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PREFACE TO SECOND EDITION

IN THE seven years since we completed our first edition, there have been
very substantial advances in our knowledge of non-crystalline materials
based on experiment and in their theoretical interpretation, and we have
therefore found it necessary to rewrite the greater part of this book. Many
review articles now exist, and because of these and so as to keep the book
within a reasonable size we have not attempted as full a review of the
literature as we did in the first edition. Our purpose, however, remains the
same: to present a theoretical framework and to relate it to the experimental
material.

Some of the outstanding advances since our first edition seem to us to be
the following: the very detailed understanding of the electrical properties
of glow-discharge-deposited silicon obtained notably at Dundee and
Marburg, and in particular the realization that this material can be doped;
experiments on conduction in an inversion layer at the interface between
silicon and silicon oxide, which combined with numerical calculations of
the minimum metallic conductivity in two dimensions provides strong
evidence for the existence of this quantity; real-space calculations of the
energy spectra of both electronic and vibrational states from model struc-
tures, and increasing realization for chalcogenide and silicate glasses of the
importance of the polaron concept and of the distortion produced by a
trapped carrier, leading to Anderson's concept of a 'negative Hubbard U'
and to detailed models of photoluminescence, states in the gap, and other
properties of these materials. These are some highlights; many other
advances may be of comparable importance

Finally, it is a pleasure to thank many colleagues who have helped us in
the writing of this book, Dr S. R. Elliott for reading the galley proofs, and
Miss Shirley Fieldhouse for her invaluable work in the preparation of the
bibliography.

Cambridge N.F.M.
August 1977 E.A.D.
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PREFACE TO FIRST EDITION

TEN YEARS ago our theoretical understanding of electrons in non-crys-
talline materials was rudimentary. The classification of materials into
metals, semiconductors, and insulators was based on band theory, and
band theory starts from the assumption that the material is crystalline.
According to band theory, an insulator is a material with an energy gap
between the conduction and valence bands, and a transparent insulator is
one in which the gap is greater than the quantum energy of visible light.
Ordinary soda glass is an insulator and transparent; a gap seemed to exist
but we did not know how to describe the gap. Even now we do not know
how to calculate it, but the concepts that we have to use are fairly clear.

A milestone in the development of the subject was Ziman's quantitative
explanation of the electrical properties of liquid metals, put forward in
1960. This was a weak-interaction theory, the effect of each atom being
treated as small. The success of this theory prompted investigations of what
happens when the interaction is large, as it must be when an energy gap
exists. The keys to our present understanding have been the principle of
loffe and Regel (1960) that the mean free path cannot be less than the
distance between atoms, and the concept of localization introduced by
Anderson in his paper 'Absence of diffusion in certain random lattices',
published in 1958. In a sense, our book is written around these two themes.
We have built a theoretical edifice on them, and since mathematical rigour
is anything but easy in this subject we have not hesitated to guess at the
approximate solutions of problems that at present are unsolved. Our aim is
to suggest models that can be compared with experiment. We have chosen
the experimental material, too, with a view to comparing it with our theory
and our conjectures. Thus we have given a rather full account of what is
known in October 1970 about the electrical and optical properties of
certain amorphous semiconductors, in particular silicon, germanium, chal-
cogenide glasses, and selenium, which we think relevant. We have said
much less about conduction in glasses containing transition-metal ions as
they would in our view fit better into a book about polarons. Our chapter
on impurity conduction is not meant to be exhaustive; we include it
because impurity conduction is the most fully understood process of
conduction in a random field. We have said rather little about the
phenomenon of switching, fearing that anything we could-write would be
out of date too quickly.

Finally it is a pleasure to thank our many colleagues who are interested
in non-crystalline materials and who have helped us to write this book. We



x PREFACE TO FIRST EDITION

are particularly indebted to Dr. T. E. Faber for making available to us
some tables from his forthcoming book, to Dr. R. S. Allgaier for the table
in the Appendix, to Dr. L Friedman, Mr. C. H. Hurst, and Dr. F. Stern for
help in correcting the proofs, and to Miss Shirley Fieldhouse for her help in
preparing the bibliography.

Cambridge N.F.M.
October 1970 E.A.D.
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1
INTRODUCTION

THE principal subject matter of this book is those properties of non-
crystalline materials that are due to the movement of electrons, particularly
electrical conduction and optical absorption. Among non-crystalline
materials are liquid metals and semiconductors, glasses, and amorphous
films evaporated or deposited in other ways. A closely related subject also
described in this book is the phenomenon of impurity conduction in semi-
conductors, in which an electron moves directly (by tunnelling) from one
impurity atom or point defect to another. Whether the material surround-
ing the impurities is crystalline or not, the impurity atoms are distributed at
random, so that impurity conduction provides a particularly simple exam-
ple of the movement of an electron in a non-periodic field of force.

The book starts with a description of the theoretical concepts necessary
to describe these phenomena. Chapter 2 sets out a theory of non-interac-
ting electrons in a rigid non-crystalline array of atoms. By a rigid array, we
mean a model that neglects the effect of phonons and of distortions of the
lattice, such as polarons, produced by an electron. For many of the
phenomena described in this book, this is legitimate; for instance, the
resistivity of a liquid metal is determined mainly by the scattering of
electrons that results from the disordered arrangement of the atoms, and
the resistance of a disordered alloy is normally calculated without
considering the energy that may be transferred to an atom when an
electron is scattered.t

Confining ourselves then to, a rigid array of atoms, we have to ask first
which of the concepts appropriate to crystalline solids can be used in
non-crystalline materials. The first concept, equally valid for crystalline
and for non-crystalline materials, is the density of states, which we denote
by N(E). The quantity N(E)dE denotes the number of states in unit
volume available for an electron with given spin direction with energies
between E and E + dE. As in crystalline solids, the states can be occupied
or empty, and N(E)f(E)dE is the number of occupied states per unit
volume, where / is the Fermi distribution function. The density of states
can in principle be determined experimentally, for instance by photoemis-
sion. In general, the available evidence suggests that the form of the
density of states in a liquid or non-crystalline material does not differ

See Chapter 5.
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greatly from the corresponding form in the crystal, except that the finer
features may be smeared out, and some localized states may appear in the
forbidden energy range in semiconductors. In contrast, the description of
individual electron states used for electrons in crystalline materials is not
always appropriate for the non-crystalline case. In crystalline materials,
assuming a perfect crystal and neglecting the effect of phonons, we describe
each electron by a Bloch wavefunction

(1.1)
where u(x, y, z) has the periodicity of the lattice. The wavevector k is a
quantum number for the electron. Because of phonons or impurities,
scattering takes place, and a mean free path L is introduced; for instance, if
there are TV impurities per unit volume each with a differential scattering
cross-section I(0), the mean free path is given by

(1.2)

This formula assumes that the Fermi surface is spherical, so that 1(6) is
independent of the initial direction of motion of the electrons. But it is, of
course, characteristic of the conduction and valence bands of many crystal-
line solids that the energy E(k) corresponding to the wavefunction (1.1)
does depend on the direction of k.

In non-crystalline materials there are two possibilities. One is that the
mean free path is large, so that kL»l. This is the case in most liquid
metals, and in the conduction band of liquid rare gases and of some glasses
such as SiO2. The wavevector k is then still a good quantum number, and
for metals a Fermi surface can still be defined; but, since the liquid or
amorphous solid has no axis of symmetry, the Fermi surface must be
spherical. In fact, since the mean free path is large, the deviation of the
density of states from the free-electron form must be small. This will be
shown in Chapter 5, which deals with liquid metals and other related
problems. But if in a liquid or amorphous material the atomic potential (or
pseudopotential) is strong enough to produce a band gap, or any large
deviation from the free-electron form, then it must give strong scattering
and a short mean free path (kL ~ 1). This in our view is the most important
difference between the theories of crystalline and non-crystalline materials.
In the latter case, phenomena frequently occur in which electrons have
energies for which kL —  1. This is so, as we shall see in subsequent chap-
ters, for the carriers in most amorphous and liquid semiconductors. Under
such conditions the k-selection rulet breaks down in optical transitions
(Chapter 6). For conduction processes when this is the case, there is much

f This says that k-k'±q = 0 when k, k' are the wavenumbers before and after the transition
and q is the wave vector of the light.
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evidence that the Hall coefficient RH is less than that predicted by the usual
formula (Ru= l/nec\ and may even have the wrong sign.

It was first emphasized by loffe and Regel (1960) that values of L such
that kL<l are impossible; this leads us to expect that, when the inter-
action of the carrier with atoms is sufficiently strong, something new ought
to happen. It was first conjectured by Gubanov (1963) and by Banyai
(1964) that near the edges of conduction or valence bands in most non-
crystalline materials the states are localized, and the concept of localization
will play a large part in this book. There is nothing unfamiliar about the
concept of localized states; they are simply 'traps', and the most direct
evidence for their existence in amorphous materials is provided by
measurements of the transit time for injected carriers (Chapter 6); if this
shows an activation energy, a trap-limited mobility can be inferred. The
new concept for amorphous materials is that a continuous density of states,
N(E\ can exist in which for a range of energies the states are all traps, or in
other words localized, and for which the mobility at the zero of tempera-
ture vanishes, even though the wavefunctions of neighbouring states overlap.
Moreover, at the bottom of a conduction band or top of a valence band,
such localized states must necessarily occur in a disordered material.

The first phenomenon for which this was generally recognized was
impurity conduction in doped and compensated semiconductors, which
was first fully understood in the early 1960s. The centres in these materials
are located at random positions, and in addition there is a random potential
at each centre. This is discussed in Chapter 4. Our understanding of
localization in this case derives from Anderson's paper (1958) on the
absence of diffusion in certain random lattices which is central to our theme
and is discussed in Chapter 2. In impurity conduction, each time an
electron moves from one centre to another, it emits or absorbs a phonon;
processes in which it absorbs a phonon are rate determining, and in
consequence the conductivity contains an activation energy, so that it takes
the form(cf. §4.3.1)

(1.3)

and tends to zero at low temperatures where, as we shall see, it behaves
like A exp(—B/T l / 4) instead of like (1.3). We call this form of charge
transport thermally activated hopping, or just hopping. Hopping can also be
responsible for an a.c. conductivity cr(cj) at frequency co proportional to a)\
where s —  0-8. In this process an electron hops between pairs of localized
states, absorbing or emitting a phonon each time.

In solid-state theory of crystalline materials a distinction is always made
between those in which the density of states N(E) is finite at the low-
temperature Fermi energy EF, and those in which Ep lies in a band gap so
that N(Ep) vanishes. The former are metals or metallic compounds, the
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conductivity or tending to a finite value at low temperatures; the latter are
semiconductors or insulators, the conductivity behaving at low tempera-
tures like exp(-H>/fcT). In metals the conductivity depends only on those
electrons that have energies near EF and on their interaction with
phonons and impurities. The same distinction can be made in non-crystal-
line systems. If N(Ep) vanishes, the material is a semiconductor, but if
N(EF)^Q, it does not necessarily follow that <r tends to a finite value as T
tends to zero. If the states with energy E? are localized, conduction will be
by hopping and o~ will tend to zero with T, normally as exp(—const/T1/4).
Materials in which this is so have been called by Anderson (1970) Termi
glasses' and a discussion of them occupies a large part of this book. A
doped and compensated semiconductor behaves like a Fermi glass at low
temperatures. These, in common with many other materials, show a
conductivity of Fermi-glass type at low temperatures, while at higher
temperatures conduction is due to thermally excited electrons in non-
localized (extended) states.

If in any non-crystalline material the states are localized at a band edge,
then unless they are localized throughout the band there must exist an
energy Ec separating localized and non-localized states, as first pointed out
by Mott (1967). As we shall argue in the next chapter, they cannot coexist
at the same energy. In several non-crystalline materials for which N(Ep)^
0, it is possible by altering the composition or some other parameter such
as stress, to make EF pass through Ec. In this case a transition occurs from
metallic to hopping conduction, with a discontinuous change in the
conductivity at zero temperature, which jumps from a finite value, which
we write crmin, to zero. We call this an Anderson transition, depending as it
does on Anderson's (1958) localization theorem, and many examples will
be described in this book (§2.8 and Chapter 4). The electrical behaviour of
Fermi glasses at the Anderson transition gives the clearest evidence for the
existence of the energy Ec and the minimum metallic conductivity crmin.

In the conduction band of an amorphous semiconductor,, an energy Ec

will also separate the localized states at the band edge from the non-
localized ones. This was first realized by Cohen, Fritzsche, and Ovshinsky
(1969), who called this energy a 'mobility edge'. For energies below the
mobility edge, an electron moves by hopping; the diffusion coefficient is of
the form

(1.4)

where a is the distance between localized states, j/ph depends on the
phonon frequencies and is in some cases of order 1012s~1 and w will
probably tend to zero with decreasing T. The mobility /it is given by the
Einstein relation



INTRODUCTION 5

As the energy E of the electron approaches Ec, w will tend to zero (§ 2.7);
but above Ec, as we shall see, the diffusion coefficient is of the form

6^el«2

where v^\ is an electronic frequency of order ti/ma2. Once again IJL is given
by the Einstein relationship, so that a discontinuity in IJL as a function of
energy of order 102-103 is expected at the mobility edge. In semiconduc-
tors we shall find that the main part of the current is sometimes carried by
electrons above, and sometimes below, the mobility edge.

In Chapter 2, where the general theory of the mobility edge is
developed, we start from the simplest model of a disordered material, that
of a crystalline array of potential wells with random depths, introduced by
Anderson in (1958). This is the only case that has proved at all tractable
mathematically, and we use it for discussions of localization, the minimum
metallic conductivity ormin, Hall coefficient, and so on. The model is fairly
directly applicable to impurity conduction, but the use of results obtained
from it for non-crystalline materials in general involves a certain amount of
guesswork, which we shall try to justify by appeal to experiment.

Chapter 3 describes the effects of phonons. These are of three kinds.
(a) Phonons can scatter an electron with a non-localized wavefunction,

making a contribution to the resistance just as in a crystalline metal
or semiconductor.

(b) As we have seen, they can, by exchanging energy with an electron,
enable it to hop from one localized state to another, as for instance in
impurity conduction. They are also responsible for multiphonon
transitions occurring when an electron and hole recombine without
emission of radiation.

(c) They can be trapped by the electrons to form a small polaron. Effects
such as polaron formation in which several phonons are trapped, so
that the interaction between electron and phonon is not to be treated
as a small perturbation, play a part in impurity conduction in all
polar semiconductors and in other phenomena. In Chapter 3, there-
fore, a description is given of polaron behaviour in crystalline nar-
row-band semiconductors as an introduction to the related problems
in non-crystalline materials.

In Chapter 4 we describe many phenomena involving a degenerate
electron gas in a non-crystalline solid medium, particularly those in which
states at the Fermi energy are localized and those in which a metal-
insulator transition (the Anderson transition) occurs if the Fermi energy
can be made to cross the mobility edge. This chapter also describes, as far
as possible, the effect of electron-electron interaction on the behaviour of
degenerate electron gases in a non-crystalline medium. Chapter 5 extends
the discussion to liquids, starting with a brief account of Ziman's theory of



6 INTRODUCTION

liquid metals, which has been described in detail in other books (e.g. Faber
1972).

Chapter 6 and subsequent chapters describe the electric and optical
properties of amorphous semiconductors. Here we face the problem of the
nature of an amorphous film or a glass. We shall suppose, though this
cannot be taken as certain, that a fully co-ordinated non-crystalline struc-
ture is possible, but that real materials, just like crystals, contain defects
such as vacancies and dangling bonds. These in many materials are thought
to produce deep donor and acceptor states which determine the position of
the Fermi energy. Moreover, evaporated films frequently contain voids of
diameter greater than an atomic distance; surface states on these voids will
also affect the position of the Fermi energy.

The possibility of long-range fluctuations of potential, either due to
charges on these voids or to other reasons, must always be kept in mind. If
present, they may necessitate a treatment more akin to classical percola-
tion theory than to the concepts developed in Chapter 2 (see § 2.9). In
Chapter 6 and subsequent chapters we shall examine both possibilities.



2
THEORY OF ELECTRONS IN A
NON-CRYSTALLINE MEDIUM

2.1. Introduction
2.2. The Kubo-Greenwood formula
2.3. Anderson localization
2.4. Situation in which states are localized in one range of energies and not

localized in another
2.5. Photon-activated hopping; the co2 law
2.6. The minimum metallic conductivity
2.7. Hopping and variable-range hopping
2.8. The Anderson transition
2.9. Mobility and percolation edges
2.10. Conductors, insulators, and semiconductors
2.11. Semimetals and pseudogaps
2.12. Some calculations of the density of states
2.13. Thermopower
2.14. Hall effect
2.15. Hopping conduction for alternating currents
2.16. One-dimensional problems

2.1. Introduction

This chapter introduces some of the theoretical concepts appropriate to the
discussion of electronic processes in non-crystalline materials, particularly
electrical conduction and optical absorption. Except where otherwise
stated, the discussion will be in terms of the same approximation as that
normally used in the elementary band theory of crystalline materials, the
interaction energy e2/ri2 between electrons being neglected except in so
far as it can be included in the averaged Hartree-Fock field. The effect of
this interaction, which can assume considerable importance, is discussed in
Chapter 4.

In crystalline materials the wavefunction of each electron is of the Bloch
form (1.1). In non-crystalline materials the wavefunctions fe(jc, y, z) do
not necessarily have this form. Nevertheless, solutions of the Schrodinger
equation must exist, and therefore the first concept that can be carried over
from the theory of crystals to the theory of non-crystalline materials is the
density of states N(E), defined so that N(E) dE is the number of eigen-
states in unit volume for an electron in the system with given spin direction
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and with energy between E and E + &E. Then at a temperature T the
number of electrons in the energy range dE is, for each spin direction,

N(E)f(E)dE

where f ( E ) is the Fermi distribution function

(2.1)

The Fermi energy EF is a function of T and tends to a limiting value as
T-» 0, EF then separating occupied from non-occupied states.

For the calculation of N(E) and the corresponding wavefunctions, there
are two possibilities. The first is that the free-electron approximation is a
good one and that the electrons are not strongly scattered. We may then
write

(2.2)

where k is the wavevector and m the effective mass. In this case the Fermi
surface is spherical, and the density of states for the electrons is given for
each spin direction by the free-electron formula

(2.3)

In crystalline materials the interaction with the field of the lattice can
lead to large deviations from eqn (2.2), because the energy depends on the
direction of k and also because of the formation of band gaps. Small
deviations from a perfect lattice, such as those due to phonons, impurities,
or defects, lead to a finite mean free path L (cf. eqn (1.2)), but unless L is
small (kL~l) the changes in the density of states are not large. In non-
crystalline materials, however, the disorder is responsible both for the
finite mean free path and for deviations from eqn (2.3) for the density of
states, and large deviations will occur if the scattering is strong. The
following situations may therefore arise.

(i) The scattering by each atom is weak. The wavevector k is then a
good quantum number, the uncertainty Afe in k is such that Afc/fc «1,
the surfaces of constant energy are spherical and eqns (2.2) and (2.3) are
valid. This is the situation in most liquid metals for values of E near the
Fermi energy (Chapter 5).
(ii) The scattering by each atom is strong, so that Afc/fc ~ 1. In this case k
is not a good quantum number for describing the eigenstates, and the
concept of a Fermi surface (for metals) is no longer valid. loffe and Regel
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(1960) pointed out that under these conditions the mean free path is of
the order ~l/fc, and that it cannot be shorter than this. When Afc/fc ~
1, considerable deviation from (2.3) can occur for the density of states,
(iii) If the interaction becomes yet stronger, a new phenomenon occurs
which is absent in crystalline materials, namely that for a given energy E
allt the wavefunctions i//E are localized. This means that each wavefunc-
tion (I/E is confined to a small region of space, falling off exponentially
with distance as exp(—aR) and with a quantized energy value. This was
first recognized by Anderson (1958) in his paper on The absence of
diffusion in certain random lattices' and this form of localization is
known as Anderson localization. There is of course nothing new in the
concept of a localized wavefunction for an electron in a trap below the
conduction band. What is new is the concept that one can have a finite
and continuous density of states N(E) in which all states are localized,
although there can be strong overlap between the wavefunctions of
neighbouring states. Moreover, as we shall show, if states are filled up to
a limiting Fermi energy EF in the range where states are localized, the
conductivity, which we denote by crE, vanishes as the temperature tends
to zero.t In crystals, the condition for insulating behaviour is the vanish-
ing at EF of N(E); in non-crystalline materials insulating behaviour is
compatible with a finite value of N(Ep). Materials where this is so, states
at Ep being localized, have been called Termi glasses' (Anderson 1970).

We argue that, if for a given energy some states are localized, then for
that energy they must all be localized.§ If a non-localized state exists, it
will have the result that any state with the same energy which might
otherwise be localized will become a 'virtual bound state' in the sense
described by Friedel (1954). Localized and non-localized states cannot
coexist at the same energy for a given configuration (Cohen 1977). In
contrast, in any non-crystalline system, for instance a liquid, a great many
configurations of the atoms are possible; we call the totality of such
configurations an ensemble. Any calculated quantity that is to be compared
with experiment must be averaged over all configurations of the ensemble.
These are bound to include some for which states are non-localized, for
instance the crystalline configuration. Our statement, then, that crE can

t In terms of an ensemble average, very nearly all; see below.
$ It was many years after Anderson's original work before this was generally accepted.

Intuitively one might think that an electron could find a state with its own energy if it
tunnelled far enough. This turns out to be wrong, as we shall see. Lloyd (1969), Brouers
(1970), and Ziman (1969) assumed, we believe incorrectly, that, if G is the Green's function
for the system, a finite value of (G) was sufficient to yield non-localized states. Anderson
(1970), Thouless (1970, 1974), and Mott (1974&) gave contrary arguments.

§ An experimental proof that localized and extended states do not coexist at a given energy in
one typical system, the impurity band of crystalline silicon doped with phosphorus, is due to
Geschwind, Romestain, and Devlin (1976) and is described in Chapter 4.
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vanish must mean that (cr£) = 0, where the angular brackets denote a
configurational average. The contribution to (cr£) for non-localizing
configurations must tend to zero as the volume of the specimen tends to
infinity.

For this reason we think that the most satisfactory definition of localiza-
tion for wavefunctions of energy E is that

(2.4)

We need therefore a method for calculating this quantity applicable to the
case of localization, and also for short mean free paths Afc/fc ~ 1, as well as
to the normal case when kk/k «1 and the Boltzmann formulation is
applicable. We do this by considering an electromagnetic wave of small
frequency aj acting on a medium in which the states are full up to a limiting
energy E, and deducing the conductivity <TE(<*>) at zero temperature. The
d.c. conductivity for such a system is given by

(2.5)

If this vanishes even though N(E) is finite, the system is a Fermi glass.
For a semiconductor, that is to say a system in which the current is

carried by excited electrons rather than being determined by those at EF,
the quantity o-E can also be used to describe the conductivity at a finite
temperature, if interaction with phonons is neglected. This conductivity is

where / is the Fermi distribution function (2.1). We shall see later that an
energy Ec always exists which separates energies where states are localized
and non-localized in a conduction or valence band. The contribution to the
conductivity of states in a conduction band above Ec (extended states) is
thus

(2.6)

where crmin is the valuet of aE at E = Ec. If this is written

where //, is the mobility for electrons with energy EC, then

(2.7)

t The reason for this notation is explained in § 2.5.
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The mobility for electrons with energies below Ec, which must hop from
one state to another, involves interaction with phonons and cannot be
determined from CTE. This will be the subject of later sections.

An expression for crE obtained from (2.5), known as the Kubo-Green-
wood formula,t will be the basis of many of the considerations of this book,
and will be derived in the next section.

2.2. The Kubo-Greenwood formula

We shall now deduce formulae for the quantities orE(co) and 0^(0) intro-
duced in the last section. The calculation will be carried out for a
degenerate electron gas at zero temperature, states being occupied up to an
energy EF. Suppose that the eigenfunctions for an electron with energy E
in the non-periodic field, with any appropriate boundary conditions, are
I[/E(X, y, z\ and that these are normalized to give one electron in a volume
fl. Suppose that an alternating field F cos cot acts on an electron so that the
potential energy is exF cos cot. Then the chance per unit time that an
electron makes a transition from a state with energy E to any of the states
with energy E + h(o is

(2.8)

The matrix element xE',E is defined by

and the suffix av represents an average over all states having energy near
E' = E + hco. It is convenient to write

(2.9)

where

Thus (2.8) becomes

(2.10)

We now introduce as in the last section the conductivity for frequency co,
written crE(co) and defined so that o-E(co)2F2 is the mean rate of loss of
energy per unit volume. To obtain this, we must multiply (2.10) by

t Kubo (1956), Greenwood (1958).
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N(E)f(E) dE,.the number of occupied states per unit volume in the energy
range dE, by {1 —f(E  + ha))}, the chance that a state with energy E + hw is
unoccupied, by tico, the energy absorbed in each quantum jump, and finally
by 2 for the two spin directions. We find, integrating over all energies,

(2.11)

The second term in the square brackets gives the energy absorbed in
stimulating downward jumps. \D\2 is now averaged over all initial and final
states. The quantity in the square brackets simplifies to

so that (2.11) reduces to

(2.12)

When T = 0, (2.12) becomes

(2.13)

The lower limit of integration is Ep-hco, this being the lowest energy of an
electron that can absorb a quantum; the upper limit is J5"F; EF is now the
Fermi energy at zero temperature.

To obtain the d.c. conductivity we take the limit of or(a)) when co -» 0. At
T = 0 this depends only on the values of the quantities in the integral when
E = EP. We define o-E (0) by

(2.14)

where

The av represents an average over all states E and all states E' such that
E = E', so that at T = 0 the conductivity o-(0) is given by

where EF is the Fermi energy. Eqn (2.14) is the Kubo-Greenwood
formula.
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If states with energy E are localized, all the functions DE vanish, because
J«/te(d/d*)<A£ d3jc is zero, and overlap between two localized functions
<Ai, fa with the same energy is impossible. This is because, if the overlap is
finite, the degeneracy will be removed by forming two functions of the
form Ai</fi+A2<A2 and Biil/i + B2fa with an energy separation depending
on the overlap.

If scattering is weak and the mean free path L is long (kL »1), the
Kubo-Greenwood treatment should give the same result as the Boltzmann
formulation. This is, for a spherical Fermi surface,

(2.15)

where SE is the area 4irk2 enclosed by the surface in k-space of energy E.
ltE = Ep, SE is the area of the Fermi surface, which we denote by 5F. Eqn
(2.15) is easily shown to be equivalent to

(2.16)

where n is the number of electrons per unit volume and u(=hk/m) is the
velocity at the Fermi surface.

A rough demonstration that the Kubo-Greenwood formula yields
(2.15), using a method that we shall employ when kL is not large, is as
follows (Mott 1970). We define the mean free path as the distance L in
which the phase of i// loses all memory of its value. If we introduce a
volume v equal to that of a sphere with radius L, so that

the phases of the wavefunctions in any two of these volumes will be
uncorrelated. Thus, if 8 is defined by

then D is equal to the sum of fl/v contributions, each equal to 8 but with
random signs. We may thus write

To evaluate 8 we write

and, setting
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where S is the scattering angle, we approximate by writing

= 0 otherwise.

Thus, averaging over all angles 6 between 0 and 1/kL

(2.17)

Substituting from (2.3) for N(E) we see from (2.14) that o- = e2k2L/6iT\
which is the same as (2.16) apart from a factor of 2.

This approximate method does not give the correct numerical factor; a
method due to Thouless (1975) is exact. We assume that the eigenfunctions
of energy k2/2m are superpositions of plane waves with random phases
and that the mean square amplitude of a plane-wave component is the
same as one would obtain if one made a state with complex wavenumber
ki —  i/2L, where L is the mean free path. That is, we take the state of
energy k2/2m to have the form

(2.18)

where the amplitudes a\ are independent Gaussian random variables
whose variance is given by

(2.19)

where the second form is a suitable approximation for a degenerate Fermi
gas with kpL»l.

Using (2.18) and (2.19) we can work out the quantities \D\2 as

and, since i ̂ j, only the terms with k = k' contribute to the average, and
we obtain, writing p = (h/i)D

(2.20)
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Substitution of (2.20) in eqn (2.13) gives

(2.21)

For a) = 0 this gives (2.16), and in addition gives the Drude term !/(! +
o)2r2) for a.c. conduction, since r = L/u = L/(tik/m).

The value of the mean free path L depends on the scattering mechanism.
Edwards (1958), taking weak-scattering potentials, also derived the
Boltzmann formula starting from the Kubo-Greenwood formalism. He
proved directly that, with 1(6) given by the Born approximation, eqn (2.15)
follows from (2.14).

If the density of states differs from the free-electron value, we may
introduce the factor g, defined CMott 1961) by

(2.22)

(2.14) then becomes

(2.23)

L being defined as the distance in which electrons lose phase memory. If,
however, we write L0 for the value of L calculated by first-order pertur-
bation theory, then as shown by Edwards (1961)

(2.24)

so (2.15) remains true if L0 is written for L. The relation (2.24) is valid
because, if r is the time of relaxation, 1/r must be proportional to the
density of the states into which the electron is scattered; also

and a high density of states implies a low value of dE/dk (eqn (2.3)) and
hence of the velocity u. As we shall see later, however, the factor g2 in
(2.23) becomes important if L has its minimum value a, which in the model
to be introduced in the next section is the distance between atoms.

2.3. Anderson localization

We stated in the last section that sufficient disorder can produce charac-
teristic solutions of the Schrodinger equation which are localized in space.
The first paper which proved this, and gave a quantitative criterion for
localization, was that by Anderson (1958). His result will now be
described.
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Starting from the Schrodinger equation

(2.25)

he uses the tight-binding approximation, in which a crystalline array of
potential wells produces a narrow band of levels, as in Fig. 2.1 (a). Appli-
cations could be to the d band of a transition metal or to donors producing

Fig. 2.1. (a) Potential wells for a crystalline lattice, (b) Potential wells for the Anderson
lattice. The density of states N(E) is also shown.

a metallic impurity band in a semiconductor (Chapter 4). We suppose that
the wells are so far apart that the overlap between the atomic wavefunc-
tions </>(r) on adjacent wells is small. If the suffix n describes the nth well
and Rn its lattice site, the Bloch wavefunction for an electron in the crystal
is

(2.26)

We take the functions </> to be spherically symmetrical (s functions). If then
Wo is the energy level for an electron in a single well, the energies for an
electron in a simple cubic lattice corresponding to the wavefunctions (2.26)
are

where



THEORY OF ELECTRONS IN A NON-CRYSTALLINE MEDIUM 17

Here, / is the transfer integral given by

(2.27)

where H is the Hamiltonian. The transfer integral occurs many times in
this book. It depends on the shape of the wells, but for our purpose it will
be sufficient to write it as

(2.28)

Here a is defined so that exp(-ar) is the rate at which the wavefunction on
a single well falls off with distance (a = (2mWo)l/2/ti). For hydrogen-like
wavefunctions /0 can be evaluated and is (Slater 1963)

(2.29)

The effective mass m* at the bottom of a band is

(2.30)

and the bandwidth B is

(2.31)

where z is the co-ordination number.
Our problem is to consider what happens to this band of energies when

the potential-energy function V is non-periodic. A non-periodic potential
can be formed in two ways:

(a) By the displacement of each centre by a random amount, as for
instance by lattice vibrations or by the destroying of the long-range order
(lateral disorder) as in a liquid.
(b) By the addition of a random potential \V to each well (vertical
disorder); Anderson supposed that V took all values at random between
± VQ, so that V0 is the spread of energies. Other distribution functions,
such as the Gaussian, are of course admissible.
We consider case (b) first. If V0 is small, a large mean free path is

introduced. An application of the Born approximation (Mott and Massey
1965, p. 86) gives

(2.32)

E and the velocity u being taken at the Fermi energy. Using (2.3) for
N(E\ (2.32) reduces to

(2.33)
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In Chapter 1 the rule of loffe and Regel was introduced, according to
which a mean free path such that kL< 1 is impossible. With the potential
energy illustrated in Fig. 2.1 and no disorder, ka = TT in the middle of the

Fig. 2.2. Form of the wavefunction in the Anderson model: (a) when L~a; (b) when states
are just non-localized (E^EC); (c) when states are just localized (E&Ec)i (d)

strong localization.

band. The loffe-Regel rule then means that the shortest possible mean free
path arises when the wavef unction loses phase memory in going from atom
to atom, so that instead of (2.26) it has the form

(2.34)

where the An have random phases and amplitudes, as in Fig. 2.2(a). In such
a case we write for the magnitude of the mean free path

Eqn (2.33) leads us to suppose that this occurs when
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or if the co-ordination number z is 6,

(2.35)

To see what happens when V0 exceeds this value, we consider a pair of
wells at a distance R from each other with energies shifted from the mean
by amounts Va, Vb. The two wavefunctions for a pair of electrons in these
states are

(2.36)

<Aa, </>b being the atomic wavefunctions. The values of A, B and the
energies JEJi, E2 can be found by minimizing the energy integral; the results
are rather complicated (see, for instance, Miller and Abrahams 1960), and
we need quote only the following limiting cases:

(a) If | Va- Vb|«/, then A~B and Ei-E2~2L It cannot be less than
21.
(b) If |Va-Vb|»/,then

Wavefunctions for the two cases, and also a plot of Ei—E 2 as a function of
I Va- Vb|, are shown in Fig. 2.3.

Fig. 2.3. Wavefunctions of odd and even parity for a pair of wells: (i) Va= Vb; (ii) Va< Vb

and Vb— Va»2J; (Hi) plot of the difference in the energies of the two states.



20 THEORY OF ELECTRONS IN A NON-CRYSTALLINE MEDIUM

If we turn again to the infinite array of wells, the form of i// for a pair
suggests that there should be random fluctuations of the amplitude (as well
as of the phase) of i// in going from well to well, and that as Vo/B increases,
these fluctuations become larger (Fig. 2.2(b)). This undoubtedly occurs.
However, if V0/B is very large, one would expect intuitively that the
wavefunctions for each isolated well would be little perturbed by all the
other wells, and so would fall off exponentially with distance as in Fig.
2.2(c) and 2.2(d). The important questions are: Does this in fact occur, and
if so at what value of Vo/Bt To answer this question, Anderson took the
potential of Fig. 2.1(b) and asked the following question. If at time t = 0 an
electron is placed on one of the wells, what happens at f-»oo? Is there a
finite probability at the absolute zero of temperature that the electron will
have diffused to large distances or does the chance that an electron will be
found at a large distance r vary as exp(-2ar), in which case there is no
diffusion? Anderson found that there is no diffusion if V0/B is greater than
a constant that depends on the co-ordination number z. This means that, if
Vo/B is greater than this constant, all the wavefunctions for an electron in
the system are of the type shown in Fig. 2.2(c), decaying with distance r
from the neighbourhood of some well n. The wavefunctions of the local-
ized states are of the form (instead of (2.34))

(2.37)

the coefficients An having random phases as before.
Another and perhaps preferable way of expressing the Anderson condi-

tion is to take for the initial state an electron localized in a large volume of
diameter AJC, the energy being defined as closely as allowed by the
uncertainty principle. Then, if the energy E is taken at the centre of the
band, there will be no diffusion if the condition is satisfied; if not the
amplitude within AJC will tend to zero as the time t increases. This descrip-
tion allows us to ask whether states are localized at a given energy E.

There is now an extensive literature on the critical value of V0/B for
Anderson localization. Anderson (1958) found for co-ordination number
6, a value of 5-5; Edwards and Thouless (1972), as a result of numerical
calculations, found a much smaller value, about f in two dimensions and
about 2 in three. Herbert and Jones (1971) also find that a smaller value is
likely. Schonhammer (1971), using a probability density for the random
energies Vt of the form

(2.38)

obtained the value 2-2. Numerical calculations by Schonhammer and
Brenig (1973) confirm this. The value is roughly proportional to the co-
ordination number z (Economou and Cohen 1970a, b, c, 1972), though for



THEORY OF ELECTRONS IN A NON-CRYSTALLINE MEDIUM 21

z = 2 it becomes zero, all states in a one-dimensional random chain being
localized (§ 2.16). Economou and Cohen (1972), using a Lorentzian dis-
tribution const./(Vf +F2), found T/B = 2, a much smaller value; Kikuchi
(1970) found V0/B=-4. Abou-Chacra, Anderson, and Thouless (1973)
found by analytical methods a value closer to that of Anderson (1958), but
conclude that the numerical results are more reliable. A review of all this
work has been given by Thouless (1974).

Many applications, for instance to impurity conduction, are for a random
array of impurities, and for these we do not know the appropriate value of
z. Experimental estimates of the value come from measurements of the
minimum metallic conductivity (§2.6 and Chapter 4) and suggest V0/B ~ 2
for s functions and about 1 for d functions for which the effective co-
ordination number is smaller.

For lateral (non-diagonal) disorder, that is for a random distribution of
centres in space, the condition for Anderson localization has been esti-
mated roughly by Mott (1973a, 19770) as follows. Following Lifshitz
(1964), we pair each atom with its nearest neighbour, which we suppose to
be at a distance r\ from it, given by

where N is the number of centres per unit volume. The energy of an
electron located on any two centres in a pair is 70 exp(—ar\) and, since r\
varies from pair to pair, we take this quantity as V0 in the Anderson
formula (a very rough approximation). Tlie mean distance between pairs is

so we suppose the band width B to be

and, putting in the Anderson criterion in the form V0 = 2B, we have

Thus

whence

The term in braces is equal to 0-63, so if we write a"1 = aH, we find

(2.39)
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Mott (1977'/) suggests that, because of the directional properties of the
wavefunction for a pair, z should be nearer 2 and V0 = B would be more
appropriate, which leads to 0-4 instead of 0-2 in (2.39). Debney (1977), in
a computer-based study, finds l/(JV1/3aH) to be 4 in three dimensions and
3 in two, but concludes that these are upper bounds, the true value being
up to 25 per cent lower. If so, the right-hand side of (2.39) should be in the
range 0-3-0-35. Economou and Antoniou (1977), however, find that pure
Anderson localization is not possible in the centre of a band with only
off-diagonal disorder. If this is correct, for a half-full impurity band as
discussed in Chapter 4 the additional effect of electron-electron interaction
must allow it. Probably for the same reason, Hoshino and Watabe (1977)
find that the relationship crocjTV^)}2 does not hold for off-diagonal dis-
order; it would not be expected unless L~a (see also p. 124).

Turning now to diagonal disorder, as the value of V0/B approaches the
critical value, the quantity a in the middle of the band in eqn (2.37) will
tend to zero. According to Abram and Edwards (1972), Anderson
(1972a), and Lukes (1972) it behaves like

(2.40)

Freed (1972) obtains a slightly different value of f for the exponent. This
behaviour is discussed in more detail in connection with the behaviour of
the wavefunctions at the mobility edge, and these indices are perhaps open
to doubt.

The Anderson criterion in two dimensions is discussed by Licciardello
and Thouless (1975) and by Yoshino and Okazaki (1977), who obtain
similar results, Vo/B~l. In one-dimension, all states are localized
(§ 2.16); in two and three, as we have seen, a criterion exists for localiza-
tion; in four according to Toulouse (1975) and Toulouse and Pfeuty (1975)
localization cannot occur.

2.4. Situations in which states are localized in one range of energies and
not localized in another

This can occur for an electron with the potential energy illustrated in Fig.
2.1.(b), if the Anderson criterion is not satisfied. crE will then be finite in the
middle of the band, but zero for energies near its extremities. In fact, any
form of random potential, however small, will introduce a range of local-
ized states at the band tail. This being the case, a critical energy Ec must
separate localized from non-localized states, defined so that

(2.41)

This is illustrated for a density of states resulting from the Anderson
potential in Fig. 2.4; E'c separates localized and non-localized states at the
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Fig. 2.4. Density of states in the Anderson model when states are non-localized in the centre
of the band. Localized states are shown shaded. Ec, EC separate the ranges of energy where

states are localized and non-localized.

top edge of the band. There is no discontinuity in N(E) nor in any of its
derivatives at Ec, as shown by Thouless (1970).

The existence of an energy Ec was first pointed out by Mott
(1966,1967) and follows rigorously if we define localization at a given
energy E by the equation crE = 0, because O-E cannot be both zero and
non-zero. The concept was introduced by Cohen et al. (1969) for the
conduction band of an amorphous semiconductor; Ec is then referred to as
the 'mobility edge'. Determination of the position of a mobility edge on the
Anderson model has received considerable attention, calculations being
made by Economou and Cohen (1970fl,Z>, 1972), Schonhammer (1971),
and Abou-Chacra and Thouless (1974). The latter authors calculate the
position of the mobility edge with the same square distribution function for
VQ as used by Anderson (1958)

Fig. 2.5 is reproduced from their paper, in which Ec is plotted against
Vo/B for z ~4. For weak disorder they find that the distance of Ec from

I Fig. 2.5. Plot of EC against VQ/B measured from mid-band. (From Abou-Chacra and
Thouless (1974).)
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the bottom of the band is given by

(2.42)

where K = z-l9 so that B (the bandwidth without disorder) is 2zL The
term \ VQ could be replaced by the mean square of the deviation of the site
energy whatever its form. As VQ increases, the band broadens and Ec

moves into its tail, so (Ec being measured from mid-gap) the numerical
value increases. Eventually, when V0/B ~ 2, Ec moves to mid-gap. Similar
behaviour is obtained by Schonhammer (1971).

A calculation of the band form with this model is given by Mookerjee
(1973), and discussed further in §2.12. The bottom of the band is at
£A — 2 VQ\ this occurs when statistical fluctuations give a large number of
wells with maximum depth close together. This will of course be very
improbable, so an exponential tail occurs. Ec lies in the tail unless V0/B is
quite near to, say, half the Anderson value.

For lateral disorder the problem has been attacked by Kikuchi (1974)
using the Lifshitz method of pairs as in the last section and the formula of
Abou-Chacra and Thouless (eqn (2.42)). An interesting result is that
localization is stronger at the top of the band than in the tail, because of the
weak overlap integral / between pairs in antibonding states.

The behaviour of the wavefunctions for energies near Ec is of great
importance, and has been the subject of considerable controversy. The
form of the wavefunction for E just on the localized side of Ec is shown in
Fig. 2.2(c). It can be written for large r in the form (2.37), where exp(-ar)
represents the envelope shown by the dotted line, a must tend to zero as
E-+EC, just as it must in the middle of the band when Vo-»(Vo)crit.
Therefore the spatial extent of the wavefunctions becomes large and they
overlap strongly. An early conjecture on dimensional grounds (Mott
1969a) was that

where m is the effective mass. Later investigations by Lukes (1972),
Abram and Edwards (1972), Anderson (19720), arid Freed (1972) predict
that, near the mobility edge, a behaves like (EC —  E)\ where s = 0-6 (or |
according to Freed), so a dimensionally correct formula would be

(2.43)

where a0 is the value of a far from the mobility edge. It follows that near
the mobility edge each wavefunction strongly overlaps a number of other
wavefunctions, the number being of order (47r/3)(aa)3. Hopping, there-
fore, is possible without tunnelling through any region in which exp(-ar)
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decays appreciably. In two dimensions, according to Abram (1973), the
index in (2.43) should be 0-75. The values of these indices are, however,
open to doubt,t and in § 2.9, following considerations due to Mott (1976c),
we shall propose s = f (Freed's value) in three dimensions and s = 1 in two.
There is some experimental indication that the latter value is correct in two
dimensions (§4.6), while in three dimensions the experimental work of
Sayer et al. (1975) discussed in §4.7.3 indicates a value near 0-6; one
cannot, however, distinguish between this and f.

When E = Ec, the quantity a becomes zero and the wavefunction has
the form (2.34) illustrated in Fig. 2.2(b). These wavef unctions spread through
all space and are called 'extended'. The conductivity o-E can be calculated
using the Kubo-Greenwood formula (2.14) if it is assumed that the phases
of An in (2.34) vary in a random way from atom to atom, but that
fluctuations in the magnitude of An do not have a major effect. This
calculation is carried out in the next section; we call the result the 'minimum
metallic conductivity' and denote it by crmin. If, as we believe, such a quantity
exists, the conductivity o-E must show a discontinuity $ at Ec, as illustrated in
Fig. 2.6(a). In systems of the Fermi glass type, in which EF (the Fermi energy

(b)
Fig. 2.6. (a) Conductivities o-E at zero temperature as a function of E; the full line is d.c. and
the broken line is cr£(o>). (b) Activation energy e for excitation to a mobility edge as a

function of EF.

t Last and Thouless (1971; see also Thouless 1974, p. 133) suggest that for energies near the
mobility edge a may fall off as a power law. Another important point is that, even when
a ; -» 0, a finite amount of J if/2 d3x may lie near the centre of the localized wavefunction; this
is so in one dimension (see § 2.16).

t The criticisms of this concept due to Cohen and others are discussed in § 2.9.
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at zero temperature) can move from below to above Ec, consequent
on change of composition or some other parameter, there will thus be a
sharp change in the d.c. conductivity at T = 0 from zero to a finite value.
Such a change has been called an 'Anderson transition'.

If the Fermi energy EF lies on the localized side of Ec, then two forms of
d.c. conduction are possible: thermally activated hopping from one local-
ized state to another, which is described further in § 2.7, or excitation to
the mobility edge Ec, which will have an activation energy e varying as
shown in Fig. 2.6(b).

Fig. 2.7(a) shows the expected behaviour of the resistivity as a function
of T if Ep and Ec are varied in such as way that \E-p- Ec\ changes sign. Fig.
2.7(b) shows as a function of 1/T the behaviour of the resistivity for charge

Fig. 2.7. Plots of resistivity p against T and log p against 1/T for values of V0/B increasing
from curves 1 to 4, conduction for the Fermi glass being by excitation to Ec. Curve 2 shows
the value of p for E? at Ec, so that 1/p for this curve is the minimum metallic conductivity.

transport due to excitation to the mobility edge, the conductivity thus being
of the form

(2.44)

crmin is here the minimum metallic conductivity, i.e. o-E when E = EC, as
may be seen from eqn (2.6). The behaviour in the hopping region is
described in § 2.7.

As in Fig. 2.6, we do not expect a discontinuity in <r(a)) when E = EC

unless a) = 0. The behaviour of this quantity is described in the next
section.

The description given here of Anderson localization and of a mobility
edge is for a particle. It is applicable also for any excitation, for example an
exciton. Koo, Walker, and Geschwind (1975) have explored the form of
the exciton band in ruby, which is a line due to absorption in one of the
Cr3+ ions located at random sites on the A12O3 lattice. Using a ruby laser
beam with width much smaller than the exciton band, they found that only
for a range of energies in the middle of the band could the exciton diffuse
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away, allowing it to reach traps from which radiative emission occurred at
small frequency. For a low concentration of Cr, too, there was no diffusion
for any frequency of the laser beam. A somewhat similar phenomenon
seems to occur in CioH8-CioD8 mixtures, the exciton-transfer rate chang-
ing discontinuously as the concentration is varied (Kopelman et al 1975).
According to Klafter and Jortner (1977), the change in the zero-point
energy gives sufficient fluctuations to cause an Anderson transition.

2.5. Photon-activated hopping; the w2 law

In this section we calculate cr(a)\ the conductivity for frequency a), for a
Fermi glass, that is to say a degenerate electron gas in which the states at
EF are Anderson localized. We start with eqn (2.12) and suppose that ti<o is
small so that N(E) can be taken as constant. For D we have to sum over
pairs of occupied and empty states differing in energy by ha), and from (2.9)
write

(2.45)

The functions if/ fall off with distance as exp(—aR) and within the radius
I/a change their sign in a random way from atom to atom. If the two states
are at a large distance R from each other, we may approximate D by
writing

(2.46)

The last term arises because of the random change of sign from atom to
atom.

Now if the two centres are close together, the wavefunctions for an
electron resonating between them will have the forms (2.36) and the states
will be separated in energy by

(2.47)

whichever is the larger. Here W& is the difference in the energies of the
zero-order functions <£. 70 will be given by (2.29), but should be multiplied
by (aa)3/2 if this quantity is less than unity. For large values of R and under
these conditions

If R is large, transitions will take place between states for which W& = h<o,
but if R is not large, so that
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the separation between the states is larger than hco and no transition can
occur. Thus significant contributions due to a given localized state come
from other states at a distance from it between R and R 4-a"1, where

Moreover, at this distance, since i/s resonates between the two wells as in
Fig. 2.3(i), we may write

It follows then from (2.12) that

(2.48)

This formula was first given by Mott (1970). It shows that, as a) -» 0, or(a))
tends to zero as o>2, apart from the logarithmic term.

Tanaka and Fan (1963) were the first to obtain an co2 law with a model of
this kind; they considered the case when kT> V0. With this condition our
formulae should be multiplied by V0/kT.

2.6. The minimum metallic conductivity

The purpose of this section is to calculate the value of o-E when E has the
value EC at which localization occurs. A similar problem is to obtain a
value for o-E in the centre of the band when V0 takes the critical value for
localization. We call either the 'minimum metallic conductivity', denoted
by o-min, because, for a system at zero temperature in which electron states
are occupied up to the Fermi energy E, it is the smallest non-zero value
that the conductivity at T = Q can have. Our calculation (Mott 1972c),
which is for the Anderson potential of Fig. 2.1, starts from the Kubo-
Greenwood formula (2.14) and makes use of a method due to Hindley
(1970) and to Friedman (1971). Each pair of atoms is treated as a bond,
and the matrix element DE is the sum of the matrix elements 8E for each
pair of atoms, summed with the assumption that they have random signs.
Thus

where N is the number of atoms and z the co-ordination number, so that
\Nz is the number of pairs (bonds). We can transform SE into the overlap
integral / (eqn (2.27)) using a formula due to Holstein and Friedman
(1968), namely
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where a is the interatomic distance; then from eqn (2.14) we find

(2.49)

This formula is valid in the range of energies for which L ~ a. If the density
of states were unaltered from the form for a crystal, we could set in the
middle of the band for a simple cubic lattice (Mott and Jones 1936, p. 85)

so that

(2.50)

with the constant equal to 37r/4z or, with z = 6, equal to Tr/8; we may note
that starting with eqn (2.15) and putting L = a, we obtain the same formula
with the constant equal to 3, which is perhaps fortuitously good agreement.

If the random potential V0 is much larger than the crystalline bandwidth
B, an approximation to the density of states in the middle of the band will
be

(2.51)

substituting into (2.49) and writing B = 2zl, we find

(2.52)

For the conductivity, therefore, we obtain the following regimes for
increasing values of the disorder parameter V0.

(i) The regime where L>a and L is given according to the Born
approximation by eqn (2.33), which may be written

from (2.51)

(2.53)

L and a become comparable when V0 —  Q-6B. A value of the conductivity
of this magnitude, 0-5 e2/ha (or e2/3ha if we use eqn (2.15) with L = a),
which occurs when L ~ a but when the disorder has little effect on N(E\
plays a role in the theory. For instance, we think it is appropriate for the
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resistance of liquid transition metals (§5.11). It is of ordert
3000 IT1 cm'1.

(ii) The regime where L~a and o-cc{N(EF)}2. At first as VQ increases
we may write N(E)~l/a3(B2+ Vo)1/2, so that a- does not decrease
rapidly as V0/B increases; for large Vo, (2.51) becomes a good approxi-
mation. The conductivity thus behaves as shown in Fig. 2.8.

Fig. 2.8. Plot of conductivity for half-filled Anderson band as a function of VQ/B at zero
temperatures. (From Mott 1973a.)

(iii) When V0/B reaches the Anderson criterion for localization, the
conductivity has fallen to the value (2.52) with the critical value of B/ Vo,

(2.54)

(B/ Vo)crit, as we have seen, may depend on the co-ordination number.^ If
we take

then the minimum conductivity is

(2.55)

when a is in angstroms. When VQ/B exceeds this value, o-E drops dis-
continuously to zero, as shown in the figure.

tin § 5.16.2 we comment on the conclusion of Andreev (1976) that for liquid Se and Te
alloys the value 1000-3000 H"1 cm"1 is appropriate in this regime, and that, for these
materials with a considerable number of electrons outside a closed shell, L — 0-40 fits the
observed results. We note that L~ a is correct only for the tight-binding model of Fig. 2.1,
and that a critical value of kFL of order unity might be a better approximation in these
liquids.

$Thouless (1974) finds that the dependence is weak.
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If a is 3 A, o-min given by (2.55) has the value -200 O"1 cm"1. For an
impurity band with a, say 50 A, o-min is ~12 fl"1 cm"1 (see Chapter 4).

If EC lies far away from the centre of the band, a in eqn (2.55) should be
the distance aE in which the wavefunction loses phase memory; we con-
jecture that this is of order

(2.56)

An investigation by Lukes (1975) confirms this, giving N(E) of the form

and

a0 being the hopping distance in the middle of the band and E being
measured from the middle of the band.

In this book, particularly in Chapters 4 and 5, we shall describe the
experimental work which determines the magnitude of crmin. We sum-
marize here some of our findings.

(1) The constant 0-026 in (2.55) is not far wrong for impurity bands,
though some empirical evidence suggests that 0-05 would be a better
value. In this connection we note that Thouless (1974) maintains that the
average hopping distance should be rather greater than to nearest
neighbours, which may account for the discrepancy as may also the mahy
approximations in the calculation.
(2) If the atomic orbitals are d states, values of crmin of about
103 fl"1 cm"1 are usual, suggesting that the constant is —0-1. This may
be due to the smaller effective co-ordination number for wavefunctions
that are large only in certain directions.
(3) For random positions of the centres in space (lateral disorder), crmin

is about three times larger than (2.55), possibly because of the smaller
co-ordination number between pairs.
(4) If long-range fluctuations in potential exist, the concept of a mini-
mum metallic conductivity is still valid as long as tunnelling through the
potential maxima is possible; crmin in this case may, however, be much
smaller (§ 2.8).
(5) In two dimensions, the minimum metallic conductivity is of the form
const. e2/h\ the distance a between wells or aE does not occur. Accord-
ing to Licciardello and Thouless (1975) the constant has a universal
value ~0-1 independent of the kind of disorder; the conductance is thus
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though Pepper (1977a) gives experimental evidence to suggest that long-
range fluctuations can lead to a higher value; also lower values for
Landau orbitals induced by a magnetic field are predicted by Aoki and
Kamimura (1977); these are discussed in § 4.6.

(6) In one dimension all states are localized and there is no 'metallic'
conduction (§2.16).
The concept of a minimum metallic conductivity, either in two or three

dimensions, has proved controversial, as will be shown in § 2.9. At this
point, however, we need only say that in non-crystalline materials values of
the conductivity tending to a finite value as T -> 0 seem always to lie above
~300 ft"1 cm"1 or the corresponding value 0-05 e2/ha for impurity bands.
The evidence for its existence is therefore strong. Our discussion of the
'mobility edge' in amorphous semiconductors (§ 6.4.2) also depends on this
concept.

2.7. Hopping and variable-range hopping

In this section we continue our discussions of conduction in a 'Fermi glass',
that is a degenerate electron gas in a highly disordered medium, and
consider what happens to the d.c. conductivity when the Fermi energy lies
in the range of energies where states are localized. Then two mechanisms
for conduction are possible.

(i) Excitation of electrons to Ec\ the contribution to the conductivity is

(2.57)

where crmin is as before the value of crE at E = Ec, and

This form of conduction is normally predominant at high temperatures or
when e is small. In an alloy or other system in which the composition x
changes in such a way that E? passes through Ec, e should tend linearly to
zero, as already illustrated in Fig. 2.6(b).

(ii) Thermally activated hopping conduction by electrons in states near
the Fermi energy. This is illustrated in Fig. 2.9; the rate-determining

Fig. 2.9. The mechanism of hopping conduction. Two hops are shown, from A (an occupied
state) to B and from B to C.
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process is the hopping of an electron from a state (A) below the Fermi
energy to one above (B). The probability p per unit time that this occurs is
the product of the following factors.

(a) The Boltzmann factor exp(-W/kT\ where W is the difference
between the energies of the two states.
(b) A factor rph depending on the phonon spectrum, discussed in Chap-
ter 3.
(c) A factor depending on the overlap of the wavefunctions.
If localization is very strong (Fig. 2.2(d)), an electron will normally jump

to the state nearest in space because the term exp(-2oJ?) falls off rapidly
with distance. This we call 'nearest-neighbour' or 'Miller-Abrahams'
hopping, after the work of these authors (Miller and Abrahams 1960; cf.
§ 4.3) on impurity conduction. The conductivity is obtained as follows.
The number of electrons jumping a distance R in the direction of the field
will be made up of the following two factors.

(i) The number of electrons per unit volume within a range kT of the
Fermi energy, namely 2N(EF)kT.

(ii) The difference of the hopping probabilities in the two directions,
which are

where F is the field. The current / is obtained by multiplying by e and R
and is thus

(2.58)

For weak fields, eRF« kT, the conductivity is

(2.59)

The sinh in (2.58) for strong fields will be noted and is discussed further in
§3.12.

Nearest-neighbour hopping is only expected if aR0» 1, where R0 is the
average distance to a nearest neighbour. The hopping energy W is of the
order of the bandwidth; we write

Thus nearest-neighbour hopping with an exponential factor exp(- W/kT)
can be observed only if states are Anderson localized throughout the whole
band, so that any mobility edge is in a higher band.

If aR0 is comparable with or less than unity, or in all cases at sufficiently
low temperatures, the phenomenon of variable-range hopping is always to
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be expected, the hopping distance R increasing with decreasing tempera-
ture. This was first pointed out by Mott (1968, 1969a) and gives a conduc-
tivity that depends in the limit of low T on T as exp(-£/T1/4), or in two
dimensions as exp(—B/T l /3\ The proof given was as follows. We consider
that at a temperature T the electron will normally hop to a site at a
distance smaller than a value R which depends on the temperature. This
implies that it will have available 4ir(R/a)3/3 sites. It will normally jump
to a site for which the activation energy W is as low as possible, and for this
site

(2.60)

The average hopping distance ist

so the probability of a hop is, per unit time,

Assuming (cf. Chapter 3) that ^ph varies little with R or T, we have to take
the maximum value of this quantity, which occurs when

(2.61)

giving for the optimum value of R

(2.62)

with the hopping distance f of this. The hopping probability therefore
becomes

(2.63)

with

The conductivity will be obtained by multiplying (2.63) by e2N(EF)R2.
The calculation of vph, depending on assumptions made about the elec-

tron-phonon interaction, is reviewed in Chapter 3. The value of the

t In the papers quoted this was taken to be R.
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constant B0 varies considerably as between various treatments, as we shall
see below. It should lie in the range 2-5-1*7.

A treatment by Apsley and Hughes (1974, 1975) carries out the
averaging in a different way, again obtaining the form (2.63). Hamilton
(1972), Pollak (1972), Apsley and Hughes (1974, 1975, 1976), and Over-
hof and Thomas (1976) have discussed the effect on variable-range hop-
ping of a non-constant form for the density of states. In the limit when
T-» 0, (2.63) is always expected if N(EF) is finite, but deviations will occur
at higher temperatures. Overhof and Thomas have applied their analysis to
the case where E? lies in a sharp minimum of N(E), as may be the case in
amorphous silicon, and find 1/T1/2 behaviour rather than l/Tl/4 over a
significant temperature range.

Percolation theory applied to these problems gives a more rigorous
treatment. The essence of such an approach is that the spheres of radius R
on sites along a most favoured path must join up to form a percolation
channel through the material. R must be chosen so that it does, and a value
of R comes out from the analysis varying as T~1/4. Shklovskii and Efros
(1971) and Ambegaokar, Halperin, and Langer (1971) were the first to
apply percolation theory to the problem. These authors find a value of B0

differing little from that in (2.63). Ambegaokar, Cochran, and Kurkijarvi
(1973), Brenig, Dohler, and Wolfe (1971, 1973), Jones and Schaich
(1972), Pollak (1972, 1974), Kurkijarvi (1974), Maschke, Overhof, and
Thomas (1974), Pike and Seager (1974), Seager and Pike (1974), and
Butcher (1974fl,£, 1916a,b) have developed the theory. Seager and Pike
give a table of values of B0 (eqn 2.63) obtained by different methods; they
range from 1-78 to 2-48. The pre-exponential factor has also been studied
by these and other authors.t We quote the result of Kirkpatrick (1974); if
the hopping probability between a pair of sites at distance R is

then

In two dimensions, in the equation a = A exp(—B/T1 /3), the expected
value of B is (Mott, Pepper, Pollitt, Wallis, and Adkins 1975, Arnold 1974)

(2.64)

The effect of high fields is considered by Shklovskii (1973d,fe), Apsley
and Hughes (1975), and Pollak and Riess (1976). For moderate fields F,

t See also p. 353.

* In this equation N(EF) is the number of states per unit area. Also the RHS should be raised to the
power one-third.
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according to Pollak and Riess, the conductance must be multiplied by
exp(eFyR/kT), where R is the low-field hopping distance and y = 0-17 in
three dimensions and 0-18 in two dimensions. Pollak and Riess compare
their results with those of Elliott, Yoffe, and Davis (1974) in amorphous
germanium (cf. Chapter 7). At strong fields a form of conduction in which
the electron hops downwards without thermal activation gives, according
to all three authors,

(2.65)

though they give different values for the constant. Some of their results are
presented in greater detail in § 7.4.

Comparison with experiment is given in various chapters of this book.
l/r1/4 behaviour was first observed by Walley (I968a,b) in amorphous
germanium. Many experiments on this material and on silicon are reviewed
in Chapter 7, including the transition to T1/3 behaviour observed by Pollak
et al. (1973) and Knotek (1975a,£) for films of amorphous silicon and
germanium of thickness less than the hopping distance R. This form of
conductivity is via 'states in the gap' which are probably due to divacancies,
dangling bonds, or other defects of the nature of which there is some
uncertainty; the creation of defects by bombardment with heavy ions
increases this form of conduction (Olley 1973, Stuke 1976). Another
uncertainty in the interpretation is the possible temperature dependence of
z/ph (Chapter 3). Also l/Tl/4 behaviour should not be thought necessarily
to imply variable-range hopping; in fact other explanations have been
given (cf. Alder, Flora, and Sentura 1973) based on percolation theory.

We think that the clearest evidence for 1/T1/4 behaviour comes from
low-temperature measurements in impurity bands, where the nature of the
disorder and of the electron-phonon interaction is well understood, and in
two dimensions (1/T1/3 behaviour) from conduction at a Si/SiO2 interface.
Other examples are amorphous pyrocarbons (Biicker 1973), VOX where
the disorder is due to random vacancies, and Lai_xSrxVO3. All these are
reviewed in Chapter 4.

Klinger (1976) has discussed variable-range hopping for small polarons.
These are described in Chapter 3.

Voget-Grote, Stuke, and Wagner (1976) have shown that the tempera-
ture-dependent part of the linewidth of the e.s.r. signal of glow-discharge-
deposited silicon after bombardment by helium ions varies as
exp(-#/r1/4); the interpretation is that the electron in its excited state at a
point ri can interact with another at a point r2 through the term

leading to a spin flip. <TI, cr2 are here the spin vectors.
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The effect of correlation on hopping has been considered by various
authors. Pollak (1971fe) and Srinivasan (1971) first pointed out that Cou-
lomb repulsion between electrons in occupied centres could lead to order-
ing (similar to Wigner crystallization) with a reduction in the density of
states at EF or perhaps a gap. In the same spirit Knotek and Pollak (1974)
show that the field in which the localized states exist is itself partly deter-
mined by the electrons, and a given electron can raise the energies of
nearby states above the Fermi level. It thereby creates for itself a sort of
electronic polaron, and the electron can only jump to a distant state of very
nearly the same energy by taking the 'polaron' with it. This means that
simultaneously with its jump, other electrons with energies near the final
state must jump into new positions. This reduces the hopping probability
by a factor

(2.66)

where for each electron if/i, fa are the two relevant states in the fields
before and after hopping. The effect on the 1/T1/4 law at low T was not
discussed. According to Mott (1976ft), however, this will affect the pre-
exponential factor and the coefficient B in (2.63), but not the limiting T1/4

behaviour at low T. We consider, following Knotek and Pollak (1976), that
a range of temperature may exist in certain cases in which a transition from
single-particle to multiparticle hopping gives a proportional to
exp(-#/T5), with s >i

It is not in our view true, however, as claimed by some authors (e.g.
Efros and Shklovskii 1975, Efros 1976) that correlation introduces an
energy gap or l/r1/2 behaviour (see Mott 1975d), or that deviations at
low T are expected as proposed by Kurosawa and Sugimoto (1975).

2.8. The Anderson transition

A Fermi glass has been defined as a material in which there is a degenerate
electron gas, with a finite density of states at the Fermi energy EF, but in
which there is enough disorder for states there to be localized. An Ander-
son transition occurs if the position of the Fermi energy or of the mobility
edge EC (or both) is varied in such a way that EC-EF changes sign; a
transition will then occur from semiconducting behaviour, the resistivity p
tending to infinity as T -> 0, to metallic behaviour with p tending to a finite
value. The transition can occur because of a change of composition, or in
some cases change of stress, magnetic field, or for two-dimensional
conduction at the Si/SiO2 interface by varying the gate voltage. Many cases
are reviewed in Chapter 4. The considerations of the last section show that
the resistivities of three-dimensional systems behave as in Fig. 2.10(a); for
activated conduction the relationship o- = o-minexp{ — (Ec —  EF)/kT} is
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Fig. 2.10. Plot of log (resistivity), with V0/B increasing from curve 1 through to curve 4 (a) as
a function of \/T (three dimensions), (b) as a function of 1/T (two dimensions), and (c) as a

function of 1/T1/4 (three dimensions).

expected at high temperatures, variable-range hopping at low. The
behaviour of a two-dimensional system is shown in Fig. 2.10(b). The
difference betweeatwo and three dimensions, namely that in the former all
activated curves extrapolate to the same point as 1/T tends to zero, is
because in the former C7min — 0-1 e2/h and does not contain a, so the
pre-exponential factor is the same for all curves. At sufficiently low
temperatures a plot against l/Tl/4 (or 1/T1/3) should appear as in Fig.
2.10(c).

In some cases the range in which there is excitation to the mobility edge
seems to be absent. This form of Anderson transition may occur for a
/ia//-filled band in which, as disorder is increased, localization occurs
everywhere else before EF. In this case only T1/4 behaviour may be
observed near the transition, since when states are localized at EF there is
no mobility edge in the band (as in the Ge-Fe alloys discussed in § 4.5).

Measurements of thermopower and of Hall coefficient show a striking
difference between conditions when charge transport is due to electrons
excited to a mobility edge and those when it is due to electrons with
energies at EF\ these differences are set out in subsequent sections and in
Chapter 4, where the experimental evidence is reviewed. This gives clear
evidence for the existence of a mobility edge and a minimum metallic
conductivity in Fermi glasses, and it is on the basis of this evidence that we
can confidently apply the concept to the conduction and valence bands in
amorphous semiconductors (Chapter 6).

A detailed description of these phenomena is given by Mott, Pepper,
Pollitt, Wallis, and Adkins (1975). Since the conductivity of a degenerate
electron gas depends in the low-temperature limit only on the behaviour of
the wavefunctions at EF, the Anderson transition gives a method of locat-
ing the mobility edge with more precision than is possible for materials and
ranges of temperature where a non-degenerate gas is involved.
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No discontinuity in the electronic specific heat is expected at an Ander-
son transition, because N(E) shows no discontinuity (cf. § 2.4). Experi-
mental evidence that this is so is cited in § 4.3.3.

2.9. Mobility and percolation edges

Classical percolation theory has been applied to electrons in non-crystal-
line materials by many authors. A wavy potential energy function such as
that illustrated in Fig. 2.11 is envisaged, and it is supposed that the

(b)

Fig. 2.11. Potential energies in conduction and valence bands with long-range fluctuations
due to (a) electrostatic charges and (b) fluctuations in density.

conductivity can be calculated by considering the fraction PI of the volume
available to an electron of energy E and the fraction P2 in connected
channels. Schematically the two volumes will appear as functions of E as in
Fig. 2.12; Pi(E) represents the total volume available for the electron of
energy E. Curve P2, representing the volume available for conduction, has
been shownt to behave like (E—Ep) 1'6 near the percolation edge. If the

tLast and Thouless (1971), Stinchcombe (1973, 1974), Kirkpatrick (1971, 1973a); for a
review see Esser (1972) and Kirkpatrick (19736).
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Fig. 2.12. PI is the volume available to an electron of energy E in the potential of Fig. 2.11;
P2 is the volume in connected channels.

conductivity in the allowed regions is constant, then we expect (at T = 0)
that the d.c. conductivity aE would behave like

(2.67)

It need hardly be stated that this classical theory is only valid if the
'mountains' of Fig. 2.11 are both high and wide enough effectively to
prohibit tunnelling and, if the valleys are wide enough, to include many
electron wavelengths. Even if they are high enough, as in the problem of
the mobility of electrons in dense helium vapour, the probability of the
electron being able to get through one of the hills of Fig. 2.11 cannot be
calculated classically.

Cohent and co-workers in several papers have maintained that near a
mobility edge large long-range fluctuations of potential will always intro-
duce a range of energies such that classical percolation theory can be
applied, so that (cr£(0)), the conductivity when T = 0, goes continuously to
zero as E approaches Ec. Arguments to show that this is not so have been
advanced (Mott 1972fe, 1974a,fc, 1976c), by Thouless (1974), and by
Licciardello and Thouless (1975). Since, however, the existence of a dis-
continuity in crE is basic to a great many of the arguments of this book, we
point out here the strength of the experimental evidence that the former
conjecture is wrong. If it were right, the resistivity-temperature curve for an
'Anderson transition' would appear as in Fig. 2.13, in contrast to the
observed behaviour shown in Figs. 2.10 and 2.11. One of the few cases
known to us where the behaviour of Fig. 2.13 is observed is that of NiSi_xSex

investigated by Jarrett and co-workers^ and discussed in detail by Mott
(1974a,c). In this case, where a metal-insulator transition occurs, a phase

t Cohen (1970a,6, 1973), Cohen and Jortner (1973, 1914a,b), Cohen and Sak (1972),
Economou et al. (1974), Webman, Jortner, and Cohen (1975).

$ Jarrett et al. 1973, Bouchard, Gillson, and Jarrett 1973.
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Fig. 2.13. Resistivity-temperature curves expected when percolation theory is applied to the
potentials of Fig. 2.11.

separation is certainly to be expected (§ 4.2), so we think macroscopic
regions of metallic and non-metallic type may have formed.

Conduction by granular metals embedded in an insulator are described
in § 4.9. For these, metallic behaviour starts at the percolation limit and the
conductivity varies as (jc-jc0)19, but on the non-metallic side tunnelling
between particles can occur, and the concept of minimum metallic conduc-
tivity may be relevant. As we shall see in § 4.9, when the temperature
coefficient of resistance changes sign, cr~50 fl"1 cm"1, which could cor-
respond to 0-min if a is the diameter of the grains.

Materials may exist in which fluctuations of potential are large and
long-range, but not quite large enough to prevent tunnelling altogether. In
this case we argue that a sharp mobility edge Ec must exist, at which crE is
discontinuous as in Fig. 2.14. The argument is that localized and extended

Fig. 2.14. <JE (conductivity at zero temperatures) for different energies E in the presence of
long-range fluctuations: full curve, classical percolation theory; broken curve, when tunnel-

ling is allowed.

states cannot coexist at the same energy, and that, if extended states exist,
(TE must be finite. However, in such a case 0-min is likely to be much smaller
than the values previously estimated and Ec should lie near the percolation
edge Ep. Physical situations which may be described in this way are
discussed in Chapters 4 and 5.
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A percolation treatment has been applied to many fluids, fluctuations in
density or composition being assumed great enough to prevent tunnelling.
It is uncertain under what conditions this is so. The papers by Cohen and
Jortner on expanded fluid mercury, liquid Te, and metal ammonia solu-
tions are examples, as is the work of Hodgkinson (1974) on some liquid
semiconductors. The effective medium theory of Landauer (1952) is used
to calculate the conductivity, which should give the same result as percola-
tion theory except near the percolation threshold (Kirkpatrick 1971).

The important point in our view is whether statistical fluctuations will
lead to a value of cr which tends to zero at the mobility edge. This problem
has been considered by Mott (1976d), who supposes that, if a localized
wavefunction obtained from the Anderson potential of Fig. 2.1 behaves
like

then (cf. eqn 2.43)

(2.68)

He finds that values of s greater or equal to f in three dimensions and 1 in
two dimensions are necessary if large-scale fluctuations in the amplitude of
extended wavefunctions are not to determine cr as E —  J5c-»0. Such
fluctuations would lead to a continuous change in cr and no minimum
metallic conductivity. Since as shown in Chapter 4 there is evidence for a
minimum metallic conductivity in a wide variety of materials in both three
and two dimensions, it seems likely that and 5 = 1 are the correct
values.

It has been suggested by some authors (cf. Wegner 1976) that, whereas a
value crmin~Ol e2/h may exist in two dimensions so that a discontinuous
transition will occur, in three dimensions the quantity a in const. e2/ha
may tend to infinity as E —  Ec-*Qm

9 if this is so, no crmin should be observ-
able. The absence of metallic conductivities below —200 fl"1 cm"1 is,
however, strong evidence against this possibility.

2.10. Conductors, insulators, and semiconductors

In crystalline materials the distinction between metallic conductors and
non-metals has been understood since the work of Wilson in 1930. In his
model each electron is described by a Bloch wavefunction as in eqn (1.1)
associated with a wavenumber k. The allowed energy states Ek fall into
bands, which may be separated by energy gaps. If at zero temperature all
bands are either full or empty, the material is a non-metal. If an energy gap
AJB1 separates occupied from empty bands, the material is an intrinsic
semiconductor with the number of current carriers proportional to
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exp(—AE/2kT)  and is transparent for frequencies below (hE —  EGX)/h, Eex

being the binding energy of an electron and hole in an exciton. Extrinsic
semiconductors contain impurities which provide shallow donors or accep-
tors. If at zero temperatures one or more bands are partly occupied, the
material is metallic, the conductivity tending to a finite value as T->0.

In non-crystalline materials we have already seen that the wavefunctions
corresponding to eigenstates are not Bloch functions, k not being a good
quantum number. None the less, the first and most striking fact about many
non-crystalline materials is that they are transparent, either in the infrared
or in the visible; SiO2, borosilicate glasses, and chalcogenide glasses are
examples. Therefore an energy gap must certainly exist. The band theory
of solids had depended so firmly since about 1930 on the concept of Bloch
functions and a periodic lattice that in the early days of the theory of
non-crystalline materials there was some surprise that energy gaps could
exist in them too (Ziman 1970). However, the Anderson tight-binding
model (Fig. 2.1) makes it clear that they can, if the variation of the random
potential V is limited, because the Anderson band cannot have a width
greater than V0 + B, and if there are two atomic levels in each well
separated by an energy greater than this, there will be a gap between them.
If, however, the random potential has for instance a Gaussian distribution
with no upper limit, there must always be some states at all energies in the
gap, though often a very small number. Thus in all liquids this must be so,
since thermal fluctuations in density are not limited in magnitude, though
in transparent liquids such as water the number must be negligibly small.

The glasses mentioned are either semiconductors or insulators, in the
sense that the conductivity tends to zero with T. This does not necessarily
mean that there is a gap, with EF in mid-gap so that N(EF) = 0. If N(EF) is
finite, but states at EF are localized, we expect a value of the conductivity
behaving as exp(—B/T l /4\ which tends to zero with T and may in certain
cases be quite small even if N(EF) is appreciable. In fact most of the
non-crystalline semiconductors to be described in this book do have a finite
value of N(Ep), but this appears to be due to point defects or voids of one
kind or another. We must, then, in discussing glasses and amorphous
silicon and germanium, start with the concept of a continuous random
networkt and, as in a crystal, admit the presence of certain point defects. In
silicon and germanium these may be vacancies, divacancies, or more
complicated clusters. In SiO2 non-bridging oxygens, bonded to a single Si,
are well known. In chalcogenides in the same way a Se or Te atom can be
bonded to a single atom. In glasses which can be quenched from the melt,
an equilibrium concentration of such defects should be present above the

tThe idea goes back to Zachariesen (1932), Polk (1971), and Duffy, Boudreaux, and Polk
(1974), who showed that such a structure could be constructed without adding excessive
distortion energy as the number of atoms increased (cf. Chapter 6).
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glass transition temperature. In sputtered or evaporated films, their
concentration may depend on the rate of deposition. They have many
roles, which are described in Chapters 6-10; they can pin the Fermi
energy, give an e.s.r. signal, give variable-range hopping as the dominant
conductivity mechanism, act as recombination centres, and so on.

The conductivity of crystalline non-metals is very sensitive to impurities
which can form shallow donors or acceptors. This is not so for the semi-
conducting glasses, which are insensitive to composition and have the
Fermi energy pinned near mid-gap by the defects referred to above. The
insensitivity of the conductivity to composition for these materials was first
established by the Leningrad school under Kolomiets (1964) and is
described in Chapters 6 and 9. Moreover, evaporated Si and Ge also have
conductivities much less sensitive to purity than the crystals. The explana-
tion given by various authors (Mott 1967, Haisty and Krebs 1969a,6) is
that the positions of atoms in a glass or amorphous material will normally
be such that all available electrons are taken up in bonds. Thus, while
phosphorus in crystalline germanium is placed as in Fig. 2.15(b), the fifth

Fig. 2.15. Suggested position of the phosphorus atom in (a) amorphous and (b) crystalline
germanium; (c) the configuration in Ge-Te according to Adler et al. (1970).
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electron being loosely bound, in amorphous germanium it is suggested that
a phosphorus atom would be surrounded by five or three germanium atoms
(Fig. 2.15(a)). Pentavalent as well as trivalent phosphorus compounds exist
(Pauling 1960, p. 62). The same result would be obtained and is expected
for arsenic in amorphous Ge using the three p electrons, the two s electrons
being pushed down into the valence band. As we shall see in Chapters 5
and 6, structures of this kind may break down at high temperatures in the
liquid state; the co-ordination number then increases and the material
becomes metallic.

An alternative explanation, which in principle goes back to Gubanov
(1963), is that in the amorphous material there are always deep localized
states in the gap which act as acceptors for the electrons from any shallow
donors or donors for shallow acceptors.

For chalcogenide glasses, and indeed probably for all glasses, there is
experimental evidence that the former is the correct model, though it is less
certain for deposited layers of silicon (see below). For the former Betts,
Bienenstock, and Ovshinsky (1970) for example have determined the
radial distribution function of several Ge-Te alloys and have concluded
that Te-Te chains are cross-linked by a Ge atom which thus has four Te
neighbours. Their model is shown in Fig. 2.15(c). Adler et al. (1970) have
interpreted n.m.r results of Senturia, Hewes, and Adler (1970) and come
to a similar conclusion. Evidence from EXAFS (extended X-ray absorp-
tion fine structure) is discussed in § 6.3. More recent work by Bienenstock
and co-workers includes GexSi_x (Rowland, Narasimhan, and Bienen-
stock 1972), GaS, GeSe, and GeTe (Bienenstock 1973), and is reviewed by
Bienenstock (1974). Of interest is the possibility of threefold co-ordination
in GeTe, each atom behaving as if it has five electrons of which three
p electrons form bonds. A quite different system showing the same effect is
amorphous boron. Carbon increases the conductivity of the crystals, but
decreases it in the amorphous state (Moorjani and Feldman 1975). Thus in
glassy substances we do not in general expect shallow donors or acceptors
due to impurities or lack of stoichiometry.

This is true only for materials where covalent bonds are formed; amor-
phous films of for instance Mg3_xBi2+jc behave quite differently (§ 4.4), the
Fermi level being shifted out of a deep gap into the conduction or valence
bands as jc, and with it the electron concentration, is varied. Moreover, Le
Comber and Spear (1976) first showed that by the glow-discharge
decomposition of PH3 together with SiH4 it is possible to form shallow
donors (fourfold co-ordinated phosphorus) in amorphous Si. These donors
lose their electrons to gap states at defects; it has not yet proved possible in
amorphous Si to produce unionized donors. Thus for these materials
Gubanov's hypothesis is correct. The matter is discussed further in Chap-
ters 6 and 7.
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Non-crystalline materials, then, have conduction and valence bands and
also gap states which pin the Fermi energy. A form of density of states
appropriate to some forms of amorphous silicon and germanium is shown
in Fig. 2.16(b). The gap states are due to deep donors with energies lying
below those of acceptors; if the two ranges of energy due to these overlap,
then N(Ep) is finite, giving free spins and an e.s.r. signal.

In chalcogenide glasses unpaired electrons (giving e.s.r.) are rarely found
in the annealed material (except those due to magnetic impurities such as
iron), though there is evidence to be reviewed in Chapter 9 that the Fermi
energy is pinned.t We there present a model of 'charged dangling bonds',
and pinning of the Fermi energy by electron pairs.

We turn now to the nature of the conduction or valence band. It is
generally considered that any form of disorder will lead to a range of
'intrinsic' localized states at the band edges, also shown in Fig. 2.16 beyond
EC and Ev. The conjecture that they exist goes back a long way (Frohlich
1947, Banyai 1964), and they are indeed little different from the electron
or hole traps found in many crystalline semiconductors. What is new for
amorphous semiconductors are the concepts of a continuous range or band
of intrinsic localized states and of charge transport by activated hopping
between them.

At the time of writing little progress has been made in calculating the
range of these localized states for covalent semiconductors; localization is
thought to be due either to variation of bond angle or to fluctuations in
density AH/H which, in conjunction with a deformation potential £"0,
would lead to a random potential. In such a case the random potential would
be £"0An/n. Stern (1971) has given a treatment in which random fluctua-
tions and their radial extensions are arbitrary parameters; for Si he obtains
the position of the mobility edge, the mobility there (6 cm2 V"1 s"1) and the
density of states N(EC)-

The absence of long-range order is not likely to give an appreciable
range of localization for s states, as the considerations of § 2.3 show; an
example is the conduction band of liquid argon (§5.13). However, for
glassy materials with a high proportion of p states, overlap integrals depend
on the orientation of the two orbitals concerned. Although short-range
order is preserved, the strongly directional overlap integral for pairs which
are next-nearest neighbours should vary strongly. It is known that second-
nearest neighbours contribute to the band energy as much as first-nearest
neighbours, so perhaps we may use eqn (2.42) with V0 —  \zl/2I. If so

(2.69)

tBy 'pinned' we mean that if a small number 8n of shallow donors is introduced, the
zero-temperature Fermi energy is not shifted as 8n -»0 as it would be in an intrinsic
semiconductor.
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With z = 4 we see that ~1 per cent of a band may be localized. A range of
localized states of 0-1 eV would thus correspond to a bandwidth of 10 eV.
Naturally no weight can be given to such an estimate except to indicate that
a localized range of a few per cent of the bandwidth is reasonable.

In a semiconductor in which there is a range of localized states at the
band edge, two terms in the conductivity are expected. These are as
follows,

(a) A term due to electrons at EA> This gives a term of the form

(2.70)

where Nc is the number of states available in the conduction band, given
by

(2.71)

and IJL is the hopping mobility

(2.72)

w is a hopping energy which may decrease at low temperatures because
variable-range hopping is possible. A discussion of this due to Grant and
Davis (1974) is described in Chapter 6. Also some distortion of the sur-
rounding material will occur near a trapped electron, which may mean that
part of w is of polar on type.

(b) A term due to electrons at the mobility edge, and thus equivalent to
that given by eqn (2.57), namely

(2.73)

It is convenient to write (2.73), for comparison with (2.70), in the form

where

(2.74)

where kE = EC —  E^. The quantity ve\, an electronic frequency, is expected
to be considerably larger than ^ph, so a 'kink' in the conductivity tempera-
ture curve is expected. The kink observed by Le Comber and Spear (1970)
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for high-resistivity amorphous silicon is described in § 6.4.2. The kink is
also observed in the measurements of the drift mobility and provides
perhaps the strongest evidence for a sharp change in ̂  at a mobility edge in
an amorphous semiconductor.

In a given range of temperature the question of whether the main part of
the current is carried by electrons at EA or Ec (or the equivalent energies
for holes) is often of interest. The following methods are available to
distinguish them,

(i) If conduction is by hopping, the activation energies which determine
the conductivity (eqn (2.72), see also § 2.13) and the thermopower

should differ by w. If conduction is at Ec, they should have the same
activation energies. This method has been used in crystals to establish
polar on hopping (Chapter 3). Its use in amorphous semiconductors is
discussed in Chapter 6.
(ii) If conduction is at Ec, the Hall mobility (see § 2.14) ^H should be
independent of T and of order 0-1 cm2 V^s"1. If it is at £A, it is
probably small.
(iii) The quantity CTO in the conductivity (cr = OTO exp(-E/kT)) should be
smaller in the hopping case; this is discussed in Chapters 3 and 6 but has
not proved a very reliable criterion.
For amorphous semiconductors the 'CFO' model, put forward by

Cohen, Fritzsche, and Ovshinsky (1969), has played an important part in
the development of the subject and is illustrated in Fig. 2.16(a). Apart
from the concepts of mobility edges, identical with the lEc first proposed
by Mott (1967) but applied by them for the first time to semiconductors,
they envisaged tails of localized states pulled out of the conduction and
valence bands by the disorder and some overlap between these tails.
Where they overlap equal numbers of charged states of either sign are
formed. Present thinking is that such overlapping tails do not exist in most
amorphous semiconductors, though doubtless they do in other cases, for
instance expanded fluid mercury (see the next section and § 5.14.1). The
overlapping bands that give rise to a finite value of N(E?) are due to
defects of acceptor and donor type (Fig. 2.16(b)).

(c) When N(EF) is finite, we expect a third form of conduction, namely
variable-range hopping by carriers with energies near the Fermi level,
leading to a term in the conductivity proportional to exp(-B/T1/4), which
gives the major contribution to the current at sufficiently low temperatures.
These three terms are also discussed in Chapter 6.

States in the gap may be of various kinds. Vacancies and divacancies
have been postulated, divacancies particularly for amorphous silicon
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Fig. 2.16. Density of states in amorphous non-crystalline semiconductor: (a) model of Cohen
et al. (1969) (CFO model); (b) with states in the gap due to dangling bonds acting as deep

donors below acceptors.

(Chapter 7). These will be spinless deep donors when neutral, and they can
also act as acceptors. When charged they will carry a spin. If the bands of
energy levels in their two capacities overlap as in Fig. 2.16(b), charged
states with spin are expected. Another form of defect, not expected in
crystals except at dislocations and surfaces, is the 'dangling bond' (fron-
tispiece). A chain end in amorphous selenium is the clearest example, but
they probably exist in all amorphous materials, but in crystals only when an
atom (as As in As2Se3) has odd co-ordination. When neutral a dangling
bond should carry a free spin; when charged it will not. A third form of
defect is the void. In most crystals the number of dangling bonds on a void
surface is even, and the spins are believed to form pairs by a rearrangement
of the atomic positions (Chapter 7) so that there is no resultant spin. This is
not so in glasses or crystals with odd co-ordination, however, and an odd
number is possible.

For point defects, in order to give a finite value of N(EF), a mixture of
charged states is essential. In such a case, optical excitation from EF to the
conduction band is possible, as well as variable-range hopping and a.c.
conductivity varying as o>°' 8 (§ 2.15).

For states deep in the gap the positions of atoms round the defect will
depend on whether the state is occupied or not. For shallow states the
effect is small, but not necessarily so for deep states. In fact for dangling
bonds in chalcogenides the effect is very large, particularly for positively
charged dangling bonds which can form a strong chemical bond with a
neighbour. This can lead to the consequence that all such bonds are
positively or negatively charged and that the Fermi energy is 'pinned' with
a finite density of states, even though N(EF), the one-electron density of
states, vanishes. This is discussed further in Chapters 3, 6, 8, and 9.

There remains the question of whether significant long-range fluctua-
tions in potential exist in amorphous semiconductors sufficient to confine
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the carriers to preferred percolation channels as in Fig. 2.11. There is some
evidencet that they may in evaporated or sputtered films containing voids
which may be charged. The evidence is reviewed in Chapter 6. For
materials without voids, however, such as glow-discharge-deposited silicon
and chalcogenide glasses, there is as far as we know no evidence for their
presence.

2.11. Semimetals and pseudogaps

In some amorphous and liquid materials the tails of a conduction and
valence band may overlap, much as in the CFO model and as illustrated in
Fig. 2.16(a), and the degree of overlap and sometimes the Fermi energy
can be varied by changing the composition or temperature. The density of
states then shows a minimum, often called a 'pseudogap'. Examples are
Mg-Bi alloys (§ 4.4), expanded fluid mercury, and some liquid tellurium
alloys (§ 5.17). Overlapping Hubbard bands are also considered in § 4.2.4.
It is a natural extension of the idea of localized states in band tails to
introduce localized states in the pseudogap. An Anderson transition can
occur when, owing to decreasing overlap, the states at EF become local-
ized.t An estimate of the density of states at which this occurs can be given
as follows. If we write, as in eqn (2.23), g = N(EP)/N(EF)free, then the
conductivity is given by

(2.75)

Writing SF = 4wk2 and (for a divalent metal) k =* ir/a, (2.75) gives

Localization should occur when this is equal to the minimum metallic
conductivity, which we write from (2.54)

Thus for localization

(2.76)

t Barna and co-workers (see for instance Barna et al. 1976) maintain on the basis of results
with the transmission electron microscope that evaporated amorphous Si and Ge show
fluctuations in density with a scale of —lOoA.

t The considerations of the CFO model for semiconductors (§ 2.11) suggest that states should
be negatively and positively charged.
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if (B/ Vo)CTii = 2> This estimate, empirically rather successful, is subject to
the assumption that the expression for minimum metallic conductivity can
be used for diverse kinds of disorder.

Thus if g is equal to or greater than —3, the conductivity is metallic and
equal to or greater than crmin. If g is less than — 3, the current at high
temperatures will be carried by electrons excited to the mobility edge Ec,
or holes at EV, and at lower temperatures by hopping by electrons at EF.
Much of the evidence for this behaviour comes from work on liquids, to be
discussed in Chapter 5; for these there is some doubt as to whether
hopping can occur, rather than a drift of the localized carriers through the
liquid, though excitation to Ec is certainly observed. In solids the case of
amorphous Mg-Bi alloys is discussed in Chapter 4.

2.12. Some calculations of the density of states

For non-crystalline systems few exact calculations of the density of states
exist. For covalent semiconductors much work has been done, reviewed in
later chapters, giving forms of the density of states which agree with optical
and photoemission studies. These at present have not successfully treated
the behaviour at the band edge (EA or EB in Fig. 2.16) which is all
important for the electrical properties.

Among studies which treat band tails the following are available. For
one-dimensional disordered chains of hydrogen-like wells, Frisch and
Lloyd (1960) gave a treatment showing a tail with a density of states

(2.77)

here E0 is the ionization energy of one of the wells. The three-dimensional
aspects of the problem are relevant to the tails to the bands in heavily
doped semiconductors which were first discussed by Kane (1963); Lifshitz
(1964), Halperin and Lax (1966), and Zittartz and Langer (1966) extended
the one-dimensional calculations to three.t An application to the lumines-
cence properties of GaAsiSi is described by Redfield, Wittke, and Pankove
(1970).

For the Anderson model, Lloyd (1969) gave an exact expression for
N(E) using a Lorentzian form for the distribution function P(V,), defined
in §2.3. Mookerjee (1973) carried out a calculation for a square form of
P( Vi) and a simple cubic lattice. This shows a marked tail. The width of the
band is B + V0, but such states occur where a statistical fluctuation gives a
large volume in which all wells have the lowest (or highest) value of V/. In
this model, therefore, the radius of the lowest localized state is infinite. This
would of course not be so for a Gaussian distribution.

t The latter authors gave a band form varying in d dimensions as exp(-const. \E\2~l/2d).
Evidence for the behaviour as exp(—const. \E\) in two-dimensional systems is given by
Pollitt (1976).
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For a random distribution of hydrogen-like centres, the problem appro-
priate to an uncompensated impurity band with neglect of correlation,
calculations are due to Matsubara and Toyozawa (1961), Lifshitz (1964),
and Cyrot-Lackmann and Gaspard (1974; references to several earlier
papers by these workers are given in this paper). The form of N(E) is as in
Fig. 2.17. The low-energy tail, similar to that of Halperin and Lax (1966),

Fig. 2.17. Density of states for random array of centres.

arises because pairs of centres close together give low states, with energy
—4e 4m/2K2ti2 if they coincide, while its absence at the high-energy limit is
because the corresponding state of highest energy turns into a p state of
energy -e4m/2K2h2. Lifshitz found that for low densities N(E) should show
a minimum; this was obtained by dividing the centres into nearest-neigh-
bour pairs, with molecular wavefunctions of odd and even parity and
separation 27, so that two bands occur which probably overlap. This result
was confirmed by Lukes, Nix, and Suprapto (1972). The minimum occurs,
however, only at densities at which a half-full band would not be metallic
when correlation is included, and the minimum in impurity bands, for
which there is some evidence (Chapter 4), is probably due to correlation.

2.13. Thermopower

In this section we summarize the formulae needed for the interpretation of
the thermoelectric power. This can be expressed in terms of <rE\ in § 2.2
we have defined this quantity for a disordered lattice at zero temperature
and have shown that at a finite temperature where / is the Fermi function
(2.1)

The thermoelectric power 5 is then given by (Cutler and Mott 1969)

(2.78)



THEORY OF ELECTRONS IN A NON-CRYSTALLINE MEDIUM 53

The proof is as follows. If F is the field, then the current dy due to electrons
with energies between E and E + dE is given by

The free energy carried by this current is — (E —  Ep) dj/e, which becomes

Integrating this equation we obtain the total electronic heat transport,
which is equal to yll, where II is the Peltier coefficient, so that

Since 5 = H/T, eqn (2.78) follows.
We may deduce the following expressions. For metals the current is

determined by electrons with energies in the neighbourhood of JE?F, so we
obtain the familiar equation

(2.79)

If the gas is non-degenerate in a parabolic band,

(2.80)

If kT is greater than the bandwidth,

(2.81)

where c is the ratio of the number of electrons to the number of sites. Eqn
(2.81) is due to Heikes and Ure (1961). It is in agreement with experiment
for glasses containing the vanadium ions V4+ and V5+ (Chapter 3) if the
temperature is not too low.

For semiconductors in which a mean free path L can be defined, we
obtain the usual formula
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where r = d(ln r)/d(ln E) and r is the relaxation time L/v. For amorphous
semiconductors, in which a discontinuity in cr(E) is assumed at Ec, a short
calculation gives (Cutler and Mott 1969, Fritzsche 1971)

(2.82)

Additional terms are of order T and depend on d In cr/dE. It should be
noticed that, if Ec —  Ep varies with T and is of the form

thent

(2.83)

A relationship between a and S is

(2.84)

which is used further in Chapter 5.
In the neighbourhood of an Anderson transition (where e=Ec-Ep

is near zero), we have (Mott 1975c)

tending to 2crmin when e = 0, and

(2.85)

tending to (k/e)2 In 2 when e = 0.
For conduction at EA (or E&) in amorphous semiconductors, it is

generally supposed that (2.82) is valid with E& substituted for Ec, but with
n +1 substituted for 1 within the parentheses if N(E) oc En at the bottom of
the valence band. In the hopping regime, therefore, the activation energies
for a- and S differ by the hopping energy w. This is amply confirmed for
hopping of polar on type (Chapter 3), and for hopping between Anderson
localized states (Chapter 6). An important point to be brought out in
§ 6.4.8 is that in a semiconductor, as the temperature is raised and charge
transport goes over from hopping at EA to extended-state conduction at
EC, the thermopower may rise for a short range of T, or if the transition is
not sharp there may be a region in which the apparent activation energy es

in (2.83) is less than the conduction energy e^.

t It has been queried in the literature (Emin 1911 b) whether y should appear in this equation.
We believe it to be correct, though y disappears from the Thomson coefficient (Butcher and
Friedman 1977).
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Another possible reason for a difference between es and e^ often
observed in amorphous semiconductors is inhomogeneity, if random fields
lead to a change in the Fermi energy over regions too wide for tunnelling.
According to Overhof (1975) one then expects

where AE1 is the energy range between the top and bottom of any potential
fluctuations as in Fig. 2.11.

When the conductivity is determined by the motion of electrons at the
Fermi level, if states are non-localized we can use eqn (2.79), and if L~a
so that aoc{N(Ep)}2 we may write

(2.86)

Where states are localized and conduction is by hopping it was assumed by
Mott (1967) and in the first edition of this book that (2.79) can still be used,
but this is not correct. Treatments of the thermopower for this case have
been given by Zvyagin (1973), Kosarev (1975), Overhof (1975), and
Butcher (19766). At low temperatures below the amorphous Neel
temperature the material will have no free moments and negligible
magnetic entropy. In this case, starting from eqn (2.78), we integrate over
the range of energies W which contribute to the thermopower and suppose
this to be the hopping energy, which in the case of variable-range hopping
is

where T0 is defined by the relation 0-ocexp{(-7V T)1/4}. We set for the
conductivity

where D is the diffusion coefficient, whatever form of hopping obtains.
Then (2.75) gives

(2.87)

For variable-range hopping

so S varies as Tl/2. For hopping to nearest neighbours, S-»oo as 1/!T-»0.
Overhof (1975) and Zvyagin (1973) express the constant in S as \^ and

give different values of £ namely 0-453 and 0-35.
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These equations are essentially for spinless particles, and are valid below
the Neel temperaturet of the amorphous antiferromagnet which any
Termi glass' must form. Above the Neel temperature there should be an
additional term (k/e)ln2 in the thermopower, frequently observed in
amorphous semiconductors in the hopping regime (Butcher 1976ft). The
thermopower plotted against T should thus appear as in Fig. 2.18.

Fig. 2.18. Thermopower 5 for hopping conduction, showing conjectured behaviour near a
Neel temperature (TN).

2.14. Hall effect

The classical formula for the Hall coefficient

where n is the number of free electrons per unit volume, appears to be
valid for a degenerate gas even in the regime L ~~ a, as for instance in liquid
metals of high resistivity, as long as g (cf. eqn (2.22)) does not drop below
unity. In all other cases to be discussed in this book the equation is not
valid. These are as follows.

(a) Conduction by electrons excited to a mobility edge.
(b) Conduction in a degenerate electron gas when g < 1 but states are
not localized.
(c) Conduction by hopping, either by non-degenerate electrons or by
electrons with energies near EF. This depends essentially on the
mechanism of interaction with phonons, and the main part of the dis-
cussion of hopping is therefore in the next chapter (§ 3.9).
The treatment of cases (a) and (b) is due to Friedman (1971, 1973); with

an Anderson model, using the assumption that phases of the wavefunctions

t The existence of a Neel temperature for an amorphous antiferromagnetic, for any kind of
interaction, is not yet proved (see § 4.2.5), but will be assumed here.
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on the atoms are random and that the three-site model (§ 3.9) is appro-
priate, he finds for the Hall mobilityt

(2.88)

Here as before B is the bandwidth without disorder, z the co-ordination
number, and z the average number of closed three-site paths about an
arbitrarily chosen site. For 17, a projection of the area of a three-site path in
the direction perpendicular to the field, Friedman takes 3 in three dimen-
sions and I in two dimensions. For a3BN(Ec) a rough approximation will
be

and thus, with Vo/B having a value of about 2 in three dimensions and
about 1 in two dimensions, it is l/>/5 and l%/2 respectively. Friedman
assumes z = z, and we suppose z = 6 in three dimensions and z = 4 in two.
This gives in three dimensions

(2.89)

if a = 3 A. The corresponding value for two dimensions is

(2.90)

A further result due to Friedman is that the Hall coefficient should
always be negative, whether the carriers are electrons or holes. This result
is dependent on the three-site assumption and would be appropriate in the
Anderson model where a random potential is superimposed, for instance,
on a close-packed structure. For a simple cubic one would have to use four
sites (ABCD) at the corners of a square, and in this case one expects a
positive effect for holes. For the realistic situation, namely sites at random
positions in space, it is likely that a three-site model is appropriate. In
amorphous semiconductors for which the sign of the thermopower
establishes p-type behaviour, the Hall coefficient is normally negative.
However, cases exist of a positive value of Ru with n-type thermopower, a
sign reversal not predicted by Friedman. These are described in Chapters
6, 7, 8, and 9. Emin (I911a,b) has proposed that hopping of an excess
electron between antibonding orbitals on a three-site ring could give p-
type behaviour. If this is the correct explanation, it must mean that the
wavefunction loses phase memory in going from one pair orbital to
another; the quantity aE of § 2.6 must be equated to a.

t A similar result is found by Brinkman and Rice (1971) for an electron at the bottom of the
conduction band in a magnetic semiconductor, where it is strongly scattered by random
moments (see § 4.8 and a discussion by Friedman 1973). Also Kaneyoshi (1972, 1974),
using a treatment due to Matsubara and Kaneyoshi (1968), obtain a similar result. Kaney-
oshi (1976) gives a critical review of the theory.
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The behaviour of RH as the mean free path increases, when its sign (for
holes) should change to a positive value (p-type behaviour), has not been
investigated theoretically or observed experimentally, except perhaps for
the change of sign of RH (positive to negative) in Li-doped (p-type) NiO
near the Neel temperature where the strong spin scattering may produce
the situation for which L ~ a (Austin and Mott 1969, p. 60).

It will also be noticed that, if we write for the conductivity mobility
IJLC = (0-05 e/tia)/N(Ec)kT, then

and unless the range of energies up to the mobility edge is small, this is
expected to be considerably less than unity (say ~ i).

Friedman's formula (2.88) is applied in this book to the following.
(a) The current due to electrons or holes at mobility edges in amorphous
semiconductors (§ 6.4.7).
(b) Electrons at a mobility edge in expanded fluid mercury (§ 5.14.1).
(c) Electrons at a mobility edge in Si:P (§ 4.3.5).
(d) Electrons at a mobility edge in two-dimensional conduction at the
Si/SiO2 interface (§ 4.6).
It is fair to say that the prediction of a temperature-independent Hall

mobility of the order given by eqn (2.89) is in agreement with experiment,
though the numerical factor as well as the sign is open to doubt.

Turning now to the case of a degenerate gas, we consider the Hall
coefficient rather than the mobility. For a Fermi glass, where current is
carried by electrons at the mobility edge, we expect

where e = EC —  EF. Convenient formulae to evaluate /HH/^min are (2.49)
for crmin and (2.88) for /UH; we find

(2.91)

When e -> 0, that is at the Anderson transition, there is no discontinuity in
RU and (2.91) remains valid with E = EF. If we express / in terms of the
free-electron density of states using eqns (2.3) and (2.28), then (2.91)
reduces for a divalent metal to

(2.92)

with C^O-7. Here g is the ratio N(Ep)/N(EF)fr&e, where N(E)hee means
the value that N(EP) would have without disorder. N(EF) will normally be
reduced by disorder for a single band as in Fig. 2.1(b), or g may refer to
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the drop in N(E) below the free-electron value in a pseudogap (Fig.
2.16(a).

Eqn (2.92) has been applied with reasonable success to the following
cases.

(1) Two overlapping bands in expanded fluid mercury.
(2) Two overlapping bands in metal-ammonia solutions, particularly
with caesium and lithium as solutes where the transition is far from a
critical point (Thompson 1976).
(3) Tungsten bronzes (§ 4.7.6).
(4) Si:P, on the assumption that the electron gas is not highly correlated
(§4.2.4).

It does not correspond, however, to what is observed for liquid Te and
Te-Se alloys (§ 5.16), where ^H — const, and R^ocl/g2

y or to conduction
in an impurity band in Si:P, where RH = I/nee and seems independent of g
(§4.33). We believe these to be unsolved problems.

For hopping, whether by electrons at EF or at a band edge, the
behaviour depends on the nature of the electron-phonon interaction. For
polarons in a crystalline lattice /LtH ° cexp(—\W&/kT\ where Wu is the
polaron hopping energy (Chapter 3). For hopping where the activation
energy is primarily due to disorder, we shall give reasons in § 3.9 for
supposing that RH is small.

2.15. Hopping conduction for alternating currents

In a very wide variety of materials, crystalline and non-crystalline, a value
of the a.c. conductivity cr(o>) varying as Co/ with s of the order 0-8 is
observed; a survey is given by Jonscher (1975). C is in general only weakly
dependent on temperature. This behaviour is predicted if the material
contains dipoles which can point in two or more different directions, with
energies Wi and W2 (AW= Wi-W2) and with a jump time r from the
lower to the upper state, if both kW and r vary over a wide range including
zero. The analysis is due to Debye (see Frohlich 1958). A review is given of
various mechanisms applicable to amorphous semiconductors in Chapter
6. Here we shall survey the behaviour for a 'Fermi glass'. In § 2.5 we have
already evaluated a term in o-(co) due to direct interaction with photons of
energy ha) and have shown that for this o-((o)oC(o2. At low frequencies a
term involving interaction with phonons giving croc^/ was first obtained
for a 'Fermi glass' by Pollak and Geballe (1961) in their treatment of
impurity conduction (§4.3.2). The development given here follows that of
Austin and Mott (1969).

In Debye's analysis, we may suppose that a material contains n sites per
unit volume at each of which a dipole D can point in two opposite
directions with different energies, so that AW' = W\ —  W2. If the dipole is
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inclined at an angle 6 to a field F, the polarization if the field has frequency
a) is

where r is the mean jump time from the lower to the upper state. If we
average cos2 9 over all directions, we obtain 3. For the conductivity at
frequency o>, this yields

(2.93)

In amorphous materials, whatever the nature of the dipole, we may
expect to average over kW and r. If, near &W = Q, there are N dW
dipoles with kW in the range dW, then the integration over hW gives

Supposing N to be fairly constant in the range near A W = 0, this integral
becomes nkT In 2, so

If the relaxation process involves an electron surmounting a barrier of
height [/, so that

and B(U)dU is the probability that a barrier has height between U and
dU, then writing dr/r = dU/kT, the average of o)2r/(\ + o>2r2) is

if B is constant. It follows that

(2.94)

Thus a value of a proportional to co and to kT is expected for mechanisms
involving thermally activated rotation of a dipole.

Applying these concepts to an electron hopping between two localized
states at a distance R from each other, we write

(2.95)
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The number of electrons taking part in the hopping is N(EF)kT per unit
volume. Supposing as before that only hops of energy ~kT make an
important contribution, then the last factor in (2.95) is of order unity. The
number of vacant states into which an electron can jump is then N(Ep)kT.
The important hops are those for which CDT ~ 1, that is those for which the
hopping distance is R, where

(2.96)

and we may take a range of t±R as significant where

Thus, multiplying by 2 to take account of both spin directions, we find

This gives

(2.97)

where A = (7T2/24) In 2 — 0-3. A more accurate way of averaging over the
electrons gives vr4/96 (Pollak 1977).

The analysis here supposes that the electron goes through the barrier
between two sites, not over it. Pike (1972) and Elliott (1977) have consi-
dered the opposite case, which also gives o-(w)oca)s(s ^ 1). In our view this
can only occur when there is considerable distortion round each occupied
site, as showh in Chapters 3 and 6.

It should be noted that (2.97) is deduced subject to two assumptions.
(a) kT«EF. Pollak and Geballe (1961) treated impurity conduction
with very low compensation, so in this case eqn (2.97) is not valid. We
must multiply it by EF/kT, and cr(a)) is then independent of T, apart
from any dependence of z>ph on T (Chapter 3).
(b) The resonance energy / of centres of distance Rm apart is less than
kT. Pollak (1964) has given a discussion of the very-low-temperature
case when this is not so; o-(co) will always tend to zero with T.
In impurity conduction in germanium j>ph is of the order 1012 s"1, and

then the factor {ln(^ph/w)}4 varies approximately as a)~°' 2 for frequencies
in the neighbourhood of 104 Hz, so croc w°' 8, a form of behaviour which is
often observed. However, much smaller or larger values of ^ph are possible,
so smaller or larger powers of co can occur.

It is interesting to compare eqns (2.97) and (2.48), the conductivity
(proportional to co2) due to optical transitions; one would expect the
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second formula (o-ocaj2) to be predominant at high frequencies. The two
contributions are equal when

The transition temperature is very sensitive to ^ph.
Eqn (2.97) is valid whether R^ is greater or less than the mean distance

between centres. In the latter case we may expect a.c. conduction but no
d.c. variable-range hopping.

2.16. One-dimensional problems

The problem of the motion of electrons in one dimension in the kind of
random field discussed in this chapter is of considerable theoretical inter-
est. It is perhaps not yet certain whether it is applicable to any real case,
such as polymers. Only a brief account will be given here.

Early papers (James and Ginzbarg 1953, Dyson 1953, Landauer and
Helland 1954, Lax and Phillips 1958, Frisch and Lloyd 1960) deal with the
density of states, a quantity accessible to machine calculation. If ̂  is any
solution of the Schrodinger equation defined in the range 0 < x < / with
cyclic boundary conditions, the quantum number IJL may be taken to
denote the number of zeros. If we write k = 27Tfji/l, then the density of
states is given by

These authors calculate N(E). More recent reviews are due to Lieb and
Mattis (1966) and Hori (1968).

A minimum (pseudogap) will replace an energy gap for an array of
scatterers separated by a distance a ± 8 if the quantities have (for instance)
a Gaussian distribution. The question of whether a gap can ever exist in a
random lattice was discussed by Landauer and Helland (1954), by Makin-
son and Roberts (1962), and by Halperin (1967). The result appears to be
that a gap can exist if limits are set on the magnitude of 5, but that if no
limits are set, as for instance with a Gaussian distribution, N(E)/l will not
become zero for infinite / anywhere. A similar theorem may well be true in
three dimensions.

Finally we come to the question of localization. Mott and Twose (1961),
using a random Kronig-Penney model, first gave arguments to suggest that
all states in the one-dimensional lattice were localized. Borland (1963)
considered a random array of scatterers, and proved for this model that,
considering all configurations of the ensemble, the expectation fraction of
the number of states that are not localized tends to zero as / -> oo. Halperin
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(1967) and Matsuda and Ishii (1970) have examined in detail the mathe-
matical rigour of the argument. By a localized wavefunction is meant one
that decays exponentially in space. This surprising result is valid for all
energies of the electron and for all strengths of the scattering potential,
however weak.

It must follow from the same argument as for the three-dimensional case
that (crE(a>)) vanishes for all values of E in the limit when co -»0. This is
considered by Halperin (1967, p. 173) to be not rigorously proved, because
Borland's argument fails to establish that the rate of decay of the exponen-
tial wavefunction is independent of / and does not tend to zero as /-» oo. It
seems intuitively likely that localized wavef unctions do not depend on what
happens a long way away, so it is very probable that {0^(0)) always
vanishes.

Landauer (1970) has given a treatment of the zero-temperature conduc-
tivity for a finite one-dimensional array, and finds that it is finite but tends
to zero exponentially with /. Cohen (19706) and Economou and Cohen
(1970c) come to the same conclusion. This behaviour, we believe, should
be shown also in three dimensions when states are localized (§ 2.4).

The remainder of this section will show in an elementary and non-
rigorous way how this localization arises. Consider a wave elfc* falling on
the random array of scatterers illustrated in Fig. 2.19; by familiar methods

Fig. 2.19. A random array of scatterers in one dimension.

a mean free path L can be calculated, and at a distance of some multiples of
L the wavefunction should be

with \A\ ~ \B\. But conservation of current gives

If \A\ and \B\ are nearly equal, this is only possible if \A\ and \B\ are large.
This suggests that the solution of the equation that varies as elfc* to the left
of the array increases exponentially with x as exp(#/L).

We now look at real solutions of the form sin(fct + TJ) to the left of the
array. In general, such a solution will increase with #, but Borland's
analysis shows that there is one value of 77 for which if/ decreases exponen-
tially. The solution then corresponds to a beam of electrons incident on the
array and totally reflected, just as they would be at a potential step.
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Localized states are obtained as follows. In a given interval PQ of an
infinite one-dimensional lattice, any solution will have the form sin(kx +
TJ). We can choose 17 uniquely so that i// will decay exponentially for values
of x to the right of PQ; let the value be 171. We can also choose 17 so that $
decreases exponentially for decreasing values of x to the left of PQ; let the
value be rj2. In general 7715* r/2. But quantized values of the energy E exist
such that r]i = ri2. The two solutions fit together, and we have a bounded
solution with if/ continuous everywhere. This is the localized eigenstate that
we require, the localization being in the neighbourhood of PQ.

Papatriantafillou and Economou (1976), Papatriantafillou, Economou,
and Eggarter (1976), and Economou and Papatriantafillou (1972, 1974)
have examined the localization properties in some detail. At large dis-
tances the wavefunction of a localized state falls off exp(-Jc/L) and L is
equivalent to the 'mean free path' if calculated from a formula such as eqn
(1.2). Their most interesting result is that most of \i//\2 is located in a much
smaller length than L.

Bloch, Weisman, and Varma (1972) proposed that in a degenerate gas in
one dimension the conductivity will behave like A exp(-#/T1/2). Kurki-
jarvi (1973), however, pointed out that in one dimension the resistance is
determined by the most opaque obstacles; he finds a variation as
A exp(—B/T),  but for an infinite chain B should be infinite. A detailed
discussion of the interaction of electrons with phonons in a one-dimen-
sional disordered chain is given by Gogolin, Mel'nikov, and Rashba
(1975).
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3.1. Introduction

This chapter treats the interaction of current carriers (electrons or holes)
with phonons and the distortion of the material round a trapped or free
carrier. For the subject matter of this book the effects to be considered are
the following.

(a) A carrier trapped by a defect in a crystal or in an Anderson localized
state in a non-crystalline material will always distort its surroundings to
some extent. This distortion will lower its energy, and can lead to a
Stokes shift in the frequency of photoluminescence if this occurs.
(b) For a carrier in the conduction band of a crystal, if the interaction
energy between the carrier and the phonons is strong in comparison with
the bandwidth, a 'small polaron' may form. A small polaron behaves, as
we shall see, like a free particle with enhanced mass (mp) at low
temperatures, but moves by thermally activated hopping at high
temperatures (kT>2ti<*>, where co is a phonon frequency). In such cases,
when there is disorder, it may be appropriate to apply the Anderson
localization criterion (§ 2.3) using for B the polaron bandwidth
(2zh2/mpa

2).
(c) In non-crystalline materials, as in crystals, scattering of electrons by
phonons will increase the resistivity. Also the rate of loss of energy to
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phonons by injected electrons is of importance, for instance in consi-
derations of quantum efficiency (§ 6.5.3) and other problems.
(d) Interaction with phonons will normally determine the rate of hop-
ping between one localized state and another (§ 2.7).
(e) The radiationless (multiphonon) recombination between electrons
and holes produced by the absorption of radiation or in other ways in
amorphous or crystalline non-metals is due to interaction with phonons.
These matters will be considered in turn in this chapter.

3.2. Distortion round a trapped electron

The wavefunction of an electron in a donor centre in crystalline silicon or
germanium has a radius large compared with the lattice parameter, and the
distortion of the lattice which it produces is therefore small and is usually
neglected. For electrons in deep traps this neglect may not be justified, and
this could be true also for localized states at the band edges in amorphous
semiconductors, though we know of no phenomenon where this is
important. In order to see what happens, within the limitations of the
Born-Oppenheimer approximation, we consider first a system in which a
bound electron has an energy which depends on some configurational
co-ordinate q. Holstein (1959), in a classic paper on small polarons, consi-
dered a one-dimensional molecular lattice, q being the change in the
distance between nuclei in each molecule (see Fig. 3.4).

The configurational co-ordinates that we shall use in this chapter are as
follows.

(a) The displacement of an atom or anion containing a hole, when it
forms a bond with a neighboring atom as in solid rare gases or for the VK
centres in alkali halides or dangling bonds in chalcogenides (§3.3).
(b) For band-edge states in amorphous silicon and similar materials q
may represent the dilatation, driven by the deformation potential, within
the volume a3 of the trap.
(c) In polar materials q will be a measure of the polarization of the
medium outside the trap.
In all these cases the lattice energy is of the form Aq2, and the energy of

the electron varies linearlyt with q for small q, and we write it -Bq. The
total energy is then

which has a minimum when q = q0, where

t We argue in § 3.3 that for weakly bound states this may be modified.
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The energy of the electron (~Bq) is lowered by Bq$\ the distortion of the
system requires energy equal to Aqo, and

(3.1)

the energy of the whole system is thus lowered by Wp, where

(3.2)

These energies are illustrated in Fig. 3.1.

Fig. 3.1. Terms in the energy of an electron as a function of a configurational parameter q.

For case (a), an example is a chain end in amorphous selenium; here the
centre, if neutral, contains a single electron in a lone-pair orbital which can
form a bond with a neighbouring selenium, but if it is negatively charged,
it cannot. This type of defect is discussed in Chapters 6 and 9. For case (b),
we consider band-edge localized states in amorphous silicon or
germanium. If q is the dilatation of the volume a3 occupied by the electron,
B is the deformation potential EI (Bardeen and Shockley 1950) and
A = 2Ka3, where K is the bulk modulus. The polarization energy is thent

Wv = \E\IKa\ (3.3)

t For large values of a, the kinetic energy of an electron in the defect is ~ft2/ma2, so Wp must
be small in comparison in the limit as a -*• oo.
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As regards magnitudes, if E\ = 1 eV, K = 10 c.g.s., and a = 10 cm, this
gives Wp = 0-01 eV. Smaller values of a or larger values of E\ will give
larger values.

For a polar lattice, we suppose an electron to be trapped in a centre of
radius r0, which is neutral when empty. When the electron comes into the
trap, then, before the surrounding ions are displaced, the potential energy
of (another) electron at a distance r is

where KOO is the high-frequency dielectric constant. After the ions are
displaced, the potential energy becomes e2/Kr. Therefore an electron
forms a potential well for itself given by

(3.4)

where
(3.5)

i
Fig. 3.2. Potential well due to the polarization of an ionic lattice round a trapped electron.

The well is illustrated in Fig. 3.2. The energy of the electron! is lowered by
e2/K^rQ. At the same time the polarization energy of the surrounding
medium, in terms of electric field E and polarization P, is

t The energy ~ h2/mr% of the electron above the bottom of the well is here neglected.
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Therefore the energy of the system is lowered by Wp, where

(3.6)

In practical cases Wp may be of order up to one-half of an electronvolt if r0

is of atomic dimensions.
It is convenient to introduce a co-ordinate q by denoting the polarization

potential energy near the centre by qe2/Kpr when r > r0; the considerations
illustrated in Fig. 3.1 can then be applied.

3.3. Dielectric and acoustic polarons

All the forms of distortion discussed in the last section can, under certain
conditions, occur for free carriers, electrons or holes, though only types (a)
and (c) are known to be of practical importance. We start with (c), partly
for historical reasons. The idea that a free electron in a polar lattice can be
trapped by 'digging its own potential hole' goes back to Landau (1933, see
Mott and Gurney 1940, p. 116). The further development of the concept is
due to Frohlich (1954), Allcock (1956) Holstein (1959), and many
subsequent workers. An elementary exposition within the limitations of
the Born-Oppenheimer approximation is as follows. As for an electron in a
localized state, we introduce a distance rp from the electron beyond which
the medium is fully polarized. Before the ions are displaced, the potential
energy of another electron in the field of the electron considered would be

and after displacement of the ions

so that as in eqn (3.4) the electron 'digs a potential well' for itself, for which

(3.7)

However, unlike the case of a state localized because of a defect or
disorder, instead of putting rp equal to the radius of the defect we must
here determine rp by minimizing the total energy including the kinetic
energy of the electron, which it has by virtue of its localization within a
sphere of radius rp. This to a first approximation is

where m* is the effective mass in the undisturbed lattice. The energy of the
electron is —e 2/Kprp, the polarization energy is \e2/Kprp, and the total
energy is therefore

(3.8)
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Minimizing the quantity (3.8), we find

(3.9)
and

(3.10)

Frohlich (1954) and Allcock (1956) gave a self-consistent calculation lead-
ing to a modified value of rp, namely

(3.11)

which is smaller than the value given above, and of course to be preferred
to it. If ra* = m and /cp = 10, rp is 25 A.

This calculation is not correct if the value of rp given by eqns (3.9) or
(3.11) is comparable with or smaller than the distance between ions in the
solid. This can happen only if the effective mass raeff in the undistorted
lattice is somewhat larger than m. We may therefore think in terms of the
tight-binding approximation and a narrow band. The situation is illustrated
in Fig. 3.3. We cannot consider the polarization well as extending nearer to

Fig. 3.3. (a) The potential energy of the electron in the undistorted lattice; (b) the wavefunc-
tion of a large or intermediate polaron; (c) the polarization well.

the electron than the radius of the ion or atom on which it is placed. The
radius of this ion is then a rough approximation to rp; a treatment by
Bogomolov, Kudinov, and Firsov (1968), in which the polarization well is
analysed into the normal modes of the lattice vibrations, gives for rp

i /p = iOr/6N)1/3 (3.12)
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where N is the number of wells per unit volume. The formulae that we
have used for localized states are now applicable; the energy of the polaron
is — Wp where

(3.13)

It will be seen that, as the coupling becomes weaker and the radius of the
polaron increases, there is no sharp limit at which the potential well
disappears. However, the use of the Born-Oppenheimer approximation
breaks down when the radius is large and a dynamic treatment is necessary
leading to the concept of the 'large' or Trohlich' polaron. On this there is a
large literature (for references see Devreese 1972). In this book we need
only consider situations in which the polaron radius is at any rate near to
the minimum radius (3.12) and the Born-Oppenheimer approximation can
be used.

Self-trapping due to polarization of an ionic lattice is not the only kind
that can occur, and we now consider the analogy of case (a) of the last
section. Holstein (1959) in his pioneering work on small-polaron move-
ment considered a linear array of diatomic molecules as in Fig. 3.4; the

Fig. 3.4. (a) A molecular polaron and (b) the excited state which must be formed before an
electron can hop.

electron was supposed to distort one of the molecules, and to move
carrying along its distortion in the way that will be explained in § 3.6. In
three dimensions there are many examples of this kind of motion. Thus
holes in alkali halides are self-trapped, the CF ion and Cl atom attracting
each other and forming a 'molecular ion' CIJ known as a VK centre
(Kanzig 1955, Castner and Kanzig 1957, Stoneham 1975). The same is
true of solid and liquid argon (Howe, Le Comber, and Spear 1971) (for
other examples, see § 3.6 and Spear (1974a)). Problems in three dimen-
sions are different in an important way from those in one, as shown by
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Toyozawa (1961), Emin (1973a), Anderson (1972ft), Sumi and Toyozawa
(1973), and Mott and Stoneham (1977). These authors show that, just as a
potential well of depth H and radius a falling off with distance faster than
1/r is only capable of trapping an electron if 2mHa2 / h2 >\7r2, so a mole-
cular distortion such as that in a VK centre can only trap an electron if q is
greater than some critical radius qc. Thereafter the energy of the electron
will increase first quadr^tically and then linearly and we may write the
energy of the system, measured from the bottom of the conduction band, as

(3.14)

The minimum value occurs when q=Ei/a, giving

Eiqc-\E\/A.

Self-trapping will only happen if this is negative. The energy of the system
is shown in Fig. 3.5. For a strongly localized defect (Fig. 3.5(c)) qc is zero
and energy will always be gained by deformation. Mott and Stoneham
point out, however, that for weak localization (aao« 1) this is not so and
both of the situations illustrated in Figs. 3.5(a) and (b) can occur. This
concept is used in § 9.14 in our discussion of the mobility of holes in SiO2.

Eiqc-\E\/A.

Fig. 3.5. (a, b) The energy of a carrier in a three-dimensional lattice, where trapping of VK
type is possible: (i) the elastic energy; (ii) the carrier's electronic energy; (iii) the total energy.
W is the polaron energy and a stable polaron is only formed if this is positive (case (a)), (c)
The same quantities for a carrier trapped at a defect. (From Mott and Stoneham 1977.) For a

short-range potential, curve (ii) will vary as (q —  qc)
2 for small values of this quantity.

Mott and Stoneham show that, in the situation of Fig. 3.5(a), the lifetime
r of a carrier before it forms a polaron should be such that l/r~
co exp(-w/4hoj) at low T, or ~o> exp(-w/fcr) at higher temperatures (cf.
eqn (3.35)), where w is the height of the potential barrier at X. There is
thus a delay in the self-trapping process for a free or weakly bound carrier.
This is not so for a dielectric polaron.
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Emin (1973a) points out that in a system of alloys in which these
parameters vary with composition a 'metal-insulator transition' will occur
at the value where trapping sets in. The polaron energy and hopping
energy will then increase continuously from zero, but there is a dis-
continuity in the electronic energy and thus in the Stokes shift, t Evidence
for this kind of transition is presented by Sumi and Toyozawa (1973) for
the silver halides. For these an electron is not self-trapped, while a hole is
free in AgBr and trapped in AgCl (Hohne and Stasiw 1969, Kanzaki and
Saguraki 1973). Sumi and Toyozawa quote this as an example of the
critical condition for self-trapping; also the more dramatic observation by
Kanzaki, Sakuragi, and Sakamoto (1971) of a sudden appearance in
AgBri-xCl* of a Stokes shift in the emission spectrum due to exciton
annihilation, which occurs at x —0-43, is in accordance with the predicted
discontinuity in the Stokes shift. This applies rather to the self-trapping of
an exciton, to which similar considerations apply. Another example is
presented by the findings of Weinberg and Pollak (1975) that holes have a
large drift mobility in glassy Si3N4, while in SiO2 the mobility is
~10~6 cm2 V"1 s"1 at room temperature, indicating self-trapping (§ 9.14).

3.4. Rate of loss of energy by free carriers

In crystals the mean free path of a carrier is due to scattering by phonons
and by impurities. In metals and semiconductors each time a carrier is
scattered by a phonon of frequency <o, it exchanges energy ha) with it.
Collisions with impurities are usually taken as elastic, though an electron
can also suffer an inelastic collision. In metals the effect of such collisions
has been observed by Panova, Zhernov, and Kutaltsev (1968) and Kagan
and Zhernov (1966) as a pronounced maximum at 55 K in the resistivity of
Mg-Pb alloys; below that temperature there are too few electrons with
energy sufficiently above the Fermi level for inelastic collisions to make a
significant contribution.

In pure crystalline non-polar semiconductors the effect of scattering by
acoustic phonons gives the well-known variation of the carrier mobility
with T~3/2. This behaviour can be derived as follows. Each electron has
mean energy \kT and thus a wavenumber (3mkT)l/2/h. In the absence of
a many-valley structure, phonons of this wavenumber are those involved in
the scattering, and these have energy small compared with ha)0. The
probability per unit time that an electron is scattered will be of the form

(3.15)

where (H) is the matrix element of the electron-phonon interaction and
N(E) is the density of electron states. To obtain H we consider the

t For definition of the Stokes shift see § 3.5.3.
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phonons in a block of the material of volume fl and density p0. The
Schrodinger equation for a normal mode of wavenumber q is

(3.16)

where X is the dimensionless dilatation, <f>(X) is the vibrational wavefunc-
tion, and s is the velocity of sound. The interaction between an electron
and a phonon is

(3.17)

where E\ as before is the deformation potential. The matrix elements of X
for transitions upwards or downwards are respectively

(3.18)

where nq is the number of phonons in the initial state, given by

(3.19)

The term exp(iq . r) ensures that q is equal to the change in wavenumber of
the electrons, which is small. For hco we set a) = qs, and (3.19) gives

We see therefore that q cancels from (3.18), and \X\2 is proportional to T.
The electronic density of states is proportional to \lE and thus for occupied
states to Vr; therefore if r is the time between collisions, 1/r is pro-
portional to T3/2.

Of more importance for the considerations of this book is the rate of loss
of energy to phonons. In crystals this is haj/r, where 1/r is the difference in
the probabilities per unit time for scattering downwards and upwards. This
is, by (3.18),

where we have taken H to be unity. For q we may write as before co/s, so
this reduces to

(3.20)

Here a) will be the maximum frequency that can interact with an electron
of energy E, so that CD/S = (2mE}l/2/h\ (3.20) thus becomes

(3.21)
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This does not depend on the temperature of the material and varies as
E3/2, that is as T3/2 where T is the temperature of the electrons.

For amorphous semiconductors and disordered systems generally a
treatment is given by Hindley (1970). For this problem it is not correct to
consider separately each scattering process due to the disorder and ask
whether it is elastic or inelastic, as for impurities in metals; this is because
the scattering processes are too frequent to be considered independently.
Instead Hindley uses the random-phase model of §§2.6 and 2.16. The
consequence of this is that there is no selection rule; the electron can lose
energy to any phonon and (3.21) is valid with co equal to a mean phonon
frequency (a>o). Thus if M is the atomic mass the rate of loss of energy ist

(3.22)

where N0 is the density of electronic states per atom. The term in braces
contains only electronic energies and is likely to be of order unity, except
near the bottom of a band where N0(E) is small. If it is much greater than
unity, perturbation theory will not be applicable. A treatment of this
strong-coupling case is given by Thornber and Feynman (1970) and
applied to the rate of loss of energy in A12O3, which is much greater than
ha)Q.

Eqn (3.22) for the rate of loss of energy should be valid when the energy
crosses Ec, the mobility edge, electrons falling from extended to localized
states. Here again the treatment is somewhat different from that applicable
to capture by individual shallow traps in crystals (Gummel and Lax 1957,
Ascarelli and Rodriguez 1961; for a review see Milnes 1973, Stoneham
1975).

3.5. Transitions between localized states
3.5.1. Introduction

In this section we discuss transitions of an electron or hole between one
localized state and another, the difference WD between their energies
being obtained from or given up to phonons. There are two main appli-
cations of this analysis.

(a) The thermally activated hopping process discussed in § 2.7, where
the rate-determining step in charge transport is the jump from one
localized state to one of higher energy.
(b) The converse process in which an electron jumps down from a
localized state at the conduction-band edge, or a deep state, to one at the
valence-band edge. In § 6.5.2 we show that such transitions can be
responsible for recombination in amorphous photoconductors.

t Hindley finds for the numerical factor 7r3/4 instead of our TT.
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If the transition rate upwards is p0 exp(- W&/kT\ the rate downwards is
Po by the principle of detailed balancing.

We can distinguish three cases.
(i) WD is less than the maximum phonon energy fto>0, and the polariza-
tion energy (3.3) is small compared with ha)0. The latter condition
implies, for a deformation potential E\ and localized state diameter a,

(3.23a)

or for a polar lattice

(3.23*)

In either case this means in practice that a ~ 10~7 cm or more. We can
then treat the process as a single-phonon transition, as in § 3.5.2.
(ii) Wv is still smaller than ha)0, but the inequality (3.23a) or (3.23*) is
not valid. The hopping is then essentially of polaron type, the main part
of the activation energy being derived from the term (3.6) when T>
2®D-

(iii) WD is greater than ha)0, so that the transition involves the simul-
taneous emission or absorption of many phonons. The main application
here is to recombination.

3.5.2. Single-phonon hopping processes

This process (number (i) of those enumerated above) was first treated by
Miller and Abrahams (1960) in their discussion of impurity conduction
(§ 4.4.2). We suppose, following the analysis of § 2.5, that the two localized
states a, * are at a distance R from each other, that their wavefunctions i/ra,
il/b fall off as exp(-ar), and that the difference between their energies is
WD. Distortion of the lattice is neglected. Then the eigenfunctions for an
electron resonating between the two states are

where

It is supposed that // WD« 1, so that the energy difference is still, to a first
approximation, equal to W&. We have to calculate the transition pro-
bability p between these states. For transitions upwards, p is of the form
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and (by the principle of detailed balancing), p is equal to p0 for transitions
downwards. If first-order perturbation theory is valid, the transition pro-
bability will be given by the usual formula

(3.24)

where, in contrast to eqn (3.15), N(E) is the density of states for the
phonons in the final state, so that

(3.25)

where s as before is the velocity of sound. The transition probability, using
eqn (3.18), is

(3.26)

where

We have next to evaluate M. We consider four cases,
(i) The limit of small values of W&, so that qR«l. Then

(ii) Also for small WD, the limit for large R, so that qr »1. Then

These are the two cases considered by Miller and Abrahams (1960) and
relevant to impurity conduction.

(iii) The case when W& is comparable with ha)0. This is applicable to
hopping between band-edge localized states and variable-range hopping
between states at the Fermi level in semiconductors. In either case

(3.27)

the integral being over a single site. For hopping at a band edge,
localized states wtH have radius a larger than the lattice parameter, and
the integral is small. The simplest way to evaluate it is to take for if/

so that the integral contains the exponential factor
Therefore, if we set q = 7r/a0, (3.27) contains the factor

(3.28)
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which, if a ~3a0, is 10~7. Owing to the small values of /, single-phonon
hopping by electrons in states of large radius, for values of W& compar-
able with ha), have very low probability. Emin (1974) shows that the
multiphonon process considered in the next section may make the major
contribution. Since the multiphonon process gives a pre-exponential
factor dependent on T, it has to be explained why variable-range hop-
ping with croc A exp(—B/T l / 4) is observed over such a large temperature
range in amorphous silicon and germanium (Chapter 7), where optical
modes (for which the factor / is absent) are weak. A suggestion due to
Overhof (private communication) is that, for localized states centred on
a defect, a localized phonon mode coupled with the acoustic spectrum is
expected; in this case, too, the integral in (3.27) can remain large even if
a is small.
(iv) For weakly localized states at the Fermi energy (aa0« 1), the
random-phase behaviour can occur within the radius occupied by a
wavefunction and / is then (a0/a)3/2.
The approximations of this section are only valid if (3.23a) is satisfied;

the strongest interaction allowed, without going over to the approxima-
tions of the next section, is when El~Ka3ha)0. Assuming also that
Kdo —  Ms2 (both are a few electronvolts), the hopping probability is

(3.29)

The term in the square brackets is less than or comparable with unity, 70

and WD being in many cases of the same order. A pre-exponential factor of
order co is often assumed in discussions of hopping, and we think that such
a value is probably near the upper limit for the situation when single-
phonon hopping can occur. It seems likely, however, that, because of the
factor /, the pre-exponential factor can be much smaller.

Single-phonon hopping appears not to give rise to any observable Hall
coefficient (cf. § 6.4.7). Holstein (1961) has considered a two-phonon
process, of a higher order in the coupling than the single-phonon process,
in which an electron jumping from a site A to a site B can interfere with the
path ACB via a third site C. He finds, for the coupling constant used, a
significant value of .RH with A&H>M C - A Hall constant of this kind has not
been observed; the reason is discussed in § 3.9.

3.5.3. Multiphonon processes

A transition in which several phonons are simultaneously emitted or
absorbed may give a larger transition probability than a single phonon hop;
for acoustic phonons, as emphasized by Emin (1974), / in eqn (3.9) is small
for high-energy phonons if the radius of the localized state is large, and
then multiphonon processes involving many low-energy phonons may be
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rate determining. In addition multiphonon transitions must be considered
in the following two situations.

(a) When for a polar lattice the inequality (3.23) is not satisfied, or for
other kinds of distortion an equivalent condition holds. This means that
the energy of distortion round each centre is greater than hco. We must
then use a multiphonon treatment even when W& < ha).
(b) When Wr>»ha), for instance in the problem of recombination
between electrons and holes in two band-edge states.
In either case we then use the notation of § 3.2 and denote by q\, q2

configurational co-ordinates for the ions or atoms surrounding each centre,
typically local dilatations, changes in a bond distance, or polarization round
each site. Then we argue that if an electron is to jump from one centre to
another, one mechanism which will allow this is for q^ q2 to attain values
such that the two electronic energies are identical; thus

If the electron is initially on site 2, the energy required to produce such a
state is

(3.30)

which is a minimum when

Substituting in eqn (3.30) we find that the minimum energy required to
produce a configuration of the required kind is

(3.31)

where

As we shall see, it is only at temperatures above ~2h(o/k that W appears
as an activation energy; if it does, the transition probability per unit time
upwards is of the form P0exp(— W/kT), and that downwards is
P0exp{-(W-Wr>)/kT}. In the case when WH»Wv, appropriate to
impurity conduction in polar materials, the last term in (3.31) can be
neglected.

The analysis leads to the important result that the term Wu in the
hopping activation energy is approximately half the energy of polarization
Wp. This is true only in a model in which the electron on one molecule does
not affect the value of q for the other. It is not true, for instance, in polar
materials, in which two polarization wells overlap and can affect each
other. For these we picture the process as follows. Initially the electron is
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Fig. 3.6. Potential wells on a pair of ions a and b during the hopping process: (i) before
hopping; (ii) thermally activated state when electrons can move; (iii) after hopping.

trapped in a potential well as in Fig. 3.6. If the electron is to be transferred,
thermal fluctuations must ensure that the wells have the same depths. If
WD is zero or negligible, it is obvious that the smallest activation energy
that can produce such a configuration is that when both wells have half the
original depth. The energy required to produce this configuration consists
of the following terms.

Energy to raise the electron in well a;
Polarization energy released in well a;
Energy to form well b;

These give a total activation energy formula (3.31) can be
used.

For polar lattices, if the distance R through which the electron must be
transferred is not large compared with r0, the formula

is no longer valid and must be replaced by (Killias 1966, Austin and Mott
1969)

(3.32)

This occurs for the reason already mentioned: the wells overlap and the
energy required to produce the intermediate configuration of Fig. 3.6(ii) is
diminished. For the adiabatic case the exponential term exp(—2aR) does
not occur.
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We turn now to the term outside the exponential in the expression for
the probability per unit time for a jump from site a to site b. For the case
Wv = Q this has been investigated in detail by Holstein (1959) and Emin
and Holstein (1969) in their work on the behaviour of polarons; the
extension to the case when WD^O is due to Schnakenberg (1968). We
distinguish two cases.

(a) The 'adiabatic' case in which, during the time of the order of 10~12 s
in which the activated state of Fig. 3.6 persists, the electron makes
several transitions backwards and forwards between the two wells. In
this case the analysis shows that the jump rate is of the form

(3.33)

where p is equal to the frequency co0 of an optical phonon (there is no
dispersion in the simple model used).
(b) The non-adiabatic case, where in each fluctuation the chance of an
electron jumping is small. Then

(3.34)

Since / = /0exp(—aR\ this exponential factor is now included. In this
case the factor Io/h(WnkT)l/2 outside the exponential exp(-2ajR-
W/kT) may be greater than a)0. Perhaps the simplest way of considering
this is to say that the frequency with which the system reaches the
situation in which tunnelling can occur is a) exp(—WH/&T), the time it
stays in the energy range where tunnelling is possible is
a)~l{I/(WnkT}l/2}~1 and the chance per unit time of tunnelling is I/h.
To consider what happens at low temperatures, we draw the configura-

tional co-ordinate diagram for the two states of the electrons as functions
of the co-ordinate q already defined (Fig. 3.7(a)). The transition pro-
bability upwards is

(3.35)

For discussions of the constant C, of order co in the adiabatic case, see
Schnakenberg (1968) and Emin (1975). The factor exp(-w/Jft<t>) for the
transition probability through a potential barrier of height w is of wide-
spread applicability and has already been used in the last section. It is
simply the value of \x\2 at X in Fig. 3.7(a), x being the vibronic wavefunc-
tion of the system. This shows that the same term (with a numerical factor
slightly different from 4 depending on the shape of the barrier) applies for
the tunnelling of a heavy particle from one potential well to another, a)
being its vibrational frequency in the well.
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Fig. 3.7. Energy E of a system as a function of a configurational co-ordinate q: (a) for hopping
between two states separated by energy WD, when polarons are formed; (b) for recom-
bination of excited defect or for two electrons in localized states (note that WH is now written
w)\ (c) for free exciton; (d) when a) is different for excited and normal states. The kink at Y may

not be sharp.

At intermediate temperatures, WH in (3.33) should be replaced by

At T ~ 2® , the hopping energy has dropped by 8 per cent, and at J®  by 30
per cent.

An important application is made in § 6.4.5 to the passage of a trapped
electron (or electron pair) between two positively charged sites fairly close
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to each other (Pike 1972, Elliott 1977). The barrier is then lowered by
4e2/KR (or Se2/KR for an electron pair), where R is the distance between
the sites. However, if the trapping is of the VK (molecular) type, the
trapping energy is not affected by proximity. Thus, if T> ~2®D , excitation
over the barrier should be more probable than tunnelling through it. This
has important consequences for a.c. conduction in chalcogenides.

We now consider the case when W& » ha). Here the main application is
to the radiationless recombination of an electron and a hole. They may be
in band-edge localized states, such that their wavefunctions overlap; in this
case q will be defined as above. The analysis will, however, also apply to
trapped excitons, that is to an excited defect, where both states are
functions of some co-ordinate q. We shall discuss also free excitons.

For a trapped exciton, that is an excited defect,1 we draw the energies of
the two states as in Fig. 3.7(b). In this case radiation is possible from the
upper to the lower state; by the Franck-Condon principle the frequency of
the radiation is given by E2/h, while Ei/h is the corresponding absorption
frequency. The quantity

is called the 'Stokes shift'. At low temperatures the width, broadened by
zero-point motion, is

(3.36)

where W is the interval A to C. At temperatures above the Debye
temperature hco should be replacedt by kT. AJ51 for absorption is shown in
the figure, the two vertical broken lines enclosing the width of the vibra-
tion.

The quantity W& is the zero-phonon absorption frequency. If the Stokes
shift is small, absorption lines due to excitation of one, two, or more
phonons are observed in crystals. In amorphous materials it is likely that
phonon lines are sufficiently broadened by interaction with other phonons
for the effect of quantization of phonon energies to be negligible (see
Robertson and Friedman 1977).

The multiphonon transition probability downwards when the system is in
equilibrium at C at zero temperature can be calculated as follows. We
make use of the Born-Oppenheimer approximation, according to which
any state of the system can be represented by a product

where i//(x;q) is the wavef unction of the electrons (with co-ordinates jc)
when the configurational co-ordinate has the value q and x(<l) is the
vibrational wavefunction. We can calculate the transition probability

t See Street 1976 (eqn 12) for intermediate temperatures.
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downwards between the state when x(q) is the ground state of the upper
curve and ^2(4) that of the lower curve vibrating between the points PQ.
This is a transition with no change of energy; it is envisaged that the large
vibrational energy after the transition is dissipated by coupling with other
phonons.t The probability per unit time will be given by

(3.37)
where N(E) is the phonon density of states (-l/hco) and M is the matrix
element of the terms omitted from the Schrodinger equation in the Born-
Oppenheimer approximation. In general, if \Aq2 is the potential energy,
this is \A(d2/dq2\ not acting on x- So the matrix element contains terms
involving the electronic functions, which are difficult to estimate, and the
terms

(3.38)

Provided both upper and lower states have the same frequency a), these can
be calculated exactly (see Englman and Jortner 1970, Robertson and
Friedman 1976). Mott, Davis, and Street (1975) give a calculation due to
Rees. For instance, if the ground-state wavefunction is exp(—&2q2\ we find

where n = W-o/tia) and is the number of phonons emitted. Using Stirling's
formula for n!, this is of the form const. exp(-yWG/tia>) with

(3.39)

The quantity y is often as great as 2 for materials with small Stokes shift or
about 1 for materials with large Stokes shift. It is here assumed that aj is the
same in both states. The matrix element without d/dq has the same
exponential term, so at zero temperature P0, the transition probability
downwards, is given by$

(3.40)

t Or possibly by ejecting an anion (Pooley 1966).
$ A short calculation shows that, if the barrier height w is small, (3.40) becomes

indicating that in this limit we may consider the transition as tunnelling through the barrier.



PHONONS AND POLARONS 85

At finite temperatures integrals of the type (3.37) can also be evaluated, %i
referring to an excited state. Robertson and Friedman findt that (3.37)
should be multiplied by

This is nearly constant until kT approaches ha) and then increases as
(kT/h<o)n. The approximation is valid only in the weak coupling limit
(small Stokes shift).

At higher temperatures the transition rate downwards will be of the form
a) exp(— w/kT), as first proposed by Mott (1938). The transition pro-
bability downwards is thus independent of T only below hw/nk, and then
increases as Tn and eventually as exp(— w/kT).

There is a large literature on multiphonon transitions of this kind, of
which early papers are those of Huang and Rhys (1951), Kubo (1952), and
Kubo and Toyozawa (1955). The treatment given above derives from
Englman and Jortner (1970) and Robertson and Friedman (1976,1977). A
review is given by Struck and Fonger (1975). Other workers who derive
equations of the type (3.39) are Hagston and Lowther (1973). The
exponential form (3.40) is found to be in very good agreement with
experiment for rare-earth ions in various matrices, where the luminescence
and non-radiative transition probabilities can be compared. Figs. 3.8 and
3.9 show some results on P0 and its temperature variation obtained by

Fig. 3.8. Spontaneous multiphonon transition rate P0 of trivalent rare earth ions in LaQ3,
LaBr3 (lower curve) and LaF3 (upper curve) as a function of &E/a)max. (From Moos 1970.)

t This factor was first given by Kiel (1964).
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Fig. 3.9. Temperature dependence of the multiphonon transition rate P0 in LaF3HO3+. (From
Moos 1970.)

Moos (1970). More recent work by Layne et al. (1977) for rare earths in
glasses confirms (3.40) and its temperature dependence in detail. Fig. 3.10
shows some non-radiative lifetimes for the polymers CxHy and CxDy. Since
deuterium (D) gives a smaller phonon energy ha> than hydrogen, one
expects a longer lifetime; this is well shown.

Fig. 3.10. The dependence of the non-radiative lifetime r on the radiative energy gap E for
the hydrocarbon CxHy(O) and CxDy(0). The exponential dependence on E and particularly

the effect of the smaller value of hco for deuterium is well shown. (From Moos 1970.)
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If Fig. 3.7(b) refers to an optically allowed transition, in which BA is the
absorption energy (Ei) and CD (E2) that for the emission frequency, there
is another process by which the system can return to the ground state
without the emission of radiation. It was first suggested by Dexter, Klick,
and Russell (1955) that if A lies above X, the system will not come to a
temporary equilibrium at C through interaction with other phonons but
will normally cross over at the point X and then oscillate on the curve
PBQX until its energy is dissipated. It is envisaged that the excited system
loses energy through anharmonic coupling with other phonons (heat
conduction) until the vibration is from X to X' in Fig. 3.7(b); then the
interaction between the two electron wavefunctions, which will cause the
splitting between the two curves, will lead to a large transition probability
onto the lower curve. If for symmetry reasons this term vanishes, a small
excitation of another configurational co-ordinate (called in the literature a
'promoting mode') will cause one.

Bartram and Stoneham (1975) have made detailed calculations for F
centres which show that radiationless recombination occurs with high
probability when the condition of Dexter et al. is valid. Parke and Webb
(1973) apply the idea to the optical properties of thallium, lead, and
bismuth in oxide glasses. If after irradiation in the band due to a defect
there is no photoluminescence and if the energies (as in SiO2) are several
electronvolts, so that (3.40) is small compared with the probability of
radiation, this is the most likely mechanism.

For a free exciton formed from a hole subject to trapping by the VK

mechanism and an electron, a configurational diagram as in Fig. 3.7(c) has
been proposed by Mott and Stoneham (1977). There is a barrier which
must be surmounted if the exciton is to be self-trapped, for a value qc which
depends on the exciton's effective mass. Here again self-trapping is only
possible if the minimum C lies below A and occurs after a delay r such that

A consequence is that free excitons should give narrow Lorentzian
absorption lines, and bound excitons should give a broad Gaussian form.t
In solid and liquid rare gases there is much evidence that this is the case (cf.
Jortner 1974).

An important conclusion from (3.40) for variable-range hopping or a.c.
conduction by electrons with energies at the Fermi level is that a, the
tunnelling term in e~2aj?, will normally be only slightly increased because
the electron has to tunnel between the two states of Fig. 3.6(ii), so that

t See for instance Street 1976, p. 402.
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where a0 is the value without polaron formation. However, ^ph is reduced
by exp(-4Wu/hco). This can greatly decrease the magnitude of the pre-
exponential term in variable-range hopping, but since *>ph occurs for a.c.
conduction (cf. eqn 2.96) in the term {\n(vph/a)}4 the effect here will be
much less. This is possibly one reason why a.c. conductivity according to
eqn (2.97) is observed for chalcogenides, but d.c. conduction by variable-
range hopping is very weak if present at all. More recent work (Elliott
1977) suggests, however, that a.c. conduction is due to motion of electron
pairs between very close centres (§ 6.4.5).

These concepts are applied to defects in non-crystalline materials in
Chapters 6-10. We can summarize their behaviour as follows.

(a) For materials with fourfold co-ordination (silicon, germanium)
dangling bonds (not possible in crystals except at dislocations and grain
boundaries), divacancies, voids, and impurities such as Si—H bonds have
been proposed as producing states in the gap. It is known (Chapter 7) that
at crystalline silicon surfaces there is a reconstitution of the atomic
arrangement, the atoms forming pairs. However, observations of pho-
toluminescence (§6.7.6) due to transitions between gap states show that
the Stokes shift, in certain cases at any rate, is not large, perhaps because of
the rigidity of the lattice. Also deep states due to impurities in crystalline
silicon normally show rather small Stokes shift, as has been shown in a
number of papers by Grimmeiss and co-workers (Braun and Grimmeiss
1974, Grimmeiss et al 1974, Engstrom and Grimmeiss 1975, 1976, and
for a review Grimmeiss 1977). Energies of optical edges from the valence
band to such levels and from the level to the conduction band add up to the
band gap, showing that a zero-phonon line is involved. For such levels (e.g.
gold or zinc in Si, and also for deep levels in GaP) the capture cross-section
is temperature dependent, tending to a constant value at low temperature
(Henry and Lang 1976). The configuration diagram may, then, appear as in
Fig. 3.7(d), with a frequency a)\ for the excited state smaller than the
ground-state frequency (o0. For this case the transfer integrals were cal-
culated by Hutchisson (1930) and Siebrand (1967). In eqn (3.40) co is now
o)0 and y = log{(a>o + 6>i)/(wo~6>i)}, in the limit of zero Stokes shift.

(b) At the other extreme are SiO2 and the chalcogenide glasses, in which
the chalcogen is bonded to only two metal atoms. These glasses show a
term of the form yT in the specific heat, thought to be due to vibrations of
this chalcogen when the bond angle approaches 180°  (§6.8.1). This is
absent in amorphous arsenic with threefold co-ordination (Phillips and
Thomas 1977). Photoluminescence in chalcogenides shows a very large
Stokes shift (§ 9.6), as it does in silicate glasses containing thallium (Parke
and Webb 1973). For radiationless recombination, eqns (3.36, 3.37) are
then likely to be applicable with y ~ 1. A plausible model for the defect is
then analogous to the 'non-bridging oxygen' in SiO2, namely a chalcogen
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bonded to a single metal. A feature of these materials is that the upper
valence band is formed from lone-pair orbitals, so that the dangling bond
on the non-bridging oxygen can form a strong bond with a lone-pair orbital
on another chalcogen. This will be strongest when the centre is positively
charged since there are then two bonding electrons only and no antibpnd-
ing one. The hypothesis is made in Chapters 6 and 9 that the bond is then
so strong that all centres are either positively or negatively charged (D+

and D~). The co-ordinate q in this case is the distance from the singly
co-ordinated chalcogen to the other chalcogen atom with which it is
bonded, and a very large Stokes shift is expected (Street and Mott 1975).

3.6. Motion of a polaron in a crystal

In a crystal the motion of a polaron from site to site in the adiabatic
approximation will be thermally activated and occur with frequency

Here, for dielectric polarons, WH is given by (3.32); the only difference
from the treatment of § 3.5.2 is that Wb now vanishes. For polarons of any
kind, dielectric or otherwise, WH is the energy of the intermediate stage
illustrated in Figs. 3.4 and 3.6.

However, at low temperatures (r«@D) a polaron in a crystal moves
with a well-defined wavevector k and effective mass rap given by

(3.41)

R is here the hopping distance. The occurrence of this exponential factor
comes because the wavefunction of the moving polaron must be of the
form

where Xn(q) is the vibrational function in the ground state at atom n. The
energy will then be of the form ft2fc2/2mp, and will contain the integral

which as we have seen is determined by the term exp(— Wu/^cj)- For
L transition metal oxides, for which R ~ 4 A, the pre-exponential term in
1 (3.41) will be of order 3-5. It is important to notice that for quite small
' values of Wn of order ha), which would not give an observable temperature
' activation, mass enhancement of order 10 or more is possible. We refer to
' such pseudoparticles as 'heavy polarons'—they are identical with the

'nearly small polaron' treated by Eagles (1966, 19690, b).
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The optical properties of polarons have been considered in many papers.
For molecular polarons, in which the distorted molecules are reasonably
far apart, the transition of lowest frequency is normally one in which the
electron jumps to a neighbouring site (photon-assisted hopping); for this a
treatment of the temperature dependence is due to Reik (1970). For
polarons in a polar medium, however, the potential well formed on the site
where the carrier is, by virtue of its Coulomb form, will always have excited
states; absorption processes similar to those in an F centre are expected
(Austin 1972).

A mathematical treatment of bound piezoelectric polarons is given by
Hattori (1975).

3.7. Trapped and localized polarons

We have seen that a charge carrier (electron or hole) trapped in a localized
state will always distort its surroundings to some extent, and that under
certain conditions this distortion may determine the activation energy for
hopping. Particularly in materials of high dielectric constant, it may be a
useful approximation to treat the polaron in a crystal as moving in the field
of a trapping centre or a random field, so that the polaron bandwidth
Bp = 2zh2/mpa

2 can be used in the Anderson localization criterion (§ 2.3)
when the material is amorphous.

If a polaron is bound to a charged donor or acceptor, its potential energy
at a distance R from the donor or acceptor is -e2/KR, where K is the static
dielectric constant, so long as R is greater than the polaron radius rp. We
can therefore distinguish two cases for small polarons.

(a) If the radius h2K/mpe
2 is large compared with R (the distance of the

nearest metal ion from the centre), the polaron is described by a hydro-
gen-like function and the energy required to remove it from the centre is
e4mp/2h2Kp. This probably occurs only for K »100, as for example in
SrTi03(see§3.11).
(b) If this is not the case, then the carrier must be thought of as located
on the metal lattice site next to the donor, so that the energy required to
remove it is e2/K.R, where R is the distance between the two sites. This is
probably a good approximationt for NiO and TiO2.
The resistivity of a semiconductor in which the carriers are small

polarons with WH great enough to show hopping conduction will therefore
appear as in Fig. 3.11. At low temperatures the electrons are bound to the
donors; when they are all freed, if that occurs at a temperature below i@D,
they are capable of transport as heavy particles scattered by phonons, so

t The direct measurement of drift mobility in undoped NiO by Spear and Tannhauser (1973)
suggests that the carriers are large polarons, with effective mass enhanced by only 1 • 5 and
meff ~ 1-5 rae. This surprisingly low value led these authors to conjecture that they may have
been measuring the mobility of holes in the 2p band.
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Fig. 3.11. Typical plot of resistivity against temperature for a crystalline semiconductor where
the carriers are polarons. In regime 1 electrons are bound to donors; in regime (2) they are
free but kT« \h<*) so that they behave as heavy particles increasingly scattered by phonons as

the temperature is raised; in regime (3) they move by hopping.

the resistivity rises with increasing temperature. At the temperature |® D
the mean free path satisfies the relation L ~ a and o- is of order

Here mv ~ fcT, so the denominator is m (kT) . At temperatures above
!® D conduction is by hopping, and the conductivity decreases.

3.8. Thermopower due to polarons

Determination of the thermopower of a semiconductor is the most direct
way of finding out whether the mobility contains an activation energy,
either due to polarons or to disorder. In extrinsic compensated semicon-
ductors the conductivity varies as exp(—E/kT),  and the thermopower S as
(k/e)(E/kT + const.); the two values of E, the donor ionization energy, are
identical. If, however, conduction is by small polarons and the temperature
range is such that thermally activated hopping occurs, the conductivity
varies as

WH does not occur in the expression for the thermopower. Various authors
have used this criterion to determine whether or not thermally activated
hopping is present in a given material. For instance, in polycrystalline
lithium-doped nickel oxide Bosman and Crevecoeur (1966) found that the
activation energies deduced from conductivity and thermopower were
identical, as shown in Fig. 4.37 at temperatures above that for which
impurity conduction sets in. Keem, Honig and van Zandt (1978), however,
found that in single crystals of NiO of high purity they differ by ~0-1 eV,
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indicating a polaron hopping energy. In this case the acceptors are Ni
vacancies. These authors believe that in polycrystalline Li-doped speci-
mens a lithium-rich region exists near grain boundaries, that this carries the
current, and that the contraction of the lattice parameter in this region so
broadens the d-band that no polarons are formed. Crevecoeur and de Wit
(1968) have made similar measurements for MnO; for this material the
activation energy deduced from the conductivity is greater than that
deduced from the thermopower. Polaron hopping seems to be present,
indeed down to temperatures below 2®D - Other examples are given in
§3.10.

3.9. Hall effect due to polarons and other forms of hopping

For polarons moving by band motion and when kT is small compared with
the polaron bandwidth, the Hall coefficient is given by the usual formula
(Ru= 11 nee} and its sign depends on the sign of the carrier. This is not so
in the hopping regime, and the calculation of the effect follows quite
different principles. It depends on the interference between the wavefunc-
tion due to a direct jump and an indirect jump via another site, on more
than one site (Friedman and Holstein 1963, Friedman 1963, Holstein and
Friedman 1968, Holstein 1973). For three-site configurations RH is always
negative, whether the moving particles are electrons or holes. The inter-
ference can only take place when the electrons in the three sites have the
same energy, and an elementary calculation (Austin and Mott 1969) shows
that this requires an activation energy f WH- Therefore the Hall mobility has
the form

(3.42)

s is believed to be -|.
The occurrence of the factor 3 in the activation energy for the Hall

mobility in crystalline materials has at the time of writing been verified in
only one material (LiNbOa); this is described in the next section. One
expects also in disordered materials, when W&> kT and WH is the largest
term in the activation energy, that (3.42) should still be valid; an example
may possibly be cerium sulphide (§ 4.7.5). However, much evidence
suggests that, in disordered materials when W&^kT, the Hall effect is
small, whether WH is large (multiphonon processes) or small (single-
phonon Miller-Abrahams hopping). The evidence from impurity conduc-
tion and from conduction at band edges is reviewed in Chapters 4 and 6.
The reason for this behaviour is probably that preferred percolation paths
only give a Hall voltage at the relatively few points where they come close
together (see the discussion given by Mott, Davis, and Street 1975). No
fully quantitative theory exists at the time of writing for the Hall effect
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under these conditions and our belief in its absence must be based mainly
on experiment, through the analysis of Bottker and Bryksin (1977) gives it
some support.

3.10. Examples of hopping polarons

As we have stated, in all narrow-band ionic materials and many that are
not ionic there must be some enhancement of the mass of the carriers due
to polaron formation. Evidence for thermally activated hopping in crystal-
line materials is, however, limited. There are three ways in which it could
be obtained.

(a) It can be obtained from a discrepancy between the activation ener-
gies in the conductivity and thermopower, as in MnO (§ 3.8). This method
has been extensively used with the aim of establishing the existence of
hopping (not of polaron type) in amorphous semiconductors (Chapter 6) and
in vanadium glasses.

(b) Direct measurements of the drift mobility for injected carriers can be
used. Ghosh and Spear (1968) established a hopping mobility with activa-
tion energy 0-24 eV for electrons in crystalline sulphur, which they inter-
preted as due to hops from one S8 ring to another. The mobility increases
with pressure (Dolezalek and Spear 1970). Also Le Comber et al (1974)
have measured an activated mobility for holes in solid rare gases; the
polaron is of molecular type, an argon atom and ion forming an Ar£
molecule. This behaviour was predicted by Druger and Knox (1969) and
Song (1971). The self-trapped hole, known as a VK centre, found in alkali
halides is similar (Castner and Kanzig 1957, Stoneham 1975). Polaron
transport (of the molecular or acoustic type) is frequently observed in
molecular liquids, as in the work of Ghosh and Spear (1968) (see also Spear
19740) on liquid sulphm. The activated mobility of electrons in liquid
hydrocarbons observed by many authors (Robinson and Freeman 1974,
Dodelet, Shinsaka, and Freeman 1973) can probably be intepreted in this
way.

Schein et al. (1978) measure the electron drift mobility in naphthalene.
Above 100K this is almost temperature-independent and of order
0-5 cm2 V"1 s"1; this in our view indicates the hopping motion of a 'nearly
small' polaron, of the form T~l exp(- WH/kT) with small WH. Below 100 K
there is a sharp rise in /LCH, indicating, these authors claim, the transition to
polaron-band motion.

A solvated electron in ammonia or water forms for itself a sort of
polaron (Jortner 1959, Catterall and Mott 1969, Thompson 1976), giving
the well-known absorption spectrum in the red. It is also likely that in
liquids such as NaCl plus a few per cent of Na (Nachtrieb 1975), or CsAu
with Cs (Freyland and Steinleiter 1976), the electron is self-trapped, form-
ing the liquid analogy of an F centre.
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(c) Comparison between the activation energies in the Hall and
conductivity mobilities can be used. For crystals detailed evidence is pro-
vided by the work of Nagels, Callaerts, and Denayer (1975) on conduction
in (slightly reduced) single crystals of LiNbO3. Here, between 325 K and
750 K, the activation energy for conduction is 0-65 eV, and for the (n-type)
thermopower 0-25 eV. The latter is thought to represent the binding
energy of an electron to an oxygen vacancy and the difference (0-40 eV) a
polaron hopping energy. The n-type Hall effect shows a small Hall mobility
with activation energy 0-13eV, which is 3 of 0-4 eV as predicted. The
results of these authors for conductivity and thermopower are shown in
Fig. 3.12.

Fig. 3.12. Temperature dependence of the electrical resistivity (circles) and thermopower
(dots) of a single crystal of slightly reduced LiNbO3. (Nagels et al 1975.)

3.11. Degenerate gas of polarons

In this book we give many examples of a Termi glass' (Chapters 2 and 4),
that is to say a degenerate gas of electrons in which states at the Fermi
energy are Anderson localized. Earlier sections of this chapter have shown
that if the localization radius I/a of a state is such that aa0~ 1, a0 being
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the lattice parameter, strong deformation of the lattice is likely, and motion
of the carriers involves dragging a polarization cloud along with the carrier.
This term is not important for problems of impurity conduction in silicon
and germanium because aa0« 1; in deep states in these materials, whether
amorphous or otherwise, the effect may or may not be large (§ 3.5), but it is
certainly important in chalcogenides as explained in Chapter 9.

There may be cases in which a useful approximation is to consider the
carriers as a degenerate gas of polarons before Anderson localization, so
that the bandwidth is contracted and localization occurs more easily. In the
next chapter it is suggested that crystalline Lai-^Sr^VOs and VOX may be
treated in this way, the disorder being due to the random positions of La
and Sr in the lattice or to vacant sites in VOX.

It is of interest to ask whether a degenerate gas of polarons is a suitable
treatment for any substance that shows metallic behaviour. It is well known
that in metals interaction with phonons can increase the effective mass of
electrons at the Fermi surface by a considerable factor. In calculations of
this effect the interaction between the electron gas and the phonons is
treated as a perturbation. If the small polaron energy is greater than the
Fermi energy, a better approximation may be to consider the metal as a
degenerate gas of small polarons; this will of course be possible only if the
number of carriers is small compared with the number of atoms at any rate
for dielectric polarons. The condition that a gas of polarons will be metallic
will be that the hydrogen radius <2H (=h2K/mpe

2) should be greater than
the interatomic distance, so that the binding energy is given by condition
(a) of § 3.7; this will be so only for large values of K. We can then apply eqn
(4.1) of Chapter 4, namely n1/3aH>0-2, as the condition for metallic
behaviour.

A degenerate gas of small polarons is therefore only likely to occur in
materials of high static dielectric constant AC, for values of K of 100 or more.
The slightly reduced crystalline materials SrTiO3 and KTaO3 have been
described in this way by Mott (1967, 1974c). The former provides a
degenerate electron gas with conductivity tending to a finite value as T -» 0,
if the concentration of carriers is greater than 3 x 1018 cm"3. This would be
quite impossible if the large static dielectric constant were not the quantity
determining the Bohr radius. Eagles (1969a), in a detailed discussion of
the properties of SrTiO3, describes the carriers as 'nearly small' with a mass
in the range 7-10me; for our description what is necessary is that they are
small enough for /COD not to play any role in the binding energy, which
means that the polaron radius is smaller than a.

3.12. Charge transport in strong fields

The discussion can be divided into (a) the mobility of a single carrier
forming part of a non-degenerate electron gas, and (b) the conductivity of a
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degenerate gas when states at the Fermi energy are localized, and variable-
range or nearest-neighbour hopping occurs. The latter is treated in § 2.7.

For a single carrier, we may envisage the following possibilities.
(i) The carrier is hopping between localized states at a band edge. If R is

the hopping distance and F the field, we should expect the activation
energy to be reduced by eRF. If eRF becomes comparable with the range
of localized states, it seems likely that the activation energy will disappear;
this case has not been treated quantitatively.

(ii) The carrier forms a small polaron. Its drift velocity in a field F is then
expected to be

(3.43)

as has been shown by many authors (Reik 1970, Austin and Mott 1969,
Austin and Sayer 1974, Austin 1976). R is here the hopping distance.
Here it is assumed that the particle hops to the nearest site. If 2a <
eF/2kT, then this will not be so, and the electron will jump to a site where
the activation energy disappears. This case has not been treated in the
literature.

Austin and Sayer (1974) and Austin (1976) have discussed charge
transport in vanadium phosphate glasses, and found that the conductivity
varies with field according to (3.43) but that R is considerably greater than
the hopping distance. They consider that this is probably due to enhance-
ment of the field by structural irregularities at the rate-determining steps.

(iii) Trap-limited mobility. A treatment was first given by Bagley (1970).
If the traps are neutral when empty, the escape time will be increased by
&xp(±eaF/kT) for jumps along and against the field. A one-dimensional
model would suggest a release time proportional to cosh(eaF/kT), but
leda, Sawa, and Kato (1971) find that in three dimensions it is proportional
to an integral of type

and thus to

If a quasi-equilibrium is set up, the capture time being unaffected by the
field, it is clear that the electron concentration is increased by this factor,
which therefore determines the drift velocity (cf. § 6.5.1).

Again for strong enough fields the electron will escape from the trap
without thermal activation (Mott 1971, Marshall, Fisher, and Owen 1974).
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If the traps are charged when empty (for instance compensated donors
or the charged dangling bonds proposed for chalcogenides in Chapters 6
and 9), we expect Poole-Frenkel behaviour. This was introduced by Fren-
kel (1938) following earlier work by Poole (1916, 1917). A field F lowers
the ionization energy of a centre by /£F1/2, where ft is given by

(3.44)

K is probably the high-frequency dielectric constant, though there is some
uncertainty about this. Thus the release probability will be increased by the
factor (leda et al 1971)

(3.45)

The electron concentration and thus the drift mobility will therefore be
increased by this factor. These equations are changed to some extent when
the treatment of Onsager is used instead of that of Poole-Frenkel (Pai
1975, Mott and Street 1977). This is discussed in Chapters 6 and 9.

Eqn (3.45) assumes that there is no tunnelling through the top of the
barrier. At a depth AE1 below the top, the tunnelling factor is easily seen to
be proportional to exp(—aAE"), where AE1 depends on the field. For
tunnelling to occur, a must be less than 1/kT, so tunnelling is expected to
set in suddenly as F increases or T decreases. The effect of tunnelling for
strong fields has been treated in detail by Hill (1971) and applied to
observations on SiO.

As pointed out by Simmons (1967) and Mark and Hartman (1968), for
trap-limited mobility in which all the traps are normally full one expects for
strong fields (@Fl/2 »kT)a drift velocity proportional to

The factor \ occurs because, while (3.45) gives the rate of escape from the
centre, the number of recombination processes is proportional to n2, where
n is the free concentration.
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4.7.1. Impurity conduction in nickel oxide
4.7.2. Conduction in glasses containing transition-metal ions
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4.10. Polycrystalline aggregates

4.1. Introduction

A 'FERMI GLASS' is a material, solid or liquid, in which the density of
states N(EF) for electrons with energies at the zero-temperature Fermi
level is not zero, but in which the disorder is great enough to ensure that
electrons in these states are localized in the Anderson sense (§ 2.3). The
disorder can be due to the random distribution of two constituents in a
crystalline alloy, or to the non-crystalline structure of a liquid or amor-
phous solid. A transition of Anderson type from non-metal to metal is said
to occur when some parameter jt, for example composition, stress,
magnetic, or electric field, changes in such a way that states at E? become
non-localized (extended). The theory of the change in the conductivity cr
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under these conditions has been described in § 2.8. In the usual case
(transition of type I), where a mobility edge Ec above EF exists for the
Fermi glass, the transition occurs when x is varied in such a way that
EC —  EF changes sign. We denote this quantity by AJE". If AE1 is positive,
conduction is activated, owing either to excitation of electrons to Ec or at
low temperatures to variable-range hopping; when AE is negative,
conduction is metallic, or tending to a finite value as T tends to zero. In
another form of Anderson transition (type II), the states in a half-full band
(not strongly correlated) may all be localized and, as x is varied, non-
localized states may appear first at EF. In such a case the transition is from
hopping to metallic behaviour, with no range of temperature for which
conduction is by excitation to a mobility edge.

Many amorphous semiconductors have a finite density of localized states
at the Fermi level and are in this sense Fermi glasses, showing variable-
range hopping as the main transport mechanism at low temperatures
(Chapter 6). This chapter, however, describes only systems which show an
Anderson transition and which are solids; liquids are considered in the next
chapter. Perhaps the main interest of such systems is that they give the
clearest proof of the existence of Anderson localization, of the mobility
edge, and of the minimum metallic conductivity; it is owing to their
experimental investigation that these concepts can be applied with
confidence to the problems of a non-degenerate gas in the conduction
bands of amorphous semiconductors.

In the last chapter it has been shown that when an electron is in a
localized state it will always deform the surroundings; this must be included
in any description of a Fermi glass. Systems in which this is not important
are in general those in which the hydrogen radius ti2K/me2 is large
compared with the lattice parameter, or in which for some other reason the
radius I/a of localized states is large. Typical of these are donor states in
(crystalline) silicon and germanium which are responsible for impurity
conduction and in other semiconductors for which K is large, and also
two-dimensional conduction at a Si/SiO2 interface (§ 4.6). As impurity
conduction has been extensively investigated, we start the chapter with a
discussion of this. Correlation, namely the Coulomb interaction between
electrons and holes, plays a major role in impurity conduction, however, as
indeed it does in most phenomena where metallic behaviour occurs in a
narrow band; correlation can of course lead to a metal-insulator transition
(the Mott transition). In the next section, therefore, we describe the effects
of correlation, showing when it is important and when it is not. We then
describe impurity conduction, some alloys such as amorphous Mg-Bi, and
conduction at a Si/SiO2 interface. Later sections will describe materials
where distortion (polaron formation) is important, such as cerium sulphide

: and Lai_xSrxVO3; a more complicated case is presented by VOX with x
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near to unity, where both correlation and polaron formation appear to play
a role.

Figs. 4.1 and 4.2 collect together some of the effects at an Anderson
transition which are predicted by the considerations of Chapter 2. Fig. 4.1

Fig. 4.1. Behaviour of the conductivity cr, thermopower 5, and Hall mobility /u,H at an
Anderson transition, plotted against a parameter x such that EF—E C changes sign at jc0. The
curve is at a constant temperature. The numbers refer to the following behaviour: 1, cr =
const, g2; 2, cr = crmin exp(—e/kT)\ 3, hopping conduction; 4, metallic, S = const, d In g2/dE',
5, S = (k/e)(e/kT +const); 6, hopping; the sign depends on that of d\ng/dE; 7, ju-H^g;

8, AIH = const, 9, hopping regime, /u,H due to excited electrons at the mobility edge.

shows the behaviour of the conductivity, thermopower, and Hall mobility
as a function of a parameter jc, for instance composition, which determines
the ratio B/ V0 of § 2.3. In these figures x denotes this ratio. Localization
occurs when x = x0, where (for three dimensions) JCQ ~ I- Fig. 4.2 shows the
plots as a function of I/T for a Fermi glass, with a transition of type I.
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Fig. 4.2. Log(resistivity), thermopower, and Hall mobility at an Anderson transition as
functions of l/T. In the top two curves of (a) EF lies below Ec: 1 (to the left of broken curve),
a- = const. exp(-B/T1/4), or Tl/3 in two dimensions; 2, cr = const. exp(-e/fcT); at 3, EF = EC

and <r = crmin; 4, EF lies above Ec- (b) The thermopower when EF lies below Ec\ 5, the
hopping regime; 6, the range of T when S = (k/e)(e/kT+\\ (c) The full curve shows ^H

when EF lies below £c- in (6) MH tends to zero as T-»0 (the hopping regime); in (7)
ptH = const.(ea2/h)-, the broken curve (8) shows the metallic behaviour when EF lies above Ec.

4.2. Metal-insulator transition in crystals!

4.2.1. Band-crossing transitions

In crystals the simplest form of metal-insulator transition is from a semi-
metal, a material for which the conduction and valence bands overlap, to a
non-metal, where they do not. The two situations are shown in Fig. 4.3. In
the divalent metals ytterbium, barium, strontium, and calcium, all of which

L are cubic, pressure diminishes the overlap between the lowest band, with
'two electron states per atom, and the conduction band. When the two

t This section summarizes the treatment given by Mott (1974c).
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Fig. 4.3. Band-crossing transition; energy as a function of k\ (a) non-metal, (b) metal.

bands cease to overlap, a metal-insulator transition is expected, and has
been observed in ytterbium (McWhan, Rice, and Schmidt 1969, Jullien
and Jerome 1971); discussions are given by Mott and Zinamon (1970) and
Mott (1974c). Another example is bismuth, where the two overlapping
bands separate on alloying with about 7 per cent of Sb (for references see a
theoretical study by Martin and Lerner (1972)). If there were no inter-
actions between electrons, these transitions would be continuous; the gap
AW would go uniformly to zero, at which point an infinitely small number
of electrons and holes would appear and then increase. I

As first pointed out by Mott (1949, 1956), interaction between electrons
and holes invalidates this conclusion, and at a transition of this kind there
must be a discontinuous change in the number of current carriers; the
argument was that a small number of electrons and holes would form pairs
(excitons), and the system would not be conducting. For metallic conduc-
tion there must be enough free carriers to screen the Coulomb field
between carriers of opposite sign, so that excitons are not formed, and this
was shown to lead to the formula

(4.1)

with au = h2K/m*e2, where K is the background dielectric constant and
m* = raemh/(rae + mh). Knox (1963) pointed out that before two bands
begin to overlap, if the energy (—m*e 4/2h2K2) of an exciton is (numeric-
ally) greater than the band gap AW, excitons will form before AW
vanishes. The literature on what happens to these excitons and the condi-
tions under which they 'crystallize' is large (Keldysh and Kopaev 1965,
Halperin and Rice 1968, Kohn 1967, further references in Mott 1974c).
While the so-called excitonic phase is not ruled out, it now seems likely
that a variation of the energy interval between the bands will necessarily
lead to a discontinuous change in the density of electrons and holes from
zero to the value at which the 'electron-hole gas' has its minimum energy.
The properties of the electron-hole gas are known mainly from experi-
ments on electron-hole droplets in strongly illuminated crystalline
germanium. In these materials (Rogachev 1968, Benoit a la Guillaume and
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Voos 1973, Benoit a la Guillaume, Voos and Salvan 1972, Hensel, Phil-
lips, and Rice 1973)t the electrons and holes condense into droplets, giving
a photoluminescence line of frequency that does not depend on the
intensity, unless the excitation is so strong that the droplets expand to fill
the whole specimen (Nakamura and Morigaki 1974). The theoretical pro-
blem is whether the electron-hole gas has a lower energy than a conden-
sation of excitons. For isotropic energy surfaces and neglecting correlation,
an estimate is as follows. The energy of an exciton is where

The kinetic energy of the electron gas together with that of the hole gas,
there being n particles of each kind per unit volume, is

and their electrostatic potential energy, assuming a uniform distribution of
charge, is

The minimum comes when giving an energy
much less stable than for the free excitons. However,

when the surfaces are anisotropic (Brinkman and Rice 1973) or when
correlation is included (Vashishta, Battacharyya, and Singwi 1973), the
reverse is usually the case. The electron-hole gas is then more stable and
electron-hole droplets are formed if carriers are introduced either under
illumination or through double injection (Marello et al. 1973). From this
the conclusion is drawn that, just before two bands overlap and as soon as
it is energetically favourable to form a droplet, the droplet will spread and
fill the whole of the specimen. There is thus a discontinuous change in the
number of carriers from zero to a value n given by

where an = h2K/m*e2 and AC is a background dielectric constant. The
constant in this equation is difficult to calculate and will depend on the
band form, but comparison with the observations on crystalline germanium
gives a value of about 0-3. At the same time a discontinuity in the energy
gap is expected; while at the transition no energy is required to form a
droplet, an energy equal to the condensation energy per pair for a droplet
is required to form a free electron and hole.

t A review is given by Hensel, Phillips and Thomas (1977).
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The magnitudes of these discontinuities depend essentially on the back-
ground dielectric constant. For an overlap between a conduction and a
valence band, where the optical excitation across the gap is allowed, this
will probably be large, so the discontinuity in n will be small. In fact no
discontinuity has been observed in ytterbium under pressure. A large
discontinuity is most likely for the overlap between the two Hubbard bands
considered in the next section, or between two d bands, because the
oscillator strength for optical transitions between them is small.

An important consequence of the prediction of a discontinuity is that, if
the free energy is plotted against volume or composition (x) in an alloy of
composition PxQi-x, a kink in the curve must occur as in Fig. 4.4. This

Fig. 4.4. Free energy against composition or volume for a system showing a metal-insulator
transition. The top curve is for T = 0, the lower curves for higher temperatures.

means that at low temperatures there must be a discontinuous change in
volume under pressure, from A to B in Fig. 4.4, and in alloy systems there
must be a range of composition in which the alloy is unstable so that two
phases will separate on annealing. The discontinuous change at low
temperatures of the density of current carriers with continuously varying
composition can thus only be observed in quenched unstable alloys, and at
the time of writing we have no firm evidence of its occurrence except
possibly (in the case of Hubbard bands) for lead-argon films (see § 4.3.4).

4.2.2. Hubbard bands and the Mott transition

For an array of one-electron centres with cubic structure, there are two
possibilities. The first is that the crystal is a metal; the second is that it is an
antiferromagnetic (or ferromagnetic) insulator. As first pointed out by
Slater (1951), an antiferromagnetic lattice can split the conduction band,
leading to a full and an empty band and insulating behaviour; these are
now usually called Hubbard bands; the insulating behaviour does not
depend on antiferromagnetic order, and continues above the Neel
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temperature. It is to be expected also for amorphous antiferromagnets,
either at low temperatures where each moment is fixed in position or above
the Neel temperature (see § 4.2.4).

In this section, then, we outline the properties of a crystalline array of
one-electron centres, each described by an atomic wavefunction </>(/•)
behaving as exp(—r/a^) for large r, at a distance a from each other
sufficiently large for the tight-binding approximation to be useful (§ 2.3). If
the number of electrons per atom deviates from an integral value, the
model should always predict metallic behaviour, but with one or any
integral number of electrons per atom this is not so, and the system is
insulating. The most convenient description is in terms of the Hubbard
intra-atomic energy U (Hubbard 1964), defined by

(4.2)

For hydrogen-like wavefunctions this has been calculated and is (Schiff
1955)

(4.3)

If $ is the ionization potential of each atom and <£ its electron affinity,
then, assuming that the functions (f> are not changed by the addition of an
extra electron,

(4.4)

The properties of such a system are the following.
(a) When the distance a between the centres is large so that the overlap

energy integral / (§2.3) is small, the system is expected to be anti-
ferromagnetic, with an energy below that of the ferromagnetic state
(Anderson 1956) equal to

(4;5)

The Neel temperature TN will be such that kTN is of this order.
(b) An extra electron placed on one of the atoms is able to move with a k

vector just as in a normal band. It is said to have an energy in 'the upper
Hubbard band'. It will polarize the spins on surrounding atoms antiparallel
to itself, or parallel if the atomic orbitals are degenerate, forming a
'spin polaron'. Its bandwidth is probably not very different from B cal-
culated without correlation.

(c) A hole formed by taking an electron away from one atom has similar
properties, being able to move with a wavevector k and having a range of
energies also not very different from B. One speaks of electrons in the
singly occupied states as being in this 'lower Hubbard band', though it is
preferable to think of a band of holes.
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(d) The two bands will overlap when a is small enough, and
consequently B great enough, to ensure that

B^U. (4.6)

A metal-insulator transition then occurs, sometimes known as the 'Mott
transition'. It is similar to a band-crossing transition, being (if we neglect
the arguments for a discontinuous change in the number of current car-
riers) from an antiferromagnetic insulator to an antiferromagnetic metal.
However, as the overlap increases, the number n of free carriers increas-
ing, the moments on the atoms and the Neel temperature will tend to zero
and disappear when n = l/2z (Mott 1974c), as shown in Fig. 4.5; there

Fig. 4.5. Moment and Neel temperature at the transition between antiferromagnetic and
normal metal, plotted against B/ U.

may thus be two transitions, though the range of the antiferromagnetic
metal may be absent. After the moments have disappeared, the electron
gas is highly correlated, as first described by Brinkman and Rice (1970).
This means that only a small proportion £ of the sites are doubly occupied
at any one moment, or unoccupied, as shown in Fig. 4.6. The spins of the
electrons on the other sites are no longer arranged antiferromagnetically,
but resonate quantum mechanically between their two positions. The band
is no longer split into two Hubbard bands; instead there is a large
enhancement by l/2£ of the effective mass, leading to large values of the
Pauli susceptibility and electronic specific heat, observed for instance in
some metallic transition-metal oxides (Brinkman and Rice 1973).

Fig. 4.6. Resonating moments in a highly correlated electron gas.
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However, although there is no splitting, it is often convenient to draw the
two overlapping Hubbard bands as in Fig. 4.7, each representing the
density of states of 'spin polarons' (Mott 197'2e, 1974c). This should be a
valid procedure for calculations of conductivity, Hall effect, and ther-
mopower, for instance in disordered systems.

Fig. 4.7. Overlapping Hubbard bands. The density of states for current carriers is plotted
against E, the dotted lines being for a non-crystalline system. 'Total' denotes the total density of

states when all spin directions are included.

Just as for band-crossing transitions, a discontinuity in n is expected at
the Mott transition; the discontinuity should be larger for the following
reason. An optical transition across the gap involves transferring an elec-
tron from one atom to a neighbour, so the corresponding oscillator
strengths and the consequent background dielectric constant are not likely
to be large. Thus the kink in Fig. 4.4 will be important. Two phase regions
are in fact observed in many systems. It appears that the change of n in, for
instance, V2O3 under pressure, is so large (>l/2z per atom) that the
antiferromagnetic metallic region does not occur. However, Gautier et aL
(1975) find for the system NiS2-xSex that there is a range of composition
which is metallic and antiferromagnetic; their phase diagram is shown in
Fig. 4.8.

The condition (4.6) for the transition can be evaluated for hydrogen-like
wavefunctions, since U (eqn 4.3) and B are both known. Writing, using
eqn (2.29) for values of aR near the transition

Because of the rapid variations of exp(—aR), aR depends little on z; we
have
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Fig. 4.8. Experimental phase diagram for the system NiS2_xSe (Gautier et al. 1975). API
denotes antiferromagnetic insulator, PI the same when paramagnetic above the Neel point,

AFM antiferromagnetic metal, and PM the same above the Neel point.

if z, the co-ordination number, is 6. Thus

(4.7)

This equation is used in § 4.3.2 for the discussion of the metal-insulator
transition in doped semiconductors. It does not take account of any dis-
continuity in the number of carriers.

Eqn (4.7) is derived for hydrogen-like wavefunctions. It is pointed out
particularly by Catterall and Edwards (1975) in their discussions of frozen
solutions of alkali metals in hexamethylphosphoramide and more generally
by Edwards and Sienko (1978) that K cancels out from the ratio B/U,
except in so far as it affects aH. If #H can be estimated independently, for
instance from n.m.r. data, (4.7) should be valid for functions that are by no
means hydrogen-like. Edwards and Sienko find that (4.7), with the
constant equal to 0-26, is valid for the metal-insulator transition in a very
wide range of semiconductors, in which n ranges from ~1022 to 1014 cm~3

(doped InSb).
In applying (4.6) to the transition in oxides, since U —  B is the energy

necessary to form two carriers, U must be the screened value C7scr for
which the lattice relaxes round each charge. USCT may be much smaller (by
a factor ~10) than the value of U in (4.5) which determines the Neel point
(cf. Mott 1974c).
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4.2.3. Wigner crystallization

The discussion of the Mott transition in the last paragraph is for a tight-
binding band with one electron per atom. Similar arguments can be applied
to any integral number, but for a non-integral number of electrons the
system will always be metallic, unless compensating fixed charges are
present to ensure charge neutrality. If so, they can trap the carriers in one
or other Hubbard band, producing an extrinsic semiconductor (such as
NiO doped with lithium, § 4.7.1).

However, in a partly filled band, or indeed in a free-electron gas, at a
much smaller value of «1/3aH a 'crystallization' to a non-conducting form
was predicted many years ago by Wigner (1938). Various forms of electron
crystallization have been observed, as for instance in Fe3O4, but an elec-
tron 'crystal' with a periodicity determined by n as Wigner predicted has
yet to be observed with certainty (cf. Care and March 1975). The possi-
bility has little influence on the processes described in this book, except
perhaps those of § 4.6 (see for instance Kawaji and Wakabayashi 1977).

4.2.4. Effect of disorder on Mott transitions

The predictions of the last section are as follows.
(i) For a series of quenched alloys, if the composition goes through the
critical value, there should be discontinuity in n, the number of carriers,
from zero to a finite value.
(ii) There should be a range of composition for which the system is
unstable, giving a separation of two phases if the system is annealed.
Metal-ammonia systems such as NaxNH3 show the well-known solu-

bility gap (Thompson 1976, Mott 19756) which we believe to be an
example of this behaviour. Caesium vapour at high temperatures and
pressures shows a critical point that we ascribe to the same cause. These
are discussed by Mott (1974c). However, if the disorder is great enough, it
is clear that the discontinuity is suppressed, an Anderson transition occur-
ring first as the parameter favouring localization increases. This is shown by
the fact that doped semiconductors such as Si:P show a transition of
Anderson type with no discontinuity. A qualitative theory showing when a
discontinuity is to be expected and when it is not has been given by Mott
(1978a).

A second question of interest is the following. If an Anderson transition
is observed, is the metallic electron gas highly correlated? If so, a pseudo-
gap as in Fig. 4.7 is expected, with the following consequences.

(a) .RH is given by Q-l/necg and will be larger than the classical value
(for a definition of g = N(EF)/N(E)tTee see eqn (2.22)).
(b) The thermopower should change sign (and become positive) if the
specimen is compensated.
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(c) Anderson localization will be facilitated and occur when g — 3.
It now seems likely that this is not so for doped Si and Ge; this will be
discussed further in §§ 4.3.3.

On the non-metallic side of the transition, crystalline materials are
expected to be antiferromagnets. In the disordered case, also, each local-
ized state should have a moment. Moreover, at low temperatures each
moment should have a fixed orientation; the material is an amorphous
antiferromagnet. It is believed that such materials have a sharp Neel
temperature above which they become completely random, but this is not
quite certain.t Below this temperature the moments should give a large
broadening of any n.m.r. line; above it they should not. Also above it the
term (k/e)ln 2 (§ 2.13) should appear in the thermopower.

4.2.5. Effect of correlation and distortion on Anderson transitions

If correlation is strong, we may start our discussion with two slightly
overlapping Hubbard bands, as in Fig. 4.7, and ask whether states at the
Fermi energy are localized or not in the Anderson sense; unless there is a
discontinuity in the number of current carriers, the transition takes place
when EC and Ep coincide.

However, if correlation is weak or if the number of carriers in the band
considered is non-integral, we can start from the one-electron localized
wavefunctions and ask what is the effect of correlation on them. We define
a quantity C/A as the Hubbard intra-state interaction (e2/Kri2) for one of
these Anderson localized states; its magnitude has been estimated (Mott
1974c), and it will certainly be much less than the corresponding value for
an atom and tend to zero with a. However, it must ensure that states at EF

are singly occupied; there will in fact be a demarcation energy E'F separat-
ing singly from doubly occupied states (Fig. 4.9). The interval Ep-Ep is
[7A. As localization becomes stronger and stronger, Ep will sink until all
states are singly occupied. Here again, as in the last section, there must
exist a Neel temperature above which the moments of the singly occupied
states fluctuate between random directions. A Fermi glass must in principle
always have a Neel temperature.

Another point of great importance is that, as shown in Chapter 3, there
is always some displacement of the surrounding atoms when an electron is
added to or removed from a localized state. As first pointed out by

tThe experimental evidence comes from 'spin glasses', such as Fe dissolved in Au, where the
interaction between moments is long range and fluctuating. For this alloy there is a sharp
cusp (at T{) in the susceptibility plotted against T (Cannella, Mydosh, and Budnick 1971),
but the specific heat shows no sharp change. A theory in which it is supposed that the
moments become free above Tf is given by Edwards and Anderson (1975). The subject is
reviewed by Fischer (1977). At the time of writing it is not entirely clear whether amorphous
systems have a true Neel point, below which at each site there is a fixed moment, or whether
in a fairly narrow range of T the time scale for fluctuations of moments becomes very large.
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Fig. 4.9. Showing singly and doubly occupied states for a Fermi glass.

Anderson (1975), this may lead to a situation in which all states are doubly
occupied or empty. Street and Mott (1975) and Mott, Davis, and Street
(1975) use the concept for dangling bonds in chalcogenide glasses, suppos-
ing that an unoccupied dangling bond forms a bond with a lone-pair orbital
on a neighbouring Se or Te atom, and the distortion energy is such that as
many unoccupied bonds are formed as possible so that no unpaired spins
remain. This concept is discussed further in Chapters 6 and 9.

4.3. Doped semiconductors

4.3.1. Impurity conduction; direct currents

The phenomenon now known as impurity conduction was first observed
by Hung and Gleissmann (1950) as a new conduction mechanism pre-
dominant at low temperatures in doped and compensated crystalline
germanium and silicon. Fig. 4.10 shows some typical results, due to
Fritzsche and Cuevas (1960). It will be seen that at low temperatures the
conductivity behaves like

(4.8)

and that cr3 depends strongly on the concentration of donors (N-&), except
at high concentrations where e3 disappears and 'metallic' behaviour occurs.
It is now believed that impurity conduction with an activation energy e3

can only occur (except for concentrations near the metal-insulator tran-
sition where the two Hubbard bands overlap) when the material is
compensated. This was first pointed out by Conwell (1956) and Mott
(1956) and confirmed by the experimental work of Fritzsche (1958, 1959,
1960). Prior to 1960, measurements in silicon and germanium were made
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Fig. 4.10. Resistivity p of p-type germanium with compensation A"(=A/"D/ATA) = 0-4 (Fritz-
sche and Cuevas I960). The concentrations of acceptors are as follows (in cm~3): (1)
7-5 xlQ14; (2) 1-4xlO ; (3) 1-5 xlO15; (4) 2-7 xlO15; (5) 3-6xlO15; (6) 4-9xlO15; (7)
7-2 x 1015; (8) 9-0 x 1015; (9) 1-4 x 1016; (10) 2-4 x 1016; (11) 3-5 x 1016; (12) 7-3 x 1016; (13)

1-0 x 1017; (14) 1-5 x 1017; (16) 1-35 x 1018.
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with samples doped with suitable impurities, but Fritzsche and Cuevas
(1960) introduced impurities by slow-neutron bombardment, producing
transmutation of the germanium atoms; in this way it was possible to vary
the concentration of donors, keeping the compensation K constant, which
greatly facilitated investigation of the separate effects of ND and K.

Impurity conduction is thought to take place in an impurity band
separated from the conduction band and split by the Hubbard C7, as in Fig.
4.11. States in the lower Hubbard band are Anderson localized owing to

Fig. 4.11. Impurity band split by the Hubbard £7, with light compensation; c.b. denotes the
conduction band.

the random fields of the charged minority carriers. The compensation is
defined (for an n-type semiconductor) by

compensation is represented in Fig. 4.11 by a position of the Fermi energy
such that the lower Hubbard band is not full. If K is small, e3 represents
the energy required to remove a 'hole' (an empty donor) from the nearest
negatively charged acceptor, and in fact an early paper (Mott 1956)
represented e3 in this way; the thermopower S should then behave as
(k/e)(e3/kT + const.). However, if K is not small, Anderson localization
obtains, e3 is a hopping energy, and 5 should increase with T. This was first
recognized by Twose (1959), developed in detail by Miller and Abrahams
(1960), and reviewed by Mott and Twose (1961). In this analysis, the
electron is supposed to jump to the nearest available empty site; variable-
range hopping has been observed in certain cases (§ 4.3.3), but not as yet in
lightly doped silicon and germanium.

The calculation of the conductivity consists of four parts.
(a) The calculation of the probability p per unit time that an electron

jumps from one centre to another at a distance R, and with energy higher
by WD. This is the problem considered in Chapter 3, and we write it

(4.9)



Fig. 4.12. Activation energy s3 as a function of compensation calculated from eqn (4.10) with
7VD = 2-66xl015cm~3. The circles are experimental points. (From Mott and Twose 1961.)

t If K is small, the quantity e calculated by Miller and Abrahams, or that deduced from
observations, is not a mean of the individual hops; this is only so for reasonably large values
o f K .
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In the calculation I/a is the radius of the centres, assumed spherically
symmetrical and about 50 A, and R typically is of order 300 A; p0 could
have a wide range of values and may be of order 1012 s"1.

(b) An averaging over all energies WG and all hopping processes! to
give the observed hopping energy e3. In the work quoted, it is supposed
that exp(-2oJ?) is so small and sensitive to R that the electron always
jumps to its nearest neighbour. For hopping to nearest neighbours Miller
and Abrahams found for n-type material and for small values of the
compensation K

(4.10)

with a more complicated formula when this is not so. Here R& and J?A are
the averaged distances between donor and acceptor sites respectively.
Since R& is also the average donor-acceptor separation, the first term is
simply the energy required to separate the carrier from the nearest charged
acceptor. Calculations for all values of K were carried out and the plot of
£3 against K is as in Fig. 4.12. For small K also s3 is proportional to l/jRD
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Fig. 4.13. The activation energy e3 for impurity conduction for the samples shown in Fig.
4.10, plotted against the average impurity separation RA- The broken curve represents the

results of eqn (4.10). (From Mott and Twose 1961.)

(i.e. A/i/3). According to Fig. 4.13 (from Mott and Twose 1961) this is so
for low concentrations, but e3 drops for high concentrations. The drop may
be due to the approach to the Anderson transition (at which e3 must vanish)
or to the increasing dielectric constant caused by a high concentration of
centres.t The former was suggested by Shklovskii and Shlimak (1972).
Knotek (1977), however, proposes that WD in (4.9) decreases because the
kind of many-electron hops discussed in Chapter 2 (see eqn 2.66) can occur
with higher probability.

(c) The next step in the calculation is to obtain the conductivity from the
jump probability (4.9). This is carried out as in § 2.7, giving

(d) Finally, since the factor exp(-2a.R) can vary enormously from one
jump to another, the conductivity depends on an evaluation of the effect of
a network of widely varying impedance elements. Pollak (1972) has criti-
cized the way in which this was carried out by Miller and Abrahams; he
finds that the average behavest as exp(-2-4a,R), a result near to that of
Twose (1959) and differing from that of Miller and Abrahams
(exp(—const. R3/2)). Another treatment is due to Shklovskii (1973a) who

t Castellan and Seitz (1951) and Mott and Davis (1968) suggested that this may be the origin
of the drop in e\ shown, for instance, in Fig. 4.17. However, it seems not to be shown for
highly compensated samples (Fig. 4.10) where the Fermi energy is pinned, and may then be
due in lightly compensated samples to a shift in the (unpinned) Fermi energy.

$ Shklovskii (19736) finds the same term (2.4); Seager and Pike (1974) find 2.8.
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also considers a different percolation path from Miller and Abrahams and
obtains a result in good agreement with experiment.

There have been few measurements of the thermopower for impurity
conduction. For compensation K less than \ an n-type impurity band
should give p-type thermopower (compare § 2,13). Fig. 4.14 shows results
of Geballe and Hull (1955) for n- and p-type silicon, for concentrations
just on the insulator side of the transition. A similar effect is observed in
NiO (§ 4.5).

Fig. 4.14. Low-temperature values of the thermoelectric power S for samples of silicon
containing 10 cm~ donors or acceptors, showing the reversal in the sign at low T. (From

Geballe and Hull 1955.)

Some discussion of the Hall effect for hopping processes is given in § 3.9,
together with the suggestion that it is small. A Hall effect for hopping has
not been observed with certainty in impurity conduction, it being likely
that any observed effects (e.g. Fritzsche and Cuevas 1960) are due to
carriers excited to a mobility edge.

Observations and theories on magnetoresistance due to shrinking of the
orbits are given by Mikoshiba and Gonda (1962), Mikoshiba (1962), and
Knotek (1977).

At sufficiently low temperatures, some kind of variable-range hopping is
always to be expected, the term WD in (4.9) becoming smaller if transitions
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to distant states occur. We expect therefore a 'Miller and Abrahams' range
with a constant activation energy e3, and a low-temperature range showing
variable-range hopping crocexp(—B/T1 / 4). Some of the evidence for this
behaviour is discussed in § 4.3.3. As mentioned above, Knotek (1977) gives
a different explanation for the Miller-Abrahams range.

4.3.2. Impurity conduction; alternating currents

In Chapter 2 we deduce that a(a}\ and hence the absorption coefficient a,
should vary as a)2{\n(I0/ha))}4 for small a> in the liniit as T -> 0. As far as we
know, experiments at frequencies and temperatures low enough to verify
this formula have not been made. More detailed formulae, applicable at
frequencies where the absorption coefficient passes through a maximum
and at temperatures such that cr(a)) decreases with temperature, have been
proposed by Cumming et al. (1964) and by Blinowski and Mycielski
(1964). Experiments in which comparison is made with these formulae are
due to Tanaka and Fan (1963) and to Milward and Neuringer (1965).

The effect here, that of direct optical transition, is quite different from
the Debye-type loss due to thermally activated hopping discussed in § 2.15.
The latter was first observed by Pollak and Geballe (1961)t in n-type
silicon. Some of their results are reproduced in Fig. 4.15. The theory given
by these authors and by Pollak in subsequent papers (Pollak 1964) is
similar to that of § 2.15 except that, for low compensation, the assumption
of a random distribution of energies is certainly not valid, and this increases
the complexity of the calculation. Nevertheless, the main results follow,
namely that if cr is the observed conductivity

with s close to 0-8 and A little dependent on T. As in §2.15, the loss
process is of the Debye type, and the main contribution comes from pairs
of centres for which the difference WD in the energy levels is of order kT,
and the distance R between them such that

The frequency dependence predicted by the theory is such that

The dependence on a)0'8 is verified, as may easily be seen, if j>ph~ 1012 s"1,
as it appears to be in silicon and germanium. However, as is shown in
Chapter 3 the quantity ^ph is extremely sensitive to the parameters

t For more recent theoretical work, see Lyo and Holstein (1973).



Fig. 4.15. a.c. conductivity cr(a>) of n-type silicon with low compensation. (From Pollak and
Geballe 1961.)

involved, and, if there is strong polarization round the centre, z>ph will
contain the factor exp(— W^/faa)) at low temperatures.

As regards the temperature dependence, the treatment of § 2.15
supposes that compensation is not small and that kT is small compared
with the bandwidth. Thus a fraction proportional to kT of the available
electrons can take part in the hopping, and they can move into a fraction of
empty centres also proportional to kT. Since kT also appears in the
denominator of the expression for cr, because of the Einstein relationship,
o-ockT. In the work of Pollak and Geballe, however, K was small and the
'holes' were non-degenerate, so one of the factors kT falls out and a is
independent of T.

t At very low temperatures a drop of cr with T, so that cr oc T2, is to be expected (Pollak
1964).
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Golin (1963) made measurements on p-type germanium, and his work
differed from that of Pollak and Geballe in that the compensation K was
large (0-4). In this case cr(a)) should be proportional to T. Some results are
shown in Fig. 4.16, showing a dependence on T.

Fig. 4.16. a.c. conductivity cr(a)) of various samples of p-type germanium with high compen-
sation (K = 0-4) plotted against temperature for frequencies 103 and 105 Hz (Golin 1963). A

dependence on T is shown (contrast Fig. 4.15).

4.3.3. Metal-insulator transitions in doped semiconductors

Another form of conduction was first identified by Fritzsche (1958),
Fritzsche and Cuevas (1960), and Davis and Compton (1965). In this the
electron is excited from a donor level to an already occupied donor,t and
moves from one to another. In other words, it is excited to the mobility
edge in the upper Hubbard band. The excitation energy e2 is thus U —  B, it
being assumed that both bands have the same width B. The authors quoted
above, by analysing the conductivity-temperature curves, were able to

t The idea of negatively charged donors was probably first presented by Ansel'm (1953).



Fig. 4.17. Variation of the activation energies ei, e2, and e3 with distance a between donors
for n-type germanium (Davis and Compton 1965). For s3 the calculations of Miller and

Abrahams for K = 0-04 are shown (full curve).

separate the quantity e2 from the energy e\ required to ionize the centre.
Their results for n-type germanium are shown in Fig. 4.17. In principle,
conduction with the activation energy s2 could be by hopping between
Anderson-localized states in the upper band or by excitation to a mobility
edge EC also in the upper Hubbard band. The experiments of D'Altroy and
Fan (1956) on the dependence on frequency in a.c. conduction have been
interpreted by Pollak (1964) as showing that this form of conduction is not
by hopping. If it is not, e2 may be written

(4.10)

where Ec is the mobility edge in an upper Hubbard band.
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In Fig. 4.11 we represent the density of states in the upper Hubbard
band. Since this band is normally empty, its form should be calculated
without correlation for a random assembly of wells in each of which the
electron is described by an s wavefunction. Such calculations have been
carried out by Gaspard and Cyrot-Lackmann (1973) and by Cyrot-Lack-
mann and Gaspard (1974). A feature is the long tail on the low-energy
side, shown in Fig. 2.17.

The experiments of Norton (1976a, b) have identified the position and
radius of the upper Hubbard band in Si:P in the non-metallic range of
concentrations (1014-1017 cm~3). Electrons are excited into the band,
where at these concentrations they are metastable at low temperatures
(2 K), because states in the tail are Anderson localized. They are then
photoexcited into the conduction band. The depth of the state below the
conduction-band edge in an isolated doubly occupied centre is l-7meV,
contrasted with 40 meV when singly occupied. At a concentration of
3xl015cm~3, the energy needed to excite them begins to increase, cor-
responding to the 'tail' of Figs. 2.17 and 4.11. Thus the radius of the doubly
occupied state must be about 0-7 x 10~5 cm. The 'tail' lowers the energy of
the trapped electrons to near 10 meV.

Yashihiro, Tokumoto, and Yamanouchi (1974) have obtained somewhat
similar information from the absorption of submillimetre radiation in n-
type Ge.

Fig. 4.17 shows that in n-type Ge there is no discontinuity in e2, which
decreases linearly with change in concentration (except very near the
transition, see below). This shows clearly that the transition is of Anderson
type, and occurs when EF-EC changes sign; this is so whether the speci-
men is compensated or not (see Fig. 4.10). Whether the electron gas is still
highly correlated, or whether the two Hubbard bands have merged, is an
important question that we shall discuss later in this section. We first
review the evidence for an Anderson transition.

If the electron gas is not highly correlated, or if the Hubbard bands
overlap, then we should expect charge transport by excitation to Ec at high
temperatures and variable-range hopping at low temperatures. This may
occur from 3xl018 down to 1018cm~3 in Si:P. This effect seems to be
shown by the results of Toyotomi (1973) on the Hall mobility of Si:P just
on the insulator side of the transition shown in Fig. 4.18. It has been
proposed (Mott, Pepper et al. 1975, Kamimura and Mott 1976) that this is
to be interpreted as being due to electrons excited to the mobility edge, so

: that Friedman's formula (2.88) is valid at high T, but at low T, when most
of the current is due to hopping at EF which gives no appreciable Hall
voltage, fjLu drops. Similar results are obtained by Vul (1974) for impurity

: conduction in diamond. Vul et al. (1976) have also measured the apparent
. free-electron density (1/J^H) at 1-65 K in highly compensated GaAs as a



Fig. 4.18. Hall mobility in a specimen of Si:P just on the non-metal side of the metal-insulator
transition. (From Toyotomi 1974.)

function of magnetic field, which shrinks the orbits. At high fields, when a
rapid drop sets in at the non-metal side of the Anderson transition, a
constant value of ^H is observed, agreeing qualitatively with Friedman's
prediction. However, it is not clear that Hall measurements such as those
of Davis and Compton (1965) can be fitted to the model described here.
Both for impurity bands and in the inversion layer (§ 4.6) the measured
value of RU often appears to give the total number of electrons, while cr
measures the number excited to Ec (cf. Adkins 1978). This is not under-
stood.

As regards the other features of variable-range hopping, some experi-
mental evidence has been reviewed by Mott (1972e, 1974c). As an exam-
ple in Fig. 4.19 we show more recent results due to ^Vallis (1973) for two
concentrations of boron in Si:B. An early observation of it in doped
germanium is that of Shlimak and Nikulin (1972).

At the metal-insulator transition in Si:P and similar materials, although
there is no discontinuous change in n (or e2), a discontinuity has been
observed in the Knight shift by Sasaki, Ikehata, and Kobayashi (1973), and
by Ikehata, Sasaki, and Kobayashi (1975). A theoretical discussion is given
by Mott (1974ft). It is supposed that when states are localized at EF, a
magnetic field produces a large internal field in a small volume, pro-
portional to H, in which spins are reversed. Thus most nuclei are not
subjected to an additional internal field.

In the range of concentration when the two bands overlap, the
phenomenon of e.s.r.-enhanced conduction has been observed by Mori-
gaki and Onda (1972, 1974), which we believe is to be interpreted as
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Fig. 4.19. Plot against 1/T ' of the conductivity of two specimens of Si:P. (From
Wallis, unpublished.)

variable-range hopping with energy received from the radio-frequency
radiation (Mott 1972e, 1974c; Kamimura and Mott 1976).

We now ask whether the electron gas is highly correlated at the tran-
sition. Fig. 4.20 shows the Hall coefficient RH of Si:P measured by
Yamanouchi, Mizuguchi, and Sasaki (1967). The drop in ,RH below the
value 11 nee as soon as states become localized is to be expected because
the current is probably due to electrons excited to J5"c. Particularly striking,
however, is the fact that there is only a small deviation following Fried-
man's equation (2.89) from the classical equation R^=\/nec in the
metallic region. This has been confirmed for Ge:As by Wallis (1973). In
some earlier publications it was assumed that the gas must be near the
Mott transition and thus highly correlated, so that the only possible
conclusion was that Friedman's equation is not applicable when a drop in
N(E) is due to overlap between Hubbard bands. It is, however, proposed
by Mott (1976a, 1977'a) that the Friedman equation can be used, that in
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Fig. 4.20. The Hall electron density plotted against N&—N A for varying compositions of Si:P
at 4-2 K. (From Yamanouchi et al 1967.)

Si:P the gas is not highly correlated, and that the transition should be given
by a formula for Anderson localization for lateral (non-diagonal) disorder
(eqn 2.39). The reason proposed for a small Friedman effect is that, for a
random array of centres, Anderson localization would set in for a small
degree of disorder (see § 2.3).

A further complication is that, according to Economou and Antoniou
(1977), Anderson localization cannot appear in the centre of a band with
only off-diagonal disorder. If this is correct, localization must either be due
to charge fluctuation or to the effect of the Hubbard U. However, Debney's
(1977) calculations (p. 22), using a more realistic model, give n1/3aH~0-35.
Probably this corresponds to the transition, and (4-7) to the concentration at
which N(EF) becomes finite.

Further evidence that the Hubbard bands have not separated at the
transition is provided by the measurements of Allen (1973) and of Mole
(1978) on the thermopower of various compensated samples of Ge:As; no
positive values were observed, as would be expected if there were a
pseudogap in N(E), with d In N/dE negative.

Various authors (Mikoshiba 1968, Quirt and Marko 1973, and Sasaki
1976) have discussed the metal-insulator transition in terms of a model in
which metallic and non-metallic regions coexist. Fig. 4.21, due to Sasaki, is
a computer simulation of the type of distribution that random positions
entail, for the concentration at which the metal-insulator transition occurs.
In spite of the great fluctuations of density shown, the point of view of this



THE FERMI GLASS AND THE ANDERSON TRANSITION 125

Fig. 4.21. Random distribution of impurities. (From Sasaki, private communication.)

book is that a treatment of this kind is only valid if the non-metallic regions
are wide enough to prevent tunnelling, which is not likely to be the case
here. The strongest evidence that localized and metallic regions do not
coexist at the same energy is provided by the work of Geschwind et al.
(1976) on spin-flip Raman scattering in n-type CdS. In the metallic region
the linewidth of the scattered Raman radiation shows a broadening due to
a Doppler shift; the broadened and unbroadened lines do not coexist at the
same concentration of donors.

Isolated metal atoms such as that shown in Fig. 4.21 may well have a
moment flipping from one orientation to the other by the Kondo
mechanism. Toyozawa (1962) was the first to suggest that such moments
might be responsible for the negative magnetoresistance shown by 'metal-
lic' Si:P near the transition (see also Mott 1974c). Positive magnetoresis-
tance is due to shrinkage of orbits. Both Ue and Maekawa (1971) and
Quirt and Marko (1973) find that the e.s.r. magnetic susceptibility
increases in metallic Si:P as the concentration of donors decreases towards
the transition. This has been interpreted as a property of the highly cor-
related electron gas (Mott 1972e, 1974c, Berggren 1974). However, if the
gas is not highly correlated, the extra susceptibility may be due to moments
on nearly isolated atoms as in Fig. 4.21. On the other hand, Brown and
Holcomb (1974) report n.m.r. data in which all carriers appear to parti-
cipate in a single system. A satisfactory theory has not as yet been given.

Since there is no discontinuity in N(E) at an Anderson transition (cf.
§ 2.4), no discontinuity is expected in the electronic specific heat (yT). This
has been investigated down to 0-5 K in Si:P by Kobayashi et al. (1977) and
there is no observable discontinuity at the transition at 3-2x 1018cm~3,
though at 5 X 1017 cm"3 y has fallen by an order of magnitude, suggesting
that there is then only a weak overlap between Hubbard bands. Just on the
metallic side of the transition there is a small (30 per cent) enhancement of
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y above the free-electron value, suggesting that the electron gas is not very
highly correlated.

As the concentration of donors increases, the metallic impurity band will
merge with the conduction band (Mott and Twose 1961, Matsubara and
Toyozawa 1961). According to the latter authors, in Si:P this should occur
at a concentration of 3xlOI?rcm~3, while experiment (Alexander and
Holcomb 1968) gives about 2x 1019 cm~3. For concentrations where mer-
ging has occurred, the. conductivity should be treated by the methods of
§5.2.

An interesting point arises on whether a formula of the type

o-min^O-Q26e2/ha

is valid for a metallic impurity band in an amorphous semiconductor, if
this is of the kind that can be doped. Here a is the distance between
centres. A possible example is the amorphous film of Cd2SnO4 analysed by
Nozik (1972), in which the donors are thought to be oxygen vacancies and
which show metallic behaviour for carrier densities in the range 4x 1018-
1-2 x 1020 cm~3. The conductivity, which is independent of temperature, is
as follows; the value when L ~ a but N(E) is not eroded by disorder is also
shown in the last column.

Concentration
(cm'3)

4-3 xlO18

6-2X1019

1-2X1020

o-(n~ 1 cm'1)

15-6
100
385

(7min = 0-Q5e2/ha
(calc. with a = n 1/3)

17

0-3 e2/ha

400

We conclude that a should indeed be the distance between centres in
amorphous as well as crystalline materials, and that for the higher concen-
trations L ~ a.

4.3.4. Metal-insulator transition in metal-rare-gas systems

Films of argon-copper and argon-lead have been prepared by conden-
sation at liquid-helium temperatures. The results quoted here are due to
Endo et al (1973) following earlier work of Gate, Wright, and Cusack
(1970) and Even and Jortner (1972). At helium temperatures these films
show as a function of composition a discontinuous change in the resistivity
by at least 107. Assuming that the films are homogeneous, this is perhaps
the first example of a discontinuous Mott transition to be observed for an
unstable series of alloys. Berggren, Martino, and Lindell (1974) show that
the condition (4.7) is well satisfied. However, the conductivity at the
transition (—SOd^cm"1) is perhaps an order smaller than the minimum
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metallic conductivity. This may mean that the assumption that the copper
atoms are atomically dispersed is at fault, and that the transition is in fact
due to a percolation path through macroscopic clusters of metal, as
described in § 4.9. Quinn and Wright (1977) show that the lead-argon
system shows a discontinuity in the conductivity at 50 per cent argon, and
that for this system they found a single phase on both sides of the tran-
sition, suggesting that the predicted discontinuity does in fact occur.

Shanfield, Montano, and Barrett (1975) investigated xenon-iron films,
and found that an Anderson transition occurred at 30 per cent iron. If both
valencies of iron are present, this would mitigate against a discontinuity.

4.3.5. Metal-insulator transitions in compensated semiconductors

Experiments on doped and compensated semiconductors give one of the
clearest examples of the Anderson transition. For substantial values of the
compensation K, say around 0-5, the repulsion between electrons expres-
sed through the Hubbard U (§ 4.3) does not essentially affect the conduc-
tion process, and we may make use of a model in which this interaction
between the electrons is neglected. If NA is not too great, therefore, the
density of states will appear as in Fig. 4.11, an impurity band (the lower
Hubbard band) appearing below the conduction band and being partially
filled. The width of the impurity band would be determined by eqn (2.21)
in the absence of disorder, but strong disorder is introduced both because
of the random positions of the atoms in space and the random potential
due to the charged minority centres. If K is increased, the Fermi energy EF

is shifted downwards, and at the same time the random potential becomes
greater and EC, the mobility edge, may be shifted upwards. If EF —  Ec
changes sign, an Anderson transition should be observed.

A transition that we now identify in this way was first observed by
Fritzsche and Lark-Horovitz (1959) in p-type germanium with NA =
2-5xl017cm3 and values of K between zero and 0-8; these results are
reproduced in Fig. 4.22. The results of Davis and Compton (1965) on
n-type Ge with N& = 1-7 x 10~17 cm~3 are similar. The interpretation as an
Anderson transition is due to Mott and Davis (1968). The observed mini-
mum metallic conductivity is about 0*5 x 10 (l~l cm"1. With the distance
between centres of 2 x 10~6 cm, eqn (2.55) gives just this value.

Detailed work by Allen and Adkins (1972) and Allen, Wallis, and
Adkins (1974) was undertaken at temperatures down to 0-1 K on heavily

: doped and compensated germanium, with two objects in view: (a) to see
; whether 7" behaviour continues down to lowest temperatures; (b) to see
i whether a minimum metallic conductivity exists, and to determine its
i magnitude. Fig. 4.23 shows some results from Allen et al. There is no sign
down to these temperatures of any flattening of the curves at low tempera-

[ tures, as would be expected if classical percolation theory could be applied
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near the mobility edge. The minimum metallic conductivity is
~15 fl~l cm"1, about twice the value deduced from (2.55). For a value of
the compensation K equal to 0-3, the transition occurs at a donor concen-
tration of 4-5xl017cm~~3, at which without compensation the system
would be metallic.

Fig. 4.23. Conductivity of some samples of Sb-doped Ge plotted against 1/T1/4. Value of the
compensation: 1 and 2,11 per cent; 3,45 per cent; 4,5,6,25 per cent. (From Allen etal. 1974.)

Fig. 4.22. Resistivity of heavily doped p-type germanium for NA = 2-5x 1017 cm 3 and
varying values of K, namely (a) 0-0, (b) 0-33, (c) 0-7, (d) 0-8. (From Fritzsche and Lark-

Horovitz 1959.)
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Allen and Adkins also discuss the term outside the exponential in the
hopping formula (4.9), and also the high-temperature region, in which In p
is proportional to 1/T1, which they interpret as excitation to a mobility
edge.

Important results were obtained by Ferre, Dubois, and Biskubski (1975)
on the metal-insulator transition induced by a magnetic field in n-type
InSb with donor concentrations near 1014 cm~3. Their results, for conduc-
tion due to electrons excited to the mobility edge, are shown in Fig. 4.24.

Fig. 4.24. Variation of resistivity of samples of n-type InSb in various magnetic fields. The
triangles denote e2 conduction, the circles hopping (e3), and the squares BI. (From Ferre

etal.1975.)

Since the number of centres is not varied, o-min is constant and all the plots
of In a against 1/T extrapolate to the same point as for two-dimensional
problems (§ 4.6). The value of C7min obtained corresponds to 0-05 e2/ha.
Pepper (1976), in discussing these results, points out that a is ten times
greater than in Ge:Sb, and that experimental values of crmin have been
observed over three orders of magnitude.
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Earlier results also showing that in the e2 regime a magnetic field
changed the activation energy but not the pre-exponential are those of
Yamanouchi (1965) for n-type germanium and Gershenzon et al. (1973) in
n-type InSb. Fritzsche (1962) finds that uniaxial compression changes e3

but not the pre-exponential in n-type Ge. In all such work it is supposed
that the magnetic field shrinks the orbit, lowering the mobility edge Ec, but
since e2/ha does not contain the orbit radius, crmin is not changed.

Shrinking the orbit will also decrease the hopping probability. This was
treated by Mikoshiba (1962), who also discusses an effect due to a phase
change in the wavefunctions.

4.4. Anderson transition in a pseudogap; magnesium-bismuth films

In § 2.11 it has been shown that, in amorphous materials, when a conduc-
tion and valence band overlap, the density of states should show a minimum
or 'pseudogap', and that, if the density of states is small enough, Anderson
localization is to be expected at the Fermi energy. An Anderson transition
should therefore be observed in two alternative circumstances.

(a) The depth of the pseudogap is altered, as a consequence of changing
composition, density, or structure. An example is liquid mercury at high
temperatures and probably the liquid tellurium alloys, both described in
the next chapter. Examples from disordered solids are not known as yet,
except for overlapping Hubbard bands or broadened Landau levels (§ 4.6).

(b) The Fermi energy is shifted by a change in the composition which
varies the number of electrons available. An example of an overlap
between a conduction and a valence band is provided by the experiments
of Ferrier and Herrell (1969) and Sik and Ferrier (1974) on amorphous
films of the composition Mg3_xBi2+x. Here a density of states as shown in
Fig. 4.25 was assumed, with the additional assumption that a change in x
will shift the Fermi energy without an important change in the density of
states. Thus the conductivity is a minimum at x = 0, which is what is
observed (Fig. 4.26). This behaviour is in sharp contrast to that of the

Fig. 4.25. Density of states per atom of amorphous Mg-Bi, deduced from the experimental
results of Ferrier and Herrell (1969).
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Fig. 4.26. Logarithm of the conductivity (in fl l cm 1) as a function of composition for
amorphous evaporated films of Mg-Bi. (From Ferrier and Herrell 1969.)

amorphous chalcogenides, where electrons are taken up in bonds, and
changing the composition will not shift the Fermi energy from the mini-
mum. Their results show also a large negative temperature coefficient for
values of x\ differing by about 0-2 from zero, for which the conductivity
lies below —1000 IT"1 cm"1, indicating either hopping or excitation to a
mobility edge (Fig. 4.27). The results of Ferrier and Herrell on the ther-

Fig. 4.27. Temperature coefficient of the resistivity of amorphous Mg-Bi. (From Ferrier and
Herrell 1969.)
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Fig. 4.28. Thermopower of amorphous Mg-Bi. (From Ferrier and Herrell 1969.)

mopower S are reproduced in Fig. 4.28; since S increases with tempera-
ture, this indicates hopping. Sik and Ferrier have plotted log a against
l/r1/4 (Fig. 4.29) and obtained Tl/4 behaviour at low temperatures as
expected.

The rigid-band model of Ferrier and co-workers has been criticized by
Sutton (1975) on the basis of optical measurements. Sutton finds that
Mg3Bi2 is a semiconductor with a gap of 0-15 eV, and excess Mg or Bi form
states in the gap, as for a crystalline material.

4.5. Anderson transition of type II; amorphous films of Fe-Ge

Amorphous films of Gei_xFex have been investigated by Daver, Massenet,
and Chakraverty (1974) and Massenet, Daver and Geneste (1974). The
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Fig. 4.29. Plot of log(conductivity) against 1/T1/4 for two specimens of Mg-Bi. (From Sik and
Ferrier 1974.)

films were prepared by evaporation from an alloy ingot onto a cooled
substrate. The Anderson transition with increasing iron content is shown in
Fig. 4.30, with a minimum metallic conductivity of -200 ft"1 cm"1.
Massenet et al have plotted the resistivity against 1/T1/4, obtaining good
agreement for those showing activated behaviour except for one specimen
(Fig. 4.31). The absence of evidence of excitation to a mobility edge is at
first sight surprising. This must mean that EF lies at a maximum in the
density of states. The most obvious explanation is that the conditions in the
band due to 'dangling bonds' are well on the metallic side of the Mott
transition (B » C7), so that no overlapping Hubbard bands need be consi-
dered, and we observe here a property of a half-full band with localization
purely due to disorder (§ 4.1). A further point of interest of this sytem is
that spontaneous magnetization appears at about 20 per cent of iron and
increases with Fe content. We attribute this to RKKY interaction between
the iron moments, which will fall off as exp(-r/L) where L is the mean free
path (de Gennes 1960) and therefore have a very short range and will be of
ferromagnetic sign.

Similar results are shown by amorphous FeSi2 for different states of
annealing (Sharma, Theiner, and Geserich 1974). Also Kishimoto et al
(1976) find behaviour of this kind for the amorphous Si-Au system with
unexplained deviations from 1/T1/4 behaviour at low temperatures.
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Fig. 4.30. Resistivity of Fe-Ge alloys versus temperature for different Fe concentrations as
shown. (From Daver et al. 1974.)

Fig. 4.31. Resistivity of Fe-Ge alloys versus 1/T1/4. (From Massenet et al. 1974.)
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Fig. 4.32. Potential at interface of Si/SiO2. (From Mott et al 1975.)

first pointed out by Schrieffer (1957), under such conditions the energy of
the electron perpendicular to the surface is quantized; at low temperatures
a degenerate two-dimensional gas is formed, in which the wavefunction
perpendicular to the surface consists of a single half-wave. Extensive
investigations (Fowler etal 1966, Stern 1972, 1974a, 6, Dorda 1973) have
confirmed that a two-dimensional gas of this kind can form and that higher
subbands exist in which $ in the perpendicular direction consists of two or
more half-waves. These include Shubnikov-de Haas oscillations and
photoexcitation to the upper subbands.

The resistivity in the surface layer was early interpreted as being due to
diffuse scattering by surface roughness (Schrieffer 1955). A random
potential may be due to such roughness or to charges on the oxide (Fang
and Fowler 1968). It was suggested by Mott (19736) and by Stern (1974,
1976) that the random potential might lead to Anderson localization at the
Fermi level of a degenerate gas, and that an Anderson transition could be
observed by changing the voltage across the layer and thus the position of

4.6. Two-dimensional conduction in an inversion layer

This section describes investigations of the current in the inversion layer at
a Si-SiO2 interface. Application of a voltage across the oxide can produce a
situation in which the majority carrier is the minority carrier in the bulk
semiconductor; the potential at the interface is illustrated in Fig. 4.32. As



136 THE FERMI GLASS AND THE ANDERSON TRANSITION

the Fermi energy relative to the mobility edge.t This technique has the
following advantages.

(a) The transition can be observed with a single specimen by changing
the voltage.
(b) The low-temperature hopping conduction should vary as croc
exp(-£/r1/3), and it has proved possible to show that the index is nearer
to §• than to J (see below).
(c) The minimum metallic conductance o-min is of the form const, e /h,
and the quantity aE of eqn (2.56) is not involved.
According to Licciardello and Thouless (1975) the constant is 0-1 and
does not depend on the form of the potential, within the kind of varia-
tion discussed by them, though Pepper (1977a) finds that long-range
fluctuations give a larger value of 0-min.

Fig. 4.33. Conductance of AT-channel MOS device for various values of gate voltage Vg; W (in
meV) is the activation energy EC-E¥. (From Mott, Pepper et al 1975.)

tThe thickness of the specimen can also change the position of Ec (Soonpaa 1976, Pepper
1977ft).
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(d) crmin can be determined either from the value of the gate voltage for
which the plot of log a against 1/T becomes flat, or from the extrapola-
tion of those curves in the activated region to l/T = 0.
Extensive experiments have been carried out at low temperatures with

MOS and MNOS transistors by Pepper and co-workers, t and a full account
of this work is given by Mott et al. (1975), who compare the form of the
'Anderson transition' observed with that in three-dimensional systems.
These authors obtain the theoretical value of <rmin to within a factor of 2.
Tsui and Allen (1974, 1975) obtained values up to 10 times larger. Pepper
(1977) has found it possible to reproduce the results of Tsui and Allen by
the use of a substrate bias, which pushes the maximum of if/ further away
from the interface. This is ascribed to the long-range nature of the fluctua-
tions acting on the electron in the latter case; Pepper gives arguments to
show that an increased value is then to be expected.

Fig. 4.33 shows the results of Pepper et al. for an TV-channel MOS device
in the region where conduction is due to excitation to a mobility edge and
Fig. 4.34 that of the conductance in the low-temperature region plotted

Fig. 4.34. Device current at low T, plotted against 1/T 1 . (From Mott, Pepper et al. 1975.)

t Pepper, Pollitt, and Adkins I914a,b, Pepper, Pollitt, Adkins, and Oakley 1974.
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against 1/T1/3. Mott, Pepper et al. (1975) find that, writing

m = 0-32±0-02 . Since the theoretical value of B is

then, taking the (slowly varying) values of N(EF) observed, the variation of
a with gate voltage could be deduced from the low-temperature plot and
EC —  EF from that at high temperatures. The relation between them

with s = 0-73±0-08 , was in good agreement with the theoretical value of
Abram (1973), discussed in § 2.3, as long as EC —  EF was not too small. For
small values, however, the index 5- approaches unity, as shown in Fig. 4.35,

Fig. 4.35. a plotted logarithmically against EC-EF for Si/SiO2 interface for two specimens.
Slopes with 5 = 1 and 5 = 0-5 are also shown. (From Pollitt 1976.)

taken from Pollitt (1976). This seems to be in agreement (Mott 1976c)
with the considerations of § 2.7, rather than with the calculation of Abram.
As shown there, we believe that a value of s less than unity is not
compatible with the observation of a minimum metallic conductivity.

In the investigations of the energy dependence of a, N(E) was deter-
mined from the rate of change of activation energy, EC —  EF, when

: In this equation N(Ep) is the number of states per unit area.
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conduction was by excitation to the mobility edge. If n is the carrier
concentration, such that

it was found that, if the number of localized states was less than ~3x
1011 cm~2, then deep in the tail N(E) decreased exponentially with energy
(Pollitt 1976) and at the mobility edge N(E) was close to half the free
carrier value. However, if the number of localized states was greater than
~3xlOncm~2 , the value of N(E) derived became greater than the
appropriate free carrier value (Pepper, Pollitt, and Adkins 1974a, b).
Clearly this cannot represent the real behaviour of N(E\ and a possible
explanation is that Ec rises as the localized states are populated. This effect
was found in both n and p inversion layers and may be due to an increase in
the random potential as the concentration of localized carriers increases.

The nature of the localization in the inversion layer implies that the
random field arises from positive and negative charges within the SiO2

which are in the form of pairs. The application of a substrate bias which
pulls carriers away from the interface initially increases the number of
localized states; then, as the carriers are pulled further from the interface,
it increases the value of crmin. Both effects are consistent with an increase in
the range of the potential fluctuations (Pepper 1977).

A different form of localization is found when a high magnetic field
(^50 kG) is applied normal to the interface. The effect of the field is to split
the density of states into Landau levels; owing to the disorder at the
Si-SiO2 interface, states in the tails of the Landau levels are localized. An
Anderson transition can be observed in two ways: either, through a change
in bias, sweeping the Fermi level through the Landau levels and observing
activated conduction in the tails and metallic conduction where N(E) is
high, or by increasing the magnetic field when EF lies in a minimum of
N(E). In this latter case, at low magnetic fields conduction is metallic and
becomes activated as the magnetic field increases and N(EF) falls. Clear
evidence of excitation to a mobility edge is obtained, with a common
intercept in plots of logo- against l/T (Nicholas, Stradling, and Tidey
1977). This is another example of a band-crossing Anderson transition like
that discussed in § 4.4. Aoki and Kamimura (1977) have predicted that,
when the mobility edge is in the tail of Landau levels, ormin is reduced below
0-1 e2/h; this reduction in crmin was observed experimentally by Nicholas et
al (1977).

4.7. Fermi glasses where the lattice distortion is important

The theory of impurity conduction developed so far neglects the distortion
of the crystal round the impurity centres. This is likely to be a good
approximation only if the radii of the centres are large compared with the
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lattice parameter; otherwise the distortion of the lattice must be taken into
account, and the polaron hopping energy WH of Chapter 3 becomes
important, whether the material is ionic or not.

4.7.1. Impurity conduction in nickel oxide

One of the clearest examples of the importance of WK is that of impurity
conduction in nickel oxide, observed by Bosnian and Crevecoeur (1966)
and by Springthorpe, Austin, and Smith (1965). Some results are shown in
Fig. 4.36. Conductivity is due to lithium doping, the acceptor centres being

Fig. 4.36. Impurity conduction in crystalline NiO; logarithm of resistivity (in Hem) as a
function of 1/T. The values of x in the formula LixNii_xO were as follows: A, 0-002; B,

0-003; C, 0-018; D, 0-026; E, 0-032.

lithium (Li+), replacing Ni2+ in the lattice. To preserve electrical neutrality
a neighbouring Ni ion has the charge of Ni3+. Donors of unknown nature
are present, so some of these centres acquire an electron that can hop from
one to another. The activation energy drops from a value of 0-2-0-4 eV at
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high temperatures to —0-004 eV or less at 10 K. The larger value is
ascribed to the polaron term (WH) of Chapter 3, which as we have seen
should drop away to zero as r/®-»0 . At low temperatures we should
expect to find Miller and Abrahams' term 63, which can be estimated to be
about 0-03 eV. The measured activation energies are much lower. A
discussion of the reason for this is given by Austin and Mott (1969); it is
possible that variable-range hopping is the explanation and if so the
activation energy will always tend to zero.

Fig. 4.37. Logarithm of resistivity (Hem) and thermopower (S/2-3(k/e)) of Ni doped with
0-088 per cent Li2O. (From Bosnian and Crevecoeur 1966.)

Fig. 4.37 shows the thermopower,t which changes sign when impurity
conduction carries most of the current. The reason for this is the same as
for non-polar materials, as set out in § 4.3.1.

t See, however, § 3.10 for more recent results for single crystals.
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4.7.2. Conduction in glasses containing transition-metal ions

Many glasses containing transition-metal ions, for instance vanadium or
iron, are semiconductors. It is generally recognized that the conductivity in
such glasses is due to the presence of ions of more than one valency, for
instance V4+ and V5+ or Fe2+ and Fe3+; an electron can pass from one ion
to another, the process being similar to impurity conduction in nickel oxide
as described in the last section. There is, however, one important
difference: in a crystal the different sites (Li+, Ni3+) on which an electron
may be located are crystallographically identical, differing only in their
proximity to a charge minority centre that introduces the Miller-Abrahams
spread of energies which determines WD; in a glass however, the environ-
ments of the ions with the two valencies may or may not be different; there
might be in principle a situation similar to that of Fig. 2.15, in which the
configuration of atoms ensures during cooling of the glass that the electron
on V44" can form a bond. The evidence reviewed below shows that this does
not happen in vanadium phosphate glasses; it probably does in the glasses
containing Cu+ and Cu2+ investigated by Drake and Scanlan (1970), for
which a conducting and a non-conducting state can be formed depending
on the rate of cooling.

For glasses in which the occupied and unoccupied sites are identical we
may write for the conductivityt

(4.11)

Here R is the distance between the ions, c and 1 - c are the proportions of
V4+ and V5+, a is as defined elsewhere (eqn 3.38) and

W=WH + ̂ WG.
Fig. 4.38 shows some results for vanadium glasses,$ and it will be seen that
Wu, of order 0-4 eV, drops towards zero at low T, as it does also for
impurity conduction in NiO (Fig. 4.36). Also W& must be small. There is
other evidence for this (Kennedy and Mackenzie 1967), namely that
vanadium glasses above about 200 K obey well the Heikes equation for the
thermopower (§2.13)

This implies that W& is less than kT (eqn 2.80), and we deduce that the
sites must be very nearly identical.

t The term exp(-2o;jR) only occurs if the transition is non-adiabatic and should be absent for
small values of R (cf. § 3.5).

t From R. M. Brown, Ph.D. Thesis, University of Illinois.



Fig. 4.38. Log conductivity (in fl l cm *) as a function of 105/ T of some vanadium phosphate
glasses. Mole ratios of V2O5:P2O5 are as follows: A 1:3, D 1:1, V 6:1, O 7:1. (From

Schmid 1968.)

This small value of the disorder hopping energy is, however, contradic-
ted by an analysis by Greaves (1973),t who finds a l/Tl/4 behaviour at low
temperatures and interprets it as variable-range hopping; he deduces that
the disorder energy separating adjacent sites is 0-4 eV. The matter there-
fore remains open. A value of WD of this order for W& due to random
charges on V4+, V5+ seems reasonable, but if so it is difficult to understand
the thermopower.

Austin and Garbett (1973) show a temperature dependence of the
thermopower below 200 K, 5 increasing at low T; it is not clear how this is
to be explained, though it might relate to a small range of energies WD, so
that conduction is of Miller-Abrahams type. If so, as shown in § 2.13, 5

t This article gives references to many experimental papers not cited here.
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should rise with decreasing T until variable-range hopping sets in. These
authors discuss high-field conduction, following an equation of the form
o-ocsinh(eRF/kT); values of R observed are larger than expected.

4.7.3. Lanthanum-strontium vanadate (Lai-^Sr^VOs)

The results of Dougier and Casalot (1970) and of Dougier (1975) on
conductivity in crystals of this material are reproduced in Fig. 4.39. A clear
case of an Anderson transition is shown, with a minimum metallic conduc-
tivity of ~ 1000 H"1 cm"1, the disorder being supposed to be due to the
random positions of the ions La3+ and Sr2+. The results show that this is
sufficient to localize the wavefunctions at the Fermi level in the vanadium
3d band when x < 0-2. The material is antiferromagnetic with TN~ 100 K;

Fig. 4.39. Log(conductivity) of Lai-x$rxVO3 as a function of 1/T for different values of x.
(From Dougier 1975.)

with x = 0 we should expect the vanadium ions to be in the state V3+, and
the addition of strontium must produce holes in the lower Hubbard band
(§ 4.4), so positive thermopower S is expected. This is shown in Fig. 4.40
for various values of x. For x <0-1, 5 increases with decreasing tempera-
ture, suggesting excitation to a mobility edge; for x = 0-15 the reverse is
the case, suggesting hopping.
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Fig. 4.40. Thermopower S of La!_xSrxVO3 as a function of T. (From Dougier 1975.)

The very small values of the activation energies e, which we interpret in
the higher-temperature range as e=Ec —  EF, show that the d band is
narrow, and this may be a material in which the carriers are appropriately
described as a degenerate gas of small polarons (§3.11). At lower
temperatures, however, Sayer et al. (1975) find 1/T1/4 behaviour. The
hopping activation energy £3 in the composition range before this occurs is,
according to both groups of authors, proportional to (c —  Co)1 8, which may
be because a behaves like (c —  c0)°'

6 (§ 2.4) so that the number of states
available without tunnelling varies as l/(c — Co)1'8.

Very similar results are observed for Lai_xSrxMnO (van Santen and
Jonker 1950). These results are discussed by Methfessel and Mattis (1968).
These materials are metallic (o-~lO~2£l~l cm"1) and also ferromagnetic
for x between 0-25 and 0-35. For x = 0-5 the conductivity drops to about
0-5 II"1 cm"1, depending little on T\ we suppose that between 35 and 50
per cent or so the random field just produces Anderson localization, giving
variable-range hopping.

4.7.4. Pyrolytic carbons

Biicker (1973) has investigated a series of semiconducting samples
obtained by the thermal degradation of phenol formaldehyde resins at
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Fig. 4.41. Conductivity of pyrolytic carbons after annealing at the temperatures given by the
numbers on the curves. (From Biicker 1973.)

different temperatures. His results are shown, plotted against 1/T1/4, in
Fig. 4.41. The minimum metallic conductivity appears to be between 102

and 103 IT1 cm'1.

4.7.5. Cerium sulphide

An early example of a phenomenon identified as an Anderson transition
arose from the work of Cutler and Leavy (1964) on non-stoichiometric
Ce2S3, which was interpreted in this way by Cutler and Mott (1969). This
compound has the structure of Ce3S4, the excess sulphur being introduced
as randomly situated cerium vacancies. The conduction band is thus highly
disordered, there being a random distribution of centres which repel the
electron. Changing the concentration to Ce2-2xS3_3x introduces electrons
into the conduction band, the charge being compensated by a small
increase in the number of Ce vacancies. The number of electrons can thus
be varied without any significant change in the potential. It is thus an ideal
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Fig. 4.42. Resistivity p of cerium sulphide of various compositions as a function of tempera-
ture. The electron concentrations (in 1018 cm"3) are as follows: A; 0-5; B, 5-2; C, 14; D, 83;
E, 1420. (From Cutler and Leavy 1964.)

system for the observation of the transition. Some results of Cutler and
Leavy are shown in Fig. 4.42; the minimum metallic conductivity seems to
be in the expected range of 102-103 ft"1 cm"1. Fig. 4.43 shows the ther-
mopower S for two of the specimens marked in Fig. 4.42; the increase with
T suggests that conduction is by hopping of electrons at EF rather than by
transport at the mobility edge. Cutler (unpublished) reports Tl/4

behaviour at low T. Data for the Hall coefficient are given by Cutler and
Leavy. They show a Hall mobility with, very approximately, an activation
energy of one-third of that for the conductivity. This could suggest that the
carriers form polarons and that the main part of the hopping energy is of
polaron type (Wn); the Tl/4 behaviour for low T could perhaps be due to
the decrease towards zero expected for WH. If this is correct, we should
have to assume that as soon as Anderson localization occurs so does
polaron formation, and that WH due to the latter is much larger than the
hopping energy due to disorder. This is perhaps not likely, and it appears
more plausible to suppose that the Hall effect is due to electrons excited to
a mobility edge, as in As2Te3 according to the interpretation of Nagels,
Callaerts, and Denayer (1974; cf. Chapter 6).
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Fig. 4.43. Typical plots of thermopower S of two specimens of cerium sulphide as a function
of temperature. (From Cutler and Mott 1969.)

4.7.6. Metal-insulator transitions in tungsten bronzes

The bronzes with composition MXWO3, where M is an alkali metal, show
metallic behaviour for values of x above —0-2 with a conductivity of about
500 ft"1 cnT1 near the transition (Lightsey 1973) rising to 104-
105 flT1 cm"1 for high values of x. Below the transition one or more phase
changes occur (for details see Hagenmuller 1971). The material is then a
semiconductor; for small values of x, semiconducting behaviour is ob-
served with a small binding energy of the electron to the sodium ion
(0-04 eV). The absence of a Knight shift for the sodium nucleus (Fromhold
and Narath 1964) suggests that the electron in the WO3 d band overlaps
the Na nucleus only slightly.

To understand this small activation energy we need to look at the
properties of WO3 which have been extensively investigated (Crowder and
Sienko 1963). Fig. 4.44 shows the resistivity as a function of l/T. At low T
there is a transformation to a structure of low symmetry, showing an
activation energy for conduction of 0-4 eV (probably due to deep compen-
sated donors); at 250 K there is a transformation to a state where the
activation energy of conduction is —0-02 eV, suggesting that the carriers
are heavy polarons with a binding energy to the metal ion equal to e2/Ka
(Chapter 3) and that K (a static dielectric constant) has become very large
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Fig. 4.44. log(resistivity) in (1 cm of WO3 as a function of temperature.

(—100). For higher temperatures the donors are probably all ionized, and
scattering by phonons causes the resistivity to rise.

For values of x for which the material is metallic, however, there is no
sign of any heavy mass, and we suppose that the low-temperature behaviour
of Fig. 4.44 must be assumed. For these concentrations the evidence of the
electronic specific heat (Vest, Griffel, and Smith 1958, Zumsteg 1976) and
of the magnetic susceptibility (Greiner, Shanks, and Wallace 1962,
Zumsteg 1976) agree in determining m e f f /m^l-6, but these quantities
vary with x rather than *1/3, as we should expect for a parabolic band
form. This is believed to be a consequence of disorder (Tunstall 1975). This
value of meff is in accord with the interpretation of the metal-insulator
transition as a Mott transition (Mackintosh 1973) using eqn (4.7) and
m = rae. There seems no evidence that in the metallic phase the carriers are
heavy, or form a 'degenerate gas of small polarons'.

With effective masses of order me, explanations of the metal-insulator
transition based on classical percolation theory (Fuchs 1965, Lightsey
1973, Webman et al. 1975) are, we believe, unlikely to be correct. We
think that, as x drops to 0-2, an Anderson transition is approached but is
hidden by the change of structure. It can, however, be observed in poly-
crystalline NaxWOs-yFy as shown by the results of Doumerc (1974) illus-
trated in Fig. 4.45. The fluorine ion F~, taking the place of O2~, adds an
additional electron. A more detailed discussion of this system, and of the
metal-insulator transition in some other bronzes, is given by Mott (1977a).
The resistivity of polycrystalline systems is probably mainly due to grain-
boundary regions.

If Anderson localization in the tungsten d band due to the random fields
of the sodium ions is the correct description of the transition, and if
Weff ~ me, the random potential due to the Na+ and F~ ions must be of the
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Fig. 4.45. Conductivity of specimens of NaxWO3_yFy plotted against 1/7*.

order 1 eV, which is not consistent with a high background dielectric
constant. This is additional evidence that this disappears in the metallic
phase.

The results of Lightsey, Lilienfeld, and Holcomb (1976) reproduced in
Fig. 4.46 demonstrate that the Hall coefficient as x approaches 0-2 shows
the anomaly predicted by Friedman (1971, § 2.14). Since a drop in l/R^
by ~ 3 is observed, at the lowest metallic concentration the specimens must
be near an Anderson transition.

4.7.7. Vanadium monoxide (VO*)

Vanadium monoxide has the simple cubic structure. As normally prepared
it contains a very high concentration (—15 per cent) of metal and oxygen
vacancies, of which the ratio can be varied. It is not antiferromagnetic and
must be considered a 'metal', or for some values of x a Fermi glass, the
random field of the vacant sites being enough to cause Anderson localiza-
tion at the Fermi energy. The resistivity plotted against 103/T for various
values of x is reproduced in Fig. 4.47 showing a typical Anderson tran-
sition with <rmin —2000fl~1 cm"1. Fig. 4.48 shows p/psoo plotted on a
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Fig. 4.46. Hall coefficient in cm 3 of NaxWO3 in the metallic range of x.

Fig. 4.47. Resistivity of VOX for various values of x plotted against 103/r. (From Banus and
Reed 1970.)
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Fig. 4.48. Plot of p/psoo for VOX on logarithmic scale against l/T . (From Mott 1971.)

logarithmic scale against l/Tl/4. The interpretation of this behaviour as an
Anderson transition is due to Mott (1971), and the experimental material
is that of Banus and Reed (1970), and of Goodenough (1972).

It is not known why small values of x are less effective in producing
localization than large ones. The fact that 15 per cent of either kind of
vacancy produces localization at all suggests that the vanadium d band is
very narrow, and perhaps the carriers must be considered as a degenerate
gas of small polarons.

Fig. 4.49 shows the thermopower S at room temperature as a function of
jc. The change of sign at x = 0 suggests strongly that two overlapping
Hubbard bands are involved, and that this concept can be used for the
thermopower of a highly correlated gas even when there is no antifer-
romagnetic order.

4.8. Impurity conduction in magnetic semiconductors

Rare-earth oxides containing excess metal can show impurity conduction,
the donors being oxygen vacancies occupied by electrons and compen-
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Fig. 4.49. Seebeck coefficient (denoted by S) at room temperature of VOX and TiOx as a
function of x. S changes sign for x slightly greater than 1 in VOX, suggesting that <r(E) shows a

minimum at EF when x —  1. (From Mott 1971.)

sation probably being due to metal vacancies. Fig. 4.50 shows the results of
von Molnar (1970) on EuO with excess europium. 1/T1/4 behaviour at low
temperatures is well shown; an interesting conjecture is that hopping is
due to interaction with spin waves rather than with phonons. The sudden
increase in the resistivity at low temperatures is due to the following
reason. Below these temperatures Hund's rule coupling between the

Fig. 4.50. Resistivity p of EuO doped with excess Eu, showing the T 1/4 behaviour at low
temperatures (von Molnar 1970). The scale on the right is for the upper curve.
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trapped electron and the surrounding moments leads to their ferro-
magnetic orientation in its neighbourhood. This lowers the free energy of
the trapped electron, making it much more difficult to hop to an unoc-
cupied vacancy.

A similar phenomenon occurs in EuS lightly doped with Gd or La, which
provides an extra electron; this is shown in Fig. 4.51. Here at low tempera-
tures conduction is metallic; the concentration of carriers is on the metallic
side of the Mott transition, but near the Curie temperature the resistivity

Fig. 4.51. Dependence on temperature of resistivity p of Euo.QsLao-osS f° r various magnetic
fields HA. (From Methfessel and Mattis 1968.)
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increases by seven orders of magnitude. So large an increase cannot possi-
bly be due to spin scattering. According to the interpretation of Kasuya
and Yanase (1968), the approach to the Curie temperature relocalizes the
electrons on the impurity centres; there they orient the 4f spins on their
nearest neighbours, but it would cost them a lot of free energy to move into
the conduction band, since above the Curie point the entropy of disorder
would prevent their forming a spin polaron. Current is thus carried by
impurity conduction, the electrons hopping from one centre to another.
The large activation energy arises because the electron has to jump from a
site where it has had time to polarize its surroundings to an empty site
where the spins are randomly oriented. This activation energy is destroyed
if the moments are lined up by a magnetic field, and these materials
therefore show an extremely large negative magnetoresistance.

Another magnetic semiconductor which shows Tl/4 behaviour is Cr2Sx

with x below 1-5, so that sulphur vacancies in the rhombohedral Cr2Sx

structures result. The results of Sugiura and Masuda (1973) on single
crystals perpendicular to the c axis show an anomaly at the Neel tempera-
ture. These authors report that the resistivity parallel to the c axis is ~104

larger. If as they suggest we have here impurity conduction between
electrons in vacant S sites, the rate of decay exp(—aR) of the wavefunction
must be highly anisotropic.

These results lead us to the concept of the 'spin polaron', namely an
electron in a conduction band which orients spins parallel or antiparallel to
itself. Some discussion is given by Mott (1974c). For the purpose of this
book the important point is that a spin polaron is heavier than a free
electron. The discussion relates to a carrier at zero temperature in an
antiferromagnetic material such as NiO. We introduce the interactions J\
between carrier and moments and /2 between the moments themselves,
and suppose that /i>/2. Then let us assume that the carrier orients all
moments within a radius R parallel to its own; it is then located in a 'box'
of radius R, and, as in our discussions of polarons in Chapter 3, its kinetic
energy is h27T2/2mR2. The carrier with its oriented cluster of spins is called
a spin polaron and its total energy is

(4.12)

Minimizing with respect to R we obtain

(4.13)

and the total energy is thus

(4.14)
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Only if this quantity is negative will a spin polaron be formed in which the
moments are fully oriented parallel to that of the carrier; otherwise there
will be some smaller effect.

Following de Gennes (1960) we do not suppose that the moments in the
spin polaron are all parallel up to a radius R, but rather that 0, the
inclination to the spin direction in the absence of the carrier, tends gradu-
ally to zero as r/R exceeds unity. We can estimate the effective mass by
computing the transfer integral when the polaron moves through one
atomic distance. The spins will contribute a term proportional to

(4.15)

where Br,r+i is the change in the orientation of the spin when the carrier
moves through one atomic distance. We may expect that 0r,r+i— #//?, so
eqn (4.15) becomes

and will thus vary for large R as

where y is some constant of order unity that we have not attempted to
calculate. The effect of the moments on the effective mass mp of a large
spin polaron may be considerable, as we see by equating this with h2/mpa

2.
A large spin polaron will thus have effective mass considerably above that
of the free carrier, but we do not think that spin-polaron formation can
give rise to hopping motion in a perfect lattice.

Above the Curie or Neel temperature, a spin polaron will move by a
diffusive mechanism. A tentative description is as follows. A moment on
the periphery of the polaron will reverse in a time r (the relaxation time for
a spin wave). Each time it does so, the polaron can be thought to diffuse a
distance (a/R)3R, and the diffusion coefficient is thus

By Einstein's relation, we may write

(4.16)

The mobility thus decreases rapidly with increasing polaron radius.
Another treatment, in which the motion is assumed similar to that of

domain-wall movement, has been given by Kasuya, Yanase, and Takeda
(1970).

The important consequence of the heavy nature of the spin polaron is
that Anderson localization occurs more easily. Evidence for this is pro-
vided by the work of Torrance, Shafer and McGuire (1972) on Eu-rich
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EuO and that of Penney et al (1973) on Gd3-xVxS4 (v stands for a
vacancy). They differ from cerium sulphide discussed in § 4.7.5 in that the
Gd3+ ion carries a moment. Considering the latter case, in the degenerate
electron gas each electron will form its spin polaron from these, so that
owing to the enhanced mass Anderson localization by the field of the
random vacancies will occur more easily. If the moments are lined up by a
magnetic field, the spin polaron cannot form; the mass of the carrier drops
and an*Anderson transition can occur. Fig. 4.52 shows this for a specimen

Fig. 4.52. Resistivity in H cm of a specimen of Gd3_xvxS4 for magnetic fields shown in kOe
(Penney et al 1973).

in which the ratio of electrons to Gd ions is O88x 10 2. Since there are
l-8x!022Gd ionscnT3, the mean distance a between electrons is 0-8x
10~7 cm. If <7min is 0-026 e2/ha, this would give

in reasonably good agreement with the observations.

4.9. Granular metal films

Films of metallic particles encapsulated in an insulator have been investi-
gated by many authors. Neugebauer and Webb (1962), Hill (1969), and
Neugebauer (1970) realized that, if the particles are not in contact, an
activation energy e2 is necessary to produce a positively and negatively
charged particle so that the charge can tunnel from one particle to another.
The analogy with the quantity e2 to produce two charged donors in (say)
Si:P is close. If, however, the particles are in contact, so that percolation
paths exist through the material, metallic conduction occurs and cr tends to
a finite value as T -> 0.
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Abeles, Ping Sheng et al (1975) have investigated films prepared by
co-sputtering metals (Ni, Pt, Au) and insulators (SiO2, A12O3), where the
volume fraction of metal varies from 1 to 0-05 and the size of the metallic
particles is below 100 A. In the activated regime they found that the
conductivity follows the law

(4.17)

Their explanation is as follows. The energy s2 needed to form an electron-
hole pair is of order e2/W, where d is the diameter of a grain. If the
tunnelling distance is comparable with the grain size, as shown by electron
micrographs, then the product of the tunnelling probability and the
number of carriers is proportional to

(4.18)

where a= (2mH)l/2/h, H being the height of the barrier. Thus preferred
channels exist for a value of d such that (4.18) is a maximum, when

(4.19)

Inserting (4.19) in (4.18), a temperature dependence of the form (4.17)
follows. Abeles, Pinch, and Gittleman (1975), in an investigation of W-
A1O3 films, find that the conductivity in the metallic region varies as
or oc(x —  JCC)P, where x is the volume fraction of metal, xc = 0-47±0-05 and
p = 1-9±0-2 . This is in good agreement with the expectations of percola-
tion theory (§ 2.9).

Abeles et al. make the point that the energy levels of electrons in these
very small particles are separated by —10 meV, so that at low temperatures
at any rate the motion of an electron from a charged to a neutral particle
must be a hopping process, the electron exchanging energy with a phonon,
though the small activation energy in the mobility is not considered. There
is therefore a close analogy (except for the averaging process) with elec-
trical conduction in uncompensated Si:P in the e2 region, where an electron
is excited from one P atom to another, forming P~, with an activation
energy U- 2(B\ + B£. BI and B2 are bandwidths (or mobility-gap widths)
for the motion of the electron (P") and hole (P+).

We now consider what happens when the proportion of metal increases;
this is shown in Fig. 4.53 for nickel in SiO2. It will be noted that the
temperature coefficient of resistance changes sign when x (the proportion
of metal) is about 0-6 as is to be expected from percolation theory. They
also point out (Abeles and Ping Sheng 1974) that the conductivity at this
point corresponds to amin for a ~50 A. It seems to us likely that we have



THE FERMI GLASS AND THE ANDERSON TRANSITION 159

Fig. 4.53. Low-field resistivity pL in H cm as a function of volume fraction x of Ni in Ni-SiO2
sputtered films. The resistivities were measured in the plane of the film. The full and broken
curves are smoothed values of the experimental data at 291K and 4-2 K. (From Abeles and

PingShen 1974.)

here a situation like that discussed in § 2.9; the concentration for the
metal-insulator transition is given by percolation theory, but none the less
the transition is of Anderson type, just as for uncompensated Si:P. If so, for
concentrations x just below that for the metal-insulator transition, the
T1/2 behaviour should go over to Tl/4 hopping at low enough tempera-
tures.

This behaviour seems also confirmed by the results of Abeles, Pinch, and
Gittleman (1975) on dispersed W in A12O3, who find that the temperature
coefficient of resistance changes sign when cr~50 d"1 cm"1, independent
of the state of annealing. Writing cr oc (x —  xc)

p, where xc is the volume
fraction of metal, p is 1-9 ±0- 2 and the transition occurs when xc =
0-47±0-05 .

The existence of crmin for dispersed metallic particles as well as point
centres is supported by results due to Dynes et al. (1978) on ultra-thin metal
films condensed on a cold substrate. The films consist of islands connected by
tunnel barriers. A minimum unactivated conductivity of 0-12 e2/h is found.
We conjecture therefore that, provided kT is less than the energy between
states in each island, the considerations relating to the Anderson transition
and minimum metallic conduction can be applied.
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4.10. Polycrystalline aggregates

A class of material in which a may perhaps drop below the theoretical
value of (Tmin is provided by polycrystalline aggregates of, for instance,
metallic transition-metal oxides in which each grain is covered with a fully
oxidized layer; it is well known that the single crystals can show values of
the conductivity —100 times higher than sintered specimens. The resis-
tance is therefore presumably due to the oxidized layer, through which the
electrons can tunnel. The dependence on temperature would be weak,
according to Simmons (1971) proportional to

l + 6xlO~ 7 r 2

for typical barrier heights. One would expect the resistance to be very
sensitive to oxide thickness but it may well be that the mechanism of
oxidation involves tunnelling through the oxide (Cabrera and Mott
1948/49, Fehlner and Mott 1970) so that opaque layers cannot grow.

It should be pointed out, however, that if the tunnelling factor is small,
states near the Fermi energy should be quantized just as in the last section,
and conduction will be activated; truly metallic conduction, tending to a
finite value as T-» 0, should not fall below 0-1 e2'/ha, a being the diameter
of the crystals.
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5.1. Introduction
THE EXPLANATION given by Ziman (1961) of the electrical properties
of liquid metals was one of the first and most important steps in the
development of a theory of non-crystalline materials. The theory and its
application to experiment have been extensively reviewed, both in pub-
lished proceedings of international conferences! and in monographs and
reviews (March 1968, 1977, Faber 1972), and the experimental material
has also been reviewed by Busch and Giintherodt (1974). It is a weak-
scattering theory, in which the scattering by each atom is considered small
and the mean free path L is consequently large (kL »1). A Fermi surface
in k space can therefore be defined, which by symmetry must be spherical.

t For instance The Properties of Liquid Metals, Second International Conference, Tokyo, Sept.
1972 (ed. S. Takeuchi), Taylor and Francis Ltd, London, 1973, and Third International
Conference, Bristol, July 1976, Liquid Metals 3, Institute of Physics, London, 1977.
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The pair distribution function of the liquid plays an essential role; other-
wise the theory is equally applicable to amorphous metals or to problems
such as the resistivity of heavily doped semiconductors, which for
comparison is discussed in the next section.

This chapter, after an outline of Ziman's theory and the related problem
of the drift mobility of electrons in liquid rare gases, will take as its main
theme the behaviour of liquids in which the scattering is strong, kL is not
large and Ziman's theory may no longer be applicable. There are in
principle two ways in which this problem could be approached. The first
would be to start from perturbation theory and go to higher orders of
approximation. To use perturbation theory, we have to suppose that the
scattering by each atom is fairly small. Of course the effect of an atom on
the wavefunctions of a conduction electron in a metal is never small. In
sodium for instance the wavefunctions will have two spherical nodal sur-
faces round each atom, as in a 3s atomic wavefunction. The possibility of
treating the resistance of liquid metals by perturbation theory depends on
the use of pseudopotentials, or model potentials in which the condition that
\lf must be orthogonal to the wavefunctions of the inner shells, which leads
to the spherical nodes, is replaced by the addition of a repulsive core to the
potential. This can be chosen to give correctly the energies of the atomic
states, or the phase shifts. If the phase shifts are small, perturbation theory
can be used. If not, the phase shifts could be used in principle to give the
scattering by each atom, but numerical results would then depend on the
application of multiple-scattering theory. There is extensive theoretical
work (Lax 1951, 1952, Phariseau and Ziman 1963, Beeby 1964, Ballen-
tine 1965, Rubio 1969); more recently Khanna and Jain (1975) have
studied liquid mercury using a ^-matrix formalism. We do not, however,
know of any analysis of the effect of multiple scattering as a correction to
the Ziman theory. The other method, which we use in the later sections of
this chapter, is to start from the situation when the mean free path has its
minimum possible value (L~a) so that the phase of the wavefunction
varies in a random way from atom to atom. The appropriate theory has
been developed in Chapters 2 and 4. The disadvantage of this treatment is
that we have no way of calculating what happens in the intermediate region
when kL is greater than unity but still not large; for this problem we have
to depend on experiment.

For liquids (in contrast to amorphous solids) certain new problems arise,
particularly because the structure of the liquid (the pair distribution
function, or the density of states) depends strongly on temperature, and
also because of the possibility of long-range fluctuations in density or
structure, particularly near critical points. These will be discussed in this
chapter.

In much theoretical work on liquid metals, as also in the theory of the
resistance of disordered alloys, the change in the energy of the electron
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when it is scattered is neglected. It is not necessary to do this, as the work
of Greene and Kohn (1965; see § 5.3) on liquid sodium has shown, and in
alloys this neglect may lead to errors (see § 3.2). In this chapter we shall
make this approximation, which probably leads to very small errors in
liquid metals.

5.2. Scattering of electrons by a random distribution of centres;
degenerate semiconductors

A degenerate electron gas with scattering by a random distribution of
centres is the simplest example of the theory of this chapter; this model
could apply in principle to a degenerate gas of electrons scattered by n-type
centres in a highly doped semiconductor. We can ascribe to each centre a
differential cross-section for scattering /(#); 1(0) da) is the effective area
for scattering by a centre through an angle 6 into a solid angle dco. For the
conductivity cr we can write

(5.1)

Here n is the number of electrons per unit volume, and the time of
relaxation r is given by

(5.2)

where Nc is the number of centres per unit volume and v is the velocity of
electrons at the Fermi energy. This formula was used in calculations of the
resistance of disordered alloys in Nordheim's paper of 1931; it was derived
by Edwards (1958) from the Kubo-Greenwood formula (compare § 2.4).

If the potential energy V(r) of an electron in the field of a centre is small,
1(0) can be obtained from the Born approximation by writing

where

where as before q = k' - k and k and k' are the wavevectors before and after
a collision. This can be evaluated to give

(5.3)

Nordheim's (1931) application of these concepts to disordered alloys
AjcBi-x, where x is not small, is interesting as perhaps the first treatment of
the resistance of a random system. If VA and VB are potentials of the two
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atoms, the mean potential is xVA + (1 — *) VB and the deviations at A and B
are (1 -x)(VA- VB) and x(VA~ V&). Thus the scattered intensity and 1/L
are proportional to | VA- VB|2 and to

(cf. Mott and Jones 1936, p. 289).
In the application of these formulae to a highly doped semiconductor,

the potential energy, which must be added to the lattice potential, should
be that of a screened Coulomb field, and may be written

(5.4)

Here K is a background dielectric constant. This is a true potential and not
a pseudopotential, and, since the potential is not strong enough to produce
nodes in the wavefunction, it is likely that the Born approximation may be
fairly good. The theory has been extensively reviewed (Mott and Twose
1961, Katz 1965, Mott 1967, § 7.8, Krieger and Strauss 1968, Meeks and
Krieger 1969, Krieger and Meeks 1973). For doped silicon and germanium
the results can be summarized as follows:

(a) For high carrier concentrations, using the formula

(5.5)

where S is the area of the Fermi surface and deducing the mean free path
L from comparison with experiment, one finds that L is of the order of
the distance between centres. Therefore the scattering is not weak, and
the use of the Born approximation (5.3) is suspect. It leads to values of L
about twice those observed.
(b) For lower values of n the observed conductivity decreases more
rapidly with n than the calculations predict, and near the metal-insulator
transition (Chapter 4) the discrepancy may amount to 10, the apparent
mean free path dropping below the distance between centres.
Krieger and Meeks (1973) find that agreement with the observations can

be obtained by taking into account the multi-valley nature of the conduc-
tion band and a revised form of the screening. However, if the distance
between centres is greater than the calculated mean free path, it is doubtful
if this method is valid. The discussion of Chapter 4, which shows that the
metal-insulator transition is of Anderson type, makes it likely that this
discrepancy is to be explained by the presence of a pseudogap between two
Hubbard bands, so that a factor g2 should be introduced in (5.5), as in eqn
(2.52).

Katz, Koenig, and Lopez (1965) report a T2 term in the electrical
resistance of n-type degenerate germanium, which they ascribe to elec-
tron-electron scattering (Baber 1937; for a review see Ziman 1960, Mott
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1974c; also Hartman 1969 for measurements of the effect in certain
semimetals, e.g. Bi). The T2 term depends on the many-valley nature of
the conduction band and disappears when the energies of the valleys are
separated by stressing the crystal.

In compound semiconductors with high static dielectric constants the
potential (5.4) might be expected to be very weak and the mobility
consequently high. Allgaier and Scanlon (1958) and Allgaier and Houston
(1962) in their work on PbS, PbSe, and PbTe find mobilities as high as
SxH^cn^V'V1.

5.3. Resistivity of liquid metals; Ziman's theory

When the scattering centres are the atoms of a liquid metal (or an amor-
phous metal film), the atoms are not distributed completely at random; the
amplitude scattered by two atoms at a vector distance R from each other is

(5.6)

where q as before is k-k'. Thus if we neglect multiple scattering the
conductivity is given by eqn (5.5) where

(5.7)

Here TV is the number of atoms per cm3 and S(q) is the structure factor,
given by

P(R) is here the pair distribution function, P(R)d3X being the probability
that another atom is in the volume d3X at a distance R from the given
atom. Using the Born approximation for /(0) we can write for the resis-
tivity p, following Faber and Ziman (1965),

(5.8)

where

and the integral is over the volume fl.
Fig. 5.1 shows schematically the behaviour of S(q) and v(q). The possi-

bility of applying perturbation theory depends on the fact that v(q) is small
in the region where S(q) is large.

The theory of the scattering of the electrons in a liquid metal is thus
identical with that used for the scattering of X-rays or neutrons in a liquid.
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Fig. 5.1. The structure factor S(q) and pseudopotential v(q) for a liquid metal; qi and q2

show the values of 2kF for monovalent and divalent metals.

The first suggestion that the resistivity of liquid metals could be calculated
in this way was made by Krishnan and Bhatia (1945) and Bhatia and
Krishnan (1948). Ziman (1961) put forward the idea again,t using for V(r)
the newly discovered atomic pseudopotential, and made a detailed
comparison with experiment. One of the most successful applications of
Ziman's theory is to the temperature dependence of the resistivity, also
discussed by Bhatia and Krishnan. This is large and positive for mono-
valent metals, and small and negative for divalent metals. The explanation
in terms of the observed behaviour of the structure factor S(q) is as follows.

Fig. 5.2, deduced by North, Enderby, and Egelstaff (1968) from their
neutron-scattering measurements, shows S(q) for liquid lead at various
temperatures. It will be seen that for monovalent metals the resistivity is
determined by the left-hand side of the peak, and indeed since v(q) has a
zero near q = 2kF (Fig. 5.1), probably well below the maximum in S(q). It
is observed^ that the resistivity of monovalent liquid metals at constant

t See also Baym (1964).
$ See, for example, Lien and Sivertsen (1969), who observe for Na and K a linear dependence

on T at constant volume over a temperature range of about 200 K.
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Fig. 5.2. The function S(q) for liquid lead determined from neutron scattering at different
temperatures: (a) 340°C ; (b) 600°C ; (c) 780°C ; (d) 1100°C . (From North et al 1968.)

volume is proportional to the absolute temperature; this suggests that S(q)
is also proportional to T over the range in which |^(<?)|2 is significant. For
very low q, the structure factor S(q) will be given by the Ornstein-Zernike
formula

S(q) = kT//3fl0 (5.9)

where f3 is the bulk modulus and H0 the atomic volume. This represents the
contribution from macroscopic fluctuations of density and will be true for
liquids or solids. But the formula should not be true near q = 2kF, even for
monovalent metals, and Fig. 5.2 shows that it is not. There has been a good
deal of controversy as to whether, with experimental values of S(q\ the
linear dependence of p on T can be explained. Greenfield (1966) and
Wiser and Greenfield (1966) deduce for liquid sodium from observed
values of S(q) that the calculated value of d(lnp)/dT is half the observed
value. We think that the observed linear dependence of p on T must
depend on the fact that for real monovalent metals |^(g)|2 vanishes near
4 = 2fcF (see Fig. 5.3).
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Table 5.1 (partly from Cusack 1963) shows some values of the mean free
paths in metals deduced from the free-electron formula

where n is taken to be the number of valence electrons per unit volume and
in is taken to be the free-electron mass. It will be observed that k?L » 1 for
most of the normal metals, though not for tellurium and some liquid alloys.
To most of the liquid metals, therefore, the Ziman theory should be
applicable. It should, however, be mentioned that the use of the Born
approximation is not beyond criticism; v(q) is necessarily equal to §£F at
q = 0, which is not small. L is large only because S(q) is small for small q, as
we shall see below.

TABLE 5.1

Li Na Cu Zn Hg Pb Bi Te PbTe HgTe

Valence 1 1 1 2 2 4 5 6 5 4
L(A) 45 157 34 13 7 6 4 0-9 0-5 0*3
MA"1) 1-1 0-89 1-33 1-56 1-34 1-54 1-63 1-60 1-69 1-65
EF(eV) 4-6 3-0 6-6 9-2 6-9 9-0 10-0 9-7 10-9 10-3

The difficulty in using the theory to obtain numerical values of the
conductivity cr derives from uncertainties in both S(q) and (particularly)
v(q), as well as doubts about the validity of the Born approximation. Fig.
5.3 shows some values of v(q) calculated by Animalu and Heine (1965).
All curves show a zero in the neighbourhood of the maximum of S(q) and
this makes the conductivity very sensitive to the position of v(q\ as is
shown particularly by the calculations of Ashcroft and Lekner (1966), who
use various forms of v(q).

The zero in v(q) means that the scattered intensity vanishes at a certain
angle 6, the scattered amplitude due to s-type and p-type phase shifts being
of the form A +B cos 0. In the Born approximation, A and B are real, but
not if exact phase shifts are taken, and the success of the theory in
obtaining a fair approximation to the resistivity suggests therefore that the
Born approximation is sufficient and the phase shifts really are small. On
the other hand, the phase shifts TJ/ for a single atom should satisfy the
Friedel sum rule

where z is the valency, an equation that can be used to derive the relation-
ship (if all 7]i are treated as small)

Li Na Cu Zn Hg Pb Bi Te PbTe HgTe

Valence 1 1 1 2 2 4 5 6 5 4
L(A) 45 157 34 13 7 6 4 0-9 0-5 0*3
MA"1) 1-1 0-89 1-33 1-56 1-34 1-54 1-63 1-60 1-69 1-65
EF(eV) 4-6 3-0 6-6 9-2 6-9 9-0 10-0 9-7 10-9 10-3
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Fig. 5.3. Pseudopotentials v(q) for certain metals (Animalu and Heine 1965). The broken
curve for Hg is due to Evans (1970).

(Harrison 1966, Heine 1970). Heine (1970) points out that it would not be
correct to take exact phase shifts, calculate /(0), and put the result in eqn
(5.7); the scattering at small angles is never small because of the Friedel
rule, and multiple-scattering theory would give comparable corrections.
Perturbation theory works because S(q) is small for small q, and v(q) small
for large q.

The same considerations enable a distinction to be made between
monovalent and polyvalent metals. In monovalent metals, S(q) is small
nearly up to q = 2kF, so the resistance is small compared with that which
would be produced if the atoms were distributed at random. In polyvalent
metals the two quantities are comparable.

The attempts to obtain detailed agreement between theory and experi-
ment are reviewed by Faber (1972). We may mention particularly the
calculations of the resistivity of crystalline and liquid sodium carried out by
Greene and Kohn (1965), and by Hasegawa (1964). Both authors find that
both in the solid and liquid the calculated resistance is about one-half of
that observed. Darby and March (1964), however, obtain fair agreement
for the solid by taking into account the variation of elastic constants with
volume, which is large.

A success for the theory has been the calculation of the conductivity for
liquid rubidium at high temperatures and low pressures. Block et al. (1976)
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have determined the structure factor up to 1400° C and 200 bar, and
Pfeifer, Freyland, and Hensel (1976) have determined the density,
conductivity, and thermopower. With a density change from 1-42 to
0.98 gcnT3 the conductivity drops from 3-1 to 0-5 x 104 ft"1 cm"1, and
using the observed structure factor the calculated values agree very well
indeed.

5.4. Resistivity of liquid alloys

Ziman's theory was extended to liquid alloys by Faber and Ziman (1965;
see also Faber 1967, 1972). In order to give a complete description, for a
binary alloy the three separate pair correlation functions Sii(g), £22(4),
and Si2(q) are needed, giving the Fourier transforms of the probability that
an atom of type 1 or 2 is at a given distance from another atom of its own
kind or of the opposite kind. The analysis of Faber and Ziman is based on
the assumption that these quantities are identical, and for many alloy
systems the assumption gives a good description of the observations. The
theory gives for a concentration c of one component a resistivity p =
p'±p", where

The angular brackets denote an average heavily weighted towards large
values of q(q^2kp). It will be seen that the second term is likely to be
small for polyvalent metals because 5 — 1 over the important range of
scattering. Thus p' makes the major contribution, and the scattered
intensities from atoms 1 and 2 must be added together. Fig. 5.4 shows that
this is so for Pb-Sn. On the other hand, for monovalent metals 5« 1, and
p1' makes the major contribution. The interference between waves scat-
tered by different atoms is important, just as in crystalline alloys, and
curves such as those shown for Ag-Au and Na-K are obtained.

A theoretical account of the curve reproduced for Cu-Sn needs a
determination of the three separate partial structure factors, which can be
obtained from a combination of X-ray and neutron diffraction (Enderby,
North, and Egelstaff 1966). Enderby and Howe (1968) have shown that
good agreement with experiment can be obtained when this is done.

Mercury alloys (amalgams) normally show the behaviour shown in Fig.
5.5, the resistivity dropping sharply with concentration; the evidence was
summarized by Mott (1966), though his suggested explanation is not cor-
rect, a revised description being due to Mott (1973Z>). This is based on the
proposal by Evans (1970) that, because of the proximity of the full 5d band
to the Fermi surface, there is an abnormally large d phase shift and that the
value of this is very sensitive to energy. The result is that, as shown in Fig.
5.5, v(q) for mercury is negative for q/2kF near the value 2, so that for
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Fig. 5.4. Resistivity of liquid alloys as a function of concentration: (a) Ag-Au at 1200°C ; (b)
Na-K at 100°C ; (c) Cu-Sn at 1200°C ; (d) Pb-Sn at 400°C . (From Faber and Ziman 1965.)

Fig. 5.5. Resistivity of some liquid amalgams, as a function of composition: (a) Hg-Zn; (b)
Hg-Pb. (From Adams and Kravitz 1961.)
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large angles the scattered amplitudes from Hg and from the alloyed atoms
have opposite signs and interfere destructively.

There appears to be a weak pseudogap in liquid mercury (g —0-7); this
follows from calculations due to Ballentine and Chan (1973), and also from
photoemission work due to Oelhafen (1975, 1976). Since the Hall effect
indicates two electrons per atom, we suppose that L ̂  a and the Edwards
cancellation theorem (eqn 5.16) is applicable. (See § 5.14.1.)

5.5. Thermoelectric power of liquid metals

As shown in § 2.13, for materials in which the conductivity is determined
by electrons with energies near EF, we may use the 'metallic' formula for
the thermoelectric power, which we write in the form

where

Ziman (1961) and Bradley et al (1962) applied this formula to liquid
metals using equation (5.8) for cr; they found

(5.10)

where

and the angular brackets denote as before an average over q that is defined
in their papers. For most metals, comparison with experiment gives values
of 17 close to unity, so the thermopower is negative (n type). This is because
the scattering amplitude v(q) for most liquid metals has a zero near 2fcF; in
other words, the probability of scattering through an angle 180°  is small
and decreases with E. Eqn (5.10) cannot give a value of £ greater than 3;
for mercury the experimental value of £ is 5, and Bradley et al. and
subsequent workers (Faber 1971) ascribe this to a breakdown of the
assumption that the scattering potential v(q) is independent of energy;
Evans (1970) ascribes this to the d phase shift.

5.6. Hall effect of liquid metals

For most liquid metals, measurements of the Hall coefficient RH, when
interpreted by the use of the formula

(5.11)
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give a value of n, the number of electrons per unit volume, equal to the
actual number assuming all electrons in the outer shell are free. The values
quoted by Faber (1972) show that this is so, and deviationst occur only for
metals for which fcL~l, so that the conductivity falls below
3000 ft"1 cm"1. Exceptions are certain alloys of liquid mercury (e.g. Hg-
Cd, where RH falls on alloying, (Faber, loc. cit. p. 510)), liquid transition and
rare-earth metals where jRH is, surprisingly, sometimes positive (§ 5.10), and
expanded fluid mercury (§ 5.14.1).

5.7. Density of states

In second-order perturbation theory, the energy of an electron with
wavenumber k is

(5.12)

where

The density of states for a liquid or amorphous material can be evaluated
using the formula (cf. eqn 2.1)

(Faber 1967). These formulae are not exact, because one cannot treat the
changes in E that result from the term |u(g)|2 without at the same time
treating the scattering. Edwards (1961, 1962) and Faber (1971) treat the
two together.

If E is known as a function of fc, the density of states can be calculated,
and in this way a number of authors have discussed the changes in the
density of states due to the last term in eqn (5.12) (for some references see
Ballentine 1977, Faber 1972).

A point of particular interest is the production of a pseudogap (a mini-
mum in the density of states). This is to be expected if v(q) in eqn (5.12) is
large at q = 2fcF; the same condition would lead in crystals to a large band
gap near the Fermi energy (as in y-brasses for example) and in the liquid to
high resistivity. Fig. 5.6 shows results for the resistivity of liquid Sn-Ag due
to Haider and Wagner (1967); the composition at the maximum, where
p ~ 10~4 O cm, whence L ~ 6 A, corresponds to an electron-atom ratio of
1.6, about that for y-brass formation. Here the use of the Ziman-Faber
formulae with appropriate pseudopotentials gives good agreement with

t Ballentine (1977) discusses some deviations due to spin-orbit coupling.
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Fig. 5.6. Experimental points and theoretical curve for the resistivity of liquid silver-tin alloys
(Haider and Wagner 1967). (From Faber 1972, p. 519.)

experiment, as the solid curve shows. This may be fortuitous (Faber 1972,
p. 519) or may be due to the cancellation of the factor g2 (eqn 5.16).

On the experimental side for normal metals the evidence is that the
density of states changes little on melting, as the next three sections show.

5.8. Change of Knight shift on melting

Table 5.2 shows the change in the Knight shift K on melting for a number
of metals. For some metals there is little change. Since K is proportional to
the density of states N(EF) at the Fermi surface, this indicates that N(Ep)
does not change much in these metals. This does not necessarily mean that
N(EF) has the free-electron value; the effect of v(0) is the same in the
liquid as in the solid. But it does mean that either the effect of band
structure for all these solids is small, or that the term S(q)\v(q)\2 gives the
same change in N(EF) as the corresponding term in the crystal. In view of
the calculations of Ballentine and others, showing that for the liquid this
term is small, it seems likely that for these particular metals there is little
band-structure effect on N(EF) in the crystal. This problem has been
reviewed by Ziman (1967). It would be particularly interesting to make the

TABLE 5.2

Change of Knight shift K on melting

From Faber 1972.

Metal Li Na Rb Cs Cu Cd Hg In Sn Bi Te

Liquid #L 0-026 0-116 0-662 1-46 0-25 0-8 2-45 0-75 0-73 1-40 0-38

10(*L-*S) Q +2 +1 2 +5 24 0 1 3 80 100
^L
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comparison for a metal where there is likely to be a large change (e.g. Be,
Ca).

Ziman (1967) has plotted the observed Knight shift of a large number of
liquid metals against the free-electron density of states and shows that the
values lie closely about a straight line; he argues from this that there is little
deviation of the density of states from the free-electron value.

We shall discuss in § 5.16 some other cases where the density of states
certainly falls below the free-electron value, and increases with T\ this
effect is reflected in the Knight shift.

5.9. X-ray emission spectra and photoemission

Soft X-ray emission bands frequently show a structure. Until recently it
was thought that these were due to band-structure effects and some may
be. Thus the persistence of the structure shown by the Lm band in Al into
the liquid phase (Fig. 5.7), as observed by Catterall and Trotter (1963), was

| 40
h-H .

Fig. 5.7. X-ray emission bands of solid (broken curve) and liquid aluminium. (From Catterall
and Trotter 1963.)
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cited as evidence that the term |^(g)|2 produces about the same result in the
liquid as in the crystalline state. However, the work of Roulet, Gayoret,
and Nozieres (1969) now makes it clear that a peak at the Fermi limit can
be caused by a many-body effect, which should be the same in the liquid as
in the solid. Also Peterson and Kunz (1975) find the 'spike' at the Fermi
limit in the L2,s emission in sodium virtually unchanged on melting. In view
of these developments it has not yet proved possible to use X-ray spectra to
make firm predictions about the change of N(E) on melting.

Owing to this effect in X-ray emission, photoemission can give a more
dependable test for the change of the density of states on melting. A review
is due to Spicer (1973). Data for gold due to Eastman (1971) show little
change on melting in emitted intensities for /i^ = 40-8eV and hv =
26-9 eV, though for lower energies there is some loss of structure.

5.10. Liquid transition and rare-earth metalst

Liquid transition metals have the following properties.
(1) The conductivity is usually about 1CT4 ft"1 cm"1 and depends little
on temperature, and the change on melting is abnormally small.
(2) The Hall coefficient does not satisfy the normal formula and is often
positive, as in Fe, Co, and Mn (by extrapolation from results on alloys
with germanium), and also in liquid Ce and La.
There has been some controversy about the interpretation of their

electrical properties. Evans, Greenwood, and Lloyd (1971) and Dreirach et
al. (1972) argue that the full description involves ascribing a mean free
path only to the s electrons, which resonate in the d shells; Mott (1972d)
argues that, as in the solid (cf. Coles and Taylor 1962), different mean free
paths Ld and Ls must be introduced for d and s electrons, that Ld~a and
that Ls is determined by s-d transitions.

Enderby and Dupree (1977) present measurements of the thermopower
of liquid Fe, Co, and Ni which show that a proportionality between 1/r and
calculations of N(E) for the d band (Keller et al. 1974) can account for the
results, thus supporting the model of Mott (1972d). Further data on liquid
Cu-Ni is due to Dupree et al. (1977). The occurrence of a positive Hall
coefficient has not been explained. Busch and Guntherodt (1974) find that
N(Ep) for solid iron is decreasing at EF according to current calculations,
and postulate that the same may be true in the liquid and that the positive
term may have its origin here. Our hesitation in accepting this is because, if
the current carriers have their Fermi energy at a value where N(E) is
decreasing, we should always expect L ~ a, which would first of all give a
resistivity higher than observed and secondly, according to the arguments
of §2.14, a negative value of RU is expected if the Hall coefficient is
determined by three-site coincidences.

t For a review see Guntherodt and Kunzi (1973) and Busch and Guntherodt (1974).
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Guntherodt, Hauser, and Kiinzi (1974, 1977) have reviewed the
behaviour of liquid rare-earth metals. The behaviour of dysprosium is
shown in Fig. 5.8. It shows the same general behaviour as that of the
transition metals. However, s-f transitions are not normally to be expec-
ted. The conductivity of the liquid, 5 x 103 fT1 cm"1, is about what one
would expect when L ~ a, if disorder produced no diminution of N(E\ so
that g~l. This is perhaps why there is so little change in resistivity on
melting; thermal vibrations before melting have produced as short a mean
free path as is possible. An interesting result is that liquid europium has a
negative temperature coefficient of resistance (TCR). The resistivity is
high, of order 250 /Ltfl cm, and we believe the negative TCR to be due to
the effect discussed for amorphous alloys in the next section.

Fig. 5.8. Electrical resistivity in HcmXlO6 of dysprosium as a function of T. (From
Guntherodt et al. 1974.)

There has been a considerable literature on the calculation of the density
of states in liquid transition metals, in which a d state is hybridized with the
s-p states. References are given in articles by Chang et al. (1975) and by
Keller, Fritz, and Garritz (1974).

5.11. Amorphous metals and grain boundaries

The structure of amorphous alloy films, such as liquid-quenched Fe-P-C
and Pd-Si alloys, electrodeposited Ni-P, and vapour-quenched Cu-Mg
and Ag-Cu, has been reviewed by Wagner (1969). His general conclusion
is that the order is somewhat greater than in the liquid, but the breadth of
the diffraction lines is not dissimilar (see also Wright 1977).

According to Mader et al. (1963) and Mader (1965), amorphous alloys
can normally be deposited on a cold substrate if there is a difference in the
atomic radii of more than 10 per cent; such films are stable up to ~0-3 TM,
where TM is the melting point. Fig. 5.9 shows the same results for Cu +
50% Ag evaporated onto a substrate at 80 K. The results show that the
resistivity of the film is about half that of the liquid.
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Fig. 5.9. Resistivity of amorphous films of Cu + 50 per cent Ag evaporated at 80 K, showing
reversible and irreversible behaviour on annealing. (From Mader 1965.)

As a contrast to the comparatively low resistivity of amorphous films, it
is worth mentioning that Andrews, West, and Robeson (1969) have
measured the grain-boundary contribution to the resistivity in Cu and Al
and find ~3x 10~12ricm2; Kasen (1970) finds 1-35 x KT12 Hem2 for
aluminium. Assuming the width of a grain boundary to be 3 x 10~8 cm, this
corresponds to a resistivity of ~10~4£lcm, which is about 10 times the
resistivity of liquid copper at the melting point. Grain boundaries therefore
behave as if they are much more disordered than the liquid.

The extensive work of Duwez and co-workers (for a review see Duwez
1976) on splat-cooled alloys containing a transition metal (e.g. Pdo-gSio-z)
show resistivities of order 1-2 x 10~4 O cm. We think that s-d transitions
are responsible for the mean free path. Mooij (1973) and Tangonan (1975)
point out that, for alloys of this type, dp/dT becomes negative if p>
170 fjifl cm. The condition L ~ a must be satisfied in this case, so phonon
scattering cannot increase the resistivity; then poc( l— AT2\ where A
depends on dNd/dE, Nd(E) being the density of states in the d band (Mott
and Jones 1936, p. 270, Coles and Taylor 1962). A convenient expression
for a nearly full d band with degeneracy temperature T0 is A = 7r2/6To. An
alternative theory in which phonons affect N(E) is due to Brouers and
Brauwers (1975).
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The mechanical and magnetic properties of these 'metallic glasses' have
attracted much attention (see for instance Oilman 1975), but will not be
reviewed here. These glasses are most stable for compositions near the
liquid eutectic, and it is believed (see for instance Tauc and Nagel 1976)
that this occurs at a given electron-atom ratio and that they are stabilized
because EF lies in a pseudogap, as in the Jones (1934) theory of alloys
obeying the Hume-Rothery rules (cf. Mott and Jones 1936, Chapter V).
The theory by which the position of the gap is calculated in terms of S(q)
should be as in § 5.7. Presumably the gap is not deep enough for the mean
free path to have its minimum value (L —  a) or for cr to drop below
~\e2/ha\ otherwise values of the conductivity below those quoted above
would be observed.

5.12. Injected electrons in liquid rare gasest

A number of investigations have been made of the transport of electrons in
solid and liquid rare gases. Thus Miller, Howe, and Spear (1968) have
produced carriers by pulses of 40 keV electrons and measured the drift
mobility. Similar work has been carried out by Halpern et al. (1967) and by
Schnyders, Rice, and Meyer (1966). The drift velocities for solid and liquid
krypton at 113 K are shown in Fig. 5.10. It will be seen that at low fields

Fig. 5.10. Drift velocities of electrons in (a) solid and (b) liquid krypton as a function of field
(Miller et al 1968). The values of the thickness are from 185 to 585 jiim.

the mobility in the liquid is high (20CO cm2 V"1 s"1). This corresponds to a
long mean free path of several hundred atoms. There is clearly no
significant trapping by localized states. We have suggested in § 2.9 that
localized states do not occur when the wavefunctions are s like at the
bottom of a band.t
t A review of the experimental material is given by Gallagher (1975).
$ This was first proposed by Jortner et al. (1965).
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For the liquid as for the solid the concept of a deformation potential can
be used to calculate the mobility (cf. Chapter 3). If E0 is the change in
potential at the bottom of the conduction band for unit expansion, we
should expect for the mean free path L

(5.13)

where l = £l0mE0/27rh2'9 the quantity / is called the scattering length. For
S(q) we can take the Ornstein-Zernike formula (5.9), so that 1/L =
47rl2kT/(3, where (3 is the bulk modulus. The mobility IJL is er/m
(=eL/^l(mkT}\ which can be written

(5.14)

A striking feature of the results shown in Fig. 5.10 is that the mobilities for
liquid and solid are in the ratio of the bulk moduli f$ for the two states, so /
and m appear to be the same in liquid and solid. This is further evidence
that, for a band built up mainly from s orbitals, there is little change in the
band structure on melting.

The effective mass in the solid is about 0-5 rae for solid argon, so in liquid
argon we are very far from the nearly-free-electron approximation. If we
started from eqn (5.12) in a calculation of N(E\ we would have to assume
a large dependence of v (0) on E. The high value of the mobility depends on
the smallness of S(q). The scattering length is comparable with a. Dis-
cussions of the detailed behaviour of / have been given by Lekner (1967,
1968); an interesting result is that / goes through zero as the gas expands
because the deformation potential changes sign. This leads to a maximum
in the mobility. The observations of Kimura and Freeman (1974) on the
mobility of electrons in xenon are reproduced in Fig. 5.11 and show the
effect well, as does the work of Miller et al. (1968) on argon. Near the
critical point IJL drops to 21 cm2 V"1 s"1, presumably because of the small
bulk modulus, or according to Lekner and Bishop (1972) because the
long-range fluctuations produce a mobility edge, and localization is
possible.

In liquid rare gases there is strong evidence for Wannier exciton states
(see Raz and Jortner 1970, 1973, Asaf and Steinberger 1974). Since the
bottom of the conduction band is so little distorted this is not surprising. In
situations where a substantial range of localized states exists at the extre-
mities of the bands, it is doubtful whether exciton line spectra can be
observed (§6.7.1).
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Fig. 5.11. Mobility of electrons in liquid xenon as a function of temperature. The field was
16 V cm"1. (From Kimura and Freeman 1974.)

5.13. Liquid semimetals and semiconductors

The review by loffe and Regel (1960) and the books by Gubanov (1963)
and by Glazov, Chizhevskaya, and Glagoleva (1969) were the first to treat
liquid semiconductors in any detail.t In our view there is no essential
difference in the theories necessary to treat electrical conduction in liquid
and in solid non-crystalline semiconducting materials, but liquids are more
complicated because the arrangement of atoms, and therefore the structure
factor S(q) and the density of states, can and do change with temperature,
while in amorphous solids below the glass transition temperature the change
due to lattice vibrations is probably much smaller. In non-crystalline solids
we normally suppose that a resistance which decreases with increasing
temperature means either thermally activated hopping or excitation to a
mobility edge. For liquids this is not necessarily so. As we have seen, in

t A recent review is that by Cutler (1977).
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most liquid metals the change in S(q) is responsible for the dependence of
resistivity on temperature, which may have either sign; this may be so too for
semimetals and even semiconductors.

In liquids and amorphous materials a semimetal is one in which the
Fermi energy lies in a pseudogap (a minimum in N(E)), a semiconductor
one in which it lies in a gap, or at any rate in a range of E where N(E) is
small and states are localized. In this section we discuss divalent metals at
low densities (mercury), monovalent metals (caesium), and liquids such as
tellurium and its alloys where a pseudogap between a valence and conduc-
tion band depends on the structure. The relevant theory has been
described in § 2.11 and § 4.1; we summarize here the different situations
which it leads us to expect.

Regime I. The mean free path L is large (kFL »1), a>e2/3ha (3000-
4500 fl"1 cm"1 depending on the atomic volume a3) and the Ziman theory
is applicable. The conductivity is given by

(5.15)

where fcF is the wavevector at the Fermi energy EF,

and SF is the Fermi surface area (47rkp). If Lziman is the value of L
calculated from perturbation theory (eqn 5.7), the Edwards (1962) cancel-
lation theorem gives (cf. eqn (2.24))

(5.16)

so eqn (5.15) reduces to

It will be noted that the effective mass does not appear in these equations.
The Hall coefficient .Rn should be given by the classical expression RU =
I/nee, and the Hall mobility is the same as the conductivity mobility

Regime II (conductivity between -3000 and -300 IF1 cm"1). The
scattering is so strong that L ~ a, and consequently

(5.17)

The cancellation theorem no longer applies because L does not depend on
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g. kp is not, however, a good quantum number; if we write kp= IT/a (for a
divalent metal), For the Hall coefficient Friedman (§ 2.14)
gives

(5.18)

and for the Hall mobility

(5.19)

fjiu thus decreases with increasing depth of the pseudogap. The ther-
mopower will be given by

(5.20)

The Knight shift is proportional to N(EF) and thus to g. An approximate
relationship cr —  (N(Ep)}2 is expected, where N(EF) can be deduced from
the Pauli paramagnetism or Knight shift. If instead of a we take aE

(§2.11), however, and write

then a proportionality between cr and {N(E)}5/3 may be more appropriate
(see Fig. 5.23).

Regime III. If g falls below the value ~0-3 (cf. §2.11), states at the
Fermi energy will become Anderson localized. The liquid will behave as a
semiconductor, the conductivity being given by

where £, the energy required to excite an electron to the mobility edge, is
given by e = EC —  Ep. The thermopower is

(5.21)

The theory of §2.13 predicts A = 1, but negative values are sometimes
found, for a reason that is not clear. The Hall mobility is given by Fried-
man's formula (§ 2.14)

(5.22)

and the conductivity mobility by

it being assumed that transport by electrons at EF makes a negligible
contribution.
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Regime IV. As e increases, there arises the possibility that transport by
carriers at Ep gives the predominant term in the conductivity; in solids this
regime can always be reached by lowering the temperature and the trans-
port mechanism is by hopping. In liquids there is another possibility,
namely that a carrier in a localized state drifts like a heavy ion, carrying the
configuration that traps it with it. This is especially probable if it can distort
its surroundings and 'dig its own hole', as is certainly the case for solvated
electrons in metal-ammonia (Thompson 1976).

Regime V. When the density of states at the Fermi energy vanishes, the
main contribution to the conductivity must be due to electrons or holes or
both excited to a mobility edge; the properties are then just the same as in
regime III.

One result of this analysis is that only for values of the conductivity
greater than ~3000 ft"1 cm"1 (normal liquid metals) can we expect values
of fjLH above 0-1 cm2 V"1 s"1. That this is so is shown in Fig. 5.12, due to
Allgaier (1970).

Of particular interest are liquid systems in which it is possible to go from
one regime to another by changing the composition, temperature, or
density. If the volume of a divalent metal can be increased, the conduction

Fig. 5.12. Hall mobilities of a number of liquids plotted against conductivities. (From
Allgaier 1970.)
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and valence bands can be separated, leading to a pseudogap (a minimum in
N(E)) and ultimately to a gap. This is possible in mercury at high tempera-
tures, for which in the next section we shall show how all the above regimes
can be identified. The same is true for fluid caesium, liquid salts such as
KIi_xKx and metal-ammonia solutions; for these, two Hubbard bands
separate and at low temperatures a two-phase region forms, as described
in the last chapter. Mercury and caesium are described next; for the
application of these ideas to metal-ammonia see Mott (1974c, 1976e),
Thompson (1976).

5.14. Liquid systems in which the depth of the pseudogap changes with
volume

5.14.1. Mercury

Liquid mercury is anomalous in many ways. The mean free path deduced
from (5.15) is 7 A (Cusack 1963) and the Hall coefficient obeys the equa-
tion R = 11 nee quite accurately with n given by two electrons per atom.
The anomalous drop in the resistivity on alloying illustrated in Fig. 5.5 was
first discussed by Mott (1966) in terms of a pseudogap which fills up, but
this explanation proved wrong and Evans et al. (1970) showed that it could
be explained by the pseudopotential illustrated in Fig. 5.3. This behaviour
is due to a large d contribution to the scattering cross-section. The same
result is obtained by Khanna and Jain (1975) who use a ^-matrix formula-
tion. This means that the electron waves scattered by the alloying element
have the opposite phase to those scattered by the mercury atoms, and
interfere destructively. There is some evidence for a pseudogap in liquid
mercury with g —0-7 , which is reviewed by Mott (1972ft). This is not
supposed to affect the electrical properties, the Edwards cancellation
theorem (5.16) being applicable. The normal value of the Hall coefficient
can be taken as experimental evidence that the Friedman formula (5.22)
does not apply even for small values of the mean free path L as long as
L>a. Additional evidence that any pseudogap does not affect electrical
properties is provided by the observation of Choyke, Vosko, and O'Keefe
(1971) that the marked peak in the imaginary part of the high-frequency
dielectric constant of solid mercury at hv = 2 eV completely disappears in
the liquid, where the conductivity cr(w) obeys the Drude formula.

On the other hand, the measurements of Hensel and Franck (1966,
1968), Hensel (1970), Schmutzler and Hensel (1972), and Even and Jort-
ner (1972, 1973) on the electrical conductivity, thermopower, and Hall
coefficient of expanded fluid mercury at low densities consequent on high
temperatures give ample evidence for the formation of a pseudogap as the
liquid expands. Fig. 5.13 shows the conductivity as a function of volume. If
g is deduced from the observed conductivity or using (5.17) when cr falls
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Fig. 5.13. Specific conductivity a of mercury at 1550° C as a function of density (Hensel and
Franck 1968); V is the volume and V0 the molar volume.

below 3000 fl l cm 1 (the value for L~a\ then the observed Hall
coefficient is given well by Friedman's formula (5.18) down to g —0-3
(cr = 300 fi"1 cm"1), where Anderson localization occurs. This is shown in
Fig. 5.14. The liquid then enters regime III, and conduction is due to
electrons excited to the mobility edge; this results in a constant value of
M'H, given roughly by Friedman's formula (5.22). Both the drop and the
subsequent constant value are observed by Even and Jortner and shown in
Fig. 5.14. This explanation of their results, as regards the constant value of
/LtH? was proposed by Mott (1975c).

That the fluid (near the critical point) goes into regime IV, conduction
being by electrons at EF and near the bottom of a pseudogap, is indicated
by the measurements of the thermopower by Duckers and Ross (1973)
which falls precipitately to a low value.

For lower densities conduction is again at Ec (true semiconducting
behaviour, regime V). In this regime, since we expect or =
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Fig. 5.14. Normalized Hall mobility (in cmz V L s ) of expanded fluid mercury (Even and
Jortner 1972). The quantity g is deduced from the observed conductivity for g<|, and for

g > s by extrapolation.

o-min exp(-E/kT) and S = (k/e){E/kT + A} with A = l for charge trans-
port at a mobility edge, it follows that

(5.23)

A plot of log o- against 5 is shown in Fig. 5.15(a). The slope is exactly as
predicted. However, extrapolation to eS/k = 1 gives a rather small value of
0"min(~20 ft"1 cm"1). Results very similar to these are found for liquid Se in
the range up to 1700° C and 100 kbar (Hoshino, Schmutzler, and Hensel
1976, Hensel 1976); these are reproduced in Fig. 5.15(b). Here <7min

appears to be about 10 ft"1 cm"1. However (see §2.13), we expect
5 = (k/e) 2 In 2 at an Anderson transition where cr = crmin and Fig. 5.15 for
Hg gives cr = 400 at this value of 5; if C7min remained constant, the
behaviour shown by the broken curve would be expected. In Se there is a
much smaller change.

These small values of 0-min may mean that the carriers in these expanded
liquids are able to form 'polarons' by bonding together two or more atoms,
but with an activation energy in the mobility which is small. If so, the
constant /u,H shown in Fig. 5.14 is an example rather of the Friedman-
Holstein behaviour (§ 3.9) with small WH- When conduction becomes
metallic, so that carriers compete for Hg atoms, polarons would no longer
form. Similar behaviour for liquid Se-Te is described in Chapter 10.
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Fig. 5.15. (a) Logarithm of conductivity CT/O-Q with or0=104n l cm l of expanded fluid
mercury versus thermopower S. (From Schmutzler and Hensel 1972.) (b) Similar results for

liquid selenium.
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Devillers (1974) has pointed out that the electrical gap deduced from the
work of Schmutzler and Hensel and of Duckers and Ross (1973) lies well
below the optical gap (Hensel 1970) and that a 'theoretical' gap calculated
by Devillers and Ross (1975) lies between them. They give an explanation
in terms of density fluctuations. We think that for these low densities there
may be important band tails due to fluctuations and that the mobility gap
will be substantially greater than the optical gap, as Devillers (1974)
proposes. Band-theoretical calculations of the optical gap by Overhof,
Uchtmann, and Hensel (1975) seem to confirm this model, as do those of
Yonozawa etal. (1977).

Measurements of the Knight shift K by El-Hanany and Warren (1975)
in the range of density for which a metallic pseudogap is expected do not
confirm its presence; the reason for this is not understood. K drops rapidly
when o- falls below -200 ft"1 cm"1.

Popielawski (1972) and Popielawski and Gryko (1977) have treated the
low-density limit (density ~2 g/cm3) by assuming that each Hg atom
lowers the conduction band by the mean of the electron's potential energy
in its neighbourhood, and that weak scattering theory can be applied as in
§ 5.13. Whether this is so or not depends on whether kL »1.

In the description given here, apart from any effect of long-range fluctu-
ations, the metal-insulator transition in mercury is of Anderson type,
occurring where a —  300 ft"1 cm"1. At the critical point the conductivity is
very much lower (~10~3 ft"1 cm"1). There is no suggestion of a two-phase
region in the neighbourhood of the metal-insulator transition, which
according to the consideration of Chapter 4 must always occur in a crystal.
The reason suggested by Mott (1974c) is that the background dielectric
constant is large, so the discontinuity represented by eqn (4.7) is small.
Therefore, as in Si:P, Anderson localization sets in before the discontinuity
due to band overlap can occur.

Cohen and Jortner (1973, 1974a,£) have given a quite different
explanation of the metal-insulator transition in mercury. Their description
is the same as ours for values of cr above —300 ft"1 cm"1, where the kink in
the plot of /LCH is observed (Fig. 5.14); below this they postulate an
'inhomogenebus regime', in which conduction is still essentially metallic
but is along classical percolation channels.

5.14.2. Caesium

Experiments on this material at low densities have been carried out by
Freyland, Pfeifer, and Hensel (1974). The most striking difference from
mercury is that, at the critical point, the conductivity (~103 ft"1 cm"1) is six
orders of magnitude higher than that for mercury at its critical point. The
critical point for caesium is, we believe, th^t for the transition between a
metallic and non-metallic liquid as described in § 4.3, and the factor g is
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due to two overlapping Hubbard bands. The two-phase region occurs, in
contrast to mercury, because for two Hubbard bands the background
dielectric constant is small.

Freyland et al (1974) have investigated the thermopower of liquid
caesium in the semiconducting range, and have plotted a logarithmically
against S. Here extrapolation to eS/k = 1 (as in Fig. 5.15) and putting in
the value of cr when S = (k/e)2ln2 gives the same value of
<7min(~300 a'1 cm"1).

5.15. Liquid alloys with pseudogaps in which the composition is varied

The first alloy system of this kind to be investigated was Mg3_xBi2+x
(Ilschner and Wagner 1958). Their results showed a sharp maximum in the
resistivity at x = 0. The work on solid amorphous alloys at these composi-
tions (§ 4.2.5) was undertaken as a consequence of this work to separate
the effects of thermal activation of carriers from that of structural changes.
The solid alloys were treated by a rigid-band model, the Fermi energy
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moving through the pseudogap when the composition varied and the
thermopower changing sign.

Another example is the liquid system Tei_xTl2+x on which detailed work
has been undertaken by various authors, including Cutler and Mallon
(1965), Cutler and Field (1968), Enderby and Simmons (1970), Regel et al
(1970), Cutler (1971), Donally and Cutler (1968, 1972), and Cutler
(1974). Fig. 5.16 shows the resistivity of these alloys as a function of
composition, and Fig. 5.17 shows the thermopower. The sharpness of the

Fig. 5.17. Thermopower in JJL V K l of liquid TexTl!_x.

transition on the thallium-rich side is not compatible with a broad pseudo-
gap. Cutler (1971) has given thermodynamical evidence to support the
hypothesis that molecules of the composition TeTl2 can form and partially
dissociate as the temperature is raised; an excess of either constituent can
be dissolved in the liquid formed from these molecules.

We interpret the properties of such materials, therefore, in the following
way. The Te2" ion in the molecule (e.g. TeTl2) forms a closed shell. Thus
the wavefunctions near the bottom of the conduction band are s like on the
Te atoms. Therefore the density of states in the conduction band should be
parabolic, and there will not be an extensive range of localized states. The
situation is similar to that of the conduction band in liquid argon (§ 5.13).
The resistances of the thallium-rich alloys do not depend on temperature,
and are within the metallic range of values (~10~3 O cm).
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One supposes therefore that an excess of Tl above the composition
TaTl2 gives rise to a degenerate electron gas in this conduction band.
Cutler and Field (1968) have shown that the addition of other metals leads
to the same result, and also that the metal atom gives up all its valence
electrons to the degenerate gas. We suggest that the reason may be that the
'molecule' TeTl2 has a dipole, and that when there is an excess of Tl the
metal ion is solvated. This would provide the energy required to raise the
energies of the electrons to the conduction band of the liquid formed from
the molecules TeTl2. The field round the excess metal ions would thus be
weak, and the degenerate electron gas should have properties similar
to those of electrons in concentrated metal-ammonia solutions, where
again the NH3 molecules have dipoles. An unexplained fact is that
measurements of the Hall coefficient interpreted through the equation
RH= I/nee give a temperature-independent value of n ten times greater
than that due to the excess of Tl atoms (Donally and Cutler 1972), these
being supposed monovalent (Cutler 1974). The Hall mobility shows a
discontinuity at the stoichiometric composition.

This behaviour is in sharp contrast with that on the tellurium-rich side.
The Hall coefficient is then negative, in accordance with the general prin-

Fig. 5.18. Pauli susceptibility of Tei_xTl2+x-liquid alloys plotted against <r1/2 for various
temperatures and compositions. (From Cutler 1977.)
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ciple for such materials first discovered by Enderby and Walsh (1966); the
thermopower is, however, p like and the conductivities are greater than
100 ft""1 cm"1 and probably metallic. They show a Pauli-type paramag-
netism XP which can be separated from the diamagnetic term, and over a
wide range of composition and temperature CT^CXP (Gardner and Cutler
1977, Fig. 5.18). Assuming that XP is proportional to N(E) and cr is
proportional to {N(E)}2, this gives strong support to the pseudogap model
with constant mean free path (eqn (5.17)). However, the Hall mobility ^tH

does not obey Friedman's law (5.19); Donally and Cutler (1972) find it to
be independent of T. This seems to be a general law for Te and its alloys,
which is not fully understood. The drop in the thermopower 5 with
increasing T must be interpreted by supposing that d In N(Ep)/dE
decreases with increasing T faster than l/T.

While the thermopower of liquid Te-Tl alloys changes sign at a fixed
composition, as also does that of Pb-Te, this is not so for Ga-Te (shown in
Fig. 5.19) or for the chalcogenide glasses in general. The two classes of

Fig. 5.19. Resistivity p and thermopower 5 of liquid Ga-Te plotted against concentration c
of Te. (From Valiant and Faber 1974.)
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liquids are discussed by Valiant and Faber (1974). For the chalcogenide
glasses, in the liquid as in the amorphous solid state, all outer electrons are
apparently taken up in bonds and the Fermi energy is pinned near mid-
gap, probably by charged dangling bonds as explained in Chapters 9 and 10.
As the temperature is raised, the gap (to be discussed in the next section)
turns into a pseudo-gap, eventually giving metallic behaviour. For Ga-Te
Tschirner et al. (1976) find a strong maximum in Ru at 60 per cent Te, and
/X-H about 10"1 cm2 V"1 s"1, which is about what we should expect from the
Friedman formulae (§ 2.14).

Warren (1972a,Z?) and Brown, Moore, and Seymour (1972) have
measured the Knight shift K and the nuclear relaxation as a function of x
in Gai-xTe* and Tl^Tei_x, materials in the two different classes. For the
Knight shift a deep minimum at x = 0-66 is very marked, rising sharply on
the Ga-rich side.

5.16. Liquid systems in which the depth of the pseudogap changes with
temperature

5.16.1. Tellurium

This liquid is a semimetal in regime II (p. 182). The conductivity is
1300 ft"1 cnT1 at 675 K and rises with temperature to 2750II"1 cm'1 at

Fig. 5.20. The dependence on wavenumber co/c of the conductivity cr(<y) (in fl l cm *) of
liquid tellurium. (From Hodgson 1963.)
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HOOK (Warren 1972a,6). This is somewhat less than the value
(~5000 11 cm ) that we should expect with g = 1 (no pseudogap) and six
electrons per atom, and so it seems probable that at the melting point the
liquid metal has a pseudogap in the density of states with g2~0-4 at the
Fermi energy, and that g^l as the temperature rises. The optical pro-
perties shown in Fig. 5.20, due to Hodgson (1963), give evidence for a
pseudogap, showing low values of o-(co) for small co but larger values for
transitions across the gap.

Urbain and Ubelacker (1966) have measured the magnetic susceptibility
of solid and liquid tellurium, their results being shown in Fig. 5.21. They

Fig. 5.21. Magnetic susceptibility x in cm3 g l of solid and liquid tellurium (Urbain and
Uberlacker 1966). The free-electron value according to the Pauli theory is shown by the

horizontal line framing the top of the diagram.

suggest that, after the susceptibility of the ions has been subtracted, the
remaining susceptibility approaches the Pauli free-electron value for six
electrons per atom. We believe that this also may indicate that N(EF)
gradually approaches the free-electron value (g = 1) as the temperature is
raised.
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Cabane and Froidevaux (1969) and Warren (1972a,£) have measured
the Knight shift; the results of the former authors are shown in Fig. 5.22(a).
These confirm the values of g estimated above. Also the plot shows that cr
is proportional to K2 and thus to g2 (i.e. to N(E)2, as should be the case
when L~a\ In contrast, the data of Tieche and Zareba (1963) show that

Fig. 5.22. (a) Knight shift K of liquid tellurium (Cabane and Froidevaux 1969). (b) Plot of log
(lOOOjft) versus log cr, showing the linear relationship crocX"2, where K is the Knight shift.
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RH is proportional to g2 so that /u,H is approximately independent of g.
This, as already stated, is a property of Te-rich Te-Tl, and as we shall see in
Chapter 10 of Tei_xSex. Various explanations have been attempted (Cohen
and Jortner 1973); within the context of the models used here, it remains
unexplained.

Cabane and Friedel (1971) show that there is a gradual transition from
twofold to threefold co-ordinations as the temperature is raised; this is
discussed in Chapter 10.

5.16.2. Some liquid alloys of tellurium

Andreev (1976) has surveyed the temperature dependence of the conduc-
tivity of a large number of these alloys, including PbTe, SnTe, GeT, In2Te3,
InTe, and some similar alloys of Se. According to this author, they all show
the behaviour sketched in Fig. 5.23. Here in regime 1 the gap (EF —E C) is a

Fig. 5.23. Schematic behaviour of conductivity of semiconducting Te and Se alloys as a
function of l/T. (From Andreev 1976.)

linear function of T, in regime 2 it is non-linear, rapidly disappearing at the
Anderson transition, in regime 3 the conductivity cr is proportional to g2

rising to the value for g = 1 in regime 4, while in regime 5 there is a drop in
or due to a decrease in density. For the flat part (regime 4) Andreev finds
that, on comparing with the equation o- = e2SFL/l27r3h, L~0-4 a gives
the best fit assuming that all outer electrons contribute to SF.

For In2Te3 and Ga2Te3 the investigations of Warren (19700,6, 1972a,6)
on the Knight shift provide the most convincing evidence that a pseudogap
is formed as the temperature is lowered. If g is determined from the Knight
shift, the conductivity is found to drop as g2 until g reaches a value g ~ 0-2;
thereafter it drops faster, indicating that states are localized at EF and
conduction is by excitation to Ec. An unusual enhancement of the nuclear
relaxation rate above that expected from the Korringa relation gives evi-
dence for localization.
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It is of some interest to enquire whether a varies as K2 or K5/3', the
latter would be expected if the minimum mean free path is the distance aE

between localized states and N(E)cc\/a\. Plots of the two types are
shown in Fig. 5.24, and cannot as yet distinguish between the two possi-
bilities.

Fig. 5.24. Conductivity a of Ga2Te3 plotted against different powers of theKnight shift K.

Warren and Brennert (1974) and Warren et al. (1974) have investigated
the system Ga2(SexTei_JC)3. The Knight shift shows g decreasing with
increasing x, as one might expect. When localization occurs, they give
evidence that conduction is at Ec', however, they consider that Ec is not
sharp but that conduction is over a range of some multiples of kT at Ec-
They also show that in the crystal this system shows a range of solid state
immiscibility f or 0-5 < x < 0-9 and that the conductivity of the liquid shows a
structure here, indicating long-range fluctuations.

Liquid selenium and selenium-tellurium alloys (Perron 1971) are dis-
cussed in Chapter 10. Perron has also investigated the Hall mobility, and his
results show that the Friedman relationship (^H ̂  g) is not obeyed, /u,H being
roughly constant; in this respect these alloys behave like liquid tellurium and
other tellurium alloys.
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6.1. Introduction

THE APPLICATION of the concepts developed in earlier chapters to
non-crystalline semiconductors is one of the main purposes of this book. In
this chapter we describe some of the experimental techniques that have
been used to characterize these materials, the kinds of results obtained,
and the models used to interpret them. More detailed descriptions of
specific materials are given in the final chapters. We find that the models
developed in previous chapters, namely those of localized states, mobility
edges, states in the gap arising from structural defects, and variable-range
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hopping conduction, serve as a framework into which most of the observed
data can be fitted.

6.2. Preparation and classification of materials

The two normal ways of preparing amorphous solids are (i) by conden-
sation from the vapour as in thermal evaporation, sputtering, glow-dis-
charge decomposition of a gas, or other methods of deposition, or (ii) by
cooling from a melt.t The first methods produce thin films and the second
bulk material. If a material can be prepared in the amorphous phase from a
melt, it is generally also possible to prepare it by deposition. If a suitable
thinning technique can be found, such as etching or 'blowing' the glass into
thin-film form, it is frequently possible to bridge the 'thickness gap'
between the two methods of preparation. However, there will inevitably be
structural differences between the same material prepared by different
methods, and these must be considered in any comparison of properties.

Materials that are obtained by cooling from the molten state are called
glasses and generally have a smaller tendency to crystallize compared with
those that can be prepared only by deposition. In certain cases this reluc-
tance to crystallize makes it possible to heat the material through the
softening range of temperature into the liquid state without any dis-
continuous change in properties. Such stable glasses may, however,
undergo a second-order phase transition at the so-called glass transition
(transformation) temperature Tg. This transition, which corresponds to the
accessibility of new configurational energy states or degrees of freedom,
marks the onset of softening and is accompanied by an increase in the heat
capacity and thermal expansion coefficient (Fig. 6.1). Unlike the melting
temperature Tm of the crystal, it is not a particularly well-defined
temperature and depends on the rate of cooling or heating. Less stable
glasses, for instance those with compositions near the border of a glass-
forming region in a multicomponent system (see Fig. 6.3), may, on heating
slowly, undergo phase separation and crystallization. Further heating
causes melting, and certain properties of the liquid state, such as the
temperature dependence of conductivity, are then often similar to those in
the disordered solid at temperatures below crystallization. In order to
prepare such glasses, rather faster quenching techniques are needed fo
avoid devitrification. In the case of As2Te3, for example, 'splat cooling' is
used to prepare the glass. In contrast, the crystallization process in As2Ses,
a stable glass, is so slow as to allow preparation by cooling the melt at a
very low rate. As an example of a material intermediate between these two
extremes, we show in Fig. 6.2 results of differential thermal analysis on

t Other methods include electrolytic decomposition from solution, and prolonged irradiation
of crystalline material with high-energy particles such as neutrons or ions. For a general
review, see Owen (1973).
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Fig. 6.1. Schematic variation of volume versus temperature for a glass-forming material. A
glass is formed on cooling the liquid state below the glass-transition temperature Tg, but the
value of the latter as well as the volume (and structure) of the glass depend on the cooling rate.
Crystallization can occur from the supercooled liquid or the glass (vertical arrowed lines). The
crystal, which generally has a higher density than, but a similar expansion coefficient to, the

glass, melts at Tm.

Fig. 6.2. Differential thermal analysis (DTA) traces of Gei6Te82Sb2 (a) heating 25°Cmi n *;
(b) fast cooling; (c) slow cooling; (d) heating. (From Fritzsche and Ovshinsky 1970.)
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Gei6Te82Sb2 reported by Fritzsche and Ovshinsky (1970). Heating the
glass at 25° C min"1 as shown in curve (a) produces a small step at Tg, the
glass transition temperature, followed by an exothermic crystallization
peak at 7\ and an endothermic melting peak at T2. Fast cooling (greater
than 50° C min"1) (curve (b)) shows no reaction, and the high-temperature
disordered state is frozen in. Slow cooling (less than 10°Cmin~ 1) shows
(curve (c)) an exothermic transformation at T3 below which the material is
partially crystallized; subsequent heating of this material (curve (d)) shows
the T2 endotherm only.

Fig. 6.3 illustrates the glass-forming regions in a few ternary systems. For
other examples and more detailed information on the preparation, stabil-
ity, and physical properties of glasses the reader is referred to Rawson
(1967), Turnbull (1969), and Owen (1973).

Fig. 6.3. Approximate glass-forming regions in several ternary systems (Hilton and Brau
1963, Haisty and Krebs 1969ft, Flaschen et al 1959, Pearson et al 1962, Krebs and Fischer

1971, Krebs 1969; see also Hilton 1970).

The stability or otherwise of glasses can frequently be understood from
structural considerations. Thus, for example, selenium in the hexagonal
crystalline state is composed of helical chains stacked parallel to each other
(Chapter 10). The binding in the chains is covalent and strong; between the
chains it is weak, perhaps of van der Waals type. In the liquid state the
chains can be considered as randomly oriented. Fast cooling of the melt
does not allow time for reorientation of these chains before the viscosity
becomes too high for this to occur, so the glassy state is formed. Addition
of Te to the melt is believed to lead to shorter chains, the Se-Te bond being
weaker than the Se-Se bond, and devitrification on cooling in easier. In
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contrast, As tends to act as a cross-linking or branching additive, retarding
the reorientation necessary for crystallization.

Generally speaking, most amorphous solids that can be prepared by
cooling from the melt are insulators or wide-gap semiconductors in which
the energy gap is greater than about 1 eV. Examples include Se, As2Se3,
and similar chalcogenide compounds or multicomponent systems,
CdGeAs2, and the common borosilicate glasses. Exceptions are 'glassy
metals' (§ 5.12), which can be prepared from the melt by rapid cooling.

Materials such as Te, Ge, Si, B and InSb, which cannot be produced in
the glassy state by normal quenching from the melt, can be obtained in an
amorphous form by deposition. In the case of Ge and Si it has been
established that the co-ordination numbers in the liquid lie between 6 and
8 compared with 4 in the solid, and a different co-ordination in the liquid
and solid is the normal rule for this class of materials.t The band gaps are
generally smaller than for stable glasses, less than about 1 eV; there are,
however, exceptions, e.g. dielectric oxide films. For these substances great
care is necessary to avoid unwanted crystallization, and frequently the
properties of such films are found to be very sensitive to the conditions of
deposition and to subsequent annealing treatments. Keeping the substrate
temperature low inhibits crystallization, and many materials have to be
deposited at liquid-nitrogen temperatures or below in order to obtain an
amorphous state.t

At the present time, classification of amorphous semiconductors is pro-
bably best achieved by division into groups of materials having the same
short-range structural co-ordination. A general rule, first stressed by loffe
and Regel (1960), which applies to many amorphous semiconductors, is
the preservation of the first co-ordination number of the corresponding
crystal.§ For compositions for which there is no crystalline phase the rule is,
of course, meaningless, but it does suggest that, in the As-Se system for
example, Se-like structural units might be expected to be dominant at low
concentrations of As, while at higher concentrations there may be a
tendency to favour As2Se3-like units; at all compositions the natural co-
ordination of each element is likely to be preserved.

This scheme of classification, based on co-ordination number, is shown
for some representative materials in Table 6.1 and has been used to some
extent to divide the experimental results into those described in Chapters
7, 8, 9, and 10. Notable omissions from Table 6.1 include the common
silicate, borate, and phosphate glasses containing metal ions, transition-
metal oxide glasses (§ 4.7.2), and many multicomponent glasses containing
t Tellurium, discussed in Chapter 10, is an exception and there are others.
t For detailed information on the preparation of thin films the reader should consult the

references cited in later chapters on individual materials, and the books by Chopra (1969)
and Holland (1963).

§ There are exceptions such as Ge(S, Se, Te) and As2Te3.
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elements mentioned in Table 6.1 but not in stoichiometric proportions.
The freedom to depart from stoichiometric proportions is one of the most
important features of semiconducting glasses.

TABLE 6.1

Classification of non -crystalline semiconductors according to their
nearest-neighbour co -ordinations

Another scheme of classification might be to group materials according
to whether their amorphous structure is best described by continuous
random networks, by assemblies of distorted layers, molecules, or poly-
meric units, or by close packing of atoms, etc. The problem here is that
insufficient structural data exist to classify many materials properly; for
instance amorphous As has been modelled both by a continuous random
network and by a distorted layer structure; amorphous Se is possibly a
mixture of molecules (closed rings) and polymeric chains. Yet another
scheme (Fritzsche 1973) would be to isolate those materials whose
uppermost valence band is made up of non-bonding (lone-pair) orbitals,
e.g. those containing a large amount of a two-fold co-ordinated chal-
cogenide element S, Se, Te, or O.

6.3. Methods of determining structure

An amorphous solid is one in which three-dimensional periodicity is
absent.t The arrangement of atoms, however, will not be entirely random
as in a gas. The binding forces between atoms are very similar to those in
the crystal and, although long-range order is absent, short-range order will
generally be present, t

i tThis definition makes the terms disordered, non-crystalline, amorphous, glassy, and
vitreous, synonymous. However, the last two terms are generally restricted to non-crystal-
line solids prepared by quenching from the liquid state.

t What is meant here by short-range order is a reasonably well-defined bond length, bond
angle, and co-ordination number. Compared with a crystal, short-range structure is
frequently distorted (because of variations in the bond angle for example) and for certain
properties, such as charge transport, this can be as significant as the absence of long-range
order.

Nearest-neighbour Type (column of
co-ordination periodic table) Examples

2 VI Se, Te
3 V As, Sb, P

3 and 4 IV C
4 IV Ge,Si
4 IV-IV SiC
4 III-V (Ga, In) (P, As, Sb)
4 III-VI (Ga, In) (S, Se, Te)
4 III-IV-V (Cd, Zn) (Si, Ge, Sn)x(As, P)2

6 III B
3-2 V-VI (As, Sb, Bi)2(S, Se, Te)3

4-2 IV-VI SiO2, (Ge, Sn, Pb)(S, Se, Te)
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A complete theoretical description of the properties of an amorphous
solid would need a full knowledge of the structure. Even within the
restraints imposed by forces between individual atoms and the tendency
towards short-range order, there is an infinite number of allowed structures
for any amorphous material. However, in view of the importance of short-
range order in determining many physical properties, it is valuable to
determine the nature and extent of this as far as possible. Techniques used
for structural investigations include electron, X-ray, and neutron
diffraction, EXAFS (extended X-ray absorption fine structure), and
infrared and Raman spectroscopy, as well as several less direct methods.

Diffraction patterns from an amorphous solid should consist of broad
haloes or rings, vanishing rapidly with increasing angle, without any evi-
dence of spots or sharp rings which would indicate some degree of crystal-
Unity. From the angular dependence of the scattered intensity 7(5), one
determines a diffraction function F(s) given by

where s = 4^r sin 0/A and f(s) is the atomic scattering factor. The radial
distribution function /(r) is defined in terms of the atomic density p(r) at
distance r from any chosen atom:

where p0 is the average atomic density and

The radial distribution function (RDF) is therefore the Fourier transform
of the scattered intensity and gives a one-dimensional description of the
atomic distribution. Appropriately normalized, the RDF displays a number
of peaks at certain values of r giving the average separation between
nearest neighbours, next nearest neighbours, and so on (see Fig. 6.4). The
width of a peak, after corrections for thermal broadening, describes the
radial fluctuation in the corresponding interatomic distance, and the area
below each peak is equal to the number of atoms contained in the respec-
tive co-ordination shell. In the case of germanium shown here, the first two
co-ordination numbers are 4 and 12 as in the crystal and the average first
interatomic distance is, within experimental error (about ±1 per cent),
unchanged. The second-neighbour distance, however, shows a distribution
about the crystalline value owing to bond-angle distortions. The curve is
distributed about a parabola representing the RDF of a hypothetical
amorphous solid of the same density p0 but with matter uniformly dis-
tributed in space. The decreasing amplitude of the oscillations with r is a
consequence of the lack of long-range order.
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Fig. 6.4. RDF of amorphous germanium. The curves were derived from electron diffraction
measurements on two similar samples. (From Graczyk and Chaudhari 1973a.)

There are several problems involved in obtaining a reliable RDF, not the
least of which is concerned with termination errors in the Fourier integral
which can introduce spurious ripples into /(>). There are various pro-
cedures for eliminating these (Grigorovici 1973, 1974) but considerable
care is necessary. In amorphous solids containing more than one type of
atom the situation is more complicated and, for a complete study, partial
interference functions are required. These can sometimes be derived by
using electron diffraction in conjunction with X-ray diffraction, since the
atomic scattering factor / depends on the atomic number Z as Z1/3 for the
former and as Z2 for the latter. However, inelastically scattered electrons
have to be eliminated and other corrections are necessary.

Neutron diffraction, particularly when used on a series of samples with
different isotopic compositions, is a powerful technique for structural stu-
dies. It has been used extensively on liquids (Chapter 5) but not, at present,
to any great extent on amorphous solids (see, however, Wright 1974,
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Leadbetter et al 1977, Betts et al 1972, Bellisent and Tourard, 1976,
1977). In some cases this is because large samples are not available.

EXAFS is a technique for studying structural arrangements which
involves measurement of the energy dependence of the absorption
coefficient beyond an X-ray absorption edge. Electrons, photoejected from
a deep electronic state (e.g. the K-shell) of a particular atom, are back-
scattered by neighbouring atoms, interfere with the outgoing wave, and
modulate the absorption coefficient in a way that depends on the phase of
the returning wave (see reviews by Stern 1976, Pendry and Gurman 1977,
Sayers 1977). Although the data can be Fourier transformed to yield an
RDF, analysis is not as straightforward as for X-ray or electron diffraction,
owing particularly to the difficulty of treating multiple scattering events.
However, the technique has a particular advantage as far as alloys are
concerned, because each type of atom has its own absorption edge and
associated fine structure. Furthermore, use of synchrotron radiation
sources, having over four orders of magnitude more intensity than con-
ventional X-ray tubes, has dramatically reduced the time required to
obtain spectra. Several papers on the theory of EXAFS have been pub-
lished (Stern, Sayers, and Lytle 1975, Stern 1974, Ashley and Doniach
1975, Lee and Pendry 1975, Hayes, Sen, and Hunter 1976, Gurman and
Pendry 1976, Lee and Beni 1977). A typical spectrum for crystalline
selenium and Fourier transformed data for crystalline and amorphous
selenium are shown in Fig. 6.5. The power of the technique to produce
accurate information about the first co-ordination shell is seen in these data
which enable one to deduce a decrease in the Se-Se distance of 0-024 A
and a reduced amplitude of vibration in the amorphous form. Experiments
on GeO2 (Sayers, Stern, and Lytle 1975), GeSe, GeSe2, and As2Se3

hv (eV)
13200 13800

Fig. 6.5. (a) EXAFS spectrum of crystalline selenium. The energy is measured relative to the
binding energy of the K-shell electron (12 658 eV). (b) Plots of r2 times the magnitude oi
the Fourier transform of EXAFS data for crystalline and amorphous selenium. (From

Sayers 1977.)
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(Sayers, Lytle, and Stern 1974), and As2Te3 (Pettifer, McMillan, and
Gurman 1977) have provided information on local co-ordinations around
the individual atoms in these alloys in both the crystalline and amorphous
forms. The co-ordination number of Cu in amorphous Asi^Se* alloys has
been investigated by Hunter, Bienenstock, and Hayes (1977a,fe) and of As
in doped amorphous Si by Hayes, Knights, and Mikkelsen (1977).

Infrared and Raman spectra reveal vibrational modes at frequencies
governed by atomic masses, force constants, and the geometrical
arrangements of atoms. A comparison of results from crystalline and
amorphous materials enables recognition of modes associated with local
molecular groupings of atoms, e.g. the AsX3 unit in As chalcogenides
(Lucovsky 1974). For tetrahedrally co-ordinated amorphous semiconduc-
tors the most obvious feature of the infrared and Raman spectra is the
breakdown of selection rules operative in the crystal (see § 6.7.7) leading to
structure determined to a large extent by the phonon density of states. This
can be calculated for various structural models and compared with
experiment.

Other methods that provide information on the structure of amorphous
materials include nuclear magnetic resonance (n.m.r.), differential thermal
analysis (DTA), and measurement of viscosity. High-resolution electron
microscopy is useful in detecting ordered coherently diffracting regions in a
material, and in the case of Ge it fuelled a controversy as to whether this
material is best described as a continuous random network or as an
assembly of small ordered regions (microcrystallites). Defects in the basic
structure of an amorphous material, such as crystallization, segregation, or
phase separation, and large voids are fairly easily detectable by electron
microscopy; however, the presence of small voids (say <100A) is
generally inferred from density and small-angle X-ray or electron-scatter-
ing measurements (see Chapter 7).

Structural models of amorphous solids or liquids can be constructed by
hand or with the aid of a computer. The scattering properties of such a
model can then be calculated and its RDF derived in order to compare with
experiment. Although good replication of the experimental RDF is a
necessary requirement of any model, it should be noted that it can rarely be
sufficient, as RDFs are relatively insensitive to different topologies (see for
example § 7.1.2). In the case of tetrahedral elemental materials only the
first and second co-ordinations are well defined by the RDF, and in other
materials, especially those containing more than one kind of atom, even
this is not the case. Other requirements of a model are that it should have
the correct density and be capable of explaining the metastability of the
material, its heat of crystallization, and effects of annealing, as well as its
behaviour under pressure or uniaxial stress. The co-ordinates of models
can be refined to reproduce the correct distribution of nearest-neighbour
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bond lengths and angles; they can also be energetically relaxed using
appropriate force constants for bond stretching and bond bending. These
co-ordinates can be used to calculate the vibrational properties and hence
the infrared or Raman spectra, or the electronic density of states, all of
which can be compared with experiment. The most successful attempts at
model building to date have been for four- or three-fold co-ordinated
elementalmaterials (Ge, Si, As) and for SiO2, with other simple covalently
bonded binary systems following closely behind. Later chapters will
contain more detailed structural information on specific materials. The
reader is also referred to reviews by Grigorovici (1973, 1974), Moss
(1974), and Wright and Leadbetter (1976).

6.4. Electrical properties of non-crystalline semiconductors

In this section we discuss the density of electron states, mobility edges, and
a variety of electrical measurements on non-crystalline semiconductors.
Generally speaking the experimental techniques are the same as or similar
to those employed for crystalline materials; however, the models used in
this book for interpreting data are somewhat different. We shall summarize
points of view put forward in earlier chapters and develop further some of
the concepts related to electrical properties.

Most of our discussion will be confined to materials that are micro-
scopically homogeneous. We believe that this is normally the case for
glasses cooled from the melt (excepting SiO2 containing Na2O in a certain
composition range) and for thin films deposited under certain conditions.
However, in many materials local variations in density and composition
undoubtedly occur and these will produce, amongst other things, spatial
variations or so-called 'elastic fluctuations' in the band gap (Fig. 6.6(a)). In
addition fluctuations of an 'electrostatic' nature (Fig. 6.6(b)) may also be

Fig. 6.6. Possible forms of spatial fluctuation in the band edges of amorphous semiconductors:
(a) elastic; (b) electrostatic.

present if there are spatial variations in charge density. For example many
deposited films of Ge and Si are known to contain voids (Chapter 7) and if
any of these remain charged (after reconstruction of unsatisfied orbitals)
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such potential fluctuations will result. If the scale of these fluctuations in
space is such that tunnelling between neighbouring wells can be neglected,
then, for electrical transport by carriers in conduction and valence bands, a
classical percolation treatment, rather than one based on mobility edges,
may be more appropriate. The concept of variable-range hopping by
electrons with energies at the Fermi energy EF must remain valid at low
temperatures if N(EF) is finite, and so parts of this chapter may be applied
even to such inhomogeneous films. For glow-discharge-deposited Si and
Ge (believed to be void free) and for the majority of chalcogenide films and
glasses, we think that any long-range potential fluctuations are small in
magnitude and indeed most data can be interpreted without any need to
consider them.

6.4.1. Density of states

The density of electron states, as we showed in §2.1, remains a valid
concept for non-crystalline as for crystalline materials and its form can be
determined by various experimental methods. We suggested in § 2.10 that
the states lie in bands separated by energy gaps just as in crystals, and that,
as for crystals, states in the gap are a consequence of defects. Furthermore,
as long as the short-range order present in the crystalline phase is essen-
tially unchanged (i.e. similar bond lengths, bond angles, and local co-
ordination) the gross features of the crystalline density of states are
preserved, though there are differences. For the most part, however, it is
the similarities between crystals and non-crystals which were, in the past,
the most surprising feature so long as the band structure of crystals was
thought to depend essentially on long-range order. Recently, however,
some new (and some old) techniques for calculating densities of states, that
do not rely on lattice periodicity, have been developed which emphasize
the importance of short-range structure. These will be discussed in later
chapters, where it will be shown that they are capable of reproducing the
gross band structures of some non-crystalline materials. It has not yet been
possible, however, to calculate, except for certain idealized potentials,
(§2.12), the form of the density near band edges, which frequently
determines transport properties. However, the proportionality between
N(E) and El/2 obtained for crystals is not to be expected; for some
purposes we shall assume that N(E)ocEn, where n is to be determined
empirically.

The question of 'states in the gap', whether of intrinsic or extrinsic
nature, is of considerable importance. In an early paper, which considerably
influenced the development of the subject, Cohen, Fritzsche, and Ovshin-
sky (1969) supposed that the non-crystalline structure would lead to over-
lapping band tails of localized states as in Fig. 6.7(a). Those derived from
the conduction band would be neutral when empty and those from the
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Fig. 6.7. Various forms proposed for the density of states in amorphous semiconductors.
Localized states are shown shaded, (a) Overlapping conduction and valence band tails as
proposed by Cohen et al. (1969), the CFO model; (b) a real gap in the density of states,
suggested here as being appropriate for a continuous random network without defects; (c) the
same as (b) but with a partially compensated band of defect levels; (d) the same as (b) but
with overlapping bands of donor (£"Y) and acceptor (Ex) levels arising from the same defect.
(The model for chalcogenides, which involves two-electron energy levels, is not shown

in this diagram.)

valence band neutral when full. In the overlap region they would be
charged, leading to centres with unpaired spins. Such overlapping states
would pin the Fermi energy. The other principal feature of this model was
the existence of 'mobility edges' at energies in the band tails. These are
identified with the critical energies separating localized from extended
states introduced earlier (Mott 1966), so that the model is sometimes called
the Mott-CFO model. The difference between the energies of the mobility
edges in the valence and conduction bands is called the 'mobility gap'.
Although there is considerable evidence for the concept of mobility edges
(see Chapter 4, § 6.4.2, and following sections), the proposal of overlap-
ping tails is now considered unlikely to apply to amorphous semiconduc-
tors and insulators that are transparent in the visible or infrared. We
believe that an ideal amorphous semiconductor in which all bonds are
saturated and in which there are no long-range fluctuations should have a
density of states as in Fig. 6.7(b) with a true band gap. Deep tails should
arise only from gross density or bond-angle fluctuations. However, strongly
overlapping tails as envisaged by Cohen et al. (1969) probably exist in
some liquids such as expanded fluid mercury which undergo a metal-
insulator transition on changing the volume or temperature (§ 5.15.1).

Real non-crystalline materials as we have seen, however, are thought to
contain imperfections, such as impurities, or dangling bonds at point
defects or microvoids as outlined in § 2.10, and these, just as in crystals,
may lead to levels within the band gap. In evaporated films of Ge and Si
and some of their alloys, the conductivity, particularly at low temperatures,
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is due to hopping conduction between such defect states by electrons with
energies near the Fermi level. The density of such states depends on the
conditions of deposition. In chalcogenides, however, though defect states
can be inferred from many types of measurement, they do not normally
carry the d.c. current at temperatures where this is measurable. In these
materials transport occurs in the valence or conduction band.

None the less, for chalcogenides and for many other amorphous semi-
conductors, there is a particularly interesting feature which may be said to
be their most surprising and indeed characteristic property. This is that the
Fermi level is located near mid-gap and appears to be pinnedt there over a
wide temperature range. This is not a universal property; indeed Le
Comber and Spear (1976) and Spear and Le Comber (1976), by glow-
discharge decomposition of SiH4 with PH3 or BH3, have prepared speci-
mens that are heavily doped, the Fermi energy being shifted towards and
even near to the conduction or valence band (see Chapter 7). In glasses and
perhaps evaporated or sputtered films of silicon and germanium, impurities
do not normally have this effect, apparently because of the strong tendency
to saturate bonds (§ 2.10). None the less amorphous semiconductors are
not normally 'intrinsic', in the sense that valence and conduction bands
control the Fermi energy. The evidence is summarized for instance by
Fritzsche (1973, 1974); the continuation of a straight plot of logo- versus
1/T down to low temperatures, in addition to thermopower and field-
effect measurements, all point to a Fermi energy pinned in some way near
mid-gap. For chalcogenides the evidence is discussed further in Chapter 9.

Alternative suggestions to the CFO model for states in the gap are
shown in Fig. 6.7(c) and (d). In Fig. 6.7(c) a band of deep acceptors is
partially occupied by electrons originating from a weaker band of donors.
The role of donors and acceptors can of course be reversed. This simple
model, proposed by Davis and Mott (1970), was based on several experi-
mental results which implied a finite density of states at EF. As long as the
total density of states in the gap is not large, the model allowed optical
transparency without the need for assumptions about the magnitude of the
matrix elements; however, no explanation was offered as to why the
controlling states should lie near mid-gap. Mott (1972fe) suggested that if
the states arose from a defect centre, e.g. a dangling bond, then they could
act both as deep donors (jEV) and acceptors (Ex), single and double
occupancy conditions leading to two bands separated by an appropriate
correlation energy or Hubbard U. This is illustrated in Fig. 6.7(d).

Even without additional compensating centres, on this model E? should
lie between the two bands if they do not overlap or be pinned within them
if they do. If they overlap strongly, as would be expected if the density of
centres is high, then the model becomes essentially indistinguishable from

t For a definition of pinning see § 2.9.
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that illustrated in (c); if they are well separated, then the model approaches
that suggested (albeit for different reasons) by Marshall and Owen (1971)
and discussed also by Roberts (1973).

Since the above models were proposed, many experimental data have
emerged providing a clearer picture of the density distribution of states in
the gaps of amorphous semiconductors. In particular we mention here the
field-effect results of Spear (1974i) on amorphous Si prepared by glow-
discharge decomposition of SiH4 (see Chapter 7). For this material it
appears that the Fermi level is located near a minimum between two
maxima in the density of states. Spear proposed that the centres respon-
sible may arise from pairs of dangling bonds at defects similar in nature to
the divacancy in the crystal (Watkins and Corbett 1965). The lower (EV)
and upper (Ex) levels associated with this defect correspond to bonding
and anti-bonding states and are thus separated by more than the Hubbard
U. The model is discussed further in Chapter 7. In evaporated Si and Ge
the density of states is too high to allow an analysis of its distribution by field
effect. Studies of hopping conduction (Chapter 7) as a function of
temperature (Pollak et al. 1973, Knotek 1974, I975b) have been inter-
preted as implying a maximum in the density of states at £F; a similar
deduction can be made in Ge-Fe alloys. Rather different conclusions have
been reached by Beyer and Stuke (1975a) from conductivity and thermo-
power measurements as a function of annealing (Chapter 7). The situation
in evaporated Si and Ge is complicated by the presence of voids as well as
point defects such as divacancies. By analogy with dangling bonds on
cleaved crystalline surfaces (Kaplan et al. 1975, Lemke and Haneman
19^5), we may expect a fairly complete pairing of such bonds on the
internal surfaces of voids, but the resulting states may lie at energies
different from those associated with isolated divacancies. However, in
amorphous materials, voids with an odd number of dangling bonds are
possible, so one spin may remain unpaired. In addition, as mentioned
before, if any voids remain charged, long-range fluctuations of potential
are expected.

A model for the location of the Fermi level near mid-gap in amorphous
semiconductors, based on such potential fluctuations, has been suggested
by Fritzsche (1971) and other authors who propose fluctuations of an
'electrostatic' nature of the form illustrated in Fig. 6.6(b) but of such an
extent that minima in the conduction band edge lie below maxima in the
valence band. The mathematical consequences of potential fluctuations
have been little explored, but one prediction is that for conduction in the
bands the activation energy for electrical conductivity should be greater
than that for the thermopower (§ 2.9), and another is that, since electrons
and holes move in different percolation channels, band-to-band photo-
luminescence is not expected.
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If we adopt for our model of gap states in amorphous Ge and Si one in
which two bands of localized levels arising from defects overlap, giving a
finite density of states at the Fermi level, an e.s.r. signal and Curie-type
paramagnetism are expected, as well as variable-range hopping as the
predominant mechanism of current transport at low temperatures. The
sarrie would follow from the model of Fig. 6.7(c). These phenomena are
indeed observed in evaporated amorphous Si and Ge (Chapter 7) and
e.s.r. in glow-discharge-deposited Si if the temperature of deposition is not
too high (Stuke 1977). For pure annealed chalcogenide glasses or films,
however, none of these phenomena are normally observedt (unless one
first illuminates at low temperatures, see § 9.6). However, there is plenty of
evidence, to be reviewed later, for gap states and for pinning of the Fermi
level near mid-gap in chalcogenides. This could in principle be explained
by a similar model to that proposed for Ge and Si but in which the two
defect bands do not overlap to any observable extent. Such a model fails,
however, to explain much other evidence, namely luminescence at a pho-
ton energy of approximately half the gap, a Pollak-Geballe type of a.c.
conductivity (§2.19), and the observed temperature dependence of the
field effect. This evidence will be presented later; sufficient to say here that
a rather different model is required for gap states in chalcogenides (and
probably amorphous As and similar low-co-ordination materials as well).
We describe here a model due to Street and Mott (1975) and Mott, Davis,
and Street (1975), already mentioned briefly in §§ 2.10 and 3.5.

The first attempt to reconcile the absence of e.s.r. and paramagnetism
with an essentially pinned Fermi energy was due to Anderson (1975,
1976); he supposed that the number of orbitals or bonding situations
available to the electrons in a glass is greater than the number of electron
pairs, and that all orbitals are doubly occupied or empty. This is because a
doubly occupied orbital represents a bond, which contracts, and the energy
given up is then assumed to be more than sufficient to compensate for the
(Hubbard) repulsion between the two electrons. Anderson showed that
this 'negative Hubbard t/' model fixes the Fermi energy without introduc-
ing single-occupied paramagnetic centres. A variant of this concept for
chalcogenides, which we believe is able to explain more experimental data,$
is that the extra orbitals are at specific defects, namely dangling bonds
which would be neutral if occupied by one electron. It is supposed that the
unoccupied dangling bond forms a covalent bond with the lone-pair orbital
on a neighbouring chalcogen atom and so has a large binding energy (like a
VK centre, see § 3.3). If we denote by D+, D° , and D~ the dangling bonds

t See, however, results on sputtered As2Te3 due to Hauser and Hutton (1976) discussed in
§9.4.

t For a comparison of Anderson's model with that presented here see Mott (1911 d).
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with zero, one and two electrons, the reaction

is assumed to be exothermic. Thus all dangling bonds are positively or
negatively charged; the Fermi energy is determined by the energies of the
states D+ and D~ and there are no free spins. If so, any broadening owing
to disorder must be small so that the bands of localized states do not
overlap. Charge transport by carriers in these gap states involves simul-
taneous hopping by two electrons carrying with them the local distortion or
polarization cloud (Chapter 3) and is not normally observed, except per-
haps in a.c. conduction (§ 6.4.5).

With this model the Tranck-Condon' density of states may vanish in the
gap so that the material is transparent; we may write N(EF) = 0. In
contrast, the 'true' density of states which we shall call N0(EF) may be quite
large.

Further discussion of this model and of its consequences are discussed
later in this chapter and in Chapter 9.

6.4.2. The mobility edge

The concept of a mobility edge separating localized from extended states
has been introduced in Chapter 2 and is a feature of all the models
illustrated in Figure 6.7. It is defined as the energy separating states that
are localized from those that are extended. We believe that an energy of
this kind always exists for conduction and valence bands in non-crystalline
systems, though for some, such as the conduction band in liquid argon
(§ 5.12) and in SiO2 (§ 9.15), it is very near the band edge. For systems
known as 'Fermi glasses' in which the Fermi energy of a degenerate
electron gas can be moved through this critical energy, very clear evidence
for a mobility edge has been obtained (Chapter 4). For amorphous semi-
conductors, because of the pinning of EF discussed in the last section, it has
not been possible to explore mobility edges directly in this way, although in
doped glow-discharge-deposited Si one must be close to achieving this.
There is, however, much evidence for their existence based on electrical
measurements, particularly conductivity, thermopower, Hall effect, and
drift mobility, and it will be reviewed in this chapter. As to the nature of
the disorder which produces mobility edges we shall suppose that it is
intrinsic, i.e. arising from the presence of short-range disorder rather than
from random fields due to point defects. For elements such as Si local
variations in bond angle are likely to be the principal source, but in some
materials a spread in bond lengths or alternatively a variation in density or
composition over distances of a few bond lengths may contribute. Estimates
of the Anderson disorder energy VQ (§ 2.3) from such sources are neces-
sarily crude, but perhaps a value of order 1 eV is not unreasonable, leading
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to a range of localized states at band edges of ~0-1-0-3 eV in many
amorphous materials (§ 2.10), and less in some others.

In this section we consider the nature of the conduction processes both
above and below a mobility edge under non-degenerate conditions, i.e.
when Ep is many multiples of kT below £A (Fig. 6.7(b)) and the carrier
concentrations at £"A and Ec are determined by Boltzmann statistics. The
carriers may be thermally or optically excited across the gap or else
injected from an electrode; in the latter two cases the equilibrium Fermi
level is to be replaced by a pseudo-Fermi level.

(i) Hopping conduction between Ec and E^ (variable-range hopping in a
tail of localized states). -We assume for illustration (Fig. 6.8) that the form

Fig. 6.8. (a) The density of states N(E) at the edge of a conduction band with a range AE1 of
localized states; (b) variation with energy of the average separation aE between localized
states; (c) variation with energy of the decay length a~l of the localized states. At the mobility

edge, EC, a~l-^oo.

of the density of states near the bottom of a conduction band is of the form
N(E)=C(E-EA)n. One can define a separation aE in space between
localized states (§2.6) by

where VQ is a parameter characterizing the disorder. Averaged over the
whole conduction band (if all the states were localized), (aE) could equal
the average distance a between atoms; in the tail aE> a. The spatial extent
of the localized states will also vary with energy. At Ec, a~l^oo and the
states become extended; below Ec and close to Ec, a~~l falls as (EC —  E)2/3

(§ 2.9). Deeper in the tail we assume that a~l can be regarded as constant,
although this is clearly an approximation. Taking particular forms for the
energy dependence of aE and a"1, Weiser et al. (1974) determined at what
energy the current would be carried, assuming that hopping occurred
between nearest-neighbour states. We believe, however, that fixed-range
rarest-neighbour hopping occurs only under conditions where kT is
comparable with the total energy range of localized states. If kT~kE,
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then extended-state conduction Ec would certainly dominate. Instead,
following Grant and Davis (1974), we consider that hopping is of variable-
range type, and proceed to determine around what energy this occurs and
to calculate the temperature dependence in the hopping range, the hop-
ping energy, and the mobility. The analysis is as follows.

First we determine the energy Em at which the number of carriers is a
maximum. For the form of the density of states chosen this is easily shown
to be nkT above EA- The density of states at Em is

where N(EC) is the density of states at the mobility edge. We now write the
hopping probability around Em (under the self-consistent assumption that
the energy range of states involved is small) as

(6.1)

where r and w are the variable (with T) average hopping length and energy
and j'ph is a quantity related to the phonon frequency to be discussed
below.

The hopping energy w is now written as 47rr3N(Em\ following the
procedure of § 2.7 for Fermi-level hopping in a constant density of states.
With N(Em) given above, the hopping probability can be maximized to
yield the following expressions for r and w;

(6.2)

The hopping probability will then vary with T as

where

We estimate the average hopping length and energy using some reasonable
parameters. For a linear density of tail states (n = l\ E = 0-3 eV, a~ =
10 A, and N(EC) = 2x 1021 cm3 eV"1, the values at T = 300 K are

r = 30-5A w = 0-05eV.
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The calculated values, particularly that of r, are rather insensitive to the
parameters chosen, because of the exponent \. We note that r is consider-
ably larger than aE (—18 A at kT above £"A, taking V0 = 1 eV) and that w is
~2kT.

We now relate the hopping probability to the mobility and finally to the
conductivity. As in § 2.7 we write

(6.3)

Thus
(6.4)

where r is given by eqn (6.4). The mobility should then have a temperature
dependence of the form

(6.5)

The temperature dependence of the pre-exponential term is not
complete, however, because there may be a temperature dependence in
J'ph- If z'ph was to be given by a formula of the Miller-Abraham type then
this would contain a factor r2w, i.e. a temperature dependence of
j,-(3n-i)/4 ^s was Discussed jn § 3 5^ however, the Miller-Abrahams
formula for ^Ph is unlikely to be appropriate for this situation, i.e. when the
radius of the localized state is larger than the appropriate phonon
wavelength, t

The uncertainty in the magnitude and temperature dependence of the
pre-exponent (Chapter 3), as well as certain percolation aspects to the
current paths, makes it difficult to estimate the magnitude of the mobility
expected for hopping conduction in a band tail. We may, however, deduce
that, even ignoring any temperature dependence of the pre-exponent, the
temperature dependence of the mobility does not exhibit a simple activa-
tion energy but has, on an Arrhenius plot, a slope which decreases with
falling temperature, such that at a given value of T the tangential slope is
equal to n +1 times the true hopping energy (Grant and Davis 1974). An
analysis of band-edge hopping conduction by Butcher (1976a,ft), based on
percolation theory, results in a temperature dependence for ^hop of a form
similar to eqn (6.5) but with the power of T raised to (n +1)/(ft +4) instead
of (n 4-1)/4 as derived here.

The conductivity associated with band-tail hopping may be written as
nejnhop, where n is the number of electrons in the tail, given by

(6.6)

tEmin (1974) has argued that for hopping energies comparable with or greater than the
maximum phonon energy, vph should be negligibly small. We discuss this in § 3.5.1, and find
that a reasonable estimate for *>ph may be (o/(aay, where a is the distance between atoms.
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which yields a term containing exp{-(E^-EF)/kT}. This activated
temperature dependence will normally dominate over that occurring in the
mobility.

(ii) Conduction in extended states above Ec. As the temperature is
raised, the conduction process described in (i) will give maximum current at
an increasing value of the energy in the band tail. However, the current will
never be carried in localized states close to Ec if, as we assume, there is a
sharp jump in the mobility there. Rather, at some critical temperature, or
more accurately over some temperature range, there will be a transition to
conduction by carriers in extended states.

Here the mobility is given by

(6.7)

where v&\ is an electronic frequency (~h/ma2) and a is now the distance in
which phase coherence is lost. Thus at T = 300 K

(6.8)

Alternatively one can write

(6.9)

where o-min is the minimum metallic conductivity (§2.6) given by

(6.10)

for a co-ordination number of 6 and for vertical disorder. For lateral
disorder the value is perhaps three times greater (§ 2.6). Eqn (6.10) then
yields C7min~150 O"1 cm"1 for a value of a =4 A. In general crmin may
perhaps lie between 100 and 600 ft"1 cm"1 in most materials, depending
on the value of a. For o-min= 150 ft"1 cm"1 and N(EC) =
2 x 1021 cm"3 eV"1, eqn (6.9) yields ̂ ext ~ 20 cm2 V"1 s"1 at T = 300 K.

Consideration of the thermopower, the Hall effect, and the drift mobility
for charge transport above and below Ec will be made in later sections and
summarized in § 6.6.

6.4.3. Temperature dependence of the d.c. conductivity

With the models described above for the density of states and mobility
edges in an amorphous semiconductor, there are three mechanisms of
conduction which we may expect to find in appropriate ranges of tempera-
ture.
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(a) Transport by carriers excited beyond the mobility edges into non-
localized (extended) states at Ec or Ev. The conductivity is (for electrons)

where crmin has been discussed in Chapter 2 and the previous section. A
plot of Incr versus l/T will yield a straight line if EC —  EF is a linear
function of T over the temperature range measured.t If so, we write

(6.11)

and the slope of such a plot will be E(Q)/k, and the intercept on the a axis
will be <7min exp(y/fc).

(b) Transport by carriers excited into localized states at the band edges
and hopping at energies close to EA or EB. For this process, assuming again
conduction by electrons,

(6.12)

where w\ is the activation energy for hopping. As discussed in the previous
section, Wi should decrease with decreasing temperature on account of the
variable-range nature of the hopping transport. However* as the principal
temperature dependence is through the carrier activation term, an approx-
imately linear dependence of In cr versus l/T is again expected.

An estimate of ai is not easy to make but it is expected to be several
decades smaller than C7min, partly because of a lower effective density of
states near EA compared with Ec and also because of a lower mobility as
discussed in § 6.4.2. In addition the experimental slope and intercept of
In a versus l /71atl/T = 0 will be affected by any temperature dependence
of EA —  Ep analogous to that affecting the slope and intercept associated
with process (a).

(c) If the density of states at EP is finite, then there will be a contribution
from carriers with energies near E? which can hop between localized states
by the process analogous to impurity conduction in heavily doped crystal-
line semiconductors. We may write for this contribution

(6.13)

where cr2 ̂  <r\ and u>2 is the hopping energy, of the order of half the width
of the band of states if the form of the density of states is as shown in Fig.
6.7(c). At temperatures such that kT is less than the bandwidth, or if N(E)

t Even if EF is pinned with respect to the band edges, a temperature dependence of the
activation energy is expected because of the temperature variation of the band gap.
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is as shown in Fig. 6.7(a) or (d), hopping will not be between nearest
neighbours and variable-range hopping of the form

(6.14)

with B = 2{a3/kN(Ep)}l/4 is to be expected, at a temperature sufficiently
low for N(EF) to be considered constant over an energy range ~kT. This
result was derived in § 2.7, where it was stated that different analyses yield
rather different values of the numerical constant B, varying from 1-70 to
2-05 (see also Pike and Seager 1974). The pre-exponential terms <r2 ai}d o-'2
are, as for cri, not easy to evaluate mainly because of uncertainties in the
term vph (see Chapter 3).

The total conductivity for all processes is obtained as an integral over all
available energy states. Thus for states above EF

where (§ 2.2)

and f ( E ) is the Fermi-Dirac function. Fig. 6.9 shows schematically the
variation of N(E), i*,(E\ f(E) and df(E)/dE with E for states above EF,

Fig. 6.9. Illustration of the effect of temperature on the mode of conduction: 7\> T2> T3.

and the manner in which a-(E) may vary with temperature. This is also
illustrated on a plot of In o- versus 1/T in Fig. 6.10. If the density of defect
states at EF is high, then process (b) may not be dominant in any tempera-
ture range and a direct transition from (a) to (c) will result.

Davis and Klott (1970), expressing the conductivity in the high-
temperature range for amorphous semiconductors investigated at that time
in the form C exp(—E/kT\  plotted C against E', they found values of C
clustering round 103 ft"1 cm"1 for most materials, which could well cor-
respond to the quantity crmin exp(y/fc). The value of the pre-exponential
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Fig. 6.10. Illustration of the temperature dependence of conductivity expected on the
model of Fig. 6.9. The activation energies associated with.various processes described in the

text are indicated.

factor has sometimes been used as a test for conduction at a mobility edge,
but in view of uncertainties in the term exp(y/fc), we do not feel this to be
very reliable. In § 6.6 it will be shown how combined conductivity, ther-
mopower, drift mobility, and Hall-effect measurements as a function of
temperature may lead to a fairly unambiguous interpretation.

6.4.4. Behaviour in the liquid state

In this section we discuss the behaviour of the conductivity of some
non-crystalline semiconductors in the liquid state. Two classes of materials
can be distinguished as follows.

(i) Those that cannot be prepared by quenching from the melt, e.g. Ge,
Si, and III-V compounds. For these the liquid state is metallic, the
conductivity exhibiting a sudden increase on melting after prior crystal-
lization. The co-ordination number in the liquid state is different from that
in the solid. Fig. 6.11 (from loffe and Regel 1960) shows the conductivity
and density in a few such materials of this type.

(ii) For amorphous semiconductors that can be obtained by quenching
from the melt there are two types: stable glasses that do not crystallize even
when heated very slowly, and glasses that do not crystallize on fast heating
but do when heated slowly. There is no sharp distinction between the two,
but the large variation in crystallization times found in practice makes the
distinction a useful one. For both types, however, the retention of semi-
conducting properties in the liquid state seems general. Fig: 6.12 (from
Male 1970) gives a few examples. The slope of the plot of In cr versus l/T
is frequently higher in the liquid than in the solid. As the slope gives the
activation energy for conduction extrapolated to T = 0, the indication here
is that the gap decreases with T faster in the liquid state and the decrease is



NON-CRYSTALLINE SEMICONDUCTORS 223

Fig. 6.11. Abrupt changes in conductivity cr (in (1 1 cm l) and density d (in g cm 3) in some
non-glass-forming materials on melting. (From loffe and Regel 1960.)

not linear; the gap is actually smaller in the liquid and may close to zero at a
sufficiently high temperature. Some indication of this is seen in the curve
for As2Te3, which turns over at a value of or ~ 103 fl"1 cm"1. Other exam-
ples of this gradual change towards metallic properties are seen in similar
curves for liquid alloys of Te-Se (Chapter 10). It is likely that in all cases
there is a gradual increase in co-ordination number as the liquid is heated,
as is described for various materials in Chapter 5. Numerous examples of
this kind of transition to a metallic state for ternary glasses have been given
by Haisty and Krebs (1969a,b\

6.4.5. a.c. conductivity

As we have seen in § 6.4.3, there are three mechanisms of charge transport
that can contribute to a direct current in amorphous semiconductors. They
can all contribute to the a.c. conductivity as follows.
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Fig. 6.12. Temperature variation of conductivity for several chalcogenides in the solid and
liquid states: (a) As3oTe48Sii2Geio; (b) As2Te3; (c) As2S3Tl2Te; (d) As2SeTe2; (e) As2Se2Te;

(f) As2Se3. (From Male 1970.)

(a) Transport by carriers excited to the extended states near Ec or £*v.
For these we might expect that o-(co) would be given by a formula of the
Drude type,

(6.15)

The time of relaxation r will, however, be very short (—10 15 s) and a
decrease in o-(co) as co~2 (i.e. free carrier intraband absorption) is not
expected until a frequency ~1015Hz is reached. This corresponds to an
energy quantum lying above the fundamental optical absorption edge in
materials of interest here. In any case, as we have seen in § 2.10, the Drude
formula is hardly applicable for such small values of r. It is, however, in
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excellent agreement with experiment for most liquid metals, but not for
liquid Te (§5.15). Even when r is large, deviations from the Drude
formula are expected if the density of states varies with energy over a range
h/r. In § 6.7.4 we calculate the contribution to cr(a)) due to free carriers
that is expected in amorphous semiconductors. It is sufficient to state here
that in the electrical range of frequencies (up to, say, 107 Hz) no frequency
dependence of the conductivity associated with carriers in extended states
is expected.

(b) Transport by carriers excited into the localized states at the edges of
the valence or conduction band. No complete theoretical treatments of
<r(a)) for hopping under conditions of non-degenerate statistics are known,
but we might expect a similar dependence on frequency to that derived
under degenerate conditions (see (c) below), and thus as (w{ln(^ph/^)}4.
This varies approximately as a>s, where s<l when 6><^ph. In order to
estimate the frequency at which such an increase is expected, a comparison
with the magnitude of the d.c. hopping conduction (§ 6.4.2) would be
required. The temperature dependence of this component of the a.c.
conductivity should be the same as that of the carrier concentration at the
band edge, so that for the conduction band it should increase as
exp{-(EA-EF)/kT}.

(c) Hopping transport by electrons with energies near the Fermi level,
provided N(EF) is finite. There have been several theoretical treatments of
cr(a)) for this mode of conduction (see the review by Pollak 1976). cr(cu)
should increase with frequency in a manner similar to that for process (b).
However, the exponential dependence on the temperature will be absent,
and cr(a)) should be proportional to T if kT is small compared with the
energy range over which N(EF) may be taken as constant, and independent
of T if kT is larger than the width of some well-defined defect band in
which EF lies. An analysis of observed results has been given by Davis and
Mott (1970) using the formula given by Austin and Mott (1969) and
reviewed in § 2.15, namely

(6.16)

Assumptions involved in this formula have been discussed by Pollak
(1971a,6, 1976) and by Butcher (1974a,ft): the main ones are that hopping
is assumed to be between independent pairs of centres, i.e. multiple hop-
ping can be neglected, and also that there is no correlation between the hop
energy and the hop distance. In Pollak's formula our factor Tr/3 is replaced
by 7T3/96. Butcher and Hayden (1977a) obtained a similar formula again
with a slightly different numerical factor 3-667T2/6.

The frequency dependence predicted by eqn (6.16) can be written as
0-(ft>)oCft>s, where 5 is a weak function of frequency if a>« *>ph. A plot of
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In o-(a)) versus In a> is therefore approximately linear with slope s given by

A plot of a) In (^ph/ttf) versus a) for various values of ^ph is shown in Fig.
6.13(a) and of s versus v^la> (on a heavily contracted scale) in Fig. 6.13(b).

Fig. 6.13. (a) Plot of <y ln4(Vph/oj) against <w for various values of ^ph^To1. (b) Plot oi
s-= 1 ~{4/in(i/ph/<w)} against ^ph/w.
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At a particular frequency, for instance a) = 10 s , s varies from O4 to 0-8
for ^ph in the range 107-1013 Hz and values of s outside this range are
therefore unlikely.

Using a more general analysis of Debye-type hopping conduction, which
can be applied to both variable-range hopping and random potential
barrier hopping as well as hybrid cases, Butcher and Morys (1973, 1974)
have derived formulae for both the real (cri) and imaginary (0-2) parts of the
conductivity, the leading terms of which are

(6.17)

Here TO= l/^ph and the expressions have been normalized by dividing by
cri(oo). Fig. 6.14 (dotted curves) shows these results compared with those

Fig. 6.14. Comparison of exact, results (solid curves) with asymptotic (dotted curves) and
complete (broken curves) expansions for variable-range hopping. The straight lines have

slope 0-82. (From Butcher and Morys 1974.)

obtained from fuller expressions (broken curves) and also exact numerical
results (solid curves) (Butcher and Morys 1973). The ratio
obtained from eqns (6.17) is

The corresponding ratio for random potential barrier hopping is five times
higher, offering the possibility of distinguishing between the two processes
experimentally (see also below).

An experimental determination of ^ph would be of interest. A low value
is expected if polarization is large at the localized sites and furthermore it
should vary with T when T>®/2  (§ 3.6). According to the pair-hopping
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mechanism, a low ^ph should manifest itself by a low value of s (see Fig
6.13(bj).

Formulae based on the assumption of pair hopping yield <r(&>) = 0 at
a) = 0. Other treatments of a.c. hopping conduction include the d.c. limit
(see Pollak 1976 for references). It will be sufficient here to note that the
d.c. conductivity due to hopping is finite (if T ^ 0, process (c) above) and a
smooth transition to a frequency-independent conductivity is expected at
sufficiently low frequencies. A condition for o-((o) to exceed cr(0) is that the
a.c. hopping length should be less than the d.c. hopping length. For vari-
able-range hopping, the latter is given by eqn (2.62), namely

(6.18)

(6.19)

These two lengths are shown in Fig. 6.15 as a function of N(EF\ T, and
i/ph/w, taking a~v = 8 A. Thus at T = 100 K and ^ph = 1012 Hz, a transition

Fig. 6.15. Variation of hopping lengths r(0) and r(<o) for d.c. and a.c. conduction as a function
of N(EF), vph/(o, and temperature.

and the a.c. hopping length by eqn (2.96)

from d.c. to a.c. hopping is expected at for N(EF) =
1018 cm"3 eV"1 and-5-7 X 103 s'1 for N(EF) = 1019 cm~3 eV"1. For higher
densities of states than the latter, a frequency-dependent conductivity
requires unreasonable values of the parameters.

In Fig. 6.16 we illustrate schematically the frequency dependence of the
conductivity expected for the three conduction mechanisms outlined
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Fig. 6.16. Schematic illustration of the frequency dependence of conductivity for the three
modes of conduction described in the text.

above. For the two hopping processes (b) and (c), o-((o) increases as a)s. In
practice the mechanism giving the highest conductivity at a particular
temperature is observed; in the situation shown this would mean that
hopping at the band edge would not be observed at any frequency. Con-
versely, if the onset of the cos behaviour for process (b) occurred at a lower
frequency, then this would operate to the exclusion of process (c). A
distinction between the a.c. conductivity processes (b) and (c) can be made
by observing their temperature dependencies.

Measurements of a.c. conductivity in the frequency range 10-105 Hz can
conveniently be made using bridge techniques with a sensitive null detec-
tor. Experimental difficulties arise when the dielectric loss tan 8 is small,
and the sample geometry is chosen to make the loss as large as possible. A
Q-meter can be used up to ~107Hz, the upper limit for the frequency if
electronic circuits are used. For higher frequencies, microwave techniques
(slotted line up to about 1010 Hz, waveguide to 1012 Hz) can be employed.
The real and imaginary parts of the conductivity are normally determined
by regarding the sample as a resistor and capacitor in parallel. From these
measurements, the dielectric constant, the loss, the refractive index, and
the optical absorption constant can also be deduced. It is frequently useful
to determine the frequency dependence of these parameters when
attempting to decide on mechanisms and models.

Data on a.c. conductivity for several amorphous semiconductors will be
presented in later chapters. In many materials a variation of cr(co) pro-
portional to a)s and with a weak temperature dependence is observed at
frequencies sufficiently high or temperatures sufficiently low that any d.c.
processes are overtaken. In several chalcogenides (Rockstad 1970, 1971,
Ivkin and Kolomiets 1970, Owen 1967, Owen and Robertson 1970,
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Lakatos and Abkowitz 1971, Crevecoeur and de Wit 1971, Kocka, Triska,
and Stourac 1976, Kocka 1976) s is found to be -0-8-1-0 and densities of
states at the Fermi level ranging from 1018 cm"3 eV"1 up to 1021 cm~3 eV"1

have been inferred from application of eqn (6.16). However, as
emphasized by Fritzsche (1973) and others, the values of N(EF) obtained
in this way are often up to two orders of magnitude higher than values
deduced by other methods. It appears that only in a few cases is pair
hopping the likely mechanism. Perhaps the best examples are glow-dis-
charge-deposited silicon and germanium for which Abkowitz, Le Comber,
and Spear (1976) deduced, from eqn. (6.16), values of N(EF) in agreement
with estimates using the field-effect technique. However, even in these data
(see Chapter 7) the value of s (-0-95) seems too high (see Fig. 6.13(b)),
requiring values of

Other authors have also questioned whether observation of a frequency-
dependent conductivity varying as (os necessarily implies hopping conduc-
tion (Fritzsche 1973, Pollak and Pike 1972, Jonscher 1975). It seems clear
that it does not, as several alternative mechanisms are possible. Quite
generally what is required is a system with an extremely wide distribution
of relaxation times r (although as emphasized by Pollak (1976) the form of
the distribution is important to obtain s close to 0-8). The mechanism is
therefore not restricted to processes which also give d.c. conduction or to
electronic processes at all.

An example of a non-electronic mechanism is provided by a model
originally devised to explain the linear variation with temperature of the
specific heat observed in many glasses at low temperatures (see § 6.8.1).
The central hypothesis of the model (Anderson, Halperin, and Varma
1972, Phillips 1972) is that there should be a certain number of atoms, or
groups of atoms, that can sit with only slightly differing energies in two
equilibrium positions. The barrier separating the two minima in energy
should be sufficiently great to prohibit resonant tunnelling, but small
enough so that thermal equilibrium can occur during the time span of the
experiment (say 10~10s<£< 103 s). It is also required that the pairs of
minima under question are (accidentally) degenerate to within a few kT.
The probability distribution of the energy difference between all pairs will
of course cover a much wider range; what is necessary is that this dis-
tribution be smooth on the scale of kT. Pollak and Pike (1972) have
discussed the possibility that movement of atoms between the two sites can
account for the a.c. conductivity behaviour, assuming of course that the
transition involves a net motion of charge.

In chalcogenides, interpretation of the cjs behaviour, with 5 — 0*8, in
terms of pair hopping poses problems. The fact that the values of N(EF)
deduced appear in many cases to be too high has already been mentioned.
Furthermore, on our model for gap states in chalcogenides, outlined in
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§ 6.4.1 and discussed further in Chapter 9, it is supposed that electrons are
trapped in pairs at defect sites, the Coulomb repulsive energy between the
electrons being outweighed by an energy gain associated with lattice dis-
tortion. Tunnelling of these bipolarons might therefore be considered a
possible mechanism for a.c. conductivity. However, Phillips (1976) has
argued that the activation energy associated with bipolaron tunnelling is so
large (—half the band gap) that the transition rate would be cut down to
exceedingly low values except perhaps for very close pairs of sites (Mott
and Street 1977) (see § 9.3). Even then a low effective value of z/ph and a
correspondingly low value of s are expected.

Elliott (1977, 1978) has proposed a model for the mechanism respon-
sible for a.c. conductivity in chalcogenides which overcomes most of the
problems associated with interpretation in terms of the Austin-Mott
formula. It is based on the model of charged defect centres outlined in
§ 6.4.1 and in Chapter 9. The two electrons in a D~ site are assumed to
transfer to a D+ site by hopping over rather than by tunnelling through the
potential barrier separating them. The required broad spectrum of hopping
times arises from a quasi-continuous distribution of barrier heights derived
from overlapping Coulomb potentials on close pairs. On this model the a.c.
conductivity for TV/2 pairs of sites is

(6.20)

where K is the dielectric constant and WM is the barrier height separating
distant pairs. The exponent s is related to WM by

WM can be approximately equated to the band gap of the material and
hence s takes, at room temperature, values between —0-81 and 0-95 for
chalcogenides with band gaps lying between 0-8 and 2-3 eV. Furthermore s
is temperature dependent in the manner commonly observed. Values of N
deduced from data on arsenic chalcogenides and Se lie between 1-8 x 1018

and2'2xl019cnT3.
A similar theory derived for the case of single polarons (rather than

bipolarons) hopping over a barrier, has been applied to data on amorphous
arsenic (Elliott and Davis 1977) in which it is known that there exists a high
concentration of D°  centres (see Chapter 8).

Collating earlier data, Davis and Mott (1970) noted a correlation in
several materials between the magnitude of the a.c. conductivity (at a given
frequency) and the d.c. conductivity or the band gap (see inset to Fig. 6.17).
This correlation, not understood at the time, is explained quite naturally on
Elliott's theory. Other things being equal, cr(w) is expected to vary
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inversely as the sixth power of the band gap. According to eqn (6.20), a
plot of log[<r(a))K5(<i)T)*/'N2], where r = ̂  and /3 = 1-s1, versus log WM

should have a slope of —6, which is approximately as observed (Fig. 6.17)
when WM is taken to be the band gap B.

Fig. 6.17. Plot of \n{o-(a))K5(a)Tf/N2} at w = 106s l versus InB for various chalcogenide
glasses. B is the band gap. According to theory this line should have a slope of 6; it has a slope
of 6-3. The inset shows the correlation between cr((w) and the activation energy for d.c.

conduction (J3el~B/2) (Davis and Mott 1970). (From Elliott 1978.)

The densities of states deduced from a.c. conductivity data on evaporated
films of germanium, assuming pair hopping to be responsible, have values so
high that they violate the conditions for applicability of eqn (6.16). This is
discussed in § 7.1.4, where it is suggested that the presence of voids may be
responsible for the a.c. conductivity. For materials like evaporated
germanium, in which the d.c. conductivity is associated with variable-range
hopping conduction, observation, as the frequency is increased, of the d.c.
to a.c. transition for the same set of states is possible in principle. Arizumi,



NON-CRYSTALLINE SEMICONDUCTORS 233

Yoshida, and Safi (1974) and Arizumi et al. (1974), amongst others, have
studied this transition and fitted their results to a theory of electronic
hopping by Scher and Lax (1973), an analysis which includes the d.c. limit.

At frequencies ~1 MHz and higher, it is commonly found that a(a))oca)s

with s > 1 and often 5 — 2. Although this can sometimes be an experimental
artefact related to electrode resistance (Street, Davies, and Yoffe 1971), it
has been observed (e.g. Owen and Robertson 1970) by a slotted-line
technique for which no contact to the sample is required. Other authors
have reported power dependences larger than expected on the hopping
model (see Pollak 1971a,&). It is possible that direct photon absorption
(§ 2.5) becomes dominant at high frequencies in some cases. However,
Pollak estimates that this mechanism fails to account for the observed
magnitude of o-(co) by several powers of 10.

Austin and Garbett (1971) suggest a quite different mechanism for the
high-frequency conductivity (above 1 MHz). In their model it arises from a
long low-energy tail to phonon absorption processes. These are normally
confined to the near and far infrared (say 1012-1014Hz) in crystalline
materials and are associated with transverse optical modes at k = 0. Unless
there are more than three atoms per unit cell, optical absorption by a single
acoustic phonon is forbidden (Zallen 1968). In an amorphous material
relaxation of the selection rules may allow such absorption, which, with
frequency, would follow the acoustic phonon density of states. In materials
with a high degree of ionicity or strong electron-phonon coupling, such a
process is observed as 'ultrasonic loss'. Amrhein and Mueller (1968) have
also suggested that, when the wavelength of the electromagnetic wave is
greater than the mean free path, a temperature-insensitive absorption
results from interaction with acoustic phonons.

Austin and Garbett's suggestion is reinforced by the magnitude of the
a.c. conductivity, which can be converted to an absorption constant by the
relationship

cr(a}) = noa/377

The units here are ft"1 cm"1 for cr and cm"1 for a; no is the refractive
index. This will perhaps be made clearer in Fig. 6.18(a), in which experi-
mental measurements of optical absorption and a.c. conductivity for
amorphous As2Se3 are displayed over a wide frequency range in the same
diagram, with n0 = 4. For convenience, the frequency scale is shown in
terms of several commonly used units. The a.c. conductivity data are from
Ivkin and Kolomiets (1970), the phonon absorption data from Austin and
Garbett (1971), and the fundamental optical absorption edge data from
Edmond (1966). All results refer to room temperature. Data in the large
frequency gap between 108 and 1012 Hz have been obtained for a variety of
chalcogenides by Taylor, Bishop, and Mitchell (1970) and by Strom and



Fig. 6.18. (a) a.c. conductivity and optical absorption over a broad frequency range in
amorphous As2Se3; (b) Frequency dependence of refractive index times optical absorption in

various glasses. (From Strom and Taylor 1977.)
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Taylor (1974, 1977) using microwave cavity perturbation techniques in the
range 109-10n Hz and infrared absorption above 1011 Hz. A few of their
results are shown in Fig. 6.18(b). For As2S3 and As2Se3 the absorption was
found to be independent of temperature, while for Tl2SeAs2Te3 this was
not the case and for this material the points shown represent a tempera-
ture-independent component that dominates below 200 K. The depen-
dence of n0a on frequency is very close to co2 for As2Se3 and As2S3 and to
a1'8 for Tl2SeAs2Te3 from 4 x 109 Hz up to the first vibrational peak.

The a)2 dependence of the far-infrared absorption is not in fact unique to
chalcogenides but is present in several silicate and oxide glasses as well as
in lucite and polystyrene. It appears reasonable to ascribe it to disorder-
allowed one-phonon acoustic mode absorption (Strom, Schafer, and Tay-
lor 1977).

6.4.6. Thermopower

In §2.13 we derived formulae appropriate to the thermoelectric power.
We now discuss further those that are relevant to amorphous and liquid
semiconductors and consider some experimental data.

The thermoelectric power or Seebeck coefficient is measured by A V/AT,
where AV is the voltage developed between two points of the material
maintained at a small temperature difference AT. For an n-type crystalline
semiconductor, it is given by

(6.21)

where EC is the energy of the conduction-band edge and AkT is the
average energy of the transported electrons measured with respect to EC.
The value of A depends on the nature of the scattering process and is
normally a constant between 2 and 4. If the current is carried by holes, the
sign of S is reversed and Ec~EF is replaced by Ep —  Ey. For ambipolar
conduction the thermopower associated with each carrier is weighted
according to the contribution each makes to the total current.

In amorphous semiconductors we do not expect any major modification
to these formulae, mainly because the transport term A makes only a small
contribution to S when EC —  EF or EF-Ev»kT. For current carried in
extended states, A is expected to be equal to unity (§ 2.9.3) and Ec or Ev

refers to the appropriate mobility edge. For current carried in localized
states at the band edges, A will again be small and Ec and Ev are to be
replaced by EA and EB respectively. If there are several parallel
mechanisms, a weighted mean must be taken, as for crystalline semicon-
ductors. The sign of S is therefore a reliable indicator of whether the
material is n type or p type, in contrast to the Hall effect which is not
(§ 6.4.7).
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At the temperature corresponding to a transition from hopping at EA to
transport in extended states at Ec, there will be a change in the slope of the
curve of S versus l/T. Because the intercept at l/T remains virtually
unchanged, S has to pass through a transitional region between two curves.
This can be spread over a fairly wide temperature range within which the
slope of S has little significance (see § 6.6).

Fig. 6.19. Illustration of the effect of a temperature-dependent energy gap on the slope and
intercepts of plots of S against l/T and II against T: (a) E = E(Q)-yT; (b) 5 =
-k/e{E(Q)/kT-y/k + l}; (c) tt = (E(Q)/e)-(y/e-k/e)T. y = -dE/dT and is zero in

curves (1).

Measurements of S as a function of temperature provide perhaps the
most direct way of determining the temperature coefficient y of the activa-
tion energy for conduction, a quantity of importance as was shown in
§ 6.4.3. This is illustrated in Fig. 6.19. As before, we assume that over a
limited temperature range (for n-type material)

giving for S (with A = l)t

(6.22)

(6.23)

A plot of S against l/T has a slope that yields E(0) (as does a plot of In a
against l/T1, § 6.4.3), and the intercept on the 5 axis at 1/T = 0 yields y.
Alternatively a plot of the Peltier coefficient II = ST against T yields y
from its slope.

Measurements of the values of the thermoelectric power in amorphous
chalcogenide semiconductors have shown them to be p type in the majority
of cases reported. Detailed measurements as a function of temperature are
rather difficult because of problems associated with measuring small
voltages across high-resistivity material. Data have been obtained by Owen
and Robertson (1970), Seager, Emin, and Quinn (1973), Callaerts et al.

t See Butcher and Friedman (1977) and § 2.13.
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(1970), Grant et al (1974), and Seager and Quinn (1975). Some of these
results will be discussed in § 6.6 and in Chapter 9.

Measurements by Edmond (1966) in several liquid chalcogenides are
shown in Fig. 6.20b. Comparison of the slopes of these lines with those
obtained from conductivity data (Fig. 6.20a) is made in Table 6.2. The
agreement is not as good as expected but it may be within experimental
error. It should be pointed out that if an activation energy in the mobility
(such as expected for hopping conduction) was contributing to the slope of
the plot of In cr versus l/T, then this would worsen the discrepancy. There
is of course the possibility of mixed conduction processes being involved
and Moustakas and Weiser (1975) have interpreted data on this basis. In
the case of As2Se3 (Hurst and Davis 1974, cf. Chapter 9) and liquid Se
(Chapter 10), the activation energies for conductivity and thermopower
have been found to agree.

TABLE 6.2

Activation energies for conduction in various liquid chal-
cogenides as determined from the data of Fig. 6.20.

Es(0) is the slope of the plot of S against l/T, and £^(0) is the slope of the
plot of In cr against l/T. y is the temperature coefficient of Es as inferred from
the intercepts on the S axis at l/T = 0 of Fig. 6.20(b).

Also shown in Table 6.2 is the temperature coefficient of EF —  EV,
determined from the extrapolated intercept of the plot of S against l/T on
the S axis at 1/T = 0, under the assumption that A = l. Apart from the
liquid containing Tl, the values of y are all close to 10~3 eV KT1. The value
for As2Se3 may be compared (see also Chapter 9) with the temperature
coefficient of the optical gap, p = 1-65 x 10~3 eV K"1. Although EF-EV is
approximately half the optical gap, it is not necessarily true that & = 2y.
These high-temperature coefficients yield very large values for exp(y/fc),
which are consistent with the large values of the intercept on the a axis of
the curves of Incr against l/T shown in Fig. 6.20(a). As mentioned in
§ 6.4.4, these high values also explain why the slopes of plots of In cr
against l/T yield higher activation energies in the liquid than in the solid
amorphous state.

EM J5UO)
(eV) (eV) rCeVKT1)

As2Se3 1-21 1-06 1-00 x 1CT3

As2Se2Te 1-04 0-84 9-80xl(T4

As2SeTe2 0-95 0-69 l-06xlO~3

As2Te3 (0-77) (0-56) 1-01 x 10~3

As2Se3.Tl2Te 0-50 4-05 x 10~4



Fig. 6.20. Temperature variation of (a) conductivity and (b) thermoelectric power in various
liquid chalcogenides. (From Edmond 1966.)
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The temperature at which S = k/e corresponds to that at which EF —  EV

becomes zero. For As2Te3 this is, from Fig. 6.20(b), about 770 K (497°C) ,
at which point the conductivity is observed to be about 200 d"1 cm"1 (Fig.
6.20(a)). As the temperature is increased further, the conductivity becomes
less dependent on the temperature and appears to saturate at about 2x
103 ft"1 cm"1. It is tempting to assume that the mobility gap also closes to
zero at the same time as EF—E V vanishes; however, there is always the
possibility that EF is moving rapidly towards Ev until the semiconductor
becomes degenerate p type. Similar curves of cr and 5 for Se-Te liquid
alloys have been obtained by Perron (1967) and are discussed in Chapter
10.

Analysis of thermopower data becomes less simple when S is small
(^k/e, i.e. 86 /u,V K"1). If it is small not because of ambipolar conduction
but because EF—E v~kT, the situation then approaches that in a metal,
with the current carried by electrons with energies within a few multiples of
kT of the Fermi level. In this case the appropriate formula (§ 2.9.3) is

(6.24)

If the current is carried by electrons in extended states near EF and L ~ a, a
is proportional to {N(E)}2. Therefore the sign of S will depend on whether
the density of states in the vicinity of EF increases or decreases with energy.
There is no indication of S becoming negative in Edmond's data for
As2Te3.

If states at EF are localized so that conduction is by variable-range
hopping, eqn (6.24) was proposed by one of us (Mott 1967), and is correct
only in so far as it predicts a value increasing with T. More recent
developments are reviewed in §2.13; different investigators find that S
increases as T1/2 or T1/4, and that it is proportional to d In N(E)/dE for
E = EF.

In amorphous Si and Ge, small values of the thermopower are observed
at low temperatures. This is because in these materials the density of states
at the Fermi energy is large (not because of a closing pseudogap but
because of the presence of defects) and conduction occurs there by hopping
according to process (c) described in § 6.4.3. The analysis of § 2.13 should
be appropriate in these cases also and it will be used to interpret data
presented in Chapter 7. At higher temperatures, when conduction is in one
of the bands, Ea is generally found to be larger than Es, which can be
interpreted in terms of conduction at a band edge and a temperature-
activated mobility. However, in glow-discharge-deposited germanium
(Jones, Spear, and Le Comber 1976) and silicon (Jones, Le Comber, and
Spear 1977) Ecr = Es under certain conditions; presumably conduction
then occurs beyond a mobility edge in extended states (see Chapter 7).
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6.4.7. Hall effect

In crystalline semiconductors, measurements of the Hall voltage are an
important complement to those of the conductivity. Interpretation in terms
of the microscopic mobility is straightforward for materials in which the
mean free path of the carriers is sufficiently long for the Boltzmann equa-
tion to be appropriate and in which the energy-band structure near the
band edges is fairly simple. For carriers with very short mean free path,
however, as in an amorphous semiconductor, interpretation of observed
Hall mobilities in terms of conventional theory leads to values of the mean
free path much below the interatomic distance, and often a sign of carrier
different from that obtained from the thermopower.

Our understanding of the Hall effect under these conditions depends on
the work of Friedman and of Holstein reviewed in Chapters 2 and 3. We
summarize our conclusions as follows.

(a) For charge transport at a mobility edge,

(6.25)

where C, depending on the Anderson localization criterion, is of order
0-1. This is one or two orders smaller than the conductivity mobility and,
unlike the conductivity mobility, is independent of T. If aE is a few
angstroms, it is of order 0-1 cm2 V"1 s"1. The sign of the Hall effect is
negative both for electrons and for holes if the atomic orbitals are s like,
but Emin (1977a,Z>) finds that, if they are antibonding orbitals and the
wavefunctions lose phase memory between each orbital, then positive
values can occur for electrons. The reversal of sign for both electrons and
holes applies only when the number of sites involved in producing the
Hall effect is odd. This is normally expected to be the minimum number
required—namely three, but if the number of sites is even then the Hall
effect has the normal sign.
(b) For hopping between Anderson-localized states, ^H appears to be
negligibly small. There is no real theoretical proof of this (cf. § 3.9) and
our conclusion depends on a variety of observations.
(c) For polaron hopping in crystals

(6.26)

In non-crystalline materials we conjecture that ^H drops sharply below
this value if WD » kT, so that preferred percolation paths occur.
Early experimental results due to Male for chalcogenides are shown in

Fig. 6.21(a) agreeing with Friedman's formula for conduction at a mobility
edge and giving negative R& in contrast to the positive values of the
thermopower. In amorphous germanium Clark (1967) also found a nega-
tive Hall effect and estimated a Hall mobility at room temperature of about
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Fig. 6.21. (a) Temperature variation of conductivity and Hall mobility in two chalcogenide
glasses in the solid and liquid states (Male 1967). (b) Temperature variation of Hall mobility
in various non-crystalline materials (from Mytilineou and Roilos 1978): 1, As2Se3; 2, As2Te3;
3, As2Seo.75Te2.25; 4, As2Se2.25Teo.75; V, As2Se2.625Te0.375; +, As2Se2.5So.5; •, As2SeSTe;

O, As2Se2.94Teo-o6'

1 0 2 c m 1 V 1 s 1 . This is close to the experimental limit of measurement
using conventional techniques. More recent observations are due to Roilos
and Mytilineou (1974), Nagels et al. (1974), Seager, Emin, and Quinn
(1973), and Mytilineou and Roilos (1978). Typical results are those of the
latter authors shown in Fig. 6.21(b). Two quite different interpretations
have been given of these results. While Emin and co-workers consider that
the carriers (holes) in chalcogenides form small polarons and this
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behaviour is to be interpreted through eqn (6.26), Nagels et al (1974) and,
following them, Mott, Davis, and Street (1975) suppose that the flat part is
to be interpreted in terms of Friedman's equation (6.25) and the drop at
low temperature occurs because most of the current is carried by hopping,
which is supposed to make no contribution to R^. We return to a
comparison of the two hypotheses in § 6.6.

Positive Hall coefficients have been observed in CdGeAs2 by Callaerts et
al. (1970), and Nagels et al. (1970), in amorphous arsenic by Mytilineou
(see Chapter 8), and in n-type glow-discharge-deposited silicon by Le
Comber, Jones, and Spear (1977) (see Chapter 7). A change in the sign of
the Hall effect with temperature has been observed by Meimaris et al.
(1977) in certain CdGexAs2 glasses. Emin's (1911 a,b) considerations of
the sign of the Hall effect are probably applicable to these cases.

6.4.8. Magnetoresistance

In crystalline semiconductors measurements of the magnetoresistance, the
fractional change Ap/p of resistivity in a magnetic field, can, like the Hall
effect, be used to determine carrier mobilities. Normally Ap/p is positive
and proportional to the square of the magnetic induction B. For hopping
conduction in doped crystalline semiconductors the magnetoresistance can
be either positive or negative (see Chapter 4).

Mell and Stuke (1970) have reported magnetoresistance measurements
on several amorphous semiconductors using an alternating (1-5 Hz)
magnetic field up to 25 kG. The magnetoresistance was found to be nega-
tive over a wide temperature range. Only at very low magnetic fields and
low temperatures was a positive effect found for amorphous germanium
(Chapter 7). More recently Mell has found a positive effect in amorphous
films of InAs and InP. For most materials Ap/p was found to be proportional
to Bn, with n being close to unity at high temperatures and falling to a
value of the order of one-half near room temperature. Figure 6.22 shows
the temperature dependence of the magnetoresistance at 25 kG for a
number of materials. Following Mell and Stuke (1970), we believe that this
negative magnetoresistance is contributed by that part of the current that is
carried by electrons hopping with energies near the Fermi level, the fall-off
at high temperatures occurring because the current is then mainly due to
electrons or holes in the extended states where Ap/p, like the Hall effect, is
small.

In impurity conduction in doped crystalline semiconductors, a large
positive magnetoresistance can occur owing to shrinking of the orbits. This
is unlikely to be important for the much smaller orbits deep in the gap of
non-crystalline materials. Movaghar and Schweitzer (1977) account for the
effect in the following way. Hopping to states that already contains an
electron is only possible for electrons with the opposite spin. In the
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Fig. 6.22. Temperature variation of magnetoresistance in a few amorphous semiconductors.
(From Mell and Stuke 1970.)

presence of a magnetic field, which affects the probability of a spin flip, the
chance that an electron can find an empty site with the right spin is
increased; a negative magnetoresistance is thus deduced.

6.4.9. Field effect

Measurements of the field effect, namely the increased conductivity in the
surface layer when a field is applied to the surface of a conductor, provides
a powerful method of determining the density of states in certain amor-
phous semiconductors. In the conventional field-effect geometry, a semi-
conductor sample forms one plate of a capacitor and the other is a metal
electrode (the gate), separated from the sample by a thin sheet of insulating
dielectric such as mylar or SiO2 (Fig. 6.23(a)). A voltage on the gate
induces onto the sample a charge which resides either in surface states at
the interface between insulator and semiconductor of within a region
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Fig. 6.23. (a) Experimental arrangement for field-effect measurements, (b) Variation of
potential with distance x below the surface of the semiconductor. A charge +Q on the gate
electrode induces — Q which, in the absence of surface states, is distributed throughout a space

charge region A either in gap states or in the bands.

beneath the semiconductor surface in which a space charge is found. The
portion of the charge that is mobile within the semiconductor can be
determined, given some independent knowledge about the mobility and
the form of the space-charge region, by monitoring the transverse (source-
drain) current. If the density of states at the Fermi level in the semiconduc-
tor is finite, then part of the charge may be immobilized there, and, aside
from the difficulty of distinguishing this from charge immobilized in surface
states, the possibility exists of determining the density of gap states in the
bulk of the semiconductor. The analysis by which this can be done is as
follows. The charge in the surface layer will lead to band bending, as shown
in Fig. 6.23(b) for a negative induced charge. If AJ5" is the decrease in the
level of the conduction band at a distance x from the surface, then the
change in the conductivity there is

where b is the ratio of electron to hole current when A£" = 0. The relative
change in conductance (AG) is obtained by integration over the sample
thickness d. If V changes exponentially with distance with a screening
length A, then dV/V = djc/A and the integral becomes (Fritzsche 1973)

(6.28)

where
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and vs is the reduced surface potential &E(Q)/kT. This function, shown in
Fig. 6.24, is known as a field-effect curve and, with the assumptions under
which it has been derived, can be compared with experiment to yield
the charge immobilized at the Fermi level and hence N(EF).

Fig. 6.24. Predicted change of conductance AG/G0 versus reduced surface potential vs for
various values of the ratio b of electron to hole current when us = 0: solid curve, b = 1; broken

curve, 6 = 0-1; chain curve, b = 0-01. (From Kastner and Fritzsche 1970.)

To obtain A and A£(0) in the case of constant N(E) near the Fermi level
we use Poisson's equation

which gives an exponential decay of V and

(6.29)

The relation between charge per unit area Q and AJ5(0) is

and with this gives

(6.30)

If A£'(0)»feT', the leading term in AG/G will be proportional to
exp{A£*(0)//:r}. For small values of the gate voltage and for p-type conduc-
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tors (b = 0) these equations give

;6.si)

In this case the activation energy for conduction is the same as for bulk
conductors.

If the Fermi energy is displaced into a region in which N(E) is not
constant, a more elaborate numerical procedure is necessary, which has
been used notably by Spear and Le Comber (1972) to determine N(E) in
the whole gap region in glow-discharge-deposited silicon.

More complete analyses, including the effects of surface states, have
been given by Barbe (1971) and by Neudeck and Malhotra (1975). It is
clear that if the surface state density is greater than about 1014 cm~2 eV"1,
then determination of N(EF) by the field-effect technique is not possible,
unless communication with the surface states is slower than with those at
EF, in which case modulation at a sufficiently high frequency may render
them inactive. Although this is likely for 'slow' states residing within an
oxide layer on the semiconductor surface or in the insulator, it is unlikely to
be the case for true interface states.

If N(EF) is not finite, the screening length (cf. § 9.4.1) is temperature
dependent, and the temperature dependence of the field-effect current
depends both on the conductivity of the affected region and on its width. If
there are no surface or gap states, all the induced charge must be in the
conduction or valence band; the screening length is then not relevant.

If the mobility is not activated, neither is AG. Also if there are a set of
levels at an energy e from E?, this takes practically all the surface charge,
and the extra charge in the conduction band will vary with T as exp{—CE -
s)/kT} where E = EC —  EP. A model of this kind has been used by
Marshall and Owen and is discussed in § 9.4.1.

Measurements of the field effect in amorphous semiconductors include
data on multi-component STAG glasses by Kastner and Fritzsche (1970),
Egerton (1971), Levy, Green, and Gee (1974), and Marshall and Owen
(1976), on evaporated Si and Ge by Malhotra and Neudeck (1974, 1975),
on glow-discharge-deposited Si by Spear and Le Comber (1972), Spear
(19746), Madan, Le Comber, and Spear (1976), and on carbon by
Adkins and Hamilton (1971). Anderson (1974) using CdSe thin-film tran-
sistor structures has deduced the energy distribution of states within the
gaps of various insulators. Results of some of these experiments will be
described in subsequent chapters. Pepper et al (1974a,fc) have used the
field effect in MONS devices to explore the nature of localized states at
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band edges in crystalline Si. This work was described in Chapter 4. Field-
effect measurements on chalcogenides are described in § 9.4.1.

6.5. Drift mobility and photoconduction

6.5.1 Drift mobility

The phenomena described so far in this chapter depend on 'states in the gap',
only in so far as these determine the position of the Fermi energy EF and, if
N(EF) is finite, hopping conduction by electrons with energies near EF.
Measurements of drift mobility and still more of photoconduction, however,
must often be interpreted in terms of deep traps and recombination centres
not necessarily at E?\ this is why we consider them together.

Direct measurements of the drift mobility have proved very useful in
determining the mechanism of charge transport of electrons or holes.
Carriers are injected at one point of a sample and their transit time tt to
another point at a distance d is measured under the influence of an electric
field F. The drift mobility is then defined by

(6.32)

In the experiments described below the materials have high resistivity,
typically greater than 107Ocm, and the dielectric relaxation time
(10~12pK/47r) is large compared with tt\ the excess carriers are not
screened by other carriers, as in experiments on the drift mobility of
minority carriers in crystalline semiconductors (Shockley 1950). Both hole
and electron transits can thus be observed. Fig. 6.25(a) illustrates a typical
'sandwich' arrangement in which the semiconductor film (perhaps 50 /um
thick) is equipped with two blocking electrodes, one of which is semi-
transparent if optical injection is used. The carriers can be electrically
injected as a pulse (with duration less than tt) from one of the electrodes,
or created in pairs by a flash of strongly absorbed light or by an electron
beam. If the injected charge is kept smaller than CSV, where Cs is the

Fig. 6.25. (a) Experimental arrangement for drift mobility studies: IJL = d/Ftt = d2/Vtt; (b)
schematic representation of shallow and deep trapping processes.
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capacity of the film, then the internal field remains essentially constant
during transit. The time for the selected carrier to drift to the opposite
electrode is determined by observing either the square-like current tran-
sient (CR « tt) or the ramp-like charge (voltage transient (CR »ft)).

The technique has been used by Spear to establish polaron hopping in
sulphur (Chapter 3) and electron mobility in liquid rare gases (Chapter 5).
In amorphous materials the main interest is in the effect of localized states
(traps). In a crystalline material one could argue as follows. If there are Nt

traps with discrete energy et, below the conduction band and if ^0 is the
conductivity mobility, then the drift mobility /XD is given by

where n0 and nt are the carrier densities in the band and in the traps
respectively. Assuming a thermal equilibrium distribution between the free
and trapped carriers during transit, this ratio can be expressed in terms of
the trap parameters, so that

which approximates to

(6.33)

except at high temperature where the probability of thermal release is high.
Here Nc is the effective density of states at the band edge. These quantities
are frequently not known, but e^QNc is the pre-exponential factor in the
dark conductivity, and if conduction is in extended states this should be
(§6.4.3) o-min exp(y/fc). Thus if ^D is plotted against 1/T, the slope
yields the trap depth, and, if JJLO and Nc are known, the intercept yields the
trap density. The formula can be generalized to situations in which there is
a continuous distribution of traps or, in amorphous semiconductors, to a
continuous range of localized states below Ec as will be shown below.

Normally for unambiguous interpretation it is important to ascertain that
a well-defined transit time exists and that it scales correctly with field and
sample thickness. Some spreading in the sheet of charge during transit
owing to diffusion is inevitable, but more commonly a spectrum of arrival
times results from a statistical spread in trapping and release time. The
assumption that there is thermal equilibrium between electrons in the
conduction band and the traps will not be valid if et is too large. If the
thermal release time is the reciprocal of
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and tp is the duration of the pulse, the condition that a trap will release
electrons during the passage of the pulse is

(6.34)

Deeper traps lead to a tail in the current pulse or to a lack of saturation in
the charge collected (Fig. 6.26). Under these conditions one can still
determine a time t\ from which a drift mobility can be determined, but one
is then probing only those traps with release times less than t(.

Fig. 6.26. Shape of current / and charge Q (or voltage V) transients: (i) case where the trap
depth is not greater than that given by eqn (6.34); (ii) case where the release time of the traps

is greater than the pulse time tp.

For amorphous semiconductors we distinguish between 'intrinsic' traps
(localized states) extending from a band edge at EA to Ec and deep
extrinsic traps due to defects. We make the qualitative distinction that
hopping between the former is possible, while in measurements of the drift
mobility hopping between the latter is negligible.t With this assumption,
we can define, as in our discussion of conductivity, an intrinsic drift
mobility

(6.35)

Here //,ext is the mobility ormin/N(Ec)e at the mobility edge, A£ = Ec —  EA

and n comes from the assumption that the form of the density of states is
N(E)oc(E—E Ayi. The hopping energy is w and is expected to be a
function of temperature as discussed in § 6.4.2. The condition that this is
the measured drift mobility is that, during the duration of the pulse (tp),
most of the electrons are within a range kT above EA and not in lower states
(Spear and Le Comber 1972). This may be either because the density of
states at a depth et below £}A is too low, so that

(6.36)

t Hopping between deep states is, however, always possible and as we have seen is respon-
sible for the T1/4 behaviour (if the states are at EF) observed in some materials.
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(where NA is the effective density of states at E"A), or because the release
time is too long, so that trapped electrons contribute only to the tail of the
pulse.

The number of amorphous semiconductors so far investigated by this
technique is relatively small. As mentioned above, the material should
have a high resistivity. In glow-discharge-deposited silicon, Le Comber and
Spear (1970) and Le Comber, Madan, and Spear (1972) find a kinkt in a
plot of In ju,D against l/T as predicted by eqn (6.35). The steady-state d.c.
conductivity also shows a change of behaviour at the same temperature
(200 K), supporting the suggestion that here a transition from conduction
in delocalized (extended) states to conduction in localized states occurs.
This work has given the strongest experimental support for the concept of a
mobility edge, and is described in Chapter 7. Although deep states are
undoubtedly present, the release time must be too long for equilibrium to
be set up during the passage of the pulse. However, measurements on
chalcogenides indicate that gap states do control the drift mobilities (see
Chapter 9). In amorphous selenium well-defined transit times have been
observed both for electrons and holes and the temperature dependence of
the drift mobilities studied. These results are described and discussed in
Chapter 10. Results of Hughes (1973, 1975, 1977) for electrons and holes
in SiO2 are described in Chapter 9; for electrons the drift mobility is not
activated, suggesting that the energy difference between the band edge and
the mobility edge is less than kT at the temperature of the experiment; for
holes the mobility is activated, probably owing to polaron formation.

Drift-mobility studies as a function of pressure have been made in
amorphous selenium by Dolezalek and Spear (1970). No change in the
magnitude or activation energy of the drift mobility was found, providing
evidence against hopping conduction at room temperature in this material.
Similar measurements on As2Se3 by Pfister (1974), however, reveal a
decrease in the transit time for hole transport.

Observations of transients under varying conditions of field, tempera-
ture, and thickness can be used to determine the carrier lifetime r or the
time for a carrier to become lost by a deep trapping event. The product
fjivT is the range per unit applied electric field, and is an important material
parameter (in the commercial process of xerography for example).
Measurement of the total charge collected under conditions where the
range is much larger than the sample thickness enables a direct measure-
ment of quantum efficiency to be made. Measurements on selenium as a
function of the energy of the incident radiation will be discussed in § 6.5.3
and in Chapter 10.

In drift-mobility measurements on certain materials, e.g. As2Se3 and Se
(at low temperatures), the current pulse shape departs from the ideal

t See Figs. 6.29, 7.39, and 7.40 and also Moore (1977).
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rectangular shape. Fig. 6.27(a) illustrates data obtained on Se. As the
temperature is lowered from 297 K to 123 K, it becomes increasingly
difficult to identify the time tt at which the bulk of the injected carriers
reach the opposite electrode until eventually a smooth decrease of the
current with time is observed. However, a plot of log i versus log t still
yields a break point as shown (Fig. 6.27(b)).

For a sheet of carriers dispersed by Gaussian statistics during transit, the
tail of the current pulse is expected to increase as t\/2 (i.e. to become
relatively steeper), and this is found to be so at high temperatures. At
slightly lower temperatures, the fall off in i for times less than tt could be

Fig. 6.27. (a) Temperature dependence of hole drift velocity in amorphous selenium at
various values of electric field. The shape of the current transients at various temperatures are
illustrated; the arrows indicate transit times, (b) (p. 252) Current transients plotted on a log-log
basis for various values of temperature and electric field F. The scales have been normalized to

illustrate the scaling with respect to the transit time. (From Pfister 1976.)
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Fig. 6.27 (b)

explained by deep trapping events which cause carriers to be held back
from the main pulse, possibly to contribute eventually to the tail. Such a
model has been proposed by Marshall and Owen (1971). The most suc-
cessful analysis of the pulse shapes over a wide range of temperatures and
transit times, however, has been provided by Scher and Montroll (1975).
Their theory is able to explain the experimental observations that at low
temperatures the dispersion is proportional to tt and the drift mobility /*D

appears to depend on sample thickness. The model also predicts a field
dependence of ̂ D.

The Scher and Montroll theory is formulated in terms of a model in
which transport occurs by hopping between localized states; however, the
same idea could be applied to transport at a mobility edge interrupted by
multiple trapping, if there is some fluctuation in trap depth, or to the hybrid
case of hopping conduction interrupted by trapping in deeper states. The
principal idea is that a distribution in hopping times (which are assumed to
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arise from fluctuations in hopping distances rather than hopping energies)
is so large that the maximum in the carrier concentration remains close to
the generation region. The current transient then represents simply the
time dependence of the arrival of carriers from the leading edge of the
distribution. The dispersion of the carrier sheet and the mean displacement
of the charge from the front surface both increase with time in the same
manner, their ratio remaining constant. The probability for a carrier, after
having arrived at a site at time t = 0, to hop to its next site is taken as
i//(t)=t~(l+a\ where a(0<a<l) is a parameter depending on the hop
distance, the hop energy, and the spatial extent of the localized state. This
weak dependence with time, which is to be contrasted with a Gaussian
probability exp(-£/r) that rapidly vanishes with increasing time, leads to a
time dependence of current behaving as

(6.37)

Here tt is the transit time for the leading edge of the carrier distribution
and shows clearly on a log plot of the transient current shape. The sum of
the slopes on either side of tt is equal to 2. The mean displacement of the
carrier sheet depends on time as ta and the transit time tt for a sample
of thickness L is thus proportional to L1/a.

With the further assumption that the asymmetry between forward and
reverse hops increases linearly with field strength F, tt~F~1/a and the
transit time scale as

(6.38)

Since a < 1, a drift mobility ^D deduced from L/ttF (eqn (6.32)) is predic-
ted to have a superlinear dependence on field and to depend on the sample
thickness.t Under conditions when the transit time is much longer than the
individual event times, the non-linear effects disappear and the mobility
again becomes well defined.

The results of Pfister (1976) shown in Fig. 6.27 are in good agreement
with the theory of Scher and Montroll; in particular one should note the
universality of the normalized current transients for a range of field
strengths and the independence of the activation energy in the drift velo-
city as the shape of the transient changes for a fixed field. Between 140 K
and 170 K, the sum of the slopes of the lines on either side of tt is close to
the theoretical value of 2. Above 170 K the dispersion becomes Gaussian;
below 140 K the sum is smaller than 2 and it is argued that trapped charge
causes pulse distortions, flattening the initial part of i(t). These results

t The concept of a thickness-dependent drift mobility is not very satisfying and use of the
term 'effective drift mobility' might be preferable.
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show also the predicted superlinear dependence of tt on sample thickness,
the parameter a decreasing from —0-75 to —0-51 as the temperature is
lowered. The field dependence of the mobility apparently contains a
contribution additional to that predicted by theory. A model for the field
dependence of drift mobilities, based on the Scher and Montroll formalism,
has been given by Pfister (1977a,fe).

A detailed study of time-dependent transport in amorphous As2Se3 has
been made by Pfister and Scher (1977). These authors interpret the results
in terms of a model in which the carriers hop through localized states but
interact with discrete trapping levels of lower density. Alternative models
in which transport proceeds via extended states but is trap controlled have
been proposed by Marshall (1977) and by Silver and Cohen (1977) and
Silver (1977). Pollak (1977), Schmidlin (1977), and Noolandi (1977) have
discussed the formal equivalence of the stochastic transport theory of Scher
and Montroll (1975) with that of a multiple trapping model. The character of
transient conduction in both amorphous Se and As2Se3 has, at the time of
writing, not been resolved in detail, in spite of the large amount of data
available.

A review of non-Gaussian transient transport in disordered solids has
been given by Pfister and Scher (1979).

6.5.2. Photoconductivity

A discussion of photoconductivity in an amorphous semiconductor
involves two separate problems. When a quantum of radiation is absorbed,
an electron and a hole are created. They attract each other, and parti-
cularly at low temperatures may recombine, having made no contribution
to the current. The next section, in which experiments and models for
quantum efficiency are described, deals with this aspect of the problem. In
this section we treat situations in which G, the number per cubic centimetre
per second of free electrons and holes produced by the radiation, can be
equated to the number of quanta absorbed.

We define /p as the excess current per unit volume produced by the
radiation. For simplicity we suppose that this is mainly carried either by
electrons or by holes, though the analysis can easily be generalized to the
case when both contribute. Then two situations are of interest. In the first,
electrons and holes are trapped and do not escape and they recombine
from these traps, that is from states fairly near the Fermi level. In this case
the photocurrent /p is proportional to G (monomolecular behaviour). In
certain cases /p is proportional to the drift mobility /LCD. Thus in drift-
mobility experiments the carriers form a quasi-equilibrium between states
near the mobility edge, localized states at the band edge, and perhaps
defect states. If recombination takes place from the lowest of these states,
and is not temperature activated, the T dependence of /p is that of JU,D-
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In the second case the recombination rate of the electrons is proportional
to the number of holes (trapped or otherwise). In such a case the plot of
photocurrent against 1/T is as in Fig. 6.31, with /p proportional to G1/2

(bimolecular behaviour) when /p > /d, id being the dark current, but pro-
portional to G when ip < id.

We consider the first situation. Glow-discharge-deposited silicon pro-
vides an example. The spectral dependence of the photocurrent will be
discussed in § 7.7. The density of gap states depends strongly on the
temperature of deposition. Fig. 6.28 shows schematically how a band of

Fig. 6.28. Schematic illustration of overlapping acceptor (.Ex) and donor (EY) gap states in
amorphous silicon.

deep donors can overlap a band of acceptors. Charged centres occur when
the bands overlap. According to Anderson and Spear (1977), these char-
ged centres trap holes and electrons; holes are trapped first, and the
photocurrent is highly sensitive to the number of charged EY states which
trap electrons. Thus n-type doping (Chapter 7) removes these, and
monomolecular recombination disappears, going over to bimolecular. The
monomolecular current for a field F is given by

where ^cD is the drift mobility for electrons above £*A and r is the lifetime.
This should be so, whether or not a quasi-equilibrium with E^ is established,
because, if it is, ju,D is reduced by exp(—kE/kT\ but so is 1/r. Apart from
this, 1/r will normally be little dependent on T, as discussed in Chapter 3.

Fig. 6.29 shows plots of /p against 1/T for films deposited at different
temperatures T&, compared with /u,D measured directly. The similarity of
the curves shows, with the kink at the same temperature, that /u,D is an
'intrinsic' property, depending little on the density of defects (which



256 NON-CRYSTALLINE SEMICONDUCTORS

Fig. 6.29. Temperature dependence of photocurrent ip and drift mobility /LID in glow-
discharge-deposited silicon. The numbers show the activation energy in eV. Curves A, B, and
C refer to samples deposited at 500 K, D at 350 K, and E at 320 K. Curves A, D, and E were
obtained with higher light intensities than curves B and C. The excitation energy was 2 eV.

The current is monomolecular, i.e. proportional to G. (From Spear et al. 1974.)

determines r) or the hydrogen concentration. However, r is highly sensi-
tive to Td (Fig. 6.30).

For glow-discharge-deposited silicon with a low density of states in the
gap, bimolecular behaviour can be observed at high intensities, particularly
(as already remarked) if the charged £"Y centres are removed by n-type
doping. Bimolecular behaviour is normal in chalcogenides. In both it is
thought that the minority carriers (holes in Si, electrons in chalcogenides)
are trapped first; r does not depend on the density of traps. What happens
is that the concentration of trapped holes builds up until the (equal)
concentration of free electrons gives a recombination rate equal to G. In
this case the photocurrent gain can greatly exceed unity.

The analysis for this case is as follows. The carriers (for instance elec-
trons) form a quasi-equilibrium either in the conduction band itself or with
shallow defect traps below it. If An is the excess density of these carriers
due to the radiation, then the photocurrent /p is given by

(6.39)
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Fig. 6.30. Recombination lifetime of photogenerated carriers as a function of deposition
temperature Td for glow-discharge-deposited silicon. (From Spear 1974a.)

where F is the field and where ^D is the drift mobility for this carrier, as
described in §6.5.1. The lifetime of one of these carriers in the states
between which the quasi-equilibrium is maintained is denoted by r; then An
is given by

(6.40)

where G is the number of carrier pairs generated per unit time and per unit
volume. After the radiation is cut off, An decays as

(6.41)

From the decay of the photocurrent r can be determined, and experiments
are described in § 9.7 in which this is done, r is determined by recom-
bination with the other carrier, either directly or after it has been trapped
in a defect state. If /p is great compared with the dark current j'd, ip is
proportional to An. Then eqn (6.40) shows that An and hence ip are
proportional to G1/2 (the bimolecular law), and (6.41) gives a decay as
l/(f + const).
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We next define a quantity b, such that bN is the chance per unit time that
a majority carrier recombines when there are N minority carriers (trapped
or otherwise) per unit volume. For a crystalline semiconductor we could
write

where v is the thermal velocity of the carrier and A is a capture cross-
section. For electrons with energies above the mobility edge, this pro-
cedure is allowable; for electrons hopping at the band edge and holes
trapped in centres it is preferable to introduce the chance p per unit time
that an electron in a band-edge localized state overlapping the recom-
bination centre recombines. Then

(6.42)

where a is the spatial extent of the state and

(6.43)

where n0 is the concentration of trapped or free minority carriers in the
dark. We now see that the steady-state excess carrier density is given by

(6.44)

from which the current may be found from (6.39). When the current is
switched off, the rate of decay is given by (6.41) with An substituted from
(6.44), which leads to

(6.45)

If An » n0 (regime II as defined below)

(6.46)

characteristic of bimolecular decay, and is dependent on T only through
the recombination mechanism (Chapter 3). If An « n0 (regime I), however,

(6.47)

with n0 strongly dependent on T.
The variation with temperature of the photocurrent is similar for all

chalcogenides investigated and is of the general form shown in Fig. 6.31.
Following Simmons and Taylor (1974), we label the three parts of the
curve regimes I, II, and III. In regime I the photocurrent is less than the
dark current and increases with decreasing temperature; in regime II the
photocurrent is larger than the dark current and decreases with decreasing
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Fig. 6.31. Temperature dependence of photocurrent in chalcogenides. The broken line is the
dark current (schematic).

temperature; in regime III the photocurrent does not fall so rapidly as in
regime II and can approach a temperature-independent value. In regime I
the drop in the photocurrent and in r with increasing T occurs because An
is less than the equilibrium number, the photocurrent ip being less than the
dark current fd; recombination of, say, electrons is with thermally
generated holes, the number of which increases with T. In this regime ip is
thus proportional to the light intensity and thus to G. In regime II ip »/d

and recombination is between electrons and holes, both of which are
generated by the radiation; ip is proportional to G1/2, though Arnoldussen
et al (1974) have reported that in chalcogenides at low intensities it is
proportional to G. In regime III /pocG; this behaviour is discussed for
chalcogenides in Chapter 9. Fig. 6.32 shows the transition between the two
regimes I and II from results of Weiser et al. (1970).

All these regimes can be explained in principle with the model given
above. In regime II we suppose that n0 is negligible if recombination is with
trapped holes (though this is not the same as saying that ip > /d). Then eqn
(6.40) becomes

(6.48)

and the photocurrent is proportional to G1/2. The temperature depen-
dence is that of fjivb~l/2, and thus probably that of the drift mobility (see
below). In regime I

(6.49)
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and the temperature dependence is that of /LCD/^O. In principle we have here,
through the temperature dependence of no, a way of finding the position of
any gap state that traps the minority carrier.

If minority carriers (holes) are trapped prior to recombination, the rate
of recombination is independent of the trap density. As we have seen,
however, in glow-discharge silicon at any rate, the model described above
is only applicable for a low density of gap states. For a high density the
monomolecular mechanism takes over, the electrons descending into the
EV states before recombining. This is strikingly shown in glow-discharge-
deposited amorphous silicon, where the drift mobility //,D is known from
direct experiment. Spear (1974fe) has deduced from the photocurrent in
regime II (using values of ^D from his drift mobility experiments) the
recombination lifetimes shown in Fig. 6.30, plotted there against the
temperature Td of deposition. Only for high Td (low density of gap states),
where r is independent of this density, is bimolecular behaviour observed.

If a quasi-equilibrium is established with the Ex states, but recom-
bination is from £"A, then ^D is decreased by exp(—AE/feT), but 1/r is
decreased by exp(~i &E/kT). This case seems to have been observed in
doped a-Si by Anderson and Spear (1977).

Fig. 6.32. Photoconductivity in amorphous 2As2Te3. As2Se3: (a) photoconductance AS against
photon flux at two temperatures using He-Ne laser (6328 A) excitation (b) (p. 261) photocon-
ductance AS (linear and square root regimes of (a)) and dark conductance S against inverse

temperatures. (From Weiser et al 1970.)
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For chalcogenides r seems to show little temperature dependence in
regime II. Some results for these due to Moustakas and Weiser (1975) and to
Main (1974) are shown in Figs. 6.33 and 6.34.

We now consider the quantity b, particularly for the case of radiationless
recombination, though recombination with radiation is of course possible,
as in the photoluminescence observed in glow-discharge-deposited silicon
at low temperatures (§6.7.6). An essential assumption for our analysis is
that the majority carriers normally recombine from the lowest level of
band-edge or discrete states involved in the quasi-equilibrium. If this is not
so, and if they recombine from a level As higher up, b will contain a factor
exp(-Ae/A:77); this is well shown in a detailed application of the Shockley-
Read (1952) statistics due to Simmons and Taylor (1975).

We suppose then that a majority carrier combines with a trapped carrier
from a discrete or band-ege localized state in its vicinity. Mott, Davis, and
Street (1975) introduce two possibilities. The first is a low-temperature
regime (i), in which the recombination always occurs before the majority

Fig. 6.32 (b)
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Fig. 6.33. Temperature dependence of recombination lifetime (ns) in amorphous As2Te^: A,
2 xlO18 photons cm"2 s"1; B, 1 -2 x 1019 photons cm"2 s"1; C, 2-3 xlO19 photons cm s"1.

(From Moustakas and Weiser 1975.)

Fig. 6.34. Temperature dependence of recombination lifetime in amorphous As2Se3 for 10lf

(upper curve) and 2 x 1015 photons cm"2 s"1. (From Main 1974.)

NON-CRYSTALLINE SEMICONDUCTORS
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carrier hops away from the recombination centre. If w is the activation
energy for hopping and p0 the probability of recombination per unit time,
this occurs if

In this case

(6.50)

In such a case, b is not independent of T. Since, in experiments available at
the time of writing, b seems nearly independent of T, it is assumed that a
high-temperature regime (ii) obtains and the carrier normally hops away
before recombination. In this case

(6.51)

Mott, Davis, and Street (1975) suppose also that charged traps capture the
minority carrier in both silicon and chalcogenides, so that the centre, after
capturing an electron or hole, is neutral. If it were charged, a2 in (6.51)
should be replaced by Trrl, where (Onsager 1938)

(6.52)

and (6.51) should be multiplied by exp(t//fcT), where

to take account of the fact that the population of states for which the
carriers are near to each other will be increased by Coulomb attraction.

With all these assumptions, then b =p0a
3, where p0 is the radiative or

non-radiative transition probability. If radiation is not emitted, then pro-
bably the multiphonon process described in §3.5.2 must be involved,
which is likely to be faster than radiative transitions only if n, the number
of phonons of energy hco emitted, is less than about 8. Such a process is
only independent of T if the factor {1 -ex$(-ha)/kT)}~n is nearly constant.
If ha) is —0-1 eV, this is likely to be so at room temperature.

For glow-discharge-deposited silicon in the bimolecular range, we follow
Spear (19746) in supposing that holes are captured by J5V centres. If these
are charged, they must be centres at the top of the Ey band where they
overlap the Ex band. At room temperature the subsequent recombination
with an electron is not observed to be radiative, and Mott, Davis, and
Street (1975) suggest that the centres involved may include a hydrogen
atom, which gives a high value of tia) and thus a high non-radiative
transition probability (§ 3.5.2). However, at low temperatures this tran-
sition is observed in the photoluminescence spectrum, and a possibility
(§ 6.7.6) is that these are transitions to centres without hydrogen.
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For chalcogenides photoconductivity is interpreted in terms of the D+,
D~ centres introduced earlier and discussed in Chapter 9. Electrons are
thought to be trapped by deep D+ centres, holes establish a quasi-equili-
brium with D~ centres, and recombination is a tunnelling process in which
two D centres revert to D+ and D~.

We have already stated that for silicon this treatment is correct only for a
low density of gap states; in this limit, the density of gap states does not
appear in the equation for the photocurrent. For high densities in glow-
discharge-deposited silicon /p is no longer found to be proportional to G1/2

but approaches G, as discussed earlier. For very high densities electrons
and holes must drop down to the Fermi level by tunnelling from one state
to another with emission of phonons. One might expect in such a case a
'demarcation level', namely an energy in the gap above which electrons
normally escape into the conduction band and below which they normally
drop down (see Rose 1963). Arnoldussen et al. (1974) have discussed
photoconduction in chalcogenides in these terms and Weiser and Brodsky
(1970) used it for a treatment of photoluminescence (for an alternative
treatment based on more recent results see Chapter 9). In this kind of
photoconduction the current should be proportional to G and to exp{-
(Ec —  Ei))/kT}9 where £0 is the demarcation level, which itself increases
with decreasing temperature.

If the electrons can jump from one state in the gap to another, they must
be able to contribute to the current after they have fallen below the
demarcation level. This kind of conduction has been discussed by Fischer
and Vornholz (1975) as an interpretation of their observations on
evaporated amorphous germanium. They consider that if the ranges of
energy of deep electron and hole traps overlap slightly, giving a finite
value of N(EF), carriers will be quickly thermalized to EF and recombine
there slowly enough for the photocurrent to be mainly due to carriers
there. An approximate behaviour of the photocurrent as exp(—B/T l / 4) is
observed.

We now discuss the spectral dependence of the current on exciting
radiation. In contrast with most crystalline semiconductors, which exhibit a
peak in the photoconductivity at a photon energy corresponding to the
onset of interband electronic transitions, amorphous semiconductors with
small gaps have a spectral response of photoconductivity that rises at
approximately the same photon energy as the optical absorption edge and
remains relatively constant at higher energies (Fig. 6.35). As the fall-off on
the high-energy side of the edge in crystals is attributed to the increased
role of surface recombination for carriers generated by strongly absorbed
light, this observation presumably implies very similar rates of recom-
bination at the surface and in the bulk. As we shall see in § 6.7, the optical
absorption edge of nearly all amorphous semiconductors is far from sharp,
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Fig. 6.35. Photoconductivity and optical absorption against photon energy in chalcogenides at
room temperature. The thicknesses of the films in which photoconductivity was measured are

given in parentheses. (From Rockstad 1970.)

and in fact is normally characterized by an absorption constant that rises
exponentially with photon energy. These two features, together with a
possible wavelength dependence of the quantum efficiency, make the
determination of mobility gaps from photoconductivity data uncertain.

6.5.3. Quantum efficiency

We now discuss G, the rate of generation of carriers. We may write

(6.53)

where the quantity in square brackets is the number of photons absorbed
per second in a sample of thickness d in the direction of the incident
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radiation, 70 is the incident flux density, a the absorption coefficient, and R
the reflectivity. The quantum efficiency for photogeneration is denoted by
77. It is sometimes assumed to be unity for suitable excitation; however, it
can be measured absolutely and for some materials (notably amorphous Se
and to a lesser extent As2Se3) it is found to be dependent on photon
energy, electric field, and temperature, as we shall now see.

If, in a photoconductivity experiment, the wavelength of the excitation is
such that absorption occurs by one-electron interband transitions (i.e.
energy of radiation quanta comparable with the fundamental absorption
edge), we may assume that one carrier pair (electron and hole) is created
per absorbed photon. However, if any of these pairs undergo recom-
bination with each other before they separate (geminate recombination),
then they cannot of course contribute to the photocurrent. The quantum
efficiency is defined as the number of free electrons (or holes) created per
absorbed photon.

The most straightforward technique for the determination of quantum
efficiency involves the use of strongly absorbed, pulsed excitation in a
sandwich cell of the type described in § 6.5.1 for the measurement of drift
mobility. Sufficiently high electron fields are used to ensure that the drifting
carriers (of one sign) do not suffer a range limitation by deep trapping
events during their passage across the film. Another similar method is the
xerographic discharge technique in which the rate of change of voltage at
the free surface of a corona-charged film is measured under steady illu-
mination. Extensive measurements of this kind have been made on amor-
phous Se by Tabak and Warter (1968), Pai and Ing (1968), and Pai and
Enck (1975), and on amorphous As2S3 by Ing and Neyhart (unpublished).
In both these materials the quantum efficiency is found to depend on
photon energy, temperature, and electric field, reaching unity only for high
values of one or more of these parameters. Fig. 6.36 (from Hartke and
Regensburger 1965) compares the quantum efficiency and optical absorp-
tion edges in amorphous Se at room temperature. The quantum efficiency
does not saturate at unity until a photon energy ~3 eV is reached.
Although it is not obvious where exactly to locate the optical absorption
edge (this problem will be discussed in § 6.7), it is clear that there is
considerable absorption at 2-1 eV, at which energy the quantum efficiency
has fallen to very small values. Further discussion of photogeneration in
amorphous Se will be given in Chapter 10.

Main and Owen (1973) have determined the photon energy dependence
of quantum efficiency in amorphous As2Se3 and As2S3 by a direct normal-
ization of the photoconductivity in terms of photocurrent per absorbed
photon. Their results for As2Se3 (Fig. 6.37) show that the quantum
efficiency falls with decreasing photon energy well above the optical
absorption edge (taken to be where a = 5 x 103 cm"1), although the effect is



NON-CRYSTALLINE SEMICONDUCTORS 267

not so marked as in Se. As2Te3 films do not exhibit the phenomenon,
presumably because the parameters in this material, particularly the
dielectric constant, allow for easier separation of the electron and hole.

A simple model for the temperature and wavelength dependence of
quantum efficiency is as follows. In crystalline semiconductors, dissociation
of an exciton or the excited state of a donor will not lead to photoconduc-
tion unless the carriers separate from each other, or the electron separates
from the donor. An early example of the latter behaviour is provided by
the work of Pohl (1937) on F centres in alkali halides, which shows a sharp
drop in quantum efficiency below -150° C in NaCl for example. The
explanation of this (Gurney and Mott 1938, Mott and Gurney 1940) is as
follows. If po is the probability per unit time of radiative or multiphonon
recombination of the exciton, W is the binding energy of the electron and
hole so that the probability per unit time of escape into the conduction
band is pph exp(— W/kT), the quantum efficiency TJ, should be given by

(6.54)

Fig. 6.36. Optical absorption edge and quantum efficiency in amorphous selenium at room
temperature. (From Hartke and Regensburger 1965.)
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Fig. 6.37. Spectral dependence of normalized photocurrent and quantum efficiency for
As2Se2 at room temperature. (From Main and Owen 1973.)

Po/J'ph is probably small (~1(T4 for radiative transitions) so at low
temperatures rj is proportional to exp(-W/kT), saturating at near unity
when kT> W/ln(vph/p0).

If recombination is radiative, the number of quanta emitted per ab-
sorbed quantum will be 1 -17.

In non-crystalline materials various theoretical discussions of the exciton
have been given (Majernikova 1974a,6, Bonch-Bruevich and Iskra 1975;
see also §6.7.1). What is certain, however, is that bound electron-hole
pairs can form under their mutual potential energy -e2/Kr. Two models
are possible. If the binding energy W of an exciton (m*e4/2ti2K2 with
m* = memh/(me + rah)) is greater than the range of localized states in at
least one band, then we can probably use the concept of a Wannier exciton
in its lowest state; the broadening by random fields is known to give an
Urbach edge (§ 6.7.1). In the contrary case we may think of carriers in
band-edge localized states, at a distance a as small as possible, bound with
an energy e2/Ka (Pankove and Carlson 1976). A difference from the
crystalline case is that, for electrons at the band edge, either L ~ a or
motion is by hopping and we may think of a diffusive motion by which the
electron and hole approach each other. Davis (1970) and Knights and
Davis (1974) have treated this in the following way, illustrated in Fig. 6.38.
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Fig. 6.38. Thermalization of electron-hole pair in their mutual Coulomb field. Starting with
an excess kinetic energy hE, the carrier pair ends up with a binding energy e2/Kr0.

We suppose that an electron is excited to an energy AE1 above the bottom
of the conduction band. If the electron loses one phonon quantum hco per
time I/a) (cf. Chapter 3), it will diffuse a distance r0 given by

before it is thermalized; D is here the diffusion coefficient. If now r0 is
greater than the Onsager radius re defined by (6.52), the particles will
escape. If not, they will normally come together and form an 'exciton'. In
this there are two possibilities.

(a) Recombination normally then takes place. In this case the quantum
efficiency is (cf. Mott 1977/), if r0<re,

(6.55)

with

(b) The electron and hole normally escape before recombination. In this
case 17 ~1.
The latter case is of interest in connection with photoluminescence, in

which case eqn (6.54) is valid with 1 — r\ for the efficiency.
Knights and Davis (1974) also describe the electric-field dependence of

the quantum efficiency on a simple Poole-Frenkel model in which the
effective barrier for escape is lowered by the field. Although the essence of
the model is believed to be correct and fair agreement with experimental
data for Se was obtained, a better analysis in terms of the Onsager theory
of dissociation has been given by Pai and Enck (1975). This is discussed
further by Mott (1911 f} and in Chapter 10. '
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6.6. Conduction at a mobility edge versus hopping

With the exception of evaporated Ge and Si and some small-band-gap
alloys, for which T~l/4 behaviour and small values of the thermopower
indicate conduction by electrons at the Fermi level, most amorphous
semiconductors have conductivities and thermopowers that are
temperature activated with an energy close to one-half of the optical gap.
Whether conduction occurs by hopping in localized states at an extremity
of the valence (or conduction) band or by charge transport in extended
states beyond a mobility edge, depends on the form of the density of states,
the range of energies of localized states, the increase in mobility at Ec, and
the temperature. In this section we summarize the expected dependence on
temperature of the d.c. conductivity a, the thermopower 5, the drift mobil-
ity jLtD, and the Hall mobility /u,H on passing through the transition from one
mode of conduction to the other.

The model used to illustrate these forms of behaviour is shown on the
right of Fig. 6.39 and the activation energies marked on the left assume no

Fig. 6.39. Schematic representation of temperature dependence of d.c. conductivity cr, ther-
mopower S, drift mobility JUD, and Hall mobility /u,H for carriers in a band with a mobility edge

as shown on the right.
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temperature variation of Ec, EA, or Ep relative to each other. Conduction
above Tc is predominantly by carriers at Ec and below Tc at EA. In some
materials a more gradual transition than illustrated may occur if the change
in mobility at EC is not great.

In the temperature range marked A both the conductivity and the
thermopower are activated with an energy EC —  EP. The drift mobility,
which is trap limited in this regime, is activated with an energy EC~EA =
AE", unless it is determined by discrete states below EA (§6.5.1). It should
saturate to jjLexi (which contains a T~l dependence) at sufficiently high
temperatures (see eqn (6.33)). The Hall mobility should be independent of
temperature and have a value given by the Friedman expression (§ 6.4.7).

In the temperature range B the conductivity is activated with energy
EA —  EF together with the contribution w(T) due to hopping. A change of
slope of magnitude AE1- w(T) therefore occurs at Tc. If it is assumed that
none of the hopping energy contributes to the thermopower, then the
curve of 5 versus l/T has a slope of EA —  EF. However, because the
thermopowers extrapolated to l/T = 0 are similar for processes A and B,
the form of 5 in the transition region can take several forms depending on
the sha/pness of the transition in a. The total thermopower for parallel
concoction mechanisms is simply the sum of the individual thermopowers
weighted according to the contribution each mechanism makes to the
conductivity; the slope of S in the transition region has little meaning. The
drift mobility in region B should exhibit a temperature-dependent hopping
energy w(T) and therefore the change in slope of the plot of ̂ D versus l/T
at Tc is equal to AE —  w(T) as in the conductivity.

The temperature dependence of the Hall mobility in region B is
uncertain. If the main part of the hopping energy w(T) is of polaron type,
then an activation energy of \w(T) is expected (§3.9). If, however, we
assume that this is not the case, the contribution to the Hall effect is
negligible and the temperature dependence of the Hall mobility will simply
reflect the decreasing contribution to the Hall effect from carriers moving
above Ec. As for the thermopower, the weighting factors for parallel
mechanisms are just the relative contributions each makes to the conduc-
tivity. The activation energy found by plotting In /XH versus l/T in region
B is therefore expected to be AE- w(T).

As an example of a gradual transition from process A to process B we
show in Fig. 6.40 data due to Nagels et al. (1974) on p-type As2Te3

(+1% Si). The solid curves are theoretical curves based on the models for
a, 5, and ^H using the parameters given in the underline.

Results on glow-discharge-deposited silicon by Le Comber and Spear
(1970), which display a much sharper transition, and on glow-discharge-
deposited germanium (Jones et al. 1976) will be described in Chapter 7.
Data for amorphous arsenic appear in Chapter 8.
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Fig. 6.40. (a) Conductivity, (b) thermopower, and (c) Hall mobility of As2Te3 with 1% Si,
plotted from the results of Nagels et al (1974). The solid curves are theoretical using the
following parameters (conduction is by holes): £F-.ErB = 0-35 eV, A£ = 0-lleV, w =
0-03 eV, (T0 = 3200 fT2 cm"1, a^ = 90 IF1 cm"1 (<TO and cr^ are the intercepts on the 1/T = 0
axis for conduction in extended and localized states respectively). (From Mott, Davis, and

Street 1975.)

6.7. Optical absorption

In Fig. 6.18 the optical absorption in amorphous As2Se3 was shown over a
very wide range of frequencies. This section is concerned with those
absorption processes that occur at the higher end of the frequency spec-
trum, particularly those associated with interband electronic transitions. In
§§ 6.7.1 and 6.7.2 we consider the fundamental absorption edge, which in
the materials with which we are concerned lies between 0-3 and 2-5 eV,
and the effects of externally applied electric fields on this. The absorption
at slightly higher energies (associated with absorption coefficients a^
10 cm~ ), which may provide information on the combined density of
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states at the valence-band and conduction-band edges, is discussed in
§ 6.7.3. Interband absorption involving valence and conduction states lying
deeper in their respective bands is the subject of § 6.7.4. The use of
synchrotron radiation extends the range normally covered by ultraviolet
spectroscopy (6-15 eV) out to several hundred electronvolts and enables
the observation of absorption due to transitions from deep-lying atomic-
like levels to the conduction band. X-ray and u.v. photoemission spectra
will be discussed in a separate section (§6.8.2).

Reference to Fig. 6.18 shows a region of the spectrum in the range
1014-1015 s"1 in which no measurements are shown for As2Se3. In this
range intraband or free-carrier absorption could be detected, if it were not
for impurity and structure-dependent absorption which frequently
dominates the spectrum of materials on the low-energy side of the
fundamental edge. There is, however, some evidence for intraband
absorption in As2Se3 at high temperatures (liquid phase), when the d.c.
conductivity is greater than 10~2fl~1cm~1, and at room temperature in
chalcogenides with a smaller band gap. Intraband absorption will be the
subject of § 6.7.5. Absorption by phonons (and Raman scattering) will be
discussed in § 6.7.6.

Perhaps the most important feature of optical absorption processes in
amorphous semiconductors is that certain selection rules (particularly that
of k conservation) which apply to optically induced transitions in crystal-
line materials are relaxed.

6.7.1. Absorption edges and Urbach's rule

Before discussing the optical absorption edges observed in amorphous
semiconductors, we review briefly the types of edges that have been found
in crystals and their interpretation.

Basically there are two types of optical transition that can occur at the
fundamental edge of crystalline semiconductors, direct and indirect. Both
involve the interaction of an electromagnetic wave with an electron in the
valence band, which is raised across the fundamental gap to the conduction
band. However, indirect transitions also involve simultaneous interaction
with lattice vibrations. Thus the wave vector of the electron can change in
the optical transition, the momentum change being taken or given up by
phonons. (The radiation imparts negligible momentum to the electron.)

If exciton formation (electron-hole interaction) is neglected, the forms
of the absorption coefficient a as a function of photon energy hco depend
on the dependence on energy of N(E) for the bands containing the initial
and final states. For simple parabolic bands (N(E)ocEl/2) and for direct
transitions
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Fig. 6.41. Schematic illustration of different kinds of absorption edges in crystalline semicon-
ductors: (a) (i) direct allowed, (ii) direct forbidden; (b) indirect, n = 2 allowed, n = 3 forbid-

den; (c) direct allowed with exciton formation; (d) exponential 'Urbach' edges.

where n = \ or f depending on whether the transition is allowed or forbid-
den in the quantum-mechanical sense. E0 is the optical gap and n0 the
refractive index. This type of absorption, shown schematically in Fig. 6.41,
is independent of temperature apart from any variation in E0. For indirect
transitions

The two terms here represent contributions from transitions involving
phonon absorption and emission respectively, and have different
coefficients of proportionality and temperature dependences. For allowed
transitions n = 2 and for forbidden transitions n = 3. In each case multiple-
phonon processes can occur, leading to additional pairs of terms.

In general both direct and indirect transitions can occur in a crystalline
semiconductor. However, in materials in which the smallest gap is a direct
one, indirect transitions, which are associated with smaller absorption
coefficients, are not observed. An exception to this is the special case of
vertical transitions involving absorption of a phonon of very small wave-
vector.

All the above types of optical transitions are modified when the elec-
tron-hole interaction is not ignored. The mutual attraction allows bound
states of the electron and hole, namely excitons, to be formed with energy
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less than that of the free pair. For direct allowed transitions absorption into
these exciton states is in the form of a hydrogenic spectrum below the
continuum at EQ (Fig. 6.41(c)). Moreover the continuum itself is modified
in shape. For direct forbidden transitions the n = I line is missing and the
continuum absorption, although increased above the edge, starts at a = 0.

For allowed and forbidden indirect transitions inclusion of electron-hole
interaction does not lead to a series of absorption lines, transitions into
bound exciton states giving rise to a continuous absorption. However,
additional terms similar to those given in the equation above will occur,
corresponding to the transitions into bound exciton states. For these the
power ft is 2 and f for allowed and forbidden transitions respectively. For
transitions into the continuum the corresponding power laws are | and |.

Examples of most of the above relationships have been observed in
crystalline semiconductors, and investigations on certain materials have
yielded detailed information concerning the electronic structure at the
band extrema.

A completely different type of optical absorption edge is observed in
several materials, in particular the alkali halides, CdS, and trigonal
selenium. It is an absorption constant that increases as the exponential of
the photon energy. Thus, in contrast with 'direct allowed' edges, for
example, which lead to a rather rapid rise in the absorption coefficient over
several decades within a few tenths of an electronvolt near the energy gap,
one observes in this case a gradual increase in the absorption extending
over perhaps several electronvolts. This so-called Urbach edge (Urbach
1953, Dexter and Knox 1965) frequently obeys the empirical relationship

(6.56)

where y' is a constant and T is the absolute temperature down to a critical
value TO and equal to T0 for lower temperatures. Thus the edge becomes
broader as the temperature rises above T0 (Fig. 6.4l(d)). No single
explanation has been accepted for this behaviour in crystalline materials,
which is unfortunate in view of the fact that, as we shall see, it appears to be
the type of edge most characteristic in amorphous semiconductors. A short
review of the theoretical situation has been given by Hopfield (1968). We
shall briefly summarize the various models that have been proposed.

(a) Bound exciton interaction with lattice vibrations. Toyozawa (1959a,6,
1964) first proposed that the normal Gaussian shape of an exciton line
becomes exponential in its leading edge when quadratic terms in its inter-
action with phonons are considered. This theory seems to account for the
exponential tails observed in alkali halides particularly well. The difficulty
seems to be in justifying the fact that the quadratic terms outweigh the
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linear terms in the interaction. For other theoretical treatments based on
the same ideas the reader should see Mahr (1963), Mahan (1966), and Keil
(1966).

(b) Electric-field broadening of the absorption edge. In the presence of an
electric field, the absorption coefficient associated with direct allowed
transitions between parabolic bands is modified in the manner shown in
Fig. 6.42. At photon energies below the onset of the field-free absorption

Fig. 6.42. Schematic illustration of the Franz-Keldysh effect and the effect on a direct allowed
optical absorption edge.

an approximately exponential tail is introduced, and at higher energies the
absorption coefficient oscillates. The 'red shift' at low energies is the
Franz-Keldysh effect and is due to a finite probability for tunnelling of the
band Bloch states into the energy gap. Clearly, if this explanation is
invoked to explain Urbach behaviour, then the origin of the electric field
has to be considered. In principle this could arise from charged impurity
states (Redfield 1963). However, the temperature dependence of the slope
must be taken into account in any proposed model. Dexter (1967) intro-
duces this by postulating that the electric field arises from the vibrating
atoms in the material. In ionic solids optical phonons are involved; in the
more covalent materials instantaneous changes in electronic charge clouds
have to be invoked. The magnitude of the effect depends on the electron-
phonon interaction, which is strong in piezoelectric solids like CdS and
trigonal Se.

(c) Electric -field broadening of an exciton line. Dow and Redfield (1970)
treated the problem of absorption for direct excitonic transitions in a
uniform electric field. A numerical study of the shape of the absorption
showed that, in contrast with the Franz-Keldysh results, its variation with
photon energy is accurately exponential. These authors therefore propose
that the 'spectral' Urbach rule arises from an electric-field broadening of
an exciton line. Fig. 6.43 shows the results of the calculations. The
parameter / is the electric-field strength expressed as the ratio of the
potential-energy drop due to the field across the radius of the exciton to the
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Fig. 6.43. Dow and Redfield's theory for optical absorption in the presence of an electric field:
(a) exciton effects included; (b) exciton effects not included (Franz-Keldysh result). The
parameter / is a measure of the strength of the electric field. The energy E is measured from
the conduction-band edge in units of the binding energy of the unperturbed exciton. (From

Dow and Redfield 1970.)

exciton binding energy. The Bohr radius a of the exciton ground state and
the Rydberg constant R are given by

where w* is the reduced mass of the electron-hole pair. Thus
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where m is the free-electron mass and F is in Vcm"1. For m* = m and
K = 6, the line marked / = 0-6 corresponds to a field ~7 x 106 V cm~l. It is
interesting that a classical criterion for direct field ionization of an exciton
(Fc = i<R2/4e3) corresponds to / = 0-125. As seen from the curves, a
discernible exciton peak remains for fields almost an order of magnitude
larger than this. The influence of the electron-hole interaction on the shape
of absorption curves can be seen by comparison with Fig. 6.43, in which the
Coulomb interaction has been 'turned off', giving the normal Franz-
Keldysh result

If Dow and Redfield's model is a correct description of Urbach's rule, it
is of course still necessary to consider the origin of the internal electric field
and the temperature dependence of the slope. This point will be considered
later.

As mentioned above, the fundamental absorption edge in most amor-
phous semiconductors follows an exponential law, i.e. In a is proportional
to hco. At the time of writing only certain thin films of Ge and Si and
perhaps InSb stand out as notable exceptions. (Absorption edges in Ge
and Si will be presented in Chapter 7.) However, because of the
experimental difficulties associated with measuring small values of the
absorption constant in thin films, it is not easy to test for exponential
behaviour in those amorphous semiconductors that can be prepared only in
this form. Verification of exponential behaviour is thus established with
certainty only for those amorphous semiconductors that can be obtained as
a glass by melt quenching, even though of course thin films of these
materials are used for transmission measurements at high values of a. Fig.
6.44 shows the room-temperature absorption edges of a few amorphous
semiconductors. Exponential behaviour is observed up to a = 102 cm"1 in
some materials, and up to 104 cm"1 in others.

As discussed above there are several plausible explanations for the
existence of an exponential absorption edge. In amorphous semiconduc-
tors there is an additional possibility which has been suggested by many
authors, namely that it arises from electronic transitions between (local-
ized) states in the band-edge tails, the density of which is assumed to fall off
exponentially with energy (Tauc 1970a, Lanyon 1963). We think that this
explanation is unlikely (see Davis and Mott 1970). The main evidence
against such an interpretation is that, as shown in Fig. 6.44 and Table 6.3,
slopes of the observed exponential absorption edges are very much the
same in a variety of materials; it would seem unlikely that the state tailing
is so similar. We shall, however, show below that there is an interesting
correlation for elemental materials between the slope of the Urbach tail
and the co-ordination number.
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Fig. 6.44. Exponential absorption edges in amorphous semiconductors at room temperature
(references as for Table 6.3). The arrows mark the value of 2E for those materials for which

the electrical conductivity has been observed to obey the relation a- = C exp(—E/kT).

In view of the likely presence of strong internal fields in amorphous
semiconductors and the accurately exponential behaviour predicted by
Dow and Redfield's theory for field broadening of an exciton line, this
model is obviously attractive as an explanation for the type of edge shown

TABLE 6.3

Approximate values of T for the amorphous semiconductors of Fig. 6.44 in
the region where a = a'0 exp(Tha)\ and values of the photon energy tia)

corresponding to a = 102 cm"1 (T = 300 K)

Reference

GeTe 15 0-38 0-50 Bahl and Chopra (1969)
Te 18 0-47 0-61 Stuke (1970a)
As2Te3 19 0-49 0-70 Rockstad (1970)
CdGeAs2 19 0-49 0-80 Cervinka et al (1970)
Ge16As35Te28Si21 22 0-57 0-99 Fagen et al. (1970)
As2Se3 20 0-52 1-64 Edmond (1966)

(from Owen 1970)
Se 17 0-44 1-77 Hartke and

Regensburger (1965)
As2S3 19 0-49 2-28 KosekandTauc

(1970)
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in Fig. 6.44. If the average of the observed slopes (Table 6.3) is taken as
17 eV"1, the corresponding value of the parameter / in the figure is —0-5
for K =6 and ~1-0 for AC = 8 (assuming m* = m). Thus electric fields of
strength 106-107Vcm~1 are required. Before proceeding further we
should pay attention to the following questions.

(a) Do excitons exist in amorphous semiconductors?
(b) What possible sources are there of internal electric fields?
(c) If the fields are random and have a spatial variation in magnitude, do
they average to give the same result as a constant uniform field?
With regard to (a), some discussion has already been given in § 6.5.3;

both for chalcogenides and for amorphous silicon (§ 6.7.6) electron-hole
pairs bound together are known to exist. However, sharp exciton lines are
hardly to be expected, particularly for an excited state of the exciton or
pair. Silicon dioxide, where the exciton binding energy is large, is an
exception (Chapter 9), and in amorphous Mg-Bi alloys (Slowick and
Brown 1972) exciton lines are observed when excitation is from core levels
but not for excitation from the valence band. If the exciton binding energy
is small compared with the range of localized states, then the Coulomb
force between an electron and a hole should lead simply to an effective
lowering in energy of the relevant states by ~e2/Ka^ where aE is the
distance between those states. However, it should be noted that Dow and
Redfield's theory predicts, for a given electric field, a large effect on the
absorption edge when the exciton binding energy is small.

As regards the origin of internal electric fields in amorphous semicon-
ductors we may consider longitudinal optical phonons (as Dexter (1967)
did in crystalline materials), or static spatial fluctuations in potential arising
from the lack of long-range order, variations in density, or charged defect
centres. It is not easy to calculate the magnitude of the electric fields
produced by these possible sources without knowledge of specific
parameters (Tauc 19706). It is relevant to note that experimental evidence
has been obtained for exponential broadening of absorption edges created
by charged impurities in crystals (Afromowitz and Redfield 1968). Also
Olley (1973) has shown that bombardment of crystalline PbI2 with helium
ions quenches a sharp exciton line and induces an exponential leading edge
(Fig. 6.45); similar behaviour has been observed in other materials.

With regard to (c), general calculations are difficult (Bonch-Bruevich
1970a,fe, 1973, Bonch-Bruevich and Iskra 1975, Majernikova 1974a,6,
Lukes and Somaratna 1970, Redfield 1963). Dow and Redfield (1972)
have shown that the exponential tail derived for uniform fields survives the
necessary averaging in the case of certain random distributions. However,
Majernikova (1975) has pointed out that a Gaussian distribution of
random fields yields an exponential absorption edge without the need to
include exciton effects.
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Fig. 6.45. Optical absorption edge of initially crystalline PbI2 measured at various stages of
bombardment with He ions. The excitonic feature broadens into an exponential tail. (From

Olley 1973.)

For electrostatic potential fluctuations such that valence and conduction
bands remain parallel (Fig. 6.6(b)), Dow and Hopfield (1972) calculate an
optical absorption edge that is suppressed by the lack of spatial correlation
between electrons and holes but the shape of which is not very different
from the density of states averaged over many potential fluctuations.

Any model that is invoked to explain exponential absorption edges in
amorphous semiconductors should consider the effect of temperature.
Experimentally it is observed that there is only a slight change of slope with
temperature below room temperature. In this case it may be preferable to
refer to 'a spectral Urbach rule'. There is, as might be expected, a dis-
placement towards lower photon energies as the temperature is raised, but
this presumably is due to the temperature coefficient of a gap. Above room
temperature (from data on a limited number of materials) the slope
decreases as the temperature is raised. However, it appears necessary to
reach the liquid state before the temperature dependence predicted by
Urbach's empirical rule (eqn (6.56)) is obeyed. Thus, for amorphous semi-
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conductors, TQ is considerably higher than in crystalline materials obeying
Urbach's rule. If the exciton model with electric-field broadening is
appropriate, then the temperature dependence of the dielectric constant
will certainly be involved, although probably not to the third power as in
Dow and Redfield's theory, because F itself will probably be proportional
to at least l//c. If the field is considered to arise from longitudinal optical
phonons, then it may be possible to account for the high value of T0 by
regarding the amorphous state as one that contains a large concentration of
frozen-in phonons (see Chopra and Bahl 1972).

For As2S3, Street, Searle, Austin, and Sussman (1974) propose that the
slope of the Urbach tail is determined by two contributions to broadening,
one arising from static disorder and the other from phonons. They estimate
the former, which is insensitive to temperature, to be about three times the
latter.

In view of the uncertainties concerning the nature of the exponential
absorption edges in amorphous semiconductors, we may ask whether it is
possible to define an optical gap. In crystalline materials obeying Urbach's
rule, a gap is normally determined by locating the focal point of the family
of edges obtained as a function of temperature. Thus, allowing EQ in eqn
(6.56) to be a linear function of temperature, so that EQ = EQ(Q) —  ̂ T we
obtain

(6.57)

The absorption coefficient is thus independent of T when ha> = E0(Q) and
this is the focal point. In trigonal selenium for example (Roberts, Tutihasi,
and Keezer 1968) it lies at a = 105 cm"1. As the temperature dependence
of Urbach's rule is not normally seen in solid amorphous semiconductors,
this procedure cannot be used. In § 6.7.3 we shall show how the form of the
absorption above the exponential edge may be extrapolated to give an
optical gap. This energy frequently turns out to lie close to the 'knee' of the
absorption edge, i.e. the energy where In a ceases to be linear with hco.
However, this is a very crude marker, and we shall see that it is expected to
give values less than the mobility gap.

It has been pointed out by Stuke (19700) that the mobility gap in many
amorphous semiconductors corresponds to a photon energy at which the
optical absorption coefficient has a value ~104 cm"1. The assumption here
is that the mobility gap is equal to twice the activation energy for electrical
conduction, that is twice the slope of a plot of In or against 1/fcT, so that the
conduction is truly intrinsic. However, if the position of the Fermi level is
determined by states in the gap (§ 6.4.1), then twice the activation energy
observed in electrical conduction is not a quantity of particular significance.
In any case one should correct the slope of a curve plotting In o- against
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1/kT for any temperature variation of the mobility gap in order to
compare it with a room-temperature absorption edge. Applying this cor-
rection leads to the positioning of the mobility gap in many materials at an
energy where the absorption coefficient is approximately 103 cm"1.

The possible existence of sharp absorption edges in amorphous Ge
reported by some workers (Chapter 7) demands special attention. There
seems to be no reason why random fields should not occur in this material;
the density of defect centres is probably larger than in the chalcogenides
and small voids may be present even in samples deposited onto high-
temperature substrates. The exciton binding energy in crystalline Ge is
~2 meV, an exceedingly small value arising partly because of the small
effective mass of the electron-hole pair (ra*~0-33 m) but partly because
of a large dielectric constant (AC = 15-8). Although it is not clear what value
to take for the effective mass in amorphous Ge, it might be considered that
the absence of an exponential edge similar to that observed in the chal-
cogenides arises from the higher dielectric constant in this material, which
could make exciton effects negligible. However, there is some difficulty
with this suggestion. From the curves of Fig. 6.43(a), the slope of the
optical absorption edge can be found to be given roughly by the relation

(6.58)

where b lies between 0-18 and unity. Thus, for the same magnitude of
electric field F, the slope decreases with decreasing effective mass and
increasing dielectric constant. To obtain a sharp edge necessitates the
assumption of random electric fields considerably lower in magnitude than
estimated for the chalcogenides. Alternatively, it could be that high fields
do exist in the vicinity of defects, but their spatial extent is small (on
account of the high dielectric constant); their effects on optical properties
may thus be reduced in importance relative to the chalcogenides. Certain
films of germanium, however, do exhibit exponential edges (Chapter 7),
and in these cases the corresponding slope is one-half to one-third that
commonly appearing for chalcogenides. This would seem to be more
consistent with the model of field-broadened absorption edges discussed
above.

An interesting correlation exists between the slope of the Urbach edge
and valency N in elemental amorphous semiconductors. This is shown in
Fig. 6.46. The values for germanium and silicon are taken from edges
that exhibit exponential behaviour. A possible explanation of this trend
is that materials having lower co-ordination (higher valency) more easily
form ideal amorphous networks with fewer defects and voids and perhaps
less departure from optimum covalent band angles and lengths than in
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Fig. 6.46. Values of F for absorption edges of elemental materials, the absorption coefficient
of which obeys a = a'0 exp(^<y/F). A higher value of T means a steeper edge. Data for Te
from Stuke (19700,^), for Se from Hartke and Regensburger (1965), for Ge from Connell et
al 1974, for Si from Loveland et al. (1973/74), and for B from Berezin et al. (1974). N is

the valency.

those with higher co-ordination. All these features could reduce random
microfields.

The effect of hydrostatic pressure on exponential absorption edges has
been measured in only a few materials. In these a parallel shift to lower
energies with increasing pressure has been found. Presumably this reflects
the pressure coefficient (dE0/dP)T of some gap E0. It is interesting that in
the materials studied the sign of this quantity is opposite to that expected
from the sign of the temperature coefficient (dE0/dT)P referred to above.
Either an increase in temperature or an increase in pressure shifts the edge
to lower energies. The coefficients are related by the thermodynamic
relationship

(6.59)

where av is the volume expansivity (dV/dT)P/V and Ks is the compres-
sibility -(dV/dP)T/V. The second term is the contribution to (dE0/dT)P

due to dilation and, with the negative sign in front, makes a positive
contribution. As (dE0/dT)P is negative, (dE0/dT)v must make a sizable
negative contribution. However, it appears that this behaviour, not com-
mon in most crystalline materials for which (dE0/3T)v is normally rather
small and attributable to electron-phonon interaction (Fan 1951), is not a
characteristic of the amorphous state. In fact a similar behaviour occurs in
crystalline As2Se3 and similar materials.
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6.7.2. Effects of externally applied fields

Application of external electric fields changes the optical properties of both
crystalline and amorphous semiconductors. The effects are generally small,
necessitating the use of modulation techniques. For crystals, electro-
absorption and electroreflectance measurements have proved to be very
useful in revealing fine structure not resolved by conventional spectroscopy
(see Cardona 1969); for amorphous semiconductors the signals are broad
but nevertheless interesting and can provide information concerning
internal microfields.

For amorphous As2S3, Kolomiets et al. (1970) observed a shift of the
optical edge towards lower energies. The displacement of the Urbach tail
was found to be independent of photon energy and proportional to the
square of the electric field; it amounted to 1 part in 105 at 105 VcnT1.
Kolomiets et al. (1970) interpreted these data in terms of the theory of
Franz (1958) which is based on an exponential distribution of tail states
and predicts a parallel shift of the exponential absorption edge in an
electric field F according to the relation

(6.60)

where T is the slope of the edge. Interpreted in this way an effective mass
ratio m*/m=l'5 was computed. Similar results for amorphous As2Se3

(Kolomiets, Mazets, and Efendiev 1970) yield m*/m = 2-9 and for Se
(Stuke and Weiser 1966, Drews 1966) m*/m =4-5.

More detailed studies, which include the effect of sample preparation as
well as temperature on the electroabsorption signal have been made on
Se, Se-Te alloys, As2S3, and As2Se3 by Roberts, Keating, and Shelley
(1974), on As2S3 by Street, Searle, Austin, and Sussmann (1974) and on Se
and As-Se alloys by Sussmann, Austin, and Searle (1975). In some
respects the data are conflicting, particularly concerning the exact value of
the power describing the field dependence and also the variation with
wavelength. For Se, Roberts et al. (1974) and Sussmann et al. (1975) agree
that an electric field does not produce a parallel shift in the Urbach tail; in
fact the edge becomes steeper.t Results from Sussmann et al. (1975) are
shown in Fig. 6.47. In several types of film Aa/a passes through a maxi-
mum close to the upper energy limit of the Urbach tail (marked by an
arrow). The signal increases by about 50 per cent as the temperature is
lowered from 300 K to 120 K.

tit may be worth mentioning that, at a given photon energy, the fractional change in
transmitted intensity is proportional to the absolute change Aa in the absorption coefficient
a. A value of Aa/a that is independent of photon energy implies a parallel displacement of the
optical absorption edge on a logarithmic scale.
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Fig. 6.47. Electroabsorption spectra of amorphous selenium at 120 K (right-hand scale) and
300 K (left-hand scale); D, O, A, blown films; • hot-pressed films; O, x, +, evaporated films.
The arrows mark the upper energy limit of the linear Urbach tail at each temperature. The full

and broken lines are theoretical. (From Sussmann et al. 1975.)

A steepening of the absorption edge on application of an external field is
not predicted by most theoretical treatments. The theory of Franz (1958),
referred to above, predicts a constant value of Aa/o? at low photon ener-
gies, tailing to zero at higher frequencies. A theory due to Esser (1972),t

t See also more recentpapers co-authored by Esser (1975). Phys. Status SolidiB 68,265; 71,63;
72, 535.



NON-CRYSTALLINE SEMICONDUCTORS 287

based on the random microfield model of Bonch-Bruevich (1970), predicts
a decrease of Aa/a as the photon energy increases. Street, Searle, Austin,
and Sussmann (1974) have calculated the electroabsorption expected for
the field-broadened exciton model of Dow and Redfield (1972). For a
Gaussian distribution of microfields, they find

(6.61)

where Eexc is the position of the ground-state exciton peak in the absence
of microfields, Fs is a measure of the root-mean-square microfield, and F is
the applied field. If the random fields are due to Coulomb centres, Street et
al (1974a,6,c)find

(6.62)

which does give an increase in Aa/a as ha) increases; however, in this case,
the edge is not strictly exponential, either with or without the applied field.

Although a microfield distribution composed of both Coulombic and
Gaussian components could be postulated and a theoretical fit to the data
obtained, it might be more meaningful to assume, following Sussmann et
al. (1975), that the field-free breadth of the absorption edge is caused by
two contributions, one of which is insensitive to an applied external field
and another that is not. A physical basis for this model may be a non-
isotropic distribution of microfields in systems having local anisotropy.
Using appropriate parameters, Sussmann et al. (1975) obtain the theoreti-
cal fits shown by the solid lines in Fig. 6.47. An alternative model, pro-
posed by Roberts et al. (1974), is based on the Stark effect associated with
Se8 molecules.

For As2Se3 and As2S3, the field-free slope of the exponential absorption
edge is higher than for Se (see Table 6.2) and, although for the same
applied field Aa is larger, Aa/a varies less with photon energy in the
region of the Urbach tail (Roberts et al. 1974; Sussmann et al. 1975).
Nevertheless a similar model to that suggested for Se may still be appro-
priate.

Early electroreflectance measurements on amorphous Ge films (Filler et
al. 1969) which purported to show a spin-orbit split-valence band, has
subsequently been shown to be of doubtful validity owing to the presence
of signals associated with interference fringes.

6.7.3. Interband absorption

In this section we discuss the form of the optical absorption edge expected
in amorphous semiconductors in the absence of any electric-field or exciton
effects. For materials exhibiting an exponential edge, the results should be
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appropriate at photon energies above the exponential tail. The following
assumptions are also made.

(a) The matrix elements for the electronic transitions are constant over
the range of photon energies of interest.
(b) The k-conservation selection rule is relaxed. This assumption is
made in amorphous semiconductors because, near the band edges at
least, Afc — fc and thus k is not a good quantum number. There is
evidence (Berglund and Spicer 1964) for a relaxation of the k -conser-
vation rule for some interband transitions even in certain crystalline
materials. On an E-k diagram such transitions would be non-vertical.
However, no phonon absorption or emission processes are invoked to
conserve momentum and all the energy required is provided by the
incident photons. Such transitions are termed non-direct as opposed to
indirect.
The conductivity at frequency a) under these conditions is given by

(6.63)

where fi is the volume of the specimen and D the matrix element of d/dx.
This follows from the analysis of Chapter 2. The corresponding absorption
coefficient is given by

(6.64)

where nG is the refractive index.
The matrix element D for transitions between states in different bands

will be taken to be the same as that for transitions between extended states
in the same band, without the factor m/m* (§ 2.5), so that

(6.65)

where a is the average lattice spacing. It should be pointed out that we are
taking the matrix element to be the same whether or not either the initial
or final state, or both, are localized. This is an assumption that needs
justifying. The argument given by Davis and Mott (1970) is that the
smaller value of D that may be expected when the wavefunctions are
localized is compensated by the increased value of the normalization factor
(see also Tauc and Menth 1972). However, when both initial and final
states are localized the lack of spatial overlap between states may cut down
D to small values.

Neglecting for the moment this last possibility, we find for interband
transitions (ignoring the variation of n0 with ha))

(6.66)
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where the integration is over all pairs of states in the valence and conduc-
tion bands separated by an energy hco.

If the density of states at the bottom of the conduction band is represen-
ted by Nc(E) = const.(E-EA)s and at the top of the valence band by
NV(E) = const. (EB —  E)P, then, by making the substitution

and denoting the gap by E0 = EA —  EB we find

(6.67)

The quantity in braces is a known integral, namely

Without knowledge of the form of N(E) at the band edges, it is specula-
tive to take the calculation further. Under the assumption of parabolic
bands (Tauc 1970a), 5 =p = 2, leading to

(6.68)

The absorption in many amorphous materials is observed to obey this
relation above the exponential tails. A few examples are shown in Fig.
6.48. The constant E0 can be used to define an optical gap, although it may
represent an extrapolated rather than a real zero in the density of states.

The quadratic relation between a(ct))ha) and ha) given above has also
been derived by Davis and Mott (1970) using different assumptions. Using
the notation of Fig. 6.7 and assuming that the densities of states at the band
edges are linear functions of the energy, that

and that transitions in which both the initial and final states are localized
can be neglected, we find from eqn (6.66)

(6.69)

Here, E0 is EA-EV or EC —  EB, whichever is the smaller, and
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Fig. 6.48. Examples of absorption edges whose functional dependence on photon energy is given by aha) =
B(ha)-E0)

2. Data for As2Te3 from Rockstad 1970, Si from Brodsky etal. 1970, and As2Se3 and As2S3 from Felty and
Myers (private communication). The slopes and intercepts for these materials (particularly silicon) vary somewhat

according to the method of preparation.
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is the quantity discussed in § 2.6 and in § 6.4.2. We can make a rough
estimate of the magnitude of the absorption coefficient by taking AE1 —
0-2 eV, n0 = 4, and <7min~200 ft"1 cm"1. Thus, if energies are in electron-
volts,

(6.70)

In Table 6.3 values of B and E0 are given for a few amorphous semicon-
ductors whose optical absorption obeys the relationship atia> =
B(ha)—Eo) 2. In certain cases the above relationship holds over a much
larger range of photon energies than is consistent with our estimate of AE
and the agreement may therefore be fortuitous.

TABLE 6.3
Room-temperature experimental values of E0 and B for a few amorphous
semiconductors whose optical absorption coefficient a obeys the relation
aha) =B(hco —  Eo)2 in a range of photon energies above the exponential edge

£0(eV) B (cnT1 eV'1) Reference

There are some notable exceptions to the quadratic frequency depen-
dence of the absorption coefficient, and it should not therefore be regarded
as a characteristic phenomenon of amorphous semiconductors. The
absorption coefficient in amorphous Se exhibits, above the exponential tail,
a relation of the form (see Chapter 10)

(6.71)

Some speculations regarding this behaviour have been made by Davis and
Mott (1970). Certain multicomponent materials have been found by Fagen
(private communication) to have an absorption coefficient that obeys the
relation

(6.72)

These are shown in Fig. 6.49. This relationship can be derived by relaxing
one of the assumptions used above in obtaining the quadratic relation,
namely that transitions between localized states can be neglected, and
assuming instead that they have the same matrix elements as all other

GeTe 0-70 2- 1 x 105 Tsu, Howard, and Esaki (1970)
As2Te3 0-83 4-7 xlO5 Weiser and Brodsky (1970)

0-82 5-4xl05 Rockstad (1970)
Si 1-26 5-2 x 105 Brodsky, Title, Weiser, and Pettit (1970)
As2Se3 1-76 8-3 x 105 Felty and Myers (private communication)
As2S3 2-32 4xl05 Felty and Myers (private communication)
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transitions. In this case we find (Davis and Mott 1970)

(6.73)

Here E0 is equal to EA- EB, using again the notation of Fig. 6.7.

Fig. 6.49. Absorption edges in three multicomponent glasses which obey the relationship
cth<0 ~(ha* -E0) . The arrows mark the values of 2E in the formula for the conductivity

or = C exp(-£/fcr). (From Fagen, private communication.)

Amorphous germanium has been reported in several papers to have an
exponential absorption edge followed at higher energies by the quadratic
variation. Other measurements by Donovan, Spicer, and Bennett (1969)
have revealed a sharp absorption edge, but no simple power law is capable
of describing its spectral shape (see Chapter 7). Presumably in this case the
density of states at the band edges is not given by a simple power law
either.

In summary, it appears that the absorption edge of many amorphous
semiconductors can be described by a simple power law, at least over a
limited range of absorption coefficients, which enables an optical gap E0 to
be defined. However, without independent knowledge of the density of
states and matrix elements as a function of energy, we can only speculate
on whether this is a real gap in the density of states or some other
characteristic energy related to the mobility gap.
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The relation between the energy gaps in amorphous materials and those
in the corresponding crystalline state (when this exists) is of interest. A
general rule appears to be that, if the local atomic order is not appreciably
altered in the amorphous phase, the gaps in the two states are not appreci-
ably different. As expected this rule works best for 'tight-binding materi-
als', i.e. those for which the band structure is determined mainly by
nearest-neighbour overlap integrals.

Connell and Paul (1972) find little correspondence between the energy
gaps (or their pressure coefficients) in crystalline and amorphous forms of
Si, Ge, and III-V compounds. For GaP in particular they find a large
discrepancy (0-42 eV amorphous, 2-22 eV crystalline). They suggest that
this may be explained by the occurrence of 'wrong bonds' (Ga-Ga or P-P)
due to the presence of five-fold rings in the amorphous structure. However,
the Penn gap (§ 7.16) is not altered greatly. In crystalline Te the smallest
gap occurs in a direction in the Brillouin zone which does not correspond to
that along the chain structure. This suggests that interaction between
chains is important, and it is not surprising to find a large change in the gap
(~0-7 eV amorphous, ~0-25 eV crystalline); even if the chain structure is
preserved to some degree, the interaction between the chains must change.
In selenium the chain interaction is less and the gaps in the trigonal crystal
and amorphous states are similar (~2 eV) (see Fig. 10.6). Crystalline As is
a semimetal; amorphous films of As are quite transparent below ~1 eV;
clearly a change of local structure suggests itself here (Chapter 8).

6.7.4. Absorption at high energies

Beyond the fundamental absorption edge both crystalline and amorphous
semiconductors continue to absorb strongly. Measurements up to about
20 eV can be made most conveniently using an ultraviolet diffraction-
grating reflectometer. The optical constants are then derived from a
Kramers-Kronig analysis of the reflectivity.

In crystalline semiconductors, the interband absorption in this range is
characterized by a succession of peaks related to structure in the density of
states of both the valence and conduction bands. As an example, Fig. 6.50
shows (broken curve) the experimentally determined absorption spectrum
of crystalline germanium above the edge (at 0-7eV). Note that the
imaginary part of the dielectric constant is related to a by the relation
e2 = nQCa/a). The structure shown here has been interpreted as arising
principally from the transitions marked by arrows in Fig. 7.36 (Chapter 7),
which is a theoretical calculation of the electronic band structure of crys-
talline Ge in two principal directions of the Brillouin zone. It should be
stressed that these assignments are not unambiguous; in particular it is now
considered that the transition X4-Xi is not truly representative of the large
peak at 4-5 eV but that a much larger region of the zone is involved.
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Fig. 6.50. Spectral dependence of the imaginary part of the dielectric constant e2 as deter-
mined by Kramers-Kronig analysis of reflectance data for amorphous (solid curve) and

crystalline (broken curve) germanium. (From Spicer and Donovan 1970a.)

However, it serves to illustrate the principles of interpretation of optical
absorption spectra of crystals in this range of photon energies. These are as
follows.

(a) Vertical transitions (corresponding to no change in the electron
wavevector) at critical points in the zone contribute strongly to the
absorption. Critical points occur where the valence and conduction
bands are parallel to k space because the joint or combined densities of
states thus have maximum values.
(b) The joint density of states is not the only parameter of importance.
Certain transitions are forbidden by symmetry requirements. Others are
damped or enhanced by a matrix element, which may have considerable
structure as a function of energy. For example, the 4-5 eV transition in
Ge referred to above is Umklapp enhanced (Phillip 1966), (see Fig.
6.51). The 'optical density of states' can thus be considerably different
from the actual density of states obtained by integrating all the various
overlapping bands over the whole Brillouin zone.
Amorphous semiconductors show far less structure in their absorption

spectra. The solid curve in Fig. 6.50 is the experimentally determined
spectrum for amorphous Ge. Other materials show a similar lack of struc-
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Fig. 6.51. Energy dependence of matrix elements for amorphous germanium: (1) crystal; (2)
amorphous (using convolution of crystalline density of states); (3) amorphous (using con-
volution of amorphous density of states). (From Stuke 1970ft, Maschke and Thomas 1974ft.)

ture although, as will he seen in later chapters, gross features are frequently
preserved.

There are several approaches to an understanding of the e2 spectra of
amorphous semiconductors. One is to start with the crystalline band struc-
ture and to introduce modifications as seem appropriate. Thus we might
attempt to generate the e2 spectrum by first relaxing the k-conservation
rule, allowing all states in the conduction band to be accessible from all
states in the valence band with matrix elements independent of energy. For
amorphous Ge this procedure results in a smoothed-out absorption curve
(Fig. 6.52(a)), which peaks at too low an energy to account for the experi-
mental results, as shown by Herman and Van Dyke (1968). Better
agreement is obtained by using matrix elements that depend on energy.
Maschke and Thomas (19706) (see also Stuke (19706)) have proposed a
smoothed version of that appropriate for the crystal (Fig. 6.51).

As will be shown later, the density of states of amorphous Ge has been
determined by photoemission and significant differences from the crys-
talline density of states were found. Using these results the non-direct
constant matrix element model is able to account for the s2 spectrum of
amorphous Ge. The problem is therefore transferred to that of explaining
the density of states (see § 6.8.2 and § 7.8).
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Fig. 6.52. (a) Imaginary part of the dielectric constant s2 in amorphous germanium as
determined experimentally (solid curve) and as calculated from the crystalline density of
states, assuming non-direct transitions and constant matrix elements (chain curve), (b)

Expected form of e2 on the Penn model (see text).

The gross features of the e2 spectrum of amorphous Ge, and indeed
other materials, can be understood on an isotropic Penn model (Penn
1962, Bardasis and Hone 1967). The Penn or average gap between valence
and conduction bands is assumed to be retained and little changed from its
value in the crystal. On this model the absorption spectrum has the form
shown in Fig. 6.52(b). By introducing Lorentzian broadening, Phillips (1971)
demonstrates how the experimentally determined spectrum of amorphous
germanium can be approximated.

A very high energy (50-70 eV) absorption experiment on selenium by
Cardona et al. (1970), in which electrons were excited from a narrow
low-lying d level into the conduction band, revealed a spectrum (Fig. 6.53)
that was, within experimental error, the same in both crystalline and
amorphous forms. Furthermore, fairly good agreement was obtained with
a theoretical calculation using the density of states appropriate to the
crystal (see Chapter 9). This result suggests that, in selenium at any rate,
the total width of the conduction band is approximately unchanged on
going to the amorphous state. Nevertheless exciton effects play a role in
these spectra (Shevchik, Cardona, and Tejeda 1973).

Similar absorption experiments have been made on silicon (Brown and
Rustgi 1972, Brown, Bachrach, and Skibowski 1977), As, and As2Se3

(Bordas and West 1976). These are discussed in later chapters where some
problems associated with interpretation are emphasized.
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Fig. 6.53. Optical absorption in amorphous selenium using synchrotron radiation. (From
Cardona et al 1970.)

6.7.5. Intraband absorption

Fig. 6.54 shows the absorption near the fundamental edge in amorphous
As2Se3 as measured by Edmond (1966). In the solid glassy state (curves
(l)-(3)) the absorption coefficient obeys the spectral Urbach rule (§ 6.7.1)
and there is a parallel shift to lower photon energies as the temperature is
raised. The absorption in the neighbourhood of 10"1 cm"1 is presumed to
be residual and depends on the conditions of sample preparation. In the
liquid state (curves (4)-(!!)) strong absorption occurs at much lower ener-
gies, and it may be considered that the absorption edge is broadening (as
well as shifting) as the temperature is raised, in accordance with Urbach's
rule. However, the magnitude of a at a fixed photon energy (0-5 eV~
4000 cm"1) was found to be proportional to the d.c. electrical conductivity,
at least for temperatures above 450°C . This is shown in Fig. 6.55. There is
thus a strong possibility that free-carrier absorption is being observed.

It should be noted that free-carrier absorption in crystalline semicon-
ductors is normally observed on the low-energy side of the absorption edge
as a component that, at a fixed temperature, increases with decreasing
photon energy, i.e. a is proportional to A2. This of course simply derives
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Fig. 6.54. Optical absorption in liquid and glassy As2Se3 as a function of temperature. (From
Edmond 1966.)

from the Drude formula for a.c. conductivity:

(6.74)

The application of this formula to free-carrier absorption in semiconduc-
tors relies essentially on the existence of a relaxation or scattering time as
intraband transitions are quantum-mechanically forbidden. As discussed in
§ 6.4.5 the equation is not applicable for amorphous semiconductors with
very small values of r.

We suggest that the increase in absorption with increasing photon energy
shown in Fig. 6.55 arises from an increasing density of available final states.
Using the notation of Fig. 6.7(b) we calculate this absorption as follows.
Following the arguments of § 2.2 we write

(6.75)
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Fig. 6.55. Absorption coefficient at 4000 cm l from Fig. 6.54 and electrical conductivity as
functions of inverse temperature in liquid As2Se3. (From Edmond 1970.)

With f(E) = exp{-(E-EF)/kT} and N(E) = N(Ec)(E-EA)/bE the
maximum of f(E)N(E) occurs at E = EA+kT. Thus

(6.76)

which for ftto > kT becomes

(6.77)

where (compare eqns (2.14) and (2.17) with L ~ a)

Eqn (6.77) predicts an absorption that is proportional to the d.c. conduc-
tivity and increases exponentially with photon energy. Assumptions that
are made here are that the density of states is linear with energy and that
the matrix elements for transitions from the localized states at the bottom
of the band to extended states higher in the band are the same as those
used earlier in this book. A similar expression has been obtained by
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Hindley (1970). It should be noted that eqn (6.77) does not predict cor-
rectly the slope of the curves shown in Fig. 6.54 and further work on this
problem is necessary.

Edmond (1970) has subsequently observed similar behaviour to that
reported above in solid glasses of the system As2(Se, Te)3. In all cases the
high-frequency conductivity at ~7xl014s~1 was found to be about 20
times the d.c. value. Bishop et al. (1971) have also reported similar obser-
vations in Tl2SeAs2Te3. The temperature dependencies of the absorption
coefficient and the d.c. conductivity for this material are shown in Chapter
9. Identical activation energies of 0-35 eV are found. However, in this glass
no dependence of a on wavelength was discovered. In view of the smaller
photon energies involved compared with As2Sea and the limited
wavelength range studied, a large variation is not to be expected. Again
er(et>)/cr(0) was found to be greater than unity; in this case the ratio is
about 8.

6.7.6. Photoluminescence

Photoluminescence has been observed in glow-discharge-deposited silicon
(Engemann and Fischer 1974a,£, 1976, and Chapter 7, § 7.7) in various
glassy chalcogenides as discussed fully in Chapter 9, and in amorphous
arsenic (Bishop, Strom, and Taylor 1976&). Reviews have been given by
Street (1976) and by Bishop, Strom, and Taylor (1977). In this section we
give a description of various mechanisms that have been proposed.

Radiation can be emitted either by an excited defect, or by an electron-
hole pair in the conduction and valence bands bound together by their
Coulomb attraction (an exciton). In discussions on quantum efficiency in
§ 6.5.2, we have treated the conditions under which an electron-hole pair
will separate, leading to photoconduction, and the conditions under which
they will recombine. For a discussion of photoluminescence, we have to ask
whether they will recombine with or without the emission of radiation.

Photoluminescence in chalcogenides is thought to occur in defects and
these defects are probably the charged dangling bonds of §6.4.1. The
strongest evidence that the centres are charged is that the efficiency of
luminescence falls off rapidly with temperature. The electron (or hole)
escapes from the neutral excited centre and finds a non-radiative recom-
bination channel. The emitted radiation shows a large Stokes shift. Fig.
3.7(b) is therefore applicable. The radiative transition probability,
~104 s"1 in this case, must therefore be faster than any of the non-radiative
mechanisms discussed in Chapter 3. Excitation of the defect centre can
occur directly, or by production of an electron-hole pair in the neighbour-
hood which then diffuses to the defect (§ 9.6).

Of interest is the fact that in chalcogenides the direct recombination of
an electron-hole pair is normally non-radiative, presumably according to



NON-CRYSTALLINE SEMICONDUCTORS 301

the mechanism of Dexter et al. (1955) (§ 3.5). We also have to ask whether
a free electron-hole pair (exciton) can be self-trapped, and if so whether
there is a barrier to self-trapping as in Fig. 3.7. Since we know (a) that the
exciton can wander to a defect and (b) that eventually it must disappear by
the mechanism of Dexter et al., we conclude that the barrier must exist.

In glow-discharge-deposited silicon, however, we have seen in § 6.5.2
that radiation normally produces an electron-hole pair, that if they
separate they normally find a non-radiative recombination path, but that
below —100K they do not separate and then normally recombine with
emission of radiation. There appears to be little Stokes shift; that is
(presumably) why the mechanism of Dexter et al. does not operate.t The
photoluminescence spectrum, particularly at higher temperatures, includes
not only the band-to-band peak (at —1-23 eV) but also peaks correspond-
ing to transitions from conduction and valence band states to the defect
states identified from other measurements. This is shown in Fig. 7.61, and
in Chapter 7 photoluminescence in this material is discussed in greater
detail.

The presence of these transitions shows that, particularly at higher
temperatures, the electron-hole pair can wander some distance to a defect
and be trapped there. This is remarkable especially because the decay of
the radiation is very fast (~108 s"1). It is also remarkable that these centres
give radiative transitions at 150K and below, in that at higher tempera-
tures they are invoked (§ 6.5.2) to give the channel for non-radiative decay.
The present authors consider it possible that, while a pair diffuses to the
nearest defect which normally does not contain hydrogen and so radiates,
in photoconductivity a quasi-equilibrium is set up between holes and
centres at EV, some of which contain hydrogen, and those with hydrogen
give radiationless recombination.

6.7.7. Vibrational spectra. Density ofphonon modes

The optical properties of crystalline and amorphous semiconductors in the
infrared region of the spectrum are dominated by interaction with vibra-
tional modes. In crystalline material conservation of momentum restricts
infrared absorption or Raman scattering to processes involving phonons
with wavevector close to zero, i.e. the centre of the Brillouin zone, and to
those which have associated with them a dipole moment. Such processes
can occur in covalent as well as ionic materials if there are three or more
atoms per unit cell, if there are defects or impurities present, or in any
event by multiphonon processes in which one vibrational mode induces
instantaneous charges on the atoms and a second mode simultaneously
causes a vibration of the induced charges. In the latter case absorption
occurs at sum and difference frequencies of the two coupled phonons.

t Street (1978) gives further evidence that Si and the chalcogenides differ in this way.



302 NON-CRYSTALLINE SEMICONDUCTORS

Selection rules for first-order (one-phonon) processes in infrared and
Raman activity are complementary.

In amorphous materials lattice absorption processes are retained to a
degree which depends on the material. Generally speaking fine structure
present in the spectra of corresponding crystalline materials is lost.
However, a breakdown in selection rules allows coupling to modes that are
not active in crystals, so that Raman and infrared activity extend over the
entire vibrational spectrum.

Fig. 6.56 compares the infrared absorption spectra of amorphous and
crystalline As2Se3, as determined by Austin and Garbett (1971). Although
much fine structure is lost, gross features near 100 cm"1 and 220 cm""1 are
retained. The reflectivity spectra (Mitchell, Bishop, and Taylor 1972, Felty,
Lucovsky, and Myers 1967, Zltakin and Markov 1971, Onomichi, Arai,
and Kudo 1971) and Raman spectra (Zallen et al. 1911 a, b) confirm the
retention of these dominant bands. They are associated (Austin and
Garbett 1971, Lucovsky 1974) with local modes of molecular-like units
consisting of AsSe3 tetrahedra cross-linked to each other via a single Se
atom. (The infrared activity arises from a dynamic rather than a static
charge; the bonding is covalent but charge flows out of the bond when
under tension and into the bond under compression.) This is an example of
a 'molecular' material in which the dominant vibrational modes are
retained on disordering; in fact they persist in the liquid state up to 673 K.

Fig. 6.56. Vibrational spectra of glassy and crystalline As2Se3. (From Austin and
Garbett 1971.)
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Another example of a molecular material is Se, the infrared and Raman
spectra of which are shown in Fig. 6.57. The results for amorphous Se seem
to bear more of a correspondence to those for the monoclinic than to those
for the trigonal crystal, a feature which led to early identification of Se8

rings as being responsible for the principal activity (Lucovsky et al. 1967,
Ward 1972). However, studies of Raman spectra in Te (Brodsky et al.
19720), for which no crystalline form containing rings exists, has shown that
the Raman lines shift on disordering as a consequence of changes in the
interchain interaction. In both amorphous Se and Te the molecular species is
probably a short chain (see Lucovsky 1972, 1974, Mort 1973a, Meek
1976a, Martin, Lucovsky, and Helliwell 1976).

Fig. 6.57. (a) Raman and (b) infrared spectra of amorphous and crystalline forms of selenium.
The broken curve in (a) corresponds to a different direction of the polarization of the incident
light (<£ vector parallel to the direction of observation), ((a) From Ward 1972; (b) from

Lucovsky 1969.)

For the glass Tl2SeAs2Te3, dominant peaks in the infrared transmission
spectrum again indicate the presence of molecular-like units (Taylor et al.
1971). However, for this material the peaks disappear abruptly at 480 K,
approximately 120 K above the glass transition temperature, suggesting
that the molecular units are less tightly bound than in As2Se3.

Tetrahedrally connected network structures with no identifiable mole-
,-cular units behave in a very different way to the materials described above.
Ge, Si, and III-V compounds fall into this category. Raman and infrared
spectra for Si are shown in Fig. 6.58(a) (see also Alben et al. 1975 and
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references therein). The first-order Raman spectrum of crystalline Si
exhibits one sharp line at the zone centre TO-LO phonon energy (vertical
broken line). In Fig. 6.58(b) the phonon density of states for crystalline Si
(broken line, derived from neutron scattering data) has been convoluted
with a Gaussian of half-width 30cm"1 (solid line) to approximate the
situation in amorphous Si in which there is a variation in bond angles. The
similarity between the curves in (a) and (b) suggests that for the amorphous

Fig. 6.58. (a) Raman and infrared spectra for amorphous silicon, (b) Phonon density of states
for crystalline silicon as determined from neutron scattering. The broken curve has been

Gaussian broadened to produce the solid curve. (From Smith et al 1972.)

material all vibrational modes take part in infrared absorption and Raman
scattering. However, the relative intensities do not match and the shifts in
peak positions indicate differences between the phonon density of states in
the crystalline and amorphous forms. One of the problems in attempting to
deduce the density of phonon modes in amorphous germanium and silicon
from infrared or Raman spectra is lack of knowledge of the energy depen-
dence of the coupling constants. A more direct determination can in
principle be made from inelastic neutron scattering data assuming a
sufficient bulk of material can be obtained. Such measurements on
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germanium (Axe et al. 1974) indicate a transverse acoustic (TA) peak (the
one at the lowest energy in Fig. 6.58), in shape not unlike that for the
crystal but shifted slightly to lower energies. A displacement of the TA
modes is also deduced from specific heat measurements (§ 6.8.1).

Calculations of the vibrational spectra (i.e. the energy dependence of the
density of phonon modes) of various CRNs simulating the structure of
amorphous germanium (or silicon) have been made by Meek (19766) using
the 'recursion method' of Haydock, Heine, and Kelly (1972, 1975). The
results do not show a shifted TA peak but suggest some dependence of the
shape of this peak on the ring statistics of the various models. The trans-
verse optical (TO) peak (the one at the highest energy in Fig. 6.58) shows
more sensitivity to bond-angle distortions than to ring statistics. Using a
version of an adiabatic bond-charge model (Weber 1974) to represent
short-range forces, Meek (1977a) suggests that the shift of the TA peak to
lower energy indicates a reduction of the bond charge in amorphous
germanium relative to that in the crystal.

As a final example of vibrational spectra in amorphous solids we show an
interesting comparison of the infrared absorption spectra in amorphous Se,
As, and Ge which have two-, three- and four-fold co-ordinations respec-
tively (Fig. 6.59). Se and As show features in two frequency regimes and

Fig. 6.59. Infrared absorption spectra of amorphous arsenic, selenium, and germanium. The
solid arrows indicate first-order modes; the broken arrows indicate overtones and combina-

tions of the first-order modes. (From Lucovsky and Galeener 1976.)

Ge in three. As discussed by Lucovsky and Knights (1974) and Lucovsky
and Galeener (1976) the spectrum for Se is best understood in terms of a
molecular model, that for Ge in terms of a density-of-states approach, and
As, lying somewhere in between, offers useful insight into bridging the gap
between the two theoretical approaches (see also Meek 1977 b and Davis etal.
1979).

The far-infrared absorption in amorphous SiO2 and similar glasses has
been discussed by Stolen (1970) and by Wong and Whalley (1970). Bell,
Bird, and Dean (1968) and Bell and Dean (1970) have computed the
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vibrational spectra for various disordered lattices and have shown the
importance of localized modes in SiO2 for example. Raman spectra of
GeO2 and SiO2 have been obtained by Galeener and Lucovsky (1976);
several previously unexplained features in these spectra have been
assigned by these authors to longitudinal optical (LO) vibrations which
suggests the importance of including long-range Coulomb forces in
theoretical studies of vibrational properties of many glasses.

6.8. Other measurements

6.8.1. Thermal conductivity and specific heat

Measurements of the temperature dependence of thermal conductivity and
specific heat of several non-crystalline materials (Zeller and Pohl 1971,
Pohl 1976) have revealed a low-temperature behaviour that differs
considerably from that in crystalline materials. Fig. 6.60 shows that the
thermal conductivities and their temperature dependencies below about
2 K are essentially the same for many non-crystalline materials. The T3

dependence observed in crystalline SiO2 (quartz) and common to other
crystalline materials arises when the phonon mean free path / is constant
and equal to the sample size, the thermal conductivity K then having the

Fig. 6.60. Temperature dependence of thermal conductivity of (a) crystalline (quartz) and
vitreous SiO2 and (b) several other non-crystalline materials. (From Fritzsche 1973, Zeller

and Pohl 1971.)
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same Debye dependence on T as the specific heat Cv:

(6.78)

where v is the velocity of sound, N the number density of atoms, p the
density, and @ the Debye temperature. As T is raised above 10 K, phonon
scattering reduces / and K falls as shown in Fig. 6.60. It should also be
mentioned that the absolute values of the thermal conductivity of crystal-
line materials vary considerably according to the degree of their chemical
and structural perfection.

Returning now to the non-crystalline materials, K is several orders of
magnitude lower than values generally found in crystals, is similar for all
glasses measured to date, and exhibits a weaker temperature dependence
(K oc Tn where 1-8 < n < 2) than found in crystals. Assuming that the heat
is carried entirely by Debye phonons, one can use eqns (6.78) to calculate
the temperature dependence of the phonon mean free path. This is shown
for crystalline and vitreous SiO2 as well as for other glasses in Fig. 6.61. At
the top of this figure are scales showing the wavelength and frequency of

Fig. 6.61. Average phonon mean free path calculated from eqn (6.78) for crystalline SiO2 and
vitreous SiO2, GeO2, and Se as a function of temperature: solid curves, experiment; broken

curves, 'isotropic' scattering. (From Zeller and Pohl 1971.)
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the 'dominant' Debye phonons in SiO2 at the temperature concerned
(roughly hv = 5 kT). Below about 1 K, the mean free path in these glasses
seems to be about '100 phonon wavelengths'. In view of the anomalously
high specific heats to be described below, one might question whether
these calculated mean free paths are meaningful. Use of a Cv value larger
than that given by Debye theory would yield smaller values of /. However,
independent determinations of /, using ultrasonic attenuation and also
Brillouin scattering, yield values close to those deduced from the thermal
conductivity; at high power levels ultrasonic attenuation experiments
actually suggest higher values (see below). Further confirmation that the
magnitude of / deduced from the Debye theory is correct comes from the
observation of a reduced thermal conductivity below 1 K in etched soda
silica fibres of diameter 6x 10~3 cm in which Casimir boundary scattering
occurs (Pohl, Love, and Stephens 1974).

The temperature dependence of the specific heat in several glasses is
compared with that in quartz in Fig. 6.62. The behaviour in glasses follows

(6.78)

Fig. 6.62. Temperature dependence of specific heat in crystalline and vitreous SiO2 and in
pyrex. (From Zeller and Pohl 1971.)
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Not only is there an additional linear term in the specific heat, which is of
comparable magnitude in many non-crystalline materials, but the normal
T3 term is usually larger than that calculated from the elastic constants.

Several models have been proposed to explain the linear temperature
term in the specific heat.t A purely electronic mechanism in which the
dependence arises from a finite density of one-electron states at the Fermi
level is possible in principle, but the required density (~1020~21 cm~3)
would not be compatible with the optical transparency. This latter objection
is perhaps overcome in the model of two-electron (bipolaron) states pro-
posed by Anderson (1975) (and also in its adaptation by Mott, Davis, and
Street (1975) to specific defects); the optical energy for one-electron exci-
tation can be considerably greater than the thermal excitation energy for
the two-electron system. However, according to Phillips (1976), the relax-
ation (hopping) time for bipolaron excitation is calculated to be too long
except perhaps for a small fraction of the states that are considerably closer
than the average.

It might be relevant to note here that the linear term in Cv has been
observed only in glasses that contain elements having a low co-ordination
number in the solid, e.g. a chalcogen or oxygen atom. It is not present, or is
at least much smaller, in glassy As which has three-fold co-ordination
(Phillips and Thomas 1977, Jones, Thomas, and Phillips 1978). This
suggests that a likely explanation for the required additional excitations
might lie in configurational defects, i.e. places in the glass where the atoms
can sit more or less equally well in two or more locations having comparable
total energies. The tunnelling-states model of Anderson etal. (1972) and of
Phillips (1972) is based on the existence of a quasi-continuous distribution of
such structural configurations and was introduced in § 6.4.5 in the discussion
of a.c. conductivity. We shall not develop this model further but refer the
reader to the original papers.t It is sufficient to say here that it not only
accounts for the T dependence of Cv, but also provides a possible explana-
tion for the thermal conductivity behaviour. The assumption here is that the
excitations do not contribute to the transport of heat but act as resonant
phonon scatterers; the mean free path is predicted to vary as T~l and hence
the thermal conductivity as T2. Furthermore, at high power levels (in the
ultrasonic attenuation experiments for example) the centres are saturated,
the scattering is diminished, and the mean free path rises.

t Measurements down to 0-02 K in 'Suprasil' have indicated proportionality with T1'2 l'3

(Lasjaunias et al. 1975) and this behaviour may be more representative of glasses than the
linear dependence. Wenger, Amaya, and Kukkonen (1976) also find departures from eqn
(6.79) and in addition a negligible change in the low-temperature specific heat of silica after
quenching from 1150°C , a treatment that induces considerable internal strain.

$ For further developments 6f this model, as applied to the low-temperature sound velocity
and specific heat of vitreous silica, see Piche et al. (1974).
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The linear term in the specific heat of glasses is common enough to sug-
gest that its origin lies in some intrinsic feature of the non-crystalline state.
However, the observations that the magnitude of the term in As2Se3

(Stephens 1976) and in SiO2 (Lasjaunias et al. 1975) can be considerably
reduced if care is taken to remove water of hydrogenation from the glass,
does raise the possibility of the effect being extrinsic. The absence of a linear
term in Cv for As may then be related to the purity rather than the two-fold
co-ordination of this material.

Turning our attention now to the T3 term in the specific heat of amor-
phous materials and its difference in magnitude from that in crystalline
states of the same material, we present in Fig. 6.63(a,b) results for Ge and

Fig. 6.63. Temperature dependence of specific heat in (a) crystalline and amorphous
germanium, (b) crystalline and amorphous arsenic, ((a) From King etal 1974, (b)from Jones et

al 1978.)

As. The data are plotted as C/T3 versus T which emphasizes departures
from the Debye theory. The intercept at T = 0 gives the Debye temperature
(see eqn (6.79)); an upward trend in C/T3 indicates a density of phonon
states proportional to higher powers of frequency than predicted by Debye
theory (oc (energy)2), and a peak indicates a maximum in the phonon
spectra. Clearly differences between non-crystalline and crystalline
materials have their origin in differing distributions of TA modes. In Ge
the Debye temperature is 374 K for the crystal and 315 K for the amor-
phous form. This 16 per cent reduction for the amorphous form continues
to higher temperatures, i.e. higher phonon frequencies. A bodily shift of
the TA mode to lower frequencies could be accounted for by a reduction in
the bond-bending force constants, although it is not obvious why this
should occur. A lower Debye temperature suggests weaker bonds. In As
the discrepancy is greater (0cryst = 278 K, ® amorPh= 169 K) (Wu and Luo
1973, 1974). Furthermore bulk As and compacted films exhibit very
different behaviour (Jones, Thomas, and Phillips 1978) and indicate a
relative increase in the density of low-frequency vibrational modes in the
former (Lannin, Eno, and Luo 1978).
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6.8.2. Photoemission and density of states

Photoemission is one of the most valuable experimental techniques avail-
able in the study of the electronic band structures of semiconductors. The
method involves the photoinjection of carriers from valence or core states
into the vacuum and an analysis of the energy distribution of the emitted
electrons as a function of photon energy. The experiments are relatively
difficult to perform properly, and skill is needed to interpret the energy
distribution curves (EDCs).

For photons of energy ha) the energy distribution of emitted electrons is
given by

(6.80)

where K is a scale factor which includes parameters of the experimental
apparatus, a is the absorption coefficient, T is an escape function, and 5 is
the fraction of excited electrons of energy E lost because of scattering.
Thus, like optical absorption measurements, photoemission gives the
combined or joint density of states in the valence and conduction bands.
The above formula assumes that the k conservation selection rule is not
important.

There are, however, two major advantages that photoemission
measurements have over optical absorption. The first is that the energy at
which a peak in NcNv occurs can be related to some fixed point in the band
structure, such as the top of the valence band. In optical absorption
experiments only energy differences are determined. In photoemission a
determination of absolute energies can, in principle, be made with a
knowledge of the electron affinity of the semiconductor and if a retarding-
potential method is used to measure the energy distributions of the collec-
tor. In practice, however, the measured retarding potential can be related
to the energy at the top of the valence band by noting the maximum value
of the retarding potential for a given ha) at which electrons appear in the
energy distributions. The second advantage can be seen by considering the
schematic density of states shown in Fig. 6.64 in which the valence-band
density of states is shown raised by hco to obtain the product NC(E)NV(E —
ha)). Multiplication by the escape function T yields, if 5 is constant, a
spectrum proportional to the measured energy distribution of emitted
electrons. For another value of ha), a different spectrum results. Peaks in
the distribution that do not vary their position with tuo are to be associated
with maxima in the conduction-band density of states; those peaks in the
distribution that do vary their position with photon energy originate from
maxima in the valence-band density of states. Thus one can, in principle,
determine both Nc and Nv separately. However, as conduction-band states
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Fig. 6.64. Schematic illustration of the principles involved in photoemission experiments.

below the vacuum level of the semiconductor are inaccessible to the
technique, it is normally not easy to obtain much information on NC(E). In
practice a layer of, say, caesium can be evaporated on to the surface in
order to lower its work function and hence increase the accessible range.

If the photon energy is raised above, say, 20 eV the structure associated
with the conduction band disappears and the EDCs then reproduce the
energy dependence of the density of valence states with some modification
due to slowly varying photoionization cross-sections. At even higher ener-
gies core-level spectra are obtained. Photoemission experiments using high
photon energies are referred to as XPS (X-ray photoemission spectros-
copy) or ESCA (electron spectroscopy for chemical analysis).

Photoemission spectroscopy in amorphous Ge and Si has been reviewed
by Spicer (1974), in III-V compounds by Shevchik (1974), and in some
chalcogenides by Davis (1974).

The EDCs of crystalline and amorphous Ge at two different photon
exciting energies are shown in Fig. 6.65 (from Spicer 1974). In, § 7.17 the
changes in the density of valence states (DOVS) which these results suggest
will be discussed in more detail. Here we wish to emphasize the differences
between results using different exciting energies. Although not completely
understood they may be related to differences in photoelectron cross-
sections, to matrix elements effects, or to differences in escape depths
which are very short for hv ~ 25 eV.

Some differences associated with conditions of specimen preparation
have been revealed by photoemission studies on amorphous Si (Fig. 6.66).
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Fig. 6.65. Comparison of EDCs at different exciting energies for crystalline and amorphous
germanium. The leading edges have been superimposed and a correction has been made for

scattered electrons. (From Spicer 1974.)

Fig. 6.66. Schematic drawing of the density of states near the band edge found by (a) Pierce
and Spicer (1972) and (b) Fischer and Erbudak (1971). (From Spicer 1974.)
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As it is difficult to detect state densities below about 10iy cm 3 by this
technique, the tailing of the valence band into the gap deduced by Fischer
and Erbudak (1971) is very large and may be related to the small source-
substrate distance used in the evaporation of their films (see Orlowski and
Spicer 1972). The tail tended to disappear with annealing.

Photoemission-derived DOVS for amorphous III-V compounds, As,
and the chalcogenides will be described in Chapters 7, 8, and 9 respec-
tively.

A difference in the binding energy of core levels between crystalline and
amorphous phases of a material may be expected if the environment of
individual atoms is different. In the point-ion approximation the chemical
shift of an atomic core level is related to the atom's environment through
the local Madelung sum Ej = ̂ i^jqi/Rij (Segbahn et al. 1967) where Rtj is
the separation between atoms i and j and qt is the charge on atom /. In a
typical III-V compound the first term in the series is ~3 eV and, if in the
amorphous phase 'wrong bonds' are present, a shift of this magnitude
could in principle occur. However, there is the possibility that a redistribu-
tion of charge could occur to compensate partly or completely structurally
induced core shifts (see Robertson 1975). With this proviso the results for
the In 4d level in InP, InAs, and InSb shown in Fig. 6.67 suggest the
presence of wrong bonds in InP but not in the other materials (Shevchik,
Tejeda, and Cardona 1974a,fe). However, this conclusion has been ques-
tioned by Raman and DOVS studies (§ 7.7).

Fig. 6.67. EDCs from the In 4d level in amorphous and crystalline InP, InAs, and InSb
obtained with photons of energy 40-8 eV. The binding energies are referred to the top of the

valence band. (From Shevchik et al I974a.)
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6.8.3. Electron spin resonance

Electron spin resonance (e.s.r.) has been extensively used in amorphous
semiconductors to investigate defect centres which carry a spin. In addition
e.s.r. has been found to enhance hopping conduction in doped and
compensated crystalline silicon (§4.3.3) and to increase the rate of
recombination in amorphous silicon, as discussed below. E.S.R. may be
observed in deposited or annealed materials; sometimes, when it is absent
or small, it can be enhanced by visible or infrared radiation. The g value,
breadth, and shape of an e.s.r. line can often give information about the
location of the electron not obtainable in any other way.

Early work of Brodsky and Title (1969) reported e.s.r. signals from
amorphous films of Si, Ge, and SiC. From a comparison of the g value,
linewidth, and shape of the signal with those detected on cleaved, single-
crystal surfaces of silicon by Haneman (1968) it was suggested that the
signals arose from dangling bonds. The high density of spins (~1020 cm"3)
was found to be a true bulk property and it decreased by a factor ~ 10-100
on annealing. The later observation that voids exist in amorphous Si and
Ge provided in a natural source of internal surfaces on which such dangling
bonds could reside (see Brodsky etal. 1972ft). Several studies (e.g. Paesler et
al 1974) produced a fairly good correlation between the free spin density
and such properties as porosity, internal stress, and density, thus strength-
ening this hypothesis (see Fig. 7.15).

A study by Connell and Pawlik (1976) in which hydrogen was
incorporated into films of amorphous Ge during the sputtering process
indicates that there is approximately only one spin per 100 dangling bond
sites in unhydrogenated material. This suggests almost complete pairing of
dangling bonds on void surfaces. Those remaining can bond to
incorporated hydrogen, leaving a spin signal associated with dangling
bonds at small defects such as single dangling bonds. The observation of
zero-spin signal density in amorphous Si prepared by the glow-discharge
decomposition of SiH4 (Spear 1974ft) suggests that even these dangling
bonds can be hydrogenated in this material.

More recent studies by photoemission (Wagner and Spicer 1972, Spicer
1974, Eastman and Grobman 1972a,ft, Kaplan et al. 1975) of the surface
state density and its distribution in energy on crystalline silicon surfaces
have now cast doubt on the original correlation between e.s.r. signal
strength and density of surface dangling bonds, and consequently the
association of spin density with void surfaces in amorphous material has
become uncertain and will be considered further below.

DiSalvo, Bagley, and Clark (1974) (see also, DiSalvo, Bagley, and Hutton
1976) first obtained evidence for ordering of spins at low temperature in
amorphous Ge, and Hudgens (1976) investigated the absolute value of the
magnetic susceptibility of amorphous Ge and Si obtained by evaporation,
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glow-discharge decomposition, and sputtering. This deviates from a Curie-
Weiss law at low temperatures, suggesting antiferromagnetic coupling; the
spin density decreases with annealing and hydrogen doping and the Neel
temperature drops from ~8 K to below 1-5 K.

Thomas and Kaplan (1976) investigated the e.s.r. signal from ultra-high-
vacuum-evaporated silicon, in particular the dependence of linewidth on
the concentration and temperature dependence of the susceptibility. They
came to the conclusion that the spins are randomly distributed and are
perhaps single dangling bonds. For glow-discharge-deposited specimens
Brodsky and Title (1976) conclude that spins are clustered. If we are right
in thinking that dangling bonds are all hydrogenated in this material and
that spins must arise from overlap of EX and £V levels, then the amount of
overlap could depend critically on disorder, which would favour clustering.

The conclusion that spins have this origin is reinforced by the effect of
doping on the photoconductivity lifetime, discussed in § 6.5.2. No e.s.r.
signal has at the time of writing been observed for undoped glow-discharge
material, but Knights, Biegelsen, and Solomon (1977) observe a weak
signal on doping. They also find that a signal ten times stronger can be
optically induced during the radiation. The concept of a negative Hubbard
U is invoked to explain this. We consider that Spear's E^ band, which is
~10 stronger than his EX, must be mainly due to some kind of deep donor
(hole trap) which does not act as an acceptor. A possible model to explain
the enhancement of spin by radiation is that, if this defect is denoted by D° ,
the reaction

(6.81)

is exothermic and is rapid, so that D+ produced by illumination have only a
very short lifetime. Thus p-type doping would produce D2+ centres which
would not have a spin.

Knights et al (1977) see in the case of boron-doped specimens under
illumination two lines, a 'central line' with width ~7-5 G and a broad line
about 20 G wide shifted to a 0-1 per cent higher g value. Only the former
appears in the dark signal. A possible hypothesis is that the narrow line is
due to a charged divacancy and the broad one to the unstable D+.

Solomon, Biegelsen, and Knights (1977) observe spin-dependent pho-
toconductivity (see below) in n- and p-type glow-discharge-deposited sili-
con, the signal showing a strong maximum near the undoped composition,
as shown in Fig. 6.68. We could interpret this by saying that for p-type
material the recombination is monomolecular, electrons falling into the
spinless D2+ states, and for the n-type material it is bimolecular, electrons
falling into the states resulting from the capture of holes, which, according
to (6.81), must be spinless.

In evaporated and sputtered specimens of Si and Ge, and perhaps in
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Fig. 6.68. Spin-dependent photoconductivity extrapolated to infinite microwave power as a
function of phosphine/silane and diborane/silane volume ratio. The magnitude of the signal
for intrinsic silicon, deduced from a p-n junction experiment, is marked 'diode'. (From

Solomon etal 1977.)

glow-discharge-deposited specimens also, spins on the surfaces of voids
have to be considered. It is known from the work of Kaplan et al (1975)
and Lemke and Haneman (1975) that a cleaved silicon surface does not
give an e.s.r. signal, the electrons forming doubly occupied and empty
bonds which alternate (Phillips 1977). In crystalline material the number of
spins on a void must be even, so no unpaired spins will result. Spins on
voids must therefore have one of the following origins.

(a) In the amorphous material odd numbers of spins are possible.
Connell and Pawlik (1976) do in fact conclude, from an estimate of the
void surface obtained from the optical absorption coefficient, that in
sputtered germanium there is not more than one spin per void.
(b) Hydrogen or oxygen contamination leaving some isolated spins.
(c) Donors or acceptors present in the material, as in doped glow-
discharge material. These could transfer their electrons to or from sur-
face states on the void, producing states with spin.
At the time of writing, on the available evidence we do not feel able to

distinguish between these mechanisms, or to discuss the relationship
between the number of spins (ATL) and the density of states (N^/kE)
deduced from hopping conductivity. Voget-Grote et al. (1976), however,
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have found an interesting relationship between the two phenomena for
differently prepared ion-bombarded samples of amorphous silicon. A close
relationship exists between the temperature-dependent part of the line-
width and the hopping conductivity (§ 2.7). For a review see Stuke (1977).

As already mentioned, Solomon et al. have observed spin-dependent
photoconductivity in amorphous silicon (Fig. 6.68). The phenomenon was
first observed in crystalline silicon (Lepine 1972) and by Solomon (1976) at a
p-n junction and at dislocations in silicon (Lepine et al. 1976). A simple
theory is as follows. One particle (say a hole) is captured by a spinless centre,
which then acquires a spin. If the centre and the electron have the same spin,
no recombination is possible. If the field produces spin polarizations p, P,
then the recombination time r is increased according to the equation

For 3000 G and 300 K, pP is 10~6. A saturated e.s.r. signal removes this
term. The experiments suggest that the effect is orders of magnitude
greater. Solomon gives a tentative explanation in terms of rather complex
centres. An alternative (Kaplan, Solomon, and Mott 1978) is to suppose
that the electron and hole (in a centre) are bound together by a weak
Coulomb force. Then in the ground state of the bound exciton, if spins are
parallel, they form a triplet and do not recombine. Thus (except at very low
T), they will normally separate. But often they should separate to a
distance less than the Onsager radius e2/KkT, so that, while the Hund's
rule interaction is negligible, normally the same pairs can try again to
recombine. The e.s.r. signal, by switching the spin direction, can allow the
electron and hole pair to recombine.

We turn now to chalcogenides. Those in the annealed state are diamag-
netic, and in general the diamagnetic susceptibility is greater than for the
corresponding crystal (for a review see Matyas 1976). According to White
and Anderson (1972) this is because the paramagnetic Van Vleck term is
smaller. The absence of Curie paramagnetism at low temperatures and still
more the absence of an e.s.r. signal was for a long time one of the puzzles of
the subject, since it seemed not to be compatible with a pinned Fermi
energy (Fritzsche 1973). Some of the evidence is reviewed in § 9.4.
Fritzsche (1976) reviews the situation for a large number of materials in
which the spin density would have been observed if it was greater than
1015-3 x 1016 cm~3. In §6.4.1 we have shown how a model of 'charged
dangling bonds', introduced by Street and Mott (1975) making use of
Anderson's (1975) model of a negative Hubbard U, was able to reconcile
these concepts. According to this model, which is developed further in
Chapter 9, 'dangling bonds', such as chain ends in selenium, are normally
positively or negatively charged (denoted D+, D~) and so do not carry a spin,
though they do pin the Fermi energy. The model predicts, however, that if
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radiation ejects an electron from a D~ into the conduction band or into a D+

from the valence band, a state with a spin will be produced which will be
metastable at low temperatures.

The extensive work of Bishop, Strom, and Taylor (1975, 1976a,£; for a
review 1977) on optically induced paramagnetic states can at any rate in
part be interpreted in terms of this model. This work is mentioned in
connection with photoluminescence of chalcogenides in Chapter 9. In
chalcogenides and also in arsenic, irradiation with light of energy cor-
responding to the Urbach tail of the absorption edge (a — 100 cm"1)
excites photoluminescence, which fatigues (decays) during continuing
excitation. The fatigue is accompanied by the appearance of a growing
e.s.r. signal not present before illumination, together with optically induced
absorption. In contrast to the case of glow-discharge-deposited silicon, the
signal is stable below 80 K. Some of the phenomena established were as
follows:

(1) The signal saturated at ~1017 spins cm~3 in As2S3, As2Se3, and As,
and 1016 spins cm~3 in Se.
(2) No spin signal could be induced in crystalline As2Se3, suggesting a
density of spins less than 101 spins cm 3.
(3) Analysis of the e.s.r. spectra identified a signal due to an electron
missing from a non-bonding line pair chalcogen orbital. This we believe
to be our D °  centre, though the observation would be compatible with a
self-trapped hole in the valence band if self-trapping turned out to be
possible. In glasses containing arsenic another broader line corresponds
to a hole localized in an arsenic p orbital.
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germanium and silicon

7.1. Methods of preparation

In the liquid state amorphous germanium and silicon have six-fold co-
ordination and are metallic. Bulk glasses cannot be prepared by normal
methods of cooling the melt, although for Ge there have been isolated
reports of material obtained by splat-quenching (Davies and Hall 1974,
Vucic, Etlinger, and Kunstelj 1976). Amorphous films, produced by some
form of deposition, have, like the crystalline phases, four-fold co-ordina-
tion and are semiconductors. The way in which the film is prepared has a
major effect on the electrical and optical properties, as will be seen. The
most important methods are as follows.

(a) Vacuum evaporation (see for example,.Tauc, Grigorovici and Vancu
1966, Clark 1967, Grigorovici, Croitoru, and Devenyi 1967, Walley
1968a,6, Walley and Jonscher 1968, Croitoru and Vescan 1969, Spicer
and Donovan 1970, Chopra and Bahl 1970, Theye 1970, Pierce and Spicer
1971, Spicer, Donovan, and Fischer 1972, Lewis 1972, Bahl, Bhagat, and
Glosser 1974). Evaporation in a vacuum can produce films up to 20 ^irn in
thickness, but such thick films tend to break up because of internal strains
and most measurements have been made on films of a few microns thick-
ness. Ideal conditions appear to be ultra-high vacuum (~10~10 torr), pure
starting material, a large source-to-substrate separation (to achieve almost
normal incidence), a fairly slow evaporation rate (a few microns per hour),
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ultra-clean, smooth substrates, and a high substrate temperature (250-
300°C) . Not all films of course are prepared under such conditions and
studies of the properties as a function of one or other of the variables have
been quite informative. Films produced by evaporation in a poorer vacuum
undoubtedly contain some oxygen and this tends to stabilize the films
against crystallization on heating. Films deposited onto substrates held at
different temperatures provide materials with a range of properties, as do
films deposited at room temperature and subsequently annealed. The
density of germanium films prepared by vacuum evaporation has been
reported to be up to 30 per cent lower than that of the crystal (5-35 g cm~3)
but, on the average, densities are perhaps 10-15 per cent lower, and
Donovan, Ashley, and Spicer (1970) report that evaporation of germanium
on to a quartz substrate held at 250-300° C produces amorphous films of
density close to that of the crystal.

(b) Sputtering. Preparation of films by sputtering in argon has been
described by Tauc et al (1970), Moss, Flynn, and Bauer (1973), Hauser
(1973), and Paul et al (1973). The starting material is normally a pre-
fabricated, polycrystalline, or compressed powder target and with, say,
10~3 torr of Ar in the chamber, rates of deposition are a few microns per
hour. It is difficult to avoid incorporation of Ar, at a level of perhaps 1 per
cent, but the concentration of other impurities can, with care, be kept much
lower. As with high-vacuum evaporation, sputtered films have a density
that increases with substrate temperature and can be within a few per cent
of that of the crystals. The properties of such films are similar to those of
evaporated material (at least when considered relative to films produced by
glow-discharge—see below). Films of germanium and silicon prepared by
sputtering in an argon/hydrogen mixture have been described by Lewis et
al. (1974), Connell and Pawlik (1976), Lewis (1976), Hauser (1976),
Anderson, Moustakas, and Paul (1977), and Moustakas and Paul (1977).

(c) Electrolytic deposition (Szekely 1951, Tauc et al. 1970). Thick
(~30 fjt,m) films of amorphous germanium can be prepared by deposition
on to a copper cathode immersed in an electrolytic solution of GeCU in
C3H6(OH)2. Such films, which contain a few per cent of oxygen and copper
as impurities, can be obtained unsupported by subsequently dissolving the
copper substrate in chromic-sulphuric acid. Only a very limited number of
measurements have been reported on films prepared by this method.

(d) Glow-discharge decomposition. This method of producing amor-
phous films employs an electrodeless radiofrequency discharge in germane
(GeH4) or silane (SiH4) gas. Developed at the STL Laboratories (see
Chittick, Alexander, and Sterling 1969, Chittick 1970), and subsequently
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by Spear and his colleagues (see Le Comber, Madan, and Spear 1972,
Spear and Le Comber 1977, and other references cited in this chapter) and
by Knights (1976a,fe), this method produces films that are several orders of
magnitude more resistive than films produced by other methods; the
concentration of defects is lower and the band gap is higher. Why this
should be so is not yet absolutely clear. According to some authors (see
Connell and Pawlik 1976, Hudgens 1976, Hauser 1976, Fritzsche 1977) it
is becauserof the presence of hydrogen, the incorporation of which, even in
a concentration less than 1 per cent, undoubtedly serves to neutralize the
role of dangling bonds in an otherwise fully co-ordinated network.
According to others (see Spear 1914b, Le Comber et al. 1974) the different
properties of these films are associated with the particular nature of the
deposition process itself. Estimates of the hydrogen content vary and
indeed the amount incorporated depends on the deposition temperature
and the deposition rate (Brodsky, Frisch, Ziegler, and Lanford 1977).
Brodsky, Cardona, and Cuomo (1977) (see also Knights, Lucovsky, and
Nemanich 1978), from a detailed study of infrared and Raman spectra on
glow-discharge-deposited Si, report concentrations of bonded hydrogen
~35-50 at. per cent and ~ 15-25 at. per cent in films deposited at room
temperatures and 250°C , respectively. Tsai et al. (1977) have studied the
effusion of hydrogen on heating; above 600° C most of the hydrogen can be
driven out, but the resulting films then have a conductivity and optical gap
similar to films prepared by evaporation or sputtering.

In spite of the likely high concentration of hydrogen in amorphous Si and
Ge prepared by glow-discharge decomposition, the low density of active
defect sites has allowed a comprehensive investigation of the 'intrinsic'
propertiest of such films. The first reports of substitutional doping of an
amorphous semiconductor were made on films deposited by glow-dis-
charge decomposition of SiH4/PH3 and SiH4/B2O6 gaseous mixtures
(Spear and Le Comber 1975, Spear and Le Combej 1976, Le Comber and
Spear 1976, Knights 19760,6, Spear and Le Comber 1977, Spear 1977).

7.2. Structure of amorphous Ge and Si

The principal experimental method used for determining the structure of
these tetrahedrally co-ordinated semiconductors is X-ray or electron
diffraction. From an analysis of the angular distribution of the scattered
intensity, a radial distribution function (RDF) can be derived which can be
compared with those determined from structural models built either by
hand or on a computer. For Ge and Si (particularly the former) this
procedure has led to a detailed description of the short-range order present

t By this we mean the properties of the conduction and valence bands, including the position
of the mobility edge, which do not depend to any major extent on states in the gap. For films
containing large amounts of hydrogen it might be preferable to refer to them as Si:H alloys.
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in amorphous films. Though variations in conditions of preparation lead to
changes in electrical and optical properties (see later sections) and also to
recognizable changes in the RDF, the latter are relatively insignificant if
one is interested in gross features of the structure.t

Experimentally determined RDFs of amorphous silicon (by Moss and
Graczyk (1969, 1970) using electron diffraction) and amorphous
germanium (by Temkin, Paul, and Connell (1973) using X-ray diffraction)
are compared with those of the crystalline phases in Figs. 7.1 and 7.2

Fig. 7.1. Radial distribution function (RDF) of amorphous (evaporated) and crystalline silicon
as determined from analysis of electron diffration data. (From Moss and Graczyk 1970.)

t Voids and other imperfections are discussed in § 7.3.
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Fig. 7.2. Radial distribution function of (a) crystalline germanium and (b) two films of
amorphous germanium prepared by sputtering on to substrates held at 150° C (lower curve)
and 350° C (upper curve). Ripples on either side of the first main peak are associated with
termination effects. These have been corrected for in the upper curve of (b). (From Temkin

et al 1973.)
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respectively. Similar curves have been obtained by other workers; see, for
example, Richter and Breitling (1958), Coleman and Thomas (1967,
1968), Grigorovici and Manaila (1967, 1969), Shevchik and Paul (1972),
Gandais etal. (1973), and Graczyk and Chaudhari (1973a,b). The RDFs of
both amorphous germanium and silicon show that the basic tetrahedral
arrangement of the diamond cubic structure is preserved, there being four
(the area under the first peak) nearest neighbours at a separation within a
few per cent of the crystalline bond length and twelve next-nearest neigh-
bours at an average separation of V(8/3) times that length. The breadth of
the second peak, after correction for thermal broadening, indicates bond-
angle distortions of about ±10°  (r.m.s.) off the normal tetrahedral angle of
109°  28'. However, it is the dramatic loss of the third-neighbour peak
present in the crystalline RDFs that marks the first most striking departure
from the diamond structure.

The relative orientation of triads of bonds emanating from two nearest
neighbours is known as the dihedral angle <p (Fig. 7.3(a)). When this is 60° ,
the bonds are said to be in the staggered configuration, and when it is zero
the bonds are said to be eclipsed. If all bonds are staggered and further
units added, one is led to the diamond cubic structure (Fig. 7.3(b)); if they
are staggered in three directions but eclipsed in the fourth, one derives the
wurtzite lattice; in both of these structures all atoms lie in puckered rings
consisting of six atoms. If all bonds are eclipsed and a small distortion
(1°  28') of bond angles allowed, pentagonal dodecahedra containing only
five-fold planar rings of atoms are created (Fig. 7.3(c)), but these units
(called amorphons) cannot fill space completely.

Fig. 7.3. (a) Illustration of the dihedral angle (f> between next-nearest-neighbour bonds, (b)
The diamond cubic structure—all bonds staggered (<£ = 60°) . (c) An 'amorphon'—all bonds

eclipsed (<£ = 0°) .
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The first serious attempt to model a-Ge or a-Si was made by Grigorovici
(1968) (see also Grigorovici and Manaila 1969, Grigorovici and Balu 1972,
Grigorovici 1973) using a mixture of amorphons and diamond-like units,
simulated for the purposes of building by modified Voronoi polyhedra.
This model produced an RDF in fair agreement with experiment and
achieved the important feature of reducing the third peak which is present
in the RDF of crystalline Ge or Si but not in that of the amorphous forms
(Figs. 7.1 and 7.2). However, detailed comparison shows that the bond-
length fluctuations were overestimated and the bond-angle distortions
underestimated in this model.

Polk (1971) (see also Turnbull and Polk 1972) built the first continuous
random network that allowed the dihedral angle to take up all values.

Fig. 7.4. The 440-atom continuous random network (CRN) built by Polk (1971) to simulate
the structure of amorphous germanium or silicon.
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Starting with a core of five- and six-membered rings, additional atoms were
added in such a way that the following conditions were satisfied: (1) there
were no unconnected bonds in the interior of the model; (2) the bond
length variations were less than 1 per cent; (3) the bond-angle distortions
were within about ±20°  of the tetrahedral bond angle (109°) ; (4) there was
a minimum of strain. The strain minimization was found to be operation-
ally equivalent to requiring that the surface density of dangling bonds
remained constant as the model size increased. The resulting model (Fig.
7.4) contained 440 atoms and appeared capable of indefinite extension. Its
RDF, determined by direct measurement of atomic separations from some
16 centrally located atoms, shows a good fit to experiment (Fig. 7.5). The

Fig. 7.5. Comparison of the RDF (histogram) of the Polk model with the (scaled) experimen-
tal RDF of amorphous silicon (shown in Fig. 7.1). The parabola represents the average
density of the model, and the vertical lines and corresponding numbers represent the position
and number of neighbours in a diamond cubic crystalline structure with a bond length equal to

the average of the model. (From Polk 1971.)

density was determined to be 93 ±2 per cent of the diamond cubic struc-
ture, in reasonable agreement with that of many amorphous samples. The
model contains five-, six-, and seven-membered rings of atoms and has a
continuous distribution of dihedral angles.

The original Polk model was extended to 519 atoms by Polk and Bou-
dreaux (1973), and the atomic co-ordinates of the whole model adjusted by
an iterative technique on a computer until the standard deviation of all
interatomic spacings was less than 0-2 per cent. Using the refined co-
ordinates, the RDF (Fig. 7.6(a)) as well as the mean tetrahedral bond angle
and its standard deviation (108°±9-1°) , the density (99 per cent of
diamond cubic) and the dihedral angle distribution (Fig. 7.6(b)) were
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Fig. 7.6. (a) Comparison of the reduced RDF,

for the Polk-Boudreaux 519 atom model (after refinement of the co-ordinates and broaden-
ing of the histogram to reduce statistical fluctuations) with the experimental G(r) of amor-
phous silicon (derived from Fig. 7.1). (b) Dihedral angle distribution of Polk-Boudreaux 519

atom model. (From Polk and Boudreaux 1973.)

determined. The latter shows that the staggered configuration of bonds is
roughly twice as likely as the eclipsed.

Steinhardt, Alben, and Weaire (1974) and Duffy, Boudreaux, and Polk
(1974) have further refined this 519-atom model by adjusting the atomic
positions so as to minimize the Keating expression (Keating 1966, see also
Moss et al 1973/74) for the elastic energy in terms of the bond lengths,
bond angles, and the bond-stretching and bond-bending force constants.
Steinhardt et al. (1974) also built a new 201-atom model starting from a
seed of 21 atoms and relaxing, by computer, the positions of newly added
groups of atoms so as to minimize the energy of the network as it grew.
This relaxation procedure, which determines both the connectivity as well
as the co-ordinates, was not found to lead to a model with structural
characteristics significantly different from the relaxed 519-atom model.
Both of the relaxed models had densities within 1 per cent of crystalline
Ge, bond-length fluctuations ~1%, and bond-angle distortions with an
r.m.s. value —7° , this being rather smaller than the value (—10° ) deter-
mined experimentally. Apart from this latter feature, the RDF of both
modes as well as that of Duffy et al. (1974), who used a somewhat different
relaxation procedure, agreed very well with experiment.
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A very good fit to the experimental RDF is of course a necessary
criterion to be met by any model. However, it may be insufficient for
defining the structure uniquely. With this in mind, Connell and Temkin
(1974a,6) undertook to build a tetrahedrally co-ordinated continuous
random network which contained no odd-membered rings and therefore
had a significantly different topology than that of the Polk and similar
models. Another reason for attempting this was to model the III-V
compounds which are also tetrahedrally co-ordinated and yield RDFs
similar to Ge and Si but for which it may be desirable to avoid bonds
between like atoms. A 238-atom model was built following the same
general procedure as Polk but allowing atoms to lie in rings containing only
an even number of atoms. No difficulty in construction was encountered.
The RDF of this model, after adjustment of its co-ordinates to minimize
bond-length variations, is compared with that of the Steinhardt 201-atom
model in Fig. 7.7(a) and with that of the Polk-Boudreaux 519-atom model
and experimental data in Fig. 7.7(b). Fig. 7.8 shows the dihedral angle
distributions of the Connell-Temkin and the Steinhardt models, and

Fig. 7.7. (a) RDFs of the Connell-Temkin 238-atom even-membered ring model (lower
curve) and the Steinhardt 201-atom model (upper curve). The partial RDFs Jn(r) are also
shown, n = 2(broken curve), n —  3(dotted curve), n ^=4(chain curve); r has been scaled to the
bond length of germanium. (From Connell and Temkin 1974.) (b) (p. 330) Comparison of the
RDFs of the Connell-Temkin model (dotted curve), the Polk-Boudreaux unrelaxed 519-atom
model (broken curve), and one of the experimental curves (solid curve) for amorphous

germanium shown in Fig. 7.2. (From Paul and Connell 1976.)
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Fig. 7.7 (b)

demonstrates that eclipsed or nearly eclipsed bonds tend to occur less
frequently in the even-only over the mixed-ring model. Connell and Tern-
kin note that the experimental RDF of amorphous germanium appears to
lie somewhere between that characteristic of the two models. Beeman and
Bobb (1975) have used the co-ordinates of the Connell-Temkin model to
derive a series of continuous random networks (CRNs) having various
proportions of odd- to even-membered rings.

Other CRN models for amorphous tetrahedrally co-ordinated materials
have been computer built. Shevchik and Paul (1972) have described the
construction of a 1000-atom model that attempted to simulate the actual

Fig. 7.8. Dihedral angle distributions of the Connell-Temkin (solid curve) and the Steinhardt
(broken curve) models. (From Connell and Temkin 1974£.)
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deposition process by allowing atoms added to a seed of 15 atoms to seek
out locations in which, as a first choice, three of its bonds could be satisfied,
or failing this just two, and as a final choice, one. In this way surface
mobility, which is possible under certain conditions of film deposition, is
simulated. The resulting network had about 5 per cent of bonds unsatisfied
(the first co-ordination number was 3-8), which is certainly an overestimate
for carefully prepared films, but in other respects provided a good fit to the
RDF.

Another approach to computer modelling has been followed by
Henderson and Herman (1972) and Henderson (1972). Their method
involved random displacements of the positions of 64 atoms initially in an
f.c.c. crystalline arrangement until, after several hundred moves, the
experimental RDF was approximated. The resulting structure, although
not satisfactory in several respects, had periodic boundary conditions
making it favourable for calculations of vibrational and electronic pro-
perties. Other approaches to computer construction of tetrahedrally co-
ordinated networks are described by Duffy et al. (1974) and Guttman
(1976).

Attempts to model the structure of amorphous Ge and Si using micro-
crystallites have been stimulated by the observation of contrast and fringes
in high-resolution electron micrographs. The presence of these features has
been taken to infer the existence of coherently diffracting regions of linear
dimensions up to 15 A (Rudee 1971, 1972, Rudee and Howie 1972; see
also Howie, Krivanek, and Rudee 1973, Chaudhari, Graczyk, and Herd
1972, 1973, Chaudhari and Graczyk 1974, Herd and Chaudhari 1974,
Gaskell and Howie 1974). Whether random network models can account
for the observed micrographs has been a subject of some controversy (see
Cochran 1973, 1974, Berry and Doyle 1973). Although some random
networks have, in certain directions, accidental planar correlations that can
produce structure in electron micrographs (Alben, Cargill, and Wenzell
1976), the predicted contrast appears to be too low. Selective filtering in the
microscope, particularly in off-set bright-field configurations, could in prin-
ciple provide an explanation of the experimental data, and this possibility
seems likely even in the case of axial geometry used by Krivanek, Gaskell,
and Howie (1976) and Freeman et al. (1977).

The main problem with construction of microcrystallite models and
determination of their scattering properties is that of the connecting tissue
which, for small crystallites, can occupy 50 per cent of the volume.
Normally this tissue will include elements characteristic of random
networks, although a model built by Gaskell (1975), in which small tetra-
hedral modules of diamond-cubic symmetry are packed so that {111} faces
are in contact and are joined by planes of eclipsed bonds, seems to achieve
a good connectivity without resort to such elements. A portion of this
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Fig. 7.9. (a) Portion of a polytetrahedral model built by Gaskell. The structure in each
tetrahedron is diamond cubic and eclipsed bonds occur across each of the four {111} faces, (b)
RDFs: thick solid curve, amorphous Ge (experiment); thin solid curve, polytetrahedral

model; broken curve, relaxed Polk-Boudreaux model. (From Gaskell et al. 1977.)

model and its associated RDF (Gaskell, Gibson, and Howie 1977) are
shown in Fig. 7.9.

Other microcrystalline models have been based on polytypes of the
diamond structure, e.g. the wurtzite, ST-12, or BC-8 lattices (see § 7.1.8)
or on various clathrate structures. In an attempt to see whether such
structures have diffraction properties in accord with those observed for
amorphous Ge, Weinstein and Davis (1973/74) calculated the diffraction
function F(s) for several types of crystallites of various sizes. Their results
(Fig. 7.10) show that none of these structures provides a good fit to the
experimental data. Agreement is improved as the crystallite size is
reduced—in fact all structures then tend to diffract similarly—but it is
precisely under these conditions that the need to include connecting tissue
becomes stronger. Weinstein (1974) has reported that a statistical mixture
of 60 per cent BC-8 and 40 per cent clathrate I microcrystallites gives an
acceptable fit to F(s) but the agreement is still poor compared with that
calculated using the Polk-Boudreaux continuous random network (Fig.
7.11) (Chaudhari and Graczyk 1974).
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Fig. 7.10. Diffraction functions F(s) calculated for microcrystallites of germanium having
various structures. Three theoretical curves are shown for each structure, corresponding to
microcrystallites of small (solid curve), medium (dotted curve) and large (broken curve) radii.
The small radii were about 4 A and the large about 6-5 A. (From Weinstein and Davis

1973/1974.)

7.3. Voids, impurities, and other defects in amorphous Ge and Si

The models described in the preceding section attempt to simulate the
structure of 'ideal' amorphous Ge or Si, by which is meant a material free
of voids, impurities, and other defects, and, in most cases, containing no
unsatisfied bonds. It is normally assumed that there exists a well-defined
metastable phase to which all real films will approach on annealing. While
it is clear that impurities, gross density deficits, crystalline inclusions, and
so on can be regarded as defects which can be avoided, it is not so obvious
that the presence of a certain proportion of dangling bonds or even small
voids could not release some of the distortion energy of an otherwise fully
connected structure, thereby achieving a more stable amorphous state.
While we know of no evidence that this is so, the possibility should not be
ruled out.
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Fig. 7.11. Comparison of diffraction function F(s) derived from the Polk-Boudreaux model
(solid curve) and obtained experimentally (points) by Graczyk and Chaudhari (1973a). (From

Chaudhari and Graczyk 1974.)

Films of amorphous Ge and Si have densities ranging normally from 3 to
15 per cent below that of the crystals. Continuous random networks and
microcrystalline models are normally associated with density deficits of
only 1-3 per cent. Taken in conjunction with the bond length and the
co-ordination number deduced from the RDF, measurements of the
density of real films can therefore provide information on the presence or
otherwise of voids in the structure. An equally important method is the
observation of small-angle scattering of electrons or X-rays (Guiner et al.
1955, Moss and Graczyk 1969, 1970, Shevchik and Paul 1972, 1974,
Temkin et al. 1973). Temkin et al. (1973) estimate that, within the practical
limits of this technique, spherical voids ranging in diameter from 3 to
250 A can be detected. By observing small-angle scattering of electrons
from films of amorphous Si of thickness of 100 A, Moss and Graczyk
(1969) concluded that these films contained regions of distinctly deficient
density and suggested that these were voids. Shevchik and Paul (1974)
measured the intensity of X-rays scattered at angles between 2°  and 12°
from amorphous Ge films prepared by electrodeposition, by sputtering,
and by evaporation. Their results, after applying collimation corrections,
are shown in Fig. 7.12.

The distribution functions N(r) for the radii r of the voids and the
normalized void distribution V(r)N(r) (assuming that the voids are
spherical, V(r) = 4irr3/3) as deduced by Shevchik and Paul (1974) from
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Fig. 7.12. Small-angle X-ray scattering in amorphous germanium prepared by sputtering,
evaporation, and electrodeposition. (From Shevchik and Paul 1974.)

their data on evaporated films of both Ge and Si are shown in Fig.
7.13(a,b). The density deficit determined from these data is 4-5 per cent,
while weighing and measuring the dimensions of the films yielded a deficit
~10 per cent. This difference might be attributable to uncertainties in the
extrapolation to zero wavevector, to the assumption that the voids are
spherical, or to the presence of very small voids (monatomic vacancies) or

Fig. 7.13. (a) Void radii distribution N(r) and (b) void volume distribution V(r)N(r) for
evaporated germanium and silicon as deduced from small-angle X-ray scattering. (From

Shevchik and Paul 1974.)
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very large voids (say r > 40 A) that were outside the limits of detection in
these experiments.

Although Fig. 7.12 implies a lower density of voids in sputtered and
electrodeposited films compared with evaporated films, this conclusion
should be treated with caution. Not only were the actual density deficits
higher than inferred from the scattering data in all cases, but annealing
caused the small-angle scattering to increase. While it is possible that this
arose from a relaxation involving condensation of small voids into larger
ones, annealing is normally associated with void removal. Moss and Grac-
zyk (1970) have in fact reported a decrease in the small-angle scattering on
annealing evaporated films.

The presence of voids in amorphous Ge deposited by evaporation on to
substrates at temperatures below 150° C has been demonstrated convinc-
ingly by transmission electron microscopy. Donovan and Heinemann
(1971) obtained the micrographs shown in Fig. 7.14. The voids form a
network structure penetrating the whole specimen and, as expected, the
density of such films is low, up to 15 per cent below the crystalline value.
Such films are easily contaminated; although annealing considerably
reduces the void content because some of the voids coagulate and move to
the surface, it presumably does not remove any gaseous impurities that
may have found their way into voids and reacted with the sample. There is
little doubt that many measurements reported in the literature have been
made on films containing a significant concentration of voids and gross
(several atomic per cent) contamination. Films deposited on to substrates
held at a temperature above about 150° C appear to have a low void
content (Fig. 7.14), although the presence of a fairly significant concen-
tration of small voids cannot be dismissed. Substrate temperature is not the
only parameter of importance. Rate and angle of evaporation and the
nature of the substrate also play an important role (see for example
Chopra, Rastogi, and Pandya 1974, Pandya, Rastogi, and Chopra 1975,
Bahl, Bhagat, and Glosser 1974, Fuhs, Hesse, and Langer 1974, Beyer and
Stuke 1975a,fe, Barna etal 1976).

Many physical properties of amorphous Ge and Si are changed by
annealing, and it would seem that, in the majority of cases, voids and
associated contamination (particularly by oxygen) play a dominant role in
determining these properties. Paesler et al. (1974) have studied the effects
of annealing on the porosity, the free-spin density, the diamagnetic
susceptibility, and the internal stress in amorphous Ge films prepared by
evaporation onto 300 K substrates (at rates between 10 and 50 A s-1 in a
vacuum of 10~5torr). Their results (Fig. 7.15) show that the porosity JP,
free-spin density Ns, and internal stress o-s decrease together as the anneal-
ing temperature is raised until they all vanish prior to crystallization (Tc =
500°C) . The susceptibility, however, anneals more slowly, the ratio xJXc
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Fig. 7.14. Bright-field electron micrographs of germanium deposited by evaporation in a
vacuum better than 2x10 8torr onto cleaved KC1 substrates held at 25° C and 200°C .
Density-deficient (light) areas are associated with a crack-like network of voids and are

present in films deposited below Td< 150°C . (From Donovan and Heinemann 1971.)
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Fig. 7.15. Dependence of porosity P, free spin density Ns, internal stress o-s and diamagnetic
susceptibility x of. amorphous germanium on annealing at various temperatures Ta. (From

Paesler <tf a/. 1974.)

of the amorphous and crystalline susceptibilities remaining at 2-5 ±0-5
(Hudgens 1973) up to about 320°C , above which it decreases towards unity
at crystallization. Paesler et al (1974) conclude that P, Ns, and crs are all
associated with voids, whereas the enhanced diamagnetism is related to the
details of the bonding in the bulk material. They deduce, for the freshly
evaporated films, an internal surface area ~106 cm2 associated with about
1018 voids cm"3 having an average radius of 30 A. It was assumed that the
free spins of density N"s~ 1020 cm"3 all resided on the internal surfaces of
voids. However, this may not be a valid assumption, particularly in view of
the insensitivity of Ns to exposure to water vapour or for that matter to
oxygen or certain other gases (Agarwal 1973). The likelihood of spin
pairing on surfaces (Kaplan et al 1975) makes the earlier suggestion that
voids were largely responsible for the free spins (Brodsky et al. 1970)
slightly suspect (see Title, Brodsky, and Cuomo (1977) and § 6.8.3).

Although Paesler et al (1974) did not measure the electrical conduc-
tivity of their films, Fuhs, Niemann, and Stuke (1974) have studied the
effect of a network of crack-like voids on electrical transport. Films
deposited onto KBr and Formvar substrates showed, by transmission elec-
tron microscopy, the presence of such a network in the former but not in
the latter. Surprisingly, however, the temperature dependence of conduc-
tivity for the two films was virtually identical and furthermore the absolute
magnitude of the conductivity was decreased by less than a factor of 2 as a
result of the microcracks. Evidently the current manages to circumvent
voids, their principal effect being a change in the effective sample
geometry. The role of voids too small to be detected by microscopy has not
yet been clarified, at least as far as evaporated films are concerned.
However, for films prepared by sputtering the situation is clearer, as will be
described later.
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Evidence that voids affect the ultraviolet reflectivity of amorphous Ge
prepared by evaporation has been obtained by Galeener (1971) and by
Bauer and Galeener (1972). Their results (Fig. 7.16) have been interpreted
in terms of voids with an oblate spheroid shape, the small axis lying in the
plane of the film. Such voids of size —10 A have been shown to produce a
type of Maxwell-Wagner effect with a dispersion at frequencies cor-
responding to the UV portion of the electromagnetic spectrum. The results
for films deposited onto a substrate at 160° C are taken to be representative
of essentially void-free material; the decrease in reflectivity of films
deposited at lower temperatures is then associated with an increasing
number of voids.

Fig. 7.16. Spectral dependence of the reflectance R of germanium films prepared by evapora-
tion onto substrates held at temperatures Td varying from 22° C to 160°C . (From Bauer and

Galeener 1972.)

A similar sensitivity of the reflectivity on exposure to air of films
deposited in ultra-high vacuum has been reported by Helms, Spicer, and
Pereskokov (1974) and interpreted as arising from oxygen diffusing to
substantial depths into the open morphology of the surface. For obliquely
deposited films the void network is expected to be even more pronounced
and in such films deposited in an oxygen atmosphere Ma and Anderson
(1974) have detected clusters of GeO2. A detailed study of oxygen uptake
and determination of depth profiles for films prepared under different
conditions has been made by Knotek (19750) using Auger electron spec-
troscopy. He concludes that deposition and maintenance in ultra-high
vacuum is essential to avoid oxygen contamination.

The properties of amorphous Ge films prepared by r.f. sputtering have
been extensively characterized by Paul et al. (1973), Temkin et al. (1973),
and Connell, Temkin, and Paul (1973). Like evaporated films, the pro-
perties of sputtered films depend on the conditions of preparation. An
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increase of the substrate temperature or annealing, for example, increases
the density and co-ordination number and reduces the bond-angle dis-
tortion; the optical absorption edge shifts to higher energies and the d.c.
conductivity is reduced. These effects are, as for evaporated films, asso-
ciated with void removal and subtle rearrangements of the structure.

A detailed study of hydrogen (and deuterium) incorporation into sput-
tered films has been made by Lewis et al. (1974), Connell and Pawlik
(1976), Lewis (1976) and Moustakas and Paul (1977). The effects of
hydrogenation on the optical absorption edge, refractive index, conduc-
tivity, thermopower, and spin density are in many ways equivalent to those
of raising the substrate temperature or of annealing. However, the RDF is
not altered as much by hydrogenation as by annealing. It appears that
hydrogen is incorporated both on void surfaces and in the bulk, but in
neither environment does it cause gross structural rearrangements in the
surrounding Ge network. Fig. 7.17 shows the absorption edge shift with
hydrogen incorporation. The curve on the extreme right corresponds to
approximately 8 at. per cent of hydrogen and exhibits, at lower energies,
absorption peaks corresponding to the modes for Ge-H bond bending

Fig. 7.17. Optical absorption in films of Gei_xHx for x = 0 (•), x = 0-01 (x), x = 0-028 (A),
x = 0-03 (A), x = 0-051 (D), and x = 0-08 (O). Relative values of x are more reliable than
absolute values. The broken curves indicate error estimates. (From Connell and Pawlik 1976.)
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(0-07 eV)t and bond stretching (0-23 eV). These bands had been seen
earlier in films prepared by other means (Chittick 1970, Tauc et al. 1970)
and interpreted differently; positive identification as Ge-H vibrations in the
work of Lewis et al. (1974) was made by noting that the energies of
equivalent peaks in hydrogenated and deuterated films scaled by >/2. Under
high resolution both these peaks were seen to be doublets (Fig. 7.18),

Fig. 7.18. Magnification and deconvolution of absorption peak associated with hydrogen
incorporation into amorphous germanium (see Fig. 7.17). (From Connell and Pawlik 1976.)

suggesting two unequivalent sites for the incorporated atoms. As the
hydrogen content was increased, the peak at 0-23 eV saturated at a value
corresponding to about 3-5 at. per cent hydrogen whereas the peak at
0-245 eV continued to rise. Lewis et al. (1974) suggest therefore that the
lower-energy peak is associated with Ge-H bonds on the internal surfaces
of voids and the higher-energy peak with Ge-H bonds incorporated else-
where in the network. These assignments are supported by measurements on
crystalline Si by Becker and Gobeli (1963) who found that the Si-H bond
stretching vibration occurs at a smaller energy for hydrogen atoms on the
surface of crystalline Si than for isolated atoms in the bulk, in the ratio
0-96:1.

A good correlation was found by Connell and Pawlik (1976) between the
strength of the 0-23 eV peak and the spin density deduced from e.s.r. The
t Brodsky et al (1977) identify the 0-07 eV band with a 'wagging' rather than a bending

mode.
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latter fell from an initial value of 1-6 x 1019cm~3 in unhydrogenated
material by a factor of 10 at the highest level of hydrogen content. Assum-
ing the spin density to be proportional to the number of unpaired dangling
bonds on the internal surfaces of voids, it was deduced that most of the
dangling bonds to which hydrogen eventually became attached were initi-
ally paired, only about 1 per cent contributing to e.s.r. in unhydrogenated
material. Using an earlier conclusion (Temkin et al. 1973) that voids are
typically 5 A in diameter with centres 10 A apart, there are of the order of
10-20 potential dangling bonds on each void surface but only one spin per
5-10 voids. The spins are thus about 20 A apart, which is in fairly satis-
factory agreement with the estimate of about 40 A obtained from the spin
density directly.

The strength of the absorption peak at 0-245 eV was found to correlate
well with the density of the material, allowing an estimate to be made of the
volume associated with the hydrogen incorporated into the network. This

a Si-0 (103cm-1)

Fig. 7.19. (a) Room-temperature conductivity of evaporated films of amorphous silicon as a
function of the infrared absorption coefficient in the Si-O peak near 10 /Ltm. (b) (p. 343) The
e.s.r. spin density Ns versus deposition rate R for amorphous silicon deposited in partial
pressures of oxygen as indicated. The point marked He refers to a film deposited in helium gas

at 10~4 torr. (From Le Comber et al. 1974.)
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was found to be ~32 A3, which may be compared with the volume asso-
ciated with each Ge atom in a fully co-ordinated network, namely 24 A3.

The behaviour of amorphous Si films on annealing and incorporation of
impurities closely parallels that of amorphous Ge. A detailed study has
been made by Le Comber et al. (1974), with particular regard to why Si
prepared by the glow-discharge decomposition of silane has properties
significantly different from those of films prepared in other ways (see
§ 7.5). The experiments involved the deliberate introduction of oxygen
or hydrogen during and after deposition of evaporated, sputtered, and
glow-discharge films. The properties monitored were electrical conduc-
tivity, e.s.r., spin density, and optical absorption.

Fig. 7.19(a) shows the dependence of the conductivity of films
evaporated in various partial pressures of oxygen, the abscissa being the
strength of an absorption peak at 9-10 /u,m associated with the Si—O
vibrational mode. The spin density Ns was found to depend both on the
partial pressure of oxygen and on the rate of evaporation (Fig. 7.19(b)).
For a low partial pressure of oxygen equal to 10~6 torr and at high rates of
evaporation, Ns reaches 1020-1021 cm"3, a value similar to that observed
earlier by Brodsky et al. (1970). For higher partial pressures the spin
density was reduced until, at 10~4 torr of oxygen, no e.s.r. signals could be
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detected (Ns~5xl017cm~3). It is interesting to note here that no e.s.r.
signals were observed in any samples of glow-discharge-deposited amor-
phous Si. Hudgens (1976) finds a Curie-type paramagnetism, with a small
@ that decreases below 1-3 K as the spin density is annealed out.

The variation of the optical absorption edge with oxygen content is
shown in Fig. 7.20. The curves marked El, E2, and E3 are marked with
the room-temperature conductivity which can be correlated with the rela-
tive oxygen content from Fig. 7.19(a), while El' corresponds to the sample
El after annealing to 650 K. For comparison three other abosrption edges
are shown; a sample glow discharge deposited at 500 K, an amorphous SiO

Fig. 7.20. Optical absorption edges of amorphous silicon. Curves El, E2, and E3 refer to
evaporated films with room-temperature conductivities as indicated. Curve El' refers to
specimen El measured after an anneal at 650 K. The glow-discharge film was deposited at
500 K. Curve VF refers to the edge proposed by Brodsky et al. (1972) for a void-free sample.

The edge for a SiO amorphous film is from Phillip (1972). (From Le Comber et al. 1974.)

film (Philipp 1972), and a curve (VF) which Brodsky, Kaplan, and Ziegler
(1972) obtained by extrapolation from other absorption edges to one that
they consider would correspond to zero free-spin density, i.e. void-free Si.
Le Comber et al (1974) claim that these results indicate that oxygen
incorporation and annealing show different effects. Oxygen incorporation
produces a parallel shift to higher energies towards the edge of SiO
because one is introducing strong Si—O bonds. Annealing, however,
causes a change of shape of the edge as well as a shift and finally parallels
that of the glow-discharge-deposited and the VF edge; the implications
here are (i) that annealing is more effective than oxygen in reducing voids
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although both reduce the spin signal and (ii) the glow-discharge-deposited
films are essentially void free and do not contain appreciable amounts of
oxygen. This latter argument was supported by the lack of any absorption
in the infrared at the frequency of the Si—O bond and also by back-
scattering experiments using a particles. An attempt to detect hydrogen in
these glow-discharge films using the same two methods failed to reveal any
of this contaminant either.

A similar study to that above for evaporated films has been made by
Bahl and Bhagat (1975) (see also Bahl, Bhagat, and Glosser 1973, 1974)
but including, in addition, measurements of the conductivity as a function
of temperature. Although the findings are similar, these authors find some
change in the shape of the absorption edge with oxygen incorporation and
conclude that the effects of annealing and of oxygen are basically the same
and are to be attributed to internal surfaces being rendered inactive.

In view of the results described in this section on the effects of pre-
paration conditions, voids, and contamination on the properties of amor-
phous Ge and Si, it may be considered rash to describe properties of these
materials in any further detail. However, we shall proceed to do this, fully
aware of the dangers in the generalizations or comparisons we shall make,
and attempt to mitigate the problem somewhat by giving details of the
conditions under which the films were processed.

7.4. Electrical properties of amorphous germanium

The electrical properties of amorphous germanium depend, as discussed in
the previous section, both on the method and conditions of preparation as
well as on subsequent annealing processes; We present here some
representative results to emphasize the principal features of the conduction
processes, without describing all the available data.

Fig. 7.21 shows the temperature dependence of the d.c. conductivity
obtained by Mell (1974a) on a film evaporated at 100 A s"1 on to a quartz
substrate held at 300 K in a vacuum of 2 x 10~6 torr. The parameter Ta is
the annealing temperature which was maintained for 15 min prior to
obtaining the corresponding curves. A temperature-independent activa-
tion energy is observed only at high temperatures in the most highly
annealed state. On a T~1/4 scale the results plot linearly below the tran-
sition temperatures indicated by arrows, lying between 200 and 260 K.
Annealing decreases the conductivity over the whole of the temperature
range measured here. Qualitatively very similar results have been obtained
by many workers, although discrepancies exist between reported values of
the absolute conductivity, the limiting slope at high temperatures, and the
accuracy of the fits to r~1/4 behaviour at low temperatures.

Measurements of conductivity and thermopower (Beyer and Stuke
1974) using films prepared under slightly different conditions from those in
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Fig. 7.21. Temperature dependence of electrical conductivity of an amorphous germanium
film deposited at 300 K under conditions described in the text and annealed for 15 m at each

of the temperatures Ta indicated. (From Mell 1974a.)

Fig. 7.21 are shown in Fig. 7.22. The curves marked la-le correspond to
the annealing of a sample deposited at 240 K at a rate of 50 A s"1 in a
vacuum of 2 x 10~6 torr and those marked 2a-2c to a sample deposited at
300 K at a rate of 100 A s'1 in a vacuum of 6 x 10~8 torr. The more rapidly
deposited film has a slightly higher initial conductivity and the effect of
subsequent annealing is less pronounced. At low temperatures both
samples, independent of the degree of anneal, exhibit a small negative
thermopower. At higher temperatures the more rapidly deposited film has
a positive thermopower which increases on annealing, whereas the other
sample displays similar but more pronounced behaviour in the negative
direction.

The solid lines in Fig. 7.22 are theoretical curves by Beyer and Stuke
(1974) based on the assumption that three conduction mechanisms operate
in parallel. Using the notation of Chapter 6 and Fig. 6.16, these are
hopping of electrons with energies at EA(crn), hopping of holes at EB

(0-p), and variable-range hopping at EF (erh). The fitting procedure was as
follows. First the T1/4 behaviour in the conductivity was extrapolated to
higher temperatures and subtracted from the measured conductivity. The
difference was assumed to represent conduction by hopping of carriers
activated to EA or EB and the relative contribution of these at a particular
temperature was obtained from the thermopower; a hopping energy of
0-12 eV was taken for both electrons and holes in band-edge states and for
all states of anneal. In addition, for simplicity, the thermopower associated
with hopping at EF was assumed independent of temperature and equal to
the small negative value observed at low temperatures (-60 /itVK"1). The
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Fig. 7.22. Temperature dependence of conductivity and thermopower of two germanium films
deposited and annealed under conditions described in the text. Values of the annealing

temperatures can be read off Fig. 7.23(c). (From Beyer and Stuke 1974.)

intercept at infinite temperature of the thermopower was taken as a
constant equal to O-iemVK"1. Fig. 7.23(a,b) show schematically the
relative contributions of the three processes to the conductivity <rh, ern, and
ap and to the thermopower Sh, Sn, and 5P; the total conductivity is crh +
crn + o-p and the total thermopower is the sum of the individual contribu-
tions weighted according to the contributions of the partial conductivities
to the total. Fig. 7.12(c) gives the variation of the conductivity activation
energies En and Ep for the two samples as a function of annealing
temperature. This latter figure shows that for the rapidly evaporated
sample (2), En and E% both increase almost together with annealing, i.e.
the gap EA-EB increases and EF stays close to the centre of the gap; for
sample (1), EA-EB also increases on annealing but the Fermi level shifts
by about 0-15eV into the upper half of the gap. The difference in
behaviour of the two samples was attributed to the presence of more
oxygen in the more slowly evaporated films which, on annealing, tends to
eliminate defect states in the lower half of the gap. Finally the intercepts at
infinite temperature of an and crp rise from — 102ft~1cm~1 for the
unannealed samples to —lOVlO4!!"1 cm"1. In spite of the assumptions
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Fig. 7.23. (a), (b) Schematic illustration of the temperature dependence of the components
contributing to the conductivity and thermopower curves of Fig. 7.22, The total conductivity
cr is the sum of crp, crn, and crh and the total thermopower is given by

where E% and E" are the activation energies shown, A was taken as 0-16mVK 1, 5h as
-60/LtVK"1, and Eptn-Ep,n as 0-12eV for both samples, (c) Annealing behaviour of
conductivity activation energies for the two samples shown in Fig. 7.22. (From Beyer

and Stuke 1974.)

made, the theoretical fits are good and may be taken as evidence that the
conduction processes have been correctly identified.

A similar decomposition of the electrical transport properties of a-Ge
evaporated at a pressure of 10~8-10~9 torr, but subsequently exposed to
air, has been made by Seager, Knotek, and Clark (1974). In this case the
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Fig. 7.24. (a) Conductivity, (b) Hall mobility and (c) thermopower versus reciprocal tempera-
ture for an amorphous germanium film deposited at 300 K (O) and subsequently annealed at
450 K (D). The solid lines are computer fits assuming two conduction paths as described in the

text. (From Seager et al. 1974.)

Hall mobility ^H was measured as well as the conductivity and ther-
mopower (Fig. 7.24(a,b,c)) and the results were analysed in terms of two
contributions; hole conduction in the valence band at EB and variable-
range hopping at Ep. The dependence on temperature of both /HH and S
(Fig. 7.24(b)) is attributed to the transition between these two modes of
conduction. The solid curves are theoretical using the following
parameters:

Slightly different parameters were used to fit the data on the annealed
sample. The most important features to be noted here are the n-p anomaly
(S was positive and /u,H was negative throughout the temperature range
measured) and the assumption that the Hall mobility associated with
hopping at EF is zero (or negligibly small). These features are consistent
with the ideas outlined in § 6.4.7, according to which the activation energy
in the Hall mobility (0-09 eV) would represent (EB~Ev)- w, where w is
the activation energy associated with hopping conduction at EB.

It is of interest that it does not appear possible to raise the temperature
of amorphous Ge, prepared by evaporation, to the point where transport
in extended states at Ec or Ev dominates the conductivity. Such
conduction can be identified by an equality of E" and Es or alter-
natively by a temperature-independent Hall mobility. In most films crys-
tallization or at least partial crystallization sets in first (Knotek 1974,
Laude, Willis, and Fitton 1974). However for glow-discharge-deposited
Ge, Jones, Spear, and Le Comber (1976) have found that E<r = Es at
high temperatures. As for glow-discharge-deposited Si (see § 7.5), the
conductivity of films produced in this way does not exhibit T~l/4
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behaviour, as may be seen by comparison with an evaporated film in Fig.
7.25(a). The glow-discharge-deposited films presumably contain a lower
concentration of active defect sites; furthermore, observation of equality of
the activation energies for conductivity and thermopower suggests that
these samples have a smaller range of localized states at the conduction-
band edge, thereby allowing conduction at Ec at a lower temperature than
for evaporated films. At lower temperatures the activation energy for
conduction falls, indicating the onset of hopping at £"A. This interpretation
is substantiated by the behaviour of the thermopower (Fig. 7.25(b)) which
proceeds via a transition region to a line of slope E^—E?.  The parameters
used to calculate the (solid) theoretical curves are tabulated in Jones et al.
(1976); the quantity &E=EC-EA is given as between 0-23 and 0-27 eV
(for samples deposited on to substrates held at a high temperature) and the

Fig. 7.25. Temperature dependence of (a) conductivity and (b) (p. 351) thermopower of
germanium films glow-discharge deposited at various substrate temperatures Td. Curves 1-5
refer to samples deposited at Td = 500K, curve 6 to a sample deposited at rd = 400K, arid
curve 7 to a sample deposited at Td = 300 K. Curve E in (a) refers to an unannealed evaporated
sample and the broken curve in (b) to an evaporated sample annealed at 310° C and shown as
curve le in Fig. 7.22. The deconvolutions into two conduction paths is described in the text.

(From Jones et al 1976.)
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Fig. 7.25 (b)

hopping energy w as —0-1 eV. A similar two-mode conduction process has
been successful in explaining similar data for amorphous As (Chapter 8)
and amorphous chalcogenides (see Chapter 6).

With regard to conduction at low temperatures by variable-range hop-
ping near the Fermi energy, several workers have reported departures
from the theoretical T~1/4 behaviour, a feature that is perhaps not surpris-
ing if the density of states near EF is not independent of energy and EF

itself depends on temperature, and if there is a temperature dependence of
the pre-exponential term. However, earlier suggestions that the tempera-
ture at which T~l/4 is observed is sometimes too high (say 260 K) to be
consistent with variable-range hopping processes has been refuted by
Pollak etal (1973) and by Knotek, Pollak, and Donovan (1974), using the
argument that percolation analysis shows a heavy weighting towards an
energy range of states near EF, a range that is much less than might be
inferred from the critical impedance of a random impedance network.
From such an analysis these authors deduce that, in their evaporated Ge
films, Ep lies in a peak of states of bandwidth ~0-1-0-3 eV and containing
approximately 1017 states cm"3. The evidence given was that at the
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temperature above which T behaviour breaks down, the direction of
the departure is to lower values of the conductivity indicating a decrease in
the number of hopping states available.

In all cases where T~l/4 behaviour has been observed, the density of
states at EF deduced from the slope of such plots (§ 6.4.3) has been found,
assuming aT1 = 10 A, to lie in the range 8 x 1017-5 x 1018 eV'1 cm~3, the
lower value applying to well-annealed samples. The relative invariance of
this figure might imply that a certain proportion of defect states, perhaps
dangling bonds, are necessary to stabilize the structure of amorphous Ge.
Alternatively, one might suspect the analysis. However, an extremely
important set of experiments by Knotek et al (1973), Knotek et al. (1974),
and Knotek (1974), in which variable-range hopping conduction was
measured as a function of film thickness, has provided convincing evidence
that the analysis is not grossly incorrect.

Fig. 7.26 shows results of the above authors on Ge films evaporated in
ultra-high vacuum on to high-temperature substrates under conditions in
which voids and contamination are expected to play an insignificant role.

Fig. 7.26. Thickness and temperature dependence of the conductivity of amorphous
germanium films deposited by evaporation in ultra-high vacuum showing the transition from
three-dimensional (T~1/4) to two-dimensional (T~1/3) hopping conduction. The broken lines

are straight. (From Knotek et al 1974.)

For films of thickness greater than —500 A the conductivity plots linearly
on a r~1/4 basis and the slope is independent of the thickness. Thinner
films show a departure from this behaviour and the temperature depen-
dence of the logarithm of the conductivity is proportional to T~l/3 as
predicted for two-dimensional variable-range hopping (§ 2.7). Further-
more, the slope of these lines is proportional to the inverse cube root of the
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Fig. 7.27. Thickness dependence of slopes of lines shown in Fig. 7.26 with additional data (x).
(From Knotek 1974.)

thickness as expected. The slopes of both the T~1/4 and r~1/3 plots are
shown as a function of film thickness in Fig. 7.27. Inspection of eqns (2.63)
and (2.64) shows that the complete set of data can be used to determine
a~ and N(EF) independently, which in these films are 10 A and
1018 cm~3 eV"1 respectively. The variable-range hopping distance in the
thick films lies (deduced from the equations of § 2.7) between 120 and
170 A in the temperature range of these measurements and so the tran-
sition to two-dimensional hopping occurs at a film thickness that is three to
four times this value. An extrapolation of the T~l/3 plots to T = oo requires
use of a theory for hopping for a film of arbitrary thickness, because the
hypothetical hopping distance must eventually become small enough so that
any film, no matter how thin, exhibits three-dimensional behaviour. Using
such a theory (Shante 1973), the extrapolations shown in Fig. 7.28 have
been made. The pre-exponential term is independent of film thickness d
down to d = 90 A. The divergence in thinner films is probably due to the
fact that the diameter of the wavefunction (2a~l ~20 A) is then compar-
able with d.

Anisotropy in the electrical conductivity of evaporated films has been
reported by Hauser (1972). A higher conductivity was measured perpen-
dicular to the plane of the films when the thickness was less than about
4000 A. These data have been interpreted by Pollak and Hauser (1973)
without the need to invoke any anisotropy in the structure of the films.

Some difficulties are encountered in attempting to explain the magnitude
of the conductivity associated with variable-range hopping (Pollak 1976,
Butcher 1976a,£). Most theoretical treatments yield pre-exponential
factors that are several orders of magnitude smaller than those observed
experimentally, t Whether this is a theoretical or experimental problem is
not clear. Any inhomogeneities in the films, particularly voids and cracks,

t Butcher and Hayden (19776) find a smaller discrepancy.
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Fig. 7.28. Extrapolation of conductivity data similar to those shown in Fig. 7.26 on T
plots through the T~l/4 regime to T = oo. The film thicknesses are as follows: curve 1, 534 A;
curve 2, 166 A; curve 3, 90 A; curve 4, 40 A; curve 5, 27 A; curve 6, 22 A. (From

Knotekl974.)

might be expected to lead to a measured conductivity that is lower than
that calculated in their absence, although if transport occurred via such
channels the opposite would be the case. Related to this question is the
change in the pre-exponential factor observed on annealing (Stuke 1976)
or by hydrogenation; the factor is reduced but not sufficiently to bring it in
line Svith theory. Furthermore, it is changed by rather more than might be
inferred from the reduction in the density of defect states determined from
the decrease in the slope of the T~l/4 plots. Thus, experimentally, rather
parallel displacements of the curves are observed.

An exception to this anomalous behaviour is provided by the results of
Apsley et al. (1977) on evaporated films subjected to bombardment by
100keVGe+ ions at a low temperature and subsequently annealed (Fig.
7.29(a)). In these experiments the parameters N(EF) and a"1 were deter-
mined independently by taking measurements as a function of electric field
(see Fig. 7.29(b) and below). After bombardment to saturation, N(Ep) is
calculated to be ~l-6x 1018 cm~3 eV"1; on annealing, the conductivity of
the films is restored approximately to its initial value, the value of N(Ep)
falling to 3-3 x 1017 cm~3 eV"1. The pre-exponent is seen to remain sensibly
constant at all stages of the anneal, during which a"1 was calculated to fall
from 15 A to 13 A. The above values of N(Ep) are rather lower and those
of a"1 are somewhat higher than estimated from other types of analysis.
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Fig. 7.29. (a) Temperature dependence of conductance of an evaporated germanium film: 1,
as deposited; 2, after bombardment with approximately 1015 100 keV Ge+ ions as —14 K and
annealing at 50 K; 3, 4, and 5, after annealing at 100 K, 200 K, and 300 K respectively, (b)
Electric-field dependence of the conductance-temperature plot for the sample after annealing
at 330 K. Values of the electric field were as follows: 1, ^6 x 103 V cm"1; 2-3 x 104 V cm"1;
3-7 x 104 V cm"1. A similar field dependence was observed after each annealing stage in (a).

(From Apsley et al 1977.)

The excellent linearity of plots of the conductivity versus T~1/4 found for
many films of amorphous Ge, in some cases extending over eight orders of
magnitude, and the r~1/3 behaviour in thin films is at variance with the
argument (Emin 1974) that there should be a strong temperature depen-
dence of the hopping rate from the pre-exponent owing to multiphonon
processes. A discussion of this point is given in § 3.5.

Non-ohmic conduction (high-field effects) in a-Ge has been reported by
many workers (e.g. Morgan and Walley 1971, Connell, Camphausen, and
Paul 1972, Telnic et al. 1973). We present in Fig. 7.30(a) results of Elliott
et al. (1974). In contrast to chalcogenides (Chapter 9) the conductivity of
a-Ge is independent of field at sufficiently low fields, say ̂ 103 V cm"1 (i.e.
the behaviour is ohmic), but, increases with field to a degree that depends
on the temperature (and as might be expected on the mode of preparation,
the anneal state, etc.). Although several theoretical expressions can be
used to describe the data over particular ranges of field and temperature
(§§ 2.7, 3.12), the following relationship is approximately obeyed:

(7.1)
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Fig. 7.30. (a) Variation of conductivity cr with electric field F for a germanium film deposited
in ultra-high vacuum at 80 K, annealed at 413 K, and measured at the temperatures indicated.
(b) Temperature dependence of the characteristic length / deduced from the data in (a). The

hopping length R and hopping energy w are also shown. (From Elliott et al 1974.)

where / has the dimensions of length and is a weak function of tempera-
ture. Fig. 7.30(b) shows the temperature dependence of / as determined
from the data of Fig. 7.30(a). For comparison, the variable-range hopping
length R, deduced from the slope of r~1/4 plots at low fields using eqn
(2.62) is shown on the same diagram. Although the temperature depen-
dence of / is approximately T~1/4, the coefficient of proportionality is much
larger than that of R. In addition it is clear that / is considerably smaller
than R. Pollak and Riess (1976) have considered this problem and
conclude that the field changes the percolation paths in such a way that the
critical impedance is lowered. They find, making certain approximations,

(7.2)

(7.3)

Fitting this expression to the high-field data of Fig. 7.30(a) yields a char-
acteristic length / that is —1/6 times the low-field hopping length R,
approximately as observed.

For fields F » 2kTa/e, Pollak and Riess find a dependence of the conduc-
tivity on field of the form In croc(F/F0)

1/4. The physical process underlying
this behaviour is that for values of eFR larger than the average hopping

for fields F« 2kTa/e. Here fm(0) is given by
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energy, an electron can move by downward hops only, emitting a phonon at
each hop (Mott 1970, Shklovskii 1973fe). The condition for this process is
that

(7.4)

For F>FC, R should decrease as F 1/4 and writing crocexp(—2aR) the
above result is obtained. The departure from the simple exponential
behaviour seen in Fig. 7.30(a) at 80 K and high fields is likely to represent
the onset of this behaviour.

A theory of high-field conductivity has also been advanced by Apsley
and Hughes (1974, 1975, 1976). Their expressions, although differing in
several respects from those of Pollak and Riess (1976), are simpler and
reproduce the main features observed. Detailed comparison with the data
of Fig. 7.29(b) and other results has been made (Apsley et al. 1977)
enabling independent determinations of N(EF) and a~l.

Measurements of magnetoconductivity under high-field conditions have
been reported by Mell (1974Z?), who, following Clark et al. (1974),
concluded that the non-ohmic behaviour is to be attributed to the hopping
process and not to the onset of a different conduction mechanism, such as
excitation of carriers out of charged centres by the Poole-Frenkel effect.

Another method of studying variable-range hopping processes near the
Fermi level is by measurement of the a.c. conductivity cr(o>) as a function of
frequency. Data on evaporated Ge films have been obtained by Chopra
and Bahl (1970), Kneppo, Luby, and Cervenak (1973), Hauser and Stan-
dinger (1973), Mell (19746), Agarwal, Guha, and Narasimhan (1975), and
Arizumi et al. (1974). Results due to the latter authors are shown in Fig.
7.31. The conductivity rises approximately as co0'8 once the frequency is

Fig. 7.31. Frequency dependence of conductivity of an evaporated film of germanium
measured at the temperatures indicated (a) as deposited and (b) after annealing at 250° C for

30 min. (From Arizumi et al 1974.)
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above a certain value, and the magnitude falls as the temperature ii
lowered. It is important to note that we assume that these data represeni
the frequency and temperature dependence of a single (hopping) mode ol
conduction, unlike the situation in chalcogenide glasses (Chapters 6 and 9'
for which a similar frequency-independent behaviour at low frequencies
arises from extended-state conduction. Although some theoretical treat-
ments of a.c. conductivity include the d.c. limit, we shall consider here only
the co0'8 region. Interpreted in terms of the formula given in § 6.4.5 and
taking a value of a~l = 8 A, the data from all the above mentioned authors
yield values of N(EF) ranging from 3 x 1019 to 2 x 1021 cm3 eV"1. Although
these values could be reduced by a factor of 10 by choosing a (high) value
for a"1 of 20 A, there still remains a serious discrepancy between the
values of the state density deduced from these measurements and those
deduced from the temperature dependence of the d.c. conductivity.
Furthermore the spread in values amongst the various samples is at least an
order of magnitude larger than can be achieved by annealing or even by
hydrogenation if, again, the values deduced from the slopes of T~l/4 plots
are considered reliable.

This discrepancy has been discussed by Abkowitz et al. (1976) who have
plotted the density of states deduced from both the d.c. and a.c. data versus
the d.c. conductivity at 80 K (see Fig. 7.32). N(E*) was calculated using the
equations of § 6.4.5, assuming a value for a"1 of 8 A. The above authors
prefer to accept the values of N(EF) deduced from the a.c. data. They base
their case mainly on the following.

Fig. 7.32. Density of states at EF deduced from (a) d.c. hopping conductivity and (b) a.c.
hopping conductivity versus the d.c. conductivity measured at 80 K. The numbers refer to the
following references: (16) Chopra and Bahl (1970), (18) Arizumi et al. (1974), (19) Hauser

and Staudinger (1973), (20) Agarwal et al (1975). (From Abkowitz et al 1976.)
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(1) Field-effect experiments on evaporated Ge by Hirose, Tariguchi,
and Osaka (1976) and by Malhotra and Neudeok (1975) have been
analysed to yield JV(jEF)~1019-1021 cm"3 eV"1 depending on the
sample.
(2) Field-effect experiments on glow-discharge-deposited Ge (Jones et
al. 1976) have been similarly analysed to yield N(EF)~2x 1Q18-
2xl019cm~3eV~1 depending on the deposition temperature. Further-
more the magnitude of the a.c. conductivity in these samples is
considerably lower than for evaporated samples and yield values for
N(EF) similar to those deduced from the field effect (see Fig. 7.47). No
variable-range hopping is observed in these samples (see Fig. 7.25(a)).
(3) The values of N(E?) deduced from the d.c. data show little depen-
dence on preparation conditions and are too low when considered in the
light of field-effect and tunnelling studies (Osmun and Fritzsche 1974,
Hauser 1974a,ft).
However, it should be noted that the variation of cr(0) with N(EF),

where the latter is deduced from the variable-range hopping formula, is
self-consistent as seen by the dotted curve in Fig. 7.32, which is a plot of

(7.5)

with o-o = 109 ft"1 cm"1, a~l = 8 A, and T = 80 K.
A variation of N(EF) by a factor of 40, as suggested by the a.c. data,

would lead to a variation of o-(O) by many more orders of magnitude.
Furthermore, a density of states as high as 1021 cm3 eV"1 would almost
certainly lead to delocalization and a metallic-like conductivity.

Since our conclusion is the opposite of that of Abkowitz et al. (1976),
namely that the values of N(EF) deduced from the variable-range hopping
formula are more reliable than those deduced'from a.c. conductivity (see
also Butcher and Hayden 19770), it is necessary to consider why the latter
might be in error. Apart from approximations on which the formula for o-((o)
is based (see § 6.4.5), one might consider the possibility that the a.c. process
may sample portions of the specimen within which the density of localized
states is considerably higher than the average. An estimate of the hopping
length RV appropriate to a.c. conditions can be made from eqn (2.96). At
a) = 104 s"1 and taking *>ph = 1012 s"1, aRu ~ 9 and for a"1 = 8 A, R» ~
70 A. Thus regions of inhomogeneity of considerable size would have to be
present, a situation that can hardly be ruled out and indeed might account
for the large dependence of o-(co) on the conditions of sample preparation
and history.

The effect of a magnetic field on both d.c. and a.c. conduction in films of
amorphous Ge evaporated at a low rate (5-10As"1) on to a room-
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temperature substrate has been studied by Mell (1974fe). Fig. 7.33 shows
results at 80 K. The conductivity a and its change ACT in the presence of a
magnetic field of 1 kG are seen to have similar frequency dependencies,
although ACT does not rise quite as steeply as cr and the increase sets in at a
slightly higher frequency. Fig. 7.33(b) shows the corresponding phase angle

Fig. 7.33. (a) Frequency dependence of conductivity o- and its change in a magnetic field of
1 kG for an evaporated film of germanium; (b) phase angle <£ between current j and applied
voltage and also between A/ in a field of 1 kG and applied voltage. Measurements at 80 K.

(From Mell 19746.)

between current and voltage. Although magnetoresistance associated with
hopping transport is not yet completely understood (§ 6.4.8), these data do
make 'purely atomic' models of a.c. conductivity seem unlikely (§ 6.4.5), as
both the d.c. and a.c. processes are similarly affected by the magnetic field.

More detailed measurements of magnetoresistance under d.c. conditions
have been reviewed by Mell (1974a). The behaviour is complicated (Fig.
7.34); the magnetoresistance can be of either sign depending on the
temperature and magnetic field but is independent of the angle between the
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current and the magnetic field. A decomposition of the data taken at 175 K
into positive P(B) and negative N(B) components is shown on the right of
Fig. 7.34. After an initial increase at low magnetic fields, P(B) saturates
whereas N(B) increases as a power law. Both components show only a
weak temperature dependence in the T~l/4 range of behaviour of the
conductivity.

25

Fig. 7.34. (a) Magnetoresistance Ap/p of amorphous germanium (prepared and treated as for
the film in Fig. 7.21) as a function of magnetic field; (b) separation of Ap/p into positive P(B)

and negative N(B) components. (From Mell 1974a.)

The shrinkage of localized wavefunctions in a magnetic field, such as
applies to impurity conduction (§§ 4.3, 4.6), is unlikely to account for this
data, although Maschke et al (1974) using a computer simulation of
hopping conduction have suggested that such an effect on the hopping rate
still significantly influences hops over long distances and could be
important. An alternative suggestion, that in a magnetic field spin align-
ment will cause an electron to hop further than it would in the absence of a
field, could be responsible for the negative magnetoresistance (Movaghar
and Schweitzer 1977)—see § 6.4.8. Other measurements and inter-
pretations have been given by Clark et al. (1973) and by Kubelik and Triska
(1973), the former considering spin-flip scattering of extended states by
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localized spins analogous to the Kondo effect. An unphysically large value
(g ~ 1000) of the magnetic moment was required.

7.5. Electrical properties of amorphous silicon

As for amorphous germanium, it is convenient to distinguish between the
properties of amorphous silicon prepared (1) by conventional evaporation
or sputtering techniques and (2) by glow-discharge decomposition of
silane. Even within these two categories, variations in properties depend-
ing on the deposition conditions (particularly substrate temperature) are
found, but the relatively low concentration of active defect sites in glow-
discharge-deposited material compared with silicon prepared by most
other methods makes the distinction a useful one. Whether or not the
presence of hydrogen plays a crucial role, the extensive work of Spear and
co-workers, which has resulted in a detailed and self-consistent picture of
the electronic states and transport in glow-discharge-deposited films, has
been of great value in the development of our subject.

(a) Films prepared by evaporation. Amorphous silicon films deposited by
evaporation have much higher conductivities than glow-discharge samples
deposited at the same temperature. As in evaporated films of germanium,
electrical transport normally occurs by hopping at the Fermi level as
evidenced by an (approximately) r~1/4 dependence of the logarithm of the
conductivity and small values of the thermopower. Annealing increases
both the magnitude of the thermopower and the activation energy for
conduction, leading to band conduction but not, if we regard the inequality
of E" and Es as a reliable indicator, in extended states.

Conductivity and thermopower measurements by Beyer and Stuke
(1974), similar to those obtained for amorphous germanium (Fig. 7.22),
are shown in Fig. 7.35 for two films (1 and 2) as a function of annealing
(a-»c and a-»d). Since film 1 had been deposited at 16 A s"1 and film 2 at
2 A s"1, differences in the conductivity were attributed predominantly to a
larger concentration of oxygen incorporated into the latter. Additional
measurements (Beyer, Stuke, and Wagner 1975), in which samples were
bombarded with helium, oxygen, and hydrogen, showed relative changes in
the contribution of Fermi-level hopping and band-conduction processes
(both of which are evident in Fig. 7.35) according to whether the number of
defects was increased (bombardment with He) or decreased (with O or H).
Detailed analysis of the results for unbombarded films can be made as for
germanium (§7.4) but, for the bombarded films, several sets of defect
levels, some of which were attributed to surface states at voids, were
invoked by Beyer et al. (1975).

It appears that amorphous silicon films are much more likely than
germanium to take up large quantities of oxygen during evaporation. This
apparent disadvantage has been used by Le Comber et al. (1974) and by
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Fig. 7.35. Temperature dependence of conductivity and thermopower of two silicon films
deposited at 500 K by evaporation in a vacuum of 2 x 10~6 torr. Film 1 was deposited at 2 A s"1

and annealed at 2^0° C (la), 290° C (Ib), and 365° C (Ic). Film 2 was deposited at 16 As'1

and annealed at 230° C (2a), 310° C (2b), 365° C (2c), and 450° C (2d), (From Beyer and
Stuke 1974.)

Bahl and Bhagat (1975) in studies which in some ways parallel those by
Connell and Pawlick (1976) on hydrogenation of amorphous germanium.
In the experiments of Bahl and Bhagat (1975), the oxygen content was
varied simply by changing the evaporation rate and/or base pressure, the
relative concentration being determined from the strength of the Si—O
vibrational band absorption. With increasing oxygen content, the conduc-
tivity and spin density decreased and the energy gap increased. Similar
results were found by Le Comber et al. (1974) (some of which have been
discussed in § 7.3), although the shape of the optical absorption edge
differed markedly in the two investigations.

In situ measurements of the electrical conductivity in the hopping regime
for silicon films of varying thickness deposited in ultra-high vacuum have
been made by Knotek (19756). As with amorphous germanium (§ 7.4), a
transition from T~1/4 to T~1/3 behaviour was observed as the film thick-
ness was reduced to values comparable with the calculated hopping length.
These results are shown in Figs. 7.36 and 7.37. The fit of three- and
two-dimensional variable-range hopping theory to these results is even
better than for germanium and yields for the radius of the localized
wavefunctions a"1 = 3 A and for the density of states at the Fermi level
A/r(£F) = 3xl019eV~1cnr3. Compared with values obtained for



Fig. 7.36. (a) Logarithm of the current / versus T 1/4 for three films of amorphous silicon of
thickness >500 A prepared by evaporation in ultra-high vacuum at 300 K. Conversion to
resistivity is given by p = 7-19 x 10 I"1 a cm. (b) Logarithm of the current I versus T~1/3 for
10 samples of thickness shown. The 937 A film shows T~1/4 behaviour and is one of the
three films shown in (a). Preparation conditions and resistivity conversion as for (a). (From

Knotek 19756.)

Fig. 7.37. Slope of the curves shown in Fig. 7.36(b), plus additional data, versus film thickness
d. A dependence as d~~l/3 is found for d< 300 A as theoretically expected for two-dimen-

sional variable-range hopping. (From Knotek 19756.)
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germanium the radius is smaller
and the density higher. However, just the opposite trend in these two
parameters between silicon and germanium was obtained by Abkowitz et
al. (1976) in a study of a.c. conductivity on glow-discharge-deposited films
(see below).

Studies of heterojunctions between crystalline and evaporated silicon
have been reported by Fuhs et al. (1974) and by Dohler and Brodsky
(1974). Magnetoresistance in amorphous silicon (Mell 1974a) shows very
similar behaviour to that in amorphous germanium (§7.4).

(b) Films prepared by glow-discharge decomposition. The principal vari-
able in films prepared by this method is the temperature of deposition (Td).
As shown in Fig. 7.38(a) (from Spear 19746), the measured room

Fig. 7.38. Variation of (a) room-temperature conductivity <r, (b) activation energy of conduc-
tivity (see text), (c) pre-exponential factor CTO for glow-discharge films of amorphous silicon,
with deposition temperature Td. Points on the left of this figure refer to evaporated films for

which** T"d has no significance (see text). (From Spear 1974a.)
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temperature d.c. conductivity changes by five orders of magnitude as Td is
raised from 300 to 640 K. Drift mobility, field effect, and thermopower
measurements, to be described later, confirm that the minimum conduc-
tivity obtained for a value of Td~250K is associated with a change in
conduction mechanism from, at high Td, transport by electrons above the
mobility edge Ec to, at low Td, transport by holes hopping in localized
states near the valence band. The activation energy of the conductivity
(Fig. 7.38(b)) is seen to undergo a discontinuous transition at the same
temperature. For n-type samples the activation energy is shown as (Ec~
EF) and for p-type samples as (UF —£Y); in the latter case a hopping energy
of 0-08 eV has been subtracted from the measured slopes. The pre-
exponential factor <TO, i.e. the intercept on the l/T = 0 axis, drops by over
seven orders of magnitude at the n-p transition (Fig. 7.38(c)). Similar
results to these had been reported earlier by Chittick (1970). The points on
the dotted lines on the left of Fig. 7.38 were obtained on films prepared by
evaporation and can be fitted rather well onto the extrapolated behaviour
of glow-discharge-deposited films; Td has no direct significance for these
points.

Early measurements by Le Comber and Spear (1970) of electron drift
mobility in a sample deposited at Td = 500 K (Fig. 7.39(a)) had shown the
presence of a 'kink' at about 250 K above which the activation energy was
0-19 eV and below which it was 0-09 eV. The plot of conductivity against
inverse temperature (Fig. 7.39(b)) also exhibited a change of slope at the
same temperature (240 K). These observations were interpreted in terms
of transport in extended states for T > Tc, the activation energy in the drift
mobility then arising from trapping in the range of shallow localized states
at the conduction-band edge, and from hopping in the same states for
T<TC. As discussed in § 6.6 and elsewhere, the changes in slope in both
/ID and a are expected to be the same; this, from the inset to Fig. 7.39(b),
is seen to be approximately the case. It should perhaps be noted here that,
according to §6.4.3, the activation energy of 0-09 eV is probably an
overestimate since hopping at the band edge is expected to be a variable-
range process, the activation energy decreasing with decreasing T.

Subsequent measurements on samples prepared at different values of Td

have confirmed this earlier picture (see Le Comber, Madan, and Spear
1972, 1973). The temperature dependence of the drift mobility is shown in
Fig. 7.40. Apart from the absolute magnitude of /u,D, the transition
temperature and the slopes above and below it are essentially independent
of Td. One can conclude that the shallow localized states are not greatly
affected by Td and do not therefore arise from defects, t As will be shown,
this is not the case for the deeper states, the density of which changes

t If the concentration of hydrogen in the films is dependent on Td (Brodsky etal. 1977), then the
presence of this does not affect the shallow localized states either.
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Fig. 7.39. Temperature dependence of (a) electron drift mobility /u-D» (b) conductivity or in a
glow-discharge film of silicon deposited at 500 K. (From Le Comber and Spear 1970.)
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Fig. 7.40. Temperature dependence of the electron drift mobility for four samples of glow-
discharge silicon deposited at the temperatures indicated. (From Le Comber et al 1973.)

dramatically. From the above data, a mobility for electrons (in extended
states) lying between 10"1 and 10~2cm2 V"1 s"1 was inferred. Somewhat
similar results were obtained by Moore (1977).

The density of localized states throughout the energy gap has been
probed by the field-effect technique described in §6.4.9. Results from
Spear (19746) are shown in Fig. 7.41, which supersede earlier results of
Spear and Le Comber (1972). The dotted lines on this figure are
extrapolated densities; in any one sample it is not possible to probe the
complete spectrum. The extremities of the mobility gap (~l-55eV) are
denoted by Ec and EV and the density of states near the former has been
deduced from the drift mobility data described above. The arrow marks the
position of the Fermi level for zero applied field and, as Td is reduced, it
moves from the n-type side of the minimum in the density of states to the
p-type side. The information provided by these results is able to account
for the data shown in Fig. 7.38, in particular for the change in the activa-
tion energy for conduction and the transition from conduction by electrons
at EC to holes near EY> Results for two evaporated samples are shown; EI,
for which no modulation could be observed, and a sample of lower
conductivity (~10~6fl~1 cm"1) before (E2) and after (£2) annealing. A
subsequent paper (Madan, Le Comber and Spear 1976) describes the
effects of annealing on the curves for the glow-discharge-deposited
samples. In all the glow-discharge samples, EF lies near a minimum in the
density of states between two bands of defect levels, £"x, directly probed by
the field effect, and jBY, the existence of which is suggested by these results
but whose presence is more directly confirmed by photoconductivity and
luminescence studies (to be described below). The nature of these states
has been discussed by Spear (19746). An analogy is made with a well-
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Fig. 7.41. Density of state distributions N(E) for evaporated (Ei, E2, E'2) and glow-discharge
silicon films, the latter being deposited at the indicated temperatures. Solid curves, N(E)
obtained from field-effect measurements; broken curves, extrapolations. The arrows indicate
the position of the field-free Fermi level. E'2 was obtained after annealing E2 at 540 K. (From

Spear 19746.)

characterized defect in crystalline Si, namely the divacancy (Fig. 7.42). This
defect is known (Watkins and Corbett 1965) to give rise to three levels in
the forbidden gap—a donor state 0-32 eV above the valence band, a singly
charged acceptor state 0-54 eV below the Conduction band, and a doubly
charged acceptor state 0-15 eV higher. Assuming a preponderance of
divacancies in amorphous Si, Spear (1974ft) suggests that the £"Y and EX
levels might correspond to the donor and acceptor levels of such defects.
However, the inequality of the densities of the two levels, greater in Ey
than in EX, shows that this interpretation is too simple and other defects
should be considered. Although the lowest-order defect in crystalline Si
contains four dangling bonds (the monovacancy, which is unstable in the
crystal), in an amorphous network defects consisting of any number of
orbitals, from a single dangling bond (see frontispiece) upwards, are
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Fig. 7.42. Configuration of the orbitals in a divacancy in crystalline silicon. A and B show the
locations of the missing atoms. (From Watkins and Corbett 1965.)

possible. For the E^ band, a centre that can act as a donor but not an
acceptor is required.

The first successful 'doping' of tetrahedrally co-ordinated amorphous
semiconductors by incorporation of trivalent and pentavalent impurities
was achieved with glow-discharge-deposited silicon (Spear and Le Comber
1975, 1976, Spear 1977). The generally observed insensitivity of the
conductivity of amorphous germanium and silicon (as of other non-crystal-
line materials) to the presence of traditional doping elements has sometimes
been attributed to the likelihood that elements with valency different from
the host had all their electrons taken up in bonding, rendering them
electrically neutral (§ 2.10), and this is probably true for glasses. It is still not
clear whether for films prepared by evaporation this is in fact the case or
whether the high density of states at the Fermi energy ensures that any
excess electrons condense there, resulting in a shift of EP small compared
with the gap (§ 2.10). Nevertheless, samples deposited by glow discharge in a
mixture of SiH4 and PH3 (or B2H6) are found to have high n- (or p-) type
conductivities with the corresponding Fermi levels shifted from the centre of
the gap to within ~0-2 eV from the respective mobility edges, depending on
the amount of incorporated dopant. Results as a function of phosphine or
diborane concentration on samples deposited at 5 00-600 K are shown in
Figs. 7.43 and 7.44. The centres of these diagrams refer to undoped
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Fig. 7.43. Room temperature conductivity of n- and p-type amorphous silicon plotted as a
function of the gaseous composition from which the films were deposited. (From Spear and Le

Comber 1976.)

samples which are n type with a Fermi level situated —0-6 eV below Ec. A
transition from n- to p-type conduction occurs at a diborane/silane
concentration of about 1CT5, when EF is driven through the density-of-
states minimum situated at an energy —0-8 eV below Ec (see Fig. 7.41).
Although a few parts per million of phosphine are sufficient to raise the
conductivity by two orders of magnitude, the rates of rise of conductivity,
on either side, slow off considerably as the Fermi level moves into an
increasingly higher density of gap states. The variation of conductivity with
doping is in good agreement with the density of states distribution shown in

Fig. 7.44. Activation energy of the conductivity for the same films shown in Fig. 7.43. (From
Spear and Le Comber 1976.)
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Fig. 7.41, lending support to the results obtained from the field-effect data
and also indicating that this distribution is not grossly changed by doping.
The levels introduced by doping in fact appear to be mixed in with the
localized states at the band edges, quite likely having a similar spread of
energies and preventing the activation energy for conduction (Fig. 7.44)
from falling below ~0-2 eV.

Ion-probe analysis of phosphorus-doped samples (Spear and Le Comber
1976) revealed that approximately one-half of the phosphine molecules in
the gaseous mixture lead to a phosphorus atom in a given sample; the total
number of phosphorus atoms which can be incorporated was found to
saturate at about 3 x 1019 cm"3. Calculations of the expected increase of
conductivity showed that 30-40 per cent of the phosphorus atoms
incorporated act as donors. Boron appears to be even more efficient in
providing acceptor levels.

Amorphous silicon can be doped with arsenic by glow-discharge
decomposition of a gaseous mixture of silane and arsine (Knights 1976a).
The behaviour of the room-temperature conductivity and the
position of the optical absorption edge as a function of concentration
in the Si-As system are shown in Fig. 7.45. The conductivity of pure silicon
(on the left) increases by seven orders of magnitude on incorpora-
tion of ~0-1 per cent arsenic. Incorporation of more arsenic leads to a

Fig. 7.45. Room-temperature conductivity <TRT (solid curve) and optical gap Ea (broken
curve) for glow-discharge-deposited Si-As films as a function of the gaseous composition used

in their preparation. (From Knights 1916a.)
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reversion to material with a low conductivity ~10 9-10 10fl * cm 1, a
value which persists all the way to pure amorphous arsenic. This interesting
result suggests a transition from impurity doping to alloy behaviour;
although silicon can be doped with arsenic, arsenic cannot be doped with
silicon. The behaviour is probably associated with the lower co-ordination
of the arsenic network (see Chapter 8), the flexibility of which allows
silicon to be four-fold co-ordinated. Although such alloying behaviour may
seem reasonable, one might then expect the Fermi level to adopt its usual
position near the centre of the gap. That this cannot be the case over the
whole of the composition range is evident from the observation (Fig. 7.45)
that the conductivity remains relatively invariant above about 15 per cent
arsenic even though the optical gap, after passing through a maximum at
about 20 per cent arsenic, falls by almost 0-7 eV. Thermopower measure-
ments were used by Knights (1976a) to determine the sign of the charge
carrier; although Fig. 7.45 indicates p-type behaviour for arsenic-rich
samples, it should be noted that Mytilineou and Davis (1977) report an
n-type thermopower in amorphous arsenic (see § 8.4).

Hall-effect measurements by Le Comber et al. (1977) on doped glow-
discharge-deposited silicon reveal, perhaps more dramatically than for any
other material, the reversal of sign between the thermopower and the Hall
effect. The results of Fig. 7.46 have been interpreted in terms of a decreas-

Fig. 7.46. Temperature dependence of Hall mobility for four n-type samples (1, 2, 5, and 7)
and three p-type samples of glow-discharge-deposited silicon. The samples were prepared
from silane containing the following volume parts per million of B2H6 (for the p-type films)
and of PH3 (for the n-type films): •, 2-3 xlO4; AV, 5xl04; 1, 98; 2, 304; 5, 2xl03; 7,
3 x 104. The solid curves are theoretical fits assuming two conduction paths, one in extended
states at the mobility edge and the other hopping in a donor band. (From Le Comber

etal 1977.)
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ing contribution to transport by conduction in extended states as the
temperature is lowered, accompanied by an increasing contribution from
carriers hopping in a donor (or acceptor) band for which the Hall effect is
assumed negligible. The sign of the Hall effect is discussed in § 6.4.7.

Field-effect measurements on doped films have considerably extended
the range of the experimentally determined density of gap states. The Ey
peak and the rapid rise in N(E) at EA (see Fig. 7.41) have been verified in
measurements by Spear and Le Comber (1976). A new self-consistent
analysis did not give markedly different results for the profiles shown in
Fig. 7.41, but the overall level was determined to be a factor of 2 or 3
higher. As in earlier work, Spear and Le Comber (1976) neglected the
possible influence of surface states, the presence of which would of course
lead to N(E) being overestimated. A lower density of gap states (see
Knights 1977) would imply rather lower efficiencies of doping than given
above.

A study of thermoelectric power in doped silicon has been reported by
Jones et al. (1977) (see also Friedman 1977) and of photoconductivity by
Anderson and Spear (1977). Phosphorus doping leads to an extremely high
photosensitivity with the photoconductive gain exceeding unity (for an
electric field of 3 x 103 V cm"1) once the Fermi level is moved to within
-0-65 eV of Ec.

Measurements of the a.c. conductivity of undoped silicon glow-discharge
deposited onto substrates held at various temperatures Td has revealed a
behaviour in good agreement with the predictions of § 6.4.5 (Abkowitz et

Fig. 7.47. a.c. conductivity at 104 Hz and 80 K for various films of glow-discharge-deposited
silicon and germanium plotted against the density of states N(EF) at the Fermi level (as
determined from field-effect data). The lines are the theoretical variation according to eqn
(6.16) with values of a~l given (in A) by the number on the curves. (From Abkowitz

etal 1976.)
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al. 1976). At a sufficiently low temperature a(a)) was found to be pro-
portional to a)s. Although 5 — 0-95, rather too high (see §6.4.5) for a
reasonable value of z>ph, a clear dependence of o-(a>) on Td was found as
shown in Fig. 7.47 which also includes the data on glow-discharge-
deposited germanium discussed in § 7.4. The magnitude of CT(CJ)
measured at 104 Hz and 80 K is plotted against the density of states at the
Fermi level determined independently from field-effect experiments. The
predicted proportionality between CT(OJ) and N(EF) is seen to be obeyed;
a~l was taken as an adjustable parameter and all data lie between the lines
defined by a~1 = 13 A and a~l = 17 A. Relative to glow-discharge-
deposited germanium (a"1 = 8 A), the localized states through which hop-
ping occurs are more extended spatially and the value of N(EF) is an order
of magnitude lower. For evaporated films of germanium and silicon,
studies of d.c. hopping conduction led to just the opposite trend for both of
these parameters as mentioned earlier in this section.

7.6. Optical properties of amorphous germanium

It is difficult to find in the published literature on amorphous semiconduc-
tors a greater diversity than that existing for the form of the optical
absorption edge in amorphous germanium. Fig. 7.48 collects together early

Fig. 7.48. Room-temperature optical absorption edges in evaporated films of germanium as
reported by various authors: (1) Chittick (1970), (2) Clark (1967), (3) and (3') Spicer and
Donovan (1970a), (4) Chopra and Bahl (1970), (5) Tauc (1970a). The broken curve for

crystalline germanium is from Dash and Newman (1955).
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data on evaporated films obtained by Tauc (1970a), Clark (1967), Spicer
and Donovan (1970), Chopra and Bahl (1970), and Chittick (1970). The
edge in crystalline germanium with the diamond structure, shown as a
broken curve (Dash and Newman 1955), arises from transitions across an
indirect gap of 0-66 eV and a direct gap of 0-8 eV corresponding to the
transitions F25'^ LI and F25'^ Ty respectively (see Fig. 7.49).

Fig. 7.49. Electronic band structure of crystalline germanium (from Herman et al. 1967)
showing some principal interband transitions and the density of states in the valence and

conduction bands.

There is no doubt that most of the variations evident in Fig. 7.48 arise
from differences in methods of preparation and subsequent treatments of
the films. The most important point of difference lies in the behaviour of
the absorption coefficient at low photon energies. Whilst most workers find
a gradual tailing of the edge, Spicer and Donovan (curves 3 and 3') and
Chopra and Bahl (curve 4) report sharp falls in a near 0-5 eV. Theye
(1970, 1971) also reports sharp edges, but near 1-0 eV, in highly annealed
films (see Fig. 7.50(a)). It should be emphasized that the thickness limita-
tion imposed on films prepared by vacuum evaporation make it extremely
difficult to obtain accurate absorption data for values of a below 102 cm"1.
Spicer and Donovan (see also Donovan et al. 1970) were able to measure
down to a — 10 cm"1 using films up to 2 /mi in thickness with faces
accurately parallel. Although the position of the sharp edge was found to
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Fig. 7.50. Optical absorption edges in amorphous germanium prepared and treated in various
ways. The data in each case are plotted as In a versus ha) and as ha)el/2 or (ha)a)l/2 versus ha>\
(a) from Theye (1974); (b) from Elliott etal (1974); (c) (p. 378) from Connell etal (1973). In (c)
curves (1) and (2) refer to films deposited at 25° C and 350° C respectively and curve (3) to a
film deposited at 25° C and annealed at 150° C for 100 h; small and large dots in curve (1) refer

to transmission and ellipsometry measurements respectively.
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Fig. 7.50 (c)

be sensitive to evaporation conditions and the nature of the substrate, they
found a < 10 cm"1 in the photon energy range from 0-1 eV up to the sharp
edge. Later measurements (Donovan, Ashley, and Spicer 1970) confirmed
these observations and correlated the position of the sharp edge with the
temperature of deposition and also the film density. For substrate
temperatures less than 250°C , Donovan, Ashley, and Spicer (1970) found
the position of the edge to lie below 0-6eV and the film density to be
—4-7 g cm"3, while for substrate temperatures in the range 250-300° C the
edge shifted abruptly to -0-7-0-8 eV and the film density increased to
within 2 per cent of the value for the crystal (5-35 g cm"3).

Connell and Lewis (1973) have criticized these results, as well as those of
Chopra and Bahl (1970) and Theye (1970, 1971), claiming that the sharp-
ness of the edge in each case resulted from errors in measurement or
analysis. These criticisms were answered (Theye 1974, Donovan 1974),
but not, in our opinion, sufficiently to justify an unambiguous claim for
sharp edges in amorphous germanium.

There is, however, undisputed evidence that the absorption edge shifts
to higher energies and sharpens to some extent as either the substrate
temperature is raised or the films are annealed. Three sets of results
illustrating this are shown in Fig. 7.50(a,b,c). The data of Theye (1974)
were obtained on material deposited by evaporation in a conventional
vacuum onto a substrate held at room temperature and the film
subsequently annealed step by step up to 400°C . The film of Elliott et al
(1974) was prepared by evaporation in ultra-high vacuum at a substrate
temperature of 80 K and subsequently annealed to 413 K. Fig. 7.50(c)
refers to data of Connell, Temkin, and Paul (1973) on a sputtered film
deposited at 25° C and annealed at 150°C , in addition to one deposited at
350°C . In (a) and (c) measurements were made at room temperature; in (b)
they were made at 80 K. For comparison the edge in crystalline germanium
is shown in (c). Also plotted in each case are the corresponding variations
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with photon energy of ha>e\ (or (hcoa)1 ), the extrapolations of which
can be used as a measure of the gap (see § 6.7).

There are several possible explanations for the shift and sharpening of
the absorption edge on annealing.

(i) Diffusion of oxygen into the bulk of the material where it forms
Ge—O bonds either in place of Ge—Ge bonds or by reacting with
dangling bonds in a defective network. Since the absorption coefficient
of GeOi occurs at about 6 eV, incorporation of Ge—O bonds may be
expected to raise the gap in a manner similar to that observed and
calculated for SiOx compounds (Phillip 1971). If the absorption edge of
amorphous germanium is to be ascribed to transitions involving defect
states arising from dangling bonds, then their saturation with oxygen
would also lead to a shift of the edge to higher energies,
(ii) A healing of the network, in the sense of an atomic rearrangement
during or after deposition, that reduces the number of dangling bonds
and less specific defects. Pertinent to this is the diminution of the
network of voids on annealing (§ 7.3) and, presumably, vacancies of
atomic size could also be removed. Associated with such topological
changes in ttye structure would be an increase in the average co-ordination
number and possibly more subtle changes in the remaining network such
as are considered in (iii).
(iii) A relaxation of a fully connected network resulting, for example, in
changes in the average bond length, the bond-angle distortions, and the
dihedral-angle distributions. The effects of these parameters on the band
gap can be inferred from calculations for crystalline polytypes of
germanium (§7.8). A decrease in the bond length or in bond-angle
distortion is expected to increase the gap; the effect of changes in the
dihedral-angle distribution is less clear.
(iv) A reduction in the magnitude or extent of internal electric fields
which are known to broaden absorption edges. This could be an indirect
consequence of any of the processes (i)-(iii).
With regard to the first of these possibilities, Connell et al. (1973) give

convincing arguments, based on the measured oxygen contamination
(<O5 per cent), against this explanation for their data on sputtered films.
The results of Elliott et al. (1974) on films prepared by evaporation in
ultra-high vacuum support this conclusion that oxygen contamination is
not an essential requirement for shifting and sharpening the absorption
edge. However, this is not to say that incorporation of oxygen into the
network cannot shift the edge; indeed Koc, Zavetova, and Zamek (1972)
and Knotek and Donovan (1973) provide evidence that it does, and Moss,
Flynn, and Bauer (1973) have found significant structural changes with
~10 per cent oxygen contamination.
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Some of the curves presented in Figs. 7.48 and 7.50 show that the
absorption edge obeys a spectral Urbach rule over a limited range of
photon energies. The slope observed is approximately one-half to one-
third of that found in chalcogenide amorphous semiconductors. According
to eqn (6.58), based on the model of Dow and Redfield (1970), which
ascribes exponential tailing of the absorption edge to exciton effects in the
presence of electric fields, the slope of the Urbach tail decreases as the field
increases and the effect is more pronounced for materials of high dielectric
constant. Thus a shallow Urbach tail may be expected for amorphous
germanium even if the conduction-band and valence-band edges have
sharp cut-offs. In addition, annealing may be expected to reduce random
fields arising from dangling bonds, voids, or even bond-angle distortions,
with a consequent sharpening of the edge.

Detailed structural studies by Temkin et al (1973), using a differential
X-ray scattering technique to determine the changes in small-angle scat-
tering and radial distribution functions for sputtered films, have led
these authors to deduce that the densification, which accompanies an
increase in the substrate temperature (see Fig. 7.51(a)), arises from a
reduction in the number of voids having a diameter less than 7 A. This is
accompanied by increases in the first two co-ordination numbers, a

Fig. 7.51. Density p and refractive index n0 (at 0-15 eV) for sputtered films of germanium
deposited at various substrate temperatures Ts. In (a) the density deficit relative to the

crystalline value pc is shown. Data from Paul et al (1973) and Connell et al (1973).
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decrease in bond-angle distortions, and a preference for more bonds to
move towards the staggered configuration (§ 7.2). No variation in bond
length occurred. It is clear that these changes are associated with a removal
of dangling bonds as well as some relaxation of the surrounding network.
Directly or indirectly they lead to a shift of the optical absorption edge
towards higher energies.

Although Donovan et al. (1970) report no change in the value of the
low-energy refractive index nQ of evaporated germanium with annealing or
substrate temperature and give a value equal to that of the crystal (4-00),
Theye (1971), Wales, Lovitt, and Hill (1967), and Connell and Paul (1972)
find a decrease from about 4-4 to 4-2 on annealing. The variation with
substrate temperature Ts for sputtered films is similar and is shown in Fig.
7.51(b). The rather sudden drop occurring principally between Ts= 150° C
and 300° C correlates with the increase in density and also with changes in
other optical properties to be discussed below.

The frequency dependence of the optical constants (n, fc, e\, and 82) of
amorphous germanium through and above the fundamental edge are
shown in Fig. 7.52(a,b,c,d). The variation with preparative conditions in
this region of the spectrum, although significant, is less obvious than in the
controversial edge region. Data presented here have been obtained by
Connell et al. (1973) and by Donovan et al. (1970). Theye (1974) has also
made measurements in this region of the spectrum, as also have Jungk
(1971) and Bauer and Galeener (1972) (see Fig. 7.16). We comment
mainly on the data of Connell et al. (1973).

The lower value of the refractive index at long wavelengths for films
deposited at a high substrate temperature is reversed at energies above
~l-2eV. Likewise the extinction coefficient fc, which is initially lower in
the high Ts film, has a somewhat higher value in the vicinity of its maximum
near 3-8 eV. The variation with photon energy can be fitted to a simple
dispersion relation for a damped Lorentzian oscillator of natural frequency
coo'-

(7.6)

where o)p =47rnve
2/m, for nv charges per unit volume, and ra is the

electron mass. The plasma frequency a)p is also given by

(7.7)

where y is the damping factor and cu0 is the frequency at which ei = 1.
Although the above equation does not accurately describe the data, it can
be used to determine COQ and o>p, quantities that have some physical
significance. The energy ha)Q for low Ts films is ~3-3 eV, increasing with
higher Ts to the value for diamond crystalline germanium, namely
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Fig. 7.52. Spectral dependence of (a) refractive index n, (b) extinction coefficient k, (c) real
part EI of the dielectric constant, and (d) imaginary part e2 of the dielectric constant for
sputtered films of germanium. Chain curve Ts = 25°C ; solid curve, Ts = 350°C ; broken curve,

film prepared by evaporation (Donovan et al 1970). (From Connell et al 1973.)

—3-5 eV. The damping factor y is, from the width of the s2 curve, approx-
imately equal to oj0, giving a value of h(op~16 eV which agrees well with
the plasma energy deduced from direct energy-loss measurements by
Zeppenfeld and Raether (1966) and is slightly lower than the value for
crystalline germanium (16-6 eV).

On a simple two-band model of a semiconductor with a spherical Jones
zone (Penn 1962, Phillips 1971), the low-energy refractive index n0 is
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related to the plasma frequency by (Cardona 197It)

(7.8)

In real materials the Penn gap hco^ represents an average separation
between valence and conduction bands and is a measure of the covalent
bond strength. Since cop is slightly smaller and nQ is somewhat higher in
amorphous germanium compared with crystalline germanium, a lower
average separation between bonding and antibonding states is inferred.
This is indeed seen from photoemission data to be presented below. In
principle it could arise from an increased average bond length r± (Van
Vechten (1969) has shown WgOCrl2 5) , a reduced average co-ordination
number (Phillips 1971), or bond-angle distortions. Paul et al. (1973),
using structural data of Temkin et al. (1973), deduce that the first, but
principally the second, of these effects dominates over the third. As the
bond length in amorphous germanium does not change with Ts, the
increased value of o>g inferred for the high Ts film presumably arises mainly
from the increase in average co-ordination number.

The effective number n&& of free electrons per atom contributing to the
optical absorption up to an energy hco' is given by the plasma sum rule
(Phillip and Ehrenreich 1963)

(7.9)

where N is the atomic density. Fig. 7.53 shows a plot of Afrzeff versus hco'
for sputtered films deposited at TS = 25° C and 350°C . Below about 3 eV

Fig. 7.53. The effective number of electrons involved in transitions up to an energy hco for
sputtered films of germanium: chain curve, Ts = 25°C ; solid curve, Ts = 350°C ; dashed curve,

crystalline germanium (Philipp and Ehrenreich 1963). (From Connell et al. 1973.)

t M. Cardona, 1971, School of Physics 'Enrico Fermi', Varenna (unpublished).
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this is higher than in crystalline germanium owing to a shift of states from
both bands towards the gap, but at higher energies the trend is. re versed.
This then continues all the way to the plasma frequency, as revealed by the
data of Bauer and Galeener (1972) and Bauer (1974a,6). In Fig. 7.54 their

Fig. 7.54. The effective number of electrons per atom involved in transitions up to an energy
ha) for evaporated films of germanium and silicon and for crystalline germanium. The plasma

frequency O)P is shown. (From Bauer 1974a.)

results, which at low energies differ somewhat from those in Fig. 7.53, are
plotted in terms of nefi. It is seen that, unlike crystalline Ge for which rceff
reaches 4 electrons/atom at the plasma frequency, n&fi for amorphous films
is only 3 at the same energy. Bauer has suggested that this surprising result
arises from a more localized character for the deeper-lying electrons (see
below) compared with those in the crystal, leading to reduced matrix
elements for transitions from them.

7.7. Optical properties of amorphous silicon

The optical absorption edge of amorphous silicon is, like that of amor-
phous germanium, dependent in position and shape on the nature and
conditions of preparation. A measurement by Beaglehole and Zavetova
(1970) on an evaporated film approximately 1 ̂ m thick is compared with
the edge of crystalline silicon (Dash and Newman 1955) in Fig. 7.55(a). In
the crystal the absorption edge at about 1-1 eV corresponds to indirect
transitions from F25' to the minimum in the conduction band along the A
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Fig. 7.55. (a) Comparison of room temperature optical absorption edges in evaporated
(Beaglehole and Zavetova 1970) and crystalline (Dash and Newman 1955) silicon, (b) e2

spectra of amorphous and crystalline silicon. (Frorn Stuke 191 Ob.)
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Fig. 7.56. Electronic band structure of crystalline silicon. (From F. Herman and J. P. Van
Dyke, unpublished.)

axis of the Brillouin zone (Fig. 7.56). Direct transitions to Fi5 do not occur
until a photon energy of about 3 eV is reached (Fig. 7.55(b)). The high
values of a and 82 observed for amorphous silicon in the range from
1-3 eV thus provide good evidence for a relaxation of the k -conservation
selection rule. The s2 spectrum of amorphous silicon (Fig. 7.55(b)) shows,
as for amorphous germanium (§ 7.6), none of the fine structure present in
the spectrum for the crystal (Pierce and Spicer 1972).

The edge in amorphous silicon prepared by evaporation has also been
measured by Grigorovici and Vancu (1968), Brodsky, Kaplan, and Ziegler
(1972), Fischer and Donovan (1972), Lewis (1972), Loveland, Spear, and
Al-Sharbaty (1973/74), and Le Comber et al. (1974); on sputtered films it
has been measured by Brodsky et al. (1970) and Loveland et al. (1973/74);
on glow-discharge-deposited films it has been measured by Chittick (1970)
and Loveland et al. (1973/74). The variations between different films are
even greater than those found for amorphous germanium.

Some of these absorption edges were presented in Fig. 7.20 and dis-
cussed in § 7.3. As for amorphous germanium, annealing or the presence
of oxygen shifts the edge to higher energies and makes it steeper. The
presence of hydrogen in glow-discharge-deposited samples may well have
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a similar effect; although this has not been studied quantitatively, it seems
likely that the relative position of the two edges labelled a and b in Fig.
7.57 (from Loveland et al 1973/74) is associated with a higher concen-
tration of hydrogen incorporated into the sample deposited at the lower
temperature. The other edges shown in Fig. 7.57 are for evaporated and
sputtered films, as indicated in the caption.

Fig. 7.57. Optical absorption edges in amorphous silicon prepared by different methods: (a)
glow-discharge films deposited from 500 to 600 K; (b) glow-discharge films deposited at
—300 K; (c) and (f) sputtered films; (d) and (e) evaporated films; (g) annealed sputtered film;
(h) 'extrapolated' edge (Brodsky, Kaplan, and Ziegler 1972, see § 7.3). (From Loveland etal

1973/74.)

A series of absorption edges obtained by annealing, and eventually
crystallizing, sputtered films of silicon as measured by Brodsky et al. (1970)
are shown in Fig. 7.58(a). For unannealed samples, Brodsky et al. (1970)
find that, in the spectral range ha> = 1-4-2-4 eV, a relation of the form
a~(ha)—Eof  with E0=l-26eV fits the absorption data. For annealed
films the extrapolated gap is several tenths of an electronvolt higher (see
also Lewis 1972) and E0 approaches that deduced for glow-discharge-
deposited films, namely 1-5-1-6 eV.

The decrease of refractive index with annealing found by Brodsky et al.
(1970) and shown in Fig. 7.58(b) for sputtered films was not observed by
Fischer and Donovan (1972) for evaporated films. However, Schwidefsky
(1973) finds that the refractive index depends sensitively on the deposition
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Fig. 7.58. Dependence of (a) absorption edge, (b) and (c) refractive index of a sputtered film
of silicon on annealing for 2 h at the temperatures indicated. The film crystallized during the

500° C anneal. (From Brodsky et al 1970.)
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temperature and attempts to account for the variation in terms of an
increased polarizability in samples containing a large concentration of
dangling bonds.

It is of interest to consider the spectral dependence of photoconductivity
in relation to that of the absorption coefficient. Whilst Fischer and Dono-
van (1972) find, for evaporated films, an almost exact coincidence between
the absorptance and photoconductivity, indicating an energy-independent
quantum efficiency, Loveland et al (1973/74) find, for glow-discharge-
deposited samples, this not to be the case. Figs. 7.59 and 7.60 reproduce

Fig. 7.59. Spectral dependence of photoconductivity in glow-discharge films of silicon
deposited at the temperatures indicated. The ordinate represents the number of charge
carriers flowing around the circuit per photon absorbed by the specimen, ot is the absorption

coefficient of a film deposited at Td = 500 K. (From Spear 19746.)

the data of the latter authors. The structure in a (right-hand scale of Fig.
7.59) is evident in all the photoconductivity curves. The temperatures refer
to those of the substrate during deposition. The ordinate is derived from
the equation for the photocurrent.

(7.10)

where No is the number of incident photons per second, R the reflectivity,
d the film thickness, rj the quantum efficiency, r the recombination
lifetime, and tt the carrier transit time. For weakly absorbed light (ad <
0-4) therefore, the ordinate represents adr\r/tt and using the absorption
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Fig. 7.60. Dependence of riT/tt on photon energy for several of the glow-discharge-deposited
samples of Fig. 7.59. (From Loveland et al 1973/74.)

data the curves of Fig. 7.60 can be derived. The fall of r]T/tt with decreasing
photon energy, although not as marked as that of 77 for amorphous
selenium for example (see § 6.5.3), is considered to arise from the same
process, namely an increasing probability of 'geminate' recombination. A
further discussion of recombination processes in photoconductivity in sili-
con is given in § 6.5.2.

The onset of photoconduction in glow-discharge-deposited silicon
depends somewhat on the deposition temperature but from Fig. 7.59 is
seen to lie between ~0-6 and 0-8 eV. According to Loveland et al.
(1973/74) and Spear (1974&) this corresponds to excitation from states at
the Fermi level (which shifts with Td, see Fig. 7.41) to the mobility edge Ec

in the conduction band or perhaps to tail states at E"A, although the
probability for transitions to the latter might well be low because of small
overlap between initial and final states, both being localized. This inter-
pretation differs from that of Fischer and Donovan (1972) who propose
that the onset they observed at ~O7 eV corresponds to band-to-band
transitions; however, for their evaporated films the absorption edge lay at
much lower energies than for glow-discharge-deposited films, closely
resembling, in fact, that of curve A in Fig. 7.58(a) for unannealed sputtered
silicon. The shoulders between 1-1 and 1-3 eV in Fig. 7.59 are interpreted
by Loveland et al. (1973/74) as arising from the maximum in the density of
states CEV) deduced from field-effect measurements on these samples (Fig.
7.41) and the subsequent rise from band-to-band transitions. The
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temperature dependence of the photocurrent in these films is discussed in
§6.5.2.

Although photoluminescence has been observed in silicon prepared by
evaporation in ultra-high vacuum (Engemann, Fischer, and Mell 1977),
most studies have been made on glow-discharge-deposited material.
Results from Engemann and Fischer (1974ft) taken from films deposited at
Td~450K are reproduced in Fig. 7.61. Excitation was at 647-1 nm

Fig. 7.61. Luminescence spectra of glow-discharge silicon deposited at 450 K and measured at
25, 90, and 150 K. (From Engemann and Fischer 1974ft.)

(—1-9 eV) with a 0-5 W krypton laser. The luminescence band is wide and
displays structure, the relative heights of the three peaks varying with
temperature. The total luminescence intensity is, however, independent of
temperature up to —100 K above which it falls off sharply (see Fig. 7.62(a)
below). In contrast to chalcogenides (see Chapters 6 and 9) the lumines-
cence is not believed to have a large Stokes shift, and assignment of the
three peaks has been made in terms of the three transitions (see Fig. 7.41),
EA^EB (1-25 eV), EA-»EY (1-10 eV), and E*^EB (0-92 eV).
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Subsequent measurements by Engemann and Fischer (1976) showed
that, although samples deposited at a lower temperature exhibited a
decreased luminescence intensity and a somewhat different spectral shape
(Engemann and Fischer 1974a), the temperature dependence of the
intensity remained unchanged, and furthermore the photoconductivity and
luminescence were complementary. Fig. 7.62(a) shows both these results.
In addition they found that the photoconductivity and luminescence exhi-
bited very different decay times (the luminescence decayed with a time
constant —20 ns, approximately 105 times faster than the photoconduc-
tivity); the luminescence depended linearly on light intensity over the
whole temperature range; finally the luminescence could be quenched by
application of an electric field (Fig. 7.62(b)). The decay time (20 ns) is
about what one would expect for an optical transition if the electron and
hole orbitals are strongly localized; the contrasting case for an exciton
trapped at a charged centre is discussed in § 9.6 in connection with chal-
cogenides.

Fig. 7.62. (a) Temperature dependence of normalized photoluminescence intensity for glow-
discharge silicon deposited at 520 K (O), 440 K (A), 400 K (•), and 320 K (x). The photo-
conductivity ((D) is independent of temperature in the temperature range where the lumines-
cence intensity varies strongly, (b) Electric field quenching of luminescence. (From Enge-

mann and Fischer 1976.)

Although monomolecular recombination might be expected for those
carriers recombining through defect levels EX and E^, band-to-band
recombination (the transition at 1-25 eV) is monomolecular only for the
special case of geminate recombination. Engemann and Fischer (1976)
therefore propose that photogenerated electron-hole pairs either separate
from their mutual Coulomb potential, in which case they lead to photo-
conductivity, or else they recombine emitting radiation. The solid lines in
Fig. 7.62(a) are theoretical curves based on this model, the activation
energy of 0-12eV in the luminescence being a measure of the binding
energy of the electron-hole pair following thermalization. The fact that the
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luminescence intensity is lower for samples deposited at a low temperature
is probably explicable in terms of an increased density of centres through
which the carriers decay non-radiatively. The photocurrent is also lower in
such samples. The electric-field quenching of luminescence shown in Fig.
7.62(b) is attributed to a lowering of the potential barrier for escape as
described in § 6.5.3, where the same model was used to explain an electric-
field enhancement of quantum efficiency for photogeneration, and in
§6.7.6.

Electric-field quenching of luminescence and the complementarity of
luminescence and photoconductivity in glow-discharge-deposited silicon
are evident in data obtained on doped samples (Rehm et al. 1976). With
increasing concentrations of either boron or phosphorus the spectral
dependence of the luminescence band shows a shift to lower photon
energies, the peak occurring at —0-8 eV for high doping levels (Fie. 7.631

Fig. 7.63. Normalized luminescence spectra for p- and n-type glow-discharge-deposited
silicon. Doping concentrations as shown. (From Rehm et al. 1976.)

For either dopant the total luminescence intensity falls with increasing
concentration as shown in Fig. 7.64. Rehm et al. (1976) attribute this to an
increased probability for carrier pairs to separate on account of the internal
electric fields produced by charged donors or acceptors.

Photoluminescence in pure and doped glow-discharge-deposited silicon
has also been studied by Nashashibi, Austin, and Searle (1977a). Their
results, which include data on the excitation spectra, are shown in Fig.
7.65. Although the shift of the luminescence peak with doping appears to
be considerably less than that measured by Rehm et al. (1976), Nashashibi
et al. (1977b) report the growth of the O8eV band with increasing
temperature.
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Fig. 7.64. Luminescence intensity and photoconductivity in glow-discharge-deposited silicon
as a function of doping concentration (gaseous ratio). (From Rehm et al. 1976.)

The excitation spectra look, at first sight, similar to those found for
chalcogenide glasses (Chapter 9), but a noteworthy difference is that the
peaks lie at photon energies corresponding to much higher values of the
absorption coefficient. As for the chalcogenides the fall-off of the excita-
tion spectrum on the low-energy side is associated simply with the reduced

Fig. 7.65. Photoluminescence (PL) and excitation spectra (PLE) at 10 K for undoped (solid
curve) and n-type (broken curve) glow-discharge-deposited silicon. The quantum efficiency
(left-hand scale) is absolute for the PLE spectrum of the undoped sample; the PLE spectrum
of the doped sample is normalized to this curve. Intensities for the PL curves are plotted on an
arbitrary (but linear) scale. Also shown in the absorption coefficient a for undoped glow-

discharge-deposited silicon at 300 K. (From Nashashibi et al. 1977a.)
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level of absorption; the photoluminescence efficiency is, in fact, indepen-
dent of photon energy up to the maxima. The fall-off on the high-energy
side probably occurs for a different reason than in chalcogenides, namely an
increased probability of carrier-pair separation (with consequent non-
radiative recombination) when the carriers thermalize to a relatively larger
separation in their mutual Coulomb field, as indeed they are expected to do
if they start with a higher excess kinetic energy (see § 6.5.3). The enhanced
fall-off on the high-energy side of the excitation spectrum for doped samples
is probably associated with the above mentioned internal fields arising from
charged impurities.

Nashashibi et al. (I911a,b) also report on the temperature dependence
of the luminescence intensity (Fig. 7.66). For doped samples the tempera-
ture dependence is reduced but for doped and compensated samples the

Fig. 7.66. Temperature dependence of luminescence in undoped and n- and p-type doped
glow-discharge silicon. The doping levels (in gaseous parts per million) are indicated. The
broken curve is for a compensated sample prepared with ITOOppm of phosphine and
1840 ppm of diborane in the silane. Excitation was at 2-3 eV. (From Nashashibi et al. 1977a.)

steeper fall observed in undoped samples at high temperatures is partially
restored. The results shown here refer to the total luminescence;
Nashashibi et al. (1977b), however, find very different temperature
dependencies for the 0-8 eV and 1-3 eV bands, the former varying least.

Electroluminescence from forward-biased p-i-n diodes fabricated from
glow-discharge-deposited silicon has been reported by Pankove and
Carlson (1976). The luminescence peaks at —1-27 eV which is very close to
the value found in photoluminescence. Pankove and Carlson (1977) also
report that photoluminescence diminishes in intensity and shifts to lower
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energies as hydrogen is evolved from glow-discharge-deposited silicon by
heating.

7.8. Density of states in the valence and conduction bands of
amorphous germanium and silicon

The density of valence-band and conduction-band states in amorphous
germanium and silicon has been determined by ultraviolet and X-ray
photoemission spectroscopy (UPS and XPS respectively), as well as by other
techniques.

Early results on germanium (Donovan and Spicer 1968, Donovan 1970,
Ribbing, Pierce, and Spicer 1971) and on silicon (Pierce and Spicer 1972)
using UPS are compared with the calculated N(E) for the diamond crys-
talline structures in Fig. 7.67. For both materials, the uppermost (p-like)

Fig. 7.67. Density of electron states in evaporated films of (a) germanium and (b) silicon as
determined by UPS. The broken curves are the calculated densities of states for the diamond

cubic crystalline phases. (From Spicer 1974.)
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valence bands (from 0 to — — 4 eV) are similar in width to those in the
crystals but are relatively featureless, have steeper leading edges, and
peaks at energies about 2 eV closer to the band edge. For the conduction
bands, all the structure calculated for the crystalline phases is apparently
lost; however, according to Spicer (1974) the possibility of a weak maxi-
mum in N(E) near the conduction-band edge, or a monotonic increase of
decrease in N(E) for E>2 eV, could not be ruled out from these experi-
ments.

XPS allows one to probe deeper into the valence bands but with some-
what diminished resolution. Results on cleaved crystalline and on
evaporated germanium and silicon were first obtained by Ley et al. (1972).
In Fig. 7.68 we reproduce essentially similar results on germanium due to
Eastman, Freeouf, and Erbudak (1974) which also include the density of

Fig. 7.68. (a) Density of states in amorphous (solid curve) and crystalline (broken curve)
germanium as determined by XPS (excitation energy 25 eV). For the valence band a secon-
dary electron background has been subtracted. For the conduction band, N(E) was deduced
from secondary emission and the edge has been sharpened by 0-5 eV to allow for experimen-
tal 'broadening effects', (b) The crystalline spectrum of (a) compared with a calculated (EPM)

spectrum by Shaw. (From Eastman et al. 1974.)
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conduction-band states obtained from a 'partial photoelectric yield spec-
tra't following excitation from the 3ds/2 core level.

We first discuss the results obtained for the crystal. The density of
valence states (broken line on the left-hand side of Fig. 7.68(a)) consists
of a fairly flat-topped band about 5 eV wide with some evidence of the fine
structure present in the calculated spectrum (Fig. 7.68(b)). The small
shoulder marked SS at 0-7 eV below the top of the band is ascribed to
surface states (Eastman and Grobman 1972a,&). Separated from this p-
like band by a well-defined minimum at 6 eV lie the s-p bands of total
width ~7 eV. Compared with theory (Fig. 7.68(b)), these bands are not so
well resolved into their two components, but the expected dip in the
vicinity of 9 eV is clearly observed. The experimental density of conduction
states, although again in rather poor agreement with theory, does display
the three predicted peaks near 2 eV, 4 eV, and 6 eV measured with respect
to the top of the valence band. In addition, however, there is a pronounced
shoulder marked EX which is believed to be of excitonic origin owing to
the localized nature of the 3d core hole left behind on excitation. Such
exciton effects have not been included in the theoretical curve.

The results for amorphous germanium (solid curve, Fig. 7.68(a)) show
several important features when compared with those for the crystal. As in
Fig. 7.67 the uppermost p-like valence band is somewhat narrower, has a
steeper leading edge, and has its maximum shifted towards the gap. The
lower-lying s-p bands are merged into one and shift bodily ~1 eV towards
higher energies (lower binding energy). For the conduction band one
notices again the loss of the three peaks present in the crystalline spectrum
but, in contrast to the results of Donovan and Spicer (1968) (Fig. 7.67), a
broad maximum centred at —2-3 eV is left. Perhaps surprisingly the core
excitonic feature, observed for the crystal, is lost.

Eastman et al. (1974) have calculated the e2 spectrum of amorphous
germanium using the above densities of states, assuming matrix elements
independent of energy and relaxing the k-conservation rule. This result is
compared in Fig. 7.69 with the experimental curve of Donovan, Spicer,
Bennett, and Ashley (1970) derived from reflectivity data and shown
earlier in Fig. 6.50. The agreement is good, in view of the assumptions
made, and should be compared with that calculated using the crystalline
density of states (and the same assumptions) shown in Fig. 6.52(a).

There have been several different theoretical approaches to the cal-
culation of the density of states of amorphous materials, and reproduction
of the experimentally determined density of valence states (DOVS) of
amorphous germanium and silicon have become somewhat of a testing

t These spectra represented the spectral distribution of secondary Auger electrons, escaping
from a depth ~ 15-25 A, the number of which should be proportional to the number of
photoexcited holes and hence to the distribution of final states.
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i Fig. 7.69. e2 spectrum for amorphous germanium as deduced from N(E) of Fig. 7.68(a)
compared with that derived from reflectivity data. (From Eastman et al 1974.)

ground for these. Here we summarize the present state of achievement for
these materials.

Early methods based on modifications to the band structure of diamond
crystalline germanium are now mainly of historical interest. Thus the
'dilated crystal' approach of Herman and Van Dyke (1968), the 'Lorent-
zian-broadened density of states' model of Brust (1969a,&), the Phillips
Tenn-gap model' (Phillips 1971), and the 'complex band structure'
(CBS) method of Kramer (1970a,6, 1971) and of Maschke and Thomas
(1970a) all obtained, with somewhat ad hoc adjustable parameters, fair
reproduction of the e2 spectrum of amorphous germanium; however, they
all failed to predict the density of states (see Thorpe and Weaire 1974).
Subsequently Kramer and Treusch (1974) improved the CBS method by
including short-range order of forms different from that occurring in the
diamond structure. This refinement accounted in part for the coalescing of
the s-p band peaks shown in Fig. 7.68(a) but not the change in shape and
position of the p band.

It is now clear that approaches that do not take into account the
different topology of amorphous as compared with crystalline germanium
(as exemplified for example by ring orders different than six) are not
expected to be successful. It is the short-range order rather than the
absence of long-range order that is of prime importance in determining
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DOVS. However, loss of translational symmetry removes sharp singulari-
ties arising from Brillouin zone effects and produces selective broadening;
for optical transitions the energy dependence of matrix elements is
smoothed (Fig. 6.51) and the restriction of k conservation is lifted.

Calculations based on crystalline polytypes of germanium, which have
various different types of short-range order, have been very helpful in
understanding the role that local bonding arrangements play in determin-
ing the density of states. Fig. 7.70 shows empirical pseudopotential cal-
culations of the density of states for the diamond cubic (FC-8), wurtzite

Fig. 7.70. Density of states calculated by Joannopoulos and Cohen (1973a) for germanium in
(a) diamond cubic, (b) wurtzite, (c) Si III, and (d) Ge III structure. A dotted line is drawn
through the spectrum in (d) to eliminate the fine structures arising from Brillouin zone effects.

(From Thorpe and Weaire 1974.)

(2H), Si III(BC-8) (also known as GelV), and Gelll (ST-12) structures by
Joannopoulos and Cohen (I913a,b). Henderson and Herman (1972),
Ortenburger, Rudge, and Herman (1972), Henderson, Herman, and
Ortenburger (1974), Henderson and Ortenburger (1973), and Orten-
burger and Henderson (1972, 1973, 1974) have also calculated N(E) for
these structures as well as for undistorted and distorted 4H and 6H poly-
types and various clathrate structures. All these structures have tetrahedral
bonding (distorted in the case of BC-8, ST-12, and the clathrates) but
rather different ring statistics. As the size and complexity of the unit cell
increases, the density of states shows more fine structure but less gross
structure. For ST-12 (Fig. 7.70(d)), when smoothed (dotted line) to simu-
late the loss of Brillouin zone effects, most of the principal effects observed
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for amorphous germanium are obtained, i.e. the uppermost p-like valence
band is skewed to higher energies, the dip in the s-p band is smoothed out,
and the conduction band is relatively featureless.

Tight-binding models of amorphous germanium fall into several classes.
The first is based on a simple Hamiltonian including interaction integrals V\
between tetrahedral sp3 orbitals belonging to the same atom and V2

between orbitals on the same band joining nearest neighbours (Weaire
1971, Weaire and Thorpe, 1971, 1973, Thorpe and Weaire 1971, 1974).
Perfect tetrahedral co-ordination (but implied topological disorder) is
assumed, but quantitative disorder corresponding to a spread in bond
angles (and hence in Vi) or next-nearest-neighbour interactions (V2) is
neglected. It has been proved (Weaire 1971, Heine 1971) that for all
structures with tetrahedral co-ordination this Hamiltonian yields a band
gap equal to or greater than 2\V2\ —  4 V\. Fig. 7.71 shows the density of

Fig. 7.71. Density of states using a tight-binding Hamiltonian for crystalline sili-
con/germanium. The delta functions in each band have the same weight as the rest of the

band (V± = 2-5 eV, V2 = -6-75 eV). (From Thorpe and Weaire 1974.)

states calculated for the diamond crystalline structure. The conduction
band (E > 0) is inadequately described because of the omission of the d
states, but the gross features of the valence band are obtained, namely the
two peaks in the lower part and a separate p band shown as a delta function
but having a weight equal to the rest of the band. The known breadth of
this p band arises from next-nearest-neighbour interactions (see Ziman
1971) which have been neglected in this model. The shape of the lower
bands depends on Vi/V2 and on the topology; it is shown for four
structures in Fig. 7.72(a). The Bethe lattice is an infinitely branched tree-
like structure with no closed loops, whereas the Husimi cactus lattices are
made up of only closed loops, two to each atom (see Fig. 7.72(b)). These
pseudolattices are not periodic and results obtained using them serve to
illustrate the importance of ring statistics on the valence-band density of
states. Thus the absence of even-membered rings or the presence of
odd-membered rings acts so as to erode the central dip. A calculation using
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Fig. 7.72. (a) Valence-band density of states using a one-band Hamiltonian for various
silicon/germanium lattices: (i) diamond cubic, (ii) Bethe lattice, (iii) six-ring Husimi cactus,
(iv) five-ring Husimi cactus. (From Thorpe and Weaire 1974.) (b) Illustration of a Bethe and a

five-ring Husimi cactus lattice. (From Thorpe and Weaire 1974.)

the topology of the Polk 201-atom continuous random network (CRN)
model with randomly joined surface atoms is shown in Fig. 7.73. Joan-
nopoulos and Cohen (1973a,ft) have applied the model to the polytype
structures mentioned above. Uda and Yamada (1975) using the same
method have considered the effects of dangling bonds in a Bethe lattice
with the interesting result that states appear near the centre of the band
gap.

Tong (1974), Tong, Swenson, and Choo (1974), and Choo and Tong
(1976) have calculated the density of states appropriate to a variety of
tetrahedrally co-ordinated atomic clusters using extended Hiickel theory
(EHT) and obtained all the principal differences between the crystalline

Fig. 7.73. Valence-band density of states using a one-band Hamiltonian for the connectivity
of the 201-atom Polk model. (From Alben et al. 1973.)
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and amorphous densities of states. However, computer limitations restrict
the number of atoms that can be handled using this method. Larger models
are more conveniently treated by the chemical pseudopotential method
introduced by Anderson (1968, 1969)—see also Weeks, Anderson and
Davidson (1973), Bullett (1974, 1975a,£,c, 1976), Haydock et al. (1972,
1975). Using this method, which defines a 'local density of states' in terms of
the near-neighbour configuration of bonding orbitals, Kelly (1974), and
Kelly and Bullett (1976a)have calculated the valence-band density of states
for two silicon crystalline lattices, diamond and ST-12, as well as for two
CRNs, the Boudreaux-Polk and Connell-Temkin models (see § 7.2). The
results of these calculations, which incorporate the site-to-site variation of
the interaction integrals V\ and V2, are shown in Fig. 7.74. The valley in

Fig. 7.74. Valence-band density of states for silicon atoms arranged on (a) the diamond
lattice, (b) the ST 12 lattice, (c) the Polk-Boudreaux CRN, and (d) the Connell-Temkin CRN
as calculated by the chemical pseudopotential and recursion method. The result for the
diamond lattice obtained by a Brillouin zone sum of the bands derived by using the same

interactions, is shown on a larger scale on the right. (From Kelly and Bullett 1976a.)

N(E) for the diamond structure referred to several times above and shown
here at about -2 eV is virtually eroded for the Boudreaux-Polk model but
reappears for the Connell-Temkin model. As the latter contains no odd-
membered rings but does have bond-angle distortions, the importance of
ring statistics is once again seen.

DOVS spectra obtained by Meek (1977c) using essentially the same
recursion method as Kelly and Bullett (1976) for a series of CRNs having
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Fig. 7.75. Valence-band density of states for silicon in the diamond cubic structure and for
various CRNs as calculated using the recursion method. The ring statistics of the various

CRNs are shown in Table 7.1. (From Meek 1977c.)

an increasing proportion of odd-membered rings are shown in Fig. 7.75.
Five of the networks were derived from the Connell-Temkin model by a
restructuring procedure (Beeman and Bobbs 1975). The progressive filling
of the s-p dip and the steepening of the leading edge of the valence band as
the proportion of odd-membered rings increases is clearly evident from
these calculations. (See also Alben et al. (1975).)

TABLE 7.1

Rings per atom
Number of

C R N atoms 5 6 7

Connell-Temkin 238 0 2-432 0
C-TB 238 0-059 2-270 0-156
C-TC 238 0-158 2-090 0-313
C-TD 238 0-189 1-955 . 0-469
C-TE 238 0-336 1-506 0-808
C-TF 238 0-398 1-287 1-008
Steinhardt 201 0-430 0-889 0-989
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A related method of calculating the DOVS is the cluster-Bethe-lattice
method (CBLM), (Joannopoulos and Yndurain 1974, Yndurain and
Joannopoulos 1975, 1976), which yields results in full agreement with the
above conclusions (see Joannopoulos and Cohen 1976).

The status of the theory of the multiple scattering within clusters of
tetrahedral atoms (McGill and Klima 1972, Keller 1971) has been
reviewed by Greenwood (1973) and by Thorpe and Weaire (1974). The
importance of the local atomic arrangement in terms of staggered and
eclipsed bond configurations is seen in the density of states near the
pseudogap (Fig. 7.76). A real gap is not obtained by this method; there are
also problems associated with boundary conditions and with proper
representation of the correlations between clusters. The method may be

Fig. 7.76. Density of states (valence and conduction bands) for clusters of eight silicon sites in
the staggered and eclipsed configurations and the free-particle density of states, as calculated

by multiple-scattering theory. (From McGill and Klima 1972.)
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useful if developed (see Jones 1974), but at present it has not been
successfully applied to the lower valence bands, i.e. below the 'muffin-tin
zero' of the atomic potential.

The densities of states in the conduction bands of amorphous germanium
and silicon as deduced from photoemission data were shown in Figs. 7.67
and 7.68(a). In Fig. 7.77 soft X-ray absorption spectra of crystalline and
amorphous silicon obtained by Brown and Rustgi (1972) are compared. In
both cases the spectra have been decomposed into two components
separated by 0-6eV, corresponding to a spin-orbit split 2p-core level
which is the initial state for the transition. For crystalline silicon (Fig.
7.77(a)) three features are observed which may correspond to those in the

Fig. 7.77. High-resolution X-ray absorption spectra of (a) crystalline and (b) amorphous
(evaporated) silicon. The spectra are resolved into Lm and Ln components. In (a) the broken
curve is the theoretical conduction-band state density according to Kane. In (b) the broken

curve reproduces part of the crystalline spectrum of (a). (From Brown and Rustgi 1972.)
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theoretical density of states of the conduction band (shown dotted and
positioned to line up with the Lm threshold). If this is what is being
observed then there appears to be considerable enhancement near the
threshold owing to exciton effects (Altarelli and Dexter 1972). The results
have been discussed further by Brown, Bachrach and Skibowski (1977).
There is the possibility that some of the structure may arise from EXAFS
eifects (§ 6.3). In any event the spectrum for the amorphous film (Fig.
7.77(b)) shows none of this structure and indeed looks similar to that
presented in Fig. 7.68(a). An attempt to calculate the conduction-band
density of states in amorphous germanium using plane waves ortho-
gonalized to valence states has been made by Bullett (1974).
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8.1. Introduction

There are several elements of group V having three-fold co-ordination in
the amorphous state, arsenic and antimony being the two on which most
information exists. Amorphous phosphorus is also three-fold co-ordinated,
whereas amorphous bismuth is not and probably has a close-packed struc-
ture. Although crystalline GeTe and GeS(GeSe) have structures like
rhombohedral and orthorhombic arsenic respectively, the atoms in the
amorphous forms of these materials are not three-fold co-ordinated but
rather each constituent adopts an environment appropriate to its valency,
i.e. Ge is four-fold co-ordinated and the chalcogen two-fold co-ordinated;
these alloys are therefore included in Chapter 9.

In many ways the three-fold co-ordinated elements have properties that
are intermediate between the four-fold co-ordinated materials (Ge and Si,
Chapter 7) and those that are two-fold co-ordinated (Se and Te, Chapter
10). They are also traditional 'glass formers' and are common constituents
in binary, ternary, and multicomponent chalcogenides (Chapter 9). Most of
this chapter is devoted to arsenic; antimony and phosphorus are discussed
in a final section.

8.2 Forms and preparation of arsenic

Table 8.1 gives some details of the various allotrOpes of arsenic that have
been identified. The symbols are those chosen by Stohr (1939) and Krebs,
Holtz, and Worms (1957). Rhombohedral As, the familiar semimetal, can
be grown as single crystals (see Taylor, Bennett, and Heyding 1965);
orthorhombic As can be prepared from glassy arsenic by heating with
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TABLE 8.1

Forms of arsenic t

409

t Thin-film variants of amorphous form not included.

mercury (see Smith, Leadbetter, and Apling 1975). The preparation of
yellow As is described, for example, by Mellor (1929). Bulk glassy As
cannot be prepared in the normal way by quenching from the melt because
it sublimes at atmospheric pressure. Stohr (1939) produced the various
forms of glassy As, indicated in the table, by heating rhombohedral As
between 650 and 700 K in a sealed evacuated ampoule placed in a
temperature gradient. Bulk glass has also been prepared by the pyrolisis of
arsine AsH3 (Vallance 1938) and is available commercially.t

In the following sections measurements made on rhombohedral and
orthorhombic As will be compared with those made on both bulk glass and
thin films of amorphous As. Although thin films can be prepared by
electrodeposition (see Breitling and Richter 1969), evaporation (Moss
1952), reactive d.c. sputtering (Holland 1963), or glow-discharge de-
composition of arsine (Knights and Mahan 1977), the most comprehensive
set of data exists for films prepared by r.f. sputtering (Greaves, Knights,
and Davis 1974, Greaves 1975, Greaves, Davis, and Bordas 1976a).

Pin-hole-free films of amorphous As with good surfaces and stability,
having thicknesses in the range 200 A-50 ^m can be prepared by r.f.
sputtering from polycrystalline or glassy targets in various gaseous
ambients. Although hydrogen allows fast sputtering rates, approximately
100 times the physical rate for this gas (Moore 1960) suggesting reactive
sputtering, films so produced show strong infrared absorption arising from
As—H bond vibrations. Non-reactive sputtering in argon allows rates
— 1-2As"1 and leads to what are probably the purest films. Unlike
deposition by evaporation, no cooling of the substrate is necessary.

t From MCP Electronics Ltd, Alperton, Wembley, Middlesex HAO 4PE. Throughout this
Chapter we refer to this material as a glass even though it is not prepared by supercooling the
liquid but by vapour transport in hydrogen.

Density Electrical
Allotrope Structure (g cm~3) nature Comments

a- arsenic Rhombohedral 5-72 Metallic Familiar
(A7) semimetal

e-arsenic Orthorhombic 5-54 Semiconducting Mineral form —
gap —0-3 eV arsenolamprite

Yellow arsenic Uncertain 2-07? Semiconducting Unstable
gap ^2-5 eV

0
y arsenic Amorphous 4-73 Semiconducting Different forms
8 -5-18 gap~leV described but not

properly classified
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8.3. Structure of amorphous arsenic

The structures of the double layers present in the two stable crystalline
allotropes of As are illustrated in Fig. 8.1(a,b). In both structures the atoms
are incorporated into two-dimensional networks of puckered six-fold rings,
the bonding between the three-fold co-ordinated atoms being mainly
covalent. Adjacent layers are situated at distances larger than the covalent
intralayer bond length but shorter than the van der Waals distance. In
rhombohedral As the bond length r is 2-51 A, the bond angle 6 is 97-2° ,
and all pairs of atoms have their bonds in the staggered configuration. In

Fig. 8.1. Double layer of atoms in (a) rhombohedral and (b) (p. 411) orthorhombic arsenic.
Bond lengths and angles taken from Wyckoff (1963) and Smith et al (1975). (From Greaves
1975.)
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orthorhombic As (which is isomorphous with black P) r = 2-48(9) A, 6 =
94-1 °  or 98-5° , some pairs of atoms having their bonds in the staggered
configuration and some being semi-staggered. The layers in orthorhombic
As are more puckered and the interlayer separation is greater. The unit
cells of the two allotropes are shown in Fig. 8.2.

Fig. 8.2. Unit cells of (a) rhombohedral and (b) orthorhombic arsenic. The interlayer bonding
is shown by broken lines. (From Greaves 1975.)

Attempts to model the structure of amorphous As have emphasized the
covalent bonding at the expense of the interlayer bonding. That this is
necessary can be seen from the RDFs and structure factors S(k) =
I ( k ) / f 2 ( k ) for the amorphous and rhombohedral forms shown in Figs. 8.3
and 8.4. In the RDF for rhombohedral As, peaks occur at 2-5 A (three
one-bond intralayer neighbours), 3-1 A (three one-bond interlayer neigh-
bours), 3-7 A (six two-bond intralayer neighbours), 4-0 A (two-bond
interlayer neighbours), 4-5 A (three-bond intralayer neighbours), etc. In
amorphous As the first intralayer peak is retained but the first interlayer
peak is missing or at least shifted. The second peak in the RDF of amor-
phous As embraces peaks observed for rhombohedral As due to two-bond
intralayer and interlayer neighbours, but the next two intralayer peaks are
missing. Unwanted interlayer correlations have been minimized in various
rmcrocrystalline models of amorphous As by moving the layers apart and
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Fig. 8.3. RDF of arsenic. The dotted curve was obtained for precipitated (amorphous)
material and the solid curve for the same material after annealing at 250° C which causes
partial crystallization to the rhombohedral phase. The peaks marked O and D are associated
with intralayer and interlayer coordinations respectively, and the numbers in the symbols
indicate whether they are 1, 2, 3, etc. bond neighbours. The average density parabola 47rr2p0

is shown by a continuous curve. (From Breitling 1972.)

Fig. 8.4. Structure factors S(k) for amorphous arsenic (Krebs and Steffen 1964, Bellisent and
Tourand 1976) compared with those expected from 12 A diameter microcrystallites of

rhombohedral (dotted) and orthorhombic (broken) arsenic. (From Smith et al. 1975).
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rotating them relative to each other (Richter and Gommel 1957, Krebs and
Schultze-Gebhardt 1955), by mixing layers of rhombohedral and ortho-
rhombic As (Krebs and Schultze-Gebhardt 1955, Krebs and Steffen 1964)
or by displacing atoms within a given layer (Smith et al. 1975). In general,
however, microcrystalline models have not produced as good a fit to the
experimental S(k) and RDF as the continuous random network model to
be described below.

Another reason for minimizing interlayer correlations in models of
amorphous As is the dramatic change in electrical properties. The semi-
metallic nature of rhombohedral As is attributed (Krebs 1968, 1969) to the
overlap between the back lobes of orbitals in adjacent layers and the
semiconducting nature of amorphous As to the loss of this overlap. The
importance of this interlayer bonding in determining electrical properties is
evident in orthorhombic As in which the interlayer spacing is increased over
that in rhombohedral As, producing a small-band-gap semiconductor.

In Fig. 8.5 two RDFs obtained by Krebs and Steffen (1964) for what
these authors called ft- and y-arsenic (both amorphous) are given. From
the shape and position of the first peak in the RDFs it is deduced that each
As atom is surrounded by three nearest neighbours at —2-5 A and that
most, and probably all, of the bond-length disorder is thermal in origin.
The position of the second peak at 3-75 A gives an average bond angle
close to 97° . The area under this peak, however, amounts to nine to ten
atoms, implying contributions from neighbours other than the six two-
bond intralayer neighbours in the crystal. Therefore, unlike the situation in

Fig. 8.5. Experimental RDFs of 0 and y arsenic. (From Krebs and Steffen 1964.)
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amorphous Ge, for which only next-nearest neighbours contribute to the
second peak in the RDF, it is difficult to estimate the extent of bond-angle
distortion. However, the minimum between the first and second peaks
indicates that atoms separated by more than two bonds do not come closer
than —2*9 A. Furthermore, as there are no features at 3-2 and 4-5 A,
which would indicate preference for staggered or eclipsed bonding
configurations, interpretation of the RDFs in terms of microcrystalline
materials seems unlikely. A simulation of the structure of amorphous
arsenic by a continuous random network (CRN) with a broad distribution of
dihedral angles seems to be the natural choice.

A three-fold co-ordinated CRN containing 533 atoms was built by
Greaves (see Greaves 1975, Greaves and Davis 1974a,fe). The con-
struction procedure was similar to that employed for CRNs of tetrahedrally
co-ordinated structures (§ 7.2) with the added constraint of keeping apart
atoms not directly bonded. This was necessary because of the 'blind' side of
the asymmetrical three-bonded units and was achieved with the aid of a
spacer of (scaled) length 2-9 A corresponding to the minimum in the
experimental RDFs (Fig. 8.5). The resulting model is rather open and
pervaded by caverns, a density deficit (relative to that of the crystalline
structures) occurring in spite of complete connectivity. Another feature
worth emphasizing is that, although only those bonds contained within
layers in the rhombohedral or orthorhombic structures were used, the
model is not layer like in appearance: the layers bifurcate and reconnect in
a manner such that they can be recognized only over small regions.

The Greaves-Davis model contains rings of various orders as shown in
Fig. 8.6. The bond and dihedral angle distributionst of the model, after
computer refinement of the co-ordinates to bring all bond lengths to within
0-5% of each other (Elliott and Davis 1976) are shown by the dotted lines
in Fig. 8.7(a,b). The average bond angle of the model turned out to be 102°
with a standard deviation of 9° , but it was found easy to adjust this by a
computer relaxation procedure to almost any value selected. The solid
lines in Figs. 8.7(a,b) show the bond- and dihedral-angle distributions after
adjustments of the co-ordinates to minimize the local strain energy by a
method similar to that used by Steinhardt et al. (1974) for tetrahedrally
co-ordinated structures (Elliott and Davis 1976, Davis et al. 1977). The
bond-angle distribution for the relaxed model peaks at 98°±6-9 °  and the
dihedral-angle distribution shows a preference for staggered over eclipsed
bonding configurations by a factor of about 2. The lower histogram in Fig.
8.7(b) is a reconstruction of the dihedral-angle distribution of the model
derived solely from the ring statistics and considerations of what dihedral

tThe dihedral angle <£ is the average rotation necessary to bring next-nearest-neighbour
bonds into the eclipsed configuration.
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Fig. 8.6. Ring statistics of the Greaves-Davis model. P(N) is the fraction of N-fold rings.
(From Greaves and Davis 19740.)

angles are allowed (or most likely) in rings of various order, subject to
bond-angle constraints (Davis et al. 1977).

Fig. 8.8(a) shows, for the unrelaxed model, the measured RDF in histo-
gram form and after Gaussian smoothing of G(r)(=[J(r)/r} —  47rp0r) to
bring the height of the first peak to the value obtained experimentally. Fig.

Fig. 8.7. (a) Bond angle P(0) and (b) dihedral angle P(<A) distributions in the Greaves-Davis
model. The dotted lines refer to the original co-ordinates after refinement (i.e. equalization of
bond lengths) and the solid lines to those after relaxation (i.e. local energy minimization). The
lower histogram in (b) is a theoretical reconstruction as described in the text, ((a) From Elliott

and Davis 1976; (b) from Davis et al 1977.)
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Fig. 8.8. (a) RDF of the unrelaxed Greaves-Davis model scaled to the bond length of arsenic.
The broken curve is obtained after Gaussian smoothing the histogram and the dotted curve is
the average density parabola, (b) Partial RDFs of the model i.e. Jn(r) with n as indicated.

(From Greaves and Davis 1974a.)
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8.8(b) shows this smoothed RDF decomposed into n-neighbour contribu-
tions. Unlike four-fold co-ordinated CRNs, the second peak contains
considerable contributions from neighbours that are connected by more
than two bonds.

Greaves (1976) has shown how it is possible to obtain a fair synthesis of
the total RDF shown in Fig. 8.8 by calculating Jn(r)(n = 1,2, and 3) purely
from a knowledge of the ring statistics and the bond- and dihedral-angle
distributions. This step towards interpreting RDFs in terms of the above
parameters (also investigated for four-fold structures by Temkin, Paul, and
Connell (1973) and Temkin (1974, 1978)) is a significant one towards the
desirable reverse procedure of deducing parameters denning the local
topology of non-crystalline structures directly from their RDFs.

The RDF of the relaxed Greaves-Davis model is compared with the two
experimental RDFs (shown in Fig. 8.5) in Fig. 8.9. The overall fit is good,
the average density of the model (which determines the parabola about
which the RDF lies) being 4-8 g cm"3 when scaled to the bond length in
arsenic, compared with 4-74 and 4-97 g cm"3 measured for the two amor-
phous forms. By further altering the co-ordinates of the model to obtain
average bond angles of 102°  and 96° , appropriate to amorphous P and Sb
respectively, the RDFs of these materials have also been simulated (Fig.

Fig. 8.9. Comparison of the RDF of the relaxed Greaves-Davis model with experimental
curves obtained by Krebs and Steffen (1964). (From Davis et al 1977.)
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8.10(a,b)). The fits in these cases, however, are not so good as for arsenic,
although approximately the correct densities were obtained: 2-2 g cm"3 for
P (compared with experimental values of 2-34 and 2-7 gcm~3 for the red
and black amorphous forms respectively) and 5-07gcnT3 for Sb
(compared with the experimental value of 5-01gcm~3). A more recent
experimental determination of the RDF of amorphous P is described in
Krebs and Gruber (1967).

Fig. 8.10. RDFs of the Greaves-Davis model after relaxation of the co-ordinates to average
bond angles of 102°  and 96°  compared with experimental RDFs of amorphous phosphorus

(Hultgren et al. 1935) and antimony (Krebs and Steffen 1964). (From Davis et al 1977.)

Comparison of S(k) associated with the Greaves-Davis model and
experiment (see Bellisent and Tourand 1976) has been made by Greaves
and Davis (I914a,b) and Davis et al. (1977). The peak near 1 A"1 shown in
Fig. 8.4, present in the amorphous but not the crystalline forms of arsenic,
is reproduced by the model. However, termination errors in the Fourier
transform can lead to spurious ripples in this range of k and the model is
hardly large enough to establish with certainty whether or not the
agreement is fortuitous. A similar peak is also observed in amorphous
As2Se3 and As2S3. According to Smith et al (1975) the peak corresponds
to a real-space separation of about 6 A and its area indicates a correlation
length of about 20 A. These authors favour a quasi-crystalline model for
arsenic, containing layers similar to those occurring in the orthorhombic
structure but disordered, separated by the required 6 A, and extending
over linear dimensions of ~20 A. For the corresponding peaks in As2Se3
and As2S3, Bishop and Shevchik (1974a) opt for a similar model, while de
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Neufville, Moss, and Ovshinsky (1974) and Moss (1974) suggest that it
could arise from the presence of As4Se6 or As4S6 molecules in the respec-
tive materials.

8.4. Electrical properties of amorphous arsenic

The temperature dependence of the d.c. electrical conductivity of a sput-
tered film, a bulk glass, and two crystalline forms of arsenic are shown in
Fig. 8.11. The horizontal broken line is the minimum metallic conductivity
(Chapter 2) for three-fold co-ordination. From these curves, rhombo-
hedral arsenic is seen to be metallic, orthorhombic arsenic a small-band-
gap (—0-3 eV) semiconductor exhibiting impurity band conduction at low

Fig. 8.11. Temperature variation of conductivity or for (1) rhombohedral, (2) orthorhombic,
(3) sputtered, and (4) glassy arsenic. The horizontal broken line refers to the minimum
metallic conductivity (—980 ft"1 cm"1) for three-fold co-ordination. (From Greaves and

Davis 19746.)
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temperatures, and amorphous arsenic, whether in the form of a sputtered
film or a bulk glass, a semiconductor with a gap ~l-2eV. The slightly
higher value of the activation energy for bulk glass (—0-74 eV) compared
with the sputtered films is in accord with the slightly higher optical gap of
the former (§ 8.5).

Fig. 8.12 gives some details of the effect that different rates of deposition
have on the conductivity of r.f. sputtered films deposited at 290 K and

Fig. 8.12. Effect of deposition rate on the temperature dependence of conductivity of
sputtered arsenic deposited at 290 K and annealed for 1 h at 450 K. (From Greaves

et al 1974.)

annealed for 1 h at 450 K. An increase in the activation energy for
conduction from —0-63 eV to —0-7 eV as the sputtering rate is increased is
observed as shown in the inset. At the same time the density was found to
decrease by as much as 10 per cent for a seven-fold increase in deposition
rate. The effect of annealing a film sputtered at a rate ~17 A s"1 is shown
in Fig. 8.13. The electrodes here were in sandwich geometry and the results
show more clearly the departure from linearity below ~220 K evident also
in Fig. 8.11. Annealing at 332 and 353 K decreases the conductivity in this
region, for which logo- plots linearly against T1/4, thereby suggesting
variable-range hopping at the Fermi level. (Using eqn (2.63) with a value
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Fig. 8.13. Temperature dependence of conductivity of sputtered arsenic measured in
sandwich geometry. On annealing above 353 K the conductivity increases, probably because
of partial crystallization leading to short-circuit paths between the electrodes. This effect is

not observed with gap geometry. (From Greaves et al. 1974.)

of a l = 10 A, the slopes yield a value for N(EF) of ~4 x 1017 cm 3 eV \)
Further annealing of this film results in the opposite behaviour, i.e. an
increase in conductivity. This is attributed to partial crystallization of the
films leading to short-circuit paths between the electrodes. The solid curve
in Fig. 8.13 is for a film with electrodes in gap geometry; partial crystal-
lization, although probably present, does not manifest itself in this
configuration.

The intercept of the conductivity at 1/T = Q of all the sputtered films
measured in this investigation is cm"1 compared with the
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Fig. 8.14. Conductivity cr, thermopower S, Peltier coefficient II, and Hall mobility /u,H as a
function of temperature in amorphous arsenic. The solid lines are theoretical fits assuming

two conduction paths, one at Ec and the other at EA. (From Mytilineou and Davis 1977.)

value for the bulk glass of 9 x 104 (1 l cm l. These values are indicative of
transport in extended states. Writing cr0 = crminexp(^/2fc), where (3 is the
temperature coefficient of the optical gap (~6 x 104 eV deg"1—see below),
o-mm is calculated to be ~7x W2 fl~l cm"1 for the sputtered films, and
~3 x 103 H"1 cm"1 for the glass; these values bracket the theoretical value
of 9-8 x 102 H"1 cm"1 shown in Fig. 8.11. The room-temperature value of
Ec—Ep  (the thermopower is negative—see below) is £"(0) —300/8/2, i.e.
0-65 eV for bulk glass and 0-54-0-61 eV (depending on the deposition
rate) for sputtered films. The Fermi energy therefore lies close to the centre
of the optical gap, which (see § 8.5) is —1-3 eV for the bulk glass and
— 1-1 eV for sputtered films.
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Hauser, Di Salvo, and Hutton (1977) report that the d.c. conductivity of
amorphous arsenic prepared by sputtering onto a substrate held at 77 K
displays r~1/4 behaviour. After annealing the films at room temperature,
T~l behaviour with an activation energy of 0-5 eV was observed.

Measurements of the temperature dependence of the d.c. conductivity cr,
the thermopower S, and the Hall mobility /u,H in amorphous arsenic have
been made by Mytilineou and Davis (1977) (see also Davis and Greaves
1976). The results shown in Fig. 8.14 have been interpreted in terms of an
increasing contribution to conduction in band-edge-localized states as the
temperature is lowered and analysed according to the procedure outlined
in Chapter 6. In the transition region the Peltier coefficient II = ST exhibits
a temperature dependence of the opposite sign to that occurring when
conduction is predominantly in extended or localized states. The Hall
effect is positive, i.e. opposite in sign to the thermopower, a sign anomaly
of the opposite sense to that customarily observed in, for instance, the
chalcogenides. The sign of the Hall effect in amorphous semiconductors
has been discussed in §§ 2.14 and 6.4.7 and by Emin (1911 a,b).

The frequency dependence of conductivity in amorphous arsenic has
been measured by Elliott and Davis (1977). Fig. 8.15(a,b) show the

Fig. 8.15. Frequency and temperature dependence of conductivity in (a) sputtered films of
arsenic and (b) bulk glassy arsenic. The broken lines are obtained after subtraction of the

d.c. conductivity. (From Elliott and Davis 1977.)

frequency and temperature dependence in sputtered films and bulk glass.
Although the variation of cr(a)) in the films is as cos, with 5 — 0-9 at a
sufficiently low temperature, and interpretation in terms of hopping at EF

is possible, the variation in the glass is very different. Not only is the
magnitude of cr((o) several orders of magnitude lower, but the exponent s
varies with temperature from a value of -0-5 at 264 K to 0-9 at 80 K. A
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plausible explanation of these results is described by Elliott and Davis
(1977).

Studies of the d.c. conductivity of bulk glassy arsenic by Elliott, Davis,
and Pitt (1977) and by Elliott and Davis (1977) as a function of applied
pressure have revealed dramatic effects. The room-temperature conduc-
tivity (Fig. 8.16) increases by about seven orders of magnitude as the

Fig. 8.16. Pressure dependence of the room temperature conductivity of glassy arsenic. Curve
a is for a loading rate of 1-35 ton min"1; curve c refers to a loading rate of 0-45 ton min"1

which is interrupted at various pressures, and curve b refers to a sample returned to atmos-
pheric pressure from 24 k bar. (From Elliott et al 1977.)

pressure is increased to ~40 kbar, at which pressure the sample irrever-
sibly crystallizes to the rhombohedral phase, a transition accompanied by a
further five orders of magnitude increase in conductivity. This sequence
happens whatever the loading rate and whether or not the loading pro-
ceeds in steps (see Fig. 8.16). A sample released from pressure before the
sharp transition (e.g. curve b in Fig. 8.16) recovers somewhat, but its
resistance is finally lower than that of the starting material. The tempera-
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ture variation of the resistance of such a sample is shown in Fig. 8.17. A
linear plot on a T1/4 scale is indicative of variable-range hopping conduc-
tion and the slope of Fig. 8.17(b) yields, under the assumption that a~l =
10 A, a density of pressure-induced defect levels at the Fermi level of
~6xl017cm~3 eV"1. A model for the states in the gap of amorphous
arsenic will be described in § 8.6.

Fig. 8.17. Variation of resistance with temperature for a sample of bulk arsenic released from
a pressure of 24 k bar versus (a) T"1 and (b) T~1/4. (From Elliott et al. 1977.)
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Photoconductivity in two sputtered films after annealing has been
reported by Greaves et al. (1974). Their results as a function of tempera-
ture, shown in Fig. 8.18, are similar in shape to those observed in many

Fig. 8.18. Temperature dependence of photocurrent in two annealed films of arsenic. The
circles and diamonds refer respectively to films 1 and 4 of Fig. 8.12. (From Greaves

etal 1974.)

chalcogenide glasses and in glow-discharge-deposited Si (see Chapters 6,7,
and 9). In region A the photocurrent is less than the dark current and was
found to vary linearly with light intensity. Beyond the maxima, the photo-
current is larger than that in the dark; it was found to vary with light
intensity sublineaiiy^(with powers ranging from 0-7 to 0-9) in region B and
approximately linearly in region C. The activation energy in region C is
~0-12 eV, which, by analogy with results on glow-discharge-deposited Si,
may represent the range of localized states at the conduction-band edge.
Its magnitude is rather less than that used in fitting the results of Fig. 8.14.
The spectral dependence of photoconductivity in these films shows a fall at
the absorption edge but considerable photoconductivity occurs down to
~O65 eV (Greaves et al. 1974). Measurements on bulk glass will be
described in the next section.

8.5. Optical properties of amorphous arsenic and the density of states
in the bands

The optical constants at room temperature of sputtered films of As within
the vicinity of the fundamental optical absorption edge are given in Fig.
8.19. The edge (Fig. 8.19(a)) is exponential with a slope of 12 eV"1. In
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Fig. 8.19. Optical constants versus photon energy derived from transmission and reflectivity
data on sputtered films of arsenic. (From Greaves, private communication.)

Chapter 6 the slope of this Urbach tail was compared with that in amor-
phous Ge, Se, and B and a correlation with the valency of these elements
noted. Results on bulk glassy As will be, presented below when it will be
seen that the exponential behaviour continues down to an absorption
coefficient ~102 cm"1. Above the exponential tail the results can be plotted
as ha)Js2 versus hco to determine an optical gap. Extrapolation of this line
(Fig. 8.19(c)) yields a gap of 1-1 eV which is approximately twice the
activation energy for d.c. conductivity, as mentioned above.

The absorption edges in amorphous arsenic prepared in various ways are
compared in Fig. 8.20(a,b). The insensitivity of the shape and position of
the edge to the nature and conditions of preparation is in striking contrast
to the variation found for amorphous germanium and silicon (Chapter 7).
The edges for the bulk glass, the film prepared by glow-discharge dis-
sociation of arsine, and the film prepared by sputtering in an
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argon/hydrogen atmosphere all line up perfectly. All these films could,
however, contain some hydrogen and the somewhat lower absorption
threshold for films sputtered in pure argon (curve A of Fig. 8.20(a)) might
be considered to support this possibility. The displacement of the edge
(—0-2 eV) is almost exactly as inferred from the conductivity data on pure
films and bulk glass described in the last section.

Fig. 8.20. (a) Optical absorption edges in amorphous arsenic: A, films prepared by sputtering in
argon; B, bulk glass (Knights 1975); C, film sputtered in 30/70 mixture of H2 and Ar. (From
Greaves et al. 19760.) (b) Optical absorption edges in amorphous arsenic: chain curve, bulk
glass (as B above); solid curve, prepared by glow-discharge decomposition of arsine onto
substrate at 227°C ; dotted curve, film prepared by glow-discharge decomposition of arsine

onto substrate at 27°C . (From Knights and Mahan 1977.)

Below about a = 102 cm"1, the exponential absorption edge undergoes a
change of slope, not unlike that observed in some chalcogenides (Chapters
6, 9) and in glow-discharge-deposited Si (Chapter 7). This region of the
edge can be observed only for bulk glass, and some variation from sample
to sample is evident. It seems quite likely that this tail is associated with
defect absorption, a suggestion supported by the photoconductivity data of
Knights and Mahan (1977) shown in Fig. 8.21; the spectra associated with
bulk and glow-discharge-deposited arsenic, although differently normal-
ized, are quite distinct. The inflection in both curves, however, occurs at a
photon energy —1-1 eV, i.e. close to the onset of the tail absorption seen in
Fig. 8.20.
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Fig. 8.21. Photoconductivity spectra in bulk arsenic and a glow-discharge-deposited film
deposited at 227 K. (From Knights and Mahan 1977.)

A further comparison of the optical properties of amorphous arsenic
prepared in various ways is shown in Fig. 8.22 where the reflectivity of
sputtered, evaporated, and bulk glassy arsenic from 0-03 to 30 eV is
plotted. These data were obtained using a variety of spectrometers and
sources, including a synchrotron radiation facility (Greaves et al. 1976a).
The most noticeable difference between the reflectivity spectra of sput-
tered or evaporated films and bulk glass occurs at low photon energies;
below ~3 eV, the reflectivity of the films falls and flattens out at —0-4
whereas that of bulk glass falls steeply to a minimum value of 0-29. The
reflectivity spectrum of evaporated arsenic (obtained by Raisin et al.
1974a) is similar to those of the other two forms, except that the peak near
14 eV appears as an extended shoulder. Measurements by Hudgens et al.
(1976) of the reflectivity of bulk glassy arsenic are similar to those presented
here up to about 3 eV, beyond which these authors find a sharp drop to
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Fig. 8.22. Reflectivity spectra of three forms of amorphous arsenic as indicated. (From Greaves
etal 19760.)

R ~ 0-3 at 4-5 eV. The reason for this difference is not clear. Over a similar
energy range to that of Fig. 8.22, the reflectivities of rhombohedral arsenic
(Greaves et al. 1976a, Raisin, Leveque, and Robin 1974ft, Cardona and
Greenaway 1964) and orthorhombic arsenic (Greaves et al. 1976a) show
considerably more structure; in particular free-carrier effects produce a
dramatic rise in R at low energies.

Fig. 8.23 shows a portion of the e2 spectrum (derived by a Kramers-
Kronig inversion of the reflectivity data of Fig. 8.22) of sputtered arsenic
compared with that obtained by Raisin et al. (1974ft) for rhombohedral
arsenic. For the metallic crystal there is the expected rise of e2 at low
energies and considerable fine structure; this is lost in the spectrum for the
amorphous form and furthermore there is a small displacement between
the centroid of the fine structure and the single peak observed in the
film. The peak occurs at a slightly higher energy in amorphous arsenic,
suggesting a somewhat larger average gap between bonding and antibond-
ing states.

Further analysis of the optical data, using a procedure similar to that
outlined for amorphous germanium in § 7.6, has been made by Greaves
et al. (1976a). The important parameters evaluated are displayed in Table
8.2. We simply note here the similarity of the plasma frequency o>p

deduced for the various forms of arsenic; an essentially similar value,
namely 17-8 eV, has also been obtained by direct energy loss measure-
ments on amorphous arsenic (Abreu, private communication). Writing
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Fig. 8.23. Comparison of e2 spectrum of amorphous (sputtered) arsenic with that of rhombo-
hedral arsenic. (From Greaves et al 1976a.)

(Op = 47rnve
2/m where nv is the number of charges per unit volume, hcop =

18 eV gives a value of approximately 5 for the number of free electrons per
atom contributing to the plasma; thus the two s and the three p electrons
contribute in all the forms of arsenic considered. There is good agreement
between the values of ha)Q, where a>o is the natural frequency of a Lorent-
zian oscillator taken to describe the e\ data, and the value of the Penn gap

TABLE 8.2

Parameters extracted from optical data on crystalline and amorphous
arsenic t

t From Greaves et al 1976a.

Amorphous Amorphous
Crystalline (sputtered (bulk

Method of evaluation Quantity (rhombohedral) film) glass)

Lorentzian fit to e2 hcop —  16-0 eV 18-0 eV
Maximum of Im(-l/e) ha>p 17-8 eV 18-0 eV 17-8 eV
Lorentzian fit to et ha)0 2-1 eV 3-6 eV 3-9 eV
Use of Penn model hcos 2-8 eV 3-5 eV 4-0 eV

(see § 7.6)
ei(0) 26-2 18-4 14-2
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(obtained by using eqn (7.8) in conjunction with the measured low-
frequency refractive index). The higher value of ha)g in the bulk glass
compared with the sputtered film is attributed to more perfect connectivity
in the former. The same suggestion was made by Connell et al. (1974) to
account for a higher value of ti(og in sputtered films of germanium when
deposited on to a higher-temperature substrate. However, in contrast to
the situation in germanium, the value of ticog for crystalline arsenic is
considerably lower than for either amorphous form. We associate this with
stronger covalent bonding in amorphous, relative to crystalline, arsenic; as
the interlayer bonding is diminished, the intralayer bonding becomes
stronger. The bond length in fact decreases slightly from 2-51 A in rhom-
bohedral arsenic (Wyckoff 1963) to 2-49 A in amorphous arsenic (Krebs
and Steffen 1964), corroborating this suggestion.

The effective number of electrons n&fi contributing to optical absorption
up to a given energy ha> of sputtered and glassy arsenic is shown in Fig.
8.24(a). The density of valence-band states NV(E) for evaporated arsenic,
as determined using X-ray photoelectron spectroscopy by Ley et al. (1973),
is displayed immediately underneath. The valence electrons are seen to
occupy two bands. Since at the minimum value of NV(E) near 8 eV nefi is
approximately 3, and at a plasma energy of 18 eV (see above) neff is
approaching 5, it is possible to deduce that the valence electrons are

Fig. 8.24. (a) neff for sputtered (broken curve) and glassy (chain curve) arsenic as determined
from optical data (Greaves et al. 1976a). (b) Density of valence band states, i.e. NV(E), for

evaporated arsenic as deduced from XPS (Ley et al. 1973). (From Greaves et al 1976&.)
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distributed as for the free atom of arsenic, namely three in p-like states and
two in deeper-lying s-like states (the s-p splitting in atomic arsenic is
9-8eV). Hybridization of the bonds is therefore not, on the average,
strong.

Kelly and Bullett (1976&), using the chemical pseudopotential and
recursion method, have calculated the density of states expected for
amorphous arsenic, basing their calculations on the co-ordinates of the
Greaves-Davis model (§8.3) and using separate s and p orbitals. Their
results are shown in Fig. 8.25(c) along with others for the full rhombo-
hedral crystal (Fig. 8.25(a,b)) and for a single layer of the latter (Fig.

Fig. 8.25. Calculated density of states for arsenic atoms in (a) the rhombohedral structure, as
determined by sampling the Brillouin zone, (b) the rhombohedral structure, as determined by
the recursion method, (c) the Greaves-Davis CRN, as determined by the recursion method
(average over 10 central sites), and (d) a single layer having the same geometry as the
rhombohedral structure, as determined by sampling the two-dimensional Brillouin zone/The
Fermi level is at E - 0. (From Kelly and Bullett 19766.) On the right are the experimental

densities of valence band states as determined by Ley et al. (1973).
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8.25(d)). Experimentally determined distributions from Ley et al. (1973)
are shown on the right of this figure. Comparing Fig. 8.25(b) and (c) one
notices a partial filling in of the s-band dip attributable to the presence of
odd-membered rings in the CRN (analogous to the situation in germanium,
§ 7.8) and also a deepening of the pseudogap at E = 0 (a true gap was not
obtained in these calculations). Other features of these calculations are
discussed by Kelly and Bullett (1976fe), Greaves et al. (19766), and Davis
and Greaves (1976). Related calculations and discussions have been given
by Robertson (1975), Joannopoulos and Pollard (1976), and Joannopoulos
(1976). More recent photoemission data by Schevchik (1977) on sputtered
films deposited onto substrates held at 20 and 220° C exhibit rather less
change in the form of the p-band density of states in going from amorphous
to crystalline arsenic than do the data of Ley et al. (1973) presented above.

In Chapter 9 synchrotron radiation absorption measurements by Bordas
and West (1976) on amorphous arsenic are presented (Fig. 9.38). Dis-
cussion as to what extent these represent the conduction-band density of
states is given there, as well as in Bordas and West (1976), Greaves et al.
(19766), and Liang and Beal (1976).

An 'isomorphism' between the electronic and vibrational density of
states in three-fold co-ordinated systems has been emphasized by Joan-
nopoulos and Pollard (1976) and Joannopoulos (1976). Using this feature
these authors calculate the vibrational spectra appropriate to the Greaves-
Davis CRN and compare it with the infrared spectrum shown in Fig. 6.59.
The vibrational spectra in arsenic (as well as antimony) has been deduced
from Raman spectra by Lannin (1976, 1977). It has also been measured by
inelastic neutron scattering (Salgado, Gompf, and Reichardt 1974, Lead-
better, Smith, and Seyfert 1976). Related theoretical papers are by Chen,
Vetelino, and Mitra (1976), Beeman and Alben (1977), Meek (1977'b) and
Davis, Wright, Doran, and Nex (1979).

The absorption in amorphous arsenic in the spectral range 10 to
200 cm"1 has been measured as a function of temperature by Al-Berkdar,
Taylor, Holah, Crowder, and Pidgeon (1977). These authors compare the
results with those obtained in the infrared for chalcogenides and deduce
that the coupling of photons to vibrational modes is smaller.

8.6. States in the gap of amorphous arsenic

In this book we have proposed two basic models for states in the gap of
amorphous semiconductors. Common to both is that they are associated
with defects in a network which is otherwise fully connected and in which
local valencies are satisfied. For germanium and silicon on the one hand,
we have followed Spear and his co-workers in assuming that paired
dangling bonds at divacancy-like defects are the principal contributor to
the distribution of localized levels in the gap, although the possible
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importance of single isolated dangling bonds, particularly in the absence of
hydrogen, and of larger defects associated with microvoids or incorporated
impurities, cannot be dismissed. For Se, Te, and chalcogenides we have
thought in terms of under- or over-co-ordinated atoms, such sites carrying
a charge. The principal difference between the defects in these two classes
of material appears to be associated with (i) a greater degree of flexibility in
structure containing two-fold co-ordinated atoms and (ii) the availability
of excess (lone-pair) electrons. Taken together, these features allow atomic
rearrangements or local configurational changes to take place in the
vicinity of defects, thereby favouring bonding situations in which electrons
are paired. The effect on states in the gap is to reverse the normal ordering
of energy levels associated with different charge states of defects. We have
to ask whether one of these models, or a different one, is appropriate for
amorphous arsenic.

In many ways the properties of arsenic show a closer resemblance to
those of the chalcogenides than to those of germanium and silicon. The
Fermi level is located (and probably pinned) near the centre of the gap
(~l*2eV) but variable-range (Tl ) hopping conduction at Ep is not
normally observed, except perhaps at low temperatures (see Fig. 8.13).
Luminescence occurs with a peak intensity at an energy of about 0-55 eV
(i.e. roughly half the gap) during excitation with near band-gap light, and,
following photoexcitation with the same wavelength, an induced absorption
band extending from about 0-45 eV up to the band edge is observed if the
sample is maintained below 77 K. Accompanying the photoinduced
absorption band is an e.s.r. signal (~ 1017 spins cm~3) and both can be
thermally or optically bleached as for the chalcogenides. The optical results
(Bishop et al I916b, 1977) are shown in Fig. 8.26. The temperature
dependence of the luminescence (Kirby and Davis 1979), although showing
some differences from that found, for example, in As2Se3 and As2S3, is very
similar to that observed in As2Sei.5Tei.5—a chalcogenide with virtually the
same band gap as arsenic.

The similarities between the behaviour of arsenic and the chalcogenides
led Davis and Greaves (1976) to propose that a similar model for the gap
states seemed appropriate. This has been questioned by Knights and
Mahan (1977) on the basis of field-effect measurements on glow-dis-
charge-deposited arsenic, which suggest a density of states at Ep of about
1017cm~3 eV"1, and of the similarity between the photocurrent spectra
(Fig. 8.21) of this material and of glow-discharge-deposited silicon.

It is certainly true that there are some differences between the properties
of amorphous arsenic and the chalcogenides, which suggest that, at least,
some modification of the D+D~ model is necessary. The observation of
71 behaviour in the conductivity of samples that have been subjected to
and released from high pressure (§ 8.4), in films sputtered onto low-
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Fig. 8.26. Photoluminescence (PL) spectrum, excitation spectrum (under two different condi-
tions of luminescence fatigue), and photo-induced absorption in glassy arsenic. (From Bishop et

al 1976k)

temperature substrates (Hauser, Di Salvo, and Hutton 1977), and also in
films that have been bombarded with high-energy ions (Troup and Apsley,
private communication), argues against a large polaron energy being
involved in hopping between at least some of the gap states. In the bulk
glass an e.s.r. signal indicating ~2x 1015 spins cm~3 is observed (Bishop et
al. 1977). The photoexcitation spectrum for luminescence (Fig. 8.26) dis-
plays two peaks, in contrast to one for the chalcogenides. The absence of a
linear term in the low-temperature specific heat of glassy arsenic (Phillips
and Thomas 1977, Jones, Thomas, and Phillips 1978), although not neces-
sarily relevant in a discussion of electronic states, also serves to distinguish
arsenic from the chalcogenides (§ 6.8.1).

Possible defect states in arsenic, analogous to the D+ and D~ states in
chalcogenides, are four-fold and two-fold co-ordinated arsenic atoms. The
electronic configuration at such sites has been described by Kastner and
Fritzsche (1978) and Greaves, Elliott, and Davis (1979). In contrast to the
chalcogenides, however, there are no lone-pair electrons; to form the D+

centre an electron would have to be promoted from an s to a p orbital, so the
considerable energy of promotion as well as the Hubbard U would have to
be compensated by a configurational energy gain, in order for charged
centres to form. However four-fold co-ordinated arsenic is well-known in
doped crystalline semiconductors and seems likely to exist in amorphous
III-V compounds containing arsenic. Furthermore there is evidence for its
presence in doped amorphous silicon (Hayes, Knights, and Mikkelsen 1977)
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and perhaps in amorphous arsenic itself (Nemanich, Lucovsky, Pollard and
Joannopoulos 1978).

The nature of the centres responsible for the dark and photo-induced
e.s.r. signals is clearly of importance in any consideration of defect states in
amorphous arsenic. Fig. 8.27 (curve (a)) shows the line spectra obtained on

Fig. 8.27. (a) ESR signals in glassy arsenic before and after irradiation with band gap light; (b),
(c), (d) theoretical spectra as described in the text (from Bishop et al 1977.)

bulk glass at 4-2 K by Bishop et al. (1977) before and after illumination
with 1-15/Ltm light. Although the spectrum after illumination is only
approximately five times as intense as that obtained before, the limited
penetration of the light (—100 /mi) means that only about one-tenth of the
sample volume was affected, and Bishop et al. (1977) estimate the density
of optically induced spins (~1017 cm~3) to be at least 50 times greater than
the equilibrium density in the dark. Subtraction of the two spectra in (a)
leads to a signal very similar in linewidth and shape to that observed after
irradiation, suggesting that optical excitation simply increases the concen-
tration of some localized paramagnetic centres present before irradiation.
However, minor differences between the shapes of the spectra indicate a
slight difference in local bonding configuration between sites that are
optically sensitive and those that are not. The large breadth of the signals
suggests that the lineshape is determined primarily by a large hyperfme
interaction rather than by spin-orbit interaction. Furthermore, the sum of
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the spectra for arsenic and that observed for amorphous selenium
reproduce that obtained for amorphous As2Se3 (Bishop et al. 1977). The
average rate at which the optically induced centres in arsenic are created is
the same as that of the arsenic component of the As2Se3 signal; it grows
with a time constant —11 sees, about 10 times faster than for the Se
component. The optically induced absorption (Fig. 8.26) grows at the same
rate as the e.s.r. signal in all cases.

Curves (b), (c), and (d) in Fig. 8.27 are theoretical lineshapes calculated
for an electron localized on one, two, and three arsenic atoms respectively;
for further delocalization the similarity with curve (a) was found to
deteriorate rapidly. In calculating these lineshapes the unpaired spin was
assumed to exist predominately in a single p orbital with only a small (~5
per cent) s admixture. The spin Hamiltonian parameters used are given by
Bishops al. (1977).

During the growth of the photo-induced e.s.r. and absorption in amor-
phous arsenic, the luminescence band (which is excited by the same
wavelength light) decreases in intensity; subsequent irradiation with mid-
gap light removes the metastable paramagnetic centres and restores the
luminescence. This parallels the behaviour in the chalcogenides (Chapters
6 and 9).

We conclude that a model for the gap states in amorphous arsenic similar
to that for chalcogenides is likely. Charged defects, created by an exo-
thermic reaction from neutral centres, exist, but a small number of neutral
centres remain. Whether these are at sites associated with a positive, rather
than a negative, correlation energy, or whether they arise because D+

states associated with defects in some regions of the material lie at a lower
energy than D~ states associated with defects in another (i.e. overlap
between the D+ and D~ bands), is open to question. Certainly the energy
separations between levels are scaled down from those in most chal-
cogenides. Not only is the gap of arsenic relatively small but also the D~
levels probably lie well above the top of the valence band and perhaps
close to mid-gap (Kastner and Fritzsche 1978, Greaves et al 1979).

The excitation spectrum of Fig. 8.26 deserves comment. This is the
integrated photoluminescence intensity as a function of exciting
wavelength. Its shape contrasts sharply with the single-peaked spectra
observed for chalcogenides. Bishop et al. (1976ft) propose that the twin
peaks arise from strong fatiguing effects: the broken and solid portions of
the spectrum in Fig. 8.26 represent conditions of progressively increasing
luminescence fatigue. Kirby and Davis (1979) suggest, however, that this
explanation is probably not correct. While fatiguing occurs for the higher
energy peak there appears to be none associated with the lower energy
peak; in fact excitation near 0*7 eV enhances the luminescence. In their
model, the low-energy peak at ~0-8 eV is associated with direct excitation
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from a D level lying just below mid-gap. The Stokes shift of the lumines-
cence is then only —0-2 eV. Illumination at a slightly lower energy
(~0-7 eV) excites the dark-equilibrium concentration of D °  centres, pro-
ducing charged centres and hence enhancing the luminescence.

8.7. Amorphous antimony, phosphorus, and related materials

The RDFs of amorphous antimony and phosphorus were shown in Fig.
8.10 and discussed briefly in § 8.3 with regard to the extent to which their
structures might be simulated by three-fold co-ordinated random
networks. Modification of the average bond angle in the Greaves-Davis
model to 96°  and 102°  (inferred from the positions of the second peaks in
the RDFs of amorphous antimony and phosphorus respectively) was
shown to provide fair, if less than satisfactory, reproductions of the RDFs.
One thing is clear, however—namely that interlayer correlations present

Fig. 8.28. (a) Temperature dependence of resistance of sputtered (solid symbols) and
evaporated (open symbols) antimony. Sample No. 9 was evaporated from pure Sb while No. 24
was evaporated from Pt-Sb. (From Hauser 1974a.) (b) Temperature dependence of resistance

of Sb-Ni alloys. (From Hauser 1975.)
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Fig. 8.28(b).

in the crystalline forms of these materials is minimized in the amorphous
structures. This feature, as for amorphous arsenic, probably accounts for
their semiconducting properties (Moss 1952) and low densities.

The properties of amorphous antimony have been investigated by
Sommer (1966) and by Hauser (1974a,6). Hauser (1975) has studied
Sb-As, Sb-Bi, Sb-Sn, Sb-Ge, Sb-Ni, and Sb-Ga alloys. Mg-Sb alloys have
been investigated by Ferrier and Herrell (1970). Stoichiometric III-V
compounds appear to have tetrahedral bonding (Shevchik and Paul 1973).

Fig. 8.28(a) shows the resistance of various sputtered and evaporated
films of antimony plotted versus T~l/4 (Hauser 1974a). The linearity of
these plots suggests variable-range hopping at the Fermi energy; assuming
a"1 = 8 A, the slopes yield N(Ep)~2x 1019cm~3 eV'1 for the sputtered
films and ~1020cm~3 eV"1 for the evaporated films. All samples were
deposited at 77 K and, although the sputtered films remained amorphous
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up to room temperature, they exhibited irreversible annealing effects above
160 K. The evaporated films showed evidence for partial crystallization at
temperatures as low as 180 K and they completely crystallized at —270-
300 K.

Variable-range hopping conduction has also been observed in films of Sb
alloyed with As, Bi, Sn, Ge, Ni, and Ga (Mauser 1975). In the first four of
these alloys the slope of the Tl/4 plot alters very little with changing
concentration, whereas addition of Ni leads to a rapidly decreasing slope
(Fig. 8.28(b)). SbjcGai-jc films become metallic for jc^O-5 and are super-
conductors for x in the range 0-0-42. Sputtered films of pure Ga can have a
Tr as high as 8 K (cf. Tc= 1-07 K for crystalline Ga). Hauser (1975) has
produced superconducting Bi by getter sputtering at 77 K in an
argon/hydrogen mixture. The films had a Tc of 6-65 K; crystalline Bi is not
a superconductor.

The Raman spectra of amorphous antimony has been studied by Wihi,
Stiles, and Tauc (1972) and by Lannin (1977).
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9.1. Introduction

In this chapter the properties of amorphous semiconductors containing one
or more of the chalcogenide elements, S, Se, or Te, are reviewed. Within
certain ranges of composition it is possible to form glasses by combination
with one or more of the elements As, Ge, Si, Tl, Pb, P, Sb, and Bi, among
others. Of the binary glasses, As2S3, As2Se3, and As2Te3 have been most
extensively studied and are often regarded as prototypes of the chal-
cogenide glasses. Mixed systems such as the As2Se3-As2Te3 binaries and
the As2Se3-As2Te3-Tl2Se systems have also been the subjects of detailed
investigations. Because of the large variety of such ternary and quaternary
systems, classification of these materials becomes difficult, particularly in
view of the freedom that is allowed in amorphous systems to depart from
stoichiometric proportions of the constituents. Multicomponent glasses of
(seemingly) arbitrary composition, for instance As30Te48Sii2Gei0, have
been studied in connection with the phenomenon of electrical switching
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(§9.13). However, the properties of amorphous semiconductors formed
from a wide variety of elements of differing valency may not necessarily be
more complex than those of the binaries. Such compositions may favour a
fully connected structure with most bonds satisfied and hence, with respect
to certain properties, approach an ideal random network of atoms.
However, in some systems there may be a greater tendency for phase
separation than in others. In many cases there does not seem to be any
significant qualitative difference between the properties of amorphous
chalcogenide semiconductors of stoichiometric proportions and those of
others.

However, use of stoichiometric compositions allows useful comparison
with the material in its crystalline phase. For many of the stoichiometric
materials discussed in this chapter the crystalline phase has a layer struc-
ture.

For any given group of elements it is not normally possible to form
glasses for all compositions. The extent of the glass-forming region in
several ternary systems was displayed graphically in Fig. 6.3. Table 9.1
(from Owen 1970) indicates the extent of the glass-forming region in some
other ternaries (see also Savage and Nielsen I965a). Well inside a glass-
forming boundary, samples can be prepared by cooling from the melt;
samples with compositions outside the boundary require deposition by
evaporation or a similar technique in order to attain the amorphous phase.
Near the boundary, fast quenching of the melt (like splat cooling) is
sometimes used to obtain a glass. Even with compositions that readily form
glasses it is sometimes useful to prepare specimens by deposition for
certain experiments requiring thin films.

Annealing of chalcogenide glasses does not appear to lead to such
marked changes of properties such as were described in Chapter 7 for
amorphous Ge and Si, results from different laboratories on the same
material being often in good agreement. However, marked differences in
electric and magnetic properties of sputtered films do follow annealing in
certain cases (cf. § 9.4). Our analysis of these properties is based on the
assumption that point defects exist in these materials, their concentration
depending on the method of preparation; they appear to be responsible for
photoluminescence, and to determine the drift mobility and the position of
the Fermi energy. Voids, however, do not normally form in deposited films
as far as is known; thus Shevchik and Bishop (1974a), using small-angle
X-ray scattering, found no evidence for their existence in several chal-
cogenides.

On the whole, these materials obey the so-called '8-7V bonding rule'
proposed by Mott (1969a), according to which all electrons are taken up in
bonds so that large changes of conductivity with small changes of composi-
tion do not occur. The small effect of composition on conductivity was
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From Owen 1970.
x very small; O small; ®moderate; •large.
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established by the pioneering work of Kolomiets and co-Workers (sum-
marized by Kolomiets 1964) and is illustrated in, for instance, Fig. 9.9. This
seems to be generally the case for glasses such as As2_xSe3+x, when x varies
about the value zero, and for alloy glasses on the addition of elements such
as Ge or Si with four (or more) outer electrons. However the addition of
elements with less than four outer s and p electrons often has a major effect
on the conductivity. Thus the addition of Cu, Ag, In, and Tl to As2Se3 and
As2S3 causes a marked increase in the conductivity, 5 per cent of copper in
As2Se3 increasing the room-temperature value by ~104. According to
Liang, Bienenstock, and Bates (1974), and Hunter, Bienenstock, and
Hayes (I911a,b) copper promotes local four-fold co-ordination. We dis-
cuss in § 9.8 why this affects the conductivity. However, Donikov and
Borisova (1963) found that the conductivities of glassy As2Se3 is essentially
unchanged by concentrations up to 3-8 at. per cent Be or up to 1-9 at. per
cent Mg or Ga.

Chalcogenides containing several per cent of elements such as Ni, W, Fe,
and Mo can be highly conducting if prepared by co-sputtering (Ovshinsky
1977, Flasck et al. 1977). Presumably the temperature of deposition is
sufficiently low relative to the glass transition temperature that valence
satisfaction or the creation of charged compensating defects is inhibited
(see Fritzsche 1977).

The elements Se and Te, although these have some properties similar to
those of other chalcogenides, apparently contain structural units with
molecular properties, and in view of this are discussed separately in Chap-
ter 10. Chapter 10 also contains experimental results on the effect of small
amounts of various elements in Se, together with a theoretical discussion.

In this chapter we shall not attempt to review all the published literature
on chalcogenide glasses but shall concentrate on some recent work
concerned mainly with electric and optical properties.

9.2. Structure

Compared with the elemental materials discussed in Chapters 7 and 8, the
structures of most amorphous chalcogenides are not so well characterized.
For any binary system AxBi_x, analysis of the RDF is complicated by the
difficulty of separating contributions from A-A, B-B and A-B bonds; in
multicomponent systems identification is even more ambiguous. A review
of diffraction studies has been given by Wright and Leadbetter (1976). In
principle, EXAFS (§6.3) is capable of making the distinction between
bond types but, at the time of writing, problems associated with data
reduction and analysis have not allowed conclusive results to be obtained
except in a few cases. For several systems, infrared and Raman spec-
troscopy have been found to be the most useful techniques in the study of
local structure.
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The simplest structural model of a binary system is that of a continuous
network in which the 8-N valence co-ordination rule is satisfied for both
components and at all compositions; for instance in AsxSei_x every As
atom would be three-fold co-ordinated and every Se atom two-fold co-
ordinated at any value of x. Even for such networks, however, the question
arises as to the degree of chemical ordering; in other words, to what extent
are heteropolar bonds favoured over homopolar bonds? A network in
which the distribution of bonds is purely statistical will be called a random
bond network (RBN).t In an RBN there is no 'chemical' preference for
one kind of bond over another, even at compositions corresponding to
compounds in the crystalline state. However, if the relative strengths of the
various pairs of bonds differ significantly, the heteropolar bond being the
strongest, then a chemically ordered bond network (OBN) model may be
more appropriate. In an OBN, bonds between unlike atoms occur
whenever and wherever these are allowed within the constraints of
composition and network connectivity.

The bond distributions predicted for RBN and OBN models (but
without consideration of possible constraints imposed by topology) for
Gei_xXx, where X is a two-fold co-ordinated chalcogen atom, are shown in
Fig. 9.1 (Lucovsky et al. 1977, White 1974a). Similar curves can be
constructed for binaries having co-ordination numbers different from those
in the II-IV system given here as an example.

An additional constraint in an OBN may arise from the possible
existence of molecular-like species as an integral part of the network;
characteristic vibrations associated with such atomic clusters can often be
observed and identified by infrared and Raman spectroscopy. The forma-
tion of molecular units disconnected from the main network is also possi-
ble, for example short chains or closed rings of chalcogen atoms in binaries
rich in such elements. Even more extreme are the cases of completely
molecular glasses or phase-separated materials.

Lucovsky et al. (1977) have suggested a scheme for characterizing the
structure of binary (or indeed multicomponent) glasses that takes into
consideration the above possibilities in a logical way. The structure is
specified in three stages: (1) the atomic co-ordination of each constituent;
(2) the bond distribution; (3) the molecular structure of network-forming
groups of atoms.

A few systems are now considered in detail.

GexXi-x. The points shown in Fig. 9.1 are the relative strengths of Ge-S
vibrational features observed in infrared spectra of Gei_xSx glasses
(Lucovsky et al. 1974). The agreement with the predictions of the OBN

t Compare CRN, a continuous random network, introduced for elemental amorphous
materials. An RBN is in fact a CRN.
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Fig. 9.1. Bond distributions in Gei_xXx, where X is a chalcogen, for a random bond network
(RBN) (solid curves) and an ordered bond network (OBN) (broken lines). The solid points
show the composition dependence of the strength of an infrared peak associated with the

Ge—S vibration in Gei_xSx alloys. (From Lucovsky et al 1977.)

model provides strong evidence for the existence of 8-N co-ordination and
chemical ordering on the S-rich side of the Ge-S system. Similar confirma-
tion has been obtained for Ge-Se alloys (Tronc, Bensoussan, and Brenac
1973). It is of interest to note that the known crystalline phases of these
systems include not only GeX2 but also GeX; in the latter the 8 -N rule is
not satisfied, all atoms being three-fold co-ordinated. The possibility of
three-fold co-ordinated structures for amorphous GeS, GeSe, and GeTe
has in fact been raised by Bienenstock (1973) and by Arai et al. (1976), but
later evidence (see Bienenstock 1974) seemed to rule against it.

The molecular species present in Ge chalcogenides depends upon the
composition. For chalcogen-rich material one finds GeX4 tetrahedra, the
number of which is simply proportional to the concentration of Ge atoms.
The excess chalcogen X is then incorporated as chains joining such tetra-
hedra or, at higher concentrations of X, an increasing number of ring
molecules in solution with the network. For example in Geo^Seo-s, Se8

rings have been identified by Raman spectroscopy (Lucovsky et al. 1974).
For Ge-rich material, GeX4 molecules again form, but the presence of a
larger molecule, namely X3Ge-GeX3, can be identified. Fig. 9.2 shows the
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Fig. 9.2. Infrared reflectance and Raman scattering for two alloys in the Ge!_xSx system
(jt = 0-67 and # = O63). Schematic representations of molecular configurations assigned to
various peaks are shown. The feature associated with the molecule S3Ge—GeS3 is seen only
in Raman scattering from Ge-rich material and is strongly polarized. (From Lucovsky

etal.1977.)

strongly polarized Raman mode at 250 cm l associated with this molecule
in Gei-xSjc with jc = 0-67 (i.e. GeS2) and # = 0-63. The absence of a
corresponding feature in infrared reflectivity is expected for a vibration
involving an out-of-phase motion along the Ge bond direction, and also
rules out an explanation in terms of three-fold co-ordinated Ge and S as
proposed by Arai et al. (1976).

Similar behaviour is found in Gei^Se* glasses. Raman spectra for
Se-rich alloys (Fig. 9.3) show features corresponding to bond-stretching
modes of Se-Se and GeSe4 units. The former gives rise to the peak at
250 cm"1 and the latter to the peak at 202 cm'1. Tronc et al. (1973) have
observed similar spectra but proposed an interpretation in terms of vibra-
tions of Ge-Se-Ge triatomic units. The peak at 219cm"1 has also been
interpreted in different ways; according to Nemanich et al. (1977) it could
be associated with a 12-atom ring containing six Ge and six Se atoms. The
small peak at 180 cm"1 appearing in GeSe2 probably arises from the
analogue of the molecule found in the Ge-S system, namely Se3Ge-GeSe3.

AsxXi-x. Infrared and Raman spectra of glasses in the As-S and As-Se
systems are shown in Fig. 9.4. As for the Ge chalcogenides there is good
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Fig. 9.3. Raman spectra and depolarization ratio from Se-rich Gei_xSex alloys. The solid
boxes denote the spectral regions in which features associated with vibrations of Se—Se and
GeSe4 occur. Possible assignments of other peaks are given in the text. (From Nemanich et al.

1977.)

evidence for satisfaction of the 8-N co-ordination rule and chemical
ordering at all compositions. The molecular species present in the Asi-xS*
networks are the analogues of those found in Gei-^X*, namely AsS3

pyramids and S2As-AsS2 molecules. For Asi_xSex, however, there seems
to be less evidence for molecular ordering. This is probably associated with
the small difference in electronegativity between As and Se.

RDFs of a series of AsxSei_x glasses with x ranging from 0 to 0-5 have
been obtained by Renninger and Averbach (1973). Models for the atomic
arrangements in these glasses have been computer generated using a
Monte Carlo procedure in which the positions of an initially random
arrangement of 150 atoms were repositioned until the RDF agreed, within
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Fig. 9.4. Infrared reflectance and Raman scattering for various Asi_xXx alloys. Molecular
configurations assigned to the features are shown. Whereas the 8-N valency rule and the OBN
model appear to be appropriate for all these alloys, there seems to be no evidence for molecular

ordering in Asi_xSex. (From Lucovsky et al. 1977.)

certain limits, with experimental curves (Renninger, Rechtin, and Aver-
bach 1974). Although the 8-N rule was assumed to be favoured, some
under-co-ordinated atoms were tolerated. 'Partial' chemical ordering was
introduced by not permitting As-As bonds for x <O4, but As-Se bonds
were not considered to be favoured over Se-Se bonds and no molecular
ordering was assumed. Cross-sections of a few of these models are shown
in Fig. 9.5 and a typical fit to the RDF for As2Se3 in Fig. 9.6. An interesting
result of this modelling procedure is that, as the As concentration is
increased from zero, chains of Se become cross-linked, the interconnection
of the network increasing up to As2Se3. However, for higher As concen-
trations, there is a tendency for the atoms to form rings which are still
connected to the network (see Fig. 9.5(d)).

For all amorphous materials structural differences are expected between
bulk glass and evaporated thin films. For As2S3 these have been investi-
gated in some detail (Apling, Leadbetter, and Wright 1977). Raman spec-
tra of an as-deposited film, a film annealed at 180°C , and a bulk glass are
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Fig. 9.5. Cross-sections of computer-generated models of Asi_xSex glasses. Open circles are
Se atoms and solid circles are As atoms. The broken lines correspond to bonds to atoms lying
out of the slices shown (a) x = 0; (b) x = 0-79; (c) x = 0-60; (d) x = 0-50. On the As-rich side
of As2Se3 a tendency for the network to break up into rings is shown. (From Renninger

etal 1974.)

compared in Fig. 9.7 (Solin and Papatheodorou 1977). The sharp addi-
tional bands in the spectrum for the as-deposited film suggest the presence
of molecular units which polymerize into the network on annealing. De
Neufville et al. (1974) suggested, from X-ray diffraction data, that the
structure of freshly evaporated films of As2S3 could be described as a dense
random packing of As4S6 molecules; however, the Raman spectra imply
the existence of a considerable amount of polymerized network as well as
other types of molecular units in the films. For example the sharp peaks at
180 cm"1 and 230 cm"1 which remain on annealing may be associated with
As4S4 units. These, as well as As4, S2, and other molecules occur in the
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Fig. 9.6. Comparison of the experimentally determined reduced radial distribution function
with that generated from the computer model of As2Se3 (Fig. 9.5(d)). (From Renninger

etal.1974.)

vapour phase, although this does not of course necessarily imply their
preservation on deposition (Leadbetter, Apling, and Daniel 1976).

The structure of As-Te glasses and films has been investigated and
discussed by Cornet and Rossiter (1973) and Cornet (1977). These authors
propose a breakdown in the 8-N valency rule in Te-rich alloys, some Te
atoms becoming three-fold co-ordinated and some As atoms six-fold co-
ordinated. EXAFS studies (Pettifer, McMillan and Gurman 1977),
however, suggest that some degree of chemical ordering occurs at
compositions near to that of stoichiometry.

9.3. Electrical properties of chalcogenide glasses

9.3.1. Introduction

The d.c. conductivity cr of most of the chalcogenide glasses near room
temperature obeys the relation o~ = C exp(—E/kT). Fig. 9.8 shows some
typical logarithmic plots of or against 1/T for chalcogenides with E varying
from about 0-3 eV to more than 1 eV. Although the values of 2E lie close
to the photon energy corresponding to the onset of strong optical absorp-
tion, intrinsic conduction must not be assumed, as we shall see. Therefore
we shall not double the observed values of E in order to obtain the band
gap denoted by B. In selenium, for which traces of impurity can lead to a
change from p- to n-type behaviour, we give in the next chapter an
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Fig. 9.7. Raman spectra of As2S3: (a) as-deposited film; (b) annealed film; (c) bulk glass. The
lines marked with a star are instrumental ghosts. (From Solin and Papatheodorou 1977.)

estimate of the band gap (or mobility gap), determined from electrical
properties.

As explained in Chapter 6, values of C in the range 103-104 ft"1 cm"1

are often thought to indicate conduction at a mobility edge, C being given
by crminexp('y/fc). For chalcogenides we believe this to be so, but the
conclusion has been questioned, not only because the concept of a mini-
mum metallic conductivity has not been universally accepted (Chapter 2),
but perhaps more seriously because of the contention of Emin, Seager, and
Quinn (1972) and Emin (1977&) that the current carrier (a hole) forms a
polaron, and its motion is activated (cf. Chapter 3). We do not think that
this conclusion is justified (see below) for the chalcogenides.
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Fig. 9.8. Temperature dependence of electrical conductivity in some amorphous chalcogenide
semiconductors, illustrating the relationship cr = C exp(—E/kT).  Heavy lines are the experi-
mental results and fine lines are the extrapolation to 1/T = 0 (note that the actual variation of
As2Te2.Tl2Se (Andriesh and Kolomiets 1965); (3) As2Te3 (Weiser and Brodsky 1970); (4)
4As2Te2.As2Se3 (Uphoff and Healy 1961); (5) As2Se2.Tl2Se (Andriesh and Kolomiets
1965); (6) 3As2Se3.2Sb2Se3 (Platakis et al 1969); (7) As2Se3 (Edmond 1968); (8) As2S3.

(From Edmond 1968.)

We show in Fig. 9.9 the variation of C and E with composition for some
binary alloys. An approximate invariance of C in the Se-Te and As2Se3-
As2Te3 systems and of E in the Se-As and As2Se3-As2Se3 systems are
apparent. Because of the difficulty of measuring the electrical conductivity
of selenium over a wide temperature range, it is difficult to determine E
and C in this and other high-resistivity materials with any confidence (see
also Chapter 10). The small value of C for As2S3 may perhaps indicate a
wide range of localized states, and conduction by hopping.

The electrical properties of chalcogenide glasses may be compared with
those of glow-discharge-deposited silicon and germanium (Chapter 7) as
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Fig. 9.9. Variation of the pre-exponential factor C and the activation energy for conduction E
in the Se-Te, Se-As, As2Se3-As2Te3, and AsSe3-As2S3 systems.

follows. Measurements of thermopower show them to be p type;
measurements of drift mobility and of mobility in photoconduction have
been interpreted particularly by Owen and co-workers (§ 9.4) in terms of a
trap-limited mobility, a quasi-equilibrium being set up between holes in
the valence band and those in traps due to point defects, as described in
§6.5.1. In this book we adopt this model. Drift-mobility measurements
have not as yet been used to establish a mobility edge in the valence band
as they have been for the conduction band in glow-discharge-deposited
silicon. The best evidence for a mobility edge comes from the investiga-
tions by Nagels et al. (1974) on conductivity, thermopower, and Hall
coefficient described in § 6.6 and further in § 9.4. These, however, have
also been interpreted in terms of the assumption that holes form polarons
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(Emin et al 1972). We think that part of the evidence against this is that
many of the trap energies determined by Marshall and Owen (1975) can be
identified with those established from other experiments, for instance
photoluminescence, and can be rationalized in terms of the model of
charged dangling bonds introduced in Chapter 6 and described in greater
detail in § 9.4. Other arguments are that in the threshold switch in its on
state (§ 9.13) electrons and holes appear to have comparable mobilities,
and these mobilities are much higher than would be expected for a polaron.
In § 3.3 we showed that the formation of a molecular polaron depends
critically on the parameters of the system (cf. Fig. 3.5). In SiO2 (§ 9.14) it
appears that holes form polarons, while electrons have a very high mobil-
ity. For further discussion of this controversy, see Mott and Street (1977).

In the next section, then, we discuss electrical phenomena which do not
depend on gap states (except in so far as these may pin the Fermi energy),

Fig. 9.10. Temperature dependence of electrical conductivity cr of amorphous As2Te3. (From
Marshall and Owen 1975.)
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namely d.c. conductivity, thermopower, and Hall effect, in terms of these
models. In § 9.4 we discuss gap states, and their role in pinning the Fermi
energy, screening and field effect, and, in determining drift mobility,
recombination and conductivity at very low temperatures.

9.3.2. d.c. conductivity

In general, as Fig. 9.8 shows, logo- is a fairly linear function of 1/T, and
variable-range hopping conductivity behaving even approximately as
A exp(—B/T l / 4) is not generally observed. However, deviations from
linearity can occur at low temperatures, and, for sputtered As2Te3 and
other chalcogenides, T1/4 behaviour was found by Hauser and Hutton
(1976) and Hauser, Di Salvo, and Hutton (1977). Fig. 9.10 shows results of
Marshall and Owen (1975). Croitoru et al. (1970) found similar behaviour
at high temperatures with an activation energy of 0-53 eV. Fig. 9.11 shows

Fig. 9.11. Temperature dependence of d.c. conductivity of As3oTe48Si12Ge1o; circle, r.f.
sputtered film; broken line, bulk glass (o- x 1CT2). (From Marshall and Owen 1975.)
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results of Marshall and Owen (1975) for an alloy glass; deviations occur-
ring for the sputtered film are absent for a bulk glass, so their origin is likely
to be defects. This is discussed in §9.4. Fig. 6.12 shows that for many
glasses there is little change of slope in going from solid to liquid, though at
higher temperatures a gradual transition to metallic behaviour (cr~
103 O"1 cm"1) is normal, as described in Chapters 5 and 6. Fig. 9.12 shows
the continuity of slope for As2Se3.

Fig. 9.12. Temperature dependence of d.c. conductivity and thermopower of amorphous and
liquid As2Se3. (Data from Edmond 1966.)

9.3.3. Thermopower

This, as already stated, is normally positive. Early work was frequently
done at temperatures in or near the liquid phase. Thus Fig. 9.12 shows data
for As2Se3 due to Edmond (1966); the activation energy in the liquid
appears greater than in the solid, suggesting that the gap decreases with
increasing T, as discussed in Chapter 6. For the solid a main question is
whether E&, the activation energy for conduction, is the same as that (E§)
for the thermopower. For As2Se3 both were measured down to room
temperature by Hurst and Davis (1974) and found to be identical. Seager
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and Quinn (1975) claim a considerable divergence from well above down
to room temperature; they give £0. = 0-91eV, Es = 0-60±0-07 . These
data, along with others, have been collated and discussed by Mytilineou
and Roilos (1978).

As2Tes and As2Tes-xSex have been investigated by many authors, who
all conclude that E(T>ES over the temperature range investigated. These
include Seager, Emin, and Quinn (1973), Seager and Quinn (1975), Grant
et al (1974), and Nagels et al (1974). The difference E^-ES is of order
0-15eV.

There are, as we have seen in Chapter 6, several possible explanations
for such a discrepancy.

(a) That conduction is at E& (the top of the valence band) and there is a
large hopping energy due to disorder. We think this unlikely because the
pre-exponential factor in a is too large (~103 ft"1 cm"1), and because a
Hall coefficient is observed, which we do not expect for hopping.
(b) That the carriers are polarons, and the difference E^ —  Es is the
polaron hopping energy WH- This is the proposal of Emin et al. (1972).
(c) That there are fairly long-range inhomogeneities in the potential at
the top of the valence band, necessitating the use of classical percolation
theory (§ 6.4.2).
(d) That all measurements have been made in the transition region
between hopping transport at the band edge and transport at the mobil-
ity edge (Ev). Fig. 6.32 shows the behaviour to be expected, which was
proposed by Nagels et al. (1974) to explain their own measurements,
developed in detail by Mott, Davis, and Street (1975) and described in
§ 6.6. For a variety of reasons presented there, this is the explanation we
favour. Further discussion of our reasons awaits our treatment of the
Hall effect in the next section.

9.3.4. Hall effect

The measurements of Male (1967) on the Hall mobility ^H of various
chalcogenide glasses in the solid and liquid states were reproduced in Fig.
6.6; the values of /U,H> and the independence of temperature, interpreted in
terms of Friedman's formulae (§ 2.14), provided the earliest evidence that
conduction in these materials is at a mobility edge. More recent results are
due to Seager et al. (1973), Nagels et al. (1974), Roilos and Mytilineou
(1974), and Mytilineou and Roilos (1978) for a variety of chalcogenides.
Some of these results are shown in Fig. 6.21(b). They can be summarized as
follows.

(a) The Hall coefficient is normally negative for these p-type materials,
as Friedman's original theory predicted, or alternatively as we would
expect for hopping polarons. Emin (1977a), however, has discussed the
conditions under which it could be positive (§ 2.14).
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(b) At high temperatures /JLH seems to tend to a constant value.
(c) At low temperatures /u,H drops off exponentially with l/T.

For these two explanations have been put forward.
(i) That of Emin and co-workers, who suppose that the polaron formula
(§3.9), namely jjiHocT~3/2 exp(-^WH/kT) can be used; the flattening
off at high temperatures is due to the term T~3/2, and the observed
activation energy at low temperatures corresponds well with ^(E^-Es).
(ii) That proposed by Nagels et al. (1974), that at high temperatures
Friedman's temperature-independent /HH for charge transport at a
mobility edge is applicable, while in the hopping regime the Hall effect is
negligible. The model was described in § 6.6. The values of A£ =
EB —  Ev+w and of the hopping energy w, deduced by these authors
from conductivity, thermopower, and Hall effect for As2Te3 are EB —
Ev = 0-11 eV, w = 0-03 eV, and for the pre-exponential factors
o-min exp(y/fc) = 3200 fT1 cm'1 and o-hop = 90 ft'1 cm'1.
For the reasons given in § 9.3.1 we favour the second explanation. In the

remainder of this chapter and in our discussions of selenium in Chapter 10,
then, it will be supposed that holes in the valence bands of chalcogenides
do not form polarons. As we have seen in Chapter 3, a polaron of Vk type,
due to bonding between a partly occupied lone-pair orbital on one atom
and a full one on another, will be formed in a valence band if it is narrow
enough, but if it is not there is no polaron formation. The valence band of
chalcogenides, as of oxide glasses, is thought to be formed from lone-pair
orbitals on Se, Te, or O (Kastner 1972). This means that of the three pairs
of p orbitals in the outer shell, two form bonds with neighbouring atoms
while one does not. The upper part of the valence band is formed from the
latter, which are designated 'lone pair' because the pair of electrons are not
associated with a bond. It is reasonable to suppose that this band is narrow,
and indeed calculations for selenium (Chapter 10) and observations for
chalcogenides (§ 9.11) and for SiO2 (§ 9.14) show that this is so. Thus the
conditions for polaron formation may be approached, and only experiment
can show whether they exist or not in a given material.

9.4. States in the gap

9.4.1. Introduction

It has already been stated that chalcogenide glasses appear to obey the 8-TV
co-ordination rule, whatever the composition. Arsenic will be co-ordinated
with three atoms, Se with two, Ge with four, and so on. If constituents with
fewer (N) than four outer electrons are present, however, they may form
four bonds and may perhaps be negatively charged. An example is provided
by the work of Kumeda etal. (19760) on the incorporation of Mn in an alloy
glass; they find that for small concentrations (<0-2 per cent) the e.s.r. signal
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from the 3d7 shell is characteristic of four-fold co-ordinated Mn; a possible
hypothesis is then that the charge is -2e. This is discussed further in § 9.8.
The same principle is well known in oxide glasses; thus aluminium and boron
in glasses containing Na+ ions can have co-ordination number 4 (§ 9.15).
Some model for the compensating charge (Na+ in a soda oxide glass) is thus
required.

In this book we have taken the point of view that an ideal continuous
random network with a certain entropy due to disorder is the correct first
approximation to the properties of a glass, but that in addition, just as for a
crystal, there are point defects, and that in the melt they contribute an
entropy calculable just as for a crystalt (cf. §2.10 and Bell and Dean
1968). In a glass they will be quenched in. In evaporated or sputtered films,
or in SiO2 grown thermally on silicon, higher concentrations are to be
expected. These defects are responsible for 'states in the gap'.

In chalcogenides the role of these states in the gap, associated with
defects with a concentration depending on the method of preparation, is
relevant to the following.

(a) The screening length, for instance of the space-charge at an inter-
face.
(b) Pinning or locating the Fermi energy.
(c) Deviations from a straight line plot of logo- versus 1/T (Figs. 9.10,

9.11).
(d) Determination of the drift mobility of holes, which, unlike electrons
in glow-discharge-deposited silicon, seems to be limited by defects.
(e) Photoluminescence and a small tail to the optical absorption edge.
(f) Providing recombination centres for electrons and holes, for instance
in-photoconduction.
(g) Possibly responsible for a.c. conductivity (§§ 2.15, 6.4.5).
(h) ESR and Curie paramagnetism are absent in annealed material, but
observed sometimes in unannealed specimens (Smith 1972, Hauser and
Hutton 1976 and after illumination (Bishop et al 1975, I916a,b).
(i) Providing compensating charges for charged impurities (§ 9.6).
We look first at the pinning mechanism which locates the Fermi energy.

Fig. 9.13 shows a logarithmic plot of resistivity against optical band gap.
This shows for a variety of chalcogenide glasses listed in Table 9.2 that the
thermal activation energy E^ for conduction is proportional to the gap
(though EF must be nearer to Ev than to Ec, the materials being p type).
Only As2S3 with 1 per cent of Ag appears to be an exception (cf. § 9.6).

The evidence, however, that these materials are normally not intrinsic,
but that the Fermi energy is pinned, is extensive. It is well (and emphatic-

t In chalcogenides, as in other amorphous materials, we think that the simplest defect is a
'dangling bond', which when neutral carries a spin. For chalcogenides both the chalcogen or
arsenic can play this role. In oxide glasses the 'non-bridging oxygen' is a familiar example.
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Fig. 9.13. Resistivity of various chalcogenide glasses plotted against photon energy cor-
responding to an absorption coefficient of about 8 cm"1. (Data from Table 9.2.)

ally) summarized by Fritzsche (1973) who writes 'can we suppose 2Eo- =
bandgap? The answer is no'. One argument is that the straight lines of Fig.
9.2 and similar plots are unlikely for an intrinsic material, because, in spite
of the 8-N rule, it seems likely that there would be some donors or
acceptors and that this would lead to the kind of curvature in the In a versus
l/T plot observed for sputtered specimens, unless their concentration was
less than 103 cm"3. It is of course possible that, unlike glow-discharge Si
containing phosphorus or boron, the 8-N rule is satisfied for all atoms.
However, the estimates of the screening length at a metal-semiconductor
interface given by Fritzsche (1973), of order 300 A, are not compatible
with intrinsic behaviour. It is not easy, however, to demonstrate whether
the Fermi energy is pinned, with a finite value of the density of states there,
or whether it lies midway between deep donors and acceptors separated by
an energy 2e, the donors being lower. Such a model is used by Marshall
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TABLE 9.2

463

Positions of room-temperature optical absorption edges and resistivities in
several chalcogenide systems

From Edmond 1968.

and Owen (1976) in their description of their field-effect studies (§ 9.4.3).
It is illustrated in Fig. 9.14.

An outstanding property of these materials is the absence of e.s.r. (cf.
§ 6.8.3) and Curie paramagnetism. E.S.R. investigations have been made by

Wave number
for 15% trans-

mission for Resistivity
specimen Corresponding

0-178 cm thick energy at 50° C 130° C
Material (cm'1) (eV) (Hem) (Hem)

As34.25Se65.75 12330 1-53 4-10xl08

As37.6Se62.4 12248 1-52 1-57 xlO8

As38.7Se61.3 1-49 xlO8

As40Se6o 12131 1-50 1-54X108

As42Se58 12049 1-49 l-82x!08

As5oSe5o 12510 1-55 18-4 x 108

As35(Se2Te)65/3 7892 0-98 1-7 x 107

As4o(Se2Te)60/3 8045 1-00 3-3 x 107 2-5 xlO5

As45(Se2Te)55/3 8260 1-02 6-9 x 108

As2S3 16555 2-05 2-0 xlO12

As2S2Se 14435 1-79 9-4 xlO10

As2SSe2 13069 1-62 3-1 x 109

As2Se3 12131 1-51 (2 xlO11) 1-54 xlO8

As2Se2.5Te0.5 9095 1-13 8-75 xlO8 4-05 xlO6

As2Se2Te 8045 1-00 3-3 x 107 2-5 x 105

As2SeTe2 6715 0-83 1-8 xlO5 3-5 x 103

(As4Sb2)Se9 10461 1-30 2-2 xlO9 7-4 xlO6

As40S60 16555 2-05 2-0 x 1012

As40S60Agi 16205 2-01 7-9 x 108

As40Seso 12131 1-51 1-54 xlO8

As4oSe60Agl 11445 1-42 8-1 xlO7

As40Se40Te20 8045 1-00 3-3 x 107 2-5 x 105

As4oSe4oTe2oAg1 7527 0-93 5-5 x 107 4-2 xlO5

As34.2sSe65.7sAg! 11702 1-45 1-lTxlO3

As4oSe6(,Agi 11445 1-42 0-81 xlO8

AssoSesoAg! (11480) (1-42) 1-48X108

As34S66Ag1 2-1 xlO9

As40Se60 12131 1-51 l-54x!08

As4oSe60Ge5 12525 1-55 7-5 xlO8

As40Se40Te20 8045 1-00 3-3 x 107 2-5 xlO5

As4oSe40Te2oGe5 8260 1-03 5-9 xlO5
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Fig. 9.14. Model of density of states in material containing deep donors (D) below
acceptors (A).

Agarwal (1973) and Fritzsche (1973), which showed e.s.r. signals only after
heat treatment, as also found by Smith (1972). Hauser etal. (1977) found an
e.s.r. signal in sputtered As2Tes and other chalcogenides, which disappeared
on annealing. It is found after illumination (Bishop etal. 1975,1976a,b). In
annealed specimens, however, a Curie term C/T in the paramagnetism
occurs only in the presence of iron impurities (Tauc et al. 1973). Fritzsche
(private communication) puts an upper limit of 1015 spins cm~3.

Variable-range hopping is not normally observed in chalcogenide glas-
ses, though the low-T behaviour of Figs. 9.10 and 9.11 may indicate the
onset of this form of conduction. Adler et al. (1974) have observed Tl/4

behaviour in the off state of a threshold switch, formed from an alloy glass,
and the work of Hauser and Hutton (1976) and Hauser et al. (1977) shows
that an e.s.r. signal is to be associated with Tl/4 hopping at low 7", the signal
disappearing on annealing. However, a.c. conductivity behaving so that
or(a))oca)s (0-8 <s< 1) is widely observed in specimens with no e.s.r. signal.

The absence of e.s.r. and Curie paramagnetism in annealed specimens,
together with evidence that the Fermi energy is pinned and the density of
states finite, was for several years a major puzzle in the understanding of
chalcogenide glasses. One way out would be to assume, as already sugges-
ted, that the density is in fact zero but E? is determined by deep donors
lying below deep acceptors near mid-gap as in Fig. 9.14. In this case the
observed a.c. conduction would have to be ascribed to soft phonons
(§ 6.4.5). The other possible explanation is that the true density of states at
Ep is finite, but that electrons near the Fermi energy form pairs with
antiparallel spins so that the one-electron density N(Ep) is zero. This was
first suggested by Anderson (1975). A rather different version of the model
was put forward by Street and Mott (1975); this was outlined in Chapter 6
and will be adopted here. This model is preferred to one in which the
density vanishes, and in which deep donors and acceptors locate the Fermi
energy, simply because it is successful in explaining a wide variety of
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phenomena. We cannot at the time of writing point to an experiment which
uniquely proves that the density of states at EP is finite, though the
cumulative evidence is strong.

We first recapitulate the model.t The defect we have in mind can have
three charge states D+, D~, and D° . Since they are each associated with a
different local atomic configuration they can be considered as different
defects. The negatively charged defect D~ is a dangling bond associated with
an under-co-ordinated atom, for example a chalcogen (say Se) bonded to
one other atom or a pnictide (say As) bonded to two other atoms. When an
electron is removed from the dangling bond (forming D° ) it is assumed that
there is an attraction of the atom in question towards a fully co-ordinated
neighbouring chalcogen atom, one of the lone-pair electrons on the latter
being used to form a bonding orbital and the other an antibonding orbital.
We do not believe, however, that this bond is as strong as when a second
electron is removed, for then both lone-pair electrons from the neighbour-
ing chains are used in bonding and the former singly co-ordinated chalcogen
becomes essentially three-fold co-ordinated—the D+ centre (see Fig.
9.15(a)). It is assumed that the reaction

(9.1)

t Street and Mott 1975, Mott, Davis, and Street 1975, Street 1976, Mott and Street 1977,
Adler and Yoffa 1976, Adler 1976, Kastner, Adler, and Fritzsche 1976, Kastner 1977,
Kastner and Fritzsche 1978.

Fig. 9.15. (a) D and D centres formed from two D centres at the ends of a Se chain, (b)
Intimate valence alternation pair.
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is exothermic, that is the total energy (electrons plus lattice) associated with
the pair of charged defects D+ and D~ (both without spin) is lower than that
of two neutral defects D °  (both with spin). The Coulomb repulsive energy
between the two electrons at D~ is more than compensated by the lattice
energy gained; this is what is meant by a negative effective correlation
(Hubbard) energy U for the defect.

Kastner et al. (1976) and Kastner and Fritzsche (1978) have provided
insight into the above processes using chemical-bond arguments. In their
notation D+ and D~ are denoted by Cs and CT, the C standing for chalcogen
and the subscript indicating the co-ordination. In contrast to our description
of D° , however, they consider the neutral centre to be three-fold co-
ordinated with the antibonding electron residing symmetrically at the
defect, which they therefore designate C° . The creation of a 'valence-
alternation pair', Cs and CT is considered to occur in two stages. First a
neutral dangling bond, C? interacts with the lone pair of a neighbouring
chalcogen forming a three-fold and a two-fold chalcogen according to the
reaction C? + C°  -» C°  + Cs. During this reaction, (i) one of three electrons in
lone pair orbitals at C? is transferred to a lower lying bonding orbital, and (ii)
one of the two lone pair electrons at C°  is transferred to a bonding orbital
and the other to an antibonding orbital. Secondly two C°  defects convert to
Cs and Cs by transferring two electrons in antibonding orbitals and two in
bonding orbitals into lone pair orbitals—an exothermic reaction. The
above-mentioned authors make the important observation that the valence-
alternation pair is associated with the same number of bonds as the
continuous random network, so that the energy to form it may be quite low.

The energy level of Fig. 9.16 has been proposed by Street and Mott
(1975). The D~ and D+ defects act as shallow acceptors and donors for

Fig. 9.16. Energy levels associated with D+, D° , and D according to Street and Mott (1975).
Transitions associated with thermal excitation of an electron trapped at D+ and a hole trapped
at D~ to the conduction band (C.B.) and valence band (V.B.), respectively, are denoted by solid
arrows. Optical transitions are denoted by dotted arrows: luminescence (downward facing

arrows), absorption (upward facing arrows).
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trapping processes but, having trapped their respective carriers, they distort
to become D° s with activation energies for release that are enhanced by W~
and W+ respectively. (Note that W = 2WU.) The Fermi level is pinned
midway between these two deeper levels (see § 9.8, Mott, Davis and Street
1975, and Adler and Yoffa 1976), even if the concentrations of D+ and D~
differ quite widely as can happen if there are other charged centres present
(see § 9.8). The dotted levels in Fig. 9.16 are useful for representing optical
transitions (which occur in times short compared to that of atomic relax-
ations), as indicated in the caption.

The energy levels of the D+, D~ states will doubtless be broadened by
disorder. Marshall (1977), from an analysis of dispersion in hole drift
mobility in As2Te3, estimates a spread of —0-025 eV in the depth of his
trapping centres, which we identify with D~. A spectrum of values of the
negative Hubbard U may be responsible for the spread.

The absence of an e.s.r. signal in annealed specimens is strong evidence
that all centres then have negative C7, that is that the reaction (9.1) is
exothermic. However, in sputtered As2Te3, e.s.r. signals have been
observed before annealing by Hauser and Hutton (1976), showing (in our
view) that some centres with positive U then exist. It is significant that
these authors also observe variable-range hopping with cr varying as
exp(-£/r1/4) at low temperatures. This means that the factor (§3.5)
exp(— Wu/4h(o) is not too small to prevent jumps in which D+, D °  change
places. According to the consideration of Chapter 3, and in the inter-
pretation of photoluminescence given later in this chapter, WH should be
— 4 of the Stokes shift observed in photoluminescence and thus ~&B, B
being the band gap. For B = 1 eV as for As2Te3 this is ~0-125 eV, and if
ha) = 0-05 eV our factor is e~8 — 10~3, which is compatible with the obser-
vation of variable-range hopping.

In annealed specimens for which an e.s.r. signal is absent, T1/4

behaviour is not observed. We suppose that the polar on energy involved
for the exchange of D+, D~, which should be 4Wn (Phillips 1976), is too
large; the factor discussed above will now be 10~12. None the less, a.c.
conductivity varying as cos has been extensively observed (§ 6.5.4) and
ascribed to states in the gap. Mott and Street (1977) suggest that the
explanation may be that a high concentration of pairs of D+, D~ close
together may normally be present because of their attraction for each
other. If the charge from D+ overlaps into the antibonding state of D~, the
polarization energy may be greatly reduced and approach that of D° .
Another model, also involving pairs and due to Elliott (1977) is discussed
in § 6.4.5.

The deviations from the straight plot of log cr versus \/T shown in Figs.
9.10 and 9.11 may possibly be the beginning of variable-range hopping,
consequent on overlap between D+ and D~ bands due to centres with
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positive U. Another explanation follows, however, from the analysis of
Marshall and Owen (1975), who combine it with drift-mobility curves
(§9.5) to identify a (spinless) hole trap 0-13eV below EF, the defect
responsible being present in sufficient concentration to allow hopping from
one to another. These authors (Marshall and Owen 1976) also identify the
level in field-effect studies. Mott and Street (1977) suggest that it may be a
D+ and a D~ centre in close proximity, forming a dipole. Such pairs must
indeed be present, and their concentration should depend on the rate of
cooling. The concept of 'intimate pairs' of D+, D~ centres (Cj, CT) was
introduced by Kastner et al. (1976) (see also Kastner and Fritzsche 1978,
Tsai et al. 1977). We believe, following Street (1977), that such a pair,
illustrated in Fig. 9.15(b), can be formed by the absorption of a photon not
at a defect. The configuration diagram envisaged is shown in Fig. 9.17.

Fig. 9.17. Street's model for photodarkening; hv and hv are the absorption energies
before and after darkening.

Street proposes that this is the origin of photodarkening. t If indeed the
configuration diagram does appear as shown, the metastable state should
be formed with a quantum efficiency at present hard to calculate, but
perhaps several per cent. Moreover, this form of self-trapped exciton is a
singlet state; there is clearly no triplet state below it.

9.4.2. Screening length

A discussion of the theory of the screening length when N(EF) is finite was
given in § 6.4.9. In our model of charged dangling bonds the one-electron
value of N(EF) vanishes but the true density of states, due to paired
electrons, is high. We denote it N/kE, where N is the number of such

t For an alternative explanation, see Tanaka, Hamanaka, and lizima 1977.
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centres and A£ their (small) spread in energies. The treatment will depend
on whether the electron's potential energy E, which has to be screened, is
greater or less than this width AJ5 of the D~ level. In the former case we
may write

(9.2)

Thus the potential varies as 27rNe2x2/K and the screening length is

(9.3)

In the latter case, instead of (9.2") we have

so that V falls off as e x p ( — X / X Q ) with

(9.4)

The experimental evidence has been reviewed by Fritzsche (1973). He
states that for amorphous semiconductors no deviation from a linear rela-
tionship between resistance and thickness is observed down to 1000 A,
which gives an upper limit to x0. He also describes experiments on pho-
tovoltage, which is expected to occur if radiation is absorbed in a space-
charge region at a metal-semiconductor interface. For an alloy glass
(Gei6As35Te28S2i), he finds Jt0~ 300-500 A. From the frequency depen-
dence of the capacity, he finds jc0 ~ 160 A.

Whichever form (9.3) or (9.4) we take, with E or AE a few tenths of an
electronvolt, these results imply a value for the density of defects N in the
range 1017-1018 cm~3.

9.4.3. Field effect

Field-effect measurements were first made successfully for a chalcogenide
alloy glass by Egerton (1971). More recent investigations are due to
Marshall and Owen (1976), who used sputtered films of As2Te3 and an
alloy glass (As3oTe48Sii2Geio), and by Mahan and Bube (1977) on As2Te3.
The former authors were able to apply a gate voltage up to 106 V cm"1 with
negligible leakage current. They obtained the following results, which
differ strikingly from those for glow-deposited silicon:

(a) As shown in Fig. 9.18, the field-effect current tends to a value
proportional to the gate voltage.
(b) In As2Te3 and for an alloy glass the activation energy of the field-
effect current is —0-13 eV smaller than E (the activation energy in the
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Fig. 9.18. Plot of A/ against gate voltage vs for an alloy glass, As30Te48 Sii2Gei0 at various
temperatures. (From Marshall and Owen 1976.)

bulk). Marshall and Owen thus postulate centres this amount below EF,
which receive the surface charge (Fig. 9.15). These states are already
identified from studies of d.c. current (§ 9.4.1).
Mahan and Bube (1977), however, while agreeing that the field-effect

current is proportional to the gate voltage, find that the dependence on T is
as shown in Fig. 9.19. Below room temperature the charge resides at the
Fermi level and above room temperature in the valence (or conduction)
band. Mott and Street (1977) suppose, as indicated in § 9.4.1, that pairs of
D+, D~ may give the states 0-13 eV below EF, and, if present in a consider-
ably higher concentration than unpaired defects, will give the behaviour
observed by Marshall and Owen. Otherwise they expect the behaviour seen
by Mahan and Bube. Probably the ratio of paired to unpaired states may be
sensitive to heat treatment.

9.5. Drift mobility

As for glow-discharge-deposited silicon, measurements of drift mobility
have yielded important results, but unlike that material the mobility seems
to be dominated by discrete levels, some of which have been interpreted as
charged dangling bonds. Drift mobility studies on amorphous As2S3 and
As2Se3 have been made by Owen and Robertson (1970), Kolomiets and
Lebedev (1967), Pai and Scharfe (1972). In contrast with the well-defined
transits observed in amorphous selenium, for example, hole transport is
characterized by a statistical spread in arrival times similar to that found in
Se at low temperatures (see Fig. 6.27). If an 'effective' mobility is
determined from the minimum of the spectrum of transit times in As2Se3, it
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Fig. 9.19. Field effect conductance modulation in As2SeTe2 as a function of temperature. + for
thickness 13 /mm and voltage 182 V, O for 8 /u,m and 470 V. a shows the conductivity. (From

Mahan and Bube 1977.)

is found to be electric-field dependent (Fig. 9.20). The 'zero-field' hole
mobility at room temperature is ~5 x 10~7 cm2 V"1 s"1 and, as a function
of temperature, is observed to have an activation energy of about 0-5 eV.
Mott, Davis, and Street (1975) propose that this is the energy required to
release a hole from a D~ state (see § 9.7).

More recent work by Owen, Marshall, and co-workers includes the
effects of high fields (§ 9.9). Fisher, Marshall, and Owen (1976) study the
glasses As-Se over a considerable range of composition. By comparing the
activation energies for different transit times and also from the investiga-
tion of thermally stimulated currents (Street and Yoffe 1972), they
conclude that there is a series of traps with fairly discrete energy levels and
that different experiments reveal different values because the time to
achieve a quasi-equilibrium depends on the experimental conditions.

For the more conducting materials such as As2Te3 and alloy glasses, it
has not as yet proved possible to make transport measurements by the



472 CHALCOGENIDE AND OTHER GLASSES

time-of-flight method because of the short relaxation times in these
materials. Marshall and Owen (1975), however, have obtained values of
/LCD in photoconduction in the following way. Using a coplanar configura-
tion for the specimen, the current is measured after the onset of illumina-
tion at times when a quasi-equilibrium has been established with 'traps',
but for times smaller than the recombination time r. This current should
then be ne^F, where n is the total number of quanta absorbed per unit
volume, which is known. Fig. 9.21 shows their results for As2Te3. The
activation energy 0*22 eV is interpreted by them as the depth of a trap;
again we suppose this to be the D~ state. The behaviour at low tempera-
tures is interpreted by Marshall and Owen as being due to a discrete trap,
nearer the Fermi energy and present in low concentration; Mott, Davis,

Fig. 9.20. Temperature dependence of hole drift mobility in amorphous As2Se3 for different
electric fields: D, 9-4 x 104 Von"1; A, 18-8 x 104 VcnT1; O, 28-2 X 104 Vcnf1; •, 55 x

104 Vein l. (From Owen and Robertson 1970.)
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Fig. 9.21. Temperature dependence of carrier drift mobility in two samples of amorphous
As2Te3 for low fields. (From Marshall and Owen 1975.)

and Street (1975), however, suggest that it may be due to hopping between
D" and D (i.e. a hole trapped by a D~~), a process that would involve an
activation energy of polar on type. The interpretation of Marshall and
Owen may well be correct, and if so perhaps these traps are paired D+ and
D~, as already suggested.

From Fig. 9.20 Marshall and Owen deduce the concentration N of the
former defect (D~ in our view); one can write

where crmin could be taken from the extrapolation of the dark conductivity
to 1/r = 0, corrected for the term eY/fc (eqn (6.11)). If we take a reasonable
theoretical value for conduction at a mobility edge (a-min~ 102 ft"1 cm"1),
the results of Fig. 9.13 give N—  1019cm~3. However, in the temperature
range of the experiments the results of Nagels et al. (1974) discussed in
§ 9.2.4 indicate that conduction is by hopping at the extremity of the band,
and instead of ormin an appropriate factor will be <r0~2 ft"1 cm"1. It thus
appears that TV ~ 2 x 1017 cm~3 may be a better estimate.

Drift mobility measurements on As2Se3 doped with iodine have been
reported by Banerji and Hirsch (1974) and by Pfister, Melnyk, and Scharfe
(1977) (see §10.3.1).
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9.6. Luminescence

Radiative recombination during photoexcitation of carriers (pho-
toluminescence) in amorphous chalcogenide semiconductors has been
observed and studied by several groups, some of the earliest work being
due to Kolomiets and co-workers. Some of the principal features are
illustrated by data on As2Se3 in Fig. 9.22 (from Bishop and Mitchell 1973).

Fig. 9.22. Photoluminescence spectrum, excitation spectrum, and absorption spectrum for
glassy As2Se3. The solid circles and connecting broken line represent the measured excitation
spectrum for a sample 0-15 cm thick. The 'theory' refers to that of de Vore. (From Bishop and

Mitchell 1973.)

(1) The luminescence is emitted in a broad peak of width a few tenths of
an electronvolt centred at an energy considerably less than the optical
gap and, in most cases, quite near to the activation energy for d.c.
conduction and thus approximately half the band gap (Street 1976). In at
least one case (Kolomiets, Mamontova, and Babaev 1970) a smaller
emission peak was observed close to the band-gap energy in crystalline
As2Se3 and Kolomiets et al. (1972) in an alloy glass.
(2) The luminescence is most efficient when excitation occurs in the tail
of the optical absorption edge (absorption coefficients ~10-102cm~1).
This feature was largely responsible for the failure of several earlier
attempts to observe luminescence and therefore to reproduce the
original results of Kolomiets, Mamontova, and Babaev (1970). The
excitation spectra shown in Fig. 9.22 is a measure of the integrated
luminescence intensity versus excitation energy. The shape of the
luminescence band is found to be independent of excitation energy.
(3) The intensity of the luminescence is a strong function of tempera-
ture, increasing by several orders of magnitude on cooling from room
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temperature to that of liquid helium and reaching an efficiency —10-20
per cent.
(4) The decay of luminescence following cessation of excitation is fairly
rapid: according to Street et al. 1973, Street, Searle, and Austin 1974a),
95 per cent of the signal decays within about 1 ms, the remainder
decaying with a time constant of 5-10 ms. There is also a decay during
excitation (fatigue). The decay is, however, slow compared with that in
a-Si(cf. §§6.7.6, 7.1).
(5) The luminescence can be enhanced by simultaneous excitation with
light in a restricted wavelength band (Bishop, Strom, and Guenzer
1974).
With regard to the electronic transitions involved in the luminescence,

three models have been proposed. The first (Weiser 1972) involves ther-
malization of the photogenerated electron-hole pair during which time the
carriers emit phonons and fall down through localized states in band tails
until they reach 'recombination edges', whereupon they recombine radia-
tively. A description of this process has been given by Fischer and Vorn-
holz (1975). The second model, first proposed by Kolomiets, Mamontova,
and Babaev (1970) (see also Kolomiets et al. 1974) involves localized
recombination levels situated somewhere near the centre of the energy
gap, with either the downward electron or upward hole transition giving
rise to the luminescence. The third, put forward by Street and Mott (1975)
and Mott, Davis, and Street (1975), supposes that the excitation takes
place at the negatively charged dangling bonds already described (D~) or in
some cases D+ (Mott and Street 1977). These give rise to absorption near
the band tail but the shift of the emission frequency to near half the band
gap is due to a Stokes shift.

The evidence for the luminescence involving defect levels is fairly
conclusive. From experiments concerned with the softening temperature
and dissolution properties of As2Se3 doped with In and Ge, Kolomiets,
Mamontova, and Babaev (1972) conclude that the recombination centres
involved could not be associated with impurities and might be identified
with broken bonds. More detailed doping studies on Se by Street, Searle
and Austin (1974fe,c) lead to a similar conclusion; the intensity of the
luminescence increased markedly with addition of As and Te both of which
are expected to increase the number of unsatisfied bonds, the former by
branching and the latter by shortening Se chains. Street, Searle, and Austin
(1975) give evidence for weak tails to the absorption spectrum, both in
crystalline and amorphous As2Se3, which can be associated with these
defects. Some further details of the luminescence spectrum in Se alloys are
presented in Chapter 10.

The observation that the excitation spectrum peaks at a photon energy
corresponding to low values of the absorption coefficient has been consi-
dered in detail by Bishop (1973), Bishop and Mitchell (1973) and by Street



476 CHALCOGENIDE AND OTHER GLASSES

et al (1973), Street, Austin, Searle, and Smith (1974) and by Street (1976).
Both groups agree that the drop in excitation efficiency on the low-photon-
energy side of the peak arises simply because of decreased absorption of
the radiation by the sample; as expected therefore this portion of the
excitation spectrum depends on sample thickness as shown in Fig. 9.23 on

As2Sei.5Tei.5. What is more interesting, however, is that for very thin
samples (<15/u,m) the peak and the high-energy side of the excitation
spectrum also shift. From this and similar observations on As2Se3, Bishop
and Mitchell (1973) concluded that surface recombination is responsible
for the high energy fall-off and, fitting their results to the theory due to De
Vore (1956), deduce a diffusion length for the photo-excited carriers of 1

Fig. 9.23. Photoluminescence excitation spectrum for samples of As2Sei.5Tei.5 of varying
thickness. All spectra are normalized to the number of incidence photons and to equal peak
intensity. The optical absorption spectrum a is also shown. Sample thicknesses are (in cm) •,

(From Bishop and Mitchell 1973.)
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or 2 urn. This diffusion length L appears large for an amorphous material;
when combined with a characteristic response time for the luminescence of
about 10~4 s (deduced from a decrease in luminescence intensity for chop-
ping frequencies above about 250 Hz), a mobility for the diffusing carriers
(fji =L2e/rkT) of 0-55 cm2 V"1 s"1 was inferred, which is orders of magni-
tude greater than measured drift mobilities in As2Se3 (see § 9.5).

An alternative explanation of the high-energy fall-off was proposed by
Street et al (1973) and Street (1976), who do not find agreement with the
De Vore theory, at least in the case of As2S3, and furthermore emphasize
the temperature independence of the shape of the excitation spectrum.
Instead of surface recombination they propose a quantum efficiency
dependent on the excitation energy. These authors assume (1) that emis-
sion takes place at defects, later to be identified with charged dangling
bonds; (2) that photoluminescence occurs either when one of these defects
is excited directly, or when an electron-hole pair is excited in the vicinity
and can drift towards it, as described in § 6.7.6; (3) photoluminescence
occurs only if radiation can occur before the particles separate. In this
model, the greater the absorption frequency, the more likely are the
electron-hole pairs to separate and then recombine by a non-radiative
path. This model is in accord with the observations that the temperature
dependence and the shape of the luminescence spectrum as well as the
low-temperature decay time of the luminescence are all independent of the
excitation energy.

The temperature dependence of the luminescence efficiency provides
further information on the process by which carriers can separate. For
almost all chalcogenides so far investigated (see however Kirby and Davis
1979) the intensity follows the relation (Street et al 19740, Street 1976)

yL = const. exp(-T/T0) (9.5)

where T0 is characteristic of the material. This behaviour is illustrated for a
few glasses in Fig. 9.24. Values of T0 vary between 20 and 40 K. Street et
al. (1974a) account for this in the following way.

(a) The centre is charged, so that to separate a carrier from it after
excitation leaving a D° , no Coulomb attraction has to be overcome. In
terms of the model of § 9.3, these centres are D~ and the carrier is an
electron, or the centre is D+ and the carrier a hole.
(b) In the conduction band there is a long-range spatial variation of the
potential, probably caused by charged centres (D+ and D~).
After relaxation of the centre (D °  with an electron weakly bound to it),

the electron can either recombine with the emission of radiation or diffuse
away, which will lead to a radiationless recombination process to be dis-
cussed later. For the second process, Street et al. (1974a) develop a simple
model in which the potential fluctuations are represented by parabolic
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Fig. 9.24. Temperature dependence of the luminescence intensity of various chalcogenide
glasses. (From Street 1976.)

wells separated by a distance R0. These may perhaps be caused by
the microfields which lead to an Urbach edge in the model of Dow and
Redfield (1972; cf. §6.7.1). Assuming a tunnelling rate proportional to
exp(—2ar —  w/kT) and a tunnel length r depending on the activation
energy w according to the equation r = R0 —  2ywl/2

9 where y defines the
parabolas, one finds that the energy at which the rate is a maximum is
w = (2aykT)2. Thus the tunnelling rate is proportional to exp(T/r0),
where To1 =4a2y2fc. The luminescence efficiency 17 can be written in
terms of the probabilities for radiative (pr) and non-radiative (pnr) paths
for low values of 77 by

Under these conditions the lifetime r is given by

and since the temperature dependence of the lifetime and the efficiency are
observed to be the same (see below), Street et al deduce that pT is
independent of temperature and therefore that

From the observed values of T0, one can deduce a separation between
neighbouring wells given by RQ~ 10/a, and thus of 50 A for a tunnelling
constant a"1 of 5 A.
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Most of the above experimental results were obtained under pulsed
conditions on account of the decay of the luminescence during excitation.
This 'fatigue eifect' has been investigated particularly by Mollot, Cernogora
and Benoit a la Guillaume (1974) and by Cernogora, Mollot, and Benoit a la
Guillaume (1973, 1974), and an explanation in terms of the progressive
conversion of D~ to D°  centres has been given by Street (1976). Of interest
also is the decay of luminescence following excitation. Using a xenon flash
lamp with a pulse duration of 10 /LCS, Street et al. (1974a) have investigated
this decay in As2S3 at various points on the emission spectrum and as a
function of temperature. Fig. 9.25 shows a typical decay curve; there is no
unique time constant. The decay depends slightly on the emission energy
(Street 1976), but the decay lifetime at 10 K is found to be independent of
excitation energy.

Fig. 9.25. Decay of luminescence at 7 K of a melted glasr sample of As2S3. Excitation energy
2-34 eV, emission energy 1-24 eV. (From Street 1976.)

In Figs. 9.26(a,b) we show some results of Bishop et al. (1974) on
enhancement spectra in As2Se3 and As2S3 glasses. It was found that

[ irradiation of the samples with continuous monochromatic light enhanced
[ the luminescence and that the enhancement spectrum extended nearly all
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Fig. 9.26. (a) Photoluminescence excitation, enhancement, and absorption spectra for glassy
As2Se3 at 6K. The excitation and enhancement spectra are normalized to the number of

incident photons, (b) The same for As2S3. (From Bishop et al 1974.)

the way from the low-energy limit of the luminescence to the low-energy
limit of the excitation spectrum. For As2Se3 two enhancement spectra
corresponding to two different spectral distributions of interband exciting
light are shown. The enhancement reached 40 per cent and had a response
time of several seconds. It would appear that interband photoexcited
carriers which become trapped and whose ultimate fate would be non-
radiative recombination can be re-excited from these centres back into the
radiative channel.

Next we compare the luminescence observed in amorphous materials
with that in the crystals. As first reported by Kolomiets the luminescence
spectra in amorphous and crystalline As2Se3 and As2S3 are very similar,
lending support to the idea that defect centres are involved and further-
more that these are of the same kind in the two phases. In contrast the
excitation spectra and the temperature dependence of the luminescence
are quite dissimilar, and there are no observable fatiguing effects. Fig. 9.27
compares the two phases of As2Se3. The most obvious difference is in the
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Fig. 9.27. Excitation and photoluminescence spectra and absorption coefficient of crystalline
and amorphous As2Se3. (From Street 1976.)

excitation spectrum, which for the crystal does not exhibit the high-energy
fall-off characteristic for glasses. The higher mobility expected in the
crystal appears to ensure that the radiative path is followed even if excita-
tion is not in the vicinity of the recombination centres. This is supported
further by the observation that the luminescence efficiency in the crystal is
high, approaching unity at low temperatures.

The temperature dependence of the luminescence intensity also differs
between the two phases as shown in Fig. 9.28. Instead of the dependence
as exp(— 77 TO) displayed by the glass, the behaviour in the crystal is more
accurately described by two well-defined activation energies.

The linewidths of the photoluminescence spectra are very similar in
crystalline and amorphous chalcogenides, suggesting that the breadth of the
luminescence is independent of disorder. Street (1976) (see also Street,
Austin, and Searle 1975) propose that the breadth is due to coupling with
phonons by the mechanism illustrated in Fig. 3.7.

To summarize, then, we suppose that photoluminescence is due to
excitation in D~ centres (or possibly D+) which are present in a concen-
tration of 1017-1018cm~3; a charged bound exciton is then formed. The
centre relaxes; the Stokes shift leads to re-emission of a broad line with
frequency such that hv is about half the band gap and broadened according
to eqn (3.36). This is confirmed by the similarity between the behaviour of
crystals and glasses. Unless the temperature is low, the charged exciton
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Fig. 9.28. Temperature dependence of photoluminescence intensity of crystalline and amor-
phous As2Se3. The quantity plotted is y ~l —  1 where y is the intensity normalized to unity at the

low-temperature limit. (From Street 1976.)

dissociates into a D°  centre and a free electron, which recombines without
radiation by one of the mechanisms described in the next section.

This model is supported by more recent results of Bishop et al. (1975,
1976a,6, and 1977 for a review). These authors find an optically induced
e.s.r. signal and optical absorption due to trapped holes in several chal-
cogenide glasses illuminated below 15 K. The assumption is that neutral D°
centres are created, and that at low temperatures these are stable. Some
discussion of the e.s.r. behaviour is given in § 6.8.3. The concentration of
defects responsible is estimated to lie in the range 1017-1018 cm~3.

Doping with In or Ge changes the luminescence spectrum of AsiSes
(Kolomiets, Mamontora, Smorgonskaya, and Babaev 1972), as do traces of
O, S, and Te in amorphous Se (see Street 1976). This is discussed in § 9.8;
doping is expected to change drastically the relative concentration of the
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D+ and D~ centres, so that the sign of the centre responsible for the
photoluminescence may change (Mott and Street 1977).

The model supposes that when an electron and a hole escape from each
other's field, recombination is always non-radiative. It is known that a free
electron-hole pair recombines non-radiatively (§ 6.7.6), so it is supposed
that the mechanism of Dexter et al. (1955, cf. § 3.5.2) must be operative,
because a larger distortion occurs when the electron is in a small orbit
(Mott 1977a). Another mechanism will be described in the next section.

9.7. Photoconductivity

There have been many observations of photoconductivity in As2Se3,
As2Te3, and alloy glasses.t In general, these show, when photocurrent is
plotted against 1/71, the three regimes of Fig. 6.31; these are the high-
temperature regime I in which the photocurrent /p is less than the dark
current and proportional to G (the number of quanta absorbed per
cm~3 s"1). The rate of recombination is then determined by the dark
concentration of carriers. Next comes regime II, where the number of
carriers is greater than the dark concentration, so that 1/r is proportional
to the number of photoexcited carriers and /poc G1/2. Thirdly in regime III
there is little dependence on temperature and /p is proportional to G.
Direct measurements of the rate of recombination have also been made,
and these will be discussed below.

Experiments on photoconductivity can measure the total charge
generated; if carriers are formed in a thin layer adjacent to one surface of a
film, a strong enough pulsed field will extract them. A possible dependence
of quantum efficiency on frequency of the radiation and on temperature is
discussed in § 6.5.3. In the experiments described here it is believed that the
quantum efficiency normally approaches unity.

We discuss first direct measurements of the decay time r. This has been
measured for As2Te3 as a function of temperature by Moustakas and
Weiser (1975), and Fig. 6.33 shows their results for three intensities. While
in regime I the lifetime r, due to recombination of holes with thermally
generated electrons, does not depend on the intensity of the radiation and
decreases with increasing concentration of the electrons, in regime II it
seems to be independent of T. Fig. 6.34 shows similar results for As2Se3

due to Main; there is now a small activation energy (0-08 eV) in r.
A value of r that depends little on temperature is to be expected for a

multiphonon process at fairly low temperatures, though 1/r should even-
tually rise as T increases. The process we envisage for chalcogenides is the
following: first the electrons are captured by D+ centres, the holes are in

t Fagen and Fritzsche (1970), Weiser et al. (1970), Arnoldussen et al (1974), Kolomiets and
Lyubin (1973), Grant et al (1974), Main (1974), Taylor and Simmons (1974), Moustakas
(1974), and Moustakas and Weiser (1975).
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quasi-equilibrium with the D centres, and trapping and release deter-
mines their mobility. For recombination, the rate-determining step is

which can be treated by the method of Chapter 3 as a multiphonon process.
If r is independent of T, or if its temperature dependence is known, the

mobility of electrons can be deduced from the slope of the plot of In /p

against \/T in regime II. There has been controversy about how this is to
be interpreted. Moustakas and Weiser (1975) and earlier writers note that
for As2Te3 the slope (~O15eV) corresponds well with the difference
between E^ and Es, which supports a polaron (or other hopping) model for
the mobility. If the considerations of § 9.3.3 are valid, however, the cor-
responsible for the photocurrent in regime II as for the dark current. The
process for the generation of holes may be split up into

To summarize, then, it seems likely that recombination occurs through
trapping by D+, D~ states, with tunnelling between them by the process
D°-^D + + D~ as the rate-determining step. This is, at most, weakly
dependent on T and the slope of the curve of In ip versus 1/7" is mainly
determined by the trap-limited mobility.

In regime III it seems probable that carriers which fall into the traps (D+,
D~) do not get out again before recombination, as was proposed by
Simmons and Taylor (1974). Some measurements at helium temperatures
(Jenkins, Levy, and Hodby 1976) are discussed by Mott, Davis, and Street
(1975).

A consequence of this model is that the same sign of a carrier must be
responsible for the photocurrent in regime II as for the dark current. The
process for the generation of holes may be split up into

followed by

For the generation of electrons the second process becomes

For a p-type material, the second process must have the larger energy.
However, these last two equations are those that determine the activation
energies in the drift mobility, and thus that in /p in regime II.

9.8. The effect of alloying on the dark current

The conductivity of chalcogenides is in general insensitive to the addition
of small amounts of elements such as Si and Ge. This property, already
referred to earlier, was first established by Kolomiets and co-workers (see
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Kolomiets 1964) and is usually explained by the 8-7V rule, according to
which each element is surrounded by 8-N neighbours (N being the number
of electrons outside a closed shell) so that all electrons are taken up in bonds.
Even at alloying concentrations such that the optical gap changes, the Fermi
level remains pinned close to the centre of the gap (see Fig. 9.13).

In some systems, one can pass right through stoichiometric proportions
without any discontinuity in the conductivity. Fig. 9.29 shows the room-

Fig. 9.29. Variation of the activation energy for electrical conduction and the room-tempera-
ture conductivity in the As2Se3-As2Te3 system. Data from O Uphoff and Healy (1961), •
Vengel and Kolomiets (1957), x Weiser and Brodsky (1970), 0 Rockstad (1970), D Edmond

(1966), A Male (1970), and O Croitoru et al (1970).

temperature conductivity or and activation energy E in the system As2Se3-
As2Te3. If we write cr = C exp(-E/kT) and calculate the variation of E
from the measured variation in conductivity assuming C = 102, 103, and
104 ft"1 cm"1, it is seen (top three curves) that over the whole composition
range C lies near 103 ft"1 cm"1, a value appropriate for transport at a
mobility edge. The optical gap in this system also varies smoothly. In other
systems, extrema in conductivity and optical gap occur at stoichiometric
proportions (see Rockstad and de Neufville 1972, Hurst and Davis 1974),
but the pinning of the Fermi level near mid-gap seems to be quite general.
We have suggested that pinning is associated with the presence of point
defects D+ and D".
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There are however exceptions to the rule. The effect of oxygen in
increasing the conductivity of amorphous selenium is well known, and Cu,
Mn, and many other elements are known to increase the conductivity of
chalcogenides by decreasing the activation energy for conduction, and often
without an associated decrease in the optical gap. Our theme in this section is
that they act by unpinning the Fermi energy.

In a normal n-type semiconductor with uncompensated donors e\ below
the conduction band, one places the unpinned Fermi energy, in the limit as
T^> 0, at Id below the conduction band; the introduction of compensation
displaces it to ei below. If an upper Hubbard band (Chapter 4) is taken into
account at an energy e( =£1 —  82 below the conduction band, it would be
more accurate in the uncompensated case to place the Fermi level midway
between ei and e (. Normally si - e (is the Hubbard U. If as in chalcogenides
distortion takes place, so that e\ —  e'\ decreases, it is clear that the Fermi
energy remains midway between them, and when the condition is reached
that the reaction 2D°-»D + + D~ is exothermic or involves no energy, the
Fermi energy becomes pinned, as defined in §2.10. In this section we
propose that if the specimen contains negatively charged impurities, the
Fermi energy becomes unpinned again, and that this is the cause of the high
conductivity observed in certain cases.

With the model of charged dangling bonds, the energy W to produce a
pair of holes is that of the reaction

where p denotes a hole. Normally the activation energy for conduction, Ea,
will be \W. This may be seen by the principle of detailed balancing as
follows. The rate of generation of holes will be proportional to
exp(— W/kT). As long as D" and D+ are present in comparable quantities,
the recombination rate which involves a collision between two holes and a
D~ will be proportional to p2. Thus

It has been suggested by one of us (Mott 1976J), however, that in glasses
containing charged impurities (e.g. Mn2~) the compensating charge will be
D+ centres, so that in the melt the law of mass action will ensure a very
small concentration of D~. If N+, N~ are the concentrations of the D~
centres,

(9.6)

where E is the energy to form the pair. If this is so, the concentration of D~
may be negligible at room temperature and equal to \p at finite tempera-
tures. The rate of recombination is then proportional to p3, so that

(9.7)
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We thus expect a drop in the activation energy by |. The Fermi energy is
now no longer pinned. This behaviour is analogous to that of a doped and
compensated semiconductor, where as we have seen EF is pinned at e\
below a conduction band, and with the removal of compensation rises to
281 below it.

The same result can be obtained from Boltzmann statistics as follows.
We suppose that, at T = 0, there are N positive and M negative centres per
unit volume. At finite temperature there are N-2P positive and M + \p
negative centres and p free holes. The free energy is therefore

where Nv = N(Ev)kT for carriers at a mobility edge. This is a minimum
when

and thus, if Nv »p and N » \p, when

(9.8)

In the normal case (M>p)

(9.9)

ForM«p

(9.10)

As T increases, there should be a transition from one regime to the other,
the slope of the plot of log a versus l/T decreasing, as shown in Fig. 9.30.

This model has been applied to the large conductivity increases shown by
the addition of Cu, Ag, Ga, In, and Tl in As2Te3 and Cu and Ag in As2S3

(Mott 1976d, Mott and Street 1977). References are Danilov and Myuller
(1962), Danilov and Mosli (1964), Edmond (1968), Kolomiets, Rukhyl-
adev, and Shilo (1971), Owen (1967). Detailed measurements of E& are
lacking, but they can be estimated from the values of a. For As2Se3 the
activation energy for (p-type) conduction is 0-9 eV, so if the D+ centres are
removed the activation energy should be reduced by 0-3 eV and the
conductivity enhanced by exp(0-3 eV/fcT), which is ~105 at room
temperature. This is similar to the enhancement (104) observed on the
addition of 5 per cent of Cu according to results reported by Liang et al.
(1974). The much smaller shift in the absorption edge might be due to the



488 CHALCOGENIDE AND OTHER GLASSES

Fig. 9.30. Plot of log cr versus 1/T for the model discussed in the text (schematic).

four-co-ordinated copper with its associated D+ centres, which could act as a
deep donor near the valence-band edge.

Watanabe, Inagaki, and Shimizu (1976) find that in amorphous
Ge0.42So-58 the elements Ca and Ag (but not Zn, Cd, Al, In, or I) bring
about a marked drop in the activation energy for conduction, from 1-13 to
—0-75 eV for about 0-2 per cent Ag, which is almost exactly 3. They
suggest that Ag acts as a chain terminator; if so it may be attached to D~
centres, leaving D+ intact. Kolomiets, Mamontova, Smorgonskaya, and
Babaev (1972) showed that about 0-2 per cent In shifts the photolu-
minescence line in As2Se3 from 0-9 to 0-77 eV and intensifies it (see also
Street 1976). The In should remove the D~, normally responsible for
photoluminescence, and put in a high concentration of D+. We think these
must be responsible for the displaced line (Mott and Street 1977). Perhaps
the quantum efficiency is much less (owing to easier escape of a hole), so it
does not normally appear in the undoped material.

Some of the concepts used here have been criticized by Fritzsche (1977)
and Kastner and Fritzsche (1978). Four-fold co-ordination certainly does
not necessarily involve a negative charge. Moreover, it is difficult to under-
stand that the concentration of D~ quenched from the glass transition
temperature could be small enough to give the behaviour of Fig. 9.30.

9.9. Numerical values in the model of charged dangling bonds

This section gives estimates of some of the quantities involved in the model
used in this chapter. The first is the concentration (N cm~3) of the defects
to be expected. The following evidence is available.

(a) The absorption tail identified by Street et al. (1914a,b) leading to
photoluminescence. This suggests 2 x 1017 cm~3 for As2S3 and 1018 cm"3

for As2Se3.
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(b) Screening lengths (Fritzsche 1973) indicate for As2Te3 about
1017cnr3.
(c) The behaviour of the threshold switch. If the theory of the on state
given in § 9.13 is correct, in the alloy glass used N this must be less than about
1018cnT3.
(d) The absolute magnitude of the drift mobility. According to § 9.4, this
indicates ~2 x 1017 cm~3 in As2Te3.
The second quantity is the energy W\ required to take a hole from a D °

centre into the valence band. This is the activation energy of the photocur-
rent in regime II and in the drift mobility. Street (1976) gives (in eV)

W1-0-29(As2Te3)

Wi = 0-55(As2Se3).

The energy of the reaction D+ + D~->2D °  will be denoted by 2E. Then
E + Wi is the activation energy for conduction (E^). Thus we find for E (in
eV), using observed values of E^,

£Uobs) E
As2Te3 0-46 0-17
As2Se3 0-90 0-35

We note that AE", the spread of values of E, must be less than E if the
bands are not to overlap, giving an e.s.r. signal.

Next, we look at W2, the energy required to form an electron in the
conduction band. This must be B —E^  where B is the band gap. Estimat-
ing B from optical data, we have (in eV)

B (estimated) W2
As2Te3 0-8 0-34
As2Se3 1-8 0-9

We see that EF is near to mid-gap. In the next chapter we reach a similar
conclusion for selenium, for which more detailed data are available.

We next ask what hopping energies are expected for the following
processes.

(1) The movement of an electron allowing a D°  centre to exchange with
D+ and D~~ centres.
(2) Charge transport due to exchange of D+ and D~.

For the former, one expects a hopping activation energy of about one-
quarter the Stokes shift (Chapter 3), and thus one-eighth the band gap,
—0-1 eV in As2Te3 and 0-2 eV in As2Se3. Such small energies allow
unactivated motion at low temperatures of polaron type (eqn 3.35), and one
expects therefore a small term in the current of this kind at low tempera-
tures, with activation energies equal to E, the energy to form a D °  centre,

£Uobs) E
As2Te3 0-46 0-17
As2Se3 0-90 0-35

B (estimated) W2
As2Te3 0-8 0-34
As2Se3 1-8 0-9
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namely 0-35 eV and 0-17 eV for As2Se3 and As2Te3 respectively, if the
concentration of defects is great enough to allow tunnelling from one to
another, perhaps along percolation channels. This may possibly be the origin
of the 'tail' to the log a versus l/T plot shown in Fig. 9.10.

In contrast, the hopping energy for the exchange of D+ and D~ (motion
of a bipolar on) should be four times as large and thus 0-68 eV even in
As2Te3. The bipolaron should therefore be practically immobile at and
below room temperature, as pointed out by Phillips (1976).

9.10. Charge transport in strong fields

An account of various theoretical models is given in §3.12. For the
chalcogenides, both the conductivity and the drift mobility have been
investigated by various authors. Thus in glassy As2Se3 de Wit and Cre-
vecouer (1972) find that the conductivity obeys the form cr = 0-0 exp(F/F0)
up to fields F of the order of 4x l0 5 Vcm~ 1 for various thicknesses of
specimen between 1CT3 and 10"1 cm, though above this field there is a rapid
increase. A remarkable feature of these results is the apparent absence of
any ohmic region, or region in which the conductivity varies as sinh(F/F0).
This behaviour is confirmed by the work of Marshall and Miller (1973) and
Marshall, Fisher, and Owen (1974). These workers express the conductivity
and the drift mobility in the form

cr(F) = cr(0)exp(*aF/fcr)

/LtD(F) = Mp(0)exp(«aF/fcr)

and find that a, which decreases with increasing temperature, is the same
for both. No full explanation of these results has been given. If the model
of charged dangling bonds is accepted, then the drift mobility of holes is
limited by trapping by D~ states and Poole-Frenkel behaviour is expected.
As regards the conductivity, if in the dark conductivity we treat the
generation of a carrier by two consecutive reactions

and suppose that the first process is unaffected by the field, the second is
just the same as that which determines the drift mobility. Thus the equili-
brium number of carriers will depend on the same parameters as in the
drift mobility. One might expect the change in the number of free carriers
to be given by a Poole-Frenkel mechanism. This is certainly not in
agreement with the low-field results, with log cr increasing as F. Mott and
Street (1977), however, show that by applying the Onsager (1938)
mechanism as developed by Pai and Enck (1975), some measure of
agreement may be obtained.
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The electric-field dependence of drift mobility in As2Se3, for which the
transient response is very dispersive, has been described and analysed by
Pfister (1977 a,b).

9.11. Density of electron states in conduction and valence bands

As described in Chapter 6, information on the energy spectrum of electron
states in the valence and conduction bands (as opposed to edge and gap
states) can be obtained by a variety of optical techniques. Absorption or
reflectivity spectra, for example, can be analysed in terms of a joint or
convoluted density of states. Assumptions concerning the energy depen-
dence of interband matrix elements (which depend on the nature, and
hence energy, of the initial state as well as on the energy of the exciting
radiation) need to be made; frequently the assumption of 'constant matrix
elements' is made, leading to a joint density of states (JDS) proportional to
a)2e2((*>\ although, as pointed out by Liang and Beal (1976), it might be
more reasonable to assume a 'constant oscillator strength' in which case the
JDS is proportional to a)e2(<x>) (see Chapter 6). Use of high-energy radia-
tion, for instance from a synchrotron, can be used to excite from narrow
core levels and should, in principle, give the conduction-band density of
states, although (as will be seen below) there are problems with inter-
pretation associated with matrix elements and exciton effects. Photo-emis-
sion data can be analysed to yield the valence and conduction bands
separately and, in particular, X-ray photo-emission spectroscopy (XPS)
should give, after suitable correction of the raw data, the density of valence
states (DOVS) alone. It is the latter that is most directly related to the
structure, i.e. to local atomic configurations, but interpretation in these
terms is less advanced for the chalcogenides than for Ge, Si, or As (Chapters
7 and 8).

Reflectivity spectra of crystalline and amorphous As2S3 and As2Se3 by
Zallen et al. (1971) are shown in Fig. 9.31. Fine structure present in the
(polarization-dependent) edges for the crystals is lost for the glasses, but
the division into two bands separated by a minimum at about 7-8 eV is
retained. This division is associated with a split valence band as will be
evident from XPS spectra presented below. By a Kramers-Kronig analysis
of such reflectivity data, the e2 spectra can be obtained (see Drews et al.
1972).

For XPS spectra we shall assume that the electron energy distribution
curves (EDCs) have been properly corrected for inelastically scattered
electrons and instrumental effects, so that the curves represent, at least
approximately, the DOVs. In most cases the overall spectra have been
determined using ALKa X-rays (1486-6 eV), and a typical resolution is
—0-5 eV. Increased resolution (—0-1-0-3 eV) is obtained using ultra-violet
excitation (e.g. Hell line 40-8 eV, Hel line 21-2 eV, Ne line 16-9 eV), but a
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Fig. 9.31. Reflectivity spectra of crystalline and amorphous As2S3 and As2Se3. (From Zallen
etal.1971.)

problem associated with ultra-violet photo-emission spectroscopy (UPS) is
a very low photo-excitation cross-section for s states. Composite spectra
(XPS for s states and UPS for p states) are sometimes presented in the
literature.

Fig. 9.32(a,b,c) shows XPS spectra for As2S3, As2Se3, and As2Te3

(Bishop and Shevchik 1975). The remarkable similarity between the spec-
tra for the crystalline and amorphous forms of these materials (data for
crystalline As2Se3 is not included) indicates little change in the energy
distribution of valence states. For As2S3 and As2Se3 this is perhaps not
unexpected, as the co-ordination numbers of both As and Se atoms (3 and
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Fig. 9.32. XPS intensities for valence bands of crystalline and amorphous: (a) As2S3, (b)
As2Se3, and (c) As2Te3. (From Bishop and Shevchik 1975.) (d) Bonding schemes in arsenic

chalcogenides. (From Shevchik and Bishop 1975.)

2 respectively) remain unchanged. The lower curve in Fig. 9.32(b) is the
sum of spectra obtained for the individual elements, As and Se, weighted
according to their proportions in As2Se3; it thus appears that the orbitals of
the constituent atoms interact in a similar way even if 'wrong' bonds are
present. For As2Te3 the similarity is at first sight surprising, because,
although the co-ordination in the glass is 3-2, in the crystal all the Te atoms
are three-fold co-ordinated, while the As atoms occupy both tetrahedrally
and octahedrally co-ordinated sites.

The three principal structural features in all the above spectra are
associated with I non-bonding p orbitals, II bonding p orbitals, and III s
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orbitals. The way that these arise has been described by Shevchik and
Bishop (1975). Fig. 9.32(d) illustrates the general situation in a compound
AnBm for which p and s atomic orbitals are important and well separated
in energy. The antibonding p band forms the conduction band; the
remainder are valence states. Bishop and Shevchik (1975) have confirmed
this general picture by a simple tight-binding calculation based on a
'model' As2Se3 layer. The preservation of non-bonding orbitals in crystal-
line As2Te3 (in which Te is three-fold co-ordinated), is associated with the
fact that there are insufficient As p orbitals to interact with all of the Te p
orbitals. If hybridization with s orbitals can be neglected and the crystal-
field splitting of the p states is small compared with the bonding-antibond-
ing interaction, a separate non-bonding band is obtained (Shevchik and
Bishop 1975).

The s bands deserve some comment. It was shown in earlier chapters
that for elemental Ge and to some extent for As, the dip present in the s
band for the crystal is filled in for amorphous films, a feature that was
explained by the presence of odd-membered rings in the structures. For the
binary chalcogenides discussed here, the dip is to be ascribed more to the
splitting of the s band into bonding states associated with the chalcogen and
antibonding states associated with the metal (see Fig. 9.32(d)). Topological
disorder appears to be insufficient to fill in the gap and perhaps a consider-
able degree of chemical order is preserved. The absence of the dip in both
crystalline and amorphous forms of As2Te3 arises because the As and Te s
orbitals are nearly degenerate in energy and the 'chemical gap' disappears.

Bullett (1976) has calculated the electronic density of states of As2S3,
As4S4, As2Se3, As4Se4, and As2Te3 crystals using a localized-orbital
approach. The method is applicable to amorphous networks. Electron
levels expected for certain defect sites, e.g. a three-fold co-ordinated Se
atom, a two-fold co-ordinated As atom, and a Se dangling bond, were
calculated, but severe self-consistency problems prevented treatment of
thermal relaxation effects around such defects.

Fig. 9.33 shows the XPS spectra of amorphous and crystalline GeTe
reported by Shevchik et al. (I913a,b). As for As2Te3 there is a difference in
the short-range order between the crystalline and the amorphous form.
Crystalline GeTe has a distorted rocksalt structure with a nearest-neigh-
bour separation of 3 A, while that of the amorphous form is believed to be
a 4-2 coordinated CRN (Bienenstock 1974) with an interatomic spacing of
—2-7 A. The smearing of the Te 5s and Ge 4s levels is to be expected from
a breakdown in chemical order (i.e. the presence of Ge—Ge and Te—Te
bonds). The uppermost (lowest binding energy) p-like band exhibits more
noticeable differences: the shape in this region can, however, be simulated,
as for As2Se3 (Fig. 9.32(b)), by a simple addition of the DOVS found in
elemental Ge and Te as shown in the lower half of the figure. The peak



CHALCOGENIDE AND OTHER GLASSES 495

Fig. 9.33. (a) Density of valence states of amorphous and crystalline form of GeTe. (b)
Comparison of the density of valence band states with the sum of those of amorphous Ge and

crystalline Te. (From Shevchik et al 1974a.)

near 2 eV is associated with lone-pair orbitals on the Te atoms. This is clear
from Fig. 9.34 showing spectra for GexTei_x alloys, obtained by Fisher et
al. (1974), in which this peak is seen to disappear as the Te concentration is
reduced. The energies of the lone-pair electrons are insensitive to whether
the bonding electrons on Te interact with neighbouring Te or Ge atoms.

An example of core-level spectra obtained for GeTe (Shevchik et al.
19736), are shown in Fig. 9.35. Both the Ge and Te levels shift by about
0-6 eV to higher binding energies in the amorphous form relative to the
crystal, but this arises from a simple shift in the Fermi level (see § 6.4.3).
There are no relative shifts between the Ge and Te levels in the two forms,
indicating that no large change occurs in the charge distribution around the
constituent atoms. Furthermore, the breadths of the core levels are similar
in the amorphous and crystalline forms, which is slightly surprising if wrong
bonds are present.

Synchrotron radiation absorption experiments on amorphous As2Se3 by
Bordas and West (1976) are presented in Fig. 9.36. The lower curve shows
the spectrum produced by addition of the spectra obtained following
excitation from the d-core levels of As and Se atoms in the compound. The



496 CHALCOGENIDE AND OTHER GLASSES

Binding energy (eV)
Fig. 9.34. XPS spectra of GexTei_x. (From Fisher et al 1974.)

Fig. 9.35. Core-level spectra for GeTe. (From Shevchik et al 19736.)
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Fig. 9.36. Absorption of synchrotron radiation in amorphous As and Se and (lower curve) in
amorphous As2Se3. (From Bordas and West 1976.)

upper curve shows the individual spectra for the elements in the amor-
phous form. The similarity between these curves suggests that in the
compound the conduction band of As2Se3 is not being probed, but rather
the sum of final states associated with the excited atoms. Furthermore this
behaviour casts doubts on whether the conduction bands of As and Se are
being probed in the experiments on the elements. The role of core-exciton
effects as well as matrix elements are not sufficiently clear to analyse these
data further. However, in contrast to Si (Chapter 7), core absorption does
not give the conduction band density of states for As2Ses.

9.12. Optical properties

The optical absorption edges of the chalcogenides are characterized by an
absorption coefficient a that rises exponentially with increasing photon
energy up to a value of a in the range 103-104 cm"1. This spectral Urbach's
rule has been discussed in Chapter 6, and some chalcogenide glasses were
included in Fig. 6.44. At higher values of the absorption coefficient, the
most frequently reported behaviour is aha) =B(tico —Eo) 2, where B lies in
the range 105-106 cm"1 eV"1 and EQ can be taken as an optical gap.
Examples were shown in Fig. 6.48. Values of EQ determined in this way
generally correspond to actual values of a (on the Urbach edge) lying
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Fig. 9.37. Optical absorption edges at room temperature of amorphous and crystalline As2S3.
(From Kosek and Tauc 1970.)
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between 102 and 103 cm l. At low values of a tfie Urbach behaviour is
sometimes observed to break away to another approximately exponential
form but of lower slope. In glasses specially prepared for use in fibre optics
this tail absorption occurs at very low values of a (~10~5cm~1) and in
some cases may not be true absorption but a drop in transmission caused
by Rayleigh scattering from macroscopic density fluctuations. In chal-
cogenides it frequently occurs at a values in the range 10~1-102 cm"1 and,
although in the more conducting glasses it can arise from free carrier
absorption, it is more commonly caused by defect or impurity absorption.
In many materials the defect centres appear to be the dangling bonds which
are important for photoconductivity and luminescence (see §§9.4, 9.6,
9.7).

Figs. 9.37 and 9.38 show the optical absorption edges for amorphous
As2S3 and As2Se3 compared with those for the crystalline forms. Fine

Fig. 9.38. Room-temperature optical absorption edges in amorphous (solid curve) and crys-
talline As2Se3 (broken curves); electric vector (a) parallel and (b) perpendicular to the a axis.
Data for the amorphous material from Felty and Myers (private communication) and Edmond

(1966), and for the crystalline material from Shaw et al. (1970) and Zallen et al (197la.)
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structure present in the (polarization-dependent) edges for the crystals are
lost and accurately exponential edges obeying a =a'0 exp(Ffto>) are ob-
served. Values of F at room temperature are IS^eV"1 for As2S3 and
20 eV"1 for As2Se3; these slopes are not particularly sensitive to the
conditions of preparation, a feature which is generally true for chal-
cogenides.

Fig. 9.39 compares the edge in amorphous As2S3 at room and liquid-
nitrogen temperature. Curve (a) shows that the slope of the exponential

Fig. 9.39. Optical absorption edge in amorphous As2S3 at 293 K and 80 K plotted as (a) In a
against fto> and (b) al/2 against ha). (From Kosek and Tauc 1970.)

portion of the edge is increased by only ~13 per cent for. this fall in
temperature. Curve (b) shows more clearly the behaviour of a at photon
energies above the exponential region. Good straight lines are obtained on
a plot of (afto>)1/2 versus ha> and an optical gap E0 of magnitude 2-36 eV at
room temperature can be obtained by extrapolation. Fig. 9.39(b) yields a
temperature coefficient of E0 of approximately —10~4eVK~1 in this
temperature range. For amorphous As2Se3, similar plots yield E0 =
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l-76eV at room temperature and the edge has approximately the same
temperature dependence. In the liquid state both materials exhibit edges of
reduced slope having a value for the temperature coefficient about three
times higher.

The temperature dependence of the absorption edge in amorphous
As2Te3, as determined by Weiser and Brodsky (1970), is shown in Fig.
9.40. At room temperature the absorption coefficient follows the relation

Fig. 9.40. Temperature dependence of the optical absorption edge in amorphous As2Te3

plotted as (a) In a against ha) and (b) (aft&>)1/2 against hw. The inset to (b) shows the
temperature dependence of the intercept on the hco axis. (From Weiser and Brodsky 1970.)

aha)=4'lxlQ5 (ftw-0-83)2, and the temperature coefficient of EQ is
-5xlO~4eVK~1 although, as for other materials, this increase as T is
lowered is not expected to continue to T = 0 (see dotted lines in inset to
Fig. 9.40(b)). At lower values of a Urbach behaviour with T~ 19 eV"1 has
been observed by Rockstad (1970) (see Fig. 6.44).

The optical absorption edge of amorphous GeTe is compared with that
of the crystal in Fig. 9.41 (from Bahl and Chopra 1969). Although there
does not appear to be a large difference in the position of the two edges,
crystalline GeTe has a different short-range structure than amorphous
films and is, in fact, a small-band-gap (—0-3 eV) semiconductor; the edge is
displaced to higher energies on account of a large Burstein shift. The
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Fig. 9.41. Optical absorption edges in amorphous and crystalline GeTe. (From Bahl and
Chopra 1969.)

absorption edge is characterized by an exponential tail, but the slope
(T ~ 15 eV"1) is lower than that found in the arsenic chalcogenides. At high
values of a a quadratic dependence for atico is found, yielding E0 ~ 0-8 eV
(Tsu, Howard, and Esaki (1970) report 0-7 eV) with a temperature
coefficient ~3 x 10~4 eV K"1.

We now turn to the weak tail absorption referred to at the start of this
section. For As2S3, Tauc et al (1970) have found the results shown in Fig.
9.42, which they interpret in terms of band tailing but which we prefer to
consider as being caused by absorption into fairly discrete dangling-bond
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Fig. 9.42. Low-energy tail of the optical absorption edge in amorphous As2S3 as a function of
temperature. (From Tauc et al 1970.)

defect states. The evidence for this comes from the work of Street, Searle,
and Austin (1975) who have used photoluminescence excitation spectra to
probe the tail in this material. The excitation spectra for two thicknesses of
As2S3 are shown by the two left-hand curves of Fig. 9.43. They both
exhibit tails below about 2 eV. Under the assumption that the quantum
efficiency for luminescence is unity in the spectral region of the Urbach tail
and below, as shown by the chain curve,t the absorption coefficient a can
be calculated from

where I is the integrated intensity of the luminescence, ($ is a correction for
reflectivity, and d is the thickness. The computed spectral dependence of a

t The fall at higher energies is discussed in § 9.6.
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Fig. 9.43. Relative photoluminescence intensity in As2S3 as a function of exciting energy,
together with absorption coefficient a. The specimen thicknesses are (in cm) 0-21 (•) and 0-063
( + ). The broken curves give the data of Street et al (1974) (upper curve) and that of Tauc,

Menth, and Wood (1970) (lower curve): the full line is computed. (From Street 1976.)

is shown by the solid curve. The broken curves are direct absorption
measurements made for the high-energy region by Street, Searle, Austin,
and Sussmann (1974) and for the lower energies (also shown in Fig. 9.42)
by Tauc et al. (1970). The reason for the displacement between these two
segments is not clear; however, it does appear that there is a good cor-
relation between the tails in the excitation spectrum and that in a, pro-
viding good evidence that the same defect centres are responsible for both.

Fig. 9.44 (after Wood and Tauc 1972) compares tailing in two ternary
compounds with that in As2S3. Kumeda et al. (I916a,b) haVe observed
tailing in As2oSeso glasses synthesized with Se of various degrees of purity
and some containing trace amounts of oxygen. Their results are shown in
Fig. 9.45. The purest sample does not exhibit a tail above a = 1 cm"1

whereas others, particularly those containing oxygen, do. Interestingly an
e.s.r. signal is observed in samples (b) and (d) but not in the remainder; a
correlation between the presence of the tail and an e.s.r. signal is thus not
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Fig. 9.44. Weak absorption tails in some chalcogenide glasses. (From Wood and Tauc 1972.)

Fig. 9.45. The optical absorption coefficients a of various Se80As2o samples: (a) is synthesized
using 99-999 per cent pure Se and does not show an e.s.r. signal; (b) is synthesized using 99-99
per cent pure Se and does not show an e.s.r. signal; (d) is synthesized using the same Se as (b)
and As with an oxide layer and shows an e.s.r. signal; (e) is synthesized using 99-999 per cent
pure Se and As with an oxide layer and does not show an e.s.r. signal. (From Kumeda et al.

19766.)

505
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clear. However, it seems likely that defect centres are responsible for the
tail in all cases.

In the more conducting glasses tail absorption can result from free-
carrier absorption. For Tl2SeAs2Te3, Bishop etal. (1971) (see also Mitchell
et al. 1972) have reported, below an Urbach tail, a wavelength-indepen-
dent absorption which increases with temperature with an activation
energy of 0-35 eV. This dependence continues through the glass-transition
temperature without change as shown in Fig. 9.46, where no. (n being the

Fig. 9.46. Conductivity at d.c. and optical (infrared) frequencies versus reciprocal temperature
in glassy and liquid Tl2SeAs2Te3. The open triangles, circles, and crosses represent data taken
at 5, 10, and 15 /u,m (2000,1000, and 66 cm"1) respectively. The solid triangles represent d.c.

measurements. (From Mitchell et al. 1972.)

refractive index) at three different wavelengths is plotted against 1/T. The
solid triangles in this figure represent the variation of d.c. electrical
conductivity, which exhibits the same activation energy. Although there is
an (unexplained) factor of about 8 in magnitude between the optical and
electrical conductivity, the parallel temperature dependencies confirm
free-carrier absorption. Similar data for liquid As2Se3 were shown in
Chapter 6 (Figs. 6.54 and 6.55) although for this material the absorption is
not independent of wavelength.
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9.13. Switching in alloy glassest

The realization that films of chalcogenide alloys show fast and reversible
switching from a high to a low resistance state (Ovshinsky 1968) was one
reason for the rapid growth of interest in these materials from 1968
onwards. There are of course many forms of switching, which can occur in
a wide variety of materials and even in liquid alloys of S, Se, and Te (Busch
et al. 1970); it is unlikely that the same mechanism is responsible in all
cases. The purpose of this section, however, is to examine specifically the
behaviour of thin (1 /Ltm) films of alloy glasses in the Te-As-Si-Ge system
first developed as switches by Ovshinsky and co-workers, and to ask
whether their behaviour depends essentially on their non-crystalline pro-
perties, therefore coming within the scope of this book, and whether
switching can give information about these materials not easily obtainable
in other ways.

A typical glass switching device consists of a layer of the material 1-5 /ion
thick sandwiched between two electrodes. When low voltages are applied,
conduction is ohmic with a resistance at room temperature of order 105 (I.
For fields above ~104Vcm~1 non-ohmic effects set in, as described in
§9.10; just before switching a very rapid reversible rise in the current
sometimes occurs (Buckley and Holmberg 1975, see below). Switching
occurs at a critical field, some multiples of 105 Vcm"1, and is extremely
rapid, taking place in less than 10~10 s; however, there is a delay time before
switching, typically 10 /its but decreasing exponentially with voltage above
the minimum switching field. The current-voltage characteristic is shown in
Fig. 9.47. The current in the on state depends little on temperature or
voltage; the latter is about IV, and the current is maintained unless the
'holding current' drops below some critical value.

In the memory switch, constructed from a less stable alloy (e.g.
Gei7Tei9Sb2S2), partial crystallization of a conducting channel occurs some
milliseconds after threshold switching. Whether this is due to heating or to
a high density of carriers within the channel is a problem we shall discuss
below.

A forming process occurs during the initial switching event; some
authors (e.g. Thomas, Fray, and Bosnell 1975) have considered this an
essential part of the switching mechanism but according to Adler et al.
(1974) switches can be constructed in which no forming occurs, and we do
not consider it further here.

The main controversy about the mechanism of switching in these devices
has been whether it is thermal, a hot conducting channel being formed
leading to a negative resistance, or whether some electronic process like
double injection is involved. Discussions of thermal instabilities go back to

t For a review see Adler, Henisch, and Mott (1978).
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Fig. 9.47. Current-voltage characteristic of an ovonic switch. MHC denotes minimum
holding current.

Lueder and Spenke (1935) and Ridley (1963); recent treatments applied to
the threshold switch have been given by Fritzsche and Ovshinsky (1970),
Warren (1970), Stocker, Barlow, and Weirach (1970), Kroll and Cohen
(1972), and Kroll (1974). In addition there are many attempts to interpret
the observations in terms of a thermal theory (e.g. Allison, Dawe, and
Robson 1972, Robertson and Owen 1972). Calculations such as those of
Kroll and Cohen, using the observed dependence of current on voltage,
envisage a conducting channel in the on state at a temperature of 500-
600°C .

A system in which switching is probably thermal is the vanadate glass
switch investigated by Higgins, Temple, and Lewis (1977) and by earlier
workers. Here the switching process is related to the metal-insulator
transition occurring at 68° C in crystalline VO2, which may be present in
sufficient concentration in the glass. However, the evidence, reviewed by
Adler et al. (1978), suggests strongly that this is not the correct model for
the chalcogenide glasses.

The alternative explanation is that in the on state double injection of
electrons and holes is taking place, the potential across the filament being
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Fig. 9.48. Potential across filament in the on state according to double-injection model.

as in Fig. 9.48. This was first proposed by Mott (19696) and by Henisch
(1969). It is supposed that in the conducting channel, which is wider than
the film thickness as illustrated in Fig. 9.49, sufficient carriers are injected
to ensure the presence of a degenerate electron gas and a degenerate hole
gas, of density perhaps 1018 cm~3 and with the Fermi energy of both on the
extended side of the respective mobility edge. There is thus only a small
potential drop in the film, and an obvious conclusion of the model is that
the holding voltage should be slightly greater than the mobility gap.

If double injection is the correct model, one has to ask how the Schottky-
type barriers are maintained. An early paper (Mott 1971) ascribed them to
carriers trapped in gap states. Such a model had to be abandoned for two
reasons. The first is that, if the estimate of § 9.4.2 is correct, the appro-
priate screening length of order 5 x 1CT6 cm is too great to allow tunnelling;

Fig. 9.49. The conducting channel, shown shaded, in the on state: (a) large current, no
recombination, constant voltage; (b) small current, recombination, increasing voltage.
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the other is that the rapid reversal of the on-state current occurring when
the polarity is reversed (Henisch and Pryor 1971) seemed to rule out release
and retrapping in deep states. Following a proposal by Lee (1972), Mott
(1975a) has given an account of a dynamic mechanism by which the
barriers could be maintained, because carriers which have just tunnelled
through them are not thermalized and move quickly away, leading to a
space charge due to the slowly moving carriers of opposite sign. According
to this model (a) the current injected per unit area is a characteristic of the
glass, so that, as the current varies, the area of the channel changes
proportionately, and (b) the density of carriers in the channel is that at
which the electron-hole gas has its minimum energy (cf. § 4.2). Some of this
charge might however be in the D+, D~ states; the trapping probability
would be smaller for hot electrons.

Experimental evidence in favour of (a) was first provided by Henisch and
Pryor (1971), who found that the rate of decay of the on state was
independent of current. This implied that current density is constant. More
direct evidence conies from the work of Petersen and Adler (1976), who,
by preparing switches in which one electrode is doped silicon, were able
to deduce from current saturation effects the cross-section of the channel.
Their results are shown in Fig. 9.50; it will be seen that the current is
approximately proportional to the square of the dimension of the channel.
Moreover the resistance of the channel can be obtained by the 'transient
on-state characteristic' (TONC), introduced by Pryor and Henisch (1971),
in which a transient pulse is superimposed on the steady on state. The
change in the differential resistance is interpreted on the assumption that
the area of the channel does not have time to change during the pulse.
From these techniques Petersen and Adler deduce the potential drop
across the film outside the barriers (—0-1 eV) and the conductivity in the
channel (~12 O"1 cm"1). This figure is reasonable for metallic conductivity
with Ep near but above the mobility edge and a density of electrons of
order 1018 cm"3. From the width of the channel they also deduce that the
rise in temperature is unlikely to be as great as 100 K, and may well be
much less.

Further evidence against a theory that bases the behaviour of the on
state on a high temperature comes from the work of Kolomiets, Lebedev,
Rogachev, and Shpunt (1972) and of Vezzoli et al (1974) on the obser-
vations of radiation from the on state. The latter authors find that the
radiation has a maximum frequency below 1-5 eV and the intensity has a
maximum round 1 eV. This fits the assumption that the radiation is due to
transitions from band to band. At 600° C the band gap would have nearly
disappeared.

An essential point of the double-injection model is that the carriers can
cross the film with only small recombination. If the field in the bulk of the



CHALCOGENIDE AND OTHER GLASSES 511

Fig. 9.50. Dependence of filament radius on steady-state current. / refers to thickness of film.
Two points indicate the results of pore saturation, the solid line is obtained from saturation
effects in heterojunctions and the other points from TONC results. (From Petersen and

Adler 1976.)

with 6 — 10 cm s and independent of temperature. In the on state all
the recombination centres (D+ and D~ of § 9.4.1) will be occupied, so if N is
their concentration we expect the rate of recombination to be bN. If this is to be
less than 10~8s~1, N should be less than 1018cm~3 (compare estimates
elsewhere in this chapter).

Turning now to the memory switch, it is uncertain whether the partial
crystallization is due to heating or to the high density of the electron-hole
gas, but it is known (cf. Ovshinsky and Klose 1972) that strong illumination
produces a similar effect and it seems likely that the breaking of bonds is at
least as effective as temperature in promoting crystallization.

film is 103 V cm l and the mobility —10 cm2 V 1 s l, the transit time for a
film 1 fjim thick is ~10~8 s. In § 6.5.2 we showed that nonradiative processes
gave a decay in photoconduction represented by the equation
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As regards the switching process itself, there have been many sugges-
tions of its cause, including tunnelling from the electrodes, impact ion-
ization, and so on. If, however, the model given above of the on state is
correct, what is needed is a mechanism that allows the resistivity in the
interior of the glass to drop rapidly so that the potential drop is transferred
suddenly to the electrodes and injection of electrons and holes can start.
There is evidence that it cannot be the carriers in the conduction and
valence band that cause switching in this or any other way, since Henisch,
Smith, and Wihl (1974) show that strong illumination, which increases the
number of free carriers by an order of magnitude, does not affect the
switching voltage nor the delay time (Adler et al. 1977). We are not then at
the time of writing able to propose a satisfactory model for the switching
process itself.

If double injection is the correct model for the on state, the behaviour of
chalcogenide switches does strongly suggest that carriers with energies in
the extended-state side of the mobility edges do not form polarons.

9.14. Oxide glasses

No attempt will be made in this section to review the extensive experimen-
tal work on the structure and optical properties of oxide glasses.t Our aim
is to pick out a few of their properties, particularly those of SiO2, which can
be compared with those of the conducting glasses described in the rest of
this chapter.

Various calculations exist for the density of valence-band states in SiO2,
in the glassy state (Bennett and Roth 1971, Di Stephano and Eastman
1971a,£, Yip and Fowler 1975, Pantelides and Harrison 1976, Schliiter
and Chelikowsky 1977). As for the chalcogenides, the upper part of the
valence band is thought to be formed from lone-pair oxygen 2p orbitals
and is therefore non-bonding and comparatively narrow, of width 2-3 eV
in some earlier calculations, though Schliiter and Chelikowsky give ~5 eV.

The structure of vitreous silica was investigated by Mozzi and Warren
(1969) using X-rays with the method of fluorescence excitation. Interpret-
ing their results in terms of a random network model, they find that the
Si—O—Si bond angle varies all the way from 120°  to 180° , with a maxi-
mum at 144° ; Da Silva et al (1975) amend this to 153° . Bell and Dean
(1972) and Bell, Bird, and Dean (1974) constructed a model which gives
the mean bond angle at 153° ; their histogram shows most bond angles
between 140°  and 170° , but with tails extending to 120°  and 180° .

Several investigations exist of the drift mobility /aD of electrons photo-
excited into the conduction band of glassy SiC>2. According to Hughes
(1973) it is comparatively high, 20 ±3 cm2 V"1 s"1, and can be accounted
for quantitatively by scattering by optical phonons. In older work Williams

t For a comprehensive review, see Wong and Angell (1977).
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(1965), from measurements of the drift distance before trapping in ther-
mally grown SiO2, obtained values of /LCD in the range 17-34 cm2 V"1 s"1.
Goodman (1967) found the Hall mobility to be little different from /LCD. We
are led to conclude, therefore, that the mobility edge in SiO2 is very near
the band edge (Ec—E^<kT\  so that the behaviour of electrons is similar
to that in a crystalline semiconductor. At the time of writing the reason for
this is not clear, particularly in view of the large variation in the Si—O—Si
angle. A possible explanation is that the conduction band may be formed
mainly from oxygen 3s and silicon 4s orbitals; there is little variation in the
Si—O and O—O nearest-neighbour distances, and so, on the analogy of
the conduction-band behaviour of liquid rare gases (cf. §§ 2.10, 5.12), one
would expect only a very small range of localized states, of width less than
kT.

For holes, however, Hughes (1975,1977) has found that the drift mobility
is of the form

and that after about 10~5 s the activation energy W increases from 0-13 eV
(the 'prompt' mobility) to 0-37 eV. It is suggested (Mott 1977M) that
0-13 eV is the energy difference between the band edge and the mobility
edge, and that polarons of VK type form after a delay as described in
§ 3.5.2. We thus assume, as in As2Se3, that self-trapping can occur owing to
the attraction between an oxygen with a hole (O~) towards one without
O2~, but that unlike the situation in the chalcogenides a stable polaron can
be formed. In Fig. 3.5(i), then, we suppose that W is positive. If the
probability of formation of a polaron is a> exp(— w/ifoy) and a) ~ 1012 s"1,
w/hco = \ In 107, giving w ~ 0-2 eV.

Phillip (1966, 1972; see also Tauc 1970a, Revesz 1973) found that the
fundamental optical absorption in vitreous SiO2 is very similar to that in
the hexagonal crystal. This is shown in Fig. 9.51. The first peak is, we

Fig. 9.51. Reflectivity of crystalline and glassy SiO2. (From Phillip 1972.)
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suppose, due to the formation of an exciton, though there has been some
controversy about this (RufTa 1968, Pantelides and Harrison 1976, Mott
I977b,d,e). In the crystal the lowest band-to-band transition is optically
forbidden, but according to Schluter and Chelikowsky (1977) a transition
of 0-6 eV greater energy is allowed. The binding energy of a Wannier-type
exciton (mefie

4/2fi2K2) is about 2eV, and so such an exciton should be
separated from the band edge by —1-4 eV. Here we have taken K = 2-5 and
meff/me = 0-5, following Snow (1967) and Haack (1977). Mott (1977ft)
proposes that the lowest exciton state (k = 0) is excited at an energy of 9 eV,
but that in the glass, and also in the crystal at room temperature, the
fc-selection rule breaks down so that the peak at 10-2 eV is due to a
maximum in the exciton density of states. Using this and other evidence, he
estimates the band gap to be 10-6 eV. On the other hand, Di Stefano and
Eastman (1971ft) show that photoconduction occurs with high quantum
efficiency for frequencies above 9 eV, so it seems more likely that the
indirect gap lies at 9 eV and overlaps the direct exciton line, which can then
dissociate spontaneously (cf. Mott 1978).

Further evidence for an exciton comes from the plots (Fig. 9.52) of the
density of valence-band states (due to Ellis, Gaskell, and Johnson 1977) and
the observed absorption coefficient e2; the lone-pair band 2-3 eV wide is

Fig. 9.52. e2 for SiO2 compared with calculated band form. (From Ellis et al 1977.)
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well shown, but cannot be identified with the first peak in the absorption,
which we ascribe to an exciton.

Since a hole in the valence band of SiO2 can be self-trapped, the same
must be true of an exciton; also, since the hole is localized in the neigh-
bourhood of the electron by Coulomb forces, we might well expect the
trapping energy to be greater for the exciton than for the hole. According
to the arguments illustrated in Fig. 3.5(iii), an exciton, like a free carrier,
may wander a considerable way before self-trapping. The exciton absorp-
tion line will not have the width marked AJ5" in Fig. 3.7(i) owing to
interaction with phonons, and its width, as we have suggested, is due to the
inherent breadth of the exciton band. After self-trapping, since pure SiO2

does not show photoluminescence when illuminated near the band edge,
we must suppose that radiationless recombination must occur by the
mechanism of Dexter et al. (1955) described in § 3.5.2. Thus in Fig. 3.7 the
point X must lie below D. This mechanism is also invoked by Parke and
Webb (1975) to explain the presence or absence of fluorescence in certain
glass compositions containing bismuth.

We turn now to the concept of a 'non-bridging oxygen'. This is an
oxygen atom bound to a single silicon, so that when neutral it will contain a
single unpaired electron in a non-bonding 2p orbital. We believe this point
defect is exactly analogous to the D°  described in § 9.4 (a Se atom
bonded to only one As). The non-bridging oxygen is most familiar in soda
glasses; the sodium ion Na+ is present interstitially, compensated by a

Fig. 9.53. Transmission of SiO2 containing varying amounts of Na2O. (From Sigel 1973/74.)
1, undoped; 2, 0-005 mol% Na; 3, 0-2%; 4, 0-5%.
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negatively charged non-bridging oxygen in which the lone-pair orbital is
occupied by two electrons. The non-bridging oxygen in this state is thought
to produce a deep donor level, responsible for the familiar shift of the
absorption edge of soda glass to lower frequencies than for SiO2. Stroud,
Schreuffer, and Tucker (1965) put the donor level at 2-4 eV above the
valence band, and Sigel (1973/74), through an investigation of SiO2

containing less than 1 per cent of Na2O, showed that a very broad 'bound
exciton line' displaced —2-5 eV from the absorption line is formed (Fig.
9.53). Sigel also points out that aluminium in a soda glass is four-fold
co-ordinated and therefore negative, the charge being compensated by
Na+; in this case the absorption band due to non-bridging oxygen is absent.

The bound exciton produced by excitation of a non-bridging oxygen and
an Na4" ion cannot of course move before distortion of the lattice. Thus in
Fig. 3.7 the quantity AJB" should appear as the breadth of the absorption
line. This we believe to be the reason why the line is so broad, as is shown
in Fig. 9.53.
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10.4. Some properties of liquid selenium and Se-Te alloys.

10.1. Structure of amorphous selenium and tellurium

The commonly held view of amorphous selenium is that it consists pre-
dominantly of a mixture of two structural species, long helical chains and
eight-membered rings, with strong covalent bonds existing between atoms
within the molecular units and weaker forces, perhaps of the van der Waals
type, binding together neighbouring units. However, most of the earlier
evidence for the existence of rings has been questioned and details of the
structure are not as yet resolved.

Attempts to fit the RDF of amorphous Se (which differs in detail accord-
ing to the method of preparation, for instance vacuum deposition or melt
quenching) have been based on the two structural species found in the
known crystalline polymorphs of Se. Trigonal Se consists of parallel helical
chains of atoms (Fig. 10.1 (a)) with a nearest-neighbour spacing of 2-32 A

Fig. 10.1. Structure of crystalline selenium: (a) trigonal; (b) /3-monoclinic (a-monoclinic
differs from (b) in the relative orientation of the rings).
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and a bond angle of 105° . The dihedral angle of 102°  has the same sign or
sense along the whole length of each chain yielding a 'spiral pitch' of three
atoms. The chains are packed together as shown with the closest separation
between Se atoms on adjacent chains being 3-46 A. Monoclinic Se exists in
either an a or /3 form (Fig. 10.1(b)). Both structures consist of puckered
eightfold rings with covalent bond lengths and angles essentially the same
as in trigonal Se but with a dihedral angle that alternates in sign around
each ring; the separation between molecules is larger than in trigonal Se.

In the trigonal form Te has a smaller ratio, compared with Se, between
the interchain and intrachain separations. The smaller dihedral angle
means that alternation of its sign does not lead to closed rings and Te does
not exist in the monoclinic structure. This particular point was used in the
discussion of a comparison of Raman spectra for amorphous and trigonal
Te and Se in § 6.7.7 which concluded that an earlier interpretation of
Raman and infrared absorption data in terms of Seg rings had been incor-
rect.

Various models for the structure of amorphous Se have been proposed
(Richter and Herre 1958, Kaplow, Rowe, and Averbach 1968, Richter
1972). They have been based on modifications to the two structural units
referred to above and variously have involved planar chains (dihedral angle
equal to zero), expanded eightfold rings, and rings of lower and higher
order. Reproduction of the experimentally obtained RDFs (shown for films
deposited at 77 K and at room temperature in Fig. 10.2) in their entirety, is

Fig. 10.2. RDF of amorphous selenium evaporated (a) at room temperature and (b) at
liquid-air temperature. (From Richter 1972.)

not of course possible without considering how such units are packed
together. Some comments can be made, however. In both RDFs the first
peak occurs at 2-32 A and contains two atoms. Thus the bond length and
co-ordination of either the trigonal or monoclinic crystalline forms is
retained. The second peak (at 3-68 A in Fig. 10.2(a) and 3-86 A in Fig.
10.2(b)) is close to the second-neighbour distance within a chain or ring
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(3-69 A), but is too large to be accounted for solely in these terms and one
must invoke an intermolecular spacing of about the same value to bolster
up the peak. Certainly the interchain spacing of trigonal Se (3-46 A) is
absent. In the region between about 4 A and the next common peak at
5-75 A, the two forms of amorphous Se display very different behaviour
and one might conclude that this arises from a different stacking of the
molecular units (see Richter 1972). Although the three remaining
dominant peaks lie approximately at spacings expected for a flat zigzag chain
(shown by arrows), this is unlikely to be a unique interpretation.

A 539-atom twofold co-ordinated model consisting of densely packed
but convoluted chains has been hand built by Long et al. (1976) with the
object of simulating the structure of amorphous Se and Te. Tetrahedral
units were used, but while two bonds to each atom were relatively stiff and
represented covalent bonds, two were flexible and were used to couple
chains, hence simulating the much weaker interchain interaction. Not all of
the latter links were utilized in the model, which was constructed so as to
avoid groups of parallel chains and large distortions in the covalent bonds
and angles. The chains were not allowed to terminate within the model or
to close in on themselves. (This latter restriction was made deliberately to
avoid ring formation, although the authors claim that rings could have been
included without difficulty.) The atomic co-ordinates of the model were
computer relaxed by minimizing the local potential as derived from three
forces: covalent bond stretching, covalent bond bending, and a van der
Waals (Lennard-Jones) interchain interaction, the latter with a cut off at
4-5 A for Se and 5-1 A for Te. The relaxed model had (for Se) an r.m.s.
covalent-bond-length variation of 0-89 per cent, an r.m.s. bond-angle
variation of 3-96 °  around the crystalline value of 105°  and a broad dihe-
dral-angle distribution. The scaled density inside a sphere of radius about
two-thirds of that of the model was within 3 per cent of the measured value
for amorphous Se (which differs only slightly from that in the monoclinic
and trigonal varieties), although the average density of smaller spheres was
somewhat lower.

The reduced Gaussian-broadened RDF of this model is compared in Fig.
10.3(d) with the experimental RDF (broken curve) for amorphous
selenium deposited at 77 K (from Kaplow et al. 1968). This experimental
RDF is also reproduced in parts (a), (b), and (c) of Fig. 10.3, where it is
compared with the broadened RDF of a monoclinic, (3 monoclinic, and
trigonal Se respectively. The model RDF shows better agreement with
experiment than do any of the crystalline RDFs, but there are dis-
crepancies, notably the failure to reproduce the plateau between 4 and
5-5 A and a shift of the calculated peaks for r > 5 A towards lower r
relative to experiment. With regard to the first of these features one should
note that the RDF of trigonal Se (Fig. 10.3(c)) displays, at about 4-5 A, a
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Fig. 10.3. Gaussian broadened A/ (solid curve) for (a) a-monoclinic Se, (b) /3-monoclinic Se,
(c) trigonal Se, and (d) the 363-atom interior sphere from the 539-atom model. In each case,
the broken curve is the experimental A/ for vapour-deposited amorphous Se at 77 K (Richter
1972). The arrows in (a) and (b) mark the average distances corresponding to different types

of pair separations in a single ring. (From Long et al. 1976.)

maximum rather than the minimum obtained from the model. This peak
therefore arises from the parallel arrangement of chains, suggesting that
deliberate avoidance of this in the construction of the model was over-
emphasized. It should also be noted that contributions to the RDF from
atoms within eight-membered rings (marked by arrows in (a) and (b)) are in
the wrong places to account for the plateau.

A problem associated with a more detailed analysis of the model RDF is
the similarity of the intrachain and interchain RDFs. Beyond the first-
neighbour intrachain peak at 2-32 A there is an accidental coincidence of
distances between atoms on the same chain and atoms on neighbouring
chains.

In the light of the evidence from interpretation of XPS/UPS spectra
described in § 10.2, it is interesting to enquire as to the effect of the
dihedral-angle distribution on the RDF of the above model. By a computer
procedure Long et al. (1976) altered the co-ordinates of their model so that
a peak in the otherwise fairly flat dihedral-angle distribution occurred close
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to the trigonal value of 102° . The agreement of the resulting RDF with the
experimental curve was worsened over that found for the 'freely rotating'
chain model. The conclusion that there appears to be no preference in
amorphous Se for the bonds to take up the dihedral angle of trigonal Se is
in contradiction to the conclusions of Bullett (1975a,c) and Robertson
(1976) (see § 10.2).

Application of the above model to the simulation of the structure of
amorphous Te (Long et al. 1976) indicates that the simple van der Waals
interchain potential used for Se is less satisfactory for Te, perhaps on
account of an enhanced interaction between chains in the latter.

10.2. Optical properties of amorphous selenium and tellurium

The room-temperature optical absorption edges of amorphous selenium
and tellurium are compared with those of the crystalline modifications in
Fig. 10.4. The exponential portion of the edge in amorphous selenium is,
according to Hartke and Regensburger (1965), described by

Fig. 10.4. Room-temperature optical absorption edges in amorphous and crystalline
tellurium and selenium. (From Stuke 1970a.)
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although other workers find slightly different parameters. Its position lies
between that of the two crystalline modifications of selenium (Prosser
1961, Roberts et al. 1968). The edge in amorphous tellurium has a similar
slope (Keller and Stuke 1965) but its position is considerably displaced
towards higher energies relative to the steeper edge in trigonal tellurium
(Tutihasi et al. 1969, Grosse 1969). No monoclinic form of Te is known.
The larger displacement of the edge in tellurium may be related to the
greater interaction between chains in this material.

The temperature dependence of the edge in amorphous and liquid
selenium is shown in Fig. 10.5. In the liquid state (above 400 K) the slope

Fig. 10.5. Temperature dependence of the optical absorption edge in amorphous and liquid
selenium. (From Siemsen and Fenton 1967.)
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of the edge is in accord with Urbach's rule (Chapter 6). Below room
temperature the shift is almost parallel (Knights, private communication)
with a temperature coefficient of about — 7x 10~4eVK~1. In trigonal
selenium (Roberts et al. 1968) Urbach's rule is observed for *gLc down to
77 K; for % \\c the indirect edge is observed and this has a similar tempera-
ture coefficient. Rather smaller values have been inferred by Weiser and
Stuke (1969) from electroreflectance measurements on both amorphous
and trigonal Se.

Above the exponential edge, the form of the absorption coefficient in
amorphous selenium obeys the relation

with Eo = 2-Q5 eV at room temperature (Fig. 10.6). This relationship, as
opposed to the more common variation with (hco —E 0)

2, is believed to arise

Fig. 10.6. Room-temperature absorption edge in amorphous selenium plotted as a, e2, and
e2(ha))2 against hco. (From Davis 1970.)

from a sharp rise in the density of states at the band edges (Davis 1970,
Davis and Mott 1970), a possibility suggested by the one-dimensional
nature of the chain-like structure.

Considerable insight into the electronic levels and structure of amor-
phous selenium has been obtained by consideration of the XPS/UPS
spectra. Data from Shevchik, Cardona, and Tejeda (1973) are shown in
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Fig. 10.7(a) (see also Nielsen 1972). The two lower curves are taken to
represent the DOVS in trigonal and amorphous Se and have been obtained
by combining XPS and UPS spectra. X-ray excitation is needed to reveal
the s bands extending from about 8 to 18 eV; u.v. excitation is needed to
resolve the fine structure in the lone-pair (0-3 eV) and bonding (3-8 eV) p
bands. Basically the spectra resemble those of the binary chalcogenides
described in Chapter 9. The upper curve and boxes in Fig. 10.7(a) are

Fig. 10.7. (a) Composite density of valence states of amorphous and crystalline Se. The upper
curve shows the density of states calculated by Kramer (19706); (b) Raw X-ray photoemission

data from amorphous and trigonal Te. (From Shevchik, Cardona, and Tejeda 1973.)

obtained from density-of-states calculations for trigonal Se by Kramer
(1970a,6, 1971) and Sandrock (1968); the position and widths of the
various bands agree well with experiment. XPS data for trigonal and
amorphous Te are shown in Fig. 10.7(b). The spectra are virtually identical
to each other but the resolution (0-5 eV at best) of the measurements is
poor. For trigonal Te fine structure in the bonding p band has been
observed by UPS (see Fig. 10.8 and Shevchik, Cardona, and Tejeda 1973),
but since similar data for amorphous Te are not available, it is not possible
to say in what way this is changed.

The primary difference between the DOVS of amorphous and trigonal Se
lies in the p-bonding band (3-8 eV), the twin peaks of this being reversed in
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intensity. It is on this feature that several theoretical papers have focused
attention. Schliiter, Joannopoulos, and Cohen (1974), using the empirical
pseudopotential method (EPM), have calculated the densities of states for
trigonal Se and Te. Fig. 10.8(a) shows their results (note that the energy scale
is reversed from Fig. 10.7) compared with experimental curves. In order to
understand the origin of the two peaks in the p-bonding band, these authors
have calculated the electronic charge distributions associated with the states
contributing to each peak. Contours of the localized bonding charge (se-
lected from the total by considering only the Fourier components that
have wavelengths less than the nearest-neighbour distance) within and in
between the chains in trigonal Se are shown in Fig. 10.8(b). It is seen that the

Fig. 10.8. (a) Calculated densities of states (solid curves) for trigonal Se and Te, broadened by
l-2eV for the s-like states and by 0-7 eV for the remaining states. Superimposed are the
experimental photoemission spectra (broken curves). The scales for the XPS and UPS curves
are arbitrary. (From Schliiter etal 1974.) (b) (p. 526) Bonding charge of trigonal Se for (i) lower
and (ii) upper p-like bonding states, calculated as described in the text. Only positive contours
are shown, with values in units of e/fl. The contour separation is 0-84 units in (i) and 0-36 units
in (ii). On the right are similar results for a model structure in which the interchain distance has

been increased by 20 per cent. (From Joannopoulos et al. 1975.)
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lower p-like bonding state (i.e. the one furthest away from the lone-pair
peak) contains states that are mainly involved in intrachain bonding, since
the charge is well localized between atoms belonging to the same chain,
whereas the upper peak contains states principally involved in interchain
bonding. The ratio of intrachain to interchain bonding is 1 • 15; similar results
for Te yield 1-25. Joannopoulos, Schluter, and Cohen (1975) propose that
the reversal in intensity of these two peaks for amorphous Se could arise
from an increase of about 20 per cent in the interchain separation. Such an
increase is, however, not supported by the rather similar densities of trigonal
and amorphous Se.

Alternative explanations for the reversal in the intensity of the p-bond-
ing peaks have been proposed by Shevchik (1974&), Bullett (1975a,c),
and Robertson (1976). Shevchik (1974a,6), using a Slater-Koster type
tight-binding calculation for an isolated Se chain, has shown that the
relative heights of the peaks are sensitive to the dihedral angle (i.e. the
relative orientation of second-neighbour bonds when projected on to a
plane perpendicular to the intermediate bond) and proposes that this is
reduced from 102°  (the value in trigonal Se) to about 80°  in amorphous Se.

Fig. 10.8(b).
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This would represent a tightening of the 'pitch' of the helical chain or
alternatively might be expected if Se6 puckered rings were present.
However, Bullett (1975a,c) has shown, using chemical pseudopotential
theory, that (1) removal of regular interchain interactions destroys the two-
peak structure, and (2) a dihedral angle that is unchanged from the value
in trigonal Se but the sign of which either alternates or varies randomly as
one proceeds from atom to atom along a chain, restores the features but
with the asymmetry reversed. An alternating sign of the dihedral angle
corresponds to a ring structure, although in the presence of bond-angle
distortions the rings need not close; a random sign of the dihedral angle
leads to distorted chains. It is not possible to decide between the two
alternatives from these calculations. Robertson (1976), using a different
method of calculation, reaches the same conclusions and furthermore rules
out large changes in the magnitude of the dihedral angle on the grounds
that the potential barrier opposing such a change is large (on account of

Fig. 10.9. The one-dimensional bands, ID DOS, and 3D DOS (including inter-unit inter-
actions) for (a) chain — and (b) ring — short-range order. (From Robertson 1976.)
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repulsions between lone-pair electrons on adjacent atoms) being ~0-4 eV
per atom, i.e. about 10 times the crystallization energy. The results of
Robertson's density-of-states calculation (in one and three dimensions), are
shown in Fig. 10.9, from which the importance of the sense of the dihedral
angle can be seen; however, it should again be stressed that the similarity
of the ring-like density of states with that of amorphous Se should not be
taken to infer the presence of Se8 ring molecules.

The form of the optical absorption (e2) of Se and Te is shown in Fig.
10.10. The main features of the spectra for the crystals (trigonal in both

Fig. 10.10. e2 spectra of amorphous and crystalline (a) selenium and (b) tellurium. (From
Stukel970a.)

cases) can be understood on the basis of the calculated band structures
(Treusch and Sandrock 1966, Sandrock 1968) shown in Fig. 10.11. The
grouping of the bands into three sets of triplets (originating from atomic p
states), the upper set being the conduction bands, divides the absorption
spectra into two parts. This is evident particularly in the case of Se, the s2

spectrum of which exhibits a deep minimum near 6 eV for both of the
principal directions of polarization perpendicular to the c axis. This feature
is retained in the amorphous forms but most of the fine structure is lost. In
addition the strength of the transitions contributing to the first peak is
considerably reduced. It is worth mentioning that the electronic band
structure in the A direction (T —  Z) of the Brillouin zone (Fig. 10.10(c)) can
also be determined by a tight-binding calculation for an isolated chain,
giving similar results (Olechna and Knox 1965). However, the smallest gap
occurs in the neighbourhood of the H point, that is in a direction from F
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Fig. 10.11. Calculated electronic band structures of crystalline (a) selenium and (b) tellurium.
(From Treusch and Sandrock 1966.) (c) Brillouin zone.

corresponding to a crystallographic axis which is neither parallel nor
perpendicular to c. The band structure in the direction H-K is determined
to a large extent by interaction between chains. Differences in this inter-
action between the crystalline and amorphous forms probably contribute to
the loss of the peak at 2 eV shown for the crystal in Figs. 10.4 and 10.10(a).

Apart from this change at the edge, the spectrum for amorphous Se has
been reproduced by Kramer et al. (1970) (see also Maschke and Thomas
1970ft, Kramer 1970ft), using the convoluted density of states appropriate
to trigonal crystalline Se (Fig. 10.12(a)) and relaxing the k-conservation
selection rule. In order to account for the relative heights of the two broad
maxima seen in Fig. 10.10(a), it was necessary to take a form for the energy
variation of matrix elements as shown in Fig. 10.12(b) (solid curve). The
large peak in {M(co)}2 for trigonal Se (broken curve) arises from Umklapp
enhancement for transitions near 4 eV which involve the top plane of the
Brillouin zone.

A more detailed consideration of the reason for the loss of strength of
the first peak in the s2 spectrum (which applies to Te as well as Se) has been
made by Robertson (1976). Noting that the two broad peaks arise from
transitions to the conduction band from the lone-pair and p-bonding states
respectively (see Figs. 10.9 and 10.11), Robertson ascribes the reduction in
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Fig. 10.12. (a) Density of states in trigonal selenium determined from the calculated band
structure, part of which was shown in Fig. 10.11. (b) Energy dependence of matrix elements in

trigonal and amorphous selenium as calculated by Maschke and Thomas (1970).

height of the first peak to a suppression of intermolecular contributions
which in turn arises from the loss of alignment of orbitals between chains in
the amorphous form. (The argument parallels that of Martin etal. (1976) for
the Raman spectra; when coupling between chains is absent, a Raman line at
239 cm"1 (see § 6.7.7) reverts to the frequency expected for bond stretching
in an isolated chain.) Support for this argument is to be found in the 82
spectrum for monoclinic Se (Dalrymple and Spear 1972), the rings in which
are relatively isolated and the s2 spectrum of which is very similar to that of
amorphous Se.

10.3. Electrical properties of amorphous selenium and alloys of
selenium

10.3.1. Electrical conductivity

Although amorphous selenium can be obtained by quenching the liquid,
most electrical measurements have been made on evaporated films. This is
because of the commercial applications of selenium in thin-film form to
rectifiers, photocells, the vidicon, and xerography. There is, however, no
evidence to suggest significant differences between the properties of films
and of bulk samples.

When pure, the conductivity of amorphous selenium is very low
(-KT^n^cnf1 (Hartke 1962)) at room temperature. This is not,
however, out of line with many other amorphous semiconductors of
comparable band gaps (>2 eV), and, as shown in Chapter 6, the value of C,
if we assume cr = C exp(—E^/kT), is estimated to be of order
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Fig. 10.13. Temperature dependence of resistivity for liquid Se. (1) Henkels and Maczuk 1953
(2) Lizell 1952; and thermoelectric power Henkels and Maczuk 1953. (From Owen 1970.)

Differences between reported values for the d.c. conductivity of amor-
phous selenium can be attributed in part to its sensitivity to the presence of
impurities, particularly oxygen. Results of LaCourse, Twaddell, and
Mackenzie (1970) are shown in Fig. 10.14. The room-temperature resis-
tivity of pure deoxygenated selenium (<2 ppm O2) according to these

. Unfortunately the temperature range over which conduc-
tivity measurements can be made is severely limited by the high resistivity
at low temperatures and the low crystallization temperature.

Some measurements for the liquid are shown in Fig. 10.13. According to
these,

with a positive thermopower. A reasonable assumption, therefore, is that
conduction is by hole transport at a mobility edge, as in other liquid
chalcogenide compounds (Chapter 5 and § 6.4.4). More recent measure-
ments by Gobrecht, Gawlik, and Mahdjuri (1971), Gobrecht, Mahdjuri,
and Gawlik (1971), and Mahdjuri (1975) find, however, that the ther-
mopower is n type in the liquid but changes to p type above 900 K. The
n-type behaviour is, we believe, due to impurities and will be discussed in
§ 10.4.
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Fig. 10.14. Effects of oxygen on the electrical resistivity of glassy selenium. (From LaCourse
etal.1970.)

authors is about 1017(lcm and this drops by more than six orders of
magnitude with the presence of approximately 50 ppm O2. Further addi-
tion of oxygen (in the form of SeO2) has little effect. The addition of As
apparently forms AsO2 and removes the effect of oxygen. Further investi-
gations of the effect of impurities are due to Twaddell, LaCourse, and
Mackenzie (1972). These authors find that the room-temperature resis-
tivity of Se of 99-9999% purity is between 1017 and 1018 H cm and drops to
1011 fl cm through the addition of 20 ppm of O, added as SeO2 to the melt.
Chlorine can have an even greater effect, the resistivity dropping to
109 (1 cm at 500 ppm. Potassium leads to a less marked drop, to 1013 II cm.
The thermopower of pure amorphous Se and of oxygen-doped Se, accord-
ing to Twaddell et al, is p type, as is that of liquid Se; these authors report
that Cl doping gives an n-type thermopower.

We assume as in § 9.4 that the Fermi energy is pinned by charged
dangling bonds. ESR studies in pure Se (Abkowitz 1967) suggest that
electrons at the ends of chains are paired, the signal being weak. We
suppose, then, that half the chain ends are negative, D~, and that the other
half, D+, are strongly bonded to an Se atom in a neighbouring chain which
becomes three-fold co-ordinated. Fairly direct evidence for dipoles in Se
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and in Se + 3% As has been obtained from dielectric measurements by
Abkowitz and Pai (1977, 1978).

In order to understand the sensitivity of the conductivity to oxygen, we
suppose (Mott 1976d), in common with other investigators (e.g. Mahdjuri
1975), that oxygen is adsorbed to the chain ends, but an additional hypo-
thesis is that it is adsorbed only to half of them (the D~), giving negatively
charged oxygen with no unpaired spins. Our hypothesis is that it will not be
adsorbed to the positive ends (D+), which are already strongly bonded to
another Se. Thus the D~ centres are destroyed, but not the D+. According
to the considerations of § 9.8, the activation energy E& for p-type conduc-
tion should then be reduced to two-thirds.

If chlorine is added, the absorption of Cl at a D~ chain end will produce a
neutral end to the chain and an electron; assuming the strongly bonded D+

to remain intact, the electron must go to another chlorine and produce an
unbonded CF. Since Se-fCl is reported by Twaddell et al. to be n type,
we suppose that these CF are donors.t

Finally, if potassium is added, the K atom should give up an electron to
the D+ states, producing D °  or D~; we suppose that K+ ions are compen-
sated by D~, but that, above —100 ppm of potassium, all D+ disappear.
Since the D~ centres can only generate electrons, not holes, the material
should be n type. We have no evidence at the time of writing whether this
is so.

We now write down the various activation energies. Suppose the band
gap is B, with the Fermi energy pinned in pure Se by D+ and D~ at an
energy e below mid-gap. The conductivity activation energy for pure
p-type Se is thus

(10.1)

and in the presence of oxygen it is

(10.2)

In the presence of potassium, however, the n-type activation energy is

(10.3)

We now examine the experimental evidence to see (a) if (10.1) and
(10.2) are compatible and (b) to deduce e from (10.3).

Twaddell et al. (1972) give activation energies but no details of the
temperature range in which the measurements were made, and we prefer

t Pfister, Melnyk, and Scharfe (1977) have observed an enhancement of hole drift velocity in
As2Se3 on adding —0-6 per cent of iodine, but without change in the activation energy or
dependence on field. We conjecture that this is due to the disappearance of D~ centres.
Possibly here the D+ centres disappear too.
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to suppose that for holes a = CTO exp(-£'0./fcT) and that <TO is independent
of impurity content, and to see what value of GTO we obtain from the
observed conductivities. If £"0- = 1-13 eV, at room temperature
exp(-£or/fc:T) = 2-3xlO~20; the observed resistivity is ~2xl017ncm, so
O-Q should be 217 fT1 cm"1. This is a reasonable value for conduction at a
mobility edge; if conduction is by hopping, CTO will be less, but so will E^
compared with the value extrapolated from the liquid. We shall then take
this value of E& in our further discussion.

Addition of oxygen, then, should decrease the resistivity by the factor
expCi^/fcT) ~ 2 x 107. The observed drop is from ~2 x 1017 to ~2 x 1010,
and is thus by a factor 107. The agreement is excellent.

The drop in resistivity on adding potassium is 104. The factor 103 (i.e.
107~4) is, according to eqns (10.2) and (10.3), equal to exp{f e/fcT}. Thus,
with T-300K,

This then gives the displacement of the Fermi level in pure Se from
mid-gap.

For Se containing chlorine the observed conductivity corresponds to an
activation energy of 0-56 eV. As we stated earlier, we suppose that the Cl~
ions are donors and that the material is an n-type semiconductor. Since
there should be some neutral Cl also (not attached to Se chain ends), the
material is compensated and 0-56 eV (not twice this) should represent the
energy required to remove an electron from Cl~ into the conduction band.
The electron affinity of Cl is 3-75eV, so this would indicate that the
conduction-band edge of Se is 3-2 eV below vacuum. Mort (19736), from
photo-emission work due to Mort and Lakatos (1970), gives 5-7 eV for the
photo-emission threshold and 2-20±0-25 eV for the gap, so the conduc-
tion band is at 3-5 ±0-25 eV below vacuum, in fair agreement with the
result deduced above.

The effect of up to 1 per cent of oxygen on the photoluminescence
emission is not marked (Street, Searle, and Austin 1974ft, Street 1976).
For this we may perhaps deduce that it is the D+ centres that are normally
responsible for luminescence.

10.3.2. Drift mobilities

The model of charged dangling bonds thus gives an explanation in broad
outline of the effect of impurities on the conductivity of amorphous
selenium. Further information can be obtained from the successful use of
the transient drift-mobility technique as developed and used on thin
material by Spear (1957, 1960), Hartke (1962), Tabak (1970), Pfister
(1976), and others. Both hole and electron drift mobilities in thin films
have been measured as a function of temperature, pressure, electric field,
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and sample variables, such as deposition temperature and concentration of
additives.

The technique for measurement of drift mobilities has been described in
§ 6.5.1. Basically it involves measurement of the time required for a thin
sheet of charge carriers, produced by photon or electron irradiation at one
surface, to drift across the biased sample. Table 10.1 lists the room-

TABLE 10.1

Drift parameters in amorphous selenium

JU,D is the drift velocity in cm2 V 1 s *, ED is the activation energy in eV.

temperature drift mobilities /LCD and activation energies E&. In view of the
differences in starting materials and conditions of deposition the consis-
tency of some of the earlier data is good, though Pfister's more recent
results for holes gives rather larger values for both E& and /XD. The spread in
the data of Grunwald and Blakney (1968) corresponds to a range in
substrate temperatures of 25-5 8° C (the activation energies showed an
almost linear rise with increase in substrate temperature). The substrates in
Tabak's experiments were held at 55°C .

There are several possible explanations of an activated drift mobility.
One is that the carriers form polarons, which we think improbable; if this
were so a substantial part of E& (perhaps 0-15 eV) could be identified with
the hopping energies WH (cf. Chapter 3), showing a difference between Ea

and Eg. This does not seem to be observed, at any rate in the liquid.
Another is that there is a large range of band-edge localized states due to

Electrons Holes

/u,D EV JU,D £"D Reference

5-2xl(T3 0-25 0-135 014 Spear 1957, 1960

7-8xl(T3 0-285 0-165 0-14 Hartke 1962

tK\F> til l\2 S3 (ta-dd-BM^l*.

6-OxlCT3 0-13
0-33 0- 16 Schottmiller et al 1970

8-3 xl(T3 0-16

0-13
0-23 Tabak 1970

0-17

0-20 0-28 Pfister 1976
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disorder; but particularly for electrons the large values shown in Table 10.1
make this unlikely. We think it probable that both electrons and holes
move at their respective mobility or band edges, the mobility being
controlled by traps due to defects which are probably chain ends or
impurities.

There are basic differences between hole and electron transport. Some
observations and deductions concerning the transport processes in amor-
phous selenium are as follows.

(a) At room temperature, except at low values of the electric field
(<100 volts cm"1), no appreciable loss of carriers during transit through
the films is found. However, as will be shown below, much higher fields
are necessary to ensure that a large proportion of the carriers leave the
generation region. Furthermore, the pulse shapes (ramp-like for voltage,
rectangular for current) are not rounded, yielding well-defined transit
times for both holes and electrons. These observations indicate virtually
no spreading of the thin sheet of charge, such as would be obtained if
there was a broad spectrum of release times for carriers trapped during
transit. They do not, however, rule out a spectrum of trapping levels with
release times much less than the transit time. However, Pfister (1976)
finds below 180 K a change to the stochastic process described in § 6.5.1.
Also, with his measurements over a much larger temperature range, he
finds, as we stated above, a larger activation energy than earlier workers,
which is shown in the table. Whether dispersion arises from properties of
the band edge, or a range of depths of 'discrete' statest (e.g. D+ and D~), is
a problem which is not resolved at the time of writing.
(b) The drift mobilities are independent of the magnitude of the applied
electric field except at low temperatures (<200 K).
(c) There is no detectable change in the mobilities or activation energies
when a hydrostatic pressure of 4-2 kbar is applied (Dolezalek and Spear
1970). This is considered to be strong evidence against hopping trans-
port for injected carriers, at least over the temperature range 230-
300 K. In other materials such as sulphur and anthracene, where polaron
hopping seems probable, a strong pressure effect is observed.
(d) For hole transport neither the magnitude nor the activation energy
of the drift mobility is affected by alloying with up to 2 per cent of As
(Hartke 1962) or with S. Alloying with Te reduces the room-tempera-
ture drift mobility and increases the activation energy slightly.
(e) For electron transport the activation energy associated with the drift
mobility is essentially unchanged by light alloying with As, S, or Te.
However, the magnitude of the electron drift mobility falls on light
alloying with As and Te but not with S.

t cf. Marshall 1977.
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Fig. 10.15. Temperature dependence of drift mobilities in Se, Se-Te, and Se-S alloys. (From
Schottmiller et al 1970.)

The alloying effects are shown in Figs. 10.15 and 10.16, plotted from
results given by Schottmiller etal. (1970) (see also Kolomiets and Lebedev,
1966). For electrons the constancy of ED suggests that the traps which limit
electron motion remain unchanged by alloying with the elements shown.
Interpretation of the electron drift mobility data in terms of eqn (6.11),
namely

(10.4)
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Fig. 10.16. Room-temperature drift mobilities /u,D and activation energies ED associated with
these mobilities in amorphous selenium alloys.

leads, if we suppose that fjL0 = 10 cm V s and 7VC, the effective density
of states at the mobility edge, equal to 1020cnT3 in pure Se, that the
decrease of /u,D on alloying is then associated with an increase in Nt. On this
model, the increase in Nt on alloying with As is found to be approximately
equal to the number of As atoms introduced.

For holes, assuming a trap-limited mobility according to eqn (10.4),
the trap density would be 2x 1014 cm"3. However, if conduction were by
hopping at the valence-band edge, rather than at a mobility edge, ^0 could
be 10-100 times smaller, and it is not ruled out that the values of Nt are the
same as for electrons.

If Nt is indeed the same for electrons as for holes, then the simplest
assumption is that the electron and hole traps are charged dangling bonds
at the ends of chains. The trapping activation energies would then be those
for the processes

and

If this is so, oxygen should remove the hole traps, substituting a deeper
trap, and potassium should affect the electron trap. Experimental evidence
on this point is lacking.
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However, the trapping energies seem small compared with the energies
expected, and possibly they may be excited states for carriers captured by
D+ and D~, that is an electron or a hole bound in a 2s state to the
respective charged centre. If so, the (multiphonon) transition probability to
the ground state must be small.

10.3.3. Carrier lifetimes and ranges

The range for carriers injected into a semiconductor is the distance
travelled per unit field before loss by trapping into deep levels or by
recombination. It is equal to the product of the drift mobility and the
carrier lifetime r. Use of low electric fields in the drift-mobility experi-
ments described above can lead to transit times of the order of or less than
r. In this case the transit pulses become exponential, and it is possible to
obtain values of r from their shape. Using this method Tabak and Warter
(1968) determine the following room-temperature values for hole and
electron lifetimes in amorphous selenium:

These values give room-temperature ranges of

for holes

and

for electrons.

It should be noted that the hole lifetime and range as determined by this
method are 20-100 times larger than previous estimates by Hartke (1962),
who used a probably inappropriate Hecht-type analysis of pulse height
against electric field.

The effect of light alloying on the carrier lifetimes is interesting. The
lifetimes are controlled by deep levels which may or may not be related to
the shallow-trap-controlled drift mobilities. Fig. 10.17 shows that the
addition of As, even in small quantities, dramatically reduces the hole
lifetime but increases the electron lifetime. The hole lifetime is similarly
reduced by alloying with S and Tl, whereas it is essentially unchanged with
Te and Cl. The electron lifetime is reduced by alloying with Cl and perhaps
Te, but is largely unaffected by the addition of Tl or S.

A possible hypothesis already suggested above is that the deep traps are
the D+, D~ centres and the shallow traps are excited states of these, the
transition between them being a slow multiphonon process (Chapter 9). If
so, removing traces of oxygen would increase the number of D~ centres
and thus account for the increase in the lifetime of the holes. Oxygen at the
end of a chain produces a negatively charged centre, and thus a shallow
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Fig. 10.17. Variation of electron and hole lifetimes in amorphous selenium with light alloy-
ing. Data from transient photoconductivity experiments.

trap, but unless its lone-pair orbital (with an electron missing) can bond
with a Se lone pair on another chain, it should not produce a deep state.

10.3.4. Photogeneration in amorphous Se\ xerography

The discharge of a selenium (or selenium alloy) film in the electrostatic
copying process known as xerography (Fig. 10.18) involves the creation of
electron-hole pairs by optical absorption in a thin layer at the surface and
their subsequent separation under the action of an electric field. Transient
photoconductivity experiments (Tabak and Warter 1968, Pai and Ing
1968, Pai and Enck 1975; cf. § 6.5.2) on amorphous selenium have shown
that, even for fields sufficiently high that bulk trapping events during transit
are negligible, the quantum efficiency of the process is still significantly less
than unity. The quantum efficiency, defined as the number of free electron-
hole pairs created per absorbed photon, is found to be an increasing
function of electric field, temperature, and photon energy. It approaches
unity for high values of these parameters.

The dependence of quantum efficiency on photon energy at room
temperature and for high values of the electric field has been shown in Fig.
6.36. The displacement of this quantum efficiency edge from the optical
absorption edge has been discussed in § 6.5.3 in which a simple model,
involving thermalization of the photoexcited carrier pair, was proposed.
Fig. 10.19(a,b) show typical field dependencies of the quantum efficiency 17
at various temperatures and at two different wavelengths, 400 nm
(^3-10 eV) and 580 nm (—2-14 eV), corresponding to fairly high and low
values of 17 respectively. In spite of the different shapes of these curves they
can, at least above a field of about 104Vcm~1, be accounted for by a
theory due to Onsager (1938). This theory, originally developed to explain
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Fig. 10.18. The xerographic process, (a) The photoconducting film is charged positively by a
corona discharge induced from a wire, held at a high potential, which is moved parallel to the
top surface, (b) The document to be copied is imaged on to the film. Electron-hole pairs are
created in the film by strongly absorbed photons reflected from light areas on the document,
(c) Under the action of the electric field, the holes drift towards the metal substrate; the
electrons move in the opposite direction to neutralize the positive surface charge, (d) Nega-
tively charged 'toner' particles (carbon black dispersed in a low-melting plastic) are cascaded
on to the surface, adhering to those areas of the film that have not been discharged, (e) The
toner is transferred to paper with the aid of a second corona discharge. The paper is removed
and the image made permanent by heating. (For further details of the process see Dessauer

and Clark 1965, Mort 1974.)

the departure from ohmic behaviour in weak electrolytes or solid dielec-
trics, yields an expression for the probability for a pair of oppositely
charged carriers to dissociate by Brownian motion in the presence of their
Coulomb attraction and a static electric field F, i.e. in a potential of the
form e2/Kr + eFr where K is the dielectric constant of the medium. Apart
from the obvious constants, the only parameter in the Onsager theorem is
the initial separation TQ. The expression for the probability of escape is
complicated but it can be reduced (Pai and Enck 1975) to a convergent
series in F.
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Fig. 10.19. Quantum efficiency of injection of holes versus electric field at several temperatures
and at an exciting wavelength of (a) 4000 A and (b) 5800 A.

Fig. 10.20. The circles and crosses show the experimental quantum efficiency of photoin-
jection of holes versus applied electric field for different values of the wavelength of exciting
radiation. The figure also shows data on films of two different thicknesses. The solid curves are
the theoretical Onsager dissociation efficiencies for an initial separation r0 indicated in the

figure. Note that the field is expressed in V m"1.
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The theoretical curves used by Pai and Enck to fit the quantum-
efficiency data in amorphous Se are shown in Fig. 10.20. Values of r0 used
for each wavelength of excitation are marked on the curves. The departure
from theory below about 104 V cm * is attributable to recombination in the
region of photoexcitation, as shown conclusively in a novel two-photon
experiment by Enck (1973). It is clear that the Onsager mechanism (or for
that matter the cruder Poole-Frenkel treatment, § 3.8) must have a low-
field cut-off when the potential drop eFr produced by the field is less than
about kT at the escape radius (rc = e2/KkT) (see Warter 1971). For Se at
room temperature this low-field cut-off is ~3 x 104 V cm"1. The behaviour
at higher fields approximates to the Poole-Frenkel behaviour, for which
T] ~exp(pFl/2/kT) (Pai and Ing 1968, Pai and Enck 1975), but if inter-
preted by this expression the values of /3(= (4^3//c)1/2) are incorrect by a
factor of 2 and furthermore depend on temperature.

The Onsager expression yields a temperature dependence of 77, for a
given r0, that is approximately exponential in l/T. The corresponding
activation energies are compared with experimental values as a function of
photon energy in Fig. 10.21(a). The dependence is seen to be good except

Fig. 10.21. (a) Comparison of the theoretical (Onsager) and experimental values of the
activation energy as a function of photon energy at an applied electric field of 7 x 106 V m"1.
(b) Experimental initial separation distances as a function of the photon energy. The figure

also shows the expected variation of initial distances using a simple model.

for excitation energies close to the absorption edge. Here r0 is only about
10 A and the classical assumptions of the theory probably break down. The
dependence of r0 on the excitation energy predicted by the thermalization
model developed in § 6.5.3 (see also Knights and Davis 1974) is shown,
using appropriate parameters, in Fig. 10.21(b). Although the general
behaviour is reproduced, a more detailed theoretical treatment of the
initial thermalization process would be desirable.

10.4. Some properties of liquid selenium and Se-Te alloys

Pure liquid selenium has been the subject of many studies, recently
reviewed in a book by Cutler (1977). It is thought to consist of a mixture of
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chain molecules and eight-membered rings. The theory of bond equili-
brium for such liquids is well established (Eisenberg and Tobolsky 1960,
Gee 1952). The concentration of chain ends varies with T as exp(—Ed /kT)
and Eisenberg and Tobolsky, supposing that the viscosity depends on chain
length, find Ed = 0-54 eV.

The discussion of this section will seek to apply the model of charged
dangling bonds (§ 9.4) to these liquids, and indeed if much energy was not
released by the bonding of D^ (a positively charged chain end) to a Se
atom in another chain, the energy of bond breaking would be much greater
than this. We suppose then that 0-54 eV is half the energy required to form
a D+ and a D~. Koningsberger, Van Wolput, and Rieter (1971) have found
that the activation energy to form centres that give an e.s.r. signal is
0-63 eV, while Massen, Weijts, and Poulis (1964) find from a study of
magnetic susceptibility that the activation energy is 0-87 eV. One or other
of these values should be the energy to create D° , which is greater than the
mean for D+ and D~.

Since the concentration of these centres at a given temperature must be
much greater than that of the carriers, for which E(T —  \ eV, liquid Se will
never be intrinsic and the Fermi energy will remain pinned. However, the
effect of impurities on the D+, D~ centres may well be similar to that in the
solid, depending on their concentration and binding energy to chain ends
about which little is known. The results of Gobrecht, Gawlick, and
Mahdjuri (1971), Gobrecht, Mahdjuri, and Gawlick (1971), Mahdjuri
(1975) have been mentioned in § 10.3.1; the most important was that their
liquid Se has an n-type thermopower below 900 K, and we think that this
must be due to an impurity that neutralizes the D+ chain ends. Above
900 K the concentrations of D+ and D~ may be such that the impurities do
not saturate them.

We turn now to liquid Sex-Tei_x which has been investigated by
Perron (1967) and whose results are reproduced in Figs. 10.22 and 10.23.
The first point to note is that these Te-rich alloys become metallic at high
T. If we suppose that metallic behaviour begins when cr~300 fl"1 cm"1,
we see for x = 0-2 that the thermopower is then of order k/e (87^tV~1 K),
so that the correspondence is reasonable. No direct measurements of
N(Ep) are available, as for instance from the Knight shift. Such measure-
ments do, however, exist for Te (Chapter 5), where the relationship 0-oc
{N(EF)}2 is obeyed. It seems likely that it would be obeyed by these alloys
too.

However, for or well below 300 fi"1 cm"1 the model of a Fermi energy
pinned by charged dangling bonds should be correct, and it is of interest to
see how this goes over to the pseudogap model when their concentration is
large. In Chapter 5 we quoted the results of Cabane and Friedel (1971)
that in liquid Te, as the temperature rises, three-fold co-ordination
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Fig. 10.22. Electrical conductivity of liquid SexTei_x alloys as a function of temperature.
(From Perron 1967.)
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Fig. 10.23. Thermoelectric power S of liquid SexTei_x alloys. (From Perron 1967.)
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increases, and in § 9.4 we point out that the D+ centres imply just this.
However, a quantitative treatment is lacking. In Fig. 10.22 it will be
noticed that the slope of the plot of Ino- against l/T increases with
increasing T\ Davis and Mott (1970) supposed that this is not a true
activation energy, but occurs because EF - Ev decreases faster than linearly.
Cutler (1977) shows that for x = 0-5 the low-temperature part may be of the
form o-min exp(y/fc) exp(—Ea/kT)  with reasonable values of crmin and y and
£"0, corresponding to the thermopower according to eqn (2.83). To achieve
this result he assumes a small contribution from electrons in the conduction
band. A problem discussed particularly by Cutler (1977) is why the change
of slope in the Ino- versus l/T plot is not reflected in that of the ther-
mopower. We think it possible that the extrapolation of the log a versus
l/T curve without assuming any ambipolar conduction does give a rather

. small value of o-0 (—10 ft"1 cm"1), and that this is characteristic of liquids
when the number of carriers at the mobility edge is small. A possible
explanation (Cutler, private communication) for p-type liquids is that holes
form VK-type polarons (even if they do not in the solid) and that such
polarons behave like a SeJ molecule and move like a heavy ion.
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INDEX

a.c. conductivity, 59ff., 117ff., 223ft.
in amorphous

arsenic, 423
chalcogenides, 83, 23 Iff., 464, 467
germanium, 357ff.
silicon, 374, 375

alloys, chalcogenide, see chalcogenides
, liquid, 170ff., 543ff.
, of group V materials, 440, 441
, silicon-arsenic, 372, 373
, with germanium, 132fT.

alternating currents, see a.c. conductivity
amorphons, 325
amorphous metals, see metallic glasses
Anderson

localization, 9ff., 15ff.
transitions, 37ff., 98ff.

antiferromagnetic metal, 108
antiferromagnetism, amorphous, 56
antimony

amorphous, alloys with, 440, 441
, d.c. conductivity of, 439
, RDF of, 418

arsenic,
amorphous, 408ff.

, a.c. conductivity of, 423
, CRN of, 414ff.
, density of electron states in, 432ff.
, dihedral angles in, 415
, electrical properties of, 419ff.
, e.s.r. in, 436, 437
, Hall effect in, 422, 423
, infrared spectra of, 305
, optical absorption edges in, 279, 427,

428
, optical properties of, 426ff.
, photoconductivity in, 426, 428, 429
, photoluminescence in, 435, 436
, preparation of, 408, 409
, pressure dependence of conductivity in,

424
, RDF of, 412ff.
, specific heat of, 309, 310, 436
, states in the gap of, 421, 425, 434ff.
, structure factor of, 412, 418
,structure of, 41 Off.
, thermopower of, 422, 433
, X-ray absorption in, 497

, crystalline forms of, 408, 409
arsenic

trisulphide, see chalcogenides
triselenide, see chalcogenides
tritelluride, see chalcogenides

Baber scattering, 164
band-crossing transitions, lOlff.
band structure,

of crystalline
germanium, 376
selenium and tellurium, 529
silicon, 386

bipolarons, 490
in a.c. conduction, 231

bismuth, amorphous, 408, 441
, metal-insulator transitions in, 102

caesium, liquid, 189, 190
cerium sulphide, 146ff.
CFO model, 48, 211
chalcogenides,

amorphous, 442ff.
, a.c. conductivity of, 23 Iff., 464, 467
, bonding in, 446ff., 493, 494
, charged defects in, 49, 88, 89,214, 215,

231,464ff.,488ff.
, core-level spectra of, 495ff.
, d.c. conductivity of, 224, 241, 454ff.
, density of electron states in, 49Iff.
, drift mobility in, 250, 254, 470ff.
, effect of alloying on the conductivity of,

484ff.
, electroabsorption in, 285ff.
, electrical properties of, 272, 452ff.
, e.s.r. in, 318, 319, 461, 467, 482, 504
, field effect in, 246, 469, 470
, free-carrier absorption in, 297ff., 506
, glass-forming regions in, 202, 443, 444
, Hall effect in, 240fL, 272, 459ff.
, infrared spectra of, 234, 301ff., 446ff.
, magnetoresistance in, 243
, negative Hubbard U in, 466
, non-ohmic conduction in, 490
, optical absorption edges in, 265, 279,

290, 292, 298, 474, 476, 480, 481,
497ff.

, optical properties of, 491ff., 497ff.
, photoconductivity in, 258ff., 268, 483,

484
, photodarkening in, 468
, photogeneration in, 265ff.
, photoluminescence in, 474ff., 503, 5(74
, pinning of the Fermi level in, 46, 212,

461ff., 485ff.
, preparation of, 442ff.
, Raman spectra of, 446ff.
, RDF of, 449ff.
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chalcogenides, amorphous — cont.
, recombination lifetimes in, 26Iff., 483,

484
, screening lengths in, 468, 469
, specific heats of, 305ff.
, states in the gap of, 460ff., 488ff.
, structure of, 203, 445fL
, switching in, 507ff.
, thermal conductivity of, 306fT.
, thermopower of, 272, 458
, valence-alternation pairs in, 466
, voids in, 443
, X-ray absorption in 495, 497

, crystalline, 481,482,49 Iff., 488,489,513
, liquid, 224, 237, 241, 298, 543ff.

charged defects
in amorphous

arsenic, 434ff.
chalcogenides, 49, 88, 89, 214, 215,231,

464ff., 488ff.
selenium, 532ff.

chromium sulphide, 155
classification of amorphous materials, 200ff.
conduction at a mobility edge versus hopping,

270ff.
continuous random networks, see CRN
co-ordination number

in amorphous materials, 44, 203ff., 208,
325,408,445,461,518

, relation to slope of Urbach edge, 283,
284

core levels, 314, 495ff.
correlation, 103, 104ff., 11 Off., 119ff.

, effects on hopping, 37 \
CRN, 43

of arsenic, 414ff.
of chalcogenides, 451
of germanium and silicon, frontispiece,

326ft,
of selenium, 519,420

crystallization, 200, 203
Curie paramagnetism, 315, 464

D+D~ model, see charged defects
dangling bands, frontispiece, see also defects

charged defects
defects

in amorphous
arsenic, 434ff.
chalcogenides, 49, 88, 89,214, 215, 231,

461,464ff.,488ff.
germanium and silicon, 48, 49, 88,

21 Iff., 333ff., 369, 370
selenium, 532ff.
silicon dioxide, 515

d.c. conductivity
in amorphous

arsenic, 419ff.
antimony, 439
chalcogenides, 224, 241, 454ff.
germanium, 345ff.
selenium, 530ff.
semiconductors, temperature depen-

dence of, 219ff., 224, 270ff.
silicon, 362ff.

deformation potential, 67
degenerate gas of polarons, 94, 95, 145
density of electron states, 1, 7ff., 51,

52, 62
in amorphous

arsenic, 432ff.
chalcogenides, 49Iff.
germanium, 396ff.
selenium, 296, 524ff.
silicon, 312, 396ff.
silicon dioxide, 514
tellurium, 524ff.

in liquid metals, 173, 175
Dexter, Klick, and Russell, mechanism of

recombination, 87, 300, 483
devitrification, see crystallization
differential thermal analysis (DTA), 201
diffraction function, 205

for amorphous
arsenic, 412
chalcogenides, 418
germanium, 333, 334

dihedral angles
in amorphous

arsenic, 415
germanium, 325, 330
selenium, 521. 526ff.
silicon, 324, 328, 330

divacancy in silicon, 213, 369, 370
doped crystalline semiconductors, 11 Iff.
doping

of amorphous
chalcogenides, 484ff.
semiconductors, 44ff.
silicon, 322, 370ff.

double injection, 103, 507fT.
DOVS, see density of electron states
Dow and Redfield theory, 276ff.
drift mobility, 93, 247ff., 270ff.

, dispersive transits in, 250ff., 491
in amorphous

chalcogenides, 250, 254, 470ff.
selenium, 250ff., 531ff.
silicon, 250, 256, 366ff.
silicon dioxide, 512, 513

in liquid xenon, 180, 181
Drude formula, 15, 224, 298
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electrical conductivity, see d.c. conductivity,
electrical properties

electrical properties
of non-crystalline semiconductors, 209ff.
of amorphous

arsenic, 419ff.
chalcogenides, 452ff.
germanium, 345ff.
selenium, 250fL, 530fT.
silicon, 362ff.

electroabsorption
of amorphous

chalcogenides, 285fT.
germanium, 287
selenium, 286

electroluminescence, 395, 510
electron-hole droplets, 102, 103
electron spin resonance, see e.s.r.
energy distribution curves (EDC), see

photoemission
ensemble average, 9
e.s.r.,

in impurity conduction, 123
in amorphous

arsenic, 436, 437
chalcogenides, 318, 319, 461, 467, 482,

504
germanium, 314ff.
selenium, 532
silicon, 36, 314ff.

europium oxide and sulphide, 153, 154
EXAFS, 205, 207

, spectra of selenium, 207
excitons in amorphous semiconductors, 268,

280
, bound, interacting with lattice vibrations,

275
, electric-field broadening of, 275, 276,

279ff.
in magnesium-bismuth alloys, 280
in recombination mechanisms, 82ff.
in ruby, 26
in silicon dioxide, 513ff.

excitonic phase, 102
extended-state conduction, 25, 219
extended X-ray absorption fine structure, see

EXAFS

fatiguing effects in luminescence, 438, 475,
479

F-centre, 267
Fermi glasses, 9, 98fT.
Fermi level, pinning of, 46, 194, 212 ff., 435,

461, 467, 485ff.
field effect

in amorphous
arsenic, 435

field effect in amorphous—cont.
chalcogenides, 246, 469, 470
germanium, 246, 359
semiconductors, 243ff.
silicon, 246, 368, 369, 374

Frank-Condon principle, 215
Franz-Keldysh effect, 276, 277
free-carrier absorption

in amorphous
chalcogenides, 297ff., 506
semiconductors, 297ff.

frequency dependence of conductivity, see
a.c. conductivity

gadolinium sulphide, 157
gallium, amorphous, 441
gallium-tellurium liquid alloys, 193, 194,

197ff.
geminate recombination, 266ff., 392
germanium,

amorphous, 320ff.
, a.c. conductivity of, 357ff.
, alloys with iron and silicon, 132ff.
, CRN of, frontispiece, 326ff.
, d.c. conductivity of, 345ff.
, defects in, 48, 49, 88, 21 Iff., 333ff.
, density of, 321, 380
, density of electron states in, 396ff.
, diamagnetic susceptibility of, 338
, diffraction functions of, 333, 334
, dihedral angles in, 325, 330
, electrical properties of, 345ff.
, electron micrographs of, 337
, e.s.r. in, 314ff.
, field effect in, 246, 359
, Hall effect in, 349
, hydrogenated, 340ff.
, infrared spectra of, 305, 340, 341
, ion bombardment of, 354, 355
, magnetoresistance of, 243, 357, 360ff.
, microcrystalline models of, 33 Iff.
, non-ohmic conduction in, 355, 356
, optical absorption edges in, 283, 292,

340, 375ff., 399
, optical properties of, 293ff., 339, 375ff.
, oxygen in, 339, 379
, preparation of, 320ff.
, polytetrahedral model of, 332
, porosity of, 338
, RDF of, 206, 323ff., 329ff.
, small-angle X-ray scattering in, 334,

335, 380
, spin density in, 214, 314ff., 338, 341ff.
, specific heat of, 310
, states in the gap of, 352ff.
, structure of, 322ff.
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germanium, armorphous—cont.
, thermopower of, 239, 345ff.
, variable-range hopping in, 346ff., 35 Iff.
, voids impurities and defects in, 333ff.

, crystalline, 325, 376
, impurity conduction in 11 Iff.

germanium chalcogenides, see chalcogenides
glass-forming materials, 202, 203, 443, 444
glass transition (transformation) tempera-

ture, 200, 201
glassy metals, see metallic glasses
glow-discharge deposition, 321, 322, 409
grain boundaries, resistance of, 178
granular films, 157ff.

Hall effect, 56ff., 240ff., 270ff.
due to polarons, 92
in amorphous

arsenic, 422, 423
chalcogenides, 240ff., 272, 459ff.
germanium, 240, 349
silicon, 373

and impurity conduction, 116, 121ff.
in liquid

mercury, 186, 187
metals, 172ff.
semiconductors, 184

in tungsten bronzes, 150, 151
heterojunctions between .crystalline and

amorphous silicon, 365
hopping conduction, 33ff., 27, 28, 32ff., 59ff.,

75ff.
at band edges, 47, 216ff., 270ff., 366ff.
at Fermi level, see variable-range hopping
due to polarons, 92ff.
in alloys, 132ff.
in granular films, 158, 159
in impurity conduction, 11 Iff.
in oxides, 150ff.

Hubbard bands, 104ff., 11 Iff., 119ff.
Hubbard U, 105, 212, 214, 466, 467

impurity conduction, 11 Iff.
indium antimonide, impurity conduction in,

129
indium phosphide, arsenide, and antimonide,

amorphous, core levels in, 314
infrared spectra

of amorphous
arsenic, 305
chalcogenides, 234, 301ff., 446ff.
germanium, 305, 340, 341
selenium, 303, 305
semiconductors, 233ff., 301ff.
silicon, 304

interband absorption
in amorphous semiconductors 287ff., see

also optical properties
intraband absorption

in amorphous semiconductors, 297ff., see
also free-carrier absorption

loffe-Regel
criterion for mean free path, 3, 8
rule for co-ordination number, 203

k-conservation selection rule, 2, 288, 30±
Knight shift, 174, 175, 189, 196ff.
Kondo effect, 125
Kubo-Greenwood formula, 1 Iff.

lanthanum-strontium vanadate 144, 145
lateral disorder, 21, 24, 124
lead chalcogenides, liquid, 165
lead iodide, effect of bombardment on, 280,

281
LiNbO3, polarons in, 92, 94
liquid alloys, 170ff.

caesium, 189, 190
chalcogenides, 224, 237, 241, 297, 458
metals; 16Iff, 222, 223
mercury, 185ff.
rare gases, 179ff.
salts, 185'
selenium, 531, 543ff.
selenium-tellurium alloys, 543ff.
semimetals and semiconductors, 18Iff.
tellurium and alloys, 194ff., 543ff.

localization, due to magnetic fields, 129, 139,
see also Anderson localization

luminescence, see electroluminescence, pho-
toluminescence

magnesium-bismuth alloys, 45, 130ff., 280
magnetic susceptibility

of amorphous semiconductors, 318, see
also Curie paramagnetism

of electrons in impurity bands, 106
of tellurium, 195

magnetoresistance
in amorphous semiconductors, 242, 243,

357, 360ff., 365
in impurity conduction, 129, 130

mean free path, 2, 13ff.
mercury,

, liquid, 172, 185ff.
, liquid alloys, 170ff.

metal-ammonia system, 93, 109
metallic glasses, 177ff., 203
metal-rare gas systems, 126, 127
microcrystallite models, 208, 33Iff.
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minimum metallic conductivity, 4, 28ff., 289,
299

as pre-exponential in semiconductors, 47,
219,419,453

in granular films, 157ff.
in impurity conduction, 126ff.
in two-dimensional conduction, 136, 137

manganese oxide, 92
mobility edge, 4, 23, 39ff., 46ff., 211, 215ff.

in amorphous silicon, 366ff.
mobility gap, 211
monomolecular and bimolecular recom-

bination, 254ff., 392
Mott transition, 104ff., 109
multicomponent glasses, 203, 442
multiphonon processes, 78ff.
multiple-scattering theory, 162, 405
napthalene, drift mobility in, 93
Neel point, 104ff., 110, 156, 315
negative Hubbard U, 214, 316, 318, 466
nickel oxide, 90ff., 140, 141
non-bridging oxygen, 515, 516
non-ohmic conduction, 35, 36, 95fT.

in amorphous
chalcogenides, 490
germanium, 355, 356

nuclear magnetic resonance, 195, 208

one-dimensional problems, 62fL
Onsager

escape radius, 263, 269
theory of dissociation, 264, 542, 543

optical absorption edges
in amorphous

and crystalline semiconductors, 273ff.,
287ff.

arsenic, 279, 427, 428
chalcogenides, 265, 279, 290, 292, 297,

474,476,480,481,49711.
germanium, 292, 340, 375ff., 399
selenium, 267, 279, 521ff.
silicon, 290, 344, 384ff.
silicon dioxide, 513
tellurium, 279, 521

, effect of pressure on, 284
, electric-field broadening of, 276ff.

optical properties
of amorphous

arsenic, 426ff.
chalcogenides, 49Iff., 497ff.
germanium, 293ff., 339, 375ff.
selenium, 52 Iff.
semiconductors, 272ff.
silicon, 384ff.
silicon dioxide, 513ff.
tellurium, 52Iff.

oxide glasses, 512ff.

Pauli susceptibility of liquids, 192, 193
Penn gap, model, 296, 382, 383, 431
percolation edges, 39ff.

theory of, 35, 149,158,159, 189,210,218,
356

phonon spectra, see infrared spectra
phosphorus, amorphous, 418, 439
photoconductivity

in amorphous
arsenic, 426, 428, 429
chalcogenides, 258ff., 268, 483, 484
semiconductors, 254ff.
silicon, 255ff., 263, 264, 316, 374, 389,

390
photodarkening, 468
photoemission

in amorphous
arsenic, 432
chalcogenides, 49Iff.
germanium, 312ff., 396ff.
selenium, 523, 524
semiconductors, 311ff.
silicon, 312, 313, 396
tellurium, 524

liquids, 175, 176
photogeneration, 265ff., 540ff.
photoluminescence

in amorphous
arsenic, 435, 436
chalcogenides, 474ff., 503, 504
selenium, 482, 534
semiconductors, 300, 301
silicon, 300, 301, 391ff.

plasma frequency
in arsenic, 430ff.
in germanium, 38Iff.

polarons, 5, 65fL, 231, 270, 271, 453, 459,
460,513

Polk model, 326ff.
Poole-Frenkel effect, 97, 269, 490
potential fluctuations in amorphous semi-

conductors, see spatial fluctuations
pressure,

effect on drift mobility, 250
optical absorption edge, 284
resistivity of arsenic, 424, 425

pseudogaps, 50, 51, 109, 130, 182ff., 185ff.,
190ff.

pseudopotentials, 166ff., 403
pyrolytic carbon, 145, 146

quantum efficiency, 265ff., 540ff.

radial distribution function, see RDF



588 INDEX

Raman spectroscopy
of amorphous

chalcogenides, 446ff.
selenium, 303ff.
silicon, 304

random electric fields in amorphous semi-
conductors, 39, 209, 210, 213, 280ff.,
287, 477, 478

rare-earth liquid metals, 177
rare gases, 179ff.
Rayleigh scattering, 499
RDF, 205ff.

of amorphous
antimony, 418
arsenic, 412ff.
chalcogenides, 499ff.
germanium, 206, 323ff., 329ff.
phosphorus, 418
selenium, 518, 519
silicon, 327, 328

recombination, 76ff.
edges, 475
lifetime

in amorphous semiconductors, 26Iff.,
483, 484

in amorphous silicon, 257
in threshold switch, 507, 510, 511

RKKY interaction, 133
rubidium, liquid, 169, 170

Seebeck coefficient, see thermopower
Scher-Montroll theory of dispersive transits,

252fL
screening length, 245, 468, 469
selenium,

amorphous, 517ff.
, alloys with, 537, 538, 443fT.
, carrier lifetimes in, 539, 540
, CRN of, 519, 520
, density of electron states in, 296, 524ff.
, dihedral angles in, 521, 526ff.
, drift mobility in, 250ff., 53Iff.
, electrical properties of, 250fL, 530ff.
, electroabsorption in, 285ff.
, e.s.r. in, 532
, EXAFS spectra of, 207
, infrared spectra of, 303, 305
, optical absorption edges in 267, 279,

521ff.
, optical properties of, 52 Iff.
, oxygen in, 53 Iff.
, photogeneration in, 266fL, 540ff.
, photoluminescence in, 482, 534
, Raman spectra of, 302ff.
, RDF of, 518, 519
, states in the gap of, 532ff.

selenium, amorphous—cont.
, structure of, 517ff.
, xerographic process in, 530, 540, 541
, X-ray absorption in, 296, 497

, crystalline, 517, 518, 529
, liquid, 531, 543ff.

-tellurium alloys, 543ff.
semiconductors, amorphous, preparation of,

200ff.
semimetals, 50, 18 Iff.
short-range order, 204
Shubnikov-de Haas oscillations, 135
silica, see silicon dioxide
silicon-arsenic alloys, 372, 373
silicon,

amorphous, 32Iff.
, a.c. conductivity of, 374, 375
, alloyed with arsenic, 372, 373
, CRN of, frontispiece, 326ff.
, d.c. conductivity of, 362ff.
, defects in, 48, 49, 88, 21 Iff., 333ff.
, density of electron states in, 312, 313,

396ff.
, dihedral angles in, 325, 328, 330
, doping of, 212, 322, 370ff., 393ff.
, drift mobility in 250, 256, 366ff.
, electrical properties of, 362ff.
, e.s.r. in, 36, 314ff.
, field effect in, 368, 369, 374
, glow-discharge-deposited, 316, 317,

321, 322, 344, 365ff., 386ff.
, Hall effect in, 373
, hydrogen in, 322, 387
, infrared spectra of, 304
, magnetoresistance of, 243, 365
, optical absorption edges in, 290, 344,

384ff.
, optical properties of, 384ff.
, oxygen in, 342ff., 362
, photoconductivity in, 255ff, 263, 264,

317,374,389,390
, photoemission in, 312, 313, 396
, photoluminescence in, 300, 301, 39Iff.
, preparation of, 320ff.
, recombination lifetime in, 257
, Raman spectra of, 304
, RDF of, 327, 328
, spin-dependent photoconductivity in.

316,317
, states in the gap of, 255, 363, 364, 368.

369
, structure of, 322ff.
, thermopower of, 239, 362ff., 374
, variable-range hopping in, 363, 364
, voids, imperfections, and defects in.

333ff, 369, 37Q
, X-ray absorption in, 406
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silicon, amorphous — cont.
, crystalline,

band structure of, 386
, divacancy in, 370
, impurity conduction via, 11 Iff.

silicon dioxide, 209, 250, 306ff., 456, 512ff.
small-angle X-ray scattering, 334ff., 443
soft modes in amorphous semiconductors,

309,310
solvated electrons, 93
spatial fluctuations in the band gap of amor-

phous semiconductors, 39, 209, 210,
213

specific heat,
electronic, in impurity band, 125
of glasses, 230, 305fT, 436

spin-dependent photoconductivity in doped
silicon, 316, 317

spin glasses, 110
spin polarons, 107, 155, 156
splat cooling, 178, 200, 320, 443
stabilization of network by defects, 333, 352
states in the gap

of amorphous
arsenic, 421, 425, 434ff.
chalcogenides, 460ff., 488ff.
germanium, 352fT.
selenium, 532ff.
semiconductors, 43, 48ff., 21 Off.
silicon, 255, 363, 364, 368, 369

Stokes shift, 83, 300, 391, 439,475, 481,489
structure factor, 165ff., 181, see also

diffraction function
structure, determination of, 204ff.
structure of amorphous arsenic, 41 Off.

chalcogenides, 203, 445ff.
germanium, 322ff.
selenium, 517ff.
silicon, 322ff.
silicon dioxide, 512

tellurium, 517ff.

T~1/4 behaviour, see variable-range hopping
at Fermi leveL

tellurium,
amorphous, 517ff.

, density of electron states in 524ff.
, optical properties of, 279, 52 Iff.
, structure of, 517ff.

, crystalline, 521
, liquid 194ff.
- selenium aloys, 543ff.

ternary glass systems, 202, 203, 443, 444
thermal conductivity of non-crystalline

materials, 305ff.
thermalization of electron-hole pair, 269,475
thermoelectric power, see thermopower

thermopower, 52ff.,'235ff., 270ff.
due to polarons, 91, 92, 94, 141
in amorphous

arsenic, 422, 433
chalcogenides, 237, 272, 458
germanium, 239, 345ff..
magnesium-bismuth alloys, 132
silicon, 239, 362ff., 374

in lanthanum-strontium vanadate alloys,
145

in liquid chalcogenides, 237, 458
metals and alloys, 172, 190, 191, 193
selenium and selenium-tellurium alloys,

544, 546
semimetals and semiconductors, 183

in impurity conduction, 116, 141
in vanadium and titanium oxides, 153

threshold switch, 464, 507ff.
tight-binding approximation, 16, 401, 494,

526., 527
titanium dioxide, 90
transit time, in threshold switch, 511, see also

drift mobility
transition metals, liquids, 176, 177
transition-metal oxide glasses, 142ff.
two-dimensional behaviour, 22, 25, 31, 37,

38
in inversion layers, 135ff.
in amorphous

germanium, 352ff.
silicon, 363, 364

tungsten bronzes, 148ff.

Umklapp processes, 294, 529
UPS (ultraviolet photoemission spectros-

copy), see photoemission
Urbach's rule, 273ff., 297, 380, 427, 497ff.,

523

valence-alternation pairs, 466
vanadium monoxide and VO*, 15Off.
vanadium-phosphate glasses, 96, 142ff.
variable-range hopping

at band edge, 216ff.
at Fermi level 32ff., 122, 123, 127, 128,

132ff., 136ff., 143, 152, 153, 221,
345ff., 362ff., 420, 425, 439fL, 467

vibrational spectra, see infrared spectra
virtual bound state, 9
viscosity of liquid selenium, 544
Vk centre, 71,93
voids

in amorphous
chalcogenides, 433
silicon and germanium, 208, 209,
210, 213, 333ff., 379
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Wigner crystallization, 109

xerographic process, 266, 530, 540, 541
XPS (X-ray photoemission spectroscopy), see

photoemission
X-ray absorption

in amorphous arsenic, 497

x-ray absorption—cont.
chalcogenides, 495, 497
selenium, 296, 497
silicon, 406

Ziman theory of resistivity of liquid metals,
161, 165ff.
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