate the third harmonic
or the fourth harmonic of a fundamental wave. As discussed in Section 9.3, the third har-
monic can be generated with a parametric third-order nonlinear process characterized
by χ(3)(3ω = ω + ω + ω), However, a third-harmonic generator using a third-order
nonlinear process is of little practical usefulness for two reasons: (1) the value of χ (3),
though always nonvanishing, is orders of magnitude smaller than the value of χ (2) of
any commonly used nonlinear crystals; (2) phase matching is very difficult for such a
process. In practice, efficient third-harmonic generation is normally carried out by fol-
lowing second-harmonic generation with sum-frequency generation for ω + 2ω → 3ω,
as shown in Fig. 9.17(a). Similarly, fourth-harmonic generation is accomplished by cas-
cading two second-harmonic generators by first doubling ω and then doubling 2ω to
obtain 4ω, as shown in Fig. 9.17(b). These possibilities are already demonstrated in
Example 9.4.

EXAMPLE 9.12 In this example, we consider the second-harmonic conversion efficiency
with a focused Gaussian beam at λ = 1.10 µm in LiNbO3 under different phase-
matching conditions discussed in Examples 9.8–9.11. Perfect phase matching is as-
sumed for each case, with �kQ = 0 in the case of quasi-phase matching. The funda-
mental beam is focused to have its beam waist located at the center of a crystal of
l = 1 cm length. (a) With angle phase matching as described in Example 9.8, what is
the normalized efficiency η̂SH if the beam is focused to have a beam waist radius of
w0 = 50 µm? (b) With 90◦ phase matching by temperature tuning as described in Ex-
ample 9.10, what is η̂SH for w0 = 50 µm? (c) With 90◦ phase matching, the conversion
efficiency can be increased by optimum focusing. What is the optimum beam waist
radius for this purpose? What is the best conversion efficiency? (d) With quasi-phase
matching in a PPLN crystal as described in Example 9.11, what is the best attainable
conversion efficiency?
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(a)

(b)

Figure 9.17 (a) A third-harmonic generator consisting of a second-harmonic generator (SHG) and
a sum-frequency generator (SFG) in cascade. (b) A fourth-harmonic generator consisting of two
second-harmonic generators in cascade.

Solution (a) With type I angle phase matching, we have |deff| = 4.88 pm V−1 and
nω,z = no

ω = 2.2319 from Example 9.8. With w0 = 50 µm and λ = 1.10 µm, we find
that la = 4.54 mm from Example 9.9 and that b = 3.19 cm. Because la < l, (9.119)
has to be used to estimate the efficiency. Because lb � l2

a , we find that

η̂SH ≈ 16π2|deff|2(1.068l2
a )

cε0n2
ω,zλ

3b

= 16π2 × (4.88 × 10−12)2 × 1.068 × (4.54 × 10−3)2

3 × 108 × 8.85 × 10−12 × 2.23192 × (1.10 × 10−6)3 × 3.19 × 10−2
W−1

= 0.015% W−1.

(b) With 90◦ type I phase matching, we have |deff| = 4.4 pm V−1, nω,z = no
ω =

2.2321 at T = 396.7 K, and la = ∞ from Example 9.10. With w0 = 50 µm, λ =
1.10 µm, and n = 2.2321, we still have b = 3.19 cm. In this case, (9.118) is valid
because b > 3l and la � l. Therefore, we find that

η̂SH = 16π2|deff|2l2

cε0n2
ω,zλ

3b

= 16π2 × (4.4 × 10−12)2 × (1 × 10−2)2

3 × 108 × 8.85 × 10−12 × 2.23212 × (1.10 × 10−6)3 × 3.19 × 10−2
W−1

= 0.054% W−1.

We see that the conversion efficiency is 3.6 times that found in (a) by using 90◦ phase
matching to eliminate the walk-off effect.
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(c) In the absence of walk-off for 90◦ phase matching, the best efficiency can be
obtained by making b = l/2.84 = 3.52 mm, which can be accomplished by focusing
the fundamental beam to the following beam waist radius:

w0 =
(

λb

2πn

)1/2

=
(

1.10 × 10−6 × 3.52 × 10−3

2π × 2.2321

)1/2

m = 16.6 µm.

The efficiency is found by using (9.120) to be

η̂SH = 16π2|deff|2
cε0n2

ω,zλ
3

(1.068l)

= 16π2 × (4.4 × 10−12)2 × 1.068 × 1 × 10−2

3 × 108 × 8.85 × 10−12 × 2.23212 × (1.10 × 10−6)3
W−1

= 0.186% W−1.

We see that this efficiency is more than three times that found in (b) by optimally
focusing the beam in the absence of walk-off.

(d) Because there is no walk-off in the case of quasi-phase matching in a PPLN
crystal described in Example 9.11, we can still take b = l/2.84 = 3.52 mm. Because
nω,z = ne

ω = 2.1536 and ne
2ω = 2.2260 in this situation, we find that w0 = 16.9 µm,

which is slightly larger than that found in (c). The best efficiency is still found by
using (9.120) but with |deff| replaced by |dQ| = 16.04 pm V−1 found in Example 9.11.
Therefore,

η̂SH = 16π2|dQ|2
cε0nω,zn2ω,zλ3

(1.068l)

= 16π2 × (16.04 × 10−12)2 × 1.068 × 1 × 10−2

3 × 108 × 8.85 × 10−12 × 2.1536 × 2.2260 × (1.10 × 10−6)3
W−1

= 2.56% W−1.

This conversion efficiency is about 14 times that found in (c) because quasi-phase
matching using a PPLN crystal allows us to take advantage of the largest nonlinear
susceptibility element d33 of LiNbO3.

This example illustrates how the efficiency of a second-harmonic generator can be
substantially increased by a combination of optimization procedures. Further increase of
efficiency is possible using a waveguide structure, as illustrated later in Example 9.23, or
by using short optical pulses to increase the peak intensity at a given average power level.
The same techniques can be applied generally to other nonlinear frequency converters
discussed in this section for increasing their conversion efficiencies.

Optical parametric frequency converters

The function of an optical parametric frequency converter is the conversion of a
signal-carrying optical wave from one carrier frequency to another through parametric
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up-conversion or parametric down-conversion. Parametric up-conversion is a special
case of sum-frequency generation with the objective of converting a signal-carrying
optical wave at a low frequency, typically in the mid or far infrared region, where
sensitive detectors are not available, to an optical wave carrying the same signal at a
frequency in the visible region, where efficient detection can be easily made. Parametric
down-conversion is a special case of difference-frequency generation in which a signal-
carrying optical wave at a high frequency, often in the ultraviolet region, is converted
to one at a low frequency in the visible or the infrared region. The signal-carrying input
wave, which is called the signal, is generally very weak in comparison to the other
input wave, which is called the pump. In the following analysis, the strong pump wave
is taken to be at ω2. The signal is taken to be at ω1 for up-conversion and is taken to be
at ω3 for down-conversion. The relation ω3 = ω1 + ω2 applies to both cases.

Because the pump is much stronger than the signal, the intensity of the pump can
be considered to be constant though that of the signal is not. As a result, we have the
following coupled equations for parametric conversion processes:

dE3

dz
= i

(
ω2

3

c2k3,z
χeffE2

)
E1ei�kz = iκ31E1ei�kz, (9.121)

dE1

dz
= i

(
ω2

1

c2k1,z
χ∗

effE∗
2

)
E3e−i�kz = iκ13E3e−i�kz. (9.122)

These two equations have the form of the coupled equations of (4.57) and (4.58), which
are solved in Section 4.3. Because the signal is normally weak in the application of
a parametric converter, a high conversion efficiency is most desirable. Therefore, the
device is normally used under the condition of perfect phase matching (see Problem
9.6.8).

For up-conversion, the boundary conditions are E1(0) �= 0 and E3(0) = 0. The solu-
tions under the condition of perfect phase matching are

E1(l) = E1(0) cos κl, (9.123)

E3(l) = iκ31

κ
E1(0) sin κl, (9.124)

where

κ = (κ31κ13)1/2 =
(

ω1ω3|χeff|2
2c3ε0n1,zn2,zn3,z

I2

)1/2

=
(

8π2|deff|2
cε0n1,zn2,zn3,zλ1λ3

I2

)1/2

. (9.125)

In the case of quasi-phase matching, χeff and deff in (9.125) are replaced by χQ and dQ,
respectively.

The schematic diagram of an optical parametric up-converter is shown in Fig. 9.18(a).
For a parametric up-converter with perfect phase matching, the intensities of the three
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(a) (b)

Figure 9.18 (a) Schematics of an optical parametric up-converter. (b) Intensity variations of the
interacting optical waves as a function of interaction length. The pump wave is at ω2. The signal
wave is at ω1 for up-conversion.

interacting beams vary with interaction length as

I3(l) = ω3

ω1
I1(0) sin2 κl, (9.126)

I1(l) = I1(0) cos2 κl, (9.127)

I2(l) = I2(0) − ω2

ω1
I1(0) sin2 κl ≈ I2(0). (9.128)

Figure 9.18(b) illustrates these intensity variations. Complete up-conversion of the
signal occurs at an interaction length of lPM

c = π/2κ , as expected of phase-matched
codirectional coupling. The value of this length can be varied by varying the pump
intensity because the value of κ depends on that of I2. Note that when the signal
intensity is completely depleted by up-conversion, the intensity of the sum-frequency
wave reaches a maximum value of I max

3 = I1(0)ω3/ω1 > I1(0) because the total number
of sum-frequency photons that are created is equal to the total number of signal photons
that are annihilated.

Parametric down-conversion is simply the reverse process of up-conversion, and
vice versa. The same parametric converter can function as either an up-converter or a
down-converter. The only difference is the initial conditions at the input. If the initial
conditions are E1(0) = 0 and E3(0) �= 0, the device functions as a down-converter.
In Fig. 9.18, we see clearly that when the intensity of the wave at ω1 is completely
depleted, for example, at a distance of l = lPM

c , further interaction in the parameter
converter leads to down-conversion from the wave at ω3 back to the wave at ω1.
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Optical parametric amplifiers

The physical process involved in an optical parametric amplifier, commonly called
an OPA, is basically the same as that in a difference-frequency generator. The only
difference is in the usage of the device. In either case, there are two input waves at ω1

and ω3. While the usage of a difference-frequency generator is for generation of a wave
at the difference frequency ω2 = ω3 − ω1, that of an OPA is for amplification of the
input wave at ω1. The wave at the difference frequency ω2 is still generated in an OPA
though it is not the purpose of this application. Therefore, the high-frequency input
wave at ω3 is called the pump wave, the low-frequency input wave at ω1 is called the
signal wave, and the side product at ω2 is called the idler wave, as shown in Fig. 9.19(a).

Normally the pump wave of an OPA is much stronger than the signal wave and can
be considered constant throughout the interaction. Therefore, only (9.61) and (9.62)
have to be considered, and the initial conditions are E1(0) �= 0 and E2(0) = 0. We have
the following coupled equations:

dE1

dz
= i

(
ω2

1

c2k1,z
χ∗

effE3

)
E∗

2e−i�kz = iκ12E∗
2e−i�kz, (9.129)

dE∗
2

dz
= i

(
− ω2

2

c2k2,z
χeffE∗

3

)
E1ei�kz = iκ21E1ei�kz, (9.130)

where (9.130) is obtained by taking the complex conjugate of (9.62). Again, these two
coupled equations have the form of the coupled equations of (4.57) and (4.58), and the
solutions in Sections 4.3 can be applied directly. For efficient parametric amplification,
phase matching is required. By identifying βc = (κ12κ21)1/2 = iκ in the case of perfect

(a) (b)

Figure 9.19 (a) Schematics of an OPA. (b) Intensity variations of the pump, signal, and idler waves
of an OPA with a strong pump as a function of interaction length in the case of perfect phase
matching.
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phase matching, we have the following solutions:

E1(z) = E1(0) cos βcz = E1(0) cosh κz, (9.131)

E∗
2(z) = iκ21

βc
E1(0) sin βcz = iκ21

κ
E1(0) sinh κz, (9.132)

where

κ =
(

ω1ω2|χeff|2
2c3ε0n1,zn2,zn3,z

I3

)1/2

=
(

8π2|deff|2
cε0n1,zn2,zn3,zλ1λ2

I3

)1/2

. (9.133)

In the case of quasi-phase matching, χeff and deff in (9.133) are replaced by χQ and dQ,
respectively.

With perfect phase matching, the intensities of the signal, idler, and pump waves
vary with interaction length as

I1(l) = I1(0) cosh2 κl, (9.134)

I2(l) = ω2

ω1
I1(0) sinh2 κl, (9.135)

I3(l) = I3(0) − ω3

ω1
I1(0) sinh2 κl ≈ I3(0), (9.136)

which are plotted in Fig. 9.19(b). We see that while the intensity of the signal wave grows
as a result of parametric amplification, the intensity of the idler wave also increases
because an idler photon is generated simultaneously with each additional signal photon
generated in the parametric process.

With perfect phase matching, the amplification factor, or the intensity gain, of the
signal wave for a single pass through an OPA is (see Problem 9.6.10)

G = I1(l)

I1(0)
= cosh2 κl ≈




1 + κ2l2, in the low-gain limit,
e2κl

4
, in the high-gain limit.

(9.137)

Note that a large gain factor does not necessarily imply a high conversion efficiency
from the pump to the signal and idler because the input signal can be extremely weak.
Therefore, it is possible that the pump is not much depleted when the signal is amplified
by a large gain factor but the conversion efficiency is low. When the input signal is strong,
however, it is also possible that pump depletion is significant but the gain factor is small.

EXAMPLE 9.13 An OPA for a signal wavelength at λ1 = 1.55 µm consists of a PPLN
crystal that has a length of l = 1 cm. It is pumped with a Gaussian beam at λ3 = 527 nm,
which is focused to a beam waist radius of w0 = 50 µm. (a) What is the idler wave-
length? (b) What is the required first-order grating period for quasi-phase matching?
(c) What is the amplification factor for the signal if the power of the pump beam is
P = 1 W? (d) What is the required pump power for an amplification factor of G = 103?
Consider only the situation where the pump is not much depleted even when G = 103.
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Solution (a) The wavelengths of the interacting beams in a parametric amplifier have
the relation λ−1

3 = λ−1
1 + λ−1

2 given in (9.138) below. Therefore, the idler wavelength
is

λ2 =
(

1

λ3
− 1

λ1

)−1

=
(

1

527 × 10−9
− 1

1.55 × 10−6

)−1

m = 798 nm.

(b) For the most efficient interaction in a PPLN crystal, all of the interacting waves
have to be extraordinary waves polarized in the z direction. Using the data given in
Table 9.3 for the Sellmeier equation of LiNbO3, we find that ne

3 = 2.2351 at λ3 =
527 nm, ne

1 = 2.1373 at λ1 = 1.55 µm, and ne
2 = 2.1755 at λ3 = 798 nm. The phase

mismatch is �k = k1 + k2 − k3 = 2π (n1/λ1 + n2/λ2 − n3/λ3) for collinear interac-
tion. Therefore, according to (9.99), the required first-order grating period is

� = 2π

|�k| =
∣∣∣∣n1

λ1
+ n2

λ2
− n3

λ3

∣∣∣∣
−1

=
∣∣∣∣ 2.1373

1.55 × 10−6
+ 2.1755

798 × 10−9
− 2.2351

527 × 10−9

∣∣∣∣
−1

m

= 7.35 µm.

(c) For a Gaussian pump beam that is focused to a waist size of w0 = 50 µm, we find
that its confocal parameter is b = 2πne

3w2
0/λ3 = 6.66 cm. Because b � l = 1 cm, we

can ignore the complicated effect of focusing and take I3 = P3/A3 = 2P/πw2
0 over

the entire length of the PPLN crystal. For this interaction, we have |dQ| = |2d33/π | =
16.04 pm V−1 from Example 9.11. Then, using (9.133) with deff replaced by dQ, we
can express κ2l2 as a function of the pump power:

κ2l2 = 16π |dQ|2l2

cε0ne
1ne

2ne
3λ1λ2w2

0

P3 = 0.015P3 W−1.

For P3 = 1 W, the single-pass amplification factor is G ≈ 1 + κ2l2 = 1.015 according
to (9.137). The signal intensity grows only 1.5% in a single pass through the parametric
amplifier.

(d) For an amplification factor of G = 103, we find by using the high-gain limit of
(9.137) that κl = 4.147 is required. From the dependence of κ2l2 on P3 found in (c),
we find that the required pump power for G = 103 is

P3 = κ2l2

0.015
W = 4.1472

0.015
W = 1.15 kW.

This pump power looks unrealistically high. It is indeed unrealistic if we consider
only the possibility of CW pump beams. It is not if we consider pulse pumping. For
example, by using a Q-switched laser pulse of duration �tps = 100 ns, such a pump
power requires a very common pump pulse energy of Ups = Ppk�tps = 115 µJ. As
another example, if mode-locked pulses of pulsewidth �tps = 10 ps at a repetition rate
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(a)

(b)

Figure 9.20 Schematic diagrams of (a) a doubly resonant OPO, in which both ω1 and ω2 are
resonated, and (b) a singly resonant OPO, in which only ω1 is resonated.

of fps = 100 MHz are used to pump the amplifier, the average power of the pulsed
pump beam is again at a realistic level of P = Ppk�tps fps = 1.15 W.

Optical parametric oscillators

The parametric gain can be utilized to construct an optical parametric oscillator, com-
monly called an OPO, by placing a parametric amplifier in a resonant optical cavity that
provides feedback to the parametric amplifier. There are basically two different types
of OPOs. In a doubly resonant OPO, both waves at ω1 and ω2 are resonated because
the mirrors of the optical cavity are highly reflective at both frequencies, as shown in
Fig. 9.20(a). In a singly resonant OPO, the mirrors of the optical cavity are highly
reflective at only one frequency, either ω1 or ω2, and only one wave is resonated, as
shown in Fig. 9.20(b). The cavity mirrors are transparent to the pump wave and, in the
singly resonant case, also to the nonresonant parametric wave.

The input to an OPO consists of only the pump wave at ω3 to pump the nonlinear
crystal for a parametric gain. When the parametric gain is high enough so that the round-
trip loss in the optical resonator is compensated by the parametric gain, the oscillator
reaches its threshold and parametric oscillation occurs. Because the parametric gain is a
function of the pump intensity, the threshold parametric gain for an OPO translates into
a threshold pump intensity required of the pump beam. Resonant oscillation builds up
from the spontaneous emission noise of parametric fluorescence. No signal input is
needed.

Because both low-frequency parametric waves at ω1 and ω2 are generated in the
oscillator without a signal input, either of them can be called the signal or the idler.
The designation of one particular wave to be called the signal is purely a matter of
one’s subjective interest. However, the choice of the resonating frequency in a singly
resonant OPO is usually not arbitrary but is based on many practical considerations,
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such as the availability of high-quality cavity mirrors at either of the two parametric
frequencies, the spectral characteristics of the transmittance of the nonlinear crystal,
and other wavelength-dependent characteristics of the optical cavity.

The frequencies and, correspondingly, the wavelengths of a parametric oscillator are
subject to the following conditions:

ω3 = ω1 + ω2 and
1

λ3
= 1

λ1
+ 1

λ2
, (9.138)

which are required by conservation of energy because one photon at ω3 splits into a
pair of photons at ω1 and ω2. The exact frequencies to be generated by the oscillator
are further dictated by the following two conditions: (1) the phase-matching condition

k3 = k1 + k2, (9.139)

which is determined by the properties and the physical arrangement of the nonlinear
crystal; and (2) the resonance condition of the optical cavity, which depends on the
physical parameters of the cavity and determines the resonance optical frequencies.
The peak parametric gain appears at frequencies that satisfy the phase-matching condi-
tion exactly. The oscillation frequencies are those, subject to the condition in (9.138),
that satisfy the resonance condition of the optical resonator with the least amount of
phase mismatch. Therefore, the signal and idler frequencies of an OPO can be simulta-
neously tuned, though in opposite directions due to the constraint of (9.138), by varying
the phase-matching condition in the crystal while the pump frequency is fixed. This
wavelength tunability is one of the most important characteristics of OPOs. Another
important characteristic is that the parametric gain is not tied to any resonant transi-
tions in the gain medium because the gain medium is a parametric nonlinear crystal.
These two key characteristics make the OPOs unique devices for the generation of
wavelength-tunable coherent optical waves in any spectral ranges where efficient laser
materials do not exist, provided that an efficient nonlinear crystal and a commonly
available laser source at a higher frequency to serve as the pump can be found.

A doubly resonant OPO generally has a lower oscillation threshold than a singly
resonant one of comparable physical parameters. However, a doubly resonant OPO
is difficult to operate because of its intrinsic instability. To resonate both signal and
idler waves, both frequencies ω1 and ω2 have to satisfy the resonance condition of the
optical cavity. With the constraint of (9.138), this requirement cannot be met with an
arbitrary cavity length but only with some specific values of the cavity length. This
situation limits the tunability of the parametric oscillator. In addition, any variations in
the cavity length due to mechanical or thermal fluctuations can lead to instability in the
oscillation frequencies and the amplitudes of the optical fields. These problems do not
exist in a singly resonant optical parametric resonator. Therefore, most OPOs designed
for practical applications are of the singly resonant type.
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EXAMPLE 9.14 The PPLN parametric amplifier described in Example 9.13 is placed in
a properly designed optical cavity to make a singly resonant OPO. When the OPO is
sufficiently pumped above threshold with a pump beam at 527 nm of a pump power of
P3 = 2 W, it is found that 5% of the pump power is converted to the combined output
power of the signal and idler. What are the output powers of the signal and idler beams,
respectively?

Solution The total output power from this OPO is Pout = 0.05P3 = 100 mW. In a
parametric conversion process, an idler photon is simultaneously generated each time
a signal photon is generated while a pump photon is annihilated because of the relation
ω3 = ω1 + ω2 required by (9.138). As a consequence, the total number of signal photons
has to be equal to that of idler photons because there are no input signal or idler photons
to an OPO. If the signal and idler photons are subject to the same fractional loss, the
power ratio between the signal and the idler is

Pout
1

Pout
2

= ω1

ω2
= λ2

λ1
, (9.140)

which leads to the following power split:

Pout
1 = λ2

λ1 + λ2
Pout, Pout

2 = λ1

λ1 + λ2
Pout. (9.141)

With Pout = 100 mW, we find that Pout
1 = 34 mW for the signal at λ1 = 1.55 µm and

Pout
2 = 66 mW for the idler at λ2 = 798 nm.
For the split of output power expressed in (9.141), it is assumed that the signal and

the idler suffer the same fractional loss in the OPO. In practice, this assumption may
not be true, particularly when the wavelengths of the signal and the idler are far apart
from each other. When the signal and the idler experience significantly disparate losses,
the output power split can be very different from that described by (9.141). Even in this
situation, it is still true that equal numbers of signal and idler photons are generated
from converting the same number of pump photons when they interact in the nonlinear
crystal.

Many lasers are available in the visible and near infrared wavelength regions for
pumping second-harmonic generators to generate short-wavelength optical waves well
into the deep ultraviolet region and for pumping OPOs to generate wavelength-tunable
optical waves in a broad infrared region. With the advances in laser sources and crystal
technology, the wavelengths that can be reached by nonlinear frequency conversion
are basically only limited by the transmission windows of available nonlinear crystals.
Figure 9.21 shows the transmission windows of various nonlinear optical crystals that
can be chosen for frequency converters and the wavelengths of several lasers that can be
used as pump sources. From this figure, we see that second-order nonlinear frequency
conversion can cover a spectral range from about 200 nm in the deep ultraviolet to
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Figure 9.21 Transmission windows of various nonlinear optical crystals for frequency converters
and wavelengths of several lasers that can be used as pump sources. (Based on data from assorted
sources.)

about 18 µm in the mid infrared. Depending on the pump lasers used, the coherent
optical waves generated by these frequency converters in this wide spectral range cover
the entire range of temporal characteristics, from CW beams through nanosecond Q-
switched pulses to picosecond and femtosecond mode-locked pulses. Through these
nonlinear optical devices, optical sources over a wide range of spectral and temporal
characteristics are made available and flexible for many applications.

9.7 Nonlinear optical modulators and switches

In a nonlinear optical modulator, the modulation of an optical wave is accomplished
through a nonlinear optical process. A nonlinear optical modulator can be based on
either self modulation or cross modulation. In the case of self modulation, only one
optical beam is present, and the modulation on the beam is a function of the character-
istics of the beam itself. In the case of cross modulation, two or more optical beams are
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present, and the beam of interest is modulated by one or more other beams that carry
the modulation signals. In either case, no electric, magnetic, or acoustic field is needed.
Therefore, nonlinear optical modulators and switches are also known as all-optical
modulators and all-optical switches, respectively.

There are two fundamentally different types of nonlinear optical modulators and
switches. One is the dispersive, or refractive, type, which is based on the optical Kerr
effect due to optical-field-induced changes in the real part of the permittivity of a
material. Another is the absorptive type, which relies on an intensity-dependent ab-
sorption coefficient caused by the nonlinear characteristics of the imaginary part of the
permittivity of a material.

Kerr lenses

We first consider the simplest case of the optical Kerr effect discussed in Section 9.3
in which P(3) is parallel to a linearly polarized optical field E so that the net effect is
an intensity-dependent index of refraction given in (9.49). For a plane optical wave,
this optical Kerr effect merely causes a uniform intensity-dependent phase shift across
the wavefront. Thus the beam remains a plane wave without any change in its spatial
intensity distribution. If an optical beam has a nonuniform intensity distribution, the
intensity-dependent index of refraction leads to a nonuniform phase shift across the
wavefront as the beam propagates through the nonlinear medium. This beam will then
be focused or defocused as a result of distortion in its phase front.

For simplicity, we consider the propagation of a circular beam, which has a transverse
spatial intensity distribution I (r ). After such a beam propagates through a thin nonlinear
medium of a thickness l, the total intensity-dependent phase shift can be approximated
by

ϕ(r ) = ω

c
[n0 + n2 I (r )]l. (9.142)

The intensity-dependent Kerr phase change given by

ϕK(r ) = ω

c
n2l I (r ) (9.143)

is known as self-phase modulation because it is imposed by an optical beam on itself
through the optical Kerr effect.

Recall that the effect of a thin spherical lens of a focal length f is to cause a spatially
varying phase shift of

ϕ(r ) = −k
r2

2 f
= −ω

c

r2

2 f
(9.144)

in an optical wave passing through the lens, where r is the transverse radial distance
from the center of the lens. Therefore, if the intensity-dependent phase shift given in
(9.142) has a quadratic dependence on the transverse radial coordinate, the optical Kerr
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effect in the thin nonlinear medium would be equivalent to the effect of a thin lens. A
thin nonlinear medium with such a function is called a Kerr lens. In reality, no optical
beam has an ideal quadratic spatial intensity distribution. However, if the intensity
distribution of a circular beam is approximately quadratic in r near the beam center,
the effective focal length of the Kerr lens can be given by

1

fK

= −a
c

ω

d2ϕ

dr2

∣∣∣∣
r=0

= −an2l
d2 I (r )

dr2

∣∣∣∣
r=0

, (9.145)

where a is a correction factor to account for the difference between the true beam
profile and the ideal quadratic profile. Using this relation, we find that the effective
focal length of the Kerr lens for a circular Gaussian beam with an intensity distribution
of I (r ) = I0 exp(−2r2/w2) is

fK = w2

4an2l I0
= πw4

8an2l P
, (9.146)

where w is the beam radius at the location of the Kerr medium, I0 is the intensity at the
beam center, and P is the power of the beam. For a circular Gaussian beam, a = 1.723,
and the thin-lens condition for (9.146) to be valid is l < zR = πnw2

0/λ. Note that n2 can
be either positive or negative because χ (3)′ can be either positive or negative. Therefore,
a Kerr lens can either focus or defocus a beam, depending on the sign of its effective
focal length.

Most applications of Kerr lenses are based on the fact that the effective focal length
fK of a thin Kerr lens is inversely proportional to the peak intensity I0 of an optical
beam. As a result of this characteristic, the divergence of the beam after passing through
a Kerr lens is a function of the intensity of the beam. In addition, the beam divergence
also depends on the sign of n2 and the location of the Kerr lens with respect to the beam
waist, as illustrated in Fig. 9.22.

A Kerr lens is often used as an optical power limiter for the protection of a sensitive
optical detector. In this application, the action of the Kerr lens is to increase the beam
divergence as the input intensity of a beam is increased, thereby increasing the spread
and reducing the intensity of the beam at the surface of the detector. As demonstrated in
Figs. 9.22(a), (b), (e), and (f ), with proper arrangement, either a Kerr lens of a positive
effective focal length, fK > 0, or one with a negative effective focal length, fK < 0,
can be used for this purpose. When a Kerr lens in such an arrangement is used as
an optical power limiter, only a fraction of the diverging optical beam within a finite
central cross-sectional area that is defined either by the area of a small detector or by
a hole in a beam block is allowed to reach the detector. Because the divergence of the
beam increases with its intensity, the optical power passing through the finite area to be
received by the detector will saturate at a certain level as the input power of the beam
continues to increase. Without the Kerr lens, the beam divergence does not change with
its intensity. Then, the optical power received by the detector increases linearly with
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(a)

(d )

(b)

(e)

(c)

( f )

Figure 9.22 Nonlinear refraction caused by a Kerr lens as a function of beam intensity and the
location of the Kerr lens with respect to the beam waist for (a), (b), and (c) fK > 0, and for (d ), (e),
and (f ) fK < 0. The solid curves are the propagation lines of a Gaussian beam at a low intensity for
which the effect of the Kerr lens is negligible, and the dashed curves are those at a high intensity for
which the effect of the Kerr lens is significant.

the input power of the beam without a limit until the detector is damaged even if the
detector has a very small area to intercept only a tiny fraction of the beam.

A Kerr lens can also be used as a passive optical switch or an optical thresholding
device. For this purpose, an arrangement, such as that shown in Fig. 9.22(c) or (d),
that leads to a reduction in beam divergence with an increase in input beam intensity
is used. Similarly to the setup of a power limiter, only a portion of the beam within a
finite central area of the beam cross section is allowed to pass. However, instead of a
saturation, the optical power passing through this area increases nonlinearly with the
input power of the beam. This behavior can be used to provide a nonlinear feedback to
an optical system or to switch on an optical device at a certain threshold. It has been
used as the passive mode locker in a technique known as Kerr-lens mode locking for
the generation of ultrashort laser pulses.

EXAMPLE 9.15 A Ti : sapphire laser generates a train of laser pulses of wavelength λ =
780 nm and pulsewidth �tps = 100 fs at a repetition rate of fps = 100 MHz. A beam
of such pulses at an average power of P = 50 mW is focused tightly on a thin silica
plate of thickness l = 1 mm. The nonlinear response time of silica is much faster than
100 fs so that the optical Kerr effect can be considered instantaneous in response to the
temporal variation of each pulse. Silica has a linear refractive index of n0 = 1.4537 at
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λ = 780 nm and, according to Example 9.5, a nonlinear refractive index of n2 = 2.4 ×
10−20 m2 W−1. If the laser beam is focused with its waist on the silica plate as tightly
as allowed by the thin-lens condition, what is the effective focal length of the Kerr lens
caused by self-phase modulation at the peaks of the optical pulses?

Solution The peak power of the pulses is

Ppk = P

fps�tps
= 50 × 10−3

100 × 106 × 100 × 10−15
W = 5 kW.

The thin-lens condition, l < zR = πnw2
0/λ, requires that

w0 >

(
lλ

πn

)1/2

=
(

1 × 10−3 × 780 × 10−9

π × 1.4537

)1/2

m = 13 µm.

By focusing the beam to the limit of w0 = 13 µm allowed by the thin-lens condition
and by placing the beam waist on the silica plate, we have the following Kerr focal
length at the peak of each pulse:

fK = πw4
0

8an2l Ppk
= π × (13 × 10−6)4

8 × 1.723 × 2.4 × 10−20 × 1 × 10−3 × 5 × 103
m = 5.42 cm.

Note that this is the Kerr focal length only at the temporal peak of each pulse. Because
fK is inversely proportional to the optical power and because the nonlinear refractive
response of silica is much faster than the 100 fs duration of each pulse, we can easily see
that the value of fK varies in time through the duration of a pulse. As a consequence of
this temporally varying fK, the divergence of the pulse after the silica plate is a function
of time over the pulse duration. Kerr-lens mode locking of lasers takes advantage of
this interesting phenomenon.

Polarization and amplitude modulators

The optical-field-induced birefringence of the optical Kerr effect can be used for po-
larization modulation of an optical wave. Such polarization modulation can be either
self induced in a one-beam interaction or cross induced in a two-beam interaction. For
simplicity, we consider the interactions in an isotropic medium. The same principle
applies to nonlinear optical polarization modulators using anisotropic crystals.

We have already seen from the discussions on Kerr lenses that in a one-beam in-
teraction in an isotropic medium, the induced P(3) and the optical field E have the
same polarization state if the optical field is linearly polarized. This is also true for
a circularly polarized optical field. Therefore, the optical Kerr effect does not change
the polarization state of a linearly or circularly polarized optical wave that propagates
alone in an isotropic medium. The situation is different for an elliptically polarized
optical wave in a one-beam interaction, as well as for a linearly or circularly polarized
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(a)

(b)

Figure 9.23 (a) Nonlinear optical polarization modulator and (b) nonlinear optical amplitude
modulator.

optical wave in a two-beam interaction. In a one-beam interaction with an elliptically
polarized optical wave, the polarization state of the induced P(3) is different from that
of the optical field E, causing the polarization of the optical field to change. The result
is a phenomenon known as ellipse rotation because the axes of the ellipse defined by
the tip of the elliptically polarized optical field continue to rotate in space as the wave
propagates through the nonlinear medium (see Problem 9.7.1).

In the interaction of two linearly polarized optical waves, polarization modulation
on one wave by the other through the optical Kerr effect is possible if the polarizations
of the two waves are neither parallel nor orthogonal to each other. The optical beam
being modulated is called the signal or the probe, and that creating the modulation is
called the pump. In an isotropic medium, the coordinate axes can be chosen arbitrarily.
With a signal beam at a frequency ω and a pump beam at a frequency ω′, we choose the
xy plane to be that defined by the two linearly polarized field vectors E(ω) and E(ω′)
and the y axis to be in the direction of E(ω′), as shown in Fig. 9.23(a). While the signal
beam propagates in the z direction, the pump beam propagates in a direction within the
zx plane that may or may not be collinear with the propagation direction of the signal
beam, as also shown in Fig. 9.23(a).

The optical-field-induced birefringence seen by the signal beam is described by
�εi j (ω, E) given in (9.47). In a practical application, the intensity of the signal beam
is much lower than that of the pump beam: I (ω) � I (ω′). Therefore, the first term
on the right-hand side of (9.47), which accounts for the self modulation of the signal
beam, can be neglected in comparison to the second term, which accounts for the cross
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modulation on the signal by the pump. With E(ω′) ‖ ŷ, we then have

�εxx ≈ 6ε0χ
(3)
1122|E(ω′)|2 = 3χ

(3)
1122

cn0
I (ω′), (9.147)

�εyy ≈ 6ε0χ
(3)
1111|E(ω′)|2 = 3χ

(3)
1111

cn0
I (ω′). (9.148)

This optical-field-induced birefringence leads to the following intensity-dependent in-
dices of refraction:

nx = n0 + 3χ
(3)
1122

2cε0n2
0

I (ω′), (9.149)

ny = n0 + 3χ
(3)
1111

2cε0n2
0

I (ω′). (9.150)

If the signal beam has a field of E(ω) = (x̂E x + ŷE y)e−iωt at the input surface of the
nonlinear medium that has a thickness of l, its field at the output is

E(ω) = (x̂E x + ŷE yei�ϕ)eikx l−iωt , (9.151)

where kx = nxω/c and

�ϕ = 3π (χ (3)
1111 − χ

(3)
1122)l

cε0n2
0λ

I (ω′) (9.152)

is the phase retardation between the x and y components of the signal field. Because this
phase retardation is linearly proportional to the pump intensity, the polarization state of
the signal beam at the output can be modulated by varying the pump intensity if E(ω)
is neither parallel nor perpendicular to E(ω′) so that both E x and E y have nonvanishing
values.

In comparison to the electro-optic polarization modulators discussed in Section 6.3,
the only difference is that the nonlinear optical polarization modulators discussed here
are controlled by a pump optical beam rather than by a voltage. Other than this differ-
ence, these two types of polarization modulators have the same function and serve the
same purpose.

As seen in Section 6.3, an amplitude modulator can be easily constructed by placing
a polarization modulator between two polarizers. This approach is also applicable to
the construction of a nonlinear optical amplitude modulator using a nonlinear optical
polarization modulator, as illustrated in Fig. 9.23(b). A nonlinear optical amplitude
modulator and an electro-optic amplitude modulator have the same transmission char-
acteristics, which are discussed in Section 6.3, if they are set up in the same manner.
When an ultrashort optical pulse is used as the pump beam, a nonlinear optical am-
plitude modulator can function as a fast optical gate, or a fast all-optical switch, for
switching the signal beam within a very short time.
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Saturable absorbers

A saturable absorber has an absorption coefficient that decreases with increasing light
intensity, such as that characterized by (9.51) with χ (1)′′ > 0 and χ (3)′′ < 0. Note,
however, that the relation in (9.51) is rooted in the power series expansion of (9.1).
Because absorption saturation necessarily occurs at a resonant transition between two
energy levels, the perturbation approach taken for power series expansion is not valid
at sufficiently high intensities. Instead, a full analysis of the resonant absorption has to
be carried out. Such an analysis results in an intensity-dependent absorption coefficient
characterized by the relation5

α = α0

1 + I/Isat
, (9.153)

where α0 is the unsaturated absorption coefficient and Isat is known as the saturation
intensity. The saturation intensity is a characteristic of the resonant transition that is
responsible for the absorption under consideration. For I < Isat, the relation in (9.153)
can be expanded:

α = α0

[
1 − I

Isat
+
(

I

Isat

)2

−
(

I

Isat

)3

+ · · ·
]

. (9.154)

Only when I � Isat can α be accurately approximated by the first two terms of this
expansion, resulting in a linear dependence on I like the relation in (9.51). In general, the
relation in (9.153) has to be used because the light intensity encountered in a practical
device that uses a saturable absorber can easily be comparable to or higher than Isat.

The propagation of an optical wave through a saturable absorber that has an absorp-
tion coefficient given in (9.153) is described by

dI

dz
= − α0

1 + I/Isat
I. (9.155)

This equation can be integrated to obtain the following relation:

I (z)eI (z)/Isat = I (0)eI (0)/Isat e−α0z, (9.156)

where I (0) is the input light intensity at z = 0. The transmittance of an optical wave
through a saturable absorber of a thickness l is T = Iout/Iin = I (l)/I (0), which can be
calculated by numerically solving (9.156). It is plotted in Fig. 9.24 as a function of the
input light intensity, normalized to the saturation intensity, for a few different values of
α0l represented in terms of T0 = e−α0l . As Fig. 9.24 shows, the optical transmittance
through a saturable absorber increases nonlinearly as the input intensity is increased
and approaches unity at high input intensities. In a particular application of a saturable
absorber, the value of α0l has to be properly chosen for a desired difference between

5 The absorption coefficient described by (9.153) is that for a homogeneously broadened medium. For an inho-
mogeneously broadened medium, the relation is α = α0/(1 + I/Isat)1/2.
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Figure 9.24 Transmittance of an optical wave through a saturable absorber that has a thickness l
and an unsaturated absorption coefficient α0 as a function of the input light intensity normalized to
the saturation intensity. The curves are plotted for different values of α0l in terms of T0 = e−α0l .

the maximum transmittance at high intensities and the minimum transmittance at low
intensities.

A saturable absorber can be used as a spatial light filter, which blocks low-intensity
stray light or background optical noise but transmits a high-intensity signal beam. It can
be used as an optical discriminator, which transmits optical pulses of intensities above
a certain threshold and suppresses those below. A saturable absorber is also commonly
used as a passive Q switch in a Q-switched laser or as a passive mode locker in a
mode-locked laser for the generation of very short laser pulses. The saturable absorber
in this kind of application functions as a passive optical switch in the time domain.
It is switched open by the rising intensity of a laser pulse and closes through its own
relaxation after the passing of the pulse. Therefore, the relaxation time of a saturable
absorber is also an important factor to be considered in its application as a Q switch or
a mode locker.

9.8 Bistable optical devices

A bistable device has two stable output states under one input condition. Because of
this binary feature, bistable devices can be used for many digital operations, such as
switches, memories, registers, and flip-flops. Bistable electronic circuits and devices
have become indispensable components in a wide range of applications that require the
storage of binary information. Bistable optical devices can be important for their ap-
plications as optical logic, memories, and analog-to-digital converters in optical signal
processing systems. In addition, they can also be used as optical pulse discriminators
and optical power limiters.
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The output parameter of a bistable device is a multivalued function of its input
parameter. Any system with such a multivalued characteristic is by definition a nonlinear
system. Therefore, optical nonlinearity is absolutely required for a bistable optical
device. Optical nonlinearity alone is not sufficient for bistability, however. As seen from
earlier sections, the propagation characteristics of an optical beam through a nonlinear
medium vary nonlinearly but also monotonically with the beam intensity. Bistability
is not possible with monotonic nonlinearity alone because a monotonic characteristic
does not lead to a multivalued dependence of the output on an input parameter. The
required nonmonotonic characteristics for optical bistability can be made possible only
with proper feedback.

The necessary conditions for optical bistability are optical nonlinearity and positive
feedback. Depending on whether the optical nonlinearity responsible for the bistable
function comes from the real or the imaginary part of a nonlinear susceptibility, a
bistable optical device can be classified as either dispersive or absorptive. In some de-
vices, this distinction is not clear, however, because both refractive and absorptive non-
linear mechanisms may be present. Depending on the type of feedback, a bistable
optical device can also be classified as either intrinsic or hybrid. In an intrinsic bistable
device, both the interaction and the feedback are all optical. In a hybrid bistable de-
vice, electrical feedback is used to modify the optical interaction, thereby creating an
artificial optical nonlinearity.

Figure 9.25(a) shows a generic characteristic for intensity bistability of a bistable
optical device. For each input intensity within the range between I down

in and I up
in , there

are three values for the output intensity. Only the two values that lie on the upper and
the lower branches of the curve are stable output values. The one that lies on the middle

(a) (b)

Figure 9.25 Generic characteristic for intensity bistability (a) plotted with output intensity Iout as a
function of input intensity Iin and (b) plotted with Iin as a function of Iout.
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branch is unstable because the middle branch has a negative slope: dIout/dIin < 0.
When the input intensity is gradually increased from zero, the output intensity traces
the lower branch of the curve until the input intensity reaches the up-transition point
at I up

in , where the output makes a sudden jump to the upper branch. Once the system is
in a state that lies on the upper branch, it can be brought back to the lower branch only
when the input intensity is lowered to the down-transition point at I down

in . If the input
intensity is set at a value within the bistable region, the output can be in either stable
state depending on the history of the system. With a proper external excitation, it can
be switched from one of the stable states to the other. Otherwise, it stays in one state
indefinitely.

We see from Fig. 9.25(a) that the slope of the characteristic curve for bistability
changes sign at both up- and down-transition points. This fact can be exploited to
find the condition for bistability and the transition points. Though Iout is a multivalued
function of Iin, Iin is a single-valued function of Iout. Therefore, it is convenient to
express Iin as a function of Iout, as shown in Fig. 9.25(b). From the curve shown in
Fig. 9.25(b), we find that the condition for the existence of a bistable region is the
existence of a region of negative slope, dIin/dIout < 0, between regions of positive
slope. Because both Iin and Iout are real and positive quantities, this condition can be
satisfied only when the relation

dIin

dIout
= 0 (9.157)

has two nondegenerate real and positive solutions. These two solutions correspond to
the two transition points (I up

in , I up
out) and (I down

in , I down
out ), as can be seen by an examination

of Figs. 9.25(a) and (b).
In principle, it is possible to construct bistable optical devices using a variety of

different nonlinear effects discussed in Section 9.3 if the device parameters are properly
chosen. In practice, however, the nonlinear optical media that are most commonly used
for bistable devices are either nonabsorptive Kerr media, for the dispersive type, or
saturable absorbers, for the absorptive type. A simple bistable optical device of the
intrinsic type can be constructed by placing a nonlinear optical medium inside a Fabry–
Perot cavity, as shown in Fig. 9.26(a), or inside a ring cavity, as shown in Fig. 9.26(b).
The mirrors of the cavity provide the needed optical feedback to the nonlinear optical
interaction. The only difference between the two configurations in Fig. 9.26 is that the
optical wave in a Fabry–Perot cavity travels through the nonlinear medium twice in
each round trip and forms a standing wave pattern, but the wave in a ring cavity is a
traveling wave that travels through the nonlinear medium only once in each round trip.
Otherwise, the basic principle and the characteristics of optical bistability are the same
for the two configurations. Other optical feedback configurations for intrinsic bistable
optical devices are based on this concept as well.
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(a)

(b)

Figure 9.26 Intrinsic bistable optical devices using optical feedback in the configurations of (a) a
Fabry–Perot cavity and (b) a ring cavity.

In the following, we consider bistable devices that have the configuration of the
Fabry–Perot cavity shown in Fig. 9.26(a). For simplicity, we assume that the mirrors
of the Fabry–Perot cavity are identical and lossless. The mirrors have a real reflection
coefficient r , which can be either positive or negative, but their transmission coefficient t
can be complex because of the finite thickness of the mirrors. The intensity reflectance
is R = r2, and the intensity transmittance is T = |t |2 = 1 − R, for R + T = 1. We
also assume that the nonlinear medium fills up the entire space inside the Fabry–Perot
cavity of length l. We ignore transverse spatial variations by considering only plane
optical waves. When the steady state is reached, the forward-traveling field, E f, and
the backward-traveling field, Eb, inside the cavity satisfy the following relations at the
input end, z = 0:

E f(0) = tE in + rEb(0), (9.158)

Eb(0) = rE f(0)ei2kl−αl, (9.159)

where k and α are the propagation constant and the absorption coefficient, respectively,
in the medium. At the output end, z = l, we have

Eout = tE f(l) = tE f(0)eikl−αl/2. (9.160)

Using these relations, we find that

Eout = t2eikl−αl/2

1 − r2ei2kl−αl
E in, (9.161)
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which gives the following relation between the input and output intensities:

Iout = (1 − R)2e−αl

(1 − Re−αl)2 + 4Re−αl sin2 kl
Iin. (9.162)

Dispersive bistable optical devices

We first consider dispersive bistability in a Fabry–Perot cavity filled with a nonlinear
medium that has an intensity-dependent index of refraction due to the optical Kerr effect.
For simplicity, we ignore the standing wave pattern in the cavity and take the average
intracavity intensity Ic ≈ If + Ib ≈ 2Iout/(1 − R). The intensity-dependent index of
refraction is

n = n0 + n2 Ic ≈ n0 + 2n2 Iout

1 − R
. (9.163)

Then, the total phase shift over a round trip in the cavity can be expressed as

2kl = 2n0ωl

c
+ 4n2ωl

c(1 − R)
Iout = 2mπ + ϕ, (9.164)

where m is a properly chosen integer such that

ϕ = ϕ0 + ϕ2 Iout (9.165)

for |ϕ0| < π and

ϕ2 = 4n2ωl

c(1 − R)
= 8πn2l

λ(1 − R)
. (9.166)

Note that ϕ0 is a bias phase that can be chosen at will by slightly varying the cavity
length l for a given optical frequency ω or by varying the optical frequency for a fixed
cavity length.

For the device under consideration, we can rearrange (9.162) as

Iout

Iin
= F2/F2

0

1 + 4(F2/π2) sin2(ϕ/2)
, (9.167)

where

F = π
√

Re−αl

1 − Re−αl
(9.168)

is the finesse of a generic lossy Fabry–Perot cavity, and

F0 = π
√

R

1 − R
(9.169)

is the finesse of a lossless Fabry–Perot cavity. The characteristic described by (9.167) has
resonance peaks at ϕ = 0, ±2π, ±4π , . . . , each of which has the same characteristics
as those of the peak shown in Fig. 9.27.
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Figure 9.27 Graphic illustration of the bistable characteristic of a dispersive bistable device with a
Fabry–Perot cavity. The peaked curve is the transmission characteristic of the Fabry–Perot cavity at
a resonance condition. Other resonance peaks are far away and are not shown. Line A represents
the input intensity at I down

in . Line B represents an input intensity in the bistable region. Line C
represents the input intensity at I up

in .

For ϕ being intensity dependent as given in (9.165), the system can exhibit intensity
bistability under proper conditions. A graphic solution can be obtained by expressing
(9.165) in the form of

Iout

Iin
= ϕ − ϕ0

ϕ2 Iin
(9.170)

and plotting it as straight lines for various values of Iin to find the intersections between
these lines and the curve representing (9.167). An example of the graphic solution
for ϕ0 < 0 and n2 > 0 is shown in Fig. 9.27. It can be seen from this illustration
that up-transition corresponds to line C, which is tangent to the curve at its heel,
whereas down-transition is described by line A, which is tangent to the curve near its
peak.

Analytical solution is possible if |ϕ| < 1 so that sin2(ϕ/2) ≈ ϕ2/4. Then, by com-
bining (9.165) and (9.167), we have

F2

F2
0

Iin =
[

1 + F2

π2
(ϕ0 + ϕ2 Iout)

2

]
Iout. (9.171)

By demanding that dIin/dIout = 0 has two nondegenerate, real and positive solutions
for Iout, we find that the conditions for bistability under the assumption that |ϕ| < 1 are
(see Problem 9.8.1)

ϕ0n2 < 0 (9.172)
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Figure 9.28 Characteristics of a dispersive nonlinear device with an optical Kerr medium in a
Fabry–Perot cavity, where Î in = −F2ϕ2 Iin/(F2

0 ϕ0) and Î out = −ϕ2 Iout/ϕ0. Bistability exists only
when ϕ2/ϕ0 < 0 and a = F2ϕ2

0/π
2 > 3. The solid curve represents the threshold condition for

bistability at a = 3.

and

|ϕ0| >

√
3π

F
. (9.173)

Once the conditions for bistability are satisfied, the up- and down-transition points, as
well as the region of bistability, are found using the two nondegenerate solutions for
Iout. Figure 9.28 shows the characteristics of this dispersive device for a few different
values of the characteristic parameter a = F2ϕ2

0/π
2 under the condition that (9.172)

is satisfied. It can be seen that bistability exists only when a > 3 so that (9.173) is
satisfied.

There is a threshold input intensity, Ith, required for bistability to be possible in a
device. This threshold input intensity is (see Problem 9.8.1)

Ith =
√

3λ(1 − R)

9F |n2|l
F2

0

F2
. (9.174)

This bistability threshold intensity corresponds to the switching intensity for a = 3.
If the input intensity is limited to below this threshold, the device can never reach its
switching point even when both F and ϕ0 are made large enough so that a > 3. When
the input intensity exceeds this threshold, the device can enter its bistable regime for a
properly chosen value of a > 3. However, the minimum input intensity required for a
given device to operate properly in its bistable states increases as the value of ϕ0 and,
correspondingly, the value of a for a given finesse F increase (see Problem 9.8.2).

Ideally for a dispersive bistable device, the medium should be completely lossless. In
practice, however, there are always some absorption or scattering losses in the medium.
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Such losses in a dispersive device are usually very small so that αl � 1. Though the
losses are small, they can reduce the finesse of the cavity, thus significantly increasing
the input intensity required for the operation of the device.

EXAMPLE 9.16 A vertical cavity InGaAsP bistable device consists of an active InGaAsP
layer of l = 1 µm between highly reflective DBR mirrors of R = 99%. It operates at
λ = 1.55 µm, which is close to the bandgap wavelength λg = 1.49 µm of the InGaAsP
layer. The nonlinear refractive index at this wavelength is found to be n2 = −9 ×
10−11 m2 W−1. (a) Find the bistability threshold intensity for this device assuming that
the medium is lossless. If an optical beam of a circular Gaussian profile is focused to a
spot size of w0 = 20 µm on the device, what is the bistability threshold power? (b) The
medium is found to have an absorption coefficient of α = 1.5 × 104 m−1. Accounting
for this loss, what are the realistic threshold intensity and threshold power for the
device?

Solution (a) For R = 99%, we find that the finesse of the cavity without loss is

F0 = π
√

0.99

1 − 0.99
= 312.6.

Using (9.174) with F = F0, we find the following bistability threshold intensity:

Ith =
√

3 × 1.55 × 10−6 × (1 − 0.99)

9 × 312.6 × 9 × 10−11 × 1 × 10−6
W m−2 = 106 kW m−2.

For a spot size of w0 = 20 µm, the bistability threshold power is

Pth = πw2
0

2
Ith = π × (20 × 10−6)2

2
× 106 × 103 W = 66.6 µW.

(b) With an absorption coefficient of α = 1.5 × 104 m−1, we find that e−αl = 0.9851
for l = 1 µm. This amounts to a small single-pass loss of only 1.49%, but the finesse
of the cavity is significantly reduced to

F = π
√

0.99 × 0.9851

1 − 0.99 × 0.9851
= 125.3.

From (9.174), we see that the threshold intensity for such a lossy cavity is increased by a
factor F3

0 /F3 = 15.5 over that obtained above for a lossless cavity. Therefore, the real-
istic threshold intensity for this device is Ith = 15.5 × 106 kW m−2 ≈ 1.64 MW m−2,
and the realistic threshold power is Pth = 15.5 × 66.6 µW ≈ 1.03 mW. We see from
this example that the loss in the cavity has a very significant effect on increasing the
threshold of a dispersive bistable device.
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Absorptive bistable optical devices

For a purely absorptive bistable device, we consider a Fabry–Perot cavity filled with a
saturable absorber. The absorption coefficient is

α = α0

1 + Ic/Isat
= α0

1 + 2Iout/Isat(1 − R)
. (9.175)

The real part of the index of refraction is assumed to be independent of the light
intensity. Therefore, the round-trip phase shift is a constant. We fix it at 2kl = 2mπ ,
which corresponds to a resonance peak of the Fabry–Perot cavity and can be done
by tuning the cavity length at a given optical frequency. For a useful device, the total
absorption has to be small in order to reduce the loss. Therefore, we consider only the
limit of αl � 1.

Under the conditions described above, (9.162) becomes

Iout

Iin
≈ (1 − R)2

(1 − R + Rαl)2
= 1

[1 + Rαl/(1 − R)]2
. (9.176)

The characteristics of this device are obtained by solving (9.175) and (9.176) together.
A graphic solution is not necessary because the analytic solution is relatively simple.

Using (9.175), we can express the relation in (9.176) in the following form:

Iin =
[

1 + Rα0l

1 − R

1

1 + 2Iout/Isat(1 − R)

]2

Iout. (9.177)

By demanding that dIin/dIout = 0 have two nondegenerate, real and positive solutions,
we find the following condition for bistability (see Problem 9.8.5):

C0 = Rα0l

1 − R
> 8. (9.178)

The transition points and the bistable region are found from the two nondegenerate
solutions. Figure 9.29 shows the characteristics of this absorptive device for a few
different values of the characteristic parameter C0 = Rα0l/(1 − R). It can be seen that
bistability exists only when C0 > 8.

Other bistable devices

The bistable optical devices discussed above are passive, intrinsic devices with intensity
bistability. Besides these, there are many other optical devices that also exhibit optical
bistability. As mentioned earlier, there are also hybrid bistable devices, which employ
electrical feedback to create bistability in their optical characteristics. In addition, op-
tical bistability also occurs in lasers. Intensity bistability is only one form of optical
bistability. Indeed, optical bistability can take many different forms, including intensity
bistability, phase bistability, frequency bistability, and polarization bistability.
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Figure 9.29 Characteristics of an absorptive nonlinear device with a saturable absorber in a
Fabry–Perot cavity, where Î in = 2Iin/((1 − R)Isat) and Î out = 2Iout/((1 − R)Isat). Bistability exists
only when C0 > 8. The solid curve represents the threshold condition for bistability at C0 = 8.

9.9 Raman and Brillouin devices

The nonparametric processes of stimulated Raman scattering and stimulated Brillouin
scattering both cause a shift of the optical frequency, leading to a loss for the pump
beam and a gain for a Stokes beam if the material is not originally excited or a gain for
an anti-Stokes beam if it is excited. On the positive side, such processes can be utilized
for optical frequency conversion and optical signal amplification. On the negative side,
however, they also place some serious limitations on the performance of certain optical
devices and systems.

Both stimulated Raman scattering and stimulated Brillouin scattering can be char-
acterized by the imaginary part of a complex third-order nonlinear susceptibility of
the form χ(3)(ωS = ωS + ωp − ωp) for the Stokes interaction and one of the form
χ(3)(ωAS = ωAS + ωp − ωp) for the anti-Stokes interaction. These susceptibilities are
in resonance with a frequency � = ωp − ωS = ωAS − ωp that characterizes a mat-
erial excitation and, consequently, have the property given in (9.71). In most device
applications using a Raman or Brillouin process, a material is initially in its normal
state without being excited. Therefore, we shall consider only the Stokes process in the
following discussions.

Being nonparametric, the Raman and Brillouin processes are automatically phase
matched. The corresponding material excitation in an interaction picks up any phase
mismatch between the interacting optical waves. Indeed, a Raman or Brillouin Stokes
process can be viewed as a parametric interaction among a pump wave, a Stokes wave,
and a material excitation wave. The material excitation wave is characterized by a
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(a)

(b)

Figure 9.30 Generation of a Stokes optical wave and a material excitation wave by a pump optical
wave with phase-matching condition in (a) a Raman Stokes process and (b) a Brillouin Stokes
process. For the Raman process, the Stokes wave can be generated in any direction. For the
Brillouin process, the Stokes wave is generated only in the backward direction.

frequency � and a wavevector K. From this viewpoint, it is easy to see that a Stokes
interaction is governed by the following conditions:

ωS = ωp − �, (9.179)

kS = kp − K. (9.180)

Clearly, phase matching among the pump wave, the Stokes wave, and the material ex-
citation wave is needed, but it is automatically achieved when the pump wave generates
a material excitation that allows a Raman or Brillouin process to occur. Figure 9.30
illustrates the relations among the three interacting waves in a Stokes process.

As mentioned in Section 9.3, the fundamental difference between the Raman and the
Brillouin processes lies in the different mode of material excitation associated with each
process. This difference leads to very different considerations for these two processes.

Raman gain

Because an excitation that is responsible for Raman scattering is associated with a
transition at the molecular or atomic level, the Raman frequency shift is determined
by the resonance frequency, �R, of the Raman transition. This Raman frequency is
an intrinsic property of a material and is independent of the frequency of the pump
optical wave. Such an excitation is also nondispersive. Because a nondispersive exci-
tation can take any wavevector K independently of its frequency, the phase-matching
condition in (9.180) is satisfied for any combination of kp and kS independently of
the condition in (9.179). As a consequence, Raman scattering in all directions has the
same frequency shift that is specific to a given material. Spontaneous Raman scattering
has a nearly isotropic emission pattern in all directions, whereas stimulated Raman
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scattering occurs predominantly in the forward and backward directions due to the
fact that a stimulated signal grows in strength as the interaction length increases. The
Raman frequency shift, which is usually quoted per centimeter, is typically in the range
of 300–3000 cm−1 for fR/c = �R/2πc, equivalent to 10–100 THz for fR, for most
materials (1 cm−1 is equivalent to 30 GHz).

When a material is initially in its ground state of a Raman transition, the effective
Raman susceptibility defined in (9.75) has a negative imaginary part: χ ′′

R < 0. This
situation leads to a gain for the Raman Stokes signal at the expense of the pump wave.
From (9.78), we find that the Raman gain factor for the Stokes signal is given by

g̃R = − 3ωSµ0

nS,znp,z
χ ′′

R, (9.181)

which has a positive value when χ ′′
R < 0. The unit of g̃R is meters per watt. The Raman

susceptibility is only very weakly dependent on the individual optical frequencies, ωp

and ωS, but it is a strong function of � = ωp − ωS with a resonance at � = �R. In the
simple case when there is only one Raman resonance frequency in a material, χ ′′

R as
a function of � has a Lorentzian lineshape as that of the linear susceptibility given in
(1.176). Therefore, according to (9.181), the corresponding Raman gain factor has the
form:

g̃R = g̃R0
γ 2

R

(� − �R)2 + γ 2
R

= g̃R0
γ 2

R

(ωp − ωS − �R)2 + γ 2
R

, (9.182)

where g̃R0 is the peak Raman gain factor and γR is the relaxation constant for the Raman
excitation. This Raman gain factor has a FWHM linewidth given by ��R = 2γR,
or � fR = γR/π . Note that both the Raman frequency fR and the Raman spectral
linewidth � fR are independent of the pump and the Stokes optical frequencies, but the
peak Raman gain factor varies linearly with the Stokes optical frequency: g̃R0 ∝ ωS ∝
1/λS.

The response time of a Raman process is measured by τR = γ −1
R , which is the re-

laxation lifetime of the Raman excitation such as an optical phonon or a molecular
vibration. Typical Raman response times range from a few hundred picoseconds in
molecules through a few picoseconds in crystalline solids to tens of femtoseconds in
amorphous solids such as glasses. Accordingly, the Raman linewidth � fR ranges from
a few gigahertz to the order of 10 THz, depending on the properties of the materials.
A Raman process can efficiently respond only to an optical signal that has a band-
width narrower than the Raman linewidth. For an optical pulse, this means that its
pulsewidth has to be greater than the Raman response time. Therefore, depending on
the specific material used, it is possible for a Raman device to function in steady state
or in quasi-steady state with optical signals ranging from CW waves to picosecond
or even subpicosecond optical pulses. When an optical signal varies faster than the
Raman relaxation time, the interaction is characterized by transient stimulated Raman
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/

Figure 9.31 Spectrum of the Raman gain factor of fused silica measured at a pump wavelength of
1 µm for pump and Stokes waves that are linearly polarized in the same direction. Note that
1 cm−1 ≡ 30 GHz. (Adapted from Stolen, R. H., “Nonlinearity in fiber transmission,” Proceedings
of the IEEE 68: 1232–1236, Oct. 1980.)

scattering with a reduced Raman gain among other features that are different from
those of steady-state stimulated Raman scattering. In this section, we consider only
Raman devices operating in the steady-state regime.

Forward and backward Raman interactions have the same Raman gain factor. How-
ever, the value of g̃R0 is a function of the polarization states of the pump and the Stokes
waves because χ(3) is a tensor and the effective Raman susceptibility defined in (9.75)
depends on êp and êS. In an isotropic medium, the maximum value of g̃R0 is found when
the pump and the Stokes waves are linearly polarized in the same direction. Therefore,
special attention has to be paid to the polarization states of the optical waves throughout
the course of interaction in evaluating the efficiency of a Raman process.

As an example, Fig. 9.31 shows the spectral dependence of the Raman gain factor
of fused silica glass measured at a pump optical wavelength of 1 µm for pump and
Stokes waves that are linearly polarized in the same direction. This spectrum is very
broad and does not have the ideal Lorentzian lineshape because there are many closely
clustered Raman resonances in such an amorphous solid material. This Raman spectral
shape remains more or less the same for other pump wavelengths, but its peak value
scales with the pump wavelength as g̃R0 ≈ (1 × 10−13/λS) m W−1, where λS is in
micrometers. The Raman gain factor of fused silica is relatively small compared to
those of many molecular substances such as benzene and CS2. Many amorphous glass
materials, such as GeO2, B2O3, and P2O5, which are commonly used to dope silica
fibers also have peak Raman gain factors that are five to ten times that of pure silica
with corresponding frequency shifts ranging from 400 to 1400 cm−1. In particular, the
peak Raman gain factor of GeO2 is 9.2 times that of pure silica at a frequency shift of
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420 cm−1. Therefore, the peak value, the frequency shift corresponding to the peak,
and the spectral shape of the Raman gain factor of a particular fiber all depend on the
type and concentration of the dopants in the fiber.

EXAMPLE 9.17 An optical wave at 1.55 µm wavelength propagates in a silica fiber that
has a peak Raman gain factor as described in the text above at a Raman frequency shift
of 460 cm−1. If the optical intensity is sufficiently high to generate a Raman Stokes
signal, what is the wavelength of the Stokes signal? What is the Raman frequency shift
in hertz? What is the Raman gain factor for this signal?

Solution Because ωS = ωp − �R, the Stokes wavelength can be found by using the
relation

1

λS

= 1

λp
− fR

c
.

The Raman frequency shift quoted per centimeter is actually fR/c in the above relation.
For the fiber considered here, we have fR/c = 460 cm−1 = 4.6 × 104 m−1. Therefore,
the wavelength of the Stokes signal is

λS =
(

1

1.55 × 10−6
− 4.6 × 104

)−1

m = 1.669 µm.

Because 1 cm−1 ≡ 30 GHz, the Raman frequency shift is fR = 460 cm−1 = 13.8 THz.
The Raman gain factor at this wavelength is

g̃R0 = 1 × 10−13

1.669
m W−1 = 5.99 × 10−14 m W−1.

Brillouin gain

For Brillouin scattering, the relevant excitation is a long-range acoustic wave, which has
a linear dispersion relation between the magnitude of its wavevector and its frequency
as that given in (8.3): K = �/va. The conditions in (9.179) and (9.180) for Brillouin
Stokes scattering are the same as those for the first-order down-shifted Bragg diffraction
discussed in Section 8.3, except that in Brillouin scattering the acoustic wave is gener-
ated by the pump optical wave whereas in acousto-optic Bragg diffraction the acoustic
wave is externally applied to the medium. Therefore, the amount of frequency shift
in Brillouin scattering is a function of the pump optical frequency and the scattering
angle, θ , between kS and kp. In general, the Brillouin frequency shift is a few orders
of magnitude smaller than the pump and the Stokes optical frequencies. For Brillouin
scattering in an isotropic medium, the approximation kS ≈ kp is valid. Then, by using
(9.179) and (9.180) together with the dispersion relation of the acoustic wave, we find
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the following angle-dependent frequency shift:

� = 2vakp sin
θdef

2
= 2nva

c
ωp sin

θdef

2
, (9.183)

where n is the index of refraction at the optical frequency ωp, va is the acoustic velocity
in the medium, and θdef = θd − θi is the deflection angle of the acousto-optic Bragg
diffraction as defined in Section 8.3. We see that, very differently from Raman scatter-
ing, Brillouin scattering does not have a constant frequency shift in all directions. In
particular, there is no Brillouin Stokes scattering in the forward direction because �

given in (9.183) vanishes for θdef = 0. Spontaneous Brillouin scattering appears in all
other directions with a frequency shift that varies with the scattering angle. Stimulated
Brillouin scattering occurs predominantly in the backward direction with a maximum
frequency shift, known as the Brillouin frequency, which is determined by the phase-
matching condition given in (9.180) to be

�B = nva

c
(ωp + ωS) = 2nva/c

1 + nva/c
ωp ≈ 2nva

c
ω, (9.184)

where we have used the fact that ωp ≈ ωS = ω � �B, or

fB = �B

2π
= 2nva

λ
. (9.185)

With a pump beam in the optical spectral region, the Brillouin frequency fB falls in the
hypersonic region, typically in the range of 1–50 GHz for a large variety of materials.

The Brillouin gain factor of a material can be expressed in a form similar to that
of the Raman gain factor. For backward interaction at a Brillouin frequency �B, we
have

g̃B = g̃B0
γ 2

B

(� − �B)2 + γ 2
B

= g̃B0
γ 2

B

(ωp − ωS − �B)2 + γ 2
B

. (9.186)

This Brillouin gain factor has a FWHM linewidth of ��B = 2γB, or � fB = γB/π ,
which is associated with a response time of γ −1

B for the acoustic excitation that is
responsible for the Brillouin process. Because the Brillouin response time in a common
material is typically on the order of nanoseconds, the Brillouin linewidth� fB is typically
in the range of 10 MHz to 1 GHz. Therefore, a Brillouin device does not respond
efficiently to very short optical pulses, or to any optical waves that have spectral widths
in the gigahertz range or above. For a pump optical wave that has a Lorentzian spectral
shape with a FWHM linewidth �νp, the peak Brillouin gain factor of a medium scales
as

g̃B0 = � fB

� fB + �νp
g̃max

B0 , (9.187)

where g̃max
B0 is the peak Brillouin gain factor for an idealistic CW wave of zero linewidth

with �νp = 0. Clearly, when �νp � � fB, the peak Brillouin gain factor is greatly
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reduced. The Brillouin gain factor has other characteristics that are different from
those of the Raman gain factor due to the fact that the Brillouin frequency is dictated
by the phase-matching condition of (9.180). We have seen in (9.184) that �B ∝ ω.
In addition, γB ∝ ω2, but g̃B0 is independent of optical frequency. For fused silica,
fB ≈ (17.3/λ) GHz and � fB ≈ (38.4/λ2) MHz, where λ is in micrometers, and g̃max

B0 =
4.5 × 10−11 m W−1.

Many gases, such as H2, N2, O2, Ar, and Xe, have useful Raman and Brillouin gains
and frequency shifts for practical applications. A gas for such applications is normally
contained in a high-pressure cell, often called a Raman cell or a Brillouin cell depending
on its intended application. One significant difference between a gaseous medium and
a liquid or solid medium is that g̃R0, � fR, g̃B0, and � fB of a gaseous medium depend
on the density of the molecules in the medium, which can be varied by varying the gas
pressure in a cell of fixed length and volume. The value of g̃R0 scales linearly with the
density of the gas molecules at low pressures until it saturates at a certain pressure. In
comparison, the value of g̃B0 scales quadratically with the density of the gas molecules.
Therefore, for a given gaseous medium, g̃R0 can be larger than g̃B0 at low pressures, but
g̃B0 eventually becomes larger than g̃R0 at a sufficiently high pressure. In addition, g̃B0

and � fB also depend on temperature.

EXAMPLE 9.18 For the optical wave at 1.55 µm wavelength propagating in a silica fiber
as described in Example 9.17, what are the Brillouin frequency shift, the Brillouin
linewidth, and the peak Brillouin gain factor if the optical wave has a linewidth of
1 MHz? What is the peak Brillouin gain factor if the optical wave has a linewidth of
100 MHz?

Solution According to the characteristics of fused silica described in the text,
the Brillouin frequency shift is fB = (17.3/1.55) GHz = 11.16 GHz, and the
Brillouin linewidth is � fB = (38.4/1.552) MHz = 15.98 MHz. Though g̃max

B0 = 4.5 ×
10−11 m W−1 for the silica fiber is quite independent of the optical wavelength, the
peak Brillouin gain factor varies with the linewidth �νp of the optical wave according
to (9.187). Therefore, the peak Brillouin gain factor is g̃B0 = (15.98/16.98) × 4.5 ×
10−11 m W−1 ≈ 4.23 × 10−11 m W−1 if the optical wave has a narrow linewidth of
�νp = 1 MHz. If the linewidth of the optical wave is increased to �νp = 100 MHz,
the peak Brillouin gain is reduced to g̃B0 = (15.98/115.98) × 4.5 × 10−11 m W−1 ≈
6.2 × 10−12 m W−1. Further increase of the linewidth of the optical wave will further
reduce the peak Brillouin gain.

Raman amplifiers

The Raman gain can be utilized to amplify an optical signal at a Stokes frequency ωS

through the process of stimulated Raman scattering by choosing a proper pump wave
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(a) (b)

Figure 9.32 (a) Codirectional Raman amplifier and (b) contradirectional Raman or Brillouin
amplifier. A Brillouin amplifier cannot take the codirectional configuration in (a). For Raman
amplification ωp = ωS + �R, while for Brillouin amplification ωp = ωS + �B.

at the frequency ωp = ωS + � with a frequency shift � that is within the Raman gain
spectrum, ideally at the gain-peak frequency �R.

Because stimulated Raman scattering has the same gain factor in forward and back-
ward directions, the pump wave and the Stokes signal wave can propagate either codi-
rectionally, as shown in Fig. 9.32(a), or contradirectionally, as shown in Fig. 9.32(b),
in a Raman amplifier. However, though the gain factor is the same for the two config-
urations, a Raman amplifier with a contradirectional configuration would have little or
no efficiency for short optical pulses because of the short interaction length between
the pump and the Stokes pulses that propagate in opposite directions. Here we consider
only Raman amplification in a codirectional configuration. The general formulation and
characteristics for Raman amplification in a contradirectional configuration are similar
to those for Brillouin amplification discussed later.

Following (9.78) and (9.79) and allowing for the existence of linear absorption loss
in a medium, we have the following coupled equations for Raman amplification in a
codirectional configuration:

dIS

dz
+ αS IS = g̃R IS Ip, (9.188)

dIp

dz
+ αp Ip = −ωp

ωS

g̃R IS Ip, (9.189)

with given values of Ip(0) and IS(0) at the input end, z = 0, of the amplifier as the
initial conditions. The parameters αS and αp are the linear absorption coefficients of
the medium at the Stokes and the pump frequencies, respectively.

The coupled equations in (9.188) and (9.189) have an exact analytical solution when
αp = αS (see Problem 9.9.3). In the amplification of a weak signal when the depletion
of the pump intensity due to Raman interaction can be neglected, a simple approximate
solution can be obtained by ignoring the term on the right-hand side of (9.189). Then,
for a Raman amplifier of length l, we have the signal at the output end of the amplifier
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given by

IS(l) = IS(0) exp
(
gRleff − αSl

)
, (9.190)

where gR is the Raman gain coefficient defined as

gR = g̃R Ip(0) = − 3ωSµ0

nS,znp,z
χ ′′

R Ip(0), (9.191)

and leff is the effective interaction length of Raman amplification given by

leff = 1 − e−αpl

αp
. (9.192)

Note that the Raman gain coefficient increases with pump intensity. Such dependence on
an optical intensity is characteristic of an optical gain that is contributed by a nonlinear
optical process. The amplification factor, or the Raman amplifier gain, for the Stokes
signal in the case of negligible pump depletion is then

GR = IS(l)

IS(0) exp(−αSl)
= exp(gRleff) = exp

[
g̃R Ip(0)leff

]
. (9.193)

For a given Raman amplifier with a fixed length, the amplifier gain can be controlled
by varying the pump intensity.

EXAMPLE 9.19 An optical fiber that has the Raman gain characteristics described in
Example 9.17 is used as a fiber Raman amplifier for codirectional amplification of
an optical signal at λS = 1.55 µm. The input power of the signal is −15 dBm, and
the desired output power is 0 dBm. The fiber has an absorption coefficient of α =
0.2 dB km−1 at this signal wavelength and a length of l = 25 km. Its core has an
effective cross-sectional area ofAeff = 5 × 10−11 m2. What is the pump wavelength for
the largest Raman gain? What is the required pump power if the absorption coefficient
at the pump wavelength is the same as that at the signal wavelength?

Solution Because the Raman gain spectrum of an optical fiber is very broad, it is in
general only necessary to pick a pump wavelength so that the signal wavelength falls
within the Raman gain spectral range of the pump. However, to have the largest Raman
gain, we need to choose a pump wavelength properly so that the Raman gain peak
appears at the signal wavelength. From Example 9.17, we have fR/c = 460 cm−1 =
4.6 × 104 m−1 at the peak of the Raman spectrum. Therefore, the pump wavelength
for the largest Raman gain is

λp =
(

1

1.55 × 10−6
+ 4.6 × 104

)−1

m = 1.4468 µm.

The peak Raman gain factor at λS = 1.55 µm is
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g̃R = 1 × 10−13

1.55
m W−1 = 6.45 × 10−14 m W−1.

With α = 0.2 dB km−1 = 0.046 km−1 and l = 25 km, we have

leff = 1 − e−0.046×25

0.046
km = 14.86 km.

Because P in
S = IS(0)Aeff and Pout

S = IS(l)Aeff, we find from (9.193) that the required
Raman amplifier gain in decibels is

GR = Pout
S (dBm) − P in

S (dBm) + α(dB km−1)l(km) = 20 dB. (9.194)

Therefore, GR = 20 dB = 100. Identifying the pump power Pp = Ip(0)Aeff and using
(9.193), we find the following required pump power:

Pp = Aeff

leff

ln GR

g̃R

= 5 × 10−11 × ln 100

14.86 × 103 × 6.45 × 10−14
W = 240 mW. (9.195)

Note that in using (9.193) to obtain (9.194) and (9.195), we have implicitly assumed
that depletion of the pump power due to its conversion to the signal power is negligible.
This assumption is clearly valid here because the pump power obtained under such an
assumption is 240 mW while the output signal is only 0 dBm, which is 1 mW. Stimulated
Brillouin scattering has to be suppressed in a Raman amplifier because it can deplete
the pump power for Raman amplification. Because the Brillouin gain factor decreases
with the linewidth of the pump, an optical source of a linewidth that is large enough
to suppress stimulated Brillouin scattering is normally used for pumping a Raman
amplifier. Multimode semiconductor lasers can serve such a purpose for pumping fiber
Raman amplifiers.

Raman generators

When there is a pump optical wave in a medium that has a Raman susceptibility, spon-
taneous Raman scattering that generates incoherent Stokes and anti-Stokes emission
in all directions always occurs. In a Raman amplifier where a coherent input signal is
amplified, such incoherent spontaneous emission contributes to the noise in the am-
plifier. In the absence of an input signal, however, the ubiquitous spontaneous Raman
emission can be the seed for the generation of a Stokes or anti-Stokes wave through
stimulated amplification under the right conditions. A Raman generator is normally
used for the generation of the Stokes wave at the down-shifted Stokes frequency of
ωS = ωp − �R with the medium initially unexcited. A Raman generator can simply
be a Raman amplifier without an input signal but with a pump of sufficient intensity
for significant power conversion from the pump frequency to the Stokes frequency in
a single pass through the medium.
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In a Raman generator, the Stokes wave grows from stimulated amplification of the
spontaneous Stokes emission. Because spontaneous Stokes emission occurs along the
entire length of the generator, the total Stokes power at the output is the result of
the cumulative amplification of all spontaneous Stokes emission over the length of the
generator. A detailed analysis that takes into account such cumulative amplification can
be carried out. For forward Raman interaction, the net result is equivalent to treating
the generator as an amplifier with the injection of an effective Stokes signal I eff

S (0)
at z = 0 while ignoring all of the spontaneous Stokes emission in the generator. For
backward interaction, it is equivalent to injection of an effective Stokes signal I eff

S (l) at
z = l while ignoring all of the spontaneous Stokes emission. The values of the effective
signals depend on the Raman characteristics, particularly g̃R0 and � fR, of the medium,
as well as on the pump intensity. Besides, due to the difference between the forward
and the backward interactions in the geometric relation of the pump and the Stokes
waves, the effective signal I eff

S (l) for backward interaction is significantly smaller than
the effective signal I eff

S (0) for forward interaction at a given pump intensity in a given
medium. This difference leads to a higher threshold for backward Raman generation
than that for forward Raman generation. As a result, only a Stokes wave in the forward
direction is generated in a Raman generator. No backward generation occurs.

Because significant power conversion from the pump wave to the Stokes wave is
desired in the application of a Raman generator, pump depletion cannot be neglected.
If we assume for simplicity that αS = αp and consider the fact that Ip(0) � I eff

S (0) for a
Raman generator, the complete solution of the coupled equations in (9.188) and (9.189)
leads to the relation (see Problem 9.9.3)

IS(l)

Ip(l)
≈ I eff

S (0)

Ip(0)
exp

[
g̃R Ip(0)leff

] = I eff
S (0)

Ip(0)
GR. (9.196)

The threshold of a Raman generator can be defined as the condition for IS(l) = Ip(l).
Then, the following threshold amplification factor is obtained at the Raman threshold:

G th
R = exp

[
g̃R I th

p (0)leff

]
= I th

p (0)

I eff
S,th(0)

. (9.197)

The physical meaning of this relation is that the Raman threshold is reached when
stimulated amplification of the spontaneous Stokes emission brings the Stokes intensity
at the output to the same level as that of the pump intensity. Because the value of I eff

S (0)
depends on the characteristics of the medium, the value of G th

R is also a function of
the characteristics of the medium. Therefore, the threshold pump intensity for forward
Raman Stokes generation in a medium of length l can be calculated using the following
relation:

I th
p (0) ≈ ln G th

R

g̃Rleff

. (9.198)
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For example, ln G th
R ≈ 16 for forward Raman Stokes generation in single-mode silica

fibers. For backward Raman Stokes generation in a single-mode silica fiber, ln G th
R ≈ 20.

Backward Raman Stokes generation normally does not occur because it has a much
higher threshold than forward generation.

In the case when αS = αp = α, a simple relation for calculating the conversion
efficiency of a Raman generator can be obtained by assuming that Ip(0) � I eff

S (0) =
I eff
S,th(0) for any pump intensity. Then, the Raman conversion efficiency from the pump

to the Stokes is found to be (see Problem 9.9.4)

ηR = IS(l)

Ip(0)
= ωS

ωp

1

1 + (ωS/ωp)r (G th
R )1−r e−αl, (9.199)

where r = Ip(0)/I th
p (0) is the pump ratio with respect to the threshold pump intensity.

The threshold of a Raman generator is very sharp. Below the threshold, ηR quickly
approaches zero, but it quickly approaches its maximum value of (ωS/ωp)e−αl above
the threshold. Therefore, (9.199) can be used to find the Raman conversion efficiency
quite accurately for any value of r irrespective of the assumption used in obtaining it.
By using (9.199) to calculate the Raman Stokes generation in a single-mode silica fiber,
it is found that a reduction in the pump intensity by 1 dB below the threshold reduces
the output Stokes intensity by more than 10 dB, but an increase in the pump intensity
by 1 dB above the threshold causes the conversion from the pump to the Stokes to be
more than 98% complete.

If the pump intensity is many times above the threshold, complete conversion of
power from the pump to the Stokes occurs within a very short distance from the input
end. This first Stokes wave at the frequency ωS1 = ωp − �R can then serve as a pump to
generate the second Stokes wave at the frequency ωS2 = ωS1 − �R = ωp − 2�R. This
cascading process continues until the waves reach the end of the generator. Therefore,
with proper choices of generator length and pump intensity, a high-order Stokes wave
can be generated at a frequency that is down-shifted from the pump frequency by an
integral multiple of the Raman frequency. However, such complete power conversion
from the pump to the first Stokes and from a low-order Stokes to a high-order Stokes is
possible only for CW waves or very long optical pulses. For short optical pulses, power
conversion from one order to another is normally not complete due to temporal walk-
off between the interacting pulses of different wavelengths caused by group-velocity
dispersion in the medium, but generation of multiple Stokes orders is still possible with
high-intensity pulses.

Sometimes, in addition to the Stokes wave, an anti-Stokes wave at the up-shifted
anti-Stokes frequency of ωAS = ωp + �R can also be generated through Stokes–
anti-Stokes coupling and/or parametric four-wave mixing with the pump if the
required phase-matching conditions for such parametric processes are satisfied. In
practical applications, however, a Raman generator is normally used as a nonparametric
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frequency converter to convert the optical power at a high-frequency pump wave to a
low-frequency Stokes wave.

EXAMPLE 9.20 The fiber Raman amplifier described in Example 9.19 can be used as a
fiber Raman generator for a Stokes signal at λS = 1.55 µm without an input signal
at this wavelength by raising the pump power at λp = 1.4468 µm. Find the threshold
pump power for this fiber Raman generator.

Solution Identifying P th
p = I th

p (0)Aeff and using ln G th
R ≈ 16, we have, from (9.198),

P th
p = Aeff

leff

ln G th
R

g̃R

= 16Aeff

g̃Rleff
(9.200)

for the threshold pump power of a fiber Raman generator. Using the parameters obtained
in Example 9.19, we find that

P th
p = 16 × 5 × 10−11

6.45 × 10−14 × 14.86 × 103
W = 835 mW.

When the pump power is below P th
p , very little power is converted to the Stokes

signal in a Raman generator. When the pump power exceeds P th
p at a certain level, it is

completely converted to the Stokes. If the pump power continues to increase, the power
is converted to a successively higher order of Stokes at the output.

Brillouin amplifiers

The Brillouin gain in a medium can also be utilized to amplify an optical signal at a
frequency that is down-shifted from the pump frequency by an amount equal to the
Brillouin frequency.

Due to the fundamental differences between the Raman and the Brillouin processes
discussed above, the Brillouin amplifiers have several characteristics that are very differ-
ent from those of the Raman amplifiers. First, only the contradirectional configuration
shown in Fig. 9.32(b) is acceptable for a Brillouin amplifier because there is no forward
Brillouin scattering. Second, the Brillouin linewidth is relatively narrow. Therefore, a
Brillouin amplifier is useful only for the amplification of narrow-band signals, whereas
a Raman amplifier can be used for broadband signals or short-pulse signals because
of the large Raman linewidth. Third, the peak Brillouin gain factor, g̃B0, of a solid or
liquid medium, or a high-pressure gaseous medium, is usually much larger than the
peak Raman gain factor, g̃R0, of the same medium. Therefore, a Brillouin amplifier
usually requires a much lower pump intensity than what a Raman amplifier needs to
have the same amplification factor for the signal.

Because of the contradirectional configuration of a Brillouin amplifier, the signal
propagates in the −z direction while the pump propagates in the z direction. Therefore,
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Brillouin amplification is described by the following coupled equations:

−dIS

dz
+ αS IS = g̃B IS Ip, (9.201)

dIp

dz
+ αp Ip = −ωp

ωS

g̃B IS Ip, (9.202)

with the input pump intensity Ip(0) at z = 0 and the input signal intensity IS(l) at z = l
given as the boundary conditions.

The exact solution for this backward amplification differs from that for the forward
amplification. It can be found when αS = αp = 0 (see Problem 9.9.11). In the appli-
cation of an optical amplifier for the amplification of a weak signal, however, there is
little pump depletion due to nonlinear Brillouin interaction. Then, the right-hand side
of (9.202) can be ignored to obtain the following solution for the output intensity of the
signal at z = 0:

IS(0) = IS(l) exp
(
gBleff − αSl

)
, (9.203)

where leff is the effective interaction length of the same form as that defined in (9.192)
and gB is the Brillouin gain coefficient defined as

gB = g̃B Ip(0). (9.204)

Therefore, in the case of negligible pump depletion, the amplification factor of a Bril-
louin amplifier, or the Brillouin amplifier gain, is

GB = IS(0)

IS(l) exp(−αSl)
= exp(gBleff) = exp

[
g̃B Ip(0)leff

]
. (9.205)

EXAMPLE 9.21 If the fiber Raman amplifier described in Example 9.19 is turned into a
Brillouin amplifier for the same input signal and the same desired output signal, what
should the pump wavelength be? If the pump wave has a linewidth of 100 MHz, what
is the required pump power?

Solution From Example 9.18, we know that fB = 11.16 GHz. Therefore, fR/c =
37.2 m−1, and the pump wavelength is

λp =
(

1

1.55 × 10−6
+ 37.2

)−1

m = 1.5499 µm.

The pump wavelength is very close to the signal wavelength because of the small
Brillouin frequency shift. We find from Example 9.18 that the peak Brillouin gain for this
amplifier is g̃B = 6.2 × 10−12 m W−1 because the pump has a linewidth of 100 MHz.
Because a Brillouin amplifier functions only in the contradirectional configuration,
we identify P in

S = IS(l)Aeff and Pout
S = IS(0)Aeff. Then we find from (9.205) that the
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required Brillouin amplifier gain in decibels is

GB = Pout
S (dBm) − P in

S (dBm) + α(dB km−1)l(km) = 20 dB, (9.206)

which is the same as the Raman amplifier gain in Example 9.19. Therefore, GB = 100.
From (9.205) we find by identifying the pump power as Pp = Ip(0)Aeff that

Pp = Aeff

leff

ln GB

g̃B

= 5 × 10−11 × ln 100

14.86 × 103 × 6.2 × 10−12
W = 2.5 mW. (9.207)

By comparing (9.195) with (9.207), we find that for the same amplifier gain, GB = GR,
the pump power required for a Brillouin amplifier is scaled from that for a Raman
amplifier by a factor of PB

p /PR
p = g̃R/g̃B. Because g̃B � g̃R by about two orders of

magnitude in this example, the pump power is reduced by as much.
Note that in using (9.205) to obtain (9.206) and (9.207), we have implicitly assumed

that depletion of the pump power due to its conversion to the signal power is negligible.
This assumption is not really valid here because the pump power obtained under such
an assumption is 2.5 mW but the output signal is 1 mW. A more detailed analysis with
the effect of pump depletion taken into consideration is required to obtain the accurate
result.

Brillouin generators

Similarly to the situation in a Raman generator, the emission from spontaneous Brillouin
scattering can also seed the generation of a Brillouin Stokes frequency in the presence
of a pump above a Brillouin threshold but in the absence of an input Stokes signal.
Besides the fundamental differences in terms of the frequency shift and the generation
efficiency, an important difference between a Brillouin generator and a Raman generator
is that the Brillouin Stokes wave is generated only in the backward direction but the
Raman Stokes is generated only in the forward direction.

As discussed above, for backward generation, the net result of the cumulative
backward amplification of spontaneous emission over the entire length of interac-
tion is equivalent to the injection of an effective backward-propagating Stokes sig-
nal I eff

S (l) at z = l. Considering the physical implication of the threshold amplifica-
tion factor given in (9.197) for a Raman generator, the Brillouin threshold can be
defined as the condition in which stimulated Brillouin amplification of the sponta-
neous Brillouin Stokes emission brings the Stokes intensity to the level of the pump
intensity. Because the effective Stokes signal at z = l is related to the pump inten-
sity at z = l, we then have the following threshold amplification factor for a Brillouin
generator:

G th
B = exp

[
g̃B I th

p (0)leff

]
= I th

p (l)

I eff
S,th(l)

, (9.208)
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where I th
p (0) and I th

p (l) are the input pump intensity at z = 0 and the remaining pump
intensity at z = l, respectively, at the threshold of the Brillouin generator. The value
of G th

B is a function of the characteristics of the medium and is generally larger than
that of G th

R for the same medium, primarily because of the fact that the Brillouin Stokes
is generated in the backward direction. Therefore, the threshold pump intensity for
Brillouin Stokes generation in a medium of length l is

I th
p (0) ≈ ln G th

B

g̃Bleff

. (9.209)

For example, ln G th
B ≈ 21 for Brillouin Stokes generation in single-mode silica fibers.

The conversion efficiency of a Brillouin generator from the pump to the Stokes is
measured in terms of an intensity reflectivity defined as

RB = IS(0)

Ip(0)
. (9.210)

In the case when αS = αp = 0, the value of RB can be found from the following
transcendental relation (see Problem 9.9.12):

RB = (G th
B

)r (1−RB)−1
(9.211)

under the approximation that ωp ≈ ωS for Brillouin scattering in the optical region,
where r = Ip(0)/I th

p (0). Because of the large value of G th
B , the relation in (9.211) indi-

cates a sharp threshold for Brillouin generation. Below the Brillouin threshold, r < 1,
and RB quickly approaches zero. Above the threshold, RB varies with pump intensity
approximately as

RB ≈ 1 − 1

r
= 1 − I th

p (0)

Ip(0)
, for r > 1. (9.212)

This relation leads to the important conclusion that

Ip(l) = I th
p (0) if Ip(0) > I th

p (0). (9.213)

Therefore, when the input pump intensity exceeds the threshold pump intensity of a
lossless Brillouin generator, the transmitted intensity is clamped at the level of the
threshold pump intensity. The excess above the threshold is converted to the Stokes
frequency and is reflected back to the input end. This characteristic allows very efficient
Brillouin generation, but it also sets a very important limitation on the level of optical
power that can be transmitted through an optical system. In particular, in a fiber-optic
transmission system, the generation of the Brillouin Stokes in the optical fiber severely
limits the transmission power level of the system.

EXAMPLE 9.22 The fiber Brillouin amplifier described in Example 9.21 becomes a fiber
Brillouin generator for a Stokes signal at λS = 1.55 µm without an input signal at this



547 9.9 Raman and Brillouin devices

wavelength if the pump power at λp = 1.5499 µm is raised above a threshold level.
Find the threshold pump power for this fiber Brillouin generator if the linewidth of the
pump is 100 MHz. What is the threshold pump power if the linewidth of the pump is
only 1 MHz?

Solution Identifying P th
p = I th

p (0)Aeff and using ln G th
B ≈ 21, we have, from (9.209),

P th
p = Aeff

leff

ln G th
B

g̃B

= 21Aeff

g̃Bleff
(9.214)

for the threshold pump power of a fiber Brillouin generator. Using the parameters
obtained in Example 9.21 with g̃B = 6.2 × 10−12 m W−1 for a pump wave of 100 MHz
linewidth, we find that

P th
p = 21 × 5 × 10−11

6.2 × 10−12 × 14.86 × 103
W = 11.4 mW.

If the pump has a narrow linewidth of only 1 MHz, we have g̃B = 4.23 × 10−11 m W−1

from Example 9.18. Then the threshold pump power is reduced to

P th
p = 21 × 5 × 10−11

4.23 × 10−11 × 14.86 × 103
W = 1.67 mW.

The Brillouin threshold pump power can be increased substantially if the linewidth of the
pump is large. Because the power that remains in the pump is clamped to the Brillouin
threshold, with the rest reflected back to the input end, suppressing the Brillouin Stokes
generation by sufficiently increasing the Brillouin threshold is essential for the operation
of a Raman amplifier, as discussed in Example 9.19, as well as for the operation of a
Raman generator.

Because Raman and Brillouin gains exist in the same medium and both Raman Stokes
and Brillouin Stokes can grow from spontaneous emission, these two processes compete
with each other for the same pump power source. The one that has a lower threshold
pump intensity quickly monopolizes the pump power and prohibits the other from
occuring. Because g̃B0 is usually much larger than g̃R0 in the same medium, Brillouin
generation usually dominates although G th

B is larger than G th
R . However, because the

Brillouin gain has a very narrow linewidth, the threshold pump intensity for Brillouin
generation increases very quickly when the pump wave has a linewidth exceeding
� fB. Therefore, Brillouin generation dominates only when the pump has a narrow
linewidth, whereas Raman generation dominates when the linewidth of the pump is
larger than the Brillouin linewidth. The pump power required for a Raman amplifier
is generally lower than the threshold pump power of a Raman generator, and that for
a Brillouin amplifier is lower than the threshold of a Brillouin generator. However,
because the Brillouin gain factor can be a few orders of magnitude higher than the
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Raman gain factor, stimulated Brillouin scattering can easily occur well below the power
required for a Raman amplifier. The consequences of stimulated Brillouin scattering
in a Raman amplifier include significant reduction of the Raman gain by depletion
of the pump power, generation of noise, and distortion of the signal waveform. It is
therefore necessary to suppress stimulated Brillouin scattering in a Raman amplifier
by, for example, using a pump of a sufficiently broad linewidth.

Besides the amplifiers and the generators discussed above, the Raman gain can also
be utilized to construct a Raman laser by placing such a gain medium in an optical
oscillator that is in resonance with the Raman Stokes frequency. Similarly, a Brillouin
laser can also be constructed by placing a Brillouin gain medium in an optical oscillator
that is in resonance with the Brillouin Stokes frequency.

9.10 Nonlinear optical interactions in waveguides

As we have seen in preceding sections, the efficiency of a nonlinear optical interaction
generally increases with the intensities of the interacting optical waves and the inter-
action length. In a homogeneous bulk medium, the intensity of an optical wave can be
increased by tightening the focus of the beam to reduce its cross-sectional spot size, but
often at the expense of reducing the effective interaction length due to an increase in the
beam divergence as a result of the decrease in the beam spot size. In an optical wave-
guide, however, an optical wave is guided and confined to a small cross-sectional area
for the entire length of the waveguide. Because of optical confinement, a guided optical
wave can maintain a high intensity over a long distance that is practically limited only
by the length and the attenuation coefficient of the waveguide. Therefore, both high
intensity and long interaction length desired for efficient nonlinear optical interactions
can be simultaneously fulfilled in an optical waveguide. For example, in a low-loss
optical fiber, the effective interaction length is on the order of tens of kilometers and
the optical intensity can be quite high at a modest power level because of the small
core diameter of a typical single-mode fiber. This unique characteristic makes optical
waveguides ideal media for efficient nonlinear optical devices.

Coupled-wave theory is used in the analysis of interactions among waves of different
frequencies, including the acousto-optic interactions discussed in Chapter 8 and the
nonlinear optical interactions discussed in preceding sections. In the analysis of the
coupling of waveguide modes, however, coupled-mode theory has to be used. In general,
both the interaction among different optical frequencies and the characteristics of the
waveguide modes have to be considered for a nonlinear optical interaction in an optical
waveguide. Therefore, a combination of coupled-wave and coupled-mode theories has
to be employed in the analysis of such an interaction.
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First, the total field of the interacting waves is expanded in terms of the fields of
individual frequencies:

E(r, t) =
∑

q

Eq (r) exp(−iωq t), (9.215)

where Eq (r) is the spatially dependent total field amplitude for the frequency ωq . Then,
instead of taking out a uniquely defined fast-varying spatial variation as done in (4.5)
for the formulation of coupled-wave theory, we expand each field Eq (r) at a given
frequency ωq in terms of the waveguide modes:

Eq (r) =
∑

ν

Aq,ν(z)Êq,ν(x, y) exp(iβq,νz). (9.216)

Note that the propagation constant βq,ν is a function of both optical frequency ωq

and waveguide mode ν. Note also that this expansion is valid only when nonlinear
polarization P(n) is small compared to linear polarization P(1) so that the waveguide
modes defined by the linear optical properties of the medium remain a valid concept.
Because Êq,ν is the normalized mode field pattern defined in Section 2.4, the power
contained in waveguide mode ν at frequency ωq is simply given by

Pq,ν = |Aq,ν |2 = Aq,ν A∗
q,ν . (9.217)

Following the procedures used in formulating the coupled-mode equations discussed
in Chapter 4 and allowing for any possible linear coupling besides nonlinear, we find the
following coupled-mode equation that accounts for an nth-order nonlinear interaction
in a waveguide structure:6

±dAq,ν

dz
=
∑

µ

iκq,νµ Aq,µei(βq,µ−βq,ν )z + iωqe−iβq,ν z

∞∫
−∞

∞∫
−∞

Ê∗
q,ν · P(n)

q dxdy, (9.218)

where the plus sign is taken for a forward-propagating mode with βq,ν > 0, and the mi-
nus sign is for a backward-propagating mode with βq,ν < 0. In summary, for nonlinear
interactions in optical waveguides, the expansion in (9.216) replaces that in (9.53) and
(9.218) replaces (9.55). Besides the nonlinear effect characterized by P(n), linear effects
such as a periodic grating or an externally applied voltage also modify the behavior of
the waves in a waveguide and lead to coupling between different waveguide modes.
Coupling between different waveguides in the presence of optical nonlinearity is also
possible. The first term on the right-hand side of (9.218) accounts for the possibility

6 To be precise, just like that of the linear coupling coefficient κνµ, the form of the nonlinear term on the right-
hand side of (9.218) also has to be modified when Êq,ν represents nonorthogonal modes of different individual
waveguides in a structure that consists of multiple waveguides. Such modification is normally not significant
and is ignored here. No such approximation is incurred in the use of (9.218), however, if Êq,ν represents the
modes of the entire structure, which are orthogonal to each other. This is always true in the case of a single
waveguide. It is also true if the supermodes of a structure that consists of multiple waveguides are used in the
analysis.
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of such linear coupling effects based on the coupled-mode formulation discussed in
Section 4.2. Therefore, (9.218) can be viewed as an extension of (4.33) or (4.39) to in-
clude the nonlinear perturbation. In the case of coupling between different waveguides,
κq,νµ still has to be evaluated using (4.40) due to the nonorthogonality between modes
of different waveguides.

Many guided-wave nonlinear optical devices have direct bulk counterparts. The use
of a waveguide for such a device offers the advantages of improved efficiency, phase
matching, or miniaturization of the device but is not absolutely necessary for the device
function. Guided-wave optical frequency converters typically fall into this category.
Some nonlinear optical devices rely on the waveguide geometry for their functions and
thus have no bulk counterparts. All-optical switches and modulators that use waveguide
interferometers or waveguide couplers belong to this category. Sometimes, the use of
an optical waveguide is necessary for the practical reason that only a waveguide can
provide the long interaction length required for the function of a device though the basic
function of the device does not depend on the waveguide geometry. Many nonlinear
optical devices that use optical fibers belong to this category.

9.11 Guided-wave optical frequency converters

All of the optical frequency converters discussed in Section 9.6 can be made in wave-
guide structures. The basic principles and characteristics of these devices are the same
as their bulk counterparts, except that the characteristics of the waveguide modes have
to be considered. Though a guided-wave optical frequency converter generally takes
the form of a single waveguide, there is often a possibility that multiple waveguide
modes are involved in the frequency conversion process. Each individual frequency
component can consist of multiple waveguide modes, as expressed by (9.216). Even
when each frequency component is represented by only one waveguide mode, it is still
possible for the different interacting frequency components to be in different waveguide
modes.

For a parametric second-order process in a waveguide involving three different fre-
quencies with ω3 = ω1 + ω2, we have

Ê∗
3,ν · P(2)

3 = 2ε0

∑
µ,ξ

Ê∗
3,ν · χ(2)(ω3 = ω1 + ω2) : Ê1,µÊ2,ξ A1,µ A2,ξ ei(β1,µ+β2,ξ )z

(9.219)

to replace (9.56), and similar expressions for Ê∗
1,µ · P(2)

1 and Ê∗
2,ξ · P(2)

2 to replace (9.57)
and (9.58), respectively. The interacting waves in an efficient frequency converter nor-
mally propagate in the same direction though contradirectional geometry is also pos-
sible. Here we consider only codirectional geometry with all of the interacting waves
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propagating in the forward direction. Then, using (9.218), we can write

dA3,ν

dz
= iω3

∑
µ,ξ

Cνµξ A1,µ A2,ξ ei�βνµξ z, (9.220)

dA1,µ

dz
= iω1

∑
ν,ξ

C∗
νµξ A3,ν A∗

2,ξ e−i�βνµξ z, (9.221)

dA2,ξ

dz
= iω2

∑
ν,µ

C∗
νµξ A3,ν A∗

1,µe−i�βνµξ z, (9.222)

where

Cνµξ = 2ε0

∞∫
−∞

∞∫
−∞

Ê∗
3,ν · χ(2)(ω3 = ω1 + ω2) : Ê1,µÊ2,ξ dxdy

= 4ε0

∞∫
−∞

∞∫
−∞

Ê∗
3,ν · d(ω3 = ω1 + ω2) : Ê1,µÊ2,ξ dxdy (9.223)

is the effective nonlinear coefficient that accounts for the overlapping of the field dis-
tribution patterns of different waveguide modes, as well as for any possible spatial
variations in χ(2) due to the waveguide structure, and

�βνµξ = β1,µ + β2,ξ − β3,ν (9.224)

is the phase mismatch. In comparison to the effective nonlinear susceptibility, χeff,
defined in (9.59) for the interaction of plane waves, the effective nonlinear coefficient
defined above for the interaction of waveguide modes has the following relation:

|Cνµξ |2 = |χeff|2
2c3ε0n3,νn1,µn2,ξ

�νµξ

A = 2|deff|2
c3ε0n3,νn1,µn2,ξ

�νµξ

A , (9.225)

where nq,ν = cβq,ν/ωq is the effective refractive index of a waveguide mode, �νµξ is
the overlap factor for the interacting waveguide modes, and A is the cross-sectional
area of the waveguide core. The overlap factor �νµξ accounts for the differences in
the mode field distributions among the interacting waves and any transverse spatial
variations in the nonlinear susceptibility. An effective area for the interaction can be
defined as Aeff = A/�νµξ .

In the case of second-harmonic generation in a waveguide, we have

P(2)
2ω = ε0

∑
µ,ξ

χ(2)(2ω = ω + ω) : Êω,µÊω,ξ Aω,µ Aω,ξ ei(βω,µ+βω,ξ )z, (9.226)

P(2)
ω = 2ε0

∑
ν,ξ

χ(2)(ω = 2ω − ω) : Ê2ω,νÊ∗
ω,ξ A2ω,ν A∗

ω,ξ ei(β2ω,ν−βω,ξ )z. (9.227)
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Therefore, the coupled equations for second-harmonic generation in a waveguide are

dA2ω,ν

dz
= iω

∑
µ,ξ

Cνµξ Aω,µ Aω,ξ ei�βνµξ z, (9.228)

dAω,µ

dz
= iω

∑
ν,ξ

C∗
νµξ A2ω,ν A∗

ω,ξ e−i�βνµξ z, (9.229)

where

Cνµξ = 2ε0

∞∫
−∞

∞∫
−∞

Ê∗
2ω,ν · χ(2)(2ω = ω + ω) : Êω,µÊω,ξ dxdy

= 4ε0

∞∫
−∞

∞∫
−∞

Ê∗
2ω,ν · d(2ω = ω + ω) : Êω,µÊω,ξ dxdy (9.230)

and

�βνµξ = βω,µ + βω,ξ − β2ω,ν. (9.231)

All of the general concepts discussed in Section 9.4 for parametric second-order
interactions are equally valid for such interactions in an optical waveguide, except that
the form of each relation must be modified to factor in the characteristics of the wave-
guide modes. For instance, Manley–Rowe relations still exist but such relations have to
be expressed in terms of optical powers in the waveguide modes (see Problem 9.11.1).
Phase matching is also most important for an efficient interaction, but it is now deter-
mined by the propagation constants of the interacting waveguide modes. Therefore, the
coherence length for the coupling of the mode fields E3,ν , E1,µ, and E2,ξ is

lcoh = π

|�βνµξ | . (9.232)

Because the propagation constant βq,ν for a given frequency ωq is mode dependent
due to modal dispersion, the phase mismatch and, consequently, the efficiency of an
interaction are dependent on specific combination of the modes among the interacting
frequency components. In a multimode waveguide, there can be many different mode
combinations, as is indicated by the summation over the mode indices on the right-
hand side of the coupled equations in (9.220)–(9.222) and those in (9.228) and (9.229).
However, it is unlikely and undesirable, though not impossible, for multiple mode com-
binations to be simultaneously phase matched in a particular interaction. In a practical
optical frequency converter, normally only one waveguide mode for each frequency
component is efficiently coupled to other frequency components in the interaction.

When an interaction involves only one waveguide mode in each frequency comp-
onent, the coupled equations have the form of those for the corresponding interaction
in a bulk medium though the mode amplitudes are used instead of the field ampli-
tudes and the coefficients in the equations look different. Then, the characteristics of



553 9.11 Guided-wave optical frequency converters

any guided-wave optical frequency converter can be obtained by converting those of
its bulk counterpart described in Section 9.6 with the following modifications: (1) the
mode power Pq,ν is used in place of IqAq ; (2) �β is used instead of �k; (3) the non-
linear coefficient Cνµξ is used in place of χeff by replacing a compound coefficient of
the form on the right-hand side of (9.225) in any relation for a bulk device with |Cνµξ |2
for a guided-wave device.

For example, consider a second-harmonic generator in which the fundamental and
second-harmonic waves each contain only one mode. Then, the coupled equations in
(9.228) and (9.229) are reduced to

dA2ω,ν

dz
= iωC A2

ω,µei�βz, (9.233)

dAω,µ

dz
= iωC∗ A2ω,ν A∗

ω,µe−i�βz, (9.234)

where C = Cνµµ and �β = 2βω,µ − β2ω,ν . In the low-efficiency limit when depletion
of power in the fundamental wave is negligible, we can obtain, by integrating (9.233)
or by converting (9.110), the following relation for a waveguide of length l:

P2ω,ν(l) = ω2|C |2 P2
ω,µl2 sin2(�βl/2)

(�βl/2)2
= 4π2c2

λ2
|C |2 P2

ω,µl2 sin2(�βl/2)

(�βl/2)2
. (9.235)

In the high-efficiency limit with perfect phase matching, we have

P2ω,ν(l) = Pω,µ(0) tanh2 κl, (9.236)

Pω,µ(l) = Pω,µ(0) sech2κl, (9.237)

with the coefficient κ given by

κ = [ω2|C |2 Pω,µ(0)
]1/2 =

[
4π2c2

λ2
|C |2 Pω,µ(0)

]1/2

. (9.238)

The techniques for phase matching discussed in Section 9.5 are also applicable
to guided-wave devices. Besides, the modal dispersion in a waveguide can also be
used for phase matching if modes of different orders are involved in an interaction.
Often, a combination of different techniques is employed. For example, a waveguide is
fabricated along a certain direction in a crystal for collinear birefringent phase matching,
but temperature is used for fine tuning once the wave propagation direction is fixed
by the waveguide structure. Quasi-phase matching is particularly useful for guided-
wave devices because of its advantages discussed in Section 9.5 and because of its
compatibility with microfabrication technology. For a guided-wave device that is quasi-
phase matched using a periodic structure with a duty factor ξ , the coupled equations
can be transformed in a manner similar to the transformation shown in (9.96), resulting
in a phase mismatch of �βQ = �β + q K that is minimized with a particular integer q
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and a nonlinear coefficient CQ given by

CQ = 2C
sin ξqπ

qπ
e−iξqπ (9.239)

according to (9.100). With quasi-phase matching, we have to replace the phase mismatch
�β in (9.235) by �βQ, and the parameter C in (9.235) and (9.238) by CQ. For a first-
order structure with a 50% duty factor, |CQ| = 2|C |/π . In a slab waveguide, the fanned
structure shown in Fig. 9.14(c) can also be used for continuous wavelength tuning
through quasi-phase matching.

EXAMPLE 9.23 A PPLN waveguide is used for second-harmonic generation of a funda-
mental wave at 1.10 µm wavelength. The waveguide is a diffused channel waveguide
formed by Ti diffusion into a PPLN crystal similar to the one described in Example 9.11.
It has a diffusion depth of d = 2 µm and a width of w = 3 µm, for an effective waveg-
uide core area of A = wd = 6 µm2. It is a single-mode waveguide for the fundamental
wavelength at 1.1 µm. The overlap factor for second-harmonic generation at this wave-
length in this waveguide is � = 0.4. The grating period of the PPLN is properly chosen
as a first-order grating with a 50% duty factor for quasi-phase matching of the in-
teracting waveguide modes. For easy comparison to second-harmonic generation in
the bulk PPLN crystal considered in Example 9.12(d), we take the waveguide length
to be l = 1 cm. Find the normalized second-harmonic conversion efficiency for this
device.

Solution By replacing �β with �βQ and C with CQ in (9.235), we have the following
normalized efficiency in the low-efficiency limit for the PPLN waveguide:

η̂SH = P2ω(l)

P2
ω

= 4π2c2

λ2
|CQ|2l2

sin2(�βQl/2)

(�βQl/2)2
. (9.240)

For perfect quasi-phase matching with a first-order grating that has a 50% duty factor,
we have

η̂SH = 4π2c2

λ2
|CQ|2l2 = 32|deff|2

cε0n2
ωn2ωλ2

�

A l2, (9.241)

where nω and n2ω are the effective refractive index, nβ , of the waveguide modes at
the fundamental and second-harmonic frequencies, respectively. Because the index
change created by Ti diffusion is very small, typically on the order of 0.5%, we can
simply take the refractive index of the bulk PPLN as a very good approximation for
the effective refractive index of a waveguide mode. From Example 9.11, we have
deff = d33 = −25.2 pm V−1, nω = ne

ω = 2.1536, and n2ω = ne
2ω = 2.2260. We then
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find the following normalized conversion efficiency:

η̂SH = 32 × (25.2 × 10−12)2 × 0.4 × (1 × 10−2)2

3 × 108 × 8.85 × 10−12 × (2.1536)2 × 2.226 × (1.1 × 10−6)2 × 6 × 10−12
W−1

= 409% W−1.

This normalized conversion efficiency for the PPLN waveguide is 159 times that ob-
tained in Example 9.12(d) for the bulk PPLN. Further increase in the efficiency is
possible by increasing the length of the waveguide. In the waveguide device, the ef-
ficiency continues to increase quadratically with length l because the optical waves
remain confined as the waveguide length is increased. In a bulk device, the best effi-
ciency only increases linearly with length l, as seen in (9.121), because of the limitation
imposed by diffraction (see Problem 9.11.2).

Note that (9.240) and (9.241) are valid only in the low-efficiency limit. Clearly,
η̂SH = 409% W−1 obtained in this example does not mean that it is possible to obtain
an unphysical efficiency of 409% by launching a fundamental beam of 1 W power into
the waveguide. Nor does it mean that a conversion efficiency of 100% is obtained by
launching a fundamental beam of 244 mW into the waveguide. It only means that a
very low input power of the fundamental wave is needed to obtain a decent conversion
efficiency. For example, an input fundamental power of only Pω = 24.4 mW is required
to have an output second-harmonic power of P2ω = 2.44 mW for a conversion efficiency
of 10%. A conversion efficiency approaching 100% is theoretically possible, but with an
input fundamental power found by using the relation in (9.236) for the high-efficiency
limit (see Problem 9.11.3).

9.12 Guided-wave all-optical modulators and switches

As discussed in Section 9.7, an all-optical modulator can be either of refractive type,
which utilizes χ(3)′, or of absorptive type, which utilizes χ(3)′′. For a guided-wave
nonlinear optical device, however, any absorptive loss in the waveguide is detri-
mental to the device function due to the fact that the primary advantage of using
an optical waveguide for the device is the long interaction length made possible
by the waveguiding effect. Therefore, all practical guided-wave all-optical modula-
tors and switches are of refractive type based on the optical Kerr effect. The ma-
jority of such devices require only one optical frequency for their operation though
some involve two or more frequencies at a time. For a guided-wave all-optical mod-
ulator or switch that requires only one frequency at a time for its operation, we
have

P(3) = 3ε0

∑
µ,ξ,ζ

χ(3)(ω = ω + ω − ω)
... ÊµÊξ Ê∗

ζ Aµ Aξ A∗
ζ ei(βµ+βξ −βζ )z. (9.242)
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According to (9.218), we have the following general coupled-mode equation for such
a device:

±dAν

dz
=
∑

µ

iκνµ Aµei(βµ−βν )z +
∑
µ,ξ,ζ

iωCνµξζ Aµ Aξ A∗
ζ ei(βµ+βξ −βζ −βν )z, (9.243)

where κνµ is the linear coupling coefficient defined in Section 4.2, subject to any
modifications such as those caused by the electro-optic, magneto-optic, or acousto-
optic effects discussed in earlier chapters, and Cνµξζ is the nonlinear coefficient given
by

Cνµξζ = 3ε0

∞∫
−∞

∞∫
−∞

Ê∗
ν · χ(3)

... ÊµÊξ Ê∗
ζ dxdy. (9.244)

Self-phase modulation

In the simplest situation when a waveguide mode Eν at a particular optical frequency
ω is not coupled to any other frequencies or any other modes at the same frequency,
(9.243) reduces to

dAν

dz
= iσνν Aν |Aν |2, (9.245)

where

σνν = ωCνννν = 3ωε0

∞∫
−∞

∞∫
−∞

Ê∗
ν · χ(3)

... ÊνÊνÊ∗
νdxdy. (9.246)

Because χ(3) is real for a device based on the purely refractive optical Kerr effect,
the nonlinear coefficient σνν is also a real quantity. It is then clear from (9.245) that
only the phase, but not the magnitude, of Aν varies with z. Therefore, the mode power
Pν = |Aν |2 is a constant that is independent of z. The solution of (9.245) can be easily
obtained:

Aν(z) = Aν(0) exp(iσνν Pνz) = Aν(0) exp(iβNL
ν z), (9.247)

where βNL
ν = σνν Pν is a power-dependent modification on the propagation constant.

Clearly, the consequence of the optical Kerr effect on an individual waveguide mode is
an effective propagation constant that is a function of the mode power:

βeff
ν = βν + βNL

ν = βν + σνν Pν, (9.248)

where βν is the power-independent linear propagation constant of the mode. This effect
leads to the following self-phase modulation for the mode field over a distance l in the
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waveguide:

ϕNL
ν = βNL

ν l = σνν Pνl = σνν |Aν |2l, (9.249)

which is linearly dependent on the mode power.
For a waveguide that is fabricated in an isotropic medium, such as silica glass,

χ (3)
xxxx = χ (3)

yyyy = χ (3)
zzzz = χ

(3)
1111. Then, σνν defined in (9.246) becomes

σνν = 3ωε0χ
(3)
1111

∞∫
−∞

∞∫
−∞

|Êν |4dxdy. (9.250)

It is then convenient to define an effective area for an individual waveguide mode in a
third-order nonlinear process as

Aeff
ν =


 ∞∫

−∞

∞∫
−∞

|Êν |2dxdy




2

∞∫
−∞

∞∫
−∞

|Êν |4dxdy

=
(

ωµ0

2βν

)2 1
∞∫

−∞

∞∫
−∞

|Êν |4dxdy

, (9.251)

where the orthonormality relation given in (2.44) is used.7 Then, by using (9.248),
(9.250), and (9.251), we find that the power-dependent effective index of the waveguide
mode can be written

neff
ν = nν + n2ν

Pν

Aeff
ν

, (9.252)

where neff
ν = cβeff

ν /ω, nν = cβν/ω, and

n2ν = 3χ
(3)
1111

4cε0n2
ν

. (9.253)

Clearly, (9.252) has the form of (9.49), and (9.253) has the form of (9.50). Then self-
phase modulation for the mode field can be expressed in the form of (9.143) as

ϕNL
ν = βNL

ν l = ω

c
n2ν

Pν

Aeff
ν

l = 2πn2ν

λ

Pν

Aeff
ν

l. (9.254)

Note that (9.253) is valid only for a mode in a waveguide fabricated in a noncrystalline
isotropic medium. For a mode in a waveguide based on a crystalline material, such as
GaAs or LiNbO3, (9.254) can still be used, but (9.253) is generally not valid because the
nonlinear refractive index n2ν in this situation is a function of the mode field polarization
direction with respect to the principal axes of the crystal.

7 The orthonormality relation in (2.44) is strictly accurate for TE modes only. It is used here as an approximation
for other types of modes. In a weakly guiding waveguide, it is a good approximation.
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Two-mode interaction

Guided-wave all-optical modulators and switches function on the same basic principle
as guided-wave electro-optic modulators and switches by transforming a differential
phase shift between two waveguide modes into an amplitude modulation, except that the
required phase shift is controlled by the optical power in the waveguide structure rather
than by an externally applied voltage. There are two basic approaches to transforming
a differential phase shift into an amplitude modulation: by interference or by phase-
sensitive coupling.

The operation of most devices involves only two modes of either the same waveguide
or two separate waveguides. For a device that functions on two waveguide modes
a and b at the same frequency ω, the total field is simply E(r, t) = E(r) exp(−iωt)
with

E(r) = A(z)Êa(x, y)eiβa z + B(z)Êb(x, y)eiβbz, (9.255)

which has the same form as that given in (4.25). By using (9.243) and by keeping only
the major nonlinear terms, the coupled-mode equations for such a two-mode device
can be written as

±dA

dz
= iκaa A + iκab Bei(βb−βa )z + iσaa|A|2 A + nonlinear cross terms, (9.256)

±dB

dz
= iκbb B + iκba Aei(βa−βb)z + iσbb|B|2 B + nonlinear cross terms, (9.257)

where σaa = ωCaaaa and σbb = ωCbbbb, as defined in (9.246). In general, σaa �= σbb.
The nonlinear cross terms are those that represent direct nonlinear coupling between the
two modes with the nonlinear coefficients Caaab, Caaba , Cabaa , Caabb, Cabab, Cabba , and
Cabbb for (9.256) and Cbbba , Cbbab, Cbabb, Cbbaa , Cbaba , Cbaab, and Cbaaa for (9.257).
Such nonlinear cross terms are generally much smaller than the direct nonlinear terms
characterized by σaa and σbb, which are explicitly expressed in the above coupled
equations.

In a device that is based solely on interference, κab = κba = 0, and the nonlinear cross
terms vanish also. Therefore, there is generally no direct power exchange between the
two modes. The nonlinear differential phase shift between the two modes controls the
interference condition, thus turning an optical-power-dependent phase change into an
amplitude modulation or switching. In a device that is based on coupling, κab �= 0 and
κba �= 0. The function of modulation or switching is then a result of direct exchange
of power between the two modes. In such a device, the power-dependent differential
phase shift controls the effective coupling coefficient between the two modes through
its influence on the phase matching between them.
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Nonlinear optical mode mixers

A nonlinear mode mixer is a simple all-optical switch based on the power-dependent
interference effect between two modes in a multimode waveguide, such as the TE0 and
TE1 modes of a slab waveguide. Two different modes in an unperturbed waveguide
are orthogonal to each other in the absence of nonlinear effects. Even when the optical
Kerr effect is present, significant direct coupling between them occurs only when the
power in the waveguide reaches a critical level. Below this critical power level, the
optical Kerr effect leads to sufficient self-phase modulation in each individual mode
but no significant cross-phase modulation or power exchange between the mutually
orthogonal modes. For a nonlinear two-mode mixer operating in this regime, κaa =
κbb = κab = κba = 0, and the nonlinear cross interaction between the two modes can
also be neglected. Consequently, both (9.256) and (9.257) reduce to the form of (9.245)
with the solution given in (9.247). Therefore, the total field in the two-mode mixer is

E(r) = A(0)Êa(x, y)eiβeff
a z + B(0)Êb(x, y)eiβeff

b z

=
[

A(0)Êa(x, y) + B(0)Êb(x, y)ei(βeff
b −βeff

a )z
]

eiβeff
a z. (9.258)

For a mode mixer of a length l, the total differential phase shift between the two modes
over the length of the device is

�ϕ = (βeff
b − βeff

a )l = �ϕL + �ϕNL, (9.259)

where �ϕL = (βb − βa)l is the linear differential phase shift due to modal dispersion
and �ϕNL = (βNL

b − βNL
a )l is the nonlinear differential phase shift due to the difference

in the self-phase modulation of the two different modes. For a given device of a fixed
length, the value of �ϕL is fixed, but that of �ϕNL varies with the powers in the modes.
Therefore, �ϕ can be controlled by the power coupled into the waveguide. Even when
that power is evenly divided between the two modes, there is still a power-dependent
differential phase shift between the two modes because the self-phase modulation
expressed by (9.254) for a waveguide mode is also a function of the mode-dependent
effective area Aeff

ν .
Figure 9.33 illustrates the principle of a two-mode mixer. In this example, the power

launched into the waveguide is equally divided between the two modes so that Pa =
Pb = P/2 and A(0) = B(0) at the input end. Therefore, the total field is asymmetrically
distributed with its peak on one side of the waveguide. The linear differential phase
shift in this example is �ϕL = 2nπ , where n is an integer. At low power levels when
the power-dependent nonlinear differential phase shift �ϕNL is negligibly small, the
field distribution at the output end is the same as that at the input end, as shown in
Fig. 9.33(a). At a power level of Pπ when �ϕNL = π , the total differential phase shift
is �ϕ = (2n + 1)π . Then, at the output end the peak of the total field is switched to
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(a)

(b)

Figure 9.33 Power-dependent field distribution characteristics of a nonlinear mode mixer with a
linear differential phase shift of 2nπ (a) at low power levels when the nonlinear phase shift is
negligible and (b) at a power level Pπ when the nonlinear differential phase shift is π . The long
dashed and short dashed curves respectively show fields of two individual modes, and the solid
curve represents the total field of the two modes.

(a)

(b)

Figure 9.34 Mode mixer with Y-junction waveguides at its input and output ends for all-optical
switching between separate waveguides.

the other side of the waveguide, as shown in Fig. 9.33(b). In this manner, a nonlinear
mode mixer functions as a power-dependent all-optical switch.

A nonlinear mode mixer can take the form of a two-mode slab waveguide or that of
a two-mode channel waveguide. In the latter case, both input and output ends of the
mode mixer can be connected to Y-junction waveguides for all-optical switching of
optical power between separate waveguides, as shown in Fig. 9.34. Such a device also
functions as a nonlinear mode sorter.
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(a)

(b)

Figure 9.35 Single-input, all-optical Mach–Zehnder interferometers (a) using two Y-junction
waveguides and (b) using two directional couplers for beam splitting at the input end and beam
combining at the output end. The two arms of an all-optical interferometer are generally not
balanced.

All-optical Mach–Zehnder interferometers

A nonlinear mode mixer functions as a nonlinear interferometric device only when the
optical power in the waveguide is kept below the critical power level to prevent direct
coupling of the modes. This limitation is caused by the fact that the two modes overlap
in space while propagating codirectionally. It can be avoided in a nonlinear interfer-
ometer that consists of two separate arms such as one in the form of a Mach–Zehnder
interferometer as shown in Fig. 9.35. There are a few significant differences between a
nonlinear Mach–Zehnder interferometer and a nonlinear mode mixer: (1) both arms of
the interferometer are generally single-mode waveguides; (2) at any power level, there
is no cross modulation between the fields in the two separate arms of the interferom-
eter; (3) the two fields that are combined at the output end of the interferometer can
experience different propagation distances because the lengths of the two arms do not
have to be the same.

An all-optical Mach–Zehnder interferometer is based on the same principle as the
electro-optic Mach–Zehnder interferometer discussed in Section 6.4 except that the
differential phase shift �ϕ between its two arms is controlled by the optical power
rather than by an applied electric field. An all-optical Mach–Zehnder interferometer
can have a single input channel, as shown in Fig. 9.35, or three input channels, as shown
in Fig. 9.36.

Figure 9.35 shows two possible structures of single-input, all-optical Mach–Zehnder
interferometers. The beam-splitting and beam-combining couplers at the input and
output ends, respectively, of an all-optical Mach–Zehnder interferometer can be either
Y-junction waveguides, as shown in Fig. 9.35(a), or directional couplers, as shown
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Figure 9.36 Three-input, symmetric all-optical Mach–Zehnder interferometer using Y-junction
waveguides. The bias voltage V can provide a bias phase difference of ϕb between the two arms.

in Fig. 9.35(b). The two arms of an all-optical interferometer are not required to be
identical. Therefore, in general, the linear differential phase shift is �ϕL = βblb − βala ,
and the nonlinear differential phase shift can be expressed as

�ϕNL = βNL
b lb − βNL

a la = 2π

λ

(
n2b

Pb

Aeff
b

lb − n2a
Pa

Aeff
a

la

)
, (9.260)

where la and lb are the lengths of the two separate arms, respectively. We see that a power-
dependent nonlinear differential phase shift can be obtained only when the two arms
are not balanced, due to unbalanced excitation or physical asymmetry between them.
With unbalanced excitation, Pa �= Pb. Physical asymmetry exists when the waveguides
that form the two arms have different lengths, la �= lb, or different effective areas,
Aeff

a �= Aeff
b , or different values of nonlinearity, n2a �= n2b, or any combination of them.

To facilitate the possibility of unbalanced excitation, the Y-junction waveguides
or directional couplers used in an all-optical Mach–Zehnder interferometer are not
necessarily 3-dB couplers. For a given device, however, the beam-splitting coupler at
the input end and the beam-combining coupler at the output end are usually identical
couplers with a fixed power-splitting ratio of ξ : (1 − ξ ) between the two arms, as also
shown in Fig. 9.35. For an all-optical Mach–Zehnder interferometer that uses such
Y-junction waveguides as input and output couplers, the power transmittance is (see
Problem 9.12.1)

T = 1 − 2ξ (1 − ξ )(1 − cos �ϕ), (9.261)

where �ϕ = �ϕL + �ϕNL is the total differential phase shift. For one that uses such
directional couplers as input and output couplers, the power transmittance through the
same channel is (see Problem 9.12.1)

T = 1 − 2ξ (1 − ξ )(1 + cos �ϕ). (9.262)
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Note that (9.261) reduces to the form of (6.77), and (9.262) reduces to that of (6.79),
if the two arms of the interferometer are equally excited so that ξ = 1/2. As discussed
above, such balanced excitation is feasible only when the two arms of the interferometer
are physically asymmetric. Such physical asymmetry leads to a nonvanishing linear
differential phase shift, �ϕL �= 0, which acts as a bias phase shift. By properly adjusting
the asymmetry between the two arms, the value of this bias phase shift can be chosen
for a desired operating point of the device.

Figure 9.36 shows the structure of a three-input, symmetric all-optical Mach–Zehnder
interferometer using Y-junction waveguides. This device consists of three input chan-
nels that are fed into a symmetric Mach–Zehnder interferometer with arms of equal
lengths. The data signal is sent through the central channel c, and the control signals are
fed into either channel a or b or both. The data signal wave is orthogonally polarized
with respect to the control signals to avoid interference between them. A polarizer at
the output end allows only the polarization of the data signal to pass. Interaction be-
tween the data signal and the control signals is through cross-phase modulation only.
Because a data signal sent through channel c is equally split between the two arms of
the interferometer, nonlinear phase shifts caused by self-phase modulation of the data
signal in the two arms cancel. The net differential nonlinear phase shift is caused by
the cross-phase modulation imposed by any control signals on the data signal. This
differential nonlinear phase shift has exactly the form of (9.260) with n2a = n2b = n2,
la = lb = l, and Aeff

a = Aeff
b = Aeff for a symmetric Mach–Zehnder interferometer:

�ϕNL = 2π

λ

n2l

Aeff
(Pb − Pa), (9.263)

where n2 is the nonlinear refractive index due to cross-phase modulation between
orthogonally polarized waves. Though the two arms of a symmetric Mach–Zehnder
interferometer are equal in length, it is still possible to introduce a linear phase dif-
ference between them by a bias voltage if the device is fabricated on an electro-optic
material. For a symmetric Mach–Zehnder interferometer using Y-junction waveguides,
the transmittance of the data signal is that given in (9.261) with ξ = 1/2, which is
reduced to the following simple form:

T = cos2 �ϕ

2
. (9.264)

An all-optical interferometer has many useful applications. Like an electro-optic
interferometer, it can be used as an amplitude modulator or, when accompanied by a
directional coupler instead of a Y-junction waveguide at the output end, as a switch.
Unlike an electro-optic interferometer, however, its function is completely controlled
by the input optical power alone. Therefore, there are some unique applications of an
all-optical interferometer that are not possible with an electro-optic interferometer. For
instance, with unbalanced excitation in an all-optical interferometer with symmetric
arms, it is possible to shape an optical pulse by taking advantage of the fact that the



564 Nonlinear optical devices

power-dependent transmittance of the device now varies across the envelope of the
pulse. Pulse shortening can be achieved if the maximum transmittance occurs at the
peak of the pulse while the wings of the pulse have very low transmittance. All-optical
Mach–Zehnder interferometers can be made to perform certain unique functions, such
as optical logic, optical sampling, and optical ON–OFF switching.

EXAMPLE 9.24 A three-input, symmetric all-optical Mach–Zehnder interferometer as
shown in Fig. 9.36 consists of AlGaAs channel waveguides fabricated on a GaAs
substrate along the [110] crystal axis on the (001) plane. The data signal launched into
channel c is a TM-like mode polarized in the [001] direction. A control signal is launched
into channel a as a TE-like mode polarized in the [110] direction. No control signal is
launched into channel b. Both data and control signals are at λ = 1.55 µm wavelength.
The length of both arms of the interferometer is l = 2 cm, and the effective area of the
channel waveguide is Aeff = 6 µm2 = 6 × 10−12 m2. The nonlinear refractive index
characterizing cross-phase modulation between TE-like and TM-like modes in this
AlGaAs waveguide at λ = 1.55 µm is n2 = 1.3 × 10−17 m2 W

−1
. No linear bias phase

is applied to either arm of the device. Ignoring all possible linear and nonlinear losses,
find the power of the control signal needed for this device to function as an all-optical
ON–OFF switch. If the control signal is in the form of an optical pulse of �tps = 1 ps
pulsewidth, what is the switching energy of the control pulse?

Solution For the device to function as an all-optical ON–OFF switch, both the ON
state with a transmittance of T = 1 and the OFF state with a transmittance of T = 0
have to be accessible by varying the power of the control signal. Because there is no
linear phase bias, the total differential phase shift of the device is contributed solely
by the nonlinear effect; thus �ϕ = �ϕNL. Because no control signal is launched into
channel b, Pb = 0. From (9.264), we then find that the minimum nonlinear differential
phase shift required for T = 1 is �ϕNL = 0 and that required for T = 0 is �ϕNL = −π .
Therefore, we find from (9.263) that the ON state can be reached by simply making
Pa = 0 so that �ϕNL = 0. By setting �ϕNL = −π in (9.263), we find the following
control signal power required to reach the OFF state:

Pa = λAeff

2n2l
= 1.55 × 10−6 × 6 × 10−12

2 × 1.3 × 10−17 × 2 × 10−2
W = 17.88 W.

If the control signal is in the form of an optical pulse of �tps = 1 ps pulsewidth, the
device is in the ON state with T = 1 in the absence of a control pulse. The device
can be switched to the OFF state with a control pulse of a switching energy of Ups =
Pa�tps = 17.88 pJ.

Clearly, a waveguide Mach–Zehnder interferometer operated with a CW beam at
17.88 W is not practical, but it is practical with an ultrashort pulse of 17.88 W peak
power such as the one of 1 ps pulsewidth considered here. For this reason, the control
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(a)

(b)

Figure 9.37 Nonlinear optical loop mirrors: (a) single-input configuration without a control signal
and (b) two-input configuration with a control signal.

signal for this device is generally in the form of ultrashort laser pulses though the data
signal can be of any waveform.

Here we have ignored the losses and dispersion of the waveguide. In reality, the
waveguide has both linear losses, mainly from scattering and impurity absorption, and
nonlinear losses, from both two-photon and three-photon absorption processes. These
losses will increase the switching power of the device while reducing its extinction ratio
between ON and OFF states. When the device is operated with short optical pulses, the
dispersion of the waveguide can broaden the pulses and introduce an additional linear
phase shift in the pulses. The consequences are also an increase in the switching energy
and a reduction in the extinction ratio.

Nonlinear optical loop mirrors

A nonlinear optical loop mirror,8 is a folded Mach–Zehnder interferometer in the
so-called Sagnac configuration, as shown in Fig. 9.37. The basic device shown in
Fig. 9.37(a) consists of a single-mode waveguide loop, such as a single-mode fiber or
a single-mode semiconductor waveguide, that is closed with a four-port directional
coupler. The two paths of opposite propagation directions in the loop are equiva-
lent to the two arms of an interferometer. The single coupler, which has a power-
splitting ratio of ξ : (1 − ξ ), serves as both the power-splitting input coupler and the
power-combining output coupler. An input field is split into two contrapropagating

8 Doran, N.J. and Wood, D., “Nonlinear-optical loop mirror,” Optics Letters 13: 56–58, 1988.
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fields that travel through exactly the same loop path but in opposite directions before
recombining at the coupler to form the output of the device.

The optical field launched into the device can be a short pulse that has a spatial
span much shorter than the loop length. Then interaction between contradirectionally
propagating pulses in the loop is negligible so that only the self-phase modulation
of each individual pulse needs to be considered. It can also be a very long pulse or
a CW wave that fills up the entire loop. Then the cross-phase modulation between
contradirectionally propagating waves needs to be considered as well. Because of the
exact symmetry between the two contradirectional paths, �ϕL = 0 irrespective of the
operating condition. It can be shown that for both cases discussed here, we have (see
Problem 9.12.4)

�ϕ = �ϕNL = (1 − 2ξ )
2πn2

λ

Pin

Aeff
l, (9.265)

where Pin is the input power launched into the device and l is the length of the loop. The
transmittance of the device is that given in (9.262) with �ϕ = �ϕNL given above. The
device also has a reflectance R = 1 − T back to the original input port. In the linear
regime at low power levels, the device functions as a mirror with R = 4ξ (1 − ξ ) and
T = 1 − 4ξ (1 − ξ ). In the nonlinear regime at high power levels, the device functions
as a nonlinear mirror with power-dependent reflectance and transmittance due to the
dependence of �ϕNL on the input power.

Similarly to the Mach–Zehnder interferometer, a nonlinear optical loop mirror can
also accept a control signal to switch the data signal. Figure 9.37(b) shows a two-input
configuration for such a purpose. More sophisticated configurations are also possible.
With a control signal, a nonlinear optical loop mirror can perform such functions as
optical switching, sampling, multiplexing, and demultiplexing.

There are several advantages of using the nonlinear optical loop mirror as an all-
optical interferometric device over the conventional all-optical Mach–Zehnder interfer-
ometer with two separate arms. Because the two contrapropagating fields in a nonlinear
optical loop mirror travel over exactly the same path in opposite directions, they expe-
rience exactly the same linear effects, which cancel out when the two fields are combined
in returning to the coupler. Therefore, the device is stable against external perturbations
and does not require interferometric alignment. This unique characteristic allows a very
long fiber on the order of kilometers to be used for a nonlinear optical loop mirror to
function at a low optical power level with sufficient self-phase modulation, making it a
truly practical all-optical device. Because response and relaxation of Kerr nonlinearity
in silica fibers are nearly instantaneous, a nonlinear fiber loop mirror is also ideal for
many applications that use ultrashort optical pulses. The precise match in length of
the contradirectional paths in this device ensures precise coincidence of the returning
pulses, which is a daunting task with a conventional interferometer with separate arms
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considering the fact that the path length can be as long as a few kilometers while the
pulses can be shorter than 1 ps.

EXAMPLE 9.25 A single-input nonlinear optical fiber loop mirror of the configuration
shown in Fig. 9.37(a) consists of a single-mode fiber that has a loop length of l =
100 m and an effective cross-sectional area of Aeff = 3 × 10−11 m2 for an optical
wave at λ = 1.55 µm. The self-phase modulation nonlinear refractive index of this
fiber is n2 = 3.2 × 10−20 m2 W−1. At low input power levels, this loop mirror has a
transmittance of T = 25%. Find the lowest input power that is required for it to have
a transmittance of 100%.

Solution With a low-power transmittance of T = 25% = 1/4, we find by solving
T = 1 − 4ξ (1 − ξ ) = 1/4 that ξ = 1/4 for the power-splitting ratio of the coupler in the
device. By plugging ξ = 1/4 and T = 1 into (9.262), we find that the nonlinear phase
shift required for T = 1 at a high power level is a solution of the following condition:
1 + cos �ϕ = 0. Therefore, �ϕ = (2n + 1)π for any integer n. From (9.265), we see
that Pin ∝ �ϕ. The lowest required power for T = 100% can be obtained by plugging
�ϕ = π and ξ = 1/4 into (9.265) to find that

Pin = λAeff

n2l
= 1.55 × 10−6 × 3 × 10−11

3.2 × 10−20 × 100
W = 14.53 W.

This power is too high for this fiber device to be practical if the input is a CW signal.
It is not a problem if the input signal consists of very short pulses. For instance, an
average power of only 1.453 mW is required if the input signal is made up with pulses
of 1 ps pulsewidth at a repetition rate of 100 MHz. For this reason, nonlinear optical
loop mirrors are generally operated with very short laser pulses.

Nonlinear directional couplers

The coupling efficiency of a directional coupler can be varied by varying the phase mis-
match or the coupling coefficients between the two waveguides that form the directional
coupler. For an electrically modulated directional coupler discussed in Section 6.4, the
coupling coefficient is a function of an externally applied voltage that induces changes
in the refractive index of the waveguide material through the Pockels effect. For an
all-optical nonlinear directional coupler based on the optical Kerr effect, the coupling
coefficient can be varied by varying the value or the distribution of the optical power
launched into the device. A nonlinear directional coupler can be formed using two
parallel waveguides fabricated in such nonlinear crystals as GaAs or LiNbO3, as shown
in Fig. 9.38(a). It can also be formed using a dual-core optical fiber, as shown in
Fig. 9.38(b). The advantage of using a dual-core fiber is that a coupler of a very long
interaction length on the order of kilometers can be easily realized to make practical use
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(a)

(b)

Figure 9.38 Nonlinear directional couplers formed by (a) two parallel waveguides and (b) a
dual-core optical fiber.

of the small optical nonlinearity in a fiber. In the following, we consider for simplicity
only symmetric directional couplers in which the two waveguide channels are identical.
Asymmetric nonlinear directional couplers have similar characteristics.

For a symmetric nonlinear directional coupler that is formed by two identical single-
mode waveguides, we have βa = βb and κaa = κbb. Therefore, the effective linear
propagation constant for each individual waveguide mode is β = βa + κaa = βb + κbb.
In addition, κab = κ∗

ba ≡ κ , which is real and positive, and σaa = σbb ≡ σ , which is
real but can be either positive or negative depending on the sign of χ (3) of the Kerr
medium. The coupled equations for a symmetric nonlinear directional coupler can then
be written as

d Ã

dz
= iκ B̃ + iσ | Ã|2 Ã + nonlinear cross terms, (9.266)

dB̃

dz
= iκ Ã + iσ |B̃|2 B̃ + nonlinear cross terms, (9.267)

where Ã = Ae−iκaa z and B̃ = Be−iκbbz as defined in (4.52). The terms characterized
by the coupling coefficient κ represent linear coupling between the two modes. The
terms characterized by σ contribute to the self-phase modulation of each individual
mode. The nonlinear cross terms, which are not explicitly spelled out because of their
complexity, contribute to direct nonlinear coupling between the two modes. In general,
the nonlinear cross terms, though not completely negligible, are much smaller than
the terms that represent linear coupling and self-phase modulation in each equation.
Indeed, the direct nonlinear coupling contributed by the nonlinear cross terms is not
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necessary for the functioning of a nonlinear directional coupler. The basic operation
principle of a nonlinear directional coupler is that the self-phase modulation of each
individual mode creates a power-dependent differential phase shift that leads to a power-
dependent phase mismatch between the two modes. As a consequence, the coupling
coefficient would become power dependent even if the only coupling were the linear
coupling characterized by the linear coefficient κ . The direct nonlinear coupling con-
tributed by the nonlinear cross terms acts as an additional perturbation, which changes
the detailed quantitative characteristics of a nonlinear directional coupler. The gen-
eral characteristics of a nonlinear directional coupler can be fully understood without
considering the nonlinear cross terms.

We consider only the simple case when the nonlinear cross terms are neglected. We
also assume that the input optical power is initially launched into only waveguide a so
that Pa(0) = Pin and Pb(0) = 0. Under these assumptions, the coupling efficiency of a
nonlinear coupler that has an interaction length l is found to be

η = Pb(l)

Pin
= 1

2
[1 − cn(2κl, m)] = 1

2

[
1 − cn

(
2κl,

σ

4κ
Pin

)]
, (9.268)

where

m = σ

4κ
Pin = Pin

Pc
(9.269)

is an index that characterizes the level of the input power with respect to a critical power
level Pc that is defined as

Pc = 4κ

σ
= 2κλAeff

πn2
, (9.270)

and cn(z, m) is a Jacobi elliptic function defined by

z =
1∫

x

dt

(1 − t2)1/2(1 − m2 + m2t2)1/2
= cn−1(x, m). (9.271)

For the symmetric coupler under consideration, Pa(l) + Pb(l) = Pin, and the power
transmittance through the input channel is

T = Pa(l)

Pin
= 1 − η. (9.272)

It can be clearly seen from (9.268) that the coupling efficiency of a nonlinear coupler is
a function of the input power to the device. Figure 9.39 shows the coupling efficiency as
a function of interaction length l, normalized to the linear coupling length lPM

c = π/2κ ,
at various input power levels that are characterized by different values of the index m.
In the limit of very low input powers, Pin � Pc and m ≈ 0, the coupling efficiency
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Figure 9.39 Coupling efficiency of a symmetric nonlinear directional coupler as a function of
interaction length l, normalized to the linear coupling length lPM

c = π/2κ , at various input power
levels that are characterized by different values of the index m = Pin/Pc.

reduces to that of the phase-matched linear directional coupler, η = (1 − cos 2κl)/2 =
sin2 κl given in (4.85), because cn(2κl, 0) = cos(2κl), and the coupling length is just
lPM
c .

As the input power increases, a power-dependent phase mismatch between the two
waveguide channels is generated by the power-dependent differential phase shift. At
relatively low input powers, Pin < Pc and m < 1, this power-dependent phase mismatch
has the effect of slowing down the power transfer between the two channels. This phase
mismatch is reduced as more power is transferred and is later even reversed as more
than 50% of the input power is transferred. The nonlinear directional coupler thus acts
like a reversed-�β coupler. Complete switching of power with η = 1 to reach the cross
state still occurs, but the coupling length is longer than the linear coupling length and
it increases as the input power increases. These effects can be observed from the curve
for m = 0.9 in Fig. 9.39.

At high input powers, Pin > Pc and m > 1, the initial phase mismatch is so large that
the power transfer never reaches the 50% point for the phase mismatch to be reversed.
Therefore, the coupling efficiency oscillates, but η < 1/2 for any device length. The
cross state cannot be reached at such high power levels, as can be seen in Fig. 9.39 from
the curves for m = 1.1 and m = 2. At the critical power level, Pin = Pc and m = 1,
the coupling efficiency stays at η = 1/2 indefinitely after 50% of the input power is
transferred. This state is unstable as any perturbation caused by noise or fluctuations in
the input power can tip this balance between the two channels.

Figure 9.40 shows the coupling efficiency as a function of input power Pin, normalized
to the critical power Pc, for a symmetric nonlinear directional coupler with a fixed length
l = lPM

c , known as the half-beat-length coupler, and another with l = 2lPM
c , known as
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Figure 9.40 Coupling efficiency as a function of index m, which represents the input power Pin

normalized to the critical power Pc, for two symmetric nonlinear directional couplers of fixed
lengths l = lPM

c and l = 2lPM
c .

the beat-length coupler. For the half-beat-length coupler, which starts with a linear
coupling efficiency of η = 1 at a very low input power, the coupling efficiency remains
high until the input power approaches the level of Pc when it drops and remains low for
all high power levels above Pc. For the beat-length coupler, which starts with a linear
coupling efficiency of η = 0 at a very low power level, only a very narrow power range
exists for high coupling efficiencies with a peak value of η = 1.

In the above discussions, only symmetric directional couplers are considered, and
the effect of nonlinear cross terms in (9.266) and (9.267) are ignored. There ex-
ists a general analytical solution in the form of elliptic functions for the coupled
nonlinear differential equations even when the structure of the coupler is asym-
metric and the nonlinear cross terms are considered. The primary effect of the
nonlinear cross terms is to cause a change in the value of Pc depending on the
strength of the nonlinear cross coupling between the two waveguide modes. For
an asymmetric coupler, the initial linear phase mismatch leads to power-dependent
characteristics that are nonreciprocal with respect to detuning between the two
channels.

EXAMPLE 9.26 A half-beat-length nonlinear directional coupler of the structure shown
in Fig. 9.38(a) for a TE-like mode has a length of l = 1.5 cm. It consists of two parallel
AlGaAs channel waveguides on a GaAs substrate with the same structural parameters
as the AlGaAs waveguides described in Example 9.24. At λ = 1.55 µm wavelength,
the nonlinear refractive index characterizing self-phase modulation for the TE-like
mode in the waveguide is n2 = 1.5 × 10−17 m2 W−1. Find the critical power of the
device.
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Solution Because the device is a half-beat-length coupler, we have lPM
c = l = 1.5 cm.

Therefore, the coupling coefficient is κ = π/2lPM
c = π/2l. By plugging this relation

into (9.270), we find the following critical power:

Pc = λAeff

n2l
= 1.55 × 10−6 × 6 × 10−12

1.5 × 10−17 × 1.5 × 10−2
W = 41.3 W.

If the device is operated with a short pulse of �tps = 1 ps like that considered in
Example 9.24, then the critical pulse energy is 41.3 pJ.

PROBLEMS

9.1.1 Three optical fields at wavelengths of λ1 = 750 nm, λ2 = 600 nm, and
λ3 = 500 nm, corresponding to frequencies of ω1 = 2πc/λ1, ω2 = 2πc/λ2,
and ω3 = 2πc/λ3, respectively, are involved in second-order nonlinear opti-
cal interactions. The optical fields at the three frequencies are E(ω1) = E1 x̂ ,
E(ω2) = E2(ŷ + ẑ)/

√
2, and E(ω3) = E3 ẑ, where x̂ , ŷ, and ẑ are aligned with

the principal x , y, and z axes of the nonlinear crystal.
a. Find the nonlinear polarization P(2) at the frequency of ω5 = 2πc/λ5 where

λ5 = 3 µm. Express each of the components of P(2)(ω5) explicitly in terms
of the elements of χ(2) and the given magnitudes, E1, E2, and E3, of the three
optical fields.

b. If nonlinear interaction takes place in a LiNbO3 crystal, which belongs to the
3m point group, what are the expressions of the components of P(2)(ω5) in
terms of the nonvanishing elements of χ(2)?

9.1.2 Answer the questions in Problem 9.1.1 for the nonlinear polarization P(2) at the
frequency of ω6 = 2πc/λ6 for λ6 = 250 nm.

9.1.3 Answer the questions in Problem 9.1.1 for the nonlinear polarization P(2) at the
frequency of ω7 = 2πc/λ7 for λ7 = 1.5 µm.

9.2.1 Verify the reality condition given in (9.23) for nonlinear susceptibilities.
9.2.2 Spell out explicitly the relations among the frequency-dependent elements of the

χ(3) tensor that characterize the interaction of four frequencies ω1, ω2, ω3, and
ω4 for ω4 = ω1 + ω2 + ω3 under (a) intrinsic permutation symmetry, (b) full
permutation symmetry, and (c) Kleiman’s symmetry condition, respectively.

9.2.3 Show that χ(2) contributed by electric-dipole interaction is identically zero in a
centrosymmetric material, whereas a nonzero χ(3) exists in any material.

9.2.4 Verify the relation between the Pockels coefficients and the χ(2) elements ex-
pressed in (9.31) and that between the electro-optic Kerr coefficients and the
χ(3) elements expressed in (9.32).

9.2.5 In this problem, we calculate the linear and nonlinear susceptibilities of a ma-
terial containing N valence electrons per unit volume using a one-dimensional
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anharmonic oscillator model. Each of these electrons, with a charge q = −e
and a mass m0, oscillates in an anharmonic potential of the form

V (x) = 1

2
m0ω

2
0x2 + 1

3
m0ax3 (9.273)

with a damping constant γ so that its motion in response to externally applied
optical fields can be described by

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x + ax2 = F

m0
, (9.274)

where F = −e(Eme−iωm t + Ene−iωn t + E pe−iωpt + · · ·) + c.c. We are inter-
ested in linear and nonlinear susceptibilities contributed by electric-dipole in-
teractions. The electric-dipole polarization is defined as

P(t) = −Nex(t). (9.275)

For the material response at a particular frequency ωq , P(t) = P(ωq )e−iωq t +
c.c. and x(t) = x(ωq )e−iωq t + c.c. so that P(ωq ) = −Nex(ωq ). The linear and
nonlinear susceptibilities can be found by solving (9.274) using the classical
perturbation method. In this approach, x(t) is expanded in a perturbation series
as x = x (1) + x (2) + x (3) + · · ·. Each order of x (n) is solved successively from
(9.274). The polarizations of different orders are then defined as P (n)(ωq ) =
−Nex (n)(ωq ) for n = 1, 2, 3, . . .

a. Is this material centrosymmetric or noncentrosymmetric?
b. Find the linear susceptibility χ (1)(ω).
c. Find the second-order susceptibilities: χ (2)(ω = ω1 + ω2), χ (2)(2ω1 = ω1 +

ω1), and χ (2)(0 = ω1 − ω1), where ω1 �= ω2.
d. Find the third-order susceptibilities: χ (3)(ω = ω1 + ω2 + ω3), χ (3)(3ω1 =

ω1 + ω1 + ω1), and χ (3)(ω1 = ω1 + ω1 − ω1), where ω1 �= ω2 �= ω3.
9.2.6 There is a relationship between the second-order susceptibility χ

(2)
i jk(ω3 = ω1 +

ω2) and the linear susceptibilities χ
(1)
i i (ω3), χ

(1)
j j (ω1), and χ

(1)
kk (ω2). It is known

as Miller’s rule and states that the ratio

�
(2)
i jk = χ

(2)
i jk(ω3 = ω1 + ω2)

χ
(1)
i i (ω3)χ (1)

j j (ω1)χ (1)
kk (ω2)

(9.276)

is nearly a constant for all noncentrosymmetric crystals.
a. Use the results in Problem 9.2.5 to find the constant �(2) for a one-dimensional

case.
b. Estimate the value of the constant �(2) for typical noncentrosymmetric solid

crystals by taking the following typical values: N ≈ 1029 m−3 and ω0 ≈
1016 rad s−1. We also take |a|x2 ≈ ω2

0x and x ≈ N−1/3 so that |a| ≈ ω2
0 N 1/3.
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Find the typical range of χ (2) by considering the fact that χ (1) falls in the
range of 1–10 for most crystals.

c. Find a similar rule for the third-order susceptibility χ
(3)
i jkl(ω4 = ω1 +

ω2 + ω3). What is the constant �(3) for a one-dimensional case in this
situation?

d. Estimate the value of the constant �(3) for typical noncentrosymmetric solid
crystals by taking the parameters used in (b). Find the typical range of χ (3)

by considering the fact that χ (1) falls in the range of 1–10 for most crystals.
e. What are the physical implications of Miller’s rule and the similar rule

for χ (3)?
9.2.7 Use the results from Problem 9.2.5 to answer the following questions.

a. Show the permutation symmetry of χ (2)(ω3 = ω1 + ω2) for lossless media
when ω1 �= ω2.

b. What is the permutation symmetry relation of χ (2) for lossless media in the
case of frequency degeneracy, ω1 = ω2?

c. Without calculation, can you write down similar permutation symmetry re-
lations of χ (3)(ω4 = ω1 + ω2 + ω3) for lossless media in the cases of no
frequency degeneracy, two-frequency degeneracy, and three-frequency de-
generacy, respectively?

9.2.8 In this problem, we calculate the linear and nonlinear susceptibilities of a ma-
terial containing N valence electrons per unit volume using a one-dimensional
anharmonic oscillator model that is different from the one considered in Prob-
lem 9.2.5. Each of these electrons, with a charge q = −e and a mass m0, oscil-
lates in an anharmonic potential of the form

V (x) = 1

2
m0ω

2
0x2 + 1

4
m0bx4 (9.277)

with a damping constant γ so that its motion in response to externally applied
optical fields can be described by

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x + bx3 = F

m0
, (9.278)

where F = −e(Eme−iωm t + Ene−iωn t + E pe−iωpt + · · ·) + c.c.
a. Is this a centrosymmetric or noncentrosymmetric material?
b. Use the perturbation method and the definition for the electric-dipole po-

larization given in Problem 9.2.5 to find χ (1)(ω), χ (2)(2ω = ω + ω), and
χ (3)(3ω = ω + ω + ω) contributed by electric-dipole interactions.

c. Explain why χ (2) = 0 in this problem.
9.2.9 For centrosymmetric materials, there is a relation between χ (3) and χ (1) similar

to Miller’s rule discussed in Problem 9.2.6.
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a. Use the results obtained in Problem 9.2.8(b) to show that there is a constant
�(3) relating χ (3)(3ω) and the linear susceptibilities χ (1)(ω) and χ (1)(3ω) for
centrosymmetric materials. Find this constant. Compare it with that found in
Problem 9.2.6(c) for noncentrosymmetric crystals.

b. Estimate the value of the constant �(3) for typical centrosymmetric solids by
taking the following typical values: N ≈ 1029 m−3 and ω0 ≈ 1016 rad s−1. We
also take |b|x3 ≈ ω2

0x and x ≈ N−1/3 so that |b| ≈ ω2
0 N 2/3. Find the typical

range of χ (3) by considering the fact that χ (1) falls in the range of 1–10 for
most solids. Compare the numerical results obtained here with those found
in Problem 9.2.6(d).

9.2.10 Consider an isotropic two-level absorbing medium with a single resonance fre-
quency at ω0. Follow the procedure used in Problem 9.2.8 to find χ (2)(0 =
ω − ω) and χ (3)(ω = ω + ω − ω).

9.2.11 Answer the following questions regarding nonlinear optical susceptibilities.
a. Does a second-order nonlinear optical effect exist on the surface of a cen-

trosymmetric material? Why?
b. In general, would you expect a highly refractory material to have larger

or smaller nonlinear optical susceptibilities than a less refractory material?
Explain.

c. Given ten nonlinear crystals without any knowledge of their χ(2), but with
the refractive indices checked out from a handbook, how do you make an
intelligent guess at which ones are likely to have a large χ(2) before taking
any measurements? What do you base your guess on?

d. How does the effect of quantum confinement, such as that in the quantum-well
structures of a semiconductor, enhance nonlinear susceptibilities?

9.3.1 What are the two unique features that set nonlinear optical processes apart from
linear optical processes? Identify which one, or both, of these unique features
each of the second-order processes listed in Table 9.4 has. Identify this also for
each of the third-order processes listed in Table 9.5.

9.3.2 GaAs is a cubic crystal of 43m symmetry. Its nonlinear susceptibilities have
relatively large values.
a. We know that many useful and efficient electro-optic devices, such as electro-

optic modulators and demodulators, can be fabricated with GaAs. However,
bulk GaAs is not used for efficient second-harmonic generation in any optical
spectral region ranging from the ultraviolet to the infrared. Because both the
Pockels effect and second-harmonic generation use χ(2), there must be some
fundamental reasons for this. What are the reasons?

b. GaAs also has a largeχ(3). Among the third-order nonlinear optical processes
listed in Table 9.5, which ones do you think could easily take place in GaAs?
Which ones do you think would be unlikely to happen? Explain.
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9.3.3 A GaAs semiconductor laser has the structure shown in Fig. 9.41 where the active
waveguide core layer has junction planes perpendicular to the [001] crystal axis,
which is taken to be the z axis. The laser light propagates in the [110] direction
with k̂ = (x̂ + ŷ)/

√
2. It is found that second-harmonic emission at a frequency

that is twice the laser frequency can be observed at the laser facets when the
laser field is a TE mode of the waveguide, but it disappears when the laser field
is a TM mode of the waveguide.

Figure 9.41 Crystal axes and field directions in a GaAs laser structure.

a. Explain why a TE laser mode can generate second-harmonic emission while
a TM laser mode cannot.

b. What is the polarization of the second-harmonic field generated by the TE-
polarized laser mode?

c. Explain why second-harmonic emission can be generated at the laser facets.
Is there any contradiction to the discussions in Problem 9.3.2(a)?

9.3.4 The only nonvanishing elements of the χ(2) tensor for GaAs are χ
(2)
14 = χ

(2)
25 =

χ
(2)
36 . A GaAs crystal is cleaved at the (011) surface so that the cleaved surface

is normal to the [011] direction with the surface normal n̂ = (ŷ + ẑ)/
√

2. The
crystal has a thickness of a few millimeters. It is placed in a nondispersive
medium, such as a vacuum.
a. A linearly polarized optical wave at λ = 1 µm is normally incident on the

crystal surface with its polarization direction, ê, making an angle φ with the
[100] crystal axis, x̂ . Is it possible to generate substantial second-harmonic
radiation in transmission? Why?

b. It is possible to generate second-harmonic radiation in reflection. With the
arrangement in (a), what is the dependence of the second-harmonic inten-
sity in reflection on the polarization direction ê as a function of angle φ?
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Discuss the relation between the polarization directions of the fundamental
and second-harmonic fields.

c. Now, the crystal is instead cleaved at the (001) surface with n̂ = ẑ, and the
fundamental wave is incident at an angle θ with respect to the surface normal
and is TE polarized. If we rotate the crystal with respect to its normal axis n̂
but with the incident fundamental beam fixed in space, how does the second-
harmonic intensity in reflection vary with the rotation angle?

d. In (c), what is the relation between the polarization directions of the funda-
mental field and the second-harmonic field in reflection? Does it vary with
the rotation angle of the crystal?

e. At a fixed rotational position of the crystal, what is the dependence of the
second-harmonic intensity in reflection on the incident angle θ?

9.3.5 Answer the following questions regarding the interaction of an optical field at a
frequency ω with a low-frequency RF field at a frequency � or with a DC field at
� = 0. Briefly explain your answer to each question by showing how a process
being considered can or cannot happen. Assume that there is no spontaneous
emission of any sort involved.
a. Can a low-frequency field at � �= 0 be generated by a single-frequency op-

tical field through a second-order nonlinearity characterized by χ(2)? Is this
possible if it is a DC field with � = 0?

b. Answer the questions in (a) if a third-order nonlinearity characterized by χ(3)

is considered instead of the second-order nonlinearity.
c. Can the RF field be phase modulated by a single-frequency optical field in a

χ(2) material without generating an optical field at another frequency?
d. Answer the question in (c) for a χ(3) material.
e. Can the RF field be amplified in magnitude through a χ(2) or χ(3) process?

9.3.6 Show that a circularly polarized optical wave cannot produce third-harmonic
radiation directly through a third-order nonlinear optical process in an isotropic
medium.

9.3.7 Consider the optical-field-induced birefringence with circularly polarized opti-
cal waves in an isotropic medium.
a. Show that the nonlinear polarization generated by a circularly polarized op-

tical field, E = ê±E(ω), is circularly polarized with the same helicity as that
of the optical field:

P(3)(ω) = ê±3ε0

(
χ

(3)
1122 + χ

(3)
1212

)
|E(ω)|2 E(ω), (9.279)

where ê+ and ê− are the eigenvectors of the left- and right-circular polariza-
tions, respectively.

b. What is the field-induced nonlinear index of refraction for a circularly polar-
ized wave in an isotropic medium?
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9.3.8 Consider the optical-field-induced birefringence with linearly polarized optical
waves in an isotropic medium.
a. What is the nonlinear polarization generated by a field that is linearly polar-

ized along x̂? What if the field is linearly polarized at an angle of 45◦ with
respect to the x and y coordinate axes?

b. Use the results obtained in (a) to show that χ
(3)
1111 = χ

(3)
1122 + χ

(3)
1212 + χ

(3)
1221 for

an isotropic medium. Show also that χ
(3)
1111 = 3χ

(3)
1122 if Kleiman’s symmetry

condition is valid.
c. What is the field-induced nonlinear index of refraction for a linearly polarized

wave in an isotropic medium?
9.3.9 GaAs is a cubic crystal of 43m symmetry, which has the isotropic linear optical

property that nx = ny = nz = n. However, it is not centrosymmetric. There-
fore, its nonlinear optical properties are different from those of isotropic media.
Consider a linearly polarized optical wave at a frequency ω propagating along
the z axis of the crystal. The optical field is polarized in a direction on the xy
plane that makes an angle φ with respect to the x axis.
a. The optical wave may change the index of refraction of the medium through

optical-field-induced birefringence. Show that the direction of the optical
field polarization is not changed by this effect only when the incident optical
wave is polarized at φ = mπ/4, where m = 0, ±1, ±2, . . .

b. What is the third-harmonic nonlinear polarization? For efficient harmonic
generation, the optical frequencies involved have to be far away from the
GaAs bandgap to avoid absorption. Is phase matching possible under this
condition? Explain.

9.3.10 The only nonvanishing elements of the third-order nonlinear susceptibility ten-
sor of an isotropic medium are those of the following forms: χ

(3)
1111, χ (3)

1122, χ (3)
1212,

and χ
(3)
1221, with χ

(3)
1111 = χ

(3)
1122 + χ

(3)
1212 + χ

(3)
1221.

a. Show that by applying a DC electric field, it is possible to generate second-
harmonic radiation of a linearly polarized fundamental optical wave in this
medium.

b. How do you apply this DC field and choose the polarization direction for
the fundamental wave so that the second-harmonic field is polarized in a
direction parallel to the fundamental field polarization?

c. With an applied DC field, is it possible to generate the second harmonic of
a circularly polarized fundamental wave? What is the polarization of this
second-harmonic field if it is possible?

d. Without the applied DC field, is it possible to generate second-harmonic
emission in this medium? Explain.

9.3.11 Answer the following questions regarding harmonic generation by considering
nonlinear susceptibilities and phase matching carefully.
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a. Is it possible to generate a second-harmonic signal by the incidence of a
laser beam from free space on a liquid solution if only the electric-dipole
interaction is important? Consider all possibilities and explain your answer.

b. Silicon is a centrosymmetric crystal and absorbs very little infrared at wave-
lengths longer than 1 µm. However, when an intense beam of infrared is
incident upon a polished silicon wafer, we can still detect second-harmonic
radiation in reflection. What do you think is happening?

c. Silver is a very good metal that strongly reflects light in the visible region.
However, when a shiny surface of silver is illuminated with a laser beam in
the visible, we can also detect second-harmonic radiation in reflection. What
happens? Do you think there is anything different in this case from what
happens in (b)?

d. χ(3) exists in any medium including optical fibers. Why are optical fibers not
used for third-harmonic generation in order to take advantage of their long
interaction length and strong optical confinement?

9.3.12 Write down the nonlinear susceptibilities that are responsible for the following
nonlinear optical processes: stimulated Raman scattering, Stokes–anti-Stokes
coupling, stimulated Raman anti-Stokes scattering, optical rectification, and
optical-field-induced birefringence. Clearly identify the relations among the
component frequencies involved in each process. Also discuss the conditions
for each process to take place by considering the following questions.
a. Is phase matching required?
b. Is the process associated with the real or the imaginary part of the responsible

nonlinear susceptibility?
c. Is material excitation or de-excitation involved?

9.3.13 Answer the following general questions.
a. The third-order nonlinear susceptibility in a semiconductor such as

AlGaAs/GaAs is substantially enhanced by growing quantum-well structures
in the material. What is the primary mechanism of this enhancement?

b. Give two reasons why it is necessary to use very thin crystals when doing
second-harmonic generation with femtosecond pulses.

c. How does the efficiency of phase-matched third-harmonic generation depend
on the length of nonlinear interaction?

d. Name three nonlinear optical effects that may complicate the propagation
of an intense optical pulse through a centrosymmetric medium that is not
phase-matchable. What are these effects on the characteristics of the optical
pulse?

e. Which nonlinear optical processes do you expect to see on sending an intense
laser pulse into an isotropic medium? Why do you pick them over other
processes?
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f. Which nonlinear optical process surely occurs when a short optical pulse
propagates in an optical fiber? What other processes might occur under certain
conditions?

g. Under what conditions can the Stokes and anti-Stokes frequencies be simul-
taneously observed in a spontaneous Raman process? Under what conditions
can they be simultaneously observed in a stimulated Raman process?

9.3.14 Consider phase-matched degenerate four-wave mixing of optical waves at an
optical frequency ω and a corresponding wavelength λ in an isotropic medium.
The arrangement involves two contrapropagating pump waves of wavevectors
k1 and k′

1 = −k1 and a probe wave of wavevector ki for the generation of an
output wave of a wavevector ks = −ki.
a. Show that the nonlinear polarization is

P(3)
s (ks = −ki, ω) = A(E1 · E∗

i )E′
1 + B(E′

1 · E∗
i )E1 + C(E1 · E′

1)E∗
i .

(9.280)

b. If the angle between k1 and ki is θ , what are the periods of the static gratings
corresponding to the A and B terms, respectively, each in terms of the optical
wavelength λ?

c. If both pump waves are s polarized (normal to the plane formed by the
wavevectors), what is the polarization of the output wave generated by an s-
polarized probe wave? What is the polarization if the probe wave is p polarized
(parallel to the plane formed by the wavevectors)? Indicate the contribution
from each term in (9.280).

d. Answer the questions in (c) for the situation where one pump wave is s po-
larized but the other is p polarized.

e. In a gaseous medium, the static gratings may degrade with time because
of atomic thermal motion and time-dependent interactions if such gratings
are created by short optical pulses. In such a situation, the degenerate four-
wave mixing signal then depends on a parameter a = τ/�tps, where τ is
the atomic relaxation time constant and �tps is the pulse duration. Based on
this fact and the results obtained in (b)–(d), discuss an experimental approach
that allows the deduction of information on the constant τ with variable pulse
durations.

9.4.1 Consider a 4mm crystal, such as BaTiO3, which has the following nonvanishing
elements of the χ(2) tensor: χ

(2)
15 = χ

(2)
24 , χ

(2)
31 = χ

(2)
32 , and χ

(2)
33 . The uniaxial

crystal axis is the z axis.
a. An optical wave at a frequency ω propagates through the crystal along the

x axis with its electric field E(ω) polarized in the yz plane making an an-
gle φ with respect to the y axis. Write down the second-harmonic nonlinear
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polarization P(2)(2ω) as a function of the angle φ and the nonvanishing ele-
ments of χ(2). What is χeff if E (2ω) is polarized at an angle θ with respect
to the y axis?

b. What should the direction of E(ω) be so that P(2)(2ω) ‖ E(ω)? What should
it be so that P(2)(2ω) ⊥ E(ω)?

c. How do you arrange the directions of beam propagation k and field polar-
ization E(ω) so that an optical rectification field can be generated along the
direction of beam propagation? How do you arrange them so that an op-
tical rectification field can be generated in a direction perpendicular to the
direction of beam propagation?

9.4.2 In the process of second-harmonic generation, the fundamental field at frequency
ω induces a nonlinear polarization P(2)(2ω) in the nonlinear medium at the
second-harmonic frequency 2ω. This nonlinear polarization acts as a source to
generate the second-harmonic radiation field E(2ω).
a. Consider the interaction between P(2)(2ω) and E(2ω). Show that power is

converted from E(ω) through P(2)(2ω) to E(2ω) if P(2)(2ω) lags E(2ω) in
phase. Show also that this process is most efficient when the phase lag is
π/2.

b. If there is a phase mismatch, the power shuttles back and forth between the
second-harmonic and the fundamental waves. Show that after every coher-
ence length, the power flow changes direction. In other words, if the power
is converted from the fundamental to the second harmonic at z = 0, it will
be converted from the second harmonic back to the fundamental at z = lcoh,
and so on.

c. Suppose that at the beginning location z = 0 only the fundamental wave
exists. What happens if the interaction length is one coherence length long?
What happens if it is exactly two coherence lengths long?

9.4.3 A GaAs crystal has 43m symmetry. It may be used for second-harmonic gener-
ation in the infrared region because it is transparent in the 1- to 10-µm spectral
range. Because it is a cubic crystal, however, phase matching is not possible in
its transparent spectral region. Consider second-harmonic generation of a fun-
damental wave at a frequency ω propagating over a distance l with its k vector
in the [110] direction of a GaAs crystal. Calculate the intensity of the second-
harmonic wave if the fundamental wave is linearly polarized with (a) ê ‖ [001]
crystal direction, (b) ê ‖ [110] crystal direction, and (c) ê ‖ [111] crystal direc-
tion, respectively.

9.4.4 A plane wave at frequency ω, linearly polarized in the x direction, traverses
an isotropic fluid. It produces a nonlinear polarization at the third-harmonic
frequency 3ω.
a. What is the direction of this third-harmonic polarization?



582 Nonlinear optical devices

b. Express the polarization at 3ω in terms of an element of the nonlinear sus-
ceptibility tensor χ(3).

c. Calculate the third-harmonic field generated by this polarization, assuming
that E3ω(z) = 0 at z = 0. The indices of refraction at the two frequencies are
n(ω) and n(3ω), respectively. Is phase matching possible?

9.4.5 Consider the attenuation of an optical beam at frequency ω1 by one- and two-
photon absorption processes. The evolution of its intensity as it propagates along
the z direction can be described as

dI

dz
= −α I − α2 I 2, (9.281)

where α and α2 are one- and two-photon absorption coefficients, respectively.
a. Calculate I (z) for I = I0 at z = 0.
b. Relate α and α2 to their relevant linear or nonlinear susceptibilities, respec-

tively.
c. Consider also the attenuation of a weak beam at ω1 due to two-photon absorp-

tion at a combined photon energy of h̄ω1 + h̄ω2 in the presence of a strong
beam at ω2 that has an intensity of I (ω2). Calculate I (ω1) as a function of z
in terms of nonlinear susceptibility χ (3)(ω1 = ω1 + ω2 − ω2).

9.5.1 Show that in uniaxial crystals of symmetry classes 4, 6, 422, 622, 4mm, and
6mm the effective second-order susceptibility, χeff, for collinear interaction of
optical waves propagating in a direction k̂ that makes an angle θ with the optical
axis ẑ and an angle φ with the principal axis x̂ is independent of the angle φ.

9.5.2 Efficient second-order nonlinear optical frequency conversion using temperature
tuning with 90◦ phase matching in a uniaxial crystal is not always possible. The
reason is that the effective nonlinear susceptibility may be zero when phase
matching is accomplished in this manner.
a. Show that 90◦ phase matching in a negative uniaxial crystal is not possible

for type II phase matching but is possible for type I phase matching only in
crystals of symmetry classes 3, 4, 6, 4mm, 6mm, 3m, 4, and 42m.

b. Show that 90◦ phase matching in a positive uniaxial crystal is not possible
for type I phase matching but is possible for type II phase matching only in
crystals of symmetry classes 3, 4, 6, 4mm, 6mm, 3m, 4, and 42m.

9.5.3 In this problem, we consider the angular tolerance for 90◦ phase matching in
uniaxial crystals.
a. According to Problem 9.5.2, 90◦ phase matching in a negative uniaxial crystal

is possible only for type I phase matching in certain crystals. Find the angular
tolerance for this case.

b. Also according to Problem 9.5.2, 90◦ phase matching in a positive uniaxial
crystal is possible only for type II phase matching in certain crystals. Find
the angular tolerance for this case.
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c. Because the efficiency of second-harmonic generation is proportional to the
square of the fundamental intensity, the efficiency can usually be improved by
simply focusing the beam. Assuming a Gaussian beam profile, how much can
the fundamental beam be focused while maintaining phase matching through
the entire crystal length?

9.5.4 Consider second-harmonic generation with a fundamental wave at λ = 1.06 µm
in LiNbO3, which is a negative uniaxial crystal. Phase matching is accomplished
by 90◦ type I temperature tuning at 300 K with no(ω) = ne(2ω) = 2.234. The
dispersion of these indices with respect to wavelength can be expressed as

dno

dλ

∣∣∣∣
λ

= −6.17 × 104 m−1,
dne

dλ

∣∣∣∣
λ/2

= −4.2 × 105 m−1. (9.282)

Assume that the crystal length is l = 5 cm.
a. What is the FWHM phase-matching spectral range?
b. If the laser generating the fundamental wave has a cavity length of 1 m, how

many longitudinal laser modes can be simultaneously phase matched within
the FWHM phase-matching range?

c. What is the implication of this result for the second-harmonic generation of
ultrashort mode-locked laser pulses?

9.5.5 For the 90◦ type I phase matching in LiNbO3 discussed in Problem 9.5.4, what
is the FWHM phase-matching angle at the central phase-matched wavelength
of λ = 1.06 µm? Use the result obtained in Problem 9.5.3(a) to solve this.

9.5.6 LiNbO3 is a uniaxial crystal of 3m symmetry. Its ordinary and extraordinary
indices of refraction are both highly dependent on temperature. At room tem-
perature, it has no = 2.238 and ne = 2.159 at 1 µm wavelength and no = 2.343
and ne = 2.248 at 500 nm wavelength. A laser beam at the fundamental wave-
length of 1 µm propagates through the crystal at an angle θ with respect to the
optical axis ẑ in a plane at an angle φ with respect to the x axis to generate the
second harmonic at 500 nm.
a. How should the polarizations of the fundamental and second-harmonic waves

be chosen, respectively, for type I phase matching? What is χeff as a function
of θ , φ, and the nonvanishing elements of χ(2)?

b. Answer the questions in (a) for type II phase matching.
c. If χ

(2)
31 < 0 and χ

(2)
22 > 0, what are the best choices for the value of φ in (a)

and (b), respectively?
d. Show that angle tuning at room temperature is not possible for both type I

and type II phase matching. What can be done for phase matching in order
to carry out this second-harmonic generation process efficiently?

9.5.7 LiNbO3 is a negative uniaxial crystal of 3m symmetry that has the fol-
lowing nonvanishing elements of χ(2): χ

(2)
15 = χ

(2)
24 , χ

(2)
31 = χ

(2)
32 , χ

(2)
33 , χ

(2)
22 =

−χ
(2)
21 = −χ

(2)
16 . The ordinary and extraordinary refractive indices as functions
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of wavelength and temperature are given in (9.92) and (9.93), respectively.
The optical axis is the z axis. A laser beam at the fundamental wavelength of
1.064 µm propagates through the crystal at an angle θ with respect to ẑ in a
plane at an angle φ with respect to x̂ to generate the second harmonic at 532 nm
wavelength. It can be shown that angle tuning for phase matching is not possible
at room temperature for either type of phase matching in this case. Therefore,
we only consider temperature tuning for phase matching.
a. Find χeff for type I phase matching as a function of θ , φ, and the nonvanishing

elements of χ(2).
b. Find χeff for type II phase matching as a function of θ , φ, and the nonvanishing

elements of χ(2).
c. Find the phase-matching temperature for 90◦ type I phase matching.
d. In (c), how are the fundamental and second-harmonic fields polarized with

respect to each other?
e. Can second-harmonic emission be generated with 90◦ type II phase matching?

If your answer is yes, describe how it can be done. If your answer is no, explain
why it cannot be done.

9.5.8 Consider nondegenerate sum-frequency generation, ω3 = ω1 + ω2 with ω1 �=
ω2, in ADP or KDP, which are negative uniaxial crystals of 42m symmetry. The
optical axis is the z axis. The wave propagates at an angle θ with respect to ẑ in
a plane at an angle φ with respect to the x axis.
a. What is the condition for collinear phase matching? Very briefly describe

how this can be accomplished.
b. For type I phase matching, how should the polarizations, in terms of ordinary

or extraordinary waves, of the three waves be chosen respectively? What
is the effective nonlinear susceptibility, χeff, as a function of θ , φ, and the
nonvanishing elements of χ(2)?

c. Answer the questions in (b) for the type II phase-matching condition.
d. What determines the optimum choice for the value of θ? Should the same

value of θ be chosen for the cases in (b) and (c)?
e. What determines the optimum choice for the value of φ? Should the same

value of φ be chosen for the cases in (b) and (c)? Write down the respective
values chosen for φ in the two cases.

9.5.9 The uniaxial nonlinear crystal KDP has 42m symmetry with the only non-
vanishing χ(2) elements being χ

(2)
14 = χ

(2)
25 �= χ

(2)
36 . Consider second-harmonic

generation in KDP with a fundamental wave at 1.064 µm to emit a second-
harmonic wave at 532 nm. At room temperature, the ordinary and extraordinary
indices of refraction for KDP at these two frequencies are

no(ω) = 1.506 617, no(2ω) = 1.527 838,

ne(ω) = 1.468 102, ne(2ω) = 1.481 803.
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These indices have the following temperature dependencies:

no(T ) = no + 4.02 × 10−5(n2
o − 1.432)(298 − T ), (9.283)

ne(T ) = ne + 2.21 × 10−5(n2
e − 1.105)(298 − T ), (9.284)

where T is the absolute temperature in K, and n0 and ne are the values at 298 K.
a. Find the phase-matching angle for type I phase matching at room temperature.
b. What is the maximum value of |χeff| for the case in (a)? How should the

incident fundamental beam be arranged to obtain this maximum nonlinear
coefficient for second-harmonic generation?

c. Is it possible to obtain 90◦ type I phase matching by temperature tuning?
Explain.

d. Is it possible to obtain 90◦ type II phase matching by temperature tuning?
Explain.

e. Is it possible to obtain type II phase matching by angle tuning at room tem-
perature? Explain.

9.5.10 BBO is a negative uniaxial crystal. It is phase matchable for second-harmonic
and sum-frequency generation in the spectral range from near infrared to near
ultraviolet. Its ordinary and extraordinary indices at room temperature as a
function of optical wavelength are given by the following Sellmeier equations:

n2
o = 2.7359 + 0.018 78

λ2 − 0.018 22
− 0.013 54λ2, (9.285)

n2
e = 2.3753 + 0.012 24

λ2 − 0.016 67
− 0.015 16λ2, (9.286)

where λ is in micrometers. It is desired to generate the second and third har-
monics of the fundamental wavelength at 1.064 µm of a Nd : YAG laser using
BBO crystals. The second harmonic will be generated by doubling the funda-
mental frequency, while the third harmonic will be generated by summing the
fundamental and the second-harmonic frequencies. Collinear phase matching
with the waves propagating in a direction making an angle θ with the unique z
axis and an angle φ with the x axis is considered.
a. For the SHG to generate light at 532 nm, write down the equations required to

be solved for the phase-matching angles for type I and type II phase-matching
conditions, respectively. Calculate the phase-matching angle for type I phase
matching.

b. Calculate the walk-off angle for the SHG under type I phase matching in (a).
Suppose that the fundamental beam is a Gaussian beam that is focused to a
beam waist size of w0 = 100 µm. What is the aperture distance? Under what
conditions will the SHG efficiency increase quadratically with the length of
the nonlinear crystal?
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c. For the SFG using 1.064 µm and 532 nm input waves to generate a third-
harmonic wave at 354.7 nm, calculate the type I phase-matching angle.

d. For the SFG to generate a third-harmonic wave at 354.7 nm, what are the
possibilities for type II phase matching? Find the phase-matching angle.

9.5.11 KTP is a biaxial crystal of mm2 symmetry. It is a very popular crystal for non-
linear optical frequency conversion applications. Birefringent phase matching
in such a biaxial crystal is normally accomplished in a plane normal to one of
the three principal axes. For a propagation vector k, the angle θ is that between
k̂ and ẑ, and the angle φ is that between k̂ and x̂ , both defined in the same
manner as those for a uniaxial crystal. Collinear phase matching for parametric
generation in KTP with a pump wavelength at 527 nm can be achieved in any
of the three principal planes: xy, yz, and zx . Use the data for KTP listed in
Table 9.3 to plot the angle-tuning curves in the form of parametric wavelengths,
within the transparency window of KTP up to 4.5 µm, as a function of the
phase-matching angle for collinear phase matching in each of the three planes.
Note that the tuning angle is φ for phase matching in the xy plane, but it is θ

for phase matching in the yz or zx plane.
9.5.12 What is the grating period required for second-order quasi-phase matching?

What duty factor has to be chosen for such a second-order grating in order to
maximize the value of |χQ|? What is this |χQ|? How does it compare with that
of the optimized first-order grating?

9.5.13 A PPKTP crystal is used for frequency doubling of an optical wave at 1.064 µm
wavelength to its second harmonic at 532 nm. The grating period of this PPKTP
is chosen for quasi-phase matching of this process. The properties of KTP are
listed in Table 9.3. How should the waves be polarized for the largest nonlin-
ear susceptibility under quasi-phase matching? What is the required first-order
grating period at room temperature?

9.5.14 A first-order PPKTP crystal is pumped at λ3 = 532 nm to generate a parametric
signal at λ1 = 1.3 µm. The properties of KTP are listed in Table 9.3.
a. What is the idler wavelength λ2?
b. How should the pump wave be polarized for the largest nonlinear suscepti-

bility under quasi-phase matching? What are the polarizations of the signal
and idler waves, respectively?

c. What is the grating period required for quasi-phase matching at room tem-
perature?

d. If the pump wavelength is at λ3 = 860 nm instead, what is the idler wave-
length λ2? What is the required grating period? Compare this grating period
with that obtained in (c).

9.5.15 Answer briefly the following questions regarding phase matching.
a. What are collinear and noncollinear phase-matching processes?
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b. Discuss the physical mechanisms that can be utilized for collinear phase
matching.

c. What is the best way to minimize the walk-off effect in a second-order non-
linear frequency converter?

d. Why is phase matching by temperature tuning also called noncritical phase
matching?

e. What methods can be used for phase matching in a nonbirefringent material
within a spectral region that is far away from resonances?

f. If phase matching is not possible, what is the longest crystal you should use
for a second-harmonic generation process?

9.6.1 Consider sum-frequency generation in the low-efficiency limit.
a. Show that the optimum crystal length for the highest efficiency is equal to

the coherence length of the interaction if there is a finite phase mismatch of
�k.

b. For a given interaction length l, what is the maximum acceptable phase
mismatch for maintaining an efficiency higher than 50% of the peak efficiency
at perfect phase matching?

9.6.2 Consider SFG with ω3 = ω1 + ω2 and DFG with ω2 = ω3 − ω1. Answer the
following questions briefly without unnecessary elaboration.
a. In the low-efficiency limit, what is I (ω3) in SFG as a function of ω3, χeff,

I (ω1), I (ω2), the interaction length l, and the phase mismatch �k?
b. Sketch the dependence of I (ω3) as a function of phase mismatch �k. Identify

the zeros.
c. With a given type of crystal and given input optical powers at ω1 and ω2,

what can be done to maximize the output power at ω3? Write down four steps
that can be taken to accomplish this task.

d. How is the answer in (a) modified for DFG?
e. In the high-efficiency limit with a very strong pump beam at one frequency

interacting with a weak pump beam at another frequency, sketch the evolution
of the intensities of the pump beams and the signal beam as a function of the
interaction length l for SFG.

f. Consider the same situation in (e) for DFG. What is the difference in
the evolution of the beam intensities between the cases of DFG and
SFG?

9.6.3 Three optical waves of the same intensity at the frequencies of ω1, ω2, and ω3

with ω1 + ω2 = ω3 are sent together into a nonlinear optical crystal. If they
propagate with k1 + k2 = k3, what decides or controls whether sum-frequency
generation with the optical power being converted from ω1 and ω2 to ω3 or
difference-frequency generation with the optical power being converted in the
opposite direction will take place?
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9.6.4 Answer the following questions regarding the characteristics of a second-
harmonic generator.
a. In the case of perfect phase matching, sketch the evolution of the fundamental

and second-harmonic intensities as a function of distance in the low-efficiency
limit. What is the dependence of the second-harmonic intensity on the dis-
tance?

b. Answer the questions in (a) for the high-efficiency limit.
c. If phase matching is not perfect with �k �= 0, how are the answers in (a)

changed? Show the sketch.
d. In the presence of phase mismatch, how should the crystal length be chosen

for the maximum second-harmonic output?
9.6.5 Very often, we use two nonlinear crystals in tandem as shown in Fig. 9.42 to

increase the overall nonlinear conversion efficiency because of the limitation in
the length of available crystals. Assume that both crystals are cut and oriented
for perfect phase matching. Consider for simplicity the case of second-harmonic
generation although your answers to the following questions can be easily ex-
tended to other second-order frequency generation processes. Consider also only
the low-efficiency limit, which is usually the case when there is a need to use
two crystals.

Figure 9.42 Second-harmonic generation with two nonlinear crystals in tandem.

a. If the medium between the crystals is isotropic and nondispersive, what is
the effect of the distance d between the two crystals on the overall nonlinear
conversion efficiency? Explain.

b. What is the dependence of the overall conversion efficiency on the lengths,
l1 and l2, of the crystals and the distance d between them?

c. Discuss what can happen if the medium between the crystals is birefringent
but nondispersive. What should you do in this case to ensure maximum
conversion efficiency?

d. What can happen if the medium between the crystals is isotropic but is dis-
persive? What has to be done to ensure maximum conversion efficiency?

e. Answer the questions in (d) if the medium is nondispersive but is nonlinear
with an intensity-dependent refractive index.
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9.6.6 A mode-locked short optical pulse usually contains many equally spaced lon-
gitudinal mode frequencies. Consider a transform-limited Gaussian pulse that
contains 100 longitudinal modes with the central mode at frequency ω0 and
the spacing between two adjacent modes being �ωL. The Gaussian pulse has
a FWHM pulsewidth �tps in the time domain and a spectral width �ωps in the
frequency domain so that its time-domain intensity I (t) and frequency-domain
spectral intensity I (ω) are, respectively,

I (t) = I0 exp

[
−
(

t

�tps

)2
]

and I (ω) = I (ω0) exp

[
−
(

ω − ω0

�ω

)2
]

.

(9.287)

a. In a phase-matched second-harmonic generation process with this Gaussian
pulse, how many longitudinal mode frequencies are found in the second-
harmonic pulse? What is the mode spacing? Sketch the spectrum and identify
the frequencies of these modes.

b. If the phase-matching spectral range is much larger than �ωps, what are the
spectral width and the pulsewidth of the second-harmonic pulse?

c. If the phase-matching spectral range were smaller than �ωps, what would
happen to the spectral width and the pulsewidth of the second-harmonic
pulse?

9.6.7 LiIO3 is an attractive material for second-harmonic generation because of
its high nonlinear coefficients and its resistance to damage. Because its in-
dex of refraction changes little with temperature, phase matching is normally
accomplished by angle tuning. It is a uniaxial crystal with its ordinary and
extraordinary indices of refraction as a function of wavelength given by the
following Sellmeier equations:

n2
o = 1 + 2.40λ2

λ2 − 0.022
, (9.288)

n2
e = 1 + 1.91λ2

λ2 − 0.019
, (9.289)

where λ is in micrometers. The crystal has group 6 symmetry, and its
principal second-order nonlinear susceptibility is χ

(2)
31 = χ (2)

zxx (2ω = ω + ω) =
20 pm V−1. We want to generate second harmonics at 532 nm wavelength
from a fundamental plane wave at 1.064 µm wavelength using a LiIO3 crystal.
Collinear phase matching is considered.
a. Sketch the proper crystal orientation, direction of beam propagation, and

polarization directions of the fundamental and second-harmonic fields for
phase-matched conversion. Calculate the phase-matching angle θPM and the
walk-off angle ρ.

b. Calculate the value of χeff under the phase-matched condition.
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c. For a crystal of l = 5 mm length, calculate the input fundamental intensity
I (ω) at 1.064 µm that is required for 50% power conversion to the second
harmonic at 532 nm.

d. Assume that the laser beams are circular Gaussian beams. If 50% power
conversion efficiency is to be accomplished in such a manner that the walk-
off in space at the output end is less than one-tenth of the fundamental beam
diameter, how much total power is needed for the input fundamental beam?

9.6.8 Examine the effects of phase mismatch for optical parametric frequency con-
verters. Compare them to the effects of phase mismatch for sum-frequency
generators. What is the reason for the differences?

9.6.9 Compare the differences between an optical parametric frequency converter
and an OPA in terms of their basic principles, operating characteristics, and
applications.

9.6.10 Find the intensity gain of an OPA with a phase mismatch of �k and compare
the result to (9.137). Show that in the case when �k/2 > κ , the parametric gain
is approximately

G = 1 + κ2l2 sin2(�kl/2)

(�kl/2)2
. (9.290)

9.6.11 A wavelength-tunable OPA or OPO is normally operated with a pump at a fixed
wavelength of λ3 and a fixed input intensity of I3(0) while the signal and idler
wavelengths, λ1 and λ2, respectively, are tuned together in opposite directions.
In this process, other characteristic parameters, such as deff and the refractive
indices of the crystal at the signal and idler wavelengths, of the device also
vary accordingly. If such variations can be ignored, at what signal and idler
wavelengths does a given wavelength-tunable OPA have the largest gain? What
is the implication of this wavelength dependence of the parametric gain on the
practical design and applications of OPAs and OPOs?

9.6.12 A crystal that has a large χ(2) is used for nonlinear frequency conversion.
a. When two laser beams at frequencies ω1 and ω2 are sent together into the

crystal, what determines whether you will see ω1 + ω2, or ω1 − ω2, or 2ω1,
or 2ω2 at the output?

b. When three beams at three different frequencies, ω1, ω2, and ω3, with ω3 =
ω1 + ω2, propagate simultaneously in the crystal, what determines whether
the sum-frequency process of ω1 + ω2 → ω3 or the difference-frequency
process of ω3 − ω2 → ω1 will occur?

9.6.13 The nonlinear crystal AgGaS2 is a good material for parametric generation of
infrared frequencies. It has 42m symmetry and is transparent in the infrared
spectral range. We can assume Kleiman’s symmetry so that all of its nonvanish-
ing χ(2) elements have equal magnitude. Its refractive indices can be described
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by the following Sellmeier equations:

n2
o = 5.728 + 0.241 07

λ2 − 0.087 03
− 0.002 10λ2, (9.291)

n2
e = 5.497 + 0.202 59

λ2 − 0.130 70
− 0.002 33λ2, (9.292)

where λ is in micrometers. An OPO can be constructed using this crystal and
pumped with a laser beam at 1.064 µm to generate wavelength-tunable infrared
light in the longer-wavelength range. The pump beam propagates through the
crystal at an angle θ with respect to the crystal z axis in a plane at an angle φ

with respect to the x axis.
a. Find χeff for type I phase matching as a function of θ , φ, and the nonvanishing

elements of χ(2).
b. Find χeff for type II phase matching as a function of θ , φ, and the nonvanishing

elements of χ(2).
c. If the signal is at 4 µm wavelength, what is the wavelength of the idler?
d. Find the phase-matching angle for type I phase matching to generate the

4-µm signal.
e. If we rotate the crystal by ±1◦ around the phase-matching angle for the

4-µm signal, what are the wavelength tuning ranges for the signal and the
idler, respectively?

9.6.14 An OPO is constructed using the uniaxial nonlinear crystal AgGaS2 and pumped
with a laser beam at 1.064 µm to generate wavelength-tunable infrared light in
the wavelength range between 3 and 5 µm. A linearly polarized pump beam
propagates through the crystal at an angle θ with respect to the crystal z axis
in a plane at an angle φ with respect to the x axis. Consider using only type I
phase matching. Use the data for AgGaS2 given in Problem 9.6.13 to answer
the following questions.
a. What is the wavelength range of the idler?
b. How do you orient the direction of polarization of your pump beam for

maximum efficiency?
c. It is desired that only one crystal be used for the entire signal wavelength

range of 3–5 µm. Wavelength tuning in this range is to be accomplished by
tuning the angle of the crystal. How do you cut your crystal so that the length
of the crystal needed is minimized for a given pump beam cross section?
Sketch for clarity.

d. Following (c), what is the range of tuning angle for the desired wavelength-
tuning range?

e. What is the change in nonlinear conversion efficiency across the signal wave-
length range?
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9.6.15 An AgGaS2 OPO with a pump beam at λ3 = 1.053 µm can cover a wavelength
range from 1 to 12 µm by angle tuning. The internal small-signal gain of the OPO
is determined by κ2l2 for a crystal of length l, where κ is given in (9.133). The
effective nonlinear susceptibility deff depends on the signal and idler wavelengths
through its dependence on the tuning angle. For a given crystal length and a
given pump intensity, the gain of the OPO thus varies with the signal and idler
wavelengths through its dependence on deff and refractive indices in addition to
its explicit dependence on λ1 and λ2 as seen in (9.133). Collinear phase matching
is considered. Use the data given in Table 9.3 for AgGaS2.
a. Plot the angle-tuning curves in the form of parametric wavelengths versus

phase-matching angle for both type I and type II phase matching.
b. Find deff as a function of angles θ and φ for both types of phase matching,

where θ is the angle between the propagation vector k and the crystal optical
axis ẑ and φ is that between k and the principal axis x̂ . For each type of phase
matching, maximize the value of |deff| by properly choosing the value for φ.

c. Plot the maximum value of |deff| as a function of signal and idler wavelengths
for both types of phase matching.

d. Plot the small-signal gain κ2l2, normalized to its peak value, for the OPO as
a function of signal and idler wavelengths for both types of phase matching.
Compare these curves with those obtained in (c).

e. Compare type I and type II phase matching in terms of wavelength coverage,
tuning, and efficiency.

9.6.16 The angle-tuning curves for a LiNbO3 OPO pumped at λ3 = 527 nm are shown
in Fig. 9.11. The effective nonlinear susceptibilities are given respectively in
(9.86) and (9.88) for type I and type II phase matching. As described in Prob-
lem 9.6.15, the internal small-signal gain of the OPO is κ2l2 for a crystal of
length l, where κ is given in (9.133). Answer the following questions for an
angle-tuned LiNbO3 OPO pumped at 527 nm with collinear phase matching.
Use the data given in Table 9.3 for LiNbO3.
a. Plot the maximum value of |deff| as a function of signal and idler wavelengths

for both types of phase matching.
b. Plot the small-signal gain κ2l2, normalized to its peak value, for the OPO as

a function of signal and idler wavelengths for both types of phase matching.
Compare these curves with those obtained in (a).

c. Compare type I and type II phase matching in terms of wavelength coverage,
tuning, and efficiency.

9.6.17 Answer the questions in Problem 9.6.16 for a temperature-tuned LiNbO3

OPO pumped at λ3 = 527 nm. The temperature-tuning curves are shown in
Fig. 9.13.

9.6.18 In this problem, we consider a LiNbO3 OPO pumped at 527 nm such as those
considered in Problems 9.6.16 and 9.6.17, but with quasi-phase matching with
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a PPLN crystal that has a first-order grating of 50% duty factor. Tuning of
the parametric wavelengths is accomplished by varying the grating period in a
fanned structure as shown in Fig. 9.14(c). Use the data given in Table 9.3 for
LiNbO3 to answer the following questions.
a. Plot the tuning curve in the form of parametric wavelengths versus the phase-

matching grating period.
b. Plot the maximum value of |deff| as a function of signal and idler wavelengths.
c. Plot the small-signal gain κ2l2, normalized to its peak value, for the OPO as

a function of signal and idler wavelengths. Compare these curves with those
obtained in (b).

d. Compare this OPO with quasi-phase matching to the OPOs with angle tuning
and temperature tuning that are considered in Problems 9.6.16 and 9.6.17,
respectively, in terms of wavelength coverage, tuning, and efficiency.

9.6.19 Answer the following questions regarding frequency converters.
a. What are the three most important factors to consider for efficient operation of

second-order nonlinear optical frequency converters? List them in descending
order according to their relative importance.

b. For a sum-frequency generator operating at the low-efficiency limit, how does
the sum-frequency signal depend on the pump beam intensities, the crystal
length, the effective nonlinear susceptibility, and the signal wavelength, re-
spectively? Assume perfect phase matching.

c. What are the usual arrangements employed for efficient generation of third-
harmonic and fourth-harmonic frequencies from a fundamental frequency?

d. What are the advantages and disadvantages of a singly resonant OPO in
comparison to a doubly resonant OPO? Are most practical OPOs of singly
resonant type or doubly resonant type?

e. How are the signal and idler frequencies of an OPO tuned in practice?
9.7.1 Consider a one-beam optical Kerr effect in an isotropic medium.

a. Show that if an optical wave is linearly or circularly polarized, its polarization
state remains unchanged under the optical Kerr effect. For the intensity-
dependent index of refraction expressed in the form of n = n0 + n2 I , find n2

for a circularly polarized wave and compare it to that of a linearly polarized
wave of the same intensity.

b. The field of an elliptically polarized wave can be expressed as a linear super-
position of two circularly polarized components of unequal magnitudes as
E = E+ê+ + E−ê− with |E+| �= |E−|. Show that the two circularly polarized
components of unequal magnitudes experience different intensity dependen-
cies due to a field-dependent circular birefringence of

�nc = �n+ − �n− = −3χ
(3)
1221

n0

(|E+|2 − |E−|2) . (9.293)
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What is the angle of rotation of the elliptical polarization after the wave
propagates through the medium over a length l?

9.7.2 Consider a cubic crystal with principal axes x̂ , ŷ, and ẑ. It has a length l in
the z direction. The optical waves being considered propagate in the z direc-
tion so that they are polarized in the xy plane. The nonvanishing elements of
the third-order nonlinear susceptibility of the cubic crystal have the following
forms: χ (3)

1111 > χ
(3)
1122, χ

(3)
1212, χ

(3)
1221 > 0. The crystal is slightly stressed to become

slightly birefringent in its linear optical property so that δn = n0y − n0x > 0
and n0 � δn, but its nonlinear optical susceptibilities are not changed by
stress.
a. A beam at a frequency ω0 that is linearly polarized at an angle θ with respect

to the x axis at z = 0 is launched into the crystal. Its output polarization state
at z = l can be used to deduce stress-induced birefringence in the crystal. If
we take θ = 45◦ and find that the beam is circularly polarized at z = l, what
is the minimum value of δn?

b. Because of the stress-induced birefringence, the polarization state of the
output beam depends sensitively on the angle θ . It is possible to get rid of this
problem by an optical Kerr effect induced by another strong pump beam at a
frequency ω that is different from ω0. If such a beam that is linearly polarized
in the x direction is launched, what is the minimum required intensity of this
beam for the optical field at frequency ω0 to be always linearly polarized at
z = l no matter what value θ has?

c. If the pump field at ω is linearly polarized in the y direction instead, what is
the minimum intensity required to accomplish the effect in (b)?

9.7.3 The optical Kerr effect changes the divergence of a Gaussian optical beam
significantly when the effective focal length of a Kerr lens is on the order of the
Rayleigh range of the beam. Show that by making the length l of the Kerr medium
the largest allowed under the thin-lens condition, the minimum power required
for fK = zR is a constant that is independent of the focusing condition of the
beam. For the silica Kerr lens described in Example 9.15, what is the minimum
peak power of the pulses to reach this condition? What is the corresponding
average power? Note that the beam waist is located at the incident surface of
the silica plate.

9.7.4 For a Gaussian beam at a given power with a given beam waist radius w0,
the effective focal length of a Kerr lens depends on the location z of the Kerr
lens with respect to the beam waist, which is located at the origin of the z
axis. As a consequence, both the beam waist radius w0K and the divergence of
the beam after the Kerr lens vary with the location of the Kerr lens. Use the
relations for Gaussian beam focusing in Problem 1.7.5 to answer the following
questions.
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a. Find fK(z) and w0K(z) as a function of location z of the Kerr lens.
b. Plot fK(z)/ fK(0) and w0K(z)/w0 as a function of z/zR for the three values of

fK(0)/zR = 0.1, 1, and 10.
9.7.5 Using an isotropic nonlinear medium such as a cell containing liquid CS2, design

a Kerr shutter to gate the signal carried by an optical wave at a wavelength λ.
The CS2 cell has a length l and is pumped by a short gating pulse at a wave-
length λ′.
a. It is desired that the signal be gated by the gating pulse such that its transmis-

sion is synchronized to the arrival of the gating pulse and lasts only within
the duration of the pulse. Sketch your setup and describe how you arrange
the polarization of the beams for your setup to work.

b. Find the peak intensity of your gating pulse in terms of the linear refractive
index, n0, and the nonlinear refractive index, n2, of CS2.

9.7.6 It is possible to use χ(3) processes to shorten optical pulses. This objective can
be accomplished through processes that involve either χ(3)′ or χ(3)′′. Because
the temporal pulsewidth is related to its spectral width through the Fourier
transform, it is generally necessary to broaden the pulse spectrum when we
start with a transform-limited pulse. However, broadening the spectrum does
not automatically result in a shortened pulse before chirping in the pulse is
removed.
a. Show that a χ(3)′ process, such as self-phase modulation, broadens the pulse

spectrum but does not by itself shorten the pulsewidth.
b. What else is needed for shortening the pulse by using a χ(3)′ process?
c. Show that a χ(3)′′ process, such as absorption saturation, can reduce the

pulsewidth without the help of other processes.
d. Does a χ(3)′′ process broaden the pulse spectrum? Discuss mathematically.

9.7.7 An optical wave at a frequency ω propagates in an isotropic medium that has a
third-order nonlinear susceptibility χ(3)(ω = ω + ω − ω). If the material has a
bandgap larger than h̄ω but smaller than 2h̄ω, two-photon absorption is possible.
Discuss the nonlinear susceptibility conditions for the beam to propagate through
the medium with the possibilities of (a) self-focusing, (b) self-defocusing, and
(c) attenuation due to two-photon absorption, respectively.

9.7.8 Answer the following questions regarding nonlinear optical phase modulation.
a. What is the major problem preventing the scaling up of power of a solid-state

laser such as Nd : YAG by continuously increasing the length of the laser
crystal?

b. What is the solution to the problem in (a)?
c. Describe the principle of an optical power limiter that utilizes a nonlinear

optical effect to protect a detector from excessively high input light intensities
in a Gaussian beam.
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d. Sketch the distribution of the new frequencies generated by self-phase mod-
ulation as a function of time when a short optical pulse propagates through a
medium with n2 > 0. What is the distribution if n2 < 0?

9.8.1 A dispersive bistable optical device consists of a Fabry–Perot cavity filled with
a purely dispersive optical Kerr medium. Consider its operation under the con-
dition that |ϕ| < 1.
a. Show that the conditions for bistability in such a device are those given in

(9.172) and (9.173).
b. Show that the threshold input intensity, Ith, required for this device to be able

to reach its bistability is that given in (9.174).
9.8.2 From the characteristics of a dispersive bistable optical device as shown in

Fig. 9.28, we find that when operating in its bistable state with a = F2ϕ2
0/π

2 >

3, the device has an up-transition point at an input intensity I up
in and a down-

transition point at I down
in . The bistability range is �Iin = I up

in − I down
in . Consider

its operation under the condition that |ϕ| < 1 and a � 3.
a. Show that the up-transition point occurs at

I up
in ≈

(
4a

27
+ 1

3
+ 1

3a

)
3
√

3a

8
Ith, (9.294)

and the down-transition point occurs at

I down
in ≈

(
1 − 1

3a

)
3
√

3a

8
Ith. (9.295)

b. Show that at the up-transition point, the output intensity of the device makes
the following jump from a low level to a high level:

(
I up
out

)
low ≈

(
1

3
+ 1

2a

)
F2

F2
0

3
√

3a

8
Ith ⇒ (

I up
out

)
high ≈

(
4

3
− 1

a

)
F2

F2
0

3
√

3a

8
Ith.

(9.296)

c. Show that at the down-transition point, the output intensity of the device
makes the following jump from a high level to a low level:

(
I down
out

)
high ≈

(
1 − 1

2a

)
F2

F2
0

3
√

3a

8
Ith ⇒ (

I down
out

)
low ≈ 1

a

F2

F2
0

3
√

3a

8
Ith.

(9.297)

9.8.3 It is desired that the dispersive bistable device described in Example 9.16 be
operated with a bistability input power range of �Pin = 1 mW between the
up-transition and down-transition points.
a. What value of the biased phase ϕ0 should be chosen?
b. What are the required input powers at the two transition points?
c. What are the output powers at the two transition points?
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9.8.4 Find the threshold intensity for the dispersive bistable device described in Ex-
ample 9.16 if the reflectivities of both mirrors are increased to R = 99.5%. What
is the threshold power if the Gaussian input beam is still focused to a spot size
of w0 = 20 µm? Compare the results with those found in Example 9.16.

9.8.5 Show that the condition for bistability in a Fabry–Perot cavity filled with a
saturable absorber is C0 > 8 as given in (9.178) under the assumptions that
2kl = 2mπ and αl � 1.

9.8.6 An absorptive bistable device has the structure of a vertical cavity that consists
of a doped GaAs semiconductor saturable absorber layer between two symmet-
ric GaAs/AlGaAs DBR mirrors of reflectivity R. The unsaturated absorption
coefficient is α0 = 8 × 104 m−1 at λ = 850 nm.
a. If the length of the absorber layer is l = 0.5 µm, what is the required reflec-

tivity R for bistability?
b. If the reflectivity of the DBR mirrors is limited to R = 99%, what should the

length of the absorber layer be in order for the device to function bistably?
9.9.1 Stimulated Raman scattering and stimulated Brillouin scattering have some

common features but also many fundamental and practical differences. Discuss
the similarities and differences between stimulated Raman scattering and stim-
ulated Brillouin scattering in terms of their physical mechanisms, geometric
characteristics, spectral characteristics, and gain.

9.9.2 Consider stimulated Raman scattering in a very long interaction medium such
as an optical fiber of hundreds of meters in length. Discuss the fundamental
differences among pumping with (a) a CW laser beam, (b) a nanosecond laser
pulse, (c) a picosecond laser pulse, and (d) a femtosecond laser pulse. Assume
that the CW laser intensity is strong enough to generate at least the first-order
Stokes signal and that the peak intensities of the pulses are at least as strong as
that of the CW beam.

9.9.3 In this problem, we consider Raman amplification in a codirectional configura-
tion in the case when αp = αS = α.
a. When the medium has a finite absorption coefficient of α �= 0, the Manley–

Rowe relation given in (9.81) is no longer valid. Instead, show, using the
coupled equations given in (9.188) and (9.189), that we have

d

dz

(
IS

ωS

eαz

)
= − d

dz

(
Ip

ωp
eαz

)
. (9.298)

Therefore,

IS(z)

ωS

eαz + Ip(z)

ωp
eαz = IS(0)

ωS

+ Ip(0)

ωp
, (9.299)

which is a constant independent of z.
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b. Using the relation in (9.299), show that the coupled equations in (9.188) and
(9.189) have the following exact analytical solution:

IS(l) = ωp IS(0) + ωS Ip(0)

ωp IS(0) + ωS Ip(0) exp(−gleff)
IS(0)e−αl, (9.300)

Ip(l) = ωS Ip(0) + ωp IS(0)

ωS Ip(0) + ωp IS(0) exp(gleff)
Ip(0)e−αl, (9.301)

where leff is that given in (9.192) with αp = α and

g = g̃R

[
Ip(0) + ωp

ωS

IS(0)

]
. (9.302)

c. Show that, for any value of α, the pump and the Stokes signal intensities have
the following relation:

IS(l)

Ip(l)
= IS(0)

Ip(0)
exp(gleff). (9.303)

9.9.4 By using the relations in (9.196), (9.197), and (9.300) and by taking the realistic
assumption that Ip(0) � I eff

S (0) = I eff
S,th(0), show that the efficiency of a Raman

Stokes generator of length l in the case when αp = αS = α is that given by
(9.199).

9.9.5 A low-loss single-mode silica fiber has a short length such that αl � 1. There-
fore, the linear absorption loss in the fiber can be neglected in this problem. The
fiber is pumped with an optical beam at λp = 1 µm. The Raman gain peak of
this fiber appears at a frequency shift of 460 cm−1. Plot the Raman conversion
efficiency ηR defined in (9.199) as a function of the pump ratio r for Raman
Stokes generation in the fiber. Examine the behavior of ηR around the threshold.

9.9.6 Because of the typical long interaction length in an optical fiber, a nonlinear
optical phenomenon such as stimulated Raman scattering can become important
even though the nonlinear susceptibility might not be very large. The Raman
spectra of oxide glasses, such as various silica, germania, and phosphorous
glasses, that are used in the fabrication of optical fibers show a broad band of
frequencies rather than discrete Raman lines because of the amorphous nature
of glasses. Consider a germania-doped silica fiber that has a Raman spectral
peak at a frequency shift of 440 cm−1.
a. A high-power pulsed laser beam at λ = 1 µm wavelength is sent through

such a fiber that is long enough to generate up to the fifth-order Stokes signal
without completely depleting the pump laser power. Sketch the expected
spectrum of the output at the exit end of the fiber. Identify the wavelengths
of the peaks in the spectrum.

b. Would you expect anti-Stokes lines to be seen? Explain.
c. Consider only the coupling of the pump beam and the first Stokes signal.

Write down the equations in the slowly varying amplitude approximation
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to describe the wave propagation while ignoring the effects of optical-field-
induced birefringence and absorption losses. Does phase matching need to
be considered for this coupling? Why?

d. If depletion of the pump beam is negligible throughout the entire fiber, show
that Raman amplification of the Stokes signal is

PS(l)

PS(0)
= exp

(
g̃R Ppl

Aeff

)
, (9.304)

where Pp is the input pump power, l is the length of the fiber, Aeff is the
effective cross-sectional area of the fiber core, and g̃R is the Raman gain
factor.

e. If the pump power is subject to attenuation due to linear absorption in the fiber
but is not subject to appreciable depletion due to stimulated Raman scattering,
how should the expression in (9.304) be modified for Raman amplification
in this situation?

9.9.7 With the same input Stokes signal power and the same parameters for the fiber
Raman amplifier described in Example 9.19, what is the output signal power if
the pump power is doubled to Pp = 480 mW? What is it if the pump power is
cut in half to Pp = 120 mW?

9.9.8 In this problem, we consider the effect of the changes in some key parameters
of the fiber Raman amplifier considered in Example 9.19. In each case, only the
single indicated parameter is changed while all other parameters are kept the
same as those described in Example 9.19. Find the required pump power for
each of the following cases: (a) the fiber absorption coefficient is reduced by
half to α = 0.1 dB km−1, (b) the length of the fiber is doubled to l = 50 km,
(c) the Raman gain factor is doubled to g̃R = 1.29 × 10−13 m W−1. Compare
the results to the pump power found in Example 9.19. Which parameter change
has the most significant effect?

9.9.9 Nonlinear optical effects, such as stimulated Raman and Brillouin scattering, can
be troublesome problems that limit the capability of fiber-optic communication
systems. However, they can also be used in certain situations to our advantage.
For example, optical amplifiers based on stimulated Raman gain have been
developed for amplifying optical signals in fiber communication systems. We
consider this application in this problem. The amplifier consists of an optical
fiber of length l, pumped by an optical beam at frequency ωp from the left input
end at z = 0 as shown in Fig. 9.43. The optical signal has a carrier frequency
at ωS that matches the first Raman Stokes frequency down-shifted from ωp for
ωS = ωp − �R, where �R is the peak Raman resonance frequency. It has been
shown that if the pump is a CW beam, bidirectional amplification of the signal
is possible. Assume that the attenuation coefficient α of the fiber is the same for
pump and signal frequencies.



600 Nonlinear optical devices

Figure 9.43 Bidirectional Raman amplification.

a. Consider the pump and the forward-propagating signal only. Ignore the dis-
persion in the refractive index between ωp and ωS. Show that the Stokes signal
and the pump intensities are described by the coupled differential equations
given in (9.188) and (9.189).

b. Assume that the fiber is lossless with α = 0 but take pump depletion into
consideration. Find the total Stokes signal gain Gf

R = I f
S(l)/I f

S(0).
c. Assume no pump depletion due to the Raman effect but take fiber attenuation

for both pump and signal into consideration. Find the total Stokes signal gain
defined in (b).

d. Now consider the amplification of the backward-propagating signal. The
total Stokes signal gain for this backward-propagating signal is defined
as Gb

R = I b
S (0)/I b

S (l), where I b
S (l) is the input intensity of the backward-

propagating signal and I b
S (0) is its output intensity. It can be easily seen that

if fiber loss is ignored, Gb
R for backward amplification is the same as Gf

R

for forward amplification found in (b). The situation is less clear when fiber
loss is considered. Find the Stokes signal gain Gb

R for backward amplification
under the same assumptions taken in (c) and compare it to the forward Stokes
signal gain obtained in (c).

9.9.10 A germania-doped silica fiber has an effective core area of Aeff = 2.8 ×
10−11 m2. Its loss at the optical wavelength of 1.064 µm is about 1 dB km−1,
and its group-velocity dispersion at this wavelength is about 40 ps km−1 nm−1.
It has a strong Raman gain peak at a frequency shift of 460 cm−1. A train of
optical pulses at 1.064 µm wavelength at a repetition rate of 76 MHz is sent
into the fiber. Stimulated Raman Stokes signals are observed. The Raman gain
coefficient under these conditions is g̃R ≈ 1 × 10−13 m W−1. The threshold for
stimulated Raman scattering is at about

g̃R Ppleff

Aeff
= 16, (9.305)

where Pp is the peak power of the pulses and leff is the effective interaction
length of the stimulated Raman scattering process.
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a. What is the wavelength of the first Raman Stokes signal?
b. Show that for pulses in the range of about 10 ps to 1 ns at the same 76-MHz

repetition rate, the average power P of the pulse train for the Raman threshold
is independent of pulse duration. What is the value of this threshold average
power, Pth?

c. It is experimentally observed that Pth changes when the pulses become as
short as 3 ps. Do you think it increases or decreases? Give a possible expla-
nation.

d. What do you expect to happen when the pulses get substantially shorter, say,
down to about 100 fs?

e. What is Pth when the input is a CW beam instead of a pulse train? What is
the minimum length of fiber for the stimulated Raman scattering to reach
threshold in this case?

9.9.11 In this problem, we consider Brillouin amplification that occurs only in a con-
tradirectional configuration. The results obtained in the following apply to con-
tradirectional Raman amplification as well if g̃B is replaced by g̃R. We consider
only the case when αp = αS = 0 so that exact analytical solution can be found
for the coupled equations given in (9.201) and (9.202).
a. Show that

Ip(z)

ωp
− IS(z)

ωS

= Ip(0)

ωp
− IS(0)

ωS

, (9.306)

which is a constant independent of z.
b. By using the relation in (9.306), show that

IS(0)

Ip(0)
= IS(l)

Ip(l)
exp(gl), (9.307)

where

g = g̃B

[
Ip(0) − ωp

ωS

IS(0)

]
= g̃B

[
Ip(l) − ωp

ωS

IS(l)

]
. (9.308)

With given values of Ip(0) and IS(l) as the boundary conditions for a con-
tradirectional amplifier, the solutions for IS(0) and Ip(l) cannot be explicitly
expressed in terms of Ip(0) and IS(l) but can be found from the relations in
(9.307) and (9.308).

9.9.12 By using the relations in (9.208), (9.307), and (9.308), show that the reflectivity,
RB, of a Brillouin generator defined in (9.210) can be found from the relation
in (9.211) in the case when αp = αS = 0.

9.9.13 A low-loss single-mode silica fiber has a short length such that αl � 1. There-
fore, linear absorption loss in the fiber can be neglected in this problem. The
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fiber is pumped with an optical beam at λp = 1 µm. Plot the Brillouin con-
version efficiency RB given in (9.211) as a function of the pump ratio r for
Brillouin Stokes generation in the fiber. Examine the behavior of RB around the
threshold. Discuss the applicability of the approximate relation given in (9.212)
by comparing it to the accurate plot.

9.9.14 A single-mode silica fiber has an attenuation coefficient of 0.3 dB km−1 and
an effective cross-sectional area of 50 µm2 at 1.3 µm optical wavelength. A
CW optical beam at this wavelength is launched into the fiber. The Raman gain
peak of this fiber appears at a frequency shift of 460 cm−1. The Raman and
Brillouin gain factors have the characteristics described in Section 9.9 for silica
fibers.
a. If the fiber has a length of 100 km and the optical beam has a linewidth of

10 MHz, what are the critical powers of the beam that reach the Raman and
Brillouin thresholds, respectively, in this fiber? What is the maximum power
of the beam that can be transmitted through this fiber?

b. How do the answers of the questions in (a) vary if the fiber length varies
between 1 and 100 km but the linewidth of the beam remains at 10 MHz?
Plot them as functions of the fiber length.

c. How do the answers of the questions in (a) vary if the fiber length is
fixed at 100 km but the linewidth of the optical beam varies between
1 MHz and 100 GHz? Plot them as functions of the linewidth of the optical
beam.

9.9.15 Suppression of stimulated Brillouin scattering in a Raman amplifier or generator
can be accomplished by using a pump that has a sufficiently broad linewidth to
raise the Brillouin threshold pump power. Find the respective pump linewidths
required to suppress the competition from stimulated Brillouin scattering for (a)
the fiber Raman amplifier described in Example 9.19 and (b) the fiber Raman
generator described in Example 9.20.

9.10.1 Discuss the advantages of using waveguides for nonlinear optical devices.
9.11.1 Manley–Rowe relations exist for nonlinear processes that take place in wave-

guide structures.
a. Find the general form of the Manley–Rowe relations that are equivalent to

(9.68) and (9.69) for parametric second-order interactions in a multimode
waveguide. What is the physical meaning of such relations? Write down the
form of such relations in the special case when each frequency component
consists of only one waveguide mode.

b. Answer the questions in (a) for second-harmonic generation in a waveguide.
9.11.2 The conversion efficiency of the PPLN waveguide second-harmonic genera-

tor described in Example 9.23 is compared to that of the bulk PPLN second-
harmonic generator described in Example 9.12(d). An output second-harmonic
power of P2ω = 1 mW is desired.
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a. What are the required input fundamental power Pω and the conversion effi-
ciency ηSH if a PPLN waveguide of length l = 1 cm is used? What are they
if a bulk PPLN crystal of the same length is used?

b. What are the required input fundamental power Pω and the conversion effi-
ciency ηSH for the PPLN waveguide second-harmonic generator and for the
bulk PPLN second-harmonic generator, respectively, if the lengths of both
devices are doubled to l = 2 cm?

9.11.3 Find the input power of the fundamental wave required for the PPLN second-
harmonic generator described in Example 9.23 to have a conversion efficiency
of ηSH = 99%. By doubling the length of the PPLN waveguide, the efficiency
can be increased at the same input power, or the input power can be re-
duced for the same efficiency. What is the increased efficiency if the input
power is kept unchanged while the waveguide length is doubled? What is
the reduced input power for an efficiency of 99% if the waveguide length is
doubled?

9.11.4 In this problem, we consider the possibility of SFG and SHG in a nonbirefringent
optical fiber.
a. How does the efficiency of SFG and SHG depend on the interaction length

and the intensities of the component frequencies?
b. From (a), what potential advantages does an optical fiber offer to SFG in

comparison to a bulk material?
c. It might be difficult, if not impossible, to carry out SFG or SHG in a non-

birefringent optical fiber. What are the fundamental difficulties with nonbire-
fringent glass fibers that could prevent the realization of the great advantages
found in (b)?

d. However, contrary to the common expectations considered in (c), SHG with
high efficiencies have been observed in glass fibers under certain condi-
tions. What are the possible mechanisms that might be responsible for this
effect?

9.11.5 In a single-mode birefringent glass optical fiber, it is possible to phase match
for parametric generation with a single pump frequency ωp to generate para-
metric Stokes and anti-Stokes frequencies, ωS and ωAS, respectively, with
� = ωAS − ωp = ωp − ωS. This is accomplished by compensating material dis-
persion with birefringence. Assume that x and y are the slow and fast axes,
respectively, of the birefringent fiber, i.e., nx > ny , where nx and ny are the
effective refractive indices including the waveguide geometry and the material
property. The group index of refraction and the dispersion are defined, respec-
tively, as

Ni = d

dω
(ωni ) = ni − λ

dni

dλ
(9.309)
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and

D = ω
d2

dω2
(ωni ) = λ2 d2ni

dλ2
, (9.310)

where i is x or y. The birefringence of the fiber is defined as B = nx − ny .
Assume that B ≈ Nx − Ny and D = Dx = Dy for simplicity, which are good
approximations.
a. What is the nonlinear susceptibility that is responsible for this parametric

process? What are its nonvanishing elements?
b. Write down the general expression for the phase mismatch in this process.
c. Based on your answer to (a), how many different parametric processes are

possible through different combinations of the polarization directions of the
participating fields? Write them down.

d. Among the processes you identified in (c), which have the pump polarized
along a birefringent axis and rely on the birefringence for phase matching?
Derive the frequency shift � in terms of B and D.

e. Among the processes identified in (c), there are also processes in which the
pump has components along both birefringent axes. Derive the frequency
shift � for these processes in terms of B and D.

(See Morgan, P. N. and Liu, J. M., “Parametric four-photon mixing followed
by Raman scattering with optical pulses in birefringent optical fibers,” IEEE
Journal of Quantum Electronics 27(4): 1011–1021, Apr. 1991.)

9.12.1 Show that the transmittance of an all-optical Mach–Zehnder interferometer us-
ing two Y-junction waveguides as shown in Fig. 9.35(a) is that given in (9.261).
Show also that the transmittance of an all-optical Mach–Zehnder interferom-
eter using two directional couplers as shown in Fig. 9.35(b) is that given in
(9.262).

9.12.2 An ultrafast all-optical gate based on the three-input, symmetric Mach–Zehnder
interferometer shown in Fig. 9.36 is considered for optical logic operations. The
device is fabricated on LiNbO3. A continuous stream of data pulses of a peak
power Pc is incident in the central waveguide c. This beam is split equally
between the two arms of the Mach–Zehnder interferometer and is recombined
at the output. A DC bias voltage is applied to the lower arm of the interferometer
so that a relative phase shift of ϕb is produced between the two arms. Control
pulses of peak powers Pa = Pb = P are fed into either waveguide a or b, or both.
Each control pulse propagates only in one arm of the interferometer to change
the refractive index seen by the data pulses through cross-phase modulation. The
interaction length of the interferometer arms is l. To avoid interference between
the control and data pulses, different polarizations at the same wavelength λ

can be used. The TM-like mode is excited in the signal channel c, and the
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TE-like mode is excited in the control channels a and b. A polarizer at the
output transmits only TM-polarized signal pulses. For simplicity, assume that
the pulses are all square pulses. The total differential phase shift between the
two arms is �ϕ = ϕb + �ϕNL. What is the required power P of the control
pulses as a function of λ, l, Aeff, and n2 for the operation of this device as a
logic gate? Describe the required bias phase and the input conditions for the
device to function as (a) an inverter, (b) an AND gate, and (c) an exclusive OR
gate, respectively. (See Lattes, A., Haus, H. A., Leonberger, F. J., and Ippen, E.
P., “An ultrafast all-optical gate,” IEEE Journal of Quantum Electronics QE-19
(11): 1718–1723, Nov. 1983.)

9.12.3 The AlGaAs/GaAs symmetric all-optical Mach–Zehnder interferometer de-
scribed in Example 9.24 can be used for all-optical sampling to digitize a con-
tinuous optical waveform if both input and output Y junctions are replaced by
3-dB directional couplers as shown in Fig. 9.44. The optical waveform to be
digitized through pulse sampling is fed into one port of the input directional
coupler as a TE-like mode. The sampling pulses are the control pulses fed into
one arm of the interferometer through the control port as a TM-like mode. De-
scribe the sampling operation of this device. The pulsewidth of the sampling
pulses is �tps = 1 ps. The sampling rate is 1 GHz. With the parameters for the
AlGaAs waveguide given in Example 9.24, what is the required average power
of the sampling pulse stream?

Figure 9.44 All-optical sampling device.

9.12.4 The transmittance of a nonlinear optical loop mirror shown in Fig. 9.37(a) is
that given in (9.262).
a. In case the optical field consists of very short pulses such that interaction

between contradirectionally propagating pulses is negligible, show that �ϕ

is that given by (9.265).
b. In case the optical field consists of very long pulses or CW waves such

that the interaction between contradirectionally propagating fields cannot be
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ignored but there are no polarization changes in the fields along the loop path,
show that �ϕ given by (9.265) is still valid when used in conjunction with
(9.262).

c. Discuss the validity of (9.265) for the nonlinear optical loop mirror in the
case when there are polarization changes in the fields along the loop path due
to various reasons.

9.12.5 A nonlinear optical loop mirror as shown in Fig. 9.37(b) is used as an all-
optical demultiplexer for switching a 20 Gbits s−1 data signal at λd = 1.55 µm
with switching pulses of �tps = 2 ps at λs = 1.53 µm at a repetition rate of
2.5 GHz to obtain a demultiplexed 2.5 Gbits s−1 data signal at λd. The switching
pulses act as the control signal and are launched into the fiber loop through the
control input port. The coupler of the loop mirror is designed such that the
switching pulses propagate only in one direction in the loop but each data
pulse is split into two contrapropagating pulses in the loop. It is desired that
the transmittance be T = 0 for the data signal in the absence of a switching pulse
while T = 1 for the data signal in the presence of a switching pulse. For this
function to be achieved, what are the required power-splitting ratios for λd and λs,
respectively, at the couplers? If the fiber has an effective cross-sectional area of
Aeff = 4 × 10−11 m2, a nonlinear refractive index of n2 = 3.2 × 10−20 m2 W−1,
and a loop length of l = 500 m, what is the required average power of the
switching pulse train for this demultiplexing function?
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Part IV

Lasers





10 Laser amplifiers

The word laser is an acronym for light amplification by stimulated emission of radia-
tion. However, the term laser generally refers to a laser oscillator, which generates laser
light without an input light wave. A device that amplifies a laser beam by stimulated
emission is called a laser amplifier. Laser light is generally highly collimated with a
very small divergence and highly coherent in time and space. It also has a relatively
narrow spectral linewidth and a high intensity in comparison with light generated from
ordinary sources. Due to the process of stimulated emission, an optical wave amplified
by a laser amplifier preserves most of the characteristics, including the frequency spec-
trum, the coherence, the polarization, the divergence, and the direction of propagation,
of the input wave. In this chapter, we discuss the characteristics of laser amplifiers.
Laser oscillators are discussed in Chapter 11. Optical fiber amplifiers are of particu-
lar interest in photonics applications. They are specifically discussed in Section 10.5.
Semiconductor laser amplifiers are discussed in Chapter 13.

10.1 Optical transitions

Optical absorption and emission occur through the interaction of optical radiation with
electrons in a material system that defines the energy levels of the electrons. Depending
on the properties of a given material, electrons that interact with optical radiation can be
either those bound to individual atoms or those residing in the energy-band structures
of a material such as a semiconductor. In any event, the absorption or emission of a
photon by an electron is associated with a resonant transition of the electron between
a lower energy level |1〉 of energy E1 and an upper energy level |2〉 of energy E2, as
illustrated in Fig. 10.1. The resonance frequency, ν21, of the transition is determined
by the separation between the energy levels:

ν21 = E2 − E1

h
. (10.1)

In an atomic or molecular system, a given energy level usually consists of a number
of degenerate quantum-mechanical states, which have the same energy. Therefore, the
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(a) (b) (c)

Figure 10.1 (a) Absorption, (b) stimulated emission, and (c) spontaneous emission of photons and
resonant transitions in a material.

energy levels |1〉 and |2〉 are generally characterized by degeneracy factors g1 and g2,
respectively.

There are basically three types of processes associated with resonant optical tran-
sitions between two energy levels in a system: absorption, stimulated emission, and
spontaneous emission, which are illustrated in Figs. 10.1(a), (b), and (c), respectively.
Absorption and stimulated emission of photons are both associated with induced tran-
sitions between the energy levels caused by interaction of an electron with the existing
optical radiation. If an electron is initially in the lower level |1〉, it can absorb a photon
to make a transition to the upper level |2〉. If an electron is initially in the upper level |2〉,
the optical radiation can stimulate it to emit a photon by making a downward transition
to the lower level |1〉. Irrespective of the presence or absence of any existing optical
radiation, an electron initially in the upper level |2〉 can also spontaneously relax to the
lower level |1〉 by emitting a spontaneous photon.

A photon emitted by stimulated emission has the same frequency, phase, polarization,
and propagation direction as the optical radiation that induces the process. In contrast,
spontaneously emitted photons are random in phase and polarization and are emitted
in all directions, though their frequencies are still dictated by the separation between
the two energy levels, subject to a degree of uncertainty determined by the linewidth of
the transition. Therefore, stimulated emission results in the amplification of an optical
signal, whereas spontaneous emission merely adds noise to an optical signal. Absorption
simply leads to the attenuation of an optical signal.

Spectral lineshape

A resonant transition is selective of the frequency of the interacting optical field because
the process is associated with absorption or emission of a photon whose frequency is
determined by the energy change of the transition indicated in (10.1). The spectral
characteristic of a resonant transition is never infinitely sharp, however. The finite
spectral width of a resonant transition is dictated by the uncertainty principle of quantum
mechanics, but it can be understood intuitively without the details of quantum mechanics
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by following the line of reasoning in Section 1.10. One important conclusion learned
from these discussions is that any response that has a finite relaxation time in the time
domain must have a finite spectral width in the frequency domain. As we shall see
below, the rate of the induced transitions between two energy levels in a given system
is directly proportional to the spontaneous emission rate from the upper to the lower
level in that system. Therefore, it is a basic law of physics that any allowed resonant
transition between two energy levels has a finite relaxation time constant because at
least the upper level has a finite lifetime due to spontaneous emission. Consequently, for
each particular resonant transition between two energy levels, there is a characteristic
lineshape function, ĝ(ν), of finite linewidth that characterizes the optical processes
associated with the transition. The lineshape function is generally normalized as
∞∫

0

ĝ(ν)dν =
∞∫

0

ĝ(ω)dω = 1, (10.2)

where ĝ(ν) = 2π ĝ(ω).

Homogeneous broadening

If all of the atoms in a material that participate in a resonant interaction associated with
the energy levels |1〉 and |2〉 are indistinguishable, their responses to an electromagnetic
field are characterized by the same resonance frequency ν21 and the same relaxation
constant γ21. In such a homogeneous system, the physical mechanisms that contribute
to the linewidth of the transition affect all atoms equally. Spectral broadening due to
such mechanisms is called homogeneous broadening.

From the discussions in Section 1.10, the spectral characteristics of a damped re-
sponse characterized by a single resonance frequency and a single relaxation constant,
such as that of a resonant interaction in a homogeneously broadened system, are de-
scribed by the functions given in (1.176). As we shall see in Section 10.2, in the interac-
tion of a material with an optical field, the absorption and emission of optical energy are
characterized by the imaginary part χ ′′ of the susceptibility of the material. Therefore,
the spectral characteristics of optical absorption and emission due to a resonant transi-
tion in a homogeneously broadened medium are described by the Lorentzian lineshape
function of χ ′′(ω) given in (1.176). Using the normalization condition in (10.2), we find
that the resonant transition between |1〉 and |2〉 has the following normalized Lorentzian
lineshape function:

ĝ(ω) = 1

π

γ21

(ω − ω21)2 + γ 2
21

, (10.3)

which has a FWHM of �ωh = 2γ21, or

ĝ(ν) = �νh

2π [(ν − ν21)2 + (�νh/2)2]
, (10.4)
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where �νh = γ21/π is the FWHM of ĝ(ν). We see that the spectrum has a finite width
that is determined by the relaxation constant γ21.

The fundamental mechanism for homogeneous broadening is lifetime broadening
due to the finite lifetimes, τ1 and τ2, of the energy levels, |1〉 and |2〉, respectively,
that are involved in the resonant transition. The population in an energy level can relax
through both radiative transitions and nonradiative transitions to lower levels. Radiative
relaxation is associated with population relaxation through spontaneous emission of
radiation. The radiative relaxation rate of the transition from level |2〉 to level |1〉 is
characterized by a constant A21, known as the Einstein A coefficient, or a time constant
τsp = 1/A21, known as the spontaneous radiative lifetime between |2〉 and |1〉. Both
A21 and τsp are discussed in further detail later. The total radiative relaxation rate,
γ rad

2 , of level |2〉 is the sum of all radiative spontaneous transition rates from |2〉 to other
levels: γ rad

2 =∑i A2i . The nonradiative relaxation rate accounts for all other population
relaxation mechanisms that do not result in the emission of photons. Therefore, the
total relaxation rate is the sum of the radiative and nonradiative relaxation rates, and
the lifetime of an energy level has both radiative and nonradiative contributions:

γ2 = γ rad
2 + γ nonrad

2 ,
1

τ2
= 1

τ rad
2

+ 1

τ nonrad
2

, (10.5)

where τ2 = 1/γ2, τ rad
2 = 1/γ rad

2 , and τ nonrad
2 = 1/γ nonrad

2 . The same concept can be ap-
plied to level |1〉 to obtain similar relations for γ1 and τ1. Even though τ2 is contributed
by both radiative and nonradiative decay from level |2〉, fluorescent emission from level
|2〉 decays at the total relaxation rate γ2 of the population in level |2〉. Therefore, the
decay time constant of the fluorescent emission associated with population relaxation
from |2〉 is τ2, not τ rad

2 . For this reason, the total lifetimes τ1 and τ2 are known as the flu-
orescence lifetimes of energy levels |1〉 and |2〉, respectively. The contributions of vari-
ous relaxation rates to the radiative and nonradiative lifetimes, and to the fluorescence
lifetimes, of the upper and lower laser levels are summarized in Fig. 10.2.

The nonradiative relaxation rate of an energy level is a function of external perturba-
tions such as collisions and thermal vibrations. It can therefore be changed by varying
the conditions of the surrounding environment. The minimum broadening is called
natural broadening and is caused only by radiative relaxation when the nonradiative
processes are eliminated. The linewidth due to natural broadening alone is

γ natural
21 = 1

2

(
γ rad

1 + γ rad
2

) = 1

2

(
1

τ rad
1

+ 1

τ rad
2

)
. (10.6)

The total contribution of lifetime broadening to the linewidth due to both radiative and
nonradiative relaxation processes is

γ life
21 = 1

2
(γ1 + γ2) = 1

2

(
1

τ1
+ 1

τ2

)
≥ γ natural

21 . (10.7)
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Figure 10.2 Contributions of various relaxation rates to the radiative and nonradiative lifetimes,
and to the fluorescence lifetimes, of the upper and lower laser levels. The homogeneous natural
linewidth is determined by radiative lifetimes, whereas the lifetime-broadened linewidth is
determined by fluorescence lifetimes.

These contributions to γ natural
21 and γ life

21 are also summarized in Fig. 10.2. Note that the
linewidth is determined by the lifetimes of both upper and lower laser levels. In the case
when the lower laser level |1〉 is the ground state of an atomic system, such as in the
situation of the ruby emission line at 694.3 nm, we have γ1 = 0 and τ1 = ∞. Then, the
linewidth due to lifetime broadening is solely determined by the lifetime of the upper
laser level, τ2.

Other mechanisms that affect all atoms equally can further increase the homogeneous
linewidth without changing the fluorescence lifetimes τ2 and τ1 of the upper and lower
laser levels. One important mechanism is collision-induced phase randomization of the
emitted radiation. Collisions among atoms in a gas or liquid and collisions of atoms
with phonons in a solid normally have two possible effects. One is reduction of the
fluorescence lifetimes of the upper and lower laser levels by increasing the nonradiative
relaxation rates. Such a process increases lifetime broadening; its effect is included in
γ life

21 through the dependence of γ life
21 on γ nonrad

1 and γ nonrad
2 contained in γ1 and γ2, re-

spectively. Collisions can also increase a homogeneous linewidth without reducing the
fluorescence lifetimes by simply interrupting the phase of the radiation emitted through
radiative relaxation. This dephasing process, quantified by a linewidth-broadening fac-
tor γ

dephase
21 , is often more important than the lifetime-reduction process, resulting in

a homogeneous linewidth that is significantly broader than the linewidth contributed
by lifetime broadening. Therefore, the homogeneous linewidth can increase both with
pressure and with temperature in a gas medium, and with active-ion concentration
and temperature in a liquid or solid medium. In general, the homogeneous linewidth,
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including the contributions of such external mechanisms, is a function of pressure, P ,
active-ion concentration, N , and temperature, T :

γ21(P, N , T ) = γ life
21 + γ

dephase
21 ≥ γ life

21 ≥ γ natural
21 . (10.8)

EXAMPLE 10.1 The energy levels of laser transitions, along with radiative transition rates1

and emission wavelengths, of Nd : YAG are shown in Fig. 10.3. The upper level 4F3/2

relaxes radiatively to four lower levels. The lowest level 4I9/2 is the ground level of the
system. In this example, we consider the dominant transition that takes place between
the upper level 4F3/2, labeled level |2〉, and the lower level 4I11/2, labeled level |1〉,
for the well-known Nd : YAG emission wavelength of λ = 1.064 µm. The relaxation
of the upper level 4F3/2 is predominantly radiative with a fluorescence lifetime of
τ2 = 240 µs. The relaxation of the lower level 4I11/2 is nonradiative with a fluorescence
lifetime2 of τ1 = 200 ps. (a) Find the spontaneous radiative lifetime τsp between |2〉
and |1〉. (b) Find the radiative and nonradiative relaxation rates, γ rad

2 and γ nonrad
2 , and

the corresponding lifetimes, τ rad
2 and τ nonrad

2 , for the upper level |2〉. (c) Find the natural
linewidth, �νnatural, and the lifetime-broadened homogeneous linewidth, �νlife. (d) If
the measured linewidth at room temperature is �ν = 150 GHz with a homogeneously
broadened component of �νh = 120 GHz, what is the linewidth-broadening factor
γ

dephase
21 due to dephasing through phonon collisions?

µm µm µm

µs

λ  λ  λ  λ  

Figure 10.3 Energy levels of Nd : YAG.

1 Krupke, W. F., “Radiative transition probabilities within the 4 f 3 ground configuration of Nd : YAG,” IEEE
Journal of Quantum Electronics QE-7: 153–159, 1971.

2 Payne, S. A. and Bibeau, C., “Picosecond nonradiative processes in neodymium-doped crystals and glasses:
mechanisms for the energy gap law,” Journal of Luminescence 79: 143–159, 1998.
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Solution (a) Using the radiative transition rate between 4F3/2 and 4I11/2, we find that

τsp = 1

A21
= 1

1940
s = 515 µs.

(b) The total radiative relaxation rate is the sum of the radiative transition rates from
4F3/2 to all four lower levels. Therefore, the radiative relaxation rate and the radiative
lifetime are, respectively,

γ rad
2 =

∑
i

A2i = 3868 s−1, τ rad
2 = 1

γ rad
2

= 259 µs.

Note that τ rad
2 > τ2 = 240 µs, as expected. Because the total relaxation rate of the upper

level is γ2 = 1/τ2 = 4167 s−1, the nonradiative relaxation rate and the nonradiative
lifetime are, respectively,

γ nonrad
2 = γ2 − γ rad

2 = 299 s−1, τ nonrad
2 = 1

γ nonrad
2

= 3.34 ms.

(c) Because level |1〉 relaxes only nonradiatively, γ rad
1 = 0 and τ rad

1 = ∞. Therefore,

γ natural
21 = 1

2

(
γ rad

1 + γ rad
2

) = 1

2
(0 + 3868) s−1 = 1.93 × 103 s−1.

Using (10.7), we find that

γ life
21 = 1

2

(
1

τ1
+ 1

τ2

)
= 1

2

(
1

200 × 10−12
+ 1

240 × 10−6

)
s−1 = 2.5 × 109 s−1.

From (10.3) and (10.4), we know that �νh = γ21/π . Using a similar relation, we find
that

�νnatural = γ natural
21

π
= 616 Hz, �νlife = γ life

21

π
= 796 MHz.

(d) For �νh = 120 GHz, we have γ21 = π�νh = 3.77 × 1011 s−1. Therefore,

γ
dephase
21 = γ21 − γ life

21 = 3.745 × 1011 s−1.

Clearly, γ21 ≈ γ
dephase
21 � γ life

21 in this example.

Inhomogeneous broadening

A resonant transition can be further broadened by inhomogeneous broadening if certain
physical mechanisms exist that do not affect all atoms equally, causing energy levels |1〉
and/or |2〉 to shift differently among different groups of atoms. The resulting inhomo-
geneous shifts of the resonance frequency contribute to inhomogeneous broadening of
the transition spectrum on top of the original homogeneous broadening. If we express
the homogeneous lineshape function given in (10.4) as ĝh(ν, ν21) to indicate explicitly
that its resonance frequency is at ν21, the homogeneously broadened spectrum of a
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group of atoms whose resonance frequency is shifted from ν21 to νk is ĝh(ν, νk). The
distribution of atoms in the system can be described by a probability density function
p(νk) with

∞∫
0

p(νk)dνk = 1. (10.9)

The probability that the resonance frequency of a given atom falls in the range between
νk andνk + dνk is p(νk)dνk . Then, the overall spectral lineshape of the inhomogeneously
broadened transition is

ĝ(ν) =
∞∫

0

p(νk)ĝh(ν, νk)dνk . (10.10)

The overall lineshape function obtained from (10.10) depends on the degree of inho-
mogeneous broadening in comparison to the homogeneous broadening of the atoms.
Mathematically, it depends on the spread of the distribution p(νk) in comparison to the
homogeneous linewidth.

One possibility for inhomogeneous broadening is the existence of different isotopes,
which have slightly different resonance frequencies for a given resonant transition.
In this situation, p(νk)dνk represents the percentage of each isotope group among all
atoms and (10.10) becomes simply the weighted sum of the isotope groups.

Other mechanisms for inhomogeneous broadening include the Doppler effect in a
gaseous medium at a low pressure and the random distribution of active impurity atoms
doped in a solid host. The inhomogeneous frequency shifts caused by these mecha-
nisms are usually randomly distributed, resulting in a Gaussian functional distribution
for p(νk). In an extremely inhomogeneously broadened system, the spread of this dis-
tribution dominates the homogeneous linewidth. Then, the transition is characterized
by a normalized Gaussian lineshape:

ĝ(ν) = 2(ln 2)1/2

π1/2�νinh
exp

[
−4 ln 2

(ν − ν0)2

�ν2
inh

]
, (10.11)

where ν0 is the center frequency and �νinh is the FWHM of the inhomogeneously
broadened spectral distribution. In terms of the angular frequency, the normalized
Gaussian lineshape is

ĝ(ω) = 2(ln 2)1/2

π1/2�ωinh
exp

[
−4 ln 2

(ω − ω0)2

�ω2
inh

]
, (10.12)

where ω0 = 2πν0 and �ωinh = 2π�νinh. Figure 10.4 compares the normalized
Lorentzian lineshape function and the normalized Gaussian lineshape function of the
same FWHM. In Fig. 10.4(a), we show ĝ(ν) as expressed in (10.4) for the Lorentzian
lineshape and in (10.11) for the Gaussian lineshape, both with a normalized area as
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(a) (b)

Figure 10.4 Normalized Lorentzian (solid curves) and Gaussian (dashed curves) lineshape
functions of the same FWHM with (a) a normalized area as ĝ(ν) is defined and (b) a normalized
peak value. For the Lorentzian lineshape, ν0 = ν21 and �ν = �νh. For the Gaussian lineshape,
�ν = �νinh.

defined in (10.2). In Fig. 10.4(b), the lineshapes that are normalized to the same peak
value are shown.

Whether a medium is homogeneously or inhomogeneously broadened is often a
function of pressure and temperature. In a gas at low pressure, the velocity distribution
of the gas molecules in thermal equilibrium is characterized by the Maxwellian velocity
distribution, which is a Gaussian function. This velocity distribution leads to a Gaussian
distribution of the Doppler frequency shifts with a linewidth �νD given by

�νD = 2ν

(
2(ln 2)kB T

Mc2

)1/2

= 23/2(ln 2)1/2

λ

(
kB T

M

)1/2

, (10.13)

where λ is the emission wavelength, kB is the Boltzmann constant, T is the temperature
in kelvins, and M is the mass of the atom or molecule that emits the radiation. When this
Doppler-broadening effect dominates, the Gaussian lineshape has an inhomogeneous
linewidth of �νinh = �νD. When the pressure is increased, frequent collisions among
the gas molecules cause the homogeneous linewidth to increase. At a certain pressure,
the homogeneous linewidth �νh finally dominates the Doppler linewidth �νD. Then
the medium becomes predominantly homogeneously broadened.

Another good example is the linewidth associated with the impurity ions doped in
a solid host, such as Nd : YAG or Nd : glass. At low temperatures, the homogeneous
linewidth of the Nd3+ ions is narrow. The lineshape is dominated by inhomogeneous
shifts of the resonance frequency due to variations in the local environment of individ-
ual Nd3+ ions. As a result, the lineshape function is inhomogeneously broadened. As
the temperature increases, the homogeneous linewidth increases because of increased



622 Laser amplifiers

collisions of phonons with the ions. At room temperature, the spectral line of Nd : YAG
at 1.064 µm has a total linewidth of �ν ≈ 120–180 GHz with an inhomogeneous
component of only about 6–30 GHz. Therefore, Nd : YAG becomes pretty much homo-
geneously broadened at room temperature. In comparison, Nd : glass has a much larger
inhomogeneous linewidth than Nd : YAG because the glass host provides a larger range
of local variations than the YAG crystal. At room temperature, the same spectral line
of Nd : glass appears at 1.054 µm with a total linewidth of �ν ≈ 5–7 THz, which is
predominantly inhomogeneously broadened.

EXAMPLE 10.2 The emission at 632.8 nm wavelength of the HeNe laser is caused by
radiative transitions in the Ne atoms. The linewidth of this emission is inhomogeneously
broadened due to Doppler broadening. The atomic mass number of Ne is 20, and the
typical gas temperature of a HeNe laser is about 400 K. Find the emission linewidth.

Solution The mass of a Ne atom of mass number 20 is M = 20 × 1.67 × 10−27 kg.
Using (10.13), we find that the inhomogeneously broadened linewidth due to Doppler
broadening is

�νD = 23/2(ln 2)1/2

632.8 × 10−9
×
(

1.38 × 10−23 × 400

20 × 1.67 × 10−27

)1/2

Hz = 1.5 GHz.

Transition rates

The probability per unit time for a resonant optical process to occur is measured by
the transition rate of the process. Because of the resonant nature of the interaction, the
transition rate of an induced process is a function of the spectral distribution of the
optical radiation and the spectral characteristics of the resonant transition.

The spectral distribution of an optical field is characterized by its spectral energy
density, u(ν), which is the energy density of the optical radiation per unit frequency
interval at the optical frequency ν. The total energy density of the radiation is

u =
∞∫

0

u(ν)dν. (10.14)

The spectral intensity distribution, I (ν), of the radiation is related to u(ν) by the relation

I (ν) = c

n
u(ν), (10.15)

where n is the refractive index of the medium, and the total intensity is simply

I =
∞∫

0

I (ν)dν. (10.16)
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Because an induced transition is stimulated by optical radiation, its transition rate is
proportional to the energy density of the optical radiation within the spectral response
range of the transition. The transition rate for the upward transition from |1〉 to |2〉
associated with absorption in the frequency range between ν and ν + dν is

W12(ν)dν = B12u(ν)ĝ(ν)dν (s−1), (10.17)

whereas that for the downward transition from |2〉 to |1〉 associated with stimulated
emission in the frequency range between ν and ν + dν is

W21(ν)dν = B21u(ν)ĝ(ν)dν (s−1). (10.18)

The spontaneous emission rate is independent of the energy density of the radiation.
The spontaneous emission spectrum associated with a particular resonant transition is
determined solely by the lineshape function of the transition:

Wsp(ν)dν = A21ĝ(ν)dν (s−1). (10.19)

The A and B constants defined above are known as the Einstein A and B coefficients,
respectively.

The induced and the spontaneous transition rates for a given system are not indepen-
dent of each other but are directly proportional to one another. Such a relationship was
first obtained by Einstein by considering the interaction of blackbody radiation with an
ensemble of identical atomic systems in thermal equilibrium.

The spectral energy density of blackbody radiation at a temperature T is given by
Planck’s formula:

u(ν) = 8πn3hν3

c3

1

ehν/kBT − 1
, (10.20)

where kB is the Boltzmann constant. In thermal equilibrium with blackbody radiation,
the total induced transition rates are

W12 =
∞∫

0

W12(ν)dν = B12

∞∫
0

u(ν)ĝ(ν)dν (10.21)

and

W21 =
∞∫

0

W21(ν)dν = B21

∞∫
0

u(ν)ĝ(ν)dν. (10.22)

The total spontaneous emission rate is

Wsp =
∞∫

0

Wsp(ν)dν = A21. (10.23)
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Figure 10.5 Resonant transitions in the interaction of a radiation field with two atomic levels |1〉
and |2〉 of population densities N1 and N2, respectively.

The rates associated with resonant transitions between two atomic levels |1〉 and
|2〉 in the interaction with a radiation field of energy density u(ν) are summarized in
Fig. 10.5. If N2 and N1 are the population densities per unit volume of the atoms in levels
|2〉 and |1〉, respectively, the number of atoms per unit volume making the downward
transition per unit time accompanied by the emission of radiation in a frequency range
from ν to ν + dν is N2(W21(ν) + Wsp(ν))dν, and the number of atoms per unit volume
making the upward transition per unit time assisted by the absorption of radiation in
the same frequency range is N1W12(ν)dν. In equilibrium, both the blackbody radiation
spectral density and the atomic population density in each energy level should reach a
steady state, meaning that

N2[W21(ν) + Wsp(ν)] = N1W12(ν). (10.24)

This relation spells out the principle of detailed balance in thermal equilibrium. There-
fore, the steady-state population distribution in thermal equilibrium satisfies

N2

N1
= W12(ν)

W21(ν) + Wsp(ν)
= B12u(ν)

B21u(ν) + A21
. (10.25)

In thermal equilibrium at temperature T , however, the population ratio of the atoms in
the upper and the lower levels follows the Boltzmann distribution. Taking into account
the degeneracy factors, g2 and g1, of these energy levels, we have

N2

N1
= g2

g1
exp(−hν/kBT ) (10.26)

for the population densities associated with a transition energy of hν. Combining (10.25)
and (10.26), we have

u(ν) = A21/B21

(g1 B12/g2 B21)ehν/kBT − 1
. (10.27)

Identifying (10.27) with (10.20), we find that

A21

B21
= 8πn3hν3

c3
(10.28)
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and

g1 B12 = g2 B21. (10.29)

The spontaneous radiative lifetime of the atoms in level |2〉 associated with the
radiative spontaneous transition from |2〉 to |1〉 is

τsp = 1

Wsp
= 1

A21
. (10.30)

Therefore, the spectral dependence of the spontaneous emission rate can be expressed
as

Wsp(ν) = 1

τsp
ĝ(ν). (10.31)

According to the relations in (10.28) and (10.29), the transition rates of both of the
induced processes of absorption and stimulated emission are directly proportional to
the spontaneous emission rate. In terms of τsp, the spectral dependence of the induced
transition rates between energy levels |1〉 and |2〉 can be generally expressed as

W21(ν) = c3

8πn3hν3τsp
u(ν)ĝ(ν) = c2

8πn2hν3τsp
I (ν)ĝ(ν) (10.32)

for the transition from |2〉 to |1〉 associated with stimulated emission and

W12(ν) = g2

g1
W21(ν) (10.33)

for the transition from |1〉 to |2〉 associated with absorption.
Because W (ν) is the transition rate per unit frequency according to the defini-

tion in (10.17)–(10.19), we have W (ν)dν = W (ω)dω. Therefore, Wsp(ν) = 2πWsp(ω),
W21(ν) = 2πW21(ω), and W12(ν) = 2πW12(ω).

Transition cross section

It is often useful to express the transition probability of an atom in its interaction with
optical radiation at a frequency ν in terms of the transition cross section, σ (ν). For
transitions between energy levels |1〉 and |2〉, the transition cross sections σ21(ν) and
σ12(ν) are defined through the following relations to the transition rates:

W21(ν) = I (ν)

hν
σ21(ν) (10.34)

and

W12(ν) = I (ν)

hν
σ12(ν). (10.35)

The transition cross section σ21(ν), which is associated with stimulated emission, is
also called the emission cross section, σe(ν), whereas σ12(ν), which is associated with
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absorption, is also called the absorption cross section, σa(ν). From (10.32), we find
that

σe(ν) = σ21(ν) = c2

8πn2ν2τsp
ĝ(ν). (10.36)

According to (10.29) and (10.33), g1σ12 = g2σ21. Therefore,

σa(ν) = σ12(ν) = g2

g1
σ21(ν) = g2

g1
σe(ν). (10.37)

The transition cross sections have the unit of area in square meters but are often quoted
in square centimeters.

Note that σ (ν) = σ (ω) because σ (ν) is simply defined as the value of the transition
cross section at the frequency ν rather than as that per unit frequency, but W (ν) =
2πW (ω) and ĝ(ν) = 2π ĝ(ω). Therefore, in terms of ω,

σe(ω) = σ21(ω) = π2c2

n2ω2τsp
ĝ(ω) and σa(ω) = g2

g1
σe(ω). (10.38)

For the ideal Lorentzian and Gaussian lineshapes expressed in (10.4) and (10.11),
respectively, the peak value of ĝ(ν) occurs at the center of the spectrum and is a function
of linewidth �ν only. By applying this fact to (10.36), the peak value of the emission
cross section at the center wavelength λ of the spectrum can be expressed as

σ h
e = λ2

4π2n2�νhτsp
(10.39)

for a homogeneously broadened medium with an ideal Lorentzian lineshape, and as

σ inh
e = (ln 2)1/2λ2

4π3/2n2�νinhτsp
(10.40)

for an inhomogeneously broadened medium with an ideal Gaussian lineshape. In prac-
tice, the experimentally measured peak emission cross section usually differs from that
calculated using these formulas because the spectral lineshape of a realistic laser gain
medium is generally determined by a combination of many different mechanisms and,
consequently, is rarely ideal Lorentzian or ideal Gaussian. Nevertheless, these formulas
provide a very good estimate for the peak value of the emission cross section. They
also clearly indicate that the emission cross section varies quadratically with the emis-
sion wavelength but is inversely proportional to both the emission linewidth and the
spontaneous radiative lifetime of the laser transition.

The characteristics of some representative laser materials are listed in Table 10.1.
As seen from Table 10.1, the parameters vary over a wide range among different
types of laser gain media. For example, the peak value of the emission cross section
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varies from 6 × 10−25 m2 for Er : fiber to 2.5 × 10−16 m2 for the Ar-ion laser, whereas
the spontaneous emission linewidth varies from 60 MHz for CO2 to 100 THz for
Ti : sapphire. The fluorescence lifetime varies from the order of 1 ns for semiconductor
gain media to the order of 10 ms for Er : fiber.

EXAMPLE 10.3 The emission at 632.8 nm wavelength of a HeNe laser is inhomoge-
neously broadened due to Doppler broadening with a linewidth of �ν ≈ �νinh =
�νD = 1.5 GHz. The spontaneous radiative lifetime is τsp = 300 ns. Being a gas laser,
the refractive index of the medium is n ≈ 1. Find the peak emission cross section of
the HeNe laser at this wavelength.

Solution Using (10.40), we find the following peak emission cross section at λ =
632.8 nm for the HeNe laser:

σe = σ inh
e = (ln 2)1/2 × (632.8 × 10−9)2

4 × π3/2 × 12 × 1.5 × 109 × 300 × 10−9
m2 = 3.3 × 10−17 m2.

This calculated result agrees, by a small difference of only 10%, with the value of
3.0 × 10−17 m2 quoted in the literature, which is listed in Table 10.1.

10.2 Optical absorption and amplification

Optical absorption results in attenuation of an optical field, while stimulated emission
leads to amplification of an optical field. To quantify the net effect of a resonant transition
on the attenuation or amplification of an optical field, we consider the interaction of
a monochromatic plane optical field at a frequency ν with a material that consists of
electronic or atomic systems with population densities N1 and N2 in energy levels |1〉
and |2〉, respectively. Because the spectral intensity distribution of the monochromatic
plane optical field that has an intensity I is simply I (ν) = I δ(ν ′ − ν), the induced
transition rates between energy levels |1〉 and |2〉 in this interaction are

W21 = I

hν
σe(ν) and W12 = I

hν
σa(ν). (10.41)

The net power that is transferred from the optical field to the material is the difference
between that absorbed by the material and that emitted due to stimulated emission:

W p = hνW12 N1 − hνW21 N2

= [N1σa(ν) − N2σe(ν)] I. (10.42)

In the case when W p > 0, there is net power absorption from the optical field by the
medium due to resonant transitions between energy levels |1〉 and |2〉. The absorption
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coefficient is

α(ν) = N1σa(ν) − N2σe(ν) =
(

N1 − g1

g2
N2

)
σa(ν). (10.43)

In the case when W p < 0, net power flows from the medium to the optical field, resulting
in an amplification to the optical field with a gain coefficient given by

g(ν) = N2σe(ν) − N1σa(ν) =
(

N2 − g2

g1
N1

)
σe(ν). (10.44)

The coefficients α and g are quoted per meter, and are also often quoted per centimeter.
Note that α(ν) = α(ω) and g(ν) = g(ω) because σ (ν) = σ (ω).

According to (10.41), both σa(ν) and σe(ν) are positive because W21 ≥ 0 and W12 ≥ 0
by definition. We then find that α(ν) > 0 and g(ν) < 0 if N1 > (g1/g2)N2, whereas
g(ν) > 0 and α(ν) < 0 if N2 > (g2/g1)N1. Therefore, a material absorbs optical energy
in its normal state of thermal equilibrium when the lower energy level is more populated
than the upper energy level. In order to provide a net optical gain to the optical field,
a material has to be in a nonequilibrium state of population inversion with the upper
energy level more populated than the lower energy level.

EXAMPLE 10.4 The upper and lower laser levels of the ruby laser are shown in Fig. 10.6.
The lower laser level |1〉 of the ruby laser is the ground state 4A2, which has a degeneracy
factor of g1 = 4. The upper laser level |2〉 is the 2E state, which consists of two closely
spaced 2A and E sublevels, each with a degeneracy factor of 2. The 694.3 nm ruby laser
transition takes place between the E sublevel, which has a degeneracy factor of g(E) = 2,
and the ground state 4A2 with an emission cross section of σ line

e = 2.5 × 10−24 m2 for
the E ⊥ c polarization. Find the peak value of the absorption cross section for an optical
wave at 694.3 nm polarized with E ⊥ c. At room temperature without pumping, what
is the absorption coefficient at 694.3 nm of a ruby crystal that is doped with a Cr
concentration of 1.58 × 1025 m−3?

Figure 10.6 Upper and lower laser levels of the ruby laser.
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Solution To find σa, we use (10.37) by taking σe = σ line
e for the E sublevel. Thus, we

have

σa = g(E)

g1
σe = 2

4
× 2.5 × 10−24 m2 = 1.25 × 10−24 m2.

At room temperature without pumping, the upper laser level is almost totally unpop-
ulated because it is 1.786 eV above ground level. Virtually all of the Cr ions are in
the ground level. Therefore, N1 = 1.58 × 1025 m−3 and N2 = 0. Then, the absorption
coefficient is

α = N1σa = 1.58 × 1025 × 1.25 × 10−24 m−1 = 19.75 m−1.

Laser level splitting

In Example 10.4, we see that the upper laser level of the ruby laser consists of two
closely spaced but clearly separate sublevels, corresponding to laser lines at 692.9 and
694.3 nm, respectively. The population N2 in the upper laser level is split between
these two sublevels. Such laser level splitting also occurs in most other lasers. As a
consequence, only a fractional population of ξ N2 that resides in a particular sublevel of
the upper laser level is directly responsible for a particular laser transition, whereas the
remaining population of (1 − ξ )N2 that resides in other sublevels does not contribute
to this transition. While taking N2 to be the total population of the upper laser level
including all sublevels in a situation like this, the emission cross section σe used in
(10.43) and (10.44) is a cross section that is weighted as σe = ξσ line

e , where σ line
e is

the emission cross section of the specific transition line for the population ξ N2 in its
sublevel. The parameter ξ of a given laser medium varies with many factors, including
temperature, crystal quality, doping concentration, and the presence of codopants. This
explains the variations in the measured values for the emission cross section of a laser
medium, as seen in the values of σe for ruby and Nd : YAG listed in Table 10.1. A
similar effect also exists for the absorption cross section.

EXAMPLE 10.5 For the ruby laser, the 2A and E sublevels within upper laser level |2〉 of
the 2E state have an energy separation of �E = 29 cm−1, which is �E = 3.6 meV
(1 cm−1 ≡ 30 GHz ≡ 124 µeV). As discussed in Example 10.4, the laser transition
between sublevel E and the ground state 4A2 is the 694.3-nm line with σ line

e = 2.5 ×
10−24 m2 for E ⊥ c polarization. The 692.9-nm transition between sublevel 2A and
the ground state 4A2 has a similar cross section. (a) What is the population distribution
at 300 K between the two sublevels in the upper laser level? What is the weighted
emission cross section σe for the 694.3-nm transition? (b) What is σe for the 694.3-nm
transition at 77 K?
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Solution (a) At T = 300 K, kBT = 25.9 meV. Because the 2A state lies above the
E state by an energy difference of �E = 3.6 meV and the two states have the same
degeneracy factor of 2, we have

N (2A)

N (E)
= g(2A)

g(E)
exp(−�E/kBT ) = 2

2
× e−3.6/25.9 = 0.87.

Therefore, the fraction of the N2 population in sublevel E is

ξ = N (E)

N (2A) + N (E)
= 1

0.87 + 1
= 0.535.

This means that only 53.5% of population N2 in the upper laser level 2E state contributes
directly to the 694.3-nm transition. Thus the weighted emission cross section for the
694.3-nm transition is

σe = ξσ line
e = 0.535 × 2.5 × 10−24 m2 = 1.34 × 10−24 m2.

(b) At T = 77 K, kBT = 6.64 meV. Then,

N (2A)

N (E)
= g(2A)

g(E)
exp(−�E/kBT ) = 2

2
× e−3.6/6.64 = 0.58,

and ξ = 1/(0.58 + 1) = 0.632. Therefore, 63.2% of population N2 in the upper laser
level now contributes to the 694.3-nm transition with a weighted emission cross section
of

σe = ξσ line
e = 0.632 × 2.5 × 10−24 m2 = 1.58 × 10−24 m2.

If the temperature is further lowered, σe for the 694.3-nm transition will further
increase toward its maximum value of 2.5 × 10−24 m2 as the E sublevel takes up a
larger fraction of the total population in the upper laser level.

In many systems, the degenerate states in each laser level are split not into clearly sep-
arate sublevels but into very closely spaced sublevels that form a small quasi-continuous
energy band, as shown in Fig. 10.7. In a molecular gas medium such as CO2, for exam-
ple, transition levels |1〉 and |2〉 are defined by the vibrational states of the CO2 molecule,
each of which consists of many closely spaced rotational sublevels. In laser dyes, trans-
ition levels |1〉 and |2〉 are electronic states. Due to the vibrational and rotational motions
of the dye molecules, the electronic states are split into vibrational sublevels, which
are further split into finer structures of rotational sublevels. In dielectric solid-state
media doped with transition-metal or rare-earth ions, such as Ti : sapphire, Nd : glass,
and Er-doped glass fiber, transition levels |1〉 and |2〉 are the electronic energy levels of
the dopant ions. The degeneracies in such energy levels are contributed by the angular
momentum states of the dopant ion. Because a dopant ion is embedded in a host solid-
state medium, the electric fields of the neighboring atoms in the host medium cause
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Figure 10.7 Splitting of the upper and lower transition levels into respective quasi-continuous
bands of sublevels.

some or all of its degenerate angular momentum states within a given energy level to
split into a band of sublevels due to the Stark effect. Interaction with phonons in the
lattice of the host medium can further broaden the energy band in each level.

Within the band of a transition level, the population at a higher sublevel can relax to a
lower sublevel very quickly through nonradiative processes. In CO2 and laser dyes, such
relaxation takes place through collisions among the molecules. In a solid-state medium
that is doped with transition-metal or rare-earth ions, relaxation takes place through
interaction of the ions with the phonons, i.e., the lattice vibrations, of the host material.
These are thermal processes whose efficiency depends on temperature. Because the
sublevels within the band of a transition level are very closely spaced in energy, at
room temperature relaxation among them takes place in a time much shorter than that
between different transition levels. As a result, before any optical transition begins,
the sublevels within each transition level are generally thermalized to be in thermal
equilibrium with the medium. This thermalization leads to a Boltzmann population
distribution among the sublevels within the band of each transition level. Within a
band, the lower sublevels are more populated than the higher sublevels. Consequently,
N1 is not evenly distributed among the g1 states of level |1〉, and N2 is not evenly
distributed among the g2 states of level |2〉, as illustrated also in Fig. 10.7. Because of
this nonuniform population distribution, absorption occurs with a higher probability
from a lower sublevel in the band of level |1〉 to a higher sublevel in the band of level
|2〉, whereas emission is more likely to take place from a low-lying sublevel in level
|2〉 to a high-lying sublevel in level |1〉. The consequences are:

1. The absorption and emission spectra associated with the same pair of transition
levels |1〉 and |2〉 that consist of split sublevels are generally not identical. They have
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(a) (b)

λ  λ    

Figure 10.8 Spectra of the absorption and emission cross sections of Ti : sapphire at room
temperature for (a) E ‖ c and (b) E ⊥ c. Sapphire is a uniaxial crystal. The absorption and emission
spectra depend on the polarization of the radiation with respect to the unique crystal axis c, which
defines the optical axis. The extraordinary polarization with E ‖ c has larger absorption and
emission cross sections than the ordinary polarization with E ⊥ c. Note that the curves for σa and
σe for both polarizations are properly scaled according to (10.46) with a degeneracy ratio of
g1/g2 = 3/2 for Ti : Al2O3. (Adapted from Moulton, P. F., “Spectroscopic and laser characteristics
of Ti : Al2O3,” Journal of the Optical Society of America B 3(1): 125–133, Jan. 1986.)

different shapes and widths, and both vary with temperature. The absorption spectrum
is generally shifted to the side of shorter wavelengths, corresponding to higher photon
energies, with respect to the emission spectrum. As an example, Fig. 10.8 shows
the spectra of the absorption and emission cross sections of Ti : sapphire at room
temperature.

2. The relation in (10.36) is still valid but ĝ(ν) now represents the normalized emission
spectral lineshape, which is different from the absorption lineshape. Therefore, the
relation in (10.37) is no longer valid. Instead, σa(ν) and σe(ν) satisfy the following
general relation (see Problem 10.2.4(b)):

1

τsp
= 8πn2

c2

∞∫
0

ν2σe(ν)dν = 8πn2

c2

g1

g2

∞∫
0

ν2σa(ν)dν. (10.45)

The validity of this relation is based on the assumption that all components in either
of the two levels are equally populated or all transitions between the two levels have
equal probability regardless of the components involved. Because the experimentally
measured spectra of emission and absorption cross sections are normally expressed
as functions of wavelength rather than frequency, we can convert the relation in
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(10.45) into the following useful relation in terms of wavelength:

1

τsp
= 8πn2c

∞∫
0

σe(λ)

λ4
dλ = 8πn2c

g1

g2

∞∫
0

σa(λ)

λ4
dλ. (10.46)

This relation can be used to determine the spontaneous lifetime τsp by integrating
the experimentally measured absorption or emission cross section as a function of
wavelength. Note that σ (λ) = σ (ν) for λ = c/ν.

3. A detailed relation between σe(ν) and σa(ν) is known as the McCumber relation:3

σe(ν) = σa(ν) exp

(
hνc − hν

kBT

)
, (10.47)

where νc is the optical frequency at which the absorption and emission cross sections
are equal: σe(νc) = σa(νc). In terms of wavelength, the McCumber relation can be
expressed as

σe(λ) = σa(λ) exp

[
hc

kBT

(
1

λc
− 1

λ

)]
, (10.48)

where λc = c/νc for which σe(λc) = σa(λc). The photon energy hνc corresponds to
the temperature-dependent excitation energy that is equivalent to the free energy
required to move one atom from the lower level |1〉 to the upper level |2〉. According
to (10.47), the spectra of σe(ν) and σa(ν) associated with the transition between two
energy levels |1〉 and |2〉 cross at only one frequency νc. The McCumber relation is
generally applicable because it does not depend on the assumption that is required
for the validity of (10.45). The only assumption needed is that the sublevels within
either level |1〉 or |2〉 reach thermal equilibrium in a time shorter than the lifetime of
each energy level.

4. The first parts of the relations in (10.43) and (10.44) for the absorption and emission
coefficients, respectively, are still valid, but not the second parts:

α(ν) = N1σa(ν) − N2σe(ν) �=
(

N1 − g1

g2
N2

)
σa(ν) (10.49)

and

g(ν) = N2σe(ν) − N1σa(ν) �=
(

N2 − g2

g1
N1

)
σe(ν). (10.50)

EXAMPLE 10.6 Find the spontaneous lifetime τsp for the laser transition of Ti : sapphire
from the spectrum of its emission cross section shown in Fig. 10.8.

3 This relation is based on the principle of detailed balance and is a generalization of (10.24). For details, see
McCumber, D. E., “Theory of phonon-terminated optical masers,” Physical Review 134: A299–A306, 1964.
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Solution According to (10.46), τsp can be found from σe(λ) by integrating σe(λ)/λ4

over the entire spectrum. In applying (10.46) to the spectra shown in Fig. 10.8, how-
ever, we have to account for the difference between the emission spectra for different
polarizations. With respect to the unique crystal axis c of the uniaxial sapphire, there
are three polarization modes, one parallel to c and two perpendicular to c. As a con-
sequence, the spontaneous emission resulting from the radiative transition that defines
τsp for Ti : sapphire has a 1 : 2 ratio between the E ‖ c and E ⊥ c polarized emis-
sions. Therefore, for a uniaxial crystal such as Ti : sapphire, (10.46) has to be modified
as

∞∫
0

σ ‖
e (λ) + 2σ⊥

e (λ)

3λ4
dλ = g1

g2

∞∫
0

σ ‖
a (λ) + 2σ⊥

a (λ)

3λ4
dλ = 1

8πn2cτsp
. (10.51)

Using the σ ‖
e (λ) and σ⊥

e (λ) spectra shown in Fig. 10.8, we find that

∞∫
0

σ ‖
e (λ) + 2σ⊥

e (λ)

3λ4
dλ = 1.1 × 10−5 m−1.

Using (10.51) and n = 1.76 for Ti : sapphire, we find that

τsp = 1

8π × 1.762 × 3 × 108 × 1.1 × 10−5
s = 3.89 µs.

Resonant optical susceptibility

The macroscopic optical properties of a medium are characterized by its electric suscep-
tibility. As seen in Section 1.10, resonances in a medium contribute to the dispersion
in the susceptibility of the medium. Clearly, the optical properties of a material are
functions of the resonant optical transitions between the energy levels of the electrons
in the material.

From the viewpoint of the macroscopic optical properties of a medium, interaction
between an optical field and a medium is characterized by the polarization induced
by the optical field in the medium. The power exchange between the optical field and
the medium is given by (1.30). For resonant interaction of an isotropic medium with a
monochromatic plane optical field at a frequency ω = 2πν, we have E(t) = Ee−iωt +
E∗eiωt and P res(t) = ε0(χres(ω)Ee−iωt + χ∗

res(ω)E∗eiωt ), where P res is the polarization
contributed by the resonant transitions and χres is the resonant susceptibility. Using
(1.30), we find that the time-averaged power density absorbed by the medium is

W p = 2ωε0χ
′′
res(ω)|E|2 = ω

nc
χ ′′

res(ω)I. (10.52)
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By identifying (10.52) with (10.42), we find that the imaginary part of the susceptibility
contributed by the resonant transitions between energy levels |1〉 and |2〉 is

χ ′′
res(ω) = nc

ω
[N1σa(ω) − N2σe(ω)]. (10.53)

The real part χ ′
res(ω) of the resonant susceptibility can be found through the Kramers–

Kronig relations given in (1.177).
As discussed in Sections 1.5 and 1.10, a medium has an optical loss if χ ′′ > 0, and

it has an optical gain if χ ′′ < 0. It is also clear from (10.52) that there is a net power
loss from the optical field to the medium if χ ′′

res > 0, but there is a net power gain for
the optical field if χ ′′

res < 0. By comparing (10.53) with (10.43) and (10.44), we find
that the medium has an absorption coefficient given by

α(ω) = ω

nc
χ ′′

res(ω) (10.54)

in the case of normal population distribution when χ ′′
res > 0, whereas it has a gain

coefficient given by

g(ω) = − ω

nc
χ ′′

res(ω) (10.55)

in the case of population inversion when χ ′′
res < 0.

Note that the material susceptibility characterizes the response of a material to the ex-
citation of an electromagnetic field. Therefore, the resonant susceptibility χres accounts
for only the contributions from the induced processes of absorption and stimulated
emission, but not that from the process of spontaneous emission. The resonant suscep-
tibility contributed by the induced transitions between two energy levels is proportional
to the population difference between the two levels, but the power density of the optical
radiation due to spontaneous emission is a function of the population density in the
upper energy level alone.

By taking �P = Pres, the behavior of an optical field propagating in the presence
of resonant transitions can be formulated with the coupled-wave theory discussed in
Section 4.1, if the medium is spatially homogeneous, or with the coupled-mode theory
discussed in Section 4.2, if the medium has waveguiding structures. Here we consider
the simplest situation involving a monochromatic wave at a frequency ω that propagates
along the z direction in a spatially homogeneous, isotropic medium with a resonant
susceptibility χres. Then, the index q in the coupled-wave equation expressed in (4.13)
can be dropped:

dE(z)

dz
= iω2µ0

2k
Pres(z)e−ikz, (10.56)

where

Pres(z) = ε0χres(ω)E(z) = ε0(χ ′
res + iχ ′′

res)E(z)eikz. (10.57)
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Substitution of (10.57) in (10.56) yields

dE
dz

= i
ω

2nc
χ ′

resE − ω

2nc
χ ′′

resE. (10.58)

We see from this equation that, as the optical field propagates, not only is its amplitude
varied by the resonant susceptibility, but its phase is modified as well.

When the phase information of the optical wave is of no interest, we can take E∗ ·
(10.58) + c.c. to find the evolution of the intensity of the optical wave as it propagates
through the medium. Using the relations in (10.54) and (10.55), we find that

dI

dz
= −α I (10.59)

in the case of optical attenuation when χ ′′
res > 0, and

dI

dz
= gI (10.60)

in the case of optical amplification when χ ′′
res < 0. Clearly, the coefficients α and g

respectively characterize the attenuation and growth of the optical intensity per unit
length traveled by the optical wave in a medium.

10.3 Population inversion and optical gain

From the discussions in the preceding section, it is clear that population inversion is
the basic condition for the presence of an optical gain. In the normal state of any
system in thermal equilibrium, a low-energy state is always more populated than a
high-energy state, hence no population inversion. Population inversion in a system can
only be accomplished through a process called pumping by actively exciting the atoms
in a low-energy state to a high-energy state. If left alone, the atoms in a system will
relax to thermal equilibrium. Therefore, population inversion is a nonequilibrium state
that cannot be sustained without active pumping. To maintain a constant optical gain,
continuous pumping is required to keep the population inversion at a constant level. This
condition is clearly consistent with the law of conservation of energy: amplification of
an optical wave leads to an increase in optical energy, which is possible only if there is
a source supplying the energy.

Pumping is the process that supplies the energy to the gain medium for the ampli-
fication of an optical wave. There are many different pumping techniques, including
optical excitation, electric current injection, electric discharge, chemical reaction, and
excitation with particle beams. The use of a particular pumping technique depends on
the properties of the gain medium being pumped. The lasers and optical amplifiers of
particular interest in photonic systems are made of either dielectric solid-state media
doped with active ions, such as Nd : YAG and Er : glass fiber, or direct-gap semicon-
ductors, such as GaAs and InP. For dielectric media, the most commonly used pumping
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technique is optical pumping either with incoherent light sources, such as flashlamps
and light-emitting diodes, or with coherent light sources from other lasers. Semicon-
ductor gain media can also be optically pumped, but they are usually pumped with
electric current injection. In this section, we consider the general conditions for pump-
ing to achieve population inversion for an optical gain. Detailed pumping mechanisms
and physical setups are not addressed here because they depend on the specific gain
medium used in a given application.

Rate equations

The net rate of increase of population density in a given energy level is described by a rate
equation. As we shall see below, pumping for population inversion in any practical gain
medium always requires the participation of more than two energy levels. In general, a
rate equation has to be written for each energy level that is involved in the process. For
simplicity but without loss of validity, however, we shall explicitly write down only the
rate equations for the two energy levels, |2〉 and |1〉, that are directly associated with
the resonant transition of interest. We are not interested in the population densities of
other energy levels but only in how those levels affect N2 and N1.

In the presence of a monochromatic, coherent optical wave of intensity I at a fre-
quency ν, the rate equations for N2 and N1 are

dN2

dt
= R2 − N2

τ2
− I

hν
(N2σe − N1σa), (10.61)

dN1

dt
= R1 − N1

τ1
+ N2

τ21
+ I

hν
(N2σe − N1σa), (10.62)

where R2 and R1 are the total rates of pumping into energy levels |2〉 and |1〉, respec-
tively, and τ2 and τ1 are the fluorescence lifetimes of levels |2〉 and |1〉, respectively.
The rate of population decay, including radiative and nonradiative spontaneous relax-
ation, from level |2〉 to level |1〉 is τ−1

21 . Because it is possible for the population in level
|2〉 to relax to other energy levels also, the total population decay rate of level |2〉 is
τ−1

2 ≥ τ−1
21 . Therefore, in general, we have

τ2 ≤ τ21 ≤ τsp. (10.63)

Note that τ−1
21 is not the same as γ21 defined in (10.8): τ−1

21 is purely the rate of population
relaxation from level |2〉 to level |1〉, whereas γ21 is the rate of phase relaxation of the
polarization associated with the transition between these two levels.

In an optical gain medium, level |2〉 is known as the upper laser level and level |1〉 is
known as the lower laser level. The fluorescence lifetime τ2 of the upper laser level is
an important parameter that determines the effectiveness of a gain medium. Generally
speaking, the upper laser level has to be a metastable state with a relatively large τ2 for
a gain medium to be useful.



639 10.3 Population inversion and optical gain

Population inversion

Population inversion in a medium is generally defined as

N2 >
g2

g1
N1. (10.64)

According to (10.50), however, this condition does not guarantee an optical gain at
a particular optical frequency ν if σa(ν) �= (g2/g1)σe(ν) when the population in each
level, |1〉 or |2〉, is distributed unevenly among its sublevels. For this reason, when the
condition for population inversion given in (10.64) is achieved in a medium, we may
find an optical gain at an optical frequency ν where σa(ν) ≤ (g2/g1)σe(ν), but at the
same time find an optical loss at another frequency ν ′ where σa(ν ′) > (g2/g1)σe(ν ′).
What really matters for an optical wave at a given frequency is the optical gain at that
particular frequency. Therefore, in the following discussions, we shall consider, instead
of the condition in (10.64), the following condition:

N2σe(ν) − N1σa(ν) > 0, (10.65)

which guarantees an optical gain at frequency ν, as the effective condition of population
inversion as far as an optical signal at frequency ν is concerned.

The pumping requirement for the condition in (10.65) to be satisfied depends on
the properties of a medium. For atomic and molecular media, there are three different
basic systems. Each has a different pumping requirement to reach effective population
inversion for an optical gain. The pumping requirement can be found by solving the
coupled rate equations in (10.61) and (10.62).

Two-level system

When the only energy levels involved in the pumping and the relaxation processes
are the upper and the lower laser levels |2〉 and |1〉, the system can be considered
as a two-level system. In such a system, level |1〉 is the ground state with τ1 = ∞,
and level |2〉 relaxes only to level |1〉 so that τ21 = τ2. The total population density
is Nt = N1 + N2. While a pumping mechanism excites atoms from the lower laser
level to the upper laser level, the same pump also stimulates atoms in the upper laser
level to relax to the lower laser level. Therefore, irrespective of the specific pumping
technique used, R2 = −R1 = W p

12 N1 − W p
21 N2, where W p

12 and W p
21 are the pumping

transition probability rates, or simply the pumping rates, from |1〉 to |2〉 and from |2〉
to |1〉, respectively. Under these conditions, (10.61) and (10.62) are equivalent to each
other. The upward and downward pumping transition rates are not independent of each
other but are directly proportional to each other because both are associated with the
interaction of the same pump source with a given set of energy levels. We take the upward
pumping rate to be W p

12 = Wp and the downward pumping rate to be W p
21 = pWp, where
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(a) (b)

Figure 10.9 (a) Pumping scheme of a true two-level system. (b) Pumping scheme of a
quasi-two-level system.

p is a constant that depends on the detailed characteristics of the two-level atomic system
and the pump source. In the steady state when dN2/dt = dN1/dt = 0, we then find that

N2σe − N1σa = Wpτ2(σe − pσa) − σa

1 + (1 + p)Wpτ2 + (I τ2/hν)(σe + σa)
Nt. (10.66)

Using the relation in (10.41), we find that, for optical pumping,

p = σ
p
e

σ
p
a

= σe(λp)

σa(λp)
, (10.67)

where σ
p
a and σ

p
e are the absorption and emission cross sections, respectively, at the

pump wavelength.
In a true two-level system, shown in Fig. 10.9(a), the energy levels |2〉 and |1〉

can each be degenerate with degeneracies g2 and g1, respectively, but the population
densities in both levels are evenly distributed among the respective degenerate states.
In this situation, p = σ

p
e /σ

p
a = g1/g2 = σe/σa. Then, we find from (10.66) that

N2σe − N1σa = −σa

1 + (σe + σa)(I/hν + Wp/σa)τ2
Nt < 0. (10.68)

No matter how a true two-level system is pumped, it is clearly not possible to achieve
population inversion for an optical gain in the steady state. This situation can be un-
derstood by considering the fact that the pump for a two-level system has to be in
resonance with the transition between the two levels, thus inducing downward transi-
tions as well as upward transitions. In the steady state, the two-level system would reach
thermal equilibrium with the pump at a finite temperature T , resulting in a Boltzmann
population distribution of the form given in (10.26) without population inversion.

As discussed in the preceding section and illustrated in Fig. 10.7, however, in many
cases an energy level is actually split into a band of closely spaced, but not exactly
degenerate, sublevels with its population density unevenly distributed among these
sublevels. A system is not a true two-level system, but is known as a quasi-two-level
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system, if either or both of the two levels involved are split in such a manner. By pumping
such a quasi-two-level system properly, it is possible to reach the needed population
inversion in the steady state for an optical gain at a particular laser frequency ν because
the ratio p = σ

p
e /σ

p
a at the pump frequency νp can now be made different from the

ratio σe/σa at the laser frequency ν due to the uneven population distribution among the
sublevels within an energy level. From (10.66), we find that the pumping requirements
for a steady-state optical gain from a quasi-two-level system are

p = σ
p
e

σ
p
a

<
σe

σa
and Wp >

1

τ2

σa

σe − pσa
. (10.69)

Because the absorption spectrum is generally shifted to the short-wavelength side
of the emission spectrum, as discussed in the preceding section and demonstrated in
Fig. 10.8, these conditions can be satisfied by pumping sufficiently strongly at a higher
transition energy than the photon energy corresponding to the peak of the emission
spectrum. In the case of optical pumping, this condition means that the pump wavelength
has to be shorter than the emission wavelength. Figure 10.9(b) illustrates such a pumping
scheme of a quasi-two-level system. Indeed, many laser gain media, including laser
dyes, semiconductor gain media, and vibronic solid-state gain media, are often pumped
as a quasi-two-level system.

Three-level system

Population inversion in steady state is possible for a system that has three energy levels
involved in the process. Figure 10.10 shows the energy-level diagram of an idealized
three-level system. The lower laser level |1〉 is the ground state, E1 = E0, or is very
close to the ground state, within an energy separation of �E10 � kBT from the ground
state, so that it is initially populated. The atoms are pumped to an energy level |3〉 above
the upper laser level |2〉.

An effective three-level system satisfies the following conditions: (1) population
relaxation from level |3〉 to level |2〉 is very fast and efficient, ideally τ2 � τ32 ≈ τ3,

Figure 10.10 Energy levels of a three-level system.
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so that the atoms excited by the pump quickly end up in level |2〉; (2) level |3〉 lies
sufficiently high above level |2〉 with �E32 � kBT so that the population in level |2〉
cannot be thermally excited back to level |3〉; (3) the lower laser level |1〉 is the ground
state, or its population relaxes very slowly if it is not the ground state. Under these
conditions, R2 ≈ Wp N1, R1 ≈ −Wp N1, and N1 + N2 ≈ Nt. Furthermore, τ1 ≈ ∞ and
τ21 ≈ τ2. The parameter Wp is the effective pumping transition probability rate for
exciting an atom in the ground state to eventually reach the upper laser level. It is
proportional to the power of the pump. In the steady state with a constant pump, Wp is
a constant and dN2/dt = dN1/dt = 0. With these conditions, we find that

N2σe − N1σa = Wpτ2σe − σa

1 + Wpτ2 + (I τ2/hν)(σe + σa)
Nt. (10.70)

Therefore, the pumping condition for a constant optical gain under steady-state popu-
lation inversion is

Wp >
σa

τ2σe
. (10.71)

This condition sets the minimum pumping requirement for effective population inversion
to reach an optical gain in a three-level system. This requirement can be understood by
considering the fact that almost all of the population initially resides in the lower laser
level |1〉. To achieve effective population inversion, the pump has to be strong enough
to depopulate sufficient population density from level |1〉, while the system has to be
able to keep it in level |2〉. In the case when σa = σe, no population inversion occurs
before at least one-half of the total population is transferred from level |1〉 to level |2〉.

Four-level system

A four-level system, shown schematically in Fig. 10.11, is more efficient than a three-
level system. A four-level system differs from a three-level system in that the lower
laser level |1〉 lies sufficiently high above the ground level |0〉, with �E10 � kBT .

Figure 10.11 Energy levels of a four-level system.
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Therefore, in thermal equilibrium, the population in |1〉 is negligibly small compared
with that in |0〉. Pumping takes place from level |0〉 to level |3〉.

An effective four-level system also has to satisfy the conditions concerning levels
|3〉 and |2〉 discussed above for an effective three-level system. In addition, it has to
satisfy the condition that the population in level |1〉 relaxes very quickly back to the
ground level, ideally τ1 ≈ τ10 � τ2, so that level |1〉 remains relatively unpopulated in
comparison with level |2〉 when the system is pumped. Under these conditions, N1 ≈ 0
and R2 ≈ Wp(Nt − N2), where the effective pumping transition probability rate Wp is
again proportional to the pump power. Then, (10.62) can be ignored because N1 ≈ 0.
In the steady state when Wp is held constant, by taking dN2/dt = 0 for (10.61), we find
that

N2σe − N1σa ≈ N2σe = Wpτ2σe

1 + Wpτ2 + (I τ2/hν)σe
Nt. (10.72)

This result indicates that there is no minimum pumping requirement for an ideal four-
level system that satisfies the conditions discussed above. Real systems are rarely ideal,
but a practical four-level system is still much more efficient than a three-level system.
There is no minimum pumping requirement for population inversion in a four-level
system because level |1〉 is initially empty in such a system.

Optical gain

When the condition in (10.65) is satisfied for a given system, an optical gain coefficient
at a given optical frequency ν can be evaluated with g = N2σe − N1σa according to
(10.50). The optical gain coefficient is a function of the optical signal intensity, I , as
a result of the dependence of N2 and N1 on I due to stimulated emission that changes
the population densities by causing downward transitions from level |2〉 to level |1〉.
This effect causes saturation of the optical gain coefficient by the optical signal. For all
three basic systems discussed above, the optical gain coefficient can be expressed as a
function of the optical signal intensity, I (see Problem 10.3.1(a)):

g = g0

1 + I/Isat
, (10.73)

where g0 is the unsaturated gain coefficient, which is independent of the optical signal
intensity, and Isat is the saturation intensity of a medium, which can be generally
expressed as

Isat = hν

τsσe
. (10.74)

The time constant τs is an effective saturation lifetime of the effective population
inversion. It can be considered as an effective decay time constant for the optical gain
coefficient through the relaxation of the effective population inversion. Both g0 and τs
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are functions of the intrinsic properties of a gain medium, as well as of the pumping
rate. They can be found from (10.66), (10.70), and (10.72) for the quasi-two-level,
three-level, and four-level systems, respectively. The results are summarized below
(see Problem 10.3.1(b)).

Quasi-two-level system:

g0 = (Wpτsσe − σa)Nt, (10.75)

τs = τ2
1 + σa/σe

1 + (1 + p)Wpτ2
. (10.76)

Three-level system:

g0 = (Wpτsσe − σa)Nt, (10.77)

τs = τ2
1 + σa/σe

1 + Wpτ2
. (10.78)

Four-level system:

g0 = Wpτsσe Nt, (10.79)

τs = τ2

1 + Wpτ2
. (10.80)

The minimum pumping requirement for a medium to have an optical gain is clearly
g0 > 0. It can be shown that the minimum pumping requirements obtained by applying
this condition to (10.75) and (10.77) are identical to those given in (10.69) and (10.71)
for the quasi-two-level and the three-level systems, respectively (see Problem 10.3.1(c)).
As for the four-level system, both (10.72) and (10.79) clearly indicate that it has no
minimum pumping requirement.

For a desired unsaturated gain coefficient of g0, the required pumping rate can be
found by solving (10.75) and (10.76) for a quasi-two-level system, (10.77) and (10.78)
for a three-level system, and (10.79) and (10.80) for a four-level system. The results
are summarized below (see Problem 10.3.2).

Quasi-two-level system:

Wp = 1

τ2

σa Nt + g0

(σe − pσa)Nt − (1 + p)g0
. (10.81)

Three-level system:

Wp = 1

τ2

σa Nt + g0

σe Nt − g0
. (10.82)

Four-level system:

Wp = 1

τ2

g0

σe Nt − g0
. (10.83)
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In the limit when p → 0, a quasi-two-level system is identical to a three-level system.
In the limit when p → 0 and σa → 0, a quasi-two-level system behaves like a four-level
system. In the limit when σa → 0, a three-level system behaves like a four-level system.
For a quasi-two-level system, it is clearly desirable to choose a pump wavelength for
which the value of p is as small as possible.

Unsaturated gain coefficient

The unsaturated gain coefficient is also known as the small-signal gain coefficient
because it is the gain coefficient of a weak optical field that does not saturate the gain
medium. In the case of optical pumping with a pump quantum efficiency ηp, the pump
intensity required for a desired pumping transition probability rate can be found by
using (10.41) as

Ip = 1

ηp

hνp

σ
p
a

Wp, (10.84)

where hνp is the energy of the pump photon. The pump quantum efficiency ηp is the net
probability of exciting an atom to the upper laser level by each absorbed pump photon.
In general, ηp ≤ 1.

It is convenient to define a saturation pump intensity, I sat
p , for a laser amplifier for

which Wpτ2 = 1 as

I sat
p = hνp

ηpτ2σ
p
a
. (10.85)

This is the pump intensity that pumps one-half of the population in a three- or four-
level system, and about one-half in a quasi-two-level system, to the upper laser level.
At this level and above, absorption of the pump power is significantly saturated due to
depletion of the ground-state population by pumping. For a pump intensity of Ip, we
have Wpτ2 = Ip/I sat

p .
For a four-level system, we have g > 0 as long as the medium is pumped because

there is no minimum pumping requirement. For a quasi-two-level or three-level sys-
tem, we find that g > 0 only when the pumping level exceeds its minimum pumping
requirement; below that, the medium has absorption for g < 0.

When the unsaturated gain coefficient is zero, the medium becomes transparent, or
bleached, to the optical signal, neither absorbing it nor amplifying it. A quasi-two-level
or three-level system reaches transparency, or the bleached condition, at the following
transparency pumping rate:

W tr
p = 1

τ2

σa

σe − pσa
. (10.86)
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The pump intensity corresponding to the transparency pumping rate is the transparency
pump intensity, I tr

p , which can be expressed as

I tr
p = 1

ηp

hνp

τ2σ
p
a

σa

σe − pσa
= σa

σe − pσa
I sat
p . (10.87)

For a quasi-two-level system, p �= 0 in general. For a three-level system, we take p = 0
for (10.86) and (10.87). For a four-level system, I tr

p = 0 because a four-level system
has no minimum pumping requirement and is thus transparent without pumping.

It can be seen from (10.75)–(10.80) that for any system, g0 increases with pump
intensity less than linearly because τs decreases with pump intensity though Wp is
linearly proportional to the pump intensity. This dependence of τs on the pump intensity
is caused by the fact that as the pump excites atoms from the ground state to any excited
state to eventually reach the upper laser level, it depletes the population in the ground
state. Consequently, as the pump intensity increases, fewer atoms remain available for
excitation in the ground state, thus reducing the differential increase of the effective
population inversion with respect to the increase of the pump intensity.

It can be shown by using the relations in (10.75), (10.77), and (10.79) that the
unsaturated gain coefficient of any system can be expressed as a function of pump
intensity in the following general form:

g0 = (σe − pσa)Nt

1 + (1 + p)Ip/I sat
p

(
Ip

I sat
p

− I tr
p

I sat
p

)
= (σe + σa)Nt

1 + (1 + p)Ip/I sat
p

Ip

I sat
p

− σa Nt. (10.88)

For a quasi-two-level system, p �= 0 and I tr
p �= 0. For a three-level system, p = 0 but

I tr
p �= 0. For a four-level system, p = 0 and I tr

p = 0. Note that for a quasi-two-level
system or a three-level system, (10.88) is also valid when Ip < I tr

p for g0 < 0. In this
situation, the medium has an absorption coefficient of α = −g0 at the laser transition
frequency.

As can be seen in (10.88), g0 varies with Ip sublinearly at high pumping levels due
to the dependence of τs on Ip as discussed above. For a four-level system, however, the
unsaturated gain coefficient varies approximately linearly with Ip at a low pumping level
such that Ip/I sat

p � 1. For a quasi-two-level system or a three-level system, significant
pumping is needed just to reach transparency, but the unsaturated gain coefficient also
varies approximately linearly with Ip for small variations of the pump intensity near
the transparency point.

Gain saturation

The optical gain coefficient is a function of the intensity of the optical wave traveling
in the gain medium; it decreases as the optical signal intensity increases. According to
(10.73), the optical gain coefficient is reduced to one-half that of the unsaturated gain
coefficient g0 when the optical signal intensity reaches the saturation intensity Isat. The
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Figure 10.12 Energy levels of the three-level ruby laser.

smaller the value of Isat, the easier it is for the gain to become saturated. For a quasi-
two-level system, τs = τ2(1 − pσa/σe) at transparency. For three-level and four-level
systems, τs = τ2 at transparency. For all three systems, τs < τ2 as the gain medium is
pumped above transparency for a positive gain coefficient. Therefore, Isat increases as
the gain medium is pumped harder for a larger unsaturated gain coefficient.

EXAMPLE 10.7 The ruby laser is a three-level system. As shown in Fig. 10.12, it has two
primary pump bands at 404 and 554 nm wavelengths, from the 4A2 ground state to the
4F1 and 4F2 states, respectively, both of which relax quickly to the 2E state so that τ32 �
τ2 = 3 ms. The absorption cross sections for E ⊥ c polarization at 404 and 554 nm
pump wavelengths are both σ

p
a = 2 × 10−23 m−1. Assume a 100% pump quantum

efficiency of ηp = 1. (a) Find the transparency pumping rate of a ruby crystal for the
694.3 nm transition with E ⊥ c polarization. Find the transparency pump intensity for
each pump band. What is the saturation intensity at transparency? (b) A ruby crystal
rod doped with 0.05 wt. % Cr2O3 has a Cr concentration of 1.58 × 1025 m−3. It is
pumped for an unsaturated gain coefficient of 5 m−1. Find the required pumping rate,
the saturation intensity at this pumping rate, and the required pump intensity for each
pump band.

Solution (a) Because σa = 1.25 × 10−24 m2 from Example 10.4, the transparency
pumping rate is

W tr
p = σa

τ2σe
= 1.25 × 10−24

3 × 10−3 × 1.34 × 10−24
s−1 = 311 s−1.

The pump photons at 404 and 554 nm wavelengths have photon energies of
hνp1 = (1.2398/0.404) eV = 3.069 eV and hνp2 = (1.2398/0.554) eV = 2.238 eV,
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respectively. The transparency pump intensity for the 404 nm pump band is

I tr
p = hνp1

σ
p
a

W tr
p = 3.069 × 1.6 × 10−19 × 311

2 × 10−23
W m−2 = 7.64 MW m−2,

and that for the 554 nm pump band is

I tr
p = hνp2

σ
p
a

W tr
p = 2.238 × 1.6 × 10−19 × 311

2 × 10−23
W m−2 = 5.57 MW m−2,

For the three-level ruby, τs = τ2 = 3 ms at transparency. The photon energy for
λ = 694.3 nm is hν = (1.2398/0.6943) eV = 1.786 eV = 1.786 × 1.6 × 10−19 J.
Therefore, the saturation intensity at transparency is

Isat = hν

τsσe
= 1.786 × 1.6 × 10−19

3 × 10−3 × 1.34 × 10−24
W m−2 = 71.1 MW m−2.

(b) For Nt = 1.58 × 1025 m−3, we find that σe Nt = 1.34 × 10−24 × 1.58 ×
1025 m−1 = 21.17 m−1 and σa Nt = 1.25 × 10−24 × 1.58 × 1025 m−1 = 19.75 m−1.
Thus, using (10.82), we find that, for g0 = 5 m−1, the required pumping rate is

Wp = 1

3 × 10−3
× 19.75 + 5

21.17 − 5
s−1 = 510 s−1,

which is 1.64 times the transparency pumping rate of W tr
p = 311 s−1. Therefore, the

required pump power is 1.64 times the transparency pump power: Ip = 1.64I tr
p =

12.53 MW m−2 for the 404 nm pump and Ip = 1.64I tr
p = 9.13 MW m−2 for the

554 nm pump. At this pumping level, Wpτ2 = 1.53. Therefore, from (10.78), τs =
τ2(1 + 1.25/1.34)/(1 + 1.53) = 2.29 ms. Then, the saturation intensity is

Isat = hν

τsσe
= 1.786 × 1.6 × 10−19

2.29 × 10−3 × 1.34 × 10−24
W m−2 = 93.1 MW m−2.

It is clear from this example that a very high pump power is required just to bring a
ruby crystal to transparency because of the fact that it is a three-level system. For this
reason, it is only feasible to pump a ruby laser with a pulsed pump. As a consequence,
CW operation is never realized for the ruby laser. Ruby lasers are always operated
in the pulsed mode, most notably in the Q-switched mode for the generation of giant
pulses. The situation is very different for four-level systems, such as Nd : YAG, or quasi-
two-level systems, such as Ti : sapphire and Cr : LiSAF. See Problem 10.3.5(a) for a
comparison with Nd : YAG and Problem 10.3.6(a) for a comparison with Ti : sapphire.

Spontaneous emission power

When the upper laser level of a gain medium is populated, there is spontaneous emis-
sion. The upper laser level population can be found by solving N1 + N2 = Nt and
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N2σe − N1σa = g simultaneously to have

N2 = σa Nt + g

σe + σa
. (10.89)

This relation is valid for all systems, including the four-level system. Though we have
used N1 + N2 = Nt, which is not valid for a four-level system, to obtain this relation,
(10.89) reduces to N2 = g/σe in the case of a four-level system, for which σa = 0. Note
that, in the case of a quasi-two-level or a three-level system, g = −α when the medium
is not sufficiently pumped to reach transparency. Because the maximum value of the
absorption coefficient is α0 = σa Nt, we find that N2 ≥ 0 for any positive or negative
values of g. Note also that g appearing in (10.89) is the saturated gain coefficient if
stimulated emission exists in the medium. According to the discussions in Section 10.1,
the spontaneous emission power is proportional to N2 only and is independent of N1.
Therefore, regardless of whether the medium has a gain or a loss, the spontaneous
emission power density, which is defined as the spontaneous emission power per unit
volume of the medium in watts per cubic meter, is

P̂sp = hν

τsp
N2 = hν

τsp

σa Nt + g

σe + σa
, (10.90)

where g can be positive, for a medium pumped above transparency, or negative, for a
medium below transparency. For a gain volume of V , the spontaneous emission power
is Psp = P̂spV .

In the case when the gain is not saturated so that g = g0, we find from (10.75), (10.77),
and (10.79) that σa Nt + g = Wpτsσe Nt. For a medium that is optically pumped with a
pump intensity Ip, we then have

N2 = Wpτ2

1 + (1 + p)Wpτ2
Nt = Ip/I sat

p

1 + (1 + p)Ip/I sat
p

Nt. (10.91)

Then, the spontaneous emission power density in the absence of gain saturation can be
expressed as

P̂sp = hν

τsp

Ip/I sat
p

1 + (1 + p)Ip/I sat
p

Nt. (10.92)

At transparency, g = g0 = 0. The spontaneous emission power density at trans-
parency, which is known as the critical fluorescence power density, is

P̂ tr
sp = hν

τsp

σa

σe + σa
Nt = hν

τsp

I tr
p /I sat

p

1 + (1 + p)I tr
p /I sat

p

Nt. (10.93)

For a gain volume of V , the critical fluorescence power is P tr
sp = P̂ tr

spV .

EXAMPLE 10.8 A ruby crystal doped with 0.05 wt. % Cr2O3 for a Cr concentration
of 1.58 × 1025 m−3 as discussed in Example 10.7 is considered. Almost all of the
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population in the upper laser level of a ruby laser crystal relaxes radiatively by to the
ground state so that τsp = τ21 = τ2 = 3 ms. Find the critical fluorescence power density
corresponding to transparency for the 694.3 nm line at 300 K. What is the spontaneous
emission power density if the ruby crystal is pumped above transparency for a gain
coefficient of 5 m−1 for the 694.3 nm line? What is it if the crystal is insufficiently
pumped so that it has an absorption coefficient of 5 m−1 for the 694.3 nm line? If a
ruby laser rod of 6 cm length and 4 mm cross-sectional diameter is uniformly pumped,
what are the spontaneous emission powers in the three cases considered here?

Solution When we consider transparency for the 694.3 nm transition, we take σa =
1.25 × 10−24 m2 and σe = 1.34 × 10−24 m2 for this transition at 300 K, which are
obtained in Examples 10.4 and 10.5, respectively. However, the spontaneous emission
is broadband covering both emission lines at 692.9 and 694.3 nm. Therefore, we take
an average photon energy of the two for hν = 1.787 eV. Then, we find from (10.93) the
following critical fluorescence power density at the transparency point for the 694.3 nm
line:

P̂ tr
sp = 1.787 × 1.6 × 10−19 × 1.25 × 10−24 × 1.58 × 1025

3 × 10−3 × (1.34 × 10−24 + 1.25 × 10−24)
W m−3 = 727 MW m−3.

When pumped for a gain coefficient of 5 m−1 for the 694.3 nm line, we have

P̂sp = 1.787 × 1.6 × 10−19 × (1.25 × 10−24 × 1.58 × 1025 + 5)

3 × 10−3 × (1.34 × 10−24 + 1.25 × 10−24)
W m−3

= 911 MW m−3.

When the crystal is insufficiently pumped so that there is an absorption coefficient of
5 m−1, g = −5 m−1. Then,

P̂sp = 1.787 × 1.6 × 10−19 × (1.25 × 10−24 × 1.58 × 1025 − 5)

3 × 10−3 × (1.34 × 10−24 + 1.25 × 10−24)
W m−3

= 543 MW m−3.

For a rod of 6 cm length and 4 mm cross-sectional diameter, the volume is V = π ×
(4 × 10−3/2)2 × 6 × 10−2 m3 = 7.54 × 10−7 m3. Therefore, the critical fluorescence
power is P tr

sp = P̂ tr
spV = 548 W. The total spontaneous emission power is Psp = 687 W

for g = 5 m−1 and Psp = 409 W for g = −5 m−1. From the consideration of energy
conservation, it is clear that the power required to pump the crystal to a particular state
has to be at least, and most often far exceed, that emitted spontaneously by the crystal.
Therefore, these numbers again show the high power required to pump a ruby laser
crystal just to its transparency point. For example, if the pumping efficiency is 10%,
the pump power required to pump this crystal to transparency is as high as 5.48 kW.
See Problem 10.3.5(b) for a comparison with Nd : YAG and Problem 10.3.6(b) for a
comparison with Ti : sapphire.
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10.4 Laser amplifiers

Any medium that has an optical gain can be used to amplify an optical signal. Depending
on the physical mechanism responsible for the optical gain, there are two different
categories of optical amplifiers: the nonlinear optical amplifiers and the laser amplifiers.
The optical gain of a nonlinear optical amplifier is associated with a nonlinear optical
process in a nonlinear medium, whereas the gain of a laser amplifier results from the
population inversion in a medium. Important nonlinear optical amplifiers include the
OPAs, discussed in Section 9.6, and the Raman and Brillouin amplifiers, discussed in
Section 9.9. In this section, the general characteristics of laser amplifiers are addressed.
We consider only continously pumped laser amplifiers operating in the steady state. Not
considered here are pulsed laser amplifiers that require transient dynamical analysis,
including those for regenerative amplification of ultrashort laser pulses and those using
transient pumping for high-power amplification of giant laser pulses.

We consider single-pass, traveling-wave laser amplifiers, as shown in Fig. 10.13.
Such a laser amplifier does not form a resonant optical cavity; therefore, the optical
signal being amplified passes through it only once as a traveling wave. A laser amplifier
can be pumped in many different ways, but the most commonly employed techniques are
electrical pumping and optical pumping. For electrical pumping, a transverse pumping
arrangement is more convenient and is most often used though a longitudinal pumping
arrangement is also possible. For optical pumping, both transverse and longitudinal
pumping arrangements can be easily implemented. However, for an optically pumped
amplifier that has a long length but a relatively small absorption coefficient at the pump
frequency, such as the fiber amplifier discussed in the following section, the longitudinal
pumping arrangement is much more efficient than the transverse pumping arrangement.
Longitudinal optical pumping can be arranged as unidirectional forward, unidirectional
backward, or bidirectional. The concepts of these different pumping schemes are also
illustrated in Fig. 10.13.

The most important characteristics of a laser amplifier are gain, efficiency, bandwidth,
and noise. These four characteristics are addressed in the following discussions.

Amplifier gain

Ignoring the contribution of noise, the amplification of the intensity, Is, of an optical
signal propagating through a laser amplifier can be described by

dIs

dz
= gIs = g0(z)

1 + Is/Isat
Is, (10.94)

where g0(z) is the unsaturated gain coefficient, which can be spatially varying in the
longitudinal direction, and Isat is the saturation intensity of the gain medium, both
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(a)

(b)

(c)

(d )

(e)

( f )

Figure 10.13 Single-pass, traveling-wave laser amplifiers with various pumping arrangements: (a)
transverse electrical pumping; (b) longitudinal electrical pumping; (c) transverse optical pumping;
(d ) unidirectional forward, longitudinal optical pumping; (e) unidirectional backward, longitudinal
optical pumping; ( f ) bidirectional, longitudinal optical pumping.
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defined in the preceding section. Here we assume transverse uniformity but consider
the possibility of longitudinal nonuniformity by taking the unsaturated gain coefficient
g0(z) to be a function of z.

Such a longitudinally nonuniform gain distribution is a common scenario in an
amplifier under longitudinal optical pumping because of pump absorption by the gain
medium. In the following discussions, we assume for simplicity that the signal beam
is collimated throughout the length of the amplifier such that divergence of the beam
is negligible. This assumption allows us to consider the power, Ps, of the optical signal
and to convert (10.94) into

dPs

dz
= gPs = g0(z)

1 + Ps/Psat
Ps, (10.95)

where Psat is the saturation power obtained by integrating Isat over the cross-sectional
area of the signal beam. By integrating (10.95), the following relation is obtained:

Ps(z)

Ps(0)
exp

[
Ps(z) − Ps(0)

Psat

]
= exp

z∫
0

g0(z)dz, (10.96)

where Ps(0) is the power of the signal beam at z = 0. When Ps � Psat, the power of the
optical signal grows exponentially with distance. As Ps approaches the value of Psat,
the growth slows down. Eventually, the signal grows only linearly with distance when
Ps � Psat.

The power gain of a signal amplified by a laser amplifier is defined as

G = Pout
s

P in
s

, (10.97)

where P in
s and Pout

s are the input and output powers of the signal, respectively. By using
the relation in (10.96) while identifying Pout

s and P in
s with Ps(l) and Ps(0), respectively,

for an amplifier of a length l, the following relation for the power gain of the signal is
found:

G = G0e(1−G)P in
s /Psat, (10.98)

where G0 is the unsaturated power gain, or the small-signal power gain. For a single
pass through the amplifier, G0 is given by

G0 = exp

l∫
0

g0(z)dz. (10.99)

Note that, according to (10.98), G0 ≥ G > 1 because g0 > 0 for an amplifier. For a weak
optical signal such that P in

s < Pout
s � Psat, the power gain is simply the small-signal

power gain, G = G0. If the signal power approaches or even exceeds the saturation
power of the amplifier, the relation in (10.98) clearly indicates that G < G0 because of
gain saturation. In this situation, the overall gain, G, can be found by solving (10.98)
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Figure 10.14 Gain, normalized to the unsaturated gain as G/G0, of a laser amplifier as a function
of input signal power, normalized to the saturation power as P in

s /Psat, for a few different values of
the unsaturated power gain.

when the values of P in
s and Psat, as well as that of G0, are given. Figure 10.14 shows

the amplifier gain as a function of input signal power for a few different values of the
unsaturated power gain.

The unsaturated gain coefficient g0 of an optically pumped laser amplifier depends
on the pump intensity according to (10.88). For both longitudinal and transverse pump-
ing, the pump intensity normally varies in space because of absorption and diffraction
of the pump beam. In the case of longitudinal optical pumping, the pump intensity is still
a function of distance from the input end even when transverse uniformity is assumed,
as is done in the above discussion. In general, Ip(z) and g0(z) depend on many geomet-
ric parameters of the amplifier and have to be found numerically for each particular
case.

A special situation of interest is when transverse divergence of the pump beam is
nonexistent, such as in the case of an optical fiber amplifier, or can be ignored, such as
in a short bulk laser amplifier with a highly collimated pump beam. In this situation,
we can express g0(z) in terms of the pump power Pp(z) instead of the pump intensity
by integrating Ip(z) over the transverse cross section. A saturation pump power, P sat

p ,
can be defined by integrating I sat

p over the transverse cross section. Then, by replacing
Ip/I sat

p with Pp/P sat
p in (10.91) for N2, we find that the absorption coefficient of the

pump beam as a function of distance in the amplifier can be expressed as

αp(z) = σ p
a [Nt − N2(z)] = αp

1 + pPp(z)/P sat
p

1 + (1 + p)Pp(z)/P sat
p

, (10.100)

where αp = σ
p
a Nt is the intrinsic absorption coefficient at the pump wavelength in the

absence of a strong pump beam so that pump depletion of the ground-state population is
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negligible. Here we have assumed a low-loss medium where the pumping mechanism
fully accounts for absorption of the pump beam. With this spatially varying pump
absorption coefficient, we can write the following equation for the spatial evolution of
the pump power:

dPp

dz
= −αp(z)Pp = −αp

1 + pPp/P sat
p

1 + (1 + p)Pp/P sat
p

Pp. (10.101)

This equation can be integrated to find the following solutions:

Pp(z)

Pp(0)

[
P sat

p + pPp(z)

P sat
p + pPp(0)

]1/p

= e−αpz, for p �= 0, (10.102)

and

Pp(z)

Pp(0)
exp

[
Pp(z) − Pp(0)

P sat
p

]
= e−αpz, for p = 0. (10.103)

It can be seen from the relations in (10.102) and (10.103) that besides the absorption
coefficient αp, longitudinal variations of pump power in the amplifier strongly depend
on the pumping ratio defined as

s = Pp(0)

P sat
p

= P in
p

P sat
p

, (10.104)

where P in
p = Pp(0) is the input pump power.

Once the pump power distribution, Pp(z), is found from the implicit solutions given
in (10.102) and (10.103), the distribution of the small-signal gain coefficient g0(z) can
be found from (10.88) as

g0(z) = (σe − pσa)Nt

1 + (1 + p)Pp(z)/P sat
p

[
Pp(z)

P sat
p

− P tr
p

P sat
p

]

= (σe + σa)Nt

1 + (1 + p)Pp(z)/P sat
p

Pp(z)

P sat
p

− σa Nt. (10.105)

In general, numerical solution is required to find Pp(z) from the implicit solutions
given in (10.102) and (10.103) in order to find g0(z). However, what really matters for
an amplifier is the integral of g0(z) over the entire length of the amplifier, which gives
the value of G0 in (10.99). Closed-form solutions for both cases of p �= 0 and p = 0
can be found by using (10.101) to integrate g0(z) in (10.105). For an amplifier of a
length l, the integral can be expressed conveniently in terms of the input pump power
P in

p = Pp(0) launched at the input end and the remaining pump power Pout
p = Pp(l) at
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the output end of the amplifier as (see Problem 10.4.2)

l∫
0

g0(z)dz = σe Ntl + (σe + σa)Nt

αp
ln

Pout
p

P in
p

= σe Ntl + (σe + σa)Nt

αp
ln(1 − ζp), (10.106)

where ζp is the pump power utilization factor that accounts for the pump power absorbed
by the gain medium and is defined as

ζp = P in
p − Pout

p

P in
p

. (10.107)

The relation given in (10.106) is valid for both p �= 0 and p = 0. It is a convenient
form because all that is needed to evaluate the value of the gain integral is the value of
ζp besides the basic parameters of the amplifier.

In theory, Pout
p never completely vanishes and ζp never reaches the value of unity

no matter how long the amplifier is because the pump power can only continue to
decay. Therefore, there is no problem in utilizing (10.106) in principle. In practice,
however, great uncertainty arises in using (10.106) when Pout

p becomes very small. In
an experimental setting, (10.106) yields no meaningful result when Pout

p approaches the
detection limit. To avoid such a limitation, (10.102) for p �= 0 and (10.103) for p = 0
can be used to transform (10.106) into (see Problem 10.4.2)

l∫
0

g0(z)dz =




(σe + σa)Nt

pαp
ln

P sat
p + pP in

p

P sat
p + pPout

p

− σa Ntl, for p �= 0,

(σe + σa)Nt

αp

(
P in

p − Pout
p

P sat
p

)
− σa Ntl, for p = 0.

(10.108)

Given an input pump power of P in
p = Pp(0) at z = 0, the remaining pump power,

Pout
p = Pp(l), at the output end z = l of the amplifier can be found from (10.102) for

p �= 0 or from (10.103) for p = 0. In an experimental setting, both P in
p and Pout

p can be
measured directly. Once the integral of g0(z) is found, G0 can be found through (10.99).

EXAMPLE 10.9 A CW Nd : YAG laser amplifier for an optical signal at λs = 1.064 µm
is pumped with the output of a high-power semiconductor laser at λp = 808 nm. The
Nd : YAG crystal, which is doped with 1.1 at. % Nd for a concentration of Nt = 1.52 ×
1026 m−3, has a length of 5 mm and a cross-sectional diameter of 5 mm. The pump
optical beam is delivered through a multimode optical fiber of a 200-µm core diameter
and is collimated to define a circular pumping spot of w = 100 µm radius throughout
the length of the crystal. The signal beam is collimated to a spot size that matches the
pumping area exactly. As shown in Fig. 10.15, the crystal surfaces are coated for a single
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µm

µm

µm

λ  

λ  

Figure 10.15 Schematics of a double-pass end-pumped Nd : YAG amplifier. AR means
antireflection, and HR means high reflection.

pass of the pump beam through the crystal, but for double passes of the signal beam.
At the 808 nm pump wavelength, the peak absorption cross section is 5.6 × 10−24 m2.
However, because the emission of the pump semiconductor laser has a broad spectral
width of �λp = 3.5 nm, the effective absorption cross section for the pump beam
is reduced to σ

p
a = 3.0 × 10−24 m2. The emission cross section accounting for all

effects including the population ratio in the upper laser level is σe = 3.1 × 10−23 m2 at
the signal wavelength. The fluorescence lifetime is τ2 = 240 µs. The pump quantum
efficiency is found to be ηp = 0.8. The amplifier is pumped with a pump power of
Pp = 2 W. Assume that there is no additional attenuation to the pump beam besides the
absorption for the pumping transition with the cross section σ

p
a . (a) Find the double-pass

unsaturated power gain of the amplifier. (b) Find the gain and the output power for a
signal with an input power of P in

s = 20 mW.

Solution (a) The pump photon energy is hνp = (1.2398/0.808) eV = 1.534 eV. The
signal photon energy is hνs = (1.2398/1.064) eV = 1.165 eV. Because the pump and
signal beams are all well collimated, we can consider the pump and signal powers
directly instead of the pump and signal intensities. We first find that

P sat
p = πw2 I sat

p = πw2 hνp

ηpτ2σ
p
a

= π × (100 × 10−6)2 × 1.534 × 1.6 × 10−19

0.8 × 240 × 10−6 × 3.0 × 10−24
W

= 13.4 W.

Then, with an input pump power of P in
p = 2 W, the pumping ratio defined in (10.104)

is

s = Pp(0)

P sat
p

= 2

13.4
= 0.149.

The pump absorption coefficient is αp = σ
p
a Nt = 456 m−1. With an amplifier length

of l = 5 mm, we find that αpl = 2.28. Because Nd : YAG is a four-level system for
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the signal at 1.064 µm wavelength, we have p = 0 and σa = 0. We can then find
Pout

p = Pp(l) from the implicit solution in (10.103). By taking z = l and defining the
variable x = Pp(l)/P sat

p , (10.103) can be expressed as

xex = sese−αpl = 0.149 × e0.149−2.28,

which has a solution of x = 1.74 × 10−2. Thus,

x = Pp(l)

P sat
p

= 1.74 × 10−2,

and Pout
p = Pp(l) = 1.74 × 10−2 × P sat

p = 1.74 × 10−2 × 13.4 W = 0.233 W. With
p = 0 and σa = 0, we then obtain from (10.108) the following integral:

l∫
0

g0(z)dz = σe Nt

αp

(
P in

p − Pout
p

P sat
p

)
= 3.1 × 10−23 × 1.52 × 1026

456
× 2 − 0.233

13.4
= 1.36.

The double-pass unsaturated power gain can now be found as

G0 = exp


2

l∫
0

g0(z)dz


 = exp(2 × 1.36) = e2.72 = 15.2.

This unsaturated gain is about 11.8 dB.
(b) To find the power gain for the signal, we need to consider the gain saturation

effect by first finding the saturation power of the amplifier. At the given pumping level,
Wpτ2 = s = 0.149 at z = 0. Taking this value as an approximation throughout the gain
medium, we have

τs = τ2

1 + Wpτ2
= 240

1.149
µs = 209 µs.

Then the saturation intensity is

Isat = hνs

τsσe
= 1.165 × 1.6 × 10−19

209 × 10−6 × 3.1 × 10−23
W m−2 = 28.8 MW m−2,

and the saturation power is

Psat = πw2 Isat = π × (100 × 10−6)2 × 28.8 × 106 W = 905 mW.

For an input signal power of P in
s = 20 mW, P in

s /Psat = 0.022. Therefore, according to
(10.98), the gain can be found by solving

G = G0e(1−G)P in
s /Psat = e2.72+0.022(1−G).

By solving this relation iteratively, we find that the signal power gain is G = 11.9,
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which is 10.8 dB. The output signal power is

Pout
s = G P in

s = 11.9 × 20 mW = 238 mW.

Amplifier efficiency

The efficiency of a laser amplifier can be measured either as power efficiency or as
quantum efficiency.

The power conversion efficiency, ηc, of a laser amplifier is defined as

ηc = Pout
s − P in

s

Pp
. (10.109)

Another useful concept is the differential power conversion efficiency, also known as
the slope efficiency, ηs, of an amplifier, which is defined as

ηs = dPout
s

dPp
. (10.110)

The differential power conversion efficiency measures the increase of the output signal
power as the pump power increases. It is generally somewhat larger than the total power
conversion efficiency measured by ηc.

The quantum efficiency, ηq, of a laser amplifier is defined as the number of signal
photons generated per pump photon, in the case of optical pumping, or per pump
electron, in the case of electrical pumping, that is absorbed by the gain medium. It can
be expressed as

ηq = �out
s − �in

s

ζp�p
, (10.111)

where �in
s and �out

s are the input and output photon fluxes, respectively, and �p is the
pump photon or electron flux. The maximum possible value of ηq is unity.

The power conversion efficiency is always less than the quantum efficiency. For the
case of optical pumping, they have the following relationship:

ηq = νp

νs

ηc

ζp
= λs

λp

ηc

ζp
, (10.112)

where νs and νp are the signal and pump frequencies, respectively, and λs and λp are the
free-space signal and pump wavelengths, respectively. Because the maximum value of
ηq is unity, the maximum possible power conversion efficiency of an optically pumped
laser amplifier is λp/λs.

EXAMPLE 10.10 Find the power conversion efficiency and the quantum efficiency of the
Nd : YAG laser amplifier described in Example 10.9 operated with a pump power of
2 W and an input signal power of 20 mW.
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Solution From Example 10.9, the output signal power is Pout
s = 238 mW when

the amplifier is operated with P in
p = 2 W and P in

s = 20 mW. Therefore, according
to (10.109), the power conversion efficiency is

ηc = 238 × 10−3 − 20 × 10−3

2
= 10.9%.

For this amplifier, we have, from Example 10.9, Pout
p = 0.233 W. The pump power

utilization factor is

ζp = P in
p − Pout

p

P in
p

= 2 − 0.233

2
= 0.884.

Using (10.112), we find that the quantum efficiency is

ηq = λs

λp

ηc

ζp
= 1.064 × 10−6

808 × 10−9
× 10.9%

0.884
= 16.2%.

Amplifier bandwidth

The optical bandwidth, Bo, of a laser amplifier is determined by the spectral width,
�νg, of the gain coefficient g(ν) and any optical filter that might be incorporated into
the device. In the case when there is no additional optical filter, Bo = �νg. On the
other hand, if a narrow-band optical filter with a bandwidth much smaller than �νg is
used at the output of the amplifier, then Bo is simply that of the filter. From the results
obtained in the preceding section regarding the gain coefficient, g(ν) is a function of
σe(ν), σa(ν), and the pumping rate Wp. For a gain medium whose laser transition levels
are narrow enough so that σe(ν) and σa(ν) have the same spectral distribution, or for
a four-level system whose lower laser level is empty so that g(ν) is independent of
σa(ν), the spectral distribution of g(ν) is simply that of σe(ν). However, as discussed in
Section 10.2, the spectral distribution of σe(ν) can be very different from that of σa(ν)
for many practical laser materials. For a quasi-two-level or a three-level system whose
σe(ν) and σa(ν) have different spectral distributions, the spectral distribution of g(ν) not
only depends on both σe(ν) and σa(ν) but also varies as the pumping rate Wp is varied,
as can easily be observed by examining (10.75) and (10.77). Consequently, the optical
bandwidth of a laser amplifier that consists of a quasi-two-level or a three-level gain
medium is generally a function of the pumping rate, but that of a four-level amplifier is
less sensitive to the pumping rate. Because of the resonant nature of the laser transition
that is responsible for the gain of a laser amplifier, the optical bandwidth of a laser
amplifier is generally quite small in the sense that Bo � νs, where νs is the frequency
of an optical signal being amplified.

EXAMPLE 10.11 Find the optical bandwidth of the Nd : YAG laser amplifier described in
Example 10.9.
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Solution The bandwidth of a laser amplifier is determined by the spectral width
of its optical gain, which in turn is largely determined by the spontaneous emission
linewidth of the gain medium. The linewidth of Nd : YAG varies with temperature,
doping concentration, and crystal quality, but it typically falls between 120 and 180 GHz
at room temperature. According to Table 10.1, we find that the typical spontaneous
linewidth of Nd : YAG is �ν = 150 GHz. Therefore, we can expect that Bo = �νg ≈
�ν = 150 GHz for the amplifier.

Amplifier noise

There are two intrinsic noise sources in a laser amplifier: quantum noise due to spon-
taneous emission and thermal noise associated with blackbody radiation. At room
temperature, these two noise sources have the same magnitude at an electromagnetic
wavelength of λ = 44 µm. Thermal noise dominates at long wavelengths, whereas
quantum noise dominates at short wavelengths. Therefore, thermal noise in a laser
amplifier that operates in the optical region at room temperature is negligible in the
presence of quantum noise caused by spontaneous emission.

The spontaneous emission noise power at the output of a laser amplifier is the result
of the amplified spontaneous emission (ASE) in the amplifier. It is a function of the
gain and bandwidth of the amplifier and is given by

Psp = Nsphνs Bo(G − 1), (10.113)

where

Nsp = σe N2

σe N2 − σa N1
(10.114)

is the amplifier spontaneous emission factor that measures the degree of population
inversion in the amplifier. In a given amplifier, the value of Nsp varies with pumping rate
and signal wavelength. It can be seen from (10.114) that Nsp ≥ 1 for an amplifier with
σe N2 > σa N1 so that G > 1. The minimum value, Nsp = 1, corresponds to complete
population inversion with N1 = 0. In the case of insufficient pumping with σe N2 <

σa N1 so that G < 1, the amplifier actually attenuates the optical signal rather than
amplifying it. Then, Nsp has a negative value, but the noise power Psp is still positive
because G < 1. Therefore, an ideal amplifier has the minimum noise factor when the
amplifying medium has complete population inversion so that Nsp = 1.

By ignoring the effect of gain saturation, the spontaneous emission factor defined
in (10.114) can be expressed in the following form in terms of pump intensity for an
optically pumped system (see Problem 10.4.3):

Nsp =
(

1 − p
σa

σe
− I sat

p

Ip

σa

σe

)−1

=
(

1 − p
σa

σe
− P sat

p

Pp

σa

σe

)−1

, (10.115)
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where p �= 0 and σa �= 0 for a quasi-two-level system, p = 0 but σa �= 0 for a three-
level system, and p = 0 and σa = 0 for a four-level system. It can be seen from (10.115)
that a four-level amplifier is normally less noisy than a quasi-two-level or a three-level
amplifier because the lower laser level of a four-level system is normally not populated,
so that Nsp = 1. Everything else being equal, a quasi-two-level system is expected to
be noisier than a three-level system. We also see from (10.115) that the spontaneous
emission factor is reduced toward its minimum value of unity when the pump intensity
is increased. For a three-level erbium-doped fiber amplifier, an Nsp approaching the
ideal minimum value of 1 can be obtained near the peak of the emission spectrum at
a high pumping level. For a semiconductor laser amplifier, the value of Nsp typically
ranges from 1.4 to more than 4, depending on the operating condition.

From (10.113), we see that the ASE of a laser amplifier is directly proportional to
the optical bandwidth Bo of the amplifier. To increase the signal-to-noise ratio (SNR)
at the amplifier output, the total noise power can be reduced to a minimum by placing
at the output end of the amplifier an optical filter that has a narrow bandwidth matching
the bandwidth of the optical signal.

Because of the spontaneous emission noise, the SNR of an optical signal always
degrades after the optical signal passes through an amplifier. The degradation of the
SNR of the optical signal passing through an amplifier is measured by the optical noise
figure of the amplifier defined as

Fo = SNRin

SNRout
, (10.116)

where SNRin and SNRout represent the values of the optical SNR at the input and output
ends of the amplifier, respectively.

The optical noise figure of an amplifier is a function of the gain and the spontaneous
emission factor of the amplifier. It also depends on the photon statistics of the optical
signal. For an optical signal that is characterized by a classical electromagnetic field
with a large number of photons, the photon statistics can be described by the Poisson
statistics. Then, the optical noise figure can be approximated by

Fo ≈ 1 + 2Nsp(G − 1)

G
= 2Nsp + 1 − 2Nsp

G
. (10.117)

If the amplifying medium has complete population inversion so that Nsp = 1, then
Fo = 2 − 1/G and 2 > Fo > 1 for G > 1. For a high-gain amplifier, G � 1. Then
(10.117) can be further approximated by

Fo(G � 1) ≈ 2Nsp ≥ 2 (10.118)

because Nsp ≥ 1 for an amplifier of G > 1. Therefore, unless complete population
inversion is achieved in the amplifying medium, the optical noise figure of a high-
gain laser amplifier is subject to the quantum limit of Fo ≥ 2, or Fo ≥ 3 dB. For a
low-gain amplifier with sufficient population inversion, it is possible to have a noise
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figure less than 2. However, the relation in (10.117) does not imply that the value of
Fo can be less than unity if G < 1 because Nsp has a negative value when G < 1.
Therefore, an optical amplifier can never improve the SNR of an optical signal. No
matter how a laser amplifier is pumped or operated and no matter whether the optical
signal is amplified or attenuated, the optical noise figure is always larger than unity,
Fo > 1.

EXAMPLE 10.12 Find the ASE noise power and the optical noise figure of the Nd : YAG
laser amplifier described in Example 10.9 operated with a pump power of 2 W and an
input signal power of 20 mW.

Solution From Example 10.9, we find that the power gain is G = 11.9 when the
amplifier is operated with Pp = 2 W and P in

s = 20 mW. From Example 10.11, we have
Bo = 150 GHz. We also have hνs = 1.165 eV for the signal photon energy. Because
Nd : YAG operating at the signal wavelength of 1.064 µm is a four-level system with
N1 = 0, we have Nsp = 1. Therefore, according to the relation in (10.113), the ASE
noise power for this amplifier under the specified operating condition is

Psp = 1 × 1.165 × 1.6 × 10−19 × 150 × 109 × (11.9 − 1) W = 305 nW.

This is the power of the ASE noise at the output of the amplifier. It is only 1.28 × 10−6

of the output signal power of 238 mW. This noise power is small primarily because of
the narrow bandwidth of the Nd : YAG laser amplifier.

The optical noise figure of the amplifier can be found by using (10.117) to be

Fo = 1 + 2 × 1 × (11.9 − 1)

11.9
= 1.92.

This amplifier has a noise figure of Fo < 2 because it is a four-level system with Nsp = 1.

Laser amplifiers and nonlinear optical amplifiers find their primary applications as
power amplifiers for laser beams, as optical repeaters in long-distance optical transmis-
sion systems, and as optical preamplifiers to optical receivers. In addition, some laser
amplifiers, particularly the semiconductor laser amplifiers, can also be used as optical
switches and nonlinear optical processing devices. Basically all laser amplifiers and
nonlinear optical amplifiers can be used as power amplifiers. In fact, because of their
large noise figures and narrow bandwidths, many laser amplifiers and nonlinear optical
amplifiers are unsuitable for other applications. As power amplifiers, they are used to
amplify high-quality but low-power laser beams for the generation of high-power laser
beams of good spatial and temporal qualities that cannot be easily generated directly
from laser oscillators. The primary consideration in this application is the power con-
version efficiency. Therefore, a laser power amplifier is normally operated at saturation
level. Not all laser amplifiers and nonlinear optical amplifiers are suitable for the other
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applications mentioned above. The suitability for each application varies from one type
of amplifier to another. Some laser amplifiers, however, are suitable for multiple ap-
plications. For example, the erbium-doped fiber amplifiers, which are discussed in the
following section, have found very important applications as power amplifiers, optical
repeaters, and preamplifiers in optical communication systems.

10.5 Rare-earth ion-doped fiber amplifiers

Among the many different types of optical amplifiers, those that are guided-wave de-
vices have many advantages over bulk devices. There are two important, but distinctly
different, groups of guided-wave optical amplifiers: fiber devices and semiconductor
devices. Fiber devices can be further subdivided into two categories: those based on
active rare-earth ion-doped fibers and those based on the nonlinear optical processes in
fibers. Therefore, there are three types of established guided-wave optical amplifiers:
(1) rare-earth ion-doped fiber amplifiers, (2) nonlinear Raman or Brillouin fiber am-
plifiers, and (3) semiconductor optical amplifiers. Each type can be made into lasers
by arranging some proper optical feedback to the amplifiers. Optical amplifiers and
lasers based on polymer waveguides are also of great interest, but they are not well
established yet. Fiber amplifiers utilize the waveguiding effect of optical fibers, which
are nonconductive dielectric glass materials but can be made very long. Semiconduc-
tor optical amplifiers use semiconductor waveguides, which are conductive but are
of limited length. Fiber devices require optical pumping. Due to the fiber geometry,
the only practical and efficient pumping arrangement is longitudinal optical pumping.
The pump beam is launched into the fiber waveguide either through a fiber coupler
or through the end of the fiber. As illustrated in Fig. 10.13, the longitudinal optical
pumping arrangement can be unidirectional forward, with the pump and signal waves
propagating codirectionally, as shown in Fig. 10.13(d), unidirectional backward, with
the pump and signal waves propagating contradirectionally, as shown in Fig. 10.13(e), or
bidirectional, as shown in Fig. 10.13( f ). Semiconductor devices are normally pumped
with electric current injection though they can be optically pumped as well. In this sec-
tion, we consider only the rare-earth ion-doped fiber amplifiers. The basic principles
of Raman and Brillouin amplifiers are discussed in Section 9.9. Semiconductor optical
amplifiers are discussed in Section 13.8.

In comparison to bulk optical amplifiers, fiber amplifiers have several advantages.
A few are unique to the fiber geometry, but most are common features of waveguide
devices and are shared by semiconductor optical amplifiers as well. Some of the ad-
vantages are listed below.

1. Low pump power. With longitudinal optical pumping, the waveguiding nature
of an optical fiber keeps the pump power confined and concentrated in the active
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core region, allowing the pump power to be completely absorbed and utilized. In
comparison, the pump beam for a longitudinally pumped bulk amplifier cannot be
kept focused over a long distance because it is subject to the diffraction limit. In a fiber
amplifier, the pump spot size is solely determined by the fiber core diameter, while
the effective pumping length is determined only by the absorption coefficient of the
fiber gain medium, which in turn is determined by the doping concentration of the
rare-earth ions in the fiber core. Decoupling of the pump spot size from consideration
of the effective pumping length makes the design of long fiber amplifiers with low
rare-earth ion-doping concentrations and low pump powers possible, which are not
possible for bulk optical amplifiers.

2. Good overlap of pump and signal waves. In a fiber amplifier, the pump and signal
waves, though of different wavelengths, overlap over the entire length of the device
due to the waveguiding effect of the fiber. This feature improves the efficiency and
reduces the required pump power of a fiber amplifier.

3. Easy control of transverse mode characteristics. The transverse spatial char-
acteristics of the output beam from a fiber amplifier can be easily and precisely
controlled by choosing the fiber to have the desired mode property. To have a
diffraction-limited single-mode output beam, even at a very high pumping level,
it is only necessary to use a single-mode fiber for the signal wavelength because a
single-mode waveguide is the most effective spatial filter that automatically produces
a diffraction-limited beam.

4. Reduced thermal effects. The fiber geometry, with its small cross-sectional area
and large length, naturally has a good efficiency for heat dissipation, thus eliminating
the thermal lensing and stress problems often encountered in bulk devices at high
pumping levels.

5. Compatibility with fiber transmission systems. This physical compatibility
leads to efficient integration of fiber amplifiers in an optical fiber transmission sys-
tem, greatly reducing coupling losses. It also allows large flexibility in the design
and handling of the system, including the flexibility of using different pumping
arrangements.

Rare-earth ion-doped fibers

Fiber laser amplifiers are based on rare-earth ion-doped fibers. The majority of rare-
earth ion-doped fibers are low-loss silica or fluorozirconate glass fibers doped with
active rare-earth ions, such as Pr3+, Nd3+, Sm3+, Ho3+, Er3+, Tm3+, and Yb3+. A rare-
earth ion-doped fiber can be either a three-level or a four-level gain system. In some
special instances, such as Er3+ pumped at 1.48 µm, a rare-earth ion can even operate as a
quasi-two-level system. As examples, the energy levels of praseodymium, neodymium,
and erbium ions are shown in Fig. 10.16. Some important optical transitions of these
ions are summarized in Table 10.2.
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Table 10.2 Some optical transitions in three rare-earth ions

Pump Laser

Ion Transition Wavelength Transition Wavelength System τ2

Pr3+ 3H4 → 1G4 1.017 µm 1G4 → 3H5 1.31 µm 4-level 100 µs

Nd3+ 4I9/2 → 4F5/2/2H9/2 800 nm 4F3/2 → 4I9/2 900 nm 3-level 500 µs
4I9/2 → 4F5/2/2H9/2 800 nm 4F3/2 → 4I11/2 1.06 µm 4-level 500 µs

4I9/2 → 4F5/2/2H9/2 800 nm 4F3/2 → 4I13/2 1.34 µm 4-level 500 µs

Er3+ 4I15/2 → 4I9/2 800 nm 4I13/2 → 4I15/2 1.53 µm 3-level 10 ms
4I15/2 → 4I11/2 980 nm 4I13/2 → 4I15/2 1.53 µm 3-level 10 ms
4I15/2 → 4I13/2 1.48 µm 4I13/2 → 4I15/2 1.53 µm quasi-2-level 10 ms
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Figure 10.16 Energy levels of praseodymium, neodymium, and erbium ions.

One important property of rare-earth ion-doped fibers is that their transition charac-
teristics, including the spectral broadening mechanism, the spectral shape and width, the
spectral peak wavelength, and the fluorescence lifetime, are influenced by the molec-
ular environment of the rare-earth ions. The most important factor is the structure and
composition of the host material. Also important is the operating temperature. The ab-
sorption and emission spectral widths of a given ion doped in a glass fiber are generally
very broad, much broader than those of the same ion doped in a crystalline material.
The spectral characteristics can be significantly varied by using a completely different
glass material for the fiber or by adjusting the composition of the glass. As an example,
the absorption cross-section spectrum, σa(λ), and the emission cross-section spectrum,
σe(λ), measured at room temperature in the spectral region around 1.53 µm for Er3+

doped in a silica fiber doped with Al2O3 and P2O5 are shown in Fig. 10.17(a), which can
be compared with those shown in Fig. 10.17(b) for Er3+ doped in an Al2O3/GeO2–silica
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(a) (b)

λ  λ  (µm)(µm)

Figure 10.17 Absorption and emission cross-section spectra of Er3+ in (a) an Al2O3/P2O5–silica
fiber and (b) an Al2O3/GeO2–silica fiber. (Adapted from (a) Miniscalco, W. J., “Erbium-doped
glasses for fiber amplifiers at 1500 nm,” Journal of Lightwave Technology 9(2): 234–250, Feb.
1991, and (b) Desurvire, E. and Simpson, J. R., “Evaluation of 4I15/2 and 4I13/2 Stark-level energies
in erbium-doped aluminosilicate glass fibers,” Optics Letter 15(10): 547–549, May 1990.)

fiber. Other factors that affect the spectral characteristics and the fluorescence lifetime
include the doping concentration of the active ion and the codopants. The laser emission
wavelength corresponding to each laser transition shown in Table 10.2 can be varied
and tuned within a rather broad range.

Because of their glass hosts, rare-earth ion-doped fibers have mixed homogeneous
and inhomogeneous broadening characteristics. The relative significance between the
two varies with the fiber host material, the dopant, the doping concentration, and
temperature. For many rare-earth ion-doped fibers of interest, the homogeneous line
broadening at room temperature is about the same as the inhomogeneous broadening.
Experimental results on fiber amplifiers seem to be adequately explained by simple
models that assume pure homogeneous broadening.

Fiber amplifiers

The development of rare-earth ion-doped fiber amplifiers was driven primarily by their
applications in fiber-optic communication systems for amplifying weak optical signals.
For this reason, the major effort has been on the development of erbium-doped fiber am-
plifiers (EDFAs) for amplifying optical signals in the spectral region around 1.55 µm,
where silica fiber transmission lines have minimum attenuation loss. Also of interest
are praseodymium-doped fiber amplifiers (PDFAs) and neodymium-doped fiber am-
plifiers (NDFAs) for the 1.3-µm spectral region, where many of the existing optical
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Figure 10.18 Use of a fiber amplifier as (a) a power amplifier, (b) an optical repeater, and (c) an
optical preamplifier in a fiber-optic communication system.

communication systems operate because of the minimum dispersion and low attenua-
tion loss of silica fibers in this spectral window. These fiber amplifiers can be used as
power amplifiers (postamplifiers), optical repeaters (inline amplifiers), or optical pream-
plifiers, shown in Figs. 10.18(a), (b), and (c), respectively, in optical communication
systems.

Fiber amplifiers have to be optically pumped. Practical considerations such as relia-
bility, package size, cost, and power efficiency dictate that semiconductor lasers be used
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to pump fiber amplifiers in most applications. Efficient semiconductor laser sources are
available for the pump bands of Nd3+ and Er3+ listed in Table 10.2: AlGaAs/GaAs lasers
for the 800-nm pump band, InGaAs/GaAs strained quantum-well lasers for the 980-nm
pump band, and InGaAsP/InP lasers for the 1.48-µm pump band. The 1.017-µm pump
band of Pr3+ is not so conveniently located for pumping with a semiconductor laser.
However, by codoping with Yb3+, a praseodymium-doped fiber can be pumped at
980 nm. An EDFA can be pumped at 800 or 980 nm, or 1.48 µm, but pumping in the
800-nm pump band is not very efficient due to a phenomenon known as excited-state
absorption (ESA) at 800 nm. Therefore, practical EDFAs are pumped at either 980 nm
or 1.48 µm. A silica-based NDFA operating in the 1.34-µm signal wavelength region
also suffers from ESA, but due to absorption of signal photons rather than pump pho-
tons. This problem can be avoided in an NDFA that is based on a fluorozirconate glass
fiber instead of a silica fiber.

It is important to recognize whether a particular fiber amplifier in a certain operating
condition functions as a quasi-two-level system, a three-level system, or a four-level
system because the characteristics of laser amplifiers vary significantly among the three
systems. As indicated in Table 10.2, this depends on the combination of the active ion
in the fiber, the pump transition used, and the laser wavelength of interest. For example,
an EDFA for the signal laser wavelength of 1.53 µm functions as a three-level system
when it is pumped at 800 or 980 nm and as a quasi-two-level system when pumped at
1.48 µm, but it is never a four-level system.

Rare-earth ion-doped fiber amplifiers have the general characteristics of laser ampli-
fiers discussed in the preceding section. However, because of the waveguide structure
of optical fibers, evaluation of certain parameters has to be modified when the gen-
eral formulations in the preceding section are applied to fiber amplifiers. The required
modification depends largely on the concentration profile of the active rare-earth ions
in the fiber. In general, these ions are doped only in the core of the fiber, but they may
distribute throughout the core area or reside only in a fraction of the core area. In the
following discussions, we assume that the entire fiber core is uniformly doped with
active ions at a concentration of Nt but the cladding contains no active ions. In this
situation, only a fraction, quantified by the fiber mode confinement factor defined in
(3.64), of the power of an optical beam guided in the fiber interacts with the active
ions. Because the pump and the signal of a given fiber amplifier have different wave-
lengths, their confinement factors, �p and �s, respectively, have different values. With
this understanding, we can find the following required modifications when applying
the formulations in the preceding section to a fiber amplifier:

αp = �pσ
p
a Nt, (10.119)

P sat
p = πw2

p

hνp

�pηpτ2σ
p
a
, (10.120)

P tr
p = σa

σe − pσa
P sat

p , (10.121)
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for the pump, where wp is the effective mode radius of the pump beam, and

g0(z) = �s(σe − pσa)Nt

1 + (1 + p)Pp(z)/P sat
p

[
Pp(z)

P sat
p

− P tr
p

P sat
p

]

= �s(σe + σa)Nt

1 + (1 + p)Pp(z)/P sat
p

Pp(z)

P sat
p

− �sσa Nt, (10.122)

Psat = πw2
s

hνs

�sτsσe
, (10.123)

for the signal, where ws is the effective mode radius of the signal beam. For a fiber
amplifier of a length l, the integral of the unsaturated gain coefficient for both cases of
p �= 0 and p = 0 has the following closed-form solution:

l∫
0

g0(z)dz = �sσe Ntl + �s(σe + σa)Nt

αp
ln

Pout
p

P in
p

,

= �sσe Ntl + �s(σe + σa)Nt

αp
ln(1 − ζp). (10.124)

Similarly to the relation between (10.106) and (10.108), this expression can be trans-
formed into

l∫
0

g0(z)dz =




�s(σe + σa)Nt

pαp
ln

P sat
p + pP in

p

P sat
p + pPout

p

− �sσa Ntl, for p �= 0,

�s(σe + σa)Nt

αp

(
P in

p − Pout
p

P sat
p

)
− �sσa Ntl, for p = 0.

(10.125)

EXAMPLE 10.13 An EDFA uses a step-index Al2O3/GeO2–silica fiber doped with an Er
concentration of Nt = 2.2 × 1024 m−3 in its core of a = 4.5 µm radius. It is pumped
in the forward direction at λp = 1.48 µm to amplify a signal at λs = 1.53 µm. At both
wavelengths, the fiber is single moded supporting only the fundamental HE11 mode
with effective mode radii of wp = 4.0 µm and ws = 4.1 µm and confinement factors of
�p = 0.72 and �s = 0.70 for the pump and the signal, respectively. The fluorescence
lifetime is τ2 = 10 ms. At the pump wavelength of 1.48 µm, σ p

a = 2.2 × 10−25 m2 and
σ

p
e = 1.2 × 10−26 m2. At the signal wavelength of 1.53 µm, σe = 7.9 × 10−25 m2 and

σa = 5.75 × 10−25 m2. The background absorption of the fiber at both pump and signal
wavelengths are negligible. The fiber length is chosen to be l = 20 m, and the input
pump power is P in

p = 20 mW. The pumping efficiency is ηp = 1. (a) Find P sat
p , P tr

p ,
and Psat. (b) Find the unsaturated power gain G0. (c) If the power of the input signal is
P in

s = 1 µW, what is the output signal power?
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Solution (a) The pump photon energy is hνp = (1.2398/1.48) eV = 0.838 eV. The
signal photon energy is hνs = (1.2398/1.53) eV = 0.810 eV. When pumped at λp =
1.48 µm, this EDFA is a quasi-two-level system with p = σ

p
e /σ

p
a = 1.2/22 = 0.055.

We find, by using (10.120) and (10.121), respectively, that

P sat
p = πw2

p

hνp

�pηpτ2σ
p
a

= π × (4.0 × 10−6)2 × 0.838 × 1.6 × 10−19

0.72 × 1 × 10 × 10−3 × 2.2 × 10−25
W = 4.25 mW

and

P tr
p = σa

σe − pσa
P sat

p = 5.75 × 10−25

7.9 × 10−25 − 0.055 × 5.75 × 10−25
× 4.25 mW = 3.22 mW.

Without pumping, Wpτ2 = 0, and

τs = τ2

(
1 + σa

σe

)
=
(

1 + 5.75

7.9

)
× 10 ms = 17.3 ms

from (10.76). Therefore, the intrinsic saturation power is

Psat = πw2
s

hνs

�sτsσe
= π × (4.1 × 10−6)2 × 0.810 × 1.6 × 10−19

0.70 × 17.3 × 10−3 × 7.9 × 10−25
W = 716 µW.

For P in
p = 20 mW, the pumping ratio is s = P in

p /P sat
p = 20/4.25 = 4.71. Therefore,

Wpτ2 = s = 4.71, and

τs = τ2
1 + σa/σe

1 + (1 + p)Wpτ2
= 1 + 5.75/7.9

1 + 1.055 × 4.71
× 10 ms = 2.9 ms

from (10.76). The saturation power for the signal at this pumping level is

Psat = πw2
s

hνs

�sτsσe
= π × (4.1 × 10−6)2 × 0.810 × 1.6 × 10−19

0.70 × 2.9 × 10−3 × 7.9 × 10−25
W = 4.27 mW.

This is the signal saturation power at the input pump power of P in
p = 20 mW. As the

pump power decays along the fiber due to pump absorption, τs increases toward the
value of 17.3 ms and, as a consequence, Psat decreases toward its intrinsic value of
716 µW.

(b) To find G0, we have to find the integral of g0(z) over the entire length of the fiber.
This integral can be evaluated by using (10.124) or, equivalently, by using (10.125).
For this fiber, we have

αp = �pσ
p
a Nt = 0.72 × 2.2 × 10−25 × 2.2 × 1024 m−1 = 0.348 m−1.

With P sat
p = 4.25 mW found above and Pp(0) = P in

p = 20 mW, we can solve (10.102)
for z = l = 20 m to find that Pout

p = Pp(l) = 984 µW. All other parameters needed for
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calculating the integral in (10.124) are known. We find from (10.124) that

l∫
0

g0(z)dz = 0.7 × 7.9 × 10−25 × 2.2 × 1024 × 20

+ 0.7 × (7.9 + 5.75) × 10−25 × 2.2 × 1024

0.348
× ln

0.984

20
= 6.14.

Then, we have

G0 = e6.14 = 464,

which is 26.7 dB.
Although we have found G0 by evaluating the integral of g0(z) through (10.124), it

is instructive to find the distributions of the pump power Pp(z) and the unsaturated gain
coefficient g0(z) as a function of distance along the EDFA. It can then be shown that
the value of the integral of g0(z) obtained by directly integrating over its distribution
is the same as that evaluated above using (10.124) to confirm the validity of (10.124).
To find Pp(z) and g0(z) as a function of distance along the EDFA, we first find Pp(z)
through (10.102). We then find g0(z) by using (10.122) and G0 as a function of z by
using (10.99). The results are plotted in Fig. 10.19. Also plotted in Fig. 10.19(a) is the
function exp(−αpz) for comparison with Pp(z)/P in

p to show that the pump power decays

(a) (b)

e

Figure 10.19 (a) Pump power evolution and (b) gain variation in an EDFA. Plotted as a function of
distance z along the fiber from the input of the EDFA are (a) pump power normalized to the input
pump power, Pp(z)/P in

p , and exponentially decaying function e−αpz for comparison with the pump
power evolution and (b) unsaturated gain coefficient g0(z) per meter and unsaturated power gain
G0(z) in decibels.
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much more slowly than the exponential function because of the absorption saturation of
the pump at the high pumping ratio of s = 4.71. We find from the curve in Fig. 10.19(b)
for G0(z) that G0 = 26.7 dB, or G0 = 464 at z = l = 20 m, confirming the result
obtained above.

(c) From (a), we know that the signal saturation power varies along the EDFA in
the range of 716 µW < Psat < 4.27 mW. If we take Psat = 4.27 mW, we find that
P in

s /Psat = 2.34 × 10−4 for P in
s = 1 µW. Then, with G0 = 464 obtained above, we

find from (10.98) that G = 420. If we take Psat = 716 µW, we find G = 308. The
actual gain is somewhere between these two limits, about G = 364. Therefore, the
output signal power is about Pout

s = 364 µW. Here we have not considered the effect
of the ASE. As the ASE can be significant, thus depleting a significant portion of the
population inversion, the realistic gain available for the signal could be much smaller
than that estimated here (see Problem 10.5.3). For an accurate solution, we need to
solve (10.95) together with (10.101) numerically while including the effect of ASE in
the process.

The length of a fiber amplifier can easily be made large. However, at a given pump
power for a longitudinally pumped fiber amplifier, if the fiber gain medium is too long,
part of the fiber gain medium will not be pumped because the pump power will be totally
absorbed before any of it reaches the far end of the fiber. If the fiber gain medium is too
short, part of the pump power will not be absorbed. Therefore, when considering the
optimum length of a fiber amplifier at a given pump power level, the difference between
a four-level system and a three-level or a quasi-two-level system is significant.

In a four-level system, such as a PDFA or an NDFA operating in the 1.3-µm region,
unexcited active ions are transparent to the signal photons. Therefore, in order to obtain
the maximum gain at a given pump power level for a longitudinally pumped four-level
fiber amplifier, it is only necessary to make sure that the fiber gain medium is long
enough so that all of the pump power is absorbed. Further increasing the length of the
fiber amplifier does not have much effect on the overall gain of the amplifier, provided
that the background attenuation coefficient of the host fiber is low. In a three-level or a
quasi-two-level system, such as an EDFA operating in the 1.53-µm region, the situation
is very different because unexcited active ions that remain in the ground state are in
resonance with the signal frequency to absorb the signal photons. Therefore, at a given
pump power level, there is an optimum length for a three-level or a quasi-two-level
fiber amplifier to have the maximum overall gain. A three-level fiber amplifier that is
shorter than the optimum length does not use the pump power efficiently, whereas one
that is longer than the optimum length suffers from absorption of the signal by the gain
medium in the unpumped section of the fiber.

The optimum length of a fiber amplifier can be found by considering the fact that
the maximum value of the integral of g0(z) over the length of the fiber occurs when
g0(l) = 0 at the end of the fiber. Physically, this condition is equivalent to requiring



674 Laser amplifiers

that Pp(l) = P tr
p so that G0 is maximized, as can be seen by considering g0(l) = 0 for

(10.122). By applying this condition, we find from (10.102) that the optimum length
of a quasi-two-level fiber amplifier, for which p �= 0, is

lopt = − 1

αp

(
ln

P tr
p

P in
p

+ 1

p
ln

P sat
p + pP tr

p

P sat
p + pP in

p

)
, (10.126)

and from (10.103) that the optimum length of a three-level fiber amplifier, for which
p = 0, is

lopt = − 1

αp

(
ln

P tr
p

P in
p

+ P tr
p − P in

p

P sat
p

)
. (10.127)

The optimum length of a fiber amplifier clearly depends on the input pump power.

EXAMPLE 10.14 Find the optimum length of the EDFA described in Example 10.13 for
an input pump power of P in

p = 20 mW. What is the unsaturated power gain G0 when
the optimum length is used for such an EDFA?

Solution This EDFA is a quasi-two-level system with p = 0.055. From Exam-
ple 10.13, we find that αp = 0.348 m−1, P sat

p = 4.25 mW, and P tr
p = 3.22 mW. Us-

ing (10.126), we find that the optimum length of this amplifier at an input power of
P in

p = 20 mW is

lopt = − 1

0.348
×
(

ln
3.22

20
+ 1

0.055
× ln

4.25 + 0.055 × 3.22

4.25 + 0.055 × 20

)
m = 15.14 m.

We find from Fig. 10.19(b) that g0(z) = 0 and G0 has a maximum value of 32 dB
at z = 15.14 m, in agreement with what is found here. Therefore, the unsaturated
power gain is G0 = 32 dB for the EDFA with an optimum length of 15.14 m at
P in

p = 20 mW.

In comparison to other laser gain media, a rare-earth ion-doped fiber typically has a
broad gain bandwidth, a relatively small emission cross section, and a long fluorescence
lifetime, as can easily be seen from Table 10.2 and Fig. 10.17. These characteristics
have very important implications for the practical applications of fiber amplifiers. The
broad gain bandwidth allows tunability and tolerance on the wavelength of the input
signal. The small emission cross section implies that the amplifier gain is not easily
perturbed by variations of the signal power because variations in the population in-
version caused by stimulated emission are small. Therefore, nonlinear effects such as
distortion of the signal waveform and cross interference between different signal chan-
nels are minimized. Together with the broad gain bandwidth, this characteristic allows
a single rare-earth ion-doped fiber amplifier to be used for amplifying multiple optical
channels in a wavelength division multiplexing system. The long fluorescence lifetime
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is no less important. In particular, the fluorescence lifetime of the 4I13/2 level of an
erbium-doped fiber is on the order of τ2 = 10 ms, though it varies somewhat among
different host glasses. Indeed, the success of EDFAs is due in large part to this long
fluorescence lifetime because it allows an EDFA to maintain a high gain at a modest
pump power under constant CW pumping. In addition, a long fluorescence lifetime for
the upper laser level means that population inversion and, therefore, gain do not respond
to any pump fluctuation or noise that varies on a time scale less than the saturation life-
time τs. Though τs is smaller than τ2 at a pumping level of s = Wpτ2 = P in

p /P sat
p > 1

required for an EDFA, it is still on the order of 1 ms at a high pumping level of s = 10.
For this reason, an EDFA is not susceptible to noise or intermodulation distortions at
frequencies higher than 1 kHz even at such a high pumping level.

Another significant characteristic of a rare-earth ion-doped glass fiber is that the
orientation of the active rare-earth ions doped in the fiber is randomized because of the
amorphous structure of the host glass. This effect results in polarization-independent
absorption and emission cross sections. Consequently, the optical gain in a rare-earth
ion-doped glass fiber amplifier is insensitive to the polarization state of the optical
signal.

PROBLEMS

10.1.1 A He–Ne laser is a four-level system that has a spontaneous radiative lifetime of
τsp = 300 ns for emission at 632.8 nm wavelength. The upper and lower laser
levels for this emission wavelength both relax radiatively, with τ2 = τ rad

2 = 30 ns
and τ1 = τ rad

1 = 10 ns, respectively. Find the naturally broadened homogeneous
linewidth and the lifetime-broadened linewidth. Compare them to the linewidth
due to Doppler broadening found in Example 10.2. What is the expected
lineshape?

10.1.2 The linewidth of an Ar-ion laser emitting at 488 nm is predominately inhomo-
geneously broadened due to Doppler broadening. The atomic mass number of
Ar is 40, and the operating gas temperature of an Ar-ion laser is about 1200 ◦C.
Find the emission linewidth at this wavelength.

10.1.3 A ruby laser is a three-level solid-state system. For its emission at 694.3 nm
wavelength, the lower laser level is the ground state of the Cr3+ ions doped in
a sapphire crystal. The upper laser level relaxes radiatively with τ2 = τ rad

2 =
τsp = 3 ms. The measured linewidth at room temperature is �ν = 330 GHz.
a. Find the natural linewidth and the lifetime-broadened homogeneous

linewidth.
b. If the measured linewidth at room temperature is entirely homogeneously

broadened, what is the linewidth-broadening factor γ
dephase
21 due to dephasing

through phonon collisions?
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10.1.4 A copper vapor laser is a gas laser that operates at a gas temperature of about
1500 ◦C. The atomic mass number of Cu is 63. For the emission of a copper
vapor laser at 510.5 nm, the upper laser level relaxes almost entirely radiatively
only to the lower laser level with τ2 = τ rad

2 = τsp = 500 ns. The lower laser level
is a long-living metastable state that relaxes nonradiatively with a lifetime on
the order of τ1 = 10 µs.
a. Find the homogeneous linewidths due to natural broadening and lifetime

broadening, respectively.
b. Find the inhomogeneous linewidth due to Doppler broadening.
c. Is the observed linewidth primarily homogeneously or inhomogeneously

broadened? What is the expected lineshape?
d. Explain why the copper vapor laser is a three-level system though the lower

laser level is not the ground state.
e. Give an explanation to account for the fact that a copper vapor laser cannot

be operated in a CW mode but can only be pulsed.
10.1.5 The spectral distribution of blackbody radiation is normally measured with a

spectrometer as a function of radiation wavelength instead of radiation fre-
quency. Therefore, the experimentally measured spectral energy density of
blackbody radiation is expressed as u(λ) rather than as u(ν).
a. Use the relation u(λ)dλ = −u(ν)dν and Planck’s formula for u(ν) given in

(10.20) to show that

u(λ) = 8πn3hc

λ5

1

ehc/λkBT − 1
. (10.128)

b. The blackbody radiation spectrum obtained in (a) as a function of radiation
wavelength peaks at wavelength λpk. Show that λpk is a function of tem-
perature only and that it varies inversely with temperature according to the
following relation known as Wien’s displacement law:

λpkT = 2.898 × 10−3 m K. (10.129)

c. Find the peak wavelength of blackbody radiation at the human body temper-
ature of 37 ◦C.

d. The sun has a surface temperature of 6000 K. Find the peak wavelength of
solar radiation. Is the color of the sun seen at sea level determined by this
peak wavelength?

10.1.6 Show that the peak value of the emission cross section of a laser gain medium
at the center wavelength λ of the emission spectrum can be expressed as that
in (10.39) for a homogeneously broadened medium with an ideal Lorentzian
lineshape and as that in (10.40) for an inhomogeneously broadened medium
with an ideal Gaussian lineshape.
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10.1.7 Show that for a given peak emission wavelength λ and a given spontaneous
radiative lifetime τsp, we have the following relation between the peak emis-
sion cross sections of a homogeneously broadened and an inhomogeneously
broadened medium:

σ h
e

σ inh
e

= 1

(π ln 2)1/2

�νinh

�νh
= 0.678

�νinh

�νh
. (10.130)

How much larger is the peak emission cross section of an inhomogeneously
broadened medium than that of a homogeneously broadened medium if the two
media have the same emission wavelength, spontaneous radiative lifetime, and
emission linewidth?

10.1.8 Use the data and information provided in Table 10.1 to calculate the peak emis-
sion cross sections for the following gain media: Ar ion, copper vapor, ruby,
Nd : YAG, Ti : sapphire, and Cr : LiSAF. Compare the calculated results with the
values of σe listed in the table for these media.

10.2.1 A Nd : YAG crystal doped with 1 at. % Nd, equivalent to 0.725 wt. % Nd,
has a Nd concentration of 1.38 × 1026 m−3. Use the data listed in Table 10.1
to find the percentage of active Nd ions that need to be pumped to the upper
laser level 4F3/2 in order to have a gain coefficient of 12.5 m−1 at 1.064 µm
wavelength?

10.2.2 A Ti : sapphire crystal is doped with 0.1 wt. % Ti2O3 for a Ti concentration of
3.3 × 1025 m−3. Use its spectra of σa(λ) and σe(λ) shown in Fig. 10.8 to answer
the following questions.
a. What are the absorption coefficients for E ‖ c and E ⊥ c polarizations, res-

pectively, at the absorption peak wavelength of 490 nm if the crystal is not
pumped?

b. If 1% of the Ti ions are excited to the upper laser level, what are the
gain coefficients for the two polarizations at the gain peak wavelength of
795 nm?

10.2.3 Explain why the peak value of the absorption cross section of Ti : sapphire
is so much smaller than that of the emission cross section, as seen from
Fig. 10.8.

10.2.4 The spontaneous emission spectrum of a laser medium is determined by
the emission cross section spectrum of the medium, but the two spectra
are not exactly the same. They have different shapes and peak at different
frequencies.
a. Show by using (10.31) and (10.36) that

Wsp(ν) = 8πn2ν2

c2
σe(ν). (10.131)
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b. By definition, the spontaneous lifetime τsp is the inverse of the total sponta-
neous relaxation rate:

1

τsp
=

∞∫
0

Wsp(ν)dν =
∞∫

0

Wsp(λ)dλ. (10.132)

Find Wsp(λ) from this relation. Show that (10.45) and (10.46) can be obtained
from (10.132).

c. Show that the spectral power density of spontaneous emission emitted by
each atom in the upper laser level is

P̂ sp(ν) = 8πn2hν3

c2
σe(ν) (10.133)

per unit frequency interval and is

P̂ sp(λ) = 8πn2hc2

λ5
σe(λ) (10.134)

per unit wavelength interval.
d. Compared to the peak wavelength of the emission cross section spectrum

σe(λ), does the peak wavelength of the spontaneous emission spectrum P̂ sp(λ)
shift to the longer or the shorter wavelength side?

e. Show that the total spontaneous emission power from a gain medium of a
volume V that is pumped to have a population density N2 in its upper laser
level is

Psp = VN2
8πn2h

c2

∞∫
0

ν3σe(ν)dν = VN28πn2hc2

∞∫
0

σe(λ)

λ5
dλ. (10.135)

10.2.5 Modify the relations obtained in Problem 10.2.4(a) and (b) as needed for uni-
axial crystals, such as ruby or Ti : sapphire, in which the emission cross section
spectrum varies with the polarization of the emitted radiation with respect to the
c axis of the crystal.

10.2.6 Show that the imaginary part of the resonant susceptibility given in (10.53) can
be expressed in the following form when the g1 states in level |1〉 and the g2

states in level |2〉 are not split into sublevels:

χ ′′
res(ω) =

(
g2

g1
N1 − N2

)
π2c3

nω3τsp
ĝ(ω). (10.136)

Once the lineshape function ĝ(ω) of a resonant transition is determined, the real
part, χ ′

res(ω), of this resonant susceptibility can be found generally through the
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Kramers–Kronig relations given in (1.177). For a homogeneously broadened
transition, show that

χres(ω) = χ ′
res(ω) + iχ ′′

res(ω) ≈ −
(

g2

g1
N1 − N2

)
πc3

nω3
21τsp

1

(ω − ω21) + iγ21
.

(10.137)

10.3.1 In this problem, we consider the optical gain in a medium.
a. Show that the optical gain coefficient as a function of optical signal intensity

for all three basic systems can be expressed in the form of (10.73) with the
saturation intensity expressed in the form of (10.74).

b. Show that the unsaturated gain coefficient g0 and the saturation lifetime τs

for the three systems are those given in (10.75)–(10.80).
c. Show that the minimum pumping requirement obtained for g0 > 0 is identical

to that given in (10.69) in the case of a quasi-two-level system and that given
in (10.71) in the case of a three-level system.

10.3.2 Show that the required pumping rate for a desired unsaturated gain coefficient
of g0 is that given in (10.81) for a quasi-two-level system, that given in (10.82)
for a three-level system, and that given in (10.83) for a four-level system.

10.3.3 Use the data given in Table 10.1 to find the saturation intensities at transparency
for the following gain media at their respective emission peak wavelengths:
HeNe at 632.8 nm, Ar ion at 488 nm, Nd : YAG at 1.064 µm, Nd : glass at
1.054 µm, Er : fiber at 1.53 µm, Ti : sapphire at 800 nm, and Cr : LiSAF at
825 nm. For quasi-two-level systems such as Ti : sapphire and Cr : LiSAF, take
p = 0 for simplicity.

10.3.4 Show that the unsaturated gain coefficient of any optically pumped system as
a function of pump intensity can be expressed as the relation in (10.88), where
p �= 0 and I tr

p �= 0 for a quasi-two-level system, p = 0 but I tr
p �= 0 for a three-

level system, and p = 0 and I tr
p = 0 for a four-level system.

10.3.5 Nd : YAG is a four-level system for its 1.064 µm transition line. Being a
four-level system, σa = 0. It has many pump bands, but a strong pump band
exists at 808 nm wavelength with a peak absorption cross section of σ

p
a =

5.6 × 10−24 m2. A Nd : YAG laser rod is doped with a Nd concentration of
1.38 × 1026 m−3. From Table 10.1, τ2 = 240 µs and τsp = 515 µs. Take an
emission cross section of σe = 9 × 10−23 m2. The pump quantum efficiency is
ηp = 47%.
a. Find the pumping rate and the pump intensity required for an unsaturated

gain coefficient of 5 m−1. Compare the results obtained here for Nd : YAG to
those obtained in Example 10.7 for ruby.

b. What is the spontaneous emission power density if the Nd : YAG crystal is
pumped to a gain coefficient of 5 m−1 for the 1.064-µm line? If a Nd : YAG
crystal rod of 6 cm length and 4 mm cross-sectional diameter is uniformly
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pumped, what is the spontaneous emission power in this situation? Compare
the results with those obtained in Example 10.8 for ruby.

10.3.6 Ti : sapphire is a quasi-two-level system. A Ti : sapphire laser rod is doped with
0.024 wt. % Ti2O3 for a Ti concentration of 7.9 × 1024 m−3. At the desired
Ti : sapphire laser wavelength of λ = 800 nm for E ‖ c polarization, σe = 3.4 ×
10−23 m2 and σa ≈ 8 × 10−26 m2. At the pump wavelength of 532 nm, the
absorption cross section is σ

p
a = 7.4 × 10−24 m2, and the emission cross section

is σ
p
e ≈ 3 × 10−28 m2. From Table 10.1, τ2 = 3.2µs and τsp = 3.9µs. The pump

quantum efficiency is ηp = 80%.
a. Find the transparency pumping rate and the transparency pump intensity

of the 532 nm pump required for Ti : sapphire to reach transparency for the
800 nm transition for E ‖ c polarization. Find the pumping rate and the pump
intensity required for an unsaturated gain coefficient of 5 m−1 in the crystal
under consideration. Compare the results obtained here for Ti : sapphire with
those obtained in Example 10.7 for ruby.

b. Find the critical fluorescence power density corresponding to transparency
for the 800 nm transition. What is the spontaneous emission power density if
the Ti : sapphire crystal is pumped above transparency for a gain coefficient of
5 m−1 at 800 nm laser wavelength? Compare the results with those obtained
in Example 10.8 for ruby.

10.3.7 Find the population densities, N1 and N2, in the lower and upper laser levels,
respectively, as fractions of the total population density, Nt, for quasi-two-level,
three-level, and four-level systems, respectively, when each medium is pumped
at (a) its saturation pump intensity, P sat

p , and (b) its transparency pump intensity,
P tr

p .
10.4.1 Show that the relation in (10.96) describes the spatial evolution of the amplified

signal power in a laser amplifier that has a spatially varying unsaturated gain
coefficient of g0(z). Show also that the power gain of an amplified signal can be
found from the relation in (10.98).

10.4.2 Show that the integral of the unsaturated gain coefficient over the length of an
amplifier has the form given in (10.106) irrespective of whether p �= 0 or p = 0.
Show also that it can be expressed in different forms for the cases of p �= 0 and
p = 0 given (10.108).

10.4.3 Show by using the relations in (10.87), (10.88), and (10.91) that when the effect
of gain saturation is ignored, the spontaneous emission factor Nsp as defined in
(10.114) can be expressed in the form of (10.115).

10.4.4 The Nd : YAG laser amplifier described in Example 10.9 is pumped with the
same 808-nm pump source considered in Example 10.9 at the same pump power
of Pp = 2 W. It is used to amplify a signal at 1.064 µm that has an input
power of P in

s = 100 mW. It has an optical bandwidth of 150 GHz, as found in
Example 10.11.
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a. What is the unsaturated power gain of the amplifier? What are the power gain
and the output power of the signal? Compare the results with those obtained
in Example 10.9.

b. What are the power conversion efficiency and the quantum efficiency? Com-
pare the results with those obtained in Example 10.10.

c. Find the ASE noise power and the optical noise figure. Compare the results
with those obtained in Example 10.12.

10.4.5 Answer the questions in Problem 10.4.4 for the Nd : YAG laser amplifier if it
is pumped at Pp = 3 W for amplification of a signal that has an input power of
P in

s = 100 mW.
10.5.1 The spectra of the absorption and emission cross sections of an Er-doped

Al2O3/P2O5–silica glass are shown in Fig. 10.17(a). The upper laser level is
4I13/2 with a degeneracy of g2 = 14, and the lower laser level is 4I15/2 with
g1 = 16.
a. Find the spontaneous lifetime τsp through the relation in (10.46) by using the

emission spectrum σe(λ).
b. Find the spontaneous lifetime τsp through the relation in (10.46) by using the

absorption spectrum σa(λ). Compare the result with that obtained in (a).
10.5.2 Use the McCumber relation given in (10.48) to calculate the emission cross

section spectrum σe(λ) for Er-doped Al2O3/P2O5–silica glass from its absorption
cross section spectrum σa(λ) shown in Fig. 10.17(a). Compare the calculated
σe(λ) with the measured spectrum also shown in Fig. 10.17(a).

10.5.3 The EDFA described in Example 10.13 has a spontaneous linewidth of �ν =
4.8 THz. Consider its amplification of an input signal of 1 µW as described in
Example 10.13(c).
a. Find the spontaneous emission factor Nsp for the EDFA at the input pump

power level of 20 mW.
b. What is the ASE power if no optical filter is used? What is the ASE power

if a bandpass optical filter having a bandwidth of Bo = 400 GHz centered at
the signal wavelength is used? How do these ASE powers compare with the
output signal power of the amplifier?

c. What is the noise figure of the amplifier?
10.5.4 The optimum length found in Example 10.14 is chosen for the EDFA pumped

at 1.48 µm with an input pump power of 20 mW for amplification of an input
signal of 1 µW at 1.53 µm. First find the output signal power. Then, answer the
questions in Problem 10.5.3 for this EDFA of optimum length.

10.5.5 If the EDFA discussed in Example 10.13 is pumped at an input pump power of
10 mW, the gain would be much less than that found in Example 10.13.
a. Find the unsaturated power gain of the EDFA, which has a fiber length of 20 m.
b. Find the optimum length and the corresponding unsaturated power gain of

the EDFA.
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c. For a given input pump power, there is a maximum length of the fiber, beyond
which G0 < 0 dB and the EDFA becomes an attenuator of the signal. Find
the maximum length at the input pump power level of 10 mW.

10.5.6 The EDFA described in Example 10.13 can be pumped at 980 nm instead.
When it is pumped at this wavelength, it behaves as a three-level system with
σ

p
a = 2.58 × 10−25 m2. The fundamental mode of the fiber at this pump wave-

length has an effective mode radius of wp = 3.3 µm and a confinement factor of
�p = 0.84. The pumping efficiency is ηp = 1. Answer the questions in Exam-
ple 10.13 for this EDFA pumped at 980 nm with an input pump power of 20 mW
for the amplification of an input signal of 1 µW at 1.53 µm. Compare the results
with those found in Example 10.13.

10.5.7 Answer the questions in Problem 10.5.3 for the EDFA under the operating
conditions specified in Problem 10.5.6.

10.5.8 Find the optimum length of the EDFA considered in Problem 10.5.6, which is
pumped at 980 nm with an input pump power of 20 mW for amplification of an
input signal of 1 µW at 1.53 µm. Find the unsaturated power gain G0 and the
output signal power. Answer the questions in Problem 10.5.3 for this EDFA of
optimum length. Compare the results with those found in Problem 10.5.4 for an
EDFA of optimum length pumped at 1.48 µm.
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11 Laser oscillators

There are a wide variety of lasers, covering a spectral range from the soft X-ray to
the far infrared, delivering output powers from microwatts to terawatts, operating from
continuous wave to femtosecond pulses, and having spectral linewidths from just a few
hertz to many terahertz. The gain media utilized include plasma, free electrons, ions,
atoms, molecules, gases, liquids, solids, and so on. The sizes range from microscopic,
of the order of 10 µm3, to gigantic, of an entire building, to stellar, of astronomical
dimensions. An optical gain medium can amplify an optical field through stimulated
emission. If the gain medium is sufficiently long, it is possible to generate laser light
at one end of the medium through amplification of some initial optical field from
spontaneous emission produced at the other end of the gain medium. Astrophysical laser
action in space has been found to occur naturally, for example at the deep ultraviolet
wavelength of 250 nm from the star Eta Carinae, at the near-infrared H2 wavelength of
2.286 µm from the star NGC 7072, at the far-infrared wavelength of 169 µm in a disk
of hydrogen gas surrounding the star MWC349 in the constellation Cygnus, and at the
mid-infrared CO2 wavelength of 10.6 µm in the Martian atmosphere. In a practical laser
device, however, it is generally necessary to have certain positive optical feedback in
addition to optical amplification provided by a gain medium. This requirement can be
met by placing the gain medium in an optical resonator. The optical resonator provides
selective feedback to the amplified optical field.

Lasers are indeed fascinating, but not all of them are of practical usefulness as
photonic devices. In this chapter, we discuss the characteristics of laser oscillators in
general. Optical fiber lasers are specifically discussed in Section 11.5. Semiconductor
lasers are arguably the most important lasers in the photonics industry. They are covered
in great detail in Chapter 13.

11.1 Resonant optical cavities

One major characteristic of laser light is that it is highly collimated and spatially
and temporally coherent. This characteristic is a direct consequence of the fact that
laser oscillation takes place only along a longitudinal axis of an optical resonator,

684
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which can be either straight or folded. The gain medium emits spontaneous photons
in all directions, but only the radiation that propagates along the longitudinal axis
within a small divergence angle defined by the resonator obtains sufficient regenerative
amplification to reach the threshold for oscillation. In order for the oscillating laser
field in the longitudinal direction to be amplified most efficiently, any spontaneous
photon emitted in a direction outside of that small angular range should not be allowed
to compete for the gain. For this reason, a functional laser oscillator is necessarily
an open cavity with optical feedback only along the longitudinal axis. Most of the
randomly directed spontaneous photons escape from the cavity through the open sides
very quickly. Only a very small fraction of them that happen to be emitted within the
divergence angle of the laser field mix with the oscillating laser field to become the
major incoherent noise source of the laser.

A laser cavity can take a variety of forms. Figure 11.1 shows the schematic structures
of a few common laser cavities. Though a laser cavity is always an open cavity with a
clearly defined longitudinal axis, the axis can lie on a straight line, as in Figs. 11.1(a) and
(e), or it can be defined by a folded path, as in Figs. 11.1(b), (c), and (d). A linear cavity
with two end mirrors, as in Fig. 11.1(a), is known as a Fabry–Perot cavity because it
takes the form of a Fabry–Perot interferometer. A folded cavity can simply be a folded
Fabry–Perot cavity with a standing oscillating field, as in Fig. 11.1(b). A folded cavity
can also be a non-Fabry–Perot ring cavity that supports two independent oscillating
fields traveling in opposite directions, as in Figs. 11.1(c) and (d). The optical feedback
in a Fabry–Perot cavity is provided simply by the two end mirrors perpendicular to
the longitudinal axis, as in Figs. 11.1(a) and (b). In a ring cavity, it is provided by the
circulation of the laser field along the ring path defined by mirrors, as in Fig. 11.1(c),
or by a fiber waveguide, as in Fig. 11.1(d). It can also be supplied by the distributed
feedback of a distributed Bragg grating along the axis, as in Fig. 11.1(e). The cavity can
also be constructed with an optical waveguide, as in the case of a semiconductor laser
or a fiber laser. In the following discussions, we take the longitudinal axis to define the
z coordinate, and the transverse coordinates perpendicular to the longitudinal axis to
be the x and y coordinates. In a folded cavity, the z axis is thus also folded along with
the longitudinal optical path.

In a ring cavity, an intracavity field completes one round trip by circulating inside
the cavity in only one direction. The two contrapropagating fields that circulate in
opposite directions in a ring cavity are independent of each other even when they have
the same frequency. In a Fabry–Perot cavity, an intracavity field has to travel the length
of the cavity twice in opposite directions to complete a round trip. The time it takes
for an intracavity field to complete one round trip in the cavity is called the round-trip
time, T :

T = round-trip optical path length

c
= lRT

c
, (11.1)
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(c)

(a)

(b)

(d )

(e)

Figure 11.1 Schematics of a few common laser cavity structures: (a) linear cavity with end
mirrors; (b) folded cavity with end mirrors; (c) three-mirror ring cavity with two independent,
contrapropagating fields; (d ) ring cavity with two independent, contrapropagating fields guided by
an optical-fiber waveguide; and (e) cavity with a distributed Bragg grating.
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where the round-trip optical path length lRT takes into account the refractive index of
the medium inside the cavity.

A laser consists of at least a gain medium in a resonant laser cavity. The gain medium
may fill up the entire length of the cavity, or it may occupy a fraction of the cavity length.
For a gain medium of a length lg in a laser cavity of a length l, as shown in Fig. 11.2,
we can define an overlap factor between the gain medium and the laser mode intensity
distribution as the ratio

� =

∫ ∫ ∫
active

|E|2dxdydz

∞∫
−∞

∞∫
−∞

∞∫
−∞

|E|2dxdydz

≈ Vactive

Vmode
≈ lg

l
. (11.2)

This ratio is commonly known as the gain filling factor for a gain medium that takes up
only a fraction of the length of the laser cavity but is related to the mode confinement
factor in a waveguide laser, such as the fiber laser or the semiconductor laser. When
the gain medium fills up a laser cavity and covers the entire intracavity laser field
distribution, � = 1; otherwise, � < 1. Take the refractive index of the gain medium to
be n and that of the intracavity medium excluding the gain medium to be n0, then the
round-trip optical path length can be expressed as

lRT =
{

2�nl + 2(1 − �)n0l = 2nl, for a linear cavity,

�nl + (1 − �)n0l = nl, for a ring cavity,
(11.3)

where

n = �n + (1 − �)n0 (11.4)

is the weighted average index of refraction throughout the laser cavity. When optical
elements other than a gain medium exist in a laser cavity, n is still the weighted average
index throughout the laser cavity with n0 being the weighted average index of the
background medium and such optical elements.

Consider an intracavity field, Ec(z), at any point z on the longitudinal axis inside an
optical cavity. When it completes a round trip back to position z, it is modified by a
complex amplification or attenuation factor a to become aEc(z). The factor a can be
expressed generally as

a = G exp
(
iϕRT

)
, (11.5)

where G is the round-trip gain factor for the field amplitude, equivalent to the power
gain in a single pass through a linear Fabry–Perot cavity, and ϕRT is the round-trip
phase shift for the intracavity field. Both G and ϕRT have real values, and G ≥ 0. If
G > 1, the intracavity field is amplified. If G < 1, the intracavity field is attenuated.
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(a)

(b)

Figure 11.2 Passive laser cavities with a gain filling factor � under optical injection: (a) a
Fabry–Perot cavity and (b) a ring cavity. The refractive index of the gain medium is n, while that of
the background medium in the cavity is n0. A laser cavity is passive when its gain medium is absent
or is present but not pumped.

Longitudinal modes

We first consider the resonant characteristics of a passive optical cavity. A passive cavity
cannot generate or amplify an optical field. In order to keep a resonant intracavity field in
such a cavity, it is necessary to inject an input optical field, Ein, to the cavity constantly.
As shown in Fig. 11.2, the forward-traveling component of the intracavity field at
location z1 just inside the cavity next to the injection point is the sum of the transmitted
input field and the fraction of the intracavity field returning after one round trip through
the cavity:

Ec(z1) = tinEin + aEc(z1), (11.6)

where tin is the complex transmission coefficient for the input field. We find that

Ec(z1) = tin
1 − a

Ein. (11.7)

The transmitted output field, Eout, is proportional to the intracavity field: Eout ∝ Ec(z1).
Therefore, the output intensity is proportional to the input intensity through the follow-
ing relationship:

Iout ∝ Iin

|1 − a|2 = Iin

(1 − G)2 + 4G sin2(ϕRT/2)
. (11.8)

The proportionality constant of this relationship depends on the transmission coefficient
of the output port and the amount of intracavity absorption over the distance from point
z1 to the output point. The transmittance of the cavity is Tc = Iout/Iin, which is scaled
by the value of this proportionality constant. For our discussions in the following,
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Figure 11.3 Normalized transmittance of a passive cavity as a function of the round-trip phase shift
in the cavity. In a resonator with a fixed, frequency-independent optical path length, the round-trip
phase shift is directly proportional to the optical frequency. The longitudinal mode frequencies are
defined by the frequencies corresponding to the resonance peaks. The spectral shape for a gain of G
is the same as that for a gain of 1/G. Thus, the curve for G = 10 is the same as that for G = 0.1,
that for G = 2 is the same as that for G = 0.5, and so on.

however, this proportionality constant is irrelevant. Therefore, we only have to consider
the following normalized transmittance of the passive cavity:

T̂c = 1

1 + [4G/(1−G)2] sin2(ϕRT/2)
= 1

1 + [(4/G)/(1−1/G)2] sin2(ϕRT/2)
, (11.9)

which is obtained by normalizing Tc to its peak value. In Fig. 11.3, T̂c is plotted as a
function of ϕRT for a few different values of G. We find that the spectral shape for a
gain of G is the same as that for a gain of 1/G.

At any given input field intensity, the intracavity field intensity of a passive cavity is
proportional to T̂c because the transmitted field is directly proportional to the intracavity
field. Therefore, resonances of the cavity occur at the peaks of T̂c where the intracavity
intensity reaches a maximum with respect to a constant input field intensity. As can be
seen from Fig. 11.3, the resonance condition of the cavity is that the round-trip phase
shift is an integral multiple of 2π :

ϕRT = 2qπ, q = 1, 2, . . . (11.10)

From (11.9) and Fig. 11.3, we find that the separation between two neighboring reso-
nance peaks of T̂c is

�ϕL = 2π (11.11)

and that the FWHM of each resonance peak of the cavity is

�ϕc = 2
1 − G

G1/2
. (11.12)
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The finesse, F , of the cavity is the ratio of the separation to the FWHM of the peaks:

F = �ϕL

�ϕc
= πG1/2

1 − G
. (11.13)

In the simplest situation where the optical field is a plane wave at a frequency ω, the
round-trip phase shift can be generally expressed as

ϕRT = ω

c
lRT + ϕlocal, (11.14)

where the first term on the right-hand side is the phase shift contributed by the propa-
gation of the optical field over an optical path length of lRT, and the second term, ϕlocal,
is the sum of all the localized, and usually fixed, phase shifts such as those caused by
reflection from the mirrors of a cavity. In the case when the frequency of the input field
is fixed, the resonance condition given in (11.10) can be satisfied by varying the cavity
path length lRT, either by varying the physical length of the cavity or by varying the
refractive index of the intracavity medium, or both. The optical cavity then functions
as an optical interferometer, which is used to measure the frequency and the spectral
width of an optical wave accurately.

When both the optical path length and the localized phase shifts are fixed, as is
typically the case in a laser resonator, the resonance condition of ϕRT = 2qπ is satisfied
only if the optical frequency satisfies

ωq = c

lRT

(2qπ − ϕlocal), (11.15)

or

νq = c

lRT

(
q − ϕlocal

2π

)
. (11.16)

These discrete resonance frequencies are the longitudinal mode frequencies of the
optical resonator because they are defined by the resonance condition of the round-
trip phase shift along the longitudinal axis of the cavity. The frequency spacing, �νL,
between two neighboring longitudinal modes is known as the free spectral range of
the optical resonator. The FWHM of a longitudinal mode spectral peak is �νc. If the
values of lRT and ϕlocal are independent of frequency, then �νL ∝ �ϕL and �νc ∝ �ϕc.
Therefore, the finesse of the resonator is the ratio of the free spectral range to the
longitudinal mode width:

F = �ϕL

�ϕc
= �νL

�νc
. (11.17)

From (11.16), we find that

�νL = νq+1 − νq = c

lRT

= 1

T
. (11.18)
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The longitudinal mode width can be expressed as

�νc = �νL

F
= 1 − G

πG1/2
�νL. (11.19)

Transverse modes

Any realistic optical cavity has a finite transverse cross-sectional area. Therefore, the
resonant optical field inside an optical cavity cannot be a plane wave. Indeed, there exist
certain normal modes for the transverse field distribution in a given optical cavity. Such
transverse field patterns are known as the transverse modes of a cavity. A transverse
mode of an optical cavity is a stable transverse field pattern that reproduces itself after
each round-trip pass in the cavity, except that it might be amplified or attenuated in
magnitude and shifted in phase.

The transverse modes of an optical cavity are defined by the transverse boundary
conditions that are imposed by the transverse cross-sectional index profile of the cavity.
For a cavity that utilizes an optical waveguide for lateral confinement of the optical field,
the transverse modes are clearly the waveguide modes, such as the TE and TM modes
of a slab waveguide or the TE, TM, HE, and EH modes of a cylindrical fiber waveguide.
For a nonwaveguiding cavity, the transverse modes are TEM fields determined by the
shapes and sizes of the end mirrors of the cavity, as well as by the properties of the
medium and any other optical components inside the cavity. The Gaussian modes
discussed in Section 1.7 are an important set of such unguided TEM modes.

In an optical cavity that supports multiple transverse modes, the round-trip phase
shift is generally a function of the transverse mode indices m and n. Therefore, the
resonance condition can be explicitly written as

ϕRT
mn = 2qπ. (11.20)

As a result, the resonance frequencies of the cavity are ωmnq , or νmnq , which are
functions of both longitudinal and transverse mode indices. For a given longitudi-
nal mode index q, multiple resonance frequencies associated with different transverse
modes can exist, as illustrated schematically in Fig. 11.4.

In a cavity that consists of an optical waveguide, the propagation constant βmn(ω) is
a function of the waveguide mode. If the physical length of the waveguide cavity is l,
the effective round-trip optical path length of a waveguide mode is

lRT
mn =




2
c

ω
βmn(ω)l, for a linear cavity,

c

ω
βmn(ω)l, for a ring cavity.

(11.21)

The round-trip optical path length, lRT
mn , generally varies from one mode to another due

to modal dispersion of the waveguide. In addition, the localized phase shift can also
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Figure 11.4 Cavity resonance frequencies associated with different longitudinal and transverse
modes. For clarity, the heights of the transverse modes are made arbitrarily decreasing.

be mode dependent. Therefore, instead of ωq given by (11.15) for a plane wave, the
resonance frequencies ωmnq for a waveguide cavity are the solutions of the following
resonance condition:

ϕRT
mn = ω

c
lRT
mn + ϕlocal

mn = 2qπ. (11.22)

In a nonwaveguiding cavity, the propagation constant, k, is a property of the medium
only and is not mode dependent. However, a mode-dependent on-axis phase varia-
tion ζmn(z) does exist, which is given in (1.140) for a Hermite–Gaussian mode as
discussed in Section 1.7. The total on-axis phase variation for the TEMmn Gaussian
mode is ϕmn(z) = kz + ζmn(z), which includes the mode-independent phase shift kz
and the mode-dependent phase shift ζmn(z). Consequently, the resonance condition for
a Gaussian mode is a modification of that for a plane wave by adding the round-trip
contribution of the mode-dependent phase shift:

ϕRT
mn = ω

c
lRT + ζ RT

mn + ϕlocal
mn = 2qπ, (11.23)

where the localized phase shift can, in general, be mode dependent.

Cavity lifetime and quality factor

Here we consider some important parameters of a passive optical cavity with no optical
gain. Such a passive optical cavity with χres = 0, thus g = 0, is also known as a cold
cavity. To be specific, we identify the round-trip gain factor for the field amplitude in
a cold cavity as Gc, or as Gc

mn for the transverse mode mn.
Because there is no optical gain in a cold cavity, Gc < 1. Any optical field that

initially exists in the cavity gradually decays as it circulates inside the cavity. Because
the field amplitude is attenuated by a factor of Gc per round trip, the intensity and thus
the number of intracavity photons are attenuated by a factor of G2

c per round trip. We
can define a photon lifetime, also called cavity lifetime, τc, and a cavity decay rate, γc,
for a cold cavity through the following relation:

G2
c = e−T/τc = e−γcT . (11.24)
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Therefore,

τc = − T

2 ln Gc
. (11.25)

The cavity decay rate is the decay rate of the optical energy stored in a cavity and is
given by

γc = 1

τc
= − 2

T
ln Gc. (11.26)

In general, the value of Gc for a given cavity is mode dependent. Usually, the fun-
damental transverse mode has the lowest loss because its field distribution is most
transversely concentrated toward the center of the cavity defined by the longitudinal
axis. As the order of a mode increases, its loss in the cavity increases due to the in-
creased diffraction loss associated with transverse spreading of its field distribution.
Consequently, both τc and γc are also mode dependent: τ c

mnq and γ c
mnq . Unless a specific

mode-discriminating mechanism is introduced in a cavity, either intentionally or unin-
tentionally, the fundamental mode generally has the largest value of τc and the lowest
value of γc.

The quality factor, Q, of a resonator is generally defined as the ratio of the resonance
frequency and the energy damping rate of the resonator:

Q = ωres

(
energy stored in the resonator

average power dissipation

)
= ωres

γ
, (11.27)

where ωres is the resonance frequency of the resonator and γ is the energy decay rate
of the resonator. Therefore, the quality factor of a cold cavity is

Q = ωq

γc
= ωqτc, (11.28)

where ωq is the longitudinal mode frequency. For a low-loss, high-Q cavity, Gc is not
much less than unity, and it can be easily shown by using (11.19) and (11.24) that

�νc ≈ 1

2πτc
= γc

2π
(11.29)

and

Q ≈ νq

�νc
. (11.30)

Note that though it is not explicitly spelled out in (11.28) and (11.30), the quality
factor is a function of not only the longitudinal-mode index q but also the transverse-
mode indices m and n: Q = Qmnq . To be precise, (11.28) should be written as

Qmnq = ωmnq

γ c
mnq

= ωmnqτ
c
mnq . (11.31)

For an optical cavity, the dependence of Qmnq on the longitudinal-mode index q is
generally negligible because q is a very large value except in the case of a very short
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Figure 11.5 Fabry–Perot cavity containing an optical gain medium with a filling factor �. Changes
of Gaussian beam divergence at the boundaries of the gain medium are ignored in this plot.

microcavity. However, the dependence of Qmnq on the transverse-mode indices m and n
cannot be ignored. Indeed, Q00q for the fundamental transverse mode is generally larger
than Qmnq for any high-order transverse mode because the fundamental transverse mode
generally has the lowest loss.

Fabry–Perot cavity

The most common laser cavity is a Fabry–Perot cavity consisting of two end mirrors
and an optical gain medium, shown in Fig. 11.5. The radii of curvature of the left and
right mirrors are R1 and R2, respectively. The sign of the radius of curvature is taken to
be positive for a concave mirror and negative for a convex mirror. For the cavity shown
in Fig. 11.5, which is formed with two concave mirrors, R1 > 0 and R2 > 0.

Most of the important features of a nonwaveguiding Fabry–Perot laser cavity can be
obtained by applying the following simple concept: for the cavity to be a stable cavity
in which a Gaussian mode can establish, the radii of curvature of both end mirrors have
to match the wavefront curvatures of the Gaussian mode at the surfaces of the mirrors:
R(z1) = −R1 and R(z2) = R2, where z1 and z2 are, respectively, the coordinates of
the left and right mirrors measured from the location of the Gaussian beam waist. Based
on this concept, we have from (1.136) the following two relations:

z1 + z2
R

z1
= −R1 and z2 + z2

R

z2
= R2. (11.32)

From these relations, we find that (see Problem 11.1.1)

z2
R = l(R1 − l)(R2 − l)(R1 + R2 − l)

(R1 + R2 − 2l)2
, (11.33)

where l = z2 − z1 is the length of the cavity defined by the separation between the
mirrors. Given the values of R1, R2, and l, stable Gaussian modes exist for the cavity
if both relations in (11.32) can be satisfied with a positive, real parameter zR > 0 for
a finite, positive spot size w0 according to (1.134). Then the cavity is stable. If the
relations in (11.32) cannot be simultaneously satisfied with a positive, real value for
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zR, then the cavity is unstable because no stable Gaussian mode can be established
in the cavity. Application of this concept yields the following stability criterion for a
Fabry–Perot cavity (see Problem 11.1.2):

0 ≤
(

1 − l

R1

)(
1 − l

R2

)
≤ 1. (11.34)

In a stable resonator cavity, the mode-dependent on-axis phase shift in a single pass
through the cavity from the left to the right mirror for the TEMmn Hermite–Gaussian
mode is simply ζmn(z2) − ζmn(z1). Therefore, the round-trip mode-dependent on-axis
phase shift is

ζ RT
mn = 2[ζmn(z2) − ζmn(z1)]. (11.35)

With some modifications, the same concept can be used to find the characteristics and
stability criterion of a cavity with multiple mirrors, such as a folded Fabry–Perot cavity
or a ring cavity.

We consider a cavity that contains an isotropic gain medium with a filling factor �.
The surfaces of the gain medium are antireflection coated so that there is no reflection
inside the cavity other than the reflection at the two end mirrors. If the gain medium
fills up the entire cavity, we simply make � = 1 in the results obtained below. The
Fabry–Perot cavity has a physical length l between the two end mirrors. The field
amplitude reflection coefficients are r1 and r2 for the left and right mirrors, respectively.
They are generally complex to account for the phase changes on reflection, ϕ1 and ϕ2,
respectively, and can be written as

r1 = R1/2
1 eiϕ1, r2 = R1/2

2 eiϕ2, (11.36)

where R1 and R2 are the intensity reflectivities of the left and right mirrors, respectively.
The dielectric property of the intracavity gain medium contains the permittivity of

the background material plus a contribution from the resonant susceptibility, χres(ω),
that characterizes the laser transition. To identify the effect of each contribution clearly,
it is instructive to express the permittivity of the gain medium explicitly, including the
contribution of the resonant laser transition, as

εres(ω) = ε(ω) + ε0χres(ω), (11.37)

where ε(ω) = n2 is the background permittivity of the gain medium excluding the
contribution of the resonant laser transition. In a cold cavity, χres = 0. Therefore, the
weighted average of the propagation constant for the intracavity field in a cold cavity is

k = nω

c
= �k + (1 − �)k0, (11.38)

where k = nω/c is the propagation constant in the gain medium and k0 = n0ω/c is
that in the surrounding background medium. The round-trip optical path length in this
cavity is lRT = 2nl.
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Usually there is an intracavity background loss contributed by a variety of different
mechanisms, such as scattering or absorption, that are irrelevant to the laser transition.
In addition, mode-dependent diffraction losses exist for the intracavity optical field
due to the finite sizes of the end mirrors. The combined effect of these losses can be
accounted for by taking a spatially averaged, mode-dependent loss coefficient, αmn , so
that the effective propagation constant is complex with a mode-dependent imaginary
part: k + iαmn/2. This loss is known as the distributed loss of the laser cavity mode. In
general, α � k for any practical gain medium.

By following a mode field over one round trip in the cavity, we find that

a = r1r2 exp
(
i2kl − αmnl + iζ RT

mn

)
(11.39)

for the TEMmn Hermite–Gaussian mode. Therefore, both the round-trip gain factor and
the round-trip phase shift are mode dependent:

Gc
mn = R1/2

1 R1/2
2 exp (−αmnl) (11.40)

and

ϕRT
mn = 2kl + ζ RT

mn + ϕ1 + ϕ2. (11.41)

Using (11.41) for the resonance condition in (11.20), we find the following resonance
frequencies of the cold Fabry–Perot cavity:

ωc
mnq = c

2nl
(2qπ − ζ RT

mn − ϕ1 − ϕ2) (11.42)

and νc
mnq = ωc

mnq/2π , where the superscript c indicates the fact that the frequencies are
associated with a cold cavity with χres = 0. These frequencies are clearly functions of
the transverse-mode indices because of the mode-dependent phase shift ζ RT

mn . However,
because ζ RT

mn is not a function of the longitudinal-mode index q, the frequency separation
between different longitudinal modes of the same transverse mode group is a constant:

�νL = νc
mn,q+1 − νc

mnq = c

2nl
= 1

T
. (11.43)

Here we assume that the background optical property of the medium is not very disper-
sive so that the background refractive index n can be considered a constant independent
of optical frequency in the narrow range between neighboring modes of interest. Using
(11.13) and (11.40), the finesse of the lossy cavity is

F = π R1/4
1 R1/4

2 e−αmnl/2

1 − R1/2
1 R1/2

2 e−αmnl
, (11.44)

which is mode dependent due to the mode-dependent loss αmn . The longitudinal mode
width, �νc = �νL/F , is also mode dependent for the same reason. For a cavity with
a negligible loss, we can take αmn = 0; then, the expression in (11.44) reduces to the
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familiar formula for the finesse of a lossless Fabry–Perot interferometer:

F = π R1/4
1 R1/4

2

1 − R1/2
1 R1/2

2

. (11.45)

Therefore, for a nondispersive, lossless Fabry–Perot cavity, �νL, F , and �νc are also
independent of longitudinal and transverse mode indices though the mode frequency
νmnq is a function of all three mode indices.

Using (11.25) and (11.40), the mode-dependent photon lifetime of the Fabry–Perot
cavity can be expressed as

τ c
mnq = nl

c(αmnl − ln
√

R1 R2)
, (11.46)

and the mode-dependent cavity decay rate as

γ c
mnq = c

n

(
αmn − 1

l
ln
√

R1 R2

)
. (11.47)

Clearly, both τ c
mnq and γ c

mnq are also mode dependent due to the mode-dependent
distributed loss αmn . However, they are independent of the longitudinal mode index q
under the assumption that the background refractive index n and the loss αmn , as well as
the mirror reflectivities R1 and R2, are not sensitive to the frequency differences among
different longitudinal modes. If any of these parameters vary significantly within the
range of longitudinal modes of interest, then the dependence of τ c

mnq and γ c
mnq on the

index q cannot be ignored.
The Fabry–Perot cavity for a typical laser is a high-Q cavity. Even in a high-gain

laser with low mirror reflectivities, Q is still very large. For example, consider a high-
gain InGaAsP/InP semiconductor laser emitting at 1.3 µm wavelength with n = 3.5,
l = 300 µm, and R1 = R2 = 0.3. Assuming a negligibly small α for simplicity, we
find that τc = 2.9 ps, T = 7 ps, �νL = 142.86 GHz, F = 2.46, and �νc = 58 GHz.
Using (11.28), we obtain Q = 4.2 × 103, while the approximate relation (11.30) yields
a slightly smaller value of Q = 4.0 × 103. A Q value on the order of 103 is relatively
low for a laser cavity. Even so, the difference between (11.30) and (11.28) is only about
5%. For a low-loss cavity, Q can easily be as high as 108, and the result obtained from
(11.30) is essentially the same as that from (11.28). See Example 11.1 below for a very
different laser cavity.

EXAMPLE 11.1 A Nd : YAG microchip laser, shown in Fig. 11.6, is made of a Nd : YAG
crystal of the same properties as that of the Nd : YAG laser amplifier described in
Example 10.9, except that it is thinner and its surfaces are coated differently to form a
laser cavity. It consists of parallel Nd : YAG plates of 500 µm thickness. The surfaces of
the plate are coated for R1 = 100% and R2 = 99.7% at the 1.064 µm laser wavelength
to form the laser cavity but for R1 = R2 = 0 at the 808 nm pump wavelength to allow
only a single pass of the pump beam. The refractive index of Nd : YAG is n = 1.82.
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Figure 11.6 Schematics of a fiber-coupled, end-pumped Nd : YAG microchip laser. AR means
antireflection.

The distributed loss of the laser cavity is found to be α = 0.5 m−1. (a) Find the round-
trip optical path length, the round-trip time, and the longitudinal mode spacing of this
cavity. (b) Find the finesse of this cavity. (c) What are the cavity decay rate and the
photon lifetime? (d) What are the longitudinal mode width and the Q factor of the cold
cavity?

Solution (a) This is a Fabry–Perot laser cavity with a filling factor of � = 1. There-
fore, n = n = 1.82. Then the round-trip optical path length is

lRT = 2nl = 2 × 1.82 × 500 µm = 1.82 mm.

The round-trip time is

T = lRT

c
= 1.82 × 10−3

3 × 108
s = 6.07 ps.

The longitudinal mode spacing is

�νL = 1

T
= 1

6.07 × 10−12
Hz = 164.8 GHz.

(b) The finesse of this cavity has to be found by using (11.44), not (11.45), because
there is a distributed loss of α = 0.5 m−1. For l = 500 µm, αl = 2.5 × 10−4. With
R1 = 100% and R2 = 99.7%, we find that the finesse is

F = π R1/4
1 R1/4

2 e−αl/2

1 − R1/2
1 R1/2

2 e−αl
= π × (0.997)1/4 × exp(−2.5 × 10−4/2)

1 − (0.997)1/2 × exp(−2.5 × 10−4)
= 1793.

(c) The cavity decay rate can be calculated using (11.47):

γc = c

n

(
α − 1

l
ln
√

R1 R2

)
= 3×108

1.82
×
(

0.5 − ln
√

0.997

500 × 10−6

)
s−1 =5.78×108 s−1.

Then, the photon lifetime is

τc = 1

γc
= 1

5.78 × 108
s = 1.73 ns.
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(d) Using the definition of the finesse in (11.17), or (11.19), we find the following
longitudinal mode width for the cold cavity:

�νc = �νL

F
= 164.8 × 109

1793
Hz = 91.91 MHz.

Using the approximate relation given in (11.29), we find that �νc ≈ γc/2π =
91.99 MHz, which is almost the same as the accurate value obtained above. Using
the definition given in (11.28), the Q factor of the cold cavity is found to be

Q = ω

γc
= 2πc

λγc
= 2π × 3 × 108

1.064 × 10−6 × 5.78 × 108
= 3.065 × 106.

Though the cavity is very short, it is a high-Q cavity because of the very high reflectivities
of both of its end mirrors. If we use the approximate relation in (11.30), we find
Q = 3.068 × 106, which is only slightly different from that found by using (11.28).
For a high-Q cavity, there is little difference between (11.30) and (11.28) for the Q
value and between (11.29) and (11.17) for the mode width.

11.2 Laser oscillation

In the preceding section, it is mentioned that a practical laser device can be constructed
by placing an optical gain medium inside an optical resonator. The gain medium pro-
vides amplification to the intracavity optical field while the resonator provides optical
feedback. A laser is basically a coherent optical oscillator, and the basic function of
an oscillator is to generate a coherent signal through resonant oscillation without an
input signal. Therefore, no external optical field is injected into the optical cavity for
laser oscillation. The intracavity optical field has to grow from the field generated by
spontaneous emission from the intracavity gain medium. When steady-state oscillation
is reached, the coherent laser field at any given location inside the cavity should become
a constant with time in both phase and magnitude. In the model shown in Fig. 11.2, the
situation of steady-state laser oscillation requires that Ein = 0 and Ec = constant �= 0.
Therefore, from (11.6), the condition for steady-state laser oscillation is

a = G exp
(
iϕRT

) = 1. (11.48)

To illustrate the implications of this condition, we consider in the following the simple
Fabry–Perot laser shown in Fig. 11.5 that contains an isotropic gain medium with a
filling factor �.

The total permittivity of the gain medium, including the contribution of the reso-
nant laser transition, is εres = ε + ε0χres given in (11.37). Therefore, the total complex
propagation constant of the gain medium including the contribution of the resonant
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transition is

kt = ωµ
1/2
0 (ε + ε0χres)

1/2

= k + �kres − i
g

2
, (11.49)

where

�kres ≈ k
χ ′

res

2n2
= ω

2nc
χ ′

res, (11.50)

g ≈ −k
χ ′′

res

n2
= − ω

nc
χ ′′

res. (11.51)

Here g is the gain coefficient of the laser medium associated with the laser transition
identified in (10.55), and �kres is the corresponding change in the optical wavenumber
in the medium caused by the change in the refractive index associated with population
changes in the resonant laser levels. As discussed in Section 10.2, when population
inversion is achieved, χ ′′

res < 0 so that the gain coefficient g has a positive value.
By replacing k for a cold medium with kt for a pumped gain medium, we find that k

in (11.39) has to be replaced with k + ��kres − i�g/2 when an actively pumped laser
cavity is considered. We then find the mode-dependent round-trip gain factor

Gmn = R1/2
1 R1/2

2 exp [(�g − αmn) l] (11.52)

and mode-dependent round-trip phase shift

ϕRT
mn = 2(k + ��kres)l + ζ RT

mn + ϕ1 + ϕ2. (11.53)

Because both Gmn and ϕRT
mn are real parameters, the condition in (11.48) can be satisfied

for a given laser mode to oscillate only if the gain condition

Gmn = 1 (11.54)

and the phase condition

ϕRT
mn = 2qπ, q = 1, 2, . . . , (11.55)

are simultaneously fulfilled. Note that both Gmn and ϕRT
mn are frequency dependent.

Laser threshold

The condition in (11.54) implies that there are a threshold gain and a correspond-
ing threshold pumping level for laser oscillation. For the Fabry–Perot laser shown in
Fig. 11.5, which has a length l and contains a gain medium of a length lg for a filling
factor of � = lg/ l, the threshold gain coefficient, gth

mn , for the TEMmn mode can be
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found from

�gth
mn = αmn − 1

l
ln
√

R1 R2, (11.56)

or

gth
mnlg = αmnl − ln

√
R1 R2. (11.57)

Because the distributed loss αmn is mode dependent, the threshold gain coefficient gth
mn

varies from one transverse mode to another. In addition, the effective gain coefficient
can be different for different transverse modes because different transverse modes have
different field distribution patterns and thus overlap with the gain volume differently.
The transverse mode that has the lowest loss and the largest effective gain at any
given pumping level reaches threshold first and starts oscillating at the lowest pumping
level. In a typical laser, the transverse mode that reaches threshold first is normally the
fundamental mode.

Unless a frequency-selecting mechanism is placed in a laser to create a frequency-
dependent loss that varies from one longitudinal mode to another, the threshold gain
coefficient gth

mn does not vary much among the mnq longitudinal modes that share the
common mn transverse mode pattern. It is possible, however, to introduce a frequency-
selecting device to a laser cavity so that αmn and, consequently, gth

mn become highly
frequency dependent for the purpose of frequency selection or frequency tuning of the
laser output.

The power required to pump a laser to reach its threshold is called the threshold
pump power, P th

p . Because the threshold gain coefficient is mode dependent and fre-
quency dependent, the threshold pump power is also mode dependent and frequency
dependent. The threshold pump power of a laser mode can be found by calculating the
power required for the gain medium to have an unsaturated gain coefficient equal to the
threshold gain coefficient of the mode: g0 = gth

mn , assuming uniform pumping through-
out the medium. For a quasi-two-level or three-level laser, there is also a transparency
pump power, P tr

p , corresponding to g0 = 0, assuming uniform pumping throughout the
gain medium. In the situation of nonuniform pumping, these conditions for reaching
threshold and transparency have to be modified, as discussed below. Clearly, P tr

p < P th
p

by definition.
In a nonwaveguiding laser, the transverse cross section of the gain medium is normally

larger than the cross-sectional area of a laser mode. In this situation, it is not necessary
to pump the entire gain medium, but only the volume of the gain medium seen by the
laser mode. Calculation of P th

p depends on the specifics of the pump source and the
pumping geometry. Nevertheless, if we consider a saturation pump power, P sat

p , as the
pump power required for the pumping rate to be Wp = 1/τ2 following the same concept
of I sat

p as defined in (10.85), we can find P th
p in terms of P sat

p . Because of absorption
of the pump power by the gain medium, the pump power distribution in the pumped
volume of a gain medium is often spatially nonuniform. The distribution of the pump
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power in a laser medium cannot be easily generalized because it is a function of many
parameters specific to a particular pump source, a particular pumping geometry, and a
given gain medium.

A case of common interest for solid-state lasers, however, is the longitudinal optical
pumping considered in Section 10.4 for laser amplifiers. In this situation, the laser
threshold is reached when

lg∫
0

g0(z)dz = gthlg. (11.58)

For single-pass optical pumping, as considered in Section 10.4, if transverse divergence
of the pump beam is negligible, the integral of the unsaturated gain coefficient over
a gain medium of a length l has the closed-formed solutions given in (10.106) and
(10.108). By taking (10.108) with l = lg and using the condition in (11.58) for the laser
threshold, we find that the threshold pump power of the laser can be expressed in terms
of the pump power utilization factor ζp, which is defined in (10.107), as

P th
p =




1

p

exp

[
p

σa Nt + gth

(σe + σa)Nt
αplg

]
− 1

1 − (1 − ζ th
p ) exp

[
p

σa Nt + gth

(σe + σa)Nt
αplg

] P sat
p , for p �= 0,

σa Nt + gth

(σe + σa)Nt

αplg

ζ th
p

P sat
p , for p = 0,

(11.59)

where ζ th
p is the pump power utilization factor at the laser threshold. It can be found by

applying (10.106) with l = lg to the condition in (11.58) that

ζ th
p = 1 − exp

[
− σe Nt − gth

(σe + σa)Nt
αplg

]
. (11.60)

By plugging this relation for ζ th
p into (11.59), the threshold pump power can be explicitly

expressed in terms of the laser parameters as (see Problem 11.2.1)

P th
p =




1

p

exp

[
p

σa Nt + gth

(σe + σa)Nt
αplg

]
− 1

1 − exp

[
− (σe − pσa)Nt − (1 + p)gth

(σe + σa)Nt
αplg

] P sat
p , for p �= 0,

σa Nt + gth

(σe + σa)Nt

αplg

1 − exp

[
− σe Nt − gth

(σe + σa)Nt
αplg

] P sat
p , for p = 0.

(11.61)

The transparency condition is such that the integral of the unsaturated gain coefficient
over the length of the gain medium is zero. Therefore, by replacing gth with 0 in (11.61),
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the transparency pump power of a laser gain medium can be found:

P tr
p =




1

p

exp{[pσa/(σe + σa)]αplg} − 1

1 − exp{−[(σe − pσa)/(σe + σa)]αplg} P sat
p , for p �= 0,

σa

(σe + σa)

αplg

1 − exp{−[σe/(σe + σa)]αplg} P sat
p , for p = 0.

(11.62)

The relation obtained in (11.61) for the threshold pump power P th
p and that obtained

in (11.62) for the transparency pump power P tr
p are generally valid at all pumping levels

for single-pass longitudinal optical pumping. They are applicable no matter whether
there is significant absorption saturation of the pump power in the gain medium or
not. They are not valid for multiple-pass longitudinal optical pumping, however.
The absorption saturation of the pump power is negligible under the condition that
sth = P th

p /P sat
p � 1. In this situation, the pump power decays exponentially along the

longitudinal pumping axis in each pass through the gain medium. Then, a closed-form
solution of P th

p that has a common form for both single-pass and multiple-pass
longitudinal pumping arrangements can be found in terms of the pump power
utilization factor ζ th

p . In a single-pass arrangement under the condition that sth � 1,
ζ th

p ≈ 1 − e−αplg , assuming no reflection of the pump beam at the pump input surface
of the gain medium. In a multiple-pass situation, however, ζ th

p has to be properly
evaluated to account for the total pump power absorbed by the gain medium in all passes
(see Problem 11.2.2).

EXAMPLE 11.2 The Nd : YAG microchip laser considered in Example 11.1 is pumped
through a multimode fiber of 200 µm core diameter in the same manner as that for the
amplifier described in Example 10.9. Both the pump and the laser spots have circular
TEM00 mode profiles of 100 µm radius. Relevant parameters, from Example 10.9, are
Nt = 1.52 × 1026 m−3 for the Nd concentration, σ

p
a = 3.0 × 10−24 m2 with a pump

quantum efficiency of ηp = 80% for the pump at 808 nm, σe = 3.1 × 10−23 m2 with
τ2 = 240 µs for the laser transition at 1.064 µm. (a) Find the threshold gain coefficient
for the laser. (b) Find the threshold pump power of the laser.

Solution (a) This laser has a filling factor of � = 1. It also has α = 0.5 m−1, l =
500 µm, R1 = 100%, and R2 = 99.7%, as given in Example 11.1. Therefore, according
to (11.56), the threshold gain coefficient is

gth = 1

�

(
α − 1

l
ln
√

R1 R2

)
= 1

1

(
0.5 − 1

500 × 10−6
ln

√
0.997

)
m−1 = 3.5 m−1.

(b) The laser is a four-level system with σa = 0 and p = 0. The threshold pump power
can be found directly by using (11.61) for p = 0. However, it is instructive to find ζ th

p

through (11.60) first and then use (11.59) to find P th
p . Because αp = σ

p
a Nt = 456 m−1
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and lg = 500 µm, we find that αplg = 0.228. Therefore, for this single-pass pumping
arrangement, we have

ζ th
p = 1 − exp

(
−3.1 × 10−23 × 1.52 × 1026 − 3.5

3.1 × 10−23 × 1.52 × 1026
× 0.228

)
= 0.2037.

Because the pump spot size and all other pump parameters are the same as those used
for the amplifier in Example 10.9, we find from Example 10.9 that P sat

p = 13.4 W.
Then, using (11.59) for p = 0, we find the following threshold pump power:

P th
p = 3.5

3.1 × 10−23 × 1.52 × 1026
× 0.228

0.2037
× 13.4 W = 11.1 mW.

By comparing ζ th
p = 0.2037 found above to 1 − e−αplg = 1 − e−0.228 = 0.2039, we

find that the pump power decays along the longitudinal axis of the gain medium almost
exponentially. This characteristic indicates that there is almost no absorption saturation
of the pump power, which can be understood from the fact that gth/σe Nt = 7.4 ×
10−4 � 1 and P th

p /P sat
p = 8.3 × 10−4 � 1. The pump power is not fully utilized in

this single-pass pumping arrangement because only 20.4% of the input pump power is
absorbed by the gain medium. The laser threshold can be lowered by taking a multiple-
pass arrangement (see Problem 11.2.3) or by properly increasing the length of the gain
medium (see Problem 11.2.4) to increase the utilization fraction of the pump power.

Mode pulling

Comparing (11.53) for an active Fabry–Perot laser with (11.41) for its cold cavity,
we find that the round-trip phase shift for a field in a laser cavity is a function of χ ′

res

through its dependence on �kres. Consequently, the longitudinal mode frequencies ωmnq

at which a laser oscillates are not exactly the same as the longitudinal mode frequencies
ωc

mnq given in (11.42) for the cold Fabry–Perot cavity.
Using (11.53) and (11.55), we find that the longitudinal mode frequencies of a Fabry–

Perot laser are related to those of its cold cavity by

ωmnq = ωc
mnq

(
1 + χ ′

res

2nn

)−1

≈ ωc
mnq

(
1 − χ ′

res

2nn

)
. (11.63)

Clearly, the mode frequencies ωmnq at which a laser oscillates differ from the cold cavity
mode frequencies because they vary with the resonant susceptibility, which depends on
the level of population inversion in the gain medium. This dependence of the oscillating
laser mode frequencies on the population inversion in the gain medium is caused by
the fact that the refractive index and the gain of the medium are intimately connected to
each other, as is dictated by the Kramers–Kronig relation. This effect causes a frequency
shift of

δωmnq = ωmnq − ωc
mnq ≈ − χ ′

res

2nn
ωc

mnq (11.64)
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Figure 11.7 Frequency-pulling effect for laser modes. Compared to the resonance frequencies of
the cold cavity shown in dotted lines, the mode frequencies of an active laser shown in solid lines
are pulled toward the resonant transition frequency of the gain medium in the situation of
population inversion. The real and imaginary parts of the gain susceptibility as a function of optical
frequency are shown.

for the oscillation frequency of mode mnq. Because of the frequency dependence of
χ ′

res, the dependence of this frequency shift on χ ′
res results in the mode-pulling effect

demonstrated in Fig. 11.7. Near the resonant transition frequency, ω21, of the gain
medium, χres is highly dispersive.

In the presence of population inversion, χ ′′
res(ω) < 0 for either ω < ω21 or ω > ω21,

but χ ′
res(ω) < 0 for ω < ω21 and χ ′

res(ω) > 0 for ω > ω21. As a result, ωmnq > ωc
mnq

for ωc
mnq < ω21 and ωmnq < ωc

mnq for ωc
mnq > ω21. Therefore, in comparison to the

resonance frequencies of the cold cavity, the oscillating mode frequencies of a laser
are pulled toward the transition frequency of the gain medium. In addition, the longi-
tudinal modes belonging to a common transverse mode are no longer equally spaced
in frequency. In a laser of relatively high gain and large dispersion, such as in a semi-
conductor laser, this can result in a large variation in the frequency spacing among the
oscillating modes.

Because of the frequency dependence of the gain coefficient g due to the frequency
dependence of χ ′′

res, different longitudinal modes not only experience different values
of refractive index but also see different values of gain coefficient, as also illustrated
in Fig. 11.7. A longitudinal mode whose frequency is close to the gain peak at the
transition resonance frequency has a higher gain than one whose frequency is far away
from the gain peak.

Oscillating laser modes

Because of the frequency dependence of the gain coefficient, the net gain, g − gth
mn , of a

laser is always frequency dependent and varies among different transverse modes and
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among different longitudinal modes no matter whether the threshold gain coefficient
gth

mn for any given transverse mode is frequency dependent or not. At a low pumping
level before the laser starts oscillating, the net gain is negative for all laser modes. As the
pumping level increases, the mode that reaches its threshold first will start oscillating.
Once a laser starts oscillating in one mode, whether any other longitudinal or transverse
modes have the opportunity to oscillate through further increase of the pumping level
is a complicated issue of mode interaction and competition that depends on a variety of
parameters, including the properties of the gain medium, the structure of the laser, the
pumping geometry, the optical nonlinearity in the system, and the operating condition
of the laser. Here we only discuss some basic concepts in the situation of steady-state
oscillation of a CW laser. Interaction and competition among laser modes are more
complicated when a laser is pulsed than when it is in CW operation. Therefore, some
of the conclusions obtained here may not be valid for a pulsed laser.

The gain condition in (11.54) implies that once a given laser mode is oscillating in
steady state, the gain that is available to this mode does not increase with increased
pumping above the threshold pumping level because Gmn for a laser mode has to be kept
at unity for steady-state oscillation. Thus the effective gain coefficient for an oscillating
mode is “clamped” at the threshold level of the mode so long as the pumping level is
kept at or above threshold. The mechanism for holding down the gain coefficient at the
threshold level is the effect of gain saturation discussed in Section 10.3. An increase in
the pumping level above threshold only increases the field intensity for the oscillating
mode in the cavity, but the gain coefficient is saturated at the threshold value by the high
intensity of the intracavity laser field. The fact that the gain of a laser mode oscillating
in the steady state is saturated at the threshold value has a significant effect on the mode
characteristics of a CW laser.

When the gain medium of a laser is homogeneously broadened, all modes that occupy
the same spatial gain region compete for the gain from the population inversion in the
same group of active atoms. When the mode that first reaches threshold starts oscillating,
the entire gain curve supported by this group of atoms saturates. Because this oscillating
mode is normally the one that has a longitudinal mode frequency closest to the gain
peak and a transverse mode pattern with the lowest loss, the gain curve is saturated
in such a manner that its value at this longitudinal mode frequency is clamped at the
threshold value of the transverse mode that has the lowest threshold gain coefficient
among all transverse modes. If the gain peak does not happen to coincide with this mode
frequency, it still lies above the threshold when the gain curve is saturated, as shown in
Fig. 11.8. Nevertheless, all other longitudinal modes belonging to this transverse mode
have frequencies away from the gain peak. Therefore, even with increased pumping,
they do not have sufficient gain to reach threshold because the entire gain curve shared
by these modes is saturated, as illustrated in Fig. 11.8. Other transverse modes that
are supported solely by this group of saturated, homogeneously broadened atoms do
not have the opportunity to oscillate, either because the gain curve is saturated below
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Figure 11.8 Gain saturation in a laser in the case of homogeneous broadening. Only one
longitudinal mode whose frequency is closest to the gain peak oscillates. The entire gain curve is
saturated such that the gain at the single lasing frequency remains at the loss level.

their threshold levels. Nevertheless, as different transverse modes have different spatial
field distributions, a high-order transverse mode may draw its gain from a gain region
outside of the region saturated by a low-order mode. Therefore, when the pumping level
is increased, a high-order transverse mode may still reach its relatively high threshold
for oscillation after a low-order transverse mode of a low threshold already oscillates.
Consequently, for a homogeneously broadened CW laser in steady-state oscillation,
only one among all of the longitudinal modes belonging to the same transverse mode will
oscillate, but it is possible for more than one transverse mode to oscillate simultaneously
at a high pumping level. Note that this conclusion does not hold true for a pulsed laser. It
is possible for multiple longitudinal modes all belonging to the same transverse mode to
oscillate simultaneously in a pulsed laser even when the gain medium is homogeneously
broadened.

In a laser containing an inhomogeneously broadened gain medium, there are different
groups of active atoms in the same spatial region. Each group saturates independently.
Two modes occupying the same spatial gain region do not compete for the same group
of atoms if the separation of their frequencies is larger than the homogeneous linewidth
of each group of atoms. When one longitudinal mode reaches threshold and oscillates,
only the gain coefficient around its frequency is saturated, the gain coefficient at other
frequencies continues to increase with increased pumping. As the pumping level in-
creases, other longitudinal modes will reach threshold and oscillate successively. As
a result, at a sufficiently high pumping level, multiple longitudinal modes belonging
to the same transverse mode can oscillate simultaneously. The saturation of the gain
coefficient around each of the frequencies of these oscillating modes, but not across
the entire gain curve, creates the effect of spectral hole burning in the gain curve
of an inhomogeneously broadened laser medium, as illustrated in Fig. 11.9. Differ-
ent transverse modes also saturate independently in an inhomogeneously broadened
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Figure 11.9 Spectral hole burning effect in the gain saturation of a laser in the case of
inhomogeneous broadening. Multiple longitudinal modes oscillate simultaneously at a sufficiently
high pumping level. The gain at each lasing frequency is saturated at the loss level. Mode pulling
effect is ignored in this illustration.

medium if their longitudinal mode frequencies are sufficiently separated. Therefore, an
inhomogeneously broadened laser can also oscillate in multiple transverse modes.

The linewidth of an oscillating laser mode is still described by (11.19). From this
relation, we see that in practice the round-trip field gain factor G of a laser in steady-state
oscillation cannot be exactly equal to unity because the laser linewidth cannot be zero,
due to the existence of spontaneous emission. In reality, in steady-state oscillation the
value of G is slightly less than unity, with the small difference made up by spontaneous
emission. Clearly, the linewidth of an oscillating laser mode is determined by the
amount of spontaneous emission that is channeled into the laser mode. Therefore,
(11.19) is not very useful for calculating the linewidth of a laser mode in steady-
state oscillation without knowing the exact value of G in the presence of spontaneous
emission. Instead, a detailed analysis taking into account spontaneous emission yields
the following Shawlow–Townes relation for the linewidth of a laser mode in terms of
the laser parameters:

�νST = 2πhν(�νc)2

Pout
Nsp = hν

2πτ 2
c Pout

Nsp, (11.65)

where Pout is the output power of the laser mode being considered and Nsp is the
spontaneous emission factor defined in (10.114). The effect of spontaneous emission
on the linewidth of an oscillating laser mode enters the relation in (11.65) through the
population densities of the upper and the lower laser levels in the form of the spontaneous
emission factor. Because Nsp ≥ 1, the ultimate lower limit of the laser linewidth, which
is known as the Shawlow–Townes limit, is that given in (11.65) with Nsp = 1.

EXAMPLE 11.3 The Nd : YAG crystal used for the microchip laser described in Exam-
ples 11.1 and 11.2 has a spontaneous linewidth of 150 GHz at the laser wavelength
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of 1.064 µm. (a) How many longitudinal modes will oscillate when the laser operates
at room temperature? (b) What is the linewidth of an oscillating laser mode when the
laser has an output power of 1 mW?

Solution (a) Only one longitudinal mode will oscillate above the laser threshold,
for two reasons. First, Nd : YAG is predominantly homogeneously broadened at room
temperature. Second, according to Example 11.1, the longitudinal mode spacing for
this microchip laser is �νL = 164.8 GHz, which is larger than the entire Nd : YAG
linewidth of 150 GHz.

(b) The laser photon energy is hν = (1.2398/1.064) eV = 1.165 eV. From Exam-
ple 11.1, �νc = 91.91 MHz. Because this laser is a four-level system, Nsp = 1. From
(11.65), we find the following Shawlow–Townes linewidth for the oscillating laser
mode:

�νST = 2π × 1.165 × 1.6 × 10−19 × (91.91 × 106)2

1 × 10−3
× 1 Hz = 9.9 Hz.

Compared to the longitudinal mode width of 91.91 MHz for the cold cavity, this oscillat-
ing mode width is nearly seven orders of magnitude smaller. This linewidth-narrowing
effect is caused by the coherent nature of the stimulated emission and is a fundamental
feature of lasers. Note, however, that the Shawlow–Townes linewidth is only the the-
oretical lower limit of an oscillating laser mode. In practice, the linewidth of a laser
is often broadened far above this limit by other mechanisms, such as fluctuations in
the pump power and temperature, mechanical vibrations, and electronic noise from
the circuit supporting the operation of the laser. The Shawlow–Townes limit can be
approached only by making every effort to eliminate all external effects that broaden
the laser linewidth.

11.3 Laser power

In this section, we consider the output power of a laser. Because the situation of a
multimode laser can be quite complicated due to mode competition, we consider for
simplicity only a homogeneously broadened, CW laser oscillating in a single longitu-
dinal and transverse mode. Therefore, the parameters mentioned in this section are not
labeled with mode indices because all of these parameters are clearly associated with
the only oscillating mode being considered. The simple case of a Fabry–Perot cavity
that contains an isotropic gain medium with a filling factor � as shown in Fig. 11.5
is considered. To illustrate the general concepts, we first consider the situation when
the gain medium is uniformly pumped so that the entire gain medium has a spatially
independent gain coefficient g. We then consider at the end of this section the case
of optically pumped lasers, as also considered for the laser threshold in the preceding
section, taking into account the longitudinal spatial dependence of the gain coefficient.
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For the single oscillating mode of the Fabry–Perot laser considered here, the round-
trip gain factor G is that given by (11.52), and the cavity decay rate γc defined by
(11.24) is that given by (11.47). Therefore,

G2 = exp (2�gl − γcT ) . (11.66)

Because G2 is the net amplification factor of the intracavity field energy, or photon
number, in a round-trip time T of the laser cavity, we can define an intracavity energy
growth rate, or intracavity photon growth rate, �g, for the oscillating laser mode
through the following relation:

G2 = exp [(�g − γc)T )] , (11.67)

for a laser containing a gain medium with a filling factor �. We find, by comparing
(11.67) with (11.66), that

g = 2gl

T
= cg

n
(11.68)

and, by comparing (11.47) with (11.56), that

γc = �
2gthl

T
= �

cgth

n
. (11.69)

Note that while g and gth are measured per meter, g and γc are measured per second.
The relation in (11.68) translates the gain coefficient that characterizes space-

dependent amplification of a laser field propagating through the intracavity gain medium
into an intracavity energy growth rate that characterizes time-dependent amplification
of the energy in a laser mode by the gain medium. The relation in (11.69) clearly indi-
cates that the threshold intracavity energy growth rate for laser oscillation is the cavity
decay rate:

�gth = γc. (11.70)

This relation can also be obtained by applying the threshold gain condition of G = 1
given in (11.54) to the relation in (11.67). It is easy to understand because for a laser
mode to oscillate, the growth of intracavity photons in that mode through amplification
by the gain medium has to at least match the decay of photons caused by all of the
loss mechanisms combined. Therefore, we shall call the energy growth rate �g and the
cavity decay rate γc, both of which are specific to a laser mode, the gain parameter and
the loss parameter, respectively, of the laser mode.

By using temporal growth and decay rates instead of spatial gain and loss coefficients
to describe the characteristics of a laser, we are in effect moving from a spatially
distributed description of the laser to a lumped-device description. In the lumped-device
description, a laser mode is considered an integral entity with its spatial characteristics
effectively integrated into the parameters �g and γc. The detailed spatial characteristics
of the mode are irrelevant and are lost in this description. Therefore, instead of the
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intensity of the oscillating laser field, we have to consider the intracavity photon density,
S, of the oscillating laser mode. For a Fabry–Perot laser containing a gain medium
with a filling factor � so that the average refractive index inside the cavity is n =
�n + (1 − �)n0 as defined in (11.4), the average photon density in the cavity is

S = nI

chν
, (11.71)

where I is the spatially averaged intensity inside the laser cavity and hν is the photon
energy of the oscillating laser mode. Because the gain parameter g is directly propor-
tional to the gain coefficient g of the gain medium, the relation between the unsaturated,
small-signal gain parameter g0 and the saturated gain parameter g for a laser mode in
the lumped-device description can be obtained by converting the relation between g0

and g discussed in Section 10.3 through the relation in (11.68). Therefore, for the gain
parameter of a laser mode, we have

g = g0

1 + S/Ssat
, (11.72)

where

g0 = cg0

n
(11.73)

is the unsaturated gain parameter and

Ssat = nIsat

chν
= n

cτsσe
(11.74)

is the saturation photon density.
When a CW laser oscillates in the steady state, the value of �g for the oscillating

mode is clamped at its threshold value of γc, just as the value of g is clamped at gth.
Therefore, by setting �g to equal γc with g given in (11.72), we find that the photon
density for a CW laser mode in steady-state oscillation is

S =
(

�g0

γc
− 1

)
Ssat = (r − 1)Ssat, for r ≥ 1. (11.75)

The dimensionless pumping ratio, r , represents that a laser is pumped at r times its
threshold. It is defined as

r = �g0

γc
= g0

gth
. (11.76)

Note that (11.75) is valid only for r ≥ 1 when the laser oscillates because only then is
the laser gain saturated. For r < 1, the laser does not reach threshold. The laser cavity
is then filled with spontaneous photons at a density that is small in comparison to the
high density of coherent photons when the laser reaches threshold and oscillates.

From the photon density of the oscillating laser mode, we can easily find the following
total intracavity energy contained in this mode:

Umode = VmodeShν, (11.77)
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where Vmode is the volume of the oscillating mode. The mode volume can be found by
integrating the normalized intensity distribution of the mode over the three-dimensional
space defined by the laser cavity. It is usually a fraction of the volume of the cavity. The
output power of the laser is simply the coherent optical energy emitted from the laser per
second. Therefore, it is simply the product of the mode energy and the output-coupling
rate, γout, of the cavity:

Pout = Umodeγout = VmodeShνγout = (r − 1)VmodeSsathνγout. (11.78)

The output-coupling rate is also called the output-coupling loss parameter because it
contributes to the total loss of a laser cavity and is a fraction of the total loss parameter
γc. One can indeed write γc = γi + γout, where γi is the internal loss of the laser, which
does not contribute to output coupling of the laser power. As an example, for the Fabry–
Perot laser with its γc given by (11.47), we have the internal loss given by γi = cαmn/n
and the output-coupling loss given by

γout = − c

nl
ln
√

R1 R2. (11.79)

In this case, γout is the total output-coupling loss through both mirrors. Therefore, Pout

given in (11.78) is the total output power emitted through both mirrors. For the power
output through each mirror, we find that

γout,1 = − c

nl
ln
√

R1 and γout,2 = − c

nl
ln
√

R2 (11.80)

and that

Pout,1 = Umodeγout,1 = Pout
γout,1

γout
and Pout,2 = Umodeγout,2 = Pout

γout,2

γout
. (11.81)

It is convenient to define the saturation output power as

P sat
out = VmodeSsathνγout. (11.82)

Using the definition of Ssat in (11.74), it can be shown that

P sat
out = −Psat ln

√
R1 R2, (11.83)

where Psat is the saturation power of the gain medium found by integrating Isat over
the cross-sectional area of the gain medium. Combining (11.78) with (11.82), we can
express the output laser power in terms of P sat

out as

Pout = (r − 1)P sat
out. (11.84)

Note that P sat
out is not the level at which the output power of a laser saturates. Its physical

meaning can be easily seen from (11.83) and (11.84). From (11.83), we find that the
output power of a laser is P sat

out when the intracavity laser power is Psat of the gain
medium. From (11.84), we find that Pout = P sat

out when r = 2; in other words, a laser
has an output power of P sat

out when it is pumped at twice its threshold level.
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In order to express the output laser power explicitly as a function of the pump
power, it is necessary to specify the pumping mechanism and the pumping geometry.
For this purpose, we consider longitudinal optical pumping with negligible transverse
pump beam divergence but with a spatially varying gain coefficient g(z) along the
longitudinal axis of the gain medium, as is the case considered in the preceding section
for the threshold pump power obtained in (11.61). In this situation, all of the results
obtained so far in this section are still applicable if we make the following substitution
for the gain coefficient:

g = 1

lg

lg∫
0

g(z)dz = 1

�l

lg∫
0

g(z)dz. (11.85)

Then, in the case when p = 0 or p � 1, the pumping ratio at an input pump power of
Pp can be expressed as (see Problem 11.3.1)

r = �g0

γc
=

lg∫
0

g0(z)dz

gthlg
≈ ζp Pp − ζ tr

p P tr
p

ζ th
p P th

p − ζ tr
p P tr

p

, (11.86)

where P th
p and P tr

p are the threshold pump power and the transparency pump power of the
laser found in (11.61) and (11.62), respectively, and ζp, ζ th

p , and ζ tr
p are the pump power

utilization factors at the pumping levels of Pp, P th
p , and P tr

p , respectively. In the case
of Pp � P sat

p when the absorption saturation of the pump is negligible, ζp ≈ ζ th
p ≈ ζ tr

p .
In the presence of significant absorption saturation of the pump, however, we find that
ζp < ζ th

p < ζ tr
p because Pp > P th

p > P tr
p .

By substituting (11.86) for r in (11.84), we find the following relation between the
output power of a laser and the power launched to pump the laser (see Problem 11.3.1):

Pout = ζp Pp − ζ th
p P th

p

ζ th
p P th

p − ζ tr
p P tr

p

P sat
out. (11.87)

This relation is obtained by using (11.86) under the following assumptions: (1) p = 0 or
p � 1, (2) P sat

out is a constant throughout the gain medium, and (3) the intracavity laser
photon density is relatively uniformly distributed. It works best in the situation where
(1) the gain medium is a four-level or three-level system so that p = 0, (2) Wpτ2 � 1
so that τs and P sat

out are not spatially varying, and (3) R1 R2 approaches unity so that
the intracavity photon density distribution is quite uniform. A laser that satisfies these
conditions is considered in Example 11.4.

Alternatively, by consideration of energy conservation, the output laser power can
be found through the following relation:

Pout = ηp
γout

γc

hν

hνp
(ζp Pp − ζ th

p P th
p ) = ηp

γout

γc

λp

λ
(ζp Pp − ζ th

p P th
p ), (11.88)
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where ηp is the pump quantum efficiency defined in (10.84), and λ and λp are the laser
and pump wavelengths, respectively. This relation is quite general. It is not subject to
the conditions that limit the applicability of (11.87). Under the conditions when (11.87)
is valid, it can be shown that (11.87) yields exactly the same result as (11.88). When the
conditions for (11.87) are not fully satisfied so that (11.87) no longer yield a reliable
result, (11.88) can still be used to find the output laser power.

The relations in (11.87) and (11.88) state that the output power of a laser grows
linearly with the pump power above threshold. It also indicates that the laser has zero
output power before it reaches threshold. Upon reaching the threshold, the optical
output of the device also shows dramatic spectral narrowing that accompanies the start
of laser oscillation. According to (11.65), the linewidth of an oscillating laser mode
continues to narrow with increasing laser power as the laser is pumped higher and
higher above threshold. These are the unique characteristics that distinguish a laser
from other types of light sources such as fluorescent light emitters and luminescent
light sources. However, a real laser does not have exactly such ideal characteristics,
mainly because of the presence of spontaneous emission and nonlinearities in the gain
medium.

Figure 11.10 shows typical characteristics of the output power of a single-mode
laser as a function of pump power. On the one hand, the linear relation in (11.87)
between Pout and Pp is a consequence of applying the linear relation between g0 and
Pp to (11.76). As discussed in Section 10.3, the linear relation between g0 and Pp

derived from (10.88) is itself an approximation near the transparency point of a gain
medium. As the pump power increases to a sufficiently high level, the unsaturated
gain coefficient of a medium cannot continue to increase linearly with pump power

Figure 11.10 Typical characteristics of the output power of a single-mode laser as a function of
pump power.
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because of depletion of the ground-level population. Therefore, we should expect the
output power of a laser not to continue its linear dependence on pump power but to
increase less than linearly with pump power at high pumping levels. On the other hand,
once the gain medium of a laser is pumped so that its upper laser level begins to be
populated, it emits spontaneous photons regardless of whether the laser is oscillating
or not. Clearly, the output power of a laser pumped below threshold is not exactly
zero because spontaneous power is already emitted from the laser before the laser
reaches threshold. Though this spontaneous power is incoherent and is generally small
in a practical laser, it is significant for a laser below and right at threshold. Above
threshold, it is the major source of incoherent noise for the coherent field of the laser
output.

EXAMPLE 11.4 Find the pump power required for the Nd : YAG microchip laser described
in Examples 11.1–11.3 to have an output power of 1 mW.

Solution This laser satisfies the conditions required for the application of (11.87).
We should first find Pp through (11.84) and (11.86) in the spirit of (11.87). Then we
show that the same result is obtained from (11.88).

The required pump power for a desired output power can be found using (11.84) to
obtain the value of the pumping ratio r for a given value of Pout. To use (11.84) for
this purpose, we have to find P sat

out through the values of Vmode, Ssat, and γout. Because
l = 500 µm and w = 100 µm,

Vmode = πw2l = π × (100 × 10−6)2 × 500 × 10−6 m3 = 1.57 × 10−11 m3.

Because sth = P th
p /P sat

p = 8.3 × 10−4 � 1 from Example 11.2, we expect s = Wpτ2 =
Pp/P sat

p � 1 so that τs = τ2 = 240 µs for the operating pump power range of this laser.
With n = n = 1.82 for this laser, we then have

Ssat = n

cτsσe
= 1.82

3 × 108 × 240 × 10−6 × 3.1 × 10−23
m−3 = 8.15 × 1017 m−3.

Because R1 = 100% and R2 = 99.7%, we have

γout =γout,2 =− c

nl
ln
√

R2 =− 3 × 108

1.82 × 500 × 10−6
× ln

√
0.997 s−1 =4.95 × 108 s−1.

We then find that

P sat
out = VmodeSsathνγout

= 1.57 × 10−11 × 8.15 × 1017 × 1.165 × 1.6 × 10−19 × 4.95 × 108 W

= 1.18 mW

We can then use (11.84) to find that

Pout = 1.18(r − 1) mW.
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For an output of Pout = 1 mW, we find that the required pumping ratio is

r = 1 + 1

1.18
= 1.85.

Because this laser is a four-level laser, we have P tr
p = 0. We already found from Ex-

ample 11.2 that P th
p = 11.1 mW and that the absorption saturation of the pump is

negligible. Therefore, ζp ≈ ζ th
p ≈ 0.204. Using these parameters, the required pump

power is found from (11.86) to be

Pp = ζ th
p

ζp
r P th

p ≈ r P th
p = 1.85 × 11.1 mW = 20.5 mW.

Alternatively, we can find Pp using (11.88). For this purpose, we have, from Ex-
ample 11.2, the following parameters: ηp = 0.8, λ = 1.064 µm, λp = 808 nm, and
gth = 3.5 m−1. We also find that

γc = �
cgth

n
= 1 × 3 × 108 × 3.5

1.82
s−1 = 5.77 × 108 s−1.

For Pout = 1 mW and P th
p = 11.1 mW, we find from (11.88) that

Pp = 1

ζpηp

γc

γout

λp

λ
Pout + ζ th

p

ζp
P th

p

= 1

0.204 × 0.8
× 5.77 × 108

4.95 × 108
× 808 × 10−9

1.064 × 10−6
× 1 mW + 0.204

0.204
× 11.1 mW

= 20.5 mW.

We see that the same result is obtained.

The overall efficiency of a laser, known as the power conversion efficiency, is

ηc = Pout

Pp
. (11.89)

The linear dependence of the laser output power on the pump power indicated by (11.87)
leads to the concept of the differential power conversion efficiency, also known as the
slope efficiency, of a laser, defined as

ηs = dPout

dPp
= ζp P sat

out

ζ th
p P th

p − ζ tr
p P tr

p

= ζp Pout

ζp Pp − ζ th
p P th

p

= ηpζp
γout

γc

λp

λ
. (11.90)

Referring to the power characteristics of the laser shown in Fig. 11.10, the threshold of
a given laser can usually be lowered by increasing the finesse, thus lowering the values
of γc and γout, of the laser cavity, but only at the expense of reducing the differential
power conversion efficiency of the laser. Clearly, in the linear region of the laser power
characteristics where the relation given by (11.87) is valid, ηs is a constant that is
independent of the operating point of the laser. In contrast, ηc increases with pump
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power, but ηc is always smaller than ηs in the linear region. At high pumping levels
where the laser output power does not increase linearly with pump power, ηs is no
longer independent of the operating point. It can even become smaller than ηc in some
unfavorable situations.

The quantum efficiency of a laser oscillator is defined differently from that of a laser
amplifier. The external quantum efficiency, ηe, also known as the differential quantum
efficiency, measures the efficiency of converting pump photons or pump electrons above
threshold into laser photons at the laser output. Furthermore, an internal quantum
efficiency, ηi, can be defined to measure the efficiency of converting the pump photons
or the pump electrons above threshold into intracavity laser photons. They are defined
through the following relation:

ηe = �out

ζp�p − ζ th
p �th

p

and ηi = γc

γout
ηe, (11.91)

where �out = Pout/hν is the output photon flux of the laser, �p is the pump photon
flux, in the case of optical pumping, or the pump electron flux, in the case of electrical
pumping, �th

p is the threshold pump photon or electron flux, and ζp is the pump power
utilization factor. In the case of optical pumping, �p = Pp/hνp. Then, the external
quantum efficiency is directly related to the slope efficiency and the pump quantum
efficiency as

ηe = λ

λp

ηs

ζp
= ηp

γout

γc
. (11.92)

From (11.91) and (11.92), we find that ηi = ηp. Because γout < γc, the external quantum
efficiency ηe is smaller than the internal quantum efficiency ηi for a typical laser. This
reflects the fact that, because of the presence of losses in the laser cavity other than the
output coupling loss, not all photons generated inside a laser cavity contribute to the
output of the laser. Furthermore, the internal quantum efficiency ηi is equal to the pump
quantum efficiency ηp, reflecting the fact that after a laser is pumped above threshold,
every additional atom excited to the upper laser level results in the contribution of one
photon in the oscillating laser mode through stimulated emission.

EXAMPLE 11.5 Find the power conversion efficiency, the slope efficiency, and the ex-
ternal and internal quantum efficiencies of the Nd : YAG microchip laser described in
Example 11.4 operating at an output power of 1 mW.

Solution From Example 11.4, we find that Pp = 20.5 mW for Pout = 1 mW. The
power conversion efficiency in this operating condition is

ηc = Pout

Pp
= 1

20.5
= 4.9%.
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This laser has a threshold pump power of P th
p = 11.1 mW found in Example 11.2. Also

from Example 11.2, we know that ζp ≈ ζ th
p ≈ 0.204 because of negligible absorption

saturation of the pump. The slope efficiency can then be found from (11.90) to be

ηs = ζp Pout

ζp Pp − ζ th
p P th

p

≈ Pout

Pp − P th
p

= 1

20.5 − 11.1
= 10.6%.

With λ = 1.064 µm and λp = 808 nm, the external quantum efficiency is thus found
from (11.92) to be

ηe = λ

λp

ηs

ζp
= 1.064 × 10−6

808 × 10−9
× 10.6%

0.204
= 68.4%.

For this laser, we have γc = 5.78 × 108 s−1 from Example 11.1 and γout = 4.95 ×
108 s−1 from Example 11.4. The internal quantum efficiency can be found by using
(11.91) to be

ηi = γc

γout
ηe = 5.78 × 108

4.95 × 108
× 68.4% = 80%.

We see that, as expected, ηi is the same as ηp, which is 80% as given in Example 11.2.
This laser has a power conversion efficiency of 4.9% compared to a slope efficiency

of 10.6%. Compared to the high quantum efficiencies of ηe = 68.4% and ηi = 80%,
these power efficiencies are relatively low. The power conversion efficiency can be
increased by operating the laser at a higher pumping level, but it cannot exceed the
slope efficiency, which is a constant before nonlinearity saturates the laser output at a
significantly high pumping level. The reason for ηc to be always smaller than ηs before
saturation is that a laser has to overcome its threshold before it starts to oscillate. The
reason for the low power efficiencies in this example is that only 20.4% of the pump
power is absorbed by the gain medium because the pump beam passes through the
gain medium in only one single pass. Therefore, close to 80% of the input pump power
simply passes through the gain medium without being utilized. Both ηc and ηs for this
laser can be increased by taking a multiple-pass arrangement (see Problem 11.3.3) or
by properly increasing the length of the gain medium (see Problem 11.3.5) to increase
the utilization factor ζp of the pump power. However, quantum efficiencies are not
increased by such steps. Indeed, if the cavity parameters are changed, the external
quantum efficiency ηe might even be reduced while the slope efficiency ηs is increased.

11.4 Pulsed lasers

In the CW operation of a laser, the laser is pumped continuously at a constant pumping
level, and the loss of the laser cavity is also kept constant so that the laser has a con-
stant output power when it reaches steady state. A laser can also be pulsed to deliver
short optical pulses at its output. In pulsed operation, the net gain seen by the laser
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field is not kept constant but is temporally varied by pulse pumping the gain medium
and/or by modulating the cavity loss. Depending on the laser material, the cavity de-
sign, and the technique employed for the pulsed operation, laser pulses of temporal
pulsewidths ranging from the order of microseconds to the order of femtoseconds with
large ranges of pulse repetition rates, from single shots to gigahertz, and pulse energies,
from femtojoules per pulse to joules per pulse, can be generated. Many effective tech-
niques have been developed for the generation of laser pulses. The simplest approach
is gain switching, while the most important and most commonly employed techniques
are Q switching and mode locking. Here we only discuss the basic principles of these
techniques.

Gain switching

Gain switching is a technique that is used to generate very short laser pulses through
the control of oscillator transients. The concept of gain switching is straightforward:
the gain parameter �g of a laser is switched on rapidly above the laser threshold, which
is defined by the loss parameter γc, by fast, pulsed pumping so that a very short laser
pulse is generated through the transient effects of the laser oscillator.

In a gain-switched laser, the gain medium is pumped so fast that the population
inversion builds up more rapidly than the photons in the cavity. The gain is thus raised
considerably above the threshold before the laser field starts to build up from the initial
noise level in the cavity. The transient effects that follow under the excessively high-
gain condition result in the generation of a short, powerful laser pulse. Because the
intracavity laser photon density grows exponentially in time with the net gain, for
a gain-switched laser pulse to have a short risetime it is only necessary to create a
large excess gain above the threshold before stimulated emission starts to reduce it by
depleting the population inversion. This condition requires hard and fast pumping. In
addition, a long lifetime τ2 for the upper laser level in comparison to the pump-pulse
duration also helps in building up the excess population inversion. To make sure of a
short falltime for the gain-switched pulse, first the gain has to be terminated when the
photon density builds up to its peak value, and then the intracavity photons have to
be depleted quickly. The first of these two conditions requires short pumping duration,
while the second requires a short photon lifetime, corresponding to a large photon decay
rate γc. In addition, if gain saturation occurs, the laser gain can be terminated even more
rapidly, thus reducing the pulse falltime substantially. Figure 11.11 illustrates the basic
concept of gain switching.

From the above discussion, one can see that the conditions for the generation of very
short laser pulses by gain switching are (1) a large excess population inversion at the
onset of laser oscillation, (2) a short photon lifetime τc, and (3) sufficient gain saturation
after pulse buildup. The technical aspect of gain switching is in the choice of the pump
and laser parameters best to satisfy these conditions. Successful gain switching of a
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Figure 11.11 Temporal evolutions of gain parameter and intracavity photon density in a
gain-switched laser.

laser can be accomplished by choosing (1) a very short and strong pump, (2) a short laser
cavity, and (3) a laser medium that has a low saturation intensity and a long fluorescence
lifetime for the upper laser level in comparison to the pump-pulse duration.

Physical constraints sometimes make it impossible to fulfill all these requirements.
However, it is not necessary to satisfy all of these conditions fully before a short laser
pulse can be generated by gain switching. For example, by pumping the gain medium
hard enough, a very short pulse can be generated even when the pump pulse is longer
than the fluorescence lifetime of the upper laser level. Certainly, if the fluorescence
lifetime is long, the gain medium can be pumped less hard for a desired pulsewidth, or
a shorter pulse can be generated with the same pump. Therefore, a typical gain-switched
laser that generates ultrashort pulses is a laser with a very short cavity pumped by a
strong pump pulse that has a temporal duration on the order of or shorter than the
fluorescence lifetime of the gain medium. Short laser pulses are ideal sources for opti-
cally pumping a secondary gain-switched laser. This approach has been demonstrated
for gain switching in solid-state lasers, dye lasers, and semiconductor lasers. In gain-
switched semiconductor lasers that are electrically pumped, the pump current pulses are
typically one order of magnitude shorter than the carrier lifetime of the semiconductor
gain medium.

The dynamics of the laser oscillator are solely responsible for the behavior of a gain-
switched laser pulse. Therefore, if not well-controlled, many transient phenomena, such
as spiking and relaxation oscillation, can take place. The output then consists of a series
of spikes if the relaxation oscillation is not damped. However, by choosing a cavity
of a proper photon lifetime and by controlling the level and duration of pumping, a
single clean pulse without relaxation oscillation spikes can be generated. It is then only
necessary to pump the laser medium as fast as possible in a cavity as short as possible
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to generate a very short pulse. No special optical elements are required in the laser
cavity. By repetitively gain switching a laser with a periodic train of pump pulses, a
train of regularly spaced, gain-switched pulses can be generated. The gain switching
technique has been used to generate single pulses of temporal widths ranging from 1 ps
in an optically pumped short-cavity GaAs laser to a few hundred nanoseconds in CO2

lasers.
To generate an ultrashort laser pulse by gain switching, it is important to have an

extremely small cavity lifetime τc because the shortest cavity photon decay time is
limited by τc. Sometimes τc can be smaller than the cavity round-trip time T because
of high intracavity loss or high output-coupling loss. Unless the small τc is caused by a
high distributed loss, however, the shortest pulse that can be generated by gain switching
from a laser with τc < T is limited by T rather than τc. This is because it takes at least
one round trip to deplete all the intracavity photons by output coupling through the
mirrors. This limitation applies also to Q switching, which is also a transient technique.
It does not apply to mode locking, which does not rely on transient phenomena to
generate ultrashort laser pulses. Therefore, the cavity length usually imposes a direct
physical limitation on the laser dynamics so that the shortest pulsewidth generated by
the transient technique of gain switching or Q switching can only be as short as the
cavity round-trip time.

Q switching

Q switching is the most widely used technique for the generation of high-intensity
giant laser pulses of short duration. Similar to gain switching, Q switching relies on the
transient dynamics of a laser to generate very short pulses. However, it does not require
extremely fast pumping, as does the technique of gain switching. In fact, it is possible
to pump the gain medium continuously while switching the cavity Q factor repetitively
to generate a periodic train of Q-switched pulses.

The principle of Q switching is based on delaying the onset of laser oscillation
relative to the start of pumping to accumulate a large population inversion. This task
is accomplished by reducing the laser cavity Q factor in the early stage of pumping
to prohibit the depletion of population inversion caused by premature laser oscillation.
Upon reaching a large population inversion, the Q factor is rapidly increased, resulting
in a large excess gain above threshold and a burst of high-intensity short pulse driven by
the transient dynamics of the laser. Because Q = ω/γc according to (11.28), modulating
the cavity Q factor is equivalent to modulating the cavity loss rate γc. The basic principle
of Q switching is illustrated in Fig. 11.12. In contrast to gain switching where the cavity
loss rate is kept constant, γc(t) for a Q-switched laser is a time-varying function.

In the pumping phase of a Q-switched laser, population inversion builds up without
being depleted by stimulated emission. Clearly, if the pump-pulse duration is much
shorter than the fluorescence lifetime of the gain medium, gain switching can be very
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Figure 11.12 Temporal evolutions of cavity loss rate, gain parameter, and intracavity photon
density in a Q-switched laser. This illustration is based on an initial pumping ratio of r = 2.2.

effective, and there is no need for Q switching. This is the condition discussed above for
gain switching. When the pump pulse is long, the gain grows slowly. However, given
sufficient time, the gain can still accumulate to a substantial value if τ2 is sufficiently
long. This is the situation when Q switching can be effectively implemented to generate
a short pulse. Therefore, a large τ2 is even more desirable for Q switching than for
gain switching. For most efficient utilization of the pump energy, the pump duration
should not be too much longer than τ2 although it does not have to be short. Because of
spontaneous relaxation, population inversion, if not depleted by laser oscillation, cannot
continue to build up much longer than a period of τ2. For a repetitively Q-switched laser
under continuous pumping, this fact means that the overall efficiency of the laser drops
when the repetition rate is below 1/τ2.

The major difference between Q switching and gain switching is in the pumping phase
when γc(t) is kept high in the case of Q switching. In the lasing phase, gain-switched
and Q-switched lasers are driven by the same transient laser dynamics initiated by
the initial excess population inversion. This can be seen by comparing Fig. 11.12 to
Fig. 11.11.

It is clear that the conditions for the generation of very short laser pulses by gain
switching discussed earlier apply equally well to Q switching. Q switching differs from
gain switching only in the technical aspect of how the large initial excess population
inversion is achieved. Gain switching relies on a very fast and strong pump pulse to
achieve a high peak gain before stimulated emission starts. This condition is not required
for Q switching as the high cavity loss of a Q-switched laser in the pumping phase
prohibits the laser from oscillating. Thus the requirement on the pump for Q switching
is less demanding than that for gain switching. In comparison to a gain-switched laser,
the technical demand in a Q-switched laser is shifted from the pump to the Q switch. In
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order to generate a very short pulse by Q switching, it is therefore desirable to have
(1) an effective Q switch that switches the cavity Q very rapidly from a very low value
to a high value at the moment the gain reaches a desired high level, (2) a short laser
cavity, and (3) a laser medium that has a low saturation intensity and a long fluorescence
lifetime. Similarly to the case of gain switching, these requirements do not have to be
fully satisfied, but a Q-switched laser pulse cannot be shorter than the cavity round-trip
time and a laser with a high saturation intensity has to be operated at a high power
level.

In the ideal situation, the value of γc(t) is switched abruptly from a high level, γcp,
for the pumping phase to a low level, γcl, for the lasing phase. In practice, because it
takes a time delay, td shown in Fig. 11.12, after the time of switching into the lasing
phase for the Q-switched pulse to build up to a significant level, the condition of ideal
Q switching can be approximated by fast Q switching where the transition from the
pumping phase to the lasing phase is completed within a time duration less than the time
delay of the pulse buildup. In this ideal, or nearly ideal, situation of fast Q switching,
the characteristics of the Q-switched pulse are completely determined by the initial
pumping ratio at the onset of the lasing phase:

r = �gi

γcl
(11.93)

where gi is the initial gain parameter at the onset of the lasing phase, as illustrated
in Fig. 11.12. In a Q-switched laser, the initial gain parameter gi for the lasing phase
actually shoots over the threshold level defined by γcl because of the Q-switching action.
Therefore, the parameter r defined in (11.93) has a somewhat different meaning from
that defined in (11.76). Clearly, we always have r > 1 for Q-switching operation. The
peak output power of a Q-switched pulse is approximately given by

Ppk ≈ τ2

τcl
(r − ln r − 1)P sat

out, (11.94)

where τcl = 1/γcl is the photon lifetime in the lasing phase and P sat
out = VmodeSsathνγout

as defined in (11.82). For 1.2 < r < 5, the FWHM pulsewidth, �tps, can be quite
accurately approximated by the following formula:

�tps = 2.5

(r − ln r − 1)1/2
τcl, (11.95)

which is obtained by approximate analytical fitting of Q-switched pulses. The energy
of a Q-switched pulse can be approximated by

U ≈ Ppk�tps. (11.96)

Clearly, the larger the value of r , the more dramatic the Q-switching behavior is,
resulting in a more powerful Q-switched pulse with a higher peak power and a smaller
pulsewidth.
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Depending on the technique used to modulate the cavity Q factor, the type of Q
switching can be generally categorized as active or passive. In active Q switching, the
Q switch that modulates the cavity Q is controlled by an externally applied signal.
Various techniques have been developed for active Q switching, including mechanical
modulation, electro-optic modulation, acousto-optic modulation, and magneto-optic
modulation. Today, most of the actively Q-switched lasers use electro-optic or acousto-
optic modulators, which modulate the cavity Q by modulating the loss in the cavity. Both
of these two types of modulators are controlled by external electronic signals, which
have the advantages of stability and flexibility of Q modulation and ease of synchro-
nization with measurement apparatus. Typical electro-optic modulators are based on
the Pockels effect. They have fast switching times in the nanosecond range with a large
Q modulation and can be controlled with precise timing, but they often require a large
switching voltage and are difficult to operate at a high repetition rate. The acousto-optic
modulators are Bragg diffractors driven by an RF signal. They have a slower switch-
ing speed and a smaller Q modulation than electro-optic modulators, thus producing
longer pulses. They can be easily operated at a high and variable repetition rate and are
primarily used in continuously pumped, repetitively Q-switched lasers at a repetition
rate in the kilohertz range. High-frequency intracavity electro-optic modulation based
on the electroabsorption effect can be applied to a semiconductor laser for the genera-
tion of actively Q-switched picosecond pulses at a high repetition rate in the gigahertz
range.

In a passively Q-switched laser, the Q switch is typically a nonlinear optical element
that changes the cavity loss by responding directly to the intracavity laser intensity. The
most commonly used passive Q switch is a saturable absorber, the optical properties of
which are discussed in Section 9.7. With a proper arrangement, any all-optical switch,
such as a Kerr lens, also discussed in Section 9.7, can function as a passive Q switch.
Passive Q switching has the advantage of being simple and inexpensive, but the pulses
generated by passive Q switching are often subject to larger intensity fluctuations and
timing jitter than those generated by active Q switching.

Solid-state lasers, such as Nd : YAG, ruby, and Ti : sapphire, are primary candidates
for Q switching because they normally have a long fluorescence lifetime. The pulsewidth
of a pulse generated by a Q-switched solid-state laser is typically in the range of a few
nanoseconds to hundreds of nanoseconds. Many useful laser materials, such as laser
dyes and semiconductors, have a very small τ2 on the order of nanoseconds or less.
They are not easy to Q switch unless a very efficient pump source and a very fast Q
switch are used. As a consequence, the Q-switched pulses generated by these lasers
are typically on the order of tens or hundreds of picoseconds although pulses as short
as a few picoseconds at a repetition rate as high as a few tens of gigahertz have been
generated by passive Q switching of semiconductor lasers. It is also possible to combine
Q switching with mode locking in a Q-switched mode-locked laser to generate a train
of very short mode-locked pulses under a long Q-switched envelope.
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EXAMPLE 11.6 The characteristics of the Nd : YAG microchip laser described in Exam-
ples 11.1–11.5 in ideal Q-switching or gain-switching operation are considered in this
example. For the gain-switching operation, all of the laser parameters, including those of
the cavity and the gain medium, remain the same as those described in Examples 11.1–
11.5 except that the pump is an optical pulse at the pump wavelength of 808 nm. For
the Q-switching operation, a Q switch introduces an additional high loss to the laser in
the pumping phase, but the laser parameters in the lasing phase are the same as those
for the gain-switching operation. A possible Q-switching mechanism is passive Q
switching by codoping the Nd : YAG with Cr4+ ions as the saturable absorber. For
direct comparison with CW operation, we take the pumping ratio to be r = 1.85, as
found in Example 11.4 for a CW output power of 1 mW. (a) What are the required
conditions for the laser to be nearly ideally Q-switched? (b) Find the peak power,
pulsewidth, and pulse energy of the ideally Q-switched pulse. Compare the peak
power of the Q-switched pulse to that of the CW power of 1 mW. (c) What are the
required conditions for the laser to be nearly ideally gain switched? (d) What are the
characteristics of the ideally gain-switched pulse?

Solution (a) Because the laser parameters in the lasing phase are the same as those
of the CW laser described in Examples 11.1–11.5, we have γcl = γc = 5.78 × 108 s−1

and τcl = τc = 1.73 ns from Example 11.1. Two of the three conditions for ideal Q
switching, namely, a short laser cavity and a gain medium with a long fluorescence
lifetime and a low saturation intensity, are already met by this laser. Therefore, the only
requirement that has to be considered is an effective Q switch that switches the cavity
from a high loss of γcp to a low loss of γcl. First, γcp has to be larger than �gi, which for
a pumping ratio of r = 1.85 is �gi = rγcl = 1.85γcl. Thus, an effective Q switch has
to keep γcp > 1.85γcl = 1.07 × 109 s−1. Next, the Q switch has to switch fast enough.
Quantitatively, the Q switch has to switch the cavity loss from the high value of γcp to
the low value of γcl within a time interval �tQS that is shorter than the pulse delay time
td, as shown in Fig. 11.12, for the process to qualify as fast Q switching.

The pulse delay time can be estimated by considering the fact that the pulse grows
from a seed of spontaneous emission to the saturation photon density exponentially
with a rate of �gi − γcl. The saturation photon density is Ssat, which has a value of
Ssat = 8.15 × 1017 m−3 found in Example 11.4 for this laser. The seed of spontaneous
emission is one photon per mode, which translates into a spontaneous photon density
of 1/Vmode, with Vmode = 1.57 × 10−11 m3, also found in Example 11.4 for this laser.
If we take td to be the time it takes the photon density of the oscillating laser mode to
grow exponentially with a rate of �gi − γcl from 1/Vmode to Ssat, then td can be found as

td = 1

�gi − γcl
ln

Ssat

1/Vmode
= τcl

r − 1
ln(SsatVmode)

= 1.73

1.85 − 1
ln(8.15 × 1017 × 1.57 × 10−11) ns = 33.3 ns.
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Therefore, the requirements for ideal Q switching of this laser at the given pumping
ratio of r = 1.85 are γcp > 1.07 × 109 s−1 and �tQS � 33.3 ns.

(b) From Example 11.4, we find that P sat
out = 1.18 mW and τ2 = 240 µs for this laser.

Therefore, from (11.94), the peak power of the ideally Q-switched pulse is

Ppk ≈ τ2

τcl
(r − ln r − 1)P sat

out

= 240 × 10−6

1.73 × 10−9
× (1.85 − ln 1.85 − 1) × 1.18 × 10−3 W = 38.4 W.

Compared to the 1 mW output power of the laser in CW operation, the peak power of
this Q-switched pulse is 3.84 × 104 times higher primarily because of the fact that τ2

is five orders of magnitude larger than τcl. This demonstrates that a gain medium that
has a large τ2 makes a good Q-switched laser.

The pulsewidth is found from (11.95) to be

�tps = 2.5

(r − ln r − 1)1/2
τcl = 2.5

(1.85 − ln 1.85 − 1)1/2
× 1.73 ns = 8.93 ns.

Compared to the cavity round-trip time of T = 6.07 ps found in Example 11.1, which
sets the ultimate lower limit for the pulsewidth of a Q-switched pulse, this pulsewidth
is quite long. It can be shortened by pumping the laser higher to increase the pumping
ratio r and by using an output-coupling mirror of a lower reflectivity to reduce τcl.

The pulse energy is simply

U ≈ Ppk�tps = 38.4 × 8.93 × 10−9 J = 343 nJ.

This pulse energy is not very high because of the small amount of energy that can be
stored in the small gain volume of the microchip laser. To increase the Q-switched pulse
energy, one must increase the volume of the gain medium as well as the mode volume
of the oscillating laser field.

(c) Two of the three conditions for ideal gain switching are the same as those for ideal
Q switching, which are already met by this laser. The only condition remaining to be
considered is a very short and strong pump for gain switching. Whether a pump pulse
is short or not is relative to the fluorescence lifetime τ2 of the gain medium. Because
τ2 is the relaxation time constant of the excited population in the upper laser level, the
pump energy can be efficiently stored in the population inversion of the gain medium if
the pump-pulse duration is much smaller than τ2. If τ2 is much smaller than the pump-
pulse duration, then the pump energy cannot be efficiently stored in the population
inversion of the gain medium because population relaxation during the pumping process
is significant. From this discussion, we understand that for ideal gain switching, it is
necessary that the pump pulse be much shorter than τ2 of the gain medium. It does not
have to be extremely short, however. A pump pulse that has a duration of τ2/10 is short
enough, while one that has a duration of τ2/100 is close to an ideal delta pulse pump.
For ideal gain switching of this Nd : YAG laser with τ2 = 240 µs, we need a short pump
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pulse of a few microseconds or less in duration that has a sufficiently high energy to
pump the laser to the desired pumping ratio of r = 1.85 in such a short duration.

(d) The characteristics of an ideally gain-switched pulse are the same as those of an
ideally Q-switched pulse found in (b). The only difference is in the pump pulse. Ideal
Q switching can be accomplished with a relatively long pump pulse so long as the Q
switch satisfies the conditions discussed in (a).

Mode locking

Mode locking is the most important technique for the generation of repetitive, ultrashort
laser pulses. The principle of mode locking is very different from those of gain switching
and Q switching in that it is not based on the transient dynamics of a laser. Instead, a
mode-locked laser operates in a dynamic steady state.

A pulsed laser can oscillate in multiple longitudinal modes regardless of whether
the gain medium is homogeneously or inhomogeneously broadened. Mode locking
refers to the situation when all of the oscillating longitudinal modes of a laser are
locked in phase. When this phase locking is accomplished, constructive interference
of all of the oscillating modes results in a short pulse circulating inside the cavity,
which is regeneratively amplified by the gain medium after periodically delivering an
output pulse through an output-coupling mirror in each round trip. The mode-locking
operation is accomplished by a nonlinear optical element known as the mode locker
that is placed inside the laser cavity, typically near one end of the cavity if the laser has
the configuration of a linear cavity. Viewed in the frequency domain, mode locking is a
process that generates a train of short laser pulses by locking multiple longitudinal laser
modes in phase. The function of the mode locker in the frequency domain is thus to
lock the phases of the oscillating modes together through nonlinear interactions among
the mode fields. In the time domain, the mode-locking process can be understood as a
regenerative pulse-generating process by which a short pulse circulating inside the laser
cavity is formed when the laser reaches steady state. The action of the mode locker in the
time domain resembles that of a pulse-shaping optical shutter that opens periodically
in synchronism with the arrival at the mode locker of the laser pulse circulating in the
cavity. Consequently, the output of a mode-locked laser is a train of regularly spaced
pulses of identical pulse envelope.

The simplest case of multimode oscillation is when there are only two oscillating
longitudinal modes of frequencies ω1 and ω2. Then, the total laser field at a fixed
location is

E(t) = E1eiϕ1(t)e−iω1t + E2eiϕ2(t)e−iω2t , (11.97)

where E1 and E2 are the magnitudes of the field amplitudes and ϕ1 and ϕ2 are the
phases. With all the phase information included in ϕ1 and ϕ2, E1 and E2 are positive,
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real quantities. The intensity of this laser is given by

I (t) = 2cε0n|E(t)|2
= 2cε0n

{E2
1 + E2

2 + 2E1E2 cos[(ω1 − ω2)t − ϕ1(t) + ϕ2(t)]
}
. (11.98)

In general, the phases can vary with time. If ϕ1(t) and ϕ2(t) vary randomly with time
on a characteristic time scale that is shorter than 2π/(ω1 − ω2), the beat note of the two
frequencies cannot be observed even with a very fast detector. In this situation, the output
of the laser has a constant intensity that is the incoherent sum of the intensities of the
individual modes. This situation simply represents the ordinary multimode oscillation
of a CW laser. If ϕ1 and ϕ2 are time independent, the laser intensity given in (11.98)
becomes periodically modulated with a period of 2π/(ω1 − ω2) defined by the beat
frequency, as shown in Fig. 11.13(a). The modulation depth of this intensity profile
depends on the ratio between E1 and E2. When E1 = E2, the modulation depth is 100%
with Imin = 0. In this situation, I (t) resembles a train of periodic “pulses” that have
a duty cycle of 50% and a peak intensity of twice the average intensity. This is simply
coherent mode beating and is the best one can do with two oscillating modes.

The periodic intensity profile created by two-mode beating, which is shown in
Fig. 11.13(a), is certainly far from what we normally expect from a train of mode-locked
pulses. As the number of modes that are locked in phase increases, the characteristics of
periodic pulses become increasingly apparent in the output of the laser, as demonstrated
in Fig. 11.13(b). At a given pulse repetition rate, we can reduce the pulse duty cycle,
thus shortening the pulsewidth and simultaneously increasing the peak pulse intensity,
by increasing the number of modes. In general, a practically useful mode-locked laser
oscillates in a large number of modes. For a laser of many oscillating modes, we have
the following laser field:

E(t) =
∑

q

Eqeiϕq e−iωq t , (11.99)

where again Eq are taken to be positive, real quantities representing the magnitudes
of the field amplitudes, and the summation is taken over all of the oscillating modes.
As discussed above, if the phases ϕq vary randomly with time, (11.99) describes the
field of a CW multimode laser, which is of no interest here. For mode locking, we
consider the situation when ϕq are time independent. In the case of only two oscillating
modes with ϕ1 and ϕ2 being time-independent constants, the phase difference ϕ1 − ϕ2

merely shifts the mode beating pattern with respect to the origin of the time axis
and is of no physical significance. With more than two oscillating modes, however,
only one phase can be arbitrary because the relative phases among different modes
are significant. Consequently, the temporal characteristics of the combined laser field
described in (11.99) depend on the phase relationships among the oscillating modes,
as well as on the distribution of the field magnitudes Eq and the frequency spacing
between neighboring modes.
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(a)

(b)

Figure 11.13 (a) Field and intensity variations of a laser caused by beating between two longi-
tudinal modes of constant phases. (b) Field and intensity variations of a laser with multiple
longitudinal modes locked in phase.
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We consider the situation when the oscillating laser modes are equally spaced with
a longitudinal mode spacing of �ωL. The magnitudes and phases of the mode fields
are functions of the mode frequencies, but not all of the phases vary with time. Their
spectral distribution can be described by a complex spectral envelope function E(ω)
through

Eqeiϕq = �ωL

2π
E(ωq − ω0). (11.100)

For simplicity, we have chosen ω0 to be a longitudinal mode frequency near the center
of the spectrum. Thus we have ωq = ω0 + n�ωL, and the total field in (11.99) can then
be transformed as follows:

E(t) = �ωL

2π

∞∑
q=−∞

E(ωq − ω0)e−iωq t

= �ωL

2π
e−iω0t

∞∑
n=−∞

E(n�ωL)e−in�ωLt

= �ωL

2π
e−iω0tF−1F

{ ∞∑
n=−∞

E(n�ωL)e−in�ωLt

}

= �ωLe−iω0tF−1

{ ∞∑
n=−∞

E(n�ωL)δ(ω − n�ωL)

}

= e−iω0tF−1

{
E(ω) · �ωL

∞∑
n=−∞

δ(ω − n�ωL)

}

= e−iω0tE(t) ∗
∞∑

m=−∞
δ(t − mT )

= e−iω0t
∞∑

m=−∞
E(t − mT ), (11.101)

where T = 2π/�ωL, and

E(t) = F−1 {E(ω)} = 1

2π

∞∫
−∞

E(ω)e−iωt dω. (11.102)

In (11.101) and (11.102),F{·} means taking the Fourier transform from the time domain
to the frequency domain, and F−1{·} means taking the inverse Fourier transform from
the frequency domain back to the time domain.

The result in (11.101) is obtained under the assumption that the phases ϕq do not
vary with time. It shows that when phases ϕq do not vary with time, the total field E(t)
is a periodic function of time with a period T determined by the mode spacing and
a temporal profile E(t) determined by the spectral envelope. Figure 11.14 shows the
spectral and temporal characteristics of the field and intensity profiles of a completely
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(a)

(b)

(c)

(d )

Figure 11.14 (a) Spectral field distribution, (b) spectral intensity distribution, (c) temporal field
variation, and (d ) temporal intensity variation of a completely mode-locked laser. For simplicity, it
is assumed that the center of the spectral distribution coincides with the frequency of a longitudinal
mode. Note that �ωps and �tps are defined as the FWHMs of I (ω) and I (t), respectively.
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mode-locked laser, in which all of the longitudinal modes are locked to the same
phase. The spectral width, �ωps, of a laser pulse is defined as the FWHM of the
spectral intensity distribution, I (ω), as shown in Fig. 11.14(b). Correspondingly, the
temporal pulsewidth, �tps, is defined as the FWHM of the temporal intensity profile
of an individual pulse, as illustrated in Fig. 11.14(d). Because of the Fourier-transform
relationship, given in (11.102), between the temporal field profile, E(t), and the spectral
field profile,E(ω), the temporal and spectral widths of a pulse are subject to the following
relation:

�νps�tps ≥ K , (11.103)

where �νps = �ωps/2π and K is a constant of the order of unity that depends on
the pulse shape. For any pulse with a given pulse shape, the best one can hope for is
�νps�tps = K . When this is accomplished, the pulse is said to be Fourier-transform
limited, or simply transform limited. A transform-limited pulse is one that has the
smallest pulsewidth �tps = K/�νps for a given pulse spectral width �νps.

Two pulse shapes are of most interest for mode-locked lasers. One is the Gaussian
pulse, and the other is the sech2 pulse. For the Gaussian pulse, both E(ω) and E(t)
are Gaussian functions because the Fourier transform of a Gaussian function is an-
other Gaussian function, and both its temporal intensity profile and spectral intensity
profile are also Gaussian. For a sech2 pulse, both E(ω) and E(t) are its sech functions
because the Fourier transform of a sech function is another sech function, and both
its temporal intensity profile and its spectral intensity profile are sech2 functions. The
transform-limit constants are K = 2 ln 2/π = 0.4413 for a Gaussian pulse and K =
4 ln2(1 + √

2)/π2 = 0.3148 for a sech2 pulse. Actively mode-locked pulses tend to
have Gaussian shapes, whereas passively mode-locked pulses often have sech2 shapes.

When all of the modes of a laser are locked to a common phase, we can set ϕq =
ϕ0 = 0 because a constant common phase has no physical significance. This is the ideal
situation of complete mode locking. From (11.100), we find that the spectral envelope
is a real function when ϕq = 0. This implies that E(ω) = E∗(ω) and

E(t) = 1

2π

∞∫
−∞

E(ω)e−iωt dω

= 1

2π

∞∫
−∞

E∗(ω)e−iωt dω

= E∗(−t). (11.104)

Therefore, I (t) = I (−t) if the laser pulse is completely mode locked.
From the above discussions, it can be concluded that a completely mode-locked laser

pulse has a symmetric temporal intensity profile and is transform limited. It does not
necessarily have a symmetric spectral intensity profile, but an asymmetric temporal
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pulse shape or a deviation from the transform limit signifies incomplete mode locking.
The reverse is not true, however, because a transform-limited pulse is not necessarily
completely mode locked. When the longitudinal laser modes are not locked in phase,
pulses can still be formed, but with less than ideal characteristics.

A completely mode-locked pulse, being transform limited, satisfies the condition
�tps�νps = K . Because the number of oscillating modes can be estimated with

N ≈ �νps

�νL

, (11.105)

the temporal width of a mode-locked pulse is inversely proportional to the number of
oscillating modes:

�tps ≈ K

N�νL

= K
T

N
. (11.106)

At a fixed longitudinal mode spacing �νL, hence a fixed pulse repetition rate fps = 1/T ,
the pulsewidth can be shortened by increasing the number of oscillating modes. It is
common to expect a pulsewidth that is two to five orders of magnitude smaller than the
pulse spacing in a train of mode-locked pulses. The relation in (11.106) indicates that
this requires locking of hundreds to hundreds of thousands of oscillating modes.

An inhomogeneously broadened laser naturally oscillates in multiple longitudinal
modes. In such a laser, the mode locker only has to lock these modes in phase to pro-
duce a train of mode-locked pulses. However, many mode-locked lasers that produce
ultrashort pulses are homogeneously broadened. In the free-running steady state of a
homogeneously broadened laser, only one longitudinal mode will oscillate because of
homogeneous saturation across the gain spectrum. Even though it is possible to force
multimode oscillation in a homogeneously broadened laser when it is pulsed, the ho-
mogeneously broadened gain medium has a natural tendency to narrow the spectral
bandwidth of the oscillating laser field. Therefore, besides locking the phases of the os-
cillating laser modes together, the mode locker has the function of expanding the spectral
width of the laser pulse to counteract the spectral narrowing effect of the gain medium.

For the pulses generated by a given mode-locked laser, the pulse spectral bandwidth
�νps is ultimately limited by the spontaneous linewidth �ν of the gain medium because
�ν sets the limit for the gain bandwidth of the laser. Therefore, the mode-locked pulses
that can be generated from a given laser, regardless of whether it is homogeneously or
inhomogeneously broadened, are subject to the following absolute limitation:

�tps ≥ K

�νps
≥ K

�ν
, (11.107)

where �ν has the values listed in Table 10.1 for many representative laser gain media.
For most mode-locked lasers, only a fraction of the laser gain bandwidth is utilized so
that �νps is only a fraction of �ν. This fraction of bandwidth utilization depends on a
number of operating parameters, including the modulation strength and the modulation
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frequency of the mode locker, as well as the type of mode locker used. Increasing this
fraction is the key to reducing the temporal pulsewidth of mode-locked pulses.

A continuously mode-locked laser delivers a steady train of short pulses at a constant
average output power P , while each pulse has a high peak power Ppk. Effectively, the
energy of laser output in each pulse repetition period T is concentrated within the
duration of the pulsewidth �tps. Therefore, the peak power of the pulses is enhanced
over the average laser power by a factor of T/�tps in accordance with

Ppk = K ′ T

�tps
P = K ′ P

fps�tps
= K ′

K
N P, (11.108)

where K ′ is a constant of the order of unity that depends on the pulse shape. For a
Gaussian pulse K ′ = 2

√
ln 2/

√
π = 0.9394. For a sech2 pulse, K ′ = ln(1 + √

2) =
0.8814. From (11.108), we see that the enhancement of the pulse peak power over the
average power is proportional to the number of locked modes.

EXAMPLE 11.7 By properly incorporating a suitable mode locker in the laser cavity, a CW
Nd : YAG laser can often be mode locked with little additional loss, thus maintaining
average power while delivering a regular train of ultrashort laser pulses. A mode-locked
Nd : YAG laser consists of a Nd : YAG gain medium that has a spontaneous linewidth
of �ν = 150 GHz in a Fabry–Perot cavity that has a round-trip optical path length
of lRT = 2 m. The laser is continuously pumped to have an average output power of
P = 2 W. The mode locker used in this laser generates pulses of Gaussian temporal and
spectral shapes. (a) What is the repetition rate of the mode-locked pulses? Does it vary
with pulsewidth or laser output power? (b) If transform-limited pulses of �tps = 100 ps
are generated, how much of the bandwidth of the gain medium is utilized? How many
longitudinal modes should oscillate and be locked to generate such pulses? (c) What
is the peak power of the pulses? (d) What is the pulsewidth of the shortest pulses that
can possibly be generated from this laser? Under what conditions can such pulses be
generated?

Solution (a) The pulse repetition rate is determined by the cavity round-trip time T ,
which in turn is determined by the round-trip optical path length lRT. Therefore,

fps = 1

T
= c

lRT

= 3 × 108

2
Hz = 150 MHz.

It does not vary with either pulsewidth or laser output power. We also find from this
result that T = 6.7 ns.

(b) For transform-limited Gaussian pulses of �tps = 100 ps, we have

�νps = K

�tps
= 0.4413

100 × 10−12
Hz = 4.413 GHz.
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Because �ν = 150 GHz, we have �νps/�ν = 4.413/150 = 2.94%. Therefore, only
2.94% of the bandwidth of the gain medium is used. The longitudinal mode spacing is
simply the same as the pulse repetition rate: �νL = fps = 150 MHz. The number of
oscillating modes that are locked to generate these pulses can be found from (11.105):

N = �νps

�νL

= 4.413 × 109

150 × 106
= 30.

Only 30 oscillating modes are required because the pulsewidth of 100 ps is relatively
long for mode-locked pulses in a cavity that has a round-trip time of T = 6.7 ns.

(c) The peak power of these Gaussian pulses can be found by using (11.108) with
K ′ = 0.9394:

Ppk = K ′ T

�tps
P = 0.9394 × 6.67 × 10−9

100 × 10−12
× 2 W = 125 W.

This peak power is only about 63 times the average power because of the mode-
rate value of the T/�tps ratio and the correspondingly small number of oscillating
modes.

(d) The pulsewidth is ultimately limited by the condition given in (11.107). For
Gaussian pulses, K = 0.4413. Thus, the shortest pulses that can be generated from this
laser have the following pulsewidth:

�tmin
ps = K

�ν
= 0.4413

150 × 109
s = 2.94 ps.

Such pulses are generated under the following conditions: (1) the entire bandwidth of the
laser gain medium is utilized so that �νps = �ν, and (2) the pulses are transform limited
so that �tps�νps = K . To utilize the entire bandwidth of the laser gain medium is not
a simple matter. Aside from pumping the laser sufficiently to realize its entire potential
gain bandwidth, it requires that all optical elements in the laser cavity, including the
mirrors and the mode locker, have bandwidths larger than �ν. It also requires that
the mode-locking mechanism be strong enough to force all modes across the entire
bandwidth to oscillate and lock in phase. The generation of transform-limited pulses
is not a trivial matter, either. It requires elimination or compensation of all possible
sources of dispersion in the laser while using an effective mode-locking scheme to lock
all oscillating modes perfectly in phase.

In comparison to the transient techniques of gain switching and Q switching, the
requirements and optimum conditions for operation of a mode-locked laser that is re-
generatively pulsed are very different. Because a regeneratively pulsed laser does not
function by control of the laser transient, it does not depend on rapid depletion of intra-
cavity photons to generate a short pulse, as do transiently pulsed lasers. Consequently,
it does not require a very short photon lifetime and a correspondingly short laser cavity.
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(a)

(b)

Figure 11.15 Comparison between (a) a transiently pulsed laser such as a gain-switched or
Q-switched laser and (b) a regeneratively pulsed laser such as a mode-locked laser.

On the contrary, it requires a sufficiently long cavity for the pulse to fit in and circulate
around. In general, a pulse generated by the transient technique of gain switching or Q
switching cannot be shorter than the cavity round-trip time. Therefore, it has a spatial
span longer than the cavity length. In contrast, a pulse generated by a regenerative
approach such as mode locking always has a spatial span much shorter than the cavity
length and can have a pulsewidth significantly shorter than the cavity round-trip time.
This comparison is illustrated in Fig. 11.15. In a transiently pulsed laser, photon energy
is distributed throughout the laser cavity, and a pulse is generated through fast temporal
evolution of this distributed energy. As a result, the laser can be modeled as a lumped
device. In a regeneratively pulsed laser, however, the photon energy is localized and
circulates in the cavity. Therefore, a mode-locked laser cannot be modeled as a lumped
device.

Another difference between a transiently pulsed laser and a regeneratively pulsed
laser is the characteristic requirements of the gain medium. A transiently pulsed laser
requires a long fluorescence lifetime and prefers to have it as long as possible. The
fluorescence lifetime τ2 varies among different types of regeneratively pulsed lasers,
but in general a particularly large τ2 is not required. A synchronously pumped laser can
successfully operate on a gain medium that has a very small τ2 or even one that has
no energy-storage mechanism such as in the case of a synchronously pumped OPO.
In certain mode-locked systems, τ2 is preferred to be sufficiently large but not so large
as to cause competition between transient oscillation and the buildup of mode-locked
pulses. Therefore, the τ2 requirement of a mode-locked laser is a sophisticated issue
that depends on the specific type and mechanism of the mode-locking operation.

Although repetitive pulses can also be generated by the repetitive operation of tran-
siently pulsed lasers, a regeneratively pulsed laser offers certain advantages. The pulses
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generated from a regeneratively pulsed laser do not have to build up from noise once
the laser has reached steady state. In the steady state, the pulses bear no relation to the
initial noise from which they have developed. Thus these pulses tend to have much bet-
ter characteristics than those generated by transient techniques. The pulses are usually
very smooth and maintain a very high degree of coherence from one to another over
a long period of time, making them very useful for many time-resolved spectroscopic
applications. They are not affected by the transient effects, such as relaxation oscilla-
tions, of transiently pulsed lasers. In a mode-locked laser, the regeneratively generated
pulses can be transform limited if all of the oscillating modes are completely locked
in phase. Finally, a regeneratively pulsed laser can generate much shorter pulses at a
higher repetition rate than a transiently pulsed laser of the same gain medium can.

Similarly to Q switching, mode locking can also be either active or passive, depending
on the type of mode locker used. In an actively mode-locked laser, operation of the mode
locker is controlled by an externally applied signal. In a passively mode-locked laser, the
mode locker functions directly in response to the optical field in the laser cavity through
a nonlinear optical mechanism. Mode locking can take the form of either periodic loss
modulation or periodic gain modulation. The most important mode-locking techniques
are illustrated in Fig. 11.16.

For active mode locking with loss modulation, the most commonly employed tech-
nique is acousto-optic modulation with an externally applied RF signal, as shown in
Fig. 11.16(a). An acousto-optic modulator used for mode locking is different from one
used for Q switching: an acousto-optic mode locker is a standing-wave Bragg diffrac-
tor that is turned on continuously, but an acousto-optic Q switch is a traveling-wave
Bragg diffractor that is turned on and off to switch the cavity Q between different
values. A very important technique, known as synchronous pumping and illustrated in
Fig. 11.16(b), for generating ultrashort laser pulses can be considered as active mode
locking by gain modulation. For synchronous pumping, the gain medium in the laser
cavity is localized and placed near one end of the cavity and is pumped periodically,
either optically or electrically, with a train of very short pulses at the same repetition
rate as that of the periodic arrival at the gain medium of the pulse circulating inside the
laser cavity.

Passive mode locking can be accomplished by using a saturable absorber localized
and placed near one end of a linear laser cavity, as shown in Fig. 11.16(c). Sometimes,
a saturable absorber used for passive Q switching can also be used for passive mode
locking, but in general the requirements for passive mode locking are very different
from those for passive Q switching. Passive mode locking with a saturable absorber
can be arranged in a ring configuration shown in Fig. 11.16(d ) for colliding-pulse
mode locking. In this mode-locking scheme, there are two intracavity laser pulses that
circulate in opposite directions and collide at the saturable absorber to enhance the
pulse-shortening function of the saturable absorber. Passive mode locking can also be
accomplished without the use of a saturable absorber by employing nonlinear refractive
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(a)

(b)

(c)

(d )

(e)

( f )

Figure 11.16 Representative mode-locking techniques: (a) active mode locking with an
acousto-optic modulator, (b) synchronous pumping, (c) passive mode locking with a saturable
absorber, (d ) colliding-pulse mode locking, (e) additive-pulse mode locking, and ( f ) Kerr-lens
mode locking. AO represents an acousto-optic modulator. SA represents a saturable absorber. KL
represents a Kerr lens.
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index changes through the real part of χ (3), or even χ (2), of a nonlinear optical ele-
ment. Two very important concepts belonging to this category are additive-pulse mode
locking and Kerr-lens mode locking, which are illustrated in Figs. 11.16(e) and ( f ),
respectively.

Mode locking has been applied to a wide variety of laser materials to generate laser
pulses with pulsewidths ranging from the order of 10 fs to the order of 1 ns. For a given
laser material, passive mode locking typically generates shorter pulses than active mode
locking, but active mode locking often produces pulses with less fluctuation and jitter.
Some systems combine active mode locking with passive mode locking in a form of
hybrid mode locking to realize the advantages of both. It is also possible to combine
mode locking with a transient pulsing technique. In this situation, the laser does not reach
a complete steady state. An important example of this possibility is the operation of
Q-switched mode-locked lasers by combining Q switching and mode locking. Because
the transiently Q-switched pulse has a duration longer than the cavity round-trip time,
the result is a finite train of equally spaced mode-locked pulses with unequal amplitudes
under a Q-switched envelope.

EXAMPLE 11.8 Nd : YAG lasers can undertake all modes of laser operation, including CW,
gain-switching, Q-switching, and mode-locking operations, as Examples 11.1–11.7
illustrate. With the exception of synchronous pumping, almost all other mode-locking
techniques can be successfully employed to mode lock Nd : YAG lasers, either in a pure
form of CW mode locking or in a hybrid form that combines Q switching with mode
locking, or otherwise. These being the facts, however, the microchip Nd : YAG laser
with its cavity parameters described in Examples 11.1–11.6 cannot be mode locked by
any means. Give quantitative reasons for this problem.

Solution First, consider the fact that the longitudinal mode spacing of this microchip
laser is �νL = 164.8 GHz, as found in Example 11.3, while the entire linewidth of the
Nd : YAG plate used for this laser is only �ν = 150 GHz. Although a homogeneously
broadened laser can oscillate in multiple longitudinal modes when the laser is mode
locked, as discussed in the text above, this microchip laser can only oscillate in a
single longitudinal mode regardless of how it is being operated because �νL > �ν,
not because it is homogeneously broadened. Clearly, there is no possibility of mode
locking if a laser can only oscillate in one longitudinal mode.

We can see the problem from another angle in the time domain. According to the illus-
tration in Fig. 11.15(b) and the discussions in the text, a mode-locked pulse must have a
spatial span that is much shorter than the cavity length to allow it to circulate inside the
cavity as a regenerative pulse. For a laser with a linear Fabry–Perot cavity such as the
microchip laser under consideration, the mode-locked pulse has to fit loosely into the
length of the cavity to allow it to circulate inside without wrapping itself up, thus having a
pulsewidth that is much shorter than one-half of the cavity round-trip time: �tps � T/2.
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From Example 11.1, we find that T = 6.07 ps for this laser. Therefore, any mode-
locked pulse that can possibly be generated from this laser has a pulsewidth subject to
the limitation �tps � 3.03 ps. However, the pulsewidth of a mode-locked pulse is also
subject to the limitation given in (11.107). With �ν = 150 GHz, we have �tps > 2.94 ps
according to the calculation in Example 11.7 if the pulse has a Gaussian shape. These
two conflicting limitations cannot be satisfied simultaneously, thus excluding any pos-
sibility of mode locking this laser.

11.5 Optical fiber lasers

A fiber laser can be constructed by simply creating some form of optical feedback to
a fiber amplifier. Nevertheless, while most interest in fiber amplifiers has concentrated
on the 1.3- and 1.55-µm spectral regions for optical communication systems, the de-
velopment of fiber lasers has covered a broad spectral range, from a holmium-doped
fiber laser at 550 nm and a praseodymium-doped fiber laser at 610 nm in the visible
spectral region to an erbium-doped fiber laser at 2.7 µm and a holmium-doped fiber
laser at 2.9 µm in the infrared region. Besides, the active ions used for fiber lasers
include almost all rare-earth ions doped in either silica or fluoride glass fibers.

The operation of a fiber laser follows the general laser principles discussed in earlier
sections. Besides CW oscillation, fiber lasers can also be Q switched or mode locked to
deliver very short and intense laser pulses. The geometry and the waveguiding nature of
the fiber gain medium, however, lead to many unique configurations, along with some
special characteristics, for fiber lasers.

Several different cavity configurations for fiber lasers are shown in Fig. 11.17. The
most straightforward configuration, shown in Fig. 11.17(a), is a Fabry–Perot cavity
created by attaching a dichroic mirror to each end of a fiber that contains a section of
rare-earth ion-doped fiber. The dichroic mirrors are selected to have high reflectivities
at the laser wavelength but have nearly 100% transmittance at the pump wavelength.
The pump beam is launched through one end of the fiber, while the laser output exits
from the other end. An alternative configuration, which has two different arrangements
shown in Figs. 11.17(b) and (c), is a transversely coupled fiber Fabry–Perot cavity
in which a fiber directional coupler is used to couple the pump power into, and part
of the resonating laser power out of, the cavity. In this configuration, both the pump
and the laser beams never leave the fiber, avoiding the coupling of these beams in and
out of the fiber through mirrors and lenses. An all-fiber Fabry–Perot laser, shown in
Fig. 11.17(d ), can be constructed using two fiber loop reflectors in place of mirrors.
Similarly to the dichroic mirrors used in the Fabry–Perot cavity of Fig. 11.17(a), the
fiber loop reflectors are chosen to have 100% transmittance for the pump wave and high
reflectance for the resonating laser wave. Another all-fiber configuration is the fiber ring
cavities shown in Figs. 11.17(e) and ( f ). Note the significant difference between a fiber
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Figure 11.17 Fiber laser cavity configurations: (a) a Fabry–Perot cavity with end mirrors, (b) and
(c) two arrangements of a transversely coupled fiber Fabry–Perot cavity, (d ) an all-fiber
Fabry–Perot cavity with fiber loop reflectors, (e) and ( f ) two arrangements of an all-fiber ring
cavity.
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Figure 11.18 (a) Fiber DBR laser and (b) fiber DFB laser for single-longitudinal-mode laser
oscillation.

ring cavity and a fiber loop reflector. A ring cavity is an optical resonator, which stores
energy, but a loop reflector is a nonresonant optical interferometer, which does not store
energy.

Because the host materials are glasses, most rare-earth ion-doped fibers are at least
partially inhomogeneously broadened at room temperature. This property, coupled with
the broad gain bandwidth and the usually long cavity length of a fiber laser, leads to
the fact that a fiber laser normally oscillates in multiple longitudinal modes. There are
a few approaches to forcing a fiber laser to oscillate in a single longitudinal mode, thus
delivering a narrow-linewidth, single-frequency laser output. An all-fiber approach is
to use frequency-selective fiber Bragg gratings. The frequency of the single-frequency
laser output can be tuned if tunable fiber gratings are used. One possible arrangement,
shown in Fig. 11.18(a), is a kind of fiber DBR laser, in which a fiber grating is used
as a frequency-selective distributed Bragg reflector to replace the output-coupling loop
reflector of Fig. 11.17(d). Another possibility, shown in Fig. 11.18(b), is a fiber DFB
laser, in which no localized reflector is used but laser oscillation is accomplished
by frequency-selective distributed feedback of a fiber grating throughout the entire
section of the rare-earth ion-doped fiber gain medium. Because of the waveguiding
nature of a fiber, the transverse-mode characteristics of a fiber laser are not a function
of the cavity configuration but are solely determined by the mode characteristics of
the fiber waveguide. By using a single-mode fiber, single-transverse-mode oscillation
of a fiber laser can be guaranteed, irrespective of other parameters of the fiber laser
resonator.

Because a fiber laser generally has a longitudinal optical pumping arrangement, the
general characteristics of solid-state lasers with longitudinal optical pumping discussed
in the earlier sections apply equally well. As in the case of the fiber amplifiers discussed
in Section 10.5, some quantitative modifications on the formulations of certain relations
are needed to account for the waveguiding nature of the fiber. Specifically, it is necessary
to incorporate the confinement factors �p for the pump beam and �s for the signal beam
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into the formulation. Except for the relation for the transparency pump power, P tr
p , given

in (10.121), all of the formulations listed in (10.119)–(10.125) for a fiber amplifier are
valid for a fiber laser. The transparency pump power of a laser is defined differently
from that of an amplifier. The transparency pump power of a fiber laser is still that
given in (11.62) without modification. The only additional formulations that have to be
modified for a fiber laser are those for the pump power utilization factor at threshold
and the threshold pump power:

ζ th
p = 1 − exp

[
− �sσe Nt − gth

�s(σe + σa)Nt
αplg

]
(11.109)

and

P th
p =




1

p

exp

[
p

�sσa Nt + gth

�s(σe + σa)Nt
αplg

]
− 1

1 − exp

[
−�s(σe − pσa)Nt − (1 + p)gth

�s(σe + σa)Nt
αplg

] P sat
p , for p �= 0,

�sσa Nt + gth

�s(σe + σa)Nt

αplg

1 − exp

[
− �sσe Nt − gth

�s(σe + σa)Nt
αplg

] P sat
p , for p = 0.

(11.110)

By setting gth to zero in (11.109) and (11.110), ζ tr
p and P tr

p can be found. With these
modifications, all of the relations found in Sections 11.1–11.4 are applicable to fiber
lasers. However, because at least one or two of the conditions for the applicability of
(11.87) are often violated in a fiber laser, the output power of a fiber laser should be
found by using (11.88).

EXAMPLE 11.9 Because an erbium-doped fiber is a high-gain medium that can have a
long length, an EDFA can be made into an erbium-doped fiber laser with a relatively
small amount of optical feedback. The simplest approach is to cleave the two ends of
the EDFA and leave them uncoated for a 4% reflectivity each, thus forming a Fabry–
Perot cavity of R1 = R2 = 4% and a gain-medium length of lg = l with a unity filling
factor of � = 1. The EDFA of l = 20 m pumped at λp = 1.48 µm with a gain peak
at λ = 1.53 µm described in Example 10.13 is made into a fiber laser in this manner.
Aside from the absorption associated with the laser transition levels, this fiber has a
background distributed loss of α = 2 dB km−1. (a) Find the threshold pump power P th

p

of this fiber laser. What is the pump power utilization factor ζ th
p at the laser threshold?

(b) Find the transparency pump power P tr
p of this fiber laser. What is the pump power

utilization factor ζ tr
p at transparency? (c) What is the output power of the laser if it is

pumped with an input pump power of Pp = 20 mW?

Solution We find from Example 10.13 the following parameters for this fiber: ηp = 1,
p = 0.055, αp = 0.3485 m−1, and P sat

p = 4.25 mW at the pump wavelength of
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λp = 1.48 µm; σa = 5.75 × 10−25 m2, σe = 7.9 × 10−25 m2, and �s = 0.70 at the sig-
nal wavelength of λ = 1.53 µm; Nt = 2.2 × 1024 m−3. Therefore, αplg = 6.97, σa Nt =
1.265, σe Nt = 1.738, (σe + σa)Nt = 3.003, and (σe − pσa)Nt = 1.668. The distributed
loss is α = 2 dB km−1 = 0.46 km−1 = 4.6 × 10−4 m−1. Because lg = l = 20 m and
R1 = R2 = 0.04, the threshold gain coefficient of the laser is

gth = α − ln
√

R1 R2

lg
=
(

4.6 × 10−4 − ln 0.04

2

)
m−1 = 0.1614 m−1.

(a) The threshold pump power can be found from (11.110) for p �= 0:

P th
p = 1

0.055

exp

(
0.055 × 0.7 × 1.265 + 0.1614

0.7 × 3.003
× 6.97

)
− 1

1 − exp

(
−0.7 × 1.668 − 1.055 × 0.1614

0.7 × 3.003
× 6.97

) × 4.25 mW

= 16.87 mW.

The pump power utilization factor at threshold can be found from (11.109):

ζ th
p = 1 − exp

(
−0.7 × 1.738 − 0.1614

0.7 × 3.003
× 6.97

)
= 0.970.

(b) The transparency pump power can be found from (11.110) for p �= 0 by setting
gth to zero:

P tr
p = 1

0.055

exp

(
0.055 × 0.7 × 1.265

0.7 × 3.003
× 6.97

)
− 1

1 − exp

(
−0.7 × 1.668

0.7 × 3.003
× 6.97

) × 4.25 mW

= 13.83 mW.

The pump power utilization factor at transparency can be found from (11.109) by setting
gth to zero:

ζ tr
p = 1 − exp

(
−0.7 × 1.738

0.7 × 3.003
× 6.97

)
= 0.982.

(c) The output power of the laser can be found using (11.88). We find from Exam-
ple 10.13 that Pout

p = 0.984 mW when P in
p = 20 mW. Thus, ζp = (20 − 0.984)/20 =

0.951. We also find that

γout

γc
= − ln

√
R1 R2

gthl
= − ln 0.04

0.1614 × 20
= 0.997.

We can then find the output laser power from (11.88):

Pout = ηp
γout

γc

λp

λ
(ζp Pp − ζ th

p P th
p )

= 1 × 0.997 × 1.48

1.53
× (0.951 × 20 − 0.970 × 16.87) mW

= 2.56 mW.
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We see from this example that Pp > P th
p > P tr

p and ζp < ζ th
p < ζ tr

p , as expected from
the discussion following (11.86) in Section 11.3. We also see that this laser has a
relatively high transparency pump power compared to its threshold pump power, with
P th

p only 23% above P tr
p , even though this laser has end mirrors of very low reflectivities

of R1 = R2 = 4%. Because P th
p has to be always larger than P tr

p , this situation indicates
that the laser threshold cannot be significantly reduced by using coated end mirrors
of high reflectivities to reduce the output coupling loss of the laser. It is possible
to minimize the threshold pump power by choosing an optimum fiber length (see
Problem 11.5.1). It is also possible to maximize the output power at a given pumping
level by properly choosing the fiber length (see Problem 11.5.2). These two lengths are
different because the former is independent of the input pump power while the latter
varies with the pump power.

One unique feature of a fiber laser is that the fiber gain medium can be made long to
reduce the laser threshold. However, for the same reason as discussed in Section 10.5
for fiber amplifiers, the effect of increasing the length of the fiber gain medium on the
threshold of a fiber laser depends on the nature of the particular fiber gain medium
used. For a four-level fiber laser, the threshold pump power decreases inversely with
the length of the rare-earth ion-doped fiber gain medium, assuming that the background
attenuation coefficient of the host glass is small. If the gain medium of a fiber laser
functions as a three-level or a quasi-two-level system, however, there is an optimum
length for the minimum pump power threshold. Increasing the length of the fiber gain
medium beyond the optimum length results in an increase in the threshold.

A rare-earth ion-doped fiber pumped by a properly chosen semiconductor laser is a
high-gain device because of the high optical intensity in the fiber waveguide, the long
fluorescence lifetime of the rare-earth ions, and the efficient use of the narrow-band
pump power matching the absorption band of the rare-earth ions. This high gain and
the fact that a fiber has a large length and a small cross-sectional area make it possible
for laser action in a rare-earth ion-doped fiber without a resonant cavity to take place
through amplified spontaneous emission (ASE). The condition for such laser action
to occur is when the spontaneous emission originating from one end of the fiber is
amplified through the fiber to an intensity that saturates the gain at the other end:

hν�νG0 = Psat, (11.111)

where hν is the energy of the spontaneous photon, �ν is the bandwidth of the spont-
aneous emission, G0 is the integrated unsaturated power gain over the length of the
fiber, and Psat is the saturation power as defined in (10.95). Such a device is known as an
ASE fiber laser or a mirrorless fiber laser but is often also called a superfluorescent fiber
laser.1 An ASE fiber laser has spatial coherence and, if a single-mode fiber is used, a

1 Superfluorescence and ASE are fundamentally different phenomena. Calling an ASE laser a superfluorescent
laser, though common in the literature, is technically inaccurate. For details, see Siegman, A. E., Lasers. Mill
Valley, CA: University Science Books, 1986, p. 551.
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single transverse mode pattern. However, it does not have a longitudinal mode structure.
Besides, its output has a broad spectrum and very little temporal coherence. It serves as
a high-power, broadband light source, which is very useful in many applications where
temporal coherence is not needed or is avoided. Unlike an ordinary resonant laser, an
ASE laser has no distinctive threshold. Its gain is never clamped at any particular level.

PROBLEMS

11.1.1 Show by using (11.32) that for a linear Fabry–Perot cavity of a length l, the
locations of the end mirrors measured from the beam waist are

z1 = − l(R2 − l)

R1 + R2 − 2l
and z2 = l(R1 − l)

R1 + R2 − 2l
, (11.112)

for the left mirror with a radius of curvature ofR1 and the right mirror with a ra-
dius of curvature ofR2, respectively. Show by using this result that the Rayleigh
range of the Gaussian beam defined by this cavity is that given by (11.33).

11.1.2 A stable Fabry–Perot cavity must have a positive, real value for its Rayleigh
range zR. By applying this concept to the relation in (11.33), show that the
following statements are true.
a. It is not possible for a Fabry–Perot cavity to be stable if both mirrors are

convex, but it is possible if both mirrors are concave or if one is concave
and the other is convex.

b. The stability criterion for a Fabry–Perot cavity of any combination of
mirrors is that given by (11.34).

11.1.3 A Fabry–Perot optical cavity of a length l consists of one concave mirror with
R1 = 1 m and one planar mirror with R2 = ∞ in free space with n0 = 1.
The cavity length can be varied.
a. For a stable cavity, what is the range of values that can be chosen for the

cavity length l?
b. Where is the waist of the Gaussian beam defined by this optical cavity as

the cavity length is varied within the range found in (a)?
c. Within the stability range, there is a cavity length for which the waist spot

size of the Gaussian beam is maximized. Find this cavity length and the
corresponding maximum waist spot size for the optical wavelength at λ =
1 µm.

d. What should the cavity length be if a waist spot size of w0 = 300 µm for
λ = 1 µm is desired?

11.1.4 An empty Fabry–Perot cavity in free space has a cavity length of l = 0.5 m
and mirror reflectivities of R1 = 100% and R2 = 90%.
a. What are the round-trip time and the longitudinal mode spacing of this

cavity?
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b. Find the finesse and the longitudinal mode width of this cavity.
c. What are the cavity decay rate, the photon lifetime, and the Q factor for

λ = 1 µm?
d. If the cavity length remains unchanged but the reflectivities of the mirrors

are changed to R1 = R2 = 90%, which of the parameters found in (a)–(c)
will change in value? How do they change?

11.1.5 A ring cavity consists of three mirrors of R1 = 99%, R2 = 95%, and
R3 = 90% in free space. To form the ring cavity, the mirrors are arranged with
the following inter-mirror spacings: l12 = 0.5 m, l23 = 0.4 m, and l31 = 0.3 m.
The only losses of this cavity are those from the transmission of the mirrors.
a. What are the round-trip time and the longitudinal mode spacing of this

cavity?
b. Find the finesse and the longitudinal mode width of this cavity.
c. What are the cavity decay rate, the photon lifetime, and the Q factor for

λ = 1 µm?
11.1.6 The cavity round-trip time T and the photon lifetime τc are two characteristic

time constants of a resonant optical cavity. If both time constants are known,
all of the other parameters of the cavity can be found. It is most convenient to
express other cavity parameters of interest in terms of these two parameters
because both of them can be measured experimentally.
a. Express the finesse, the longitudinal mode spacing, the longitudinal mode

width, the cavity decay rate, and the Q factor of a cavity in terms of T and τc.
b. Find these parameters for a cavity that has T = 10 ps and τc = 1 ns. The

optical wavelength of interest is 1 µm.
11.1.7 The relation between the two characteristic time constants, the cavity

round-trip time T and the photon lifetime τc, of a resonant optical cavity
determines whether the cavity has a high Q or low Q for a given cavity length.
A high-Q cavity can support a low-gain laser, whereas a low-Q cavity requires
a high-gain laser medium to make a laser feasible. The condition that T = τc

sets the two types of cavity apart. Express this condition in terms of the
reflectivities of the cavity mirrors assuming no distributed loss in the cavity.
Express it in terms of the finesse of the cavity. The results found apply to any
types of cavity, including Fabry–Perot and ring cavities.

11.2.1 Show by following the procedure through (11.59) and (11.60) that the thresh-
old pump power of an optically pumped laser in a single-pass longitudinal
pumping arrangement is that given in (11.61).

11.2.2 In this problem, we consider an optically pumped laser with either single-pass
or multiple-pass longitudinal pumping with negligible transverse pump beam
divergence. Under the condition that sth = P th

p /P sat
p � 1, the pump power

decays exponentially along the longitudinal pumping axis. The gain medium
can be any system so that the parameter p can be either zero or nonzero.
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a. Show that the threshold pump power of a laser with single-pass longitudinal
optical pumping is

P th
p = σa Nt + gth

(σe + σa)Nt

αplg

ζ th
p

P sat
p , for either p �= 0 or p = 0, (11.113)

where ζ th
p ≈ 1 − e−αplg assuming no reflection of the pump beam at the pump

input surface of the gain medium. What is the transparency pump power?
b. Show that under the same condition that sth � 1 so that the power of

the pump beam decays exponentially along the longitudinal axis in each
pass through the gain medium, the threshold pump power of a laser that
is longitudinally pumped in a multiple-pass arrangement is also given by
(11.113) with ζ th

p accounting for the total power absorbed in all passes
given by

ζ th
p = (1 − R1p)(1 + R2pe−αplg )

1 − R1p R2pe−2αplg
(1 − e−αplg ), (11.114)

where R1p is the reflectivity of the pump beam at the pump input facet of
the gain medium and R2p is that at the other facet of the gain medium.
What is the transparency pump power?

11.2.3 The threshold pump power of the Nd : YAG microchip laser described in
Example 11.2 can be lowered by allowing the pump beam to make multiple
passes through the gain medium to utilize the pump power better. For the
pump beam to make two passes through the gain medium, the pump input
surface of the Nd : YAG plate is coated for 100% transmission for a pump
wavelength at 808 nm while the other surface is coated for 100% reflection at
808 nm wavelength. All other parameters of the laser, including R1 = 100%
and R2 = 99.7% for the laser wavelength at 1.064 µm and the length of the
gain medium lg = 500 µm, remain unchanged.
a. Find the value of gthlg and the threshold gain coefficient gth. Compare them

with those found in Example 11.2.
b. Find the threshold pump power for the laser in this double-pass pump-

ing arrangement. Compare it with that found in Example 11.2 for the
single-pass arrangement.

c. What is the linewidth of an oscillating laser mode when the laser has an out-
put power of 1 mW? How does it compare with that found in Example 11.3?

11.2.4 The threshold pump power of the Nd : YAG microchip laser described in
Example 11.2 can be lowered by properly increasing the length of the gain
medium to utilize the pump power better. To compare this approach with
the double-pass approach described in Problem 11.2.3, we double the length
to lg = 1 mm while allowing the pump beam to make only one single pass
through the gain medium so that the fraction of the pump power absorbed
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by the gain medium is the same in these two cases. All other parameters of
the laser, including R1 = 100% and R2 = 99.7% for the laser wavelength at
1.064 µm, remain the same as those described in Example 11.2.
a. Find the value of gthlg and the threshold gain coefficient gth. Compare them

with those found in Example 11.2 and those found in Problem 11.2.3(a).
b. Find the threshold pump power for this laser. Compare it with that found

in Example 11.2 and that found in Problem 11.2.3(b).
c. What is the linewidth of an oscillating laser mode when the laser has an

output power of 1 mW? How is it compared to that found in Example 11.3
and that found in Problem 11.2.3(c)?

11.2.5 A CW Ti : sapphire laser emitting at λ = 800 nm is constructed by placing
a Ti : sapphire laser rod of length lg = 2 cm in a resonant cavity of length
l = 25 cm. The Ti : sapphire rod is doped with 0.024 wt. % Ti2O3 for a Ti
concentration of 7.9 × 1024 m−3 and is longitudinally pumped with the second
harmonic of a Nd : YAG laser beam at λp = 532 nm. Ti : sapphire is a quasi-
two-level system. At the desired Ti : sapphire laser wavelength of λ = 800 nm
for E ‖ c polarization, σe = 3.4 × 10−23 m2 and σa = 8 × 10−26 m2. At the
pump wavelength of 532 nm, σe = 3 × 10−28 m2 and σa = 7.4 × 10−24 m2.
The refractive index of Ti : sapphire is 1.76. The fluorescence lifetime is
τ2 = 3.2 µs. The pump quantum efficiency is ηp = 80%. The ends of the rod
are cut at the Brewster angle so that there is negligible reflection for both the
pump and the laser beams. The pump beam is focused to an average spot size
of 2w = 100 µm in diameter across the length of the laser rod to match the
spot size of the laser beam defined by the resonant cavity. The laser cavity is
formed by mirrors of 100% reflectivity at 800 nm wavelength, except for the
output coupling mirror of a reflectivity R = 95% that allows the laser beam to
be transmitted. The only internal loss of the laser is attributable to absorption
of the laser rod at the 800 nm laser wavelength.
a. At what angle are the ends of the laser rod cut?
b. Find the values of gthlg and gth for the threshold of this laser.
c. What percentage of input pump power is absorbed?
d. Find the transparency pump power of this quasi-two-level laser.
e. Find the threshold pump power of the laser.

11.2.6 The threshold of a laser depends on the reflectivities of the mirrors that form
the laser cavity. For the Ti : sapphire laser described in Problem 11.2.5, a
threshold pump power of P th

p = 1.5 W is desired by properly choosing the
reflectivity R of the output coupling mirror while keeping all of the other
parameters of the laser rod, the optical cavity, and the pump unchanged. What
reflectivity of the output coupling mirror should be chosen for this purpose?

11.2.7 What are the major consequences of the effect of mode pulling on the
oscillating mode characteristics of a laser?
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11.2.8 Single-frequency CW lasers are very useful in many applications. Consider
both homogeneously and inhomogeneously broadened lasers. Discuss how
a CW laser in steady-state oscillation can be made to oscillate in only one
frequency.

11.3.1 Show that when p = 0 or p � 1 for an optically pumped laser that has a
spatially varying gain coefficient due to longitudinal pumping, the pumping
ratio r can be expressed in the form of (11.86), and the output laser power as
a function of pump power takes the form of (11.87).

11.3.2 Find the pump power required for the Nd : YAG microchip laser with
double-pass pumping described in Problem 11.2.3 to have an output power of
1 mW. Compare it with the 20.5 mW required for the laser with single-pass
pumping to have 1 mW output power found in Example 11.4. What is the
output power of the laser with double-pass pumping if it is pumped with a
pump power of 20.5 mW?

11.3.3 Find the power conversion efficiency, the slope efficiency, the external
quantum efficiency, and the internal quantum efficiency of the Nd : YAG
microchip laser with double-pass pumping described in Problems 11.2.3 and
11.3.2. Compare the results with those of the same laser with single-pass
pumping found in Example 11.5.

11.3.4 Find the pump power required for the Nd : YAG microchip laser described in
Problem 11.2.4 to have an output power of 1 mW. This laser has a Nd : YAG
plate of doubled length lg = 1 mm, but is pumped in a single pass. What is
the output power of this laser if it is pumped with a pump power of 20.5 mW?
Compare the results with those found in Problem 11.3.2 for the laser that has
a short Nd : YAG plate but is pumped in double passes.

11.3.5 Find the power conversion efficiency, the slope efficiency, the external
quantum efficiency, and the internal quantum efficiency of the Nd : YAG
microchip laser with a doubled Nd : YAG length of lg = 1 mm described
in Problems 11.2.4 and 11.3.4. Compare the results with those found in
Example 11.5 and Problem 11.3.3 for the other two cases.

11.3.6 Find the pump power required for the Ti : sapphire laser described in Prob-
lem 11.2.5 to have an output power of 1 W. Find its power conversion efficiency,
slope efficiency, external quantum efficiency, and internal quantum efficiency.

11.3.7 Find the pump power required for the Ti : sapphire laser described in
Problem 11.2.6 to have an output power of 1 W. Find its power conversion
efficiency, slope efficiency, external quantum efficiency, and internal quantum
efficiency. Compare the results found for this laser with those found in
Problem 11.3.6 for the Ti : sapphire that has an output coupling mirror of
different reflectivity.

11.4.1 Answer the following questions regarding the principles of gain switching
and Q switching.
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a. What are the two fundamental parameters of a laser material that determine
the characteristics of pulsed lasers using such a material as the gain
medium?

b. What are the most favorable conditions for gain switching?
c. What are the most favorable conditions for Q switching?
d. In what situation can the same pulse generated by Q switching a laser be

generated by gain switching the same laser so that the functioning of the
Q switch becomes redundant?

11.4.2 Answer the following questions regarding gain-switched and Q-switched
pulses.
a. What is the absolutely shortest pulse one can generate by gain switching

a given laser? What has to be done to approach that limit?
b. Answer the questions in (a) for Q switching instead of gain switching.
c. With given cavity mirrors and a given gain medium for a gain-switched or

Q-switched laser, name two different approaches that can easily be taken
to shorten the output laser pulsewidth.

11.4.3 The pulsewidth of the Q-switched pulse generated by the Q-switched
Nd : YAG microchip laser considered in Example 11.6 can be reduced by
increasing the pumping level while keeping the laser parameters unchanged.
By so doing, the pumping ratio r is increased while the photon lifetime τcl in
the lasing phase remains unchanged. When the pulsewidth changes, the peak
power and pulse energy all change accordingly. Meanwhile, the requirements
on the Q switch to act as an ideal Q switch are changed. A Q-switched pulse
of �tps = 3 ns is desired.
a. What is the required pumping ratio for the Q-switched pulse to have

�tps = 3 ns?
b. What are the peak power and energy of this Q-switched pulse?
c. What are the requirements on the Q switch for ideal Q switching of this laser?

11.4.4 The Nd : YAG laser described in Example 11.7 can also be gain switched or
Q switched. Without additional information on the parameters of the laser or
its cavity, find the upper and lower limits of the pulsewidth of a gain-switched
or Q-switched pulse that can be generated from this laser. What is the most
likely range for the pulsewidth?

11.4.5 Consider the following four different modes of laser operation: CW, gain
switching, Q switching, and mode locking. How many longitudinal modes will
oscillate in each situation if the laser is homogeneously broadened? How
many longitudinal modes will oscillate in each situation if the laser is inhomo-
geneously broadened?

11.4.6 Answer the following questions regarding mode locking.
a. What can be said about the temporal pulse characteristics of a completely

mode-locked pulse no matter how it is generated?
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b. What can be said about a pulse generated by a mode-locked laser if the
temporal pulse shape is asymmetric?

c. What are the expected shapes of the temporal and spectral envelopes of
optical pulses generated by active and passive mode locking, respectively?

d. For most modes of laser operation, it is desirable that the fluorescence
lifetime of the gain medium be as long as possible, but there are exceptions.
Give two examples of laser operation in which a gain medium with a
very long fluorescence lifetime is not desirable. What is the desirable
fluorescence lifetime in each of those two situations?

11.4.7 Show that a laser pulse that has a Gaussian temporal intensity profile also
has a Gaussian spectral intensity profile. Show that for such Gaussian
pulses the transform-limit constant K defined in (11.103) has the value of
K = 2 ln 2/π = 0.4413. Show also that for such Gaussian pulses the constant
K ′ defined in (11.108) has the value of K ′ = 2

√
ln 2/

√
π = 0.9394. Note that

∞∫
−∞

e−x2
dx = √

π. (11.115)

11.4.8 Show that a laser pulse that has a sech2 temporal intensity profile also has a
sech2 spectral intensity profile. Show that for such sech2 pulses the transform-
limit constant K defined in (11.103) has the value of K = 4 ln2(1 + √

2)/π2 =
0.3148. Show also that for such sech2 pulses the constant K ′ defined in
(11.108) has the value of K ′ = ln(1 + √

2) = 0.8814. Note that

∞∫
−∞

sech2x dx = 2. (11.116)

11.4.9 Find the pulsewidths of the shortest possible laser pulses that can be directly
generated by mode-locked lasers of the various gain media listed in Table 10.1.
Assume that the pulses have Gaussian shape. Can even shorter pulses be
generated by gain switching or Q switching? After a pulse is emitted from a
laser, it can often be made shorter than its limit found here by indirect means
such as pulse compression or pulse truncation. Why is this possible?

11.4.10 The solid-state laser material Nd : glass has a gain bandwidth of �λg = 22 nm
peaked at the wavelength λ = 1.054 µm. In comparison, the laser material
Nd : YLF has a gain bandwidth of �λg = 1.35 nm peaked at the wavelength
λ = 1.053 µm. They are normally excited by optical pumping.
a. If the entire gain bandwidth of the laser material is utilized in the generation

of an optical pulse that has a Gaussian temporal pulse shape, what are the
shortest pulsewidths possible using Nd : glass and Nd : YLF, respectively,
as the gain medium?
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b. It is practically very difficult, if not entirely impossible, to generate such
pulses as mentioned in (a) by gain switching Nd : glass and Nd : YLF lasers.
Discuss quantitatively the physical limitations that create such a difficulty.

c. If such pulses were to be generated by active Q switching, what practical
difficulties would be encountered?

11.4.11 Several types of lasers are very versatile in terms of their mode of operation. For
example, by simply turning the active mode locker on or off, a Nd : YAG laser
can be switched between CW operation and continuous mode-locking opera-
tion without much change in its average output power. As another example, a
semiconductor laser can be biased at a constant DC level while being switched
between CW or repetitive gain-switching operations, the latter of which deliv-
ers a regular train of gain-switched pulses. The relation between the peak power
and the average power of the pulses of a constant pulsewidth �tps in a pulse
train of a pulse repetition rate fps is given in (11.108). The laser beam at the fun-
damental frequency ω is sent through a second-harmonic crystal to generate its
second harmonic at the second-harmonic frequency 2ω with an efficiency that is
proportional to the instantaneous power of the laser such that P2ω(t) = a P2

ω(t),
with a being a constant. The average powers Pω and P2ω of the fundamental
and the second harmonic, respectively, are monitored for both CW and pulsed
operations of the laser. Clearly, (P2ω)pulsed is higher than (P2ω)CW if (Pω)pulsed

is comparable to (Pω)CW. Show that the pulsewidth can be found from

�tps = A
(P2ω/P

2
ω)CW

fps(P2ω/P
2
ω)pulsed

, (11.117)

where A is a constant that depends on the pulse shape. Show also that A =
(2 ln 2/π )1/2 = 0.6643 for Gaussian pulses and that A = (2/3) ln(1 + √

2) =
0.5876 for sech2 pulses. This problem describes a convenient way of measuring
the pulsewidth of repetitive pulses if the pulse shape and the pulse repetition
rate are both known. Note that

∞∫
−∞

sech4x dx = 4

3
. (11.118)

(See Chen, Y. C. and Liu, J. M., “Measurement of picosecond semiconductor
laser pulse duration with internally generated second harmonic emission,”
Applied Physics Letters 47(7): 662–664, Oct. 1985.)

11.5.1 Find the optimum fiber length that minimizes the threshold pump power of the
erbium-doped fiber laser described in Example 11.9. What is this minimum
threshold pump power? What is the transparency pump power of the laser if
this optimum fiber length is used? What is the output laser power if the laser
is pumped at Pp = 20 mW? Find the values of ζ th

p , ζ tr
p , and ζp.
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11.5.2 Find the fiber length that maximizes the output power of the erbium-doped fiber
laser described in Example 11.9 at the pumping level of Pp = 20 mW. What is
this maximized output laser power? What are the threshold pump power and the
transparency pump power of the laser if this fiber length is used? Find the values
of ζ th

p , ζ tr
p , and ζp. Compare these results with those found in Problem 11.5.1

to explain why the maximum output power at the given pumping level does
not take place for a fiber length that minimizes the threshold pump power.

11.5.3 The erbium-doped fiber laser described in Example 11.9 can be pumped
at 980 nm instead. When it is pumped at this wavelength, it behaves as a
three-level system with σ

p
a = 2.58 × 10−25 m2. The fundamental mode of the

fiber at this pump wavelength has an effective mode radius of wp = 3.3 µm
and a confinement factor of �p = 0.84. The pumping efficiency is ηp = 1.
Answer the questions in Example 11.9 for this erbium-doped fiber laser
pumped at 980 nm with an input pump power of 20 mW for a laser output at
1.53 µm. Compare the results with those found in Example 11.9.

11.5.4 Answer the questions in Problem 11.5.1 for the erbium-doped fiber laser
under the operating conditions specified in Problem 11.5.3.

11.5.5 Answer the questions in Problem 11.5.2 for the erbium-doped fiber laser
under the operating conditions specified in Problem 11.5.3.
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Part V

Semiconductor optoelectronics





12 Semiconductor basics

Semiconductors are important materials. Because of their unique electronic properties,
they are the materials of choice for modern electronic devices. Silicon, in particular, has
become the most important material for the electronics industry. Besides their unique
properties for electronics applications, semiconductors also have many other important
properties that are very useful for photonic device applications. In earlier chapters, we
have already seen that III–V semiconductors are useful materials for optical waveguides
and electro-optic devices. Many semiconductors are also used for acousto-optic devices
and nonlinear optical devices. In such applications, which are based solely on the di-
electric properties of semiconductors, semiconductors are nothing but another group
of dielectric optical materials. Nevertheless, semiconductors do have many optoelec-
tronic properties that are not shared by other dielectric materials. These optoelectronic
properties make semiconductors once again, beyond their unique position in the elec-
tronics industry, the key materials for many important optoelectronic devices, such
as light-emitting diodes, semiconductor lasers, and photodetectors. These devices are
covered in the following two chapters. In this chapter, we review the basic properties
of semiconductors that are relevant to their optoelectronic device applications.

12.1 Semiconductors

In Chapter 10, optical transitions between discrete atomic or molecular energy levels
are considered, though the atoms or molecules may be embedded in a host solid-state
material as dopants. In a semiconductor, however, the allowed states of the electrons of
its constituent atoms form continuous energy bands rather than discrete levels. The op-
tical processes associated with such electrons are a strong function of the characteristics
of the energy bands.

For a solid material in thermal equilibrium at a temperature T , the probability of
any electronic state at an energy E being occupied by an electron is given by the
Fermi–Dirac distribution function:

f (E) = 1

e(E−EF)/kBT + 1
, (12.1)
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(a) (b)

Figure 12.1 Energy band structures of (a) Si, which is an indirect-gap semiconductor, and (b)
GaAs, which is a direct-gap semiconductor. In each semiconductor, the Fermi level lies in the
bandgap that separates the conduction and valence bands. (Based on data from assorted sources.)

where EF is the Fermi level of the material and kB is the Boltzmann constant. At a very
low temperature approaching 0 K, all of the states below the Fermi level are occupied
while those above it are empty. If the Fermi level lies within an energy band, that band
is partially filled. A solid with one or more partially filled bands is a metal because elec-
trons in a partially filled band can move under an electric field to conduct an electric cur-
rent. If the Fermi level lies between two separate energy bands, as illustrated in Fig. 12.1,
all of the energy bands are either completely filled or completely empty at T → 0 K.
The filled bands are known as the valence bands, whereas the empty bands are known
as the conduction bands. The lowest conduction band and the highest valence band are
separated by an energy gap. The energy separation between the bottom of the lowest
conduction band and the top of the highest valence band is called the bandgap, Eg. A
material is an insulator if all of its bands are either completely filled or completely empty
because, due to the Pauli exclusion principle, electrons in a completely filled energy
band cannot move under an electric field. At a nonzero temperature, however, electrons
in high valence bands have a probability of being thermally excited to low conduction
bands. The probability of this thermal excitation is a function of Eg/kBT ; it increases
with rising temperature but decreases with increasing bandgap. The electrons that are ex-
cited to conduction bands become conduction electrons. The removal of electrons from
valence bands results in electron deficiencies, known as holes, in the form of unoccupied
electron states among occupied states. An electron in a conduction band is a carrier
of negative charge, whereas a hole in a valence band behaves like a carrier of positive
charge. Both contribute to the electrical conductivity of a semiconductor. A semiconduc-
tor is an insulator at T → 0 K, but has appreciable conductivity as the temperature rises.
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The energy of an electron is a function of its quantum-mechanical wavevector, k. In
a semiconductor, this dependence of electron energy on its wavevector forms the band
structure of the semiconductor. The illustration in Fig. 12.1 shows the band structures
of Si and GaAs. In the case of Si, the minimum of conduction bands and the maximum
of valence bands do not occur at the same k value. A semiconductor that has such a
band characteristic is called an indirect-gap semiconductor, and its bandgap is referred
to as an indirect bandgap. In contrast, a semiconductor like GaAs is a direct-gap
semiconductor because its band structure is characterized by a direct bandgap, with the
minimum of the conduction bands and the maximum of the valence bands occurring at
the same value of k, which in this particular instance is k = 0.

The minimum of the conduction bands is called the conduction-band edge, Ec, and
the maximum of the valence bands is called the valence-band edge, Ev. The bandgap,
Eg, is the energy difference between Ec and Ev:

Eg = Ec − Ev. (12.2)

The bandgap of a semiconductor is typically less than 4 eV. With the exception of some
IV–VI compound semiconductors, such as lead salts, the bandgap of a semiconductor
normally decreases with increasing temperature. The bandgaps and other properties of
many important semiconductors are listed in Table 12.1. In this table, λg is the free-
space optical wavelength of a photon that has an energy equal to the bandgap of a given
material: λg = hc/Eg.

A semiconductor can be an elemental material or a compound material. The group
IV elements Si and Ge are elemental semiconductors. Crystalline C can take the form
either of diamond, which is more an insulator than a semiconductor because of its large
bandgap of 5.47 eV at room temperature, or graphite, which is a semimetal. Though C
is not a semiconductor, Si and C can form the IV–IV compound semiconductor SiC,
which has many different structural forms with different bandgaps. Si and Ge can be
mixed to form the IV–IV alloy semiconductor Six Ge1−x . These group IV crystals and
IV–IV compounds are indirect-gap materials.

The most important semiconductors for photonic devices, however, are the III–V
compound semiconductors, which are formed by combining group III elements, such
as Al, Ga, and In, with group V elements, such as N, P, As, and Sb. A binary compound
consists of two elements. There are more than ten binary III–V semiconductors, such
as GaAs, InP, AlAs, and InSb. Different binary III–V compounds can be alloyed with
varying compositions to form mixed crystals of ternary compound alloys and quater-
nary compound alloys. A ternary III–V compound consists of three elements, two group
III elements and one group V element, such as Alx Ga1−x As, or one group III element
and two group V elements, such as GaAs1−x Px . A quaternary III–V compound consists
of two group III elements and two group V elements, such as In1−x Gax As1−yPy . A
III–V compound can be either a direct-gap or an indirect-gap material. A III–V com-
pound with a small bandgap tends to be a direct-gap material, whereas one with a large
bandgap tends to be an indirect-gap material.
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Table 12.1 Properties of some important semiconductorsa,b

Bandgap, Eg (eV) λg (nm) Refractive index Lattice constant (Å)

Semiconductor Typec At 0 K At 300 K At 300 K At λg At 1 µm At 300 K

IV Cd I 5.48 5.47 227 2.71 2.39 3.5668

Si I 1.17 1.12 1110 3.58 3.61 5.4310

Ge I 0.74 0.66 1880 4.12 4.38 5.6579

IV–IV SiC I 2.39–3.33 2.36–3.30 380–530 – – –

Six Ge1−x I 0.74–1.17 0.66–1.12 1110–1880 – – –

III–Ve AlN D 6.29 6.20 200 2.80 2.17
a = 3.112

c = 4.980

AlP I 2.49 2.41 515 2.96 2.77 5.4635

AlAs I 2.23 2.17 572 3.19 2.95 5.6605

AlSb I 1.69 1.62 768 3.50 3.46 6.1355

GaN D 3.50 3.44 360 2.70 2.34
a = 3.189

c = 5.185

GaP I 2.34 2.26 549 3.43 3.17 5.4505

GaAs D 1.52 1.42 871 3.63 3.51 5.6533

GaSb D 0.81 0.73 1700 3.75 4.10 6.0959

InN f D 1.92 1.90 653 – –
a = 3.540

c = 5.800

InP D 1.42 1.35 919 3.40 3.33 5.8687

InAs D 0.43 0.35 3540 3.52 3.63 6.0583

InSb D 0.24 0.17 7290 4.00 4.26 6.4794

aMadelung, O., ed., Semiconductors: Basic Data, 2nd edn. Berlin: Springer, 1996.
bSeraphin, B. O. and Bennett, H. E., “Optical constants”, in eds. R. K. Willardson and A. C. Beer,
Semiconductors and Semimetals, Vol. 3. New York: Academic Press, 1967, Chapter 12.
cD, direct gap; I, indirect gap.
d The diamond form of carbon.
eThe data for nitrides, AlN, GaN, and InN, are those of hexagonal wurtzite structure. Other III–V
compounds are of cubic zinc blende structure.
f The bandgap of InN in the old literature is in the range of 1.9–2 eV, but some recent reports point
to the possibility of a lower bandgap at about 0.7 eV. This controversy is not fully resolved yet.
See Bhuiyan, A. G., Hashimoto, A., and Yamamoto, A., “Indium nitride (InN): a review on growth,
characterization, and physics,” Journal of Applied Physics 94(5): 2779–2808, Sep. 2003.

Among the III–V compounds, the nitrides are quite unique. The binary nitride semi-
conductors AlN, GaN, and InN, as well as their ternary alloys such as InGaN, are all
direct-gap semiconductors. These direct-gap semiconductors form a complete series
of materials that have bandgap energies ranging from 1.9 eV for InN to 6.2 eV for
AlN, corresponding to the spectral range from 650 to 200 nm. Therefore, the nitride
compounds and their alloys cover almost the entire visible spectrum and extend to the
ultraviolet region. They are particularly important for the development of semiconduc-
tor lasers, light-emitting diodes, and semiconductor photodetectors in the blue, violet,
and ultraviolet spectral regions. Another unique property of nitride semiconductors is
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that they crystallize preferentially in hexagonal wurtzite structure, which has uniaxial
optical properties. However, nitride semiconductors can also crystallize in cubic zinc
blend structure, which is the common structure of all III–V compounds.

Group II elements, such as Zn, Cd, and Hg, can also be combined with group VI
elements, such as S, Se, and Te, to form binary II–VI semiconductors. Among such
compounds, the Zn and Cd compounds, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,
are direct-gap semiconductors with large bandgaps ranging from 1.5 eV for CdTe
to 3.78 eV for ZnS, whereas the Hg compounds HgSe and HgTe are semimetals with
negative bandgaps and HgS has two forms, α-HgS being a large-gap semiconductor and
β-HgS being a semimetal. The II–VI compounds can be further mixed to form mixed
II–VI compound alloys, such as the ternary alloys Hgx Cd1−x Te and Hgx Cd1−x Se. The
ternary II–VI alloys that include Hg can have a wide range of bandgaps covering the
visible to the mid infrared spectral regions.

In addition to III–V and II–VI compounds, the IV–VI lead-salt compound semicon-
ductors, PbS, PbSe, and PbTe, as well as their alloys like Pbx Sn1−x Te and PbSx Se1−x ,
are also useful. These lead-salt compounds are direct-gap semiconductors with small
bandgaps in the range of 0.145–0.41 eV. These lead-salt compounds have the un-
usual property that their bandgaps increase with increasing temperature, whereas the
bandgaps of other semiconductors decrease with increasing temperature.

By examining the data listed in Table 12.1, an important trend regarding the bandgaps
and the refractive indices of semiconductors can be observed: as the atomic weight of
a component in a semiconductor increases by moving down a particular column of
the periodic table, the bandgap decreases while the refractive index at a given optical
wavelength corresponding to a photon energy below the bandgap increases. These
characteristics can be seen in the group IV elemental semiconductors as the bandgap
decreases, while the refractive index increases, from C through Si to Ge. For the III–V
compounds, these characteristics can be seen by comparing those compounds of the
same group III element but different group V elements or those of the same group
V element but different group III elements. For example, the bandgap decreases but
the refractive index increases from AlP through AlAs to AlSb as the atomic weight
increases from P to As to Sb among the group V elements. As another example, the
bandgap decreases but the refractive index increases from AlAs through GaAs to InAs
as the atomic weight increases from Al through Ga to In among the group III elements.
Similar characteristics exist for II–VI compounds. Therefore, one can expect that among
CdS, CdSe, and CdTe, for example, CdS has the largest bandgap while CdTe has the
smallest bandgap. As another example, ZnSe has a larger bandgap than CdSe while
HgSe has a negative bandgap.

Lattice-matched compounds

Two crystals that have the same lattice structure and the same lattice constant are
latticed matched. Figure 12.2 shows the lattice constant as a function of bandgap
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Figure 12.2 Lattice constant versus bandgap for III–V compound semiconductors. In this plot, a
ternary compound lies on the curve connecting the two binary compounds that form the ternary
alloy. Solid curves represent direct-gap semiconductors, and dashed curves represent indirect-gap
semiconductors. A quaternary compound lies in the area defined by the four binary compounds
that form the quaternary alloy. All compositions that are lattice matched to a given binary
compound lie on the horizontal line passing through the binary compound. (Based on data from
assorted sources.)

for III–V compounds at 300 K. In this plot, a ternary compound lies on the curve
connecting the two binary compounds that form the ternary alloy. For example, the
lattice constant and the bandgap of Alx Ga1−x As for 0 ≤ x ≤ 1 can be found on the
curve connecting AlAs and GaAs. A quaternary compound lies in the area defined by
the four binary compounds that form the quaternary alloy. For example, the parameters
of In1−x Gax AsyP1−y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 are found within the area bounded
by the curves connecting InAs, GaAs, InP, and GaP. In Fig. 12.2, all compositions
that are lattice matched to a given binary compound lie on the horizontal line passing
through the binary compound. Because the lattice constants of different compounds
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vary with temperature at different rates, two compositions that are lattice matched at a
particular temperature are normally not matched at other temperatures.

As can be seen from Table 12.1 and Fig. 12.2, the lattice constants of AlAs and
GaAs have a very small mismatch of only 0.13% at 300 K. They are the most closely
lattice matched among all pairs of III–V binary compounds. In fact, they are perfectly
lattice matched at 900 ◦C. Consequently, the lattice constant of the ternary compound
Alx Ga1−x As varies very little with x , and Alx Ga1−x As is closely lattice matched to
AlAs and GaAs over the entire composition range. Similar characteristics exist for
the AlP−Alx Ga1−x P−GaP system and the AlSb−Alx Ga1−x Sb−GaSb system as well,
but the lattice constants of Alx Ga1−x P and Alx Ga1−x Sb have larger variations with x
than that of Alx Ga1−x As. Other than these systems, a ternary compound can be lattice
matched to a binary compound or to another ternary compound only at a particular com-
position but not over the entire composition range. Such lattice-matched compositions
can be found using Fig. 12.2.

The quaternary compound alloys normally have a large flexibility for lattice matching
to other compounds because each quaternary system has two variable composition
parameters and, consequently, occupies an area, rather than a curve as for a ternary
system, in Fig. 12.2. For example, the In1−x Gax AsyP1−y system, which lies in the
lower left shaded area of Fig. 12.2, can be lattice matched to InP over a composition
range of 0 ≤ y ≤ 1 and x ≈ 0.47y, and it can be lattice matched to GaAs over another
composition range of 0 ≤ y ≤ 1 and 1 − x ≈ 0.49(1 − y).

As can be seen in Fig. 12.2, the bandgap of a ternary or a quaternary compound varies
with the composition of the compound when the lattice constant of the compound is, for
the purpose of lattice matching, kept at a fixed value as the composition varies. As the
bandgap varies, the refractive index of the compound also varies and, as discussed above,
they vary in opposite directions. A semiconductor optical waveguide, as discussed in
Chapter 2, or a semiconductor heterostructure device, as discussed in Section 13.5,
generally consists of layers of compound semiconductors of different compositions
that are all lattice matched to a binary compound substrate, such as GaAs, InP, InAs,
or GaSb, on which the structure is fabricated. The bandgaps and refractive indices of
lattice-matched compounds are very important factors to be considered in the design
and fabrication of semiconductor optical waveguides and heterostructure devices. In
the following, the properties of two important systems, namely, Alx Ga1−x As lattice
matched to a GaAs substrate and In1−x Gax AsyP1−y lattice matched to an InP substrate,
are summarized.

Alx Ga1−x As/GaAs

Over the entire composition range of 0 ≤ x ≤ 1, Alx Ga1−x As is closely, though not per-
fectly, lattice matched to GaAs. Because this ternary compound is an alloy of indirect-
gap AlAs and direct-gap GaAs, it is a direct-gap semiconductor for small values of x
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in the range 0 ≤ x < 0.45 but becomes an indirect-gap semiconductor for large values
of x in the range 0.45 < x ≤ 1. Its bandgap in electron volts at 300 K as a function of
the composition parameter x can be described by

Eg(x) = 1.424 + 1.247x, direct gap for 0 ≤ x < 0.45, (12.3)

Eg(x) = 1.900 + 0.125x + 0.143x2, indirect gap for 0.45 < x ≤ 1. (12.4)

The direct bandgap ranges from 1.424 to 1.985 eV, corresponding to an optical wave-
length λg in the range between 870 and 625 nm. The indirect bandgap covers a range
from 1.985 to 2.168 eV, corresponding to λg in the range between 625 and 572 nm. The
bandgap of GaAs decreases with increasing temperature. It has a value of 1.5216 eV
at 0 K. The temperature dependence of the bandgap of GaAs is

Eg = 1.5216 − 5.405 × 10−4 T 2

T + 204
(eV). (12.5)

The refractive index of Alx Ga1−x As is a function of x as well as of the optical wave-
length because of dispersion. At an optical wavelength of λ = 900 nm, corresponding
to a photon energy of 1.38 eV, which is below the bandgap of Alx Ga1−x As over the
entire composition range, the refractive index as a function of x can be approximated
by

n(x) = 3.593 − 0.710x + 0.091x2, at λ = 900 nm for 0 ≤ x ≤ 1. (12.6)

We see, by examining the variations of n(x) and Eg(x) with the parameter x , that as
the value of x increases, the bandgap of Alx Ga1−x As increases but its refractive index
at the fixed wavelength of 900 nm decreases.

The refractive index of GaAs at 300 K as a function of optical wavelength in the
spectral range of λ ≥ 870 nm for photon energies below the GaAs bandgap is given by
the following Sellmeier equation:

n2 = 8.950 + 2.054λ2

λ2 − 0.390
, (12.7)

where λ is in micrometers. The refractive index of GaAs varies with temperature ap-
proximately as

1

n

dn

dT
= 4.5 × 10−5 K−1. (12.8)

In1−x Gax AsyP1−y/InP

The In1−x Gax AsyP1−y quaternary compounds that are lattice matched to InP are direct-
gap semiconductors over the entire lattice-matched composition range of 0 ≤ y ≤ 1
and x = 0.47y. At 300 K, the bandgap in electron volts as a function of the composition
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parameter y is given by

Eg(y) = 1.350 − 0.72y + 0.12y2, direct gap for 0 ≤ y ≤ 1 and x = 0.47y. (12.9)

Therefore, the direct bandgap of In1−x Gax AsyP1−y that is lattice matched to InP covers
the range from 0.75 to 1.35 eV, corresponding to λg in the range between 919 nm and
1.65 µm. The bandgap of InP decreases with increasing temperature. It has a value of
1.4206 eV at 0 K. The temperature dependence of the bandgap of InP is

Eg = 1.4206 − 4.906 × 10−4T 2

T + 327
(eV). (12.10)

The refractive index is a function of the composition parameter y and optical wave-
length. Two optical wavelengths, 1.3 and 1.55 µm, are of particular interest for lasers
and LEDs based on the In1−x Gax AsyP1−y /InP system because they lie in the windows
of minimum dispersion and minimum loss, respectively, in silica fibers. The 0.954 and
0.8 eV photon energies of 1.3 and 1.55 µm wavelengths are below the bandgap of
In1−x Gax AsyP1−y for 0 ≤ y ≤ 0.6 and 0 ≤ y ≤ 0.9, respectively, and x = 0.47y for
lattice matching to InP. At these wavelengths for the respective composition ranges, the
refractive index of In1−x Gax AsyP1−y that is lattice matched to InP can be approximated
by

n(y) = 3.205 + 0.34y + 0.21y2, at λ = 1.3 µm for 0 ≤ y ≤ 0.6, (12.11)

n(y) = 3.166 + 0.26y + 0.09y2, at λ = 1.55 µm for 0 ≤ y ≤ 0.9. (12.12)

From the relations in (12.9), (12.11), and (12.12), we see that as the value of the
composition parameter y increases, the bandgap of In1−x Gax AsyP1−y lattice matched
to InP decreases, but its refractive index at a fixed wavelength of 1.3 or 1.55 µm
increases.

The refractive index of InP at 300 K as a function of optical wavelength in the
spectral range of λ ≥ 920 nm for photon energies below the InP bandgap is given by
the following Sellmeier equation:

n2 = 7.255 + 2.316λ2

λ2 − 0.3922
, (12.13)

where λ is in micrometers. The refractive index of InP varies with temperature approx-
imately as

1

n

dn

dT
= 2.7 × 10−5 K−1. (12.14)

EXAMPLE 12.1 An InGaAsP quaternary compound that is lattice matched to InP at 300 K
has a bandgap optical wavelength of λg = 1.223 µm. Find the energy of its bandgap.
Find its refractive indices at 1.3 and 1.55 µm wavelengths, respectively. What is the
composition of this quaternary compound?
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Solution For λg = 1.223 µm, the bandgap

Eg = hc

λg
= 1.2398

1.223
eV = 1.014 eV.

According to (12.9), the composition parameter y can be found by solving

0.12y2 − 0.72y + 1.35 = 1.014,

which yields y = 0.51. Using (12.11) and (12.12), we then find that the refractive
indices are

n = 3.21 + 0.34 × 0.51 + 0.21 × 0.512 = 3.438

at λ = 1.3 µm and

n = 3.17 + 0.26 × 0.51 + 0.09 × 0.512 = 3.326

at λ = 1.55 µm.
Because x = 0.47y for an InGaAsP compound that is lattice matched to InP, we

find that x = 0.47 × 0.51 = 0.24 for y = 0.51. Therefore, the composition of this
quaternary compound is In0.76Ga0.24As0.51P0.49.

12.2 Electron and hole concentrations

The electron concentration in a semiconductor is the number of conduction electrons in
the conduction bands per unit volume of the semiconductor, and the hole concentration
is the number of holes in the valence bands per unit volume of the semiconductor.
The concentrations of electrons and holes in a semiconductor are determined by many
factors, including the bandgap and band structure of the semiconductor, the types and
concentrations of the impurities doped in the semiconductor, temperature, and any
external disturbances to the semiconductor.

Density of states

Because electrons are subject to the Pauli exclusion principle, which requires that no
more than one electron can occupy the same quantum-mechanical state, the number of
electrons in a particular energy band is determined by both the number of available states
in that band and the probability of occupancy for each state. In a bulk semiconductor,
the number of electron states in a given energy band is linearly proportional to the
volume of the semiconductor. Therefore, a very useful concept is the density of states,
which in a three-dimensional system like a bulk semiconductor is the number of states
per unit material volume.
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In a bulk semiconductor, the density of electron states within the energy range be-
tween E and E + dE for E ≥ Ec near the conduction-band edge is

ρc(E)dE =
∑

c

4π (2mc)3/2

h3
(E − Ec)1/2dE = 4π (2m∗

e )3/2

h3
(E − Ec)1/2dE, (12.15)

where mc is the density of states effective mass of an electron in a conduction band c and
m∗

e is the density of states effective mass for electrons in all equivalent conduction bands.
For example, there are six equivalent conduction-band minima in Si and four in Ge, but
only one in a direct-gap semiconductor like GaAs. Therefore, m∗

e = 62/3mc = 1.08m0

for Si, m∗
e = 42/3mc = 0.55m0 for Ge, and m∗

e = mc = 0.067m0 for GaAs, where m0 is
the free electron mass. Similarly, the density of states within the energy range between
E and E + dE for E ≤ Ev near the valence-band edge is

ρv(E)dE =
∑

v

4π (2mv)3/2

h3
(Ev − E)1/2dE = 4π (2m∗

h)3/2

h3
(Ev − E)1/2dE, (12.16)

where mv is the density of states effective mass of a hole in a valence band v and m∗
h is

the density of states effective mass of holes in all valence bands that are degenerate at
the valence-band edge. In both direct-gap and indirect-gap semiconductors including
GaAs, Si, and Ge, there are normally two hole bands, known as the heavy-hole band and
the light-hole band, of different effective masses that are degenerate at the valence-band
edge. Therefore,

m∗
h = (m3/2

hh + m3/2
lh )2/3, (12.17)

where mhh and m lh are the effective masses in the heavy-hole and light-hole bands,
respectively. We have m∗

h = 0.56m0 for Si, m∗
h = 0.31m0 for Ge, and m∗

h = 0.52m0 for
GaAs.

Carriers in equilibrium

In thermal equilibrium, the probability of occupancy for a given electron state at an
energy E is described by the Fermi–Dirac function f (E) given in (12.1). Therefore,
the concentration of conduction electrons (negatively charged carriers) whose energies
fall between E and E + dE is

n0(E)dE = f (E)ρc(E)dE (m−3), (12.18)

and the concentration of holes (positively charged carriers) whose energies fall between
E and E + dE is

p0(E)dE = [1 − f (E)]ρv(E)dE (m−3). (12.19)
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Note that the probability of finding a hole at an energy E is 1 − f (E) because a hole is
an unoccupied electron state. The total concentrations of electrons and holes in thermal
equilibrium are, respectively,

n0 =
∞∫

Ec

n0(E)dE =
∞∫

Ec

f (E)ρc(E)dE =
∞∫

Ec

ρc(E)dE

e(E−EF)/kBT + 1
(12.20)

and

p0 =
Ev∫

−∞
p0(E)dE =

Ev∫
−∞

[1 − f (E)]ρv(E)dE =
Ev∫

−∞

ρv(E)dE

e(EF−E)/kBT + 1
. (12.21)

Using (12.15) and (12.16), the electron and hole concentrations given by (12.20) and
(12.21) can be expressed as

n0 = Nc(T )F1/2

(
EF − Ec

kBT

)
, (12.22)

p0 = Nv(T )F1/2

(
Ev − EF

kBT

)
, (12.23)

respectively, where Nc and Nv are the effective densities of states for conduction and
valence bands, respectively, defined as

Nc(T ) = 2

(
2πm∗

ekBT

h2

)3/2

, Nv(T ) = 2

(
2πm∗

hkBT

h2

)3/2

, (12.24)

and F1/2(ξ ) is the Fermi–Dirac integral of order 1/2 defined as

F1/2(ξ ) = 2√
π

∞∫
0

x1/2dx

e(x−ξ ) + 1
= eξ 2√

π

∞∫
0

x1/2dx

ex + eξ
. (12.25)

The relations given in (12.22) and (12.23) for the electron and hole concentrations
are very general. They are valid for a semiconductor in thermal equilibrium with its
environment no matter whether the semiconductor is doped with impurity or not. They
are also valid for any value of EF with respect to Ec and Ev. It can be seen clearly
from these relations that the values of n0 and p0 are strongly dependent on the value
of the Fermi energy EF. The impurities in a semiconductor affect the electron and hole
concentrations through changing the value of the Fermi energy EF.

From (12.22) and (12.23), it can be clearly seen that both n0 and p0 are determined
by the Fermi–Dirac integral F1/2(ξ ). For this reason, the characteristics of this integral
as a function of its variable ξ are plotted in Fig. 12.3. For ξ = 0, we find that F1/2(0) =
0.765 15. We see that F1/2(ξ ) ≈ eξ for large negative values of ξ . This approximation
has an error of less than 1% for ξ ≤ −3.6. Therefore, when the Fermi level is far away
from both band edges so that (Ec − EF)/kBT ≥ 3.6 and (EF − Ev)/kBT ≥ 3.6, the
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–
e

Figure 12.3 Fermi–Dirac integral of order 1/2, F1/2(ξ ), as a function of the variable ξ . Also plotted
is the behavior of the exponential function eξ to show that F1/2(ξ ) ≈ eξ for ξ � −1.

electron and hole concentrations given in (12.22) and (12.23) can be approximated to
an accuracy of better than 99% by the following expressions:

n0 = Nc(T )e−(Ec−EF)/kBT , (12.26)

p0 = Nv(T )e−(EF−Ev)/kBT . (12.27)

In an intrinsic semiconductor, impurities contribute negligibly to the electron and
hole concentrations. Practically all of the conduction electrons in an intrinsic semicon-
ductor come from thermal excitation from the valence bands. Consequently, there are
as many holes as electrons so that n0 = p0. For most semiconductors of interest, we
have Eg � kBT at a temperature below the melting temperature of the semiconductor.
Under these conditions, we can apply the relation n0 = p0 to (12.26) and (12.27) to
find that the Fermi level of an intrinsic semiconductor is given by

EFi = Ec + Ev

2
+ kBT

2
ln

Nv

Nc
= Ec + Ev

2
+ 3kBT

4
ln

m∗
h

m∗
e

, (12.28)

which lies very close to the middle of the bandgap. Therefore, we have

n0 = p0 = ni(T ) ≈
√

Nc Nve−Eg/2kBT = 2

(
2πkBT

h2

)3/2

(m∗
em∗

h)3/4e−Eg/2kBT (12.29)

for an intrinsic semiconductor, where the intrinsic carrier concentration, ni, is a function
of temperature.

EXAMPLE 12.2 Calculate the values of the effective densities of states Nc and Nv for
GaAs at 300 K. Use the results to find the electron and hole concentrations and the
Fermi level for intrinsic GaAs at 300 K.
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Solution For GaAs, m∗
e = 0.067m0 and m∗

h = 0.52m0. Using the constants m0 =
9.11 × 10−31 kg, kB = 1.38 × 10−23 J K−1, and h = 6.626 × 10−34 J s, the effective
densities of states at T = 300 K can be calculated from (12.24) to be

Nc = 2 ×
[

2π × 0.067 × 9.11 × 10−31 × 1.38 × 10−23 × 300

(6.626 × 10−34)2

]3/2

m−3

= 4.35 × 1023 m−3

and

Nv = 2 ×
[

2π × 0.52 × 9.11 × 10−31 × 1.38 × 10−23 × 300

(6.626 × 10−34)2

]3/2

m−3

= 9.41 × 1024 m−3.

At T = 300 K, the bandgap of GaAs is Eg = 1.424 eV, and kBT = 25.9 meV.
Therefore,

Eg

kBT
= 1.424

25.9 × 10−3
= 54.98 and

Eg

2kBT
= 27.49.

Because the Fermi level of an intrinsic semiconductor lies close to the center of the
bandgap, (Ec − EFi)/kBT ≈ (EFi − Ev)/kBT ≈ Eg/(2kBT ) = 27.49 � 3.6. There-
fore, the approximations given in (12.26) and (12.27) and, consequently, those given in
(12.28) and (12.29) are all valid in this situation. For this intrinsic GaAs, we then find
from (12.29) that

n0 = p0 = ni =
√

4.35 × 1023 × 9.41 × 1024 × e−27.49 m−3

= 2.33 × 1012 m−3,

and from (12.28) that

EFi − Ec + Ev

2
= 25.9

2
× ln

9.41 × 1024

4.35 × 1023
meV = 39.8 meV.

Because the center of the bandgap is at (Ec + Ev)/2, this intrinsic Fermi level is
39.8 meV above the center of the bandgap. The reason for this shift of EF above the
bandgap center is that m∗

e < m∗
h for GaAs. Compared with the bandgap of 1.424 eV, this

shift away from the bandgap center is small, verifying the statement that the intrinsic
Fermi level lies very close to the center of the bandgap.

In an extrinsic semiconductor, however, n0 and p0 are different from ni because of
the contribution of carriers from the impurities in a semiconductor. An impurity atom
that can be positively ionized to contribute a conduction electron is a donor, and one
that can be negatively ionized to contribute a hole to the valence bands is an accep-
tor. In general, the requirement for charge neutrality in a semiconductor leads to the
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following relation:

n0 + N−
a = p0 + N+

d , (12.30)

where N−
a is the concentration of the immobile negatively ionized acceptors and N+

d is
that of the immobile positively ionized donors. When N+

d > N−
a , the semiconductor is

an n-type semiconductor with n0 > p0. In an n-type semiconductor, electrons are the
majority carriers, and holes are the minority carriers. When N−

a > N+
d , the semicon-

ductor is a p-type semiconductor with p0 > n0. In a p-type semiconductor, holes are
the majority carriers, and electrons are the minority carriers.

The Fermi level of an intrinsic semiconductor lies very close to the middle of the
bandgap and is only a weak function of temperature. In contrast, the Fermi level of an
extrinsic semiconductor is a function of the types and concentrations of the impurities.
In an n-type semiconductor, it moves towards the conduction-band edge; in a p-type
semiconductor, it moves towards the valence-band edge. Up to a moderate doping
concentration, the Fermi level remains in the bandgap. Such a semiconductor is called
a nondegenerate semiconductor.

For a nondegenerate semiconductor, no matter whether it is intrinsic or extrinsic,
(12.26) and (12.27) are valid for n0 and p0, respectively. Therefore, the carrier concen-
trations of a nondegenerate semiconductor in thermal equilibrium satisfy the following
law of mass action:

n0 p0 = n2
i (T ). (12.31)

The values of n0 and p0 in a nondegenerate semiconductor can be found by solving
(12.30) and (12.31) simultaneously. Then, from (12.26) and (12.27), the Fermi level of
a nondegenerate semiconductor can be found:

EF = Ec − kBT ln
Nc

n0
= Ev + kBT ln

Nv

p0
. (12.32)

This relation is valid for both intrinsic and extrinsic situations so long as the semicon-
ductor is nondegenerate. In the intrinsic case, this relation is equivalent to (12.28), as
EF = EFi for an intrinsic semiconductor. In the extrinsic case, it is valid for both n-type
and p-type semiconductors.

In the case when Nc � N+
d − N−

a � ni, the semiconductor is nondegenerate and
has n0 ≈ N+

d − N−
a � p0 ≈ n2

i /n0. The Fermi level for such a nondegenerate n-type
semiconductor shifts from EFi toward the conduction-band edge; it can be approximated
as

EF ≈ Ec − kBT ln
Nc

N+
d − N−

a

. (12.33)

In the case when Nv � N−
a − N+

d � ni, the semiconductor is nondegenerate and
has p0 ≈ N−

a − N+
d � n0 ≈ n2

i /p0. The Fermi level for such a nondegenerate p-type
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semiconductor shifts from EFi toward the valence-band edge; it can be approximated
as

EF ≈ Ev + kBT ln
Nv

N−
a − N+

d

. (12.34)

These approximations fail when the net impurity concentration is sufficiently high to
make the semiconductor degenerate or when it is too low so that n0 and p0 remain close
to ni.

EXAMPLE 12.3 A piece of n-type GaAs is doped with a net impurity concentration of
N+

d − N−
a = 5 × 1018 m−3. Is it degenerate or nondegenerate? Find its electron and

hole concentrations and its Fermi level at T = 300 K. How much is the shift of the Fermi
level, measured from the intrinsic Fermi level, caused by the doping of the impurity?

Solution From Example 12.2, we know that Nc = 4.35 × 1023 m−3 at T = 300 K.
We also find from Example 12.2 that ni = 2.33 × 1012 m−3. This n-type GaAs is
nondegenerate because N+

d − N−
a � Nc for the given impurity concentration. The

general procedure for finding n0 and p0 is to solve the simultaneous equations of
n0 − p0 = N+

d − N−
a , from (12.30), and n0 p0 = n2

i , from (12.31), with the known
values of N+

d − N−
a and ni. However, because N+

d − N−
a � ni for the given problem,

we find that

n0 ≈ N+
d − N−

a = 5 × 1018 m−3

and

p0 = n2
i

n0
= 1.1 × 106 m−3.

The Fermi level for this nondegenerate n-type GaAs can be found by using (12.32):

EF = Ec − 25.9 × ln
4.35 × 1023

5 × 1018
meV = Ec − 294.6 meV.

Compared with the intrinsic Fermi level, EFi, found in Example 12.2, we find that

EF − EFi = Ec − Ev

2
− 294.6 meV − 39.8 meV

= Eg

2
− 334.4 meV

= 1424

2
meV − 334.4 meV

= 377.6 meV.

Therefore, the Fermi level of this n-type GaAs is shifted away from the intrinsic Fermi
level by 377.6 meV toward the conduction-band edge.
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In a heavily p-doped semiconductor, the Fermi level can move into the valence band.
Similarly, the Fermi level can move into the conduction band in a heavily n-doped
semiconductor. When the Fermi level lies within a valence band or within a conduction
band, we have a degenerate semiconductor. The electron and hole concentrations are
still given by (12.22) and (12.23), respectively. Nevertheless, the law of mass action
expressed in (12.31) and the position of the Fermi level given by (12.32) are not valid
for a degenerate semiconductor because either (12.26) or (12.27) can have a significant
error when the Fermi level lies above the conduction-band edge or below the valence-
band edge.

EXAMPLE 12.4 What is the impurity doping concentration required for n-type GaAs to
become degenerate at 300 K?

Solution An n-type semiconductor becomes degenerate when its Fermi level lies at
or above its conduction-band edge: EF ≥ Ec. From (12.22), we find that this condition
requires that

n0 ≥ Nc(T )F1/2(0) = 0.765 15Nc(T )

at a given temperature T . For GaAs at T = 300 K, we find that n0 ≥ 3.33 × 1023 m−3

from this relation because Nc = 4.35 × 1023 m−3, as found in Example 12.2. Because
n0 � ni � p0 in this situation, we find from (12.30) by neglecting p0 in comparison
to n0 that the required impurity concentration for n-type GaAs to become degenerate
at 300 K is simply

N+
d − N−

a = n0 ≥ 3.33 × 1023 m−3.

Carriers in quasi-equilibrium

Electrons and holes in excess of their respective thermal equilibrium concentrations
can be generated in a semiconductor by current injection or optical excitation. When
this situation occurs, the carriers will relax toward thermal equilibrium through both
intraband and interband processes. Intra-conduction-band relaxation allows electrons
to reach thermal equilibrium among themselves through electron–electron collisions
and electron–phonon interactions, while intra-valence-band relaxation allows holes to
also reach thermal equilibrium among themselves through similar processes. The time
constants of such intraband relaxation processes are generally in the range of 10 fs
to 1 ps, depending on the concentration of the excess carriers. Thermal equilibrium
between electrons and holes is reached through electron–hole recombination processes,
the time constants of which typically vary from the order of 100 ps to the order of 1 ms,
depending on the properties of the specific semiconductor and the carrier concentration.
Consequently, thermal equilibrium in the conduction bands and that in the valence
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bands can be separately reached in less than 1 ps, but complete thermal equilibrium for
the entire system would not usually be reached for at least a few hundred picoseconds.
If the external excitation persists, the semiconductor can reach a quasi-equilibrium
state in which electrons and holes are not characterized by a common Fermi level but
are characterized by two separate quasi-Fermi levels. In such a quasi-equilibrium state,
instead of a single Fermi–Dirac distribution function given in (12.1) for both conduction
and valence bands, the probability of occupancy in the conduction bands and that in
the valence bands are described by two separate Fermi–Dirac distribution functions:

fc(E) = 1

e(E−EFc)/kBT + 1
, (12.35)

for the conduction bands, and

fv(E) = 1

e(E−EFv)/kBT + 1
, (12.36)

for the valence bands, where EFc and EFv are quasi-Fermi levels for the conduction and
valence bands, respectively.

As an intrinsic property of the band structure, the densities of states, ρc(E) and
ρv(E), given in (12.15) and (12.16) for the conduction and valence bands, respectively,
are independent of equilibrium or nonequilibrium of the carriers. Therefore, in quasi-
equilibrium, the electron concentration as a function of energy is

n(E)dE = fc(E)ρc(E)dE (m−3), (12.37)

and the hole concentration as a function of energy is

p(E)dE = [1 − fv(E)]ρv(E)dE (m−3). (12.38)

The total concentrations of electrons and holes in quasi-equilibrium are, respectively,

n =
∞∫

Ec

n(E)dE =
∞∫

Ec

fc(E)ρc(E)dE =
∞∫

Ec

ρc(E)dE

e(E−EFc)/kBT + 1
(12.39)

and

p =
Ev∫

−∞
p(E)dE =

Ev∫
−∞

[1 − fv(E)]ρv(E)dE =
Ev∫

−∞

ρv(E)dE

e(EFv−E)/kBT + 1
. (12.40)

Using (12.15) and (12.16), the electron and hole concentrations for a semiconductor in
quasi-equilibrium can be expressed in a form similar to that of (12.22) and (12.23):

n = Nc(T )F1/2

(
EFc − Ec

kBT

)
, (12.41)

p = Nv(T )F1/2

(
Ev − EFv

kBT

)
. (12.42)
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We find from (12.41) and (12.42) that the electron concentration, n, and the hole
concentration, p, in a quasi-equilibrium state are completely quantified by the quasi-
Fermi levels, EFc and EFv, respectively. We then find

np = Nc(T )Nv(T )F1/2

(
Ec − EFc

kBT

)
F1/2

(
EFv − Ev

kBT

)
. (12.43)

In the situation when (Ec − EFc)/kBT ≥ 3.6 and (EFv − Ev)/kBT ≥ 3.6, the quasi-
equilibrium electron and hole concentrations given in (12.41) and (12.42) can be ap-
proximated to an accuracy of better than 99% by

n = Nc(T )e−(Ec−EFc)/kBT , (12.44)

p = Nv(T )e−(EFv−Ev)/kBT . (12.45)

Then,

np = Nc(T )Nv(T )e−(Eg−�EF)/kBT = n2
i (T )e�EF/kBT = n0 p0e�EF/kBT , (12.46)

where

�EF = EFc − EFv (12.47)

is the separation between the quasi-Fermi levels. Because of the splitting of the quasi-
Fermi levels in a quasi-equilibrium state, the law of mass action given in (12.31) is no
longer valid but is replaced by (12.46). Note that these approximations are not valid if
the quasi-equilibrium electron and hole concentrations are high enough to push any one
of the quasi-Fermi levels to the vicinity of any band edge or beyond. Such a situation
can happen even in an intrinsic semiconductor under high electrical or optical excitation
of carriers.

In a quasi-equilibrium state, high concentrations of electrons and holes that are in
excess of equilibrium concentrations can be generated by electrical or optical excitation.
Compared with the equilibrium electron and hole concentrations, n0 and p0 given in
(12.22) and (12.23), respectively, we find that n > n0 if EFc > EF and p > p0 if EF >

EFv. Therefore, the existence of quasi-equilibrium electron and hole concentrations
that are higher than the equilibrium concentrations is characterized by the splitting of
quasi-Fermi levels with �EF > 0. Quasi-equilibrium in a semiconductor is maintained
when the carrier generation rate is equal to the carrier recombination rate.

EXAMPLE 12.5 An equal number of excess electrons and holes of a concentration of
�n = �p = 5 × 1018 m−3 is generated at T = 300 K in an intrinsic GaAs sample by
optical excitation. Find the quasi-Fermi levels, EFc and EFv. What is the separation
between these quasi-Fermi levels?

Solution Because ni = 2.33 × 1012 m−3 � �n = �p, we have n = p = ni +
�n ≈ �n = 5 × 1018 m−3 in this situation. From the values of Nc = 4.35 × 1023 m−3
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and Nv = 9.41 × 1024 m−3 found in Example 12.2 for GaAs at 300 K, we find that
n � Nc and p � Nv. Therefore, both EFc and EFv are still sufficiently far away from
the band edges so that (12.44) and (12.45) are valid. We then find from (12.44) that

EFc = Ec − kBT ln
Nc

n

= Ec − 25.9 × ln
4.35 × 1023

5 × 1018
meV

= Ec − 294.6 meV,

and from (12.45) that

EFv = Ev + kBT ln
Nv

p

= Ev + 25.9 × ln
9.41 × 1024

5 × 1018
meV

= Ev + 374.2 meV.

Therefore, EFc lies at 294.6 meV below the conduction-band edge, and EFv lies at
374.2 meV above the valence-band edge. Because the bandgap of GaAs at 300 K is
Eg = 1.424 eV, the separation of these two quasi-Fermi levels is

�EF = EFc − EFv = Ec − Ev − 294.6 meV − 374.2 meV

= Eg − 668.8 meV

= 755.2 meV.

12.3 Carrier recombination

In a semiconductor, electrons in the conduction bands and holes in the valence bands
can be generated through many mechanisms, including thermal excitation, current
injection, and optical excitation. Meanwhile, an electron in a conduction band and a
hole in a valence band can be eliminated together through a recombination process.
In an equilibrium state, electron–hole generation is exactly balanced by electron–hole
recombination.

Recombination processes

There are many different electron–hole recombination processes. Based on the mecha-
nisms responsible for these processes, they are classified into three general categories:
(1) the Shockley–Read recombination processes, (2) the bimolecular recombination
processes, and (3) the Auger recombination processes. These basic mechanisms are
schematically illustrated in Fig. 12.4. A Shockley–Read process involves one carrier at
a time; a bimolecular process takes place with an electron and a hole simultaneously;
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(a) Shockley–Read (b) Bimolecular (c) Auger

Figure 12.4 Carrier recombination processes in a semiconductor. (a) Shockley–Read
recombination processes: (i) Ae, electron capture and (ii) Ah, hole capture. (b) Bimolecular
recombination processes: (i) band-to-band recombination and (ii) exciton recombination. (c) Auger
recombination processes: (i) Ce, two electrons and one hole and (ii) Ch, two holes and one electron.

an Auger process is a three-body process with three participating carriers at the same
time. Notwithstanding these differences, any of the three types of recombination pro-
cesses ends with the annihilation of one electron with one hole. Depending on whether
or not electron–hole recombination in a particular process results in the emission of
electromagnetic radiation, a process can also be classified as a radiative recombination
process or as a nonradiative recombination process.

A Shockley–Read process is a recombination process that takes place through the
capture of one carrier, either an electron or a hole, at a time by recombination centers,
as illustrated in Fig. 12.4(a). A recombination center is created by an imperfection,
such as a defect or an impurity, in a semiconductor. Its energy level lies somewhere
in the bandgap of the semiconductor. The density of the recombination centers in a
given piece of semiconductor is determined by the density of the defects and impurities
in the semiconductor and is independent of the electron or hole concentration. There
are four processes associated with the recombination centers: electron capture, hole
capture, electron emission, and hole emission. A recombination center is available for
the capture of an electron only if it is not already occupied by an electron, whereas it
is available for the capture of a hole only if it is occupied by an electron.

Two basic time constants can be defined: τ−1
e0 = vthσe Nr for electrons and τ−1

h0 =
vthσh Nr for holes, where vth is the thermal velocity of an electron, σe and σh are the
capture cross sections1 of the recombination center for an electron and a hole, respec-
tively, and Nr is the concentration of the recombination centers. The physical meaning

1 Note that σe here is not to be confused with the emission cross section of a laser transition.
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of τe0 is that n/τe0 is the electron capture rate if all recombination centers are empty
and are thus able to trap electrons, whereas that of τh0 is that p/τh0 is the hole capture
rate if all recombination centers are occupied and are thus able to trap holes. In many
situations, however, the recombination centers are neither all empty nor all occupied.
In such situations, the Shockley–Read recombination lifetimes of electrons and holes
are different from τe0 and τh0, respectively.

After a recombination center first captures a carrier, either an electron or a hole, a
Shockley–Read electron–hole recombination process is completed only if the recomb-
ination center subsequently captures another carrier of opposite charge to result in the
annihilation of an electron–hole pair. A carrier can also be captured and then reemitted
without completing the recombination process. The net Shockley–Read recombination
rate for electrons is the difference of the electron capture rate and the electron emis-
sion rate by recombination centers, whereas that for holes is the difference of the
hole capture rate and the hole emission rate. Because only one carrier is captured at a
time, the rates of electron capture and hole capture in the Shockley–Read recombina-
tion processes are linearly proportional to the total electron and hole concentrations,
respectively. We therefore express the net electron recombination rate in the form of
Ae(n − n0) and the net hole recombination rate in the form of Ah(p − p0). Because a
completed recombination process always results in the annihilation of an electron–hole
pair, the net electron and hole recombination rates are necessarily equal: Ae(n − n0) =
Ah(p − p0) though Ae and Ah can be different if the excess electron concentration
�n = n − n0 is different from the excess hole concentration �p = p − p0. The net
Shockley–Read recombination rate is found from balancing the capture and emission
of electrons and holes in steady state to be

RSR = Ae(n − n0) = Ah(p − p0) = np − n0 p0

τh0(n + n1) + τe0(p + p1)
, (12.48)

where n1 and p1 characterize the emission rates of the recombination centers for elec-
trons and holes, respectively, and n1 p1 = n0 p0 = n2

i (T ). We see from this relation that
the two coefficients Ae and Ah both vary with temperature, the doping condition of the
semiconductor, and the excess carrier concentrations. A Shockley–Read recombination
process can be either radiative or nonradiative, depending on the type of recombination
centers involved in the process.

A bimolecular recombination process always involves an electron and a hole at the
same time. As illustrated in Fig. 12.4(b), there are primarily two types of bimolecu-
lar electron–hole recombination processes: band-to-band recombination, which takes
place between an electron in a conduction band and a hole in a valence band, and
exciton recombination, which is the recombination of an electron–hole pair that forms
a free or bound exciton. An electron–hole pair in a semiconductor can be held together
by their Coulomb attraction to form an exciton like an electron–proton pair forming a
hydrogen atom. A free exciton is free to wander around in the semiconductor; its energy
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is reduced by the energy needed to hold the electron and hole together and is slightly
less than the bandgap of the semiconductor. A bound exciton is localized and bound
to an impurity center in the semiconductor; its energy depends on the properties of the
impurity and is generally lower than that of a free exciton in the same semiconductor.
The bimolecular recombination processes have the same contribution to the rate of
electron recombination and the rate of hole recombination. This rate is proportional to
the product of the electron and hole concentrations and can be expressed as Bnp, where
B is the bimolecular recombination coefficient. Bimolecular recombination processes
are radiative processes.

An Auger recombination process is a three-body process that requires the partici-
pation on each occasion of two electrons and one hole, with a rate of Cen2 p, or one
electron and two holes, with a rate of Chnp2, where Ce and Ch are the Auger recombi-
nation coefficients. The total Auger recombination rate for both electrons and holes is
Cen2 p + Chnp2. As illustrated in Fig. 12.4(c), in an Auger recombination process, the
energy released by band-to-band recombination of an electron and a hole is picked up
by a third carrier, either another electron or another hole, as kinetic energy of the third
carrier. This energy is eventually converted to the thermal energy of the semiconductor
lattice as the excited third carrier relaxes toward the band edge. Consequently, an Auger
process is nonradiative.

Each recombination process has a corresponding inverse process for generating free
electrons and holes. Irrespective of the absence or presence of an external excitation
such as current injection or optical excitation, free electrons and holes are continuously
generated by thermal excitation through these inverse processes. The inverse processes
of electron capture and hole capture in the Shockley–Read processes are electron emis-
sion and hole emission, respectively. An electron captured by a recombination center
can be thermally reemitted back to the conduction band, and a hole captured by a
recombination center can be thermally reemitted back to the valence band. Similarly
to the difference in electron and hole capture rates by the recombination centers, the
processes of electron and hole emission by the recombination centers generally have
different thermal generation rates for electrons and holes. The thermal generation rates
of electrons and holes in the Shockley–Read processes are already accounted for in
the net Shockley–Read recombination rate given in (12.48). The inverse process of
band-to-band bimolecular recombination is the generation of an electron–hole pair
by thermal excitation of a valence electron to the conduction band. This process has
the same generation rate of Bn0 p0 for electrons and holes as they are generated in
pairs. The inverse of an Auger process can also generate additional electrons and holes.
This process also generates electrons and holes in pairs and has the same generation
rate of Cen2

0 p0 + Chn0 p2
0 for electrons and holes. To summarize, the total thermal

generation rates for electrons, G0
e, and for holes, G0

h, are generally different in the
presence of recombination centers, but are the same if the density of the recombination
centers is very small compared to the equilibrium electron and hole concentrations.
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These thermal generation rates are a function of temperature and the properties of the
semiconductor and its impurities.

From the above discussions, the net recombination rate for electrons and that for
holes can be respectively expressed as

Re = Aen + Bnp + Cen2 p + Chnp2 − G0
e (12.49)

and

Rh = Ah p + Bnp + Cen2 p + Chnp2 − G0
h, (12.50)

where G0
e = Aen0 + Bn0 p0 + Cen2

0 p0 + Chn0 p2
0 and G0

h = Ah p0 + Bn0 p0 + Cen2
0 p0 +

Chn0 p2
0. Because electrons and holes always recombine in pairs, they must have the

same net recombination rate:

R = Re = Rh. (12.51)

The net bimolecular recombination rate is clearly the same for electrons and holes,
and so is the net Auger recombination rate. For the Shockley–Read processes, Aen
and Ah p might be different, but the difference is exactly balanced by the difference
between Aen0 and Ah p0. Therefore, as indicated in (12.48), the net Shockley–Read
recombination rate is also the same for electrons and holes.

When a semiconductor is in thermal equilibrium with its environment, recombination
of the carriers has to be exactly balanced by thermal generation of the carriers so that the
electron and hole concentrations are maintained at their respective equilibrium values
of n0 and p0. Therefore, the net recombination rate is zero, R = Re = Rh = 0, when a
semiconductor is in thermal equilibrium.

In practice, the A, B, and C coefficients that characterize the three basic recombi-
nation processes in (12.49) and (12.50) are not completely independent of the carrier
concentrations. Despite this fact, we can still see significant differences between the
functional dependencies of the recombination rates on the carrier concentrations for
the three different processes. Besides, the A, B, and C coefficients are generally dif-
ferent by many orders of magnitude, with A often being the largest and C being the
smallest. For these reasons, the significance of each of the three different recombination
processes varies strongly with the concentrations of the carriers. Only the Shockley–
Read process is important at low carrier concentrations, whereas the Auger process
can be significant only at very high carrier concentrations. Between the two limits,
the bimolecular recombination process can be the dominant recombination process.
The specific quantitative carrier concentrations for each process to be significant vary
from one kind of semiconductor to another and from one specific sample to another,
depending on many factors such as band structure, bandgap, type of impurity, doping
concentration, defect density, and temperature. In general, however, the B coefficients
of direct-gap semiconductors such as GaAs and InP are much larger, by orders of mag-
nitude, than those of indirect-gap semiconductors such as Si and Ge. Therefore, carrier
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recombination in most indirect-gap semiconductors is predominantly nonradiative and
is often completely characterized by the Shockley–Read process with a net recombi-
nation rate of R = RSR given in (12.48) for carrier concentrations up to a pretty high
level.

Carrier lifetime

When the electron and hole concentrations in a semiconductor are higher than their
respective equilibrium concentrations, due to current injection or optical excitation for
example, the excess carriers will relax toward their respective thermal equilibrium con-
centrations through recombination processes. The relaxation time constant for excess
electrons is the electron lifetime, defined as

τe = n − n0

R
, (12.52)

and that of excess holes is the hole lifetime, defined as

τh = p − p0

R
. (12.53)

From these relations, we find that

τe

τh
= �n

�p
, (12.54)

where �n = n − n0 and �p = p − p0 are the excess electron and hole concentrations,
respectively.

The lifetime of the minority carriers in a semiconductor is called the minority carrier
lifetime, and that of the majority carriers is called the majority carrier lifetime. In an
n-type semiconductor, τe is the majority carrier lifetime, and τh is the minority carrier
lifetime. In a p-type semiconductor, τe becomes the minority carrier lifetime, and τh

is the majority carrier lifetime. When the density of the recombination centers is not
small compared to the thermal-equilibrium carrier concentrations, the excess minority
carrier density can be less than the excess majority carrier density. In this situation,
n − n0 �= p − p0 and, consequently, τe �= τh. When the concentrations of free electrons
and holes are much less than the density of the recombination centers, the majority
carrier lifetime can be much greater than the minority carrier lifetime.

A sufficient condition for electrons and holes to have the same lifetime is that the
electron and hole concentrations are both very large compared to the density of the
recombination centers. When this condition is satisfied, n − n0 = p − p0; then, we
can define the excess carrier density as

N = n − n0 = p − p0, (12.55)

which is also the density of excess free electron–hole pairs. Then, the free electrons and
the free holes have the same lifetime: τe = τh = τs, which is the spontaneous carrier
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recombination lifetime of the excess electron–hole pairs given by

τs = N

R
. (12.56)

This relation is valid in practical operating conditions of semiconductor lasers and
light-emitting diodes. Under the condition of (12.55), we also find from (12.48) that
Ae = Ah = A. By applying (12.55) to (12.49), (12.50), and (12.51) and then using
(12.56), we find that

1

τs
= A + B(N + n0 + p0) + Ce[N 2 + (2n0 + p0)N + (n2

0 + 2n0 p0)]

+ Ch[N 2 + (2p0 + n0)N + (p2
0 + 2n0 p0)]. (12.57)

This spontaneous carrier recombination lifetime is the saturation lifetime of a semicon-
ductor because it has the effect of the saturation lifetime τs defined in (10.74) in defining
the saturation intensity of a semiconductor, as further discussed following (13.118).

EXAMPLE 12.6 The n-type GaAs considered in Example 12.3 under optical excitation
with n − n0 = p − p0 = N is found to have the following recombination coefficients:
A = 5.0 × 105 s−1, B = 8.0 × 10−11 cm3 s−1 = 8.0 × 10−17 m3 s−1, and C = Ce +
Ch = 5.0 × 10−30 cm6 s−1 = 5.0 × 10−42 m6 s−1. (In the literature, the coefficients B
and C are commonly quoted in the units of cm3 s−1 and cm6 s−1, respectively. Here we
convert them to m3 s−1 and m6 s−1, respectively, for the convenience of computation in
SI units.) Assume that Ce = Ch = C/2 for simplicity, as the ratio between Ce and Ch is
not found. Find the ranges of the excess carrier concentration N where each of the three
different recombination processes dominates. Plot the spontaneous carrier lifetime τs

as a function of the excess carrier concentration N for N in the range between 1018 and
1026 m−3.

Solution For n − n0 = p − p0 = N and Ce = Ch = C/2 considered in this problem,
we have, from (12.57),

1

τs
= A + B(N + n0 + p0) + C

[
N 2 + 3

2
(n0 + p0)N + 1

2
(n2

0 + p2
0) + 2n0 p0

]
.

Because the values of A, B, and C are different by many orders of magnitude, each
term dominates over a certain range of N values. To find these ranges, we only have to
compare two neighboring terms at a time. The Shockley–Read recombination process
dominates when A > B(N + n0 + p0), thus

N <
A

B
− n0 − p0 = 6.25 × 1021 m−3.

The Auger recombination process becomes important when C[N 2 + 3
2 (n0 + p0)N +

1
2 (n2

0 + p2
0) + 2n0 p0] > B(N + n0 + p0). Because N � n0, p0 when this condition is
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–

Figure 12.5 Spontaneous carrier recombination lifetime as a function of excess carrier density.

satisfied, we find that the Auger recombination process is important for

N >
B

C
= 1.6 × 1025 m−3.

In the middle range, for 6.25 × 1021 m−3 < N < 1.6 × 1025 m−3, bimolecular recom-
bination is the dominant process.

The carrier lifetime as a function of excess carrier concentration is plotted in Fig. 12.5.
It can be seen from the change of slope in the curve that the Shockley–Read re-
combination process dominates for N < 6.25 × 1021 m−3, where τs is almost con-
stant; the bimolecular recombination process dominates for 6.25 × 1021 m−3 < N <

1.6 × 1025 m−3, where τs decreases approximately linearly with increasing N ; and
finally, the Auger process becomes significant for N > 1.6 × 1025 m−3, where τs de-
creases with increasing N more than linearly.

12.4 Current density

An electric current in a semiconductor results from the flow of electrons and holes.
The current density flowing in a semiconductor is the current flowing through a unit
cross-sectional area of the semiconductor; its unit is amperes per square meter.

There are two mechanisms that can cause the flow of electrons and holes: drift, in
the presence of an electric field, and diffusion, in the presence of a spatial gradient in
the carrier concentration. The electron current density, Je, and the hole current density,
Jh, can be expressed as

Je = eµenEe + eDe∇n, (12.58)

Jh = eµh pEh − eDh∇p, (12.59)
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respectively, and the total current density is the sum of the two:

J = Je + Jh. (12.60)

In (12.58) and (12.59), e is the electronic charge; µe and µh are the electron and
hole mobilities, respectively; Ee and Eh are the electric fields seen by electrons
and holes, respectively; and De and Dh are the diffusion coefficients of electrons
and holes, respectively. The electron and hole mobilities strongly depend on tempera-
ture, the type of semiconductor, and the impurities and defects in the semiconductor.
They generally decrease with increasing concentration of impurities and defects. For
most semiconductors of interest, the electron mobility is larger than the hole mo-
bility. At 300 K, µe = 1350 cm2 V−1 s−1 and µh = 480 cm2 V−1 s−1 for intrin-
sic Si, µe = 3900 cm2 V−1 s−1 and µh = 1900 cm2 V−1 s−1 for intrinsic Ge, and
µe = 8500 cm2 V−1 s−1 and µh = 400 cm2 V−1 s−1 for intrinsic GaAs. For nonde-
generate semiconductors, the diffusion coefficients are related to the mobilities by the
following Einstein relations:

De = kBT

e
µe and Dh = kBT

e
µh. (12.61)

From these relations, we have, at 300 K, De = 35 cm2 s−1 and Dh = 12.5 cm2 s−1 for
intrinsic Si, De = 100 cm2 s−1 and Dh = 50 cm2 s−1 for intrinsic Ge, De = 220 cm2 s−1

and Dh = 10 cm2 s−1 for intrinsic GaAs. For degenerate semiconductors, (12.61) is not
valid, and the Einstein relations between the diffusion coefficients and the mobilities
must be generalized by taking into account the Fermi integrals (see Problem 12.4.1).
The mobilities and diffusion coefficients, as well as the effective masses, of electrons
and holes for intrinsic Si, Ge, and GaAs are summarized in Table 12.2.

The electric fields seen by electrons and holes can be expressed in terms of the
gradients in the conduction- and valence-band edges, respectively:

Ee = ∇Ec

e
and Eh = ∇Ev

e
. (12.62)

In a homogeneous semiconductor where the conduction- and valence-band edges are
parallel to each other, Ee and Eh are generally the same. However, in an inhomogeneous
semiconductor, such as in a graded-gap superlattice where the conduction-band edge

Table 12.2 Electronic properties of some intrinsic semiconductors at 300 K

Effective mass Mobility (cm2 V−1 s−1) Diffusion coefficient (cm2 s−1)

m∗
e/m0 m∗

h/m0 µe µh De Dh

Si 1.08 0.56 1350 480 35 12.5

Ge 0.55 0.31 3900 1900 100 50

GaAs 0.067 0.52 8500 400 220 10
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is not parallel to the valence-band edge, Ee and Eh can be quite different. Using
(12.62), the drift components of the electron and hole current densities can be expressed,
respectively, as

Jdrift
e = eµenEe = µen∇Ec, (12.63)

Jdrift
h = eµh pEh = µh p∇Ev. (12.64)

Using (12.44) and (12.45) for the electron and hole concentrations and the relations
between the diffusion coefficients and the mobilities of the carriers, the diffusion com-
ponents of the electron and hole current densities can be expressed, respectively, as

Jdiffusion
e = eDe∇n = µen∇EFc − µen∇Ec, (12.65)

Jdiffusion
h = −eDh∇p = µh p∇EFv − µh p∇Ev. (12.66)

By combining the drift and diffusion components, we find that the total electron and hole
current densities can be simply expressed in terms of the gradients in the quasi-Fermi
levels:

Je=µen∇EFc, (12.67)

Jh=µh p∇EFv. (12.68)

Consequently, the total current density can be expressed as

J = Je + Jh = µen∇EFc + µh p∇EFv. (12.69)

The relations in (12.67)–(12.69) are quite general. They are valid for both nondegener-
ate and degenerate semiconductors, which can be either homogeneous or inhomoge-
neous (see Problem 12.4.1). Note, however, that (12.61) is valid only for nondegenerate
semiconductors.

Some very important conclusions can be drawn from the relation in (12.69). A
semiconductor in thermal equilibrium carries no net electric current, meaning that
J = 0 in thermal equilibrium. We also know that when a semiconductor is in thermal
equilibrium, the electrons and holes in it are characterized by a common Fermi level:
EF = EFc = EFv. From (12.69), we find that these two facts indicate that ∇EF = 0
when a semiconductor is in thermal equilibrium. Consequently, a semiconductor in
thermal equilibrium is characterized by a single, constant Fermi level throughout its
entire volume no matter whether the semiconductor is homogeneous or inhomogeneous
and regardless of the detailed structures in the semiconductor. On the other hand, when
a semiconductor carries an electric current, it must be in a quasi-equilibrium state with
separate quasi-Fermi levels: EFc �= EFv. Furthermore, these quasi-Fermi levels must not
be constant in space but must have nonvanishing spatial gradients in order to support
an electric current.
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Conductivity

The electric conductivity, σ , of a material is the proportionality constant between the
current density and the electric field. In a semiconductor, the conductivity is contributed
by both electrons and holes. Only the drift current has to be considered because the dif-
fusion current is not generated by an electric field. For a homogeneous semiconductor,
Ee = Eh = E. Taking ∇n = ∇p = 0 to eliminate the diffusion current, we find from
(12.58)–(12.60) that J = e(µen + µh p)E = σ E for a homogeneous semiconductor.
We thus find the following relation for the conductivity of a semiconductor:

σ = e(µen + µh p), (12.70)

which is measured per ohm per meter but is usually quoted per ohm per centimeter. The
conductivity of a semiconductor in thermal equilibrium is σ0 = e(µen0 + µh p0), often
known as the dark conductivity; that of an intrinsic semiconductor is σi = e(µe + µh)ni,
known as the intrinsic conductivity. The resistivity of a semiconductor is simply the
inverse of its conductivity: ρ = 1/σ , in ohm-meters but usually also given in ohm-
centimeters.

As can be seen from (12.70), the conductivity of a semiconductor increases with
increasing carrier concentrations. For semiconductors with low impurity concentra-
tions, µe and µh vary little with the impurity concentration; therefore, the conductivity
increases with doping density. The conductivity does not continue to increase linearly
with doping density at high impurity concentrations because the mobilities decrease at
high impurity concentrations. Because µe > µh for most semiconductors of interest,
an n-type semiconductor generally has a higher conductivity than a p-type one of the
same impurity concentration. The conductivity of a given semiconductor is a strong
function of temperature because carrier concentrations and carrier mobilities are both
sensitive to temperature.

EXAMPLE 12.7 Find the intrinsic conductivity and the intrinsic resistivity of GaAs at
300 K.

Solution We find from Example 12.2 that ni = 2.33 × 1012 m−3 for GaAs at
300 K. From Table 12.2, µe = 8500 cm2 V−1 s−1 = 0.85 m2 V−1 s−1 and µh =
400 cm2 V−1 s−1 = 0.04 m2 V−1 s−1. Therefore, the intrinsic conductivity is

σi = 1.6 × 10−19 × (0.85 + 0.04) × 2.33 × 1012 �−1 m−1

= 3.32 × 10−7 �−1 m−1

= 3.32 × 10−9 �−1 cm−1.

The intrinsic resistivity is

ρi = 1

σi
= 3.01 × 106 � m = 3.01 × 108 � cm.
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Though GaAs is a semiconductor, intrinsic GaAs is often considered to be semi-
insulating because of its high resistivity.

12.5 Semiconductor junctions

Useful semiconductor devices are made of inhomogeneous semiconductors that have
either spatially nonuniform doping distribution or spatially varying bandgaps or both.
There are two categories of semiconductor junctions: homojunctions and heterojunc-
tions. A homojunction is formed by different doping in the same semiconductor,
whereas a heterojunction is formed between two different semiconductors. In addition,
a metal–semiconductor junction can be formed between a metal and a semiconduc-
tor. The immense possibilities of such structures are witnessed by the existence of the
great variety of semiconductor devices and by the constant invention of new devices.
In this section, we review the basic properties of the semiconductor homojunctions and
heterojunctions.

The most important homojunctions are the p–n junctions. A p–n junction is formed
between a p-type region and an n-type region with different doping in the same semi-
conductor. A homojunction can also be a p–i junction, which is formed between a
p-type region and an undoped intrinsic region of the same semiconductor, or an i–n
junction, which is formed between an undoped intrinsic region and an n-type region of
the same semiconductor.

A heterojunction is normally formed between two lattice-matched semiconductors
of different bandgaps. To name a heterojunction, the conductivity type of the small-gap
semiconductor is represented by a lowercase letter, n, p, or i, and the conductivity type
of the large-gap semiconductor is represented by an uppercase letter, N, P, or I. Because
the two semiconductors that form a heterojunction have different bandgaps, they can
be either of different conductivity types or of the same conductivity type. Junctions
formed between dissimilar semiconductors of the same conductivity type, such as
p–P and n–N junctions, are isotype heterojunctions; those formed between dissimilar
semiconductors of different conductivity types, such as p–N and P–n junctions, are
anisotype heterojunctions.

A semiconductor junction can be either an abrupt junction, which has a sudden
change of doping and/or bandgap from one region to the other region, or a graded
junction, where the change of doping and/or bandgap is gradual. The basic principles
of abrupt and graded junctions are the same though there are quantitative differences
in the properties of these two different types.

In this section, we consider only abrupt p–n, p–N, and P–n junctions. For simplicity,
we assume that the p region is doped with a concentration Na of fully ionized acceptors,
and the n region is doped with a concentration Nd of fully ionized donors. In the vicinity
of a junction between the p and n regions, there exists a depletion layer, where majority
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carriers, holes on the p side and electrons on the n side, are depleted. A junction
reaches thermal equilibrium when it is not subject to an external excitation. In thermal
equilibrium, the p and n regions outside the depletion layer are homogeneous regions
because the characteristics of the semiconductor in these regions approach those of
homogeneous semiconductors in thermal equilibrium. The homogeneous p region has
a majority hole concentration of pp0 = N−

a = Na and a minority electron concentration
of np0, whereas the homogeneous n region has a majority electron concentration of
nn0 = N+

d = Nd and a minority hole concentration of pn0. The equilibrium state can be
perturbed with a bias voltage. For a junction under bias, diffusion regions exist between
the depletion layer and the homogeneous regions on both p and n sides. In the diffusion
regions, the characteristics of the semiconductor are dominated by diffusion of the
minority carriers, which are electrons on the p side and holes on the n side.

The major differences among p–n homojunctions and p–N and P–n heterojunctions
are their energy band structures. The energy bands and the built-in potential for each
type of junction are considered in this section to illustrate the differences among these
junctions. In addition, the difference in the electric permittivities, εp and εn, respectively,
of the p and n regions can be significant for a p–N or P–n heterojunction but is practically
negligible for a p–n homojunction. This issue is minor because it can be easily taken
care of by considering εp and εn to be generally different, even for a p–n homojunction.
Other than these differences, these junctions have similar electrical characteristics.
Therefore, the discussions and the mathematical relations regarding the depletion layer,
the carrier distribution, the current–voltage characteristics, and the capacitance are
treated generally and are valid for both homojunctions and heterojunctions.

Energy bands and electrostatic potential

As discussed in the preceding section, a semiconductor in thermal equilibrium is charac-
terized by a spatially constant Fermi level. This statement is true for both homojunctions
and heterojunctions. Therefore, as shown in Figs. 12.6, 12.7, and 12.8 for p–n, p–N,
and P–n junctions, respectively, EFp = EFn = EF for a junction in thermal equilibrium,
where EFp and EFn are the Fermi levels in the p and n regions, respectively. Because EFp

lies close to the valence-band edge in the p region but EFn lies close to the conduction-
band edge in the n region, a constant Fermi level throughout the semiconductor in
thermal equilibrium leads to bending of the energy bands across the junction, as shown
in Fig. 12.6 for a p–n homojunction and in Figs. 12.7 and 12.8 for p–N and P–n hetero-
junctions, respectively. As we shall see later, this band bending occurs primarily within
the depletion layer. The energy bands remain relatively flat outside the depletion layer
on both p and n sides.

For a homojunction, shown in Fig. 12.6, the energy bands remain continuous and
smooth across the junction because the semiconductors on the two sides of the junction
have the same bandgap. For a heterojunction, the semiconductors on the two sides of
the junction have different bandgaps. At the junction where these two semiconductors
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(a) (b)

Figure 12.6 (a) Energy bands and (b) built-in electrostatic potential for a p–n homojunction in
thermal equilibrium, where Egp = Egn = Eg.

(a) (b)

Figure 12.7 (a) Energy bands and (b) built-in electrostatic potential for a p–N heterojunction in
thermal equilibrium, where Egp < Egn and �Eg = Egn − Egp = �Ec + �Ev. The slope of V (x)
has a discontinuity at x = 0 caused by the abrupt change of bandgap at the junction.

(a) (b)

Figure 12.8 (a) Energy bands and (b) built-in electrostatic potential for a P–n heterojunction in
thermal equilibrium, where Egp > Egn and �Eg = Egp − Egn = �Ec + �Ev. The slope of V (x)
has a discontinuity at x = 0 caused by the abrupt change of bandgap at the junction.
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are joined together, the disparity in their bandgaps results in a discontinuity of �Ec

in the conduction-band edge and a discontinuity of �Ev in the valence-band edge, as
shown in Figs. 12.7 and 12.8. Therefore,

�Ec + �Ev = �Eg, (12.71)

where �Eg is the difference between the bandgaps of the two dissimilar semicon-
ductors. The value of �Eg and those of the band offsets �Ec and �Ev are intrinsic
properties of a specific pair of semiconductors. The conduction-band offset �Ec is
determined by the difference in the electron affinities of the two semiconductors; the
valence-band offset �Ev is then fixed by (12.71). In practice, these parameters are mea-
sured experimentally for each given pair of semiconductors. For GaAs–Alx Ga1−x As
heterojunctions, �Ec ≈ 65% �Eg and �Ev ≈ 35% �Eg.

p–n homojunction in thermal equilibrium

Because the bandgap remains constant across a semiconductor homojunction, at any
given location the conduction- and valence-band edges have the same gradient. Ac-
cording to (12.62), this spatially varying band-edge gradient creates a spatially varying
built-in electric field that is seen by both electrons and holes: Ee = Eh at any given
location. In thermal equilibrium, this built-in electric field results in a built-in electro-
static potential across the p–n junction, as shown in Fig. 12.6(b). The height, V0, of this
built-in potential is called the contact potential of the junction. Note that the energy
bands plotted in Fig. 12.6(a) refer to the energy of an electron. The n region has a lower
energy for an electron than the p region, whereas the converse is true for a hole. Because
an electron carries a negative charge of q = −e, the built-in electrostatic potential is
higher on the n side than on the p side. As shown in Fig. 12.6(a), we have, for a p–n
homojunction in thermal equilibrium,

Ecp − Ecn = Evp − Evn = eV0, (12.72)

where Ecp and Ecn are, respectively, the conduction-band edges in the homogeneous
p and n regions, and Evp and Evn are, respectively, the valence-band edges in the
homogeneous p and n regions. Therefore, eV0 is the same energy barrier for an electron
on the n side to move to the p side as that for a hole on the p side to move to the n side.

In the case when both p and n regions are nondegenerate so that (12.26) and (12.27) are
valid, we can use (12.72) to obtain the following relation for the carrier concentrations
in the homogeneous p and n regions:

pp0

pn0
= nn0

np0
= eeV0/kBT . (12.73)

By using the law of mass action, pp0np0 = pn0nn0 = n2
i , we find that the contact po-

tential of a nondegenerate p–n homojunction in a nondegenerate semiconductor is
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given by

V0 = kBT

e
ln

pp0

pn0
= kBT

e
ln

nn0

np0
= kBT

e
ln

pp0nn0

n2
i

. (12.74)

Under the condition that pp0 ≈ Na � np0 and nn0 ≈ Nd � pn0, the contact potential
can be found as

V0 = kBT

e
ln

Na Nd

n2
i

= kBT

e
ln

Na Nd

Nv Nc
+ Eg

e
. (12.75)

EXAMPLE 12.8 An abrupt GaAs p–n homojunction is formed by creating a uniform p
region on one side and a uniform n region on the other side. The p region is doped
with fully ionized acceptors of a concentration Na = 1 × 1023 m−3, and the n region
is doped with fully ionized donors of a concentration Nd = 1 × 1022 m−3. Find the
contact potential of this junction at 300 K.

Solution From Example 12.2, we have ni = 2.33 × 1012 m−3 for GaAs at 300 K. At
the given doping levels for the p and n regions, pp0 ≈ Na � np0 and nn0 ≈ Nd � pn0.
At 300 K, kBT/e = 25.9 mV = 0.0259 V. Therefore, we can use the first relation in
(12.75) to find the contact potential for this junction at 300 K as

V0 = 0.0259 V × ln
1 × 1023 × 1 × 1022

(2.33 × 1012)2
= 1.209 V.

p–N heterojunction in thermal equilibrium

For a p–N heterojunction, the semiconductor on the n side has a larger bandgap than
that on the p side: Egn > Egp. Therefore,

�Ec + �Ev = Egn − Egp = �Eg, (12.76)

according to (12.71). Because of the presence of band offsets at the junction, (12.72)
is not valid for a p–N junction. Instead, as can be seen in Fig. 12.7(a), we have

Ecp − Ecn = eV0 − �Ec, (12.77)

Evp − Evn = eV0 + �Ev, (12.78)

where V0 is the contact potential of the p–N junction. In contrast to the case of a p–n
homojunction, where electrons and holes have the same energy barrier of eV0, electrons
and holes have different energy barriers in the case of a p–N junction. According to
(12.77) and (12.78), the energy barrier for an electron on the n side is lowered from
eV0 by �Ec due to the conduction-band offset, but that for a hole on the p side is
raised by �Ev due to the valence-band offset. Therefore, in a p–N heterojunction the
energy barrier for an electron on the n side is lower than that for a hole on the p
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side by the amount of the bandgap difference of �Eg = Egn − Egp between the two
semiconductors.

Though the energy barriers for electrons and holes to cross a p–N junction are
different, electrons and holes see the same spatially varying built-in electric field because
the conduction- and valence-band edges are parallel to each other and have the same
gradient at every location except at the junction where the discontinuities of the energy
bands take place. Therefore, similarly to the situation in a homojunction, we still have a
common electrostatic field, Ee = Eh, at any given location for both electrons and holes.
As a result, there is a common built-in electrostatic potential, shown in Fig. 12.7(b),
across a p–N junction. For an abrupt p–N junction, there is a sudden change of slope
in V (x) at the junction because of the sudden change in electric permittivity from one
semiconductor to the other.

For a p–N junction, (12.73) is not valid. Instead, we can use (12.77) and (12.78) to
obtain the following relation in the case when both p and n regions are nondegenerate:

pp0

pn0

Nvn

Nvp
e−�Ev/kBT = nn0

np0

Ncp

Ncn
e�Ec/kBT = eeV0/kBT , (12.79)

where Ncp and Nvp are the effective densities of states, as defined in (12.24), for the
semiconductor on the p side, and Ncn and Nvn are the effective densities of states for
the semiconductor on the n side. From this relation, we find that the contact potential
for a nondegenerate p–N junction can be expressed as

V0 = kBT

e
ln

(
pp0

pn0

Nvn

Nvp

)
− �Ev

e
= kBT

e
ln

(
nn0

np0

Ncp

Ncn

)
+ �Ec

e

= kBT

e
ln

(
pp0nn0

n2
in

Nvn

Nvp

)
− �Ev

e
= kBT

e
ln

(
pp0nn0

n2
ip

Ncp

Ncn

)
+ �Ec

e
, (12.80)

where nip and nin are the intrinsic carrier concentrations for the semiconductors on the
p and n sides, respectively. Under the condition that pp0 ≈ Na � np0 and nn0 ≈ Nd �
pn0, the contact potential can be found as (see Problem 12.5.8)

V0 = kBT

e
ln

(
Na Nd

n2
in

Nvn

Nvp

)
− �Ev

e
= kBT

e
ln

(
Na Nd

n2
ip

Ncp

Ncn

)
+ �Ec

e

= kBT

e
ln

Na Nd

Nvp Ncn
+ Egn

e
− �Ev

e
= kBT

e
ln

Na Nd

Nvp Ncn
+ Egp

e
+ �Ec

e
. (12.81)

P–n heterojunction in thermal equilibrium

For a P–n heterojunction, the semiconductor on the p side has a larger bandgap than
that on the n side: Egp > Egn. Therefore,

�Ec + �Ev = Egp − Egn = �Eg. (12.82)
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As shown in Fig. 12.8(a), the band offsets at the junction lead to

Ecp − Ecn = eV0 + �Ec, (12.83)

Evp − Evn = eV0 − �Ev, (12.84)

where V0 is the contact potential of the P–n junction. Similarly to the case of the p–N
junction discussed above, electrons and holes do not have the same energy barrier.
However, because Egp > Egn in the case of a P–n heterojunction, the energy barrier
for an electron on the n side is now higher than that for a hole on the p side by the
amount of the bandgap difference of �Eg = Egp − Egn between the two semiconduc-
tors. Figure 12.8(b) shows the built-in electrostatic potential across a P–n junction. For
an abrupt P–n junction, there is also a sudden change of slope in V (x) at the junction
because of the sudden change in electric permittivity across the junction.

For a P–n junction, we can use (12.83) and (12.84) to obtain the following relation
in the case when both p and n regions are nondegenerate:

pp0

pn0

Nvn

Nvp
e�Ev/kBT = nn0

np0

Ncp

Ncn
e−�Ec/kBT = eeV0/kBT . (12.85)

From this relation, we find the following contact potential for a nondegenerate P–n
junction:

V0 = kBT

e
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e
= kBT
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e
. (12.86)

Under the condition that pp0 ≈ Na � np0 and nn0 ≈ Nd � pn0, the contact potential
can be found as (see Problem 12.5.8)

V0 = kBT
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e
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Nvp Ncn
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e
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. (12.87)

EXAMPLE 12.9 An abrupt AlGaAs/GaAs P–n heterojunction is formed with a uniform
p region of Al0.3Ga0.7As and a uniform n region of GaAs. The p Al0.3Ga0.7As region
is doped with fully ionized acceptors of a concentration Na = 1 × 1023 m−3, and the
n GaAs region is doped with fully ionized donors of a concentration Nd = 1 × 1022 m−3.
The density of states effective masses for Al0.3Ga0.7As are m∗

e = 0.092m0 and m∗
h =

0.62m0, as compared to m∗
e = 0.067m0 and m∗

h = 0.52m0 for GaAs. Find the contact
potential of this junction at 300 K by taking �Ec = 65% �Eg and �Ev = 35% �Eg.
Compare this contact potential to that of the GaAs homojunction considered in Exam-
ple 12.8, which has the same doping profile.
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Solution We find from (12.3) with x = 0.3 that Eg = 1.798 eV for Al0.3Ga0.7As.
Because Eg = 1.424 eV for GaAs, we thus have Egp = 1.798 eV, Egn = 1.424 eV,
and �Eg = Egp − Egn = 0.374 eV for this heterostructure. Following the procedures in
Example 12.2 but taking m∗

e = 0.092m0 and m∗
h = 0.62m0, we find that Ncp = 7.00 ×

1023 m−3, Nvp = 1.22 × 1025 m−3, and nip = 2.46 × 109 m−3 for the p Al0.3Ga0.7As
at 300 K. Also from Example 12.2, we have Ncn = 4.35 × 1023 m−3, Nvn = 9.41 ×
1024 m−3, and nin = 2.33 × 1012 m−3 for the n GaAs at 300 K. Because pp0 ≈ Na � np0

and nn0 ≈ Nd � pn0, we can use any one of the relations in (12.86) and (12.87) to find
the contact potential. By using the first relation in (12.87), the contact potential for this
junction at 300 K is found as

V0 = kBT

e
ln

(
Na Nd

n2
in

Nvn

Nvp

)
+ �Ev

e

= 0.0259 V × ln
1 × 1023 × 1 × 1022 × 9.41 × 1024

(2.33 × 1012)2 × 1.22 × 1025
+ 0.35 × 0.374 V

= 1.333 V.

The same result is obtained by using any other relation in (12.86) or (12.87).
The contact potential of this AlGaAs/GaAs heterojunction is different from that of

the GaAs homojunction of the same doping profile considered in Example 12.8 for two
reasons: (1) the density-of-states effective masses are different for AlGaAs and GaAs,
and (2) the band offset due to the difference in the bandgaps between AlGaAs and
GaAs causes an additional adjustment for the contact potential.

Junctions under bias

A bias voltage, V , is defined as the voltage applied to the p side of a junction with
respect to the n side. A bias voltage changes the electrostatic potential between the p
and n regions, thus changing the difference between Ecp and Ecn and that between Evp

and Evn. In the case of a p–n homojunction under a bias voltage V , we have

Ecp − Ecn = Evp − Evn = e(V0 − V ). (12.88)

For a p–N junction, we have

Ecp − Ecn = e(V0 − V ) − �Ec, (12.89)

Evp − Evn = e(V0 − V ) + �Ev. (12.90)

For a P–n junction, we have

Ecp − Ecn = e(V0 − V ) + �Ec, (12.91)

Evp − Evn = e(V0 − V ) − �Ev. (12.92)

Clearly from these relations, a bias voltage has similar effects on p–n, p–N, and P–n
junctions. A junction is under forward bias if V > 0. A forward bias voltage raises the
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(a) (b) (c)

Figure 12.9 Spatial distributions of the p and n regions, the energy bands, and the electrostatic
potential of an abrupt p–n homojunction (a) in thermal equilibrium, (b) under forward bias, and (c)
under reverse bias.

potential on the p side with respect to that on the n side, resulting in a lower potential
barrier of V0 − V . Consequently, the energy barrier between the homogeneous p and
n regions is reduced by the amount of eV . A junction is under reverse bias if V < 0.
A reverse bias voltage lowers the potential on the p side with respect to that on the n
side, thus raising the potential barrier to V0 − V = V0 + |V |. The consequence is an
increase in the energy barrier between the homogeneous p and n regions by the amount
of e|V |. Figure 12.9 shows the energy bands and the electrostatic potential of a p–n
homojunction (a) in thermal equilibrium, (b) under forward bias, and (c) under reverse
bias. Except for the presence of band offsets at the junction, the characteristics of p–N
and P–n heterojunctions under bias are similar to those shown in Fig. 12.9.

A bias voltage causes an electric current to flow in a semiconductor. The bias voltage
splits the Fermi level into separate quasi-Fermi levels, EFc and EFv, for electrons
and holes, respectively, and creates spatial gradients in them to support an electric
current in the semiconductor. According to (12.69), when an electric current flows in
a semiconductor, the gradients in EFc and EFv exist throughout the semiconductor but
they vary from one location to another in conjunction with the variations in the local
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concentrations of electrons and holes. The spatial variations of the quasi-Fermi levels
are shown, along with the spatial variations of the energy bands, in Fig. 12.9(b) for the
case of forward bias and in Fig. 12.9(c) for the case of reverse bias. The largest splitting
of EFc and EFv occurs in the depletion layer. The largest gradients in EFc and EFv exist
in the diffusion regions just outside the depletion layer. The quasi-Fermi levels gradually
merge into EFp in the homogeneous p region and into EFn in the homogeneous n region.
In the presence of a bias voltage, the Fermi levels in the homogeneous p and n regions
are not aligned any more:

EFn − EFp = eV . (12.93)

In the case of forward bias, EFn > EFp and EFc > EFv, as shown in Fig. 12.9(b). In the
case of reverse bias, EFn < EFp and EFc < EFv, as shown in Fig. 12.9(c). The relation
in (12.93) and the characteristics of the quasi-Fermi levels shown in Fig. 12.9 are valid
for p–N and P–n heterojunctions as well.

EXAMPLE 12.10 Find the bias voltage that lines up the band edges of the p and n regions
on the two sides of the p–n homojunction considered in Example 12.8. What is the bias
voltage that is needed to line up the conduction-band edges of the p and n regions on
the two sides of the P–n heterojunction considered in Example 12.9? What is the bias
voltage needed to line up the valence-band edges?

Solution Because the bandgap is the same on both sides of a homojunction, a bias
voltage that lines up the conduction-band edge also lines up the valence-band edge.
From (12.88), we find that V = V0 for Ecp = Ecn and Evp = Evn across a homojunction.
Therefore, we need a forward bias voltage of V = V0 = 1.209 V to line up the band
edges of the p and n regions on the two sides of the p–n homojunction considered in
Example 12.8.

For a heterojunction, a single bias voltage does not line up conduction-band edges
and valence-band edges simultaneously because the bandgaps are different on the two
sides of the junction. For the P–n heterojunction considered in Example 12.9, we
find from (12.91) that the forward bias voltage required for Ecp = Ecn to line up the
conduction-band edges is

V = V0 + �Ec

e
= 1.333 V + 0.65 × 0.374 V = 1.576 V.

We then find from (12.92) that the forward bias voltage required for Evp = Evn to line
up the valence-band edges is

V = V0 − �Ev

e
= 1.333 V − 0.35 × 0.374 V = 1.202 V.
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We find that these two bias voltages are quite different because of the existence of
conduction-band and valence-band offsets caused by the bandgap difference on the
two sides of the heterojunction.

Depletion layer

The depletion layer is created by the diffusion of holes from the p side, where the
hole concentration is high, to the n side, where the hole concentration is low, and the
diffusion of electrons from the n side, where the electron concentration is high, to the
p side, where the electron concentration is low. The depletion layer has a width of

W = xp + xn, (12.94)

where xp and xn are the penetration depths of the depletion layer into the p and n regions,
respectively.

The depletion layer is also known as the space-charge region because depletion of
the majority of carriers in this region leaves the immobile negatively charged acceptor
ions on the p side and the immobile positively charged donor ions on the n side as space
charges in this region. As shown in Fig. 12.10, the p side has a negative space charge
density of −eNa over a penetration depth of xp, and the n side has a positive space
charge density of eNd over a penetration depth of xn. Because of the overall neutrality
of the semiconductor, the total negative space charges on the p side must be equal to
the total positive space charges on the n side. Therefore, we have

Naxp = Ndxn. (12.95)

(a) (b) (c)

Figure 12.10 Spatial distribution of the space-charge density in the depletion layer of an abrupt
p–n junction (a) in thermal equilibrium, (b) under forward bias, and (c) under reverse bias. Abrupt
p–N and P–n junctions also have these same characteristics. It is assumed in this illustration that
Nd > Na so that the n region is more heavily doped than the p region.
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By combining (12.94) and (12.95), we find that

xp = Nd

Na + Nd
W and xn = Na

Na + Nd
W. (12.96)

Clearly, the depletion layer can penetrate p and n regions unevenly, depending on the
relative doping on the two sides. The depletion layer penetrates deeper into the region
that has a lighter doping concentration. This characteristic is demonstrated in Fig. 12.10.

The electric field associated with the gradient of the band edges is created by the
space charges in the depletion layer. Therefore, most of the band-edge gradient exists
in the depletion layer and most of the potential difference between the n and p regions is
distributed across this layer. Because E = −∇V and ∇ · E = ρ(x)/ε(x), where ε(x)
is the spatially varying electric permittivity of the semiconductor, we have the following
Poisson equation to describe the potential variations across the depletion layer:

∇2V = d2V

dx2
= −ρ(x)

ε(x)
=




eNa

εp
, for −xp < x < 0,

−eNd

εn
, for 0 < x < xn,

(12.97)

where εp and εn are the electric permittivities of the p and n regions, respectively. The
boundary conditions are E(−xp) = E(xn) = 0 and εp E(0−) = εn E(0+), meaning that
dV/dx = 0 at x = −xp and x = xn, and εpdV/dx |x=0− = εndV/dx |x=0+ . By integrat-
ing (12.97) through the depletion layer and applying these boundary conditions, we
find that, in the presence of a bias voltage V ,

V0 − V = V (xn) − V (−xp) = e

2ε

Na Nd

Na + Nd
W 2, (12.98)

where ε is an effective electric permittivity defined as

ε = εpεn(Na + Nd)

εp Na + εn Nd
. (12.99)

Therefore, the width of the depletion layer can be expressed as a function of the applied
bias voltage V in the following form:

W =
[

2ε

e

(
Na + Nd

Na Nd

)
(V0 − V )

]1/2

. (12.100)

When a junction is in thermal equilibrium without bias, xp = xp0, xn = xn0, and
W = W0, as shown in Fig. 12.10(a). From (12.100), we see that W < W0 for V > 0
and W > W0 for V < 0. Therefore, the depletion layer narrows with forward bias, as
shown in Fig. 12.10(b), and broadens with reverse bias, as shown in Fig. 12.10(c).

EXAMPLE 12.11 The static dielectric constant of GaAs is ε/ε0 = 13.18. Find the width
of the depletion layer, W0, and the penetration depths, xp0 and xn0, for the GaAs p–n
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homojunction described in Example 12.8 when it is in thermal equilibrium without bias
at 300 K.

Solution The width of the depletion layer in thermal equilibrium without bias can
be found from (12.100) with V = 0. With ε = 13.18ε0, ε0 = 8.854 × 10−12 F m−1,
Na = 1 × 1023 m−3, Nd = 1 × 1022 m−3, and V0 = 1.209 V from Example 12.8, we
find that

W0 =
[

2 × 13.18 × 8.854 × 10−12

1.6 × 10−19
×
(

1 × 1023 + 1 × 1022

1 × 1023 × 1 × 1022

)
× 1.209

]1/2

m

= 440 nm

From (12.96), we find the following penetration depths:

xp0 = Nd

Na + Nd
W0 = 1 × 1022

1 × 1023 + 1 × 1022
× 440 nm = 40 nm,

xn0 = Na

Na + Nd
W0 = 1 × 1023

1 × 1023 + 1 × 1022
× 440 nm = 400 nm.

We see that xn0 = 10xp0 for this junction because Na = 10Nd.

Carrier distribution

As mentioned above, the majority and minority carrier concentrations are pp0 and np0,
respectively, in the homogeneous p region and are nn0 and pn0, respectively, in the
homogeneous n region. The depletion layer is not completely devoid of free carriers.
In thermal equilibrium, the electron and hole concentrations in the depletion layer are
determined by (12.22) and (12.23), respectively, with spatially varying band edges,
Ec(x) and Ev(x); therefore, np0 � n0(x) � nn0 and pn0 � p0(x) � pp0 for −xp0 <

x < xn0. The distributions of the electron and hole concentrations across a p–n junction
in thermal equilibrium are illustrated in Fig. 12.11(a).

A bias voltage can cause substantial changes in the minority carrier concentrations
at x = −xp and x = xn, where the edges of the depletion layer are located. From
Figs. 12.9(b) and (c), we find that EFc(−xp) − EFp ≈ EFn − EFp = eV and Ec(−xp) ≈
Ecp at x = −xp, and EFn − EFv(xn) ≈ EFn − EFp = eV and Ev(xn) ≈ Evn at x = xn.
Therefore, using (12.41) and (12.42), we find that the minority carrier concentrations
at the edges of the depletion layer are

np(−xp) = np0eeV/kBT , (12.101)

pn(xn) = pn0eeV/kBT . (12.102)

At the edges of the depletion layer, the bias voltage creates the following changes in
the minority carrier concentrations from their equilibrium values:

�np = np(−xp) − np0 = np0
(
eeV/kBT − 1

)
, (12.103)

�pn = pn(xn) − pn0 = pn0
(
eeV/kBT − 1

)
. (12.104)
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(a) (b) (c)

Figure 12.11 Spatial distributions of the electron and hole concentrations of an abrupt p–n junction
(a) in thermal equilibrium, (b) under forward bias, and (c) under reverse bias. Abrupt p–N and P–n
junctions also have these same characteristics. It is assumed in this illustration that Nd > Na so that
the n region is more heavily doped than the p region.

As shown in Fig. 12.11(b), a forward bias creates excess minority carriers on both p and
n sides, �np > 0 and �pn > 0 for V > 0, as a result of minority carrier injection. In
contrast, as shown in Fig. 12.11(c), a reverse bias depletes minority carriers on both p
and n sides, �np < 0 and �pn < 0 for V < 0, as a result of minority carrier extraction.

Because of the diffusion of minority carriers, changes in the minority carrier concen-
trations caused by a bias voltage are not localized at the edges of the depletion layer.
Instead, the minority carrier concentrations have the following spatially dependent
variations across the diffusion regions:

np(x) − np0 = �npe(x+xp)/Le

= np0
(
eeV/kBT − 1

)
e(x+xp)/Le, for x < −xp, (12.105)

pn(x) − pn0 = �pne−(x−xn)/Lh

= pn0
(
eeV/kBT − 1

)
e−(x−xn)/Lh, for x > xn, (12.106)

where Le = (Deτe)1/2 is the electron diffusion length in the p region and Lh = (Dhτh)1/2

is the hole diffusion length in the n region. Here τe is the lifetime of the minority electrons
in the p region, and τh is the lifetime of the minority holes in the n region. They are
not subject to the condition given in (12.54) for excess electrons and holes at the same
location because they are the minority carrier lifetimes in separate regions on the two
opposite sides of the junction. Therefore, τe and τh that define Le and Lh here are
independent of each other. Because of charge neutrality in the diffusion regions, the
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concentrations of majority carriers also vary in space correspondingly:

pp(x) − pp0 = np(x) − np0, for x < −xp, (12.107)

nn(x) − nn0 = pn(x) − pn0, for x > xn. (12.108)

The relations in (12.105)–(12.108) that describe the carrier distributions are valid
for p–N and P–n heterojunctions as well as for p–n homojunctions. The distributions
of majority and minority carrier concentrations for the cases when a junction is subject
to a forward bias and when it is subject to a reverse bias are shown in Figs. 12.11(b)
and (c), respectively. Both diffusion regions on p and n sides are clearly defined by the
diffusion lengths of minority carriers because the spatial distributions of both minority
and majority carriers are determined by the diffusion lengths of the minority carriers. In
the case when pp0 � np0 and nn0 � pp0, as is the situation in many practical junction
devices, the equal amount of local changes in the majority and minority carrier concen-
trations in the diffusion regions is relatively insignificant for the total majority carrier
concentration, but it can be substantial for the total minority carrier concentration.

EXAMPLE 12.12 In this example, we consider the minority carrier concentrations at 300 K
for the GaAs p–n homostructure described in Example 12.8. Find np0 and pn0 first. Then,
find the changes in the minority carrier concentrations, �np and �pn, at the two edges
of the depletion layer for two different forward bias voltages of V = 1 V and V = V0,
respectively.

Solution From Example 12.8, we know that pp0 ≈ Na = 1 × 1023 m−3, nn0 ≈ Nd =
1 × 1022 m−3, and ni = 2.33 × 1012 m−3. Because both p and n regions are nondegen-
erate, we can use the law of mass action given in (12.31) for nondegenerate semicon-
ductors to find that

np0 = n2
i

pp0
= (2.33 × 1012)2

1 × 1023
m−3 = 54.3 m−3,

pn0 = n2
i

nn0
= (2.33 × 1012)2

1 × 1022
m−3 = 543 m−3.

At T = 300 K, kBT = 0.0259 eV. For a forward bias voltage of V = 1 V, we find
from (12.103) and (12.104) that

�np = 54.3 m−3 × (e1/0.0259 − 1
) = 3.18 × 1018 m−3,

�pn = 543 m−3 × (e1/0.0259 − 1
) = 3.18 × 1019 m−3.

For a forward bias voltage of V = V0 = 1.209 V, we have

�np = 54.3 m−3 × (e1.209/0.0259 − 1
) = 1 × 1022 m−3 = nn0,

�pn = 543 m−3 × (e1.209/0.0259 − 1
) = 1 × 1023 m−3 = pp0.
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We find that though np0 and pn0 are extremely small in this example, �np and �pn are
still quite substantial at a reasonable forward bias voltage because of their exponential
dependence on bias voltage. We also find that �np = nn0 and �pn = pp0 when the
junction is forward biased at V = V0.

Current–voltage characteristics

The electric current flowing in a semiconductor under bias consists of an electron current
and a hole current, each having both drift and diffusion components. The total current is
the vectorial sum of the individual current components, which may flow in different
directions. The total current is constant throughout the semiconductor under a constant
bias voltage, but the electron and hole currents, as well as their drift and diffusion
components, vary from one location to another because of spatial variations in the carrier
distribution and in the electric field distribution. In the depletion layer, there are drift and
diffusion currents for both electrons and holes because in this layer a large electric field
exists and the carrier concentration gradients for both electrons and holes are large. In the
diffusion regions, both majority and minority carrier diffusion currents are significant
because both majority and minority carriers have large concentration gradients here.
Furthermore, there is an appreciable majority carrier drift current because the majority
carrier concentration is high though the electric field is small. In homogeneous regions,
almost the entire current is carried by majority carrier diffusion because both the carrier
distribution gradients and the minority carrier concentration are negligibly small in these
regions.

There are negligible generation and recombination of carriers in the depletion layer
because the large electric field in the depletion layer sweeps the carriers across this
layer very swiftly. In this situation, the total electron current density, Je(x), and the
total hole current density, Jh(x), are constant for −xp < x < xn across the depletion
layer. Consequently, the total current density in a semiconductor can be evaluated as

J = Je(−xp) + Jh(xn), (12.109)

where Je(−xp) is the minority carrier current density at the boundary between the
depletion layer and the diffusion region on the p side, and Jh(xn) is the minority carrier
current density at the boundary between the depletion layer and the diffusion region
on the n side. Because the minority carrier currents in the diffusion regions are purely
diffusive, we have, using (12.105) and (12.106),

Je(−xp) = eDe
dnp

dx

∣∣∣∣
x=−xp

= eDe

Le
np0
(
eeV/kBT − 1

)
, (12.110)

Jh(xn) = −eDe
dpn

dx

∣∣∣∣
x=xn

= eDh

Lh
pn0
(
eeV/kBT − 1

)
. (12.111)
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Consequently, the total current density varies with the bias voltage V as

J = Jsat(e
eV/kBT − 1), (12.112)

where Jsat is the saturation current density given by

Jsat = eDe

Le
np0 + eDh

Lh
pn0. (12.113)

The minority carrier currents given in (12.110) and (12.111) are contributed by the
minority carrier injection across the depletion layer to the diffusion regions. They have
the following ratio:

Je

Jh
= DeLh

DhLe

np0

pn0
=
(

Deτh

Dhτe

)1/2 np0

pn0
. (12.114)

By using (12.79) for a p–N junction and (12.85) for a P–n junction, this ratio can be
expressed as

Je

Jh
= DeLh

DhLe

nn0

pp0

Ncp Nvp

Ncn Nvn
e(Egn−Egp)/kBT = DeLh

DhLe

Nd

Na

Ncp Nvp

Ncn Nvn
e(Egn−Egp)/kBT . (12.115)

This relation is valid for p–n homojunctions as well as for p–N and P–n heterojunctions.
In the case of a homojunction, Je/Jh = DeLh Nd/DhLe Na because Ncp = Ncn, Nvp =

Nvn, and Egn = Egp. Therefore, the relative importance of electron and hole injection
is determined by the diffusion parameters of the minority carriers and the doping
concentrations in the n and p regions, respectively. It can be seen by examining the
numerical values listed in Table 12.2 that De > Dh because electrons have a higher
mobility than holes in the same semiconductor. We thus reach the following important
conclusion: unless the p side is much more heavily doped than the n side, the injection
current through a homojunction is predominantly carried by the electrons injected from
the n side into the p side.

In the case of a heterojunction, the exponential dependence on bandgap difference in
(12.115) can be significant if �Eg > kBT . Because kBT = 25.9 meV for T = 300 K,
this exponential dependence dominates in most practical heterojunctions where the
value of �Eg is many times this value. Consequently, Je � Jh for a p–N junction
where Egn > Egp, whereas Jh � Je for a P–n junction where Egp > Egn. An important
conclusion is reached for heterojunctions: in the case of a p–N junction the diffusion
current is mainly contributed by the injection of electrons from the wide-gap n-type
semiconductor to the narrow-gap p-type semiconductor, whereas in the case of a P–n
junction it is mainly contributed by the injection of holes from the wide-gap p-type
semiconductor to the narrow-gap n-type semiconductor. This important characteris-
tic can be understood from the observation in earlier discussions on energy bands
that the energy barrier across a heterojunction is lower for majority carriers of the
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(a) (b)

Figure 12.12 Current–voltage characteristics of (a) an ideal junction diode and (b) a realistic
junction diode.

wide-gap semiconductor than for majority carriers of the narrow-gap semiconductor
by the amount of the bandgap difference �Eg between the two semiconductors.

For a junction that has a cross-sectional areaA, the total current is I = JA. Therefore,
we have the following diode equation between the current and the bias voltage for an
ideal p–n junction:

I = Isat
(
eeV/kBT − 1

)
, (12.116)

where Isat = JsatA is the saturation current. This relation is valid for both forward and
reverse bias conditions. It also applies to p–N and P–n heterojunctions. Figure 12.12(a)
shows the current–voltage characteristics, also known simply as the I–V characteris-
tics, described by (12.116) for an ideal diode. Deviations from these ideal character-
istics are found in all realistic p–n, p–N, and P–n junctions. Some important charac-
teristics of realistic junctions are shown in Fig. 12.12(b) and are summarized in the
following.

1. At a certain critical reverse bias voltage, known as the breakdown voltage, Vbr, a
realistic junction breaks down with a sharp increase of reverse breakdown current.

2. The ideal diode equation is obtained by ignoring carrier recombination and gener-
ation in the depletion layer. When the effects of carrier recombination and generation
in the depletion layer are considered, the reverse current does not saturate at −Isat

but slightly increases in magnitude with the reverse bias voltage before a sudden
change takes place at the breakdown voltage. Correspondingly, the forward current
depends on the bias voltage with a modified factor in the exponent. Therefore, a
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realistic diode has the following current–voltage relation for V > Vbr:

I = I0
(
eeV/akBT − 1

)
, (12.117)

where I0 is a constant current different from Isat and a is a factor that has a value
between 1 and 2.

3. At high injection levels when the minority carrier concentrations in the diffusion
regions become comparable to the majority carrier concentrations, (12.105) and
(12.106) are not valid. A detailed analysis of this situation results in the current–
voltage characteristic described by (12.117) with a = 2 at these high injection levels.

4. The exponential rise of the current with forward bias voltage does not continue at
high current levels as the voltage drop associated with finite resistivity in the neutral
regions becomes significant at high currents.

EXAMPLE 12.13 For the GaAs p–n homostructure described in Example 12.8, the p region
is doped 10 times more heavily than the n region. Take the minority carrier lifetimes to
be τe = 10 ns for electrons in the p region and τh = 100 ns for holes in the n region. (a)
By using the electron and hole diffusion coefficients for GaAs listed in Table 12.2, find
the diffusion lengths that define the diffusion regions on the p and n sides, respectively.
(b) Find the saturation current density. (c) Compare the relative importance of electron
and hole injection currents. (d) Consider a junction that has a 100 µm × 100 µm cross
section. Find the saturation current in reverse bias. Use the ideal diode equation to find
the current under forward bias voltages of V = 1 V and V = V0, respectively.

Solution (a) From Table 12.2, we find that De = 220 cm2 s−1 = 2.2 × 10−2 m2 s−1

and Dh = 10 cm2 s−1 = 1 × 10−3 m2 s−1. Therefore,

Le = (Deτe)1/2 = (2.2 × 10−2 × 10 × 10−9)1/2 m = 14.8 µm,

Lh = (Dhτh)1/2 = (1 × 10−3 × 100 × 10−9)1/2 m = 10 µm.

The diffusion region on the p side is defined by Le = 14.8 µm, and that on the n side
is defined by Lh = 10 µm.

(b) From Example 12.12, we find that np0 = 54.3 m−3 and pn0 = 543 m−3. Therefore,
from (12.113), the saturation current density is

Jsat =
(

1.6 × 10−19 × 2.2 × 10−2

14.8 × 10−6
× 54.3 + 1.6 × 10−19 × 1 × 10−3

10 × 10−6
× 543

)
A m−2

= 2.16 × 10−14 A m−2.

(c) By using the relation in (12.114), we find that

Je

Jh
= DeLh

DhLe

np0

pn0
= 2.2 × 10−2 × 10

1 × 10−3 × 14.8
× 54.3

543
= 1.49.
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Therefore, despite the fact that the doping concentration in the p region is 10 times that
in the n region and τh is 10 times τe, we still find that the electron injection current is 1.49
times the hole injection current. The electron current would be even more important if
the p region were not so heavily doped compared to the n region or if the hole lifetime
were not so much longer than the electron lifetime.

(d) We have a cross-sectional area of A = 100 µm × 100 µm = 1 × 10−8 m2.
Thus the saturation current is Isat = JsatA = 2.16 × 10−22 A. At a sufficiently high
reverse bias voltage of V � −kBT/e = −25.9 mV at T = 300 K, I = −Isat =
−2.16 × 10−22 A. At a forward bias voltage of V = 1 V, we find that

I = 2.16 × 10−22 A × (e1/0.0259 − 1
) = 12.7 µA.

At a forward bias voltage of V = V0 = 1.209 V, the current is

I = 2.16 × 10−22 A × (e1.209/0.0259 − 1
) = 40.5 mA.

Comparing these results, we find that the current saturates with voltage in reverse bias
but increases very quickly with voltage in forward bias.

Capacitance

There are two types of capacitance associated with a p–n, p–N, or P–n junction: (1) the
junction capacitance, Cj, also known as the depletion-layer capacitance, and (2) the
diffusion capacitance, Cd, also known as the charge-storage capacitance. In a junction
under reverse bias, only the junction capacitance is important. In a junction under
forward bias, however, the diffusion capacitance dominates.

The depletion layer acts as a capacitor by holding negative space charges on the
p side and positive space charges on the n side of the following magnitude:

Q = eNaxpA = eNdxnA = e
Na Nd

Na + Nd
WA, (12.118)

where A is the cross-sectional area of the junction. By using (12.100) and (12.118), we
find that the junction capacitance associated with the depletion layer is given by

Cj =
∣∣∣∣dQ

dV

∣∣∣∣ = εA
W

. (12.119)

Because the width of the depletion layer decreases with forward bias but increases
with reverse bias, the junction capacitance increases when the junction is subject to a
forward bias voltage but decreases when it is subject to a reverse bias voltage.

Because the diffusion capacitance, Cd, is associated with the storage of minority
carrier charges in the diffusion region, it exists only when a junction is under forward
bias. This capacitance is a complicated function of the minority carrier lifetime and the
modulation frequency of the bias voltage, but it is directly proportional to the injection
current. When a junction is under forward bias, Cd can be significantly larger than
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Cj at high injection currents though Cj can already be large in this situation. When a
junction is under reverse bias, Cj is the only capacitance of significance though it can
be small. Consequently, the capacitance of a junction can be substantially smaller when
it is under reverse bias than when it is under forward bias.

EXAMPLE 12.14 A GaAs p–n homojunction as described in Example 12.8 and considered
in Examples 12.11–12.13 has a 100 µm × 100 µm cross section. Consider the junction
in thermal equilibrium without bias at 300 K. Find the amount of the positive and
negative space charges stored in the depletion layer. Find the junction capacitance.

Solution The cross-sectional area of the junction is A = 100 µm × 100 µm = 1 ×
10−8 m2. An equal amount of positive and negative space charges is stored on the n and
p sides, respectively, of the junction in the depletion layer. By using Na = 1 × 1023 m−3

given in Example 12.8 and xp0 = 40 nm found in Example 12.11, we find from (12.118)
that

Q = eNaxp0A = 1.6 × 10−19 × 1 × 1023 × 40 × 10−9 × 1 × 10−8 C = 6.4 pC.

From Example 12.11, we know that ε = 13.18ε0 for GaAs and W0 = 440 nm for the
junction under consideration. Therefore, from (12.119), the junction capacitance is

Cj = 13.18 × 8.854 × 10−12 × 1 × 10−8

440 × 10−9
F = 2.65 pF.

PROBLEMS

12.1.1 Does the ternary compound Al0.3Ga0.7As have a direct or an indirect bandgap?
What are its bandgap Eg and the corresponding optical wavelength λg? What is
its refractive index at λ = 900 nm?

12.1.2 Answer the questions asked in Problem 12.1.1 for Al0.7Ga0.3As.
12.1.3 The quaternary compound In0.61Ga0.39As0.83P0.17 is lattice matched to InP at

300 K. Is it a direct-gap or an indirect-gap semiconductor? What are its bandgap
Eg and the corresponding optical wavelength λg? What is its refractive index at
λ = 1.55 µm?

12.1.4 Find the compositions of the two InGaAsP quaternary compounds that are both
lattice matched to InP at 300 K and have bandgap optical wavelengths of λg =
1.007 and 1.095 µm, respectively.

12.1.5 InGaAsP can be lattice matched to either InP or GaAs. Find from Fig. 12.2
the range of bandgaps and the corresponding range of bandgap wavelengths
covered by the InGaAsP quaternary compounds that are lattice matched to
GaAs at 300 K. What is the composition range of such compounds?

12.2.1 We have m∗
e = 1.08m0 and m∗

h = 0.56m0 for Si, and m∗
e = 0.55m0 and m∗

h =
0.31m0 for Ge. Use these data to calculate the effective densities of states Nc
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and Nv for Si and Ge, respectively. Compare them with those of GaAs found in
Example 12.2.

12.2.2 From Table 12.1, we find that Eg = 1.12 eV for Si and Eg = 0.66 eV for Ge at
T = 300 K. Use the values of Nc and Nv found for Si and Ge in Problem 12.2.1
to find the intrinsic carrier concentration ni for Si and Ge at 300 K. Also find
the Fermi level for intrinsic Si and Ge at 300 K. Compare the results with those
found in Example 12.2 for GaAs. Explain the significant differences in the
intrinsic carrier concentration among Si, Ge, and GaAs at the same temperature
of 300 K.

12.2.3 Find the intrinsic carrier concentration and the Fermi level of GaAs at 400 K and
those at 500 K. Note that the bandgap of GaAs is 1.424 eV at 300 K, 1.391 eV
at 400 K, and 1.357 eV at 500 K because it shrinks with increasing temperature.
Compare the results with those found in Example 12.2 for GaAs at 300 K to
appreciate how ni and EFi vary with temperature.

12.2.4 Answer the questions in Example 12.3 for n-type Si and n-type Ge, respectively,
for the same impurity concentration of N+

d − N−
a = 5 × 1018 m−3. Compare

the results with those found for n-type GaAs.
12.2.5 Find the impurity doping concentrations required for n-type Si and n-type Ge,

respectively, to become degenerate at 300 K. Compare them with that found in
Example 12.4 for n-type GaAs.

12.2.6 Answer the questions in Example 12.5 for Si and Ge, respectively. Compare the
results with those found for GaAs.

12.2.7 A piece of p-type GaAs is doped with a net impurity concentration of N−
a −

N+
d = 5 × 1018 m−3. Is it degenerate or nondegenerate? Find its electron and

hole concentrations and its Fermi level at 300 K. How much is the shift of the
Fermi level, measured from the intrinsic Fermi level, caused by the doping of
the impurity? Compare the results obtained in this problem for the p-type GaAs
with those found in Example 12.3 for the n-type GaAs of the same impurity
concentration.

12.2.8 What is the impurity doping concentration required for p-type GaAs to become
degenerate at 300 K? Compare the result obtained in this problem for p-type
GaAs with that found in Example 12.4 for n-type GaAs.

12.3.1 In the situation where excess electron and hole concentrations are equal, �n =
�p = N , electrons and holes have the same lifetime, τe = τh = τs, according to
(12.54). Consider a semiconductor in which the Shockley–Read recombination
process completely dominates the bimolecular and Auger processes so that the
net carrier recombination rate is basically the net Shockley–Read recombination
rate: R = RSR. Assume, for simplicity, that the recombination centers are so
located that n1 = p1 = ni.
a. Use (12.48) for RSR to obtain a general expression for the carrier lifetime τs

in terms of τe0, τh0, and the carrier concentrations.
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b. Show that τs = τe = τh = τe0 + τh0 for an intrinsic semiconductor.
c. For an extrinsic semiconductor, the carrier lifetime is primarily determined

by the recombination of the minority carriers. For an n-type semiconduc-
tor, show that τs > τh0 and τs → τh0 when n � p. Similarly, for a p-type
semiconductor, show that τs > τe0 and τs → τe0 when p � n.

d. Show that for both intrinsic and extrinsic semiconductors, τs = τe = τh ≈
τe0 + τh0 at a high excess carrier concentration when N � n0, p0.

12.3.2 Answer the questions in Example 12.6 for a p-type GaAs sample that is doped
with N−

a − N+
d = 2 × 1022 m−3 while maintaining the same values for coeffi-

cients A, B, and C as those given in Example 12.6.
12.3.3 An InGaAsP sample has a bandgap at 1.3 µm wavelength. It is not intentionally

doped, so that its equilibrium electron and hole concentrations are n0 ≈ p0 ≈
ni ≈ 1.7 × 1022 m−3 at 300 K. For an excess carrier concentration of N �
n0, p0, the terms in (12.57) that contain n0 and p0 can be neglected. Then,
(12.57) reduces to

1

τs
= A + B N + C N 2. (12.120)

Coefficients A, B, and C in this relation can be determined experimentally
by measuring the carrier lifetime τs as a function of the injected excess carrier
concentration N . This experiment can be carried out by measuring the decay time
of the photoluminescence when the sample is injected with excess electron and
hole pairs either optically or electrically. Such an experiment yields the following
data: τs = 30, 17.1, 3.13, and 1.25 ns for N = 5 × 1023 m−3, 1 × 1024 m−3,
5 × 1024 m−3, and 1 × 1025 m−3, respectively.
a. Find coefficients A, B, and C from these experimental data.
b. Use the results from (a) to find the excess carrier concentration for a carrier

lifetime of τs = 5 ns.
c. What is the carrier lifetime at an excess carrier concentration of N = 2 ×

1025 m−3?
12.3.4 For the InGaAsP sample considered in Problem 12.3.3, the bimolecular recom-

bination process, characterized by the coefficient B, is radiative but the other two
recombination processes, characterized by coefficients A and C , are nonradi-
ative. If this sample is to be used for the fabrication of a semiconductor laser or
light-emitting diode, what is the range of injection carrier concentrations that
will lead to the most efficient operation of the device?

12.4.1 For nondegenerate semiconductors, the Einstein relations given in (12.61) be-
tween the diffusion coefficients and the mobilities are valid. For degenerate
semiconductors, they have to be generalized. However, the relations for the
electron and hole current densities given in (12.67) and (12.68), respectively,
are generally valid for both nondegenerate and degenerate semiconductors.
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a. Verify the relations for Je and Jh given in (12.67) and (12.68), respectively,
using the Einstein relation given in (12.61) for a nondegenerate semiconduc-
tor.

b. Starting from the relations for Je and Jh given in (12.67) and (12.68), de-
rive the relation between the diffusion coefficients and the mobilities for a
degenerate semiconductor.

c. Show that the relation obtained in (b) is a generalized relation for the Einstein
relation by showing that it reduces to (12.61) when proper approximations
for a nondegenerate semiconductor are taken.

12.4.2 A graded-gap structure can be fabricated by varying the composition of
a ternary or quaternary compound semiconductor, such as Alx Ga1−x As or
In1−x Gax As1−yPy , or that of an alloy semiconductor, such as Six Ge1−x . A
graded-gap structure of a length l that has a linearly graded bandgap from a
small bandgap of Eg1 = Ec1 − Ev1 to a large bandgap of Eg2 = Ec2 − Ev2, for
a bandgap change of �Eg = Eg2 − Eg1 from one end to the other, is shown
in Fig. 12.13. The change in the conduction-band edge over the structure is
�Ec = Ec2 − Ec1, and that in the valence-band edge is �Ev = Ev2 − Ev1. As-
sume that the electron and hole mobilities and concentrations are uniform across
the entire structure.

µm

Figure 12.13 Graded-gap Alx Ga1−x As structure with a linearly graded bandgap. The gradients of
the band edges are a function of doping type and concentration. They are arbitrarily drawn here for
a p-type structure.

a. Show that, under this condition,

�Ec = µh p

µen + µh p
�Eg and �Ev = − µen

µen + µh p
�Eg. (12.121)

b. What are the built-in electric fields seen by electrons and holes, respectively?
c. How are the built-in electric fields changed by heavy n-type or p-type doping?

12.4.3 A graded-gap Alx Ga1−x As structure with a linearly graded bandgap as shown in
Fig. 12.13 has its composition varying from x = 0 to 0.3 for a bandgap change
of �Eg = 0.374 eV from Eg1 = 1.424 eV to Eg2 = 1.798 eV at 300 K. It has
a length of l = 1 µm. Consider an undoped intrinsic structure. Use the electron
and hole mobilities, µe = 8500 cm2 V−1 s−1 and µh = 400 cm2 V−1 s−1, of
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GaAs for the entire structure to find the built-in electric fields seen by electrons
and holes, respectively.

12.4.4 Find the intrinsic conductivity and the intrinsic resistivity of Si at 300 K.
12.4.5 Find the intrinsic conductivity and the intrinsic resistivity of Ge at 300 K.
12.4.6 The intrinsic carrier concentration of GaAs at 300 K is ni = 2.33 × 1012 m−3,

found in Example 12.2. From Table 12.2, µe = 8500 cm2 V−1 s−1 and µh =
400 cm2 V−1 s−1. Find the dark conductivity σ0 and the dark resistivity ρ0

for the n-type GaAs considered in Example 12.3, which is lightly doped with
N+

d − N−
a = 5 × 1018 m−3. Find σ0 and ρ0 for p-type GaAs doped with N−

a −
N+

d = 5 × 1018 m−3. What is the reason for the difference in the conductivity be-
tween the n-type and p-type GaAs of the same doping concentration considered
here?

12.5.1 An abrupt GaAs/AlGaAs p–N heterojunction is formed with a uniform p region
of GaAs and a uniform n region of Al0.3Ga0.7As. The p GaAs region is doped
with fully ionized acceptors of a concentration Na = 1 × 1023 m−3, and the
n Al0.3Ga0.7As region is doped with fully ionized donors of a concentration
Nd = 1 × 1022 m−3. The density of states effective masses for Al0.3Ga0.7As
are m∗

e = 0.092m0 and m∗
h = 0.62m0, as compared with m∗

e = 0.067m0 and
m∗

h = 0.52m0 for GaAs. Find the contact potential of this junction at 300 K by
taking �Ec = 65% �Eg and �Ev = 35% �Eg. Compare this contact potential
with that of the AlGaAs/GaAs P–n heterojunction considered in Example 12.9,
which has the same doping profile.

12.5.2 Find the bias voltage required to line up the conduction-band edges of the p and n
regions on the two sides of the p–N heterojunction described in Problem 12.5.1.
Find also the bias voltage needed to line up the valence-band edges. Compare
these voltages with those found in Example 12.10 for the P–n heterojunction.

12.5.3 The static dielectric constant of GaAs is ε/ε0 = 13.18 and that of Al0.3Ga0.7As
is ε/ε0 = 12.24. Find the width of the depletion layer, W0, and the penetra-
tion depths, xp0 and xn0, in thermal equilibrium without bias at 300 K for (a)
the AlGaAs/GaAs P–n heterojunction described in Example 12.9 and (b) the
GaAs/AlGaAs p–N heterojunction described in Problem 12.5.1. Compare the
results with those found in Example 12.11 for the GaAs p–n homojunction.

12.5.4 Answer the questions in Example 12.12 for (a) the AlGaAs/GaAs P–n het-
erojunction described in Example 12.9 and (b) the GaAs/AlGaAs p–N hetero-
junction described in Problem 12.5.1. Compare the results with those found in
Example 12.12 for the GaAs p–n homojunction.

12.5.5 Answer the questions in Example 12.13 for the AlGaAs/GaAs P–n heterojunc-
tion described in Example 12.9. Take electron and hole diffusion coefficients to
be those of GaAs and the minority carrier lifetimes to be τe = 10 ns for electrons
in the p region and τh = 100 ns for holes in the n region. Compare the results
with those found in Example 12.13 for the GaAs p–n homojunction.
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12.5.6 Answer the questions in Example 12.13 for the GaAs/AlGaAs p–N heterojunc-
tion described in Problem 12.5.1. Take electron and hole diffusion coefficients
to be those of GaAs and the minority carrier lifetimes to be τe = 10 ns for elec-
trons in the p region and τh = 100 ns for holes in the n region. Compare the
results with those found in Example 12.13 for the GaAs p–n homojunction and
those found in Problem 12.5.5 for the AlGaAs/GaAs P–n heterojunction.

12.5.7 Answer the questions in Example 12.14 for (a) the AlGaAs/GaAs P–n het-
erojunction described in Example 12.9 and (b) the GaAs/AlGaAs p–N hetero-
junction described in Problem 12.5.1. Compare the results with those found in
Example 12.14 for the GaAs p–n homojunction.

12.5.8 Show that when pp0 ≈ Na � np0 and nn0 ≈ Nd � pn0, the contact potential of
a p–N heterojunction can be expressed in the form of (12.81) and that of a P–n
heterojunction can be expressed in the form of (12.87), both of which reduce
to the form of (12.75) when the heterojunctions reduce to homojunctions with
Egp = Egn = Eg.

12.5.9 Show, by solving (12.97) with proper boundary conditions, that the width of the
depletion layer for a junction under a bias voltage V is that given by (12.100)
with an effective electric permittivity defined in (12.99), which is valid for both
homojunctions and heterojunctions.

12.5.10 Discuss why a p–n junction has a larger capacitance when it is under forward
bias than when it is under reverse bias.
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13 Semiconductor lasers and
light-emitting diodes

In this chapter, we discuss semiconductor lasers and light-emitting diodes (LEDs). Both
semiconductor lasers and LEDs are semiconductor light sources based on electrolu-
minescence, which results from the radiative recombination of electrons and holes in
a semiconductor. A semiconductor laser emits coherent laser light with a relatively
small divergence, whereas the emission of an LED is incoherent and divergent. These
semiconductor devices have several unique properties. They are rugged devices that are
reliable and have long operating lifetimes because of their very small, compact sizes
with integrated solid-state structures. They have very high efficiencies and consume very
little power in comparison with other light sources of similar brightness because they
are cold light sources operating at temperatures that are much lower than the equilib-
rium temperatures of their emission spectra. They can be electrically pumped by current
injection at relatively low current and voltage levels and can be directly current modu-
lated with very fast response for high-speed applications, including broadband optical
communications. Their compatibility with semiconductor fabrication and processing
technologies allows them to take advantage of semiconductor electronics technology
for easy integration into electronic systems. Furthermore, the mature nature of semi-
conductor electronics technology allows them to be mass produced at a low cost. These
unique properties make semiconductor lasers and LEDs the light sources of choice in
many practical applications.

13.1 Radiative recombination

The general characteristics of electron–hole recombination processes in a semiconduc-
tor are discussed in Section 12.3. The net result of any recombination process is the
transition of an electron from an occupied state at a higher energy to an empty state at a
lower energy, accompanied by the release of the energy that is the difference between
these two states. An electron–hole recombination process in a semiconductor can be ei-
ther radiative or nonradiative. In a radiative recombination process, the released energy
is emitted as electromagnetic radiation. In a nonradiative recombination process, no
radiation is emitted, and the released energy is eventually converted to thermal energy

816
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in the form of lattice vibrations. Only radiative processes are useful to the function of
semiconductor lasers and LEDs.

There are primarily three different radiative recombination processes: (1) band-to-
band recombination; (2) exciton recombination, through either a free exciton or a bound
exciton; and (3) recombination through impurity states. The most important radiative
recombination process is the bimolecular band-to-band recombination process, the de-
tails of which are discussed in the following section. Free exciton recombination is
radiative, but it is not important for practical device applications at room temperature
because free excitons can form only at very low temperatures due to their small ion-
ization energies. Radiative recombination of certain types of bound excitons can be
useful. Certain radiative recombination processes associated with impurities in a semi-
conductor are important in the operation of some semiconductor lasers or LEDs. A
photon emitted by band-to-band recombination has an energy slightly higher than the
bandgap, whereas one that is emitted through a process involving the impurities has an
energy lower than the bandgap of the semiconductor.

Certain impurities in a semiconductor can form isoelectronic centers. An isoelec-
tronic center is normally neutral but introduces a local potential that can trap an electron
or a hole, depending on the type of impurity that creates the isoelectronic center. An
isoelectronic center that traps an electron becomes negatively charged. The negatively
charged center can then capture a hole from the valence band to form a bound exciton.
Similarly, an isoelectronic center that traps a hole becomes positively charged and is able
to capture an electron from the conduction band to form a bound exciton. Subsequent
annihilation of the electron–hole pair in the bound exciton is a radiative process that
results in the emission of a photon of an energy equal to the bandgap minus the binding
energy of the center. Because the momentum of a trapped, localized electron or hole
is highly diffused according to the uncertainty principle of quantum mechanics, con-
servation of momentum can easily be satisfied in the radiative recombination process
through an isoelectronic center no matter whether the host semiconductor is a direct-gap
or an indirect-gap material. Consequently, this mechanism of radiative recombination
is important in indirect-gap semiconductors, in which band-to-band radiative recombi-
nation probabilities are very low. In particular, this process is responsible for improving
the luminescence efficiency of the indirect-gap semiconductors GaP, GaAsx P1−x , and
Inx Ga1−x P for their applications as materials for LEDs. As an example, the energy lev-
els of the isoelectronic traps created by the impurities N and Zn,O in GaP are illustrated
in Fig. 13.1. The N and Zn,O impurities in GaP both act as electron traps. At room
temperature, a photon emitted through a N center in GaP : N has an energy of about
2.20 eV, and that emitted through a Zn,O center in GaP : Zn,O has an energy of about
1.79 eV.

A high impurity concentration in a semiconductor can lead to the formation of
conduction and valence bandtail states, which in effect extend the conduction- and
valence-band edges into the gap. Optical transitions associated with such bandtail states



818 Semiconductor lasers and light-emitting diodes

Figure 13.1 Isoelectronic trapping levels of N and Zn,O centers in GaP.

result in the absorption or emission of photons of energies less than the bandgap of
a semiconductor. This bandtail effect is important only in a direct-gap semiconductor
that is doped with a high concentration of impurities.

Radiative efficiency

The total recombination rate for the excess carriers in a semiconductor can be expressed
as the sum of radiative and nonradiative recombination rates:

R = Rrad + Rnonrad. (13.1)

The lifetime of an excess electron–hole pair associated with radiative recombination is
called the radiative carrier lifetime, τrad, and that associated with nonradiative recom-
bination is called the nonradiative carrier lifetime, τnonrad. They are related to the total
spontaneous carrier recombination lifetime, τs, of the excess carriers by

1

τs
= 1

τrad
+ 1

τnonrad
. (13.2)

The spontaneous carrier recombination rate, γs, is defined as

γs = 1

τs
. (13.3)

This parameter is the total rate of carrier recombination including the contributions from
all, radiative and nonradiative, spontaneous recombination processes but excluding the
contribution from the stimulated recombination process. In the presence of stimulated
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emission, the effective recombination rate of the carriers can be much higher than that
given by γs because of stimulated recombination.

The radiative efficiency, or the internal quantum efficiency, of a semiconductor is
defined as

ηi = Rrad

R
= τs

τrad
. (13.4)

Bimolecular radiative lifetime

In a practical operating condition of a semiconductor laser or LED, the radiative re-
combination rate is almost entirely contributed by bimolecular recombination, including
band-to-band and exciton recombination processes. In thermal equilibrium, bimolec-
ular recombination is balanced by bimolecular thermal generation. The bimolecular
thermal generation rate, G0, is the same for the generation of electrons and holes.
Therefore, the net radiative recombination rate in the presence of excess electron–hole
pairs is given by

Rrad = Bnp − G0 = Bnp − Bn0 p0, (13.5)

where G0 is identified with Bn0 p0 because Rrad = 0 in the state of thermal equilibrium
when n = n0 and p = p0. In contrast to the bimolecular recombination rate, which
depends on the total electron and hole concentrations, the thermal generation rate is
largely independent of the carrier concentrations because the bound electrons in the
valence bands and the empty states in the conduction bands that are available for thermal
generation of free electrons and free holes are always much more numerous than the
values of n and p. Consequently, even in a semiconductor that has a high concentration
of excess carriers generated by external excitation, the bimolecular thermal generation
rate remains G0 = Bn0 p0.

With the excess carrier density N = n − n0 = p − p0 as expressed in (12.55), the
radiative lifetime of the excess carriers is then given by

τrad = N

Rrad
= 1

B(N + n0 + p0)
. (13.6)

A short radiative lifetime corresponds to a high radiative recombination rate. In the
case when the excess carrier density is low so that N � n0, p0, the radiative lifetime
is a constant that is independent of the density of the excess carriers:

τrad ≈ 1

B(n0 + p0)
. (13.7)

In the case when the excess carrier density is high so that N � n0, p0, the radiative
lifetime varies inversely with the excess carrier density:

τrad ≈ 1

B N
. (13.8)
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EXAMPLE 13.1 Find the radiative carrier lifetime and the internal quantum efficiency
for the optically excited n-type GaAs considered in Example 12.6 if both the
Shockley–Read and the Auger recombination processes in this semiconductor are
nonradiative while the bimolecular process is purely radiative. Plot them as a function
of excess carrier concentration N for N in the range between 1018 and 1026 m−3. In
what range of carrier densities is high radiative efficiency found? What is the peak
internal quantum efficiency?

Solution From Example 12.6, we have the following spontaneous carrier lifetime:

1

τs
= A + B(N + n0 + p0) + C

[
N 2 + 3

2
(n0 + p0)N + 1

2
(n2

0 + p2
0) + 2n0 p0

]
.

Because the bimolecular process is purely radiative while the Shockley–Read and the
Auger recombination processes are nonradiative, the radiative carrier lifetime is that
given in (13.6):

τrad = N

Rrad
= 1

B(N + n0 + p0)
.

From Example 12.6, we have A = 5.0 × 105 s−1, B = 8.0 × 10−17 m3 s−1, and C =
5.0 × 10−42 m6 s−1. From Example 12.3, we have n0 = 5.0 × 1018 m−3 and p0 =
1.1 × 106 m−3. Using these parameters, we can find τs and τrad as a function of the carrier
concentration N . Then the internal quantum efficiency can be found by using (13.4) as
ηi = τs/τrad. The results are plotted in Fig. 13.2. We find from these results that ηi > 0.5
for carrier concentrations in the range of 6.25 × 1021 m−3 < N < 1.6 × 1025 m−3

–

Figure 13.2 Spontaneous carrier lifetime τs, radiative carrier lifetime τrad, and internal quantum
efficiency ηi as a function of excess carrier density. The carrier lifetimes are referred to the left axis
while the quantum efficiency is referred to the right axis.
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where the bimolecular recombination process dominates, according to Example 12.6.
We also find from Fig. 13.2 that the peak internal quantum efficiency is 96.2% for
N = 3.16 × 1023 m−3.

13.2 Band-to-band optical transitions

In the discussions of the characteristics of optical transitions between the energy levels
of an individual atom or molecule in Section 10.1, each active atom or molecule is con-
sidered a separate system in the sense that it has its own energy levels and it can reside
in a particular state independently of the states of other active atoms or molecules. For
the electrons and holes in a semiconductor, the situation is quite different. The states of
all of the valence electrons in a semiconductor collectively form energy bands. Because
the electron population in the band states is governed by the Fermi–Dirac distribution
function, the state of a given electron in a semiconductor is not independent of other
electrons. A band-to-band transition in a semiconductor takes place through the trans-
ition of such an electron between a valence band and a conduction band. Consequently,
not every concept discussed in Section 10.1 regarding optical transitions between the
energy levels of an individual atom or molecule is directly applicable to band-to-band
optical transitions in a semiconductor. In particular, the concepts of transition cross
section and population inversion have to be modified. When considering a band-to-band
optical transition, the characteristics of the band structure have to be considered.

There are two types of band-to-band transitions in a semiconductor. A direct trans-
ition takes place when an electron makes an upward or downward transition without the
participation of a phonon. In contrast, when an electron makes an indirect transition,
it has to absorb or emit a phonon, thereby exchanging energy and momentum with
the crystal lattice, in order to complete the transition. The transition probability differs
significantly between a direct process and an indirect process.

When an electron makes a band-to-band transition between a state |1〉 of energy E1

and wavevector k1 in a valence band and a state |2〉 of energy E2 and wavevector k2 in
a conduction band, both the conservation of energy and the conservation of wavevector
have to be satisfied among all parties involved, including any participating photon and
phonon. The magnitude of the electron wavevector in a crystal is of the order of 2π/a,
where the lattice constant a is smaller than 1 nm, but the wavevector of a photon is
2π/λ, where the wavelength λ is on the order of 1 µm. Clearly, the photon wavevector is
negligibly small in comparison to the electron wavevector. Consequently, the conditions
for direct band-to-band transition with the absorption or emission of a photon are

E2 − E1 = hν and k2 = k1 + kphoton ≈ k1. (13.9)

The requirement of the conservation of wavevector is akin to the requirement of phase
matching in the interaction among optical waves and the requirement of the conservation
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Figure 13.3 Direct optical transitions in a direct-gap semiconductor.

of momentum in the interaction among particles. The vector quantity h̄k is known as
the crystal momentum of an electron in a band state of wavevector k, but it is not really
the momentum of the electron in the usual sense.

As illustrated in Fig. 13.3, the conditions for direct transition can be satisfied in
a direct-gap semiconductor for transitions between states near the conduction- and
valence-band edges. Band-to-band absorption in a direct-gap semiconductor normally
occurs through a direct absorption process for a photon energy of hν ≥ Eg. As a result,
the absorption spectrum of a direct-gap semiconductor shows a sharp edge at hν =
Eg and rises quickly when the photon energy increases above the bandgap. Band-to-
band recombination in a direct-gap semiconductor can also take place through a direct
recombination process with emission of a photon of an energy of hν ≥ Eg. Because the
conditions in (13.9) for a direct transition process can be easily satisfied, the probability
of radiative recombination in a direct-gap semiconductor is very high, leading to a short
radiative lifetime and a high radiative efficiency.

In an indirect-gap semiconductor, the requirement of conservation of wavevector for
direct transition cannot be satisfied for transitions between states near the band edges,
as illustrated in Fig. 13.4(a). An indirect optical transition between two such states is
possible, however, if the process is assisted by the absorption or emission of a phonon
of an energy h̄� and a wavevector K that satisfy the following conditions:

E2 − E1 = hν ± h̄� and k2 = k1 + kphoton ± K ≈ k1 ± K. (13.10)

An indirect transition process has a much lower probability than a direct transition
process because, in comparison to a direct process that involves only a photon and an
electron, an indirect process is a high-order process that requires the participation of a
phonon.

Near the band edges of an indirect-gap semiconductor, both optical absorption and
radiative carrier recombination can take place only through an indirect transition pro-
cess. Direct optical transition between a state near the valence-band edge and a state
high above the conduction-band edge and that between a state well below the valence-
band edge and a state near the conduction-band edge are possible in an indirect-gap
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(a)

(b)

Figure 13.4 (a) Indirect optical transitions and (b) direct optical transitions in an indirect-gap
semiconductor.

semiconductor, as illustrated in Fig. 13.4(b). If the photon energy is sufficiently larger
than Eg, direct optical absorption occurs readily in an indirect-gap semiconductor.
Therefore, the absorption coefficient of an indirect-gap semiconductor first increases
gradually as the photon energy increases just above the bandgap where only indirect
absorption takes place. It then has a sharp increase when the photon energy reaches
the threshold for direct absorption to occur. Carrier recombination through a direct
optical transition process in an indirect-gap semiconductor is highly unlikely, however,
because a state high above the conduction-band edge is normally not occupied by an
electron while a state deep down below the valence-band edge is generally occupied.
Consequently, band-to-band carrier recombination in an indirect-gap semiconductor is
generally an indirect process, which has a low radiative recombination probability and a
long radiative lifetime. Because of this long radiative lifetime, competing nonradiative
recombination processes can easily take place, resulting in a low radiative efficiency for
an indirect-gap semiconductor. This is the reason why the important semiconductors Si
and Ge are not useful for fabricating lasers and LEDs, though they are good for making
photodetectors.

Direct transition rates

To evaluate the transition rates of direct band-to-band optical transitions in a semi-
conductor, a few conditions imposed by the band structure have to be considered. As
a result, the formulation for the direct transition rates of a semiconductor is different
from the transition rates obtained in Section 10.1 for individual atoms or molecules.
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First, the conditions in (13.9) that dictate the conservation of energy and momentum
for a direct optical transition have to be satisfied. By taking |k2| ≈ |k1| = k for mo-
mentum conservation and considering the fact that the electron and hole energies vary
with the value of k quadratically near the band edges, we have

E2 = Ec + h̄2k2

2m∗
e

, (13.11)

E1 = Ev − h̄2k2

2m∗
h

. (13.12)

By applying the condition E2 − E1 = hν for energy conservation and using the relation
of Ec − Ev = Eg, (13.11) and (13.12) can be used to find E2 and E1 in terms of the
photon energy as (see Problem 13.2.3)

E2 = Ec + m∗
r

m∗
e

(hν − Eg), (13.13)

E1 = Ev − m∗
r

m∗
h

(hν − Eg), (13.14)

where m∗
r is the reduced effective mass defined as

m∗
r = m∗

em∗
h

m∗
e + m∗

h

. (13.15)

To satisfy the conservation of energy and momentum simultaneously, a band-to-band
optical transition associated with a photon of an energy hν can occur only between a
conduction-band state of energy E2 given by (13.13) and a valence-band state of energy
E1 given by (13.14).

Next, we have to consider the density of states in the conduction and valence bands
that satisfy the conservation of energy and momentum for the optical transition. This can
be done by considering the states in the conduction and valence bands that satisfy (13.13)
and (13.14), respectively. The density of states for band-to-band optical transitions
corresponding to optical frequencies in the range from ν to ν + dν can be evaluated as

ρ(ν)dν = ρc(E2)dE2 = −ρv(E1)dE1, (13.16)

where the minus sign in front of ρv(E1) is introduced because the sign of dE1 is opposite
to that of dν, as can be seen in (13.14). Using (12.16) for ρc(E)dE and (13.13) for E2,
or (12.16) for ρv(E)dE and (13.14) for E1, we find that (see Problem 13.2.3)

ρ(ν)dν = 4π (2m∗
r )3/2

h2
(hν − Eg)1/2dν (m−3) (13.17)

for direct band-to-band optical transitions associated with absorption or emission of
photons in the frequency range between ν and ν + dν.

Finally, the probabilities of occupancy for the states that are involved in an optical
transition have to be considered. For an optical transition from a valence-band state |1〉
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of energy E1 to a conduction-band state |2〉 of energy E2, state |1〉 has to be occupied
and state |2〉 has to be empty before the transition takes place. Therefore, the probability
of the transition associated with optical absorption is fv(E1)(1 − fc(E2)). For optical
emission, the probability is fc(E2)(1 − fv(E1)) because it involves the transition from
an occupied conduction-band state |2〉 to an empty valence-band state |1〉.

Based on the above discussions, we can easily write down the transition rates for direct
band-to-band optical transitions in a semiconductor by following the line of reasoning
employed to derive the atomic transition rates in Section 10.1. In the presence of an
optical radiation field that has a spectral energy density of u(ν), the induced transition
rates per unit volume of the semiconductor in the spectral range between ν and ν + dν

are

Ra(ν)dν = B12u(ν) fv(E1)[1 − fc(E2)]ρ(ν)dν (m−3 s−1) (13.18)

for optical absorption associated with upward transitions of electrons from the valence
band to the conduction band and

Re(ν)dν = B21u(ν) fc(E2)[1 − fv(E1)]ρ(ν)dν (m−3 s−1) (13.19)

for stimulated emission resulting from downward transitions of electrons from the
conduction band to the valence band. The spontaneous emission rate is independent of
u(ν) and can be expressed as

Rsp(ν)dν = A21 fc(E2)[1 − fv(E1)]ρ(ν)dν (m−3 s−1). (13.20)

The A and B coefficients in (13.18)–(13.20) are the Einstein A and B coefficients, which
are evaluated in the following through a procedure similar to that used in Section 10.1.

We consider a semiconductor in thermal equilibrium at a temperature T with black-
body radiation, which has a spectral energy density of u(ν) given by (10.20). In thermal
equilibrium, the electrons in both conduction and valence bands follow the same distri-
bution function f (E) given by (12.1) that is characterized by a single Fermi level, EF.
Therefore, fc(E2) = f (E2) and fv(E1) = f (E1). For the semiconductor to maintain
thermal equilibrium with blackbody radiation, the total absorption rate in any given
frequency range has to be equal to the total emission rate in the same frequency range:

Ra(ν)dν = Re(ν)dν + Rsp(ν)dν. (13.21)

By substituting (13.18), (13.19), and (13.20) in (13.21) and using the fact that fc(E2) =
f (E2) and fv(E1) = f (E1) in this situation, we have

B12u(ν)

B21u(ν) + A21
= f (E2)[1 − f (E1)]

f (E1)[1 − f (E2)]
= e−(E2−E1)/kBT = e−hν/kBT . (13.22)

This result can be rearranged to yield the following relation:

u(ν) = A21/B21

(B12/B21)ehν/kBT − 1
. (13.23)
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Similarly to what is done in (10.30), the coefficient A21 can be expressed in terms of a
spontaneous time constant as

A21 = 1

τsp
. (13.24)

Note, however, that τsp is not the same as the radiative carrier lifetime τrad or the total
spontaneous carrier recombination lifetime τs defined in the preceding section. The
physical meaning and the characteristics of τsp are further discussed in Section 13.4.
By identifying u(ν) in (13.23) with the spectral energy density given in (10.20) for
blackbody radiation, we find that

B12 = B21 = c3

8πn3hν3τsp
, (13.25)

where n is the refractive index of the semiconductor. Though the relation in (13.25) for
the coefficients B12 and B21 was obtained by considering the interaction of a semicon-
ductor with blackbody radiation in thermal equilibrium, it is an intrinsic property of
the semiconductor material that is independent of the source and characteristics of the
optical radiation.

Using the results obtained above and the relation given by (10.15) between the spec-
tral intensity I (ν) and the spectral energy density u(ν) of an optical field at a frequency
ν, we obtain the following relations for direct band-to-band optical transitions:

Ra(ν) = c3

8πn3hν3τsp
u(ν) fv(E1)[1 − fc(E2)]ρ(ν)

= c2

8πn2hν3τsp
I (ν) fv(E1)[1 − fc(E2)]ρ(ν) (m−3) (13.26)

for optical absorption,

Re(ν) = c3

8πn3hν3τsp
u(ν) fc(E2)[1 − fv(E1)]ρ(ν)

= c2

8πn2hν3τsp
I (ν) fc(E2)[1 − fv(E1)]ρ(ν) (m−3) (13.27)

for stimulated emission, and

Rsp(ν) = 1

τsp
fc(E2)[1 − fv(E1)]ρ(ν) (m−3) (13.28)

for spontaneous emission. The validity of these relations is quite general. When the
carriers in the conduction and valence bands of a semiconductor are in thermal equi-
librium, they are governed by the same Fermi–Dirac distribution with fc and fv char-
acterized by the same Fermi level EF. When the carriers are in quasi-equilibrium, fc

and fv are characterized by different quasi-Fermi levels, EFc and EFv, respectively.
In either situation, the relations in (13.26)–(13.28) are valid. The relations in (13.26)
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and (13.27) for the transitions induced by a radiation field are also valid regardless of
whether the interaction optical field is a coherent field like a laser field or an incoherent
field like blackbody radiation.

Note that Ra(ν)dν, Re(ν)dν, and Rsp(ν)dν given in (13.18), (13.19), and (13.20),
respectively, represent the transition rates per unit volume of a semiconductor and
thus have units of cubic meters per second. In contrast, W12(ν)dν, W21(ν)dν, and
Wsp(ν)dν given in (10.17), (10.18), and (10.19), respectively, represent the transition
rates of a single atom or molecule and are measured in units per second. As mentioned
at the beginning of this section, it is not possible to consider the transition rates of
each individual electron separately from other electrons in the band structure of a
semiconductor. Consequently, the transition rates obtained in this section for the band-
to-band transitions in a semiconductor already account for the distribution and density
of the carriers in the energy bands of a semiconductor. The concept of transition cross
section defined in Section 10.1 is not directly applicable to the band-to-band transitions
in a semiconductor though an equivalent gain cross section can be obtained, as defined
later in (13.40). Instead, Ra(ν), Re(ν), and Rsp(ν) for the band-to-band transitions in a
semiconductor are respectively equivalent to N1W12(ν), N2W21(ν), and N2Wsp(ν) for
the transitions between the energy levels of active atoms or molecules in a material.

EXAMPLE 13.2 In this example, we consider direct band-to-band optical transitions in
GaAs at λ = 850 nm wavelength at 300 K. (a) Find the reduced effective mass m∗

r

for GaAs. (b) Find the energy levels, E2 and E1, for the optical transitions at this
wavelength. (c) Calculate the value of the density of states ρ(ν) for these transitions.
(d) By taking τsp = 500 ps, find the spontaneous emission rate Rsp(ν) for intrinsic GaAs
at this optical wavelength.

Solution (a) From Table 12.2, we have m∗
e = 0.067m0 and m∗

h = 0.52m0 for GaAs.
We then find from (13.15) that

m∗
r = 0.067 × 0.52

0.067 + 0.52
m0 = 0.0594m0.

(b) The photon energy for λ = 850 nm = 0.85 µm is

hν = 1.2398

0.85
eV = 1.459 eV.

At 300 K, the bandgap of GaAs is Eg = 1.424 eV. We find by using (13.13) and (13.14)
that

E2 = Ec + 0.0594

0.067
× (1.459 − 1.424) eV = Ec + 31 meV,

E1 = Ev − 0.0594

0.52
× (1.459 − 1.424) eV = Ev − 4 meV.
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λ  

Figure 13.5 Direct band-to-band optical transition at 850 nm optical wavelength in intrinsic GaAs
at 300 K. The conduction band is plotted for m∗

e = 0.067m0, and the valence band is plotted for
m∗

h = 0.52m0 by combining the heavy- and light-hole bands into one band.

Therefore, the direct band-to-band absorption or emission of a photon at 850 nm wave-
length in GaAs at 300 K takes place between a conduction-band state that is located
at 31 meV above the conduction-band edge and a valence-band state that is located at
4 meV below the valence-band edge, as shown in Fig. 13.5.

(c) The density of states can be calculated directly using (13.17):

ρ(ν) = 4π × (2 × 0.0594 × 9.11 × 10−31)3/2

(6.626 × 10−34)2

× [(1.459 − 1.424) × 1.6 × 10−19]1/2 m−3 Hz−1

= 7.63 × 1010 m−3 Hz−1.

(d) To find Rsp(ν) from (13.28), we have to calculate fc(E2)(1 − fv(E1)). It can be
calculated by plugging the values of E2 and E1 found above into the Fermi–Dirac
distribution function given in (12.1) with EF = EFi for the intrinsic GaAs found in
Example 12.2. Alternatively, we know from Example 12.2 that (Ec − EFi)/kBT ≈
(EFi − Ev)/kBT ≈ Eg/(2kBT ) = 27.49 for GaAs at T = 300 K. Because E2 > Ec

and Ev > E1, we have

fc(E2) ≈ e(EFi−E2)/kBT and 1 − fv(E1) ≈ e(E1−EFi)/kBT .

Therefore, for intrinsic GaAs at 300 K, we have

fc(E2)[1 − fv(E1)] ≈ e(E1−E2)/kBT = e−hν/kBT . (13.29)
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Note that this relation is valid only for an unexcited intrinsic semiconductor with
Eg � kBT and with EFi located near the center of its bandgap. It is not valid when the
bandgap is small or when the Fermi level lies close to one of the band edges. With this
relation and with τsp = 500 ps, we can calculate Rsp(ν), using (13.28), as

Rsp(ν) = 1

500 × 10−12
× e−1.459/0.0259 × 7.63 × 1010 m−3 = 5.23 × 10−5 m−3.

This is the spontaneous emission rate per unit spectral bandwidth of unexcited intrinsic
GaAs in the thermal equilibrium state at 300 K at hν = 1.459 eV for λ = 850 nm.

13.3 Optical gain

By following a line of reasoning similar to that used in Section 10.2 while associating
Ra(ν) with N1W12(ν) and Re(ν) with N2W21(ν), we can write down the absorption and
gain coefficients contributed by direct band-to-band transitions in a semiconductor as

α(ν) = hν

I (ν)
[Ra(ν) − Re(ν)] = c2

8πn2ν2τsp
[ fv(E1) − fc(E2)]ρ(ν) (13.30)

and

g(ν) = hν

I (ν)
[Re(ν) − Ra(ν)] = c2

8πn2ν2τsp
[ fc(E2) − fv(E1)]ρ(ν), (13.31)

respectively. By definition, g(ν) = −α(ν). The relations in (13.30) and (13.31) are
valid for carriers in either an equilibrium state or a quasi-equilibrium state because
their validity follows from that of the relations in (13.26) and (13.27).

If the carriers in the conduction and valence bands are in thermal equilibrium, both fc

and fv are characterized by the same Fermi level EF. For an intrinsic semiconductor with
no impurity doping, this Fermi level is located very close to the middle of the bandgap.
For band-to-band absorption to occur, the photon energy must be hν = E2 − E1 ≥
Eg, implying that E2 − EF ≥ Eg/2 and EF − E1 ≥ Eg/2. At T = 300 K, we have
kBT = 25.9 meV, which is at least one order of magnitude smaller than the bandgaps
of most semiconductors, except those that have very small bandgaps such as some
alloys containing HgSe or HgTe. For an intrinsic semiconductor in thermal equilibrium,
f (E1) ≈ 1 and f (E2) ≈ 0 if the bandgap of the semiconductor is significantly larger
than kBT . Then, according to (13.30), its intrinsic absorption spectrum is given by

α0(ν) = c2

8πn2ν2τsp
ρ(ν). (13.32)

Consequently, the gain and absorption spectra of a semiconductor in an equilibrium
or a quasi-equilibrium state at a given temperature T can be expressed in terms of its
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intrinsic absorption spectrum at the same temperature as

g(ν) = −α(ν) = α0(ν)[ fc(E2) − fv(E1)]. (13.33)

This relation is valid for gain and absorption contributed by direct band-to-band tran-
sitions under the condition that hν ≥ Eg � kBT . Though it is obtained for an intrinsic
semiconductor, it can be generalized to an extrinsic semiconductor doped with impuri-
ties by taking α0(ν) to be the absorption coefficient measured when the semiconductor
is in thermal equilibrium with its environment at a given temperature T . Because both
fc(E2) and fv(E1) have a minimum value of 0 and a maximum value of 1, this relation
implies that −α0(ν) ≤ g(ν) ≤ α0(ν) and −α0(ν) ≤ α(ν) ≤ α0(ν) at any frequency in
any condition, which can be clearly seen in Fig. 13.7(a) discussed below.

Population inversion

The concept of population inversion in a semiconductor cannot be simply defined as
that the conduction band is more populated than the valence band because for a positive
optical gain coefficient it is neither necessary nor possible to have more electrons in
the conduction band than in the valence band. The population of electrons in an energy
band is subject to the requirement of Fermi distribution and the availability of energy
states in the band structure. Therefore, a practical definition of population inversion
in a semiconductor is when the electron and hole concentrations in the semiconductor
lead to a positive optical gain coefficient.

Because α0(ν) ≥ 0 for any frequency ν, the sign of g(ν) given in (13.33) is determined
by that of the quantity fc(E2) − fv(E1). It can be shown that (see Problem 13.3.2)

fc(E2) − fv(E1) = fc(E2)[1 − fv(E1)]
[
1 − e(hν−�EF)/kBT

]
, (13.34)

where �EF = EFc − EFv. Because 1 ≥ fc(E2)(1 − fv(E1)) ≥ 0, the sign of the quan-
tity fc(E2) − fv(E1) is solely determined by the sign of the quantity hν − �EF. There-
fore, the condition for a positive gain coefficient that g(ν) > 0 at any given optical
frequency ν is that the separation between the quasi-Fermi levels be larger than the
photon energy at the frequency ν (see Problem 13.3.2):

�EF = EFc − EFv > hν > Eg. (13.35)

This condition dictates the distributions of electrons and holes for a positive optical
gain coefficient. It can thus be considered as the condition for population inversion in
a semiconductor.

As mentioned in Section 12.1, the quasi-Fermi levels completely quantify the electron
and hole concentrations in a semiconductor that is maintained in a quasi-equilibrium
state by electrical or optical pumping. Furthermore, (12.43) and (12.46) indicate that
the product np strongly depends on the value of �EF. Therefore, the condition given
in (13.35) determines the electron and hole concentrations needed for a positive gain
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coefficient. When a semiconductor is pumped to have a positive gain coefficient, the
pumped electron and hole concentrations are normally a few orders of magnitude higher
than the intrinsic electron and hole concentrations so that n � n0 and p � p0. In this
situation, we consider the electron and hole concentrations in a semiconductor gain
medium to be practically the same as the excess carrier density N defined in (12.55)
so that

n ≈ p ≈ N . (13.36)

The minimum carrier density required for a gain is known as the transparency carrier
density, Ntr. According to (13.35), it is determined by the condition that �EF = Eg,
which implies that EFc − Ec = EFv − Ev. By using (12.41), (12.42), and (13.36), we
find that the transparency carrier density is given by

Ntr = Nc(T )F1/2(ξtr) = Nv(T )F1/2(−ξtr), (13.37)

where ξtr = (EFc − Ec)/kBT = (EFv − Ev)/kBT . With known values of Nc and Nv at
a given temperature, the value of Ntr can be found by solving this relation to find the
parameter ξtr. In terms of the carrier density, the condition for population inversion in
a semiconductor can be regarded as N > Ntr.

EXAMPLE 13.3 Find the transparency carrier density for GaAs at 300 K. When GaAs is
injected with this concentration of electron–hole pairs, where are its quasi-Fermi levels
located?

Solution To find Ntr, we have to find the value of ξtr first by solving the second
relation in (13.37). From (12.24), Nc ∝ (m∗

e )3/2 and Nv ∝ (m∗
h)3/2. Therefore, we find

the following relation from (13.37):

F1/2(ξtr)

F1/2(−ξtr)
=
(

m∗
h

m∗
e

)3/2

. (13.38)

For GaAs, m∗
e = 0.067m0 and m∗

h = 0.52m0. Then,

F1/2(ξtr)

F1/2(−ξtr)
=
(

0.52

0.067

)3/2

= 21.62.

The solution of this relation is found from the value of F1/2(ξ ) as a function of ξ

plotted in Fig. 12.3 to be ξtr = 1.99 for F1/2(ξtr) = F1/2(1.99) ≈ 2.81 and F1/2(−ξtr) =
F1/2(−1.99) ≈ 0.13. From Example 12.2, we have Nc = 4.35 × 1023 m−3 and Nv =
9.41 × 1024 m−3 for GaAs at 300 K. We then find from (13.37) that the transparency
carrier density for GaAs at 300 K is

Ntr = 2.81 × 4.35 × 1023 m−3 = 0.13 × 9.41 × 1024 m−3 = 1.22 × 1024 m−3.
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Figure 13.6 Quasi-Fermi levels of GaAs at 300 K at transparency with an injected electron–hole
pair concentration of the transparency carrier density. The conduction band is plotted for
m∗

e = 0.067m0, and the valence band is plotted for m∗
h = 0.52m0 by combining the heavy- and

light-hole bands into one band.

Because ξtr = 1.99 at this injected carrier concentration, the quasi-Fermi levels are
located at

EFc = Ec + 1.99kBT = Ec + 51.6 meV,

EFv = Ev + 1.99kBT = Ev + 51.6 meV.

Though EFc − EFv = Eg for a semiconductor at transparency with N = Ntr, we find
that EFc and EFv do not respectively lie at the conduction-band and valence-band
edges due to the fact that m∗

e �= m∗
h. Because m∗

h > m∗
e for GaAs, EFc lies above the

conduction-band edge and EFv lies above the valence-band edge while they are subject
to the condition EFc − EFv = Eg, as shown in Fig. 13.6.

Carrier dependence of gain

Both the spectrum and the magnitude of the optical gain coefficient in a semiconductor
are a function of the excess carrier density N . To find the carrier dependence of the gain
spectrum, one starts with a given value of N ≈ n ≈ p to find the corresponding values
of the quasi-Fermi levels EFc and EFv from (12.41) and (12.42) through the following
relation:

N = Nc(T )F1/2(ξc) = Nv(T )F1/2(ξv), (13.39)

where ξc = (EFc − Ec)/kBT and ξv = (Ev − EFv)/kBT . Note that ξc = −ξv = ξtr in
the case when N = Ntr, as seen in (13.37). In general, however, ξc �= −ξv when
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(a) (b)

−a0

Figure 13.7 (a) Gain and absorption spectra of GaAs as a function of photon energy at various
levels of normalized excess carrier density, N/Ntr. Also shown for comparison is the intrinsic
absorption spectrum, α0, of the semiconductor. (b) Peak optical gain coefficient (solid curve) and
gain-peak photon energy (dashed curve) as a function of carrier density.

N �= Ntr. Therefore, the values of ξc and ξv have to be found separately from (13.39)
in order to find EFc and EFv. According to (13.35), we find that EFc − EFv > Eg when
N > Ntr, but EFc − EFv < Eg when N < Ntr. Then, g(ν) as a function of the optical
frequency ν can be found using (13.31) or (13.33), and α(ν) can be similarly calculated.
Figure 13.7(a) shows the gain and absorption spectra of GaAs as a function of photon
energy at various levels of excess carrier density N .

It can be seen that an optical gain associated with direct band-to-band transitions
occurs in a range of photon energies larger than the bandgap only when N > Ntr. Both
the spectral range and the peak value of the optical gain coefficient increase with
the carrier density. A semiconductor gain medium has a very broad gain bandwidth. In
typical operating conditions of semiconductor lasers and amplifiers, the gain bandwidth
is in the range of 2kBT to 4kBT in photon energy. At room temperature, this gain
bandwidth is 50–100 meV in photon energy, corresponding to a frequency range of
12–24 THz. In most cases, the peak gain coefficient increases almost linearly with
carrier density, as shown in Fig. 13.7(b). Therefore, we can express the peak value of
the optical gain coefficient approximately as

gmax(N ) = σ (N − Ntr), (13.40)

where the coefficient σ is an equivalent gain cross section similar to the transition
cross section described in Section 10.1. The value of this gain coefficient depends
on the composition of the semiconductor material and the operating temperature. It
is typically in the range of 1 to 5 × 10−20 m2 for the common semiconductor laser
materials of GaAs and InGaAsP at room temperature. The value of Ntr is on the
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order of 1024 m−3 for such semiconductors. Note that, as can be seen in Fig. 13.7(a),
the peak of the gain spectrum does not occur at a fixed frequency but moves to a
higher frequency as the carrier density is increased. Therefore, gmax as expressed in
(13.40) represents the gain coefficient at different optical frequencies as the value
of N varies. The linear relation in (13.40) is normally a very good approximation,
but it does not hold strictly. In particular, as the carrier density increases to a cer-
tain level, the peak gain coefficient tends to increase less than linearly with carrier
density.

EXAMPLE 13.4 A GaAs sample at 300 K is injected with excess electron–hole pairs of
a concentration N = 2.83 × 1024 m−3. Take τsp = 500 ps for GaAs at 300 K. (a) Find
the sample’s quasi-Fermi levels. (b) Find its optical gain coefficient at 850 nm wave-
length. The refractive index of GaAs at 850 nm is n = 3.65. (c) Use this gain coefficient
to calculate an equivalent gain cross section. At this injection level, the gain peak occurs
very close to, though not exactly at, 850 nm (see Problem 13.3.4).

Solution (a) By using Nc = 4.35 × 1023 m−3 and Nv = 9.41 × 1024 m−3 found
in Example 12.2 for GaAs at 300 K, we find that (13.39) leads to

F1/2(ξc) = N

Nc
= 6.51 and F1/2(ξv) = N

Nv
= 0.30

for N = 2.83 × 1024 m−3. From the value of F1/2(ξ ) as a function of ξ plotted in
Fig. 12.3, we find that ξc = 4 and ξv = −1.1. Therefore, EFc − Ec = ξckBT = 4 ×
25.9 meV = 103.6 meV and EFv − Ev = −ξvkBT = 1.1 × 25.9 meV = 28.5 meV.
As shown in Fig. 13.8, both quasi-Fermi levels lie above their respective band edges
with EFc located at 103.6 meV above Ec and EFv located at 28.5 meV above Ev. We
also find that EFc − EFv > Eg because N > Ntr.

(b) According to the results obtained in Example 13.2(b), the optical transition at
λ = 850 nm takes place between E2 = Ec + 31 meV and E1 = Ec − 4 meV. Us-
ing the values of EFc and EFv found above, we find that E2 − EFc = −72.6 meV
and E1 − EFv = −32.5 meV. These relations are shown in Fig. 13.8. We then find
that

fc(E2) = 1

e(E2−EFc)/kBT + 1
= 1

e−72.6/25.9 + 1
= 0.9428,

fv(E1) = 1

e(E1−EFv)/kBT + 1
= 1

e−32.5/25.9 + 1
= 0.7781.

We have found from Example 13.2 that ρ(ν) = 7.63 × 1010 m−3 Hz−1 for GaAs
at 850 nm. By using (13.31), the optical gain coefficient at 850 nm can then be
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λ  

Figure 13.8 Quasi-Fermi levels of GaAs at 300 K with an injected electron–hole pair concentration
of N = 2.83 × 1024 m−3. The optical transition for 850 nm wavelength takes place between E2 and
E1, which lie below EFc and EFv, respectively. The conduction band is plotted for m∗

e = 0.067m0,
and the valence band is plotted for m∗

h = 0.52m0 by combining the heavy- and light-hole bands into
one band.

found:

g(ν) = c2

8πn2ν2τsp
[ fc(E2) − fv(E1)]ρ(ν)

= λ2

8πn2τsp
[ fc(E2) − fv(E1)]ρ(ν)

= (850 × 10−9)2

8π × 3.652 × 500 × 10−12
× (0.9428 − 0.7781) × 7.63 × 1010 m−1

= 5.42 × 104 m−1.

(c) By taking the value of Ntr = 1.22 × 1024 m−3 found in Example 13.3 and using
(13.40), we find that

σ = g

N − Ntr
= 5.42 × 104

2.83 × 1024 − 1.22 × 1024
m2 = 3.37 × 10−20 m2.

13.4 Spontaneous emission

The spontaneous emission spectrum of a semiconductor can be explicitly related to the
absorption and gain spectra of the semiconductor. By using (13.32) to eliminate ρ(ν)
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(a) (b)

Figure 13.9 Spontaneous emission spectra of GaAs (a) in thermal equilibrium and (b) at various
levels of normalized excess carrier density N/Ntr. Note that there is a difference of 24 orders of
magnitude between the vertical scales of (a) and (b). These spectra are to be compared with the
gain and absorption spectra shown in Fig. 13.7(a).

in (13.28), we find

Rsp(ν) = 8πn2ν2

c2
α0(ν) fc(E2)[1 − fv(E1)]. (13.41)

Using (13.33), (13.34), and (13.41), we can express the spontaneous emission spectrum
Rsp(ν) in terms of the absorption spectrum α(ν) and the gain spectrum g(ν) as follows:

Rsp(ν) = 8πn2ν2

c2

α(ν)

e(hν−�EF)/kBT − 1
= 8πn2ν2

c2

g(ν)

1 − e(hν−�EF)/kBT
. (13.42)

In the case when N < Ntr, there is no optical gain but only absorption. In this situation,
α(ν) > 0 and Rsp(ν) has positive values for photon energies larger than the bandgap
because hν > Eg > �EF when N < Ntr. In the case when N > Ntr, the semiconductor
has an optical gain with g(ν) > 0 and �EF > hν > Eg. From (13.42), we find that
Rsp(ν) again has positive values. Therefore, as should be intuitively expected, Rsp(ν) ≥
0 for all frequencies no matter whether the semiconductor has a positive gain or not.
Figure 13.9 shows the spontaneous emission spectra of GaAs (a) in thermal equilibrium
and (b) at various levels of excess carrier density.

For a semiconductor in thermal equilibrium, �EF = 0 and α(ν) = α0(ν). Then, its
spontaneous emission spectrum is given by

R0
sp(ν) = 8πn2ν2

c2

α0(ν)

ehν/kBT − 1
. (13.43)
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This relation is known as the van Roosbroeck–Shockley relation. Though we have
obtained this relation by considering band-to-band transitions, it is a general relation
that can be obtained by considering the equilibrium between the spontaneous emission
of the semiconductor and the absorption of the surrounding blackbody radiation by the
semiconductor. Consequently, it is generally valid for any transitions that contribute to
α0(ν).

If we consider only band-to-band transitions, then (13.32) can be used to obtain

R0
sp(ν) = 8πn2ν2

c2

α0(ν)

ehν/kBT − 1
= 1

τsp

ρ(ν)

ehν/kBT − 1
. (13.44)

Thus, the total band-to-band spontaneous recombination rate of electron–hole pairs in
the thermal equilibrium state is (see Problem 13.4.1)

R0
sp =

∞∫
0

R0
sp(ν)dν = 8πn2

c2

∞∫
0

ν2α0(ν)

ehν/kBT − 1
dν

≈ 2

τsp

(
2πm∗

r kBT

h2

)3/2

e−Eg/kBT , (13.45)

where the functional form of ρ(ν) given in (13.17) is used in carrying out the last
integration and the fact that Eg � kBT for most semiconductors of interest at room
temperature is taken. Accordingly, we find that τsp is related to the absorption coefficient
α0(ν) by

1

τsp
= 4πn2

c2

(
2πm∗

r kBT

h2

)−3/2

eEg/kBT

∞∫
0

ν2α0(ν)

ehν/kBT − 1
dν. (13.46)

This relation is analogous to that given in (10.45) for atomic transitions.
In thermal equilibrium, the total recombination rate has to be balanced by the total

generation rate. Therefore, if only bimolecular band-to-band transitions are considered,
we also have

R0
sp = G0 = Bn0 p0. (13.47)

In a nondegenerate semiconductor where the law of mass action given in (12.31) is valid,
we can use (13.45) and (13.47) to express the bimolecular recombination coefficient B
in terms of τsp as follows (see Problem 13.4.1):

B = 1

2τsp

(
2πkBT

h2

)−3/2

(m∗
e + m∗

h)−3/2. (13.48)

We have mentioned in Section 13.2 that τsp is not the same as either τrad or τs.
This fact can easily be seen by comparing (13.48) with (13.6). Indeed, both τrad and
τs are functions of the excess carrier density N , but τsp is an intrinsic parameter of a
semiconductor that is independent of the excess carrier density. Clearly from (13.46) and
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(13.48), the values of both τsp and B vary significantly with temperature. In practice,
they also depend on other mundane conditions, such as the impurities and defects
in a sample. In the case of GaAs at 300 K, for example, the relation from (13.46)
yields a theoretical value of τsp ≈ 500 ps, corresponding to B ≈ 1.8 × 10−16 m3 s−1.
Experimentally measured values for the B coefficient of GaAs are typically smaller
than the theoretical value; they fall in the range of 0.5 to 2 × 10−16 m3 s−1 at room
temperature, for corresponding values of τsp in the range between 2 ns and 500 ps.
In contrast, τrad can be anywhere from 500 ps to the order of seconds, depending on
the excess carrier density and the amount of impurities in the material. From these
discussions, it can be clearly seen that τsp is a parameter that reflects the strength of
the coupling between the electrons making optical transitions and the optical radiation
emitted or absorbed by electrons. The smaller the value of τsp, the stronger the coupling
is and the more efficient the interaction between the electrons and the radiation is.

EXAMPLE 13.5 Calculate the value of the total spontaneous emission rate R0
sp and that of

the bimolecular recombination coefficient B for GaAs at 300 K with τsp = 500 ps.

Solution From Example 13.2(a), we know that m∗
r = 0.0594m0 for GaAs. At 300 K,

Eg = 1.424 eV for GaAs and kBT = 25.9 meV = 0.0259 eV. Using (13.45), the total
spontaneous emission rate can be calculated:

R0
sp = 2

500 × 10−12
×
[

2π × 0.0594 × 9.11 × 10−31 × 0.0259 × 1.6 × 10−19

(6.626 × 10−34)2

]3/2

×e−1.424/0.0259 m−3 s−1

= 9.64 × 108 m−3 s−1.

Using (13.48) with m∗
e = 0.067m0 and m∗

h = 0.52m0 for GaAs, the bimolecular re-
combination coefficient can be calculated:

B = 1

2 × 500 × 10−12
×
[

2π × 0.0259 × 1.6 × 10−19

(6.626 × 10−34)2

]−3/2

× [(0.067 + 0.52) × 9.11 × 10−31
]−3/2

m3 s−1

= 1.77 × 10−16 m3 s−1.

13.5 Junction structures

A semiconductor junction device can have either a homostructure or a heterostructure.
A basic homostructure simply consists of a p–n homojunction. There are a number
of different heterostructures, but the two basic concepts are the single heterostructure
(SH), which consists of a single heterojunction, and the double heterostructure (DH),
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which consists of two heterojunctions. When the layer between the junctions of a DH
is thin enough, the structure becomes a quantum well (QW) because of the quantum
size effect in the thin layer.

An electrically pumped LED or semiconductor laser has the basic structure of a
semiconductor diode. In normal operation, an LED or semiconductor laser is pumped
under forward bias by electric current injection to create an excess concentration of
electron–hole pairs in an active layer, or an active region, where radiative recombi-
nation takes place. For this reason, electrically pumped semiconductor lasers are also
called laser diodes, diode lasers, or injection lasers. A practical LED can have either a
homostructure or a heterostructure, but all practical semiconductor lasers are made of
heterostructures for the significant advantages of semiconductor heterostructures over
homostructures in terms of carrier confinement and optical waveguiding. Tight carrier
confinement creates a high carrier concentration for a given injection current; tight
optical confinement makes stimulated emission efficient. These are two critical issues
in lowering the threshold and in improving the efficiency of a semiconductor laser.
Because of the many advantages of quantum wells, many semiconductor lasers are
quantum-well lasers consisting of a single quantum well (SQW) or multiple quantum
wells (MQW).

The optical field in an LED or a semiconductor laser can be either horizontally
propagating, in a direction parallel to the junction plane, or vertically propagating, in a
direction perpendicular to the junction plane. An LED or semiconductor laser can be
either edge emitting or surface emitting. The optical wave in an edge-emitting device
propagates horizontally and is emitted from one or two side surfaces of the structure that
are perpendicular to the junction plane. The optical wave in a surface-emitting device
can propagate either vertically or horizontally in the structure, but it is emitted from
a surface that is parallel to the junction interface. Various structures for edge-emitting
and surface-emitting devices are discussed in later sections.

Homostructures

The characteristics of a homostructure device under forward bias are shown in
Fig. 13.10. Usually both p and n regions of a homostructure device are heavily doped for
good conductivity throughout the device. The excess minority electrons on the p side
due to electron injection from the n side are distributed over an electron diffusion length
of Le, and the excess minority holes on the n side due to hole injection from the p side
are distributed over a hole diffusion length of Lh. In a given semiconductor, De � Dh

because the electron mobility µe is generally higher than the hole mobility µh. Then,
according to (12.114), if the p side is not much more heavily doped than the n side, the
injection current is predominantly carried by the electrons injected from the n side to
the p side. If the injected minority electrons in the p region and the injected minority
holes in the n region have comparable lifetimes, as is normally the case in the operat-
ing conditions of LEDs and lasers, the fact that De � Dh also implies that Le � Lh.
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(a)

(b)

(c)

(d )

Figure 13.10 (a) Energy bands, (b) excess carrier distribution, (c) refractive index profile, and (d)
distribution of a horizontally propagating optical field of a p–n homostructure device under forward
bias.

Therefore, the total number of excess minority electrons on the p side is much larger
than that of excess minority holes on the n side. As expressed in (12.55), (12.107) and
(12.108), in normal operating conditions of LEDs and semiconductor lasers, excess
electrons and holes appear as excess electron–hole pairs of equal concentration N (x)
at any given location x .
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From the above discussions, we find that the excess carriers in a homostructure LED
or semiconductor laser are distributed mainly in the p region of the device over an
electron diffusion length of Le from the junction, as illustrated in Fig. 13.10(b). For
an LED, this region is the active layer where radiative carrier recombination for light
emission takes place. For a semiconductor laser, an optical gain exists at the locations
where N (x) > Ntr within this active layer. In a homostructure device, the transverse
distribution of a horizontally propagating optical field and the distribution of the excess
carriers overlap. There is slight variation of the refractive index in the vicinity of the
junction due to spatial variation of the carrier density, but it has little waveguiding effect
on the optical field. Therefore, the optical field in a homostructure device is not well
confined in the vertical direction but spreads over a distance that can be as large as a
few times Le. These characteristics are illustrated in Figs. 13.10 (c) and (d).

Clearly, a homostructure has two major deficiencies:

1. The excess carriers are neither confined nor concentrated but are spread by diffusion.
For this reason, the thickness of the active layer in a homostructure is normally on
the order of one to a few micrometers, depending on the diffusion length of the
electrons.

2. There is no waveguiding mechanism in the structure for optical confinement. It is
therefore difficult to control the spatial mode characteristics of a homostructure laser
diode.

Both problems can be solved with properly designed heterostructures.

Single heterostructures

Because the distribution of the excess carriers in a homostructure is largely determined
by the diffusion of the minority electrons in the p region, it is possible to place a P–p
heterojunction in the p region to restrict the diffusion of excess electrons that are injected
into the p region across the p–n junction. This additional P–p heterojunction results in
a P–p–n SH diode, the characteristics of which under forward bias are illustrated in
Fig. 13.11.

The n region of a P–p–n SH is heavily doped so that electron injection into the p region
completely dominates hole injection into the n region. As illustrated in Fig. 13.11(b),
the energy barrier at the P–p heterojunction blocks the diffusion of injected electrons
so that they are confined within the narrow-gap p region, which thus defines an active
layer populated with excess carriers. The thickness of this active layer can be controlled
by the location of the P–p heterojunction with respect to that of the p–n junction.

A heterostructure is fabricated with lattice-matched layers of compound semicon-
ductors that have different compositions. One important feature of such materials is
that at a given optical wavelength, the refractive index of a narrow-gap composition is
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(a)

(b)

(c)

(d )

Figure 13.11 (a) Energy bands, (b) excess carrier distribution, (c) refractive index profile, and (d)
distribution of a horizontally propagating optical field of a P–p–n single heterostructure device
under forward bias.

higher than that of a wide-gap composition. Therefore, in addition to carrier confine-
ment, the heterojunction also provides the needed index step, shown in Fig. 13.11(c),
for optical confinement of a horizontally propagating optical field. However, because
no significant index step appears at the p–n junction, optical confinement in the SH
geometry is one-sided and is not completely effective, as illustrated in Fig. 13.11(d).
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(a)

(b)

(c)

(d )

Figure 13.12 (a) Energy bands, (b) excess carrier distribution, (c) refractive index profile, and (d)
distribution of a horizontally propagating optical field of a P–p–N double heterostructure under
forward bias.

Double heterostructures

Very effective carrier and optical confinement can be simultaneously accomplished
with DH geometry. A basic DH can be either P–p–N or P–n–N. Figure 13.12 shows
the basic characteristics of a P–p–N DH under forward bias.

From the discussions in Section 12.5 regarding carrier injection across a heterojunc-
tion, we know that the injection current in a P–p–N structure is primarily carried by the
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electrons injected from the wide-gap N region to the narrow-gap p region, whereas the
injection of holes from the P region to the n region dominates in a P–n–N structure. In
either structure, almost all of the excess carriers created by current injection are injected
into the narrow-gap active layer and are confined within this layer by the energy barriers
of the heterojunctions on both sides of the active layer, as illustrated in Fig. 13.12(b) for
a P–p–N structure. Because the narrow-gap active layer has a higher refractive index
than the wide-gap outer layers on both sides, an optical waveguide with the active layer
being the waveguide core is built into the DH geometry for vertical confinement of a
horizontally propagating optical field, as shown in Figs. 13.12(c) and (d).

Because of the index steps on both sides of the active layer, the waveguide in the DH
geometry is much more effective than that in the SH geometry. The active layer in a
DH device is typically in the range of 100–300 nm. By properly designing the structure
with sufficient index steps, the waveguiding active layer in a DH can be made as thin
as 100 nm or less while maintaining effective confinement of the optical wave.

Compared to the active layer of a homostructure that has a thickness of the order of
1 µm or larger, which is determined by electron diffusion, the confinement of carriers
in a thin DH active layer greatly increases the concentration of excess carriers at a
given injection level, resulting in a high radiative efficiency for a DH LED and a large
optical gain for a DH semiconductor laser. One additional advantage of a DH device
is that because the optical radiation in the device has a photon energy near the narrow
bandgap of the active layer, the wide-gap outer layers are transparent to the optical
wave in the device, thus reducing the absorption loss of the device in comparison to
that of a homostructure or SH device. Except for some specially designed devices in
which intentional strain caused by lattice mismatch is desired, common DH devices
are fabricated with lattice-matched layers to reduce the defects and the recombination
centers at the heterojunction interfaces so that good current injection efficiency and
high radiative efficiency can both be obtained.

Quantum-well structures

In terms of structure, a quantum well is just a very thin DH. As the active layer of a
semiconductor DH gets thinner than about 50 nm, the effect of quantum confinement
for the electrons and holes in the thin active layer starts to appear in the direction
perpendicular to the junction plane. This effect leads to quantization of momentum
in the perpendicular direction, resulting in discrete energy levels associated with the
motion of electrons and holes in this direction, as shown in Fig. 13.13. In the horizontal
dimensions, electrons and holes remain free and form energy bands. As a result, both
conduction and valence bands are split into a number of subbands corresponding to the
quantized levels, as shown in Fig. 13.13. For a particle of an effective mass m∗ in an
infinite square quantum well of a width dQW, the energies of the quantized levels are
inversely proportional to m∗d2

QW but increase quadratically with an integral quantum
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Figure 13.13 Quantized energy levels and corresponding subbands of a semiconductor quantum
well. Shown as a quantitative example here is a square Al0.3Ga0.7As/GaAs/Al0.3Ga0.7 As quantum
well at 300 K that has a thickness of dQW = 10 nm. Shown in (a) are simplified, but not completely
realistic, characteristics calculated using the quantized states of infinite wells as approximation.
The conduction band is plotted for m∗

e = 0.067m0, and the valence band is plotted for
m∗

h = 0.52m0 by combining the heavy- and light-hole bands into one band. Thus, separate
quantized levels of heavy and light holes are not shown. The gray curves represent bulk properties
of GaAs. Shown in (b) are characteristics obtained by considering finite well heights, separate
heavy- and light-hole bands, and interaction among the quantized hole subbands.
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number q, which starts with q = 1 for the lowest quantized level. A semiconductor
quantum well is not an infinite potential well because the heights of the energy steps
at the DH junctions are finite. However, taking the energy quantization of an infinite
potential well as an approximation, we can express the band edges of the quantized
conduction and valence subbands, respectively, as

EQW
c,q = Ec + q2h2

8m∗
ed2

QW

(13.49)

and

EQW
v,q = Ev − q2h2

8m∗
hd2

QW

, (13.50)

where q = 1, 2, 3, . . . The number of quantized subbands for electrons and that for
holes depend on the heights of the potential barriers, �Ec in the conduction band and
�Ev in the valence band, as well as on the well width dQW.

The effective bandgap for a quantum well is no longer Eg of the semiconductor
material in the active layer, but is the separation between the lowest subband of the
conduction band and the highest subband of the valence band, both associated with the
q = 1 quantized levels. The selection rules for optical transitions of electrons between
quantized conduction subbands and quantized valence subbands require that only tran-
sitions between a conduction subband and a valence subband of the same quantum
number q are allowed. Thus, optical transitions take place only between the q = 1
conduction subband and the q = 1 valence subband or between the q = 2 conduction
subband and the q = 2 valence subband, and so on, but not between the q = 1 conduc-
tion subband and the q = 2 valence subband or between the q = 2 conduction subband
and the q = 1 valence subband, and so forth. The photon energy required for transition
between the conduction subband of quantum number q and the valence subband of
quantum number q is

hν > Eg + q2h2

8m∗
ed2

QW

+ q2h2

8m∗
hd2

QW

= Eg + q2h2

8m∗
r d2

QW

, (13.51)

where m∗
r is the reduced effective mass defined in (13.15). Clearly, the lowest photon

energy required for a transition between the conduction band and the valence band of a
quantum well is that with q = 1 in (13.51). Therefore, a quantum well has an effective
bandgap given by

EQW
g = Eg + h2

8m∗
ed2

QW

+ h2

8m∗
hd2

QW

= Eg + h2

8m∗
r d2

QW

, (13.52)

which is larger than that of the bulk semiconductor by an amount that is inversely
proportional to the square of the well width.

EXAMPLE 13.6 A square Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As quantum well has a thickness
of dQW = 10 nm, as shown in Fig. 13.13. (a) By approximating the quantization of



847 13.5 Junction structures

this quantum well with that of an infinite potential well, find the quantized electron
and hole energy levels that define the edges of the conduction and valence subbands,
respectively. (b) By taking band offsets to be �Ec ≈ 65% �Eg and �Ev ≈ 35% �Eg,
find the number of conduction subbands and valence subbands for this finite quantum
well. (c) What are the photon energies and the corresponding optical wavelengths
for optical transitions between the conduction and valence subbands? (d) What is the
effective bandgap of this quantum well? (e) What is the effect of the finite energy height
of the quantum well in reality?

Solution (a) The well region consists of GaAs, which has m∗
e = 0.067m0 and m∗

h =
0.52m0 from Table 12.2. The subband edges are defined by the quantized energy levels
of the quantum well. Thus, according to (13.49), the conduction subband edges are
located at

EQW
c,q − Ec = q2h2

8m∗
ed2

QW

= q2 × (6.626 × 10−34)2

8 × 0.067 × 9.11 × 10−31 × (10 × 10−9)2
× 1

1.6 × 10−19
eV

= 56.2q2 meV, for q = 1, 2, . . . ,

and, according to (13.50), the valence subband edges are located at

EQW
v,q − Ev = − q2h2

8m∗
hd2

QW

= −q2 × (6.626 × 10−34)2

8 × 0.52 × 9.11 × 10−31 × (10 × 10−9)2
× 1

1.6 × 10−19
eV

= −7.2q2 meV, for q = 1, 2, . . .

(b) At 300 K, �Eg = 374 meV because Eg = 1.424 eV for GaAs and Eg = 1.798 eV
for Al0.3Ga0.7As, according to (12.3). This quantum well has an energy height of
�Ec ≈ 65%�Eg = 243 meV in the conduction band and an energy height of �Ev ≈
35%�Eg = 131 meV in the valence band. We then find that the quantum well can
only accommodate two conduction subbands because 32 × 56.2 meV = 505.8 meV >

�Ec = 243 meV > 22 × 56.2 meV = 224.8 meV. We also find that it can accommo-
date four valence subbands because 52 × 7.2 meV = 180 meV > �Ev = 131 meV >

42 × 7.2 meV = 115.2 meV. Thus, there are two conduction subbands with band edges
located at 56.2 meV (q = 1) and 224.8 meV (q = 2) from Ec of GaAs, and four va-
lence subbands with band edges located at −7.2 meV (q = 1), −28.8 meV (q = 2),
−64.8 meV (q = 3), and −115.2 meV (q = 4) from Ev of GaAs. These characteristics
are shown in Fig. 13.13(a).

(c) The selection rules require that optical transitions occur only between conduc-
tion and valence subbands of the same quantum number q . Though there are four va-
lence subbands, no corresponding conduction subbands are found for q = 3 and q = 4
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because there are only two conduction subbands. Therefore, there are only two possi-
ble transitions for q = 1 and q = 2, respectively. The photon energy required for the
transition between the q = 1 subbands is

hν > 1.424 eV + 0.0562 eV + 0.0072 eV = 1.4874 eV,

which corresponds to an optical wavelength of λ < 834 nm. The photon energy required
for the transition between the q = 2 subbands is

hν > 1.424 eV + 0.2248 eV + 0.0288 eV = 1.6776 eV,

which corresponds to an optical wavelength of λ < 739 nm.
(d) The effective bandgap of the quantum well is determined by the q = 1 conduction-

and valence-subband edges. Thus, according to the result found in (c) for the q = 1 tran-
sition, the effective bandgap EQW

g = 1.4874 eV, corresponding to an optical wavelength
of λQW

g = 834 nm. Compared to the bandgap of Eg = 1.424 eV at λg = 871 nm for
GaAs, the effective bandgap is increased by 63.4 meV with a corresponding blue-shift
of the bandgap optical wavelength by 37 nm due to the quantum confinement effect.

(e) In the above, we have used the formula for the energy levels of an infinite square
well to calculate the energies of the subband edges of the quantum well. In reality,
the barrier heights of the quantum well for both conduction and valence bands are
finite, being �Ec = 243 meV for the conduction band and �Ev = 131 meV for the
valence band in the case considered here. There are two major effects of these finite
energy heights. First, each quantized energy level that defines a subband edge is actually
somewhat smaller in its absolute magnitude than what is found above using the formula
for an infinite potential well. Second, because of the first effect, there can be more
quantized levels than those obtained above. A further complication in reality is the fact
that there are heavy- and light-hole bands in the valence band. For this quantum well,
it is found that there are actually three electron subbands, with band edges at 30.1, 117,
and 232 meV from Ec, in the conduction band, and five heavy-hole subbands, at −4,
−14.4, −35.9, −63.6, and −97.5 meV from Ev, and two light-hole subbands, at −22.6
and −87.1 meV from Ev, in the valence band. Therefore, the actual bandgap is EQW

g =
1.4581 eV, which is smaller than 1.4874 eV found above, and the bandgap wavelength
is λQW

g = 850 nm, which is longer than 834 nm found above. The quantized heavy- and
light-hole subbands can interact with one another, resulting in mixed subbands due to
band crossing. These characteristics are shown in Fig. 13.13(b).

For a fixed well width of 10 nm, EQW
g decreases while λQW

g increases correspondingly
as the barrier height decreases. This can be accomplished by reducing the Al content
of the AlGaAs barrier layer to reduce the energy barrier height. It is a fundamental
fact of quantum-mechanical quantization, however, that there is always at least one
quantized energy level in a symmetric potential well such as a square well no matter
how shallow the well is. Therefore, there are always at least one quantized conduction
subband and one quantized valence subband no matter how low the well energy heights
in the conduction and valence bands are reduced before they completely vanish.
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A very important property of the quantum well is that its density of states is different
from that of the bulk semiconductor. Because of quantization in the perpendicular
direction, the density of states for each subband is that of a two-dimensional system
divided by the thickness of the well. Every subband in the conduction band has the
same density of states, and every subband in the valence band also has the same density
of states:

ρc(E)dE = 4πm∗
e

h2dQW

dE, ρv(E)dE = 4πm∗
h

h2dQW

dE, (13.53)

for each conduction subband and each valence subband, respectively.
For band-to-band optical transitions in a quantum well, (13.13) for E2 and (13.14)

for E1 are still valid except that E2 − E1 = hν has to satisfy the condition in (13.51).
The density of states ρ(ν), defined in (13.16), for band-to-band optical transitions in a
quantum well is then given by

ρ(ν)dν = 4πm∗
r

hdQW

∑
q

H

(
hν − Eg − q2h2

8m∗
r d2

QW

)
dν, (13.54)

where H (x) is the Heaviside function, which has a value of H (x) = 0 for x < 0 and
a value of H (x) = 1 for x > 0. Clearly, this density of states for optical transitions in
a quantum well is different from that given in (13.17) for optical transitions in a bulk
semiconductor. In a quantum well, dominant optical transitions occur between the first
conduction subband and the first valence subband because those subbands are most
populated by electrons and holes, respectively.

The density of states for optical transitions, ρ(ν), obtained in (13.54) is the most
significant basic property of a quantum well that sets it apart from bulk semiconductors.
Irrespective of this difference, most of the concepts discussed in the preceding four
sections are valid for quantum wells too. The relations obtained in those sections can
also be applied to a quantum well with the modification that ρ(ν) given in (13.54),
instead of that in (13.17), is used, along with any other modifications that are needed
to take account of the relations in (13.51) and (13.53). For example, the optical gain
coefficient g(ν) expressed in (13.31) now takes the form:

g(ν) = c2

8πn2ν2τsp
[ fc(E2) − fv(E1)]ρ(ν)

= c2m∗
r

2n2ν2τsphdQW

[ fc(E2) − fv(E1)]
∑

q

H

(
hν − Eg − q2h2

8m∗
r d2

QW

)
(13.55)

for band-to-band optical transitions in a quantum well. As another example, the cond-
ition for population inversion given in (13.35) is now modified to

�EF = EFc − EFv > hν > EQW
g = Eg + h2

8m∗
r d2

QW

(13.56)

for a quantum well of a thickness dQW, according to (13.51). When the condition in
(13.56) is first reached, the optical gain coefficient of a quantum well is simply that
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given in (13.55) for q = 1 because optical transitions only take place between the
first conduction subband and the first valence subband. As the injected carrier density
increases to a level at which the population inversion reaches the second conduction
and valence subbands, additional gain contributed by transitions between the second
subbands adds to the gain that originally exists from the transitions between the first
subbands. If higher subbands exist, further contribution to the gain can come from
transitions between higher subbands at higher injection levels. In contrast, the gain
coefficient of a bulk semiconductor increases smoothly with carrier density.

Because a quantum well has a constant two-dimensional density of states, the
transparency and gain characteristics of a quantum well are dependent on the two-
dimensional carrier density, N2D = NdQW, which is measured per square meter, of
the quantum well. For a given material, the two-dimensional transparency carrier den-
sity, N 2D

tr , is a constant that is independent of well width. Thus, the three-dimensional
transparency carrier density is a function of well width:

Ntr = N 2D
tr

dQW

. (13.57)

The carrier dependence of the peak gain coefficient of a quantum well is not as linear
as that of a bulk semiconductor; it can be approximated as

gmax(N ) = σ Ntr ln
N

Ntr
, (13.58)

where the gain cross section σ is the differential gain at the transparency carrier density
defined as

σ = dg

dN

∣∣∣∣
Ntr

. (13.59)

The value of σ is relatively independent of well width. Therefore, the value of σ Ntr is
inversely proportional to well width. For N − Ntr � Ntr, this relation can be approxi-
mated as a linear relation in the form of (13.40):

gmax(N ) = σ (N − Ntr). (13.60)

Therefore σ has the meaning of the gain cross section for carrier densities close to the
transparency carrier density.

EXAMPLE 13.7 For GaAs quantum wells, N 2D
tr = 1.16 × 1016 m−2 and σ = 2.2 ×

10−19 m2. Find the values of Ntr and σ Ntr for (a) a GaAs quantum well of 10 nm
thickness and (b) a GaAs quantum well of 8 nm thickness.

Solution (a) For dQW = 10 nm, we have

Ntr = N 2D
tr

dQW

= 1.16 × 1016

10 × 10−9
m−3 = 1.16 × 1024 m−3
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and

σ Ntr = 2.2 × 10−19 × 1.16 × 1024 m−1 = 2.55 × 105 m−1.

(b) For dQW = 8 nm, we have

Ntr = N 2D
tr

dQW

= 1.16 × 1016

8 × 10−9
m−3 = 1.45 × 1024 m−3

and

σ Ntr = 2.2 × 10−19 × 1.45 × 1024 m−1 = 3.19 × 105 m−1.

We find that the values of Ntr for GaAs quantum wells are not much different from
Ntr = 1.22 × 1024 m−3 found in Example 13.3 for bulk GaAs. In contrast, the value
of σ for GaAs quantum wells is much larger than σ = 3.37 × 10−20 m2 found in
Example 13.4 for bulk GaAs. However, this value of σ for the quantum wells is evaluated
at the transparency carrier density, and it decreases as the carrier density increases high
above the transparency density.

Quantum wells have several advantages over bulk semiconductor media. The in-
jected carriers are more concentrated in a quantized subband of a quantum well than in
the entire band of a bulk semiconductor. Because the density of states for each subband
of a quantum well is a constant that does not vary with energy, there are already a large
number of electrons of the same energy near the edge of a conduction subband and a
large number of holes of the same energy near the edge of a valence subband. In com-
parison, near the edges of the conduction and valence bands of a bulk semiconductor,
there are very few electrons and holes because the density of states in a bulk medium
varies with energy and starts at zero from the band edges. Therefore, a quantum well
has a much larger gain cross section σ than a bulk semiconductor, as seen in Exam-
ple 13.7. The transparency carrier density, Ntr, of a quantum well is comparable to that
of a bulk semiconductor. This fact implies that a much lower injection current density is
required for a quantum well than that required for a DH to reach transparency because
the thickness of a quantum well is typically an order of magnitude smaller than that
of a DH. At a given injection current density, a quantum well thus has a much higher
gain than a DH of the same material. These characteristics lead to low threshold and
high modulation speed for a QW laser. In addition, they also help in narrowing the
laser linewidth and in reducing the temperature dependence of a QW laser. The gain
spectrum of a quantum well can be made larger than a DH at high injection levels
because of the constant density of states in each subband and because higher subbands
can be successively reached for additional gain as the injection current increases. The
gain bandwidth of a typical quantum well is in the range of 20–40 THz, about twice
that of a typical bulk semiconductor.
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(a) (b)

Figure 13.14 Energy bands and refractive index profiles of graded-index separate confinement
heterostructures (GRIN-SCH) with (a) a single quantum well and (b) multiple quantum wells.

The thickness of a typical quantum well is in the range of 5–10 nm though quantum
wells as thin as 2 nm and as thick as 20 nm are also used in some devices. Because of
the small thickness of a quantum well, strain can be incorporated to create a strained
quantum well without introducing undesirable defects and dislocations in the structure.
Properly designed strained quantum wells can have a higher effective bandgap and a
larger gain than unstrained quantum wells. To increase the total thickness of the active
region for a larger gain volume while keeping the benefits of a quantum well, multiple
quantum wells can be stacked together to make a multiquantum-well device. Compared
to a conventional DH, a quantum well has very poor optical waveguiding ability be-
cause of its small thickness. Using multiple quantum wells helps to improve optical
waveguiding. To have really good optical confinement, however, separate confinement
heterostructures are used in QW devices. Among different variations, graded-index sep-
arate confinement heterostructures (GRIN-SCH), such as those shown in Fig. 13.14,
are most often used.

13.6 Lateral structures

The junction structure of a device determines the carrier and optical field distributions
in the vertical direction perpendicular to the junction plane of a device. The carrier and
optical field distributions in the transverse directions parallel to the junction plane are
determined by the lateral structure.

The lateral structure of a surface-emitting device can have either a broad active area,
formed with little or no lateral restriction on the injected current, or a small active area,
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(a) (b)

Figure 13.15 (a) Broad-area surface-emitting device and (b) small-area surface-emitting device.

formed by restricting the current flow into a confined area, as shown in Figs. 13.15(a) and
(b), respectively. Most surface-emitting LEDs are broad-area devices. Some surface-
emitting LEDs for fiber-optic applications and the vertical cavity surface-emitting lasers
are small-area devices. For a small-area surface-emitting device, an optical waveguiding
structure with index steps in lateral directions can be incorporated in conjunction with
the small light-emitting active region for lateral optical confinement. The geometry
of this structure is normally symmetric in transverse dimensions. For a laser, a small
waveguiding area is important for single-transverse-mode emission. As a result, the
emission of the device forms a circular beam of symmetric divergence with a divergence
angle of �θ shown in Fig. 13.15(b). The divergence angle of a device varies significantly
among devices of different structural dimensions and emission wavelengths; it also
varies under different operating conditions for a given device. Representative values
are �θ = 100◦ for incoherent emission of a surface-emitting LED and �θ = 10◦ for
coherent emission of a surface-emitting laser.

The lateral structures of edge-emitting devices have two basic types of geometry:
broad-area geometry and stripe geometry, shown in Figs. 13.16(a) and (b), respectively.
A broad-area device has no particular structures for restricting current flow to a partic-
ular region or for guiding the optical wave in lateral directions parallel to the junction
plane. As a result, the broad-area geometry provides neither lateral carrier confinement
nor lateral optical waveguiding. These deficiencies of broad-area geometry in lateral
directions are similar to those of the homojunction in the vertical direction. Such a geo-
metry leads to multiple transverse modes and filaments in the emission profile of the
device. For this reason, almost all practical edge-emitting devices have stripe geometry.
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(a) (b)

Figure 13.16 (a) Broad-area edge-emitting device and (b) stripe-geometry edge-emitting device.

Except for some high-power lasers of special interest, all practical edge-emitting
semiconductor lasers have narrow stripes to ensure single-transverse-mode emission.
In contrast, edge-emitting LEDs typically have broader stripes than lasers. There are two
types of structures for the stripe geometry: gain-guiding structure and index-guiding
structure. Both types of stripe geometry provide lateral confinement for the carriers
and the optical field. Because of the asymmetry between vertical and lateral wave-
guiding structures, the emission profile of a stripe-geometry device is asymmetric with
different vertical and lateral divergence angles, �θ⊥ and �θ‖, respectively, as shown
in Fig. 13.16(b). Because the width w of the stripe is normally much larger than the
thickness d of the active layer, �θ⊥ > �θ‖ for the coherent emission of a laser but
�θ⊥ < �θ‖ for the incoherent emission of an LED. Both vertical and lateral diver-
gence angles vary significantly among devices of different structural dimensions and
emission wavelengths, as well as under different operating conditions for a given device.
Representative values are �θ⊥ = 30◦ and �θ‖ = 120◦ for the incoherent emission of
an edge-emitting LED and �θ⊥ = 30◦ and �θ‖ = 10◦ for the coherent emission of a
single-transverse-mode edge-emitting laser.

Gain-guiding stripe geometry

The gain-guiding stripe geometry in a gain-guided device is formed by injecting the
current within a narrow stripe, which typically has a width ranging from a few micro-
meters for a gain-guided laser to a few tens of micrometers for an LED. No additional
lateral structure is incorporated in the device. The current stripe defines the longitudinal
direction of the edge-emitting device. Figure 13.17 shows the basic characteristics of a
gain-guided device. There are a few different structures, shown in Fig. 13.18, that can
be used to create the gain-guiding stripe.



855 13.6 Lateral structures

(a)

(b)

(c)

(d )

Figure 13.17 (a) Basic structure, (b) excess carrier distribution, (c) refractive index profile, and (d)
lateral optical field distribution of a gain-guided stripe-geometry device.

As is shown in Fig. 13.17(b), a stripe of concentrated carriers in the active layer is
formed along the longitudinal direction of a gain-guided device. In a semiconductor, an
increase in carrier concentration is generally accompanied by a decrease in refractive
index. This phenomenon is known as the antiguidance effect. In a semiconductor gain
medium, it is often described by an experimentally measurable antiguidance factor,
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(a) (b)

(c)

Figure 13.18 Structures of gain-guided devices: (a) oxide stripe, (b) proton-bombarded stripe, and
(c) V-groove stripe.

also known as the linewidth enhancement factor, defined as

b = ∂n′/∂ N

∂n′′/∂ N
= −2ω

c

∂n′/∂ N

∂g/∂ N
= −4π

λ

∂n′/∂ N

∂g/∂ N
, (13.61)

where n′ and n′′ are the real and imaginary parts of the refractive index and g is
the optical gain coefficient. The antiguidance factor is a function of material, optical
wavelength, temperature, and other operating conditions. It typically ranges between 2
and 6 for most semiconductor structures, but it can be as small as 1 and as large as 10.

The antiguidance effect results in an antiguiding index profile, shown in Fig. 13.17(c),
that tends to spread the optical field laterally instead of confining it. This effect is not
important for an LED, which does not require an optical gain and has incoherent
emission. For a semiconductor laser, this effect is counteracted by the optical gain
that is concentrated along the stripe. Stimulated amplification of the coherent laser
field by this stripe of optical gain results in a gain-guiding effect for a laser beam to
propagate along the longitudinal direction of the stripe. Nevertheless, the antiguiding
index profile of a gain-guided laser still causes the beam to expand laterally to a certain
degree.

The stripe width of a gain-guiding device varies between 10 and 200 µm, depending
on intended applications. A wide stripe allows a large current to be injected for a high-
power device, but it also makes the threshold current high in the case of a laser. A
gain-guided laser tends to oscillate in multiple transverse modes, making it difficult
to focus or collimate. Gain-guided LEDs are common because they are not subject
to these limitations. Gain-guided lasers find important applications in the areas where
high power and high conversion efficiency are needed but coherence and collimation
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of the beam are not very important, such as in pumping solid-state lasers or fiber
lasers.

EXAMPLE 13.8 Use the results obtained in Example 13.4 to estimate the carrier-induced
index change in GaAs at 850 nm for an injected carrier density of N = 2.83 × 1024 m−3

if the antiguidance factor is b = 3.

Solution From Example 13.4(c), we find that

∂g

∂ N
= σ = 3.37 × 10−20 m2

for GaAs at 850 nm at 300 K. To estimate the index change, we assume that the refractive
index changes linearly with carrier density. Thus, by using (13.61), we have

�n

�N
≈ ∂n′

∂ N
= − bλ

4π

∂g

∂ N
= −bλσ

4π
.

For �N = N = 2.83 × 1024 m−3, we have

�n ≈ −bλσ N

4π
=−3 × 850 × 10−9 × 3.37 × 10−20 × 2.83 × 1024

4π
=−1.94 × 10−2.

Compared to the base refractive index of n = 3.65 at 850 nm for GaAs in the absence of
injected carriers, this carrier-induced index change is small. Nevertheless, such a small
index reduction can cause a significant antiguiding effect to spread the distribution of
an optical field if the optical field is not otherwise confined by a waveguiding index
profile.

Index-guiding stripe geometry

For truly effective lateral optical confinement, an index-guiding structure has to be
used. In an index-guiding structure, the lateral waveguide is formed by introducing a
lateral index profile around the active region along the stripe where current is injected.
As a result, both carrier confinement and optical waveguiding in the lateral direction
are accomplished in a manner similar to the way a DH provides confinement for both
carriers and optical field in the vertical direction. The basic characteristics of an index-
guided device are illustrated in Fig. 13.19. There are many different index-guiding
structures. A few examples are shown in Fig. 13.20.

In an index-guiding structure, the antiguidance effect is not important because the
physical index steps that create the lateral waveguide are larger than the small changes
in the refractive index caused by the injected carriers in the active region. Consequently,
as the operating parameters, such as the injection current or the operating temperature,
are varied, the output beam characteristics, including its profile, size, and divergence, of
an index-guided device are more stable than those of a gain-guided device. In addition,



858 Semiconductor lasers and light-emitting diodes

(a)

(b)

(c)

(d )

Figure 13.19 (a) Basic structure, (b) excess carrier distribution, (c) refractive index profile, and (d)
lateral optical field distribution of an index-guided stripe-geometry device.

because the bandgap steps associated with the physical index steps create energy barriers
for carriers like those in a DH, a high concentration of carriers can be injected and
confined within the active region of an index-guiding device. Whereas the lateral carrier
distribution in a gain-guided device is determined by the lateral spread of the current
injected into the device and the lateral diffusion of carriers in the active layer, the
lateral carrier distribution in an index-guided device is defined by the width of the
index-guiding stripe. Therefore, it is possible to increase the carrier concentration by
using a narrow index-guiding stripe to increase the efficiency of an LED and to lower
the threshold of a laser. For single-transverse-mode lasers, the width of the stripe can
be as narrow as 1–2 µm.
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(a)

(c)

(b)

(d )

Figure 13.20 Structures of index-guided devices: (a) channeled-substrate planar (CSP) structure,
(b) planar buried heterostructure (PBH), (c) buried crescent heterostructure, and (d) double-channel
planar buried heterostructure (DC-PBH). Note that current flow is defined by the contact geometry,
which is not shown in these illustrations.

EXAMPLE 13.9 An edge-emitting GaAs laser with an index-guiding stripe geometry emits
at 850 nm wavelength. The vertical and lateral far-field divergence angles of the laser
beam are �θ⊥ = 30◦ and �θ‖ = 10◦, respectively. What are the vertical and lateral
sizes of the beam at the output facet of the laser?

Solution Because �θ⊥ �= �θ‖, the laser spot is elliptical with w⊥ �= w‖. Because the
divergence angles are measured in free space, we take the refractive index of n = 1 for
free space to find the spot size at the beam waist, which is located at the output facet of
the laser. We have �θ⊥ = 30◦ = π/6 rad and �θ‖ = 10◦ = π/18 rad. Thus, by using
(1.137) for Gaussian beam divergence, we find that

w0⊥ = 2λ

π�θ⊥
= 2 × 850 × 10−9

π × π/6
m = 1.03 µm

and

w0‖ = 2λ

π�θ‖
= 2 × 850 × 10−9

π × π/18
m = 3.1 µm.

The near-field spot at the laser facet is elliptical with w0‖ = 3w0⊥ because �θ⊥ = 3�θ‖.
Such small beam sizes in both vertical and lateral directions can be made possible only
by a laser structure with index guiding in both vertical and lateral dimensions.
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13.7 Light-emitting diodes

LEDs are simple, but important, solid-state light sources that have a wide range of
applications. LEDs that emit light in the visible spectral region are widely used in
displays and in fiber-optic illumination. Infrared LEDs are useful for fiber-optic com-
munications in those systems where the coherence, high power, and high speed of
semiconductor lasers are not needed. Recent breakthroughs have resulted in LEDs of
very high performance, in terms of efficiency and brightness, and have extended the
spectral range of these high-brightness LEDs to the blue, violet, and ultraviolet re-
gions. As the luminous performance of LEDs exceeds that of traditional incandescent
lamps, LEDs become competitive in various lighting applications. Solid-state white
light sources also become available by mixing the emission of red, green, and blue
LEDs. These advances have created many new possibilities for the applications of
LEDs.

Commercially available LEDs today cover the spectral range from the near ultraviolet
to the near infrared, with optical wavelengths ranging from about 370 nm to 1.65 µm.
These commercial LEDs are made of III–V compound semiconductors. Blue LEDs
based on SiC have been developed, but they have very low efficiencies and are not
practically useful. Blue and green LEDs based on II–VI compounds such as ZnTeSe
and ZnCdSe have also been developed, but their commercial usefulness is limited.
Organic LEDs based on polymers hold great promise, but they are still in the early stage
of development. The main characteristics of LEDs based on III–V semiconductors are
listed in Table 13.1.

The light output of an LED is the spontaneous emission generated by radiative re-
combination of electrons and holes in the active region of the diode under forward
bias. From the discussions in Section 13.4, we learn that a semiconductor emits spon-
taneous photons no matter whether its electron and hole populations are in thermal
equilibrium, characterized by a common Fermi level, or in quasi-equilibrium, charac-
terized by separate quasi-Fermi levels. Spontaneous emission occurs in both direct-gap
and indirect-gap semiconductors though a direct-gap semiconductor generally has a
much larger radiative recombination rate and thus a much higher spontaneous emis-
sion efficiency than an indirect-gap semiconductor. As can be seen from Table 13.1,
many LEDs are made of indirect-gap semiconductors doped with impurities that form
isoelectronic centers to improve their luminescence efficiencies. Such LEDs typically
have low quantum efficiencies compared with LEDs made of direct-gap semiconduc-
tors. Unlike a laser, an LED emits incoherent and unpolarized spontaneous photons that
are not amplified by stimulated emission. Therefore, no optical gain is needed, and the
condition for population inversion given in (13.35) is not required for the operation of
an LED. No resonant optical cavity is needed for an LED, either. As a result, the emis-
sion from an LED does not have the coherence, or the directionality, of the emission
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Table 13.1 Basic characteristics of III–V semiconductor LEDs

LED material Substrate Typea Wavelength (nm) Color Efficiencyb

InGaN Sapphire D 370–680 UV–Red Medium–Highc

AlGaInP GaAs D 560 Green Medium
AlGaInP GaP D 570 Green Medium
AlGaInP GaP D 590 Yellow High
AlGaInP GaP D 607 Orange High
AlGaInP GaP D 620–650 Red High

AlGaAs GaAs D 650–675 Red Medium

GaAsP : N GaP I 589 Yellow Low
GaAsP : N GaP I 632 Red Low
GaAsP GaAs D 649 Red Low

GaP GaP I 555 Green Low
GaP : N GaP I 565 Green Low
GaP : N,N GaP I 590 Yellow Low
GaP : Zn,O GaP I 699 Red Medium

AlGaAs : Si GaAs D 820–890 IR High
GaAs : Si GaAs D 920–950 IR High

InGaAsP InP D 1100–1650 IR High

a D, direct gap; I, indirect gap.
b External quantum efficiency. High, greater than 10%; medium, between 1 and 10%; low, less than
1%.
c Efficiency varies with wavelength, being higher in the blue and green spectral regions and lower
toward both ends of the spectral range.

from a laser. Unlike a laser, an LED does not have a threshold, either. It starts emitting
light as soon as a forward bias voltage is applied to its junction.

LED efficiency

The power conversion efficiency of an LED is defined in the same manner as that of a
laser given in (11.89):

ηc = Pout

Pp
, (13.62)

where Pout is the optical output power of the LED and Pp is the electric pump power
supplied by the injection current. Because an LED has no threshold, its external quantum
efficiency is defined as

ηe = �out

�p
, (13.63)

where �out is the output photon flux of the LED and �p is the pump electron flux.
For an LED that emits at an optical frequency ν, the output photon flux is simply
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�out = Pout/hν. If the LED is injected with a current I at a forward bias voltage V ,
then the pump power is Pp = I V and the pump electron flux is �e = I/e = Pp/(eV ),
where e is the electronic charge. Therefore, the power conversion efficiency and the
external quantum efficiency have the following relation:

ηc = ηe
hν

eV
. (13.64)

In general, ηe ≥ ηc because the law of the conservation of energy requires that eV ≥ hν.
The power conversion efficiency of a typical LED that emits photons at an energy close
to its bandgap energy is approximately equal to, though slightly less than, its external
quantum efficiency.

For an LED that emits in the visible spectral region, a photometric efficiency, or
luminous efficiency, ηl, is also introduced to account for the spectral response of the
human eye:

ηl = K
∫

dηc

dλ
V (λ)dλ ≈ KηcV (λ0), (13.65)

where K = 683 lm W−1, known as peak efficacy, is the photometric radiation equiva-
lent for photopic vision; V (λ) is the normalized photopic spectral luminous efficiency
that characterizes the relative spectral sensitivity of the human eye; and λ0 is the peak
emission wavelength of the LED. The luminous function V (λ), shown in Fig. 13.21,
has a peak value of 1 at the green spectral wavelength of λ = 555 nm where the hu-
man eye is most responsive, and it drops to a value of 0.01 at the violet wavelength of
λ = 414 nm and at the red wavelength of λ = 687 nm near the two edges of the visible

λ  

λ
  

Figure 13.21 Photopic luminous efficiency function, V (λ), plotted in linear scale (solid curve
referring to the left axis) and logarithmic scale (dashed curve referring to the right axis). This plot is
based on CIE 1988 updated data.
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region. Therefore, a green LED appears much brighter than a blue or red LED of the
same efficiency. The luminous efficiency is the luminous flux emitted by an LED per
watt of electric pump power. It has the unit of lumen per watt, lm W−1. The luminous
flux, �l, which is measured in lumens, of an LED that has an electric pump power of
Pp and an optical output power of Pout is

�l = ηl Pp = ηl

ηc
Pout = K V (λ0)Pout. (13.66)

EXAMPLE 13.10 A transparent substrate (TS) AlGaInP/GaP LED emits at 636 nm. It has
an external quantum efficiency of ηe = 23.7% when operated at a forward voltage of
2.02 V with an injection current of 20 mA. (a) Find its power conversion efficiency
under the given operating conditions. (b) Find its optical output power. (c) Find its
luminous efficiency and luminous flux.

Solution (a) The photon energy at 636 nm is

hν = 1239.8

636
eV.

Using (13.64) with V = 2.02 V, we find the following power conversion efficiency:

ηc = ηe
hν

eV
= 23.7% × 1239.8

636
× 1

2.02
= 22.9%.

(b) The electric pump power is Pp = I V = 2.02 × 20 mW = 40.4 mW. Thus the
optical output power

Pout = ηc Pp = 22.9% × 40.4 mW = 9.25 mW.

(c) From Fig. 13.21, we find that V (λ) = 0.208 16 for λ = 636 nm. Therefore, the
luminous efficiency of this LED is

ηl = KηcV (λ0) = 683 × 22.9% × 0.208 16 lm W−1 = 32.6 lm W−1.

The luminous flux

�l = ηl Pp = 32.6 × 40.4 × 10−3 lm = 1.32 lm.

The external quantum efficiency of an LED is the probability for each charged carrier
that is injected into the LED to give rise to one emitted photon. It is determined by
three factors, each measured by a characteristic efficiency of its own. First, the current
injected into an LED consists of the diffusion current, which injects carriers into the
active region, and other components such as surface recombination current and space-
charge recombination current, which do not contribute to the carriers injected into the
active region. The fraction of the total injection current that actually contributes to
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the injected carriers in the active region of an LED is the injection efficiency, ηinj. Of
the carriers injected into the active region, only those that recombine radiatively are
responsible for the generation of photons. The probability of radiative recombination
is quantified by the radiative efficiency, or the internal quantum efficiency, ηi, which
is defined in (13.4). Not all of the photons generated by those carriers that recombine
radiatively can be extracted out of the LED, however. A large portion of them is trapped
inside the LED and is eventually reabsorbed by the LED material. The extraction
efficiency, ηt, quantifies the probability that a photon generated in the active region of
the LED can successfully escape to the outside and contribute to the optical output of
the LED. The external quantum efficiency can thus be expressed as a product of these
three characteristic efficiencies:

ηe = ηinjηtηi. (13.67)

Clearly, the characteristic efficiencies of all three factors have to be maximized in order
for an LED to have a high external quantum efficiency.

To have a high injection efficiency, surface recombination and carrier leakage have to
be avoided by proper choice of the doping concentration and the thickness of each layer
in the LED and by careful design of the electrical contacts. The injection efficiency is
generally not a limiting factor for the external quantum efficiency of an LED, however,
because it can easily be made higher than 80% for a well-designed LED. The internal
quantum efficiency is normally very high for direct-gap semiconductors but is low
for indirect-gap semiconductors. Because the radiative recombination rate increases
with carrier concentration, according to (13.5), the use of a DH geometry as discussed
in the preceding section can significantly improve the internal quantum efficiency of
an LED by providing effective carrier confinement in the active layer. For a direct-
gap semiconductor LED operating at a properly chosen injection current level, the
radiative efficiency can be close to unity and, like the injection efficiency, is not a
limiting factor for the external quantum efficiency of the LED, either. For an indirect-
gap semiconductor LED, however, the radiative efficiency is a limiting factor though
it can be improved with the doping of isoelectronic centers. For example, the radiative
efficiency for GaP : Zn,O is about 30%, but that for GaP : N is only about 3%. The most
significant limiting factor is normally the extraction efficiency, which depends on the
details of the LED structure discussed below. A typical LED can have an extraction
efficiency between 3 and 30%, depending on the geometry and the material of the LED.
Combining all three factors, the external quantum efficiency of an LED ranges from
lower than 1% to higher than 30%.

LED construction

The construction of an LED is determined largely by the consideration of maximiz-
ing the extraction efficiency of the LED. For LEDs used in fiber-optic applications,
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including the infrared LEDs used in optical communications, the ultimate efficiency
that counts includes not only the external quantum efficiency but also the coupling
efficiency of the emission into the fiber. Therefore, the coupling efficiency to an optical
fiber is also a factor to be considered in the construction of an LED that is used in
a fiber-optic application. Because spontaneous emission radiates in all directions, a
properly designed surface-emitting LED, which allows emission output in many dif-
ferent directions, generally has a much higher extraction efficiency than a comparable
edge-emitting LED, which limits its emission output to a narrow angular spread in
only one direction. However, because of the optical waveguiding effect in an edge-
emitting device discussed in the preceding section, the emission of an edge-emitting
LED is much more collimated, thus allowing for much more efficient direct coupling
to an optical fiber, than that of a surface-emitting LED. For these reasons, conventional
LEDs are surface-emitting devices, but edge-emitting LEDs are often used in fiber-optic
applications.

The limitation on the extraction efficiency of a surface-emitting LED is caused by
the absorption of the LED material and the Fresnel reflection between the high-index
semiconductor and the low-index air. If nothing is done to optimize the structure of
the LED, the extraction efficiency is less than 2%. Clearly, this is an important factor
to be considered, and there is plenty of room for it to be improved through careful
design of the LED structure. The spontaneous photons generated in the active region
of an LED are emitted isotropically in all directions, but only those photons that reach
a surface of the LED at angles of incidence smaller than the critical angle, θc, can be
transmitted through that surface. This critical angle defines an escape cone of a solid
angle �esc with respect to each surface of the LED. Because spontaneous emission is
distributed isotropically over the 4π solid angle, the probability for emitted photons to
escape through a given surface is

ηesc = �esc

4π
T, (13.68)

where T is the transmittance of the surface. For a flat interface between the LED material
of a refractive index n1 and the ambient medium of a refractive index n2, with n1 > n2,
�esc = 2π (1 − cos θc) and (see Problem 13.7.5)

ηesc ≈ n3
2

n1(n1 + n2)2
, (13.69)

where we have approximated the transmittance T with that of normal incidence.

EXAMPLE 13.11 In this example, we calculate the escape efficiency of an AlGaInP/GaP
LED like the one considered in Example 13.10. The refractive index of AlGaInP is
n = 3.4. The AlGaInP LED surface is exposed directly to the air without any treatment.
(a) Find the critical angle θc and the escape solid angle �esc for the interface between
AlGaInP and air. What is the transmittance of this surface? (b) Find the escape efficiency
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ηesc using the relation in (13.68). (c) Find ηesc using the approximation given in (13.69).
Compare the result with that obtained in (b). (d) How does this escape efficiency
compare with the external quantum efficiency of the AlGaInP/GaP LED described in
Example 13.10?

Solution (a) With n1 = 3.4 and n2 = 1, we find that

θc = sin−1 1

3.4
= 17.1◦.

We then find that

�esc = 2π (1 − cos 17.1◦) = 0.0884π.

The transmittance

T = 4n1n2

(n1 + n2)2
= 4 × 3.4 × 1

(3.4 + 1)2
= 0.70.

(b) Using the parameters obtained in (a) for (13.68), we find that

ηesc = �esc

4π
T = 0.0884π

4π
× 0.70 = 1.55%.

(c) Using n1 = 3.4 and n2 = 1 for (13.69), we find that

ηesc ≈ n3
2

n1(n1 + n2)2
= 13

3.4 × (3.4 + 1)2
= 1.52%.

This approximate result ofηesc = 1.52% is 98% of the result ofηesc = 1.55% obtained in
(b). Therefore, the convenient relation given in (13.69) is a very accurate approximation.

(d) The TS AlGaInP/GaP LED described in Example 13.10 has an external quantum
efficiency of ηe = 23.7%, which is more than 15 times the escape efficiency of ηesc =
1.55% found for the AlGaInP surface to the air. In the face of the small value of ηesc,
such a high external quantum efficiency looks quite impossible, but it is real. Many
techniques can be applied to realize such a high external quantum efficiency. The basic
concepts of such techniques are described in the following text.

In a surface-emitting LED, a transparent window layer grown on top of the active
layer allows light emission from the top surface. The device can have either an absorbing
substrate (AS) or a transparent substrate (TS). For an AS LED with a thin window layer
of a thickness less than approximately 10 µm, as shown in Fig. 13.22(a), we find that
ηt ≤ ηesc because only those photons that are emitted directly toward the top surface
do not get totally absorbed by the substrate before reaching a surface. If an AS LED
has a thick window layer, as shown in Fig. 13.22(b), half of the photons emitted toward
each side surface of the LED chip can reach the side surface without being absorbed
by the substrate, thus increasing the extraction efficiency to ηt ≤ 3ηesc. In a TS LED
with a thick window, as shown in Fig. 13.22(c), it is possible for photons emitted in
any direction to reach a surface, and the theoretical limit of the extraction efficiency is
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(a)

(c)

(b)

Figure 13.22 (a) Surface-emitting LED with a thin window and an absorbing substrate; only one
top cone. (b) Surface-emitting LED with a thick window and an absorbing substrate; top cone plus
four half-side cones. (c) Surface-emitting LED with a thick window and a transparent substrate; top
and bottom cones plus four side cones. (Adapted from Vanderwater, D. A., Tan, I. H., Höfler, G. E.,
Defevere, D. C., and Kish, F. A., “High-brightness AlGaInP light emitting diodes,” Proceedings of
the IEEE 85(11): 1752–1764, Nov. 1997.)

further increased to ηt ≤ 6ηesc. A highly reflecting mirror surface is normally applied
to the bottom surface of a TS LED to reflect light back to the top window surface.
By examining Table 13.1, we see that among the AlGaInP LEDs, those that have a
transparent GaP substrate have higher efficiencies than those that have an absorbing
GaAs substrate. The InGaN/sapphire LEDs also have transparent substrates, which is
part of the reason for their high efficiencies.

From (13.69), we find that ηesc for a flat semiconductor/air interface has a very
small value. In Example 13.11 with n1 = 3.4 for AlGaInP and n2 = 1 for air, we
get ηesc ≈ 1.55%. This value is exceedingly small. Even for a TS LED with a thick
window, this value only permits a maximum extraction efficiency of less than 10%.
Something has to be done to increase the value of ηesc if the extraction efficiency is
to be increased further. Clearly from (13.68), the value of ηesc can be increased by
increasing either the value of �esc, thus allowing photons reaching the surface at large
angles of incidence to be transmitted through the surface, or the value of T , thus allowing
a higher probability of transmittance for a photon striking the surface at a given angle
within the cone of �esc, or both. A few solutions have been developed for this purpose.

One method to increase the value of �esc significantly, but not that of T , is to shape
the surface of the top window layer of an LED into a hemisphere with a radius much
larger than the thickness of the active layer so that all spontaneous photons radiating
toward this spherical surface come close to normal incidence, thus completely avoiding
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Figure 13.23 Construction of an LED encapsulated in plastic epoxy with a spherical dome lens. If
a TS LED is used, it can be placed in a dish-shaped reflector to send side emission to the dome lens.

total reflection. This approach, however, requires polishing the semiconductor into
a spherical surface and is therefore expensive and not practically useful. A second
technique to increase the effective value of �esc is to roughen the surfaces of the LED,
thus randomizing the angles of incidence to reduce the probability of total reflection.
The needed microscopic surface textures can be easily created by chemical etching or by
coating with small polymer spheres. A factor of 2 increase inηesc can be accomplished by
proper surface texturing; therefore, this technique is practical. Another practical solution
is to encapsulate the LED chip in a transparent plastic epoxy, which normally has a
refractive index close to 1.5. In this approach, both the value of �esc and that of T are
increased because n2 is increased. For n1 = 3.4 and n2 = 1.5, we find that ηesc ≈ 4.2%,
an improvement of nearly three-fold over that of an LED without encapsulation. The last
two techniques can be combined by encapsulating an LED that has textured surfaces to
improve ηesc further. Applying these solutions to a TS LED properly, a high extraction
efficiency of ηt > 30% is possible.

Figure 13.23 shows the construction of a surface-emitting LED with plastic en-
capsulation that is shaped into a spherical dome lens. When a TS LED, such as an
AlGaInP/GaP LED, is assembled in this package, the LED can be placed in a miniature
dish-shaped reflector that is coined into the top of the cathode post and is used to direct
the emission from the side surfaces of the LED toward the dome lens. The shape and
size of the plastic dome control the radiation pattern of the LED. Various radiation
patterns for different applications can be obtained by tailoring the shape and size of the
plastic encapsulation. In addition to the design of the spherical dome lens, aspherical
dome lenses and rectangular packages are also used.

LEDs do not couple efficiently into single-mode fibers because the incoherent emis-
sion of an LED has a large divergence. Therefore, only multimode fibers are used in
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Figure 13.24 Surface-emitting Burrus-type LED for fiber-optic applications.

Figure 13.25 Stripe-geometry edge-emitting LED.

fiber-optic applications of LEDs. When a surface-emitting LED is used, special ar-
rangement has to be made to bring the fiber tip into close proximity to the emitting
active region of the LED for coupling of its emission into the fiber. A famous design is
the Burrus type shown in Fig. 13.24. Other designs feature a microlens on the fiber tip
or on the emitting surface of the LED to facilitate efficient coupling.

An edge-emitting LED has a structure similar to that of an edge-emitting semi-
conductor laser. The LED is prevented from laser oscillation by adding antireflection
coating on the emitting facet or by leaving an unpumped absorbing section in the struc-
ture. The nonemitting facet is normally coated to be highly reflective to enhance the
output from the emitting facet. The emission of an edge-emitting LED is much more
collimated than that of a surface-emitting LED. As a result, its radiance is typically
about 10 times higher than that of a surface emitting LED. Figure 13.25 shows the
structure of a stripe-geometry edge-emitting LED. Its emission has a vertical spread
of about 30◦ and a horizontal spread of about 120◦. With its emission radiating from a
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very small area on the emitting facet, an edge-emitting LED allows a fiber easy access
to its emission output for a good coupling efficiency to the fiber.

Light–current characteristics

An LED is basically a p–n, P–n, or p–N junction diode though it may have a sophis-
ticated DH structure for improved performance, as discussed in the preceding section.
Therefore, the general electrical properties of an LED are those of a semiconductor junc-
tion diode described in Section 12.5 with the current–voltage characteristics shown in
Fig. 12.12. The excess carriers in an LED that has an active layer of a thickness d much
smaller than the diffusion length of the injected minority carriers can be considered
uniformly distributed in the active region with a uniform density N . This is normally
true for a DH device with a thin active layer. In this situation, the temporal variation of
the carrier density in response to the variation in the injection current can be expressed
as

dN

dt
= J

ed
− N

τs
, (13.70)

where e is the electronic charge, τs is the spontaneous carrier lifetime defined in (13.2),
and J is the injection current density in the active region. Taking into consideration
the carrier injection efficiency, the current density J that actually contributes to carrier
injection is related to the total current supplied to the device as follows:

J = ηinj
I

A , (13.71)

where ηinj is the carrier injection efficiency defined earlier and A is the area of the
junction.

As a light-emitting device that is pumped by current injection, a very important
property of an LED is its output optical power as a function of the injection current,
known as the light–current characteristics, or simply as the L–I characteristics, or
the power–current characteristics, or simply as the P–I characteristics. The steady-
state solution with dN/dt = 0 for (13.70) results in the following ideal power–current
relation for an LED (see Problem 13.7.7):

Pout = ηe
hν

e
I, (13.72)

which indicates that the output power of an LED increases linearly with the injection
current. The L–I characteristics of a typical LED, shown in Fig. 13.26, are not exactly
linear throughout the entire range of operation, however. These characteristics have
several important features that distinguish an LED from a laser. First, there is no thres-
hold in the L–I characteristics of an LED, indicating that an LED is turned on and
starts emitting light once it is forward biased with any amount of injection current. The
L–I curve of an LED is indeed quite linear, particularly at moderate current levels,
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Figure 13.26 Typical light–current characteristics of an LED. The solid curve shows the output
power, Pout, and the dashed curve shows the power conversion efficiency, ηc.

as indicated by (13.72). This linearity is useful for analog modulation of an LED.
Nonlinearities in the L–I relationship are usually found at very low and very high
current levels. Because of these nonlinearities, the efficiency of an LED changes as the
injection current is varied. The efficiency starts low at low injection levels, increases
sharply with an increasing injection current, but saturates or even decreases at high
injection levels.

EXAMPLE 13.12 The optical output power and luminous flux of an LED at a given injec-
tion current level can be found without knowing the bias voltage if the external quantum
efficiency is known. Find them for the AlGaInP/GaP LED described in Example 13.10
without using the knowledge of its bias voltage. Compare the results with those found
in Example 13.10.

Solution From Example 13.10, we have λ = 636 nm, ηe = 23.7%, and I = 20 mA.
First, we note that

hν

e
= 1239.8 eV

636
× 1

e
= 1239.8

636
V.

Then, when we use (13.72) to find the optical output power, we simply have

Pout = ηe
hν

e
I = 23.7% × 1239.8

636
× 20 mW = 9.25 mW.

With K = 683 lm W−1 and V (λ0) = 0.208 16 as found in Example 13.10, we find from
(13.66) that

�l = K V (λ0)Pout = 683 × 0.208 16 × 9.25 × 10−3 lm = 1.32 lm.



872 Semiconductor lasers and light-emitting diodes

Compared with the results obtained in Example 13.10, we find exactly the same values
for both Pout and �l, as expected.

Spectral characteristics

The spectral characteristics of an LED include the emission wavelength, the spectral
width, and the spectral shape. The emission wavelength of a direct-gap LED is de-
termined by the bandgap of the active layer. Because of the band-filling effect of the
injected electrons and holes taking up the states near the edges of the conduction and
valence bands, respectively, the peak emission wavelength tends to be somewhat shorter
than λg = hc/Eg, corresponding to a photon energy somewhat larger than the bandgap
energy. However, if the active layer is heavily doped, the formation of bandtail states
can lead to a long emission wavelength corresponding to a photon energy smaller than
the bandgap energy, as discussed in Section 12.1. For an indirect-gap LED doped with
isoelectronic impurities, the emission wavelength is longer than λg with a photon energy
smaller than the bandgap energy, as is also discussed in Section 12.1 and illustrated in
Fig. 12.1.

The peak emission wavelength of an LED varies with injection current and tempera-
ture. Because the bandgap of a III–V semiconductor normally decreases with increasing
temperature, the peak emission wavelength of an LED becomes longer as the operating
temperature increases. The rate of change depends on the specific semiconductor ma-
terial of the LED. When the injection current increases, the band-filling effect caused
by the corresponding increase in the concentration of the injected carriers leads to an
increase in the emitted photon energy and a corresponding reduction in the peak emis-
sion wavelength. This effect is often abated by the shrinkage of the bandgap due to
heating of the junction that accompanies the increase in injection current.

The spectral width and shape of the emission are intrinsically defined by the spon-
taneous emission spectrum in (13.42). The emission spectra of an LED, however,
are often further complicated by frequency-dependent absorption and scattering by im-
purities and other materials, which have different bandgaps, in the layered structure of an
LED. The spectral width in terms of the photon energy is approximately h�ν = 3kBT ,
but it can range between 2kBT and 4kBT . At room temperature, the spectral width of
an LED is approximately 80 meV, but it can be as narrow as 50 meV or as broad as
100 meV in some devices. In terms of optical wavelength, the spectral width �λ ranges
from approximately 20 nm for InGaN LEDs emitting short-wavelength ultraviolet or
blue light to the order of 100 nm for InGaAsP LEDs with long-wavelength infrared
emission. The spectral width of an LED normally increases with both temperature
and injection current. Because an LED emits spontaneous radiation without an opti-
cal cavity, the longitudinal and transverse mode structures that are characteristic of a
laser spectrum do not exist in the emission spectrum of an LED. Figure 13.27 shows a
representative emission spectrum of an LED.
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Figure 13.27 Representative emission spectrum of an LED.

Modulation characteristics

An LED can be directly modulated by applying the modulation signal to the injection
current, an approach known as direct current-modulation. For high-speed applications,
a large modulation bandwidth is desired. There are two factors that limit the modulation
bandwidth of an LED: the junction capacitance, Cj, and the diffusion capacitance, Cd,
both discussed in Section 12.5. Because an LED is operated under a forward bias, the
diffusion capacitance is the dominating factor for its frequency response. The diffusion
capacitance is a function of the carrier lifetime τs because it is associated with the
injection or removal of carriers in the diffusion region in response to the modulation on
the injection current. Therefore, the intrinsic speed of an LED is primarily determined
by the lifetime of the injected carriers in the active region.

For an LED that is biased at a DC injection current level I0 and is modulated at a
frequency � = 2π f with a modulation index m, we can write the total time-dependent
current that is injected to the LED as

I (t) = I0 + I1(t) = I0(1 + m cos �t). (13.73)

In the linear response regime under the condition that m � 1, the output optical power
of the LED in response to this modulation can be expressed as

P(t) = P0 + P1(t) = P0[1 + |r | cos(�t − ϕ)], (13.74)

where P0 is the constant optical output power at the bias current level of I0, |r | is the
magnitude of the response to the modulation, and ϕ is the phase delay of the response
to the modulation signal. For an LED modulated in the linear response regime, the
complex response as a function of modulation frequency � is (see Problem 13.7.10(a))

r (�) = |r |eiϕ = m

1 − i�τs
. (13.75)

The frequency response and modulation bandwidth of an LED are usually measured
in terms of the electrical power spectrum of a broadband, high-speed photodetector that
converts the optical output of the LED into an electric current. In the linear operating
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Figure 13.28 Normalized current-modulation frequency response of an LED measured in terms of
the electrical power spectrum of a photodetector. The spontaneous carrier lifetime is taken to be
τs = 10 ns, as in Example 13.13, for this plot.

regime of the detector, the detector current is linearly proportional to the optical power of
the LED. Therefore, the electrical power spectrum of the detector output is proportional
to |r |2:

R( f ) = |r ( f )|2 = m2

1 + 4π2 f 2τ 2
s

, (13.76)

which has a 3-dB modulation bandwidth of

f3dB = 1

2πτs
, (13.77)

as shown in Fig. 13.28. The spontaneous carrier lifetime τs is normally on the order of
a few hundred to 1 ns for an LED. Therefore, the modulation bandwidth of an LED is
typically in the range of a few megahertz to a few hundred megahertz. A modulation
bandwidth up to 1 GHz can be obtained with a reduction in the internal quantum
efficiency of the LED by reducing the carrier lifetime to the subnanosecond range. Aside
from this intrinsic response speed determined by the carrier lifetime, the modulation
bandwidth of an LED can be further limited by parasitic effects from its electrical
contacts and packaging, as well as from its driving circuitry.

At an injection current I , the output optical power and the small-signal modu-
lation bandwidth of an LED have the following power–bandwidth product (see Prob-
lem 13.7.10(b)):

Pout f3dB = ηe
hν

e

I

2πτs
= ηinjηtηi

hν

e

I

2πτrad
, (13.78)
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where hν is the photon energy of the LED emission. Therefore, at a given injection
level, the modulation bandwidth of an LED is inversely proportional to its output power.
A high-power LED tends to have a low speed, and vice versa.

EXAMPLE 13.13 The AlGaInP/GaP LED described in Example 13.10 has a spontaneous
carrier lifetime of τs = 10 ns. Find its 3-dB modulation bandwidth and its power–
bandwidth product under the operating conditions described in Example 13.10.

Solution Using (13.77) for τs = 10 ns, the 3-dB modulation bandwidth of the LED
is easily found:

f3dB = 1

2πτs
= 1

2π × 10 × 10−9
Hz = 15.9 MHz.

Because the output power is Pout = 9.25 mW according to Example 13.10, the power–
bandwidth product is

Pout f3dB = 9.25 mW × 15.9 MHz = 147 kW Hz−1.

13.8 Semiconductor optical amplifiers

An amplifier requires an optical gain for stimulated amplification of an optical signal,
but it does not need a resonant cavity. Thus, a semiconductor optical amplifier (SOA),
also called a semiconductor laser amplifier, can be made by simply eliminating the
optical feedback mechanism of a semiconductor laser. For a solitary SOA as shown
in Fig. 13.29, the end facets have to be antireflection coated. Meanwhile, no other
feedback mechanism, such as a distributed feedback grating, is incorporated into the
device structure. In theory, the output coupling loss of an amplifier is infinitely large so
that it has an infinitely high laser threshold and thus never oscillates no matter how hard
it is pumped. In practice, there is always some residual optical feedback in an SOA,

Figure 13.29 Basic structure of a solitary SOA.
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but it is made small enough not to cause laser oscillation in the operating conditions
of the amplifier. Indeed, a semiconductor laser can be used as an amplifier when it
is biased below threshold but above transparency. An SOA is normally pumped with
current injection. It has to be pumped to reach population inversion in its active region
because an optical gain is required for its operation.

The general characteristics of laser amplifiers described in Section 10.4 apply to
SOAs as well and need not be repeated here. Similarly to fiber amplifiers, SOAs can
also be used as power amplifiers, optical repeaters, or optical preamplifiers in optical
communication systems, as shown in Fig. 10.18. Compared to fiber amplifiers, however,
SOAs have certain disadvantages and advantages in these applications because of the
differences in physical properties between semiconductors and rare-earth ion-doped
fibers. A few of these differences are apparent. For any optical signal emitted by a
semiconductor laser at any wavelength, it is always possible to design a matching SOA
by simply using the same material and the same structure as the laser. This convenience
is not always available to fiber amplifiers. An SOA can be electrically pumped directly,
whereas a fiber amplifier needs to be optically pumped. SOAs are compatible with
other semiconductor devices, including semiconductor lasers, waveguides, detectors,
and other semiconductor electronic devices. Therefore, they can be directly integrated
into optoelectronic circuits on the chip level when they are used as power amplifiers
or preamplifiers. However, when used in a fiber link, an SOA has a relatively large
insertion loss. In contrast, fiber amplifiers have physical compatibility with fiber trans-
mission lines and are ideally suited for all-optical repeater applications. As discussed
in Section 10.5, fiber amplifiers have the advantage of being polarization insensitive.
Because of the polarization-dependent characteristics of a semiconductor waveguide,
the optical gain of an SOA normally depends on the polarization of the incoming signal
if no special effort has been made to accommodate a polarization-independent design.

Besides these externally apparent differences, there are other significant differences
between SOAs and fiber amplifiers due to fundamental differences between semicon-
ductor and fiber gain media. Among the most important parameters of an optical gain
medium are the gain bandwidth �νg, the emission cross section σe, or the gain cross
section σ for a semiconductor, and the fluorescence lifetime τ2, or the carrier lifetime
τs for a semiconductor.

The gain bandwidth of an SOA, which is on the order of 10–20 THz, is greater than
that of a rare-earth ion-doped fiber amplifier, which is on the order of several terahertz.
Both are quite broad, however. Therefore, both semiconductor and fiber amplifiers are
capable of amplifying optical signals of broad spectral widths, such as those in the
form of ultrashort optical pulses, or optical signals of multiple wavelengths, such as
those in a wavelength-division multiplexed system. The other two parameters are very
different for SOAs and fiber amplifiers, however. For an SOA, σ is in the range of 1
to 5 × 10−20 m2 and τs is on the order of 500 ps to 5 ns, whereas for a fiber amplifier,
σe is in the range of 1 to 5 × 10−25 m2 and τ2 is on the order of 100 µs to 10 ms,
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depending on the particular rare-earth ions. According to these numbers, an SOA has
a gain cross section about five orders of magnitude larger and a gain relaxation time
about six orders of magnitude shorter than those of a fiber amplifier. A large gain
cross section means that the gain changes significantly in response to changes in the
population inversion. In such a high-gain medium, the optical gain is easily saturated by
the presence of stimulated emission because the saturation intensity of a gain medium
is inversely proportional to the emission cross section. For this reason, a large gain
cross section is disadvantageous for the application of an SOA as a linear amplifier.
It can cause distortion in a given optical signal due to self saturation by the signal,
interference between successive bits or symbols in the same channel, and crosstalk
among different channels in a multichannel system due to cross saturation. The short
carrier lifetime of an SOA is also a disadvantage in terms of its susceptibility to high-
frequency noise. A carrier lifetime of 1 ns allows the gain of the amplifier to respond to
noise or fluctuations at frequencies up to 1 GHz from the electrical pump source or from
the optical signal. Consequently, an SOA tends to be less linear but noisier than a fiber
amplifier.

13.9 Semiconductor lasers

Semiconductor lasers, also called laser diodes or diode lasers, are compact and efficient
lasers that have found many important applications in optical communications, optical
data storage, optical signal processing, compact-disk players, laser printers, and medical
instruments. High-power semiconductor lasers are also used as highly efficient pump
sources for other optically pumped lasers and amplifiers, such as solid-state lasers,
optical fiber lasers, and fiber amplifiers. Unlike the light-emitting active region of an
LED, which can be made of either a direct-gap or an indirect-gap semiconductor, the
active region of a semiconductor laser has to be made of a direct-gap semiconductor of
high radiative efficiency though indirect-gap semiconductors can be used for its cladding
layers. Practical semiconductor lasers are based on III–V semiconductors though lasers
based on IV–VI compounds have also been developed. In principle, any direct-gap
semiconductor can be used as a laser material. In reality, however, there are many other
issues to be considered. For most lasers, the active region has to be lattice matched to
the substrate in order to avoid defects in the active layer, which can act as nonradiative
recombination centers. In addition, lattice-matched cladding layers that have larger
bandgaps and lower indices than the active layer are required for heterostructures. These
requirements limit the spectral ranges of certain materials for laser applications. As a
consequence, not all ternary and quaternary compounds that have direct bandgaps are
successfully used to make lasers. One notable exception is the InGaN lasers fabricated
on sapphire substrates. Another exception is strained QW lasers. The wavelength ranges
of major lasers based on III–V semiconductors are listed in Table 13.2.
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Table 13.2 Major III–V semiconductor lasers

Laser material Substrate Wavelength Color

InGaN Sapphire 370–680 nm UV–red
InGaP GaAs 620–700 nm Red
AlGaAs GaAs 750–870 nm Red–IR
InGaAs GaAs 980–1050 nm IR
InGaAsP InP 1.1–1.65 µm IR
InGaAsSb GaSb 2–3 µm IR

There are many significant differences, in fundamental principles, structures, and
characteristics, between a semiconductor laser and an LED though they use similar
semiconductor materials and share the basic structures discussed in Section 13.5. The
fundamental principles of a semiconductor laser differ from those of an LED in that a
laser requires an optical gain for stimulated amplification of the emitted photons and a
resonant cavity for optical feedback, both of which are not needed for an LED. Because
of the need for an optical gain, the active region of a semiconductor laser has to be made
of a direct-gap semiconductor of high radiative efficiency. An indirect-gap semiconduc-
tor simply cannot be pumped efficiently to reach the condition of population inversion
for an optical gain. To reach population inversion, a semiconductor laser requires a
higher current density than that required by a typical LED. Therefore, confinement of
the current flow for efficiently injecting carriers into the active region and confinement
of injected carriers for reducing carrier leakage are important factors to be considered
in designing the structure of a semiconductor laser. As discussed in Section 13.5, the
structures that serve these purposes well are DH junctions and quantum wells in the
vertical direction and, for edge-emitting lasers, index-guiding structures in the lateral
direction. For this reason, efficient semiconductor lasers are commonly index-guided
devices with DH junctions or quantum wells. The need of a resonant cavity to provide
optical feedback for the laser action leads to many different designs of laser structures.
The combination of stimulated emission and optical feedback results in many charac-
teristics of a laser, including the presence of a laser threshold, the existence of laser
modes, the coherence and narrow linewidth of the laser emission, the high quantum
efficiency of a laser, and the large modulation bandwidth of a laser, that are absent from
the characteristics of an LED.

In terms of the mechanism for optical feedback, there are two basic types of resonant
cavities for semiconductor lasers: the Fabry–Perot cavity and the grating-feedback
cavity. Though both types of cavities serve the same purpose of providing optical
feedback for laser oscillation, they are based on very different principles and have very
different characteristics. Each type of cavity can have a number of different variations.
Hybrids of the two types are also used in some lasers. Both types of cavities and their
variations and hybrids can be used to make either edge-emitting or surface-emitting
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lasers. In terms of structural geometry, the cavity of a semiconductor laser can be a
horizontal cavity, formed in a direction parallel to the junction plane, a vertical cavity,
formed in the direction perpendicular to the junction plane, or a folded cavity. An edge-
emitting laser normally has a horizontal cavity. In contrast, a surface-emitting laser can
have a horizontal cavity, a vertical cavity, or a folded cavity.

The general discussions on laser oscillation in Section 11.2, including the concepts
of laser threshold, mode pulling, and longitudinal modes, apply to semiconductor lasers
as well. For a laser to oscillate at a particular frequency, the general concept is that the
round-trip gain has to exactly balance the round-trip loss while the round-trip phase shift
is a multiple of 2π . This concept is also applied to determine the threshold gain and the
oscillating modes of a semiconductor laser. However, some special considerations are
often needed in the application of this concept because of the structural variation among
different kinds of semiconductor lasers. Two structural factors are most significant for
semiconductor lasers. First, the overlap between the laser field distribution and the
active gain medium in a semiconductor can be small; it has to be considered for the
gain of the laser. Second, many semiconductor lasers use gratings for their optical
feedback; the effects of a grating on the phase and amplitude of a laser field have to be
considered in such cases.

In a semiconductor laser, the volume of a laser mode is generally larger than that
of the active region where the gain exists. The gain overlap factor, or the gain filling
factor, of a laser mode is thus defined as

� =

∫ ∫ ∫
active

|E|2dxdydz

∞∫
−∞

∞∫
−∞

∞∫
−∞

|E|2dxdydz

≈ Vactive

Vmode
, (13.79)

where E is the intracavity laser field, Vactive is the volume of the active region, and
Vmode is the effective volume of the laser mode under consideration.

With the notable exception of the vertical-cavity surface-emitting laser (VCSEL),
most semiconductor lasers are basically waveguide lasers of stripe geometry. For a
typical stripe-geometry laser that has a thin active layer, the laser waveguide has a
thickness much less than its width, d � w. It can be considered as a single-mode slab
waveguide that has a small V number. Then, according to (2.93), the confinement factor,
�mode, of the laser mode can be approximated by

�mode = V 2

2 + V 2
≈ 4π2n�nd2/λ2

1 + 4π2n�nd2/λ2
, (13.80)

where n and �n are, respectively, the refractive index and the index step of the laser
waveguide. For a DH semiconductor laser that does not contain quantum wells, the
carriers distribute almost uniformly in the thickness d of the active layer, which also
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serves as the optical waveguide. Then the overlap factor � is the same as the mode
confinement factor �mode. For a QW laser, the carriers are confined in the width dQW

of a quantum well but the laser mode is confined by the waveguide width d. Because
dQW � d in general for a QW laser, the overlap factor � is not the same as, but is
smaller than, the mode confinement factor �mode. We thus have

� =




�mode, for DH lasers,

MQWdQW

d
�mode, for QW lasers,

(13.81)

where MQW is the number of quantum wells in the active layer of a QW laser.
For a VCSEL, which is generally a QW laser, the overlap factor has the form of the

filling factor defined in Section 11.2. It takes the following simple form:

� = a
MQWdQW

l
, (13.82)

where l is the length of the laser cavity and a is a factor between 1 and 2. The confinement
factor of a stripe-geometry laser is independent of the cavity length, but that of a VCSEL
can be increased by reducing the length of the VCSEL cavity.

The threshold gain coefficient for each mode of a semiconductor laser can be found
by applying the concept of balancing the gain with the loss of the laser mode. Because
some semiconductor lasers, such as DFB lasers, do not use localized cavity mirrors,
the threshold gain coefficient of a given laser mode can be generally expressed as

�gth = α + αout, (13.83)

where α is the internal distributed loss as defined in (11.56) and αout is the output
coupling loss of the laser oscillator.

EXAMPLE 13.14 A GaAs/AlGaAs laser emits at 850 nm wavelength. The refractive index
of GaAs at 850 nm is n = 3.65. (a) Find the gain overlap factor � if the laser is a stripe-
geometry DH laser that has an active waveguide thickness of d = 0.2 µm defined by an
index step of�n = 0.2. (b) Find the gain overlap factor� if the laser is a stripe-geometry
MQW laser that contains three quantum wells each of a thickness of dQW = 10 nm in
a waveguide of d = 0.2 µm defined by an index step of �n = 0.2. (c) Find the gain
overlap factor � if the laser is an MQW VCSEL that contains three quantum wells each
of a thickness of dQW = 10 nm in a cavity of l = 1 µm. Take the factor a = 2.

Solution (a) For λ = 850 nm, d = 0.2 µm = 200 nm, n = 3.65, and �n = 0.2, we
find that

�mode = 4 × π2 × 3.65 × 0.2 × (200/850)2

1 + 4 × π2 × 3.65 × 0.2 × (200/850)2
= 0.61.

Thus, � = �mode = 61% for the DH laser without quantum wells.
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(b) For the MQW laser, we have MQW = 3 and dQW = 10 nm. We also have �mode =
61% from (a). From (13.81), we find the following overlap factor:

� = 3 × 10

200
× 61% = 9.2%.

(c) For the MQW VCSEL, we have MQW = 3, dQW = 10 nm, l = 1 µm, and a = 2.
From (13.82), we find the following gain overlap factor:

� = 2 × 3 × 10 × 10−9

1 × 10−6
= 6%.

We find that the gain overlap factor of the MQW VCSEL and that of the stripe-geometry
MQW laser are both less than 10% and much smaller than that of the DH laser. This
small gain overlap factor is normally compensated by the much higher gain of quantum
wells in comparison to that of an ordinary DH structure.

Edge-emitting lasers

Most edge-emitting lasers are stripe-geometry lasers, though some broad-area edge-
emitting lasers are still useful. The cavity of an edge-emitting laser is normally a hori-
zontal cavity with a longitudinal axis defined by a gain-guiding or index-guiding stripe.
There are three different kinds of edge-emitting semiconductor lasers: the Fabry–Perot
laser, the distributed Bragg reflector laser (DBR laser), and the distributed feedback
laser (DFB laser).

Fabry–Perot lasers

A Fabry–Perot resonant cavity for an edge-emitting semiconductor laser, shown in
Fig. 13.30, can be realized by simply cleaving end facets. Because the entire structure
of a semiconductor laser forms a single crystal, the cleaved facets are guaranteed to be
perfectly parallel and vertical if they are cleaved along one of the crystalline planes.
Typical III–V semiconductor lasers have end facets cleaved along the (110) plane of

Figure 13.30 Structure of an edge-emitting Fabry–Perot semiconductor laser with cleaved facets.
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the crystal. Because a III–V semiconductor has a high refractive index, a cleaved facet
in the air has a reflectivity typically in the range of 25–35%, depending on the specific
composition of the semiconductor and the polarization and the mode of the laser field.
Because of the high optical gain of a typical semiconductor laser, the optical feedback
provided by such natural reflectivity from the cleaved facets is normally sufficient for
laser oscillation. With such a Fabry–Perot cavity formed by two cleaved facets, the laser
emits equally from both ends. To increase the laser output in one direction, the back
facet can be coated with total-reflection coating so that all of the laser power is emitted
from the uncoated front facet. Without an additional spectrum-filtering or frequency-
selecting mechanism incorporated into the device, a Fabry–Perot semiconductor laser
tends to oscillate in multiple longitudinal modes with a mode spacing of �νL given in
(11.43) but modified by the mode-pulling effect. The threshold gain coefficient for each
mode of a Fabry–Perot semiconductor laser is found by taking αout = −(ln

√
R1 R2)/ l

in (13.83) for the output-coupling loss to be the mirror loss, thus reducing (13.83) to
the form of (11.56).

Distributed Bragg reflector lasers

Both DBR and DFB lasers use built-in gratings for optical feedback, but they have
some basic structural differences and thus different characteristics. A DBR laser simply
utilizes one or two Bragg reflectors as end mirrors in a manner similar to the mirrors
of a Fabry–Perot laser. In contrast, a DFB laser uses a grating not as an end mirror but
as a distributed feedback mechanism.

The principle and detailed characteristics of grating waveguide couplers are discussed
in Section 5.1. By properly choosing the grating period �, a DBR can be designed to
have a peak reflectivity at a desired Bragg frequency of

νB = c

λB

, (13.84)

where λB is the Bragg wavelength defined in (5.23). At the Bragg frequency, the Bragg
reflector has a peak reflectivity of

RDBR = tanh2 |κ|lDBR, (13.85)

where lDBR is the actual physical length of the DBR. From (5.24), we know that the
phase shift on reflection from a DBR for a wave that has a propagation constant β(ω)
at a frequency ω is

ϕDBR = ϕB + 2
[
β(ω) − βB

]
leff
DBR, (13.86)

where βB = β(ωB) and

leff
DBR = tanh |κ|lDBR

2|κ| = R1/2
DBR

2|κ| (13.87)
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Figure 13.31 Structure of an edge-emitting distributed Bragg reflector (DBR) semiconductor laser
with two Bragg reflectors.

is the effective phase length of the DBR for its reflection phase shift. We see from
(13.86) that ϕDBR = ϕB at the Bragg frequency. According to (5.29), the frequency
bandwidth for high reflectivity of a DBR is approximately

�νDBR ≈ |κ|c
π Nβ

, (13.88)

where Nβ is the effective group index of the mode field at the Bragg frequency. The peak
reflectivity and the bandwidth of a DBR can be chosen by properly choosing the cou-
pling coefficient κ and the physical length lDBR of the DBR. The effective phase length
leff
DBR is then determined by both κ and lDBR. Thus the phase shift ϕDBR is only a function

of optical frequency once the physical parameters κ and lDBR of the DBR are given.
To make a DBR laser, one or both of the reflective facets of a Fabry–Perot laser are

replaced with DBR mirrors. Figure 13.31 shows a DBR laser with two Bragg reflectors.
Note that in a DBR laser, the grating is placed outside the active region of the laser. A
DBR laser cavity of a length l between the two DBR mirrors such as the one shown
in Fig. 13.31 has many longitudinal modes at the frequencies defined by the following
resonance condition:

2βl + ϕDBR1 + ϕDBR2 = 2qπ, (13.89)

where β is the propagation constant of the laser field in the laser waveguide; ϕDBR1 and
ϕDBR2 are the phase shifts of the field upon reflection from the left and the right DBR
mirrors, respectively, and q is the integral longitudinal mode number of the resonant
cavity (not to be confused with the grating order of the DBR). Using (13.86) for the
DBR phase shift, this resonance condition for the longitudinal mode frequencies of a
DBR laser with DBR mirrors on both ends can be expressed as

2β(ωq )leff = 2qπ − ϕB1 − ϕB2 + 2βB(leff
DBR1 + leff

DBR2), (13.90)

where

leff = l + leff
DBR1 + leff

DBR2 (13.91)
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is the effective phase length of the DBR laser cavity including the effect of the DBR
mirrors. Note that all the parameters on the right-hand side of (13.90) are frequency-
independent constants.

We see from (13.90) that the Bragg frequency νB = ωB/2π is not necessarily a lon-
gitudinal mode frequency of the DBR laser. Therefore, a DBR laser does not generally
oscillate exactly at the Bragg frequency of its DBR mirrors. However, in normal situ-
ations when the gain spectrum of the semiconductor material peaks near the Bragg fre-
quency with a bandwidth much broader than the spectral bandwidth of the DBR mirrors,
the oscillating longitudinal mode frequency must be the one that is closest to the Bragg
frequency because the cavity has the lowest loss at the Bragg frequency where the DBR
reflectivity has a maximum value. Near the Bragg frequency, β(ω) = nβω/c is approx-
imately linearly proportional to the optical frequency. Therefore, the longitudinal mode
spacing of a DBR laser cavity can be given approximately by

�νL = c

2nβleff
, (13.92)

where nβ is the effective phase index of the mode field. Though a DBR laser cavity
has multiple longitudinal modes similarly to a Fabry–Perot cavity, the DBR mirrors
are much more frequency selective than the Fabry–Perot cavity mirrors. Therefore, if
the DBR bandwidth �νDBR is made sufficiently narrow, a DBR laser will oscillate in a
single longitudinal mode at a frequency that is closest to the Bragg frequency νB.

To find the threshold gain coefficient of a DBR laser, we consider the balance of the
gain with the loss of the laser. The optical gain for a pass through the laser cavity is �gl
because the length of the gain medium is l and the gain overlap factor is �. The loss for
a pass is αl −ln

√
R1 R2, where αl is the total distributed loss including that contributed

by the scattering and absorption, but not the transmission, of the laser field in the DBRs
and −ln

√
R1 R2 is the transmission loss of the DBRs. Therefore, for a DBR laser, α

is a weighted average of the distributed loss of the entire structure divided only by the
length l. By equating the gain with the loss for the laser threshold, we then find that
the threshold gain coefficient of a DBR semiconductor laser can be expressed in the
form of (13.83) by taking αout = −(ln

√
R1 R2)/ l like that of a Fabry–Perot laser but

by using the reflectivities of the Bragg mirrors at the oscillating laser frequency for R1

and R2. Note that leff defined in (13.91) is used to find �νL but is not used to evaluate
αout for a DBR laser because leff is an effective phase length, which only determines
the phase shift of the laser field but does not determine the amplification or attenuation
of the laser intensity.

EXAMPLE 13.15 An InGaAsP DBR laser consists of a gain section of a length l = 300 µm
and two identical DBRs as end mirrors, each of a length lDBR = 150 µm. The Bragg
wavelength of the DBRs is λB = 1.530 00 µm. The effective indices for the laser modes
are taken to be nβ = Nβ = 3.45. The gain overlap factor is � = 0.4. The DBR coupling
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coefficient is |κ| = 50 cm−1. The laser has a distributed loss of α = 40 cm−1, which
includes the contributions from the DBRs and scattering at the junctions between the
gain section and the DBR sections. (a) Find the peak reflectivity and the bandwidth of
the two identical DBRs. (b) Find the effective phase length of the DBRs and that of
the DBR laser to determine the longitudinal mode spacing of the laser. (c) How many
longitudinal modes fall within the DBR bandwidth? If the laser is pumped in such a
way that only one longitudinal mode oscillates, what is its wavelength? (d) What is
the threshold gain coefficient of the oscillating mode? (e) If the gain medium has a
gain cross section of σ = 3 × 10−20 m2, what is the required carrier density above
transparency for the laser to reach its threshold?

Solution (a) For |κ| = 50 cm−1 = 5000 m−1 and lDBR = 150 µm, we have |κ|lDBR =
0.75. Therefore, the DBR peak reflectivity at the Bragg wavelength is

RDBR = tanh2 |κ|lDBR = tanh2 0.75 = 0.403.

The bandwidth of the Bragg reflectors is

�νDBR ≈ |κ|c
π Nβ

= 5000 × 3 × 108

π × 3.45
Hz = 138.4 GHz.

(b) The effective phase length, leff
DBR = leff

DBR1 = leff
DBR2, of both DBRs is

leff
DBR = R1/2

DBR

2|κ| = 0.4031/2

2 × 5000
m = 63.5 µm.

Thus, the effective phase length of the laser is

leff = l + 2leff
DBR = 427 µm.

We then find the following longitudinal mode spacing:

�νL = c

2nβleff
= 3 × 108

2 × 3.45 × 427 × 10−6
Hz = 101.8 GHz.

(c) Because 2�νL > �νDBR > �νL, there is at least one longitudinal mode, but at
most two modes, within the reflector bandwidth. Whether one or two modes fall within
the DBR bandwidth depends on where the mode frequencies are located with respect
to the Bragg frequency. To answer this question, we need to find the mode number q
for the longitudinal mode frequency νq that is closest to νB. Using (13.90), we find that
the phase mismatch for a mode at νq can be expressed as

δq = −β(ωq ) + βB = 1

2leff

[
2βBl − (2q − 1)π

]
.

The mode frequency that is closest to νB is found by finding the number q that minimizes
the value of |δq |. Using nβ = 3.45 and λB = 1.530 00 µm for βB = 2πnβ/λB, we find
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that the value of |δq | is minimized with q = 1353 for δ = 32.46 cm−1 = 3246 m−1.
Thus

ν − νB = − cδ

2πnβ

= −3 × 108 × 3246

2 × π × 3.45
Hz = −44.9 GHz.

For the two neighboring modes, corresponding to q + 1 = 1354 and q − 1 = 1352,
the q + 1 = 1354 mode falls within the DBR bandwidth because |νq+1 − νB| =
| −44.9 + 101.8| GHz < �νDBR/2 = 69.2 GHz, but the q − 1 = 1352 mode falls out-
side the DBR bandwidth because |νq−1 − νB| = | −44.9 − 101.8| GHz > �νDBR/2 =
69.2 GHz. Therefore, there are two modes that fall within the DBR bandwidth. If the
laser is pumped right at the threshold so that only one mode oscillates, the q = 1353
mode will oscillate because it has the smallest phase mismatch, thus the lowest thresh-
old. Its wavelength

λ = c

ν
= cλB

c + (ν − νB)λB

= 3 × 108 × 1.53 × 10−6

3 × 108 − 44.9 × 109 × 1.53 × 10−6
m

= 1.530 35 µm.

(d) With |κ| = 50 cm−1, δ = 32.46 cm−1, and lDBR = 150 µm, we have |κ|l = 0.75
and |δ/κ|2 = (32.46/50)2. By using (4.91) for the contradirectional coupling efficiency
in the presence of phase mismatch, the DBR reflectivity at the oscillating mode fre-
quency can be found as

R =
sinh2

(
|κ|l
√

1 − |δ/κ|2
)

cosh2
(
|κ|l
√

1 − |δ/κ|2
)

− |δ/κ|2
= 0.385,

which is somewhat smaller than RDBR because the mode frequency does not fall right
at νB. Taking R1 = R2 = R = 0.385, the output coupling loss for the DBR laser is

αout = − ln
√

R1 R2

l
= − ln 0.385

300
µm−1 = 3.18 × 10−3 µm−1 = 31.8 cm−1.

Thus the threshold gain coefficient

gth = α + αout

�
= 40 + 31.8

0.4
cm−1 = 179.5 cm−1.

(e) For gth = 179.5 cm−1 = 1.795 × 104 m−1 with σ = 3 × 10−20 m2, the threshold
carrier density above transparency is

Nth − Ntr = gth

σ
= 1.795 × 104

3 × 10−20
m−3 = 5.98 × 1023 m−3.

For this laser, there are two modes within the DBR bandwidth. In this particular case,
the threshold of the second mode is not much higher than the first mode considered above
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(a) (b)

λ  

Figure 13.32 Structures of edge-emitting distributed feedback (DFB) semiconductor lasers: (a)
DFB laser with no phase shift and (b) λ/4 phase-shifted DFB laser.

(see Problem 13.9.4). Therefore, this DBR laser can possibly oscillate in two modes.
This problem can be avoided by proper design of a DBR laser (see Problems 13.9.3
and 13.9.5).

Distributed feedback lasers

In a DFB laser, the grating is placed right next to the waveguiding layer along the
length of the active region, as shown in Fig. 13.32(a). We learn from the discussions
in Section 5.1 that it can be placed either above or below the active layer for the same
effect. This grating provides all of the optical feedback for laser oscillation. The end
facets of a DFB laser are coated with antireflection coating to eliminate any reflection
from the facets. Because the grating in a DFB laser runs along the length of the active
region where optical gain exists, it does not function as a simple passive reflector like
that in a DBR laser but rather as a frequency-selective contradirectionally coupled
amplifier for the intracavity laser field. Consequently, the characteristics of a DFB laser
are more complicated than those of a DBR laser.

A DFB laser also has multiple longitudinal modes whose frequencies are still deter-
mined by the basic requirement that the round-trip phase shift be an integral multiple
of 2π . Meanwhile, its threshold gain coefficient is still subject to the relation in (13.83)
under the requirement that the gain and loss of an oscillating laser mode exactly balance
each other. Because of the distributed nature of the optical feedback in a DFB laser,
however, it is not feasible to apply these concepts by simply following the round-trip
propagation of a laser field as is done for Fabry–Perot lasers and ring lasers. Instead,
we have to consider coupling of the contrapropagating fields in a DFB laser cavity by
using the concepts discussed in Sections 4.3 and 5.1.

A DFB laser that has a continuous grating across its entire length l and perfect
antireflection coating on its end facets, as shown in Fig. 13.32(a), is considered. This
structure is basically a DBR. From the discussions in Sections 4.3 and 5.1, we know
that its complex reflection coefficient can be found by replacing κab with κ and κba with
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κ∗ in (4.72) for αc and in (4.78) for r , where κ = κab(q) as defined in (5.8) and (5.10).
Thus, we have

r = iκ∗ sinh αcl

αc cosh αcl + iδ sinh αcl
, (13.93)

where

αc = (|κ|2 − δ2)1/2. (13.94)

A DFB laser differs from a passive DBR in that an optical field propagating in a DFB
laser sees an optical gain coefficient of �g and a distributed loss of α just like a field
in any laser. To account for the effects of such gain to and loss from the laser medium,
the laser field at a frequency ω has a complex propagation constant β of the following
form:

β = nβω

c
− i

�g − α

2
. (13.95)

Then, from (5.21) and (5.22), we have the following frequency-dependent phase mis-
match:

δ = −β(ω) + βB = −nβ�ω

c
+ i

�g − α

2
, (13.96)

where �ω = ω − ωB and ωB = 2πνB. Note that αc given in (13.94) is frequency de-
pendent because of the frequency dependence of δ, and αc is complex when �ω �= 0.
Clearly, the reflection coefficient r given in (13.93) is highly frequency dependent.

The oscillation condition of a DFB laser can be found by considering the fact that
when a laser mode is oscillating, there is a laser output without an optical input at that
particular mode frequency. This condition is met when r = ∞ at the oscillating mode
frequency. Because the numerator of r in (13.93) is always finite for finite values of |κ|,
δ, and l, the oscillation condition of a DFB laser is found by setting its denominator to
zero:

αc cosh αcl + iδ sinh αcl = 0. (13.97)

This oscillation condition for a DFB laser can be transformed to the following simple
form (see Problem 13.9.6(a)):

|κ| sinh αcl = iαc. (13.98)

The longitudinal mode frequencies and the threshold gain coefficient of each mode for
a DFB laser of a given |κ|l value can be found by solving the oscillation condition in
(13.97) or, equivalently, that in (13.98).

The complex transcendental equations in (13.97) and (13.98) have no simple analyti-
cal solutions. Some of their characteristics can be obtained from approximate solutions,
but accurate solutions must be obtained numerically. It can be shown analytically, how-
ever, that the Bragg frequency νB is not a longitudinal mode of the DFB laser and that
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the longitudinal modes are symmetrically distributed on both sides of νB (see Prob-
lem 13.9.6(b)). By solving (13.97), or (13.98), for a longitudinal mode frequency of a
DFB laser that has a given |κ|l value, the value of (�gth − α)l = αoutl at the oscillation
threshold of that particular mode is obtained simultaneously.

Numerical solutions show that the longitudinal modes have the following longitudinal
mode frequencies:

νq ≈ νB ± (q + µ)
c

2nβl
, (13.99)

where q = 0, 1, 2, . . . is an integral mode number for the DFB laser modes (not to
be confused with the grating order) and µ is a constant that is a function of |κ|l. The
longitudinal mode spacing of a DFB laser is approximately, but not exactly,

�νL ≈ c

2nβl
, (13.100)

which is similar to that of a Fabry–Perot laser of an effective index of nβ and a cavity
length of l. The optical gain required for a DFB laser to oscillate is lowest at the Bragg
frequency, but a DFB laser that does not have a structural phase shift in its grating does
not oscillate at its Bragg frequency because νB is not one of its mode frequencies. In an
ideal situation, the two lowest-order frequencies on the two sides of νB, corresponding
to q = 0, have the same lowest oscillation threshold. Therefore, in a normal operating
condition, the spectral feature of a DFB laser often consists of the two longitudinal
modes at

ν = νB ± µc

2nβl
= νB ± µ�νL, (13.101)

which have the following two wavelengths:

λ ≈ λB ± µλ2
B

2nβl
. (13.102)

Clearly, there is a stop band that is centered at the Bragg frequency between these two
fundamental mode frequencies:

�νSB = µc

nβl
= 2µ�νL. (13.103)

Figure 13.33 shows the numerically solved value of µ = �νSB/2�νL and the output
coupling loss αoutl = (�gth − α)l of a DFB laser at the threshold of its fundamental
mode frequencies, both as a function of the value of |κ|l. We see that µ → 1/2 for
|κ|l → 0, but µ > 1/2 for |κ|l �= 0.

Figure 13.34 shows two longitudinal mode spectra of a DFB laser for |κ|l = 1.5 and
|κ|l = 1, respectively, when the laser oscillates at its fundamental mode frequencies.
This spectrum is obtained by plotting R = |r |2 as a function of the frequency difference
�ν = ν − νB normalized to the mode spacing �νL.
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(a) (b)

Figure 13.33 (a) Value of µ = �νSB/2�νL, which defines the stop band and the fundamental
mode frequencies, and (b) value of αoutl = (�gth − α)l, which defines the fundamental mode
threshold, as a function of the value of |κ|l for a non-phase-shifted DFB laser.

µ

Figure 13.34 Longitudinal mode spectra of a non-phase-shifted DFB laser of |κ|l = 1.5 (solid
curve) and |κ|l = 1 (dashed curve) when the laser oscillates at its fundamental mode frequencies.

The symmetry of the two lowest-order modes for a DFB laser can be upset by
introducing a fixed phase shift in the DFB structure. A phase shift at either end facet,
whether introduced intentionally by selective coating or unintentionally by the cleaving
process, can remove the degeneracy to result in single-mode, or quasi-single-mode,
oscillation. The most effective is to incorporate a π/2 phase shift in the grating. In
such a so-called λ/4-shifted DFB laser as shown in Fig. 13.32(b), a longitudinal mode
appears exactly at the Bragg frequency νB where the cavity has the lowest loss and
the laser has the corresponding lowest threshold. Consequently, a λ/4 phase-shifted
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DFB laser oscillates in a single longitudinal mode at νB. The characteristics of the λ/4
phase-shifted DFB laser are considered in Problems 13.9.8 and 13.9.9.

EXAMPLE 13.16 An InGaAsP DFB laser has its grating fabricated along its gain section,
which has a length of l = 300 µm. There is no intentional or unintentional structural
phase shift in the grating. It has the same l = 300 µm length of the gain section as that of
the DBR laser considered in Example 13.15. Its grating length of 300µm is also the same
as the total grating length of the two DBRs of the DBR laser. Most of the parameters of
this DFB laser are the same as those of the DBR laser described in Example 13.15 with
λB = 1.530 00 µm, nβ = Nβ = 3.45, � = 0.4, and |κ| = 50 cm−1. It has a distributed
loss of α = 10 cm−1, which is smaller than that of the DBR laser because the DBR laser
has additional losses contributed by the external DBRs. (a) Find the longitudinal mode
spacing and the stop band of the DFB laser. (b) How many longitudinal modes will
oscillate if the laser is pumped to its lowest threshold? What are their wavelengths? (c)
What is the threshold gain coefficient of the oscillating modes? (d) If the gain medium
has a gain cross section of σ = 3 × 10−20 m2, what is the required carrier density
above transparency for this laser to reach its threshold? Compare the characteristics
of this DFB laser to those of the DBR laser in Example 13.15 while answering these
questions.

Solution (a) The longitudinal mode spacing

�νL ≈ c

2nβl
= 3 × 108

2 × 3.45 × 300 × 10−6
Hz = 144.9 GHz.

For this laser, we have |κ|l = 1.5. From Fig. 13.33, we find that µ = 0.96 for |κ|l = 1.5.
Thus, the stop band

�νSB = 2µ�ν = 278.2 GHz.

The longitudinal mode spacing �νL of this DFB laser is much larger than that of the
DBR laser considered in Example 13.15 because of the larger effective phase length
of the DBR laser. The spacing between the two fundamental longitudinal modes of the
DFB laser is �νSB, which is even larger than �νL.

(b) Because there is no structural phase shift in the grating, both fundamental modes
have the same threshold. Therefore, both of them should oscillate when the laser is
pumped to reach its lowest threshold. The wavelengths of these two modes are

λ ≈ λB ± µλ2
B

2nβl
=
(

1.53 ± 0.96 × 1.532

2 × 3.45 × 300

)
µm = (1.53 ± 1.09 × 10−3) µm.

Thus we find two wavelengths at 1.528 91 and 1.531 09 µm. Both of these two modes
will oscillate once the DFB laser reaches its threshold because both of them have the
same threshold. In comparison, the DBR laser oscillates in only one wavelength at its
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threshold, though two modes fall in the DBR bandwidth and the second mode may
have a threshold only slightly higher than the first.

(c) From Fig. 13.33, we find that αoutl = 2.574 at the DFB laser threshold for |κ|l =
1.5. For l = 300 µm, we have

αout = 2.574

300
µm−1 = 8.58 × 10−3 µm−1 = 85.8 cm−1.

Therefore,

gth = α + αout

�
= 10 + 85.8

0.4
cm−1 = 240 cm−1.

This threshold gain coefficient is higher than that of the DBR laser despite the fact that
the DBR laser has a much larger distributed loss than this DFB laser.

(d) For gth = 240 cm−1 = 2.4 × 104 m−1 with σ = 3 × 10−20 m2, the threshold
carrier density above transparency is

Nth − Ntr = gth

σ
= 2.4 × 104

3 × 10−20
m−3 = 8 × 1023 m−3.

The threshold carrier density above transparency for this DFB laser is higher than that
for the DBR laser because of the higher threshold gain coefficient for the DFB laser.

Clearly, a DFB laser without a structural phase shift in its grating has a high threshold
and oscillates in two modes. These characteristics are inferior to those of a similar DBR
laser. A DFB laser with a proper structural phase shift, such as the λ/4-shifted DFB
laser, has a lower threshold with only one oscillating mode (see Problem 13.9.10). It is
then competitive to the DBR laser in performance and indeed is favored over the DBR
laser because of its simpler and shorter structure than the DBR laser structure.

Surface-emitting lasers

The common feature for all surface-emitting lasers irrespective of their structures is that
the laser output is emitted in a direction perpendicular to the semiconductor substrate.
In comparison to edge-emitting lasers, a unique advantage of surface-emitting lasers
is that they can be made in a two-dimensional array on a common substrate, which is
very useful for applications in parallel optical interconnects and parallel optical signal
processing. Nevertheless, a surface-emitting laser can be packaged separately and used
as a discrete laser as well.

The cavity of a surface-emitting laser can be a horizontal cavity, a vertical cavity, or
a folded cavity. Each type of cavity can have different variations. Different cavity struc-
tures lead to different characteristics and different applications for the surface-emitting
lasers. Considering only the basic structures, there are three kinds of surface-emitting
semiconductor lasers: the folded-cavity surface-emitting laser (FCSEL), the grating-
coupled surface-emitting laser (GCSEL), and the vertical-cavity surface-emitting laser
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Figure 13.35 Structure of a folded-cavity surface-emitting laser (FCSEL).

(VCSEL). Both FCSELs and GCSELs are typically stripe-geometry lasers similar to
the edge-emitting lasers, but VCSELs are quite different from all of them.

Folded-cavity surface-emitting lasers

A FCSEL can be constructed by modifying the output-coupling geometry of an edge-
emitting laser with the addition of 45◦ internal total-reflection mirrors to direct the laser
output to the surface-emitting direction, as illustrated in Fig. 13.35. A 45◦ semiconductor
facet serves as an internal total-reflection mirror for the intracavity laser field because
the critical angle for internal reflection at a semiconductor–air interface is much smaller
than 45◦, due to the large refractive index of a semiconductor. In principle, each of the
three concepts for edge-emitting lasers can be used for a FCSEL.

Except for the advantages associated with its surface-emitting geometry, the general
characteristics of a FCSEL are similar to those of a corresponding edge-emitting laser
based on the same concept. Uncoated semiconductor surfaces are sufficient as surface-
emitting output mirrors for a Fabry–Perot FCSEL. For a DBR FCSEL, high-reflection
DBR surface-facing mirrors for output coupling can be constructed with alternating
thin layers of semiconductors that have different compositions, thus different refractive
indices. Such multilayer DBR reflectors are also used in the VCSELs discussed below.
Because these vertically alternating layers are parallel to the substrate surface, they
can be fabricated using crystal growth technology with more ease and control than a
horizontal grating.

Grating-coupled surface-emitting lasers

The concept of grating surface output coupling discussed in Section 5.3 can be applied to
a horizontal-cavity semiconductor laser for vertical emission through grating coupling.
Because of the use of grating coupling, a GCSEL is normally based on a DBR laser.
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Figure 13.36 Structure of a grating-coupled surface-emitting laser (GCSEL).

It is possible to use the same set of gratings for both optical feedback and surface
output coupling. For better control of the output beam characteristics, however, separate
gratings are often used to serve the functions of optical feedback and output coupling,
respectively. Figure 13.36 shows a GCSEL that is a DBR laser with two first-order DBR
mirrors and a separate section of second-order grating for surface output coupling. The
surface output-coupling grating does not provide optical feedback and thus does not
participate in laser oscillation.

GCSELs have a few unique features because of their structures. As a DBR laser,
a GCSEL oscillates in a single longitudinal mode close to the Bragg frequency of
its grating. Sophisticated two-dimensional geometry for the output-coupling grating
can be used for output beam shaping and control. A curved or circular output-coupling
grating can be used to emit a collimated output laser beam with a very small divergence.
A large grating can be used to increase the output-coupling efficiency for a high-power
laser. To concentrate most of the output power into one surface-emitting beam, a blazed
grating can be used to reduce the emission in the substrate direction. On the other hand,
as we have learned in Section 5.3, it is also possible to choose a grating for multiple
output beams emitting in different directions if desired.

Vertical-cavity surface-emitting lasers

Uniquely among all edge-emitting and surface-emitting lasers, the resonant cavity of a
VCSEL is formed in the direction perpendicular to the junction plane and the substrate.
The uniqueness of a VCSEL is that it has a very short cavity made possible by its
vertical orientation. This feature has several important implications for the structure
and the performance characteristics of a VCSEL. Because of the short cavity of a
VCSEL, it is required that its gain section be thin but highly efficient and its mirror
reflectivities be high in order for the VCSEL to function. A thin and efficient gain
section is achieved by using quantum wells. High mirror reflectivities are achieved by
using semiconductor DBRs, such as AlAS/GaAs DBRs, or dielectric DBRs, such as
SiO2/TiO2 or Si/Al2O3 DBRs. A metal layer can also be deposited on top or below to
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Figure 13.37 Structure of a vertical-cavity surface-emitting laser (VCSEL).

increase the reflectivity of a DBR. Consequently, a VCSEL is normally a QW DBR laser.
Figure 13.37 shows the basic structure of a VCSEL. A typical VCSEL contains a very
thin active region of one to four quantum wells, each of which has a typical thickness of
5–10 nm. This active region is sandwiched between two spacer layers. Optical feedback
is provided by monolithically integrated DBRs.

The DBR mirrors of a VCSEL are index-modulation gratings containing thin layers
of alternating compositions and refractive indices. Because of their vertical stacking
geometry, the thickness and composition of each layer, as well as the sharp transition
between neighboring layers, can be precisely controlled using advanced fabrication
technology. Such a square index grating with alternating layers of indices of n ± �n/2
has an index step of �n and an average index of n between two neighboring layers.
It can be shown that a first-order square grating of a 50% duty factor has the largest
coupling coefficient with a magnitude given by (see Problem 13.9.12)

|κ| = 2�n

λ
, (13.104)

where λ is the optical wavelength in free space. The period of a first-order DBR is
� = λB/2n for q = 1 in (5.23). Therefore, the thickness of each alternating layer for
the first-order square grating of a 50% duty factor is λB/4n. The physical length of such
a DBR is

lDBR = NDBR� = NDBRλB

2n
, (13.105)

where NDBR is the number of pairs of alternating layers that define the grating periods.
The value of NDBR can only be an integer or half-integer because there is an integral
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number of layers. The number of pairs for a semiconductor DBR ranges between 10
and 40, but that for a dielectric DBR is typically less than 10, sometimes only a few.

The peak reflectivity of the DBR at the Bragg wavelength can be expressed as

RDBR = tanh2 |κ|lDBR = tanh2 NDBR�n

n
. (13.106)

The DBR reflectivities for VCSELs are required to be very high, normally higher than
98% but often higher than 99%. The two DBRs for a VCSEL are not symmetric. The
top DBR has a lower reflectivity to accommodate the output coupling from the top
of the laser, whereas the bottom DBR normally has a very high reflectivity as close
to 100% as possible to compensate for the loss of the top DBR and to direct all laser
energy to the output window on top. These DBRs have very large bandwidths because
of their high reflectivities and small lengths that lead to correspondingly large values
for |κ|. Because current is injected vertically through these DBR mirrors, the top DBR
is heavily p doped and the bottom DBR is heavily n doped for high conductivity.

In a VCSEL, the laser field propagates perpendicularly to the active layer. This feature
has profound implications for the structure and characteristics of a VCSEL. As seen in
Fig. 13.37, the cavity length l of a VCSEL is defined by the active layer and two spacer
layers around the active layer. From (13.82), the gain overlap factor of a VCSEL is

� = a
MQWdQW

l
. (13.107)

The factor a in (13.107) has a value between 1 and 2 that depends on the overlap of
the active layer with the field pattern in the cavity. Because the intracavity laser field
forms a standing wave in the direction perpendicular to the active layer, it is important
to locate the active layer at a crest of the standing wave so that the optical gain in
the active layer is most efficiently used for stimulated amplification of the laser field.
Furthermore, to ensure that the entire active layer stays within the high-intensity crest
region of the standing wave, the thickness d of the active layer, which consists of the
quantum wells and the barrier layers between wells, is normally limited to one-quarter
of the wavelength in the medium, λ/4n, where n is the refractive index in the laser
cavity and is normally different from n of either of the two DBRs. In the case when
d � λ/4n, the factor a has a value of 2 if the quantum wells are located properly at
a crest of the standing-wave pattern. For a GaAs VCSEL emitting at λ = 850 nm, the
thickness of its active layer is thus restricted to 60 nm or less because n ≈ 3.65. The
overlap between the intracavity field and the gain region, which defines the gain overlap
factor � of a laser, is independent of the cross section of the cavity but increases as
the length of the cavity is reduced. It is advantageous from the standpoint of reducing
the laser threshold and increasing the laser efficiency that a VCSEL have a very short
cavity. The spacer layers are required, however, for two reasons. First, they are required
for the standing-wave pattern to form in the cavity with a peak located at the active
layer. Second, they can be tailored to guide current injection into the active layer, thus
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improving the efficiency of carrier injection and reducing the laser threshold. These
characteristics are illustrated in Fig. 13.37.

For a VCSEL, the total length l for the active layer and the spacer layers between the
two DBR mirrors is typically on the order of one or a few optical wavelengths in the
medium, depending on the thicknesses of the spacer layers. For example, a 1λ cavity
has l = λ/n, and a 3λ cavity has l = 3λ/n. In order to maintain a high Q for such a short
cavity, the reflectivity of the DBR mirrors has to be very high. The required reflectivity
is higher than 99% for a VCSEL with a single quantum well but can be slightly lower
for a VCSEL with multiple quantum wells. Thus, a VCSEL is a microcavity QW laser
with relatively thick DBR mirrors.

The general characteristics of a DBR laser described earlier are still valid for a
VCSEL. The longitudinal mode spacing is given by (13.92), and the threshold gain
coefficient is given by (13.83) with αout = −(ln

√
R1 R2)/ l. In a VCSEL, both leff

DBR1 and
leff
DBR2 can be larger than l, but the total effective phase length of leff = l + leff

DBR1 + leff
DBR2

is still on the order of 1–2 µm. Therefore, the longitudinal mode spacing is very large.
It can be either larger or smaller than the bandwidths of the highly reflective DBRs, but
it can be easily made comparable to, or even larger than, the entire gain bandwidth of a
semiconductor quantum well. Consequently, a microcavity VCSEL inherently oscillates
in a single longitudinal mode.

The requirement for the confinement of electric current and optical field in a VCSEL
is fulfilled by controlling the transverse dimension and geometry of the vertical cav-
ity. Symmetric transverse geometry of circular or square shape is normally used for a
VCSEL so that its emission has a nice, round pattern with a symmetric beam divergence,
making its coupling to an optical fiber easy and efficient. The transverse dimension of
the cavity is typically in the range of 3–10 µm in diameter. One significant problem
associated with the symmetric optical guiding structure is polarization instability in
the VCSEL emission because it does not provide any polarization discrimination. For
polarization control, anisotropy in the structure or in the gain medium has to be intro-
duced.

EXAMPLE 13.17 A GaAs/AlAs QW VCSEL is designed to emit at 850 nm wavelength.
It consists of two first-order AlAs/Al0.2Ga0.8As DBR mirrors of a 50% duty factor. The
p-side top DBR has 21 pairs of alternating quarter-wavelength AlAs and Al0.2Ga0.8As
layers, and the n-side bottom DBR has 24 pairs. The active layer consists of three 8-nm
wide GaAs quantum wells separated by 4-nm wide Al0.2Ga0.8As barriers, embedded
in a 1λ cavity with Al0.2Ga0.8As spacer layers. The refractive indices at 850 nm are
n = 3.65 for GaAs, n = 3.00 for AlAs, and n = 3.52 for Al0.2Ga0.8As. (a) Find the
coupling coefficient and the reflectivities of the DBRs. (b) Find the length of the cavity
and those of the DBRs. What is the total length of the device? (c) If the device has
a distributed loss of α = 18 cm−1, what is its threshold gain coefficient? (d) Find the
longitudinal mode spacing. Compare it to the DBR bandwidth and the gain bandwidth.
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Solution (a) For the first-order AlAs/Al0.2Ga0.8As DBRs, we have �n = 0.52 and
n = 3.26 because n = 3.00 for AlAs and n = 3.52 for Al0.2Ga0.8As. Therefore, for
λ = λB = 850 nm = 0.85 µm, we have

|κ| = 2�n

λ
= 2 × 0.52

0.85
µm−1 = 1.224 µm−1.

We have NDBR1 = 21 and NDBR1 = 24. Thus,

RDBR1 = tanh2 NDBR1�n

n
= tanh2 21 × 0.52

3.26
= 99.5%

and

RDBR2 = tanh2 NDBR2�n

n
= tanh2 24 × 0.52

3.26
= 99.8%.

The bottom DBR has a higher reflectivity because it has three more pairs than the top
DBR.

(b) The cavity consists mostly of Al0.2Ga0.8As, which has n = 3.52. Because it is a
1λ cavity, its length

l = λ

n
= 850

3.52
nm = 241.5 nm.

For the DBRs, the average index is n = 3.26. Therefore,

lDBR1 = NDBR1� = 21 × 850

2 × 3.26
nm = 2737.7 nm

and

lDBR2 = NDBR2� = 24 × 850

2 × 3.26
nm = 3128.8 nm.

The total length of the structure is ldevice = l + lDBR1 + lDBR2 = 6108 nm = 6.108 µm.
We see that the DBRs occupy 96% of the device structure.

(c) The active layer consists of three quantum wells and two barriers with a total
thickness of d = 3 × 8 nm + 2 × 4 nm = 32 nm. In this case, d � λ/4n ≈ 60 nm.
Thus, we have a ≈ 2 for the following gain overlap factor:

� = a
MQWdQW

l
= 2 × 3 × 8

241.5
= 20%.

With R1 = RDBR1 = 99.5% and R2 = RDBR2 = 99.8%, the output coupling loss of this
device is

αout = − ln
√

R1 R2

l
= − ln

√
0.995 × 0.998

241.5 × 10−9
m−1 = 1.452 × 104 m−1 = 145.2 cm−1.

With α = 18 cm−1, the threshold gain coefficient

gth = α + αout

�
= 18 + 145.2

0.2
cm−1 = 816 cm−1.
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(d) First, we calculate the bandwidth of the DBRs by taking n for Nβ in (13.88).
Because both DBRs have the same |κ| = 1.224 µm−1 = 1.224 × 106 m−1 and n =
3.26, they have the same bandwidth of

�νDBR = |κ|c
πn

= 1.224 × 106 × 3 × 108

π × 3.26
Hz = 35.9 THz.

To find �νL, we need to find leff first. Because RDBR1 ≈ RDBR2 ≈ 1, we have

leff
DBR1 ≈ leff

DBR2 ≈ 1

2|κ| = 1

2 × 1.224
µm = 408.5 nm.

Therefore, leff = l + leff
DBR1 + leff

DBR2 = 241.5 nm + 2 × 408.5 nm = 1058.5 nm =
1.0585 µm. We find that leff is on the order of 1 µm, which is much smaller than the
6.108 µm length of the device but is much larger than the 241.8 nm length of the cavity.
Then,

�νL = c

2nleff
= 3 × 108

2 × 3.52 × 1.0585 × 10−6
Hz = 40.3 THz.

As discussed in Section 13.5, the gain bandwidth of a quantum well is typically in
the range of 20–40 THz. We thus find that the longitudinal mode spacing of this QW
VCSEL is larger than both its DBR bandwidth and its gain bandwidth. Clearly, this
VCSEL will oscillate in a single longitudinal mode.

13.10 Semiconductor laser characteristics

Similarly to an LED, a semiconductor laser is also a junction diode, which has the
general electrical characteristics discussed in Section 12.5 with its voltage–current
characteristics shown in Fig. 12.12. The difference between a laser and an LED is that
the active layer of a laser has to be pumped sufficiently to reach the condition in (13.35)
for an optical gain. When a junction diode is forward biased with a voltage V , the
splitting of its Fermi levels is given by (12.93), which is valid for both homojunctions
and heterojunctions. In the active region, EFc = EFn and EFv = EFp. Therefore, we
find that to have a positive optical gain coefficient in the active region, a diode has to
be forward biased at a voltage larger than the bandgap of its active layer:

eV = EFc − EFv > hν > Eg. (13.108)

This condition only specifies the forward voltage required for the active region in a
junction diode to reach transparency. To reach the laser threshold, a laser diode still has
to be biased somewhat higher to reach a gain that is sufficiently large for overcoming
the losses in the laser cavity. The bias voltage of a semiconductor laser remains quite
constant when the laser oscillates above threshold because the carrier density is clamped
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at its threshold value when the injection current is increased above the laser threshold.
In contrast, an LED is normally biased at a lower voltage around V ≥ hν/e.

For most applications, it is desired that a semiconductor laser oscillate in a single
transverse mode and a single longitudinal mode. Many practical lasers indeed have such
a desirable characteristic. For a single-mode semiconductor laser with a uniformly dis-
tributed carrier density in a thin active layer of a thickness d, the temporal characteristics
of its carrier density N and its intracavity photon density S can be described by the
following coupled rate equations:

dN

dt
= J

ed
− N

τs
− gS, (13.109)

dS

dt
= −γc S + �gS, (13.110)

where e is the electronic charge, τs is the spontaneous carrier lifetime, and γc is the
cavity decay rate. The current density J in the active region of a junction area A
is related to the injection current I through the relation given in (13.71). The overlap
factor � appears in the last term of (13.110) because only that fraction of the laser mode
intensity overlaps with the gain region to receive stimulated amplification. According
to (11.68) and (13.40), the gain parameter g (per second) of a semiconductor laser is
related to the gain coefficient g (per meter) of the semiconductor gain medium by

g = c

n
g = cσ

n
(N − Ntr) (13.111)

for an ordinary DH laser, and by

g = c

n
g = cσ

n
Ntr ln

N

Ntr
(13.112)

for a QW laser.

Laser threshold

The threshold characteristics of a laser and its characteristics in steady-state oscillation
above threshold can be obtained by considering the steady-state solutions of (13.109)
and (13.110) for dN/dt = dS/dt = 0. From (13.110), we find that the threshold con-
dition for a semiconductor laser is

�gth = γc, (13.113)

which leads to the following threshold carrier density:

Nth = Ntr + nγc

�cσ
= Ntr + gth

σ
(13.114)

for an ordinary DH laser and

Nth = Ntr exp

(
nγc

�cσ Ntr

)
= Ntr exp

(
gth

σ Ntr

)
(13.115)
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for a QW laser. From (13.109), we find that the threshold current density is Jth =
Nthed/τs because S = 0 right at the laser threshold. Using this result and the relation
between J and I in (13.71) with a carrier injection efficiency ηinj, we find the following
threshold injection current:

Ith = eNth

ηinjτs
Vactive. (13.116)

The threshold current of a semiconductor laser is linearly proportional to the thresh-
old carrier density and the volume of its active region. There is a limit in decreasing the
threshold carrier density to reduce the threshold current because Nth > Ntr and Ntr is
an intrinsic property of a semiconductor gain medium. Reducing Nth by increasing the
value of � does not lead to a lower value for Ith because both � and Ith are proportional
to Vactive. It is only practical to reduce the value of γc as much as possible in order
to make Nth as close to its limit of Ntr as possible. Therefore, the value of Nth does
not vary much among properly optimized stripe-geometry lasers and VCSELs. For a
VCSEL, the threshold current can be reduced by reducing its transverse dimension
without changing its cavity length because Vactive = AMQWdQW is independent of the
cavity length of a QW VCSEL. In contrast, for a stripe-geometry laser, reduction of its
threshold current is limited by its cavity length because Vactive = Ad = lwd. Because
the junction area of a VCSEL can be easily made two to three orders of magnitude
smaller than that of a typical stripe-geometry laser, the threshold current of a VCSEL
can be two to three orders of magnitude less than that of a stripe-geometry laser. The
threshold current of a VCSEL can be as low as 1 µA.

EXAMPLE 13.18 A GaAs QW VCSEL like the one described in Example 13.17 has
a carrier injection efficiency of ηinj = 70% and a cross-sectional diameter of 5 µm.
(a) Use the data in Examples 13.7 and 13.17 to find its threshold carrier density. (b)
Carrier recombination in an efficient laser is almost purely radiative. Take the radiative
recombination coefficient of B = 1.77 × 10−16 m3 s−1 found in Example 13.5 for GaAs
to find the carrier lifetime at the threshold carrier density. (c) Find the threshold current
for this VCSEL.

Solution From Example 13.17, we have the following parameters for this VCSEL:
gth = 816 cm−1 = 8.16 × 104 m−1, MQW = 3, and dQW = 8 nm. From Example
13.7(b), we have σ = 2.2 × 10−19 m2, Ntr = 1.45 × 1024 m−3, and σ Ntr = 3.19 ×
105 m−1 for a GaAs quantum well of dQW = 8 nm.

(a) By using (13.115) for a QW laser, we find that

Nth = Ntr exp

(
gth

σ Ntr

)
= 1.45 × 1024 × exp

(
8.16 × 104

3.19 × 105

)
m−3 = 1.87 × 1024 m−3.

For the purpose of comparison, we use (13.114) to find that Nth = 1.77 × 1024 m−3.
This value is very close to the value of Nth = 1.87 × 1024 m−3 found by using the
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relation of (13.115) for a QW laser. Because Nth − Ntr � Ntr in this situation, (13.114)
is a fairly good approximation to (13.115).

(b) For N = Nth � n0, p0 in the situation of purely radiative recombination, we find
from (13.8) that

τs = τrad = 1

B Nth
= 1

1.77 × 10−16 × 1.87 × 1024
s = 3.02 ns.

(c) With a diameter of 5 µm, the active volume of the three quantum wells is

Vactive = AMQWdQW = π ×
(

5 × 10−6

2

)2

× 3 × 8 × 10−9 m3 = 4.71 × 10−19 m3.

Therefore, we find the following threshold current for this VCSEL:

Ith = eNth

ηinjτs
Vactive = 1.6 × 10−19 × 1.87 × 1024

0.7 × 3.02 × 10−9
× 4.71 × 10−19 A = 66.7 µA.

As expected, the threshold current of this VCSEL is pretty low.

Laser power

In steady-state oscillation above threshold with an injection current of I > Ith, the
carrier density and the gain are clamped at their respective threshold values, N = Nth

and g = gth given above, while the intracavity photon density builds up for S �= 0. Most
of the concepts developed in Section 11.3 for laser power characteristics are directly
applicable to semiconductor lasers.

Taking the relation in (13.111) for an ordinary DH laser, it can be shown that the
threshold gain parameter of a semiconductor laser also has the form of (11.72) as
follows (see Problem 13.10.1(a)):

gth = cσ

n
(Nth − Ntr) = cσ

n

Ninj − Ntr

1 + S/Ssat
, (13.117)

where Ninj = Jτs/ed is the injected carrier density and Ssat is the saturation photon
density that has the form of (11.74):

Ssat = n

cτsσ
. (13.118)

Comparing (13.118) with (11.74), we find that the spontaneous carrier recombination
lifetime τs of a semiconductor has exactly the same function as the saturation lifetime of
an atomic or molecular system in defining the saturation intensity of a gain medium and
the saturation photon density of a laser. Therefore, the spontaneous carrier recombina-
tion lifetime is also the saturation lifetime of a semiconductor, as mentioned following
(12.56) where it is defined. For a semiconductor laser, the dimensionless pumping ratio
r , which is defined in (11.76), is conveniently expressed in terms of the pump current
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because the bias voltage of a semiconductor laser remains quite constant:

r = I − Itr

Ith − Itr
. (13.119)

Using the steady-state solution of (13.109) for S and the relations in (13.118) and
(13.119), the output power of a semiconductor laser can be expressed in the form of
(11.78) and (11.87) as (see Problem 13.10.1(b))

Pout = (r − 1)VmodeSsathνγout = I − Ith

Ith − Itr
P sat

out, (13.120)

where P sat
out = VmodeSsathνγout as defined in (11.82). This relation is obtained for an

ordinary DH laser. A similar, but more complicated, relation can be obtained for a QW
laser with the same definitions for Ssat and r in (13.118) and (13.119), respectively (see
Problems 13.10.2(a) and (b)).

Alternatively, by applying the relation gth = γc/� from (13.113) and the relation
N = Jτs/ed directly to the steady-state solution of S from (13.109), the output power
of a semiconductor laser can be expressed as (see Problem 13.10.1(c))

Pout = ηinj
γout

γc

hν

e
(I − Ith). (13.121)

For a laser, we have

γout = c

n
αout and γc = c

n
�gth. (13.122)

These relations in (13.121) and (13.122) are generally applicable to all semiconductor
lasers, including DH and QW lasers (see Problem 13.10.2(c)). All of the following
discussions are also generally applicable to all semiconductor lasers.

It can be seen from (13.121) that in an ideal situation, the output power of a semicon-
ductor laser above threshold increases linearly with injection current. This characteristic
is indeed observed in most semiconductor lasers over a large range of operating condi-
tions. In (13.121), both ηinj and Ith are temperature dependent. In general, ηinj decreases
but Ith increases as the temperature increases. In addition, at high injection levels, ηinj

normally becomes current dependent and decreases with increasing current for a given
device, resulting in nonlinearities in the L–I characteristics of a laser. Figure 13.38(a)
shows the power–current characteristics of a typical single-mode semiconductor laser.
For a multimode laser, the competition and coexistence of multiple modes can lead to
the nonlinearities and kinks, shown in Fig. 13.38(b), that are often observed in its L–I
characteristics.

After optimizing the structure of a laser to reduce power losses by maximizing the
values of ηinj and γout/γc and by minimizing the value of Ith, the output power available
from a semiconductor laser depends solely on the current that can be injected into the
laser. As discussed in Section 12.5, there is a limit to the current density J that can
be injected into a junction diode. Further limitation on J comes from the limitation
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(a) (b)

Figure 13.38 Light–current characteristics of (a) a single-mode semiconductor laser at different
temperatures and (b) a multimode semiconductor laser at a given temperature. Also shown are
typical characteristics of the power conversion efficiency and the slope efficiency of the laser.

on the carrier density N in the active region before high-order nonradiative processes
dominate the recombination process. Because of these limitations on J and because
I = JA/ηinj, the junction area of a laser sets a limit on the output power that the laser
can possibly deliver. As the junction area of a VCSEL is made very small to reduce its
threshold current, it also limits the VCSEL to a low output power in comparison to a
stripe-geometry laser that has a much larger junction area than a VCSEL.

EXAMPLE 13.19 Find the output power of the GaAs QW VCSEL considered in Exam-
ples 13.17 and 13.18 when it is operated with an injection current at twice the threshold
level.

Solution From Example 13.17, we have the following parameters for this VCSEL:
λ = 850 nm, � = 20%, gth = 816 cm−1, and αout = 145.2 cm−1. We then have

hν

e
= 1239.8

850
V = 1.459 V,

and, from (13.122),

γout

γc
= αout

�gth
= 145.2

0.2 × 816
= 0.89.

The device has ηinj = 0.7 and Ith = 66.7 µA found in Example 13.18. Thus, when it
operates at I = 2Ith = 133.4 µA, the output power

Pout = ηinj
γout

γc

hν

e
(I − Ith)

= 0.7 × 0.89 × 1.459 × (133.4 − 66.7) × 10−6 W = 60.7 µW.



905 13.10 Semiconductor laser characteristics

Because the injection current is still very low for this output power, much higher output
powers can be obtained at higher injection levels.

Laser efficiency

Because the pump power is Pp = V I in the case of current injection, the power con-
version efficiency of a semiconductor laser is

ηc = Pout

V I
= ηinj

γout

γc

hν

eV

(
1 − Ith

I

)
= ηe

hν

eV

(
1 − Ith

I

)
, (13.123)

where ηe is the external quantum efficiency defined in (13.125) below. The slope effi-
ciency of a semiconductor laser operating above threshold is

ηs = dPout

V dI
= ηinj

γout

γc

hν

eV
= ηe

hν

eV
. (13.124)

The external quantum efficiency of a semiconductor laser operating above threshold is

ηe = Pout/hν

I/e − Ith/e
= ηinj

γout

γc
. (13.125)

Above threshold, the voltage across the junction of a laser diode remains fairly
constant because the carrier density is clamped at its threshold value of Nth. Therefore,
if all of the bias voltage drops across the junction, the slope efficiency of the laser is a
constant that is independent of the injection level. In reality, however, there is always
some series resistance, which may be added intentionally to protect a laser diode or
caused by parasitic effects, in a laser diode. Thus, the bias voltage is always increased
by the series resistance as V = Vj + I Rs, where Vj is the junction voltage. Clearly, this
increase in the bias voltage will reduce both the slope efficiency and the power conver-
sion efficiency of the laser as the injection current increases. Such characteristics are
schematically shown in Fig. 13.38. As the additional voltage drop across the resistance
is unimportant when I Rs � Vj, it is clear that the efficiencies of a laser can be improved
by reducing the series resistance and the laser threshold (see Problem 13.10.3).

Comparing (13.124) and (13.125), we find that ηe > ηs for a semiconductor laser
because eV > hν. In addition, if we identify the photon extraction efficiency of a
semiconductor laser as

ηt = γout

γc
, (13.126)

we can express ηe as

ηe = ηinjηt. (13.127)

Comparing this result to ηe of an LED defined in (13.67), we find that the internal
quantum efficiency ηi of a semiconductor laser is

ηi = 1. (13.128)
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In practice, ηi of a semiconductor laser is not exactly 100% but is often higher than
90%. Such a high internal quantum efficiency for a semiconductor laser reflects the
fact that almost all of the injected carriers recombine radiatively through the stimulated
recombination process when a laser oscillates above threshold.

We see from the above discussions that a semiconductor laser typically has a very
high external quantum efficiency, as well as a very high slope efficiency. They can be as
high as 80–90% if internal losses and diffraction losses are minimized to make γout ≈
γc while the injection efficiency ηinj is maximized. The power conversion efficiency,
however, is normally much lower because of the existence of a laser threshold. A typical
laser has a power conversion efficiency of 10–20%. Some lasers have power conversion
efficiencies as high as 50%. Clearly, it is important to reduce the laser threshold as much
as possible.

EXAMPLE 13.20 Find the various efficiencies of the GaAs QW VCSEL considered in the
preceding examples if it has a bias voltage of V = 2.2 V when operating at an injection
level twice the threshold.

Solution From the data in Example 13.19, we find the following external quantum
efficiency for this VCSEL:

ηe = ηinj
γout

γc
= 0.7 × 0.89 = 62.3%.

The photon extraction efficiency

ηt = γout

γc
= 89%.

The photon extraction efficiency is much higher than the external quantum efficiency
because the device suffers 30% loss of the injected carriers with an injection effi-
ciency of ηinj = 70%. This is where efficiency improvement can be targeted for this
device.

The power conversion efficiency of this device operating at I = 2Ith with a bias
voltage of V = 2.2 V is

ηc = ηe
hν

eV

(
1 − Ith

I

)
= 62.3% × 1.459

2.2
×
(

1 − 1

2

)
= 20.7%.

The slope efficiency

ηs = ηe
hν

eV
= 62.3% × 1.459

2.2
= 41.3%.

We see that ηs < ηe because hν < eV . This reduction of efficiency cannot be avoided
because a bias voltage of 2.2 V, which is significantly higher than the photon energy,
is required for the laser to reach the desired level of population inversion. Of course,
any series resistance that can further increase the bias voltage will further reduce the
slope efficiency and the power conversion efficiency of the laser. The power conversion
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efficiency is only half that of the slope efficiency because the laser is operated at twice
its threshold. At a given injection current, ηc can be increased by reducing the laser
threshold. For a laser of a given threshold, ηc can be increased by operating the laser at
a level high above its threshold.

Laser spectrum

A semiconductor laser has the general spectral characteristics of a laser, which are very
different from those of an LED. The basic difference between a semiconductor laser
and other classes of lasers, such as fiber lasers, is that a semiconductor laser has a very
short cavity and a high optical gain. As a result, a semiconductor laser has a larger
longitudinal mode spacing and a larger linewidth than most other lasers.

As discussed in the preceding section, a VCSEL normally oscillates in a single
longitudinal mode because of its large mode spacing. For a semiconductor laser that has
a horizontal or folded cavity, the cavity length is typically in the range of 200–500 µm
with a corresponding longitudinal mode spacing in the range of 100–200 GHz. Because
the gain bandwidth of a semiconductor is typically in the range of 10–20 THz and can
be as large as 40 THz for a highly pumped QW laser, a multimode semiconductor laser
easily oscillates in 10–20 longitudinal modes. The linewidth of each longitudinal mode
is typically on the order of 10 MHz, but can be as narrow as 1 MHz or as broad as
100 MHz. The linewidth narrows, but the number of oscillating modes increases, as
the laser is injected at a current level high above its threshold. Figure 13.39(a) shows
a typical spectrum of a multimode semiconductor laser.

(a)

(b)

Figure 13.39 Representative emission spectra of (a) a multimode semiconductor laser and (b) a
single-frequency semiconductor laser.
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In many applications, a laser oscillating in a single frequency is desired. There
are many different approaches to making a semiconductor laser oscillate in a single
longitudinal frequency. Some of the most important and practical concepts are already
discussed in the preceding section. They include the use of a very short cavity, as is the
case of a VCSEL, and the use of a frequency-selective grating, as is the cases of the DBR
laser, the phase-shifted DFB laser, and the GCSEL. For these single-frequency lasers,
the linewidth is still in the typical range of 1–100 MHz as mentioned above. It is possible
to obtain single-frequency output with a linewidth on the order of 100 kHz or less by
injection locking with a narrow-linewidth, single-frequency master laser source or by
using a highly frequency-selective external grating as one optical-feedback element.
Figure 13.39(b) shows the spectrum of a single-frequency semiconductor laser. Tuning
of the laser frequency, in some cases over a large range close to the entire gain bandwidth
of the laser, is possible.

Modulation characteristics

A semiconductor laser can be directly current modulated like an LED. Unlike an LED,
however, the modulation speed of a semiconductor laser is not limited by the sponta-
neous carrier lifetime τs in the active region of the laser. This difference is caused by the
fact that there is strong coupling between the carrier density and the intracavity laser
field. The effective carrier lifetime in an oscillating laser is much shorter than the spon-
taneous lifetime because of stimulated recombination in a laser. The modulation speed
of a semiconductor laser is primarily determined by the intracavity photon lifetime
and the effective carrier lifetime. Because both the photon lifetime and the effective
carrier lifetime of a semiconductor laser are generally much shorter than the sponta-
neous carrier lifetime, a semiconductor laser has a higher modulation speed than an
LED. Because the stimulated recombination rate increases with the intracavity photon
density, the modulation speed of a semiconductor laser increases with laser power.

When a laser is in steady-state oscillation at a bias point with a DC current of I0 > Ith

in the absence of modulation, the laser gain and the carrier density are both clamped at
their respective threshold values of gth and Nth, but the photon density has a value of
S0 corresponding to the laser output power P0 at the bias point. Under the dynamical
perturbation of a modulation signal, the gain can deviate from gth due to the variations
in the carrier and photon densities caused by the external perturbation. The dependence
of the gain parameter on the carrier and photon densities can be expressed as

g = gth + gn(N − Nth) + gp(S − S0), (13.129)

where gn = cσ/n is the differential gain parameter characterizing the dependence of
the gain parameter on the carrier density as seen in (13.111) and gp is the nonlinear
gain parameter characterizing the effect of gain compression due to the saturation of
gain by intracavity photons. It has been found empirically that both gn and gp stay quite
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constant over large ranges of carrier density and photon density in a given laser. For
most practical purposes, they can be treated as constants over the operating range of a
laser. These parameters are normally measured experimentally though they can also be
calculated theoretically. Note that gn > 0 but gp < 0.

It is convenient to define a differential carrier relaxation rate, γn, and a nonlinear
carrier relaxation rate, γp, as

γn = gnS0, γp = −�gpS0. (13.130)

In addition, we have the cavity decay rate, γc = 1/τc, and the spontaneous carrier
relaxation rate, γs = 1/τs. These four relaxation rates, together with the linewidth en-
hancement factor, b, defined in (13.61), are the intrinsic dynamical parameters of a
semiconductor laser that completely determine the dynamical behavior of the laser.
All five of these parameters can be directly measured for a given laser. The current-
modulation characteristics of a laser, however, are independent of the linewidth en-
hancement factor but are determined only by the four rate parameters. Note that, for a
given laser, γc and γs are constants that are independent of laser power, but γn and γp

are linearly proportional to laser power.
Because a semiconductor laser has a threshold, the modulation index m for a laser

that is biased at a DC current of I0 > Ith and is modulated at a frequency of � = 2π f
is defined as

I (t) = I0 + I1(t) = Ith + (I0 − Ith)(1 + m cos �t), (13.131)

which is different from that defined in (13.73) for an LED. In the regime of linear
response, the output power of the laser can be expressed in the same form as that in
(13.74):

P(t) = P0 + P1(t) = P0[1 + |r | cos(�t − ϕ)]. (13.132)

For small-signal modulation with m � 1, the complex response function of a laser is
(see Problem 13.10.4(b))

r (�) = |r |eiϕ = − mγcγn

�2 − �2
r + i�γr

, (13.133)

where �r is the relaxation resonance frequency and γr is the total carrier relaxation rate
for the relaxation oscillation of the coupling between the carriers and the intracavity laser
field in the semiconductor laser. They are related to the intrinsic dynamical parameters
of the laser through

�2
r = 4π2 f 2

r = γcγn + γsγp (13.134)

and

γr = γs + γn + γp. (13.135)



910 Semiconductor lasers and light-emitting diodes

Figure 13.40 Normalized current-modulation frequency response of a semiconductor laser
measured in terms of the electrical power spectrum of a photodetector. The frequency response of a
semiconductor laser depends on the output laser power, with its 3-dB bandwidth increasing
approximately with the square root of the output power. These curves are generated with the
following relations: fr (GHz) = 5

√
P (mW) and γr (ns−1) = 1.5 + 11P (mW).

Clearly, �r and fr are proportional to the square root of the laser power, whereas γr is
linearly dependent on, but not proportional to, the laser power. The relation between
the relaxation resonance frequency and the carrier relaxation rate is often characterized
by a K factor defined as

K = γr − γs

f 2
r

. (13.136)

The modulation power spectrum of a semiconductor laser is

R( f ) = |r ( f )|2 = m2γ 2
c γ 2

n

16π4( f 2 − f 2
r )2 + 4π2 f 2γ 2

r

. (13.137)

As shown in Fig. 13.40, this spectrum has a resonance peak at (see Problem 13.10.4(c))

fpk =
(

f 2
r − γ 2

r

8π2

)1/2

, (13.138)

and a 3-dB modulation bandwidth (see Problem 13.10.4(d))

f3dB = (1 +
√

2)1/2

(
f 2
r − γ 2

r

8
√

2π2

)1/2

≈ 1.554 fpk. (13.139)

Because fr � γr/2π for most lasers and because fr ∝ P1/2
0 , the modulation bandwidth

of a semiconductor laser increases with laser power and scales roughly as f3dB ∝ P1/2
0 .

An intrinsic modulation bandwidth on the order of a few gigahertz is common for a
semiconductor laser. A high-speed semiconductor laser can have a bandwidth larger
than 20 GHz. Because the intrinsic modulation bandwidth of a semiconductor laser
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is significantly larger than that of an LED, it is very important to reduce the parasitic
effects from electrical contacts and packaging for high-frequency modulation of a
semiconductor laser.

EXAMPLE 13.21 The GaAs QW VCSEL considered in the preceding examples can be
modulated at very high frequencies because it has a very short cavity and is a QW
laser, two important factors that lead to the high speed of the device. The data given or
found in the preceding examples are sufficient to find all parameters for the modulation
characteristics of the laser, with the exception of the parameter gp. Here we simply take
gp = −gn. (a) Find the values of γs and γc. What are the corresponding carrier lifetime
and photon lifetime? (b) Find the values of gn and gp. Then find the values of γn and
γp. (c) Find the values of fr and γr. What is the value of the K factor of this device?
(d) Find the resonance peak of the modulation spectrum. What is the 3-dB modulation
bandwidth of this VCSEL?

Solution (a) We have τs = 3.02 ns found in Example 13.18. Thus

γs = 1

τs
= 1

3.02 × 10−9
s−1 = 3.31 × 108 s−1.

From Example 13.17, we have n = 3.52, � = 0.2, and gth = 8.16 × 104 m. Thus

γc = c

n
�gth = 3 × 108

3.52
× 0.2 × 8.16 × 104 s−1 = 1.39 × 1012 s−1.

We already have τs = 3.02 ns for the carrier lifetime. The photon lifetime

τc = 1

γc
= 1

1.21 × 1012
s = 719 fs.

This laser has a very small photon lifetime because of its very short cavity.
(b) Using σ = 2.2 × 10−19 m2, we find

gn = cσ

n
= 3 × 108 × 2.2 × 10−19

3.52
m3 s−1 = 1.875 × 10−11 m3 s−1.

Based on the assumption we have made, gp = −gn = −1.875 × 10−11 m3 s−1. To find
the values of γn and γp, we need to find the intracavity photon density S0 at the operating
point. We have Pout = 60.6 µW and hν = 1.459 eV, both found in Example 13.19. To
find S0, we also need the following two parameters:

Vmode ≈ Al = π ×
(

5 × 10−6

2

)2

× 241.5 × 10−9 m3 = 4.74 × 10−18 m3

for l = 241.5 nm found in Example 13.17, and, from Example 13.20,

γout = ηtγc = 89% × 1.39 × 1012 s−1 = 1.24 × 1012 s−1.
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Then, the intracavity photon density can be found as

S0 = Pout

Vmodehνγout

= 60.6 × 10−6

4.74 × 10−18 × 1.459 × 1.6 × 10−19 × 1.24 × 1012
m−3

= 4.42 × 1019 m−3.

We then find that

γn = gnS0 = 1.875 × 10−11 × 4.42 × 1019 s−1 = 8.29 × 108 s−1

and

γp = −�gpS0 = 0.2 × 1.875 × 10−11 × 4.42 × 1019 s−1 = 1.66 × 108 s−1.

(c) We now find that

fr = (γcγn + γsγp)1/2

2π

= (1.39 × 1012 × 8.29 × 108 + 3.02 × 108 × 1.66 × 108)1/2

2π
Hz

= 5.403 GHz

and

γr = γs + γn + γp = (3.02 × 108 + 8.29 × 108 + 1.66 × 108) s−1 = 1.29 × 109 s−1.

The value of the K factor is

K = γr − γs

f 2
r

= 1.29 × 109 − 3.02 × 108

(5.403 × 109)2
s = 33.8 ps.

(d) The resonance peak of the modulation spectrum is

fpk =
(

f 2
r − γ 2

r

8π2

)1/2

=
(

5.4032 − 1.292

8π2

)1/2

GHz = 5.401 GHz.

We see that fpk is very close to fr but slightly lower. We now find the following 3-dB
modulation bandwidth of this VCSEL:

f3dB = (1 +
√

2)1/2

(
f 2
r − γ 2

r

8
√

2π2

)1/2

= (1 +
√

2)1/2

(
5.4032 − 1.292

8
√

2π2

)1/2

GHz

= 8.39 GHz.

This VCSEL indeed has a large modulation bandwidth, as expected.



913 Problems

PROBLEMS

13.1.1 Describe the radiative recombination processes that can possibly take place in
semiconductors. Discuss which processes can be utilized for LEDs and which
ones are useful to semiconductor lasers.

13.1.2 Explain why and how some indirect-gap semiconductors can be used to make
LEDs. Are they used for semiconductor lasers? Why?

13.1.3 Answer the questions in Example 13.1 for the p-type GaAs considered in
Problem 12.3.2.

13.1.4 Verify the answer to Problem 12.3.4 by showing that high radiative efficiencies
for the InGaAsP sample take place in the range of carrier concentrations found
as the answer to that problem. What is the highest radiative efficiency? At what
carrier density does it occur?

13.2.1 Explain why in an indirect-gap semiconductor both direct absorption and in-
direct absorption are possible but direct recombination is highly improbable.
Under what condition does direct absorption take place in an indirect-gap
semiconductor? What is the difference between a direct-absorption process
that takes place in an indirect-gap semiconductor and one that takes place in a
direct-gap semiconductor?

13.2.2 Explain why Si and Ge are important materials for photodetectors but are not
useful as materials for LEDs and semiconductor lasers.

13.2.3 Show that a direct band-to-band optical transition in a semiconductor involving
the absorption or emission of a photon of energy hν takes place between a
conduction-band state of energy E2 given by (13.13) and a valence-band state
of energy E1 given by (13.14). Use these relations to show that the density of
states for direct band-to-band optical transitions can be expressed as a function
of optical frequency in the form of (13.17).

13.2.4 Answer questions (b), (c), and (d) in Example 13.2 for direct band-to-band
optical transitions in intrinsic GaAs at λ = 800 nm wavelength at 300 K.
Compare the results with those of Example 13.2.

13.3.1 Use the relation in (13.17) for ρ(ν) and that in (13.32) for α0(ν) to find and plot
the absorption coefficient of intrinsic GaAs in thermal equilibrium at 300 K
as a function of photon energy over a range of photon energies from 1.424
to 1.8 eV, corresponding to optical wavelengths from 871 to 689 nm. Take
τsp = 500 ps and n = 3.65 over the entire range considered here.

13.3.2 Show, by verifying the relation in (13.34) first, that the condition for population
inversion in a semiconductor can be defined as that expressed in (13.35).

13.3.3 Ignoring the temperature dependence of electron and hole effective masses, find
the temperature dependence of the transparency carrier density of a direct-gap
semiconductor and that of the quasi-Fermi levels EFc and EFv in the trans-
parency condition. Use the results found in Example 13.3 for GaAs at 300 K
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to find Ntr and the corresponding EFc and EFv for GaAs at the liquid-nitrogen
temperature of T = 77 K and at a high temperature of T = 350 K, respectively.
What are the implications of the values found at these different temperatures?
Note that the bandgap of GaAs is 1.510 eV at 77 K, 1.424 eV at 300 K, and
1.402 eV at 350 K, according to (12.5).

13.3.4 In this problem, we consider the gain bandwidth of the GaAs sample described
in Example 13.4 that is injected with excess electron–hole pairs of a concentra-
tion of N = 2.83 × 1024 m−3 at 300 K. Take τsp = 500 ps for GaAs at 300 K.
For simplicity, ignore wavelength-dependent variations of the refractive index
by taking n = 3.65 over the wavelength range of interest.
a. Find the spectral range for which g > 0 by finding the two photon energies

for which g = 0 at the two ends of this range. What is the gain bandwidth?
What is the wavelength range covered by the gain spectrum?

b. Find and plot the gain coefficient g(ν) as a function of photon energy over the
gain spectral range found in (a). At what photon energy and corresponding
optical wavelength does the gain peak occur?

c. What is the gain cross section at the gain peak?
13.3.5 Find the gain or absorption coefficient at 800 nm wavelength for the GaAs

sample considered in Example 13.4 that is injected with excess electron–hole
pairs of a concentration N = 2.83 × 1024 m−3 at 300 K. Take τsp = 500 ps for
GaAs at 300 K. The refractive index of GaAs at 800 nm is n = 3.68.

13.4.1 Use the relation in (13.17) for ρ(ν) and that in (13.32) for α0(ν) to carry
out the integration in (13.45) for the total band-to-band spontaneous recom-
bination rate of electron–hole pairs in a semiconductor with Eg � kBT in
thermal equilibrium at a temperature T . Then, use the result to show that the
bimolecular recombination coefficient can be expressed by the relation given
in (13.48).

13.4.2 Use the absorption spectrum α0(ν) found in Problem 13.3.1 to find and plot the
spontaneous emission spectrum R0

sp(ν) of intrinsic GaAs in thermal equilibrium
at 300 K.

13.4.3 Find and plot the spontaneous emission spectrum Rsp(ν) of a GaAs sample
injected with N = 2.83 × 1024 m−3 at 300 K over its gain spectral range found
in Problem 13.3.4. Where is the peak of this spontaneous emission spectrum?

13.5.1 What are the two most important considerations in lowering the threshold
and in improving the efficiency of a semiconductor laser? What are the basic
strategies used in the structural design of semiconductor lasers to address these
two issues?

13.5.2 Explain why SH structures can be used for LEDs but not for semiconductor
lasers.

13.5.3 Compare the three junction structures: SH, DH, and QW. What are their struc-
tural differences? What are their respective advantages or disadvantages?
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13.5.4 Explain why a basic SH structure has to be P–p–n not p–n–N but a basic DH
structure can be either P–p–N or P–n–N.

13.5.5 Find the density of states for band-to-band optical transitions in the quan-
tum well described in Example 13.6 as a function of photon energy in
the range from the bandgap of GaAs at 1.424 eV to that of Al0.3Ga0.7As
at 1.798 eV.

13.5.6 Answer the questions in Example 13.6 for a square Al0.3Ga0.7As/GaAs/
Al0.3Ga0.7As quantum well that has a different well thickness of dQW = 5 nm.
Compare the results with those obtained in Example 13.6.

13.5.7 Answer the questions in Example 13.6 for a square Al0.45Ga0.55As/GaAs/
Al0.45Ga0.55As quantum well that has the same well thickness of dQW = 10 nm
as the one consider in Example 13.6 but has a different composition for the Al-
GaAs barrier layers. Compare the results with those obtained in Example 13.6.

13.6.1 Describe the basic types of geometry used for the lateral structures of (a)
surface-emitting devices and (b) edge-emitting devices. What are the differ-
ences in the characteristics and purposes of the different types of geometry?

13.6.2 Why do most edge-emitting LEDs and semiconductor lasers have stripe ge-
ometry for their lateral structures? Why is index-guiding stripe geometry used
for almost all practical semiconductor lasers? When is gain-guiding stripe
geometry used for a semiconductor laser?

13.6.3 A GaAs VCSEL emitting at 830 nm has a circular beam spot of 3 µm diameter
at the emitting surface of the laser. Find the far-field divergence angle of the
laser beam.

13.6.4 Discuss the consequence of carrier-induced index changes associated with
the antiguidance effect on the far-field divergence of an index-guided DH
semiconductor laser as the injection current to the laser is continously increased
while the laser is oscillating above threshold.

13.7.1 Find the photon flux � for a beam at 555 nm wavelength that has a luminous
flux of �l = 1 lm.

13.7.2 A TS AlGaInP/GaP LED emits at 607 nm wavelength. It has an external quan-
tum efficiency of ηe = 14% when operated at a forward voltage of 2.10 V
with an injection current of 20 mA. At λ = 607 nm, the photopic luminous
efficiency function has a value of V (λ) = 0.541 13. (a) Find its power conver-
sion efficiency under the given operating conditions. (b) Find its optical output
power. (c) Find its luminous efficiency and luminous flux. (d) Compare the
results for this LED with those for the LED considered in Example 13.10.

13.7.3 What are the limiting factors of the external quantum efficiencies of direct-
gap and indirect-gap LEDs, respectively? What can be done to improve their
respective efficiencies?

13.7.4 Why are most LEDs surface-emitting devices? In what situation are edge-
emitting LEDs used?
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13.7.5 Verify the approximate relation given in (13.69) for the escape probability.
13.7.6 An AlGaInP LED with a flat surface is to be encapsulated in a plastic epoxy

that has a refractive index of 1.5. Take the refractive index of AlGaInP to
be 3.4 and approximate the transmittance T in all cases with that of normal
incidence. The critical angle, the solid angle �esc of the escape cone, and the
escape efficiency ηesc before encapsulation when the LED surface is exposed
to the air are already found in Example 13.11.
a. After the LED is encapsulated in the plastic epoxy, what is the critical angle

between the LED and the epoxy? Show that if the epoxy has a slab geometry
with a flat epoxy/air interface parallel to the LED/epoxy interface, there is
no improvement on �esc for the emission to enter the air with or without
the epoxy encapsulation. However, there is still some improvement on ηesc.
How much is this improvement?

b. If the epoxy/air interface has a spherical dome shape, what is �esc from
inside the LED to the air through the epoxy encapsulation? Find ηesc in this
case by taking into account reflections at all interfaces.

13.7.7 Consider an LED that has a DH structure with uniformly distributed excess
carriers of a density N in its active layer of a thickness d and an area A when it
is injected with a current I at an efficiency ηinj. Answer the following questions
by solving (13.70) for the LED in steady-state operation.
a. Express the output optical power, Pout, of the LED as a function of the carrier

density N, the internal quantum efficiency ηi, and the extraction efficiency
ηt of the LED.

b. Using the result obtained in (a), express the LED output power, Pout, in
terms of the injection current I and the external quantum efficiency ηe of
the LED to verify the relation in (13.72).

13.7.8 A blue InGaN SQW LED emitting at 470 nm and a green InGaN SQW LED
emitting at 530 nm are found to have the same external quantum efficiency of
ηe = 12% when both are injected with a current of I = 20 mA. The photopic
luminous efficiency function has a value of V (λ) = 0.091 at λ = 470 nm and
a value of V (λ) = 0.862 at λ = 530 nm.
a. Find the optical output power and the luminous flux for each of these two

LEDs.
b. Which LED has a higher output power? Which one looks brighter to a

human eye?
13.7.9 Explain the nonlinear L–I characteristics of an LED at very low and very high

injection levels, respectively. Assuming a constant junction voltage for all
injection current levels, verify the power conversion efficiency as a function of
injection current for an LED that has the L–I characteristics shown in Fig. 13.26.

13.7.10 An LED that has an excess carrier density of N from current injection as
described by (13.70) is subject to direct current modulation.
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a. With the time-dependent injection current expressed as (13.73) and the out-
put optical power expressed as (13.74), show that the frequency-dependent
response to the current modulation is that given in (13.75).

b. Verify the relation between the output power and the modulation bandwidth
of an LED given in (13.78).

13.7.11 An LED initially has a purely radiative spontaneous carrier lifetime of τs =
τrad = 5 ns. It emits at 620 nm with an optical output power of 10 mW when
injected with a current of 30 mA. In order to increase its modulation bandwidth,
nonradiative recombination centers in the form of impurities are introduced to
the LED to reduce its spontaneous carrier lifetime to τs = 1 ns while main-
taining its radiative recombination lifetime unchanged at τrad = 5 ns.
a. Find its modulation bandwidth before the nonradiative recombination cen-

ters are incorporated into the device. What is its external quantum efficiency
in this condition?

b. Find its modulation bandwidth and output power for the same injection
current of 30 mA after the nonradiative recombination centers are incor-
porated into the device. What is its external quantum efficiency in this
condition?

13.8.1 Compare SOAs and fiber amplifiers based on their physical differences and per-
formance characteristics. Discuss the advantages and disadvantages of SOAs
versus fiber amplifiers in practical applications.

13.8.2 What are the three most important parameters to be considered for a laser
amplifier? What are the implications of each of them for the performance of a
laser amplifier?

13.8.3 Why does an SOA tend to be more nonlinear and noisier than a fiber amplifier?
What can be done to reduce the nonlinearity and noise of an SOA?

13.9.1 Describe and compare the basic structures, principles, and characteristics of
the three different types of edge-emitting lasers.

13.9.2 What are the basic differences between DBR and DFB lasers?
13.9.3 Single-longitudinal-mode oscillation of a DBR laser can be ensured by requir-

ing that �νL > �νDBR. Show that this condition can be met if a DBR laser using
two identical DBRs as end mirrors is designed so that |κ|l + R1/2

DBR < π/2.
13.9.4 There are two longitudinal modes that fall within the DBR bandwidth of the

DBR laser considered in Example 13.15. The one with the lower threshold
has been considered in Example 13.15. Find the wavelength, threshold gain
coefficient, and threshold carrier density for the second mode. Compare its
threshold with that of the first mode.

13.9.5 An InGaAsP DBR laser consists of a gain section of a length l = 250 µm
and two identical DBRs as end mirrors, each of a length lDBR = 250 µm. The
Bragg wavelength of the DBRs is λB = 1.530 00 µm. The effective indices
for the laser modes are taken to be nβ = Nβ = 3.45. The gain overlap factor
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is � = 0.2. The DBR coupling coefficient is |κ| = 40 cm−1. The laser has a
distributed loss of α = 60 cm−1.
a. Find the peak reflectivity and the bandwidth of the two identical DBRs.
b. Find the effective phase length of the DBRs and that of the DBR laser to

determine the longitudinal mode spacing of the laser.
c. How many longitudinal modes fall within the DBR bandwidth? If the laser

is pumped such that only one longitudinal mode oscillates, what is its wave-
length?

d. What is the threshold gain coefficient of the oscillating mode?
e. If the gain medium has a gain cross section of σ = 5 × 10−20 m2, what

is the required carrier density above transparency for the laser to reach its
threshold?

13.9.6 The oscillation condition and longitudinal mode characteristics of a DFB laser
that does not have a structural phase shift in its grating are considered.
a. Verify that the oscillation condition of such a DFB laser found in (13.97)

can be expressed in the form of (13.98).
b. Show by using the condition in (13.98) without numerical solution that the

Bragg frequency νB is not a longitudinal mode of such a DFB laser. Show
also that the longitudinal modes of such a DFB laser are symmetrically
distributed on both sides of νB.

13.9.7 An InGaAsP DFB laser has its grating fabricated along its gain section, which
has a length of l = 250 µm. There is no intentional or unintentional phase shift
in the grating. This DFB laser has all of the same parameters as those of the DBR
laser described in Problem 13.9.5 with λB = 1.530 00 µm, nβ = Nβ = 3.45,
� = 0.2, |κ| = 40 cm−1, and α = 20 cm−1.
a. Find the longitudinal mode spacing and the stop band of the DFB laser.
b. How many longitudinal modes will oscillate if the laser is pumped to its

lowest threshold? What are their wavelengths?
c. What is the threshold gain coefficient of the oscillating modes?
d. If the gain medium has a gain cross section of σ = 5 × 10−20 m2, what

is the required carrier density above transparency for the laser to reach its
threshold?

13.9.8 The λ/4 phase-shifted DFB laser shown in Fig. 13.32(b) has a total length of
l and a π/2 phase shift right at the middle point l/2 of its grating. Both of its
end facets have no reflection and no phase shift. The coupling coefficient of
the grating is κ .
a. Use the concept of the S(z; z0) matrix obtained in (4.95) for contradirectional

coupling to show that the reflection coefficient viewed from one end of this
DFB laser is

r = κ∗δ(1 − cosh αcl)

|κ|2 − δ2 cosh αcl + iαcδ sinh αcl
(13.140)
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so that its oscillation condition is

|κ|2 − δ2 cosh αcl + iαcδ sinh αcl = 0, (13.141)

where αc and δ are defined in (13.94) and (13.96), respectively.
b. Show by using the condition in (13.141) without numerical solution that

the Bragg frequency νB is a longitudinal mode of this λ/4 phase-shifted
DFB laser and that other longitudinal modes of this laser are symmetrically
distributed on both sides of νB.

13.9.9 Plot the value of αoutl = (�gth − α)l of the λ/4 phase-shifted DFB laser at
the threshold of its fundamental mode by numerically solving its oscillation
condition given in (13.141). Compare the result with that shown in Fig. 13.33
for a DFB laser without a phase shift.

13.9.10 Answer the questions in Example 13.16 for a λ/4 phase-shifted DFB laser
with all of the same parameters except for the presence of the phase shift.
From Problem 13.9.9, we find that for |κ|l = 1.5 the threshold of a λ/4 phase-
shifted laser is at αoutl = 2.04. Compare the results with those obtained in
Example 13.16.

13.9.11 Describe and compare the basic structures, principles, and characteristics of
the three different types of surface-emitting lasers.

13.9.12 Consider a DBR that has the form of a square index grating made of alternating
layers of indices of n ± �n/2 for an index step of �n and an average index of
n between two neighboring layers. Show that the largest coupling coefficient
with a magnitude given by (13.104) is found for a first-order square grating of
a 50% duty factor.

13.9.13 Answer the questions in Example 13.17 if the thickness of the spacer layers
is increased to make the cavity a 2λ cavity while all other parameters of the
device remain unchanged. If we want to bring the threshold gain coefficient of
this device with a 2λ cavity back to that found in Example 13.17 for the device
with a 1λ cavity by only changing the reflectivity of the top DBR, how many
pairs of grating layers have to be used instead for this DBR?

13.9.14 Compare the basic requirements for the operation of an LED, an SOA, and a
semiconductor laser.

13.10.1 For a semiconductor laser in steady-state oscillation, (13.109) and (13.110) are
reduced to two algebraic equations by taking dN/dt = dS/dt = 0.
a. Show that the threshold gain parameter gth can be expressed in terms of N

and S in the form of (13.117) with the saturation photon density Ssat defined
as that in (13.118).

b. Show that the output power of the laser in steady-state oscillation can be
expressed as (13.120).

c. Show that the output power can alternatively be expressed as (13.121).
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d. Verify that (13.120) and (13.121) are identical to each other by transforming
one to the other.

13.10.2 For a QW laser, the threshold gain parameter gth cannot be expressed in terms
of Ninj and S in the form of (13.117), but S can still be expressed as a function
of Ninj − Nth. Follow the procedure in Problem 13.10.1 to answer the following
questions for a QW laser.
a. Express S as a function of Ninj − Nth together with the parameters of Ntr,

Nth, and the saturation photon density Ssat defined as that in (13.118).
b. Express the output power of a QW laser in steady-state oscillation in a

modified form of (13.120) in terms of the parameters in (13.120).
c. Show that the output power of a QW laser can also be expressed as (13.121).
d. Verify that the modified form of (13.120) for a QW laser is also identical to

(13.121) by transforming one to the other. What is the difference between
an ordinary DH laser and a QW laser in this transformation?

13.10.3 In the presence of a series resistance in a semiconductor laser, both the power
conversion efficiency and the slope efficiency of the laser are reduced at a
given injection level. Both also vary with the injection current in a less favorable
manner than the ideal situation in the absence of the series resistance. Examine
the effect of the series resistance by plotting ηc and ηs as a function of I/Ith

with Ith = 62 µA for the VCSEL considered in Example 13.20 by taking the
junction voltage to be a constant of Vj = 2.2 V but by considering the three
different values of Rs = 0, 1, and 10 k� for the series resistance. What happens
to the efficiencies versus I/Ith if the threshold current is increased by one order
of magnitude to 620 µA?

13.10.4 Consider current modulation of a semiconductor laser biased at a DC current
of I0 > Ith and modulated at a modulation frequency of � = 2π f with a
modulation index of m defined in (13.131). In response to this modulation,
the total time-dependent carrier density and the total time-dependent photon
density can be expressed as N (t) = N0 + N1(t) = Nth + N1(t) and S(t) =
S0 + S1(t), respectively.
a. Taking the gain parameter g in the form given by (13.129) and using γn and

γp, show with I (t) given by (13.131) that the coupled equations in (13.109)
and (13.110) can be transformed, through linearizing the two equations by
keeping only the linear time-dependent terms on the variables N1 and S1,
into the following equations for the temporally varying components of the
carrier and photon densities:

�
dN1

dt
= mγcS0 cos �t − �(γs + γn)N1 − (γc − γp)S1, (13.142)

dS1

dt
= �γn N1 − γpS1. (13.143)
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b. Solve the coupled equations obtained in (a) for S1 and use the fact that
P1 ∝ S1 to show that the frequency-dependent response function of the laser
is that given in (13.133). Note that it is easier to take the Fourier transform
of both equations and then solve for S1(ω).

c. Show that the power spectrum given in (13.137) has a resonance peak at fpk

given by (13.138).
d. Show that the 3-dB modulation bandwidth f3dB of a laser is that given in

(13.139).
13.10.5 About one-half of the characteristic parameters of a laser are independent of

the injection current level in the ideal situation, but the other half vary with the
injection current. The parameters that are independent of the injection current
level in an ideal situation are ηinj, ηt, ηe, γs, τs, γc, τc, and the K factor. For the
other parameters that vary with the injection current, it is convenient to define
a dimensionless parameter:

J̃ = J − Jth

Jth
= I − Ith

Ith
, (13.144)

where J and I are the injection current density and the injection current,
respectively, with their values being Jth and Ith at the laser threshold. The
bias voltage at threshold is Vth = Vj + Ith Rs, where Vj is the junction voltage
assumed to be a constant and Rs is the series resistance of the laser. The
dimensionless parameter J̃ has the physical meaning of how many times above
threshold a laser is operated. All of the current-dependent parameters of a laser
can then be conveniently expressed in terms of the parameter J̃ and the values
of the respective parameters at one time above threshold where I = 2Ith for
J̃ = 1, indicated with a superscript 0 for each parameter. For example, P0

out is
the output power of a laser operated at I = 2Ith for J̃ = 1. Show that

Pout = J̃ P0
out, (13.145)

ηs = η0
s

1 + J̃ (Ith Rs/Vth)
, (13.146)

ηc = ηs
J̃

1 + J̃
= η0

s

1 + J̃ (Ith Rs/Vth)

J̃

1 + J̃
, (13.147)

γn = J̃γ 0
n , γp = J̃γ 0

p , (13.148)

γr = J̃γ 0
r + (1 − J̃ )γs, (13.149)

and

fr =
√

J̃ f 0
r , fpk ≈

√
J̃ f 0

pk, f3dB =
√

J̃ f 0
3dB. (13.150)

13.10.6 Find the following performance parameters for the VCSEL considered in Ex-
ample 13.17 by using the results obtained in Examples 13.18–13.21 when it
operates at three times the threshold current with I = 3Ith: (a) the output power
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Pout; (b) the efficiencies ηe, ηc, and ηs; (c) the relaxation rates γc, γs, γn, and
γp; and (d) the parameters γr, fr, K , fpk, and f3dB for its frequency response.

13.10.7 Summarize the basic differences between the characteristics of an LED and a
semiconductor laser.
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14 Photodetectors

A photodetector is a device that converts an optical signal into a signal of another form.
Most photodetectors convert optical signals into electrical signals, in the form of either
current or voltage, that can be further processed or stored. All photodetectors are square-
law detectors that respond to the power or intensity, rather than the field amplitude, of
an optical signal. Based on the difference in the conversion mechanisms, there are two
classes of photodetectors: photon detectors and thermal detectors. Photon detectors are
quantum detectors based on the photoelectric effect, which converts a photon into an
emitted electron or an electron–hole pair; a photon detector responds to the number
of photons absorbed by the detector. Thermal detectors are based on the photothermal
effect, which converts optical energy into heat; a thermal detector responds to the
optical energy, rather than the number of photons, absorbed by the detector. Because
of the difference in their fundamental mechanisms, there are a number of important
differences in the general characteristics of these two classes of detectors.

The response of a photon detector is a function of optical wavelength with a long-
wavelength cutoff, whereas that of a thermal detector is wavelength independent. A
photon detector can be much more responsive than a thermal detector in a particu-
lar spectral region, which typically falls somewhere within the range from the near
ultraviolet to the near infrared. In comparison, a thermal detector normally covers a
wide spectral range from the deep ultraviolet to the far infrared with a nearly constant
response. Photon detectors can be made extremely sensitive. Some of them have a
photon-counting capability that is not possible for a thermal detector. A photon detec-
tor can be designed to have a high response speed capable of following very fast optical
signals. Most thermal detectors are relatively slow in response because the speed of a
thermal detector is limited by thermalization through heat diffusion and by heat dissi-
pation when the power of an optical signal varies. For these reasons, photon detectors
are suitable for detecting optical signals in photonic systems, whereas thermal detec-
tors are most often used for optical power measurement or infrared imaging. In this
chapter, only photon detectors are discussed because our major concern is with devices
for photonics applications.

Photon detectors can be classified into two groups: one based on the external pho-
toelectric effect and another based on the internal photoelectric effect. Photodetectors
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based on the external photoelectric effect are photoemissive devices, such as vacuum
photodiodes and the photomultiplier tubes, in which photoelectrons are ejected from
the surface of a photocathode. Photodetectors based on the internal photoelectric ef-
fect are semiconductor devices, in which electron–hole pairs are generated through
absorption of incident photons. A host of such devices have been developed, such as
photoconductors, junction photodiodes, many photovoltaic devices, phototransistors,
and charge-coupled devices.

14.1 Photodetector noise

Noise is one of the most fundamental phenomena in nature. It is ubiquitous. Noise in a
photodetector sets the fundamental limit on the detectivity of the detector, thus deter-
mining the usefulness of a detector for a particular application. In terms of the physical
nature, there are a few different types of noise for a photodetector. Two types of noise,
quantum noise and thermal noise, originate from the basic physical laws of nature.
Quantum noise, described as shot noise of electrons or photons in electronics and pho-
tonics, results from the statistical nature of a quantum event dictated by the uncertainty
principle. Thermal noise, known as Johnson noise or Nyquist noise in electronics and
photonics, is the consequence of thermal fluctuations and is directly associated with
thermal radiation. Noise of such fundamental nature can only be minimized but can
never be completely eliminated. In terms of physical sources, the noise of a photode-
tector can come from the following: the detector itself, the possible amplifier used in
conjunction with the detector, and the circuit used to extract the electrical signal from
the detector.

Noise appears in a signal as random fluctuations about the mean value of the signal.
A measured signal s has a mean value of s defined as

s =
∑

s

p(s)s, (14.1)

where p(s) is the probability of the measured signal having a value s and the sum is
carried out over all possible values obtained from measuring the signal. This mean
value s is the expected value, or the ensemble average, of the variable s. The variance,
or the mean square deviation, of the signal s is

σ 2
s = (s − s)2 = s2 − s2. (14.2)

The noise in a signal s can be expressed by a random variable sn defined as

sn = s − s. (14.3)

The noise represented by the random variable sn has a few general characteristics. As
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can be seen clearly from (14.3), it has a zero mean value:

sn = 0. (14.4)

From (14.2) and (14.3), we find that the mean square value of sn is equal to the variance
of s:

s2
n = σ 2

s = s2 − s2. (14.5)

The mean square value of the noise in a signal is simply the mean square deviation of
the signal. Because sn = 0 but s2

n �= 0, the average amplitude of the noise vanishes but
the power of the noise does not. Therefore, the magnitude of the noise is not measured
by its average value but rather by its root mean square (rms) value defined as

rms(sn) = s2
n

1/2
. (14.6)

Noise characterized by random fluctuations is incoherent. If two or more independent
noise sources, sn1, sn2, . . . , are simultaneously present in a signal s, their combined
effect is not found by adding their amplitudes but is obtained by adding their mean
square values, or their powers:

s2
n = s2

n1 + s2
n2 + · · · (14.7)

The total noise from different independent sources then has an rms value of

rms(sn) = s2
n

1/2 =
(

s2
n1 + s2

n2 + · · ·
)1/2

. (14.8)

One important figure of merit for a detection system is the signal-to-noise ratio (SNR
or S/N). It is defined as the ratio of the power of a signal to the power of its noise or,
equivalently, the ratio of the mean square of a signal to the mean square of its noise:

SNR = s2

s2
n

= s2

σ 2
s

, or SNR = 10 log
s2

s2
n

(dB). (14.9)

The SNR defined above is also known as the signal-to-noise power ratio to be distin-
guished from the signal-to-noise current ratio defined as

SNRcurrent = s

s2
n

1/2 = s

σs
. (14.10)

Without specification, however, the SNR of a detection system generally refers to the
signal-to-noise power ratio defined in (14.9).

In a photodetection system, a signal can take the form of photon number or photon flux
as the input optical signal. It can also take the form of photocurrent or photovoltage as
the output electrical signal. Therefore, the signal s can represent photon number, photon
flux, photocurrent, or photovoltage. The general characteristics discussed above for the
noise sn apply to every case.
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In the following discussions of photodetector noise, we consider an input optical
signal with an optical power Ps. The detection system has an electrical response band-
width of � f = B, which can effectively sample the optical signal within a rectangular
time interval of

T = 1

2B
. (14.11)

The total number of photons received by the photodetector within this time interval is

S = Ps

hν
T = Ps

2Bhν
. (14.12)

If the photodetector has a quantum efficiency ηe, the total number of charge carriers
generated in the detector by the photoelectric effect upon receiving the photons within
the time interval T is

N = ηeS = ηe
Ps

2Bhν
, (14.13)

where 0 ≤ ηe ≤ 1. Consequently, the photocurrent in the detector is

iph = eN
T

= 2eBN = ηe
ePs

hν
, (14.14)

where e is the electronic charge. For a detector without an internal gain, the signal
current is simply is = iph. For a detector with an internal gain G, the signal current is
is = Giph.

Shot noise

The shot noise in a photodetector results from the quantum nature of the photons in
the optical input and that of the charge carriers generated in the detector. Due to the
quantum-mechanical probabilistic nature of photons, the photons in an optical signal are
not distributed uniformly in time but arrive at the detector randomly in time. Therefore,
both the power Ps of the optical signal and the number of photons S received in a given
time interval T fluctuate randomly around their respective average values of Ps and
S. The random fluctuations of the photons are characterized by the Poisson statistics.
In any given time interval T , the probability of receiving S photons is given by the
following Poisson probability distribution:

p(S) = SS
e−S

S!
. (14.15)

The mean square noise in the photon number fluctuations can then be calculated as (see
Problem 14.1.3)

S2
n = σ 2

S =
∑
S

p(S)(S − S)2 = S. (14.16)
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This photon contribution to the noise of a photodetector is independent of the physical
properties of the detector because it is external to the detector. It is the ultimate lower
limit of the noise in an optical detection system. It sets the fundamental limit on the
detectivity of a photodetector.

The photons received by a photodetector are converted to photoelectrons or electron–
hole pairs, depending on the type of the detector, through the photoelectric effect. With a
quantum efficiency ηe, which has a value between 0 and 1, the number of photoelectrons
generated is only a fraction of that of the photons received by the detector. Because a
given photon can only generate either one or no electron, but not a fraction of an electron,
the photoelectric process is clearly quantum mechanical and probabilistic. The shot
noise associated with this process has to be considered if the quantum efficiency is less
than unity. This effect is fully accounted for by considering the statistics of the number
N of charge carriers given in (14.13) that are generated with a quantum efficiency ηe

of the photodetector. The random fluctuations of the charge carriers generated by the
photoelectric effect are also characterized by the Poisson statistics with the following
probability distribution for generating a number N in a time interval T :

p(N ) = NN
e−N

N !
, (14.17)

where N = ηeS. We find, through a procedure similar to that used in (14.16), that the
mean square noise in the number of photogenerated carriers is

N 2
n = σ 2

N = N . (14.18)

Because N < S if ηe < 1, the noise is actually reduced by an imperfect quantum
efficiency. This result seems odd. However, what really counts in a detection system is
not the noise alone, but the SNR. While the noise is reduced by an imperfect quantum
efficiency of ηe < 1, the signal is reduced even more. As a result, the SNR is lower for
a detector that has a poorer quantum efficiency (see Problem 14.1.4).

We consider here a detector without an internal gain, such that is = iph. Using (14.14)
and (14.18), we find the following shot current noise in the photodetector:

i2
n,sh = 4e2 B2N 2

n = 4e2 B2N = 2eBis. (14.19)

We then have the following mean square current fluctuations for the shot noise of a
photodetector that receives an optical power Ps from an input optical signal:

i2
n,sh = 2eBis = 2ηee2 B

Ps

hν
. (14.20)

From this relation, we have (see Problem 14.1.3)

i2
s = is

2 + 2eBis. (14.21)
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In practice, there are other sources that also contribute to the shot noise of a photode-
tector. One important source is the photons from the background radiation that impinge
on the detector. The contribution of this noise source can be minimized by reducing
the aperture of the detector to the minimum needed for receiving the optical signal. It
cannot be completely eliminated, however, because at the very minimum there is still
background thermal radiation, which can only be reduced by reducing the temperature
of the environment surrounding the detector. Another important source of shot noise
is the dark current of the detector. The dark current is the current in a detector when
it is not illuminated with any optical input. In a semiconductor device, it is normally
caused by thermal generation of electron–hole pairs and by leakage currents due to
surface defects of the device. When these additional noise sources are considered, the
total shot noise of a photodetector is given by

i2
n,sh = 2eBi = 2eB(is + ib + id), (14.22)

where ib is the photocurrent generated by background radiation and id is the dark current
of the detector.

Excess shot noise

In a photodetector, such as a photomultiplier, a photoconductor, or an avalanche photo-
diode, that has an internal gain, both signal and noise are amplified. For a detector that
has a gain G, the signal current, the background radiation current, and the dark current
are all amplified by the factor G:

is = Giph = Gηe
ePs

hν
(14.23)

and

ib = Gib0, id = Gid0, (14.24)

where ib0 and id0 are unamplified background and dark currents, respectively, and ib

and id are amplified currents that can be directly measured externally. The shot noise is
also amplified through a process of random multiplication of the noise electrons. The
statistical nature of this random multiplication process results in an excess noise factor,
F , which is a function of the material, the structure, and the gain of a detector. As a
consequence, the mean square shot noise current for a detector with an internal gain
can be expressed as

i2
n,sh = 2eBG2 F(iph + ib0 + id0) = 2eBG F(is + ib + id), (14.25)

where the excess noise factor F = G2/G
2

is a function of the gain. For a detector
without an internal gain, we find that G = 1 and F = 1; then, the shot noise given in
(14.25) reduces to that in (14.22), as expected.
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Thermal noise

Thermal noise results from random thermal motions of the electrons in a conductor.
It is associated with the blackbody radiation of a conductor at the radio or microwave
frequency range of the signal. Because only materials that can absorb and dissipate
energy can emit blackbody radiation, thermal noise is generated only by the resistive
components of the detector and its circuit. Capacitive and inductive components do not
generate thermal noise because they neither dissipate nor emit energy.

The energy of the thermal noise generated by a resistive element is independent of the
detailed physical properties of the resistor but is dictated only by the law of blackbody
radiation. At a temperature T , the thermal noise power in a small frequency interval of
d f centered around f is

Pn,th( f )d f = 4h f

eh f/kBT − 1
d f. (14.26)

In normal operation of most photodetectors, f � kBT/h. Thus, the frequency depen-
dence of the thermal noise power is negligible, resulting in

Pn,th( f )d f ≈ 4kBT d f. (14.27)

Then, the total thermal noise power for a detection system of a bandwidth B is simply

Pn,th = 4kBT B. (14.28)

For a resistor that has a resistance R, the thermal noise can be treated as either current
noise or voltage noise through the relation of Pn,th = i2

n,th R = v2
n,th/R. Then, we have

i2
n,th = 4kBT B

R
(14.29)

and

v2
n,th = 4kBT B R. (14.30)

For an optical detection system, the resistance R is the total equivalent resistance,
including the internal resistance of the detector and the load resistance from the cir-
cuit, at the output of the detector. For a detector that has a current signal, (14.29) is
used. In this case, the thermal noise is determined by the lowest shunt resistance to the
detector, which is often the load resistance of the detector. The thermal noise can be
reduced by increasing this resistance at the expense of reducing the response speed of
the system. For a detector that has a voltage signal, (14.30) is used. In this situation,
the thermal noise is determined by the largest series resistance to the detector, which
again is often the load resistance of the detector. The thermal noise can now be re-
duced by decreasing this resistance, but at the expense of reducing the output voltage
signal.
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Signal-to-noise ratio

There are other noise sources, such as the 1/ f noise, but they are usually not important
for the normal operation of photodetectors. Therefore, the total noise of a photodetector,
whether it has an internal gain or not, is basically the sum of its shot noise and thermal
noise:

i2
n = i2

n,sh + i2
n,th. (14.31)

A photodetector is said to function in the quantum regime if i2
n,sh > i2

n,th. A photodetector
operating in the quantum regime is shot-noise limited because shot noise is the primary
source of noise in this regime. A photodetector is in the thermal regime if i2

n,th > i2
n,sh.

A photodetector operating in the thermal regime is thermal-noise limited because its
thermal noise dominates its shot noise in this regime.

For a photodetector that has no internal gain, the SNR is given by

SNR = i2
s

i2
n

= i2
ph

2eB(iph + ib + id) + 4kBT B/R

= P2
s R2

2eB(PsR + ib + id) + 4kBT B/R
, (14.32)

where R = ηee/hν is the responsivity of a photodetector without an internal gain,
defined in the following section. For a photodetector that has an internal gain G, the
SNR is

SNR = i2
s

i2
n

= G2i2
ph

2eBG2 F(iph + ib0 + id0) + 4kBT B/R

= P2
s R2

2eBG F(PsR + ib + id) + 4kBT B/R
, (14.33)

where R = Gηee/hν is the responsivity of a photodetector with an internal gain, also
defined in the following section.

The relations in (14.32) and (14.33) apply to photodetectors that have current signals
at the output. For a photodetector that has an output voltage signal, the SNR is defined
as

SNR = v2
s

v2
n

= P2
s R2

v2
n

, (14.34)

where R is the responsivity of a photodetector that has an output voltage signal defined
in the following section.

EXAMPLE 14.1 A photodetector that responds to an optical signal with a photocurrent has
a load resistance of R = 50 � and a bandwidth of B = 100 MHz. It has a negligible
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background radiation current and a dark current of id = 10 nA. (a) Find its shot noise,
thermal noise, and signal-to-noise ratio when it generates a signal photocurrent of 1 µA.
(b) What are its shot noise, thermal noise, and signal-to-noise ratio when it generates a
signal photocurrent of 1 mA?

Solution (a) For is = iph = 1 µA, we find that the shot noise

i2
n,sh = 2eB(is + id) = 2 × 1.6 × 10−19 × 100 × 106 × (1 × 10−6 + 10 × 10−9) A2

= 3.23 × 10−17 A2.

At T = 300 K, kBT = 25.9 meV. The thermal noise for R = 50 � is

i2
n,th = 4kBT B

R
= 4 × 25.9 × 10−3 × 1.6 × 10−19 × 100 × 106

50
A2

= 3.32 × 10−14 A2.

Thus, the total noise

i2
n = i2

n,sh + i2
n,th = 3.23 × 10−17 A2 + 3.32 × 10−14 A2 = 3.32 × 10−14 A2.

We see that in this example the shot noise is mainly contributed by the signal pho-
tocurrent, but the shot noise is negligible compared to thermal noise. From (14.21), we
have

i2
s = is

2 + 2eBis = (1 × 10−6)2 A2 + 3.23 × 10−17 A2 = 1 × 10−12 A2.

We find that i2
s ≈ is

2
in this example. Thus, the SNR is

SNR = i2
s

i2
n

= 1 × 10−12

3.32 × 10−14
= 30,

which is 14.8 dB.
(b) For is = iph = 1 mA, the shot noise

i2
n,sh = 2eB(is + id) = 2 × 1.6 × 10−19 × 100 × 106 × (1 × 10−3 + 10 × 10−9) A2

= 3.2 × 10−14 A2.

The thermal noise is the same as that found in (a): i2
n,th = 3.32 × 10−14 A2. In this

example, the shot noise is contributed almost entirely by the signal photocurrent and is
comparable to the thermal noise. The total noise

i2
n = i2

n,sh + i2
n,th = 3.2 × 10−14 A2 + 3.32 × 10−14 A2 = 6.52 × 10−14 A2.
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We also have

i2
s = is

2 + 2eBis = (1 × 10−3)2 A2 + 3.2 × 10−14 A2 = 1 × 10−6 A2.

The SNR is

SNR = i2
s

i2
n

= 1 × 10−6

6.52 × 10−14
= 1.53 × 107,

which is 71.8 dB. We see that the SNR is significantly increased by 57 dB when the
signal photocurrent is increased from 1 µA to 1 mA. The reason for this significant
improvement is that the detector is limited by thermal noise at low photocurrents.

14.2 Photodetector performance parameters

Several parameters are commonly used to define the performance characteristics of
photodetectors. These parameters can be considered as the figures of merit of a pho-
todetector. They are used for comparing one photodetector with another and for deter-
mining the suitability of a photodetector for a particular application. In this section, the
basic concepts of these parameters are defined and discussed.

Spectral response

Because the response of a photon detector is wavelength dependent, a given photode-
tector is responsive only within a finite, specific range of the optical spectrum. The
spectral range of response for a photodetector is determined by the material, the struc-
ture, and the packaging of the detector. The spectral response of a photodetector is
usually specified in terms of the spectral responsivity or the spectral detectivity of the
detector. In choosing a photodetector for an application, the match between the spectral
content of the optical signal and the spectral response of the detector is the first thing
to be verified.

Quantum efficiency

Quantum efficiency is the probability of generating a charge carrier in a photodetector
for each photon that is incident on the detector. Similarly to the external quantum ef-
ficiency, ηe, of an LED or a semiconductor laser, the external quantum efficiency of a
photodetector is reduced from its internal quantum efficiency, ηi, by the transmission
efficiency, ηt, of the incident optical beam into the active region of the detector and by the
collection efficiency, ηcoll, of the photogenerated electrical carriers into a photocurrent.
Thus, we can express the external quantum efficiency of a photodetector as

ηe = ηcollηtηi. (14.35)
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Comparing this relation with that in (13.67) for an LED and that in (13.127) for a
semiconductor laser, we find that the carrier collection efficiency ηcoll of a photode-
tector is equivalent to the carrier injection efficiency ηinj of an LED or a laser, and that
the optical transmission efficiency ηt of a photodetector is equivalent to the photon
extraction efficiency ηt of an LED or a laser.

As expressed in (14.13), the external quantum efficiency can be defined as the ratio
of the number of photogenerated charge carriers, in the form of either photoelectrons or
electron–hole pairs, that actually contribute to the photocurrent to the number of incident
photons: ηe = N /S. According to (14.14), the external quantum efficiency of a detector
can then be expressed in terms of the incident optical power and the photocurrent
as

ηe = iph/e

Ps/hν
= hνiph

ePs
. (14.36)

The quantum efficiency of a photodetector is a function of the wavelength of the incident
photons because of the spectral response of the detector. Its wavelength dependence
arises not only from its explicit dependence on the optical frequency ν seen in (14.36)
but also from the wavelength dependence of the ratio iph/Ps defined below as the
responsivity of the detector.

EXAMPLE 14.2 A Si photodetector responds to an optical signal at 850 nm of 1 mW
power with a photocurrent of 500 µA. What is its external quantum efficiency?

Solution At λ = 850 nm, we have

hν

e
= 1239.8

850
V.

Therefore, for iph = 500 µA in response to Ps = 1 mW, we find from (14.36) the
following external quantum efficiency for this detector:

ηe = hνiph

ePs
= 1239.8

850
× 500 × 10−6

1 × 10−3
= 72.9%.

Responsivity

Responsivity is an important parameter for a photodetector. It allows one to determine
the available output signal of a detector for a given input optical signal. The responsivity
of a photodetector is defined as the ratio of the output current or voltage signal to the
power of the input optical signal. For a photodetector that has an output current signal,
the responsivity is defined as

R = is

Ps
(A W−1). (14.37)
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For a photodetector that has an output voltage signal, the responsivity is defined as

R = vs

Ps
(V W−1). (14.38)

Because most of the commonly used photodetectors have output current signals,
we consider in further detail the responsivity of such photodetectors in the follow-
ing. Similar concepts can be extended to photodetectors that have output voltage
signals.

For a photodetector without an internal gain, the signal current is simply the photocur-
rent, is = iph. By using (14.36), we find the following expression for its responsivity:

R = iph

Ps
= ηe

e

hν
. (14.39)

For a photodetector with an internal gain, however, the signal current is amplified by
the gain, is = Giph, and the responsivity is

R = Giph

Ps
= Gηe

e

hν
= GR0, (14.40)

where R0 is the intrinsic responsivity of the detector defined as

R0 = iph

Ps
= ηe

e

hν
. (14.41)

The responsivity of a photodetector without an internal gain is simply its intrinsic
responsivity, R = R0, whereas one with an internal gain has a responsivity R = GR0.

The spectral response of a photodetector is usually characterized by the responsivity
of the detector as a function of optical wavelength,R(λ), which is known as the spectral
responsivity. In addition, the responsivity of a photodetector is also a function of signal
frequency f . Its frequency dependence, R( f ), characterizes the frequency response of
the detector, as discussed later.

EXAMPLE 14.3 Find the responsivity at 850 nm for the Si photodetector described in
Example 14.2.

Solution From (14.39), the responsivity of this detector at 850 nm is simply

R = iph

Ps
= 500 × 10−6

1 × 10−3
A W−1 = 0.5 A W−1.

Noise equivalent power

The noise equivalent power (NEP) of a photodetector is defined as the input power
required of the optical signal for the signal-to-noise ratio to be unity, SNR = 1, at
the detector output. Then, using the relations in (14.32) and (14.33), the NEP for a
photodetector, with or without an internal gain, that has an output current signal can be
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defined as

NEP = i2
n

1/2

R = rms(in)

R (W), (14.42)

where i2
n is the mean square noise current at an input optical power level for SNR = 1

and R is the responsivity defined in (14.37). Using the relation in (14.34), the NEP for
a photodetector that has an output voltage signal can be defined as

NEP = v2
n

1/2

R = rms(vn)

R (W), (14.43)

where v2
n is the mean square noise voltage at an input optical power level for SNR = 1

and R is the responsivity defined in (14.38).
For most detection systems at the small input signal level for SNR = 1, the shot noise

contributed by the input optical signal is negligible compared to both the shot noise
from other sources and the thermal noise of the detector. In this situation, the NEP of a
photodetector with no internal gain that has an output current signal can be expressed
as

NEP = (2eib + 2eid + 4kBT/R)1/2

R B1/2. (14.44)

The most fundamental limit of a photodetector is the noise contributed by the ubiquitous
blackbody radiation in the background. This background radiation sets the absolute
minimum of NEP for a photodetector. It is often the limitation for photodetectors in mid-
and far-infrared spectral regions, but it is normally not important for photodetectors in
visible and ultraviolet spectral regions. For most photodetectors responding to optical
wavelengths shorter than 3 µm, the noise from background blackbody radiation is
dominated by that from the dark current or that from resistive thermal noise, or both. For
such a photodetector, the intrinsic NEP is that defined by its dark current by assuming
that the load resistance is sufficiently large if the detector generates a photocurrent
signal, or sufficiently small if it generates a photovoltage signal. However, in order
to reduce its RC time constant, a high-speed photodetector that has a current signal
normally has a small area, thus a small dark current, but requires a small load resistance,
thus a large thermal noise. Therefore, the NEP of a high-speed photodetector is usually
limited by the thermal noise from its external load resistance rather than by the shot
noise from its internal dark current.

Because the mean square noise of a detector is proportional to the detector bandwidth,
i2
n ∝ B and v2

n ∝ B, the NEP of a photodetector is proportional to the square root of
the detector bandwidth: NEP ∝ B1/2. Therefore, the NEP of a photodetector is often
specified in terms of the NEP for a bandwidth of 1 Hz as NEP/B1/2, in the unit of
W Hz−1/2.
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EXAMPLE 14.4 The Si photodetector considered in Examples 14.2 and 14.3 has an active
area of A = 5 mm2, a bandwidth of B = 100 MHz, and a dark current of id = 10 nA.
(a) Find its shot-noise-limited NEP, its thermal-noise-limited NEP, and its total NEP, all
for a bandwidth of 1 Hz. (b) Find its shot-noise-limited NEP, its thermal-noise-limited
NEP, and its total NEP, all for its entire bandwidth.

Solution (a) The shot noise from the dark current is

i2
n,sh = 2eBid = 2 × 1.6 × 10−19 × 10 × 10−9 × B A2 Hz−1

= 3.2 × 10−27 B A2 Hz−1.

The thermal noise

i2
n,th = 4kBT B

R
= 4 × 25.9 × 10−3 × 1.6 × 10−19

50
× B A2 Hz−1

= 3.32 × 10−22 B A2 Hz−1.

The total noise i2
n = i2

n,sh + i2
n,th = 3.32 × 10−22 B A2 Hz−1, which is completely

dominated by thermal noise. From Example 14.3, we have R = 0.5 A W−1 for this
detector. Thus, the shot-noise-limited NEP for a bandwidth of 1 Hz is

(NEP)sh

B1/2
= i2

n,sh

1/2

B1/2R = (3.2 × 10−27)1/2

0.5
W Hz−1/2 = 113 fW Hz−1/2.

The thermal-noise-limited NEP for a bandwidth of 1 Hz is

(NEP)th

B1/2
= i2

n,th

1/2

B1/2R = (3.32 × 10−22)1/2

0.5
W Hz−1/2 = 36.4 pW Hz−1/2.

The total NEP for a bandwidth of 1 Hz is

NEP

B1/2
= i2

n

1/2

B1/2R = (3.32 × 10−22)1/2

0.5
W Hz−1/2 = 36.4 pW Hz−1/2.

(b) For B = 100 MHz, we find that the shot-noise-limited NEP for the entire band-
width is

(NEP)sh = 113 × 10−15 × (100 × 106)1/2 W = 1.13 nW.

The thermal-noise-limited NEP for the entire bandwidth is

(NEP)th = 36.4 × 10−12 × (100 × 106)1/2 W = 364 nW.

The total NEP for the entire bandwidth is

NEP = 36.4 × 10−12 × (100 × 106)1/2 W = 364 nW.

We see that this detector is completely limited by the thermal noise of its load resistance.
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Detectivity

The detectivity characterizes the ability of a photodetector to detect a small optical
signal. It is defined as the inverse of the NEP of the detector:

D = 1

NEP
(W−1). (14.45)

As discussed above, NEP ∝ B1/2 when the shot noise contributed by the input optical
signal is negligibly small compared to the noise from other sources. In addition, the
background radiation current, ib, and the dark current, id, are often proportional to the
surface area, A, of a photodetector. Therefore, when ib and id are the dominant sources
of noise for a photodetector, the intrinsic noise characteristics of the detector can be
better quantified by normalizing NEP to (AB)1/2. A useful intrinsic parameter of a
photodetector is the specific detectivity, D∗, defined as

D∗ = (AB)1/2

NEP
(cm Hz1/2 W−1). (14.46)

Then, for a dark-current-limited photodetector without an internal gain, we have

D∗ ≈ A1/2R
(2eid)1/2

. (14.47)

The specific detectivity D∗ is independent of the area of the detector. It is a measure of
the intrinsic detection capability of the material and the structure of the detector.

The detectivity of a photodetector is a function of the wavelength of the optical signal.
The spectral characteristics of the detectivity, given as D(λ) or D∗(λ), reflect the spectral
response of a photodetector. The detectivity is also a function of the modulation signal
frequency f carried by the optical beam.

EXAMPLE 14.5 Find the detectivity and the specific detectivity of the Si photodetector
considered in Example 14.4 for the following two situations: (a) when the detector is
shot-noise limited by its dark current with a large load resistance and (b) when the
detector has a 50 � load resistance.

Solution (a) As given in Example 14.4, the detector has an active area of A =
5 mm2 = 5 × 10−2 cm2. When the detector is shot-noise limited by its dark current, it
has a detectivity

D = 1

(NEP)sh
= 1

1.13 × 10−9
W−1 = 8.85 × 108 W−1

and a specific detectivity

D∗ = (AB)1/2

(NEP)sh
= (5 × 10−2 × 100 × 106)1/2

1.13 × 10−9
cm Hz1/2 W−1

= 1.98 × 1012 cm Hz1/2 W−1.
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(b) When the detector has a 50 � load resistance, it has a detectivity

D = 1

NEP
= 1

364 × 10−9
W−1 = 2.75 × 106 W−1

and a specific detectivity

D∗ = (AB)1/2

NEP
= (5 × 10−2 × 100 × 106)1/2

364 × 10−9
cm Hz1/2 W−1

= 6.14 × 109 cm Hz1/2 W−1.

We find that when the photodetector is loaded with a 50 � resistance, its detectivity
and specific detectivity are limited by the resistive thermal noise and are much lower
than its intrinsic detectivity and specific detectivity, which are limited by the shot noise
from its dark current.

Linearity and dynamic range

Linearity of a photodetector is defined by the response of the detector being linear,
meaning that its output current or voltage signal is linearly proportional to its input
optical signal. Linear response is required for a photodetector to convert the waveform
of an input optical signal faithfully to an output electrical signal without distortion.
When a photodetector has a linear response, its quantum efficiency ηe and responsiv-
ity R defined above are constants that are independent of the power Ps of the input
optical signal. However, every practical photodetector only has a finite range of linear
response, as shown in Fig. 14.1. As the power of the input optical signal reaches a
certain level, the response of a photodetector starts to saturate, thereby deviating from
linearity.

(a) (b)

d d

dd

Figure 14.1 Typical response characteristics as a function of the power of the input optical signal
for (a) a photodetector with an output current signal and (b) a photodetector with an output voltage
signal.
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The maximum input signal power acceptable is determined by the maximum devi-
ation from the linear response of a photodetector that can be tolerated in a particular
application. Given the maximum tolerable deviation from linearity to be δ (for 100δ%),
the saturation signal power, P sat

s , for the photodetector in the application is the corre-
sponding maximum acceptable input power. As illustrated in Fig. 14.1, the value of
P sat

s can be found from

dis

dPs

∣∣∣∣
Ps=Psat

s

= (1 − δ)R or
dvs

dPs

∣∣∣∣
Ps=Psat

s

= (1 − δ)R, (14.48)

where R is the responsivity of the detector in the linear range.
The usefulness of a photodetector for detecting an optical signal is clearly limited by

its saturation, which is quantified by P sat
s , at the large-signal end and by its detectivity,

which is determined by the NEP of the detector, at the small-signal end. The range of
the input signal power above the NEP but below P sat

s in the linear-response region is
the useful range of operation for a photodetector. This range is known as the dynamic
range (DR) of the detector, as indicated in Fig. 14.1. The dynamic range is usually
quantified as

DR = 10 log
P sat

s

NEP
(dB). (14.49)

Alternatively, the dynamic range of a photodetector is also frequently stated in terms
of the number of orders of magnitude in the input power from the NEP to P sat

s .

EXAMPLE 14.6 With a load resistance of 50 �, the Si photodetector considered in the
preceding examples has a saturation current of 10 mA. Find its saturation optical signal
power and its dynamic range.

Solution Because R = 0.5 A W−1 for this detector, the saturation optical signal
power corresponding to i sat

s = 10 mA is

P sat
s = i sat

s

R = 10

0.5
mW = 20 mW.

The NEP of this detector in the presence of a 50 � load resistance is 364 nW from
Example 14.4. Therefore, the dynamic range of the detector is

DR = 10 log
20 × 10−3

364 × 10−9
dB = 47.4 dB.

Speed and frequency response

The response speed of a photodetector is directly related to its frequency response.
It determines the ability of a photodetector to follow a fast-varying optical signal. To
record an optical signal faithfully, a photodetector must have a speed higher than the
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(a) (b)

Figure 14.2 Typical responses of a photodetector to (a) an impulse signal and (b) a square-pulse
signal.

fastest temporal variations in the signal or, equivalently, a frequency response that has
a bandwidth covering the entire bandwidth of the signal.

In the time domain, the speed of a photodetector is characterized by the risetime,
tr, and the falltime, tf, of its response to an impulse signal or to a square-pulse signal,
as shown in Fig. 14.2. The risetime is defined as the time interval for the response
to rise from 10 to 90% of its peak value, whereas the falltime is defined as the time
interval for the response to decay from 90 to 10% of its peak value. Generally, the
overall speed of a photodetector is determined by both its intrinsic bandwidth and its
RC circuit-limited bandwidth. The risetime of the impulse response is determined by
the intrinsic bandwidth of a photodetector, and that of the square-pulse response is
determined by the RC circuit-limited bandwidth of the photodetector. The risetime and
its corresponding bandwidth have the following relation (see Problem 13.2.3):

tr = 0.35

f3dB

, (14.50)

where f3dB is the 3-dB cutoff frequency defined below.
The frequency response, which is characterized by the frequency dependence of the

responsivity R( f ) at a given optical wavelength, can be obtained by simply taking the
Fourier transform of the impulse response or by registering the response of the detector
at one signal frequency at a time while sweeping the signal frequency. Note that R( f )
is the current or voltage response spectrum of the detector because the responsivity of
a photodetector is defined as the output current or voltage signal of the detector. The
output electrical power spectrum of the detector is R2( f ), which defines a 3-dB cutoff
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frequency, or 3-dB bandwidth, for a photodetector as

R2( f3dB) = 1

2
R2(0). (14.51)

Considering the rectangular time interval used to define the bandwidth B, we have the
following relation between f3dB and B of a photodetector (see Problem 13.2.3):

f3dB = 0.886B = 0.443

T
. (14.52)

The 3-dB bandwidth of a photodetector is a function of the combined effect of a
few different physical factors that determine the speed and the frequency response
of the detector. These factors and their relative importance depend on the type of
photodetector. They are discussed in later sections where the physical properties of
various photodetectors are addressed.

EXAMPLE 14.7 Find the 3-dB cutoff frequency and the risetime in response to an impulse
signal for the Si photodetector considered in the preceding examples.

Solution From Example 14.4, we find that B = 100 MHz for this detector. Therefore,
its 3-dB cutoff frequency

f3dB = 0.886B = 88.6 MHz.

The risetime of its response to an impulse signal is

tr = 0.35

f3dB

= 0.35

88.6 × 106
s = 3.95 ns.

14.3 Photoemissive detectors

Photoemissive detectors are based on the external photoelectric effect. Photoelectrons
are emitted when the surface of a metal or a semiconductor, known as a photocathode
in this situation, is illuminated with light of a sufficient photon energy. The lowest
vacuum energy level, Evac, for an electron freed from the confinement of a material is
higher than the Fermi level in the material. For either a metal or a semiconductor, the
energy barrier between the lowest vacuum level and the Fermi level is defined as the
work function, eφ = Evac − EF, of the material. For a semiconductor, the difference
between the lowest vacuum level and the conduction-band edge is known as the electron
affinity, eχ = Evac − Ec, of the semiconductor. The quantities φ and χ have the physical
property of an electric potential measured in volts. The work function and the electron
affinity of a material are normally measured in electron volts.
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Photoemission from a given material occurs only when the incident photon has an
energy higher than a certain threshold photon energy, Eth, corresponding to an optical
wavelength shorter than a threshold wavelength, λth:

hν ≥ Eth, for λ ≤ λth = hc

Eth
= 1.2398

Eth
µm eV. (14.53)

The values of Eth and λth are characteristics of a given material.

1. Metal. In a metal, shown in Fig. 14.3(a), electrons occupy all of the energy levels be-
low the Fermi level. The threshold photon energy for the emission of a photoelectron
from a metal is

Eth = eφ. (14.54)

2. Nondegenerate semiconductor. In a nondegenerate semiconductor, shown in
Fig. 14.3(b), not all energy levels below the Fermi level, but only those below the
valence-band edge, are occupied by electrons because the Fermi level lies within
the bandgap. The threshold photon energy for photoemission from a nondegenerate
semiconductor is

Eth = eχ + Eg > eφ, (14.55)

if χ > 0.
3. Degenerate semiconductor. In a degenerate semiconductor, the highest level oc-

cupied by electrons is the Fermi level. Therefore, the threshold photon energy for pho-
toemission from a degenerate semiconductor is the work function, just like that given
in (14.54) for a metal. For an n-type degenerate semiconductor, Eth = eφ < eχ , as
shown in Fig. 14.3(c), because the Fermi level lies in the conduction band. For a
p-type degenerate semiconductor, Eth = eφ > eχ + Eg, as shown in Fig. 14.3(d),
because the Fermi level lies in the valence band.

The work functions of elemental metals are in the range of 2–5 eV. The lowest is that
of Cs at 2.1 eV, corresponding to a threshold wavelength of 590 nm for photoemission.
Elemental metals have poor quantum efficiencies. Ordinary group IV and III–V semi-
conductors, including Si, Ge, GaAs, and InP, have work functions typically in the range
of 4–5 eV. Because of their high threshold photon energies and low quantum efficien-
cies, elemental metals and ordinary semiconductors are not useful for photocathodes
in the visible and infrared spectral regions.

There are two groups of practical photocathodes that have both high quantum ef-
ficiencies and low threshold photon energies. One group consists of compounds of
alkaline metals and cesiated silver oxides that are usually labeled with standard inter-
national designation of spectral response and window type, such as S-1 (AgOCs), S-4
(Cs3Sb), S-10 (AgBiOCs), S-11 (Cs3Sb), S-20 (Na2KCsSb), and S-24 (Na2KSb). These
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(a)

(b)

(c)

(d )

Figure 14.3 Photon energy requirement for photoemission from the surface of (a) a metal, (b) a
nondegenerate semiconductor, (c) an n-type degenerate semiconductor, and (d) a p-type degenerate
semiconductor.
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Figure 14.4 Energy levels and photoemission in an NEA photocathode.

compounds are semiconductors that have low threshold photon energies in the range
of 1–2 eV because of their small bandgaps and small electron affinities. Another group
consists of negative electron affinity (NEA) photocathodes. An NEA photocathode is
made by depositing a very thin n-type layer on the surface of a p-type semiconductor
to cause a large downward band bending at the surface. The photocathode has a neg-
ative effective affinity if the band bending is large enough that the conduction-band
edge of the p-type semiconductor lies above the vacuum level, as shown in Fig. 14.4.
Practical NEA photocathodes have been developed for a few III–V semiconductors
by depositing a thin layer of Cs or Cs2O on the surface, including GaAs : Cs2O,
InGaAs : Cs, and InAsP : Cs. As can be seen in Fig. 14.4, once an electron is excited
to the conduction band of an NEA photocathode, it has sufficient energy to be emitted
by tunneling through the thin surface layer. Therefore, the threshold photon energy for
photoemission from an NEA photocathode is simply the bandgap of the semiconductor:

Eth = Eg. (14.56)

Figure 14.5 shows the spectral responsivity of typical photocathodes. The spectral
responsivity of a photoemissive device has a long-wavelength cutoff determined by the
threshold wavelength of the photocathode material and a short-wavelength cutoff de-
termined by the window material. The standard international designation with the letter
S, such as S-1, includes both the response of the photocathode material and the trans-
mission of the window material. Among all practical photocathodes including alkaline
compounds and NEA semiconductors, S-1 has the lowest threshold energy of ∼1.1 eV,
corresponding to a threshold wavelength of ∼1.1 µm. Currently no photocathode can
respond at wavelengths longer than 1.2 µm. The spectral response characteristics of the
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µmλ  

Figure 14.5 Spectral responsivity of representative photocathodes. The quantum efficiency is
indicated by the gray curves. (Based on data from assorted sources.)

vacuum photodiodes and photomultipliers discussed in the following are completely de-
termined by the spectral response of their photocathodes. Therefore, no photoemissive
detectors exist for the infrared at wavelengths longer than 1.2 µm.

Vacuum photodiodes

The vacuum photodiode is a simple device that consists of a photocathode and an anode
enclosed in a vacuum tube. The device can use either a reflection-mode photocathode,
which is opaque, or a transmission-mode photocathode, which is semitransparent. The
structure of a vacuum photodiode can have either a side-on configuration, with the light
incident from the side of the tube, or a head-on configuration, with the light incident
from the end of the tube. The tube can also be filled with a small amount of inert gas,
such as argon, to get a small internal gain through ionization of the gas by the collision
of photoelectrons. The gas-filled photodiodes are no longer competitive and therefore
are not practically useful because they have a limited gain and a low speed.

Figure 14.6(a) shows the basic circuitry of a vacuum photodiode. A voltage, Vak,
typically a few hundred volts, is applied between the anode and the photocathode to
collect the photoelectrons efficiently when the photocathode is irradiated with an optical
signal. Such a high anode voltage is needed to eliminate the space-charge effect between
the photocathode and the anode, thus improving the efficiency, and to reduce the electron
transit time from the photocathode to the anode, thus increasing the response speed of
the device.

The small-signal equivalent circuit, including the noise sources, of a vacuum photo-
diode is shown in Fig. 14.6(b). A photocathode generates a photocurrent in response
to an optical signal. A load resistance, RL, is required to convert the photocurrent
into an output voltage signal. The capacitance C in the equivalent circuit is the total
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-

(a) (b)

Figure 14.6 (a) Basic circuitry and (b) small-signal equivalent circuit of a vacuum photodiode.

equivalent capacitance from the anode to the ground, including the effects of the
anode-to-photocathode capacitance, Cak, the anode-to-shield capacitance, Cas, the
photocathode-to-shield capacitance, Cks, and stray capacitance, Cp, from the output
wiring to the ground. The minimum value of C is Cak, but the other capacitances add
to the value of C and can even become dominant if not carefully minimized.

The dark current of a vacuum photodiode comes from thermionic emission of the
photocathode. This dark current is exceedingly small, on the order of femtoamperes at
room temperature; it can be ignored in the presence of other noise sources. The dominant
shot-noise sources for a vacuum photodiode are the photocurrent and the background
radiation current. The dominant thermal noise is that from the load resistance because
the load resistance is much smaller than the internal resistance of a vacuum photodiode.
Ignoring the dark current from thermionic emission, the total noise of a vacuum pho-
todiode is

i2
n = 2eB(is + ib) + 4kBT B

RL

, (14.57)

where is is the photocurrent, and is = iph because a vacuum photodiode has no gain.
The NEP of a vacuum photodiode is on the order of 1 fW.

The response speed of a vacuum photodiode is determined by two factors: (1) the
transit time and the transit-time spread of the photoelectrons from the photocathode to
the anode and (2) the RC time constant of its equivalent circuit shown in Fig. 14.6(b).
The transit time is the time for a photoelectron to travel from the photocathode to
the anode. The transit-time spread is the spread in the transit time among different
photoelectrons caused primarily by the difference in the initial kinetic energies of the
photoelectrons when they are emitted from the photocathode. Both the transit time
and the transit-time spread can be reduced by carefully designing the geometry of the
device and then by applying a large anode-to-cathode voltage, Vak. For high-speed
applications, the RC time constant has to be chosen not to be the limiting factor by
using a sufficiently small load resistance, which is typically 50 �, and by eliminating all
stray capacitances. The typical speed of a fast vacuum photodiode ranges from 100 ps
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to 1 ns, with a corresponding 3-dB bandwidth ranging from a few hundred megahertz
to about 3 GHz.

Photomultipliers

A photomultiplier tube (PMT) is basically a vacuum photodiode with a built-in high-
gain, low-noise electron multiplier. A PMT consists of four major parts: (1) a pho-
tocathode for emitting photoelectrons, (2) an electron optics consisting of focusing
electrodes for accelerating and focusing the photoelectrons to the first dynode, (3) an
electron multiplier consisting of a chain of dynodes for secondary electron emission,
and, finally, (4) an anode to collect the electrons for the output signal. Depending on the
structure of the electron multiplier used in a PMT, there are many different photomulti-
plier structures, such as the circular cage, the box and grid, the venetian blind, the linear
dynode chain, and the microchannel plate, to name a few. Similarly to a vacuum pho-
todiode, a PMT can use either a reflection-mode or a transmission-mode photocathode
and can have either a side-on or a head-on configuration. Figures 14.7(a) and (b) show,
as examples, the configurations and structures of a side-on reflection-mode PMT with
a circular-cage structure and a head-on transmission-mode PMT with a box-and-grid
structure, respectively.

The electron multiplier of a PMT consists of a series of electrodes, called dynodes,
as shown in Figs. 14.7(a) and (b). The dynodes are biased at successively higher volt-
ages through a voltage-divider circuit consisting of a series of resistors, as shown in
Fig. 14.8(a). When a PMT is used in high-current pulse operation, capacitors are placed

-

(a)

(b)

Figure 14.7 Configurations and structures of (a) a side-on reflection-mode PMT with a
circular-cage structure and (b) a head-on transmission-mode PMT with a box-and-grid structure.
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Figure 14.8 (a) Basic circuitry and (b) small-signal equivalent circuit of a photomultiplier.

in parallel to the resistors in the last two or three stages of the divider circuit. By pro-
viding a bypass when the current surges at the peak of the pulse, these capacitors help
to maintain constant voltages on the last few dynodes, thus allowing the PMT to have
a large linear dynamic range. Electron multiplication is accomplished by secondary
electron emission, which is similar to photoemission except that the incident particle is
an electron instead of a photon. Many photocathode materials, including the NEA semi-
conductors and cesiated oxides, are also used for the dynodes. A photoelectron emitted
from the photocathode is accelerated by the high voltage between the photocathode
and the first dynode to an energy of typically 100–200 eV. When such a high-energy
electron strikes a dynode, a number of secondary electrons are emitted. This process
continues through successive dynode stages.

For a PMT, the total current gain, G, as defined in (14.23) is the ratio of the output
signal current at the anode to the photocurrent at the photocathode. This gain is given by
the total electron multiplication gain through the dynode chain. If the average electron
multiplication factor for each dynode stage is m, the total gain for a PMT with a chain
of n dynodes is

G = is

iph
= mn. (14.58)

The total gain can be quite significant even when the single-stage multiplication factor
is modest. For example, a ten-stage dynode chain has a gain of G ≈ 106 for m = 4
and G ≈ 107 for m = 5. Clearly, a small variation in the multiplication factor m leads
to a large change in the total gain G. Because the value of m is very sensitive to
dynode voltages, both the power supply and the bias circuitry have to be kept very
stable for reliable operation of a PMT. A PMT typically has 9–12 dynode stages biased
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with a total voltage of 500 V to 3 kV from the anode to the photocathode, depending
on the material used for the dynode and the gain desired. The typical multiplication
factor ranges from m = 3 to 8 for a total gain ranging from G = 103 to 108. Because
of the internal gain, the responsivity of a PMT is R = GR0, where R0 is the intrinsic
responsivity of the photocathode described earlier and shown in Fig. 14.5.

The small-signal equivalent circuit, including the noise sources, of a PMT is shown
in Fig. 14.8(b). Similarly to that in the equivalent circuit of a vacuum photodiode, the
capacitance C is the total equivalent capacitance from the anode to the ground, including
the capacitances from the anode to all other electrodes and stray capacitances.

The major source of dark current in a PMT is the thermionic emission from the
photocathode and the dynodes. Other less significant sources of dark current include
leakage current, field emission, and electron emission by cosmic rays. The total am-
plified dark current, id, of a PMT is that at the anode. The anode dark current, ida, of a
PMT is contributed by the photocathode dark current, idk, amplified by the gain G and
the dark current of all dynodes amplified by a gain less than G. If we take an effective
dynode dark current, idd, such that the dynode contribution to the anode dark current is
equivalently Gidd, the total dark current at the anode can be expressed as

id = ida = G(idk + idd). (14.59)

Like that of a vacuum photodiode, the dark current of a PMT is very small. However,
the anode dark current of a PMT is detectable and thus cannot be ignored because of the
high gain of a PMT. The total anode dark current id of a PMT is in the range between
10 pA and 10 nA, depending on the materials of the photocathode and the dynodes
and on the operating temperature. Indeed, the NEP of a PMT is usually limited by the
shot noise of its anode dark current. From the discussions in Section 14.1, we can then
express the shot noise of a PMT as

i2
n,sh = 2eBG2 F(iph + ibk + idk + idd) = 2eBG F(is + ib + id), (14.60)

where ib = Gibk is the anode current due to background radiation. The excess noise
factor F for an n-stage PMT is a function of the multiplication factor m. For m > 2,

F = mn+1 − 1

mn(m − 1)
≈ m

m − 1
. (14.61)

Therefore, F is on the order of unity for a PMT. Including the thermal noise, the total
current noise of a PMT is

i2
n = 2eBG F(is + ib + id) + 4kBT B

RL

. (14.62)

With this total noise, the SNR of a PMT has the form given in (14.33).
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Because of its high gain and low noise, a high-gain PMT can generate an output
signal with a good SNR for a single photoelectron emitted by its photocathode. Some
PMTs are capable of photon counting and are among the most sensitive photodetectors
available. The NEP of a PMT is typically on the order of 1 fW with a detectivity D∗ on
the order of 1016 cm Hz1/2 W−1. The NEP of a PMT operating in the photon-counting
mode can be as low as 10−19 W. A PMT has a large linear dynamic range, typically on
the order of 60–80 dB.

The response speed of a PMT is determined by the same two factors that limit the
speed of a vacuum photodiode discussed earlier. Because of the dynode chain, the elec-
tron transit time from photocathode to anode in a PMT is much longer than that in a
vacuum photodiode and is typically in the range of 10–100 ns. The transit-time spread,
however, is much less than the transit time, typically ranging from 100 ps to about 2 ns.
In terms of the impulse response, the long transit time causes a delay in the response,
but the risetime of the response pulse is primarily determined by the combined effect
of the transit-time spread and the RC time constant of the PMT circuit. Therefore,
the risetime of a PMT is typically on the order of a few nanoseconds and can be as
short as 1 or 2 ns, which is somewhat greater than the transit-time spread but is much
less than the electron transit time. Consequently, a PMT is a very fast detector with
a frequency bandwidth on the order of a few hundred megahertz. Combining its high
speed with its large gain, a PMT is a superb photodetector that has a gain–bandwidth
product unmatched by other types of photodetectors though it is not the fastest
photodetector.

EXAMPLE 14.8 A PMT has a side-on configuration and nine dynode stages. Its photo-
cathode has an effective area of 8 mm × 24 mm and an external quantum efficiency
of ηe = 23% at λ = 400 nm. In a typical operating condition with a voltage of 1 kV
applied across the anode and the photocathode, the PMT has the following operating
parameters: the average electron multiplication factor per stage is m = 6; the anode
dark current is 5 nA; the transit time is 22 ns; the transit-time spread is 1.2 ns; the
impulse-response risetime is 2.2 ns; the total equivalent capacitance is C = 6 pF; the
background radiation current is negligible. Answer the following questions for the PMT
response atλ = 400 nm. (a) Find the intrinsic responsivity of the photocathode. (b) What
are the gain and the responsivity of the PMT? (c) Find the NEP for the bandwidth of 1 Hz
and the specific detectivity of the PMT by assuming a large load resistance. (d) What
are the cutoff frequency, f3dB, and the internal bandwidth, B, of the PMT? (e) What is
the limitation on the load resistance for high-speed applications of the PMT?

Solution (a) At λ = 400 nm, the photon energy

hν = 1239.8

400
eV = 3.1 eV.
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With ηe = 23%, the intrinsic responsivity of the photocathode at λ = 400 nm is

R0 = ηe
e

hν
= 0.23 × 1

3.1
A W−1 = 74.2 mA W−1.

(b) For n = 9 and m = 6, the gain

G = mn = 69 = 1.0 × 107.

Therefore, the responsivity of the PMT at λ = 400 nm is

R = GR0 = 1.0 × 107 × 74.2 mA W−1 = 742 kA W−1.

(c) Thermal noise can be ignored for a PMT when the load resistance is sufficiently
large (see Problem 14.3.4). Because the background radiation noise is also negligible,
the NEP of the PMT is dark-current limited. For m = 6, we find from (14.61) that the
excess noise factor is F = 1.2. Thus, with id = 2 nA, we have

i2
n = i2

n,sh = 2eBG Fid

= 2 × 1.6 × 10−19 × 1.0 × 107 × 1.2 × 2 × 10−9 × B A2 Hz
−1

= 7.68 × 10−21 B A2 Hz
−1

.

Then, the NEP for a bandwidth of 1 Hz is

NEP

B1/2
= i2

n

1/2

B1/2R = (7.68 × 10−21)1/2

7.42 × 105
W Hz−1/2 = 0.118 fW Hz−1/2.

The active area of the photocathode is A = 8 × 24 mm2 = 1.92 × 10−4 m2. Therefore,
the specific detectivity of the PMT is

D∗ = (AB)1/2

NEP
= (1.92 × 10−4)1/2

0.118 × 10−15
m Hz1/2 W

−1

= 1.17 × 1014 m Hz1/2 W
−1

= 1.17 × 1016 cm Hz1/2 W
−1

.

(d) The cutoff frequency is determined by the risetime, which is tr = 2.2 ns. Thus,

f3dB = 0.35

2.2 × 10−9
Hz = 159 MHz.

We then find that

B = f3dB

0.886
= 159

0.886
MHz = 180 MHz.

Note that the transit-time spread of 1.2 ns contributes to a large part of the risetime of
2.2 ns. The transit time of 22 ns is 10 times the risetime, but it has no consequence on
either the risetime or the bandwidth of the PMT.

(e) For high-speed applications of the PMT, it is required that the circuit RC time
constant of the PMT be much smaller than the intrinsic response time of the PMT. More
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precisely, the RC-time-limited 3-dB cutoff frequency of the circuit response is required
to be much higher than the intrinsic cutoff frequency of the PMT. As we shall see later,
the RC-time-limited 3-dB cutoff frequency

f ckt
3dB = 1

2π RLC
.

To make sure this PMT is not limited by the RC time, we need f ckt
3dB � 159 MHz. With

C = 6 pF, we find the following limitation for the load resistance:

RL � 1

2π × 6 × 10−12 × 159 × 106
� = 167 �.

Thus a typical choice of RL = 50 � will satisfy this requirement for high-speed ap-
plications of the PMT. Even when the load resistance is chosen to be so low, the PMT
still operates in the quantum regime with a D∗ limited by the shot noise from its dark
current (see Problem 14.3.4). If speed is not a concern, a large RL is usually chosen for
the PMT to have a large dynamic range.

14.4 Photoconductive detectors

Photoconductive detectors are based on the phenomenon of photoconductivity. The
conductivity of a photoconductor, which can be an insulator but is usually a semicon-
ductor, increases with optical illumination due to photogeneration of free carriers. The
conductivity of a semiconductor that has electron and hole concentrations of n and p,
respectively, is

σ = e(µen + µh p), (14.63)

where e is the electronic charge and µe and µh are the electron and hole mobilities,
respectively. In the absence of optical illumination, the conductivity, known as the
dark conductivity, σ0 = e(µen0 + µh p0) because the electron and hole concentrations
in this situation are the equilibrium concentrations, n0 and p0, respectively. When a
semiconductor is illuminated with light of a sufficient photon energy, carriers in excess
of the equilibrium concentrations are generated. The photoconductivity is the additional
conductivity contributed by these photogenerated excess carriers:

�σ = σ − σ0 = e(µe�n + µh�p), (14.64)

where �n = n − n0 and �p = p − p0 are the photogenerated excess electron and hole
concentrations, respectively.

Similarly to photoemission, photoconductivity also has a threshold photon energy,
Eth, and a corresponding threshold wavelength, λth, that are characteristic of a given
photoconductor. Together with the spectral dependence of the absorption coefficient,
they determine the spectral response of a photoconductor. Depending on the processes
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(a) (b) (c)

Figure 14.9 Optical transitions for (a) intrinsic photoconductivity, (b) n-type extrinsic
photoconductivity, and (c) p-type extrinsic photoconductivity.

involved in the photogeneration of free carriers, there are two principal types of pho-
toconductivity. The intrinsic photoconductivity is contributed by the excess electrons
and holes that are generated by band-to-band absorption of incident photons, as shown
in Fig. 14.9(a). The threshold photon energy of intrinsic photoconductivity is clearly
the bandgap energy of the photoconductor:

Eth = Eg. (14.65)

The extrinsic photoconductivity is contributed by carriers that are generated by optical
transitions associated with impurity levels within the bandgap of an extrinsic semi-
conductor. In an n-type extrinsic photoconductor, the impurity levels have an energy
Ei = Ed below the conduction-band edge; electrons are excited from these donor levels
to the conduction band, as shown in Fig. 14.9(b). In a p-type extrinsic photoconductor,
the impurity levels have an energy Ei = Ea above the valence-band edge; electrons are
excited from the valence band to these acceptor levels, as shown in Fig. 14.9(c). Thus,
the threshold photon energy of extrinsic photoconductivity for either n-type or p-type
photoconductors is

Eth = Ei. (14.66)

Photoconductors cover a broad spectral range from the ultraviolet to the far in-
frared. In particular, there are many sensitive photoconductors in the infrared region
beyond 1.2 µm wavelength where no photoemissive detectors exist. Both direct-gap
and indirect-gap semiconductors can be used for photoconductors. All of the semicon-
ductors discussed in Section 12.1, including the group IV semiconductors, the III–V
and II–VI compounds, and the IV–VI compounds, can be used for intrinsic photo-
conductors. Among them, intrinsic silicon photoconductors are the most important
photoconductive detectors in the visible and near infrared spectral regions at wave-
lengths shorter than 1.1 µm, while intrinsic germanium photoconductors are the most
important photoconductive detectors in the near infrared region at wavelengths up to
1.8 µm. In the mid infrared region between 2 and 7 µm wavelengths, one finds intrinsic
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Figure 14.10 Specific detectivity, D∗, of representative photoconductive detectors as a function of
optical wavelength. The gray curve shows for comparison the ideal D∗ for a background-limited
photoconductor of unity quantum efficiency. (Based on data from assorted sources.)

photoconductors based on InAs, InSb, PbS, and PbSe. Extrinsic photoconductors are
available for these mid infrared wavelengths as well as for longer wavelengths well
into the far infrared region. The most important extrinsic photoconductive detectors
are p-type germanium photoconductors such as Ge : Au, Ge : Hg, Ge : Cd, Ge : Cu, and
Ge : Zn. Figure 14.10 shows the specific detectivity of representative photoconductive
detectors as a function of optical wavelength.

A sensitive photoconductor must have a low dark conductivity so that the photo-
conductivity caused by optical illumination amounts to a significant change in its total
conductivity. For this reason, it is necessary to minimize the thermal equilibrium con-
centrations, n0 and p0, of free electrons and free holes in a photoconductor. According
to the law of mass action given in (12.31), n0 p0 = n2

i (T ).
In an intrinsic semiconductor, both electron and hole concentrations in the dark

can be reduced by lowering the temperature because n0 = p0 = ni(T ). Because ni

depends exponentially on −Eg/2kBT , as seen in (12.29), the dark electron and hole
concentrations can be significant for a semiconductor that has a small bandgap energy.
Reduction of the dark free carrier concentrations by lowering temperature is particularly
important for intrinsic photoconductors of small bandgap energies, such as InSb and
HgCdTe. For this reason, such small-bandgap photoconductors are normally operated
at the liquid nitrogen temperature of 77 K or lower.

In an extrinsic semiconductor, conductivity is predominantly contributed by the
majority carriers because the majority carrier concentration is much higher than both ni

and the minority carrier concentration. It is therefore important for the functioning of
an extrinsic photoconductor that most of the free majority carriers be photogenerated
rather than thermally generated. This condition requires that the donors in an n-type
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photoconductor and the acceptors in a p-type photoconductor not be ionized when an
extrinsic photoconductor is not optically illuminated. Ideally, they should be ionized
only optically when the photoconductor is illuminated. Because the value of Ei for
an extrinsic photoconductor is small, it is normally necessary to operate an extrinsic
photoconductor at a low temperature to reduce the dark concentration of the majority
free carriers. Some extrinsic photoconductors, such as Ge : Au, are operated below 77 K.
Some, such as Ge : Cu and Ge : Zn, are often operated at the liquid helium temperature
of 4 K.

From these discussions, it is clear that a photoconductor of a small threshold photon
energy, thus a long threshold wavelength, is required to operate at a low temperature
irrespective of whether it is an intrinsic or an extrinsic type. As a rule, the operating
temperature for a detector with a threshold energy Eth has to be T < Eth/25kB ≈
460Eth (eV). A photoconductor for the mid infrared normally requires an operating
temperature of 77 K, and one for the far infrared requires an even lower operating
temperature often down to 4 K.

The operation of a photoconductor requires that a voltage be applied to the device.
A photoconductor has a photoconductive gain that depends on many parameters of the
photoconductor and on the properties of the electrical contacts. To facilitate quantitative
discussions, we consider a simple photoconductor of a length l between its electrodes,
a width w, and a thickness d, as shown in Fig. 14.11. Thus, the optically illuminated
area is A = lw, but the cross-sectional area between the electrodes is wd. A voltage V
is applied across the length l while the photoconductor is uniformally illuminated with
an optical beam of a power Ps. The external quantum efficiency of the photoconductor,
which is illuminated on surface A, can be expressed as

ηe = ηcollηtηi = ηcoll(1 − R)(1 − e−αd ), (14.67)

where ηcoll is the collection efficiency of the photogenerated carriers, ηt = 1 − R with
R being the reflectivity of the incident surface, and ηi = 1 − e−αd with α being the ab-
sorption coefficient of the photoconductor. To improve the external quantum efficiency,
the electrodes have to be carefully designed to maximize the collection efficiency, and
the surface reflectivity can be reduced by antireflection coating. In practice, both ηcoll

and ηt can be made close to unity. Then ηe can be made very close to 100% by increasing

Figure 14.11 Simple geometry of a photoconductive detector.
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the thickness of the photoconductor for ηi = 1 with d � α−1. However, the practically
important performance indicator of a photodetector is not its external quantum effi-
ciency but rather its detectivity, or its specific detectivity. The optimum thickness of
a photoconductor for a maximum value of D∗ is d = 1.256α−1 for ηi = 71.5% (see
Problem 14.4.6). Because the value of D∗ varies very slowly with d around this opti-
mum thickness, there is much freedom to choose the thickness of a photoconductor in
the range of α−1 ≤ d ≤ 1.5α−1 for D∗ to have a value that is more than 99% of its
maximum value (see Problem 14.4.6).

We first consider intrinsic photoconductivity under the conditions leading to the
relations in (12.55) and (12.56) so that the photogenerated electrons and holes have
the same concentration and the same lifetime: �n = �p = N and τe = τh = τs. We
also assume that the contacts of the electrodes are ohmic contacts that allow electrons
and holes to be freely removed from or injected into the semiconductor. With a quan-
tum efficiency of ηe, the photogeneration rate of free carriers in the semiconductor is
ηe Ps/hν, which is equal to lwd · N/τs because the generation rate equals the recombi-
nation rate in the steady state. Therefore, the total number of photogenerated free
carriers in the photoconductor is

N = lwd · N = ηe
Ps

hν
τs. (14.68)

Because the carriers have a lifetime of τs, the photocurrent resulting from the photo-
generation of these carriers is

iph = eN
τs

= ηe
ePs

hν
, (14.69)

which is exactly the relation given in (14.14), as expected. This is not the external
signal current of the photoconductor, however. The external signal current, is, is gen-
erated by the applied voltage V on the photoconductance, which is �σwd/ l for the
photoconductor of the geometry shown in Fig. 14.11. Therefore, we find that (see
Problem 14.4.3)

is = V
�σwd

l
= eN

τ e
tr

+ eN
τ h

tr

, (14.70)

where

τ e
tr = l

µe E
= l2

µeV
and τ h

tr = l

µh E
= l2

µh V
(14.71)

are the transit times of electrons and holes in the photoconductor, respectively. The
transit time of an electron or hole is the time it takes for the charge carrier to cross
the length l of the semiconductor at its drift velocity of v = µE under an applied
field of E = V/ l. From these results, we find the following photoconductive gain
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(see Problem 14.4.3):

G = is

iph
= τs

τ e
tr

+ τs

τ h
tr

= τs

τ e
tr

(
1 + µh

µe

)
. (14.72)

The photoconductive gain in (14.72) is obtained for an intrinsic photoconductor with
ohmic contacts on both electrodes. It is not valid if the photogenerated electrons and
holes do not have the same concentration, as is the case in an extrinsic photoconductor,
or if one or both contacts are not ohmic. It is also clearly not valid for all values of the
applied voltage because (14.71) leads to an unphysical conclusion that the gain can be
made arbitrarily large simply by increasing the voltage V to reduce the transit times.
Nevertheless, the photoconductive gain can be generally expressed as

G = τ

τr
, (14.73)

where τ is a carrier lifetime that can take different forms in different situations and
τr is a relaxation time constant that depends on the properties of the photoconductor,
the contacts, and the applied voltage. The values of τ and τr in this relation depend on
the properties and the operating condition of a photoconductor, as discussed below. In
particular, when the applied voltage is large, τr is not simply determined by the carrier
transit times given in (14.71). There is a capacitance, C = εwd/ l, between the anode
and the cathode of the photoconductor. A space-charge effect in the photoconductor
appears when the number of charges, Q = CV , supplied by the applied voltage V on this
capacitance is equal to or larger than the number of the carriers in the photoconductor.
This situation takes place under the following condition (see Problem 14.4.4):

V ≥ VSC = σ l2

µε
, (14.74)

where µ is a mobility that can take the form of µ = µe + µh, µ = µe, or µ = µh de-
pending on the properties of the photoconductor and its electrode contacts, as discussed
below. In the presence of this space-charge effect, τr = τd, where

τd = ε

σ
= ε

e(µen + µh p)
(14.75)

is the dielectric relaxation time of the semiconductor. Clearly, the gain does not continue
to increase with increasing voltage when the space-charge effect appears.

The following cases are of interest.

1. An intrinsic photoconductor in which both electrons and holes can freely move,
and both the anode and the cathode have nonblocking ohmic contacts. In this case,
τ = τs, which is the spontaneous carrier recombination lifetime defined in (12.56),
and VSC = σ l2/(µe + µh)ε. For V < VSC, τr = τ e

tr(1 + µh/µe)−1. When the applied
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voltage is large enough that V > VSC, τr = τd, and the gain saturates at G = τs/τd

(see Problem 14.4.4).
2. An intrinsic or extrinsic photoconductor in which only one type of carrier can freely

move, and the electrodes are nonblocking ohmic contacts for such carriers. In this
case, only the free-moving carriers contribute to the photocurrent. Then τ and τr

are, respectively, the lifetime and transit time of such carriers. The space-charge
effect is determined by VSC = σ l2/µeε if only electrons can freely move but by
VSC = σ l2/µhε if only holes can freely move. When the space-charge effect occurs
at V > VSC, τr = τd also in this case.

3. An intrinsic photoconductor in which both electrons and holes can freely move and
the cathode is ohmic but the anode is blocking holes. Then, τ = τe = τh = τ h

tr and
τr = τ e

tr. In this case, G = 1 + µe/µh.
4. An intrinsic or extrinsic photoconductor in which both electrons and holes can freely

move but both the cathode and the anode have blocking nonohmic contacts. In
this case, τr = τ = τ e

tr and G = 1. With blocking contacts on both sides, the gain
is unity. This is the case of the junction photodiodes discussed in the following
section.

When the external quantum efficiency and the gain of a photoconductor are deter-
mined, its responsivity can be easily calculated as

R = Gηe
e

hν
. (14.76)

Because the gain G varies with the applied voltage V , the responsivityR of a photocon-
ductor is also a function of V in addition to being a function of the optical wavelength
and the device parameters.

EXAMPLE 14.9 An n-type GaAs intrinsic photoconductive detector for λ = 850 nm
has the following parameters: l = w = 100 µm, d = 1 µm, α = 1 × 104 cm−1 =
1 × 106 m−1 at 850 nm,ηcoll = 1, andηt = 1 for R = 0 with antireflection coating on the
incident surface. It is lightly doped with n0 = 1 × 1012 cm−3 = 1 × 1018 m−3 and has a
lifetime of τs = 100 µs for photogenerated carriers. Both electrons and holes can freely
move in the photoconductor, and both electrodes have ohmic contacts. The device is bi-
ased at V = 2 V across its electrodes. GaAs has the following characteristic parameters:
ε = 13.18ε0 at DC or low frequencies, µe = 8500 cm2 V−1 s−1 = 0.85 m2 V−1 s−1,
µh = 400 cm2 V−1 s−1 = 0.04 m2 V−1 s−1, and ni = 2.33 × 1012 m−3 at 300 K (see
Example 12.2). (a) Find the dark conductivity. With the given bias voltage, is the
device limited by a space-charge effect at any level of input optical signal? (b)
Find the external quantum efficiency. What are the gain and the responsivity of this
device?
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Solution (a) We have n0 = 1 × 1018 m−3 and p0 = n2
i /n0 = 5.43 × 106 m−3. We

then find the following dark conductivity for the device at 300 K:

σ0 = e(µen0+ µh p0) = 1.6 ×10−19× (0.85×1×1018+ 0.04 ×5.43 × 106) �−1 m−1

= 0.136 �−1 m−1.

Because σ > σ0 at any level of input optical signal, we have

VSC >
σ0l2

(µe + µh)ε
= 0.136 × (100 × 10−6)2

(0.85 + 0.04) × 13.18 × 8.85 × 10−12
V = 13.1 V.

Because V < VSC for V = 2 V, the device is not limited by a space-charge effect at any
level of input optical signal.

(b) We find that αd = 1 for this device. With ηcoll = ηt = 1, the external quantum
efficiency

ηe = ηi = 1 − e−αd = 1 − e−1 = 63.2%.

The electron transit time at the bias voltage of V = 2 V is

τ e
tr = l2

µeV
= (100 × 10−6)2

0.85 × 2
s = 5.88 ns.

Because both electrons and holes can freely move, the gain

G = τs

τ e
tr

(
1 + µh

µe

)
= 100 × 10−6

5.88 × 10−9

(
1 + 0.04

0.85

)
= 1.78 × 104.

At λ = 850 nm, the responsivity

R = Gηe
e

hν
= 1.78 × 104 × 0.632 × 850

1239.8
A W−1 = 7.71 kA W−1.

It is necessary to apply a voltage or a current to a photoconductor for measuring its
photoconductivity in terms of an electrical signal. Normally a bias voltage is applied
and a load resistance is used to convert the signal current into an output voltage.
Figure 14.12(a) shows the basic circuitry of a photoconductive detector that is biased

(a) (b)

Figure 14.12 (a) Basic circuitry and (b) small-signal equivalent circuit of a photoconductive
detector.
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with a voltage. Figure 14.12(b) shows the small-signal equivalent circuit, including the
noise sources, of a photoconductive detector. The intrinsic speed of the device is not
limited by its capacitance, but the speed of the output signal at the load resistance is
still influenced by the device capacitance.

The shot noise in a photoconductor is associated with the statistical nature of the
generation and recombination of carriers, which leads to random fluctuations in the
carrier number. This shot noise is known as the generation–recombination noise. It has
contributions from the optical signal, the background radiation, and the dark current.
The dark current in this case comes from the dark conductivity of the device due to
thermal excitation of free carriers. For long-wavelength infrared detectors, this dark
current can be a major source of noise because of the small excitation energy. For this
reason, such detectors have to be operated at low temperatures in order to minimize this
noise. Because of the gain in a photoconductor, the generation–recombination noise
has the form of the amplified shot noise given in (14.25):

i2
n,GR = 2eBG F(is + ib + id). (14.77)

Because the gain G of a photoconductor is a function of the carrier lifetime τ in the
form of (14.73), the excess noise factor F is determined by the statistics of the carrier
lifetime and the signal frequency as

F = G2

G
2 = τ 2

τ 2 . (14.78)

For a photoconductor, in which the carrier lifetime is primarily determined by the
carrier recombination process, the probability distribution of τ is characterized by the
Poisson process of a continuous random variable with the consequence that F = 2
(see Problem 14.4.5). In addition to this shot noise, there is also thermal noise from
the photoconductor resistance and the load resistance. Therefore, the total noise of a
photoconductor is

i2
n = 4eBG(is + ib + id) + 4kBT B

Req
, (14.79)

where Req is an equivalent resistance seen at the output of the device. Most photocon-
ductors are shot-noise limited by their dark current. The SNR of a photoconductor has
the form given in (14.33) for a photodetector with an internal gain of G.

EXAMPLE 14.10 The photoconductive detector considered in Example 14.9 is loaded
with a sufficiently large resistance such that the resistive thermal noise is negligible
compared to the shot noise from its dark current at the operating temperature of 300 K.
The background radiation noise is also negligible. (a) Find the dark resistance of the
device. Then, find its dark current at a bias voltage of V = 2 V. (b) Find the NEP of the
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device for a bandwidth of 1 Hz at λ = 850 nm. (c) Find the value of D∗ for the device
at λ = 850 nm.

Solution (a) From Example 14.9, we have σ0 = 0.136 �−1 m−1. Thus, the dark re-
sistance of the device is

R0 = l

σ0wd
= 100 × 10−6

0.136 × 100 × 10−6 × 1 × 10−6
� = 7.35 M�.

The dark current at a bias voltage of V = 2 V is

id = V

R0
= 2

7.35 × 106
A = 272 nA.

(b) With G = 1.78 × 104 found in Example 14.9, the noise of this photoconductor
is

i2
n = i2

n,sh = 4eBGid

= 4 × 1.6 × 10−19 × 1.78 × 104 × 272 × 10−9 × B A2 Hz−1

= 3.1 × 10−21 B A2 Hz−1.

WithR = 7.71 kA W−1 from Example 14.9, we find the following NEP for a bandwidth
of 1 Hz:

NEP

B1/2
= (3.1 × 10−21)1/2

7.71 × 103
W Hz−1/2 = 7.22 fW Hz−1/2.

(c) This device has an illumination area of A = lw = (100 × 10−6)2 m2 = 1 ×
10−8 m2. Thus, its specific detectivity at λ = 850 nm is found to be

D∗ = (1 × 10−8)1/2

7.22 × 10−15
m Hz1/2 W−1 = 1.39 × 1010 m Hz1/2 W−1

= 1.39 × 1012 cm Hz1/2 W−1.

The frequency response of a photoconductor that has a gain generally described by
(14.73) is characterized by the following electrical power spectrum:

R2( f ) = R2(0)

1 + 4π2 f 2τ 2
, (14.80)

which has a 3-dB cutoff frequency given by

f3dB = 1

2πτ
. (14.81)

Therefore, a photoconductor has the following gain–bandwidth product:

G f3dB = τ

τr
· 1

2πτ
= 1

2πτr
. (14.82)

Figure 14.13 shows the frequency response of a typical photoconductive detector.



965 14.4 Photoconductive detectors

Figure 14.13 Typical frequency response, normalized to the zero-frequency response, of a
photoconductive detector characterized by the electrical power spectrum as a function of signal
frequency. This plot is generated with τ = 1 ns.

Figure 14.14 Structure of a high-speed MSM photoconductor with interdigitated electrodes.

Although the response speed of a photoconductor can be increased by reducing
the carrier lifetime τ , the gain–bandwidth product is solely determined by the time
constant τr. As discussed above, the value of τr can be reduced by increasing the
applied voltage until V = eN /C , when τr = τd. At this point and beyond, the gain–
bandwidth product saturates at G f3dB = 1/2πτd; thus, increasing the speed will reduce
the gain, and vice versa. We can therefore expect a high-gain photoconductor to be very
slow and a high-speed photoconductor to be insensitive. Both the gain and the speed
of practical photoconductors cover a wide range, from less than 1 to over 105 for the
gain and from less than 1 ps to over 1 ms for the response speed. Figure 14.14 shows
the structure of a high-speed photoconductor. It has the metal–semiconductor–metal
(MSM) structure with interdigitated electrodes of submicrometer features to minimize
the electron transit time so that a higher gain can be obtained for a given speed. Because
its speed is limited by the carrier lifetime, the device is fabricated on a high-resistivity
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semi-insulating semiconductor that has a very short carrier lifetime. For the transmission
of high-frequency electrical signals, the electrodes are connected to microstrip lines.
A high-speed photoconductor is often used as a high-speed optoelectronic switch for
switching an electronic circuit with an ultrashort optical pulse.

EXAMPLE 14.11 Find the 3-dB cutoff frequency, the gain–bandwidth product, and the
NEP over the entire bandwidth for the photoconductor considered in the preceding two
examples.

Solution Because τ = τs = 100 µs, the 3-dB cutoff frequency

f3dB = 1

2π × 100 × 10−6
Hz = 1.59 kHz,

In the operating condition under consideration in the preceding examples, we have
G = 1.78 × 104. Thus, the gain–bandwidth product

G f3dB = 1.78 × 104 × 1.59 kHz = 28.3 MHz.

It is easily verified that G f3dB = 1/2πτr as expressed in (14.82) for τr = τ e
tr(1 +

µh/µe)−1 = 5.63 ns. With f3dB = 1.59 kHz, we have B = f3dB/0.886 = 1.79 kHz.
Therefore, the NEP over the entire bandwidth is

NEP = 7.22 × (1.79 × 103)1/2 fW = 305 fW.

We find that this detector has a low cutoff frequency at the kilohertz level because of its
large carrier lifetime of 100 µs. Because of its small bandwidth, it also has a low total
NEP over its entire bandwidth. The speed of the device can be increased by reducing
its carrier lifetime, but both the gain and the total NEP will suffer if other parameters
of the device remain unchanged.

14.5 Junction photodiodes

Every junction diode has a photoresponse that can be utilized for optical detection.
Junction photodiodes are the most commonly used photodetectors in the photonics
industry. They can take many different forms, including semiconductor homojunctions,
semiconductor heterojunctions, and metal–semiconductor junctions. Similarly to that of
a photoconductor, the photoresponse of a photodiode results from the photogeneration
of electron–hole pairs. In contrast to photoconductors, which can be of either intrinsic
or extrinsic type, a photodiode is normally of intrinsic type, in which electron–hole
pairs are generated through band-to-band optical absorption. Therefore, the threshold
photon energy of a semiconductor photodiode is the bandgap energy of its active region:

Eth = Eg. (14.83)
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λ  µm

Figure 14.15 Spectral responsivity of representative photodiodes as a function of optical
wavelength at 300 K. The quantum efficiency is indicated by the gray curves. (Based on data from
assorted sources.)

Junction photodiodes cover a wide spectral range from ultraviolet to infrared. All of the
semiconductor materials used for intrinsic photoconductors discussed in the preceding
section can be used for photodiodes with similar spectral characteristics. Figure 14.15
shows the spectral responsivity of representative photodiodes as a function of optical
wavelength at 300 K.

All junction photodiodes share some basic principles and characteristics. Therefore,
we first consider a simple p–n homojunction photodiode for a general discussion of
the common principles and characteristics. Specific characteristics of photodiodes with
different structures are discussed later in this section.

The general characteristics of a semiconductor p–n homojunction in the absence
of optical illumination are thoroughly discussed in Section 12.5. In a semiconductor
photodiode, generation of electron–hole pairs by optical absorption can take place in any
of the different regions: the depletion layer, the diffusion regions, and the homogeneous
regions. In the depletion layer of a diode, the immobile space charges create an internal
electric field with a polarity from the n side to the p side, resulting in an electron
energy-band gradient shown in Fig. 14.16. When an electron–hole pair is generated
in the depletion layer by photoexcitation, the internal field sweeps the electron to the
n side and the hole to the p side, as illustrated in Fig. 14.16. This process results in a drift
current that flows in the reverse direction from the cathode on the n side to the anode on
the p side. If a photoexcited electron–hole pair is generated within one of the diffusion
regions at the edges of the depletion layer, the minority carrier, which is the electron
in the p-side diffusion region or the hole in the n-side diffusion region, can reach the
depletion layer by diffusion and then be swept to the other side by the internal field, as
also illustrated in Fig. 14.16. This process results in a diffusion current that also flows
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Figure 14.16 Photoexcitation and energy-band gradient of a p–n photodiode.

in the reverse direction. For an electron–hole pair generated by absorption of a photon
in the p or n homogeneous region, no current is generated because there is no internal
field to separate the charges and a minority carrier generated in a homogeneous region
cannot diffuse to the depletion layer before recombining with a majority carrier.

Because photons absorbed in the homogeneous regions do not generate any pho-
tocurrent, the active region of a photodiode consists of only the depletion layer and the
diffusion regions. For a high-performance photodiode, the diffusion current is unde-
sirable and is minimized. Therefore, the active region mainly consists of the depletion
layer where a drift photocurrent is generated. The external quantum efficiency, ηe, of a
photodiode is the fraction of total incident photons absorbed in the active region that
actually contribute to the photocurrent. For a vertically illuminated photodetector, in
which the optical signal reaches the active region in a direction perpendicular to the
junction plane, the external quantum efficiency can be expressed as

ηe = ηcollηtηi = ηcoll(1 − R)Th(1 − e−αW ), (14.84)

where ηcoll is the collection efficiency of the photogenerated carriers, ηt = (1 − R)Th,
and ηi = 1 − eαW . Here, R is the reflectivity of the incident surface of the photodiode,
Th is the transmittance of the homogenous region between the incident surface and
the active region, α is the absorption coefficient of the active region, and W is the
width of the depletion layer that defines the active region. To improve the quantum
efficiency, the surface reflectivity can be reduced by antireflection coating. Besides,
the homogeneous region through which the optical signal enters must be made thin to
reduce absorption of the optical signal in this region. For a p–n photodiode that has the
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incident surface on the p side, the p region has to be very thin and heavily doped so that
the depletion layer extends mostly into the thick and lightly doped n region. Ultimately,
the quantum efficiency of a photodiode is determined by the absorption coefficient α

and the depletion layer thickness W .
Clearly, there are two contributions to the photocurrent in a junction photodiode: a

drift current from photogeneration in the depletion layer and a diffusion current from
photogeneration in the diffusion regions. The homogeneous regions on the two ends
of the diode act like blocking layers for the photogenerated carriers because carriers
neither drift nor diffuse through these regions. Consequently, a junction photodiode acts
like a photoconductor with two blocking contacts, which is discussed in the preceding
section. It has a unity gain, G = 1, with the external signal current simply being equal
to the photocurrent:

is = iph = ηe
ePs

hν
. (14.85)

This photocurrent is a reverse current that depends only on the power of the optical sig-
nal. When a bias voltage is applied to the photodiode, the total current of the photodiode
is the combination of the diode current given in (12.117) and the photocurrent:

i(V, Ps) = I0
(
eeV/akBT − 1

)− is = I0
(
eeV/akBT − 1

)− ηe
ePs

hν
, (14.86)

which is a function of both the bias voltage V and the optical signal power Ps.
Figure 14.17 shows the current–voltage characteristics of a junction photodiode at
various power levels of optical illumination. The dark characteristics for Ps = 0 are
simply those of an unilluminated diode described by (12.117). According to (14.86),
the current–voltage characteristics of an illuminated photodiode shift downward from
the dark characteristics by the amount of the photocurrent, which is linearly proportional
to the optical power but is independent of the bias voltage.

As shown in Fig. 14.17, there are two modes of operation for a junction photodiode.
The device functions in photoconductive mode in the third quadrant of its current–
voltage characteristics, including the short-circuit condition on the vertical axis for
V = 0. It functions in photovoltaic mode in the fourth quadrant, including the open-
circuit condition on the horizontal axis for i = 0. The mode of operation is determined
by the external circuitry and the bias condition.

The circuitry for the photoconductive mode, shown in Fig. 14.17(a), normally con-
sists of a reverse bias voltage of V = −Vr and a load resistance RL. In this mode of
operation, it is necessary to keep the output voltage, vout, smaller than the bias voltage,
Vr, so that a reverse voltage is maintained across the photodiode. This requirement can
be fulfilled if the bias voltage is sufficiently large while the load resistance is smaller
than the internal resistance of the photodiode in reverse bias, as illustrated with the
load line in the third quadrant of Fig. 14.17. In the photoconductive mode under the
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(a) (b)

Figure 14.17 Current–voltage characteristics of a junction photodiode at various power levels of
optical illumination. The basic circuitry and load line are shown for the photodiode operating in (a)
photoconductive mode and (b) photovoltaic mode.

conditions that RL < Ri and vout < Vr, a photodiode has the following linear response
before it saturates:

vout = (I0 + is)RL =
(

I0 + ηe
ePs

hν

)
RL. (14.87)

The circuitry for the photovoltaic mode, shown in Fig. 14.17(b), does not require a
bias voltage but requires a large load resistance. In this mode of operation, the photo-
voltage appears as a forward bias voltage across the photodiode. As illustrated with the
load line in the fourth quadrant of Fig. 14.17, the load resistance is required to be much
larger than the internal resistance of the photodiode in forward bias, RL � Ri, so that
the current i flowing through the diode and the load resistance is negligibly small. In
the photovoltaic mode under this condition, the response of the photodiode is not linear
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(a) (b)

Figure 14.18 (a) Small-signal equivalent circuit and (b) noise equivalent circuit of a junction
photodiode.

but is logarithmic to the optical signal:

vout ≈ akBT

e
ln

(
1 + is

I0

)
= akBT

e
ln

(
1 + ηe

ePs

hν I0

)
, (14.88)

where a is a factor of a value between 1 and 2 in the diode equation of (12.117).
In photoconductive mode, electric energy supplied by the bias voltage source is

delivered to the photodiode. In photovoltaic mode, electric energy generated by the
optical signal can be extracted from the photodiode to the external circuit. Solar cells are
basically semiconductor junction diodes operating in photovoltaic mode for converting
solar energy into electricity.

Figure 14.18(a) shows the small-signal equivalent circuit of a junction photodiode.
A photodiode has an internal resistance Ri and an internal capacitance Ci across its
junction. Both Ri and Ci depend on the size and the structure of the photodiode and vary
with the voltage across the junction. In photoconductive mode under a reverse voltage,
the diode has a large Ri normally on the order of 1–100 M� for a typical photodiode,
and a small Ci dominated by the junction capacitance Cj, as discussed in Section 12.5.
As the reverse voltage increases in magnitude, Ri increases but Ci decreases because
the depletion-layer width increases with reverse voltage. In photovoltaic mode with a
forward voltage across the junction, the diode has a large Ci dominated by the diffusion
capacitance Cd, as also discussed in Section 12.5. It still has a large Ri, though smaller
than that in the photodiode mode, because it operates near the open-circuit condition
with a very small internal current in the fourth quadrant of the current–voltage charac-
teristics. The series resistance Rs takes into account both resistance in the homogeneous
regions of the diode and parasitic resistance from the contacts. The external parallel
capacitance Cp is the parasitic capacitance from the contacts and the package. The series
inductance Ls is the parasitic inductance from the wire or transmission-line connec-
tions. The values of Rs, Cp, and Ls can be minimized with careful design, processing,
and packaging of the device.

The noise of a photodiode consists of both shot noise and thermal noise. Because a
junction photodiode has a unity gain, its shot noise can be expressed as

i2
n,sh = 2eB(is + ib + id), (14.89)
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where is = iph is the photocurrent. The thermal noise seen at the output can be expressed
as

i2
n,th = 4kBT B

Req
, (14.90)

where Req is the equivalent resistance seen at the output port. From the circuit shown
in Fig. 14.18(b), we find that

Req = RL ‖ (Ri + Rs) = RL(Ri + Rs)

RL + Ri + Rs
. (14.91)

In photoconductive mode, the photodiode has a dark current of id = I0 and a relatively
small load resistance. In photovoltaic mode, the dark current can be eliminated, and
the load resistance is required to be very large. Therefore, a photodiode is significantly
noisier in photoconductive mode under a reverse bias than in photovoltaic mode without
a bias.

High-speed photodiodes are by far the most widely used photodetectors in appli-
cations requiring high-speed or broadband photodetection. The speed of a photodiode
is determined by two factors: (1) the response time of the photocurrent and (2) the
time constant of its equivalent circuit shown in Fig. 14.18(a). Because a photodiode
operating in photovoltaic mode has a large RC time constant due to the large internal
diffusion capacitance in this mode of operation, only photodiodes operating in photo-
conductive mode are suitable for high-speed or broadband applications. For this reason,
we only consider the speed and the frequency response for a photodiode operating in
photoconductive mode.

For a photodiode operating in photoconductive mode under a reverse bias, the re-
sponse time of the photocurrent to an optical signal is determined by two factors:
(1) drift of the electrons and holes that are photogenerated in the depletion layer and
(2) diffusion of the electrons and holes that are photogenerated in the diffusion regions.
Drift of the carriers across the depletion layer is a fast process characterized by the
transit times of the photogenerated electrons and holes across the depletion layer. In
contrast, diffusion of the carriers is a slow process that is caused by optical absorption in
the diffusion regions outside of the high-field depletion region. It results in a diffusion
current that can last as long as the lifetime of the carriers. The consequence is a long tail
in the impulse response of the photodiode, which translates into a low-frequency falloff
in the frequency response of the device. For a high-speed photodiode, this diffusion
mechanism has to be eliminated by reducing the photogeneration of carriers outside the
depletion layer through design of the device structure. When the diffusion mechanism
is eliminated, the frequency response of the photocurrent is only limited by the transit
times of electrons and holes.

In general, the frequency response function that is dictated by the carrier transit time
depends on the details of the electric field distribution and the photogenerated carrier
distribution in the depletion layer. In a semiconductor, electrons normally have a higher
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mobility, thus a smaller transit time, than holes. This difference has to be considered in
the detailed analysis of the response speed of a photodiode. For a good estimate of the
detector frequency response, however, the average of electron and hole transit times
can be used:

τtr = 1

2
(τ e

tr + τ h
tr ). (14.92)

In the simple case when the process of carrier drift is dominated by a constant transit
time of τtr, the temporal response of the photocurrent is ideally a rectangular function
of duration τtr. Therefore, the power spectrum of the photocurrent frequency response
can be approximately expressed by

R2
ph( f ) =

∣∣∣∣ iph( f )

Ps( f )

∣∣∣∣
2

≈ R2
ph(0)

(
sin π f τtr

π f τtr

)2

, (14.93)

which has a transit-time-limited 3-dB cutoff frequency

f ph
3dB ≈ 0.443

τtr
. (14.94)

The frequency response of the equivalent circuit shown in Fig. 14.18(a) is determined
by (1) the internal resistance Ri and capacitance Ci of the photodiode; (2) the parasitic
effects characterized by Rs, Cp, and Ls; and (3) the load resistance RL. Clearly, the
parasitic effects must be eliminated as much as possible because they can degrade the
performance of a high-speed photodiode. A high-speed photodiode normally operates
under the condition that Ri � RL, Rs. Therefore, when parasitic inductance is elim-
inated, the ultimate speed of the circuit is dictated by the RC time constant τRC =
(RL + Rs)(Ci + Cp). Its frequency response has the following power spectrum:

R2
ckt( f ) ≈ R2

ckt(0)

1 + 4π2 f 2τ 2
RC

, (14.95)

which has an RC-time-limited 3-dB cutoff frequency

f ckt
3dB ≈ 1

2πτRC

= 1

2π (RL + Rs)(Ci + Cp)
. (14.96)

Combining the photocurrent response and the circuit response, the total output power
spectrum of an optimized photodiode operating in photoconductive mode is

R2( f ) = R2
ph( f )R2

ckt( f ) = R2(0)

1 + 4π2 f 2τ 2
RC

(
sin π f τtr

π f τtr

)2

. (14.97)

This total frequency response has a 3-dB cutoff frequency, f3dB, that can be found
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Figure 14.19 (a) Total frequency response, normalized to the zero-frequency response, of a
photodiode for a fixed value of τtr = 50 ps but for a few different values of τRC. (b) Dependence of
the ratio f3dB/ f ph

3dB on the ratio τRC/τtr.

approximately by using the following rule of the sum of squares:

1

f 2
3dB

= 1

( f ph
3dB)2

+ 1

( f ckt
3dB)2

. (14.98)

By using (14.94) for f ph
3dB and (14.96) for f ckt

3dB, the 3-dB cutoff frequency of a photodiode
including transit-time and circuit limitations can be expressed approximately as

f3dB ≈ 0.443

[τ 2
tr + (2.78τRC)2]1/2

= 1

2π [τ 2
RC + (0.36τtr)2]1/2

. (14.99)
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Figure 14.19 shows the total frequency response given by (14.97) for a fixed value
of τtr but for a few different values of τRC. It is seen that the total frequency response
is transit-time-limited when τtr > 2.78τRC, but is RC-time-limited when τtr < 2.78τRC.
The characteristics given by (14.97) and shown in Fig. 14.19 represent the ultimate fre-
quency response of a photodiode. In practice, the frequency response of a photodiode
can be substantially degraded by the presence of a significant diffusion current and by
parasitic effects. The optimum design of a high-speed photodiode requires (1) elimi-
nation of the diffusion current, (2) elimination of parasitic effects, and (3) equalization
of the transit-time-limited bandwidth and the RC-time-limited bandwidth by making
τtr = 2.78τRC.

An important consideration for a high-speed photodiode is the bandwidth–efficiency
product, ηe f3dB, rather than the bandwidth alone because increasing the bandwidth
can often result in a reduced efficiency in many device structures. Many different
approaches can be taken to optimize both the bandwidth and the efficiency for a max-
imum bandwidth–efficiency product. This issue is further addressed in the following
discussions of various device structures.

p–i–n photodiodes

A p–i–n photodiode consists of an intrinsic region sandwiched between heavily doped
p+ and n+ regions. Figure 14.20 shows the comparison between a p–n junction photo-
diode and a p–i–n photodiode. In a p–n photodiode, the depletion-layer width and the
junction capacitance both vary with reverse voltage across the junction. The electric
field in the depletion layer is not uniform. In a p–i–n photodiode, a reverse bias voltage
applied to the device drops almost entirely across the intrinsic region because of high
resistivity in the intrinsic region and low resistivities in the surrounding p+ and n+ re-
gions. As a result, a p–i–n diode has the following two important characteristics: (1) the
depletion layer is almost completely defined by the intrinsic region; (2) the electric field
in the depletion layer is uniform across the intrinsic region. In practice, the intrinsic
region does not have to be truly intrinsic but only has to be highly resistive. It can be
either a highly resistive p region, called a π region, or a highly resistive n region, called
a ν region.

The depletion-layer width W in a p–i–n diode does not vary significantly with bias
voltage but is pretty much fixed by the thickness, di, of the intrinsic region so that
W ≈ di. The internal capacitance of a p–i–n diode can be predetermined in the design
of the device through the choice of the thickness of the intrinsic region and the device
area A:

Ci = Cj = εA
W

≈ εA
di

. (14.100)
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(a) (b)

Figure 14.20 Structure and internal field distribution of (a) a p–n photodiode and (b) a p–i–n
photodiode.

This capacitance is fairly independent of the bias voltage; thus it remains constant in
operation.

When a reverse voltage is applied to a p–i–n diode, a uniform electric field that is
linearly proportional to the reverse bias voltage exists throughout the intrinsic region:

E ≈ V0 + Vr

W
≈ Vr

di
, (14.101)

for Vr � V0. Due to this uniform field, both electrons and holes have constant drift
velocities across the depletion layer in a p–i–n photodiode. At low and moderate fields,
the drift velocities of electrons and holes both vary linearly with the electric field
strength. For a p–i–n photodiode operating in this regime with a relatively low reverse
bias voltage, the average carrier transit time is given by

τtr = 1

2

(
W

µe E
+ W

µh E

)
≈ d2

i

2µVr
, (14.102)

where µ = µeµh/(µe + µh). Because the depletion-layer width in a p–i–n diode is dic-
tated by the thickness of the intrinsic region, the transit time is inversely proportional to
the bias voltage. Therefore, the response speed of the photodiode can be improved by
increasing the reverse bias voltage. At high fields, however, both electron and hole drift
velocities reach their respective saturation velocities: ve ≈ vsat

e and vh ≈ vsat
h , which

vary little with bias voltage. For most semiconductors, this occurs at a field strength
above 100 MV m−1 for a saturation velocity on the order of 105 m s−1. For a p–i–n
photodiode operating in this regime with a sufficiently large reverse bias voltage, elec-
trons and holes have a constant average transit time across the depletion layer:

τtr = W

vsat
≈ di

vsat
, (14.103)
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(a) (b)

Figure 14.21 Schematic cross-sectional structures of (a) a vertical p–i–n photodiode and (b) a
lateral p–i–n photodiode.

where 1/vsat = (1/vsat
e + 1/vsat

h )/2. So long as the reverse bias voltage is large enough
to keep electrons and holes drifting at their respective saturation velocities, τtr is in-
dependent of the bias voltage and can thus be predetermined by the thickness of the
intrinsic region through the design of the device.

Compared to a p–n photodiode, in which the depletion-layer width varies with bias
voltage, a p–i–n photodiode has a number of advantages because its depletion-layer
width is determined by the thickness of the intrinsic region and is independent of
the bias voltage. Both the quantum efficiency and the frequency response of a p–i–n
photodiode can be optimized by the geometric design of the device, whereas those of
a p–n photodiode depend strongly on the bias voltage. From the above discussions, it
is clear that the transit time, the RC time constant, and the internal quantum efficiency
of a vertically illuminated p–i–n photodiode, shown in Fig. 14.21(a), all depend on the
thickness di of the intrinsic region: τtr ∝ di, Ci ∝ d−1

i , and ηi = 1 − e−αdi . For a high
quantum efficiency, the thickness di of the intrinsic region can be chosen to be larger
than the absorption length: di > 1/α. To optimize the speed of a p–i–n photodiode, both
the thickness of the intrinsic region and the area of the device have to be properly chosen.
To reduce the diffusion current, di can be chosen to be larger than the electron diffusion
length in the p+ region and the hole diffusion length in the n+ region: di � Le, Lh. A
large di reduces the RC time constant of the device by reducing Ci, but it increases the
transit time τtr. Because the electric field is relatively constant throughout the active
region of a p–i–n photodiode, the transit time can be optimized with a chosen di. Because
Ci can be reduced by reducing the device area, a p–i–n photodiode normally has an
intrinsic region that has a thickness chosen to optimize the quantum efficiency and the
transit time. For a high-speed p–i–n photodiode, the device area is made small enough
that the RC time constant is not a limiting factor of its frequency response.

One major limitation of p–i–n photodiodes that are made of indirect-gap semiconduc-
tors, such as Si and Ge, is the small absorption coefficients of these semiconductors in
the spectral regions where only indirect absorption takes place in such semiconductors.
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For example, at λ = 850 nm, the absorption coefficient at 300 K is only about
7 × 104 m−1 for Si but is about 1 × 106 m−1 for GaAs though 850 nm is farther away
from the bandgap wavelength of 1.11 µm for Si than from that of 871 nm for GaAs.
This results in a low quantum efficiency, thus a small responsivity, for a Si or Ge p–i–n
photodiode of even just a moderate speed because of the conflicting requirements on
the thickness di for reducing τtr and increasing ηi in a vertical p–i–n photodiode shown
in Fig. 14.21(a).

One solution to this problem is provided by the lateral p–i–n geometry shown in
Fig. 14.21(b). In a lateral p–i–n, both τtr and Ci still depend on di in the same manner
as in a vertical p–i–n, but the internal quantum efficiency is not a function of di but is a
function of the trench depth d as ηi = 1 − e−αd . Thus, f3dB and ηi can be independently
optimized by properly choosing a value of di to optimize τtr and Ci for a large f3dB

while making a deep enough trench for a high value of ηi. One additional advantage of a
lateral p–i–n photodiode is that the incident optical signal does not have to pass through
the homogeneous p+ or n+ region before it reaches the active intrinsic region, thus
improving the external quantum efficiency. This feature is significant for a homojunction
p–i–n used for optical detection at short optical wavelengths, such as a Si p–i–n for
blue or ultraviolet wavelengths, where the absorption coefficient is very high and the
optical penetration depth is very small.

EXAMPLE 14.12 A vertically illuminated InGaAs/InP p–i–n photodiode for λ = 1.3 µm
consists of a lightly doped n−-InGaAs layer of a thickness di between a thin p+ -InGaAs
top layer and an n+-InP substrate. The device is reverse-biased at a sufficiently high
bias voltage for both electrons and holes to reach their respective saturation velocities
of vsat

e = 6.5 × 104 m s−1 and vsat
h = 4.8 × 104 m s−1. The absorption coefficient of

InGaAs at 1.3 µm is α = 1.16 × 106 m−1 = 1.16 µm−1. The dielectric susceptibility
of InGaAs at DC and low frequencies is ε = 14.1ε0. Take R = RL + Rs = 50 �,
Cp = 0, and Ls = 0 for this device. This device can be designed to be either front or
back illuminated and can be antireflection coated to have a high ηt; meanwhile, its
structure can be optimized to have a high ηcoll. In any event, its bandwidth–efficiency
product is limited to ηi f3dB because ηi ≥ ηe. The device is made to have a circular
active area of a diameter 2r . Plot its 3-dB cutoff frequency, f3dB, and the upper limit of
its bandwidth–efficiency product, ηi f3dB, as a function of the intrinsic layer thickness
di in the range of 0 < di < 3 µm for the four different diameters of 2r = 10, 20, 40,
and 80 µm.

Solution The average transit time can be calculated using (14.103) with the following
average saturation velocity for electrons and holes:

vsat =
[

1

2

(
1

vsat
e

+ 1

vsat
h

)]−1

=
[

1

2

(
1

6.5 × 104
+ 1

4.8 × 104

)]−1

m s−1

= 5.52 × 104 m s−1.
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The active area isA = πr2. The internal capacitance of the photodiode is Ci = εA/di =
επr2/di. Thus, the RC time constant

τRC = RCi = R
επr2

di
,

with R = 50 � and ε = 14.1ε0. From (14.99), we then have

f3dB ≈ 0.443[
τ 2

tr + (2.78τRC)2
]1/2 = 0.443{

(di/vsat)2 + [2.78R(επr2/di)
]2}1/2 .

The values of f3dB in the range of 0 < di < 3 µm are calculated using this relation for
2r = 10, 20, 40, and 80 µm. Then the bandwidth–efficiency product is calculated using

ηi f3dB = (1 − e−αdi ) f3dB.

The values of both f3dB and ηi f3dB are plotted as a function of di in Fig. 14.22. From the
data shown in this figure, we see that for a given device diameter there is an optimum
intrinsic layer thickness of dopt for a maximum value of f3dB and a different optimum
intrinsic layer thickness of d ′

opt for a maximum value of ηi f3dB. We also find that
d ′

opt > dopt. The cutoff frequency is primarily limited by τRC if di < dopt, whereas it is
primarily limited by τtr if di > dopt. For a given device diameter, there is one possible
choice of di on either side of dopt for a sufficiently large value of f3dB. For a desired
f3dB, the choice of di > dopt has a larger bandwidth–efficiency product than that of
di < dopt.

µm

µm

µm

µm

µm µm

µm

µm

µm

µm
(a) (b)

-

–

-

Figure 14.22 (a) Cutoff frequency, f3dB, and (b) bandwidth–efficiency product, ηi f3dB, of an
InGaAs/InP p–i–n photodiode for 1.3 µm wavelength as a function of intrinsic layer thickness di

for four different device diameters of 2r = 10, 20, 40, and 80 µm.
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Heterojunction photodiodes

Heterojunction structures offer additional flexibility in optimizing the performance of
a photodiode. In a heterojunction photodiode, the active region normally has a bandgap
that is smaller than one or both of the homogeneous regions. A large-gap homogeneous
region, which can be either the top p+ region or the substrate n region, serves as a
window for the optical signal to enter. The small bandgap of the active region determines
the threshold wavelength, λth, of the detector on the long-wavelength side, while the
large bandgap of the homogeneous window region sets a cutoff wavelength, λc, on the
short-wavelength side. For an optical signal that has a wavelength λs in the range of
λth > λs > λc, the quantum efficiency and the responsivity can be optimized. A limiting
factor for the speed of a heterojunction photodiode is the trapping of electrons at the
conduction-band discontinuity and that of holes at the valence-band discontinuity. For
high-speed applications, this limitation has to be removed by reducing the barrier height
through compositional grading at the interface of the heterojunction. Many III–V p–i–n
photodiodes have heterojunction structures, which can be either symmetric with a small-
bandgap active intrinsic region sandwiched between large-bandgap p+ and n+ regions,
such as p+-AlGaAs/GaAs/n+-AlGaAs and p+-InP/InGaAs/n+-InP, or asymmetric with
a large-bandgap p+ or n+ region on only one side, such as p+-AlGaAs/GaAs/n+-GaAs
or p+-InGaAs/InGaAs/n+-InP. Figure 14.23 shows some structures of heterojunction
photodiodes.

Sophisticated heterojunction structures such as quantum wells and strained quantum
wells, as well as quantum wires and quantum dots, are also used for the active region

(a)

(c) (d )

(b)

Figure 14.23 Structures of heterojunction photodiodes.
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of photodiodes. Such quantum structures have the advantage of high peak absorption
coefficients, which lead to an improved quantum efficiency for a given thickness of the
active region. They are often used for improving the bandwidth–efficiency products of
high-speed photodetectors.

Schottky photodiodes

The property of the interface between a metal and a semiconductor depends on the
work functions of the metal and the semiconductor, eφm and eφs, respectively, and the
type of semiconductor. The metal–semiconductor junction is an ohmic contact without
a potential barrier if φs > φm in the case of an n-type semiconductor or φs < φm in
the case of a p-type semiconductor. A Schottky barrier of a height Eb = e(φm − χ ) for
electrons to flow from the metal to the semiconductor exists at the metal–semiconductor
junction if φs < φm in the case of an n-type semiconductor, as shown in Fig. 14.24(a).
A Schottky barrier of a height Eb = Eg − e(φm − χ ) for holes to flow from the metal
to the semiconductor exists at the metal–semiconductor junction if φs > φm in the case
of a p-type semiconductor, as shown in Fig. 14.24(b).

The general characteristics of a Schottky junction are similar to those of a p–n junc-
tion. The characteristics of a Schottky junction formed between a metal and an n-type
semiconductor can be approximated by those of a p+–n junction with a built-in potential
of V0 = φm − φs, as shown in Fig. 14.24(a). Similarly, a Schottky junction between a

(a) (b)

Figure 14.24 Schottky junctions at (a) the interface of a metal and an n-type semiconductor with
φs < φm and (b) the interface of a metal and a p-type semiconductor with φs > φm.
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metal and a p-type semiconductor can be considered as an n+–p junction with a built-in
potential of V0 = φs − φm, as shown in Fig. 14.24(b). Therefore, the depletion-layer
width W of a Schottky junction and its dependence on bias voltage can be found by using
(12.100) and by taking Na � Nd in the case of an n-type semiconductor or Nd � Na

in the case of a p-type semiconductor. The junction capacitance simply has the same
form as that of a p–n junction given in (12.119).

It is also possible for a Schottky diode to function like a p–i–n diode by insert-
ing a lightly doped n−-semiconductor layer between a metal and a heavily doped
n+-semiconductor region. In such a structure, the metal functions as a p+-homogeneous
region, and the n− layer functions as the intrinsic region in a p–i–n diode. The depletion
layer, which exists almost entirely in the n− region, broadens as the reverse bias voltage
increases until it reaches the metal at a voltage known as the punchthrough voltage.
When the reverse bias voltage is larger than the punchthrough voltage, the depletion-
layer width of such a Schottky diode becomes independent of the voltage and is simply
defined by the thickness of the n− layer.

The characteristics and the equivalent circuit of a Schottky photodiode are sim-
ilar to those of a semiconductor junction photodiode discussed above. A Schottky
photodiode can also operate in either photoconductive or photovoltaic mode, but it
normally operates in photoconductive mode in most of its application for the same
reasons as discussed above for other junction photodiodes. A Schottky photodiode
operating in photoconductive mode can have a very high speed, particularly when
an n-type semiconductor is used. Because the optical signal is absorbed in a thin
layer at the junction interface, only the majority carriers, which are electrons in
the case of an n-type semiconductor, have to drift across the active region. A well-
designed Schottky photodiode can reach an intrinsic frequency bandwidth as high as
100 GHz.

The spectral response of a Schottky photodiode depends on whether an optical signal
is absorbed by the semiconductor or by the metal. If the optical signal is absorbed by
the semiconductor, the spectral characteristic of a Schottky photodiode is the same as
that of a semiconductor junction photodiode with a threshold photon energy defined
by the bandgap of the absorbing semiconductor: hν > Eth = Eg. This process takes
place when the Schottky photodiode has a thin, semi-transparent metallic layer to al-
low the optical signal to enter with little attenuation before it reaches the depletion
layer. This is the normal mode of operation for a high-efficiency, high-speed Schottky
photodiode. Absorption of a photon by the metal at the junction interface can also
produce a photoresponse if the photon has sufficient energy to excite an electron
over the Schottky barrier. For a Schottky photodiode to operate in this mode, the
metallic layer has to be thick and absorbing, but the absorption has to take place at
the junction interface. The spectral response range in this mode of operation is then
Eb < hν < Eg for the optical signal to enter from the semiconductor side without being
absorbed by the semiconductor. A Schottky photodiode operating in this mode is useful
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as an infrared detector, but its efficiency is low because a metal does not absorb light
efficiently.

EXAMPLE 14.13 An InGaAs/InP Schottky photodiode has a structure similar to that of
the InGaAs/InP p–i–n photodiode considered in Example 14.12, but it has a metallic
layer in place of the p+ layer of the p–i–n photodiode. The thickness of the n− layer is
di = 1 µm. The diameter of the device is 2r = 12 µm. It is back illuminated through the
InP substrate. The device is biased above the punchthrough voltage, and the electrons
have reached their saturation velocity. (a) What is the spectral response range of this
photodiode at 300 K? (b) Find the 3-dB cutoff frequency of this photodiode if R =
RL + Rs = 50 � and Cp = 0.

Solution (a) The spectral response range of this back-illuminated photodiode is lim-
ited at the short-wavelength end by a cutoff wavelength λc determined by the bandgap
of the InP window layer because an optical signal has to pass through the InP sub-
strate to reach the InGaAs active layer. It is limited at the long-wavelength end by the
threshold wavelength λth determined by the bandgap of InGaAs that is lattice matched
to InP. From the discussions following (12.9), we find that the absorption edge of InP
is at 919 nm and that of InGaAs is at 1.65 µm. Therefore, the spectral response range
of this Schottky photodiode at 300 K is from λc = 919 nm to λth = 1.65 µm.

(b) In a Schottky photodiode, only the majority carriers, which in this case are
electrons, have to drift across the active region. Thus, the transit time is simply that of
the electrons. From Example 14.12, we have vsat

e = 6.5 × 104 m s−1. With di = 1 µm,
we find that

τtr = di

vsat
e

= 1 × 10−6

6.5 × 104
s = 15.4 ps.

With ε = 14.1ε0 from Example 14.12, we find that the internal capacitance of the device
for di = 1 µm and 2r = 12 µm is

Ci = επr2

di
= 14.1 × 8.85 × 10−12 × π × (12 × 10−6/2)2

1 × 10−6
F = 14.1 fF.

With R = RL + Rs = 50 �, the RC time constant

τRC = RCi = 50 × 14.1 × 10−15 s = 705 fs.

Therefore, the 3-dB cutoff frequency of this photodiode is

f3dB = 0.443[
(15.4 × 10−12)2 + (2.78 × 705 × 10−15)2

]1/2 Hz = 28.5 GHz.

Because τtr � τRC for this device, f3dB is almost entirely determined by the electron
transit time.
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Photodiodes with multipass structures

A high-speed photodiode requires a thin depletion layer for a short transit time, but, ac-
cording to (14.84), the quantum efficiency of the photodiode decreases as the depletion-
layer width W is reduced. Therefore, there is a trade-off between its frequency band-
width and quantum efficiency. To optimize both the bandwidth and the efficiency of a
high-speed photodiode, a large bandwidth–efficiency product ηe f3dB is desired. From
(14.84), it can be seen that the external quantum efficiency of a photodiode can be
increased without changing the depletion-layer width by (1) antireflection coating the
incident surface to make R = 0 and (2) using a heterostructure with a nonabsorbing
large-bandgap homogeneous region for Th = 1. Many different device structures have
been developed to increase the bandwidth–efficiency product further beyond that ob-
tained with these two simple steps. They can be divided into three basic categories:
(1) vertically illuminated photodetectors with multiple optical passes through the ac-
tive region, which are discussed here; (2) laterally illuminated photodetectors such
as the lateral p–i–n photodetectors, which are discussed earlier; and (3) guided-wave
photodetectors, which are discussed in Section 14.7.

Figure 14.25 shows three approaches to increasing the bandwidth–efficiency product
of a photodiode by increasing its quantum efficiency without increasing the thickness of
its active region. The simple double-pass structure, shown in Fig. 14.25(a), directs the
optical signal to pass through the active region twice with a back reflector of a reflectivity
Rb, which can be simply the substrate electrode if the substrate is transparent. With this
structure, the quantum efficiency can be improved by a factor close to 1 + Rb if the
absorbing active region has a thickness of W < α−1.

To increase the quantum efficiency further, the effective optical path length in the
active region can be increased without increasing the physical thickness of the active
region by using the refracting-facet structure shown in Fig. 14.25(b). In this structure,
the top electrode reflects the optical signal for a second pass through the active region to
keep the advantage of a double-pass structure, but the optical signal passes through the
active region at an angle θ for a total effective path length of 2W/ sin θ . Therefore, the
quantum efficiency is further increased over that of the simple double-pass structure
shown in Fig. 14.25(a). A bandwidth–efficiency product around 40 GHz has been
obtained for refracting-facet photodiodes.

To push the quantum efficiency close to unity in a high-speed photodiode with a
very thin active region, a resonant-cavity-enhanced structure shown in Fig. 14.25(c)
can be used. This structure consists of both a front and a back reflector to form a
resonant cavity. It functions in a manner similar to that of a VCSEL by forming a
standing wave with its high-intensity crest located at the thin absorbing active region.
By using DBR reflectors of a reflectivity greater than 99% for a high-Q cavity, a quantum
efficiency higher than 90% can be achieved with this scheme. A bandwidth–efficiency
product around 20 GHz has been obtained for resonant-cavity-enhanced p–i–n and
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(a)

(b)

(c)

Figure 14.25 Photodiodes with multiple optical passes to increase quantum efficiency: (a)
double-pass photodiode, (b) refracting-facet photodiode, and (c) resonant-cavity-enhanced
photodiode.
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Schottky photodiodes. The resonant-cavity-enhanced structure is highly wavelength
selective because of its resonance nature. This wavelength selectivity is a disadvantage
for general applications because of its narrow optical bandwidth, but it is a useful feature
for applications in wavelength-selective detection systems such as wavelength-division
multiplexing systems.

14.6 Avalanche photodiodes

The avalanche photodiode (APD) is the solid-state counterpart of the PMT. An APD
versus an ordinary junction photodiode is similar to a PMT versus a vacuum photo-
diode. However, the high-gain and low-noise characteristics of PMTs are difficult for
conventional APDs to match. An internal gain is built into an APD to multiply the pho-
togenerated electrons and holes. The physical process responsible for the internal gain
in an APD is avalanche multiplication of charge carriers through impact ionization, as
illustrated in Fig. 14.26. In the impact ionization process, an electron or hole of a suf-
ficiently high kinetic energy can create a secondary electron–hole pair by transferring
its kinetic energy to the excitation of the secondary carriers through collision with the
lattice. In the presence of a high electric field, the newly generated electron and hole can
be accelerated to gain sufficient kinetic energies for impact ionization to generate more
electron–hole pairs. A cascade of these events leads to avalanche multiplication of the
photogenerated carriers. This process does not take place in an ordinary photodiode.
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Figure 14.26 Avalanche multiplication of electrons and holes through impact ionization in a
semiconductor in the presence of a high electric field with (a) electron injection in the case of k < 1
and (b) hole injection in the case of k > 1.
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The spectral response of an APD is similar to that of an ordinary photodiode with
a threshold photon energy of Eth = Eg determined by the bandgap of the absorption
region where electron–hole pairs are photogenerated. The threshold kinetic energies for
an electron or hole to initiate impact ionization in a semiconductor of a bandgap Eg fall
between Eg and 2Eg, depending on the effective electron and hole masses and the details
of the band structure. These threshold energies are much higher than the kinetic energies
of electrons and holes at their respective saturation velocities. Therefore, no avalanche
multiplication takes place in an ordinary photodiode even when the photogenerated
electrons and holes in the device are accelerated to reach their respective saturation
velocities, such as in a high-speed p–i–n photodiode. In an APD, the average drift
velocities of electrons and holes remain at the saturation velocities, but high-energy
carriers at the tail of the energy distribution can have kinetic energies higher than the
threshold energies for impact ionization.

The impact ionization process is characterized quantitatively by the ionization coef-
ficients, αe for electrons and αh for holes (quoted per meter, but also often quoted per
centimeter). The ionization coefficient for an electron or hole represents the probability
for an electron or hole that travels a unit distance to create an electron–hole pair through
impact ionization. Both αe and αh are characteristics of a semiconductor and are strong
functions of both electric field strength and temperature. They increase rapidly with an
increasing electric field strength but decrease with increasing temperature. Their ratio,
known as the ionization ratio, is defined as

k = αh

αe
. (14.104)

The ionization ratio is a function of field strength and temperature. It also varies among
different semiconductors. When k < 1, impact ionization by electrons dominates. When
k > 1, impact ionization by holes dominates. For Si, k < 1, and the value of k can be
as small as 0.01, depending on the field strength. Therefore, impact ionization in Si is
completely dominated by electrons. For Ge and InP, k > 1, but the value of k is not
large. For GaAs, k ≈ 1. As we shall see below, to maximize the avalanche gain and
minimize the excess noise, an ideal APD must have only electrons initiating impact
ionization, thus k � 1, or only holes initiating impact ionization, thus k � 1. A k value
close to unity is not desirable because it limits the avalanche gain due to a large excess
noise.

The total current gain, G = is/ iph as defined in (14.23), of an APD is the avalanche
multiplication factor of photogenerated carriers. It depends on the thickness and the
structure of the avalanche region in the APD, as well as on the reverse voltage applied
to the APD. For an APD that has a uniform field across its avalanche multiplication
region of thickness dm, the field-dependent parameters αe, αh, and k have spatially
independent, constant values over the thickness dm. In this ideal situation, the avalanche
multiplication gain for electron or hole injection into the avalanche region can be
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expressed as

G = 1 − k

e−(1−k)αedm − k
= 1 − 1/k

e−(1−1/k)αhdm − 1/k
. (14.105)

When k = 1,

G = 1

1 − αedm
= 1

1 − αhdm
. (14.106)

We see from the above two relations that the multiplication gain G increases nonlinearly
with an increase in the value of αedm, with a corresponding increase in that of αhdm,
for any given value of k. At a certain value of αedm and its corresponding value of αhdm

for a given k, however, G increases quickly to approach infinity (see Problem 14.6.2).
The consequence is an instability leading to avalanche breakdown.

In practice, the gain of an APD is often expressed empirically as

G = 1

1 − (Vr/Vbr)n , (14.107)

where Vr is the reverse voltage on the APD, Vbr is the avalanche breakdown voltage,
and n is an empirically fitted parameter typically in the range of 3–6. The values of
Vbr and n depend strongly on the device structure and operating temperature. The gain
of an APD is very sensitive to both reverse bias voltage and temperature. Voltage and
temperature stabilization is often required for the operation of an APD at a constant
gain. In normal operation, an APD is biased at a fixed voltage below, but close to, the
breakdown voltage. Typical gains range from 10 to 20 for Ge and InGaAs APDs, and
from 50 to 200 for Si APDs. Because of the internal gain, the responsivity of an APD is
R = GR0, where R0 is the intrinsic responsivity of an equivalent photodiode without
an internal gain.

EXAMPLE 14.14 A superlattice InGaAs/InP APD, which is described in further detail
in Example 14.16, has an avalanche multiplication region that consists of an InAl-
GaAs/InAlAs superlattice layer of dm = 231 nm. It has an ionization ratio of k = 0.25.
When an average electric field of Em = 63 MV m−1 is established by a reverse bias
voltage in this avalanche multiplication layer, the electron ionization coefficient is
αe = 6.5 × 106 m−1. (a) Find the avalanche multiplication gain in this condition. (b) If
the device has a breakdown voltage of Vbr = 20 V, what is the reverse bias voltage?

Solution (a) With the given parameters, we have αedm = 6.5 × 106 × 231 × 10−9 =
1.5. The multiplication gain

G = 1 − k

e−(1−k)αedm − k
= 1 − 0.25

e−(1−0.25)×1.5 − 0.25
= 10.
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(a) (b)

Figure 14.27 (a) Small-signal equivalent circuit and (b) noise equivalent circuit of an APD.

(b) We can estimate the reverse bias voltage by using (14.107). With Vbr = 20 V and
G = 10, we have

Vr =
(

1 − 1

G

)1/n

Vbr = 0.91/n × 20 V.

Because we do not have the information on the parameter n, we can only calculate
the limits of the reverse bias voltage to be 19.31 V ≤ Vr ≤ 19.65 V by assuming that
3 ≤ n ≤ 6. Thus, the bias voltage is below, but very close to, the breakdown voltage.
Because Vr is very close to Vbr, the multiplication gain is very sensitive to the reverse
bias voltage. For example, if we take n = 3 but use Vr = 19.65 V, which is obtained for
n = 6, we find a gain of G = 19.4 instead of 10. This example shows that stabilization
of both voltage and temperature is very important for an APD to function at a constant
gain as both Vbr and n vary sensitively with temperature.

The small-signal equivalent circuit of an APD is shown in Fig. 14.27(a). It is similar
to that of an ordinary junction photodiode, except that the avalanche multiplication gain
is included in the signal current is = Giph for an APD. Figure 14.27(b) shows the noise
equivalent circuit of an APD.

The shot noise of an APD has the form given in (14.25) for a photodetector that has
an internal gain. All APDs generate excess noise because of the statistical nature of the
avalanche multiplication process. The excess noise factor F for an APD is a function
of the avalanche multiplication gain G and the ionization ratio k. For conventional
APDs, the excess noise factor for avalanche multiplication initiated by electrons can
be expressed as

F = Fe = kG + (1 − k)

(
2 − 1

G

)
, (14.108)

and that for avalanche multiplication initiated by holes can be expressed as

F = Fh = G

k
+
(

1 − 1

k

)(
2 − 1

G

)
. (14.109)
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The excess noise of an APD is minimized if k < 1 when only electrons contribute to
avalanche multiplication, or if k > 1 when only holes contribute to avalanche multipli-
cation. The theoretical minimum of the excess noise factor for an APD is F = 2 − 1/G
for k = 0 in (14.108) or k = ∞ in (14.109). From (14.108) and (14.109), we see that
it is important to have the correct type of carriers injected into the avalanche regions
in order to minimize the excess noise because injection of the wrong type of carriers
will lead to a very large value of F . For this reason, an avalanche region consisting of
a material with k < 1 is placed on the n+ side opposite to an absorption layer on the
p+ side so that electrons are injected into the avalanche region in reverse bias, whereas
an avalanche region consisting of a material with k > 1 is placed on the p+ side oppo-
site to an absorption layer on the n+ side so that holes are injected into the avalanche
region in reverse bias. This point can be clearly seen in the two structures shown later
in Fig. 14.29.

In practice, the excess noise factor is often expressed with the following empirically
fitted formula:

F = Gx , (14.110)

where x is a parameter typically in the range of 0.2–1 obtained from fitting experimental
data. Including the thermal noise, which does not get amplified, the total current noise
of an APD is

i2
n = 2eBG F(is + ib + id) + 4kBT B

RL

, (14.111)

which has the same form as that of the PMT. The SNR of an APD has the form given
in (14.33) for a photodetector that has an internal gain.

The excess noise degrades the SNR of an APD when compared with an ordinary
photodiode of the same quantum efficiency. Therefore, the use of an APD instead of
an ordinary photodiode such as a p–i–n photodiode makes sense only when amplifiers
are needed in the use of an ordinary photodiode for the detection of low-power optical
signals. Because of the noise from the amplifiers, an APD can have a better SNR than a
photodiode–amplifier combination to justify the use of the APD. This situation occurs
when detecting high-frequency signals at very low power levels because the amplifier
noise dominates the detector noise at high frequencies. The NEP for Si APDs can be
as low as 1 pW.

EXAMPLE 14.15 Find the excess noise factor for the APD considered in Exam-
ple 14.14 if electrons are injected into its avalanche region to initiate the avalanche
multiplication process. What is its excess noise factor if holes are injected
instead?
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Solution We have k = 0.25 and G = 10 from Example 14.15. If electrons are in-
jected, the excess noise factor is found using (14.108) to be

F = Fe = 0.25 × 10 + (1 − 0.25) ×
(

2 − 1

10

)
= 3.925.

If holes are injected instead, we have to use (14.109) to find that

F = Fh = 10

0.25
+
(

1 − 1

0.25

)
×
(

2 − 1

10

)
= 34.3.

We see that Fh is about nine times Fe. Clearly, the avalanche multiplication process in
this device of k < 1 has to be initiated by electrons, not by holes, in order to minimize
the excess noise. If holes are injected instead, the excess noise factor would be enhanced
by as much as nine times, resulting in a significant increase in the APD noise.

Like any photodiode, the response time of an APD is determined by both the response
time of its signal current and the time constant of its equivalent circuit. The speed of
an APD is determined by four factors: (1) the transit time τtr through the absorption
layer of a thickness da, (2) the diffusion time in the diffusion regions, (3) the avalanche
buildup time τav in the avalanche multiplication layer of a thickness dm, and (4) the
circuit response time limited by the RC time constant τRC. The avalanche buildup time
is unique to APDs. The other three factors are common to all photodiodes, but the
transit time in an APD is different from that in an ordinary photodiode. The absorption
layer of an APD is equivalent to the intrinsic region of a p–i–n photodiode. It is either
intrinsic or very lightly doped and is depleted to maintain a sufficiently high field in
this region for a short carrier transit time. The avalanche multiplication layer requires
an even higher field. Thus, it is also either intrinsic or very lightly doped. Besides,
it is much thinner than the absorption layer: dm � da. Because the field strengths in
these two regions are different, and their material compositions can also be different in
heterostructure APDs, the carrier velocities in these two regions can be different even
when they are all close to or at their respective saturation values.

A detailed analysis of the time response of an APD is very complicated because it has
to take into account the spatial variations of the field strength and the carrier distribution
in each region, as well as the spatial variations in αe, αh, and k in the avalanche region.
However, by taking these parameters to be constants of their respectively spatially
averaged values, a simplified analysis yields results that are very good approximations
to accurate values.

In an APD where electron multiplication dominates the avalanche process, an electron
generated on the p+ side of the absorption layer can generate a secondary electron–hole
pair in the avalanche region located on the n+ side of the absorption layer after taking
a time of τ e

tr to drift through the absorption layer. The secondary hole then takes a time
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of τ h
tr to drift back to the p+ side where it is collected. Because the drift of a secondary

hole follows the drift of its primary electron, the transit time in an APD is twice as long
as that in an ordinary photodiode of the same intrinsic absorption-layer thickness:

τtr = τ e
tr + τ h

tr = da

va
e

+ da

va
h

, (14.112)

where va
e and va

h are, respectively, the electron and hole drift velocities in the absorption
region. The same transit time is obtained in an APD where hole multiplication dominates
the avalanche process.

In the avalanche region, the multiplication process is not instantaneous but takes
time to build up. The avalanche buildup time is a function of the gain, the ionization
ratio, and the thickness of the avalanche region. For an avalanche process initiated by
electrons with k < 1, the avalanche buildup time can be approximated as

τav ≈ Gk
dm

vm
e

+ dm

vm
h

, (14.113)

where vm
e and vm

h are, respectively, the electron and hole drift velocities in the avalanche
multiplication region. For an avalanche process initiated by holes with k > 1,

τav ≈ G

k

dm

vm
h

+ dm

vm
e

. (14.114)

When the diffusion time of carriers in the diffusion regions is minimized, the intrinsic
time constant for the signal current in an APD is the sum of the transit time and the
avalanche buildup time:

τ = τtr + τav. (14.115)

The signal-current frequency response of an APD has the form of (14.93) but with
the time constant τ given in (14.115):

R2
s ( f ) =

∣∣∣∣ is( f )

Ps( f )

∣∣∣∣
2

≈ R2
s (0)

(
sin π f τ

π f τ

)2

, (14.116)

which has a 3-dB cutoff frequency

f s
3dB ≈ 0.443

τ
. (14.117)

The circuit response of an APD is similar to that of an ordinary photodiode, with a
3-dB cutoff frequency

f ckt
3dB ≈ 1

2πτRC

, (14.118)

where τRC is the RC time constant of the APD equivalent circuit. Therefore, the total
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frequency response of an APD can be expressed as

R2( f ) = R2
s ( f )R2

ckt( f ) = R2(0)

1 + 4π2 f 2τ 2
RC

(
sin π f τ

π f τ

)2

. (14.119)

The 3-dB cutoff frequency of an APD can be approximated by a relation similar to that
given in (14.99):

f3dB ≈ 0.443

[τ 2 + (2.78τRC)2]1/2
= 1

2π [τ 2
RC + (0.36τ )2]1/2

. (14.120)

An important figure of merit for an APD is the gain–bandwidth product G f3dB.
There are two modes of operation for an APD. In the normal mode of operation

discussed above, the bias voltage is set at a fixed value just below the breakdown
voltage. As can be seen from (14.107), the device has a fixed gain at a given operating
temperature for Vr < Vbr. In the photon-counting mode of operation, the reverse bias
voltage is set above the breakdown voltage. In this situation, a single photon can trigger
a constant flow of photocurrent because G → ∞ for Vr > Vbr, according to (14.107).
The operation of an APD in this mode is controlled by an external circuit to quench
the breakdown current by reducing the voltage on the APD to below the breakdown
voltage after a photon triggers the breakdown. The APD is then ready to respond to the
next incoming photon. In this mode of operation, an APD is capable of counting single
photons, like a PMT. Its response speed, or time resolution, in counting successive
photons is determined by the speed of the external circuit. With a passive current-
quenching circuit that consists of current-limiting resistors, the time resolution is on
the order of a few nanoseconds, limited by the RC time constant of the circuit. With an
active current-quenching circuit consisting of a current-switching transistor, the time
resolution can be as high as 20 ps, limited by the switching speed of the transistor in
the circuit.

There are many different structures developed for APDs. In principle, a p–n or p–i–n
diode biased near its breakdown voltage can have an avalanche multiplication gain,
thus functioning as an APD. In practice, however, the structure of an APD is designed
to optimize both the quantum efficiency and the avalanche multiplication gain of the
device. To maximize quantum efficiency, the absorption region for photogeneration of
carriers has to be relatively thick. To optimize avalanche multiplication, two conditions
are required: (1) the avalanche region has to be relatively thin in order to support a
very high field without local breakdown, and (2) it is best to have a single type of
carrier injected into the avalanche region rather than have both electrons and holes
photogenerated throughout the region. An ordinary p–n or p–i–n structure is not ideal
for an APD because both photogeneration and avalanche multiplication of carriers take
place in its depletion layer. Some Ge APDs have n+–p, n+–n–p, or p+–n structures,
which are acceptable but not optimum.
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Figure 14.28 Structure and field distribution of a reach-through Si APD, for which k < 1.

Separate absorption and multiplication APD

A concept for optimizing both photogeneration and avalanche multiplication in an
APD is to use a separate absorption and multiplication (SAM) structure, which has
separate regions for the two functions. In such a structure, photogeneration takes place
in a relatively thick region of a moderately high field to reduce the carrier transit time,
whereas the ionizing carriers are injected into a thin region of a very high field for
avalanche multiplication. Figure 14.28 shows the structure and the field distribution
in reverse bias of a Si SAM APD consisting of p+–π–p–n+ layers. This structure is
called the reach-through structure because the depletion layer under a large reverse bias
voltage in the operating condition of the device reaches through the π and p regions from
the p+ region to the n+ region. For optimum performance of a Si APD, electron injection
into the avalanche region is required because k � 1 in Si. In the reach-through structure
shown in Fig. 14.28, photons are absorbed to generate electron–hole pairs mainly in
the thick π region. The photogenerated electrons, which are minority carriers in the
π region, are accelerated and injected into the thin p–n+ junction where avalanche
multiplication takes place in the presence of a high electric field. The photogenerated
holes in the π region are collected in the p+ region without multiplication because of
the low field in that region. To reduce the noise caused by the leakage current at the
edges of the p–n+ junction and to avoid local breakdown at these edges, a guard ring
around the edges is often incorporated into a reach-through Si APD, as also shown in
Fig. 14.28.

Figure 14.29(a) shows the structure and the field distribution in reverse bias of a
heterojunction InGaAs/InP SAM APD. Because k > 1 in InP, hole injection, rather than
electron injection, into the avalanche region for multiplication is desired in this device.
Therefore, it is the n−-InP layer that is placed on the p+ side next to the p+-InP layer.
The absorption region in this P+–N−–ν–n+ heterostructure is the InGaAs ν region,
which has a smaller bandgap than the InP layers. Holes that are photogenerated in this
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(a)

(b)
-

Figure 14.29 Structures and field distributions of (a) a heterojunction InGaAs/InP SAM APD with
k > 1 in the InP avalanche multiplication region and (b) a superlattice InGaAs/InP SAM APD with
k < 1 in the superlattice avalanche multiplication region.

region are injected into the avalanche region at the InP p+–n− junction for avalanche
multiplication. Photogenerated electrons are collected in the InGaAs n+ region without
multiplication.

Figure 14.29(b) shows the structure and the field distribution in reverse bias of a
superlattice InGaAs/InP SAM APD. In this structure, the avalanche region consists
of either an InGaAsP/InAlAs superlattice or an InAlGaAs/InAlAs superlattice that is
lattice matched to InP. Because these superlattice materials have k < 1, electron injec-
tion, rather than hole injection, is desired. Consequently, this superlattice multiplication
layer is placed on the n+ side of the structure, and the InGaAs absorption layer is now
on the p+ side. There is also a thin p+-InP buffer layer in this structure. This heav-
ily doped buffer layer allows a sharp transition from a very high field strength in the
avalanche region to a lower field in the absorption region so that relatively constant,
but very different, field strengths can be maintained in both regions. Its purpose is to
suppress undesirable tunneling dark current generation and avalanche multiplication in
the absorption layer.

EXAMPLE 14.16 A superlattice InGaAs/InP SAM APD designed for optical detection
in the infrared spectral range covering 1.3 and 1.55 µm wavelengths has the struc-
ture shown in Fig. 14.29(b). It consists of a nearly intrinsic π -InGaAs absorption
layer of da = 1 µm, an undoped InAlGaAs/InAlAs superlattice multiplication layer
of dm = 231 nm, and a heavily doped p+-InP buffer layer of a very small thickness
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of 30–50 nm between these two layers. The absorption coefficients of the InGaAs
absorption layer at 1.3 and 1.55 µm wavelengths are α = 1.2 × 106 m−1 and α =
6.6 × 105 m−1, respectively. In the normal operating condition of the APD, the electron
and hole drift velocities are va

e = 8 × 104 m s−1 and va
h = 6 × 104 m s−1 in the InGaAs

absorption layer and vm
e = 4.2 × 104 m s−1 and vm

h = 3.2 × 104 m s−1 in the InAl-
GaAs/InAlAs superlattice multiplication layer. The impact ionization ratio is k = 0.25.
The active area of this APD has a diameter of 2r = 40 µm. It has a total capacitance, in-
cluding its internal capacitance and parasitic capacitance, of C = 300 fF and a parasitic
series resistance of Rs = 10 �. Find the 3-dB cutoff frequency and the gain–bandwidth
product of this APD when it operates at a multiplication gain of G = 10 with a load
resistance of RL = 50 �.

Solution With da = 1 µm, the transit time in the absorption layer is

τtr = da

va
e

+ da

va
h

=
(

1 × 10−6

8 × 104
+ 1 × 10−6

6 × 104

)
s = 29 ps.

The avalanche multiplication in this APD is initiated by electrons. With dm = 231 nm,
k = 0.25, and G = 10, the avalanche buildup time in the multiplication layer is

τav ≈ Gk
dm

vm
e

+ dm

vm
h

=
(

10 × 0.25 × 231 × 10−9

4.2 × 104
+ 231 × 10−9

3.2 × 104

)
s = 21 ps.

We find that τtr is comparable to but somewhat larger than τav for this APD in the given
operating condition. Thus, the intrinsic time constant

τ = τtr + τav = 50 ps.

The RC time constant

τRC = (Rs + RL)C = (10 + 50) × 300 × 10−15 s = 18 ps.

We find that 2.78τRC = 50 ps, which is the same as τ . Thus the bandwidth of this APD
in the given operating condition is equally determined by both its intrinsic time constant
and its RC time constant. We have

f3dB = 0.443

[τ 2 + (2.78τRC)2]1/2
= 0.443

[502 + 502]1/2 × 10−12
Hz = 6.26 GHz.

Therefore, with G = 10, the gain–bandwidth product

G f3dB = 62.6 GHz.

Graded-gap staircase APD

Sophisticated heterostructures, including those using quantum wells and graded-gap
layers, have been developed to improve the performance characteristics of APDs.
Figures 14.30(a) and (b) show, respectively, the unbiased and biased band diagrams of a
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(a)

(b)

Figure 14.30 Band diagrams of a graded-gap staircase APD (a) in thermal equilibrium with no bias
and (b) in reverse bias with a proper bias voltage.

staircase APD, which consists of multiple nearly intrinsic, or lightly doped, graded-gap
layers between the p+ and n+ regions. This structure is the solid-state equivalent of
the PMT, with each graded-gap layer functioning as an electron multiplication stage
equivalent to a dynode in a PMT. The graded gap in this structure is made by varying the
composition of a semiconductor material, such as the composition x in Alx Ga1−x As.
The bandgap in each layer increases linearly from a small value of Eg1 to a large value
of Eg2 with an abrupt drop back to Eg1 at the end of the layer. For typical III–V semi-
conductors, most of the heterostructure bandgap difference occurs in the conduction
band. In reverse bias, the voltage applied to the device drops almost entirely across
the nearly intrinsic multilayer graded-gap region. At the operating bias voltage of the
device, the energy band has a pattern like that shown in Fig. 14.30(b). Photogenerated
electrons in the p+ region are injected into successive stages of alternating low-field
graded-gap regions and high-field conduction-band steps. The energy drop at each
conduction-band step is larger than the threshold impact-ionization energy for elec-
trons. The electrons drift through a low-field region without multiplication, but they
impact ionize when passing through an abrupt conduction-band step. Holes do not con-
tribute to avalanche multiplication but are quickly swept away because the moderately
high field in the valence band is not large enough to cause impact ionization by holes.
The value of the ionization ratio k for this structure is thus substantially reduced in
comparison to a conventional structure of the same material.

The excess noise factor of a staircase APD is also much reduced due to the fact
that impact ionization in this device is localized at the conduction-band steps. At each
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potential step, each electron acquires only enough energy to generate one secondary
electron–hole pair. The only excess noise comes from the probability that an electron,
though having enough energy, may or may not impact ionize at a given potential step.
As a result, a staircase APD typically has a small excess noise factor close to unity
similar to that of a PMT. Because this device has a very small k value and a small
excess noise factor, it has improved performance characteristics in terms of optimized
gain, reduced noise, and increased speed.

14.7 Guided-wave photodetectors

The photodetectors discussed in the preceding sections are vertically illuminated. In a
vertically illuminated photodetector (VIPD), the optical signal propagates in a direction
perpendicular to the junction interfaces of the device. This situation leads to a trade-off
between the carrier transit time and the quantum efficiency, resulting in a limitation
on the bandwidth–efficiency product of the device. Another limitation of a high-speed
VIPD arises from the trade-off between its bandwidth and its saturation power. A large
bandwidth for a VIPD requires a small absorption volume, which results in a high
carrier concentration at a given power level for the optical signal. The space-charge
effect in the active region caused by the high carrier concentration sets a limit on the
saturation power of the photodetector. Although the bandwidth–efficiency product of
a VIPD can be improved by using a multipass structure as discussed in Section 14.5,
the saturation power is not increased by such a strategy but can only be improved by
increasing the effective absorption volume. Guided-wave photodetectors are developed
to overcome these limitations. A well-designed guided-wave photodetector can have
both a large bandwidth–efficiency product and a high saturation power.

Most of the photodetectors, including the MSM photodetectors, the p–i–n photodi-
odes, the Schottky photodiodes, and the APDs, that are discussed in preceding sections
can be made in guided-wave device form. In a guided-wave photodetector, the guided
optical signal propagates in a direction that is parallel to the junction interfaces and
is perpendicular to the drift of the photogenerated carriers. This geometry decouples
the absorption length of the optical signal from the drift length of the photogenerated
carriers. The optical signal is absorbed along the length l of the active region, while
the carriers drift across the thickness d of the active region. Thus, the quantum effi-
ciency of a guided-wave photodiode is not that given by (14.84) but can be expressed
as

ηe = ηcollηtηi = ηcoll(1 − R)ηc(1 − e−αeffl), (14.121)

where ηcoll is the collection efficiency of the photogenerated carriers, ηt = (1 − R)ηc,
and ηi = 1 − eαeffl . Here R is the reflectivity at the incident surface of the waveguide,
ηc is the coupling efficiency of the optical signal into the waveguide, αeff is the effective
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absorption coefficient of the active region, and l is the length of the active region
measured along the waveguide direction. The effective absorption coefficient αeff has
to be calculated according to the device structure in order to take into account the
fact that only a fraction of the guided optical wave overlaps with the absorbing active
region of a thickness d. In the case when the entire core of the waveguide is the active
region, αeff = �α, where � is the confinement factor of the waveguide and α is the
absorption coefficient of the material in the active region. In other device structures,
αeff �= �α because the active region might be located outside the waveguide core or it
might occupy only a fraction of the core. Because the signal absorption length is no
longer tied to the thickness of the active region, a guided-wave photodetector can have
both a very thin active region for a very short transit time and a long absorption length
for a high quantum efficiency and a high saturation power.

The major advantage of a guided-wave photodetector over a VIPD is that its carrier
transit time can be independently reduced without sacrificing its quantum efficiency and
saturation power. The transit-time-limited bandwidth of a guided-wave photodetector
is easily made larger than its RC-time-limited bandwidth by using a sufficiently thin
active region. As a result, the primary bandwidth limitation is not the carrier transit time
but is the RC time constant of the device. Besides this major advantage, a guided-wave
photodetector with a thin active region has a few additional advantages. A thin active
region allows the device to operate at a low bias voltage, resulting in a small dark
current and reduced noise contributed by the dark current. The waveguide geometry
is also compatible with other guided-wave photonic devices and components, making
it easy to incorporate photodetectors into an integrated photonic circuit with reduced
input and output coupling losses.

From the standpoint of considering the RC-time-limited bandwidth, guided-wave
photodetectors can be classified into two major categories: (1) lumped-circuit devices,
commonly called waveguide photodetectors; and (2) distributed-circuit devices, com-
monly called traveling-wave photodetectors.

Waveguide photodetectors

A waveguide photodetector (WGPD) differs from a VIPD mainly in its optical wave-
guide structure. Being a lumped-circuit device, its electrical structure and equivalent
circuit are similar to those of a VIPD. The major advantage of a WGPD over a VIPD is
that it can maintain a high quantum efficiency for a high cutoff frequency, thus a large
bandwidth–efficiency product. The saturation power of a WGPD is comparable to that
of a VIPD.

A WGPD is formed by integrating the active region of a photodetector with an optical
waveguide. There are two basic integration schemes: the butt-coupling configuration
and the evanescent-coupling configuration, which are illustrated in Fig. 14.31. The opti-
cal structure of a WGPD belongs to one or other of these two integration schemes though



1000 Photodetectors

(a) (b)

Figure 14.31 Schematic structures of waveguide photodetectors in (a) a butt-coupling
configuration and (b) an evanescent-coupling configuration. (Adapted from Kato, K.,
“Ultrawide-band/high-frequency photodetectors,” IEEE Transactions on Microwave Theory and
Techniques 47(7): 1265–1281, July 1999.)

its details and sophistication may vary from one device to another. In the butt-coupling
scheme, also called the end-coupling or end-firing scheme, shown in Fig. 14.31(a), the
active photoabsorption region of the photodetector is located in the waveguide core or
is directly aligned with the core of a feeding waveguide. In this coupling scheme, the
coupling efficiency from the feeding waveguide, if one is used, to the active region
of the photodetector can be as high as 100% in principle but the coupling efficiency,
ηc in (14.121), from free space to the waveguide core can be small if the waveguide
core is defined by the thickness of a thin active region. One approach to improving
the coupling efficiency ηc, but at the expense of reducing the effective absorption co-
efficient αeff to a fraction of �α, is to use a large-core waveguide with the thin active
region occupying only a fraction of the waveguide core. In the evanescent-coupling
scheme, shown in Fig. 14.31(b), the entire waveguide is nonabsorbing at the optical
signal wavelength because the active photoabsorption region of the photodetector is
located outside the waveguide core, typically on top of the waveguide. In this scheme,
a large-core waveguide is normally used to maximize the optical coupling efficiency ηc

to the waveguide. The effective absorption coefficient αeff is also only a fraction of �α

because of a small overlap factor between the optical field and the active region in this
evanescent-coupling configuration. The overall quantum efficiency of a WGPD can be
improved by using a large-core waveguide in either scheme to maximize ηc because
the reduction in αeff can be compensated by increasing the length l of the active region.

Because a WGPD is a lumped-circuit device, its equivalent circuit and RC-time-
limited bandwidth have the same form as those of a corresponding VIPD discussed in
preceding sections. Although the transit-time-limited bandwidth is independent of the
quantum efficiency and can be made large enough that it is not a limiting factor, there
is still a trade-off in maximizing both the RC-time-limited bandwidth and the quantum
efficiency. As the active region is made thin to shorten the carrier transit time and is made
long to increase the quantum efficiency, the junction capacitance increases. Any para-
sitic capacitance that exists tends to increase also. A high-speed photodetector normally
has a fixed load resistance of RL = 50 �. Therefore, increasing the transit-time-limited
bandwidth and the quantum efficiency by making the active region thin and long results
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in a reduction in the RC-time-limited bandwidth. To reduce the capacitance, the area of
the active region can be reduced to a minimum required by a given quantum efficiency.
However, a small area for the active region leads to a large series resistance Rs. When Rs

becomes larger than RL, there is a trade-off between the capacitance and the resistance in
maximizing the RC-time-limited bandwidth. Consequently, the bandwidth–efficiency
product of a WGPD is typically in the range of 20–40 GHz, which is comparable to
that of a multipass VIPD, though a bandwidth–efficiency product larger than 50 GHz
with a bandwidth larger than 100 GHz is possible for a well-designed WGPD.

The saturation power of a WGPD is similar to that of a VIPD of a comparable
absorption volume. In a WGPD, there is a trade-off between the saturation power and
the bandwidth. The saturation power can be increased by increasing the thickness and
the length of the active region while reducing αeff so that the absorption of the optical
signal is distributed over a large volume, but the bandwidth will be reduced by such
an action. A WGPD has no advantage in the saturation power if its absorption volume
is limited by the consideration of reducing both the carrier transit time and the device
capacitance for a large bandwidth.

EXAMPLE 14.17 High-speed InP/InGaAsP/InGaAs/InGaAsP/InP p–i–n VIPD and
WGPD of the same device parameters are compared in this example. Both are used
for the detection of optical signals at λ = 1.55 µm. The intrinsic InGaAs active re-
gion has a thickness of di = 0.2 µm, which is sandwiched between two InGaAsP
layers that form a double-core waveguide. The absorption coefficient for InGaAs
at λ = 1.55 µm is α = 6.6 × 105 m−1. The electron and hole saturation velocities
are vsat

e = 8 × 104 m s−1 and vsat
h = 6 × 104 m s−1, respectively. The device area

A = 50 µm2, which can take any shape for the VIPD but is formed by a stripe of
w = 2 µm and l = 25 µm for the WGPD. With these dimensions, both devices have
a capacitance C = 30 fF, a series resistance from the contacts and the materials of
Rs = 40 �. The load resistance is RL = 50 �. For the WGPD, the confinement factor
of the active region is � = 15%, and the optical coupling efficiency ηc = 70%. Assume
that both devices have ηcoll = ηt = 1. (a) Find the 3-dB cutoff frequencies of both de-
vices. (b) Find the bandwidth–efficiency product of the VIPD in a single-pass configu-
ration for the optical signal through the active region. (c) Find the bandwidth–efficiency
product of the VIPD in a double-pass configuration with 100% back reflection. (d) Find
the bandwidth–efficiency product of the WGPD.

Solution (a) The VIPD and the WGPD have the same 3-dB cutoff frequency because
they have identical dimensions and device parameters. We first find that

vsat =
[

1

2

(
1

vsat
e

+ 1

vsat
h

)]−1

=
[

1

2

(
1

8 × 104
+ 1

6 × 104

)]−1

m s−1

= 6.86 × 104 m s−1.
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With di = 0.2 µm, we find that

τtr = di

vsat
= 0.2 × 10−6

6.86 × 104
s = 2.9 ps.

With C = 30 fF, Rs = 40 �, and RL = 50 �, we have

τRC = (Rs + RL)C = 90 × 30 × 10−15 s = 2.7 ps.

Therefore, the 3-dB cutoff frequency

f3dB = 0.443

[(2.9 × 10−12)2 + (2.78 × 2.7 × 10−12)2]1/2
Hz = 55 GHz.

(b) We have αdi = 6.6 × 105 × 0.2 × 10−6 = 0.132. For the single-pass VIPD with
ηcoll = ηt = 1, we have

ηe = ηi = 1 − e−αdi = 1 − e−0.132 = 12.4%.

Therefore, its bandwidth–efficiency product

ηe f3dB = 0.124 × 55 GHz = 6.8 GHz.

(c) For the double-pass VIPD with ηcoll = ηt = 1 and 100% back reflection, we have

ηe = ηi = 1 − e−2αdi = 1 − e−2×0.132 = 23.2%.

Therefore, its bandwidth–efficiency product

ηe f3dB = 0.232 × 55 GHz = 12.8 GHz.

(d) For the WGPD, we find that αeff = �α = 0.15 × 6.6 × 105 m−1 = 9.9 ×
104 m−1 and αeffl = 9.9 × 104 × 25 × 10−6 = 2.475. Thus, with ηcoll = ηt = 1 and
ηc = 70%, we have

ηe = ηcηi = ηc(1 − e−αeffl) = 0.7 × (1 − e−2.475) = 64.1%.

Therefore, the bandwidth–efficiency product of the WGPD is

ηe f3dB = 0.641 × 55 GHz = 35.3 GHz.

We find that the bandwidth–efficiency product of the WGPD is 2.75 times that of the
double-pass VIPD and is more than five times that of the single-pass VIPD though all
of them have the same 3-dB cutoff frequency.

Traveling-wave photodetectors

A traveling-wave photodetector (TWPD) differs from a WGPD mainly in its dis-
tributed electrical structure. Its optical structure is similar to that of a WGPD. A TWPD



1003 14.7 Guided-wave photodetectors

(a) (b)

Figure 14.32 Schematic structures of traveling-wave photodetectors in (a) a distributed
configuration and (b) a periodic configuration. (Adapted from Kato, K.,
“Ultrawide-band/high-frequency photodetectors,” IEEE Transactions on Microwave Theory and
Techniques 47(7): 1265–1281, July 1999.)

can have a larger bandwidth–efficiency product and a higher saturation power than a
WGPD.

A TWPD is formed by integrating an electrical transmission line with one or more
guided-wave photodetectors. There are two different basic configurations: the dis-
tributed configuration and the periodic configuration, both of which are illustrated
in Fig. 14.32. A distributed TWPD, shown in Fig. 14.32(a), is a traveling-wave version
of a WGPD. It consists of a transmission line built on a fully distributed WGPD. A
periodic TWPD, shown in Fig. 14.32(b), consists of a set of photodetectors that are
periodically located along a transparent optical waveguide and are serially connected
by a transmission line. A distributed TWPD is often simply called a TWPD. A periodic
TWPD is also called a velocity-matched distributed photodetector (VMDP) if it is
designed so that the optical wave and the microwave are velocity matched. Both the
butt-coupling and evanescent-coupling schemes discussed above for WGPDs can be
used for distributed and periodic TWPDs.

For a traveling-wave device, the bandwidth limitation due to the RC time constant
of a lumped circuit is replaced by a bandwidth limitation due to the velocity mismatch
between the optical wave propagating in the optical waveguide and the microwave
propagating in the transmission line. For a traveling-wave electro-optic modulator dis-
cussed in Section 6.5, the bandwidth is determined by the mismatch between the phase
velocities of the optical wave and microwave, vo

p and vm
p , respectively. Because electro-

optic modulation acts upon the phase of the optical wave, it is necessary to synchronize
the wavefronts of the optical wave and microwave by matching their phase velocities.
For a TWPD, however, velocity matching is considered between the group velocity of
the optical wave, vo

g, and the phase velocity of the microwave, vm
p , rather than between

the phase velocities of the two waves. In a TWPD, the microwave electrical signal is
generated by absorption of the optical signal energy that propagates at the optical group
velocity, but propagation of the microwave is determined by its phase velocity because
the electrical signals generated along the transmission line add coherently. The group
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velocity of a guided optical wave of frequency ω and propagation constant β is

vo
g = dω

dβ
= c

Nβ

, (14.122)

where Nβ is the effective group index of the guided mode. The phase velocity of a
microwave electrical signal propagating in a transmission line is

vm
p = 1√

LC
= 1

ZC
, (14.123)

where L and C are, respectively, the inductance and capacitance per unit length of the
transmission line and Z = √

L/C is the characteristic impedance of the transmission
line. The velocity-mismatch-limited bandwidth, f VM

3dB , of a TWPD is characterized by
a time constant τVM, which measures the temporal walk-off between the optical wave
and the microwave at the output of the TWPD:

f VM
3dB = 1

2πτVM

. (14.124)

Replacing τRC in (14.99) with τVM, the 3-dB cutoff frequency of a TWPD including
transit-time and velocity-mismatch limitations can be approximated as

f3dB ≈ 0.443

[τ 2
tr + (2.78τVM)2]1/2

= 1

2π [τ 2
VM + (0.36τtr)2]1/2

. (14.125)

As discussed below, the form of the velocity-mismatch time constant τVM depends on
the structure of a TWPD.

In a TWPD, microwaves that propagate in both forward and backward directions
in the transmission line are generated by absorption of the optical signal along the
waveguide. The velocity mismatch for the forward-propagating microwave is vo

g − vm
p ,

but that for the backward-propagating microwave is vo
g + vm

p . It is clearly not possi-
ble to velocity match the optical signal to both forward- and backward-propagating
microwaves. The bandwidth and the efficiency of a TWPD depend on whether or not
the backward-propagating microwave is allowed to contribute to the electrical output.
At the optical input end, the termination of the transmission line can be either (1)
connected with a matching impedance to eliminate the reflection of the backward-
propagating microwave or (2) left open to allow total reflection of the backward-
propagating microwave. The efficiency of a TWPD with an impedance-matched in-
put electrical termination is half that of the same TWPD with an open input electrical
termination.

The velocity-mismatch time constant, τVM, of a TWPD is a function of the velocity
mismatch and the effective length, leff, of the device. Because forward- and backward-
propagating microwaves have different velocity mismatches, τVM has different forms
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for TWPDs of different input terminations. For a TWPD with a matched input electrical
termination,

τVM =
∣∣∣∣∣ leff

vo
g

− leff

vm
p

∣∣∣∣∣ = leff

∣∣∣∣∣v
o
g − vm

p

vo
gv

m
p

∣∣∣∣∣ . (14.126)

For a TWPD with an open input electrical termination,

τVM ≈ 3

2

leff

vm
p

. (14.127)

The velocity-mismatch time constant for a TWPD with an open input electrical ter-
mination is independent of the optical group velocity because the mismatches on the
forward- and backward-propagating microwaves have opposite effects. The effective
length, leff, of a TWPD depends on the physical length l of the optical waveguide, the
distribution of the photoabsorption region in the waveguide, and the effective absorption
coefficient αeff of the device. It is the lesser of the physical length and the propagation
distance of the optical signal. For a distributed TWPD,

leff =




l, if l <
1

αeff
,

1

αeff
, if l >

1

αeff
.

(14.128)

For a periodic TWPD, the optical waveguide of a total physical length l is only peri-
odically loaded with photodetectors. If the length of each period is lp and the length of
the photoabsorption region of each photodetector is ld, then

leff =




l, if l <
lp

αeffld
,

lp

αeffld
, if l >

lp

αeffld
.

(14.129)

Because lp can be much larger than ld in a periodic TWPD, both the physical length and
the effective length of a periodic TWPD can be much larger than those of a distributed
TWPD.

It can be seen from (14.126) and (14.127) that the velocity-mismatch-limited band-
width of a TWPD with a matched termination can be unlimitedly improved by velocity
matching for vm

p /vo
g = 1, whereas that of a TWPD with an open termination can be

improved by simply increasing the phase velocity vm
p of the microwave. In principle,

a TWPD with a matched termination can be velocity matched to have an arbitrarily
large velocity-mismatch-limited bandwidth so that its bandwidth is purely transit-time
limited. In reality, however, vm

p < vo
g for a transmission line on an optical waveguide

loaded with a photodetector, and vm
p > vo

g for a transmission line on an unloaded optical
waveguide. For a distributed TWPD, the microwave phase velocity is always lower than
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the optical group velocity with a ratio vm
p /vo

g typically falling in the range of 30–80%.
Therefore, perfect velocity matching is not possible in a distributed TWPD but is only
possible in a properly designed periodic TWPD.

The major advantage of a TWPD over a WGPD is that its physical length can be made
larger than its effective length without degrading its bandwidth because τVM depends
only on leff. The bandwidth of a TWPD becomes independent of its physical length when
it is longer than the absorption length, whereas that of a WGPD continues to decrease
as its length increases. To maximize the efficiency, a distributed TWPD is normally
made long enough that l � leff. This flexibility allows a distributed TWPD to have
an efficiency that is about 1.3 times the efficiency of a comparable WGPD designed
for the same bandwidth, thus a 30% advantage in the bandwidth–efficiency product
for the TWPD. For the same reason, a distributed TWPD can have a higher satura-
tion power than a comparable WGPD, particularly when they are both designed for
high-speed operation. On the other hand, when a TWPD and a WGPD are designed to
have the same efficiency, the TWPD will have a larger bandwidth, thus a larger
bandwidth–efficiency product, than the WGPD.

EXAMPLE 14.18 A distributed TWPD based on the WGPD described in Example 14.17 is
made by using a properly designed transmission line for its electrodes. The waveguide
has an optical group velocity of vo

g = 8.9 × 107 m s−1 at the 1.55 µm signal wavelength.
The microwave phase velocity of the transmission line is vm

p = 2.9 × 107 m s−1. Find
the cutoff frequency and the bandwidth–efficiency product of the TWPD if (a) it has a
matched termination and (b) it has an open termination.

Solution From Example 14.17, we have αeff = 9.9 × 104 m−1. Because l = 25 µm >

α−1
eff = 10.1 µm, we have leff = 10.1 µm for this distributed TWPD. From Exam-

ple 14.17, we also have τtr = 2.9 ps.
(a) With a matched termination, we have

τVM =
∣∣∣∣∣ leff

vo
g

− leff

vm
p

∣∣∣∣∣ =
∣∣∣∣10.1 × 10−6

8.9 × 107
− 10.1 × 10−6

2.9 × 107

∣∣∣∣ s = 235 fs.

Therefore, the 3-dB cutoff frequency

f3dB = 0.443

[(2.9 × 10−12)2 + (2.78 × 235 × 10−15)2]1/2
Hz = 149 GHz.

For the TWPD with a matched termination, the efficiency is only half of the 64.1%
efficiency found in Example 14.17. Thus, the bandwidth–efficiency product

ηe f3dB = 1

2
× 0.641 × 149 GHz = 47.8 GHz.
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(b) With an open termination, we have

τVM = 3leff

2vm
p

= 3 × 10.1 × 10−6

2 × 2.9 × 107
s = 522 fs.

Therefore, the 3-dB cutoff frequency

f3dB = 0.443

[(2.9 × 10−12)2 + (2.78 × 522 × 10−15)2]1/2
Hz = 136.6 GHz.

For the TWPD with an open termination, the efficiency is just the 64.1% efficiency
found in Example 14.17. Thus, the bandwidth–efficiency product

ηe f3dB = 0.641 × 136.6 GHz = 87.6 GHz.

Because perfect velocity matching is not achieved in the TWPD with a matched
termination, the velocity-mismatch-limited bandwidth of the TWPD with a matched
termination is only about twice that of the TWPD with an open termination in this
example. However, the cutoff frequencies for both cases are limited by the transit time
because τtr � τVM in both cases. As a result, the TWPD with a matched termination
only has a slightly larger bandwidth than the TWPD with an open termination. The
one with an open termination then has a larger bandwidth–efficiency product because
it has twice the efficiency of the one with a matched termination. Compared to the
WGPD, which is further limited by the RC time constant, however, the TWPD with
either type of termination has a larger bandwidth and a larger bandwidth–efficiency
product.

In a periodic TWPD, the transmission line runs along the optical waveguide with
periodically alternating loaded regions, where vm

p < vo
g, and unloaded regions, where

vm
p > vo

g. By properly designing the size and spacing of the periodically distributed
photodetectors, it is then possible to achieve close velocity matching in a periodic
TWPD. A velocity-matched periodic TWPD is known as a VMDP. The unique advan-
tage of a VMDP is that the transmission line, the optical waveguide, and the individual
photodetectors can be independently optimized. The transmission line is optimized for
its impedance and for velocity matching. Because close velocity matching is possible,
a VMDP always has a matched input electrical termination to realize the benefit of
velocity matching. Therefore, its efficiency is limited to a maximum of 50%. The op-
tical waveguide is optimized with the characteristics of large-core, low-coupling loss,
and single-mode operation for the VMDP to have a high efficiency and a high satu-
ration power. With close velocity matching, the bandwidth of a VMDP is no longer
velocity-mismatch limited but is essentially that of the individual photodetectors. The
individual photodetectors in a VMDP are optimized for a large bandwidth. Each in-
dividual photodetector is kept below its saturation current. Because velocity matching
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permits a large device length without degrading the bandwidth, a high saturation power
and a high efficiency can both be achieved with a long device without sacrificing the
bandwidth.

EXAMPLE 14.19 What changes have to be made to the structure and dimensions of the
TWPD considered in Example 14.18 in order to make it into a VMDP? What are
the bandwidth and bandwidth–efficiency product that can be obtained for this VMDP
instead?

Solution To make a VMDP, it is necessary to break the 25-µm length of the TWPD
into individually optimized photodetectors that are then properly spaced to achieve
velocity matching. Thus, if we keep the sum of the lengths of these individual photode-
tectors to be 25 µm, the entire length of the VMDP will be much longer. If perfect,
or nearly perfect, velocity matching is accomplished, we have τVM ≈ 0. Then, the
bandwidth of the device is purely transit-time limited:

f3dB = 0.443

2.9 × 10−12
Hz = 152.8 GHz.

Because a VMDP is required to have a matched termination, its efficiency is only half
of the 64.1% efficiency found for the WGPD. Thus, its bandwidth–efficiency product

ηe f3dB = 1

2
× 0.641 × 152.8 GHz = 49 GHz.

We find that f3dB of this VMDP is only slightly larger than that of the TWPD with a
matched termination considered in Example 14.18. As a consequence, its bandwidth–
efficiency product is also only slightly larger than that of the TWPD with a matched
termination but is smaller than that of the TWPD with an open termination. The reason
for this insignificant improvement by velocity matching is that τVM � τtr for both cases
of TWPD considered in Example 14.18. Thus, the 3-dB cutoff frequencies of the two
cases of TWPD are already close to the transit-time limit. A VMDP can realize a
significant bandwidth increase over a TWPD only when the bandwidth of the TWPD
is limited by velocity mismatch rather than by the transit time. See Problem 14.7.5 for
such an example.

PROBLEMS

14.0.1 Discuss the differences between photon detectors and thermal detectors in
their operation principles, characteristics, and applications. How are photon
detectors further classified?

14.1.1 What are the major sources of noise for a photodetector? Describe their physical
origins and characteristics.
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14.1.2 Answer the following questions regarding the general characteristics of noise.
a. How is the magnitude of the noise in a given signal quantified? How does

it relate to the magnitude of the signal?
b. Why is the magnitude of noise not measured by its average value but by its

root mean square value?
c. What is the magnitude of the total noise from multiple independent noise

sources in terms of the magnitudes of its contributing noise sources?
14.1.3 Show that if a variable, such as the photon number S or the charge number

N , is characterized by the Poisson statistics as in (14.15) for S or (14.17) for
N , then its variance is equal to its mean value as in (14.16) for S or (14.18)
for N . Use this relation to verify the relation in (14.21) for a signal current is

generated by charge carriers that have the Poisson statistics.
14.1.4 Find the SNR of an optical signal for the photon number S in a time interval

T by using (14.9) with s = S. Find the SNR of a photoelectric signal for the
numberN of the carriers generated by the photoelectric effect in a time interval
T by using (14.9) with s = N . Compare the SNR of the photoelectric signal
to the SNR of the optical signal for a quantum efficiency of ηe, which has a
value between 0 and 1.

14.1.5 Show that a photodetector with no internal gain operates in the quantum regime
if all of its currents combined satisfy the following condition:

iph + ib + id >
2kBT

eR
= T

300

51.8 mV

R
, (14.130)

where T is the temperature in kelvins. At 300 K, what is the minimum pho-
tocurrent for a photodetector with a 50 � resistance to operate in the quantum
regime? Discuss the implications of this relation on how the detectivity of a
photodetector can be improved. Find a similar relation for a photodetector with
an internal gain.

14.1.6 A photodetector generates a signal photocurrent of 1 mA. Its dark current and
background radiation current are both negligibly small compared to this signal
current. Find its shot noise, thermal noise, and signal-to-noise ratio if (a) it has
a bandwidth B = 1 GHz with a load resistance of R = 50 � and (b) it has
a bandwidth B = 10 MHz with a load resistance of R = 1 k�. In each case,
find out whether the detector is operating in the quantum or thermal regime.
Compare the SNR for the two cases and find the reasons for the difference in
the SNR.

14.2.1 Plot the maximum possible intrinsic responsivity R0 for a photodetector as a
function of optical wavelength in the ideal situation of a unity external quantum
efficiency of ηe = 1. What are its values at the following wavelengths: 200,
400, 550, and 850 nm, and 1, 1.3, 1.55, 5, and 10 µm?
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14.2.2 An InGaAs photodetector for λ = 1.3 µm has a responsivity of R =
0.8 A W−1, a specific detectivity D∗ = 7 × 1010 cm Hz1/2 W−1, a bandwidth
of B = 2.5 GHz, and a dynamic range DR = 60 dB. It has a circular active
area of 80 µm in diameter. The total resistance including the load is R = 50 �.
The dark current and the background radiation current of the detector are not
known.
a. What is the NEP of this photodetector? What is the photocurrent at this

power level?
b. What is the saturation optical signal power for this photodetector? What is

the photocurrent at this power level?
c. What is the SNR at the saturation power level of this photodetector? Does

the photodetector operate in the quantum or thermal regime at this optical
power level?

d. What is the risetime of the detector response to an impulse signal?
14.2.3 The bandwidth B, the cutoff frequency f3dB, and the response risetime tr of a

photodetector are separately defined but are related to one another. Use their
definitions given in the text to show that (a) tr = 0.35/ f3dB as given in (14.50)
and (b) f3dB = 0.886B as given in (14.52).

14.2.4 What are the fastest-rising optical signals that can be detected with a sufficient
temporal resolution by photodetectors of the following 3-dB cutoff frequencies:
(a) 1 GHz, (b) 2.5 GHz, (c) 10 GHz, and (d) 50 GHz? What are the shortest
rectangular optical pulses that can be detected using such photodetectors?

14.3.1 How is the threshold photon energy determined for photoelectric emission from
the following materials: (a) a metal, (b) a nondegenerate semiconductor, (c) an
n-type degenerate semiconductor, (d) a p-type degenerate semiconductor, and
(e) an NEA semiconductor?

14.3.2 Why are elemental metals and ordinary semiconductors not useful for photo-
cathodes? What are the practically useful materials for photocathodes?

14.3.3 What are the factors that determine the speed of a photocathode or a PMT?
What can be done to increase the response speed?

14.3.4 A PMT is usually limited by shot noise generated by its dark current, whereas
a vacuum photodiode is normally limited by thermal noise. In this problem,
we consider the PMT and its photocathode discussed in Example 14.8. Ignore
the background radiation noise in answering the following questions.
a. Show that even when the load resistance is chosen to be as low as RL = 50 �

for high-speed applications, the PMT is still shot-noise limited by its dark
current. Thus, it always operates in the quantum regime.

b. Assume that all of the dark current of the PMT originates from its pho-
tocathode but is amplified through the dynode chain to reach its specified
level at the anode. This assumption grossly overestimates the dark current
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of the photocathode. Now consider a vacuum photodiode that is made of
this photocathode and is biased with the same voltage, about 100 V, on the
photocathode of the PMT. Show that this vacuum photodiode is thermal-
noise limited for any practical load resistance. Therefore, it always operates
in the thermal regime.

14.3.5 The photocathode of the PMT described in Example 14.8 has a much reduced
external quantum efficiency of ηe = 0.51% at 850 nm wavelength. Answer the
questions in Example 14.8 for this PMT when it is used for optical detection
at 850 nm wavelength.

14.4.1 Describe the different types of photoconductors, their threshold photon ener-
gies, and their spectral coverage ranges.

14.4.2 Many photoconductive detectors are required to operate at low temperatures,
but many others are normally used at room temperature. (a) Which kinds of
photoconductive detectors are required to operate at low temperatures? (b)
Why are they required to operate at low temperatures? (c) How is the required
operating temperature of a photoconductive detector determined?

14.4.3 Show that the gain of an intrinsic photoconductor with ohmic contacts and
free-moving electrons and holes is that given in (14.72) by verifying that the
signal current is that given in (14.70) with the transit times of electrons and
holes given in (14.71).

14.4.4 When the voltage applied to an intrinsic photoconductor is such that V > VSC,
the photogenerated carriers are screened by a space-charge effect so that they
only see a voltage of VSC = eN /C even as the applied voltage continues to
increase.
a. Show that when the space-charge effect appears, τ e

tr(1 + µh/µe)−1 = τd if
both electrons and holes can freely move, τ e

tr = τd if only electrons can
freely move, and τ h

tr = τd if only holes can freely move.
b. Under the condition when the photogenerated carrier density is so high that

N � n0, p0, show that the space-charge effect appears when CV > eN .
14.4.5 For a photoconductor, in which the carrier lifetime is primarily determined by

the carrier recombination process, the probability distribution function of τ is

p(τ ) = 1

τ
e−τ/τ , (14.131)

which characterizes the Poisson process of a continuous random variable τ . By
using this probability distribution function to calculate F defined in (14.78),
show that F = 2.

14.4.6 The NEP and the detectivity of a photoconductor with a geometry as shown in
Fig. 14.11 and a bias circuit as shown in Fig. 14.12(a) are usually limited by
the shot noise from its dark current when the device is properly biased and is



1012 Photodetectors

loaded with a sufficiently large load resistance to maximize its output signal.
Under this condition, the NEP can be minimized while D∗ is maximized by
choosing an optimum thickness d for the device.
a. Show that the resistive thermal noise is negligible compared to the shot noise

from the dark current as long as the voltage applied across the electrodes of
the photoconductor satisfies the following condition:

V � 1

G

R0

Req

kBT

e
, (14.132)

where G is the gain, R0 is the dark resistance of the photoconductor, and
Req is the equivalent resistance of the device including its load. Based on
this relation, discuss why the NEP and the detectivity of a photoconductor
are usually limited by the shot noise from its dark current.

b. Show that the specific detectivity of a shot-noise-limited photoconductor
can be expressed as

D∗ = 1 − e−αd

d1/2

ηcollηt

hν

(
eGl2

4σ0V

)1/2

. (14.133)

c. From the relation in (14.133), find the optimum value of the thickness d
for a fixed value of α to maximize D∗ of the device. What are the value of
ηi and the value of this D∗

max when d is chosen to be its optimum value?
Show that D∗ > 99%D∗

max for α−1 < d < 1.5α−1 and D∗ > 90%D∗
max for

0.6α−1 < d < 2.6α−1.
14.4.7 Find the gain, the responsivity, the NEP for a bandwidth of 1 Hz, and the

value of D∗ at λ = 850 nm for the photoconductive detector considered in
Examples 14.9 and 14.10 if its cathode is ohmic but its anode has a nonohmic
contact that blocks holes.

14.4.8 Show that the space-charge effect can appear if the length of the photoconductor
considered in Example 14.9 is reduced to l = 10 µm while all other parameters
remain unchanged. Find the optical signal powers for which the device is
limited by the space-charge effect and those for which it is free of the space-
charge effect.

14.4.9 Find the gain, the responsivity, the NEP for a bandwidth of 1 Hz, and the
value of D∗ at λ = 850 nm for the photoconductive detector considered in
Problem 14.4.8.

14.5.1 How is the active region of a junction photodiode defined? Explain why a
photodiode has a unity gain.

14.5.2 Compare the photoconductive and photovoltaic modes of operation of a junc-
tion photodiode in terms of (a) the requirement on the bias voltage, (b) the
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relative magnitude of the load resistance as compared to the internal resistance
of the photodiode, (c) the response as a function of the optical signal power,
(d) the noise characteristics, and (e) the response speed and the bandwidth.

14.5.3 Show that a photodiode has the linear response given in (14.87) when it is op-
erated in photoconductive mode, and the logarithmic response given in (14.88)
when it is operated in photovoltaic mode. For each case, discuss the conditions
under which the given response is valid.

14.5.4 What are the major factors that determine the response speed of a photodiode?
What has to be done to increase the response speed?

14.5.5 Compare the advantages and disadvantages between a p–n junction photodiode
and a p–i–n junction photodiode.

14.5.6 Compare the advantages and disadvantages between a homojunction photodi-
ode and a heterojunction photodiode.

14.5.7 Answer the following questions regarding Schottky photodiodes.
a. How is a Schottky junction formed?
b. Is a Schottky photodiode a photoconductive or a photovoltaic device?
c. Is a p-type or as n-type semiconductor preferred for a high-speed Schottky

photodiode? Explain.
d. How is the spectral response range of a Schottky photodiode determined?

14.5.8 What can be done to maximize the bandwidth–efficiency product of a pho-
todiode? What are the practical device structures that are devised for this
purpose?

14.5.9 In this problem, we compare the performances of Si and GaAs p–i–n photo-
diodes that have the same physical structures for optical detection at 850 nm
wavelength. Both have the same i-region thickness di = 3 µm and the same
active-area diameter 2r = 40 µm. Both are reverse biased at 3 V for a
field of 1 MV m−1 in the intrinsic region. At 300 K under these cond-
itions, Si has the following parameters: α = 7 × 104 m−1, ve = 8 × 104 m s−1,
vh = 3.2 × 104 m s−1, and ε = 11.8ε0, while GaAs has the following pa-
rameters: α = 1 × 106 m−1, ve = 1.2 × 105 m s−1, vh = 1.7 × 104 m s−1,
and ε = 13.18ε0. Take RL + Rs = 50 � and Cp = 0 for both devices. Find
the 3-dB cutoff frequency, f3dB, and the internal bandwidth–efficiency prod-
uct, ηi f3dB, for both devices. Compare the performances of these two
devices.

14.5.10 What is the expected 3-dB cutoff frequency of the InGaAs/InP Schottky pho-
todiode considered in Example 14.13 if it uses p-type semiconductors with a
p−-InGaAs layer and a p+-InP substrate?

14.5.11 An InGaAs/InP p–i–n photodiode as considered in Example 14.12 has a di-
ameter of 2r = 20 µm. It is desired that it has a 3-dB cutoff frequency of
f3dB = 20 GHz.
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a. There are two possible choices of the i-region thickness di for this device to
have the desired f3dB. Find these two possible values of di. Then, compare
the two choices in terms of their quantum efficiencies, bandwidth–efficiency
products, and responsivities.

b. A double-pass structure with a 100% back reflector is adopted to increase
the efficiency, thus the responsivity and the bandwidth–efficiency product,
of the device. Compare the two choices of di in this double-pass structure
in terms of their quantum efficiencies, bandwidth–efficiency products, and
responsivities.

14.6.1 Compare the effects of a bias voltage on a photoconductor, a junction photo-
diode, and an APD.

14.6.2 The gain of an APD results from avalanche multiplication, which can be ini-
tiated by electrons or holes. Consider an APD where this process takes place
in an avalanche multiplication region of a thickness dm with finite, nonzero
ionization coefficients of αe and αh for electrons and holes, respectively, so
that the ionization ratio, k = αh/αe, has a finite, nonzero value.
a. What are the factors that determine the avalanche multiplication factor?
b. Show that for k �= 1, avalanche breakdown occurs at

αedm = ln k

k − 1
, (14.134)

and that for k = 1 it occurs at αedm = αddm = 1.
c. For a given value of the product αedm, show that the largest gain is obtained

when the impact ionization ratio is k = 1.
d. If, according to (c), the largest gain for a given value of αedm or a given

value of αhdm is obtained when k = 1, why is a material with a value of k
close to unity not a good choice for an APD?

14.6.3 What are the major factors that determine the response speed of an APD? How
are they different from those that determine the speed of a junction photodiode,
which has no gain?

14.6.4 What are the two different modes of operation of an APD? What are their
differences in terms of their operating conditions, purposes, and character-
istics?

14.6.5 The surface of the APD described in Example 14.16 is antireflection coated
for the optical signal to enter without a reflection loss. Absorption of the
optical signal takes place only in the InGaAs absorption layer because all
other layers have bandgaps larger than the photon energies of interest at 1.3
and 1.55 µm signal wavelengths. The APD operates in the condition described
in Example 14.16 with a multiplication gain of G = 10. The optical signal
makes only a single pass through the device. Answer each of the following
questions for both 1.3 and 1.55 µm signal wavelengths.
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a. Find the external quantum efficiency and the responsivity of this APD.
b. At G = 10, this APD has a dark current of id = 150 nA and a negligible

background radiation current. Find its shot-noise-limited NEP that includes
the excess noise and its total NEP that includes the resistive thermal noise,
both for a bandwidth of 1 Hz.

c. What is the shot-noise-limited specific detectivity D∗ of this ADP? What is
the value of D∗ if all noise sources are considered?

14.6.6 Find the 3-dB cutoff frequency and the gain–bandwidth product for the ADP
described in Example 14.16 when it operates at a gain G = 20. The ioniz-
ation ratio remains at k = 0.25 in this operating condition.

14.7.1 Consider a VIPD versus a comparable GWPD.
a. What are the major considerations in using a guided-wave configuration to

replace a vertically illuminated configuration?
b. What is the major advantage of a GWPD versus a VIPD?
c. What are the additional advantages?

14.7.2 Compare the differences and the relative advantages of different types of
guided-wave photodiodes.

14.7.3 What are the factors that determine the response speeds, thus the bandwidths,
of WGPDs and TWPDs, respectively? Explain why a TWPD can have a larger
bandwidth–efficiency product than a WGPD if both are designed to have either
the same bandwidth or the same efficiency.

14.7.4 Both the bandwidth and the efficiency of a p–i–n photodiode can some-
times be increased but can be reduced in other situations if the thickness,
di, of its intrinsic active region is increased. In this problem, we increase
the value of di for the devices considered in Examples 14.17–14.19 to have
di = 0.3 µm. Except those parameters that vary with di, all other parame-
ters given in Examples 14.17–14.19 remain unchanged. The parameters that
change with di have the following new values: � = 22.5%, C = 20 fF for the
lumped-circuit devices, and vm

p = 4.35 × 107 m s−1 for the distributed TWPD.
With this change in di, find the bandwidths and the bandwidth–efficiency prod-
ucts for the devices considered in Examples 14.17–14.19: (a) the VIPD with
either single-pass or double-pass configuration, (b) the WGPD, (c) the TWPD
with either matched or open termination, and (d) the VMDP with perfect ve-
locity matching. For each case considered, indicate whether the bandwidth
and the bandwidth–efficiency product are increased or reduced by this change
in di.

14.7.5 The carrier transit time of a p–i–n photodiode can be reduced by reducing the
thickness, di, of the intrinsic active region. This reduction in τtr can increase
the bandwidth of a transit-time-limited device, but it can sometimes reduce
the bandwidth or the bandwidth–efficiency product of a device in other situa-
tions. In this problem, we reduce the value of di for the devices considered in
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Examples 14.17–14.19 to have di = 0.1 µm. Except those parameters that vary
with di, all other parameters given in Examples 14.17–14.19 remain unchanged.
The parameters that change with di have the following new values: � = 7.5%,
C = 60 fF for the lumped-circuit devices, and vm

p = 1.45 × 107 m s−1 for
the distributed TWPD. With this change in di, find the bandwidths and the
bandwidth–efficiency products for the devices considered in Examples 14.17–
14.19: (a) the VIPD with either single-pass or double-pass configuration, (b)
the WGPD, (c) the TWPD with either matched or open termination, and (d)
the VMDP with perfect velocity matching. For each case considered, indicate
whether the bandwidth and the bandwidth–efficiency product are increased or
reduced by this change in di.
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Appendix A
Symbols and notations

A.1 Fields

Field vectors and their scalar magnitudes are represented using a consistent system of symbols and
fonts. All vectors are represented in bold-face fonts with the exceptions of unit vectors; whereas all
scalar quantities are represents in nonbold fonts. This system is illustrated in the following using the
electric field as an example.

Real fields

All real fields are defined in the real space and time domain only. All real field vectors are represented
in a slanted bold capital Roman font, such as

E(r, t), (A.1)

for the real electric field vector. Other real field vectors are H(r, t), D(r, t), B(r, t), P(r, t), M(r, t),
J(r, t), and S(r, t). Except for current density, all real fields are always represented in vector form
without separate symbols defined for their scalar magnitudes. The scalar magnitude of J is represented
as J.

Complex fields

All complex field vectors are represented in a nonslanted bold capital Roman font. All complex field
vectors in the real space and time domain are defined in relation to their respective real field vectors,
such as E(r, t) defined in (1.39) for the complex electric field vector:

E(r, t) = E(r, t) + E∗(r, t) = E(r, t) + complex conjugate. (A.2)

Other complex field vectors defined in a similar manner are H(r, t), D(r, t), B(r, t), P(r, t), and
M(r, t). No complex vector is used for current density. The complex Poynting vector is defined
differently as given in (1.50):

S = S + S∗. (A.3)

The scalar magnitude of a complex field vector is represented in a nonbold mathematic capital
Roman font, such as E for the magnitude of E:

E = Eê, (A.4)
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where ê is the unit vector of E. Other scalar field magnitudes represented in a similar manner are H ,
D, B, P , and M. No complex current density vector is used, and the scalar J represents the magnitude
of the real current density vector J. No scalar magnitude of the complex Poynting vector S is used.

Complex field amplitudes

The slowly varying amplitude vector of a complex field vector is represented in a bold capital script
font, such as E for the slowly varying amplitude of E. It is defined as the slow variation of the field
envelope on its carrier frequency through the following relation:

E(r, t) = E(r, t) exp(ik · r − iωt), (A.5)

as expressed in (1.47) for the electric field. Other slowly varying field amplitude vectors defined in a
similar manner are H, D, B, P , and M, but not all of them are used in the text. No slowly varying
field amplitudes are defined for current density and the Poynting vector.

The scalar magnitude of a slowly varying field amplitude vector is represented in a nonbold capital
script font, such as E for the magnitude of E:

E = E ê. (A.6)

Other scalar magnitudes of slowly varying field amplitudes represented in a similar manner are H,
D, B, P , and M, but not all of them are used in the text.

Mode fields

Complex mode field vectors are represented as Eν(r, t) and Hν(r, t) with their scalar magnitudes
represented as Eν(r, t) and Hν(r, t), respectively, where the subscript index ν represents a compound
mode index such as m or mn for waveguide modes, or mnq for Gaussian modes. The vectorial field
profiles of a waveguide mode characterize the transverse spatial distributions of the mode fields. They
are a function of transverse spatial coordinates only. These vectorial waveguide mode field profiles
are represented as Eν(x, y) and Hν(x, y), or Eν(φ, r ) and Hν(φ, r ), with their scalar magnitudes
represented as Eν(x, y) and Hν(x, y), or Eν(φ, r ) and Hν(φ, r ). Normalized vectorial mode field
patterns, defined in (2.41), are represented as Êν(x, y) and Ĥν(x, y), or Êν(φ, r ) and Ĥν(φ, r ).
Gaussian modes are represented using similar symbols, but they are a function of x , y, and z, as seen
in (1.138).

A.2 Vectors and tensors

All vectors are represented in bold face, with the exceptions of unit vectors, and their magnitudes are
represented with corresponding symbols in nonbold fonts. A vector is also represented in the form
of a 3 × 1 column matrix. Besides the field vectors and their magnitudes described in the preceding
section, we have

k, k; K, K ; r, r ; u, u; �k, �k.

All tensors and transformation matrices are represented in bold face or in terms of their elements
with subscript indices. Second-rank tensors and transformation matrices are also represented in the
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form of 3 × 3 square matrices. The tensors used include:

[ci jkl ], d = [di jk], [ fi jk], [pi jkl ], [ri jk],
R = [Ri j ], [si jkl ], S = [Si j ], ε = [εi j ], η = [ηi j ],
µ = [µi j ], χ = [χi j ], χ(2) = [χ (2)

i jk], χ(3) = [χ (3)
i jkl ], χm = [(χm)i j ].

The transformation matrices used in the text include:

F(z; z0), R(z; 0, l), S(z; z0), T, T̃.

A.3 Fourier-transform pairs

The same symbol is used for a quantity in real space and its counterpart in momentum space, or
one in the time domain and its counterpart in the frequency domain. The difference is indicated by
expressing a quantity as a function of r or k, or as a function of t or ω. Note that the unit of a
quantity is multiplied by a length unit of a meter each time one of the three spatial dimensions is
transformed to momentum space, and is multiplied by a time unit of a second when the quantity is
transformed from the time domain to the frequency domain. For example, the electric field E(r, t)
in the real space and time domain has units of volts per meter (V m−1), but E(k, t) has units of
volt-square-meters (V m2), E(r, ω) has units of volt-seconds per meter (V s m−1), and E(k, ω) has
units of volt-second-square-meters (V s m2).

A.4 Special notations

A few special notations are used to label symbols for special meanings.

Unit vectors and normalized quantities

Unit vectors are denoted with a hat on top of a symbol. The following unit vectors appear in the text:

ê, k̂, n̂, r̂ , û, x̂, ŷ, ẑ, X̂ , Ŷ , Ẑ .

Normalized quantities are also denoted with a hat on top of a symbol. The following normalized
mode field profiles appear in both vector and scalar forms:

Êν, Êν, Ĥν, Ĥν .

Other normalized quantities that appear in the text include:

f̂ , ĝ(ν), P̂ sp, T̂ c, η̂SH.

Modified quantities

A quantity that is modified from the original quantity in some manner is denoted with a tilde on top
of a symbol. Modified quantities that appear in the text include:

Ã, B̃, g̃B, g̃R, T̃, �ε̃, �ε̃, κ̃.
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Average values

The spatial average, temporal average, weighted average, or mean value of a quantity is denoted with
a bar on top of a symbol, such as:

i, i2, k, N , N 2, P, s, s2, S, S, S2, v2, W p, α, β.

A.5 Subscripts and superscripts

Various fonts and notations are used for subscripts and superscripts. They include numerals, the
mathematical font, the Greek font, coordinate symbols, and the Roman font. Bare numerals and
mathematic and Greek letters that represent indices or variables are used only for subscripts. Roman
letters and some special notations that have literal meanings can appear either as subscripts or as
superscripts.

Numerals

Bare numerals are used only for subscripts. The following four numbers have special meanings in a
proper context:

0 background value (L0), base value (α0, m0), free-space value (ε0, µ0),
center value ( f0, ν0), unsaturated value (g0), equilibrium value (n0, p0),
beam waist (w0), or static field (E0, H0);

1 parameters for waveguide core (n1, N1, D1, k1, h1)
or parameters for the lower laser level |1〉 (E1, N1, R1);

2 parameters for waveguide substrate or fiber cladding (n2, N2, D2, k2, γ2)
or parameters for the upper laser level |2〉 (E2, N2, R2);

3 parameters for waveguide cover layer (n3, N3, D3, k3, γ3)
or parameters for the energy level |3〉.

Note that the same symbol can have different meanings in different contexts. For example, n2

in nonlinear optics also represents the coefficient of intensity-dependent index change defined in
(9.49).

The numbers 1, 2, and 3 are also used as subscripts to represent the orthogonal coordinates of
a general three-dimensional spatial coordinate system. The numbers 1 through 6 are also used as
subscripts representing double indices to label tensor elements under the following index contraction
rule:

xx yy zz yz, zy zx, xz xy, yx

1 2 3 4 5 6

which is also defined in (1.115).
A numeral in the superscript is always placed in parentheses so that it is never confused with an

exponent. It represents a perturbation order or the order of an interaction process. For example, χ (1)

is a linear susceptibility, χ (2) is a second-order nonlinear susceptibility, χ (3) is a third-order nonlinear
susceptibility, and so forth.
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Mathematic and Greek subscripts

Mathematic and Greek fonts are used only for subscripts. They represent variable indices with the
following well-defined meanings:

a, b, c general indices or general mode indices;
i , j , k, l integers or coordinate indices;

m, n, p, q integers or frequency component indices;
m, n transverse mode indices, each labeling a spatial dimension;

q longitudinal mode index or diffraction order;
α, β contracted indices representing double coordinate indices;

µ, ν, ξ , ζ compound transverse mode indices, each representing a mode.

Some Greek subscripts do not represent indices or variables but express literal meanings. They
include:

β, λ, λ/2, λ/4, π, π/2, χ, ω, 2ω.

Coordinate labels

General orthogonal spatial coordinates are labeled as 1, 2, and 3. Specific coordinates include the rect-
angular coordinates (x , y, z), the cylindrical coordinates (r , φ, z), and the spherical coordinates (r , θ ,
φ). One set of special rectangular coordinates (X , Y , Z ) is used for the new principal axes X̂ , Ŷ , and Ẑ of
a crystal transformed under the Pockels effect, as described in (6.6) and (6.9). Two orthogonal unit vec-
tors, ê+ and ê− defined in (1.72) and (1.75), are used for left- and right-circular polarizations, respec-
tively. Two special symbols are also used to represent directions: ⊥ for perpendicular and ‖ for parallel.

Coordinate labels generally appear as subscripts with commonly accepted meanings, with one
exception. This exception takes place when labeling a propagation constant k and the corresponding
wavevector k of an optical field that has a particular normal mode polarization. Because kx conven-
tionally represents the x component of the k vector, meaning kx = k · x̂ , the propagation constant
of an x-polarized optical field that can propagate in any direction perpendicular to x̂ is represented
as kx in order to avoid confusion. To be consistent, the corresponding wavevector is labeled as kx .
Thus, kx = nxω/c �= kx , and kx = kx k̂ where k̂ ⊥ x̂ . Such superscript coordinate labeling for k and
k applies only to the following:

kx , ky, kz, k X , kY , k Z , k+, k−,

kx , ky, kz, kX , kY , kZ , k+, k−.

Roman labels

All superscript and subscript labels in Roman font have literal meaning. A given Roman label can
appear either as a subscript or as a superscript, depending on the convenience of the situation,
with exactly the same meaning. Among all subscript and superscript labels, only Roman labels
have such flexibility. With only a few exceptions for avoiding confusion, the conventional rules for
abbreviations are largely followed: (1) abbreviations for common words are in lower case, with the
exceptions of E for TE, M for TM, L for longitudinal, linear, or load, T for transverse, and Q for
quasi-phase matching; (2) abbreviations for proper nouns are in upper case; and (3) acronyms are all
in upper case, with the exception of hh for heavy hole and lh for light hole. Two Roman numbers are
also used: I for type I and II for type II. The Roman labels used in this book are listed below.
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Label Meaning Label Meaning

a absorption, acceptance, acceptor,
acoustic, anode, aperture

AS anti-Stokes
att attenuation
av avalanche

b background, backward, bias
B Boltzmann, Bragg, Brewster,

Brillouin
br breakdown

c carrier, cavity, center, characteristic,
circular, coercive, conduction band,
conversion, coupling, critical, cutoff

ckt circuit
coh coherence
coll collection
comp compensation

d dark, data, detector, dielectric,
diffracted, diffusion, donor

D Doppler
def deflection

e electrical, electrode, electron,
emission, external, extraordinary

E TE mode
eff effective
eq equivalent
esc escape

f fall, forward
F Faraday, Fermi

g bandgap, gain, gap, grating, group
GR generation–recombination

h hole, homogeneous
hh heavy hole

i incidence, initial, internal, intrinsic
in input
inh inhomogeneous
inj injection

j junction

k cathode
K Kerr

l luminous
L linear, load, longitudinal
lh light hole

m magnetization, microwave,
modulation, multiplication

M TM mode
max maximum
MC mode conversion
min minimum

n n type, noise
NL nonlinear
nonrad nonradiative
nonrec nonreciprocal

o optical, ordinary
opt optimum
out output

p p-polarized (TM), p type, parallel,
period, phase, polarization, prism,
pump

ph photo, photon
pk peak
PM phase matched
ps pulse

q quantum
Q quasi-phase matching
QW quantum well

r radiation, reduced, recombination,
reflection, relaxation, reversed, rise

R Raman, Rayleigh
rad radiative
RC RC time
rec reciprocal
res resonance
RT round trip

s s-polarized (TE), saturation,
series, shield, signal, slope,
spontaneous, source, switching

S Stokes
sat saturation
SB stop band
SC space charge
sh shot
SH second harmonic
sp spontaneous
SR Shockley–Reed
ST Shawlow–Townes
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Label Meaning Label Meaning

t extraction, tangential, total,
transducer, transmitted

T transverse
tr transit, transparency

th thermal, threshold
v valence band
vac vacuum
VM velocity mismatch



Appendix B
Table of prerequisites

Section Prerequisite sections Section Prerequisite sections

1 General background
1.1 none 1.7 none
1.2 1.1 1.8 none
1.3 1.2 1.9 none
1.4 none 1.10 1.1–1.3
1.5 1.2, 1.3 1.11 none
1.6 1.2–1.5

2 Optical waveguides
2.1 1.8 2.5 2.1–2.4
2.2 1.2, 2.1 2.6 2.5
2.3 1.5, 2.2 2.7 2.1–2.5
2.4 1.1, 2.2 2.8 2.1–2.7

3 Optical fibers
3.1 2.1–2.5 3.4 none
3.2 3.1 3.5 1.9, 1.10, 3.3
3.3 2.7, 3.1, 3.2
4 Coupling of waves and modes
4.1 1.5, 1.6 4.3 4.2
4.2 2.2, 2.4

5 Optical couplers
5.1 2.5, 4.2, 4.3 5.3 2.1
5.2 2.5, 4.2, 4.3

6 Electro-optic devices
6.1 1.1, 1.6 6.4 2.5, 4.2, 4.3, 5.1, 5.2, 6.3
6.2 1.6, 6.1 6.5 6.4
6.3 1.6, 6.2
7 Magneto-optic devices
7.1 1.1, 1.6, 6.1 7.5 7.2
7.2 1.4, 7.1 7.6 7.3
7.3 1.4, 7.1 7.7 2.5, 4.2, 4.3, 5.1, 5.2, 6.4, 7.1, 7.4
7.4 1.6, 7.2
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Section Prerequisite sections Section Prerequisite sections

8 Acousto-optic devices
8.1 none 8.5 8.3, 8.4
8.2 1.6, 6.1, 6.2, 8.1 8.6 8.3
8.3 4.1, 4.3, 8.2 8.7 8.3–8.6
8.4 1.7, 8.3

9 Nonlinear optical devices
9.1 1.1–1.3, 4.1 9.7 6.3, 9.3
9.2 1.3, 1.6, 6.1, 6.2, 9.1 9.8 9.7
9.3 1.3, 9.1, 9.2 9.9 1.10, 8.3, 9.3
9.4 4.1, 9.1–9.3 9.10 4.1, 4.2
9.5 4.3, 9.3 9.11 9.4–9.6, 9.10
9.6 1.6, 5.1, 9.4 9.12 4.2, 4.3, 9.7, 9.10

10 Laser amplifiers
10.1 1.10 10.4 10.3
10.2 1.5, 1.10, 10.1 10.5 10.4
10.3 10.2

11 Laser oscillators
11.1 1.7 11.4 11.3
11.2 11.1 11.5 10.5, 11.1–11.4
11.3 10.3, 11.2

12 Semiconductor basics
12.1 none 12.4 none
12.2 none 12.5 12.2, 12.4
12.3 none

13 Semiconductor lasers and light-emitting diodes
13.1 12.3 13.6 13.5
13.2 10.1, 12.2 13.7 12.1, 12.5, 13.1, 13.5, 13.6
13.3 10.2, 10.3, 12.2, 12.3, 13.2 13.8 10.4, 10.5
13.4 12.3, 13.3 13.9 5.1, 5.3, 11.1, 11.2, 12.1, 13.5–13.7
13.5 12.2, 12.5, 13.3 13.10 11.2, 11.3, 12.5, 13.3, 13.7, 13.9

14 Photodetectors
14.1 none 14.5 12.5, 14.1, 14.2
14.2 none 14.6 12.5, 14.1, 14.2, 14.5
14.3 14.1, 14.2 14.7 6.5, 14.5, 14.6
14.4 12.2–12.4, 14.1, 14.2



Appendix C
SI metric system

Table C.1 SI base units

Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Table C.2 SI derived units

Quantity Name Symbol Equivalent

Plane angle radian rad m m−1 = 1
Solid angle steradian sr m2 m−2 = 1
Frequency hertz Hz s−1

Force newton N kg m s−2

Pressure pascal Pa N m−2

Energy joule J kg m2 s−2

Power watt W J s−1

Electric charge coulomb C A s
Electric potential volt V J C−1, W A−1

Magnetic flux weber Wb V s
Magnetic flux intensity tesla T Wb m−2

Resistance ohm � V A−1

Conductance siemens S A V−1, �−1

Capacitance farad F C V−1

Inductance henry H Wb A−1

Luminous flux lumen lm cd sr
Illuminance lux lx lm m−2

Source: Nelson, R. A., “Guide for metric practice,” Physics Today
BG15–BG16, August, 2002.
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1028 Appendix C. SI metric system

Table C.3 Metric prefixes

Name Symbol Factor Name Symbol Factor

Exa E 1018 Deci d 10−1

Peta P 1015 Centi c 10−2

Tera T 1012 Milli m 10−3

Giga G 109 Micro µ 10−6

Mega M 106 Nano n 10−9

Kilo k 103 Pico p 10−12

Hecto h 102 Femto f 10−15

Deca da 10 Atto a 10−18

Unit 1



Appendix D
Fundamental physical constants

Table D.1 Physical constants

Quantity Symbol Value Unit

Speed of light in free space c 2.997 924 58 × 108 m s−1

Magnetic permeability of free space µ0 4π × 10−7 H m−1

1.256 637 061 4 × 10−6 H m−1

Electric permittivity of free space 1/µ0c2 ε0 8.854 187 817 × 10−12 F m−1

Impedance of free space (µ0/ε0)1/2 Z0 376.730 313 461 �

Planck constant h 6.626 068 765 2 × 10−34 J s
4.135 667 271 6 × 10−15 eV s

Planck constant h/2π h̄ 1.054 571 596 8 × 10−34 J s
6.582 118 892 6 × 10−16 eV s

Elementary charge e 1.602 176 462 6 × 10−19 C

Electron rest mass m0 9.109 381 887 2 × 10−31 kg

Proton rest mass mp 1.672 621 581 3 × 10−27 kg

Atomic mass unit mu 1.660 538 731 3 × 10−27 kg

Boltzmann constant kB 1.380 650 324 × 10−23 J K−1

8.617 342 15 × 10−5 eV K−1

Thermal energy at T = 300 K kBT 2.585 202 645 × 10−2 eV

Photon constant hc = λhν hc 1.239 841 86 × 10−6 eV m

Source: Mohr, P. J., and Taylor, B. N., “The fundamental physical constants,” Physics Today BG6–
BG13, August, 2002.
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Appendix E
Fourier-transform relations

According to the discussions in Chapter 1, we define the Fourier transform between
the time domain and the frequency domain in terms of angular frequency as follows:

E(ω) = F{E(t)} =
∞∫

−∞
E(t)eiωt dt (E.1)

and

E(t) = F−1{E(ω)} = 1

2π

∞∫
−∞

E(ω)e−iωt dω. (E.2)

In terms of the real frequency ν = ω/2π , we have

E(ν) =
∞∫

−∞
E(t)ei2πνt dt (E.3)

and

E(t) =
∞∫

−∞
E(ν)e−i2πνt dν. (E.4)

The Fourier-transform relations for common functions encountered in the description
of various waveforms are listed in Table E.1. In this table, the Heaviside function H (x)
is defined as

H (x) =
{

1, if x > 0,
0, if x < 0;

(E.5)

the rectangular function �(x) is defined as

�(x) =
{

1, if |x | < 1/2,
0, if |x | > 1/2;

(E.6)
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1031 Appendix E. Fourier-transform relations

Table E.1 Fourier-transform relations

Function form E(t) E(ω) Function form

Gaussian e−t2/τ2 √
πτe−ω2τ2/4 Gaussian

sech sech
t

τ
πτ sech

πωτ

2
sech

Infinite impulse sequence
∑

m

δ

(
t

τ
− m

)
τ

∑
n

δ
(ωτ

2π
− n

)
infinite impulse sequence

Complex exponential e−iω0t 2πδ(ω − ω0) delta

Double-sided exponential e−|t/τ | 2τ

1 + ω2τ 2
Lorentzian

Single-sided exponential e−t/τ H (t)
τ

1 + iωτ
complex Lorentzian

Rectangular �

(
t

τ

)
τ

sin(ωτ/2)

ωτ/2
sinc

Triangular �

(
t

τ

)
τ

sin2(ωτ/2)

(ωτ/2)2
sinc2

Convolution f (t) ∗ g(t) f (ω)g(ω) product

Product f (t)g(t)
1

2π
f (ω) ∗ g(ω) convolution

Complex conjugate f ∗(t) [ f (−ω)]∗

and the triangular function �(x) is defined as

�(x) =
{

1 − |x |, if |x | ≤ 1,
0, if |x | > 1.

(E.7)

The convolution integral is defined as

f (x) ∗ g(x) =
∞∫

−∞
f (x ′)g(x − x ′)dx ′. (E.8)

Using the Fourier-transform relation between f (t) ∗ g(t) and f (ω)g(ω) and that
between f ∗(t) and f ∗(−ω) shown in Table E.1, the following useful relations can be
obtained:

Correlation Theorem

∞∫
−∞

f ∗(t)g(t + τ )dt = 1

2π

∞∫
−∞

f ∗(ω)g(ω)e−iωτ dω, (E.9)

Autocorrelation Theorem

∞∫
−∞

f ∗(t) f (t + τ )dt = 1

2π

∞∫
−∞

| f (ω)|2e−iωτ dω, (E.10)



1032 Appendix E. Fourier-transform relations

Power Theorem

∞∫
−∞

f ∗(t)g(t)dt = 1

2π

∞∫
−∞

f ∗(ω)g(ω)dω, (E.11)

Parseval’s Theorem

∞∫
−∞

| f (t)|2dt = 1

2π

∞∫
−∞

| f (ω)|2dω. (E.12)

Using (E.3) and (E.4), Parseval’s theorem can also be written as

∞∫
−∞

|E(t)|2dt =
∞∫

−∞
|E(ν)|2dν = 1

2π

∞∫
−∞

|E(ω)|2dω. (E.13)



Index

abrupt junction, 789
absorption, 614

coefficient, 24
cross section, 626
saturation, 469, 673

acceptance angle, 120
acceptor, 772
acoustic

phonon, 465
radiation efficiency, 419
transit time, 392
wave, 357

longitudinal, 358
quasi-longitudinal, 358
quasi-transverse, 358
shear, 358
standing, 357, 385
transverse, 358
traveling, 357

acousto-optic
deflector, 401
diffraction, 369

order of, 369
figure of merit, 364
modulator, 388

standing-wave, 398
traveling-wave, 389

tunable filter, 412
active layer, 839
active region, 839
additive-pulse mode locking, 739
ADP, 584
AlAs, 761, 764
AlGaAs, 764, 765
AlGaAs/GaAs, 765
all-optical

demultiplexer, 607
Mach–Zehnder interferometer, 561
modulator, 515, 555
switch, 515, 555

amorphous solid, 533
Ampère’s law, 5
amplification coefficient, 24

amplification factor, 509
amplified spontaneous emission, 661
amplifier efficiency, 659
amplitude modulation, 262, 558
amplitude modulator, 257

acousto-optic, 388
analyzer, 20, 257, 258, 318, 319, 322,

325
AND gate, 606
angle

of diffraction, 376
of incidence, 45, 376
of reflection, 45
of refraction, 45

angle phase matching, 488
angle tuning, 485

curves, 485
angular

aperture, 415
mode index, 124
tolerance, 483

anisotropic susceptibility, 25
anisotropy, 7

optical, 39
anode, 948
anomalous dispersion, 49, 54
anti-Stokes

frequency, 465
process, 479
transition, 465

antiferromagnet, 291
antiferromagnetic material, 291
antiguidance effect, 855
antiguidance factor, 855
aperture, 63
aperture distance, 487
areal bit density, 329
artificial optical activity, 303
ASE fiber laser, 745
asymmetry factor, 85
attenuation coefficient, 24
attenuation in fiber, 141
Auger recombination, 778
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avalanche multiplication, 986
factor, 987

avalanche photodiode, 986
graded-gap staircase, 996
separate absorption and multiplication,

994
axial vector, 6
azimuthal mode index, 124

balanced-bridge interferometer, 266
nonreciprocal, 343

band edge, 761
band structure, 761
band-filling effect, 872
band-to-band recombination, 780
bandgap, 760

direct, 761
indirect, 761

bandtail state, 817
bandwidth, 3-dB, 944
bar state, 213
BBO, 456
beam divergence ratio, 391
beam propagation method, 107
beam waist, 41
beat-length coupler, 571
bending loss, 146
Bessel function, 122–124, 138, 139,

251
biaxial crystal, 33
bimolecular recombination, 778
binary compound, 761
binary operation, 323
birefringence, 27

circular, 294, 297
growth-induced, 334
linear, 294
magnetic circular, 297
magnetic linear, 295
optical-field-induced, 467
stress-induced, 334

birefringent
crystal, 27
diffraction, 376
phase matching, 481

bistability threshold intensity, 528
bistable optical device, 522

absorptive, 530
absorptive type, 523
dispersive, 526
dispersive type, 523
hybrid, 523
intrinsic, 523

blazed grating, 225
bleached condition, 645
bound exciton, 781
boundary conditions, 8

Bragg
angle, 378
diffraction, 375

birefringent, 376
codirectional, 383, 413
collinear, 383
contradirectional, 383, 413
down-shifted, 376
nonbirefringent, 376
small-angle, 382
up-shifted, 376
diffraction efficiency
codirectional, 382
contradirectional, 384

frequency, 198
wavelength, 198

breakdown voltage, 806
Brewster

angle, 47
windows, 47

Brillouin
amplifier, 543

gain, 544
cell, 537
frequency, 536
gain coefficient, 544
gain factor, 536
generator, 545
linewidth, 536
process, 532
scattering, 535
spontaneous, 536
stimulated, 531, 536
threshold, 545

broad-area edge-emitting device, 854
broad-area geometry, 853
broad-area surface-emitting device, 853
broadening

homogeneous, 615, 706
inhomogeneous, 619, 707
lifetime, 616
natural, 616

buried crescent heterostructure, 859
buried heterostructure, 859

planar, 859

capacitance, 808
charge-storage, 808
depletion-layer, 808
diffusion, 808
junction, 808

carrier, 760
in equilibrium, 769
in quasi-equilibrium, 775
photogenerated, 935

carrier concentration, 768
intrinsic, 771
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carrier density,
threshold, 900
transparency, 831

carrier distribution, 801
carrier frequency, 50
carrier lifetime, 720, 783, 960

nonradiative, 818
radiative, 818
spontaneous recombination, 818

carrier recombination, 778
carrier relaxation rate

differential, 909
nonlinear, 909
spontaneous, 909
total, 909

causality, 7, 53
cavity decay rate, 692, 909
cavity lifetime, 692
cavity

cold, 692
Fabry–Perot, 685
folded, 685
linear, 685
open, 685
optical, 684
ring, 685

centrosymmetric, 451
material, 240, 292
point group, 451

channel waveguide, 73, 105
buried, 105

charge-storage capacitance, 808
chromatic dispersion, 147
chromatic resolving power, 414
circular birefringence, 294, 297
circular dichroism, 303
circular polarization, 16
circularly polarized, 16

left, 19
right, 19

cladding
fiber, 119
of waveguide, 73

codirectional coupling, 176
acousto-optic, 382

codopant, 667
coefficient

elasto-optic, 360
Kerr, 239
linear electro-optic, 239
photoelastic, 360
Pockels, 239
quadratic electro-optic, 239
strain-optic, 360

coercive field, 326
coercivity, 326
coherence length, 475

coherent mode beating, 728
cold cavity, 692
collection efficiency, 935
colliding-pulse mode locking, 737
collinear coupler, 191
collinear phase matching, 479
compensation temperature, 326
complex field, 12
compound semiconductor

II–VI, 242
III–V, 242

condition for bistability, 524
conduction band, 760
conduction-band edge, 761
conduction electron, 760
conductivity, 788

dark, 788, 955
electric, 788
intrinsic, 788

confinement, optical, 73
confinement factor

for planar waveguide modes, 93
for symmetric slab waveguide modes, 97

confocal parameter, 41
connection loss, 146
conservation

of charges, 5
of power, 180

contact potential, 792
continuity equation, 5
continuous scan, 402
contradirectional coupling, 178
conversion efficiency, 502

power, 659, 716
second-harmonic, 502

coplanar coupler, 191
core diameter of fiber, 120
core

fiber, 119
of waveguide, 73

corner cube, 63
Cotton–Mouton effect, 294
Coulomb’s law, 5
coupled nonlinear equations, 471
coupled-mode equation, 169

theory, 167
coupled-wave analysis, 470
coupled-wave equation, 166
coupled-wave theory, 164
coupler

3-dB, 265
asymmetric directional, 210
beat-length, 571
collinear, 191
coplanar, 191
directional, 202
grating waveguide, 190
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coupler (cont.)
half-beat-length, 570
input, 214
output, 214
prism, 215
surface, 214
surface grating, 219
symmetric directional, 212

coupling
butt, 999
end, 214
end-fire, 214
evanescent, 999
longitudinal, 214
order of, 197
surface, 214
transverse, 214

coupling coefficient, 170, 186
for directional couplers, 203
for grating waveguide couplers, 193

coupling efficiency, 177
coupling length, 177
cover, of waveguide, 73
critical angle, 47
critical fluorescence power, 649
critical temperature, 291
cross modulation, 514
cross-phase modulation, 464
cross polarizers, 57
cross section

absorption, 626
emission, 625
gain, 833
transition, 625

cross state, 213, 266, 268, 270, 343, 344
crossover efficiency, 266
crosstalk, 269
crystal momentum, 822
crystal symmetry, 39
crystal

biaxial, 33
negative uniaxial, 33, 246
positive uniaxial, 33
uniaxial, 33

crystalline solid, 533
CSP, 859
cubic, 39, 242, 292–295, 358, 451, 454, 467, 480, 763
Curie temperature, 291
current density, 785

diffusion, 785
drift, 785
threshold, 901

current sensor, 319
linked type, 319
unlinked type, 319

current–voltage characteristics, 804, 806
curved IDT, 424

cutoff condition, 91
for fiber modes, 126
for planar waveguide mode, 91
of LP modes, 132

cutoff frequency, 91
3-dB, 944

cutoff wavelength, 91, 128

damage threshold, 456
dark conductivity, 788, 955
dark current, 931
DBR, 197
DBR laser, 199, 881
DC-PBH, 859
deflection angle, 380
deflector

acousto-optic, 401
acousto-optic waveguide, 422
birefringent, 407
nonbirefringent, 404

degeneracy, 614
degeneracy factor, 614
degenerate four-wave mixing, 469
density of states, 768

effective, 770
for band-to-band optical transitions, 824

density-of-states effective mass, 769
depletion layer, 789, 799
depletion-layer capacitance, 808
detailed balance, 624
detectivity, 940

specific, 940
detuning, 571
DFB laser, 199, 881
DFG, 460
DH, 838
diamagnetic material, 290
dichroism

circular, 303
linear, 20, 303
magnetic circular, 303

dielectric constant, 23
dielectric constant tensor, 27
dielectric relaxation time, 960
difference-frequency generation, 460
difference-frequency generator, 498
differential carrier relaxation rate, 909
differential gain, 850
differential gain parameter, 908
differential power conversion efficiency, 659, 716
differential quantum efficiency, 717
diffraction

acousto-optic, 369
Bragg, 375
Raman–Nath, 370
standing acoustic wave, 385

diffraction effect, 499
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diffused waveguide, 105
diffusion, 785
diffusion capacitance, 808
diffusion coefficient, 786
diffusion length, 802

electron, 802
hole, 802

diffusion region, 790
diode equation, 806
diode laser, 839, 877
direct bandgap, 761
direct current modulation, 873
direct transition, 821
direct-gap semiconductor, 761
directional coupler, 173, 202

asymmetric, 210
nonlinear, 567
symmetric, 212
two-channel, 202

directional coupler switch, 267
nonreciprocal, 343
reversed-�β, 269
uniform-�β, 268

dispersion, 49
anomalous, 49, 54
chromatic, 147
frequency, 8
group-velocity, 51
in fibers, 147
intermode, 147, 153
intramode, 147, 153
material, 52, 147
modal, 88, 89, 147, 153
momentum, 8
normal, 49, 54
phase-velocity, 49
polarization, 89
waveguide, 147, 148

dispersion compensation, in fibers, 154
dispersion-flattened fiber, 154
dispersion-shifted fiber, 154
displacement gradient tensor, 359
distributed Bragg reflector, 197, 198
distributed Bragg reflector laser, 199, 881, 882
distributed feedback laser, 199, 881, 887
distributed loss, 696
divergence angle, 42, 685
donor, 772
dopant, 759
double heterostructure, 838, 843
double refraction, 49
down-shifted diffraction, 376
down-shifted frequency, in Bragg diffraction, 375
drift, 785
dual core fiber, 567
dynamic photoelastic effect, 360
dynamic range, 941, 942

EDFA, 667
edge-emitting laser, 839, 881
edge-emitting LED, 839
effective index method, 107
effective mass, 769

density-of-states, 769
electron, 769
heavy hole, 769
hole, 769
light hole, 769
reduced, 824

effective nonlinear coefficient, 551
effective nonlinear susceptibility, 471
effective waveguide thickness, 86
efficacy, 862

collection, 935
conversion, 716, 861
extraction, 864
injection, 864
LED, 861
luminous, 862
of amplifier, 659
photometric, 862
power conversion, 659
quantum, 659, 717, 861, 929, 935
radiative, 819
Raman–Nath diffraction, 374
slope, 659, 716
transmission, 935

EH mode, 125
eigenvalue, 26
eigenvalue equation

for fiber modes, 124
for LP modes, 132
for TE modes, 86, 96
for TM modes, 87, 96

eigenvector, 26
complex, 26

Einstein A coefficient, 623
Einstein B coefficient, 623
Einstein relation, 786
elastic wave, 357
elasto-optic coefficient, 360
electric conductivity, 788
electric dipole, 442
electric-dipole approximation, 442
electric-dipole polarization, 574
electric permittivity, 5

relative, 23
electric permittivity tensor, 7
electric polarization, 244
electric quadrupole, 442
electric susceptibility tensor, 7
electric symmetry, 293
electro-optic coefficient

linear, 239
quadratic, 239
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electro-optic effect, 237
first-order, 239
linear, 239
quadratic, 240
second-order, 239

electro-optic Kerr coefficient, 239
electro-optic Kerr effect, 294, 464
electro-optic modulator, 250
electromagnetic spectrum, 4
electron affinity, 944

negative, 947
electron concentration, 768
electron–hole pair, 783
electron lifetime, 783
electron mobility, 786
electron multiplication, 951
electron multiplication factor, 951
electron multiplication gain, 951
electrostatic potential, 790
ellipse rotation, 519
elliptical polarization, 16
elliptically polarized, 16
ellipticity

Kerr, 307
of polarization ellipse, 17

emission cross section, 625
end coupling, 214, 1000
end firing, 1000
energy, optical, 9
energy band, 759, 790
energy conservation, 713
energy density, 11
energy level, 613
envelope, 50
equatorial Kerr effect, 304
Er-doped fiber, 631
evanescent radiation mode, 77
even mode, 209
excess noise factor, 931
excited state, 646
exciton, 780

bound, 780
free, 780

exciton enhancement, 468
exciton recombination, 780
exclusive OR gate, 606
external quantum efficiency, 717, 861

LED, 861
extinction ratio, 265
extraction efficiency, 864
extraordinary index, 33
extraordinary wave, 33
extrinsic photoconductivity, 956
extrinsic photoconductor, 956

Fabry–Perot cavity, 524, 685, 694
Fabry–Perot interferometer, 685

Fabry–Perot laser, 881
falltime, 943
fanned structure, 495
Faraday effect, 294, 296, 298
Faraday rotation, 298

specific, 300
Faraday rotator, 298
Faraday’s law, 5
fast axis, 32
FCSEL, 892
Fermi level, 760

quasi-, 776
Fermi–Dirac distribution, 759, 776
ferrimagnet, 291
ferrimagnetic material, 290
ferroelectric, 291
ferroelectric nonlinear crystal, 491
ferromagnet, 290
ferromagnetic material, 290
ferromagnetic resonance, 300
fiber

graded-index, 136
multimode, 120, 128
rare-earth ion-doped, 665
single-mode, 120, 128
step-index, 120
weakly guiding, 128

fiber amplifier, 664, 667
erbium-doped, 667
neodymium-doped, 667
praseodymium-doped, 667

fiber cladding, 119
fiber core, 119
fiber DBR laser, 742
fiber DFB laser, 742
fiber-grating compression, 154
fiber laser, 740

ASE, 745
DBR, 742
DFB, 742
mirrorless, 745
superfluorescent, 745

fiber mode, 124
field equations, for waveguides, 78
figure of merit, acousto-optic, 363, 364
filling factor, gain medium, 687, 879
film, of waveguide, 73
filter, acousto-optic, 412
finesse, 526, 690
first-order grating, 198
fluorescence lifetime, 616
fluoride fiber, 119
flux concentrator, 321
folded cavity, 685
folded-cavity surface-emitting laser, 892, 893
forward-coupling matrix, 177
four-level system, 642
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four-wave mixing, 469
degenerate, 469

Fourier series, 175
Fourier transform, 14, 1030
Fourier-transform limited, 732
fourth-harmonic generation, 503
fourth-harmonic generator, 504
fractional bandwidth, of acousto-optic deflector,

404
free exciton, 780
free spectral range, 690
frequency bistability, 530
frequency dispersion, 8
frequency doubling, 462
frequency filter, 199
frequency modulator, acousto-optic, 401
frequency pulling, 705
frequency response, photodetector, 942
frequency shifter, acousto-optic, 401
Fresnel equations, 46
full permutation symmetry, 450
fundamental frequency, 499
fundamental mode, 77

of fiber, 128
fundamental wave, 472
fused silica, 143, 534

GaAs, 761, 764, 765
gain-guiding stripe geometry, 854
gain, optical, 15, 24
gain coefficient, 24

threshold, 700
gain compression, 908
gain cross section, 833, 850
gain factor

Brillouin, 536
Raman, 533
round-trip, 687

gain filling factor, 687, 879
gain medium, 24

homogeneously broadened, 706
inhomogeneously broadened, 707

gain parameter, 710
differential, 908
nonlinear, 908
unsaturated, 711

gain saturation, 464, 469, 646
gain switching, 719
GaP, 764
GaSb, 765
Gaussian beam, 40
Gaussian beam waist, 41
Gaussian lineshape, 620
Gaussian mode, 40, 691
GCSEL, 892
Ge, 761
generation rate, 781

generation–recombination noise, 963
GGG, 322
graded-index fiber, 136
graded-index waveguide, 74, 99

smooth, 100
step-bounded, 100

graded junction, 789
grating, 182
grating coupler, surface, 219
grating waveguide coupler, 190
grating

blazed, 225
first-order, 198
order of, 198
second-order, 198

grating-coupled surface-emitting laser, 892,
893

GRIN-SCH, 852
ground state, 646
group index, 52
group velocity, 49, 50, 1003
group-velocity dispersion, 51

negative, 51
positive, 51

growth-induced birefringence, 334
growth rate

intracavity energy, 710
intracavity photon, 710

guided mode, 75
guided-wave acousto-optic deflector, 419
guided-wave acousto-optic mode converter,

420
guided-wave acousto-optic modulator, 419
guided-wave acousto-optic tunable filter,

420
guided-wave all-optical modulator, 555
guided-wave all-optical switch, 555
guided-wave device

acousto-optic, 416
all-optical, 555
magneto-optic, 331

guided-wave modulator, electro-optic, 259
guided-wave optical frequency converter,

550
guided-wave photodetector, 984, 998
gyroscopic, 303

half-beat-length coupler, 570
half-wave plate, 32, 255
half-wave voltage, 255
harmonic fields, 12
HE mode, 125
Heaviside function, 849
heavy-hole band, 769
Hermite–Gaussian function, 42
Hermite–Gaussian mode, 42
heterojunction, 789, 793, 794
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heterojunction (cont.)
anisotype, 789
isotype, 789

heterojunction photodiode, 980
heterostructure, 838

buried, 859
buried crescent, 859
double, 838, 843
separate confinement, 852
single, 838, 841

hexagonal, 39, 451, 763
high-efficiency regime, for nonlinear conversion, 503
high-order mode, 77
hole, 760
hole concentration, 768
hole lifetime, 783
hole mobility, 786
homogeneous broadening, 615, 706
homogeneous region, 790
homojunction, 789, 792
homostructure, 838, 839
hybrid mode, 79
hypersonic, 536

i–n junction, 789
I–V characteristics, 806
idler wave, 508
IDT

curved, 424
multiple tilted, 423
parallel-figure chirped, 425
phased-array, 423
tilted-figure chirped, 425

impact ionization, 986
impedance

free space, 23
of transmission line, 276

in-line amplifier, 668
InAs, 764
incidence, 44

normal, 47
index, mode, 74
index contraction, 28, 455
index ellipsoid, 28
index-guiding stripe geometry, 857
index modulation, 190
index of refraction, 23

intensity-dependent, 467
indirect bandgap, 761
indirect-gap semiconductor, 761
indirect transition, 821
induced optical activity, 303
induced transition, 614
InGaAsP, 764, 766
InGaAsP/InP, 766
inhomogeneity

spatial, 8
temporal, 8

inhomogeneous broadening, 619, 707
initial gain parameter, 723
injection efficiency, 864
injection laser, 839
InP, 761, 764, 766
InSb, 761
insertion loss, 308
intensity, 14
intensity bistability, 523, 530
intensity-dependent index of refraction,

467
intensity gain, 509
intensity profile, 62
interaction length, 186
interdigital transducer (IDT), 416
interferometer

balanced-bridge, 266
Fabry–Perot, 685
Mach–Zehnder, 263

intermode dispersion, 147, 153
internal quantum efficiency, 717

LED, 864
semiconductor, 819

internal reflection, 47
intracavity energy growth rate,

710
intracavity photon density, 711
intracavity photon growth rate, 710
intramode dispersion, 147, 153
intrinsic conductivity, 788
intrinsic permutation symmetry, 448
intrinsic photoconductivity, 956
intrinsic photoconductor, 956
inversion symmetry, 240
inverter, 606
ionization coefficient, 987
ionization ratio, 987
irradiance, 14
isoelectronic center, 817
isotropic, 242
isotropic crystal structure, 242
isotropic material, 241
isotropic medium, 7

Jacobi elliptic function, 496
Johnson noise, 927
junction

abrupt, 789
graded, 789
i–n, 789
p–i, 789
p–n, 789
Schottky, 981
semiconductor, 789
under bias, 796

junction capacitance, 808
junction photodiode, 966
junction structure, 838



1041 Index

K factor, 910
KDP, 483
Kerr coefficient, 239

electro-optic , 239
Kerr effect, 240

electro-optic, 240, 294, 464
equatorial, 304
longitudinal, 304
magneto-optic, 294, 304
meridional, 304
optical, 464, 467
polar, 304
transverse, 304

Kerr ellipticity, 307
Kerr lens, 515, 516
Kerr-lens mode locking, 517, 739
Kerr rotation angle, 307
Kleiman’s symmetry condition,

450
Kramers–Kronig relations, 56
KTA, 456
KTP, 456

L–I characteristics, 870
laser

ASE fiber, 745
DBR, 199, 881
DFB, 199, 881
diode, 839, 877
distributed Bragg reflector,

199
distributed feedback, 199
edge-emitting, 839
Fabry–Perot, 700, 881
fiber, 740
fiber DBR, 742
fiber DFB, 742
gain-switched, 719
injection, 839
microchip, 697
mirrorless fiber, 745
mode-locked, 522, 727, 732
Nd : YAG, 656, 697
Q-switched, 522, 721, 723
Q-switched mode-locked, 724
quantum-well, 839
regeneratively pulsed, 736
ruby, 629, 648
semiconductor, 817, 877
superfluorescent fiber, 745
synchronously pumped, 736
transiently pulsed, 736

laser amplifier, 613, 651
laser diode, 877
laser level, 638

lower, 638
upper, 638

laser linewidth, 708

laser mode, 705
laser oscillation, 699

gain condition, 700
phase condition, 700

laser oscillator, 613
laser power, 709

semiconductor, 902
laser ranging, 63
laser threshold, 700
lasing phase, 723
lateral structure, 852
laterally illuminated photodetector,

984
lattice constant, 763
lattice-matched compounds, 763
lattice matching, 765
law of mass action, 773
LBO, 456
lead-salt compound, 956
LED, 817

edge-emitting, 839
surface emitting, 839

LED construction, 864
LED efficiency, 861
lifetime broadening, 616
lifetime

bimolecular radiative, 819
carrier, 720, 783, 818
cavity, 692
electron, 783
fluorescence, 616
hole, 783
majority carrier, 783
minority carrier, 783
nonradiative, 818
photon, 692
radiative, 616, 818, 819
saturation, 643
spontaneous, 616
spontaneous carrier recombination, 784,

818
spontaneous radiative, 625

light–current characteristics, 870
light-emitting diode, 817, 860

characteristics, 870, 872
modulation characteristics, 873

light-hole band, 769
linear birefringence, 294
linear dichroism, 20, 303
linear polarization, 16
linear susceptibility, 442
linearity, 941
linearly polarized, 16
linearly polarized mode, of fiber, 129
lineshape, 53, 614
lineshape function, 615

Gaussian, 620
Lorentzian, 53, 615
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linewidth
Brillouin, 536
laser, 708
Raman, 533

linewidth enhancement factor, 856
linked current sensor, 319
LN, 456
longitudinal coupling, 214
longitudinal Kerr effect, 304
longitudinal mode, 688, 690
longitudinal modulation, 250
longitudinal phase modulator, 252
loop mirror, 565
Lorentz reciprocity theorem, 26, 169, 186
Lorentzian lineshape, 53, 615
loss

distributed, 696
optical, 15, 24

loss parameter, 710
output-coupling, 712

lossless medium, 23
lossy medium, 24
low-efficiency limit, 496

for nonlinear conversion, 503
lower laser level, 638
LP mode, 129
luminous efficiency, 862
luminous flux, 863
lunar laser ranging, 63

Mach–Zehnder interferometer, all-optical,
561

Mach–Zehnder waveguide interferometer,
263

macrobend, 146
magnetic circular birefringence, 297
magnetic circular dichroism, 303
magnetic dipole, 442
magnetic domain, 291
magnetic field sensor, 319
magnetic linear birefringence, 295
magnetic material, 26
magnetic permeability, 5
magnetic susceptibility tensor, 289
magnetic symmetry, 293
magnetic symmetry groups, 293
magnetically ordered, 290
magnetization, 4

saturation, 291
spontaneous, 290

magneto-optic amplitude modulator, 318
magneto-optic disk, 328
magneto-optic effect, 289

first-order, 292
linear, 292
quadratic, 292
second-order, 292

magneto-optic Kerr effect, 294, 304
magneto-optic modulator, 317
magneto-optic polarization modulator, 318
magneto-optic recording, 326
magneto-optic sensor, 317
magneto-optic spatial light modulator, 322
majority carrier, 773
majority carrier lifetime, 783
Manley–Rowe relations, 475
mark area, 329
material dispersion, 52, 147

in fibers, 147
material excitation wave, 531
material

antiferromagnetic, 291
centrosymmetric, 240, 292
diamagnetic, 290
ferrimagnetic, 290
ferromagnetic, 290
isotropic, 241
paramagnetic, 290

Maxwell’s equations, 3, 5
McCumber relation, 634
mean square value, 928
meridional Kerr effect, 304
metal–semiconductor–metal structure, 965
metric prefixes, 1028
microbend, 146
microchip laser, 697
Miller’s rule, 573
minimum pumping requirement, 642, 643
minority carrier, 773
minority carrier extraction, 802
minority carrier injection, 802
minority carrier lifetime, 783
mirrorless fiber laser, 745
mixed crystal, 761
mobility, 786

electron, 786
hole, 786

modal dispersion, 88, 89, 147
in fibers, 153

mode
EH, 79, 125
evanescent radiation, 77
fundamental, 77
Gaussian, 691
guided, 75
HE, 79, 125
hybrid, 79
laser, 705
linearly polarized, 129
longitudinal, 688, 690
LP, 129
substrate radiation, 77
substrate-cover radiation, 77
TE, 79
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TEM, 79
TM, 79
transverse, 691
transverse electric, 79
transverse electric and magnetic, 79
transverse magnetic, 79
waveguide, 73, 74

mode converter
acousto-optic, 426
nonreciprocal TE–TM, 332
TE–TM, 273
unidirectional, 340

mode coupling
between two modes, 173
codirectional, 176
contradirectional, 178
in multiple waveguides, 170
in single waveguide, 169
phase-matched, 182
symmetric, 182

mode expansion, 168
mode index, 74

angular, 124
azimuthal, 124
radial, 124

mode-locked laser, 522, 732
mode locker, 727

passive, 517, 522
mode locking, 719, 727

additive-pulse, 739
colliding-pulse, 737
complete, 732
Kerr-lens, 517, 739

mode parameters, 85
mode power, conservation, 180
mode pulling, 704, 705
mode volume, 712
modulation

longitudinal, 250
self-phase, 556
sinusoidal, 251
transverse, 250, 275

modulation bandwidth, 393
3-dB, 275

modulation characteristics
light-emitting diode, 873
semiconductor laser, 908

modulation depth, 399
phase, 251

modulation efficiency, 275
modulation index, 873
modulation speed, 393
modulator

acousto-optic, 388
acousto-optic waveguide, 422
all-optical, 515
amplitude, 257, 518

electro-optic, 250
longitudinal, 252
magneto-optic, 317
nonlinear optical, 514
phase, 250
polarization, 253, 271, 518
spatial light, 322
standing-wave acousto-optic, 398
transverse, 251
traveling-wave acousto-optic, 389

molecular vibration, 533
momentum dispersion, 8
monoclinic, 39, 451
MQW, 839
multimode fiber, 120, 128
multimode waveguide, 92
multiple tilted IDTs, 423

90◦ phase matching, 380, 407, 488
n-type semiconductor, 773
Néel temperature, 291
natural broadening, 616
natural optical activity, 303
Nd : YAG laser, 656, 697
Nd : YLF, 753
NDFA, 667
NEA, 947
negative electron affinity, 947
negative helicity, 20
NEP, 937
noise, photodetector, 927
noise equivalent power, 937
nonbirefringent diffraction, 376
noncentrosymmetric, 451
noncentrosymmetric material, 240
noncentrosymmetric point group, 451
noncollinear phase matching, 479
noncritical phase matching, 488
nonlinear carrier relaxation rate, 909
nonlinear crystal, 457
nonlinear gain parameter, 908
nonlinear mode sorter, 560
nonlinear optical d coefficient, 455
nonlinear optical amplifier, 651
nonlinear optical interaction, 458

in waveguide, 548
nonparametric, 477
parametric, 471

nonlinear optical loop mirror, 565
nonlinear optical mode mixer, 559
nonlinear optical modulator, 514
nonlinear optical process

second-order, 460
third-order, 463

nonlinear optical susceptibility, 446
nonlinear optical waveguide, 470
nonlinear optics, 441
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nonlinear susceptibility, 442
second-order, 442
third-order, 442

nonmagnetic material, 26
nonparametric process, 450, 459
nonplanar waveguide, 73
nonradiative carrier lifetime, 818
nonradiative recombination, 779
nonreciprocal balanced-bridge interferometer, 343
nonreciprocal directional coupler switch, 343
nonreciprocal medium, 26, 293
nonreciprocal phase shifter, 335
nonreciprocal TE–TM mode converter, 332
nonreciprocity, 294
normal dispersion, 49, 54
normal modes, 31
normalized frequency and waveguide thickness,

84
normalized guide index, 84
number of modes, for graded-index fiber, 139
numerical aperture, 120

of fiber, 120
Nyquist noise, 927

odd mode, 209
one-beam interaction, 466
OPA, 460
open cavity, 685
operation,

binary, 323
ternary, 323

OPG, 460
OPO, 511
optical absorption, 628
optical activity, 26, 303

artificial, 303
induced, 303
natural, 303

optical amplification, 628
optical amplifier, semiconductor, 875
optical anisotropy, 39
optical axis, 33
optical bistability, 523
optical cavity, 684
optical circulator, 308, 309

polarization-dependent, 316
polarization-independent, 317
true, 309
waveguide, 343

optical discriminator, 522
optical energy, 9
optical fiber, 105, 119
optical field, 3
optical-field-induced birefringence, 467
optical frequency converter, 496

guided-wave, 550
optical frequency doubler, 499

optical gain, 637, 643, 829
carrier dependence, 832

optical gain coefficient, 643
small-signal, 645
unsaturated, 645

optical gate, 520
optical indicatrix, 28
optical interferometer, 690
optical isolation, 293
optical isolator, 308

polarization-dependent, 310
polarization-independent, 314
quasi-, 309
waveguide, 337

optical Kerr effect, 464, 467
optical noise figure, 662
optical nonlinearity, 441, 523
optical parameter amplifier, 508
optical parametric amplification, 460, 462
optical parametric converter, 505
optical parametric generation, 460
optical parametric oscillation, 462
optical parametric oscillator, 511

doubly resonant, 511
singly resonant, 511

optical phase conjugation, 441
optical phonon, 465
optical power, 9
optical power limiter, 516
optical preamplifier, 663
optical rectification, 455, 460
optical repeater, 663
optical resonator, 690
optical soliton, 441, 468
optical susceptibility,

linear, 15
resonant, 635

optical switch, 213, 266, 663
directional coupler, 267
nonlinear, 514

optical thresholding device, 517
optical transition, 613
optical tunneling, 216
optically active, 26, 303
order of coupling, 197
order of grating, 198
ordinary index, 33
ordinary wave, 33
orientation, of polarization ellipse, 17
orthogonal transformation, 238
orthogonality, of waveguide modes, 82
orthogonality relation, 83
orthonormal unit vectors, 238
orthonormality relation, 83
orthorhombic, 451
outer diameter of fiber, 120
output-coupling rate, 712
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output power, saturation, 712
overlap coefficient, 172
overlap factor, 218, 261, 551, 687

gain, 879

π wave, 46
π -polarized wave, 46
p wave, 46
P–I characteristics, 870
p–i junction, 789
p–i–n photodiode, 974

lateral, 978
vertical, 978

P–n junction, 789, 792
p–N junction, 793
p–n junction, 794
p-polarized wave, 46
p-type semiconductor, 773
parallel polarization, 46
parallel-figure chirped IDT, 425
parallel state, 213, 266, 270, 343, 344
paramagnetic material, 290
parametric down-conversion, 506
parametric fluorescence, 462
parametric frequency conversion, 464
parametric frequency converter, 505
parametric oscillation threshold, 511
parametric process, 459

linear, 459
nonlinear, 459

parametric second-order process, 461
parametric up-conversion, 506
parasitic effect, 874, 905, 973, 974
passive mode locker, 522
passive mode locking, 517
passive optical switch, 517
passive Q switch, 522
PBH, 859
PDFA, 667
peak intensity, 62
peak output power, 723
perfect phase matching, 198, 500
periodic index modulation, 190
periodic structural corrugation, 190
periodic waveguide, 173
permeability tensor, relative, 28
permittivity tensor, field-dependent, 466
permutation symmetry, 448

full, 450
intrinsic, 448

perpendicular polarization, 45
phase bistability, 530
phase-array transducer, 411
phase matched, 166, 177
phase-matched coupling, 182
phase matching, 181, 186, 479

90◦, 380, 407, 486

angle tuning, 485
birefringent, 481
collinear, 479
noncollinear, 479
noncritical, 488
perfect, 198, 500
tangential, 380, 407
temperature tuning, 488
type I, 482
type II, 482

phase-matching angle, 482
phase-matching condition, 181
phase-matching temperature, 488
phase mismatch, 175, 181
phase modulation depth, 251
phase modulator, 250

longitudinal, 252
transverse, 251

phase relaxation, 638
phase retardation, 253
phase-sensitive coupling, 558
phase shift, round-trip, 687
phase shifter, nonreciprocal, 335
phase velocity, 49, 181, 275, 276, 1003
phased-array IDT, 423
phased-array transducer, 423
phonon

acoustic, 465
optical, 465

photocathode, 944, 948
reflection-mode, 948
transmission-mode, 948

photoconductive detector, 955
photoconductive mode, 969
photoconductivity, 955

extrinsic, 956
intrinsic, 956

photoconductor,
extrinsic, 956
intrinsic, 956

photodetector
laterally illuminated, 984
performance parameters, 935
photoconductive, 955
photoemissive, 944
traveling-wave, 999, 1002
velocity-matched distributed, 1003
vertically illuminated, 984
waveguide, 999

photodetector noise, 927
photodiode

double-pass, 984
heterojunction, 980
junction, 966
lateral p–i–n, 978
multipass structure, 984
p–i–n, 974
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photodiode (cont.)
refracting-facet, 984
resonant-cavity enhanced, 984
Schottky, 981
vacuum, 948
vertical p–i–n, 978

photodiode avalanche, 986
photoelastic coefficient, 360
photoelastic effect, 245, 360

dynamic, 360
photoelectric effect, 926

external, 926
internal, 926

photoemissive detector, 944
photoemissive device, 927
photogenerated carrier, 935
photometric efficiency, 862
photometric radiation equivalent, 862
photomultiplier, 950
photon, 56
photon density, 711
photon detector, 926
photon energy, 57
photon flux, 57
photon lifetime, 692
photopic spectral luminous efficiency,

862
photothermal effect, 926
photovoltaic mode, 969
physical constants, 1029
piezoelectric effect, 244

converse, 244
direct, 244

piezoelectric polarization, 455
piezoelectric transducer, 357, 389,

396
piezoelectricity, 244
pixel, 322
planar waveguide, 73, 84
plane of incidence, 44
plane polarized, 16
plastic fiber, 119
PMT, 950
Pockels coefficient, 239
Pockels effect, 239, 241, 460
point group, 451
polar Kerr effect, 304
polar vector, 6, 240
polarization, 4

circular, 19
electric, 244
elliptic, 17
linear, 18
of light, 16
parallel, 46
perpendicular, 45
plane, 18

TE, 45
TM, 46

polarization bistability, 530
polarization dispersion, 89
polarization modulator, 253

voltage-controlled, 254
waveguide, 271

polarization relaxation time, 54
polarization splitter, 213
polarizer, 20, 257, 258, 310, 311, 318, 319, 322,

323
reflection type, 20, 47
transmission type, 20

polarizing beam splitter, 38, 315
polaroid film, 20
population inversion, 629, 637, 639, 830

in semiconductor, 830
population relaxation, 638
population relaxation time, 54
positive feedback, 523
positive helicity, 19
postamplifier, 668
power

of waveguide modes, 82
optical, 9

power amplifier, 663
power attenuation coefficient, 276
power–bandwidth product, 874
power conversion efficiency, 659, 716, 861

differential, 659, 716
LED, 861

power–current characteristics, 870
power density, 11, 14

spontaneous emission, 649
power divider, 212
power flow, 11
power gain, 653

small-signal, 653
unsaturated, 653

power-law index profiles, for graded-index fibers,
140

Poynting vector, 11
complex, 14

principal axis, 27, 246
principal dielectric axis, 27
principal dielectric constant, 27
principal dielectric susceptibility, 27
principal index of refraction, 27
prism coupler, 215
propagation,

along a principal axis, 31
free space, 22
in anisotropic medium, 25, 167
in isotropic medium, 21, 166

propagation constant,
free space, 22
of waveguide mode, 84
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pulse
Q-switched, 723
transform-limited, 732, 733
ultrashort, 517, 720

pulse spectral width, 732
pulsed laser, 718
pulsewidth, 723
pump depletion, 539
pump intensity, transparency, 646
pump power

threshold, 701
transparency, 701

pump power utilization factor, 656
pump quantum efficiency, 645
pump wave, 506, 508
pumping, 637

electrical, 651
longitudinal, 651
longitudinal optical, 664
optical, 651
transverse, 651

pumping phase, 721
pumping rate, 639

transparency, 645
pumping ratio, 655, 711
punchthrough voltage, 982
push–pull operation, 264

Q switch, passive, 522
Q switching, 719, 721

fast, 723
Q-switched laser, 522, 723
Q-switched mode-locked laser, 739
Q-switched pulse, 723
quality factor, 692
quantum detector, 926
quantum efficiency, 645, 659

differential, 717
external, 717, 861, 935
internal, 717, 819, 864, 935
photodetector, 929, 935
pump, 645

quantum limit, 662
quantum noise, 927
quantum regime, 933
quantum well, 246, 839, 844

multiple, 839
single, 839
strained, 852

quantum-well lasers, 839
quarter-wave plate, 31
quarter-wave voltage, 255
quasi-equilibrium, 775, 776
quasi-Fermi level, 776
quasi-optical isolator, 309
quasi-phase matching, 491

first-order, 493

quasi-two-level system, 641
quaternary compound, 761
QW, 839

radial mode index, 124
radiation decay constant, 218
radiation process,

nonradiative, 616
radiative, 616

radiative carrier lifetime, 818
radiative efficiency, 818, 819
radiative recombination, 779, 816
Raman amplifier, 537
Raman amplifier gain, 539
Raman cell, 537
Raman frequency, 532
Raman gain coefficient, 539
Raman gain factor, 533
Raman generator, 540
Raman laser, 548
Raman linewidth, 533
Raman–Nath diffraction, 370
Raman–Nath diffraction efficiency, 374
Raman–Nath equation, 372
Raman process, 532
Raman scattering

spontaneous, 532
stimulated, 531
transient, 533

Raman spectrum, 539
Raman threshold, 541
random access, 402
rare earth, 291
rate equation, 638
Rayleigh range, 41
Rayleigh resolution limit, 328
RE–TM alloy, 291
reach-through structure, 994
reality condition, 15, 447
reciprocal linear magnetic birefringence, 340
reciprocal medium, 26, 293
reciprocal TE–TM mode converter, 334
reciprocity, 186, 293
reciprocity theorem, 26, 169
recombination

Auger, 778
band-to-band, 780
bimolecular, 778
exciton, 780
nonradiative, 779
radiative, 779, 816
Shockley–Read, 778

recombination center, 779
recombination process, 778
recombination rate, 782
rectangular waveguide, 107
reduced effective mass, 824
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reflectance, 46
reflection, 44

external, 47
reflection coefficient, 45
reflectivity, 46
refraction, 44

double, 49
refractive index, 23

extraordinary, 33
ordinary, 33

regeneratively pulsed laser, 735
relative impermeability tensor, 28
relaxation process, 616
relaxation rate,

phase, 638
population, 638

relaxation resonance frequency, 909
relaxation time, 783

dielectric, 960
polarization, 54
population, 54

relaxation time constant, 783, 960
resistivity, 788
resonance, 613
resonance frequency, 613
resonant enhancement, 468
resonant optical cavity, 684
response

impulse, 52
instantaneous, 7
local, 7
nonlocal, 7

response of medium, 6
response speed, photodetector, 942
responsivity, 933, 936

intrinsic, 937
spectral, 937

retroreflector, 63
return loss, 308
reverse isolation, 308
reverse-coupling matrix, 179
reverse-�β coupler, 269
ridge waveguide, 105
ring cavity, 685
risetime, 393, 943
rotating-wave approximation, 53
rotation tensor, 359
rotatory power, 300
round-trip gain factor, 687
round-trip optical path length, 687
round-trip phase shift, 687
round-trip time, 685
ruby laser, 629, 648

σ wave, 45
σ -polarized wave, 45
s wave, 45

s-polarized wave, 45
S/N, 928
Sagnac configuration, 565
SAM, 994
saturable absorber, 521, 522
saturable absorption, 464
saturation current, 806
saturation current density, 805
saturation intensity, 521, 643
saturation lifetime, 643
saturation magnetization, 291
saturation output power, 712
saturation photon density, 711
saturation power, 653
saturation pump intensity, 645
saturation pump power, 654, 701
SAW, 416
SBS, 464
scan rate, 403
Schottky barrier, 981
Schottky junction, 981
Schottky photodiode, 981
second-harmonic frequency, 499
second-harmonic generation, 455, 460
second-harmonic generator, 499
second-order grating, 198
second-order nonlinear polarization, 446
second-order nonlinear process, 448
secondary electron emission, 951
selection rules, 846
self defocusing, 467
self focusing, 467
self modulation, 514
self-phase modulation, 464, 467, 515, 556
Sellmeier equation, 456
semiconductor, 759

binary compound, 762
compound, 761
degenerate, 775
direct-gap, 761
elemental, 761
extrinsic, 772
II–VI, 242
II–VI compound, 763
III–V, 242
III–V compound, 761
indirect-gap, 761
intrinsic, 771
IV–IV compound, 761
n-type, 773
nitride compound, 762
nondegenerate, 773
p-type, 773
quaternary compound, 762
ternary compound, 762

semiconductor junction, 789
semiconductor laser, 817, 877
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characteristics, 899
DBR, 882
DFB, 887
distributed Bragg reflector, 882
distributed feedback, 887
edge-emitting, 881
efficiency, 905
Fabry–Perot, 881
folded-cavity surface-emitting, 893
grating-coupled surface-emitting, 893
modulation characteristics, 908
power, 902
spectrum, 907
surface-emitting, 892
vertical-cavity surface-emitting, 894

semiconductor laser amplifier, 875
semiconductor optical amplifier, 875
sensor

current, 319
magnetic field, 319
magneto-optic, 317

separate absorption and multiplication, 994
SFG, 460
SH, 838
Shawlow–Townes limit, 708
Shawlow–Townes relation, 708
shear strain, 359
SHG, 460
Shockley–Read recombination, 778
shot noise, 927, 929

excess, 931
shot-noise limited, 933
Shubnikov’s groups, 293
Si, 761
SI base units, 1027
SiC, 761
SI derived units, 1027
SiGe, 761
signal-to-noise current ratio, 928
signal-to-noise ratio, 662, 928, 933

power, 928
signal wave, 506, 508
silica fiber, 119
single heterostructure, 838, 841
single-mode fiber, 120, 128
single-mode waveguide, 92
slab waveguide, 84
slope efficiency, 659, 716
slow axis, 32
slowly varying amplitude approximation, 166
small-area surface-emitting device, 853
small-signal gain coefficient, 645
small-signal power gain, 653
Snell’s law, 45
SNR, 662, 928
soliton, 119, 154, 441, 468
space-charge region, 799

spatial beam walk-off, 37
spatial inversion, 5, 240, 292
spatial-inversion symmetry, 292
spatial light filter, 522
spatial light modulator, 322

binary phase-only mode, 325
reflection-mode, 325
transmission-mode, 323
ternary phase-only mode, 325

spatial nonlocality, 7
spatial symmetry, 451
specific detectivity, 940
specific Faraday rotation, 300
spectral envelope, 732
spectral hole burning, 707
spectral lineshape, 614
spectral response, 935
spectral width, pulse, 732
speed of light, 12
SPM, 464
spontaneous Brillouin scattering, 536
spontaneous carrier recombination, 784
spontaneous carrier recombination rate, 818
spontaneous carrier relaxation rate, 909
spontaneous emission, 614, 649, 835

amplified, 661
spontaneous emission factor, 661
spontaneous emission noise, 661
spontaneous emission power, 648
spontaneous magnetization, 290
spontaneous radiative lifetime, 616, 625
spontaneous Raman scattering, 532
spontaneous Stokes emission, 541
spot size, 40
SQW, 839
SRS, 464
stability for Fabry–Perot cavity, 695
staircase APD, 997
standing wave, 358
standing-wave modulator, acousto-optic, 398
static magnetic field, 291
static magnetization, 292
step-index fibers, 120
step-index waveguide, 74, 84
stimulated Brillouin scattering, 464, 531, 536
stimulated emission, 614
stimulated Raman scattering, 464, 465, 531
Stokes–anti-Stokes coupling, 542, 579
Stokes frequency, 465
Stokes process, 477
Stokes transition, 465
stop band of DFB laser, 889
strain, 244

shear, 359
tensile, 359

strain-optic coefficient, 360
strain tensor, 359
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stress, 244
stress-induced birefringence, 334
strip waveguide, 105
stripe geometry, 853
stripe-geometry edge-emitting device, 854
structural corrugation, 190
substrate, of waveguide, 74
substrate-cover radiation mode, 77
substrate radiation mode, 77
succeptibility tensor, magnetic, 289
sum-frequency generation, 460
sum-frequency generator, 496
superfluorescence, 745
superfluorescent fiber laser, 745
supermode, 206
surface acoustic wave, 416
surface coupler, 214
surface coupling, 214
surface-emitting laser, 839

folded-cavity, 892
grating-coupled, 225, 892
vertical-cavity, 892

surface-emitting LED, 839, 892
susceptibility

anisotropic, 25
linear, 15
nonlinear optical, 446

susceptibility tensor, nonlinear optical,
447

symmetric coupling, 182
symmetric slab waveguide, 95
symmetric tensor, 26, 290
symmetry

electric, 293
magnetic, 293
permutation, 448
spatial, 451
spatial inversion, 292
time-reversal, 293

synchronous frequency, 418
synchronous pumping, 737
synchronously pumped laser, 736

3-dB coupler, 182, 183
tangential phase matching, 380, 407
TE-like mode, 108, 260
TE mode, 79

of planar waveguides, 86
TE polarization, 45
TE–TM mode converter, 273

nonreciprocal, 332
reciprocal, 334
unidirectional, 340

TE wave, 45
TEM mode, 40, 79

temperature phase matching, 488
temperature sensitivity, 483
temperature tuning, 488
temperature-tuning curve, 489
tensile strain, 359
ternary compound, 761
tetragonal, 451
TGG, 299
thermal detector, 926
thermal equilibrium, 792–794
thermal generation rate, 781
thermal noise, 927, 932
thermal-noise limited, 933
thermal regime, 933
thermomagnetic switching, 327
THG, 464
thin-lens condition, 516
third-harmonic generation, 464
third-harmonic generator, 503, 504
third-order nonlinear process, 448
three-level system, 641
threshold

Brillouin, 545
laser, 700
parametric oscillation, 511
Raman, 541
semiconductor laser, 900

threshold carrier density, 900
threshold current density, 901
threshold gain coefficient, 700
threshold injection current, 901
threshold intensity, for bistability, 528
threshold photon energy, 945
threshold wavelength, 945
tilted-finger chirped IDT, 425
time aperture, 403
time reversal, 5, 293
TM-like mode, 108, 260
TM mode, 79

of planar waveguides, 87
TM polarization, 46
TM wave, 46
total carrier relaxation rate, 909
total internal reflection, 47
TPA, 464
transcendental equation, 88
transcendental relation, 546
transducer, phased-array, 423
transducer bandwidth, 396
transform limited, 732
transform-limited pulse, 732, 733
transformation, orthogonal, 238
transformation properties, 5
transient Raman scattering, 533
transiently pulsed laser, 735
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transit time, 959
acoustic, 392
electron, 959
hole, 959

transition
band-to-band, 821
direct, 821
indirect, 821

transition cross section, 625
transition metal, 291
transition probability, 639
transition rate, 622, 625

direct, 823
transmission coefficient, 45
transmission efficiency, 935
transmission line, 276
transmissivity, 46
transmittance, 46
transparency, 645
transparency carrier density, 831
transparency pump intensity, 646
transparency pump power, 701
transparency pumping rate, 645
transverse coupling, 214
transverse electric and magnetic mode, 79
transverse electric mode, 79
transverse electric polarization, 45
transverse Kerr effect, 304
transverse magnetic mode, 79
transverse magnetic polarization, 46
transverse mode, 40, 691
transverse modulation, 250, 275
transverse phase modulator, 251
traveling wave, 385
traveling-wave modulator, 274

acousto-optic, 389
traveling-wave photodetector, 999, 1002
triclinic, 451
trigonal, 451
ternary operation, 323
tunable filter, acousto-optic waveguide, 425
two-beam interaction, 467
two-level system, 639
two-mode interaction, 558
two-photon absorption, 464, 469
two-stage cascaded optical isolator, 313
TWPD, 1002
type I phase matching, 482
type II phase matching, 482

ultrashort pulse, 517, 720
uniaxial crystal, 33

negative, 33
positive, 33

unidirectional TE–TM mode converter, 340

uniform-�β coupler, 268
unit conversion, 458
unlinked current sensor, 319
unsaturated gain coefficient, 643, 645
unsaturated power gain, 653
up-shifted diffraction, 376
up-shifted frequency, in Bragg diffraction, 375
upper laser level, 638

V number, 84, 120
of fiber, 120
of slab waveguide, 84

vacuum photodiode, 948
head-on, 948
side-on, 948

valence band, 760
valence-band edge, 761
van Roosbroeck–Shockley relation, 837
VCSEL, 226, 893
velocity-matched distributed photodetector,

1003
velocity mismatch, 277
Verdet constant, 298
vertical cavity, 853
vertical-cavity surface-emitting laser, 892, 894
vertically illuminated photodetector, 984
VMDP, 1003
voltage attenuation coefficient, 276

walk-off, 36
spatial, 36
temporal, 277

walk-off angle, 37, 487
wave equation, 12

for planar waveguides, 81
for waveguides, 79

waveguide
channel, 73
graded-index, 74
multimode, 92
periodic, 173
planar, 73, 84
single-mode, 92
slab, 84
step-index, 74
symmetric-slab, 95
weakly guiding, 89

waveguide cladding, 73
waveguide core, 73
waveguide dispersion, 147

in fibers, 148
waveguide dispersion parameter, 150
waveguide group delay parameter, 150
waveguide mode, 73, 74
waveguide parameters, normalized, 84
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waveguide photodetector, 999
butt-coupling, 999
evanescent-coupling, 999

waveguide polarization modulator, 271
wavelength tunability, 512
wavelength tuning, 495
wavenumber, 22, 24
weakly guiding fiber, 128
weakly guiding waveguide, 89
WGPD, 999

Wien’s displacement law, 676
WKB approximation, 100
work function, 944

x-cut crystal, 260
XPM, 464

y-propagating, 260
Y-junction waveguide, 263
YIG, 291, 332
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